Oracle® Database
Utilities

21c
F30732-28
June 2025

ORACLE"

Oracle Database Utilities, 21c

F30732-28

Copyright © 2002, 2025, Oracle and/or its affiliates.
Primary Author: Douglas Williams

Contributors: William Beauregard, Michael Cusson, Steve DiPirro, John Kalogeropoulos, Rod Payne, Rich Phillips, Mike
Sakayeda, Jim Stenoish, Roy Swonger

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience XXXViii
Documentation Accessibility XXXViii
Diversity and Inclusion XXXIX
Related Documentation XXXIX
Syntax Diagrams XXXIX
Conventions XXXiX
Part | Oracle Data Pump
1 Overview of Oracle Data Pump
1.1 Oracle Data Pump Components 1-2
1.2 How Does Oracle Data Pump Move Data? 1-3
1.2.1 Using Data File Copying to Move Data 1-4
1.2.2 Using Direct Path to Move Data 1-5
1.2.3 Using External Tables to Move Data 1-6
1.2.4 Using Conventional Path to Move Data 1-7
1.2.5 Using Network Link Import to Move Data 1-7
1.2.6 Using a Parameter File (Parfile) with Oracle Data Pump 1-8
1.3 Using Oracle Data Pump With CDBs 1-9
1.3.1 About Using Oracle Data Pump in a Multitenant Environment 1-9
1.3.2 Using Oracle Data Pump to Move Data Into a CDB 1-10
1.3.3 Using Oracle Data Pump to Move PDBs Within or Between CDBs 1-12
1.4 Cloud Premigration Advisor Tool 1-13
1.4.1 What s the Cloud Premigration Advisor Tool (CPAT) 1-13
1.5 Required Roles for Oracle Data Pump Export and Import Operations 1-13
1.6 What Happens During the Processing of an Oracle Data Pump Job? 1-15
1.6.1 Coordination of an Oracle Data Pump Job 1-15
1.6.2 Tracking Progress Within an Oracle Data Pump Job 1-15
1.6.3 Filtering Data and Metadata During an Oracle Data Pump Job 1-16
1.6.4 Transforming Metadata During an Oracle Data Pump Job 1-17
1.6.5 Maximizing Job Performance of Oracle Data Pump 1-17

ORACLE

1.6.6 Loading and Unloading Data with Oracle Data Pump 1-17
1.7 How to Monitor Status of Oracle Data Pump Jobs 1-18
1.8 How to Monitor the Progress of Running Jobs with V$SESSION_LONGOPS 1-18
1.9 File Allocation with Oracle Data Pump 1-19
1.9.1 Understanding File Allocation in Oracle Data Pump 1-19
1.9.2 Specifying Files and Adding Additional Dump Files 1-20
1.9.3 Default Locations for Dump, Log, and SQL Files 1-20
1.9.3.1 Understanding Dump, Log, and SQL File Default Locations 1-21
1.9.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC 1-22

1.9.3.3 Using Directory Objects When Oracle Automatic Storage Management Is
Enabled 1-23
1.9.3.4 The DATA_PUMP_DIR Directory Object and Pluggable Databases 1-24
1.9.4 Using Substitution Variables with Oracle Data Pump Exports 1-24
1.10 Exporting and Importing Between Different Oracle Database Releases 1-25
1.11 Exporting and Importing Blockchain Tables with Oracle Data Pump 1-26
1.12 Managing SecureFiles Large Object Exports with Oracle Data Pump 1-27
1.13 Oracle Data Pump Process Exit Codes 1-28
1.14 How to Monitor Oracle Data Pump Jobs with Unified Auditing 1-28
1.15 Encrypted Data Security Warnings for Oracle Data Pump Operations 1-29
1.16 How Does Oracle Data Pump Handle Timestamp Data? 1-29
1.16.1 TIMESTAMP WITH TIMEZONE Restrictions 1-30
1.16.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions 1-30
1.16.1.2 Oracle Data Pump Support for TIMESTAMP WITH TIME ZONE Data 1-30
1.16.1.3 Time Zone File Versions on the Source and Target 1-31
1.16.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions 1-32
1.17 Character Set and Globalization Support Considerations 1-32
1.17.1 Data Definition Language (DDL) 1-32
1.17.2 Single-Byte Character Sets and Export and Import 1-32
1.17.3 Multibyte Character Sets and Export and Import 1-33
1.18 Oracle Data Pump Behavior with Data-Bound Collation 1-33

Oracle Data Pump Export

2.1 What Is Oracle Data Pump Export? 2-1
2.2 Starting Oracle Data Pump Export 2-2
2.2.1 Oracle Data Pump Export Interfaces 2-2
2.2.2 Oracle Data Pump Export Modes 2-3
2.2.2.1 Full Export Mode 2-4
2.2.2.2 Schema Mode 2-5
2.2.2.3 Table Mode 2-6
2.2.2.4 Tablespace Mode 2-7
2.2.2.5 Transportable Tablespace Mode 2-7

ORACLE

2.2.3

Network Considerations for Oracle Data Pump Export

2.3 Filtering During Export Operations

231
2.3.2

Oracle Data Pump Export Data Filters
Oracle Data Pump Metadata Filters

2.4 Parameters Available in Data Pump Export Command-Line Mode

24.1

24.2

243

24.4

245

2.4.6

247

2.4.8

249

2.4.10
2411
2.4.12
2.4.13
2414
2.4.15
2.4.16
2.4.17
2.4.18
2.4.19
2.4.20
24.21
2.4.22
2.4.23
2.4.24
2.4.25
2.4.26
2.4.27
2.4.28
2.4.29
2.4.30
2.4.31
2.4.32
2.4.33
2.4.34
2.4.35
2.4.36
2.4.37

ORACLE

About Data Pump Export Parameters
ABORT_STEP
ACCESS_METHOD
ATTACH
CHECKSUM
CHECKSUM_ALGORITM
CLUSTER
COMPRESSION
COMPRESSION_ALGORITHM
CONTENT
CREDENTIAL
DATA_OPTIONS
DIRECTORY
DUMPFILE
ENABLE_SECURE_ROLES
ENCRYPTION
ENCRYPTION_ALGORITHM
ENCRYPTION_MODE
ENCRYPTION_PASSWORD
ENCRYPTION_PWD_PROMPT
ESTIMATE
ESTIMATE_ONLY
EXCLUDE
FILESIZE
FLASHBACK_SCN
FLASHBACK_TIME
FULL
HELP
INCLUDE
JOB_NAME
KEEP_MASTER
LOGFILE
LOGTIME
METRICS
NETWORK_LINK
NOLOGFILE
PARALLEL

2-11
2-15
2-17
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-30
2-31
2-33
2-33
2-35
2-37
2-38
2-39
2-39
2-41
2-42
2-43
2-44
2-46
2-46
2-48
2-49
2-49
2-50
2-52
2-53
2-54
2-55

2.4.38
2.4.39
2.4.40
2441
2.4.42
2.4.43
2.4.44
2.4.45
2.4.46
2.4.47
2.4.48
2.4.49
2.4.50
2451
2452
2.4.53
2.4.54
2.4.55
2.4.56

PARALLEL_THRESHOLD
PARFILE

QUERY

REMAP_DATA
REUSE_DUMPFILES

SAMPLE

SCHEMAS

SERVICE_NAME
SOURCE_EDITION

STATUS

TABLES

TABLESPACES
TRANSPORT_DATAFILES_LOG
TRANSPORT_FULL_CHECK
TRANSPORT_TABLESPACES
TRANSPORTABLE
TTS_CLOSURE_CHECK
VERSION

VIEWS_AS_TABLES

2.5 Commands Available in Data Pump Export Interactive-Command Mode

251
2.5.2
253
254
255
2.5.6
257
2.5.8
259
2.5.10
251

About Oracle Data Pump Export Interactive Command Mode

ADD_FILE

CONTINUE_CLIENT

EXIT_CLIENT

FILESIZE

HELP

KILL_JOB

PARALLEL

START_JOB
STATUS
STOP_JOB

2.6 Examples of Using Oracle Data Pump Export

26.1
2.6.2
2.6.3
26.4
2.6.5
2.6.6
2.6.7

Performing a Table-Mode Export

Data-Only Unload of Selected Tables and Rows

Estimating Disk Space Needed in a Table-Mode Export

Performing a Schema-Mode Export

Performing a Parallel Full Database Export

Using Interactive Mode to Stop and Reattach to a Job

Continuing Table Loads when LOB Data Type Corruptions are Found

2.7 Syntax Diagrams for Oracle Data Pump Export

ORACLE

2-57
2-58
2-59
2-61
2-62
2-63
2-64
2-65
2-66
2-67
2-67
2-70
2-71
2-72
2-73
2-75
2-76
2-77
2-78
2-80
2-81
2-82
2-83
2-83
2-83
2-84
2-84
2-85
2-86
2-86
2-87
2-87
2-88
2-88
2-88
2-89
2-89
2-89
2-90
2-92

Vi

3 Oracle Data Pump Import

3.1 What Is Oracle Data Pump Import?

3.2 Starting Oracle Data Pump Import

3.21
3.2.2

Oracle Data Pump Import Interfaces
Oracle Data Pump Import Modes

3.2.2.1 About Oracle Data Pump Import Modes
3.2.2.2 Full Import Mode

3.2.2.3 Schema Mode

3.2.2.4 Table Mode

3.2.2.5 Tablespace Mode

3.2.2.6 Transportable Tablespace Mode

3.2.3

Network Considerations for Oracle Data Pump Import

3.3 Filtering During Import Operations

331
3.3.2

Oracle Data Pump Import Data Filters
Oracle Data Pump Import Metadata Filters

3.4 Parameters Available in Oracle Data Pump Import Command-Line Mode

34.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.4.12
3.4.13
3.4.14
3.4.15
3.4.16
3.4.17
3.4.18
3.4.19
3.4.20
3.4.21
3.4.22
3.4.23
3.4.24
3.4.25

ORACLE

About Import Command-Line Mode
ABORT_STEP
ACCESS_METHOD
ATTACH
CLUSTER
CONTENT
CREDENTIAL
DATA_OPTIONS
DIRECTORY
DUMPFILE
ENABLE_SECURE_ROLES
ENCRYPTION_PASSWORD
ENCRYPTION_PWD_PROMPT
ESTIMATE
EXCLUDE
FLASHBACK_SCN
FLASHBACK_TIME
FULL
HELP
INCLUDE
JOB_NAME
KEEP_MASTER
LOGFILE
LOGTIME
MASTER_ONLY

3-1
3-1
3-2
3-3
3-3
3-4

3-5
3-6
3-6
3-7

3-8

3-8

3-9
3-14
3-16
3-16
3-18
3-19
3-20
3-21
3-23
3-25
3-26
3-29
3-29
3-31
3-32
3-33
3-35
3-36
3-37
3-38
3-39
3-41
3-41
3-42
3-43
3-44

Vii

3.4.26
3.4.27
3.4.28
3.4.29
3.4.30
3.4.31
3.4.32
3.4.33
3.4.34
3.4.35
3.4.36
3.4.37
3.4.38
3.4.39
3.4.40
3.4.41
3.4.42
3.4.43
3.4.44
3.4.45
3.4.46
3.4.47
3.4.48
3.4.49
3.4.50
3.4.51
3.4.52
3.4.53
3.4.54
3.4.55
3.4.56
3.4.57
3.4.58
3.4.59
3.4.60

METRICS

NETWORK_LINK
NOLOGFILE

PARALLEL
PARALLEL_THRESHOLD
PARFILE
PARTITION_OPTIONS
QUERY

REMAP_DATA
REMAP_DATAFILE
REMAP_DIRECTORY
REMAP_SCHEMA
REMAP_TABLE
REMAP_TABLESPACE
SCHEMAS

SERVICE_NAME
SKIP_UNUSABLE_INDEXES
SOURCE_EDITION

SQLFILE

STATUS
STREAMS_CONFIGURATION
TABLE_EXISTS_ACTION
REUSE_DATAFILES
TABLES

TABLESPACES
TARGET_EDITION
TRANSFORM
TRANSPORT_DATAFILES
TRANSPORT_FULL_CHECK
TRANSPORT_TABLESPACES
TRANSPORTABLE
VERIFY_CHECKSUM
VERIFY_ONLY

VERSION
VIEWS_AS_TABLES (Network Import)

3.5 Commands Available in Oracle Data Pump Import Interactive-Command Mode

351
3.5.2
3.5.3
3.54
3.5.5
3.5.6

ORACLE

About Oracle Data Pump Import Interactive Command Mode
CONTINUE_CLIENT

EXIT_CLIENT

HELP

KILL_JOB

PARALLEL

3-45
3-45
3-47
3-48
3-50
3-51
3-52
3-54
3-56
3-57
3-58
3-59
3-61
3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-70
3-71
3-72
3-74
3-75
3-76
3-84
3-86
3-88
3-89
3-92
3-92
3-93
3-94
3-96
3-97
3-97
3-98
3-98
3-99
3-99

viii

3.5.7 START_JOB 3-100
3.5.8 STATUS 3-100
3.5.9 STOP_JOB 3-101
3.6 Examples of Using Oracle Data Pump Import 3-102
3.6.1 Performing a Data-Only Table-Mode Import 3-102
3.6.2 Performing a Schema-Mode Import 3-102
3.6.3 Performing a Network-Mode Import 3-103
3.6.4 Using Wildcards in URL-Based Dumpfile Names 3-103
3.7 Syntax Diagrams for Oracle Data Pump Import 3-104
Oracle Data Pump Legacy Mode
4.1 Oracle Data Pump Legacy Mode Use Cases 4-1
4.2 Parameter Mappings 4-1
4.2.1 Using Original Export Parameters with Oracle Data Pump 4-2
4.2.2 Using Original Import Parameters with Oracle Data Pump 4-5
4.3 Management of File Locations in Oracle Data Pump Legacy Mode 4-9
4.4 Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors 4-11
44.1 Log Files 4-12
4.4.2 Error Cases 4-12
4.4.3 Exit Status 4-12
Oracle Data Pump Performance
5.1 Data Performance Improvements for Oracle Data Pump Export and Import 5-1
5.2 Tuning Performance 5-2
5.2.1 How To Manage Oracle Data Pump Resource Consumption 5-2
5.2.2 Effect of Compression and Encryption on Performance 5-3
5.2.3 Memory Considerations When Exporting and Importing Statistics 5-3
5.3 Initialization Parameters That Affect Oracle Data Pump Performance 5-3
5.3.1 Performance Guidelines for Oracle Data Pump Parameters 5-4
5.3.2 Setting the Size Of the Buffer Cache In a GoldenGate Replication Environment 5-4
5.3.3 Managing Resource Usage for Multiple User Oracle Data Pump Jobs 5-4
Using the Oracle Data Pump API
6.1 How Does the Oracle Data Pump Client Interface APl Work? 6-1
6.2 DBMS_DATAPUMP Job States 6-1
6.3 What Are the Basic Steps in Using the Oracle Data Pump API? 6-4
6.4 Examples of Using the Oracle Data Pump API 6-4
6.4.1 Using the Oracle Data Pump API Examples with Your Database 6-5
6.4.2 Performing a Simple Schema Export with Oracle Data Pump 6-5

ORACLE

6.4.3 Performing a Table Mode Export to Object Store with Oracle Data Pump 6-7

6.4.4 Importing a Dump File and Remapping All Schema Objects 6-11
6.4.5 Importing a Table from an Object Store Using Oracle Data Pump 6-13
6.4.6 Using Exception Handling During a Simple Schema Export 6-16
6.4.7 Displaying Dump File Information for Oracle Data Pump Jobs 6-19

Part Il SQL*Loader

7 Understanding How to Use SQL*Loader

7.1 SQL*Loader Features 7-1
7.2 SQL*Loader Parameters 7-3
7.3 SQL*Loader Control File 7-4
7.4 Input Data and Data Fields in SQL*Loader 7-4
7.4.1 How SQL*Loader Reads Input Data and Data Files 7-5
7.4.2 Fixed Record Format 7-5
7.4.3 Variable Record Format and SQL*Loader 7-6
7.4.4 Stream Record Format and SQL*Loader 7-7
7.4.5 Logical Records and SQL*Loader 7-8
7.4.6 Data Field Setting and SQL*Loader 7-9

7.5 LOBFILEs and Secondary Data Files (SDFs) 7-9
7.6 Data Conversion and Data Type Specification 7-10
7.7 SQL*Loader Discarded and Rejected Records 7-10
7.7.1 The SQL*Loader Bad File 7-11
7.7.1.1 Records Rejected by SQL*Loader 7-11

7.7.1.2 Records Rejected by Oracle Database During a SQL*Loader Operation 7-11

7.7.2 The SQL*Loader Discard File 7-11

7.8 Log File and Logging Information 7-12
7.9 Conventional Path Loads, Direct Path Loads, and External Table Loads 7-12
7.9.1 Conventional Path Loads 7-12
7.9.2 Direct Path Loads 7-13
7.9.3 Parallel Direct Path 7-13
7.9.4 External Table Loads 7-13
7.9.5 Choosing External Tables Versus SQL*Loader 7-14
7.9.6 Behavior Differences Between SQL*Loader and External Tables 7-14
7.9.6.1 Multiple Primary Input Data Files 7-15

7.9.6.2 Syntax and Data Types 7-15

7.9.6.3 Byte-Order Marks 7-15

7.9.6.4 Default Character Sets, Date Masks, and Decimal Separator 7-15

7.9.6.5 Use of the Backslash Escape Character 7-16

7.9.7 Loading Tables Using Data Stored into Object Storage 7-16

ORACLE

7.10 Loading Objects, Collections, and LOBs with SQL*Loader 7-17
7.10.1 Supported Object Types 7-18
7.10.1.1 column objects 7-18
7.10.1.2 row objects 7-18

7.10.2 Supported Collection Types 7-18
7.10.2.1 Nested Tables 7-19
7.10.2.2 VARRAYs 7-19

7.10.3 Supported LOB Data Types 7-19
7.11 Partitioned Object Support in SQL*Loader 7-20
7.12 Application Development: Direct Path Load API 7-20
7.13 SQL*Loader Case Studies 7-20
7.13.1 How to Access and Use the Oracle SQL*Loader Case Studies 7-20
7.13.2 Case Study Files 7-21
7.13.3 Running the Case Studies 7-22
7.13.4 Case Study Log Files 7-23
7.13.5 Checking the Results of a Case Study 7-23

8 SQL*Loader Command-Line Reference

8.1 Starting SQL*Loader 8-1
8.1.1 Specifying Parameters on the Command Line 8-1
8.1.2 Alternative Ways to Specify SQL*Loader Parameters 8-2
8.1.3 Using SQL*Loader to Load Data Across a Network 8-3

8.2 Command-Line Parameters for SQL*Loader 8-3
8.2.1 BAD 8-6
8.2.2 BINDSIZE 8-7
8.2.3 COLUMNARRAYROWS 8-8
8.2.4 CONTROL 8-9
8.2.5 CREDENTIAL 8-10
8.2.6 DATA 8-12
8.2.7 DATE_CACHE 8-13
8.2.8 DEFAULTS 8-14
8.2.9 DEGREE_OF_PARALLELISM 8-15
8.2.10 DIRECT 8-16
8.2.11 DIRECT_PATH_LOCK_WAIT 8-17
8.2.12 DISCARD 8-17
8.2.13 DISCARDMAX 8-19
8.2.14 DNFS_ENABLE 8-19
8.2.15 DNFS_READBUFFERS 8-20
8.2.16 EMPTY_LOBS_ARE_NULL 8-21
8.2.17 ERRORS 8-22
8.2.18 EXTERNAL_TABLE 8-22

ORACLE

Xi

8.2.19 FILE 8-24

8.2.20 HELP 8-25
8.2.21 LOAD 8-25
8.2.22 LOG 8-26
8.2.23 MULTITHREADING 8-26
8.2.24 NO_INDEX_ERRORS 8-27
8.2.25 PARALLEL 8-28
8.2.26 PARFILE 8-28
8.2.27 PARTITION_MEMORY 8-29
8.2.28 READSIZE 8-30
8.2.29 RESUMABLE 8-31
8.2.30 RESUMABLE_NAME 8-31
8.2.31 RESUMABLE_TIMEOUT 8-32
8.2.32 ROWS 8-33
8.2.33 SDF_PREFIX 8-34
8.2.34 SILENT 8-35
8.2.35 SKIP 8-36
8.2.36 SKIP_INDEX_MAINTENANCE 8-36
8.2.37 SKIP_UNUSABLE_INDEXES 8-37
8.2.38 STREAMSIZE 8-38
8.2.39 TRIM 8-39
8.2.40 USERID 8-40
8.3 Exit Codes for Inspection and Display 8-41

O SQL*Loader Control File Reference

9.1 Control File Contents 9-2
9.2 Comments in the Control File 9-4
9.3 Specifying Command-Line Parameters in the Control File 9-4
9.3.1 OPTIONS Clause 9-4
9.3.2 Specifying the Number of Default Expressions to Be Evaluated At One Time 9-5

9.4 Specifying File Names and Object Names 9-5
9.4.1 File Names That Conflict with SQL and SQL*Loader Reserved Words 9-5
9.4.2 Specifying SQL Strings in the SQL*Loader Control File 9-6
9.4.3 Operating Systems and SQL Loader Control File Characters 9-6
9.4.3.1 Specifying a Complete Path 9-6

9.4.3.2 Backslash Escape Character 9-7

9.4.3.3 Nonportable Strings 9-7

9.4.3.4 Using the Backslash as an Escape Character 9-7

9.4.3.5 Escape Character Is Sometimes Disallowed 9-7

9.5 Identifying XMLType Tables 9-8
9.6 Specifying Field Order 9-9

ORACLE

Xii

9.7 Specifying Data Files
9.7.1 Understanding How to Specify Data Files
9.7.2 Examples of INFILE Syntax
9.7.3 Specifying Multiple Data Files
9.8 Specifying CSV Format Files
9.9 Identifying Data in the Control File with BEGINDATA
9.10 Specifying Data File Format and Buffering
9.11 Specifying the Bad File
9.11.1 Understanding and Specifying the Bad File
9.11.2 Examples of Specifying a Bad File Name
9.11.3 How Bad Files Are Handled with LOBFILEs and SDFs
9.11.4 Criteria for Rejected Records
9.12 Specifying the Discard File
9.12.1 Understanding and Specifying the Discard File
9.12.2 Specifying the Discard File in the Control File
9.12.3 Limiting the Number of Discard Records
9.12.4 Examples of Specifying a Discard File Name
9.12.5 Criteria for Discarded Records
9.12.6 How Discard Files Are Handled with LOBFILEs and SDFs
9.12.7 Specifying the Discard File from the Command Line
9.13 Specifying a NULLIF Clause At the Table Level
9.14 Specifying Datetime Formats At the Table Level
9.15 Handling Different Character Encoding Schemes
9.15.1 Multibyte (Asian) Character Sets
9.15.2 Unicode Character Sets
9.15.3 Database Character Sets
9.15.4 Data File Character Sets
9.15.5 Input Character Conversion with SQL*Loader
9.15.5.1 Options for Converting Character Sets Using SQL*Loader

9.15.5.2 Considerations When Loading Data into VARRAYSs or Primary-Key-
Based REFs

9.15.5.3 CHARACTERSET Parameter
9.15.5.4 Control File Character Set
9.15.5.5 Character-Length Semantics

9.15.6 Shift-sensitive Character Data

9.16 Interrupted SQL*Loader Loads

9.16.1 Understanding Causes of Interrupted SQL*Loader Loads

9.16.2 Discontinued Conventional Path Loads

9.16.3 Discontinued Direct Path Loads
9.16.3.1 Load Discontinued Because of Space Errors
9.16.3.2 Load Discontinued Because Maximum Number of Errors Exceeded
9.16.3.3 Load Discontinued Because of Fatal Errors

ORACLE

9-10
9-10
9-12
9-12
9-13
9-14
9-14
9-15
9-15
9-16
9-16
9-17
9-17
9-18
9-19
9-19
9-19
9-20
9-20
9-20
9-20
9-21
9-22
9-22
9-22
9-23
9-24
9-24
9-24

9-25
9-26
9-27
9-27
9-29
9-29
9-29
9-30
9-30
9-30
9-31
9-31

Xiii

9.16.3.4 Load Discontinued Because a Ctrl+C Was Issued 9-31

9.16.4 Status of Tables and Indexes After an Interrupted Load 9-31
9.16.5 Using the Log File to Determine Load Status 9-32
9.16.6 Continuing Single-Table Loads 9-32
9.17 Assembling Logical Records from Physical Records 9-32
9.17.1 Using CONCATENATE to Assemble Logical Records 9-32
9.17.2 Using CONTINUEIF to Assemble Logical Records 9-33
9.18 Loading Logical Records into Tables 9-36
9.18.1 Specifying Table Names 9-37
9.18.2 INTO TABLE Clause 9-37
9.18.3 Table-Specific Loading Method 9-38
9.18.4 Loading Data into Empty Tables with INSERT 9-38
9.18.5 Loading Data into Nonempty Tables 9-39
9.18.5.1 Options for Loading Data Into Nonempty Tables 9-39
9.18.5.2 APPEND 9-39
9.18.5.3 REPLACE 9-39
9.18.5.4 Updating Existing Rows 9-40
9.18.5.5 TRUNCATE 9-40

9.18.6 Table-Specific OPTIONS Parameter 9-40
9.18.7 Loading Records Based on a Condition 9-40
9.18.8 Using the WHEN Clause with LOBFILEs and SDFs 9-41
9.18.9 Specifying Default Data Delimiters 9-41
9.18.9.1 fields_spec 9-42
9.18.9.2 termination_spec 9-42
9.18.9.3 enclosure_spec 9-42
9.18.10 Handling Records with Missing Specified Fields 9-43
9.18.10.1 SQL*Loader Management of Short Records with Missing Data 9-43
9.18.10.2 TRAILING NULLCOLS Clause 9-44

9.19 Index Options 9-44
9.19.1 Understanding the SORTED INDEXES Parameter 9-44
9.19.2 Understanding the SINGLEROW Parameter 9-45
9.20 Benefits of Using Multiple INTO TABLE Clauses 9-45
9.20.1 Understanding the SQL*Loader INTO TABLE Clause 9-46
9.20.2 Distinguishing Different Input Record Formats 9-46
9.20.3 Relative Positioning Based on the POSITION Parameter 9-47
9.20.4 Distinguishing Different Input Row Object Subtypes 9-47
9.20.5 Loading Data into Multiple Tables 9-49
9.20.6 Summary of Using Multiple INTO TABLE Clauses 9-49
9.20.7 Extracting Multiple Logical Records 9-49
9.20.7.1 Example of Extracting Multiple Logical Records From a Physical Record 9-50
9.20.7.2 Example of Relative Positioning Based on Delimiters 9-50

9.21 Bind Arrays and Conventional Path Loads 9-51

ORACLE

Xiv

9.21.1 Differences Between Bind Arrays and Conventional Path Loads 9-51
9.21.2 Size Requirements for Bind Arrays 9-51
9.21.3 Performance Implications of Bind Arrays 9-52
9.21.4 Specifying Number of Rows Versus Size of Bind Array 9-52
9.21.5 Setting Up SQL*Loader Bind Arrays 9-53
9.21.5.1 Calculations to Determine Bind Array Size 9-53
9.21.5.2 Determining the Size of the Length Indicator 9-54
9.21.5.3 Calculating the Size of Field Buffers 9-55

9.21.6 Minimizing Memory Requirements for Bind Arrays 9-56
9.21.7 Calculating Bind Array Size for Multiple INTO TABLE Clauses 9-57

10 SQL*Loader Field List Reference

10.1 Field List Contents 10-2
10.2 Specifying the Position of a Data Field. 10-3
10.2.1 POSITION 10-3
10.2.2 Using POSITION with Data Containing Tabs 10-4
10.2.3 Using POSITION with Multiple Table Loads 10-4
10.2.4 Examples of Using POSITION in SQL*Loader Specifications 10-5
10.3 Specifying Columns and Fields 10-5
10.3.1 Options for Column and Field Specification 10-5
10.3.2 Specifying Filler Fields 10-6
10.3.3 Specifying the Data Type of a Data Field 10-7
10.4 SQL*Loader Data Types 10-8
10.4.1 Portable and Nonportable Data Type Differences 10-8
10.4.2 Nonportable Data Types 10-9
10.4.2.1 Categories of Nonportable Data Types 10-10
10.4.2.2 BINARY_DOUBLE 10-10
10.4.2.3 BINARY_FLOAT 10-11
10.4.2.4 BYTEINT 10-12
10.4.2.5 DECIMAL 10-12
10.4.2.6 DOUBLE 10-13
10.4.2.7 FLOAT 10-13
10.4.2.8 INTEGER(n) 10-14
10.4.2.9 LONG VARRAW 10-14
10.4.2.10 SMALLINT 10-15
10.4.2.11 VARGRAPHIC 10-16
10.4.2.12 VARCHAR 10-17
10.4.2.13 VARRAW 10-18
10.4.2.14 ZONED 10-18

10.4.3 Portable Data Types 10-19
10.4.3.1 Categories of Portable Data Types 10-20

ORACLE

XV

10.4.3.2 CHAR

10.4.3.3 Datetime and Interval

10.4.3.4 GRAPHIC

10.4.3.5 GRAPHIC EXTERNAL

10.4.3.6 Numeric EXTERNAL

10.4.3.7 RAW

10.4.3.8 VARCHARC

10.4.3.9 VARRAWC

10.4.3.10 Conflicting Native Data Type Field Lengths

10.4.3.11 Field Lengths for Length-Value Data Types
10.4.4 Data Type Conversions

10.4.5 Data Type Conversions for Datetime and Interval Data Types

10.4.6 Specifying Delimiters
10.4.6.1 Syntax for Termination and Enclosure Specification
10.4.6.2 Delimiter Marks in the Data
10.4.6.3 Maximum Length of Delimited Data
10.4.6.4 Loading Trailing Blanks with Delimiters
10.4.7 How Delimited Data Is Processed
10.4.7.1 Fields Using Only TERMINATED BY

10.4.7.2 Fields Using ENCLOSED BY Without TERMINATED BY

10.4.7.3 Fields Using ENCLOSED BY With TERMINATED BY

10.4.7.4 Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY

10.4.8 Conflicting Field Lengths for Character Data Types
10.4.8.1 Predetermined Size Fields
10.4.8.2 Delimited Fields
10.4.8.3 Date Field Masks
10.5 Specifying Field Conditions
10.5.1 Comparing Fields to BLANKS
10.5.2 Comparing Fields to Literals
10.6 Using the WHEN, NULLIF, and DEFAULTIF Clauses
10.7 Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses
10.8 Loading Data Across Different Platforms
10.9 Understanding how SQL*Loader Manages Byte Ordering
10.9.1 Byte Order Syntax
10.9.2 Using Byte Order Marks (BOMs)
10.9.2.1 Suppressing Checks for BOMs
10.10 Loading All-Blank Fields
10.11 Trimming Whitespace
10.11.1 Data Types for Which Whitespace Can Be Trimmed

10.11.2 Specifying Field Length for Data Types for Which Whitespace Can Be

Trimmed
10.11.2.1 Predetermined Size Fields

ORACLE

10-21
10-21
10-26
10-27
10-27
10-28
10-29
10-30
10-31
10-31
10-31
10-32
10-33
10-34
10-35
10-36
10-36
10-36
10-37
10-37
10-38
10-38
10-39
10-39
10-40
10-40
10-41
10-41
10-41
10-42
10-43
10-45
10-46
10-47
10-48
10-49
10-50
10-50
10-52

10-53
10-53

XVi

10.11.2.2 Delimited Fields 10-53

10.11.3 Relative Positioning of Fields 10-54
10.11.3.1 No Start Position Specified for a Field 10-54
10.11.3.2 Previous Field Terminated by a Delimiter 10-54
10.11.3.3 Previous Field Has Both Enclosure and Termination Delimiters 10-54
10.11.4 Leading Whitespace 10-55
10.11.4.1 Previous Field Terminated by Whitespace 10-55
10.11.4.2 Optional Enclosure Delimiters 10-56
10.11.5 Trimming Trailing Whitespace 10-56
10.11.6 Trimming Enclosed Fields 10-56
10.12 How the PRESERVE BLANKS Option Affects Whitespace Trimming 10-56
10.13 How [NO] PRESERVE BLANKS Works with Delimiter Clauses 10-57
10.14 Applying SQL Operators to Fields 10-58
10.14.1 Referencing Fields 10-60
10.14.2 Common Uses of SQL Operators in Field Specifications 10-61
10.14.3 Combinations of SQL Operators 10-61
10.14.4 Using SQL Strings with a Date Mask 10-61
10.14.5 Interpreting Formatted Fields 10-62
10.14.6 Using SQL Strings to Load the ANYDATA Database Type 10-62
10.15 Using SQL*Loader to Generate Data for Input 10-63
10.15.1 Loading Data Without Files 10-63
10.15.2 Setting a Column to a Constant Value 10-64
10.15.2.1 CONSTANT Parameter 10-64
10.15.3 Setting a Column to an Expression Value 10-64
10.15.3.1 EXPRESSION Parameter 10-64
10.15.4 Setting a Column to the Data File Record Number 10-65
10.15.4.1 RECNUM Parameter 10-65
10.15.5 Setting a Column to the Current Date 10-65
10.15.5.1 SYSDATE Parameter 10-65
10.15.6 Setting a Column to a Unique Sequence Number 10-66
10.15.6.1 SEQUENCE Parameter 10-66
10.15.7 Generating Sequence Numbers for Multiple Tables 10-67
10.15.7.1 Example: Generating Different Sequence Numbers for Each Insert 10-67

11 Loading Objects, LOBs, and Collections with SQL*Loader

11.1 Loading Column Objects 11-1
11.1.1 Understanding Column Object Attributes 11-2
11.1.2 Loading Column Objects in Stream Record Format 11-2
11.1.3 Loading Column Objects in Variable Record Format 11-3
11.1.4 Loading Nested Column Objects 11-4
11.1.5 Loading Column Objects with a Derived Subtype 11-5

ORACLE

XVii

11.1.6 Specifying Null Values for Objects 11-6
11.1.6.1 Specifying Attribute Nulls 11-6
11.1.6.2 Specifying Atomic Nulls 11-6

11.1.7 Loading Column Objects with User-Defined Constructors 11-7

11.2 Loading Object Tables with SQL*Loader 11-10
11.2.1 Examples of Loading Object Tables with SQL*Loader 11-11
11.2.2 Loading Object Tables with Subtypes 11-12

11.3 Loading REF Columns with SQL*Loader 11-13

11.3.1 Specifying Table Names in a REF Clause 11-14

11.3.2 System-Generated OID REF Columns 11-15

11.3.3 Primary Key REF Columns 11-16

11.3.4 Unscoped REF Columns That Allow Primary Keys 11-16

11.4 Loading LOBs with SQL*Loader 11-18

11.4.1 Overview of Loading LOBs with SQL*Loader 11-18

11.4.2 Options for Using SQL*Loader to Load LOBs 11-19

11.4.3 Loading LOB Data from a Primary Data File 11-20
11.4.3.1 LOB Data in Predetermined Size Fields 11-21
11.4.3.2 LOB Data in Delimited Fields 11-22
11.4.3.3 LOB Data in Length-Value Pair Fields 11-23

11.4.4 Loading LOB Data from LOBFILEs 11-24
11.4.4.1 Overview of Loading LOB Data from LOBFILEs 11-24
11.4.4.2 Dynamic Versus Static LOBFILE Specifications 11-25
11.4.4.3 Examples of Loading LOB Data from LOBFILEs 11-25
11.4.4.4 Considerations When Loading LOBs from LOBFILEs 11-30

11.4.5 Loading Data Files that Contain LLS Fields 11-31

11.5 Loading BFILE Columns with SQL*Loader 11-32

11.6 Loading Collections (Nested Tables and VARRAYs) 11-33

11.6.1 Overview of Loading Collections (Nested Tables and VARRAYS) 11-33

11.6.2 Restrictions in Nested Tables and VARRAYs 11-34

11.6.3 Secondary Data Files (SDFs) 11-36

11.7 Choosing Dynamic or Static SDF Specifications 11-37

11.8 Loading a Parent Table Separately from Its Child Table 11-37
11.8.1 Memory Issues When Loading VARRAY Columns 11-38

12 Conventional and Direct Path Loads

12.1 Data Loading Methods 12-1

12.2 Loading ROWID Columns 12-2

12.3 Conventional Path Loads 12-2

12.3.1 Conventional Path Load 12-2

12.3.2 When to Use a Conventional Path Load 12-3

12.3.3 Conventional Path Load of a Single Partition 12-3

ORACLE

XVviil

12.4 Direct Path Loads 12-4

12.4.1 About SQL*Loader Direct Path Load 12-4
12.4.2 Loading into Synonyms 12-5
12.4.3 Field Defaults on the Direct Path 12-5
12.4.4 Integrity Constraints 12-5
12.45 When to Use a Direct Path Load 12-6
12.4.6 Restrictions on a Direct Path Load of a Single Partition 12-6
12.4.7 Restrictions on Using Direct Path Loads 12-6
12.4.8 Advantages of a Direct Path Load 12-7
12.4.9 Direct Path Load of a Single Partition or Subpartition 12-7
12.4.10 Direct Path Load of a Partitioned or Subpartitioned Table 12-8
12.4.11 Data Conversion During Direct Path Loads 12-8
12.5 Using Direct Path Load 12-9
12.5.1 Setting Up for Direct Path Loads 12-10
12.5.2 Specifying a Direct Path Load 12-10
12.5.3 Building Indexes 12-10
12.5.3.1 Improving Performance 12-11
12.5.3.2 Calculating Temporary Segment Storage Requirements 12-11
12.5.4 Indexes Left in an Unusable State 12-12
12.5.5 Preventing Data Loss with Data Saves 12-12
12.5.5.1 Using Data Saves to Protect Against Data Loss 12-13
12.5.5.2 Using the ROWS Parameter 12-13
12.5.5.3 Data Save Versus Commit 12-13
12.5.6 Data Recovery During Direct Path Loads 12-14
12.5.6.1 Media Recovery and Direct Path Loads 12-14
12.5.6.2 Instance Recovery and Direct Path Loads 12-14
12.5.7 Loading Long Data Fields 12-15
12.5.8 Loading Data As PIECED 12-15
12.5.9 Auditing SQL*Loader Operations That Use Direct Path Mode 12-16
12.6 Optimizing Performance of Direct Path Loads 12-16
12.6.1 Minimizing Time and Space Required for Direct Path Loads 12-16
12.6.2 Preallocating Storage for Faster Loading 12-17
12.6.3 Presorting Data for Faster Indexing 12-17
12.6.3.1 Advantages of Presorting Data 12-17
12.6.3.2 SORTED INDEXES Clause 12-18
12.6.3.3 Unsorted Data 12-18
12.6.3.4 Multiple-Column Indexes 12-18
12.6.3.5 Choosing the Best Sort Order 12-19
12.6.4 Infrequent Data Saves 12-19
12.6.5 Minimizing Use of the Redo Log 12-19
12.6.5.1 Disabling Archiving 12-20
12.6.5.2 Specifying the SQL*Loader UNRECOVERABLE Clause 12-20
ORACLE

XiX

12.6.5.3 Setting the SQL NOLOGGING Parameter 12-20

12.6.6 Specifying the Number of Column Array Rows and Size of Stream Buffers 12-21
12.6.7 Specifying a Value for DATE_CACHE 12-21
12.7 Optimizing Direct Path Loads on Multiple-CPU Systems 12-22
12.8 Avoiding Index Maintenance 12-23
12.9 Direct Path Loads, Integrity Constraints, and Triggers 12-24
12.9.1 Integrity Constraints 12-24
12.9.1.1 Enabled Constraints 12-24
12.9.1.2 Disabled Constraints 12-25
12.9.1.3 Reenable Constraints 12-25

12.9.2 Database Insert Triggers 12-26
12.9.2.1 Replacing Insert Triggers with Integrity Constraints 12-27
12.9.2.2 When Automatic Constraints Cannot Be Used 12-27
12.9.2.3 Preparation of Database Triggers 12-27
12.9.2.4 Using an Update Trigger 12-28
12.9.2.5 Duplicating the Effects of Exception Conditions 12-28
12.9.2.6 Using a Stored Procedure 12-28

12.9.3 Permanently Disabled Triggers and Constraints 12-29
12.9.4 Increasing Performance with Concurrent Conventional Path Loads 12-29
12.10 Optimizing Performance of Direct Path Loads 12-29
12.10.1 About SQL*Loader Parallel Data Loading Models 12-30
12.10.2 Concurrent Conventional Path Loads 12-30
12.10.3 Intersegment Concurrency with Direct Path 12-30
12.10.4 Intrasegment Concurrency with Direct Path 12-31
12.10.5 Restrictions on Parallel Direct Path Loads 12-31
12.10.6 Initiating Multiple SQL*Loader Sessions 12-31
12.10.7 Parameters for Parallel Direct Path Loads 12-32
12.10.7.1 Using the FILE Parameter to Specify Temporary Segments 12-32
12.10.8 Enabling Constraints After a Parallel Direct Path Load 12-33
12.10.9 PRIMARY KEY and UNIQUE KEY Constraints 12-34
12.11 General Performance Improvement Hints 12-34

13 SQL*Loader Express

13.1 What is SQL*Loader Express Mode? 13-1
13.2 Using SQL*Loader Express Mode 13-1
13.2.1 Starting SQL*Loader in Express Mode 13-2
13.2.2 Default Values Used by SQL*Loader Express Mode 13-2
13.2.3 How SQL*Loader Express Mode Handles Byte Order 13-3
13.3 SQL*Loader Express Mode Parameter Reference 13-4
13.3.1 BAD 13-6
13.3.2 CHARACTERSET 13-7

ORACLE

XX

13.3.3 CSV 13-8
13.3.4 DATA 13-9
13.3.5 DATE_FORMAT 13-10
13.3.6 DEGREE_OF_PARALLELISM 13-11
13.3.7 DIRECT 13-12
13.3.8 DNFS_ENABLE 13-13
13.3.9 DNFS_READBUFFERS 13-13
13.3.10 ENCLOSED_BY 13-14
13.3.11 EXTERNAL_TABLE 13-14
13.3.12 FIELD_NAMES 13-16
13.3.13 LOAD 13-17
13.3.14 NULLIF 13-17
13.3.15 OPTIONALLY_ENCLOSED_ BY 13-18
13.3.16 PARFILE 13-19
13.3.17 SILENT 13-20
13.3.18 TABLE 13-20
13.3.19 TERMINATED_BY 13-21
13.3.20 TIMESTAMP_FORMAT 13-22
13.3.21 TRIM 13-22
13.3.22 USERID 13-23
13.4 SQL*Loader Express Mode Syntax Diagrams 13-24
Part Ill External Tables
14 External Tables Concepts
14.1 How Are External Tables Created? 14-1
14.2 CREATE_EXTERNAL_PART_TABLE Procedure 14-4
14.3 CREATE_EXTERNAL_TABLE Procedure 14-11
14.4 Location of Data Files and Output Files 14-13
14.5 Access Parameters for External Tables 14-14
14.6 Data Type Conversion During External Table Use 14-14
15 The ORACLE_LOADER Access Driver
15.1 About the ORACLE_LOADER Access Driver 15-1
15.2 access_parameters Clause 15-2
15.3 record_format_info Clause 15-4
15.3.1 Overview of record_format_info Clause 15-6
15.3.2 FIXED Length 15-8
15.3.3 VARIABLE size 15-9
15.3.4 DELIMITED BY 15-9
ORACLE

XXi

15.3.5 XMLTAG
15.3.6 CHARACTERSET
15.3.7 PREPROCESSOR
15.3.8 PREPROCESSOR_TIMEOUT
15.3.9 EXTERNAL VARIABLE DATA
15.3.10 LANGUAGE
15.3.11 TERRITORY
15.3.12 DATA IS...ENDIAN
15.3.13 BYTEORDERMARK [CHECK | NOCHECK]
15.3.14 STRING SIZES ARE IN
15.3.15 LOAD WHEN
15.3.16 BADFILE | NOBADFILE
15.3.17 DISCARDFILE | NODISCARDFILE
15.3.18 LOGFILE | NOLOGFILE
15.3.19 SKIP
15.3.20 FIELD NAMES
15.3.21 READSIZE
15.3.22 DATE_CACHE
15.3.23 string
15.3.24 condition_spec
15.3.25 [directory object name:] [filename]
15.3.26 condition
15.3.26.1 range start : range end
15.3.27 |1O_OPTIONS clause
15.3.28 DNFS_DISABLE | DNFS_ENABLE
15.3.29 DNFS_READBUFFERS
15.4 field_definitions Clause
15.4.1 Overview of field_definitions Clause
15.4.2 delim_spec
15.4.2.1 Example: External Table with Terminating Delimiters
15.4.2.2 Example: External Table with Enclosure and Terminator Delimiters
15.4.2.3 Example: External Table with Optional Enclosure Delimiters
15.4.3 trim_spec
15.4.4 MISSING FIELD VALUES ARE NULL
15.4.5 field_list
15.4.6 pos_spec Clause
15.4.6.1 pos_spec Clause Syntax
15.4.6.2 start

15.4.6.3 *
15.4.6.4 increment
15.4.6.5 end

15.4.6.6 length

ORACLE

15-11
15-13
15-13
15-18
15-20
15-22
15-22
15-22
15-23
15-24
15-24
15-25
15-26
15-26
15-27
15-27
15-30
15-30
15-30
15-31
15-32
15-33
15-33
15-34
15-35
15-35
15-36
15-36
15-41
15-42
15-42
15-43
15-43
15-44
15-45
15-46
15-47
15-47
15-47
15-47
15-47
15-48

XX

15.4.7 datatype_spec Clause 15-48
15.4.7.1 datatype_spec Clause Syntax 15-49
15.4.7.2 [UNSIGNED] INTEGER [EXTERNAL] [(len)] 15-50
15.4.7.3 DECIMAL [EXTERNAL] and ZONED [EXTERNAL] 15-51
15.4.7.4 ORACLE_DATE 15-51
15.4.7.5 ORACLE_NUMBER 15-51
15.4.7.6 Floating-Point Numbers 15-52
15.4.7.7 DOUBLE 15-52
15.4.7.8 FLOAT [EXTERNAL] 15-52
15.4.7.9 BINARY_DOUBLE 15-52
15.4.7.10 BINARY_FLOAT 15-53
15.4.7.11 RAW 15-53
15.4.7.12 CHAR 15-53
15.4.7.13 date_format_spec 15-54
15.4.7.14 VARCHAR and VARRAW 15-56
15.4.7.15 VARCHARC and VARRAWC 15-57

15.4.8 init_spec Clause 15-58

15.4.9 LLS Clause 15-59

15.5 column_transforms Clause 15-60

15.5.1 transform 15-60
15.5.1.1 column_name FROM 15-61
15.5.1.2 NULL 15-61
15.5.1.3 CONSTANT 15-61
15.5.1.4 CONCAT 15-62
15.5.1.5 LOBFILE 15-62
15.5.1.6 lobfile_attr_list 15-62
15.5.1.7 STARTOF source_field (Ilength) 15-63

15.6 Parallel Loading Considerations for the ORACLE_LOADER Access Driver 15-64

15.7 Performance Hints When Using the ORACLE_LOADER Access Driver 15-64

15.8 Restrictions When Using the ORACLE_LOADER Access Driver 15-65

15.9 Reserved Words for the ORACLE_LOADER Access Driver 15-66
16 The ORACLE_DATAPUMP Access Driver

16.1 Using the ORACLE_DATAPUMP Access Driver 16-1

16.2 access_parameters Clause 16-2

16.2.1 Comments 16-4

16.2.2 ENCRYPTION 16-4

16.2.3 LOGFILE | NOLOGFILE 16-5
16.2.3.1 Log File Naming in Parallel Loads 16-5

16.2.4 COMPRESSION 16-6

16.2.5 VERSION Clause 16-7

ORACLE

XXxiil

16.2.6 HADOOP_TRAILERS Clause 16-8

16.2.7 Effects of Using the SQL ENCRYPT Clause 16-8
16.3 Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver 16-9
16.3.1 Parallel Loading and Unloading 16-12
16.3.2 Combining Dump Files 16-13
16.4 Supported Data Types 16-14
16.5 Unsupported Data Types 16-14
16.5.1 Unloading and Loading BFILE Data Types 16-15
16.5.2 Unloading LONG and LONG RAW Data Types 16-17
16.5.3 Unloading and Loading Columns Containing Final Object Types 16-18
16.5.4 Tables of Final Object Types 16-19
16.6 Performance Hints When Using the ORACLE_DATAPUMP Access Driver 16-20
16.7 Restrictions When Using the ORACLE_DATAPUMP Access Driver 16-20
16.8 Reserved Words for the ORACLE_DATAPUMP Access Driver 16-21

17 ORACLE_BIGDATA Access Driver

17.1 Using the ORACLE_BIGDATA Access Driver 17-1
17.2 How to Create a Credential for Object Stores 17-1
17.2.1 Creating the Credential Object with
DBMS_CREDENTIAL.CREATE_CREDENTIAL 17-2
17.2.2 Creating the Credential Object with DBMS_CLOUD.CREATE_CREDENTIAL 17-3
17.2.3 How to Define the Location Clause for Object Storage 17-3
17.2.4 Understanding ORACLE_BIGDATA Access Parameters 17-5
17.3 Object Store Access Parameters 17-5
17.3.1 Syntax Rules for Specifying Properties 17-5
17.3.2 com.oracle.bigdata.fileformat 17-7
17.3.3 ORACLE_BIGDATA Access Parameters 17-8
17.3.4 GATHER_EXTERNAL_TABLE_STATS 17-16

18 External Tables Examples

18.1 Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables 18-1
18.2 Using the ORACLE_LOADER Access Driver to Create Partitioned Hybrid Tables 18-3
18.3 Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables 18-4
18.4 Using the ORACLE_BIGDATA Access Driver to Create Partitioned External Tables 18-8
18.5 Using the ORA_PARTITION_VALIDATION Function to Validate Partitioned External
Tables 18-9
18.6 Loading LOBs with External Tables 18-10
18.6.1 Overview of LOBs and External Tables 18-10
18.6.2 Loading LOBs From External Tables with ORACLE_LOADER Access Driver 18-12
18.6.2.1 Loading LOBs from Primary Data Files 18-13
18.6.2.2 Loading LOBs from LOBFILE Files 18-14
ORACLE

XXiV

18.6.2.3 Loading LOBs from LOB Location Specifiers 18-16
18.6.3 Loading LOBs with ORACLE_DATAPUMP Access Driver 18-17
18.7 Loading CSV Files From External Tables 18-19
Part IV Other Utilities
19 Cloud Premigration Advisor Tool
19.1 What is the Cloud Premigration Advisor Tool 19-2
19.2 Prerequisites for Using the Cloud Premigration Advisor Tool 19-3
19.3 Downloading and Configuring Cloud Premigration Advisor Tool 19-4
19.4 Getting Started with the Cloud Premigration Advisor Tool (CPAT) 19-5
19.5 Connection Strings for Cloud Premigration Advisor Tool 19-6
19.6 Required Command-Line Strings for Cloud Premigration Advisor Tool 19-8
19.7 FULL Mode and SCHEMA Mode 19-9
19.8 Interpreting Cloud Premigration Advisor Tool (CPAT) Report Data 19-9
19.9 Command-Line Syntax and Properties 19-11
19.9.1 Premigration Advisor Tool Command-Line Syntax 19-11
19.9.2 Premigration Advisor Tool Command-Line Properties 19-12
19.9.2.1 analysisprops 19-13
19.9.2.2 connectstring 19-14
19.9.2.3 excludeschemas 19-15
19.9.2.4 full 19-16
19.9.2.5 gettargetprops 19-16
19.9.2.6 help 19-17
19.9.2.7 logginglevel 19-17
19.9.2.8 maxrelevantobjects 19-18
19.9.2.9 maxtextdatarows 19-19
19.9.2.10 migrationmethod 19-19
19.9.2.11 outdir 19-20
19.9.2.12 outfileprefix 19-20
19.9.2.13 pdbname 19-21
19.9.2.14 reportformat 19-22
19.9.2.15 schemas 19-23
19.9.2.16 sqltext 19-24
19.9.2.17 sysdba 19-24
19.9.2.18 targetcloud 19-25
19.9.2.19 username 19-26
19.9.2.20 version 19-26
19.9.2.21 updatecheck 19-27
19.10 List of Checks Performed By the Premigration Advisor Tool 19-28
ORACLE

XXV

19.10.1

19.10.2

19.10.3

19.10.4

19.10.5

19.10.6

19.10.7

19.10.8

19.10.9

19.10.10
19.10.11
19.10.12
19.10.13
19.10.14
19.10.15
19.10.16
19.10.17
19.10.18
19.10.19
19.10.20
19.10.21
19.10.22
19.10.23
19.10.24
19.10.25
19.10.26
19.10.27
19.10.28
19.10.29
19.10.30
19.10.31
19.10.32
19.10.33
19.10.34
19.10.35
19.10.36
19.10.37
19.10.38
19.10.39
19.10.40
19.10.41
19.10.42

ORACLE

dp_has_low_streams_pool_size
gg_enabled_replication
gg_force_logging
gg_has_low_streams_pool_size
gg_not_unique
gg_not_unique_bad_col_no
gg_not_unique_bad_col_yes
gg_objects_not_supported
gg_supplemental_log_data_min
gg_tables not_supported
gg_tables not_supported
gg_user_objects_in_ggadmin_schemas
has_absent_default_tablespace
has_absent_temp_tablespace
has_active_data_guard_dedicated
has_active_data_guard_serverless
has_basic_file_lobs
has_clustered_tables
has_columns_of rowid_type
has_columns_with_local_timezone
has_columns_with_media_data_types_adb
has_columns_with_media_data types_ default
has_columns_with_spatial_data_types
has_common_objects
has_compression_disabled_for_objects
has_csmig_schema
has_data_in_other_tablespaces_dedicated
has_data_in_other_tablespaces_serverless
has_db_link_synonyms
has_db_links
has_dbms_credentials
has_dbms_credentials
has_directories
has_enabled_scheduler_jobs
has_external_tables_dedicated
has_external_tables_default
has_external_tables_serverless
has_fmw_registry_in_system
has_illegal_characters_in_comments
has_ilm_ado_policies
has_incompatible_jobs
has_index_organized_tables

19-34
19-35
19-36
19-37
19-38
19-39
19-40
19-41
19-41
19-42
19-43
19-44
19-44
19-45
19-46
19-47
19-48
19-48
19-49
19-50
19-51
19-52
19-53
19-54
19-54
19-55
19-56
19-57
19-58
19-59
19-59
19-60
19-61
19-62
19-63
19-63
19-64
19-65
19-65
19-66
19-67
19-68

XXVi

19.10.43
19.10.44
19.10.45
19.10.46
19.10.47
19.10.48
19.10.49
19.10.50
19.10.51
19.10.52
19.10.53
19.10.54
19.10.55
19.10.56
19.10.57
19.10.58
19.10.59
19.10.60
19.10.61
19.10.62
19.10.63
19.10.64
19.10.65
19.10.66
19.10.67
19.10.68
19.10.69
19.10.70
19.10.71
19.10.72
19.10.73
19.10.74
19.10.75
19.10.76
19.10.77
19.10.78
19.10.79
19.10.80
19.10.81
19.10.82
19.10.83
19.10.84

ORACLE

has_java_objects

has_java_source

has_libraries
has_logging_off_for_partitions
has_logging_off for_subpartitions
has_logging_off for_tables
has_low_streams_pool_size
has_noexport_object_grants
has_oracle_streams
has_parallel_indexes_enabled
has_profile_not_default
has_public_synonyms
has_refs_to_restricted_packages_dedicated
has_refs_to_restricted_packages_serverless
has_refs_to_user_objects_in_sys
has_role_privileges
has_sqlt_objects_adb
has_sqlt_objects_default
has_sys_privileges

has_tables_that_fail with_dblink
has_tables with_long_raw_datatype
has_tables_with_xmltype_column
has_trusted_server_entries
has_unstructured_xml_indexes Check
has_user_defined_objects_in_sys
has_user_defined_objects_in_system
has_user_defined_objects_no_quota
has_user_defined_pvfs
has_users_with_10g_password_version
has_xmlschema_objects
has_xmltype_tables
modified_db_parameters_dedicated
modified_db_parameters_serverless
nls_character_set_conversion
nls_national_character_set
nls_nchar_ora_910
options_in_use_not_available_dedicated
options_in_use_not_available_serverless
standard_traditional_audit_adb
standard_traditional_audit_default
timezone_table_compatibility _higher_dedicated
timezone_table_compatibility _higher_default

19-68
19-69
19-70
19-70
19-71
19-72
19-72
19-73
19-74
19-75
19-76
19-76
19-77
19-78
19-78
19-79
19-80
19-81
19-82
19-82
19-83
19-84
19-85
19-86
19-86
19-87
19-88
19-89
19-89
19-90
19-91
19-92
19-92
19-93
19-94
19-95
19-96
19-97
19-97
19-98
19-99
19-100

XXVil

19.10.85 timezone_table_compatibility_higher_serverless 19-100
19.10.86 unified_and_standard_traditional_audit_adb 19-101
19.10.87 unified_and_standard_traditional_audit_default 19-102
19.10.88 xdb_resource_view_has_entries Check 19-103
19.11 Best Practices for Using the Premigration Advisor Tool 19-103
19.11.1 Generate Properties File on the Target Database Instance 19-104
19.11.2 Focus the CPAT Analysis 19-104
19.11.3 Reduce the Amount of Data in Reports 19-105
19.11.4 Generate the JSON Report and Save Logs 19-105
19.11.5 Use Output Prefixes to Record Different Migration Scenarios 19-106
20 ADRCI: ADR Command Interpreter
20.1 About the ADR Command Interpreter (ADRCI) Utility 20-2
20.2 Definitions for Oracle Database ADRC 20-2
20.3 Starting ADRCI and Getting Help 20-5
20.3.1 Using ADRCI in Interactive Mode 20-5
20.3.2 Getting Help 20-5
20.3.3 Using ADRCI in Batch Mode 20-6
20.4 Setting the ADRCI Homepath Before Using ADRCI Commands 20-7
20.5 Viewing the Alert Log 20-9
20.6 Finding Trace Files 20-10
20.7 Viewing Incidents 20-11
20.8 Packaging Incidents 20-12
20.8.1 About Packaging Incidents 20-12
20.8.2 Creating Incident Packages 20-13
20.8.2.1 Creating a Logical Incident Package 20-13
20.8.2.2 Adding Diagnostic Information to a Logical Incident Package 20-15
20.8.2.3 Generating a Physical Incident Package 20-16
20.9 ADRCI Command Reference 20-17
20.9.1 CREATE REPORT 20-19
20.9.2 ECHO 20-20
20.9.3 EXIT 20-20
20.9.4 HOST 20-20
20.95 IPS 20-21
20.9.5.1 Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands 20-23
20.9.5.2 IPS ADD 20-23
20.9.5.3 IPS ADD FILE 20-25
20.9.5.4 IPS ADD NEW INCIDENTS 20-25
20.9.5.5 IPS COPY IN FILE 20-26
20.9.5.6 IPS COPY OUT FILE 20-26

ORACLE

XXViii

20.9.5.7

20.9.5.8

20.9.5.9

20.9.5.10
20.9.5.11
20.9.5.12
20.9.5.13
20.9.5.14
20.9.5.15
20.9.5.16
20.9.5.17
20.9.5.18
20.9.5.19
20.9.5.20
20.95.21

IPS CREATE PACKAGE

IPS DELETE PACKAGE

IPS FINALIZE
IPS GENERATE PACKAGE
IPS GET MANIFEST
IPS GET METADATA
IPS PACK
IPS REMOVE
IPS REMOVE FILE
IPS SET CONFIGURATION
IPS SHOW CONFIGURATION
IPS SHOW FILES
IPS SHOW INCIDENTS
IPS SHOW PACKAGE
IPS UNPACK FILE

20.9.6 PURGE

20.9.7 QUIT
20.9.8 RUN

20.9.9 SELECT

20.9.9.1
20.9.9.2
20.9.9.3
20.9.94
20.9.9.5
20.9.9.6
20.9.9.7
20.9.9.8
20.9.9.9
20.9.9.10
20.9.9.11
20.9.9.12
20.9.9.13
20.9.9.14

AVG

CONCAT

COUNT

DECODE

LENGTH

MAX

MIN

NVL

REGEXP_LIKE
SUBSTR
SUM
TIMESTAMP_TO_CHAR
TOLOWER
TOUPPER

20.9.10 SET BASE
20.9.11 SET BROWSER
20.9.12 SET CONTROL
20.9.13 SET ECHO
20.9.14 SET EDITOR
20.9.15 SET HOMEPATH
20.9.16 SET TERMOUT
20.9.17 SHOW ALERT
20.9.18 SHOW BASE

ORACLE

20-27
20-29
20-30
20-30
20-31
20-31
20-32
20-34
20-35
20-36
20-36
20-39
20-40
20-41
20-41
20-42
20-43
20-44
20-44
20-47
20-48
20-48
20-49
20-49
20-50
20-50
20-51
20-51
20-52
20-52
20-53
20-53
20-54
20-54
20-55
20-55
20-57
20-57
20-58
20-58
20-59
20-61

XXiX

20.9.19 SHOW CONTROL 20-61

20.9.20 SHOW HM_RUN 20-64
20.9.21 SHOW HOMEPATH 20-65
20.9.22 SHOW HOMES 20-65
20.9.23 SHOW INCDIR 20-65
20.9.24 SHOW INCIDENT 20-67
20.9.25 SHOW LOG 20-70
20.9.26 SHOW PROBLEM 20-71
20.9.27 SHOW REPORT 20-73
20.9.28 SHOW TRACEFILE 20-73
20.9.29 SPOOL 20-74
20.10 Troubleshooting ADRCI 20-75

271 DBVERIFY: Offline Database Verification Utility

21.1 Using DBVERIFY to Validate Disk Blocks of a Single Data File 21-1
21.1.1 DBVERIFY Syntax When Validating Blocks of a Single File 21-2
21.1.2 DBVERIFY Parameters When Validating Blocks of a Single File 21-2
21.1.3 Example DBVERIFY Output For a Single Data File 21-3

21.2 Using DBVERIFY to Validate a Segment 21-4
21.2.1 DBVERIFY Syntax When Validating a Segment 21-5
21.2.2 DBVERIFY Parameters When Validating a Single Segment 21-5
21.2.3 Example DBVERIFY Output For a Validated Segment 21-6

22 DBNEWID Utility

22.1 What Is the DBNEWID Utility? 22-1
22.2 Ramifications of Changing the DBID and DBNAME 22-1
22.3 Considerations for Global Database Names 22-2
22.4 Changing Both CDB and PDB DBIDs Using DBNEWID 22-3
22.5 Changing the DBID and DBNAME of a Database 22-3
22.5.1 Changing the DBID and Database Name 22-4
22.5.2 Changing Only the Database ID 22-6
22.5.3 Changing Only the Database Name 22-7
22.5.4 Troubleshooting DBNEWID 22-8
22.6 DBNEWID Syntax 22-10
22.6.1 DBNEWID Parameters 22-10
22.6.2 Restrictions and Usage Notes 22-11
22.6.3 Additional Restrictions for Releases Earlier Than Oracle Database 10g 22-12
ORACLE

XXX

23 Using LogMiner to Analyze Redo Log Files
23.1 LogMiner Benefits 23-2
23.2 Introduction to LogMiner 23-3
23.2.1 LogMiner Configuration 23-3
23.2.1.1 Objects in LogMiner Configuration Files 23-3
23.2.1.2 LogMiner Configuration Example 23-4
23.2.1.3 LogMiner Requirements 23-4
23.2.2 Directing LogMiner Operations and Retrieving Data of Interest 23-7
23.3 Using LogMiner in a CDB 23-7
23.3.1 LogMiner V$ Views and DBA Views in a CDB 23-8
23.3.2 The VSLOGMNR_CONTENTS View in a CDB 23-9
23.3.3 Enabling Supplemental Logging in a CDB 23-10
23.4 How to Configure Supplemental Logging for Oracle GoldenGate 23-10
23.4.1 Oracle GoldenGate Integration with Oracle Database for Fine-Grained
Supplemental Logging 23-11
23.4.2 Logical Replication of Tables with LogMiner and Oracle GoldenGate 23-11
23.4.3 Views that Show Tables Enabled for Oracle GoldenGate Automatic Capture 23-12
23.5 LogMiner Dictionary Files and Redo Log Files 23-13
23.5.1 LogMiner Dictionary Options 23-13
23.5.1.1 Using the Online Catalog 23-15
23.5.1.2 Extracting a LogMiner Dictionary to the Redo Log Files 23-16
23.5.2 Specifying Redo Log Files for Data Mining 23-17
23.6 Starting LogMiner 23-17
23.7 Querying VSLOGMNR_CONTENTS for Redo Data of Interest 23-18
23.7.1 How to Use VSLOGMNR_CONTENTS to Find Redo Data 23-18
23.7.2 How the VSLOGMNR_CONTENTS View Is Populated 23-20
23.7.3 Querying VSLOGMNR_CONTENTS Based on Column Values 23-21
23.7.3.1 Example of Querying VSLOGMNR_CONTENTS Column Values 23-21
23.7.3.2 The Meaning of NULL Values Returned by the MINE_VALUE Function 23-22
23.7.3.3 Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions 23-23
23.7.3.4 Restrictions When Using the MINE_VALUE Function To Get an NCHAR
Value 23-23
23.7.4 Querying VSLOGMNR_CONTENTS Based on XMLType Columns and Tables 23-23
23.7.4.1 How VSLOGMNR_CONTENTS Based on XMLType Columns and Tables
are Queried 23-23
23.7.4.2 Restrictions When Using LogMiner With XMLType Data 23-25
23.7.4.3 Example of a PL/SQL Procedure for Assembling XMLType Data 23-25
23.8 Filtering and Formatting Data Returned to VSLOGMNR_CONTENTS 23-28
23.8.1 Showing Only Committed Transactions 23-29
23.8.2 Skipping Redo Corruptions 23-31
23.8.3 Filtering Data by Time 23-32
23.8.4 Filtering Data by SCN 23-32
ORACLE

XXXI

23.8.5 Formatting Reconstructed SQL Statements for Re-execution
23.8.6 Formatting the Appearance of Returned Data for Readability
23.9 Reapplying DDL Statements Returned to VSLOGMNR_CONTENTS
23.10 Calling DBMS_LOGMNR.START_LOGMNR Multiple Times
23.11 LogMiner and Supplemental Logging
23.11.1 Understanding Supplemental Logging and LogMiner
23.11.2 Database-Level Supplemental Logging
23.11.2.1 Minimal Supplemental Logging
23.11.2.2 Database-Level Identification Key Logging
23.11.2.3 Procedural Supplemental Logging
23.11.3 Disabling Database-Level Supplemental Logging
23.11.4 Table-Level Supplemental Logging
23.11.4.1 Table-Level Identification Key Logging
23.11.4.2 Table-Level User-Defined Supplemental Log Groups
23.11.4.3 Usage Notes for User-Defined Supplemental Log Groups
23.11.5 Tracking DDL Statements in the LogMiner Dictionary
23.11.6 DDL_DICT_TRACKING and Supplemental Logging Settings
23.11.7 DDL_DICT_TRACKING and Specified Time or SCN Ranges
23.12 Accessing LogMiner Operational Information in Views
23.12.1 Options for Viewing LogMiner Operational Information
23.12.2 Querying VSLOGMNR_LOGS
23.12.3 Querying Views for Supplemental Logging Settings
23.12.4 Querying Individual PDBs Using LogMiner
23.13 Steps in a Typical LogMiner Session
23.13.1 Understanding How to Run LogMiner Sessions
23.13.2 Typical LogMiner Session Task 1: Enable Supplemental Logging
23.13.3 Typical LogMiner Session Task 2: Extract a LogMiner Dictionary
23.13.4 Typical LogMiner Session Task 3: Specify Redo Log Files for Analysis
23.13.5 Start LogMiner
23.13.6 Query VSLOGMNR_CONTENTS
23.13.7 Typical LogMiner Session Task 6: End the LogMiner Session
23.14 Examples Using LogMiner
23.14.1 Examples of Mining by Explicitly Specifying the Redo Log Files of Interest
23.14.1.1 Example 1: Finding All Modifications in the Last Archived Redo Log File
23.14.1.2 Example 2: Grouping DML Statements into Committed Transactions
23.14.1.3 Example 3: Formatting the Reconstructed SQL
23.14.1.4 Example 4: Using the LogMiner Dictionary in the Redo Log Files
23.14.1.5 Example 5: Tracking DDL Statements in the Internal Dictionary
23.14.1.6 Example 6: Filtering Output by Time Range
23.14.2 LogMiner Use Case Scenarios
23.14.2.1 Using LogMiner to Track Changes Made by a Specific User
23.14.2.2 Using LogMiner to Calculate Table Access Statistics

ORACLE

23-33
23-33
23-34
23-35
23-36
23-36
23-37
23-37
23-38
23-39
23-39
23-40
23-40
23-41
23-42
23-42
23-43
23-44
23-45
23-45
23-46
23-47
23-49
23-50
23-50
23-52
23-52
23-53
23-54
23-55
23-56
23-56
23-57
23-58
23-60
23-62
23-65
23-73
23-76
23-78
23-78
23-80

XXXil

23.15 Supported Data Types, Storage Attributes, and Database and Redo Log File

Versions 23-81

23.15.1 Supported Data Types and Table Storage Attributes 23-82
23.15.2 Database Compatibility Requirements for LogMiner 23-83
23.15.3 Unsupported Data Types and Table Storage Attributes 23-84
23.15.4 Supported Databases and Redo Log File Versions 23-84
23.15.5 SecureFiles LOB Considerations 23-85

24 Using the Metadata APIs
24.1 Why Use the DBMS_METADATA API? 24-2
24.2 Overview of the DBMS_METADATA API 24-2
24.3 Using the DBMS_METADATA API to Retrieve an Object's Metadata 24-4
24.3.1 How to Use the DBMS_METADATA API to Retrieve Object Metadata 24-5
24.3.2 Typical Steps Used for Basic Metadata Retrieval 24-5
24.3.3 Retrieving Multiple Objects 24-7
24.3.4 Placing Conditions on Transforms 24-8
24.3.5 Accessing Specific Metadata Attributes 24-10
24.4 Using the DBMS_METADATA API to Recreate a Retrieved Object 24-13
245 Using the DBMS_METADATA API to Retrieve Collections of Different Object Types 24-15
24.6 Filtering the Return of Heterogeneous Object Types 24-17
24.7 Using the DBMS_METADATA_DIFF APl to Compare Object Metadata 24-18
24.8 Performance Tips for the Programmatic Interface of the DBMS_METADATA API 24-26
24.9 Example Usage of the DBMS_METADATA API 24-26
24.9.1 What Does the DBMS_METADATA Example Do? 24-27
24.9.2 Output Generated from the GET_PAYROLL_TABLES Procedure 24-29
24.10 Summary of DBMS_METADATA Procedures 24-31
24.11 Summary of DBMS_METADATA_DIFF Procedures 24-33
25 Original Import

25.1 What Is the Import Utility? 25-2
25.2 Table Objects: Order of Import 25-3
25.3 Before Using Import 25-3
25.3.1 Overview of Import Preparation 25-4
25.3.2 Running catexp.sql or catalog.sql 25-4
25.3.3 Verifying Access Privileges for Import Operations 25-4
25.3.3.1 Importing Objects Into Your Own Schema 25-5
25.3.3.2 Importing Grants 25-5
25.3.3.3 Importing Objects Into Other Schemas 25-6
25.3.3.4 Importing System Objects 25-6

25.3.4 Processing Restrictions 25-7

ORACLE

XXXiii

25.4 Importing into Existing Tables 25-7

25.4.1 Manually Creating Tables Before Importing Data 25-7
25.4.2 Disabling Referential Constraints 25-7
25.4.3 Manually Ordering the Import 25-8
25.5 Effect of Schema and Database Triggers on Import Operations 25-8
25.6 Invoking Import 25-9
25.6.1 Command-Line Entries 25-9
25.6.2 Parameter Files 25-10
25.6.3 Interactive Mode 25-11
25.6.4 Invoking Import As SYSDBA 25-11
25.6.5 Getting Online Help 25-11
25.7 Import Modes 25-11
25.8 Import Parameters 25-14
25.8.1 BUFFER 25-17
25.8.2 COMMIT 25-17
25.8.3 COMPILE 25-18
25.8.4 CONSTRAINTS 25-18
25.8.5 DATA_ONLY 25-18
25.8.6 DATAFILES 25-19
25.8.7 DESTROY 25-19
25.8.8 FEEDBACK 25-20
2589 FILE 25-20
25.8.10 FILESIZE 25-20
25.8.11 FROMUSER 25-21
25.8.12 FULL 25-21
25.8.12.1 Points to Consider for Full Database Exports and Imports 25-21
25.8.13 GRANTS 25-22
25.8.14 HELP 25-23
25.8.15 IGNORE 25-23
25.8.16 INDEXES 25-24
25.8.17 INDEXFILE 25-24
25.8.18 LOG 25-24
25.8.19 PARFILE 25-25
25.8.20 RECORDLENGTH 25-25
25.8.21 RESUMABLE 25-25
25.8.22 RESUMABLE_NAME 25-26
25.8.23 RESUMABLE_TIMEOUT 25-26
25.8.24 ROWS 25-26
25.8.25 SHOW 25-26
25.8.26 SKIP_UNUSABLE_INDEXES 25-27
25.8.27 STATISTICS 25-28
25.8.28 STREAMS_CONFIGURATION 25-28
ORACLE

XXXIV

25.8.29 STREAMS_INSTANTIATION 25-28

25.8.30 TABLES 25-28
25.8.30.1 Table Name Restrictions 25-30
25.8.31 TABLESPACES 25-31
25.8.32 TOID_NOVALIDATE 25-31
25.8.33 TOUSER 25-32
25.8.34 TRANSPORT_TABLESPACE 25-33
25.8.35 TTS_OWNERS 25-33
25.8.36 USERID (username/password) 25-33
25.8.37 VOLSIZE 25-33
25.9 Example Import Sessions 25-34
25.9.1 Example Import of Selected Tables for a Specific User 25-34
25.9.2 Example Import of Tables Exported by Another User 25-34
25.9.3 Example Import of Tables from One User to Another 25-35
25.9.4 Example Import Session Using Partition-Level Import 25-35
25.9.4.1 Example 1: A Partition-Level Import 25-36
25.9.4.2 Example 2: A Partition-Level Import of a Composite Partitioned Table 25-36
25.9.4.3 Example 3: Repartitioning a Table on a Different Column 25-37

25.9.5 Example Import Using Pattern Matching to Import Various Tables 25-39
25.10 Exit Codes for Inspection and Display 25-39
25.11 Error Handling During an Import 25-40
25.11.1 Row Errors 25-40
25.11.1.1 Failed Integrity Constraints 25-40
25.11.1.2 Invalid Data 25-41

25.11.2 Errors Importing Database Objects 25-41
25.11.2.1 Object Already Exists 25-41
25.11.2.2 Sequences 25-42
25.11.2.3 Resource Errors 25-42
25.11.2.4 Domain Index Metadata 25-42

25.12 Table-Level and Partition-Level Import 25-42
25.12.1 Guidelines for Using Table-Level Import 25-42
25.12.2 Guidelines for Using Partition-Level Import 25-43
25.12.3 Migrating Data Across Partitions and Tables 25-43
25.13 Controlling Index Creation and Maintenance 25-44
25.13.1 Delaying Index Creation 25-44
25.13.2 Index Creation and Maintenance Controls 25-44
25.13.2.1 Example of Postponing Index Maintenance 25-45

25.14 Network Considerations for Using Oracle Net with Original Import 25-45
25.15 Character Set and Globalization Support Considerations 25-46
25.15.1 User Data 25-46
25.15.1.1 Effect of Character Set Sorting Order on Conversions 25-46
25.15.2 Data Definition Language (DDL) 25-47

ORACLE

XXXV

25.15.3 Single-Byte Character Sets 25-47

25.15.4 Multibyte Character Sets 25-48
25.16 Using Instance Affinity 25-48
25.17 Considerations When Importing Database Objects 25-48

25.17.1 Importing Object Identifiers 25-49

25.17.2 Importing Existing Object Tables and Tables That Contain Object Types 25-50

25.17.3 Importing Nested Tables 25-51

25.17.4 Importing REF Data 25-52

25.17.5 Importing BFILE Columns and Directory Aliases 25-52

25.17.6 Importing Foreign Function Libraries 25-52

25.17.7 Importing Stored Procedures, Functions, and Packages 25-53

25.17.8 Importing Java Objects 25-53

25.17.9 Importing External Tables 25-53

25.17.10 Importing Advanced Queue (AQ) Tables 25-53

25.17.11 Importing LONG Columns 25-54

25.17.12 Importing LOB Columns When Triggers Are Present 25-54

25.17.13 Importing Views 25-55

25.17.14 Importing Partitioned Tables 25-55
25.18 Support for Fine-Grained Access Control 25-55
25.19 Snapshots and Snapshot Logs 25-56

25.19.1 Snapshot Log 25-56

25.19.2 Snapshots 25-56

25.19.2.1 Importing a Snapshot 25-56
25.19.2.2 Importing a Snapshot into a Different Schema 25-57
25.20 Transportable Tablespaces 25-57
25.21 Storage Parameters 25-58

25.21.1 The OPTIMAL Parameter 25-58

25.21.2 Storage Parameters for OID Indexes and LOB Columns 25-58

25.21.3 Overriding Storage Parameters 25-59
25.22 Read-Only Tablespaces 25-59
25.23 Dropping a Tablespace 25-59
25.24 Reorganizing Tablespaces 25-59
25.25 Importing Statistics 25-60
25.26 Using Export and Import to Partition a Database Migration 25-61

25.26.1 Advantages of Partitioning a Migration 25-61

25.26.2 Disadvantages of Partitioning a Migration 25-61

25.26.3 How to Use Export and Import to Partition a Database Migration 25-61
25.27 Tuning Considerations for Import Operations 25-62

25.27.1 Changing System-Level Options 25-62

25.27.2 Changing Initialization Parameters 25-63

25.27.3 Changing Import Options 25-63

25.27.4 Dealing with Large Amounts of LOB Data 25-63

ORACLE

XXXV

25.27.5 Dealing with Large Amounts of LONG Data 25-64
25.28 Using Different Releases of Export and Import 25-64
25.28.1 Restrictions When Using Different Releases of Export and Import 25-64
25.28.2 Examples of Using Different Releases of Export and Import 25-65
Part V. Appendices
A Instant Client for SQL*Loader, Export, and Import
A.1 What is the Tools Instant Client? A-1
A.2 Choosing Which Instant Client to Install A-2
A.3 Installing Instant Client Tools by Downloading from OTN A-3
A.3.1 Installing Instant Client and Instant Client Tools RPM Packages for Linux A-3
A.3.2 Installing Instant Client and Instant Client Tools from Unix or Windows Zip Files A-4
A.4 Installing Tools Instant Client from the Client Release Media A-4
A.5 List of Oracle Instant Client Tools Files A-5
A.6 Configuring Tools Instant Client Package A-6
A.7 Connecting to a Database with the Tools Instant Client Package A-8
A.8 Uninstalling Tools Instant Client Package and Instant Client A-9

B SQL*Loader Syntax Diagrams

ORACLE"

XXXVil

Preface

Preface

This document describes how to use Oracle Database utilities for data transfer, data
maintenance, and database administration.

Audience

Audience

Documentation Accessibility
Diversity and Inclusion
Related Documentation
Syntax Diagrams

Conventions

The utilities described in this book are intended for database administrators (DBAS),
application programmers, security administrators, system operators, and other Oracle
Database users who perform the following tasks:

Archive data, back up Oracle Database, or move data between different Oracle Databases
using the Export and Import utilities (both the original versions and the Oracle Data Pump
versions)

Load data into Oracle Database tables from operating system files, using SQL*Loader
Load data from external sources, using the external tables feature

Perform a physical data structure integrity check on an offline database, using the
DBVERIFY utility

Maintain the internal database identifier (DBID) and the database name (DBNAME) for an
operational database, using the DBNEWID utility

Extract and manipulate complete representations of the metadata for Oracle Database
objects, using the Metadata API

Query and analyze redo log files (through a SQL interface), using the LogMiner utility

Use the Automatic Diagnostic Repository Command Interpreter (ADRCI) utility to manage
Oracle Database diagnostic data

To use this manual, you need a working knowledge of SQL and of Oracle fundamentals. You
can find such information in Oracle Database Concepts. In addition, to use SQL*Loader, you
must know how to use the file management facilities of your operating system.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

ORACLE

XXXVIII

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Preface

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation

For more information, refer to the Oracle Database documentation set. In particular, check the
following documents:

e Oracle Database Concepts

e Oracle Database SQL Language Reference

* Oracle Database Administrator’s Guide

e Oracle Database PL/SQL Packages and Types Reference

Also refer to My Oracle Support notes that are relevant to Oracle Data Pump tasks, and in
particular, refer to recommended proactive patches for your release:

Data Pump Recommended Proactive Patches For 19.10 and Above (Doc ID 2819284.1)

Oracle Data Pump patches are not included in Oracle Database release updates, but instead
are provide in bundled patches that contain SQL, PL/SQL packages, and XML stylesheets for
Oracle Data Pump. Oracle recommends that you apply the most recent Oracle Data Pump
bundle patch for your release. Because these patches do not include Oracle Database
binaries, you can apply Oracle Data Pump patches online while the database is running , so
long as Oracle Data Pump is not in use at the time.

Some of the examples in this book use the sample schemas of the seed database, which is
installed by default when you install Oracle Database. Refer to Oracle Database Sample
Schemas for information about how these schemas were created, and how you can use them
yourself.

Syntax Diagrams

Syntax descriptions are provided in this book for various SQL, PL/SQL, or other command-line
constructs in graphic form or Backus Naur Form (BNF). See Oracle Database SQL Language
Reference for information about how to interpret these descriptions.

Conventions

The following text conventions are used in this document:

ORACLE XXXiX

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com/rs?type=doc&id=2819284.1

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE I

Oracle Data Pump

ORACLE

Learn about data movement options using Oracle Data Pump Export, Oracle Data Pump
Import, legacy mode, performance, and the Oracle Data Pump AP| DBMS DATAPUMP.

Overview of Oracle Data Pump
Oracle Data Pump technology enables very high-speed movement of data and metadata
from one database to another.

Oracle Data Pump Export
The Oracle Data Pump Export utility is used to unload data and metadata into a set of
operating system files, which are called a dump file set.

Oracle Data Pump Import

With Oracle Data Pump Import, you can load an export dump file set into a target
database, or load a target database directly from a source database with no intervening
files.

Oracle Data Pump Legacy Mode
With Oracle Data Pump legacy mode, you can use original Export and Import parameters
on the Oracle Data Pump Export and Data Pump Import command lines.

Oracle Data Pump Performance
Learn how Oracle Data Pump Export and Import is better than that of original Export and
Import, and how to enhance performance of export and import operations.

Using the Oracle Data Pump API
You can automate data movement operations by using the Oracle Data Pump PL/SQL API
DBMS DATAPUMP.

Overview of Oracle Data Pump

ORACLE

Oracle Data Pump technology enables very high-speed movement of data and metadata from
one database to another.

An understanding of the following topics can help you to successfully use Oracle Data Pump to
its fullest advantage:

Oracle Data Pump Components

Oracle Data Pump is made up of three distinct components: Command-line clients, expdp
and impdp; the DBMS DATAPUMP PL/SQL package (also known as the Data Pump API); and
the DBMS METADATA PL/SQL package (also known as the Metadata API).

How Does Oracle Data Pump Move Data?
There are several Oracle Data Pump methods that you can use to move data in and out of
databases. You can select the method that best fits your use case.

Using Oracle Data Pump With CDBs
Oracle Data Pump can migrate all, or portions of, a database from a non-CDB into a PDB,
between PDBs within the same or different CDBs, and from a PDB into a non-CDB.

Cloud Premigration Advisor Tool
The Cloud Premigration Advisor tool can assist you to migrate a database to the Oracle
Cloud.

Required Roles for Oracle Data Pump Export and Import Operations
The roles DATAPUMP EXP FULL DATABASE and DATAPUMP IMP FULL DATABASE are required
for many Export and Import operations.

What Happens During the Processing of an Oracle Data Pump Job?
Oracle Data Pump jobs use a Data Pump control job table, a Data Pump control job
process, and worker processes to perform the work and keep track of progress.

How to Monitor Status of Oracle Data Pump Jobs
The Oracle Data Pump Export and Import client utilities can attach to a job in either logging
mode or interactive-command mode.

How to Monitor the Progress of Running Jobs with VSSESSION_LONGOPS
To monitor table data transfers, you can use the V$SESSION LONGOPS dynamic performance
view to monitor Oracle Data Pump jobs.

File Allocation with Oracle Data Pump
You can modify how Oracle Data Pump allocates and handles files by using commands in
interactive mode.

Exporting and Importing Between Different Oracle Database Releases
You can use Oracle Data Pump to migrate all or any portion of an Oracle Database
between different releases of the database software.

Exporting and Importing Blockchain Tables with Oracle Data Pump
To export or import blockchain tables, review these minimum requirements, restrictions,
and guidelines.

Managing SecureFiles Large Object Exports with Oracle Data Pump
Exports of SecureFiles large objects (LOBs) are affected by the content type, the VERSION
parameter, and other variables.

1-1

Chapter 1
Oracle Data Pump Components

e Oracle Data Pump Process Exit Codes
To check the status of your Oracle Data Pump export and import operations, review the
process exit codes in the log file.

* How to Monitor Oracle Data Pump Jobs with Unified Auditing
To monitor and record specific user database actions, perform auditing on Data Pump jobs
with unified auditing.

* Encrypted Data Security Warnings for Oracle Data Pump Operations
Oracle Data Pump warns you when encrypted data is exported as unencrypted data.

e How Does Oracle Data Pump Handle Timestamp Data?
Learn about factors that can affect successful completion of export and import jobs that
involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP WITH LOCAL
TIMEZONE.

e Character Set and Globalization Support Considerations
Learn about Globalization support of Oracle Data Pump Export and Import using character
set conversion of user data, and data definition language (DDL).

e Oracle Data Pump Behavior with Data-Bound Collation
Oracle Data Pump supports data-bound collation (DBC).

1.1 Oracle Data Pump Components

Oracle Data Pump is made up of three distinct components: Command-line clients, expdp and
impdp; the DBMS DATAPUMP PL/SQL package (also known as the Data Pump API); and the
DBMS METADATA PL/SQL package (also known as the Metadata API).

The Oracle Data Pump clients, expdp and impdp, start the Oracle Data Pump Export utility and
Oracle Data Pump Import utility, respectively.

The expdp and impdp clients use the procedures provided in the DBMS DATAPUMP PL/SQL
package to execute export and import commands, using the parameters entered at the
command line. These parameters enable the exporting and importing of data and metadata for
a complete database or for subsets of a database.

When metadata is moved, Data Pump uses functionality provided by the DBMS METADATA
PL/SQL package. The DBMS METADATA package provides a centralized facility for the extraction,
manipulation, and re-creation of dictionary metadata.

The DBMS DATAPUMP and DBMS METADATA PL/SQL packages can be used independently of the
Data Pump clients.

Note:

All Oracle Data Pump Export and Import processing, including the reading and
writing of dump files, is done on the system (server) selected by the specified
database connect string. This means that for unprivileged users, the database
administrator (DBA) must create directory objects for the Data Pump files that
are read and written on that server file system. (For security reasons, DBAs must
ensure that only approved users are allowed access to directory objects.) For
privileged users, a default directory object is available.

Starting with Oracle Database 18c, you can include the unified audit trail in either full or partial
export and import operations using Oracle Data Pump. There is no change to the user

ORACLE 1o

Chapter 1
How Does Oracle Data Pump Move Data?

interface. When you perform the export or import operations of a database, the unified audit
trail is automatically included in the Oracle Data Pump dump files. See Oracle Database
PL/SQL Packages and Types Reference for a description of the DBMS DATAPUMP and the
DBMS METADATA packages. See Oracle Database Security Guide for information about
exporting and importing the unified audit trail using Oracle Data Pump.

Related Topics

Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and SQL
files are accessed relative to server-based directory paths.

Oracle Database PL/SQL Packages and Types Reference

Oracle Database Security Guide

1.2 How Does Oracle Data Pump Move Data?

There are several Oracle Data Pump methods that you can use to move data in and out of
databases. You can select the method that best fits your use case.

ORACLE

Note:

The UTL_FILE DIR desupportin Oracle Database 18c and later releases affects
Oracle Data Pump. This desupport can affect any feature from an earlier release
using symbolic links, including (but not restricted to) Oracle Data Pump, BFILEs, and
External Tables. If you attempt to use an affected feature configured with symbolic
links, then you encounter ORA-29283: invalid file operation: path traverses a
symlink. Oracle recommends that you instead use directory objects in place of
symbolic links.

Data Pump does not load tables with disabled unique indexes. To load data into the
table, the indexes must be either dropped or reenabled.

Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target database
without interpreting or altering the data.

Using Direct Path to Move Data

After data file copying, direct path is the fastest method of moving data. In this method, the
SQL layer of the database is bypassed and rows are moved to and from the dump file with
only minimal interpretation.

Using External Tables to Move Data
If you do not select data file copying, and the data cannot be moved using direct path, you
can use the external tables mechanism.

Using Conventional Path to Move Data
Where there are conflicting table attributes, Oracle Data Pump uses conventional path to
move data.

Using Network Link Import to Move Data
When the Import NETWORK_LINK parameter is used to specify a network link for an import
operation, the direct path method is used by default. Review supported database link

types.

1-3

Chapter 1
How Does Oracle Data Pump Move Data?

e Using a Parameter File (Parfile) with Oracle Data Pump
To help to simplify Oracle Data Pump exports and imports, you can create a parameter
file, also known as a parfile.

1.2.1 Using Data File Copying to Move Data

The fastest method of moving data is to copy the database data files to the target database
without interpreting or altering the data.

When you copy database data files to the target database with this method, Data Pump Export
is used to unload only structural information (metadata) into the dump file.

* The TRANSPORT TABLESPACES parameter is used to specify a transportable tablespace
export. Only metadata for the specified tablespaces is exported.

* The TRANSPORTABLE=ALWAYS parameter is supplied on a table mode export (specified with
the TABLES parameter) or a full mode export (specified with the FULL parameter) or a full
mode network import (specified with the FULL and NETWORK LINK parameters).

When an export operation uses data file copying, the corresponding import job always also
uses data file copying. During the ensuing import operation, both the data files and the export
dump file must be loaded.

Note:

Starting with Oracle Database 21c, transportable jobs are restartable at or near the
point of failure During transportable imports tablespaces are temporarily made read/
write and then set back to read-only. The temporary setting change was introduced
with Oracle Database 12c Release 1 (12.1.0.2) to improve performance. However, be
aware that this behavior also causes the SCNs of the import job data files to change.
Changing the SCNs for data files can cause issues during future transportable
imports of those files.

For example, if a transportable tablespace import fails at any point after the
tablespaces have been made read/write (even if they are now read-only again), then
the data files at that section of the export become corrupt. They cannot be recovered.

When transportable jobs are performed, it is best practice to keep a copy of the data
files on the source system until the import job has successfully completed on the
target system. If the import job fails for some reason, then keeping copies ensures
that you can have uncorrupted copies of the data files.

When data is moved by using data file copying, there are some limitations regarding character
set compatibility between the source and target databases.

If the source platform and the target platform are of different endianness, then you must
convert the data being transported so that it is in the format of the target platform. You can use
the DBMS FILE TRANSFER PL/SQL package or the RMAN CONVERT command to convert the data.

ORACLE 4

Chapter 1
How Does Oracle Data Pump Move Data?

See Also:

e Oracle Database Backup and Recovery Reference for information about the
RMAN CONVERT command

* Oracle Database Administrator’s Guide for a description and example (including
how to convert the data) of transporting tablespaces between databases

1.2.2 Using Direct Path to Move Data

ORACLE

After data file copying, direct path is the fastest method of moving data. In this method, the
SQL layer of the database is bypassed and rows are moved to and from the dump file with only
minimal interpretation.

Data Pump automatically uses the direct path method for loading and unloading data unless
the structure of a table does not allow it. For example, if a table contains a column of type
BFILE, then direct path cannot be used to load that table and external tables is used instead.

The following sections describe situations in which direct path cannot be used for loading and
unloading.

Situations in Which Direct Path Load Is Not Used

If any of the following conditions exist for a table, then Data Pump uses external tables to load
the data for that table, instead of direct path:

e A domain index that is not a CONTEXT type index exists for a LOB column.

e A global index on multipartition tables exists during a single-partition load. This case
includes object tables that are partitioned.

e Atableisin a cluster.

e There is an active trigger on a preexisting table.

e Fine-grained access control is enabled in insert mode on a preexisting table.
e Atable contains BFILE columns or columns of opaque types.

* Areferential integrity constraint is present on a preexisting table.

* Atable contains VARRAY columns with an embedded opaque type.

e The table has encrypted columns.

e The table into which data is being imported is a preexisting table and at least one of the
following conditions exists:

— There is an active trigger
— The table is partitioned
— Fine-grained access control is in insert mode
— Avreferential integrity constraint exists
— A unigue index exists
e Supplemental logging is enabled, and the table has at least one LOB column.

« The Data Pump command for the specified table used the QUERY, SAMPLE, or REMAP DATA
parameter.

1-5

Chapter 1
How Does Oracle Data Pump Move Data?

e Atable contains a column (including a VARRAY column) with a TIMESTAMP WITH TIME ZONE
data type, and the version of the time zone data file is different between the export and
import systems.

Situations in Which Direct Path Unload Is Not Used

If any of the following conditions exist for a table, then Data Pump uses external tables rather
than direct path to unload the data:

e Fine-grained access control for SELECT is enabled.

e The table is a queue table.

e The table contains one or more columns of type BFILE or opaque, or an object type
containing opaque columns.

e The table contains encrypted columns.
* The table contains a column of an evolved type that needs upgrading.

* The Data Pump command for the specified table used the QUERY, SAMPLE, Or REMAP DATA
parameter.

« Before the unload operation, the table was altered to contain a column that is NOT NULL,
and also has a default value specified.

1.2.3 Using External Tables to Move Data

If you do not select data file copying, and the data cannot be moved using direct path, you can
use the external tables mechanism.

The external tables mechanism creates an external table that maps to the dump file data for
the database table. The SQL engine is then used to move the data. If possible, use the APPEND
hint on import to speed the copying of the data into the database. The representation of data
for direct path data and external table data is the same in a dump file. Because they are the
same, Oracle Data Pump can use the direct path mechanism at export time, but use external
tables when the data is imported into the target database. Similarly, Oracle Data Pump can use
external tables for the export, but use direct path for the import.

In particular, Oracle Data Pump can use external tables in the following situations:

« Loading and unloading very large tables and partitions in situations where it is
advantageous to use parallel SQL capabilities

» Loading tables with global or domain indexes defined on them, including partitioned object
tables

» Loading tables with active triggers or clustered tables
e Loading and unloading tables with encrypted columns
» Loading tables with fine-grained access control enabled for inserts

» Loading a table not created by the import operation (the table exists before the import
starts)

ORACLE 6

Chapter 1
How Does Oracle Data Pump Move Data?

Note:

When Oracle Data Pump uses external tables as the data access mechanism, it uses
the ORACLE DATAPUMP access driver. However, be aware that the files that Oracle
Data Pump creates when it uses external tables are not compatible with files created
when you manually create an external table using the SQL CREATE TABLE ...
ORGANIZATION EXTERNAL Statement.

Related Topics

* The ORACLE_DATAPUMP Access Driver
e APPEND Hint

* Loading LOBs with External Tables

1.2.4 Using Conventional Path to Move Data

Where there are conflicting table attributes, Oracle Data Pump uses conventional path to move
data.

In situations where there are conflicting table attributes, Oracle Data Pump is not able to load
data into a table using either direct path or external tables. In such cases, conventional path is
used, which can affect performance.

1.2.5 Using Network Link Import to Move Data

ORACLE

When the Import NETWORK_LINK parameter is used to specify a network link for an import
operation, the direct path method is used by default. Review supported database link types.

If direct path cannot be used (for example, because one of the columns is a BFILE), then SQL
is used to move the data using an INSERT SELECT statement. (Before Oracle Database 12¢
Release 2 (12.2.0.1), the default was to use the INSERT SELECT statement.) The SELECT clause
retrieves the data from the remote database over the network link. The INSERT clause uses
SQL to insert the data into the target database. There are no dump files involved.

When the Export NETWORK LINK parameter is used to specify a network link for an export
operation, the data from the remote database is written to dump files on the target database.
(Note that to export from a read-only database, the NETWORK_LINK parameter is required.)

Because the link can identify a remotely networked database, the terms database link and
network link are used interchangeably.

Supported Link Types

The following types of database links are supported for use with Data Pump Export and Import:
* Public fixed user

* Public connected user

e Public shared user (only when used by link owner)

e Private shared user (only when used by link owner)

* Private fixed user (only when used by link owner)

1-7

Chapter 1
How Does Oracle Data Pump Move Data?

Unsupported Link Types

The following types of database links are not supported for use with Data Pump Export and
Import:

e Private connected user
e Current user
e Parallel export or import of metadata for network jobs.

For conventional jobs, if you need parallel metadata import, then use a dumpfile instead of
NETWORK_LINK.

See Also:

e The Export NETWORK_LINK parameter for information about performing exports
over a database link

e The Import NETWORK_LINK parameter for information about performing imports
over a database link

* Oracle Database Administrator’s Guide for information about creating database
links and the different types of links

1.2.6 Using a Parameter File (Parfile) with Oracle Data Pump

ORACLE

To help to simplify Oracle Data Pump exports and imports, you can create a parameter file,
also known as a parfile.

Instead of typing in Oracle Data Pump parameters at the command line, when you run an
export or import operation, you can prepare a parameter text file (also known as a parfile, after
the parameter name) that provides the command-line parameters to the Oracle Data Pump
client. You specify that Oracle Data Pump obtains parameters for the command by entering the
PARFILE parameter, and then specifying the parameter name:

PARFILE=[directory path]file name

When the Oracle Data Pump Export or Import operation starts, the parameter file is opened
and read by the client. The default location of the parameter file is the user's current directory.

For example:

expdp hr PARFILE=hr.par

When you create a parameter file, it makes it easier for you to reuse that file for multiple export
or import operations, which can simplify these operations, particularly if you perform them
regularly. Creating a parameter file also helps you to avoid typographical errors that can occur
from typing long Oracle Data Pump commands on the command line, especially if you use
parameters whose values require quotation marks that must be placed precisely. On some
systems, if you use a parameter file and the parameter value being specified does not have
guotation marks as the first character in the string (for example, TABLES=scott."Emp"), then
the use of escape characters may not be necessary.

1-8

Chapter 1
Using Oracle Data Pump With CDBs

There is no required file name extension, but Oracle examples use .par as the extension.
Oracle recommends that you also use this file extension convention. Using a consistent
parameter file extension makes it easier to identify and use these files.

Note:

The PARFILE parameter cannot be specified within a parameter file.

For more information and examples, see the PARFILE parameters for Oracle Data Pump Import
and Export.

Related Topics
e Oracle Data Pump Export PARFILE
e Oracle Data Pump Import PARFILE

1.3 Using Oracle Data Pump With CDBs

Oracle Data Pump can migrate all, or portions of, a database from a non-CDB into a PDB,
between PDBs within the same or different CDBs, and from a PDB into a non-CDB.

e About Using Oracle Data Pump in a Multitenant Environment
In general, using Oracle Data Pump with PDBs is identical to using Oracle Data Pump with
a non-CDB.

e Using Oracle Data Pump to Move Data Into a CDB
After you create an empty PDB, to move data into the PDB, you can use an Oracle Data
Pump full-mode export and import operation.

e Using Oracle Data Pump to Move PDBs Within or Between CDBs
Learn how to avoid ORA-65094 user schema errors with Oracle Data Pump export and
import operations on PDBs.

1.3.1 About Using Oracle Data Pump in a Multitenant Environment

In general, using Oracle Data Pump with PDBs is identical to using Oracle Data Pump with a
non-CDB.

A multitenant container database (CDB) is an Oracle Database that includes zero, one, or
many user-created pluggable databases (PDBs). A PDB is a portable set of schemas, schema
objects, and non-schema objects that appear to an Oracle Net client as a non-CDB. A non-
CDB is an Oracle Database that is not a CDB. Non-CDB architecture Oracle Database was
deprecated in Oracle Database 12c¢ Release 1 (12.1). Starting with Oracle Database 21c, non-
CDB architecture deployments are desupported.

You can use Oracle Data Pump to migrate all or some of a database in the following scenarios:
* From a non-CDB into a PDB
* Between PDBs within the same or different CDBs

» From a PDB into an earlier release non-CDB

ORACLE 19

Chapter 1
Using Oracle Data Pump With CDBs

Note:

Oracle Data Pump does not support any operations across the entire CDB. If you are
connected to the root or seed database of a CDB, then Oracle Data Pump issues the
following warning:

ORA-39357: Warning: Oracle Data Pump operations are not typically
needed when connected to the root or seed of a container database.

1.3.2 Using Oracle Data Pump to Move Data Into a CDB

ORACLE

After you create an empty PDB, to move data into the PDB, you can use an Oracle Data Pump
full-mode export and import operation.

You can import data with or without the transportable option. If you use the transportable option
on a full mode export or import, then it is referred to as a full transportable export/import.

When the transportable option is used, export and import use both transportable tablespace
data movement and conventional data movement; the latter for those tables that reside in non-
transportable tablespaces such as sYSTEM and SYSAUX. Using the transportable option can
reduce the export time, and especially, the import time. With the transportable option, table
data does not need to be unloaded and reloaded, and index structures in user tablespaces do
not need to be recreated.

Note the following requirements when using Oracle Data Pump to move data into a CDB:

» To administer a multitenant environment, you must have the CDB_DBA role.

* Full database exports from Oracle Database 11.2.0.2 and earlier can be imported into
Oracle Database 12c or later (CDB or non-CDB). However, Oracle recommends that you
first upgrade the source database to Oracle Database 11g Release 2 (11.2.0.3 or later), so
that information about registered options and components is included in the export.

* When migrating Oracle Database 119 Release 2 (11.2.0.3 or later) to a CDB (or to a non-
CDB) using either full database export or full transportable database export, you must set
the Oracle Data Pump Export parameter at least to VERSION=12 to generate a dump file
that is ready for import into an Oracle Database 12c or later release. If you do not set
VERSION=12, then the export file that is generated does not contain complete information
about registered database options and components.

* Network-based full transportable imports require use of the FULL=YES,
TRANSPORTABLE=ALWAYS, and TRANSPORT DATAFILES=datafile name parameters. When the
source database is Oracle Database 11g Release 11.2.0.3 or later, but earlier than Oracle
Database 12c Release 1 (12.1), the VERSION=12 parameter is also required.

e File-based full transportable imports only require use of the
TRANSPORT DATAFILES=datafile name parameter. Data Pump Import infers the presence
of the TRANSPORTABLE=ALWAYS and FULL=YES parameters.

* As of Oracle Database 12c Release 2 (12.2), in a multitenant container database (CDB)
environment, the default Oracle Data Pump directory object, DATA PUMP DIR, is defined as
a unique path for each PDB in the CDB. This unique path is defined whether the
PATH PREFIX clause of the CREATE PLUGGABLE DATABASE statement is defined or is not
defined for relative paths.

1-10

ORACLE

Chapter 1
Using Oracle Data Pump With CDBs

e Starting in Oracle Database 19c, the credential parameter of impdp specifies the name of
the credential object that contains the user name and password required to access an
object store bucket. You can also specify a default credential using the PDB property
named DEFAULT CREDENTIAL. When you run impdb with then default credential, you prefix
the dump file name with DEFAULT CREDENTIAL: and you do not specify the credential
parameter.

Example 1-1 Importing a Table into a PDB

To specify a particular PDB for the export/import operation, supply a connect identifier in the
connect string when you start Data Pump. For example, to import data to a PDB named pdb1,
you could enter the following on the Data Pump command line:

impdp hr@pdbl DIRECTORY=dpump dirl DUMPFILE=hr.dmp TABLES=employees

Example 1-2 Specifying a Credential When Importing Data

This example assumes that you created a credential named HR CRED using
DBMS CREDENTIAL.CREATE CREDENTIAL as follows:

BEGIN
DBMS CLOUD.CREATE CREDENTIAL (
credential name => 'HR CRED',
username => 'atpc user@example.com',
password => 'password'
)i
END;
/

The following command specifies credential HR CRED, and specifies the file stored in an object
store. The URL of the file is https://example.com/ostore/dnfs/myt.dmp.

impdp hr@pdbl \
table exists action=replace \
credential=HR CRED \
parallel=16 \
dumpfile=https://example.com/ostore/dnfs/myt.dmp

Example 1-3 Importing Data Using a Default Credential

1. You create a credential named HR CRED using DBMS CREDENTIAL.CREATE CREDENTIAL as
follows:

BEGIN
DBMS CLOUD.CREATE CREDENTIAL (
credential name => 'HR CRED',
username => 'atpc user@example.com',
password => 'password'
)i
END;
/

1-11

Chapter 1
Using Oracle Data Pump With CDBs

2. You set the PDB property DEFAULT CREDENTIAL as follows:

ALTER DATABASE PROPERTY SET DEFAULT CREDENTIAL = 'ADMIN.HR CRED'

3. The following command specifies the default credential as a prefix to the dump file location

https://example.com/ostore/dnfs/myt.dmp:

impdp hr@pdbl \
table exists action=replace \
parallel=16 \
dumpfile=default credential:https://example.com/ostore/dnfs/myt.dmp

Note that the credential parameter is not specified.

¢ See Also:

* Oracle Database Security Guide to learn how to configure SSL authentication,
which is necessary for object store access

* Importing a Table to an Object Store Using Oracle Data Pump to learn about
using Oracle Data Pump Import to load files to the object store

1.3.3 Using Oracle Data Pump to Move PDBs Within or Between CDBs

ORACLE

Learn how to avoid ORA-65094 user schema errors with Oracle Data Pump export and import
operations on PDBs.

If you create a common user in a CDB, then a full database or privileged schema export of that
user from within any PDB in the CDB results in a standard CREATE USER C##common name DDL
statement being performed upon import. However, the statement fails because of the common
user prefix c## on the user name. The following error message is returned:

ORA-65094:invalid local user or role name

Example 1-4 Avoiding Invalid Local User Error

In the PDB being exported, if you have created local objects in that user's schema, and you
want to import them, then either make sure a common user of the same name already exists in
the target CDB instance, or use the Oracle Data Pump Import REMAP SCHEMA parameter on the
impdp command to remap the schema to a valid local user. For example:

REMAP SCHEMA=C##common name:local user name

Related Topics

e Full Export Mode
You can use Oracle Data Pump to carry out a full database export by using the FULL
parameter.

e Full Import Mode
To specify a full import with Oracle Data Pump, use the FULL parameter.

1-12

Chapter 1
Cloud Premigration Advisor Tool

1.4 Cloud Premigration Advisor Tool

The Cloud Premigration Advisor tool can assist you to migrate a database to the Oracle Cloud.

e What is the Cloud Premigration Advisor Tool (CPAT)
To determine if your On Premises Oracle Database data is suitable to migrate to an Oracle
Cloud, you can use Oracle's Cloud Premigration Advisor Tool (CPAT).

1.4.1 What is the Cloud Premigration Advisor Tool (CPAT)

To determine if your On Premises Oracle Database data is suitable to migrate to an Oracle
Cloud, you can use Oracle's Cloud Premigration Advisor Tool (CPAT).

The Cloud Premigration Advisor Tool (CPAT) is a Java application that assists you to analyze
your On Premises Oracle Databases to determine whether you can migrate some or all of that
database to one of the Oracle Cloud platform options, such as Autonomous Database, or other
Cloud database options. The CPAT assists you to evaluate your specific migration scenario, to
identify migration options, and assist you to prepare your migration plans from source On
Premises Oracle Databases to the target Oracle Cloud database option to which you want to
migrate.

How the CPAT Helps You to Avoid Issues

When you use the CPAT tool, and it discovers that there are potential environment issues with
a Cloud migration, you are warned ahead of time of what these issues are. As a result, you are
less likely to encounter an unforeseen issue with your migration. In addition to warning you
about issues, the tool can also provide you with parameters for migration, including parameters
for Oracle Data Pump, or other migration tools. These parameters are customized for your
specific migration case, so that potential migration issues are either reduced, or avoided
entirely.

To identify issues and create customized parameters, CPAT performs several checks on the
source database and schema contents. These checks are guided by the target Oracle Cloud
database option that you select, and the migration approach that you intend to use. The results
of these checks are compiled and presented back to you, either in a machine-readable format
(JSON), or a human readable format (plain text or HTML), or both. In addition, the CPAT check
results are designed so that they can be used by other Oracle features, such as Oracle Zero
Downtime Migration (Oracle ZDM) or Oracle Enterprise Manager.

Note:

CPAT is not itself a migration tool. It is intended to assist you to prepare for
migrations. It does not suggest whether a particular migration approach using Oracle
GoldenGate or Oracle Data Pump is the best option, but rather provides you with
customized support for the option that you choose.

1.5 Required Roles for Oracle Data Pump Export and Import
Operations

The roles DATAPUMP EXP FULL DATABASE and DATAPUMP IMP FULL DATABASE are required for
many Export and Import operations.

ORACLE 112

Chapter 1
Required Roles for Oracle Data Pump Export and Import Operations

Caution:

Do not run Oracle Data Pump jobs as the sys user. Either use the schema SYSTEM (or
ADMIN in Oracle Autonomous Database) for system management operations, or use a
user account that is granted the Data Pump full privileges roles that are described
below.

When you run Export or Import operations, the operation can require that the user account that
you are using to run the operations on premises or in user-managed cloud services is granted
either the DATAPUMP EXP FULL DATABASE role, or the DATAPUMP IMP FULL DATABASE role, or
both roles. The corresponding roles for Autonomous Database are DATAPUMP CLOUD EXP and
DATAPUMP CLOUD IMP. These roles are automatically defined for Oracle Database when you run
the standard scripts that are part of database creation. (Note that although the names of these
roles contain the word FULL, these roles actually apply to any privileged operations in any
export or import mode, not only Full mode.)

The DATAPUMP EXP FULL DATABASE role affects only export operations. The
DATAPUMP IMP FULL DATABASE role affects import operations and operations that use the
Import SQLFILE parameter. These roles allow users performing exports and imports to do the
following:

* Perform the operation outside the scope of their schema
* Monitor jobs that were initiated by another user

» Export objects (such as tablespace definitions) and import objects (such as directory
definitions) that unprivileged users cannot reference

These are powerful roles. As a database administrator, you should use caution when granting
these roles to users.

Although the sys schema does not have either of these roles assigned to it, all security checks
performed by Oracle Data Pump that require these roles also grant access to the sys schema.

Note:

If you receive an ORA-39181: Only Partial Data Exported Due to Fine Grain
Access Control error message, then see My Oracle Support "ORA-39181:0nly
Partial Table Data Exported Due To Fine Grain Access Control (Doc ID 422480.1)"
for information about security during an export of table data with fine-grained access
control policies enabled.:

ORA-39181:0nly Partial Table Data Exported Due To Fine Grain Access Control
(Doc ID 422480.1)

Some Oracle roles require authorization. If you need to use these roles with Oracle Data Pump
exports and imports, then you must explicitly enable them by setting the ENABLE SECURE_ROLES
parameter to YES.

ORACLE 114

https://support.oracle.com/rs?type=doc&id=422480.1
https://support.oracle.com/rs?type=doc&id=422480.1

Chapter 1
What Happens During the Processing of an Oracle Data Pump Job?

See Also:

Oracle Database Security Guide for more information about predefined roles in an
Oracle Database installation

1.6 What Happens During the Processing of an Oracle Data
Pump Job?

Oracle Data Pump jobs use a Data Pump control job table, a Data Pump control job process,
and worker processes to perform the work and keep track of progress.

e Coordination of an Oracle Data Pump Job
A Data Pump control process is created to coordinate every Oracle Data Pump Export and
Import job.

e Tracking Progress Within an Oracle Data Pump Job
While Oracle Data Pump transfers data and metadata, a Data Pump control job table is
used to track the progress within a job.

e Filtering Data and Metadata During an Oracle Data Pump Job
If you want to filter the types of objects that are exported and imported with Oracle Data
Pump, then you can use the EXCLUDE and INCLUDE parameters.

e Transforming Metadata During an Oracle Data Pump Job
When you move data from one database to another, you can perform transformations on
the metadata by using Oracle Data Pump Import parameters.

e Maximizing Job Performance of Oracle Data Pump
To increase job performance, you can use the Oracle Data Pump PARALLEL parameter to
run multiple worker processes in parallel.

e Loading and Unloading Data with Oracle Data Pump
Learn how Oracle Data Pump child processes operate during data imports and exports.

1.6.1 Coordination of an Oracle Data Pump Job

A Data Pump control process is created to coordinate every Oracle Data Pump Export and
Import job.

The Data Pump control process controls the entire job, including communicating with the client
processes, creating and controlling a pool of worker processes, and performing logging
operations.

1.6.2 Tracking Progress Within an Oracle Data Pump Job

ORACLE

While Oracle Data Pump transfers data and metadata, a Data Pump control job table is used
to track the progress within a job.

The Data Pump control table is implemented as a user table within the database. The specific
function of the Data Pump control table for export and import jobs is as follows:

* For export jobs, the Data Pump control job table records the location of database objects
within a dump file set. Export builds and maintains the Data Pump control table for the
duration of the job. At the end of an export job, the content of the Data Pump control table
is written to a file in the dump file set.

1-15

Chapter 1
What Happens During the Processing of an Oracle Data Pump Job?

e For import jobs, the Data Pump control job table is loaded from the dump file set, and is
used to control the sequence of operations for locating objects that need to be imported
into the target database.

The Data Pump control job table is created in the schema of the current user performing the
export or import operation. Therefore, that user must have the CREATE TABLE system privilege
and a sufficient tablespace quota for creation of the Data Pump control job table. The hame of
the Data Pump control job table is the same as the name of the job that created it. Therefore,
you cannot explicitly give an Oracle Data Pump job the same name as a preexisting table or
view.

For all operations, the information in the master table is used to restart a job.

The Data Pump control job table is either retained or dropped, depending on the
circumstances, as follows:

« Upon successful job completion, the Data Pump control job table is dropped. You can
override this by setting the Oracle Data Pump XEEP MASTER=YES parameter for the job.

e The Data Pump control job table is automatically retained for jobs that do not complete
successfully.

* If ajob is stopped using the STOP JOB interactive command, then the Data Pump control
job table is retained for use in restarting the job.

* Ifajob is killed using the XILL JOB interactive command, then the Data Pump control job
table is dropped, and the job cannot be restarted.

e If a job terminates unexpectedly, then the Data Pump control job table is retained. You can
delete it if you do not intend to restart the job.

e If a job stops before it starts running (that is, before any database objects have been
copied), then the Data Pump control job table is dropped.

Related Topics
* Oracle Data Pump Export command-line utility JOB_NAME parameter

1.6.3 Filtering Data and Metadata During an Oracle Data Pump Job

ORACLE

If you want to filter the types of objects that are exported and imported with Oracle Data Pump,
then you can use the EXCLUDE and INCLUDE parameters.

Within the Data Pump control job table, specific objects are assigned attributes such as name
or owning schema. Objects also belong to a class of objects (such as TABLE, INDEX, Or
DIRECTORY). The class of an object is called its object type. You can use the EXCLUDE and
INCLUDE parameters to restrict the types of objects that are exported and imported. The objects
can be based upon the name of the object, or the name of the schema that owns the object.
You can also specify data-specific filters to restrict the rows that are exported and imported.

Related Topics

* Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This capability
helps you limit the type of information that is exported.

e Filtering During Import Operations
Oracle Data Pump Import provides data and metadata filtering capability, which can help
you limit the type of information that you import.

1-16

Chapter 1
What Happens During the Processing of an Oracle Data Pump Job?

1.6.4 Transforming Metadata During an Oracle Data Pump Job

When you move data from one database to another, you can perform transformations on the
metadata by using Oracle Data Pump Import parameters.

It is often useful to perform transformations on your metadata, so that you can remap storage
between tablespaces, or redefine the owner of a particular set of objects. When you move
data, you can perform transformations by using the Oracle Data Pump import parameters
REMAP DATAFILE, REMAP SCHEMA, REMAP TABLE,REMAP TABLESPACE, TRANSFORM, and
PARTITION OPTIONS.

1.6.5 Maximizing Job Performance of Oracle Data Pump

To increase job performance, you can use the Oracle Data Pump PARALLEL parameter to run
multiple worker processes in parallel.

The PARALLEL parameter enables you to set a degree of parallelism that takes maximum
advantage of current conditions. For example, to limit the effect of a job on a production
system, database administrators can choose to restrict the parallelism. The degree of
parallelism can be reset at any time during a job. For example, during production hours, you
can set PARALLEL to 2, so that you restrict a particular job to only two degrees of parallelism.
During non-production hours, you can reset the degree of parallelism to 8. The parallelism
setting is enforced by the Data Pump control process, which allocates workloads to worker
processes that perform the data and metadata processing within an operation. These worker
processes operate in parallel. For recommendations on setting the degree of parallelism, refer
to the Export PARALLEL and Import PARALLEL parameter descriptions.

< Note:

The ability to adjust the degree of parallelism is available only in the Enterprise
Edition of Oracle Database.

Related Topics

PARALLEL
The Oracle Data Pump Export command-line utility PARALLEL parameter specifies the
maximum number of processes of active execution operating on behalf of the export job.

* PARALLEL
The Oracle Data Pump Import command-line mode PARALLEL parameter sets the
maximum number of worker processes that can load in parallel.

1.6.6 Loading and Unloading Data with Oracle Data Pump

ORACLE

Learn how Oracle Data Pump child processes operate during data imports and exports.

Oracle Data Pump child processes unload and load metadata and table data. For export, all
metadata and data are unloaded in parallel, with the exception of jobs that use transportable
tablespace. For import, objects must be created in the correct dependency order.

If there are enough objects of the same type to make use of multiple child processes, then the
objects are imported by multiple child processes. Some metadata objects have
interdependencies, which require one child process to create them serially to satisfy those

1-17

Chapter 1
How to Monitor Status of Oracle Data Pump Jobs

dependencies. Child processes are created as needed until the number of child processes
equals the value supplied for the PARALLEL command-line parameter. The number of active
child processes can be reset throughout the life of a job. Worker processes can be started on
different nodes in an Oracle Real Application Clusters (Oracle RAC) environment.

Note:

The value of PARALLEL is restricted to 1 in the Standard Edition of Oracle Database.

When a child process is assigned the task of loading or unloading a very large table or
partition, to make maximum use of parallel execution, it can make use of the external tables
access method. In such a case, the child process becomes a parallel execution coordinator.
The actual loading and unloading work is divided among some number of parallel input/output
(I/0O) execution processes allocated from a pool of available processes in an Oracle Real
Application Clusters (Oracle RAC) environment.

Related Topics
 PARALLEL
 PARALLEL

1.7 How to Monitor Status of Oracle Data Pump Jobs

The Oracle Data Pump Export and Import client utilities can attach to a job in either logging
mode or interactive-command mode.

In logging mode, real-time detailed status about the job is automatically displayed during job
execution. The information displayed can include the job and parameter descriptions, an
estimate of the amount of data to be processed, a description of the current operation or item
being processed, files used during the job, any errors encountered, and the final job state
(Stopped or Completed).

In interactive-command mode, job status can be displayed on request. The information
displayed can include the job description and state, a description of the current operation or
item being processed, files being written, and a cumulative status.

You can also have a log file written during the execution of a job. The log file summarizes the
progress of the job, lists any errors encountered during execution of the job, and records the
completion status of the job.

As an alternative to determine job status or other information about Oracle Data Pump jobs,
you can query the DBA DATAPUMP JOBS, USER DATAPUMP JOBS, Of DBA DATAPUMP SESSIONS
views. Refer to Oracle Database Reference for more information.

Related Topics

* Oracle Database Reference

1.8 How to Monitor the Progress of Running Jobs with
VSSESSION_LONGOPS

To monitor table data transfers, you can use the V$SESSION LONGOPS dynamic performance
view to monitor Oracle Data Pump jobs.

ORACLE 118

Chapter 1
File Allocation with Oracle Data Pump

Oracle Data Pump operations that transfer table data (export and import) maintain an entry in
the V$SESSION LONGOPS dynamic performance view indicating the job progress (in megabytes
of table data transferred). The entry contains the estimated transfer size and is periodically
updated to reflect the actual amount of data transferred.

Use of the COMPRESSION, ENCRYPTION, ENCRYPTION ALGORITHM, ENCRYPTION MODE,
ENCRYPTION PASSWORD, QUERY, and REMAP DATA parameters are not reflected in the
determination of estimate values.

The usefulness of the estimate value for export operations depends on the type of estimation
requested when the operation was initiated, and it is updated as required if exceeded by the
actual transfer amount. The estimate value for import operations is exact.

The V$SESSION LONGOPS columns that are relevant to a Data Pump job are as follows:

° USERNAME: Job owner

e OPNAME: Job name

* TARGET DESC: Job operation

e SOFAR: Megabytes transferred thus far during the job
e TOTALWORK Estimated number of megabytes in the job
* UNITS: Megabytes (MB)

° MESSAGE: A formatted status message that uses the following format:

'job _name: operation name : nnn out of mmm MB done'

1.9 File Allocation with Oracle Data Pump

You can modify how Oracle Data Pump allocates and handles files by using commands in
interactive mode.

* Understanding File Allocation in Oracle Data Pump
Understanding how Oracle Data Pump allocates and handles files helps you to use Export
and Import to their fullest advantage.

* Specifying Files and Adding Additional Dump Files
For export operations, you can either specify dump files at the time you define the Oracle
Data Pump job, or at a later time during the operation.

» Default Locations for Dump, Log, and SQL Files
Learn about default Oracle Data Pump file locations, and how these locations are affected
when you are using Oracle RAC, Oracle Automatic Storage Management, and multitenant
architecture.

* Using Substitution Variables with Oracle Data Pump Exports
If you want to specify multiple dump files during Oracle Data Pump export operations, then
use the DUMPFILE parameter with a substitution variable in the file name.

1.9.1 Understanding File Allocation in Oracle Data Pump

Understanding how Oracle Data Pump allocates and handles files helps you to use Export and
Import to their fullest advantage.

Oracle Data Pump jobs manage the following types of files:

ORACLE 110

Chapter 1
File Allocation with Oracle Data Pump

» Dump files, to contain the data and metadata that is being moved.
* Log files, to record the messages associated with an operation.

e SQL files, to record the output of a SQLFILE operation. A SQLFILE operation is started using
the Oracle Data Pump Import SQLFILE parameter. This operation results in all of the sQL
DDL that Import would execute, based on other parameters, being written to a SQL file.

* Files specified by the DATA FILES parameter during a transportable import.

Note:

If your Oracle Data Pump job generates errors related to Network File Storage (NFS),
then consult the installation guide for your platform to determine the correct NFS
mount settings.

1.9.2 Specifying Files and Adding Additional Dump Files

For export operations, you can either specify dump files at the time you define the Oracle Data
Pump job, or at a later time during the operation.

If you discover that space is running low during an export operation, then you can add
additional dump files by using the Oracle Data Pump Export ADD FILE command in interactive
mode.

For import operations, all dump files must be specified at the time the job is defined.

Log files and SQL files overwrite previously existing files. For dump files, you can use the
Export REUSE DUMPFILES parameter to specify whether to overwrite a preexisting dump file.

1.9.3 Default Locations for Dump, Log, and SQL Files

Learn about default Oracle Data Pump file locations, and how these locations are affected
when you are using Oracle RAC, Oracle Automatic Storage Management, and multitenant
architecture.

e Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and SQL
files are accessed relative to server-based directory paths.

* Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC) environment
requires you to perform a few checks to ensure that you are making cluster member nodes
available.

* Using Directory Objects When Oracle Automatic Storage Management Is Enabled
If you use Oracle Data Pump Export or Import with Oracle Automatic Storage Management
(Oracle ASM) enabled, then define the directory object used for the dump file.

 The DATA_PUMP_DIR Directory Object and Pluggable Databases
The default Oracle Data Pump directory object, DATA PUMP DIR, is defined as a unique
path for each PDB in the CDB.

ORACLE 190

Chapter 1
File Allocation with Oracle Data Pump

1.9.3.1 Understanding Dump, Log, and SQL File Default Locations

ORACLE

Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and SQL
files are accessed relative to server-based directory paths.

Oracle Data Pump requires that directory paths are specified as directory objects. A directory
object maps a name to a directory path on the file system. As a database administrator, you
must ensure that only approved users are allowed access to the directory object associated
with the directory path.

The following example shows a SQL statement that creates a directory object named
dpump_dirl that is mapped to a directory located at /usr/apps/datafiles.

SQL> CREATE DIRECTORY dpump dirl AS '/usr/apps/datafiles';

The reason that a directory object is required is to ensure data security and integrity. For
example:

e If you are allowed to specify a directory path location for an input file, then it is possible that
you could be able to read data that the server has access to, but to which you should not.

e If you are allowed to specify a directory path location for an output file, then it is possible
that you could overwrite a file that normally you do not have privileges to delete.

On Unix, Linux, and Windows operating systems, a default directory object, DATA PUMP DIR, iS
created at database creation, or whenever the database dictionary is upgraded. By default, this
directory object is available only to privileged users. (The user SYSTEM has read and write
access to the DATA PUMP DIR directory, by default.) Oracle can change the definition of the
DATA PUMP DIR directory, either during Oracle Database upgrades, or when patches are
applied.

If you are not a privileged user, then before you can run Oracle Data Pump Export or Import, a
directory object must be created by a database administrator (DBA), or by any user with the
CREATE ANY DIRECTORY privilege.

After a directory is created, the user creating the directory object must grant READ or WRITE
permission on the directory to other users. For example, to allow Oracle Database to read and
write files on behalf of user hr in the directory named by dpump dirl, the DBA must run the
following command:

SQL> GRANT READ, WRITE ON DIRECTORY dpump dirl TO hr;

Note that READ or WRITE permission to a directory object only means that Oracle Database can
read or write files in the corresponding directory on your behalf. Outside of Oracle Database,
uou are not given direct access to those files, unless you have the appropriate operating
system privileges. Similarly, Oracle Database requires permission from the operating system to
read and write files in the directories.

Oracle Data Pump Export and Import use the following order of precedence to determine a
file's location:

1. If adirectory object is specified as part of the file specification, then the location specified
by that directory object is used. (The directory object must be separated from the file name
by a colon.)

2. If a directory object is not specified as part of the file specification, then the directory object
named by the DIRECTORY parameter is used.

1-21

Chapter 1
File Allocation with Oracle Data Pump

If a directory object is not specified as part of the file specification, and if no directory object
is named by the DIRECTORY parameter, then the value of the environment variable,

DATA PUMP DIR, is used. This environment variable is defined by using operating system
commands on the client system where the Data Pump Export and Import utilities are run.
The value assigned to this client-based environment variable must be the name of a
server-based directory object, which must first be created on the server system by a DBA.
For example, the following SQL statement creates a directory object on the server system.
The name of the directory object is DuMP FILESI, and it is located at ' /usr/apps/
dumpfilesl'.

SQL> CREATE DIRECTORY DUMP FILES1 AS '/usr/apps/dumpfilesl';

After this statement is run, a user on a Unix-based client system using csh can assign the
value DUMP_FILES] to the environment variable DATA PUMP DIR. The DIRECTORY parameter
can then be omitted from the command line. The dump file employees.dmp, and the log file
export.log, are written to '/usr/apps/dumpfilesl’

$setenv DATA PUMP DIR DUMP FILESI
sexpdp hr TABLES=employees DUMPFILE=employees.dmp

If none of the previous three conditions yields a directory object, and you are a privileged
user, then Oracle Data Pump attempts to use the value of the default server-based
directory object, DATA PUMP DIR. This directory object is automatically created, either at
database creation, or when the database dictionary is upgraded. To see the path definition
for DATA PUMP DIR, you can use the following SQL query:

SQL> SELECT directory name, directory path FROM dba directories
2 WHERE directory name='DATA PUMP DIR';

If you are not a privileged user, then access to the DATA PUMP DIR directory object must
have previously been granted to you by a DBA.

Do not confuse the default DATA PUMP DIR directory object with the client-based
environment variable of the same name.

1.9.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC

Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC) environment
requires you to perform a few checks to ensure that you are making cluster member nodes
available.

ORACLE

To use Oracle Data Pump or external tables in an Oracle RAC configuration, you must
ensure that the directory object path is on a cluster-wide file system.

The directory object must point to shared physical storage that is visible to, and accessible
from, all instances where Oracle Data Pump or external tables processes (or both) can
run.

The default Oracle Data Pump behavior is that child processes can run on any instance in
an Oracle RAC configuration. Therefore, child processes on those Oracle RAC instances
must have physical access to the location defined by the directory object, such as shared
storage media. If the configuration does not have shared storage for this purpose, but you
still require parallelism, then you can use the CLUSTER=NO parameter to constrain all child
processes to the instance where the Oracle Data Pump job was started.

1-22

Chapter 1
File Allocation with Oracle Data Pump

e Under certain circumstances, Oracle Data Pump uses parallel query child processes to
load or unload data. In an Oracle RAC environment, Data Pump does not control where
these child processes run. Therefore, these child processes can run on other cluster
member nodes in the cluster, regardless of which instance is specified for CLUSTER and
SERVICE NAME for the Oracle Data Pump job. Controls for parallel query operations are
independent of Oracle Data Pump. When parallel query child processes run on other
instances as part of an Oracle Data Pump job, they also require access to the physical
storage of the dump file set.

1.9.3.3 Using Directory Objects When Oracle Automatic Storage Management Is
Enabled

If you use Oracle Data Pump Export or Import with Oracle Automatic Storage Management
(Oracle ASM) enabled, then define the directory object used for the dump file.

You must define the directory object used for the dump file so that the Oracle ASM disk group
name is used, instead of an operating system directory path.

For log file, use a separate directory object that points to an operating system directory path.

For example, you can create a directory object for the Oracle ASM dump file using this
procedure.

SQL> CREATE or REPLACE DIRECTORY dpump dir as '+DATAFILES/';

After you create the directory object, you then create a separate directory object for the log file:

SQL> CREATE or REPLACE DIRECTORY dpump log as '/homedir/userl/';

To enable user hr to have access to these directory objects, you assign the necessary
privileges for that user:

SQL> GRANT READ, WRITE ON DIRECTORY dpump dir TO hr;
SQL> GRANT READ, WRITE ON DIRECTORY dpump log TO hr;

Finally, you then can use use the following Data Pump Export command:

> expdp hr DIRECTORY=dpump dir DUMPFILE=hr.dmp LOGFILE=dpump log:hr.log
Before the command executes, you are prompted for the password.

Note:

If you simply want to copy Data Pump dump files between ASM and disk directories,
you can use the DBMS FILE TRANSFER PL/SQL package.

Related Topics
e Oracle Database SQL Language Reference

e Oracle Database PL/SQL Packages and Types Reference

ORACLE ey

Chapter 1
File Allocation with Oracle Data Pump

1.9.3.4 The DATA_PUMP_DIR Directory Object and Pluggable Databases

The default Oracle Data Pump directory object, DATA PUMP DIR, is defined as a unique path for
each PDB in the CDB.

As of Oracle Database 12c¢ Release 2 (12.2), in a multitenant container database (CDB)
environment, the default Oracle Data Pump directory object, DATA PUMP DIR, is defined as a
unique path for each PDB in the CDB, whether or not the PATH PREFIX clause of the CREATE
PLUGGABLE DATABASE statement is defined for relative paths.

1.9.4 Using Substitution Variables with Oracle Data Pump Exports

ORACLE

If you want to specify multiple dump files during Oracle Data Pump export operations, then use
the DUMPFILE parameter with a substitution variable in the file name.

When you use substitution variables with file names, instead of or in addition to listing specific
file names, then those filenames with a substitution variable are called dump file templates.

¢ Note:

In the examples that follow, the substitution variable U is used to explain how Oracle
Data Pump uses substitution variables. You can view other available substitution
variables under the Import or Export DUMPFILE parameter reference topics.

When you use dump file templates, new dump files are created as they are needed. For
example, if you are using the substitution variable $U, then new dump files are created as
needed beginning with 01 for %U, and then using 02, 03, and so on. Enough dump files are
created to allow all processes specified by the current setting of the PARALLEL parameter to be
active. If one of the dump files becomes full because its size has reached the maximum size
specified by the FILESIZE parameter, then it is closed, and a new dump file (with a new
generated name) is created to take its place.

If multiple dump file templates are provided, then they are used to generate dump files in a
round-robin fashion. For example, if expa%U, expb%U, and expcsU are all specified for a job
having a parallelism of 6, then the initial dump files created are expa01.dmp, expb01.dmp,
expc01.dmp, expal2.dmp, expb02.dmp, and expc02 . dmp.

For import and SQLFILE operations, if dump file specifications expa%U, expb%U, and expc3U are
specified, then the operation begins by attempting to open the dump files expa01 . dmp,
expb01.dmp, and expc0l.dmp. It is possible for the Data Pump control export table to span
multiple dump files. For this reason, until all pieces of the Data Pump control table are found,
dump files continue to be opened by incrementing the substitution variable, and looking up the
new file names (For example: expa02.dmp, expb02.dmp, and expc02.dmp). If a dump file does
not exist, then the operation stops incrementing the substitution variable for the dump file
specification that was in error. For example, if expb01.dmp and expb02.dmp are found, but
expb03.dmp is not found, then no more files are searched for using the expb%U specification.
After the entire Data Pump control table is found, it is used to determine whether all dump files
in the dump file set have been located.

Related Topics
e Oracle Data Pump Export command-line utility DUMPFILE parameter

e Oracle Data Pump Import command-line mode DUMPFILE parameter

1-24

Chapter 1
Exporting and Importing Between Different Oracle Database Releases

1.10 Exporting and Importing Between Different Oracle Database

Releases

ORACLE

You can use Oracle Data Pump to migrate all or any portion of an Oracle Database between
different releases of the database software.

Typically, you use the Oracle Data Pump Export VERSION parameter to migrate between
database releases. Using VERSION generates an Oracle Data Pump dump file set that is
compatible with the specified version.

The default value for VERSION is COMPATIBLE. This value indicates that exported database
object definitions are compatible with the release specified for the COMPATIBLE initialization
parameter.

In an upgrade situation, when the target release of an Oracle Data Pump-based migration is
higher than the source, you typically do not have to specify the VERSION parameter. When the
target release is higher then the source, all objects in the source database are compatible with
the higher target release. However, an exception is when an entire Oracle Database 11g
(Release 11.2.0.3 or higher) is exported in preparation for importing into Oracle Database 12c
Release 1 (12.1.0.1) or later. In this case, to include a complete set of Oracle Database
internal component metadata, explicitly specify VERSION=12 with FULL=YES.

In a downgrade situation, when the target release of an Oracle Data Pump-based migration is
lower than the source, set the VERSION parameter value to be the same version as the target.
An exception is when the target release version is the same as the value of the COMPATIBLE
initialization parameter on the source system. In that case, you do not need to specify VERSION.
In general, however, Oracle Data Pump import cannot read dump file sets created by an
Oracle Database release that is newer than the current release, unless you explicitly specify
the VERSION parameter.

Keep the following information in mind when you are exporting and importing between different
database releases:

e On an Oracle Data Pump export, if you specify a database version that is older than the
current database version, then a dump file set is created that you can import into that older
version of the database. For example, if you are running Oracle Database 19c, and you
specify VERSION=12.2 on an export, then the dump file set that is created can be imported
into an Oracle Database 12c (Release 12.2) database.

Note:

— Database privileges that are valid only in Oracle Database 12c¢ Release 1
(12.1.0.2) and later (for example, the READ privilege on tables, views,
materialized views, and synonyms) cannot be imported into Oracle Database
12c Release 1 (12.1.0.1) or earlier. If an attempt is made to do so, then
Import reports it as an error, and continues the import operation.

— When you export to a release earlier than Oracle Database 12¢ Release 2
(12.2.0.1), Oracle Data Pump does not filter out object names longer than 30
bytes. The objects are exported. At import time, if you attempt to create an
object with a name longer than 30 bytes, then an error is returned.

1-25

Chapter 1
Exporting and Importing Blockchain Tables with Oracle Data Pump

If you specify an Oracle Database release that is older than the current Oracle Database
release, then certain features and data types can be unavailable. For example, specifying
VERSION=10.1 causes an error if data compression is also specified for the job, because
compression was not supported in Oracle Database 10g release 1 (10.1). Another
example: If a user-defined type or Oracle-supplied type in the source Oracle Database
release is a later version than the type in the target Oracle Database release, then that
type is not loaded, because it does not match any version of the type in the target
database.

Oracle Data Pump Import can always read Oracle Data Pump dump file sets created by
older Oracle Database releases.

When operating across a network link, Oracle Data Pump requires that the source and
target Oracle Database releases differ by no more than two versions.

For example, if one database is Oracle Database 12c, then the other Oracle Database
release must be 12c, 119, or 10g. Oracle Data Pump checks only the major version
number (for example, 10g,11g, 12c), not specific Oracle Database release numbers (for
example, 12.2, 12.1, 11.1, 11.2, 10.1, or 10.2).

Importing Oracle Database 11g dump files that contain table statistics into Oracle
Database 12c Release 1 (12.1) or later Oracle Database releases can result in an Oracle
ORA-39346 error. This error occurs because Oracle Database 11g dump files contain table
statistics as metadata. Oracle Database 12c Release 1 (12.1) and later releases require
table statistics to be presented as table data. The workaround is to ignore the error during
the import operation. After the import operation completes, regather table statistics.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type was
provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and NCLOB
data types for large amounts of character data.

Related Topics

Oracle Data Pump Export command-line utility VERSION parameter

Oracle Data Pump Import command-line mode VERSION parameter

¢ See Also:

e READ and SELECT Object Privileges in Oracle Database Security Guide for
more information about the READ and READ ANY TABLE privileges

1.11 Exporting and Importing Blockchain Tables with Oracle Data

Pump

ORACLE

To export or import blockchain tables, review these minimum requirements, restrictions, and
guidelines.

If you use Oracle Data Pump with blockchain tables, then you can use only CONVENTIONAL
access_method.

Blockchain tables are exported only under the following conditions:

1-26

Chapter 1
Managing SecureFiles Large Object Exports with Oracle Data Pump

The VERSTION parameter for the export is explicitly setto 21.0.0.0.0 or later.

The VERSION parameter is set to (or defaults to) COMPATIBLE, and the database
compatibility is setto 21.0.0.0.0 or later.

The VERSION parameter is set to LATEST, and the database release is sett0 21.0.0.0.0 or
later.

If you attempt to use Oracle Data Pump options that are not supported with blockchain tables,
then you receive errors when you attempt to use those options.

The following options of Oracle Data Pump are not supported with blockchain tables:

ACCESS METHOD=[DIRECT PATH, EXTERNAL TABLE, INSERT AS SELECT]
TABLE EXISTS ACTION=[REPLACE | APPEND | TRUNCATE]

These options result in errors when you attempt to use them to import data into an existing
blockchain table.

CONTENT=DATA ONLY
This option results in error when you attempt to import data into a blockchain table.
PARTITION OPTIONS= [DEPARTITIONING | MERGE]

If you request depatrtitioning using this option with blockchain tables, then the blockchain
tables are skipped during departitioning.

NETWORK IMPORT
TRANSPORTABLE

SAMPLE, QUERY and REMAP DATA

1.12 Managing SecureFiles Large Object Exports with Oracle

Data Pump

ORACLE

Exports of SecureFiles large objects (LOBs) are affected by the content type, the VERSION
parameter, and other variables.

LOBs are a set of data types that are designed to hold large amounts of data. When you use
Oracle Data Pump Export to export SecureFiles LOBs, the export behavior depends on several
things, including the Export VERSION parameter value, whether a content type (ContentType) is
present, and whether the LOB is archived and data is cached.

The following scenarios cover different combinations of these variables:

If a table contains SecureFiles LOBs with a ContentType, and the Export VERSTION
parameter is set to a value earlier than 11.2.0.0.0, then the ContentType is not exported.

If a table contains SecureFiles LOBs with a ContentType, and the Export VERSTON
parameter is set to a value of 11.2.0.0.0 or later, then the ContentType is exported and
restored on a subsequent import.

If a table contains a SecureFiles LOB that is currently archived, the data is cached, and the
Export VERSION parameter is set to a value earlier than 11.2.0.0.0, then the SecureFiles
LOB data is exported and the archive metadata is dropped. In this scenario, if VERSION is
setto 11.1 or later, then the SecureFiles LOB becomes a plain SecureFiles LOB. But if
VERSION is set to a value earlier than 11.1, then the SecureFiles LOB becomes a
BasicFiles LOB.

1-27

Chapter 1
Oracle Data Pump Process Exit Codes

« If a table contains a SecureFiles LOB that is currently archived, but the data is not cached,
and the Export VERSION parameter is set to a value earlier than 11.2.0.0.0, then an
ORA-45001 error is returned.

< If a table contains a SecureFiles LOB that is currently archived, the data is cached, and the
Export VERSION parameter is set to a value of 11.2.0.0.0 or later, then both the cached
data and the archive metadata is exported.

Refer to Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about SecureFiles LOBs.

Related Topics

e Oracle Database SecureFiles and Large Objects Developer's Guide

1.13 Oracle Data Pump Process Exit Codes

To check the status of your Oracle Data Pump export and import operations, review the
process exit codes in the log file.

Oracle Data Pump provides the results of export and import operations immediately upon
completion. In addition to recording the results in a log file, Oracle Data Pump can also report
the outcome in a process exit code. Use the Oracle Data Pump exit code to check the outcome
of an Oracle Data Pump job from the command line or a script:

Table 1-1 Oracle Data Pump Exit Codes

Exit Code

Meaning

EX_SUCC 0

EX SUCC ERR 5

EX_FAIL 1

The export or import job completed successfully. No errors are displayed to the output
device or recorded in the log file, if there is one.

The export or import job completed successfully, but there were errors encountered
during the job. The errors are displayed to the output device and recorded in the log file,
if there is one.

The export or import job encountered one or more fatal errors, including the following:
e Errors on the command line or in command syntax

e Oracle database errors from which export or import cannot recover

e Operating system errors (such as malloc)

* Invalid parameter values that prevent the job from starting (for example, an invalid
directory object specified in the DIRECTORY parameter)

A fatal error is displayed to the output device but may not be recorded in the log file.
Whether it is recorded in the log file can depend on several factors, including:

* Was a log file specified at the start of the job?

» Did the processing of the job proceed far enough for a log file to be opened?

1.14 How to Monitor Oracle Data Pump Jobs with Unified

Auditing

ORACLE

To monitor and record specific user database actions, perform auditing on Data Pump jobs with
unified auditing.

To monitor and record specific user database actions, you can perform auditing on Oracle Data
Pump jobs. Oracle Data Pump uses unified auditing, in which all audit records are centralized
in one place. To set up unified auditing, you create a unified audit policy, or alter an existing

1-28

Chapter 1
Encrypted Data Security Warnings for Oracle Data Pump Operations

audit policy. An audit policy is a named group of audit settings that enable you to audit a
particular aspect of user behavior in the database.

To create the policy, use the SQL CREATE AUDIT POLICY statement. After creating the audit
policy, use the AUDIT SQL statement to enable the policy.

To disable the policy, use the NOAUDIT SQL statement.

" See Also:

e Oracle Database SQL Language Reference for more information about the SQL
CREATE AUDIT POLICY,ALTER AUDIT POLICY, AUDIT, and NOAUDIT statements

e Oracle Database Security Guide for more information about using auditing in an
Oracle database

1.15 Encrypted Data Security Warnings for Oracle Data Pump
Operations

Oracle Data Pump warns you when encrypted data is exported as unencrypted data.

During Oracle Data Pump export operations, you receive an ORA-39173 warning when Oracle
Data Pump encounters encrypted data specified when the export job was started. This
ORA-39173 warning ("ORA-39173: Encrypted data has been stored unencrypted in dump file
set") is also written to the the audit record. You can view the ORA-39173 errors encountered
during the export operation by checking the DP WARNINGSI column in the unified audit trail.
Obtain the audit information by running the following SQL statement:

SELECT DP_WARNINGS1 FROM UNIFIED AUDIT TRAIL WHERE ACTION NAME = 'EXPORT'
ORDER BY 1;

1.16 How Does Oracle Data Pump Handle Timestamp Data?

ORACLE

Learn about factors that can affect successful completion of export and import jobs that involve
the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP WITH LOCAL TIMEZONE.

< Note:

The information in this section applies only to Oracle Data Pump running on Oracle
Database 12c and later.

e TIMESTAMP WITH TIMEZONE Restrictions
Export and import jobs that have TIMESTAMP WITH TIME ZONE data are restricted.

* TIMESTAMP WITH LOCAL TIME ZONE Restrictions
Moving tables using a transportable mode is restricted.

1-29

Chapter 1
How Does Oracle Data Pump Handle Timestamp Data?

1.16.1 TIMESTAMP WITH TIMEZONE Restrictions

Export and import jobs that have TIMESTAMP WITH TIME ZONE data are restricted.

* Understanding TIMESTAMP WITH TIME ZONE Restrictions
Carrying out export and import jobs that have TIMESTAMP WITH TIME ZONE data requires
understanding information about your time zone file data and Oracle Database release.

e Oracle Data Pump Support for TIMESTAMP WITH TIME ZONE Data
Oracle Data Pump supports TIMESTAMP WITH TIME ZONE data during different export and
import modes.

e Time Zone File Versions on the Source and Target
Successful job completion can depend on whether the source and target time zone file
versions match.

1.16.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions

Carrying out export and import jobs that have TIMESTAMP WITH TIME ZONE data requires
understanding information about your time zone file data and Oracle Database release.

When you import a dump file, the time zone version of the destination (target) database must
be either the same version, or a more recent (higher) version than the time zone version of the
source database from which the export was taken. Successful job completion can depend on
the following factors:

* The version of the Oracle Database time zone files on the source and target databases.

e The export/import mode and whether the Data Pump version being used supports
TIMESTAMP WITH TIME ZONE data. (Oracle Data Pump 11.2.0.1 and later releases provide
support for TIMESTAMP WITH TIME ZONE data.)

To identify the time zone file version of a database, you can run the following SQL statement:

SQL> SELECT VERSION FROM VSTIMEZONE FILE;

Related Topics

e Choosing a Time Zone File

1.16.1.2 Oracle Data Pump Support for TIMESTAMP WITH TIME ZONE Data

ORACLE

Oracle Data Pump supports TIMESTAMP WITH TIME ZONE data during different export and
import modes.

Oracle Data Pump provides support for TIMESTAMP WITH TIME ZONE data during different
export and import modes when versions of the Oracle Database time zone file are different on
the source and target databases. Supported modes include non-transportable mode,
transportable tablespace and transportable table mode, and full transportable mode.

Non-transportable Modes

e If the dump file is created with a Data Pump version that supports TIMESTAMP WITH TIME
ZONE data (11.2.0.1 or later), then the time zone file version of the export system is
recorded in the dump file. Oracle Data Pump uses that information to determine whether
data conversion is necessary. If the target database knows about the source time zone

1-30

Chapter 1
How Does Oracle Data Pump Handle Timestamp Data?

version, but is actually using a later version, then the data is converted to the later version.
TIMESTAMP WITH TIME ZONE data cannot be downgraded, so if you attempt to import to a
target that is using an earlier version of the time zone file than the source used, the import
fails.

e If the dump file was created with an Oracle Data Pump version earlier than Oracle
Database 119 release 2 (11.2.0.1), then TIMESTAMP WITH TIME ZONE data is not supported.
No conversion is done, and corruption may occur.

Transportable Tablespace and Transportable Table Modes

« Intransportable tablespace and transportable table modes, if the source and target have
different time zone file versions, tables with TIMESTAMP WITH TIME ZONE columns are not
created. A warning is displayed at the beginning of the job that shows the source and
target database time zone file versions. A message is also displayed for each table not
created. This is true even if the Oracle Data Pump version used to create the dump file
supports TIMESTAMP WITH TIME ZONE data. (Release 11.2.0.1 and later support TIMESTAMP
WITH TIMEZONE data.)

» If the source is earlier than Oracle Database 119 release 2 (11.2.0.1), then the time zone
file version must be the same on the source and target database for all transportable jobs,
regardless of whether the transportable set uses TIMESTAMP WITH TIME ZONE columns.

Full Transportable Mode

Full transportable exports and imports are supported when the source database is at least
Oracle Database 11g release 2 (11.2.0.3) and the target is at least Oracle Database 12¢
release 1 (12.1) or later.

Oracle Data Pump 11.2.0.1 and later provide support for TIMESTAMP WITH TIME ZONE data.
Therefore, in full transportable operations, tables with TIMESTAMP WITH TIME ZONE columns are
created. If the source and target database have different time zone file versions, then
TIMESTAMP WITH TIME ZONE columns from the source are converted to the time zone file

version of the target.

Related Topics
e Limitations on Transportable Tablespaces

e Full Export Mode
You can use Oracle Data Pump to carry out a full database export by using the FULL

parameter.

e Full Import Mode
To specify a full import with Oracle Data Pump, use the FULL parameter.

1.16.1.3 Time Zone File Versions on the Source and Target

ORACLE

Successful job completion can depend on whether the source and target time zone file
versions match.

« If the Oracle Database time zone file version is the same on the source and target
databases, then conversion of TIMESTAMP WITH TIME ZONE data is not necessary. The
export/import job should complete successfully.

The exception to this is a transportable tablespace or transportable table export performed
using a Data Pump release earlier than 11.2.0.1. In that case, tables in the dump file that
have TIMESTAMP WITH TIME ZONE columns are not created on import even though the time
zone file version is the same on the source and target.

1-31

Chapter 1
Character Set and Globalization Support Considerations

« If the source time zone file version is not available on the target database, then the job

fails. The version of the time zone file on the source may not be available on the target
because the source may have had its time zone file updated to a later version but the
target has not. For example, if the export is done on Oracle Database 11g release 2
(11.2.0.2) with a time zone file version of 17, and the import is done on 11.2.0.2 with only a
time zone file of 16 available, then the job fails.

1.16.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions

Moving tables using a transportable mode is restricted.

If a table is moved using a transportable mode (transportable table, transportable tablespace,
or full transportable), and the following conditions exist, then a warning is issued and the table
is not created:

e The source and target databases have different database time zones.
e The table contains TIMESTAMP WITH LOCAL TIME ZONE data types.

To successfully move a table that was not created because of these conditions, use a non-
transportable export and import mode.

1.17 Character Set and Globalization Support Considerations

Learn about Globalization support of Oracle Data Pump Export and Import using character set
conversion of user data, and data definition language (DDL).

» Data Definition Language (DDL)
The Export utility writes dump files using the database character set of the export system.

e Single-Byte Character Sets and Export and Import
Ensure that the export database and the import database use the same character set.

e Multibyte Character Sets and Export and Import
During an Oracle Data Pump export and import, the character set conversion depends on
the importing Oracle Database character set.

1.17.1 Data Definition Language (DDL)

The Export utility writes dump files using the database character set of the export system.

When the dump file is imported, a character set conversion is required for DDL only if the
database character set of the import system is different from the database character set of the
export system.

To minimize data loss due to character set conversions, ensure that the import database
character set is a superset of the export database character set.

1.17.2 Single-Byte Character Sets and Export and Import

ORACLE

Ensure that the export database and the import database use the same character set.

If the system on which the import occurs uses a 7-bit character set, and you import an 8-bit
character set dump file, then some 8-bit characters may be converted to 7-bit equivalents. An
indication that this has happened is when accented characters lose the accent mark.

To avoid this unwanted conversion, ensure that the export database and the import database
use the same character set.

1-32

Chapter 1
Oracle Data Pump Behavior with Data-Bound Collation

1.17.3 Multibyte Character Sets and Export and Import

During an Oracle Data Pump export and import, the character set conversion depends on the
importing Oracle Database character set.

During character set conversion, any characters in the export file that have no equivalent in the
import database character set are replaced with a default character. The import database
character set defines the default character.

If the import system has to use replacement characters while converting DDL, then a warning
message is displayed and the system attempts to load the converted DDL.

If the import system has to use replacement characters while converting user data, then the
default behavior is to load the converted data. However, it is possible to instruct the import
system to reject rows of user data that were converted using replacement characters. See the
Import DATA OPTIONS parameter for details.

To guarantee 100% conversion, the import database character set must be a superset (or
equivalent) of the character set used to generate the export file.

Caution:

When the database character set of the export system differs from that of the import
system, the import system displays informational messages at the start of the job that
show what the database character set is.

When the import database character set is not a superset of the character set used to
generate the export file, the import system displays a warning that possible data loss
may occur due to character set conversions.

Related Topics
+ DATA_OPTIONS

1.18 Oracle Data Pump Behavior with Data-Bound Collation

ORACLE

Oracle Data Pump supports data-bound collation (DBC).

Oracle Data Pump Export always includes all available collation metadata into the created
dump file. This includes:

e Current default collations of exported users' schemas

e Current default collations of exported tables, views, materialized views and PL/SQL units
(including user-defined types)

» Declared collations of all table and cluster character data type columns

When importing a dump file exported from an Oracle Database 12c Release 2 (12.2) database,
Oracle Data Pump Import's behavior depends both on the effective value of the Oracle Data
Pump VERSION parameter at the time of import, and on whether the data-bound collation (DBC)
feature is enabled in the target database. The effective value of the VERSION parameter is
determined by how it is specified. Yu can specify the parameter using the following:

° VERSION=n, which means the effective value is the specific version number n. For example:
VERSION=19

1-33

ORACLE

Chapter 1
Oracle Data Pump Behavior with Data-Bound Collation

° VERSION=LATEST, which means the effective value is the currently running database version

° VERSION=COMPATIBLE, which means the effective value is the same as the value of the
database initialization parameter COMPATIBLE. This is also true if no value is specified for
VERSION.

For the DBC feature to be enabled in a database, the initialization parameter COMPATIBLE must
be set to 12.2 or higher, and the initialization parameter MAX STRING SIZE must be set to
EXTENDED.

If the effective value of the Oracle Data Pump Import VERSION parameter is 12.2, and DBC is
enabled in the target database, then Oracle Data Pump Import generates DDL statements with
collation clauses referencing collation metadata from the dump file. Exported objects are
created with the original collation metadata that they had in the source database.

No collation syntax is generated if DBC is disabled, or if the Oracle Data Pump Import VERSION
parameter is set to a value lower than 12.2.

1-34

Oracle Data Pump Export

The Oracle Data Pump Export utility is used to unload data and metadata into a set of
operating system files, which are called a dump file set.

e What Is Oracle Data Pump Export?
Oracle Data Pump Export is a utility for unloading data and metadata into a set of
operating system files that are called a dump file set.

e Starting Oracle Data Pump Export
Start the Oracle Data Pump Export utility by using the expdp command.

e Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This capability
helps you limit the type of information that is exported.

e Parameters Available in Data Pump Export Command-Line Mode
Use Oracle Data Pump parameters for Export (expdp) to manage your data exports.

e Commands Available in Data Pump Export Interactive-Command Mode
Check which command options are available to you when using Data Pump Export in
interactive mode.

e Examples of Using Oracle Data Pump Export
You can use these common scenario examples to learn how you can create parameter
files and use Oracle Data Pump Export to move your data.

e Syntax Diagrams for Oracle Data Pump Export
You can use syntax diagrams to understand the valid SQL syntax for Oracle Data Pump
Export.

2.1 What Is Oracle Data Pump Export?

ORACLE

Oracle Data Pump Export is a utility for unloading data and metadata into a set of operating
system files that are called a dump file set.

You can import a dump file set only by using the Oracle Data Pump Import utility. You can
import the dump file set on the same system, or import it to another system, and load the dump
file set there.

The dump file set is made up of one or more disk files that contain table data, database object
metadata, and control information. The files are written in a proprietary, binary format. During
an import operation, the Oracle Data Pump Import utility uses these files to locate each
database object in the dump file set.

Because the dump files are written by the server, rather than by the client, you must create
directory objects that define the server locations to which files are written.

Oracle Data Pump Export enables you to specify that you want a job to move a subset of the
data and metadata, as determined by the export mode. This subset selection is done by using
data filters and metadata filters, which are specified through Oracle Data Pump Export
parameters.

2-1

Chapter 2
Starting Oracle Data Pump Export

Note:

Several system schemas cannot be exported, because they are not user schemas;
they contain Oracle-managed data and metadata. Examples of schemas that are not
exported include sYs, ORDSYS, and MDSYS. Secondary objects are also not exported,
because the CREATE INDEX run at import time will recreate them.

Related Topics

Understanding Dump_ Log_ and SQL File Default Locations
Filtering During Export Operations

Export Utility (exp or expdp) does not Export DR${name}$% or DR#{name}$% Secondary
Tables of Text Indexes (Doc ID 139388.1)

Examples of Using Oracle Data Pump Export

2.2 Starting Oracle Data Pump Export

Start the Oracle Data Pump Export utility by using the expdp command.

The characteristics of the Oracle Data Pump export operation are determined by the Export

parameters that you specify. You can specify these parameters either on the command line, or
in a parameter file.

Caution:

Do not start Export as SYSDBA, except at the request of Oracle technical support.
SYSDBA is used internally and has specialized functions; its behavior is not the same
as for general users.

Oracle Data Pump Export Interfaces
You can interact with Oracle Data Pump Export by using a command line, a parameter file,
or an interactive-command mode.

Oracle Data Pump Export Modes
Export provides different modes for unloading different portions of Oracle Database data.

Network Considerations for Oracle Data Pump Export

Learn how Oracle Data Pump Export utility expdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and how they
are different from export operations using the NETWORK LINK parameter.

2.2.1 Oracle Data Pump Export Interfaces

ORACLE

You can interact with Oracle Data Pump Export by using a command line, a parameter file, or
an interactive-command mode.

Choose among the three options:

Command-Line Interface: Enables you to specify most of the Export parameters directly on
the command line.

2-2

https://support.oracle.com/rs?type=doc&id=139388.1
https://support.oracle.com/rs?type=doc&id=139388.1

Chapter 2
Starting Oracle Data Pump Export

Parameter File Interface: Enables you to specify command-line parameters in a parameter
file. The only exception is the PARFILE parameter, because parameter files cannot be
nested. If you are using parameters whose values require quotation marks, then Oracle
recommends that you use parameter files.

Interactive-Command Interface: Stops logging to the terminal and displays the Export
prompt, from which you can enter various commands, some of which are specific to
interactive-command mode. This mode is enabled by pressing Ctrl+C during an export
operation started with the command-line interface, or the parameter file interface.
Interactive-command mode is also enabled when you attach to an executing or stopped
job.

Related Topics

Parameters Available in Data Pump Export Command-Line Mode
Use Oracle Data Pump parameters for Export (expdp) to manage your data exports.

Commands Available in Data Pump Export Interactive-Command Mode
Check which command options are available to you when using Data Pump Export in
interactive mode.

2.2.2 Oracle Data Pump Export Modes

Export provides different modes for unloading different portions of Oracle Database data.

ORACLE

Specify export modes on the command line, using the appropriate parameter.

Note:

You cannot export several Oracle-managed system schemas for Oracle Database,
because they are not user schemas; they contain Oracle-managed data and
metadata. Examples of system schemas that are not exported include SYS, ORDSYS,
and MDSYS.

Full Export Mode
You can use Oracle Data Pump to carry out a full database export by using the FULL
parameter.

Schema Mode
You can specify a schema export with Data Pump by using the SCHEMAS parameter. A
schema export is the default export mode.

Table Mode
You can use Data Pump to carry out a table mode export by specifying the table using the
TABLES parameter.

Tablespace Mode
You can use Data Pump to carry out a tablespace export by specifying tables using the
TABLESPACES parameter.

Transportable Tablespace Mode
You can use Oracle Data Pump to carry out a transportable tablespace export by using the
TRANSPORT TABLESPACES parameter.

2-3

Chapter 2
Starting Oracle Data Pump Export

Related Topics

e Examples of Using Oracle Data Pump Export
You can use these common scenario examples to learn how you can create parameter
files and use Oracle Data Pump Export to move your data.

2.2.2.1 Full Export Mode

ORACLE

You can use Oracle Data Pump to carry out a full database export by using the FULL
parameter.

In a full database export, the entire database is unloaded. This mode requires that you have
the DATAPUMP EXP FULL DATABASE role.

Using the Transportable Option During Full Mode Exports

If you specify the TRANSPORTABLE=ALWAYS parameter along with the FULL parameter, then Data
Pump performs a full transportable export. A full transportable export exports all objects and
data necessary to create a complete copy of the database. A mix of data movement methods
is used:

« Objects residing in transportable tablespaces have only their metadata unloaded into the
dump file set; the data itself is moved when you copy the data files to the target database.
The data files that must be copied are listed at the end of the log file for the export
operation.

» Objects residing in non-transportable tablespaces (for example, SYSTEM and SYSAUX) have
both their metadata and data unloaded into the dump file set, using direct path unload and
external tables.

Restrictions
Performing a full transportable export has the following restrictions:

* The user performing a full transportable export requires the DATAPUMP EXP FULL DATABASE
privilege.

* The default tablespace of the user performing the export must not be set to one of the
tablespaces being transported.

« If the database being exported contains either encrypted tablespaces or tables with
encrypted columns (either Transparent Data Encryption (TDE) columns or SecureFiles
LOB columns), then the ENCRYPTION PASSWORD parameter must also be supplied.

e The source and target databases must be on platforms with the same endianness if there
are encrypted tablespaces in the source database.

« If the source platform and the target platform are of different endianness, then you must
convert the data being transported so that it is in the format of the target platform. You can
use the DBMS_FILE TRANSFER package or the RMAN CONVERT command to convert the data.

« All objects with storage that are selected for export must have all of their storage segments
either entirely within administrative, non-transportable tablespaces (SYSTEM/SYSAUX) or
entirely within user-defined, transportable tablespaces. Storage for a single object cannot
straddle the two kinds of tablespaces.

« When transporting a database over the network using full transportable export, auditing
cannot be enabled for tables stored in an administrative tablespace (such as sysSTEM and
SYSAUx) if the audit trail information itself is stored in a user-defined tablespace.

2-4

Chapter 2
Starting Oracle Data Pump Export

< If both the source and target databases are running Oracle Database 12c, then to perform
a full transportable export, either the Oracle Data Pump VERSION parameter must be set to
at least 12.0. or the COMPATIBLE database initialization parameter must be set to at least
12.0 or later.

Full Exports from Oracle Database 11.2.0.3

Full transportable exports are supported from a source database running at least release
11.2.0.3. To run full transportable exports set the Oracle Data Pump VERSION parameter to at
least 12.0, as shown in the following syntax example, where user name is the user performing
a full transportable export:

> expdp user name FULL=y DUMPFILE=expdat.dmp DIRECTORY=data pump dir
TRANSPORTABLE=always VERSION=12.0 LOGFILE=export.log

Full Exports and Imports Using Extensibility Filters

In the following example, you use a full export to copy just the audit trails metadata and
data from the source database to the target database:

> expdp user/pwd directory=mydir full=y include=AUDIT TRAILS
> impdp user/pwd directory=mydir

If you have completed an export from the source database in Full mode, then you can also
import just the audit trails from the full export:

> expdp user/pwd directory=mydir full=y
> impdp user/pwd directory=mydir include=AUDIT TRAILS

To obtain a list of valid extensibility tags, use this query:

SELECT OBJECT PATH FROM DATABASE EXPORT PATHS WHERE tag=1 ORDER BY 1;

Related Topics

« FULL
The Export command-line FULL parameter specifies that you want to perform a full
database mode export

¢« TRANSPORTABLE
The Oracle Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode or full mode export.

* CONVERT

e Scenarios for Full Transportable Export/import

2.2.2.2 Schema Mode

ORACLE

You can specify a schema export with Data Pump by using the SCHEMAS parameter. A schema
export is the default export mode.

If you have the DATAPUMP EXP FULL DATABASE role, then you can specify a list of schemas,
optionally including the schema definitions themselves and also system privilege grants to
those schemas. If you do not have the DATAPUMP EXP FULL DATABASE role, then you can export
only your own schema.

2-5

Chapter 2
Starting Oracle Data Pump Export

The sys schema cannot be used as a source schema for export jobs.

Cross-schema references are not exported unless the referenced schema is also specified in
the list of schemas to be exported. For example, a trigger defined on a table within one of the
specified schemas, but that resides in a schema not explicitly specified, is not exported. Also,
external type definitions upon which tables in the specified schemas depend are not exported.
In such a case, it is expected that the type definitions already exist in the target instance at
import time.

Related Topics

« SCHEMAS
The Oracle Data Pump Export command-line utility SCHEMAS parameter specifies that you
want to perform a schema-mode export.

2.2.2.3 Table Mode

ORACLE

You can use Data Pump to carry out a table mode export by specifying the table using the
TABLES parameter.

In table mode, only a specified set of tables, partitions, and their dependent objects are
unloaded. Any object required to create the table, such as the owning schema, or types for
columns, must already exist.

If you specify the TRANSPORTABLE=ALWAYS parameter with the TABLES parameter, then only
object metadata is unloaded. To move the actual data, you copy the data files to the target
database. This results in quicker export times. If you are moving data files between releases or
platforms, then the data files need to be processed by Oracle Recovery Manager (RMAN).

You must have the DATAPUMP EXP FULL DATABASE role to specify tables that are not in your
own schema. Note that type definitions for columns are not exported in table mode. It is
expected that the type definitions already exist in the target instance at import time. Also, as in
schema exports, cross-schema references are not exported.

To recover tables and table partitions, you can also use RMAN backups and the RMAN
RECOVER TABLE command. During this process, RMAN creates (and optionally imports) a Data
Pump export dump file that contains the recovered objects. Refer to Oracle Database Backup
and Recovery Guide for more information about transporting data across platforms.

Carrying out a table mode export has the following restriction:

e When using TRANSPORTABLE=ALWAYS parameter with the TABLES parameter, the
ENCRYPTION PASSWORD parameter must also be used if the table being exported contains
encrypted columns, either Transparent Data Encryption (TDE) columns or SecureFiles
LOB columns.

Related Topics

e TABLES
The Oracle Data Pump Export command-line utility TABLES parameter specifies that you
want to perform a table-mode export.

e TRANSPORTABLE
The Oracle Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode or full mode export.

e Oracle Database Backup and Recovery User’s Guide

2-6

Chapter 2
Starting Oracle Data Pump Export

2.2.2.4 Tablespace Mode

You can use Data Pump to carry out a tablespace export by specifying tables using the
TABLESPACES parameter.

In tablespace mode, only the tables contained in a specified set of tablespaces are unloaded. If
a table is unloaded, then its dependent objects are also unloaded. Both object metadata and
data are unloaded. In tablespace mode, if any part of a table resides in the specified set, then
that table and all of its dependent objects are exported. Privileged users get all tables.
Unprivileged users get only the tables in their own schemas.

Related Topics

 TABLESPACES
The Oracle Data Pump Export command-line utility TABLESPACES parameter specifies a list
of tablespace names that you want to be exported in tablespace mode.

2.2.2.5 Transportable Tablespace Mode

You can use Oracle Data Pump to carry out a transportable tablespace export by using the
TRANSPORT TABLESPACES parameter.

In transportable tablespace mode, only the metadata for the tables (and their dependent
objects) within a specified set of tablespaces is exported. The tablespace data files are copied
in a separate operation. Then, a transportable tablespace import is performed to import the
dump file containing the metadata and to specify the data files to use.

Transportable tablespace mode requires that the specified tables be completely self-contained.
That is, all storage segments of all tables (and their indexes) defined within the tablespace set
must also be contained within the set. If there are self-containment violations, then Export
identifies all of the problems without actually performing the export.

Type definitions for columns of tables in the specified tablespaces are exported and imported.
The schemas owning those types must be present in the target instance.

Starting with Oracle Database 21c, transportable tablespace exports can be done with degrees
of parallelism greater than 1.

< Note:

You cannot export transportable tablespaces and then import them into a database at
a lower release level. The target database must be at the same or later release level
as the source database.

Using Oracle Data Pump to carry out a transportable tablespace export has the following
restrictions:

« If any of the tablespaces being exported contains tables with encrypted columns, either
Transparent Data Encryption (TDE) columns or SecureFiles LOB columns, then the
ENCRYPTION PASSWORD parameter must also be supplied..

ORACLE .

Chapter 2
Starting Oracle Data Pump Export

< If any of the tablespaces being exported is encrypted, then the use of the
ENCRYPTION PASSWORD is optional but recommended. If the ENCRYPTION PASSWORD is
omitted in this case, then the following warning message is displayed:

ORA-39396: Warning: exporting encrypted data using transportable option
without password

This warning points out that in order to successfully import such a transportable tablespace
job, the target database wallet must contain a copy of the same database access key used
in the source database when performing the export. Using the ENCRYPTION PASSWORD
parameter during the export and import eliminates this requirement.

Related Topics

e How Does Oracle Data Pump Handle Timestamp Data?
Learn about factors that can affect successful completion of export and import jobs that
involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP WITH LOCAL
TIMEZONE.

2.2.3 Network Considerations for Oracle Data Pump Export

ORACLE

Learn how Oracle Data Pump Export utility expdp identifies instances with connect identifiers in
the connection string using Oracle*Net or a net service name, and how they are different from
export operations using the NETWORK LINK parameter.

When you start expdp, you can specify a connect identifier in the connect string that can be
different from the current instance identified by the current Oracle System ID (SID).

To specify a connect identifier manually by using either an Oracle*Net connect descriptor, or an
Easy Connect identifier, or a net service name (usually defined in the tnsnames.ora file) that
maps to a connect descriptor.

To use a connect identifier, you must have Oracle Net Listener running (to start the default
listener, enter 1snrctl start). The following example shows this type of connection, in which
instl is the connect identifier:

expdp hr@instl DIRECTORY=dpump dirl DUMPFILE=hr.dmp TABLES=employees

Export then prompts you for a password:

Password: password

To specify an Easy Connect string, the connect string must be an escaped quoted string. The
Easy Connect string in its simplest form consists of a string database host[:port] [/
[service name]. For example, if the host is inst1, and you run Export on pdb1, then the Easy
Connect string can be:

expdp hr@\"instl@example.com/pdbl" DIRECTORY=dpump dirl DUMPFILE=hr.dmp
TABLES=employees

If you prefer to use an unquoted string, then you can specify the Easy Connect connect string
in a parameter file.

2-8

Chapter 2
Filtering During Export Operations

The local Export client connects to the database instance defined by the connect identifier
inst1l (a Net service name), retrieves data from inst1, and writes it to the dump file hr.dmp on
instl.

Specifying a connect identifier when you start the Export utility is different from performing an
export operation using the NETWORK LINK parameter. When you start an export operation and
specify a connect identifier, the local Export client connects to the database instance identified
by the connect identifier, retrieves data from that database instance, and writes it to a dump file
set on that database instance. By contrast, when you perform an export using the

NETWORK LINK parameter, the export is performed using a database link. (A database link is a
connection between two physical database servers that allows a client to access them as one
logical database.)

Related Topics

¢ NETWORK_LINK
The Data Pump Export command-line utility NETWORK LINK parameter enables an export
from a (source) database identified by a valid database link. The data from the source
database instance is written to a dump file set on the connected database instance.

« Database Links

e Understanding the Easy Connect Naming Method

2.3 Filtering During Export Operations

Oracle Data Pump Export provides data and metadata filtering capability. This capability helps
you limit the type of information that is exported.

e Oracle Data Pump Export Data Filters
You can specify restrictions on the table rows that you export by using Oracle Data Pump
Data-specific filtering through the QUERY and SAMPLE parameters.

e Oracle Data Pump Metadata Filters
To exclude or include objects in an export operation, use Oracle Data Pump metadata
filters

2.3.1 Oracle Data Pump Export Data Filters

You can specify restrictions on the table rows that you export by using Oracle Data Pump
Data-specific filtering through the QUERY and SAMPLE parameters.

Oracle Data Pump can also implement Data filtering indirectly because of metadata filtering,
which can include or exclude table objects along with any associated row data.

Each data filter can be specified once for each table within a job. If different filters using the
same name are applied to both a particular table and to the whole job, then the filter parameter
supplied for the specific table takes precedence.

2.3.2 Oracle Data Pump Metadata Filters

ORACLE

To exclude or include objects in an export operation, use Oracle Data Pump metadata filters

Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters. Metadata
filters identify a set of objects that you want to be included or excluded from an Export or
Import operation. For example, you can request a full export, but without Package
Specifications or Package Bodies.

2-9

ORACLE

Chapter 2
Filtering During Export Operations

To use filters correctly and to obtain the results you expect, remember that dependent objects
of an identified object are processed along with the identified object. For example, if a filter
specifies that you want an index included in an operation, then statistics from that index are
also included. Likewise, if a table is excluded by a filter, then indexes, constraints, grants, and
triggers upon the table are also excluded by the filter.

Starting with Oracle Database 21c, Oracle Data Pump permits you to set both INCLUDE and
EXCLUDE parameters in the same command. When you include both parameters in a command,
Oracle Data Pump processes the INCLUDE parameter first, such that the Oracle Data Pump job
includes only objects identified as included. Then it processes the EXCLUDE parameters, which
can further restrict the objects processed by the job. As the command runs, any objects
specified by the EXCLUDE parameter that are in the list of INCLUDE objects are removed.

If multiple filters are specified for an object type, then an implicit AND operation is applied to
them. That is, objects pertaining to the job must pass all of the filters applied to their object
types.

You can specify the same metadata filter name multiple times within a job.

To see a list of valid object types, query the following views: DATABASE EXPORT OBJECTS for full
mode, SCHEMA EXPORT OBJECTS for schema mode, and TABLE EXPORT OBJECTS for table and
tablespace mode. The values listed in the OBJECT PATH column are the valid object types. For
example, you could perform the following query:

SQL> SELECT OBJECT PATH, COMMENTS FROM SCHEMA EXPORT OBJECTS
2 WHERE OBJECT PATH LIKE '$GRANT' AND OBJECT PATH NOT LIKE '%/%';

The output of this query looks similar to the following:

OBJECT_PATH

GRANT
Object grants on the selected tables

OBJECT GRANT
Object grants on the selected tables

PROCDEPOBJ GRANT
Grants on instance procedural objects

PROCOBJ_GRANT
Schema procedural object grants in the selected schemas

ROLE_GRANT
Role grants to users associated with the selected schemas

SYSTEM GRANT
System privileges granted to users associated with the selected schemas

2-10

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Related Topics

EXCLUDE

The Oracle Data Pump Export command-line utility EXCLUDE parameter enables you to filter
the metadata that is exported by specifying objects and object types that you want to
exclude from the export operation.

INCLUDE

The Oracle Data Pump Export command-line utility INCLUDE parameter enables you to filter
the metadata that is exported by specifying objects and object types for the current export
mode.

Related Topics

EXCLUDE

The Oracle Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to exclude from
the import job.

INCLUDE

The Oracle Data Pump Import command-line mode INCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types for the current
import mode.

2.4 Parameters Available in Data Pump Export Command-Line

Mode

ORACLE

Use Oracle Data Pump parameters for Export (expdp) to manage your data exports.

About Data Pump Export Parameters

Learn how to use Oracle Data Pump Export parameters in command-line mode, including
case sensitivity, quotation marks, escape characters, and information about how to use
examples.

ABORT_STEP
The Oracle Data Pump Export command-line utility ABORT STEP parameter stops the job
after it is initialized.

ACCESS_METHOD
The Oracle Data Pump Export command-line utility ACCESS METHOD parameter instructs
Export to use a particular method to unload data.

ATTACH

The Oracle Data Pump Export command-line utility ATTACH parameter attaches a worker or
client session to an existing export job, and automatically places you in the interactive-
command interface.

CHECKSUM
The Oracle Data Pump Export command-line utility CHECKSUM parameter enables the export
to perform checksum validations for exports.

CHECKSUM_ALGORITM
The Oracle Data Pump Export command-line utility CHECKSUM ALGORITHM parameter
specifies which checksum algorithm to use when calculating checksums.

CLUSTER

The Oracle Data Pump Export command-line utility CLUSTER parameter determines
whether Data Pump can use Oracle RAC, resources, and start workers on other Oracle
RAC instances.

2-11

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

COMPRESSION
The Oracle Data Pump Export command-line utility COMPRESSTION parameter specifies
which data to compress before writing to the dump file set.

COMPRESSION_ALGORITHM

The Oracle Data Pump Export command-line utility COMPRESSION ALGORITHM parameter
specifies the compression algorithm that you want to use when compressing dump file
data.

CONTENT
The Oracle Data Pump Export command-line utility CONTENT parameter enables you to filter
what Export unloads: data only, metadata only, or both.

CREDENTIAL
The Oracle Data Pump Export command-line utility CREDENTIAL parameter enables the
export to write data stored into object stores.

DATA_OPTIONS
The Oracle Data Pump Export command-line utility DATA OPTIONS parameter designates
how you want certain types of data handled during export operations.

DIRECTORY
The Oracle Data Pump Export command-line utility DIRECTORY parameter specifies the
default location to which Export can write the dump file set and the log file.

DUMPFILE
The Oracle Data Pump Export command-line utility DUMPFILE parameter specifies the
names, and optionally, the directory objects of dump files for an export job.

ENABLE_SECURE_ROLES
The Oracle Data Pump Export command-line utility ENABLE SECURE ROLES parameter
prevents inadvertent use of protected roles during exports.

ENCRYPTION
The Oracle Data Pump Export command-line utility ENCRYPTION parameter specifies
whether to encrypt data before writing it to the dump file set.

ENCRYPTION_ALGORITHM
The Oracle Data Pump Export command-line utility ENCRYPTION ALGORITHM parameter
specifies which cryptographic algorithm should be used to perform the encryption.

ENCRYPTION_MODE
The Oracle Data Pump Export command-line utility ENCRYPTION MODE parameter specifies
the type of security to use when encryption and decryption are performed.

ENCRYPTION_PASSWORD
The Oracle Data Pump Export command-line utility ENCRYPTION PASSWORD parameter
prevents unauthorized access to an encrypted dump file set.

ENCRYPTION_PWD_PROMPT
The Oracle Data Pump Export command-line utility ENCRYPTION PWD PROMPT specifies
whether Oracle Data Pump prompts you for the encryption password.

ESTIMATE

The Oracle Data Pump Export command-line utility ESTIMATE parameter specifies the
method that Export uses to estimate how much disk space each table in the export job will
consume (in bytes).

ESTIMATE_ONLY

The Oracle Data Pump Export command-line utility ESTIMATE ONLY parameter instructs
Export to estimate the space that a job consumes, without actually performing the export
operation.

2-12

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

EXCLUDE

The Oracle Data Pump Export command-line utility EXCLUDE parameter enables you to filter
the metadata that is exported by specifying objects and object types that you want to
exclude from the export operation.

FILESIZE
The Oracle Data Pump Export command-line utility FILESIZE parameter specifies the
maximum size of each dump file.

FLASHBACK_SCN
The Oracle Data Pump Export command-line utility FLASHBACK SCN parameter specifies the
system change number (SCN) that Export uses to enable the Flashback Query utility.

FLASHBACK_TIME
The Oracle Data Pump Export command-line utility FLASHBACK TIME parameter finds the
SCN that most closely matches the specified time.

FULL
The Export command-line FULL parameter specifies that you want to perform a full
database mode export

HELP
The Data Pump Export command-line utility HELP parameter displays online help for the
Export utility.

INCLUDE

The Oracle Data Pump Export command-line utility INCLUDE parameter enables you to filter
the metadata that is exported by specifying objects and object types for the current export
mode.

JOB_NAME
The Oracle Data Pump Export command-line utility JOB_NAME parameter identifies the
export job in subsequent actions.

KEEP_MASTER

The Oracle Data Pump Export command-line utility KEEP MASTER parameter indicates
whether the Data Pump control job table should be deleted or retained at the end of an
Oracle Data Pump job that completes successfully.

LOGFILE
The Data Pump Export command-line utility LOGFILE parameter specifies the name, and
optionally, a directory, for the log file of the export job.

LOGTIME
The Oracle Data Pump Export command-line utility LOGTIME parameter specifies that
messages displayed during export operations are timestamped.

METRICS
The Oracle Data Pump Export command-line utility METRICS parameter indicates whether
you want additional information about the job reported to the Data Pump log file.

NETWORK_LINK

The Data Pump Export command-line utility NETWORK LINK parameter enables an export
from a (source) database identified by a valid database link. The data from the source
database instance is written to a dump file set on the connected database instance.

NOLOGFILE
The Data Pump Export command-line utility NOLOGFILE parameter specifies whether to
suppress creation of a log file.

2-13

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

PARALLEL
The Oracle Data Pump Export command-line utility PARALLEL parameter specifies the
maximum number of processes of active execution operating on behalf of the export job.

PARALLEL_THRESHOLD

The Oracle Data Pump Export command-line utility PARALLEL THRESHOLD parameter
specifies the size of the divisor that Data Pump uses to calculate potential parallel DML
based on table size

PARFILE
The Oracle Data Pump Export command-line utility PARFILE parameter specifies the name
of an export parameter file.

QUERY
The Oracle Data Pump Export command-line utility QUERY parameter enables you to
specify a query clause that is used to filter the data that gets exported.

REMAP_DATA

The Oracle Data Pump Export command-line utility REMAP DATA parameter enables you to
specify a remap function that takes as a source the original value of the designated column
and returns a remapped value that replaces the original value in the dump file.

REUSE_DUMPFILES
The Oracle Data Pump Export command-line utility REUSE_DUMPFILES parameter specifies
whether to overwrite a preexisting dump file.

SAMPLE

The Oracle Data Pump Export command-line utility SAMPLE parameter specifies a
percentage of the data rows that you want to be sampled and unloaded from the source
database.

SCHEMAS
The Oracle Data Pump Export command-line utility SCHEMAS parameter specifies that you
want to perform a schema-mode export.

SERVICE_NAME
The Oracle Data Pump Export command-line utility SERVICE NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

SOURCE_EDITION
The Oracle Data Pump Export command-line utility SOURCE EDITION parameter specifies
the database edition from which objects are exported.

STATUS
The Oracle Data Pump Export command-line utility STATUS parameter specifies the
frequency at which the job status display is updated.

TABLES
The Oracle Data Pump Export command-line utility TABLES parameter specifies that you
want to perform a table-mode export.

TABLESPACES
The Oracle Data Pump Export command-line utility TABLESPACES parameter specifies a list
of tablespace names that you want to be exported in tablespace mode.

TRANSPORT_DATAFILES _LOG

The Oracle Data Pump Export command-line mode TRANSPORT DATAFILES LOG parameter
specifies a file into which the list of data files associated with a transportable export is
written.

2-14

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

¢ TRANSPORT_FULL_CHECK
The Oracle Data Pump Export command-line utility TRANSPORT FULL CHECK parameter
specifies whether to check for dependencies between objects

e TRANSPORT_TABLESPACES
The Oracle Data Pump Export command-line utility TRANSPORT TABLESPACES parameter
specifies that you want to perform an export in transportable-tablespace mode.

¢ TRANSPORTABLE
The Oracle Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode or full mode export.

« TTS_CLOSURE_CHECK
The Oracle Data Pump Export command-line mode TTS CLOSURE CHECK parameter is used
to indicate the degree of closure checking to be performed as part of a Data Pump
transportable tablespace operation.

* VERSION
The Data Pump Export command-line utility VERSION parameter specifies the version of
database objects that you want to export.

 VIEWS_AS_TABLES
The Oracle Data Pump Export command-line utility VIEWS AS TABLES parameter specifies
that you want one or more views exported as tables.

2.4.1 About Data Pump Export Parameters

ORACLE

Learn how to use Oracle Data Pump Export parameters in command-line mode, including case
sensitivity, quotation marks, escape characters, and information about how to use examples.

Specifying Export Parameters

For parameters that can have multiple values specified, you can specify the values by
commas, or by spaces. For example, you can specify TABLES=employees, jobs Of
TABLES=employees jobs.

For every parameter you enter, you must enter an equal sign (=), and a value. Data Pump has
no other way of knowing that the previous parameter specification is complete and a new
parameter specification is beginning. For example, in the following command line, even though
NOLOGFILE is a valid parameter, Export interprets the string as another dump file name for the
DUMPFILE parameter:

expdp DIRECTORY=dpumpdir DUMPFILE=test.dmp NOLOGFILE TABLES=employees

This command results in two dump files being created, test.dmp and nologfile.dmp.

To avoid this result, specify either NOLOGFILE=YES Of NOLOGFILE=NO.

Case Sensitivity When Specifying Parameter Values

For tablespace names, schema names, table names, and so on, that you enter as parameter
values, Oracle Data Pump by default changes values entered as lowercase or mixed-case into
uppercase. For example, if you enter TABLE=hr.employees, then it is changed to
TABLE=HR.EMPLOYEES. To maintain case, you must enclose the value within quotation marks.
For example, TABLE="hr.employees" would preserve the table name in all lower case. The
name you enter must exactly match the name stored in the database.

2-15

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Use of Quotation Marks On the Data Pump Command Line

Some operating systems treat quotation marks as special characters. These operating
systems therefore do not pass quotation marks on to an application unless quotation marks are
preceded by an escape character, such as the backslash (\). This requirement is true both on
the command lin, and within parameter files. Some operating systems can require an
additional set of single or double quotation marks on the command line around the entire
parameter value containing the special characters.

The following examples are provided to illustrate these concepts. Note that your particular
operating system can have different requirements. The documentation examples cannot fully
anticipate operating environments, which are unique to each user.

In this example, the TABLES parameter is specified in a parameter file:

TABLES = \"MixedCaseTableName\"

If you specify that value on the command line, then some operating systems require that you
surround the parameter file name using single quotation marks, as follows:

TABLES = '\"MixedCaseTableName\"'

To avoid having to supply more quotation marks on the command line, Oracle recommends the
use of parameter files. Also, note that if you use a parameter file, and the parameter value
being specified does not have quotation marks as the first character in the string (for example,
TABLES=scott."EmP"), then some operating systems do not require the use of escape
characters.

Using the Export Parameter Examples
If you try running the examples that are provided for each parameter, be aware of the following:

« After you enter the user name and parameters as shown in the example, Export is started,
and you are prompted for a password. You are required to enter the password before a
database connection is made.

* Most of the examples use the sample schemas of the seed database, which is installed by
default when you install Oracle Database. In particular, the human resources (hr) schema
is often used.

* The examples assume that the directory objects, dpump dirl and dpump dir2, already
exist, and that READ and WRITE privileges are granted to the hr user for these directory
objects.

* Some of the examples require the DATAPUMP EXP FULL DATABASE and
DATAPUMP IMP FULL DATABASE roles. The examples assume that the hr user is granted
these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning the
necessary privileges and roles.

Unless specifically noted, you can also specify these parameters in a parameter file.

ORACLE 16

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

See Also:

e Oracle Database Sample Schemas

* Your Oracle operating system-specific documentation for information about how
special and reserved characters are handled on your system

2.4.2 ABORT_STEP

The Oracle Data Pump Export command-line utility ABORT STEP parameter stops the job after it
is initialized.
Default

Null

Purpose

Used to stop the job after it is initialized. Stopping a job after it is initialized enables you to
query the Data Pump control job table that you want to query before any data is exported.

Syntax and Description

ABORT STEP=[n | -1]

The possible values correspond to a process order number in the Data Pump control job table.
The result of using each number is as follows:

e n:If the value is zero or greater, then the export operation is started, and the job is stopped
at the object that is stored in the Data Pump control job table with the corresponding
process order number.

e -1:If the value is negative one (-1), then abort the job after setting it up, but before
exporting any objects or data.

Restrictions

* None

Example

> expdp hr DIRECTORY=dpump dirl DUMPFILE=expdat.dmp SCHEMAS=hr ABORT STEP=-1

2.4.3 ACCESS_METHOD

The Oracle Data Pump Export command-line utility ACCESS METHOD parameter instructs Export
to use a particular method to unload data.

Default

AUTOMATIC

ORACLE 2-17

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Purpose

Instructs Export to use a particular method to unload data.

Syntax and Description

ACCESS_METHOD=[AUTOMATIC | DIRECT PATH | EXTERNAL TABLE]

The ACCESS METHOD parameter is provided so that you can try an alternative method if the
default method does not work for some reason. All methods can be specified for a network

export. If the data for a table cannot be unloaded with the specified access method, then the
data displays an error for the table and continues with the next work item.

The available options are as follows:

* AUTOMATIC — Oracle Data Pump determines the best way to unload data for each table.
Oracle recommends that you use AUTOMATIC whenever possible because it allows Data
Pump to automatically select the most efficient method.

* DIRECT PATH — Oracle Data Pump uses direct path unload for every table.

* EXTERNAL TABLE — Oracle Data Pump uses a SQL CREATE TABLE AS SELECT Statement to
create an external table using data that is stored in the dump file. The SELECT clause reads
from the table to be unloaded.

Restrictions

» To use the ACCESS METHOD parameter with network exports, you must be using Oracle
Database 12c Release 2 (12.2.0.1) or later.

* The ACCESS METHOD parameter for Oracle Data Pump Export is not valid for transportable
tablespace jobs.

Example

> expdp hr DIRECTORY=dpump dirl DUMPFILE=expdat.dmp SCHEMAS=hr
ACCESS METHOD=EXTERNAL TABLE

2.4.4 ATTACH

ORACLE

The Oracle Data Pump Export command-line utility ATTACH parameter attaches a worker or
client session to an existing export job, and automatically places you in the interactive-
command interface.

Default

The default is the job currently in the user schema, if there is only one.

Purpose

Attaches the worker session to an existing Data Pump control export job, and automatically
places you in the interactive-command interface. Export displays a description of the job to
which you are attached, and also displays the Export prompt.

Syntax and Description

ATTACH [=[schema name.]job name]

2-18

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

The schema_name is optional. To specify a schema other than your own, you must have the
DATAPUMP EXP FULL DATABASE role.

The job name is optional if only one export job is associated with your schema and the job is
active. To attach to a stopped job, you must supply the job name. To see a list of Data Pump
job names, you can query the DBA DATAPUMP JOBS view, or the USER_DATAPUMP_JOBS View.

When you are attached to the job, Export displays a description of the job and then displays
the Export prompt.

Restrictions

e When you specify the ATTACH parameter, the only other Data Pump parameter you can
specify on the command line is ENCRYPTION PASSWORD.

« If the job to which you are attaching was initially started using an encryption password,
then when you attach to the job, you must again enter the ENCRYPTION PASSWORD
parameter on the command line to respecify that password. The only exception to this
requirement is if the job was initially started with the ENCRYPTION=ENCRYPTED COLUMNS ONLY
parameter. In that case, the encryption password is hot needed when attaching to the job.

* You cannot attach to a job in another schema unless it is already running.

< If the dump file set or Data Pump control table for the job have been deleted, then the
attach operation fails.

e Altering the Data Pump control table in any way leads to unpredictable results.

Example

The following is an example of using the ATTACH parameter. It assumes that the job
hr.export job is an existing job.

> expdp hr ATTACH=hr.export job

Related Topics

¢« Commands Available in Data Pump Export Interactive-Command Mode

2.4.5 CHECKSUM

ORACLE

The Oracle Data Pump Export command-line utility CHECKSUM parameter enables the export to
perform checksum validations for exports.

Default

The default value depends upon the combination of checksum-related parameters that are
used. To enable checksums, you must specify either the CHECKSUM or the CHECKSUM ALGORITHM
parameter.

If you specify only the CHECKSUM ALGORITHM parameter, then CHECKSUM defaults to YES.

If you specify neither the CHECKSUM nor the CHECKSUM ALGORITHM parameters, then CHECKSUM
defaults to NO.

Purpose

Specifies whether Oracle Data Pump calculates checksums for the export dump file set.

2-19

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

The checksum is calculated at the end of the job, so the time scales according to the size of
the file. Multiple files can be processed in parallel. You can use this parameter to validate that a
dumpfile is complete and not corrupted after copying it over the network to an object store, or
using it to validate an old dumpfile.

Syntax and Description

CHECKSUM=[YES|NO]

* YES Specifies that Oracle Data Pump calculates a file checksum for each dump file in the
export dump file set.

* NO Specifies that Oacle Data Pump does not calculate file checksums.

Restrictions

To use this checksum feature, the COMPATIBLE initialization parameter must be set to at least
20.0.

Example

This example performs a schema-mode unload of the HR schema, and generates an SHA256
(the default CHECKSUM ALGORITHM) checksum for each dump file in the dump file set.

expdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp CHECKSUM=YES

2.4.6 CHECKSUM_ALGORITM

ORACLE

The Oracle Data Pump Export command-line utility CHECKSUM ALGORITHM parameter specifies
which checksum algorithm to use when calculating checksums.

Default

The default value depends upon the combination of checksum-related parameters that are
used. To enable checksums, you must specify either the CHECKSUM or the CHECKSUM ALGORITHM
parameter.

If the CHECKSUM parameter is set to YES, and you have not specified a value for
CHECKSUM ALGORITHM, then CHECKSUM ALGORITHM defaults to the SHA256 Secure Hash
Algorithm.

Purpose

Helps to ensure the integrity of the contents of a dump file beyond the header block by using a
cryptographic hash to ensure that there are no unintentional errors in a dump file, such as can
occur with a transmission error. Setting the value specifies whether Oracle Data Pump
calculates checksums for the export dump file set, and which hash algorithm is used to
calculate the checksum.

Syntax and Description

CHECKSUM ALGORITHM = [CRC32|SHA256|SHA384|SHA512]

e CRC32 Specifies that Oracle Data Pump genrerates a 32-bit checksum.

2-20

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

* SHA256 Specifies that Oracle Data Pump generates a 256-bit checksum.
° SHA384 Specifies that Oracle Data Pump generates a 384-bit checksum.

e SHA512 Specifies that Oracle Data Pump generates a 512-bit checksum.

Restrictions

To use this checksum feature, the COMPATIBLE initialization parameter must be set to at least
20.0.

Example

This example performs a schema-mode unload of the HR schema, and generates an SHA384
checksum for each dump file in the dump file set that is generated.

expdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp CHECKSUM ALGORITHM=SHA384

2.4.7 CLUSTER

ORACLE

The Oracle Data Pump Export command-line utility CLUSTER parameter determines whether
Data Pump can use Oracle RAC, resources, and start workers on other Oracle RAC instances.

Default

YES

Purpose

Determines whether Oracle Data Pump can use Oracle Real Application Clusters (Oracle
RAC) resources and start workers on other Oracle RAC instances.

Syntax and Description

CLUSTER=[YES | NOJ

To force Oracle Data Pump Export to use only the instance where the job is started and to
replicate pre-Oracle Database 119 release 2 (11.2) behavior, specify CLUSTER=NO.

To specify a specific, existing service, and constrain worker processes to run only on instances
defined for that service, use the SERVICE NAME parameter with the CLUSTER=YES parameter.

Use of the CLUSTER parameter can affect performance, because there is some additional
overhead in distributing the export job across Oracle RAC instances. For small jobs, it can be
better to specify CLUSTER=NO to constrain the job to run on the instance where it is started. Jobs
whose performance benefits the most from using the CLUSTER parameter are those involving
large amounts of data.

Example
The following is an example of using the CLUSTER parameter:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr clus%U.dmp CLUSTER=NO PARALLEL=3

This example starts a schema-mode export (the default) of the hr schema. Because
CLUSTER=NO is specified, the job uses only the instance on which it started. (If you do not
specify the CLUSTER parameter, then the default value of Y is used. With that value, if
necessary, workers are started on other instances in the Oracle RAC cluster). The dump files

2-21

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

are written to the location specified for the dpump dirl directory object. The job can have up to
3 parallel processes.

Related Topics

e SERVICE_NAME
The Oracle Data Pump Export command-line utility SERVICE NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

» Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC) environment
requires you to perform a few checks to ensure that you are making cluster member nodes
available.

2.4.8 COMPRESSION

ORACLE

The Oracle Data Pump Export command-line utility COMPRESSION parameter specifies which
data to compress before writing to the dump file set.

Default

METADATA ONLY

Purpose

Specifies which data to compress before writing to the dump file set.

Syntax and Description

COMPRESSION=[ALL | DATA ONLY | METADATA ONLY | NONE]

* ALL enables compression for the entire export operation. The ALL option requires that the
Oracle Advanced Compression option is enabled.

* DATA ONLY results in all data being written to the dump file in compressed format. The
DATA ONLY option requires that the Oracle Advanced Compression option is enabled.

e METADATA ONLY results in all metadata being written to the dump file in compressed format.
This is the default.

* NONE disables compression for the entire export operation.

Restrictions

e To make full use of all these compression options, the COMPATIBLE initialization parameter
must be set to at least 11.0.0.

* The METADATA ONLY option can be used even if the COMPATIBLE initialization parameter is
setto 10.2.

* Compression of data using ALL or DATA ONLY is valid only in the Enterprise Edition of
Oracle Database 11g or later, and requires that the Oracle Advanced Compression option
is enabled.

Example

The following is an example of using the COMPRESSION parameter:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr comp.dmp COMPRESSION=METADATA ONLY

2-22

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

This command runs a schema-mode export that compresses all metadata before writing it out
to the dump file, hr_comp. dmp. It defaults to a schema-mode export, because no export mode
is specified.

See Oracle Database Licensing Information for information about licensing requirements for
the Oracle Advanced Compression option.

Related Topics

* Oracle Database Options and Their Permitted Features

2.4.9 COMPRESSION_ALGORITHM

ORACLE

The Oracle Data Pump Export command-line utility COMPRESSION ALGORITHM parameter
specifies the compression algorithm that you want to use when compressing dump file data.
Default

BASIC

Purpose

Specifies the compression algorithm to be used when compressing dump file data.

Syntax and Description

COMPRESSION ALGORITHM = [BASIC | LOW | MEDIUM | HIGH]

The parameter options are defined as follows:

e BASIC: Offers a good combination of compression ratios and speed; the algorithm used is
the same as in previous versions of Oracle Data Pump.

* LoOwW: Least impact on export throughput. This option is suited for environments where CPU
resources are the limiting factor.

* MEDIUM: Recommended for most environments. This option, like the BASIC option, provides
a good combination of compression ratios and speed, but it uses a different algorithm than
BASIC.

e HIGH: Best suited for situations in which dump files are copied over slower networks, where
the limiting factor is network speed.

You characterize the performance of a compression algorithm by its CPU usage, and by the
compression ratio (the size of the compressed output as a percentage of the uncompressed
input). These measures vary, based on the size and type of inputs, as well as the speed of the
compression algorithms used. The compression ratio generally increases from low to high, with
a trade-off of potentially consuming more CPU resources.

Oracle recommends that you run tests with the different compression levels on the data in your
environment. Choosing a compression level based on your environment, workload
characteristics, and size and type of data is the only way to ensure that the exported dump file
set compression level meets your performance and storage requirements.

Restrictions

* To use this feature, database compatibility must be set to 12.0.0 or later.

e This feature requires that you have the Oracle Advanced Compression option enabled.

2-23

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Example 1

This example performs a schema-mode unload of the HR schema, and compresses only the
table data using a compression algorithm with a low level of compression. Using this command
option can result in fewer CPU resources being used, at the expense of a less than optimal
compression ratio.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp COMPRESSION=DATA ONLY
COMPRESSION ALGORITHM=LOW

Example 2

This example performs a schema-mode unload of the HR schema, and compresses both
metadata and table data using the basic level of compression. Omitting the
COMPRESSION ALGORITHM parameter altogether is equivalent to specifying BASIC as the value.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp COMPRESSION=ALL
COMPRESSION ALGORITHM=BASIC

2.4.10 CONTENT

ORACLE

The Oracle Data Pump Export command-line utility CONTENT parameter enables you to filter
what Export unloads: data only, metadata only, or both.

Default

ALL

Purpose

Enables you to filter what Export unloads: data only, metadata only, or both.

Syntax and Description

CONTENT=[ALL | DATA ONLY | METADATA ONLY]

e ALL unloads both data and metadata. This option is the default.
* DATA ONLY unloads only table row data; no database object definitions are unloaded.

* METADATA ONLY unloads only database object definitions; no table row data is unloaded. Be
aware that if you specify CONTENT=METADATA ONLY, then afterward, when the dump file is
imported, any index or table statistics imported from the dump file are locked after the
import.

Restrictions

* The CONTENT=METADATA ONLY parameter cannot be used with the TRANSPORT TABLESPACES
(transportable-tablespace mode) parameter or with the QUERY parameter.

Example

The following is an example of using the CONTENT parameter:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp CONTENT=METADATA ONLY

2-24

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

This command executes a schema-mode export that unloads only the metadata associated
with the hr schema. It defaults to a schema-mode export of the hr schema, because no export
mode is specified.

2.4.11 CREDENTIAL

ORACLE

The Oracle Data Pump Export command-line utility CREDENTIAL parameter enables the export
to write data stored into object stores.

Default

none.

Purpose

Enables Oracle Data Pump exports to write data files to object stores. For a data file, you can
specify the URI for the data file that you want to be stored on the object store. The CREDENTIAL
values specifies credentials granted to the user starting the export. These permissions enable
the Oracle Data Pump export to access and write to the object store, so that data files can be
written to Oracle Cloud Infrastructure object stores.

Syntax and Description

CREDENTIAL=user-credential

Usage Notes

The CREDENTIAL parameter changes how expdp interprets the text string in DUMPFILE. If the
CREDENTIAL parameter is not specified, then the DUMPFILE parameter can specify an optional
directory object and file name in directory-object-name: file-name format. If the CREDENTIAL
parameter is used, then it provides authentication and authorization for expdp to write to one or
more object storage URIs specified by DUMPFILE.

If you do not specify the CREDENTIAL parameter, then the dumpfile value is not treated as a
URI, but instead treated as a file specification. The dumpfile specification only contains the file
name; it cannot contain a path. As a result, if you do not specify the CREDENTIAL parameter,
then you receive the following errors:

ORA-39001: invalid argument value
ORA-39000: bad dump file specification
ORA-39088: file name cannot contain a path specification

Restrictions

e The credential parameter cannot be an OCI resource principal, Azure service principal,
Amazon Resource Name (ARN), or a Google service account.

* For Cloud systems, UTIL FILE does not support writing to the cloud. In that case, the
export continues to use the value set by the DEFAULT DIRECTORY parameter as the location
of the log files. Also, you can specify directory object names as part of the file names for
LOGFILE.

* If you attempt to specify a URI for a dump file, and the CREDENTIAL parameter is not
specified, then you encounter the error ORA-39000 bad dumpfile specification, as
shown in the preceding usage notes.

2-25

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Examples

The following example provides a credential, "sales-dept" and DUMPFILE specifies an Object
Storage URI in which to export:

expdp hr DUMPFILE=https://objectstorage.example.com/images basic.dmp
CREDENTIAL=sales-dept

The following example does not specify a credential:

expdp hr DUMPFILE=dir obj:filename

2.4.12 DATA_OPTIONS

The Oracle Data Pump Export command-line utility DATA OPTIONS parameter designates how
you want certain types of data handled during export operations.

Default

There is no default. If this parameter is not used, then the special data handling options it
provides do not take effect.

Purpose

The DATA OPTIONS parameter designates how certain types of data should be handled during
export operations.

Syntax and Description

DATA OPTIONS= [GROUP_PARTITION TABLE DATA | VERIFY STREAM FORMAT]

* GROUP_PARTITION TABLE DATA: Tells Oracle Data Pump to unload all table data in one
operation rather than unload each table partition as a separate operation. As a result, the
definition of the table will not matter at import time because Import will see one partition of
data that will be loaded into the entire table.

e VERIFY STREAM FORMAT: Validates the format of a data stream before it is written to the
Oracle Data Pump dump file. The verification checks for a valid format for the stream after
it is generated but before it is written to disk. This assures that there are no errors when
the dump file is created, which in turn helps to assure that there will not be errors when the
stream is read at import time.

Restrictions

The Export DATA OPTIONS parameter requires the job version to be setto 11.0.0 or later. See
VERSION.

ORACLE 506

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Example

This example shows an export operation in which data for all partitions of a table are unloaded
together instead of the default behavior of unloading the data for each partition separately.

> expdp hr TABLES=hr.tabl DIRECTORY=dpump dirl DUMPFILE=hr.dmp VERSION=11.2
GROUP_PARTITION TABLE DATA

See Oracle XML DB Developer’s Guide for information specific to exporting and importing
XMLType tables.

Related Topics
« VERSION

2.4.13 DIRECTORY

ORACLE

The Oracle Data Pump Export command-line utility DIRECTORY parameter specifies the default
location to which Export can write the dump file set and the log file.

Default

DATA PUMP DIR

Purpose

Specifies the default location to which Export can write the dump file set and the log file.

Syntax and Description

DIRECTORY=directory object

The directory object is the name of a database directory object. It is not the file path of an
actual directory. Privileged users have access to a default directory object named

DATA PUMP DIR. The definition of the DATA PUMP DIR directory can be changed by Oracle
during upgrades, or when patches are applied.

Users with access to the default DATA PUMP DIR directory object do not need to use the
DIRECTORY parameter.

A directory object specified on the DUMPFILE or LOGFILE parameter overrides any directory
object that you specify for the DIRECTORY parameter.

Example

The following is an example of using the DIRECTORY parameter:

> ex r DIRECTORY=dpum 1rl DUMPFILE=employees.dm NTENT=METADATA ONLY
pdp h CTO dpump dirl ploy dmp CO 0

In this example, the dump file, employees.dump is written to the path that is associated with the
directory object dpump dirl.

Related Topics
e Understanding Dump, Log, and SQL File Default Locations

e Understanding How to Use Oracle Data Pump with Oracle RAC

2-27

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

e Oracle Database SQL Language Reference

2.4.14 DUMPFILE

ORACLE

The Oracle Data Pump Export command-line utility DUMPFILE parameter specifies the names,
and optionally, the directory objects of dump files for an export job.

Default

expdat.dmp

Purpose

Specifies the names, and if you choose to do so, the directory objects of dump files for an
export job.

Syntax and Description

DUMPFILE=[directory object:]file name [, ...]

Specifying directory object is optional if you have already specified the directory object by
using the DIRECTORY parameter. If you supply a value here, then it must be a directory object
that exists, and to which you have access. A database directory object that is specified as part
of the DUMPFILE parameter overrides a value specified by the DIRECTORY parameter, or by the
default directory object.

Note:

When you use a dumpfile in Object Storage with a credential in it, ensure that the
URI file does notinclude the % character except when using substitution variable
reserved characters after it.

For example, if a URL-encoded forward slash (/) is encoded as %2F in the URI_file,
then this encoded character can cause an error.

You can supply multiple file name specifications as a comma-delimited list, or in separate
DUMPFILE parameter specifications. If no extension is given for the file name, then Export uses
the default file extension of .dmp. The file names can contain a substitution variable. The
following table lists the available substitution variables.

Substitution Meaning

Variable

U The substitution variable is expanded in the resulting file names into a 2-digit, fixed-
width, incrementing integer that starts at 01 and ends at 99. If a file specification
contains two substitution variables, then both are incremented at the same time. For
example, exp%Uaa%U. dmp resolves to exp0laa0l.dmp, exp02aa02.dmp, and so
forth.

%d, %D Specifies the current day of the month from the Gregorian calendar in format DD.
Note: This substitution variable cannot be used in an import file name.

sm, $M Specifies the month in the Gregorian calendar in format MM.

Note: This substitution variable cannot be used in an import file name.

2-28

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Substitution Meaning
Variable

o\
o\

t, $T Specifies the year, month, and day in the Gregorian calendar in this format:
YYYYMMDD.

Note: This substitution variable cannot be used in an import file name.

oe
—
o°
=

Specifies a system-generated unique file name.

The file names can contain a substitution variable (L), which implies that multiple files
can be generated. The substitution variable is expanded in the resulting file names
into a 2-digit, fixed-width, incrementing integer starting at 01 and ending at 99 which is
the same as (%U). In addition, the substitution variable is expanded in the resulting file
names into a 3-digit to 10-digit, variable-width, incrementing integers starting at 100
and ending at 2147483646. The width field is determined by the number of digits in
the integer.

For example if the current integer is 1, then exp%Laa%L. dmp resolves to:

exp0laall.dmp
exp02aal2.dmp

and so forth, up until 99. Then, the next file name has 3 digits substituted:

expl00aal00.dmp
expl0laalll.dmp

and so forth, up until 999, where the next file has 4 digits substituted. The substitutions
continue up to the largest number substitution allowed, which is 2147483646.

%y, Y Specifies the year in this format: YYYY.
Note: This substitution variable cannot be used in an import file name.

If the FILESIZE parameter is specified, then each dump file has a maximum of that size and be
nonextensible. If more space is required for the dump file set, and a template with a
substitution variable was supplied, then a new dump file is automatically created of the size
specified by the FILESIZE parameter, if there is room on the device.

As each file specification or file template containing a substitution variable is defined, it is
instantiated into one fully qualified file name, and Export attempts to create the file. The file
specifications are processed in the order in which they are specified. If the job needs extra files
because the maximum file size is reached, or to keep parallel workers active, then more files
are created if file templates with substitution variables were specified.

Although it is possible to specify multiple files using the DUMPFILE parameter, the export job can
only require a subset of those files to hold the exported data. The dump file set displayed at the
end of the export job shows exactly which files were used. It is this list of files that is required to
perform an import operation using this dump file set. Any files that were not used can be
discarded.

When you specify the DUMPFILE parameter, it is possible to introduce conflicting file names,
regardless of whether substitution variables are used. The following are some examples of

ORACLE 559

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

expdp commands that would produce file name conflicts. For all these examples, an ORA-27308
created file already exists erroris returned:

expdp system/manager directory=dpump dir schemas=hr
DUMPFILE=f00%U.dmp, fo0o%U.dmp

expdp system/manager directory=dpump dir schemas=hr
DUMPFILE=f00%U.dmp, foo%L.dmp

expdp system/manager directory=dpump dir schemas=hr
DUMPFILE=f00%U.dmp, f00%D.dmp

expdp system/manager directory =dpump dir schemas=hr
DUMPFILE=f00%tK %t %u %y P,foo3TK $T %U %Y P

Restrictions

e Any resulting dump file names that match preexisting dump file names generate an error,
and the preexisting dump files are not overwritten. You can override this behavior by
specifying the Export parameter REUSE_DUMPFILES=YES.

e Dump files created on Oracle Database 11g releases with the Oracle Data Pump
parameter VERSION=12 can only be imported on Oracle Database 12c¢ Release 1 (12.1) and
later.

Example
The following is an example of using the DUMPFILE parameter:

> expdp hr SCHEMAS=hr DIRECTORY=dpump dirl DUMPFILE=dpump dir2:expl.dmp,
exp25U.dmp PARALLEL=3

The dump file, expl.dmp, is written to the path associated with the directory object dpump dir2,
because dpump dir2 was specified as part of the dump file name, and therefore overrides the
directory object specified with the DIRECTORY parameter. Because all three parallel processes
are given work to perform during this job, dump files named exp201.dmp and exp202.dmp is
created, based on the specified substitution variable exp2%U.dmp. Because no directory is
specified for them, they are written to the path associated with the directory object,
dpump_dirl, that was specified with the DIRECTORY parameter.

Related Topics

« Using Substitution Variables with Oracle Data Pump Exports

2.4.15 ENABLE_SECURE_ROLES

The Oracle Data Pump Export command-line utility ENABLE SECURE ROLES parameter prevents
inadvertent use of protected roles during exports.

Default

In Oracle Database 19c and later releases, the default value is NO.

ORACLE 530

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Purpose

Some Oracle roles require authorization. If you need to use these roles with Oracle Data Pump
exports, then you must explicitly enable them by setting the ENABLE SECURE_ROLES parameter
to YES.

Syntax
ENABLE SECURE ROLES=[NO|YES]

* NO Disables Oracle roles that require authorization.

e YES Enables Oracle roles that require authorization.
Example

expdp hr SCHEMAS=hr DIRECTORY=dpump dirl DUMPFILE=dpump dir2:expl.dmp,
exp2%U.dmp ENABLE SECURE ROLES=YES

2.4.16 ENCRYPTION

ORACLE

The Oracle Data Pump Export command-line utility ENCRYPTION parameter specifies whether to
encrypt data before writing it to the dump file set.

Default

The default value depends upon the combination of encryption-related parameters that are
used. To enable encryption, either the ENCRYPTION or ENCRYPTION PASSWORD parameter, or
both, must be specified.

If only the ENCRYPTION PASSWORD parameter is specified, then the ENCRYPTION parameter
defaults to ALL.

If only the ENCRYPTION parameter is specified and the Oracle encryption wallet is open, then
the default mode is TRANSPARENT. If only the ENCRYPTION parameter is specified and the wallet
is closed, then an error is returned.

If neither ENCRYPTION nor ENCRYPTION PASSWORD is specified, then ENCRYPTION defaults to NONE.

Purpose

Specifies whether to encrypt data before writing it to the dump file set.

Syntax and Description

ENCRYPTION = [ALL | DATA ONLY | ENCRYPTED COLUMNS ONLY | METADATA ONLY | NONE]

* ALL enables encryption for all data and metadata in the export operation.
e DATA ONLY specifies that only data is written to the dump file set in encrypted format.

* ENCRYPTED COLUMNS ONLY specifies that only encrypted columns are written to the dump
file set in encrypted format. This option cannot be used with the ENCRYPTION ALGORITHM
parameter because the columns already have an assigned encryption format and by
definition, a column can have only one form of encryption.

To use the ENCRYPTED COLUMNS ONLY option, you must also use the ENCRYPTION PASSWORD
parameter.

2-31

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

To use the ENCRYPTED COLUMNS ONLY option, you must have Oracle Advanced Security
Transparent Data Encryption (TDE) enabled. See Oracle Database Advanced Security
Guide for more information about TDE.

* METADATA ONLY specifies that only metadata is written to the dump file set in encrypted
format.

e NONE specifies that no data is written to the dump file set in encrypted format.

SecureFiles Considerations for Encryption

If the data being exported includes SecureFiles that you want to be encrypted, then you must
specify ENCRYPTION=ALL to encrypt the entire dump file set. Encryption of the entire dump file
set is the only way to achieve encryption security for SecureFiles during a Data Pump export
operation. For more information about SecureFiles, see Oracle Database SecureFiles and
Large Objects Developer’s Guide.

Oracle Database Vault Considerations for Encryption

When an export operation is started, Data Pump determines whether Oracle Database Vault is
enabled. If it is, and dump file encryption has not been specified for the job, a warning
message is returned to alert you that secure data is being written in an insecure manner (clear
text) to the dump file set:

ORA-39327: Oracle Database Vault data is being stored unencrypted in dump
file set

You can abort the current export operation and start a new one, specifying that you want the
output dump file set to be encrypted.

Restrictions

» To specify the ALL, DATA ONLY, or METADATA ONLY options, the COMPATIBLE initialization
parameter must be set to at least 11.0.0.

e This parameter is valid only in the Enterprise Edition of Oracle Database 11g or later.

* Tousethe ALL, DATA ONLY or METADATA ONLY options without also using an encryption
password, you must have the Oracle Advanced Security option enabled. See Oracle
Database Licensing Information for information about licensing requirements for the Oracle
Advanced Security option.

Example

The following example performs an export operation in which only data is encrypted in the
dump file:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr enc.dmp JOB NAME=encl
ENCRYPTION=data only ENCRYPTION PASSWORD=foobar

Related Topics
* Oracle Database Security Guide
* SecureFiles LOB Storage

e Oracle Database Options and Their Permitted Features

2-32

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.17 ENCRYPTION_ALGORITHM

The Oracle Data Pump Export command-line utility ENCRYPTION ALGORITHM parameter
specifies which cryptographic algorithm should be used to perform the encryption.
Default

AES128

Purpose

Specifies which cryptographic algorithm should be used to perform the encryption.

Syntax and Description

ENCRYPTION ALGORITHM = [AES128 | AES192 | AES256]

Restrictions

e To use this encryption feature, the COMPATIBLE initialization parameter must be set to at
least 11.0.0.

* The ENCRYPTION ALGORITHM parameter requires that you also specify either the
ENCRYPTION or ENCRYPTION PASSWORD parameter; otherwise an error is returned.

* The ENCRYPTION ALGORITHM parameter cannot be used in conjunction with
ENCRYPTION=ENCRYPTED COLUMNS ONLY because columns that are already encrypted
cannot have an additional encryption format assigned to them.

e This parameter is valid only in the Enterprise Edition of Oracle Database 11g or later.

e The ENCRYPTION ALGORITHM parameter does not require that you have the Oracle
Advanced Security enabled, but it can be used in conjunction with other encryption-related
parameters that do require that option. See Oracle Database Licensing Information for
information about licensing requirements for the Oracle Advanced Security option.

Example

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr enc3.dmp
ENCRYPTION PASSWORD=foobar ENCRYPTION ALGORITHM=AES128

Related Topics
e Oracle Database Security Guide

e Oracle Database Licensing Information User Manual

2.4.18 ENCRYPTION_MODE

ORACLE

The Oracle Data Pump Export command-line utility ENCRYPTION MODE parameter specifies the
type of security to use when encryption and decryption are performed.

Default

The default mode depends on which other encryption-related parameters are used. If only the
ENCRYPTION parameter is specified and the Oracle encryption wallet is open, then the default
mode is TRANSPARENT. If only the ENCRYPTION parameter is specified and the wallet is closed,
then an error is returned.

2-33

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

If the ENCRYPTION PASSWORD parameter is specified and the wallet is open, then the default is
DUAL. If the ENCRYPTION PASSWORD parameter is specified and the wallet is closed, then the
default is PASSWORD.

Purpose

Specifies the type of security to use when encryption and decryption are performed.

Syntax and Description

ENCRYPTION MODE = [DUAL | PASSWORD | TRANSPARENT]

DUAL mode creates a dump file set that can later be imported either transparently or by
specifying a password that was used when the dual-mode encrypted dump file set was
created. When you later import the dump file set created in DUAL mode, you can use either the
wallet or the password that was specified with the ENCRYPTION PASSWORD parameter. DUAL
mode is best suited for cases in which the dump file set will be imported on-site using the
wallet, but which may also need to be imported offsite where the wallet is not available.

PASSWORD mode requires that you provide a password when creating encrypted dump file sets.
You will need to provide the same password when you import the dump file set. PASSWORD
mode requires that you also specify the ENCRYPTION PASSWORD parameter. The PASSWORD mode
is best suited for cases in which the dump file set will be imported into a different or remote
database, but which must remain secure in transit.

TRANSPARENT mode enables you to create an encrypted dump file set without any intervention
from a database administrator (DBA), provided the required wallet is available. Therefore, the
ENCRYPTION PASSWORD parameter is not required. The parameter will, in fact, cause an error if it
is used in TRANSPARENT mode. This encryption mode is best suited for cases in which the dump
file set is imported into the same database from which it was exported.

Restrictions

* To use DUAL or TRANSPARENT mode, the COMPATIBLE initialization parameter must be set to
at least 11.0.0.

* When you use the ENCRYPTION MODE parameter, you must also use either the ENCRYPTION
or ENCRYPTION PASSWORD parameter. Otherwise, an error is returned.

* When you use the ENCRYPTION=ENCRYPTED COLUMNS ONLY, you cannot use the
ENCRYPTION MODE parameter. Otherwise, an error is returned.

e This parameter is valid only in the Enterprise Edition of Oracle Database 119 or later.

e The use of DUAL or TRANSPARENT mode requires that the Oracle Advanced Security option
is enabled. See Oracle Database Licensing Information for information about licensing
requirements for the Oracle Advanced Security option.

Example
> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr enc4.dmp

ENCRYPTION=all ENCRYPTION PASSWORD=secretwords
ENCRYPTION ALGORITHM=AES256 ENCRYPTION MODE=DUAL

Related Topics

e Oracle Database Licensing Information User Manual

2-34

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.19 ENCRYPTION_PASSWORD

The Oracle Data Pump Export command-line utility ENCRYPTION PASSWORD parameter prevents
unauthorized access to an encrypted dump file set.

Default

There is no default; the value is user-provided.

Purpose

Specifies a password for encrypting encrypted column data, metadata, or table data in the
export dump file. Using this parameter prevents unauthorized access to an encrypted dump file
set.

Note:

Data Pump encryption functionality changed as of Oracle Database 119 release 1
(11.1). Before release 11.1, the ENCRYPTION PASSWORD parameter applied only to
encrypted columns. However, as of release 11.1, the new ENCRYPTION parameter
provides options for encrypting other types of data. As a result of this change, if you
now specify ENCRYPTION PASSWORD without also specifying ENCRYPTION and a specific
option, then all data written to the dump file is encrypted (equivalent to specifying
ENCRYPTION=ALL). To re-encrypt only encrypted columns, you must now specify
ENCRYPTION=ENCRYPTED COLUMNS ONLY in addition to ENCRYPTION PASSWORD.

Syntax and Description

ENCRYPTION PASSWORD = password

The password value that is supplied specifies a key for re-encrypting encrypted table columns,
metadata, or table data so that they are not written as clear text in the dump file set. If the
export operation involves encrypted table columns, but an encryption password is not supplied,
then the encrypted columns are written to the dump file set as clear text and a warning is
issued.

The password that you enter is echoed to the screen. If you do not want the password shown
on the screen as you enter it, then use the ENCRYPTION PWD PROMPT parameter.

The maximum length allowed for an encryption password is usually 128 bytes. However, the
limit is 30 bytes if ENCRYPTION=ENCRYPTED COLUMNS ONLY and either the VERSION parameter or
database compatibility is set to less than 12.2.

For export operations, this parameter is required if the ENCRYPTION MODE parameter is set to
either PASSWORD Of DUAL.

ORACLE 535

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Note:

There is no connection or dependency between the key specified with the Data Pump
ENCRYPTION PASSWORD parameter and the key specified with the ENCRYPT keyword
when the table with encrypted columns was initially created. For example, suppose
that a table is created as follows, with an encrypted column whose key is xyz:

CREATE TABLE emp (coll VARCHAR2 (256) ENCRYPT IDENTIFIED BY "xyz");

When you export the emp table, you can supply any arbitrary value for
ENCRYPTION PASSWORD. It does not have to be xyz.

Restrictions

e This parameter is valid only in Oracle Database Enterprise Edition 119 or later.

* The ENCRYPTION PASSWORD parameter is required for the transport of encrypted
tablespaces and tablespaces containing tables with encrypted columns in a full
transportable export.

* IfENCRYPTION PASSWORD is specified but ENCRYPTION MODE is not specified, then it is not
necessary to have Oracle Advanced Security Transparent Data Encryption enabled,
because ENCRYPTION MODE defaults to PASSWORD.

* If the requested encryption mode is TRANSPARENT, then the ENCRYPTION PASSWORD
parameter is not valid.

* If ENCRYPTION MODE is set to DUAL, then to use the ENCRYPTION PASSWORD parameter, you
must have Oracle Advanced Security Transparent Data Encryption (TDE) enabled. See
Oracle Database Advanced Security Guide for more information about TDE.

* For network exports, the ENCRYPTION PASSWORD parameter in conjunction with
ENCRYPTION=ENCRYPTED COLUMNS ONLY is not supported with user-defined external tables
that have encrypted columns. The table is skipped, and an error message is displayed, but
the job continues.

Example

In the following example, an encryption password, 123456, is assigned to the dump file,
dpcd2bel.dmp.

> expdp hr TABLES=employee s encrypt DIRECTORY=dpump dirl
DUMPFILE=dpcd2bel.dmp ENCRYPTION=ENCRYPTED COLUMNS ONLY
ENCRYPTION PASSWORD=123456

Encrypted columns in the employee s encrypt table are not written as clear text in the
dpcd2bel.dmp dump file. Afterward, if you want to import the dpcd2bel . dmp file created by this
example, then you must supply the same encryption password.

Related Topics
e Oracle Database Licensing Information User Manual

e Oracle Database Advanced Security Guide

2-36

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.20 ENCRYPTION_PWD_PROMPT

ORACLE

The Oracle Data Pump Export command-line utility ENCRYPTION PWD PROMPT specifies whether
Oracle Data Pump prompts you for the encryption password.

Default

NO

Purpose

Specifies whether Data Pump should prompt you for the encryption password.

Syntax and Description

ENCRYPTION PWD PROMPT=[YES | NO]

Specify ENCRYPTION PWD PROMPT=YES on the command line to instruct Data Pump to prompt
you for the encryption password, rather than you entering it on the command line with the
ENCRYPTION PASSWORD parameter. The advantage to doing this is that the encryption password
is not echoed to the screen when it is entered at the prompt. Whereas, when it is entered on
the command line using the ENCRYPTION PASSWORD parameter, it appears in plain text.

The encryption password that you enter at the prompt is subject to the same criteria described
for the ENCRYPTION PASSWORD parameter.

If you specify an encryption password on the export operation, you must also supply it on the
import operation.

Restrictions

* Concurrent use of the ENCRYPTION PWD PROMPT and ENCRYPTION PASSWORD parameters is
prohibited.

Example

The following syntax example shows Data Pump first prompting for the user password and
then for the encryption password.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp ENCRYPTION PWD PROMPT=YES

Copyright (c) 1982, 2017, Oracle and/or its affiliates. All rights reserved.
Password:

Connected to: Oracle Database 18c Enterprise Edition Release 18.0.0.0.0 -
Production

Version 18.1.0.0.0

Encryption Password:

Starting "HR"."SYS EXPORT SCHEMA 01": hr/******%x directory=dpump dirl
dumpfile=hr.dmp encryption pwd prompt=Y

2-37

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.21 ESTIMATE

The Oracle Data Pump Export command-line utility ESTIMATE parameter specifies the method
that Export uses to estimate how much disk space each table in the export job will consume (in
bytes).

Default

STATISTICS

Purpose

Specifies the method that Export will use to estimate how much disk space each table in the
export job will consume (in bytes). The estimate is printed in the log file and displayed on the
client's standard output device. The estimate is for table row data only; it does not include
metadata.

Syntax and Description
ESTIMATE=[BLOCKS | STATISTICS]
* BLOCKS - The estimate is calculated by multiplying the number of database blocks used by

the source objects, times the appropriate block sizes.

e STATISTICS - The estimate is calculated using statistics for each table. For this method to
be as accurate as possible, all tables should have been analyzed recently. (Table analysis
can be done with either the SQL ANALYZE statement or the DBMS STATS PL/SQL package.)

Restrictions

« If the Data Pump export job involves compressed tables, then when you use
ESTIMATE=BLOCKS, the default size estimation given for the compressed table is inaccurate.
This inaccuracy results because the size estimate does not reflect that the data was stored
in a compressed form. To obtain a more accurate size estimate for compressed tables, use
ESTIMATE=STATISTICS.

» If either the QUERY or REMAP DATA parameter is used, then the estimate can also be
inaccurate.

Example
The following example shows a use of the ESTIMATE parameter in which the estimate is
calculated using statistics for the employees table:

> expdp hr TABLES=employees ESTIMATE=STATISTICS DIRECTORY=dpump dirl
DUMPFILE=estimate stat.dmp

ORACLE 5 38

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.22 ESTIMATE_ONLY

The Oracle Data Pump Export command-line utility ESTIMATE ONLY parameter instructs Export
to estimate the space that a job consumes, without actually performing the export operation.

Default

NO

Purpose

Instructs Export to estimate the space that a job consumes, without actually performing the
export operation.

Syntax and Description

ESTIMATE ONLY=[YES | NO]

If ESTIMATE ONLY=YES, then Export estimates the space that would be consumed, but quits
without actually performing the export operation.

Restrictions

* The ESTIMATE ONLY parameter cannot be used in conjunction with the QUERY parameter.

Example

The following shows an example of using the ESTIMATE ONLY parameter to determine how
much space an export of the HR schema requires.

> expdp hr ESTIMATE ONLY=YES NOLOGFILE=YES SCHEMAS=HR

2.4.23 EXCLUDE

ORACLE

The Oracle Data Pump Export command-line utility EXCLUDE parameter enables you to filter the
metadata that is exported by specifying objects and object types that you want to exclude from
the export operation.

Default

There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object types that
you want to exclude from the export operation.

Syntax and Description

EXCLUDE=object typel:name clause] [, ...]

The object type specifies the type of object that you want to exclude. To see a list of valid
values for object type, query the following views: DATABASE EXPORT OBJECTS for full mode,
SCHEMA EXPORT OBJECTS for schema mode, and TABLE EXPORT OBJECTS for table and
tablespace mode. The values listed in the OBJECT PATH column are the valid object types.

2-39

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

All object types for the given mode of export are included in the export, except object types
specified in an EXCLUDE statement. If an object is excluded, then all dependent objects are also
excluded. For example, excluding a table also excludes all indexes and triggers on the table.

The name clause is optional. Using this parameter enables selection of specific objects within
an object type. It is a SQL expression used as a filter on the object names of that type. It
consists of a SQL operator, and the values against which you want to compare the object
names of the specified type. The name clause applies only to object types whose instances
have names (for example, it is applicable to TABLE, but not to GRANT). It must be separated from
the object type with a colon, and enclosed in double quotation marks, because single quotation
marks are required to delimit the name strings. For example, you can set
EXCLUDE=INDEX:"LIKE 'EMP%'" to exclude all indexes whose names start with EMP.

The name that you supply for the name clause must exactly match, including upper and lower
casing, an existing object in the database. For example, if the name clause you supply is for a
table named EMPLOYEES, then there must be an existing table named EMPLOYEES using all upper
case. If you supplied the name clause as Employees Or employees Or any other variation that
does not match the existing table, then the table is not found.

If no name clause is provided, then all objects of the specified type are excluded.
You can specify more than one EXCLUDE statement.

Depending on your operating system, the use of quotation marks when you specify a value for
this parameter can also require that you use escape characters. Oracle recommends that you
place this parameter in a parameter file, which can reduce the number of escape characters
that otherwise can be needed on the command line.

If the object type you specify is CONSTRAINT, GRANT, or USER, then be aware of the effects, as
described in the following paragraphs.

Excluding Constraints
The following constraints cannot be explicitly excluded:

* Constraints needed for the table to be created and loaded successfully; for example,
primary key constraints for index-organized tables, or REF SCOPE and WITH ROWID
constraints for tables with REF columns

For example, the following EXCLUDE statements are interpreted as follows:

° EXCLUDE=CONSTRAINT excludes all constraints, except for any constraints needed for
successful table creation and loading.

* EXCLUDE=REF CONSTRAINT excludes referential integrity (foreign key) constraints.

Excluding Grants and Users

Specifying EXCLUDE=GRANT excludes object grants on all object types and system privilege
grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects contained
within user schemas.

To exclude a specific user and all objects of that user, specify a command such as the
following, where hr is the schema name of the user you want to exclude.

expdp FULL=YES DUMPFILE=expfull.dmp EXCLUDE=SCHEMA:"='HR'"

2-40

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

In this example, the export mode FULL is specified. If no mode is specified, then the default
mode is used. The default mode is SCHEMAS. But if the default mode is used, then in this
example, the default causes an error, because if SCHEMAS is used, then the command indicates
that you want the schema both exported and excluded at the same time.

If you try to exclude a user by using a statement such as EXCLUDE=USER: "="HR'", then only the
information used in CREATE USER hr DDL statements is excluded, and you can obtain
unexpected results.

Starting with Oracle Database 21c, Oracle Data Pump permits you to set both INCLUDE and
EXCLUDE parameters in the same command. When you include both parameters in a command,
Oracle Data Pump processes the INCLUDE parameter first, and includes all objects identified by
the parameter. Then it processes the exclude parameters, eliminating the excluded objects
from the included set.

Example

The following is an example of using the EXCLUDE statement.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr exclude.dmp EXCLUDE=VIEW,
PACKAGE, FUNCTION

This example results in a schema-mode export (the default export mode) in which all the hr
schema is exported except its views, packages, and functions.

Related Topics
e Oracle Data Pump Metadata Filters
* Filtering During Export Operations

e INCLUDE
The Oracle Data Pump Export command-line utility INCLUDE parameter enables you to filter
the metadata that is exported by specifying objects and object types for the current export
mode.

e Parameters Available in Data Pump Export Command-Line Mode

2.4.24 FILESIZE

ORACLE

The Oracle Data Pump Export command-line utility FILESIZE parameter specifies the
maximum size of each dump file.

Default

0 (equivalent to the maximum size of 16 terabytes)

Purpose

Specifies the maximum size of each dump file. If the size is reached for any member of the
dump file set, then that file is closed and an attempt is made to create a new file, if the file
specification contains a substitution variable or if more dump files have been added to the job.

Syntax and Description

FILESIZE=integer(B | KB | MB | GB | TB]

The integer can be immediately followed (do not insert a space) by B, KB, MB, GB, or TB
(indicating bytes, kilobytes, megabytes, gigabytes, and terabytes respectively). Bytes is the

2-41

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

default. The actual size of the resulting file can be rounded down slightly to match the size of
the internal blocks used in dump files.

Restrictions

e The minimum size for a file is 10 times the default Data Pump block size, which is 4
kilobytes.

e The maximum size for a file is 16 terabytes.
Example

The following example shows setting the size of the dump file to 3 megabytes:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr 3m.dmp FILESIZE=3MB

In this scenario, if the 3 megabytes allocated was not sufficient to hold all the exported data,
then the following error results, and displayed and the job stops:

ORA-39095: Dump file space has been exhausted: Unable to allocate 217088 bytes

The actual number of bytes that cannot be allocated can vary. Also, this number does not
represent the amount of space required complete the entire export operation. It indicates only
the size of the current object that was being exported when the job ran out of dump file space.
You can correct this problem by first attaching to the stopped job, adding one or more files
using the ADD FILE command, and then restarting the operation.

2.4.25 FLASHBACK_SCN

ORACLE

The Oracle Data Pump Export command-line utility FLASHBACK SCN parameter specifies the
system change number (SCN) that Export uses to enable the Flashback Query utility.

Default

Default: There is no default

Purpose

Specifies the system change number (SCN) that Export will use to enable the Flashback Query
utility.

Syntax and Description

FLASHBACK SCN=scn value

The export operation is performed with data that is consistent up to the specified SCN. If the
NETWORK_LINK parameter is specified, then the SCN refers to the SCN of the source database.

As of Oracle Database 12c release 2 (12.2) and later releases, the SCN value can be a big
SCN (8 bytes). You can also specify a big SCN when you create a dump file for an earlier
version that does not support big SCNs, because actual SCN values are not moved.

Restrictions

e FLASHBACK SCN and FLASHBACK TIME are mutually exclusive.

2-42

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

* The FLASHBACK_ SCN parameter pertains only to the Flashback Query capability of Oracle
Database. It is not applicable to Flashback Database, Flashback Drop, or Flashback Data
Archive.

* You cannot specify a big SCN for a network export or network import from a version that
does not support big SCNs.

Example

The following example assumes that an existing SCN value of 384632 exists. It exports the hr
schema up to SCN 384632.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr scn.dmp FLASHBACK SCN=384632

Note:

If you are on a logical standby system and using a network link to access the logical
standby primary, then the FLASHBACK SCN parameter is ignored because SCNs are
selected by logical standby. See Oracle Data Guard Concepts and Administration for
information about logical standby databases.

Related Topics

» Logical Standby Databases in Oracle Data Guard Concepts and Administration

2.4.26 FLASHBACK_TIME

ORACLE

The Oracle Data Pump Export command-line utility FLASHBACK TIME parameter finds the SCN
that most closely matches the specified time.

Default

There is no default.

Purpose

Finds the system change number (SCN) that most closely matches the specified time. This
SCN is used to enable the Flashback utility. The export operation is performed with data that is
consistent up to this SCN.

Syntax and Description

FLASHBACK TIME="TO TIMESTAMP (time-value)"

Because the TO TIMESTAMP value is enclosed in quotation marks, it is best to put this
parameter in a parameter file.

Alternatively, you can enter the following parameter setting. This setting initiate a consistent
export that is based on current system time:

FLASHBACK TIME=systimestamp

Restrictions

* FLASHBACK TIME and FLASHBACK SCN are mutually exclusive.

2-43

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

* The FLASHBACK TIME parameter pertains only to the flashback query capability of Oracle
Database. It is not applicable to Flashback Database, Flashback Drop, or Flashback Data
Archive.

Example

You can specify the time in any format that the DBMS FLASHBACK.ENABLE AT TIME procedure
accepts. For example, suppose you have a parameter file, f1ashback.par, with the following
contents:

DIRECTORY=dpump dirl
DUMPFILE=hr time.dmp
FLASHBACK TIME="TO TIMESTAMP('27-10-2012 13:16:00', 'DD-MM-YYYY HH24:MI:SS')"

You can then issue the following command:

> expdp hr PARFILE=flashback.par

The export operation is performed with data that is consistent with the SCN that most closely
matches the specified time.

Note:

If you are on a logical standby system and using a network link to access the logical
standby primary, then the FLASHBACK SCN parameter is ignored, because the logical
standby selects the SCNs. See Oracle Data Guard Concepts and Administration for
information about logical standby databases.

See Oracle Database Development Guide for information about using Flashback
Query.

Related Topics
* Logical Standby Databases in Oracle Data Guard Concepts and Administration
* Using Oracle Flashback Query (SELECT AS OF) in Oracle Database Development Guide

2.4.27 FULL

ORACLE

The Export command-line FULL parameter specifies that you want to perform a full database
mode export

Default: NO

Purpose

Specifies that you want to perform a full database mode export.

Syntax and Description

FULL=[YES | NO]

FULL=YES indicates that all data and metadata are to be exported. To perform a full export, you
must have the DATAPUMP EXP FULL DATABASE role.

2-44

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Filtering can restrict what is exported using this export mode.

You can perform a full mode export using the transportable option (TRANSPORTABLE=ALWAYS).
This is referred to as a full transportable export, which exports all objects and data necessary
to create a complete copy of the database. See Full Export Mode.

< Note:

Be aware that when you later import a dump file that was created by a full-mode
export, the import operation attempts to copy the password for the syS account from
the source database. This sometimes fails (for example, if the password is in a
shared password file). If it does fail, then after the import completes, you must set the
password for the Sys account at the target database to a password of your choice.

Restrictions

e To use the FULL parameter in conjunction with TRANSPORTABLE (a full transportable export),
either the Data Pump VERSION parameter must be set to at least 12.0. or the COMPATIBLE
database initialization parameter must be set to at least 12.0 or later.

e Afull export does not, by default, export system schemas that contain Oracle-managed
data and metadata. Examples of system schemas that are not exported by default include
SYS, ORDSYS, and MDSYS.

* Grants on objects owned by the sYs schema are never exported.

« Afull export operation exports objects from only one database edition; by default it exports
the current edition but you can use the Export SOURCE_EDITION parameter to specify a
different edition.

* If you are exporting data that is protected by a realm, then you must have authorization for
that realm.

e The Automatic Workload Repository (AWR) is not moved in a full database export and
import operation. (See Oracle Database Performance Tuning Guide for information about
using Data Pump to move AWR snapshots.)

e The XDB repository is not moved in a full database export and import operation. User
created XML schemas are moved.

Example

The following is an example of using the FULL parameter. The dump file, expfull.dmp iS written
to the dpump dir2 directory.

> expdp hr DIRECTORY=dpump dir2 DUMPFILE=expfull.dmp FULL=YES NOLOGFILE=YES
To see a detailed example of how to perform a full transportable export, see Oracle Database

Administrator’s Guide. For information about configuring realms, see Oracle Database Vault
Administrator’s Guide.

Related Topics
e Oracle Database Performance Tuning Guide
e Oracle Database Administrator’s Guide

* QOracle Database Vault Administrator’s Guide

2-45

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.28 HELP

The Data Pump Export command-line utility HELP parameter displays online help for the Export
utility.

Default: NO

Purpose

Displays online help for the Export utility.

Syntax and Description

HELP = [YES | NO]

If HELP=YES is specified, then Export displays a summary of all Export command-line
parameters and interactive commands.

Example

> expdp HELP = YES

This example display a brief description of all Export parameters and commands.

2.4.29 INCLUDE

ORACLE

The Oracle Data Pump Export command-line utility INCLUDE parameter enables you to filter the
metadata that is exported by specifying objects and object types for the current export mode.

Default

There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object types for
the current export mode. The specified objects and all their dependent objects are exported.
Grants on these objects are also exported.

Syntax and Description

INCLUDE = object typel:name clause] [, ...]

The object type specifies the type of object to be included. To see a list of valid values for
object type, query the following views: DATABASE EXPORT OBJECTS for full mode,

SCHEMA EXPORT OBJECTS for schema mode, and TABLE EXPORT OBJECTS for table and
tablespace mode. The values listed in the OBJECT PATH column are the valid object types.

Only object types explicitly specified in INCLUDE statements, and their dependent objects, are
exported. No other object types, including the schema definition information that is normally
part of a schema-mode export when you have the DATAPUMP EXP FULL DATABASE role, are
exported.

The name clause is optional. It allows fine-grained selection of specific objects within an object
type. It is a SQL expression used as a filter on the object names of the type. It consists of a

2-46

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

SQL operator and the values against which the object names of the specified type are to be
compared. The name clause applies only to object types whose instances have names (for
example, it is applicable to TABLE, but not to GRANT). It must be separated from the object type
with a colon and enclosed in double quotation marks, because single quotation marks are
required to delimit the name strings.

The name that you supply for the name clause must exactly match an existing object in the
database, including upper- and lower- case letters. For example, if the name clause you supply
is for a table named EMPLOYEES, then there must be an existing table named EMPLOYEES using
all upper-case letters. If the name clause is provided as Employees Or employees or any other
variation, then the table is not found.

Depending on your operating system, the use of quotation marks when you specify a value for
this parameter can also require that you use escape characters. Oracle recommends that you
place this parameter in a parameter file, which can reduce the number of escape characters
that you otherwise need to enter on the command line.

For example, suppose you have a parameter file named hr.par with the following content:

SCHEMAS=HR

DUMPFILE=expinclude.dmp

DIRECTORY=dpump dirl

LOGFILE=expinclude.log

INCLUDE=TABLE:"IN ('EMPLOYEES', 'DEPARTMENTS')"
INCLUDE=PROCEDURE

INCLUDE=INDEX:"LIKE 'EMP%'"

You can then use the hr.par file to start an export operation, without having to enter any other
parameters on the command line. The EMPLOYEES and DEPARTMENTS tables, all procedures, and
all index names with an EMP prefix, are included in the export.

> expdp hr PARFILE=hr.par

Including Constraints

If the object type that you specify is a CONSTRAINT, then be aware of the effects of using a
constraint..

You cannot include explicitly the following constraints:

e NOT NULL constraints

e Constraints that are required for the table to be created and loaded successfully. For
example: you cannot include primary key constraints for index-organized tables, or REF
SCOPE and WITH ROWID constraints for tables with REF columns.

For example, the following INCLUDE statements are interpreted as follows:

e INCLUDE=CONSTRAINT includes all (nonreferential) constraints, except for NOT NULL
constraints, and any constraints needed for successful table creation and loading.

* INCLUDE=REF CONSTRAINT includes referential integrity (foreign key) constraints.

You can set both INCLUDE and EXCLUDE parameters in the same command.

When you include both parameters in a command, Oracle Data Pump processes the INCLUDE
parameter first, and includes all objects identified by the parameter. Then it processes the

2-47

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

exclude parameters. Any objects specified by the EXCLUDE parameter that are in the list of
include objects are removed as the command executes.

Restrictions

e Grants on objects owned by the sys schema are never exported.

Example

The following example performs an export of all tables (and their dependent objects) in the hr
schema:

> expdp hr INCLUDE=TABLE DUMPFILE=dpump dirl:exp inc.dmp NOLOGFILE=YES

Related Topics
e Oracle Data Pump Metadata Filters

e Parameters Available in Data Pump Export Command-Line Mode

2.4.30 JOB_NAME

The Oracle Data Pump Export command-line utility JOB_NAME parameter identifies the export
job in subsequent actions.

Default

A system-generated name of the form SYS EXPORT EXPORT or SQLFILE mode NN

Purpose

Use the JOB_NAME parameter when you want to identify the export job in subsequent actions.
For example, when you want to use the ATTACH parameter to attach to a job, you use the
JOB_NAME parameter to identify the name of the job that you want to attach. You can also use
JOB_NAME to identify the job by using the views DBA DATAPUMP JOBS Of USER_DATAPUMP JOBS.

Syntax and Description

JOB_NAME=jobname string

The jobname string specifies a name of up to 128 bytes for the export job. The bytes must
represent printable characters and spaces. If the name includes spaces or other non-
alphanumeric characters (for example, hyphens), then the name must be enclosed in single
guotation marks. Examples: 'Thursday Export', 'Thursday-Export'. For additional information
about job name restrictions, see "Database Object Names and Qualifiers" item 7 in Oracle
Database SQL Language Reference. The job name is implicitly qualified by the schema of the
user performing the export operation. The job name is used as the name of the Data Pump
control import job table, which controls the export job.

The default job name is system-generated in the form SYS EXPORT mode NN, where NN expands
to a 2-digit incrementing integer starting at 01. An example of a default name is
'SYS EXPORT TABLESPACE 02°'.

ORACLE 548

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Example

The following example shows an export operation that is assigned a job name of exp job:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=exp job.dmp JOB NAME=exp job
NOLOGFILE=YES

Related Topics

« Database Object Names and Qualifiers in Oracle Database SQL Language Reference

2.4.31 KEEP_MASTER

The Oracle Data Pump Export command-line utility KEEP MASTER parameter indicates whether
the Data Pump control job table should be deleted or retained at the end of an Oracle Data
Pump job that completes successfully.

Default

NO

Purpose

Indicates whether the Data Pump control job table should be deleted or retained at the end of
an Oracle Data Pump job that completes successfully. The Data Pump control job table is
automatically retained for jobs that do not complete successfully.

Syntax and Description

KEEP MASTER=[YES | NO]

Restrictions

* None
Example

> expdp hr DIRECTORY=dpump dirl DUMPFILE=expdat.dmp SCHEMAS=hr KEEP MASTER=YES

2.4.32 LOGFILE

ORACLE

The Data Pump Export command-line utility LOGFILE parameter specifies the name, and
optionally, a directory, for the log file of the export job.

Default: export.log

Purpose

Specifies the name, and optionally, a directory, for the log file of the export job.

Syntax and Description

LOGFILE=[directory object:]file name

2-49

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

You can specify a database directory object previously established by the DBA, assuming
that you have access to it. This setting overrides the directory object specified with the
DIRECTORY parameter.

The file name specifies a name for the log file. The default behavior is to create a file named
export.log in the directory referenced by the directory object specified in the DIRECTORY
parameter.

All messages regarding work in progress, work completed, and errors encountered are written
to the log file. (For a real-time status of the job, use the STATUS command in interactive mode.)

A log file is always created for an export job unless the NOLOGFILE parameter is specified. As
with the dump file set, the log file is relative to the server and not the client.

An existing file matching the file name is overwritten.

Restrictions

e To perform a Data Pump Export using Oracle Automatic Storage Management (Oracle
ASM), you must specify a LOGFILE parameter that includes a directory object that does not
include the Oracle ASM + notation. That is, the log file must be written to a disk file, and
not written into the Oracle ASM storage. Alternatively, you can specify NOLOGFILE=YES.
However, if you specify NOLOGFILE=YES, then that setting prevents the writing of the log file.

Example

The following example shows how to specify a log file name when you do not want to use the
default:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp LOGFILE=hr export.log

Note:

Data Pump Export writes the log file using the database character set. If your client
NLS_LANG environment setting sets up a different client character set from the
database character set, then it is possible that table names can be different in the log
file than they are when displayed on the client output screen.

Related Topics
e« STATUS

e Using Directory Objects When Oracle Automatic Storage Management Is Enabled

2.4.33 LOGTIME

ORACLE

The Oracle Data Pump Export command-line utility LOGTIME parameter specifies that
messages displayed during export operations are timestamped.

Default

No timestamps are recorded

2-50

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Purpose

Specifies that messages displayed during export operations are timestamped. You can use the
timestamps to figure out the elapsed time between different phases of a Data Pump operation.
Such information can be helpful in diagnosing performance problems and estimating the timing
of future similar operations.

Syntax and Description
LOGTIME=[NONE | STATUS | LOGFILE | ALL]

The available options are defined as follows:

e NONE: No timestamps on status or log file messages (same as default)

STATUS: Timestamps on status messages only
* LOGFILE: Timestamps on log file messages only

e ALL: Timestamps on both status and log file messages

Restrictions

If the file specified by LOGFILE exists and it is not identified as a Data Pump LOGFILE, such as
using more than one dot in the filename (specifically, a compound suffix), then it cannot be
overwritten. You must specify a different filename.

Example

The following example records timestamps for all status and log file messages that are
displayed during the export operation:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=expdat.dmp SCHEMAS=hr LOGTIME=ALL

The output looks similar to the following:

10-JUL-12 10:12:22.300: Starting "HR"."SYS EXPORT SCHEMA 01": hy/*x*kxxxx
directory=dpump dirl dumpfile=expdat.dmp schemas=hr logtime=all

10-JUL-12 10:12:22.915: Estimate in progress using BLOCKS method...

10-JUL-12 10:12:24.422: Processing object type SCHEMA EXPORT/TABLE/TABLE DATA
10-JUL-12 10:12:24.498: Total estimation using BLOCKS method: 128 KB
10-JUL-12 10:12:24.822: Processing object type SCHEMA EXPORT/USER

10-JUL-12 10:12:24.902: Processing object type SCHEMA EXPORT/SYSTEM GRANT
10-JUL-12 10:12:24.926: Processing object type SCHEMA EXPORT/ROLE_GRANT
10-JUL-12 10:12:24.948: Processing object type SCHEMA EXPORT/DEFAULT ROLE
10-JUL-12 10:12:24.967: Processing object type SCHEMA EXPORT/TABLESPACE QUOTA
10-JUL-12 10:12:25.747: Processing object type SCHEMA EXPORT/PRE SCHEMA/
PROCACT SCHEMA

10-JUL-12 10:12:32.762: Processing object type SCHEMA EXPORT/SEQUENCE/SEQUENCE
10-JUL-12 10:12:46.631: Processing object type SCHEMA EXPORT/TABLE/TABLE
10-JUL-12 10:12:58.007: Processing object type SCHEMA EXPORT/TABLE/GRANT/
OWNER_GRANT/OBJECT_GRANT

10-JUL-12 10:12:58.106: Processing object type SCHEMA EXPORT/TABLE/COMMENT
10-JUL-12 10:12:58.516: Processing object type SCHEMA EXPORT/PROCEDURE/
PROCEDURE

10-JUL-12 10:12:58.630: Processing object type SCHEMA EXPORT/PROCEDURE/

2-51

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

ALTER PROCEDURE

10-JUL-12 10:12:59.365: Processing object type SCHEMA EXPORT/TABLE/INDEX/INDEX
10-JUL-12 10:13:01.066: Processing object type SCHEMA EXPORT/TABLE/CONSTRAINT/
CONSTRAINT

10-JUL-12 10:13:01.143: Processing object type SCHEMA EXPORT/TABLE/INDEX/
STATISTICS/INDEX_STATISTICS

10-JUL-12 10:13:02.503: Processing object type SCHEMA EXPORT/VIEW/VIEW
10-JUL-12 10:13:03.288: Processing object type SCHEMA EXPORT/TABLE/CONSTRAINT/
REF CONSTRAINT

10-JUL-12 10:13:04.067: Processing object type SCHEMA EXPORT/TABLE/TRIGGER
10-JUL-12 10:13:05.251: Processing object type SCHEMA EXPORT/TABLE/STATISTICS/
TABLE STATISTICS

10-JUL-12 10:13:06.172: . . exported
"HR"."EMPLOYEES" 17.05 KB 107 rows
10-JUL-12 10:13:06.658: . . exported
"HR"."COUNTRIES" 6.429 KB 25 rows
10-JUL-12 10:13:06.691: . . exported
"HR"."DEPARTMENTS" 7.093 KB 27 rows
10-JUL-12 10:13:06.723: . . exported
"HR"."JOBS" 7.078 KB 19 rows
10-JUL-12 10:13:06.758: . . exported
"HR"."JOB HISTORY" 7.164 KB 10 rows
10-JUL-12 10:13:06.794: . . exported
"HR"."LOCATIONS" 8.398 KB 23 rows
10-JUL-12 10:13:06.824: . . exported
"HR"."REGIONS" 5.515 KB 4 rows

10-JUL-12 10:13:07.500: Master table "HR"."SYS EXPORT SCHEMA 01" successfully
loaded/unloaded
10-JUL-12 10:13:07.503:

R R R B R S B R S S I S I I R I I I e I S I S R b S b b S I I I I S b b b b b S b b b 4

2.4.34 METRICS

ORACLE

The Oracle Data Pump Export command-line utility METRICS parameter indicates whether you
want additional information about the job reported to the Data Pump log file.

Default

NO

Purpose

Indicates whether additional information about the job should be reported to the Data Pump log
file.

Syntax and Description

METRICS=[YES | NO]

When METRICS=YES is used, the number of objects and the elapsed time are recorded in the
Data Pump log file.

Restrictions

None

2-52

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Example

> expdp hr DIRECTORY=dpump dirl DUMPFILE=expdat.dmp SCHEMAS=hr METRICS=YES

2.4.35 NETWORK_LINK

The Data Pump Export command-line utility NETWORK LINK parameter enables an export from a
(source) database identified by a valid database link. The data from the source database
instance is written to a dump file set on the connected database instance.

Default: There is no default

Purpose

Enables an export from a (source) database identified by a valid database link. The data from
the source database instance is written to a dump file set on the connected database instance.
Syntax and Description

NETWORK LINK=source database link

The NETWORK_LINK parameter initiates an export using a database link. This export setting
means that the system to which the expdp client is connected contacts the source database

referenced by the source database link, retrieves data from it, and writes the data to a dump
file set back on the connected system.

The source database link provided must be the name of a database link to an available
database. If the database on that instance does not already have a database link, then you or
your DBA must create one using the SQL CREATE DATABASE LINK Statement.

If the source database is read-only, then the user on the source database must have a locally
managed temporary tablespace assigned as the default temporary tablespace. Otherwise, the
job will fail.

The following types of database links are supported for use with Data Pump Export:
* Public fixed user

e Public connected user

* Public shared user (only when used by link owner)

e Private shared user (only when used by link owner)

* Private fixed user (only when used by link owner)

Caution:

If an export operation is performed over an unencrypted network link, then all data is
exported as clear text, even if it is encrypted in the database. See Oracle Database
Security Guide for more information about network security.

Restrictions

e The following types of database links are not supported for use with Data Pump Export:

ORACLE 53

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

— Private connected user
— Current user

* When operating across a network link, Data Pump requires that the source and target
databases differ by no more than two versions. For example, if one database is Oracle
Database 12c, then the other database must be 12c, 119, or 10g. Note that Data Pump
checks only the major version number (for example, 10g,11g, 12c), not specific release
numbers (for example, 12.1, 12.2, 11.1, 11.2, 10.1 or 10.2).

* When transporting a database over the network using full transportable export, auditing
cannot be enabled for tables stored in an administrative tablespace (such as sYSTEM and
SYsaUX) if the audit trail information itself is stored in a user-defined tablespace.

* Metadata cannot be imported in parallel when the NETWORK LINK parameter is also used

Example

The following is a syntax example of using the NETWORK LINK parameter. Replace the variable
source database link with the name of a valid database link that must already exist.

> expdp hr DIRECTORY=dpump dirl NETWORK LINK=source database link
DUMPFILE=network export.dmp LOGFILE=network export.log

¢ See Also:
e Oracle Database Administrator’s Guide for more information about database
links

* Oracle Database SQL Language Reference for more information about the
CREATE DATABASE LINK statement

* Oracle Database Administrator’s Guide for more information about locally
managed tablespaces

2.4.36 NOLOGFILE

ORACLE

The Data Pump Export command-line utility NOLOGFILE parameter specifies whether to
suppress creation of a log file.

Default: NO

Purpose

Specifies whether to suppress creation of a log file.

Syntax and Description

NOLOGFILE=[YES | NO]

Specify NOLOGFILE=YES to suppress the default behavior of creating a log file. Progress and
error information is still written to the standard output device of any attached clients, including
the client that started the original export operation. If there are no clients attached to a running
job, and you specify NOLOGFILE=YES, then you run the risk of losing important progress and
error information.

2-54

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Example

The following is an example of using the NOLOGFILE parameter:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp NOLOGFILE=YES

This command results in a schema-mode export (the default), in which no log file is written.

2.4.37 PARALLEL

The Oracle Data Pump Export command-line utility PARALLEL parameter specifies the
maximum number of processes of active execution operating on behalf of the export job.

Default
1

Purpose

Specifies the maximum number of processes of active execution operating on behalf of the
export job. This execution set consists of a combination of worker processes and parallel input/
output (I/O) server processes. The Data Pump control process and worker processes acting as
query coordinators in parallel query operations do not count toward this total.

This parameter enables you to make trade-offs between resource consumption and elapsed
time.

Syntax and Description

PARALLEL=integer

The value that you specify for integer should be less than, or equal to, the number of files in
the dump file set (or you should specify either the U or %L substitution variables in the dump
file specifications). Because each active worker processor I/O server process writes
exclusively to one file at a time, an insufficient number of files can have adverse effects. For
example, some of the worker processes can be idle while waiting for files, thereby degrading
the overall performance of the job. More importantly, if any member of a cooperating group of
parallel 1/O server processes cannot obtain a file for output, then the export operation is
stopped with an ORA-39095 error. Both situations can be corrected by attaching to the job using
the Data Pump Export utility, adding more files using the ADD FILE command while in
interactive mode, and in the case of a stopped job, restarting the job.

To increase or decrease the value of PARALLEL during job execution, use interactive-command
mode. Decreasing parallelism does not result in fewer worker processes associated with the
job; it decreases the number of worker processes that are running at any given time. Also, any
ongoing work must reach an orderly completion point before the decrease takes effect.
Therefore, it can take a while to see any effect from decreasing the value. Idle worker
processes are not deleted until the job exits.

If there is work that can be performed in parallel, then increasing the parallelism takes effect
immediately .

ORACLE 5 e

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Using PARALLEL During An Export In An Oracle RAC Environment

In an Oracle Real Application Clusters (Oracle RAC) environment, if an export operation has
PARALLEL=1, then all Oracle Data Pump processes reside on the instance where the job is
started. Therefore, the directory object can point to local storage for that instance.

If the export operation has PARALLEL set to a value greater than 1, then Oracle Data Pump
processes can reside on instances other than the one where the job was started. Therefore,
the directory object must point to shared storage that is accessible by all Oracle RAC cluster
members.

Restrictions

* This parameter is valid only in the Enterprise Edition of Oracle Database 119 or later.

* To export a table or table partition in parallel (using parallel query, or PQ, worker
processes), you must have the DATAPUMP EXP_FULL DATABASE role.

e Transportable tablespace metadata cannot be exported in parallel.
* Metadata cannot be exported in parallel when the NETWORK LINK parameter is also used.
* The following objects cannot be exported in parallel:

— TRIGGER

— VIEW

— OBJECT GRANT

— SEQUENCE

— CONSTRAINT

— REF _CONSTRAINT

Example

The following is an example of using the PARALLEL parameter:

> expdp hr DIRECTORY=dpump dirl LOGFILE=parallel export.log
JOB NAME=par4 job DUMPFILE=par exp%u.dmp PARALLEL=4

This results in a schema-mode export (the default) of the hr schema, in which up to four files
can be created in the path pointed to by the directory object, dpump dirl.

Related Topics
e DUMPFILE
e« Commands Available in Data Pump Export Interactive-Command Mode

« Performing a Parallel Full Database Export

ORACLE 56

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.38 PARALLEL_THRESHOLD

ORACLE

The Oracle Data Pump Export command-line utility PARALLEL THRESHOLD parameter specifies
the size of the divisor that Data Pump uses to calculate potential parallel DML based on table
size

Default

250MB

Purpose

PARALLEL THRESHOLD should only be used with export or import jobs of a single unpartitioned
table, or one partition of a partitioned table. When you specify PARALLEL in the job, you can
specify PARALLEL THRESHOLD to modify the size of the divisor that Oracle Data Pump uses to
determine if a table should be exported or imported using parallel data manipulation
statements (PDML) during imports and exports. If you specify a lower value than the default,
then it enables a smaller table size to use the Oracle Data Pump parallel algorithm. For
example, if you have a 100MB table and you want it to use PDML of 5, to break it into five
units, then you specify PARALLEL THRESHOLD=20M. Note that the database, the optimizer, and
the execution plan produced by the optimizer for the SQL determine the actual degree of
parallelism used to load or unload the object specified in the job.

Syntax and Description

The parameter value specifies the threshold size in bytes:

PARALLEL THRESHOLD=size-in-bytes

For a single table export or import, if you want a higher degree of parallelism, then you may
want to set PARALLEL THRESHOLD to lower values, to take advantage of parallelism for a smaller
table or table partition. However, the benefit of this resource allocation can be limited by the
performance of the 1/O of the file systems to which you are loading or unloading. Also, if the job
involves more than one object, for both tables and metadata objects, then the PQ allocation
request specified by PARALLEL with PARALLEL THRESHOLD is of limited value. The actual amount
of PQ processes allocated to a table is impacted by how many operations Oracle Data Pump is
running concurrently, where the amount of parallelism has to be shared. The database, the
optimizer, and the execution plan produced by the optimizer for the SQL determine the actual
degree of parallelism used to load or unload the object specified in the job.

You can use this parameter to assist with particular data movement issues. For example:

e When you want to use Oracle Data Pump to load a large table from one database into a
larger table in another database. One possible use case: Uploading weekly sales data
from an OLTP database into a reporting or business analytics data warehouse database.

« When you want to export a single large table, but you have not gathered RDBMS stats
recently. The default size is determined from the table's statistics. However, suppose that
the statistics are old (or have never been run). In that case, the value used by Oracle Data
Pump could underrepresent the table's actual size. To compensate for a case such as this,
you can specify a smaller parallel threshold value, so that the algorithm for the degree
of parallelism (table size divided by threshold amount) can yield a more reasonable degree
of parallelism value.

2-57

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Restrictions

PARALLEL THRESHOLD is used only in conjunction when the PARALLEL parameter is specified
with a value greater than 1.

Example

The following is an example of using the PARALLEL THRESHOLD parameter to export the table
table to use PDML, where the size of the divisor for PQ processes is set to 1 KB, the
variables user and user-password are the user and password of the user running Export
(expdp), and the job name is parathresh example.

expdp user/user-password \
directory=dpump dir \
dumpfile=parathresh example.dmp
tables=table to use PDML \
parallel=8 \
parallel threshold=1K \
job_name=parathresh example

2.4.39 PARFILE

ORACLE

The Oracle Data Pump Export command-line utility PARFILE parameter specifies the name of
an export parameter file.

Default

There is no default

Purpose

Specifies the name of an export parameter file, also known as a parfile.

Syntax and Description

PARFILE=[directory path]file name

A parameter file enables you to specify Oracle Data Pump parameters within a file. You can
then specify that file on the command line, instead of entering all of the individual commands.
Using a parameter file can be useful if you use the same parameter combination many times.
The use of parameter files is also highly recommended when you use parameters whose
values require the use of quotation marks.

A directory object is not specified for the parameter file. You do not specify a directory object,
because the parameter file is opened and read by the expdp client, unlike dump files, log files,
and SQL files which are created and written by the server. The default location of the
parameter file is the user's current directory.

Within a parameter file, a comma is implicit at every newline character so you do not have to
enter commas at the end of each line. If you have a long line that wraps, such as a long table
name, then enter the backslash continuation character (\) at the end of the current line to
continue onto the next line.

The contents of the parameter file are written to the Data Pump log file.

2-58

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Restrictions

The PARFILE parameter cannot be specified within a parameter file.

Example

Suppose the content of an example parameter file, hr.par, is as follows:

SCHEMAS=HR
DUMPFILE=exp.dmp
DIRECTORY=dpump dirl
LOGFILE=exp.log

You can then issue the following Export command to specify the parameter file:

> expdp hr PARFILE=hr.par

Related Topics

e About Data Pump Export Parameters
Learn how to use Oracle Data Pump Export parameters in command-line mode, including
case sensitivity, quotation marks, escape characters, and information about how to use
examples.

2.4.40 QUERY

ORACLE

The Oracle Data Pump Export command-line utility QUERY parameter enables you to specify a
query clause that is used to filter the data that gets exported.

Default

There is no default.

Purpose

Enables you to specify a query clause that is used to filter the data that gets exported.

Syntax and Description

QUERY = [schema.][table name:] query clause

The query clause is typically a SQL WHERE clause for fine-grained row selection, but could be
any SQL clause. For example, you can use an ORDER BY clause to speed up a migration from a
heap-organized table to an index-organized table. If a schema and table name are not
supplied, then the query is applied to (and must be valid for) all tables in the export job. A
table-specific query overrides a query applied to all tables.

When the query is to be applied to a specific table, a colon must separate the table name from
the query clause. More than one table-specific query can be specified, but only one query can
be specified per table.

If the NETWORK_LINK parameter is specified along with the QUERY parameter, then any objects
specified in the query clause that are on the remote (source) node must be explicitly qualified
with the NETWORK LINK value. Otherwise, Data Pump assumes that the object is on the local
(target) node; if it is not, then an error is returned and the import of the table from the remote
(source) system fails.

2-59

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

For example, if you specify NETWORK LINK=dblinkl, then the query clause of the QUERY
parameter must specify that link, as shown in the following example:

QUERY= (hr.employees:"WHERE last name IN(SELECT last name
FROM hr.employees@dblinkl)")

Depending on your operating system, when you specify a value for this parameter that the
uses quotation marks, it can also require that you use escape characters. Oracle recommends
that you place this parameter in a parameter file, which can reduce the number of escape
characters that might otherwise be needed on the command line. .

To specify a schema other than your own in a table-specific query, you must be granted access
to that specific table.

Restrictions

e The QUERY parameter cannot be used with the following parameters:
— CONTENT=METADATA ONLY
— ESTIMATE ONLY
— TRANSPORT TABLESPACES

e When the QUERY parameter is specified for a table, Data Pump uses external tables to
unload the target table. External tables uses a SQL CREATE TABLE AS SELECT statement.
The value of the QUERY parameter is the WHERE clause in the SELECT portion of the CREATE
TABLE statement. If the QUERY parameter includes references to another table with columns
whose names match the table being unloaded, and if those columns are used in the query,
then you will need to use a table alias to distinguish between columns in the table being
unloaded and columns in the SELECT statement with the same name. The table alias used
by Data Pump for the table being unloaded is KUS.

For example, suppose you want to export a subset of the sh.sales table based on the
credit limit for a customer in the sh.customers table. In the following example, KU$ is used
to qualify the cust_id field in the QUERY parameter for unloading sh.sales. As a result,
Data Pump exports only rows for customers whose credit limit is greater than $10,000.

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
WHERE cust credit limit > 10000 AND ku$.cust id = c.cust id)"'

In the following query, KU$ is not used for a table alias. The result is that all rows are
unloaded:

QUERY='sales:"WHERE EXISTS (SELECT cust id FROM customers c
WHERE cust credit limit > 10000 AND cust id = c.cust id)"'

e The maximum length allowed for a QUERY string is 4000 bytes, which includes quotation
marks. This restriction means that the actual maximum length allowed is 3998 bytes.

Example

The following is an example of using the QUERY parameter:

> expdp hr PARFILE=emp query.par

2-60

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

The contents of the emp_query.par file are as follows:

QUERY=employees:"WHERE department id > 10 AND salary > 10000"
NOLOGFILE=YES

DIRECTORY=dpump dirl

DUMPFILE=expl.dmp

This example unloads all tables in the hr schema, but only the rows that fit the query
expression. In this case, all rows in all tables (except employees) in the hr schema are
unloaded. For the employees table, only rows that meet the query criteria are unloaded.

Related Topics

e About Data Pump Export Parameters

2.4.41 REMAP_DATA

ORACLE

The Oracle Data Pump Export command-line utility REMAP DATA parameter enables you to
specify a remap function that takes as a source the original value of the designated column
and returns a remapped value that replaces the original value in the dump file.

Default

There is no default

Purpose

The REMAP DATA parameter enables you to specify a remap function that takes as a source the
original value of the designated column, and returns a remapped value that will replace the
original value in the dump file. A common use for this option is to mask data when moving from
a production system to a test system. For example, a column of sensitive customer data, such
as credit card numbers, could be replaced with numbers generated by a REMAP DATA function.
Replacing the sensitive data with numbers enables the data to retain its essential formatting
and processing characteristics, without exposing private data to unauthorized personnel.

The same function can be applied to multiple columns being dumped. This function is useful
when you want to guarantee consistency in remapping both the child and parent column in a
referential constraint.

Syntax and Description

REMAP DATA=[schema.]tablename.column name: [schema.]pkg.function

The description of each syntax element, in the order in which they appear in the syntax, is as
follows:

schema: the schema containing the table that you want to be remapped. By default, this is the
schema of the user doing the export.

tablename: the table whose column you want to be remapped.
column_name: the column whose data you want to be remapped.

schema : the schema containing the PL/SQL package that you have created that contains the
remapping function. As a default, this is the schema of the user doing the export.

pkg: the name of the PL/SQL package you have created that contains the remapping function.

2-61

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

function: the name of the function within the PL/SQL that will be called to remap the column
table in each row of the specified table.

Restrictions

* The data types and sizes of the source argument and the returned value must both match
the data type and size of the designated column in the table.

* Remapping functions should not perform commits or rollbacks except in autonomous
transactions.

* The use of synonyms as values for the REMAP DATA parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, an error would be
returned if you specified regn as part of the REMAP DATA specification.

* Remapping LOB column data of a remote table is not supported.

* Columns of the following types are not supported byREMAP DATA: User Defined Types,
attributes of User Defined Types, LONGS, REFS, VARRAYS, Nested Tables, BFILES, and
XMLtype.

Example

The following example assumes a package named remap has been created that contains
functions named minus10 and plusx. These functions change the values for employee id and
first name in the employees table.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=remapl.dmp TABLES=employees
REMAP DATA=hr.employees.employee id:hr.remap.minusl0
REMAP DATA=hr.employees.first name:hr.remap.plusx

2.4.42 REUSE_DUMPFILES

The Oracle Data Pump Export command-line utility REUSE_DUMPFILES parameter specifies
whether to overwrite a preexisting dump file.

Default

NO

Purpose

Specifies whether to overwrite a preexisting dump file.

Syntax and Description

REUSE DUMPFILES=[YES | NO]

Normally, Data Pump Export will return an error if you specify a dump file name that already
exists. The REUSE DUMPFILES parameter allows you to override that behavior and reuse a dump
file name. For example, if you performed an export and specified DUMPFILE=hr.dmp and
REUSE_DUMPFILES=YES, then hr.dmp is overwritten if it already exists. Its previous contents are
then lost, and it instead contains data for the current export.

ORACLE 562

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Example

The following export operation creates a dump file named enc1.dmp, even if a dump file with
that name already exists.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=encl.dmp
TABLES=employees REUSE DUMPFILES=YES

2.4.43 SAMPLE

ORACLE

The Oracle Data Pump Export command-line utility SAMPLE parameter specifies a percentage
of the data rows that you want to be sampled and unloaded from the source database.

Default

There is no default.

Purpose

Specifies a percentage of the data rows that you want to be sampled and unloaded from the
source database.

Syntax and Description

SAMPLE=[[schema name.]table name:]sample percent

This parameter allows you to export subsets of data by specifying the percentage of data to be
sampled and exported. The sample percent indicates the probability that a row will be
selected as part of the sample. It does not mean that the database will retrieve exactly that
amount of rows from the table. The value you supply for sample percent can be anywhere
from .000001 up to, but not including, 100.

You can apply the sample percent to specific tables. In the following example, 50% of the
HR.EMPLOYEES table is exported:

SAMPLE="HR"."EMPLOYEES":50

If you specify a schema, then you must also specify a table. However, you can specify a table
without specifying a schema. In that scenario, the current user is assumed. If no table is
specified, then the sample percent value applies to the entire export job.

You can use this parameter with the Data Pump Import PCTSPACE transform, so that the size of
storage allocations matches the sampled data subset. (See the Import TRANSFORM parameter).

Restrictions

e The saMPLE parameter is not valid for network exports.

Example

In the following example, the value 70 for SAMPLE is applied to the entire export job because no
table name is specified.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=sample.dmp SAMPLE=70

2-63

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Related Topics
¢ TRANSFORM

2.4.44 SCHEMAS

The Oracle Data Pump Export command-line utility SCHEMAS parameter specifies that you want
to perform a schema-mode export.

Default

The current user's schema

Purpose

Specifies that you want to perform a schema-mode export. This is the default mode for Export.

Syntax and Description

SCHEMAS=schema name [, ...]

If you have the DATAPUMP EXP FULL DATABASE role, then you can specify a single schema other
than your own or a list of schema names. The DATAPUMP EXP FULL DATABASE role also allows
you to export additional nonschema object information for each specified schema so that the
schemas can be re-created at import time. This additional information includes the user

definitions themselves and all associated system and role grants, user password history, and
so on. Filtering can further restrict what is exported using schema mode.

Restrictions

* If you do not have the DATAPUMP EXP FULL DATABASE role, then you can specify only your
own schema.

e The sys schema cannot be used as a source schema for export jobs.

Example

The following is an example of using the SCHEMAS parameter. Note that user hr is allowed to
specify more than one schema, because the DATAPUMP EXP FULL DATABASE role was
previously assigned to it for the purpose of these examples.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=expdat.dmp SCHEMAS=hr,sh,oe

This results in a schema-mode export in which the schemas, hr, sh, and oe will be written to
the expdat.dmp dump file located in the dpump dirl directory.

Related Topics

e Filtering During Export Operations

ORACLE 564

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.45 SERVICE_NAME

ORACLE

The Oracle Data Pump Export command-line utility SERVICE NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

Default

There is no default.

Purpose

Specifies a service name that you want to use in conjunction with the CLUSTER parameter.
Syntax and Description

SERVICE NAME=name

You can use the SERVICE NAME parameter with the CLUSTER=YES parameter to specify an
existing service associated with a resource group that defines a set of Oracle Real Application
Clusters (Oracle RAC) instances belonging to that resource group. Typically, the resource
group is a subset of all the Oracle RAC instances.

The service name is only used to determine the resource group, and the instances defined for
that resource group. The instance where the job is started is always used, regardless of
whether it is part of the resource group.

If CLUSTER=NO is also specified, then the SERVICE NAME parameter is ignored

Suppose you have an Oracle RAC configuration containing instances A, B, C, and D. Also
suppose that a service named my service exists with a resource group consisting of instances
A, B, and C only. In such a scenario, the following is true:

e If you start an Oracle Data Pump job on instance A, and specify CLUSTER=YES (or accept
the default, which is Y), and you do not specify the SERVICE NAME parameter, then Oracle
Data Pump creates workers on all instances: A, B, C, and D, depending on the degree of
parallelism specified.

* If you start a Data Pump job on instance A, and specify CLUSTER=YES, and
SERVICE NAME=my service, then workers can be started on instances A, B, and C only.

e If you start a Data Pump job on instance D, and specify CLUSTER=YES, and
SERVICE NAME=my service, then workers can be started on instances A, B, C, and D. Even
though instance D is not in my _service it is included because it is the instance on which
the job was started.

e If you start a Data Pump job on instance A, and specify CLUSTER=NO, then any
SERVICE NAME parameter that you specify is ignored. All processes start on instance A.

Example
The following is an example of using the SERVICE NAME parameter:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=hr svname2.dmp SERVICE NAME=sales

This example starts a schema-mode export (the default mode) of the hr schema. Even though
CLUSTER=YES is not specified on the command line, it is the default behavior, so the job uses all

2-65

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

instances in the resource group associated with the service name sales. A dump file named
hr_svname2.dmp is written to the location specified by the dpump dirl directory object.

Related Topics
« CLUSTER

2.4.46 SOURCE_EDITION

The Oracle Data Pump Export command-line utility SOURCE _EDITION parameter specifies the
database edition from which objects are exported.

Default: the default database edition on the system

Purpose

Specifies the database edition from which objects are exported.

Syntax and Description
SOURCE_EDITION=edition name
If SOURCE_EDITION=edition name is specified, then the objects from that edition are exported.

Data Pump selects all inherited objects that have not changed, and all actual objects that have
changed.

If this parameter is not specified, then the default edition is used. If the specified edition does
not exist or is not usable, then an error message is returned.

Restrictions

e This parameter is only useful if there are two or more versions of the same versionable
objects in the database.

e The job version must be 11.2 or later.

Example
The following is an example of using the SOURCE_EDITION parameter:

> expdp hr DIRECTORY=dpump dirl DUMPFILE=exp dat.dmp SOURCE EDITION=exp edition
EXCLUDE=USER

This example assumes the existence of an edition named exp edition on the system from
which objects are being exported. Because no export mode is specified, the default of schema
mode will be used. The EXCLUDE=user parameter excludes only the definitions of users, not the
objects contained within users' schemas.

Related Topics
e VERSION
« CREATE EDITION in Oracle Database SQL Language Reference

« Editions inOracle Database Development Guide

ORACLE 566

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.47 STATUS

The Oracle Data Pump Export command-line utility STATUS parameter specifies the frequency
at which the job status display is updated.

Default
0

Purpose

Specifies the frequency at which the job status display is updated.

Syntax and Description

STATUS=[integer]

If you supply a value for integer, it specifies how frequently, in seconds, job status should be
displayed in logging mode. If no value is entered or if the default value of 0 is used, then no
additional information is displayed beyond information about the completion of each object
type, table, or partition.

This status information is written only to your standard output device, not to the log file (if one
is in effect).

Example

The following is an example of using the STATUS parameter.

> expdp hr DIRECTORY=dpump dirl SCHEMAS=hr,sh STATUS=300

This example exports the hr and sh schemas, and displays the status of the export every 5
minutes (60 seconds x 5 = 300 seconds).

2.4.48 TABLES

ORACLE

The Oracle Data Pump Export command-line utility TABLES parameter specifies that you want
to perform a table-mode export.

Default

There is no default.

Purpose

Specifies that you want to perform a table-mode export.

Syntax and Description

TABLES=[schema name.] table name[:partition name] [, ...]

Filtering can restrict what is exported using this mode. You can filter the data and metadata
that is exported by specifying a comma-delimited list of tables and partitions or subpatrtitions. If
a partition name is specified, then it must be the name of a partition or subpatrtition in the
associated table. Only the specified set of tables, partitions, and their dependent objects are
unloaded.

2-67

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

If an entire partitioned table is exported, then it is imported in its entirety as a partitioned table.
The only case in which this is not true is if PARTITION OPTIONS=DEPARTITION is specified during

import.

The table name that you specify can be preceded by a qualifying schema name. The schema
defaults to that of the current user. To specify a schema other than your own, you must have
the DATAPUMP EXP FULL DATABASE role.

Use of the wildcard character (%) to specify table names and partition names is supported.

The following restrictions apply to table names:

By default, table names in a database are stored as uppercase. If you have a table name
in mixed-case or lowercase, and you want to preserve case-sensitivity for the table name,
then you must enclose the name in quotation marks. The name must exactly match the
table name stored in the database.

Some operating systems require that quotation marks on the command line are preceded
by an escape character. The following examples show of how case-sensitivity can be
preserved in the different Export modes.

— In command-line mode:
TABLES="\"Emp\"'
— In parameter file mode:
TABLES='""Emp""
Table names specified on the command line cannot include a pound sign (#), unless the
table name is enclosed in quotation marks. Similarly, in the parameter file, if a table name

includes a pound sign (#), then the Data Pump Export utility interprets the rest of the line
as a comment, unless the table name is enclosed in quotation marks.

For example, if the parameter file contains the following line, then Data Pump Export
interprets everything on the line after emp# as a comment, and does not export the tables
dept and mydata:

TABLES= (emp#, dept, mydata)

However, if the parameter file contains the following line, then the Data Pump Export utility
exports all three tables, because emp# is enclosed in quotation marks:

TABLES=('"emp#"', dept, mydata)

2-68

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Note:

Some operating systems use single quotation marks as escape characters,
rather than double quotation marks, and others the reverse. Refer to your
operating system-specific documentation. Different operating systems also have
other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a dollar sign ($) or
pound sign (#), or certain other special characters. You must use escape
characters to be able to use such characters in the name and have them ignored
by the shell, and used by Export.

Using the Transportable Option During Table-Mode Export

To use the transportable option during a table-mode export, specify the TRANSPORTABLE=ALWAYS
parameter with the TABLES parameter. Metadata for the specified tables, partitions, or
subpartitions is exported to the dump file. To move the actual data, you copy the data files to
the target database.

If only a subset of a table's partitions are exported and the TRANSPORTABLE=ALWAYS parameter
is used, then on import each partition becomes a non-partitioned table.

Restrictions

e Cross-schema references are not exported. For example, a trigger defined on a table
within one of the specified schemas, but that resides in a schema not explicitly specified, is
not exported.

e Types used by the table are not exported in table mode. This restriction means that if you
subsequently import the dump file, and the type does not already exist in the destination
database, then the table creation fails.

e The use of synonyms as values for the TABLES parameter is not supported. For example, if
the regions table in the hr schema had a synonym of regn, then it is not valid to use
TABLES=regn. If you attempt to use the synonym, then an error is returned.

* The export of tables that include a wildcard character (%) in the table name is not supported
if the table has partitions.

* The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4 MB, unless you are using the NETWORK LINK parameter to an Oracle
Database release 10.2.0.3 or earlier, or to a read-only database. In such cases, the limit is
4 KB.

e You can only specify partitions from one table if TRANSPORTABLE=ALWAYS is also set on the
export.

Examples

The following example shows a simple use of the TABLES parameter to export three tables
found in the hr schema: employees, jobs, and departments. Because user hr is exporting
tables found in the hr schema, the schema name is not needed before the table names.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=tables.dmp
TABLES=employees, jobs,departments

2-69

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

The following example assumes that user hr has the DATAPUMP EXP FULL DATABASE role. It
shows the use of the TABLES parameter to export partitions.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=tables part.dmp
TABLES=sh.sales:sales Q1 2012,sh.sales:sales Q2 2012

This example exports the partitions, sales Q1 2012 and sales 02 2012, from the table sales
in the schema sh.

Related Topics
e Filtering During Export Operations

¢ TRANSPORTABLE
The Oracle Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode or full mode export.

e REMAP_TABLE
The Oracle Data Pump Import command-line mode REMAP TABLE parameter enables you to
rename tables during an import operation.

* Using Data File Copying to Move Data

2.4.49 TABLESPACES

The Oracle Data Pump Export command-line utility TABLESPACES parameter specifies a list of
tablespace names that you want to be exported in tablespace mode.

Default

There is no default.

Purpose

Specifies a list of tablespace names that you want to be exported in tablespace mode.

Syntax and Description

TABLESPACES=tablespace name [, ...]

In tablespace mode, only the tables contained in a specified set of tablespaces are unloaded. If
a table is unloaded, then its dependent objects are also unloaded. Both object metadata and
data are unloaded. If any part of a table resides in the specified set, then that table and all of its
dependent objects are exported. Privileged users get all tables. Unprivileged users obtain only
the tables in their own schemas

Filtering can restrict what is exported using this mode.

Restrictions

The length of the tablespace name list specified for the TABLESPACES parameter is limited to a
maximum of 4 MB, unless you are using the NETWORK LINK to an Oracle Database release
10.2.0.3 or earlier, or to a read-only database. In such cases, the limit is 4 KB.

ORACLE 70

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Example

The following is an example of using the TABLESPACES parameter. The example assumes that
tablespaces tbs_4, tbs 5, and tbs_6 already exist.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=tbs.dmp
TABLESPACES=tbs 4, tbs 5, tbs 6

This command results in a tablespace export in which tables (and their dependent objects)
from the specified tablespaces (tbs 4, tbs 5, and tbs_6) is unloaded.

Related Topics

* Filtering During Export Operations

2.4.50 TRANSPORT_DATAFILES_LOG

ORACLE

The Oracle Data Pump Export command-line mode TRANSPORT DATAFILES LOG parameter
specifies a file into which the list of data files associated with a transportable export is written.

Default

None

Purpose

Specifies a file into which the list of data files associated with a transportable export is written.

Syntax and Description

TRANSPORT DATAFILES LOG=[directory object:]file name

If you specify a directory object, then it must be an object that was previously established in
the database and to which you have access. This parameter overrides the directory object
specified with the DIRECTORY parameter. There is no default for the log file file name. If
specified, the file is created in the directory object specified in the DIRECTORY parameter, unless
you explicitly specify another directory object. Any existing file that has a name matching
the one specified with this parameter is overwritten.

Usage Notes

The specified file written to as the TRANSPORT DATAFILES LOG file is formatted as an Oracle
Data Pump parameter file. You can modify this file to add any other parameters you want to
use, and specify this file as the value of the PARFILE parameter on a subsequent import.

Restrictions

This parameter is valid for transportable mode exports

Example

The following is an example of using the TRANSPORT DATAFILES LOG parameter.

> expdp hr DIRECTORY=dpump dir DUMPFILE=tts.dmp
TRANSPORT TABLESPACE=tbs 1, tbs 2 TRANSPORT DATAFILES LOG=tts.tdl

2-71

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

The following is an example of a file generated as the output using the
TRANSPORT DATAFILES LOG parameter. In the example, target database area pathis the
path to the tablespace file::

#

#
kkkhkhkhkkhhkhkhhkhkhhhhhkhhkhkhhhhhkhhkhhhhhhkhhkhkhhhhhkhhkhkhrhhhkhhkhkhrkhkhkhhhkhkhrkhkhkhhhhkhrkhhktxhhkhx*k
The dump file set and data files must be copied to the target database
area.

The data file paths must be updated accordingly before initiating the

Import.

#

khkhkhkhkk Ak hhkhkhkhhkhhhkhhhhkrhhhkhhhkrhhhkhhhkdhhhkhh kb hhdkhhhhkhhhkhdhhkhkhhhhkrhhhkhhhkrhhhrhkxx*k
#

Dump file set for SYSTEM.SYS EXPORT TRANSPORTABLE 01 is:
dpumpdirl:ttbs.dmp

#

Datafiles required for transportable tablespace TBSI1:

/oracle/dbs/tbsl.dbf

#

Datafiles required for transportable tablespace TBS2:

/oracle/dbs/tbs2.dbf

#

#

TRANSPORT DATAFILES=
'target database area pathtbsl.dbf'
'target database area pathtbs2.dbf'

2.4.51 TRANSPORT_FULL_CHECK

ORACLE

The Oracle Data Pump Export command-line utility TRANSPORT FULL CHECK parameter
specifies whether to check for dependencies between objects
Default

NO

Purpose

Specifies whether to check for dependencies between those objects inside the transportable
set and those outside the transportable set. This parameter is applicable only to a
transportable-tablespace mode export.

Syntax and Description

TRANSPORT FULL CHECK=[YES | NO]

If TRANSPORT FULL_CHECK=YES, then the Data Pump Export verifies that there are no
dependencies between those objects inside the transportable set and those outside the
transportable set. The check addresses two-way dependencies. For example, if a table is
inside the transportable set, but its index is not, then a failure is returned, and the export
operation is terminated. Similarly, a failure is also returned if an index is in the transportable
set, but the table is not.

If TRANSPORT FULL CHECK=NO then Export verifies only that there are no objects within the
transportable set that are dependent on objects outside the transportable set. This check

2-72

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

addresses a one-way dependency. For example, a table is not dependent on an index, but an
index is dependent on a table, because an index without a table has no meaning. Therefore, if
the transportable set contains a table, but not its index, then this check succeeds. However, if
the transportable set contains an index, but not the table, then the export operation is
terminated.

There are other checks performed as well. For instance, Data Pump Export always verifies that
all storage segments of all tables (and their indexes) defined within the tablespace set
specified by TRANSPORT TABLESPACES are actually contained within the tablespace set.

There are two current command line parameters that control full closure check:

TTS FULL CHECK=[YES|NO]
TRANSPORT FULL CHECK=[YES|NO]

[TTS|TRANSPORT] FULL CHECK=YES is interpreted as TTS CLOSURE CHECK=FULL.[TTS |
TRANSPORT] FULL CHECK=NO is interpreted as TTS CLOSURE CHECK=ON.

Example

The following is an example of using the TRANSPORT FULL CHECK parameter. It assumes that
tablespace tbs_1 exists.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=tts.dmp
TRANSPORT TABLESPACES=tbs 1 TRANSPORT FULL CHECK=YES LOGFILE=tts.log

2.4.52 TRANSPORT_TABLESPACES

ORACLE

The Oracle Data Pump Export command-line utility TRANSPORT TABLESPACES parameter
specifies that you want to perform an export in transportable-tablespace mode.

Default

There is no default.

Purpose

Specifies that you want to perform an export in transportable-tablespace mode.

Syntax and Description

TRANSPORT TABLESPACES=tablespace name [, ...]

Use the TRANSPORT TABLESPACES parameter to specify a list of tablespace names for which
object metadata will be exported from the source database into the target database.

The log file for the export lists the data files that are used in the transportable set, the dump
files, and any containment violations.

The TRANSPORT TABLESPACES parameter exports metadata for all objects within the specified
tablespaces. If you want to perform a transportable export of only certain tables, partitions, or
subpartitions, then you must use the TABLES parameter with the TRANSPORTABLE=ALWAYS
parameter.

2-73

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Note:

You cannot export transportable tablespaces and then import them into a database at
a lower release level. The target database must be at the same or later release level
as the source database.

Restrictions

e Transportable tablespace jobs are no longer restricted to a degree of parallelism of 1.

» Transportable tablespace mode requires that you have the DATAPUMP EXP FULL DATABASE
role.

* The default tablespace of the user performing the export must not be set to one of the
tablespaces being transported.

e The sYSTEM and SYSAUX tablespaces are not transportable in transportable tablespace
mode.

e All tablespaces in the transportable set must be set to read-only.

e If the Data Pump Export VERSION parameter is specified along with the
TRANSPORT TABLESPACES parameter, then the version must be equal to or greater than the
Oracle Database COMPATIBLE initialization parameter.

* The TRANSPORT TABLESPACES parameter cannot be used in conjunction with the QUERY

parameter.

» Transportable tablespace jobs do not support the ACCESS METHOD parameter for Data Pump
Export.

Example

The following is an example of using the TRANSPORT TABLESPACES parameter in a file-based job
(rather than network-based). The tablespace tbs 1 is the tablespace being moved. This
example assumes that tablespace tbs_1 exists and that it has been set to read-only. This
example also assumes that the default tablespace was changed before this export command
was issued.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=tts.dmp
TRANSPORT TABLESPACES=tbs 1 TRANSPORT FULL CHECK=YES LOGFILE=tts.log

See Oracle Database Administrator's Guide for detailed information about transporting
tablespaces between databases

Related Topics

e Transportable Tablespace Mode

e Using Data File Copying to Move Data

e How Does Oracle Data Pump Handle Timestamp Data?

e Transporting Tablespaces Between Databases in Oracle Database Administrator’s Guide

ORACLE —

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2.4.53 TRANSPORTABLE

The Oracle Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode or full mode export.

Default

NEVER

Purpose

Specifies whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL parameter).

Syntax and Description
TRANSPORTABLE = [ALWAYS | NEVER]
The definitions of the allowed values are as follows:

ALWAYS - Instructs the export job to use the transportable option. If transportable is not possible,
then the job fails.

In a table mode export, using the transportable option results in a transportable tablespace
export in which metadata for only the specified tables, partitions, or subpartitions is exported.

In a full mode export, using the transportable option results in a full transportable export which
exports all objects and data necessary to create a complete copy of the database.

NEVER - Instructs the export job to use either the direct path or external table method to unload
data rather than the transportable option. This is the default.

Note:

To export an entire tablespace in transportable mode, use the
TRANSPORT TABLESPACES parameter.

e If only a subset of a table's partitions are exported and the TRANSPORTABLE=ALWAYS
parameter is used, then on import each partition becomes a non-partitioned table.

e If only a subset of a table's partitions are exported and the TRANSPORTABLE parameter is not
used at all or is set to NEVER (the default), then on import:

— If PARTITION OPTIONS=DEPARTITION is used, then each partition included in the dump
file set is created as a non-partitioned table.

— If PARTITION OPTIONS is not used, then the complete table is created. That is, all the
metadata for the complete table is present, so that the table definition looks the same
on the target system as it did on the source. But only the data that was exported for
the specified partitions is inserted into the table.

Restrictions

e The TRANSPORTABLE parameter is only valid in table mode exports and full mode exports.

ORACLE 5 7e

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

e To use the TRANSPORTABLE parameter, the COMPATIBLE initialization parameter must be set
to at least 11.0.0.

e To use the FULL parameter in conjunction with TRANSPORTABLE (to perform a full
transportable export), the Data Pump VERSION parameter must be set to at least 12.0. If the
VERSION parameter is not specified, then the COMPATIBLE database initialization parameter
must be set to at least 12.0 or later.

* The user performing a transportable export requires the DATAPUMP EXP FULL DATABASE
privilege.

» Tablespaces associated with tables, partitions, and subpartitions must be read-only.

* Afull transportable export uses a mix of data movement methods. Objects residing in a
transportable tablespace have only their metadata unloaded; data is copied when the data
files are copied from the source system to the target system. The data files that must be
copied are listed at the end of the log file for the export operation. Objects residing in non-
transportable tablespaces (for example, SYSTEM and SYSAUX) have both their metadata and
data unloaded into the dump file set. (See Oracle Database Administrator's Guide for more
information about performing full transportable exports.)

* The default tablespace of the user performing the export must not be set to one of the
tablespaces being transported.

Example

The following example assumes that the sh user has the DATAPUMP EXP FULL DATABASE role
and that table sales? is partitioned and contained within tablespace tbs2. (The tbs2
tablespace must be set to read-only in the source database.)

> expdp sh DIRECTORY=dpump dirl DUMPFILE=ttol.dmp
TABLES=sh.sales2 TRANSPORTABLE=ALWAYS

After the export completes successfully, you must copy the data files to the target database
area. You could then perform an import operation using the PARTITION OPTIONS and
REMAP SCHEMA parameters to make each of the partitions in sales2 its own table.

> impdp system PARTITION OPTIONS=DEPARTITION
TRANSPORT DATAFILES=oracle/dbs/tbs2 DIRECTORY=dpump dirl
DUMPFILE=ttol.dmp REMAP SCHEMA=sh:dp

Related Topics

e Transporting Databases in Oracle Database Administrator’s Guide
e Full Export Mode

e Using Data File Copying to Move Data

2454 TTS_CLOSURE_CHECK

ORACLE

The Oracle Data Pump Export command-line mode TTS CLOSURE CHECK parameter is used to
indicate the degree of closure checking to be performed as part of a Data Pump transportable
tablespace operation.

Default

There is no default.

2-76

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Purpose

Specifies the level of closure check that you want to be performed as part of the transportable
export operation. The TTS CLOSURE CHECK parameter can also be used to indicate that
tablespaces can remain read-write during a test mode transportable tablespace operation. This
option is used to obtain the timing requirements of the export operation. It is for testing
purposes only. The dump file is unavailable for import.

Syntax and Description

TTS CLOSURE CHECK = [ON | OFF | FULL | TEST MODE]
The TTS CLOSURE CHECK parameter supports the following options:

* ON - indicates self-containment closure check be performed

* OFF - indicates no closure check be performed

° FULL - indicates full bidirectional closure check be performed

* TEST MODE - indicates that tablespaces are not required to be in read-only mode
ON,OFF, and FULL options are mutually exclusive. TEST MODE is an Oracle Data Pump Export
option only.

Example

TTS CLOSURE CHECK=FULL

2.4.55 VERSION

ORACLE

The Data Pump Export command-line utility VERSION parameter specifies the version of
database objects that you want to export.

Default: COMPATIBLE

Purpose

Specifies the version of database objects that you want to export. Only database objects and
attributes that are compatible with the specified release are exported. You can use the
VERSION parameter to create a dump file set that is compatible with a previous release of
Oracle Database. You cannot use Data Pump Export with releases of Oracle Database before
Oracle Database 10g release 1 (10.1). Data Pump Export only works with Oracle Database
10g release 1 (10.1) or later. The VERSION parameter simply allows you to identify the version
of objects that you export.

On Oracle Database 119 release 2 (11.2.0.3) or later, you can specify the VERSION parameter
as VERSION=12 with FULL=Y to generate a full export dump file that is ready for import into
Oracle Database 12c. The export with the later release target VERSION value includes
information from registered database options and components. The dump file set specifying a
later release version can only be imported into Oracle Database 12c¢ Release 1 (12.1.0.1) and
later. For example, if VERSION=12 is used with FULL=Y and also with TRANSPORTABLE=ALWAYS,
then a full transportable export dump file is generated that is ready for import into Oracle
Database 12c. For more information, refer to the FULL export parameter option.

Syntax and Description

VERSION=[COMPATIBLE | LATEST | version string]

The legal values for the VERSION parameter are as follows:

2-77

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

° COMPATIBLE - This value is the default value. The version of the metadata corresponds to
the database compatibility level as specified on the COMPATIBLE initialization parameter.

Note: Database compatibility must be set to 9.2 or later.

e LATEST - The version of the metadata and resulting SQL DDL corresponds to the database
release, regardless of its compatibility level.

* version string - A specific database release (for example, 11.2.0). In Oracle Database
11g, this value cannot be lower than 9.2.

Database objects or attributes that are incompatible with the release specified for VERSION are
not exported. For example, tables containing new data types that are not supported in the
specified release are not exported.

Restrictions

* Exporting a table with archived LOBs to a database release earlier than 11.2 is not
allowed.

» If the Data Pump Export VERSION parameter is specified with the TRANSPORT TABLESPACES
parameter, then the value for VERSTON must be equal to or greater than the Oracle
Database COMPATIBLE initialization parameter.

e If the Data Pump VERSION parameter is specified as any value earlier than 12.1, then the
Data Pump dump file excludes any tables that contain VARCHAR2 or NVARCHAR2 columns
longer than 4000 bytes, and any Raw columns longer than 2000 bytes.

« Dump files created on Oracle Database 11g releases with the Data Pump parameter
VERSION=12 can only be imported on Oracle Database 12c Release 1 (12.1) and later.

Example

The following example shows an export for which the version of the metadata corresponds to
the database release:

> expdp hr TABLES=hr.employees VERSION=LATEST DIRECTORY=dpump dirl
DUMPFILE=emp.dmp NOLOGFILE=YES

Related Topics
e Full Export Mode

e Exporting and Importing Between Different Oracle Database Releases

2.4.56 VIEWS_AS_TABLES

The Oracle Data Pump Export command-line utility VIEWS AS TABLES parameter specifies that
you want one or more views exported as tables.

Default

There is no default.

ORACLE 578

ORACLE

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

Caution:

The VIEWS AS TABLES parameter unloads view data in unencrypted format, and
creates an unencrypted table. If you are unloading sensitive data, then Oracle
strongly recommends that you enable encryption on the export operation, and that
you ensure the table is created in an encrypted tablespace. You can use the
REMAP TABLESPACE parameter to move the table to such a tablespace.

Purpose

Specifies that you want one or more views exported as tables.

Syntax and Description

VIEWS AS TABLES=[schema name.]view name[:table name],

Oracle Data Pump exports a table with the same columns as the view, and with row data
obtained from the view. Oracle Data Pump also exports objects dependent on the view, such
as grants and constraints. Dependent objects that do not apply to tables (for example, grants
of the UNDER object privilege) are not exported. You can use the VIEWS AS TABLES parameter
by itself, or use it with the TABLES parameter. Either way you use the parameter, Oracle Data
Pump performs a table-mode export.

The syntax elements are defined as follows:

schema_name: The name of the schema in which the view resides. If a schema name is not
supplied, then it defaults to the user performing the export.

view name: The name of the view that you want exported as a table.

table name: The name of a table that you want to serve as the source of the metadata for the
exported view. By default, Oracle Data Pump automatically creates a temporary "template
table" with the same columns and data types as the view, but with no rows. If the database is
read-only, then this default creation of a template table fails. In such a case, you can specify a
table name.

If the export job contains multiple views with explicitly specified template tables, then the
template tables must all be different. For example, in the following job (in which two views use
the same template table) one of the views is skipped:

expdp scott/password directory=dpump dir dumpfile=a.dmp
views as_tables=vl:emp, v2:emp

An error message is returned reporting the omitted object.

Template tables are automatically dropped after the export operation is completed. While they
exist, you can perform the following query to view their names (which all begin with KUSVAT):

SQL> SELECT * FROM user tab comments WHERE table name LIKE 'KUSVATS%';

TABLE NAME TABLE TYPE
COMMENTS
KUSVAT 63629 TABLE

Data Pump metadata template table for view SCOTT.EMPV

2-79

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

Restrictions

The VIEWS AS TABLES parameter cannot be used with the TRANSPORTABLE=ALWAYS
parameter.

Tables that you want to serve as the source of the metadata for the exported view must be
in the same schema as the view.

Tables that you want to serve as the source of the metadata for the exported view must be
non-partitioned relational tables with heap organization.

Tables that you want to serve as the source of the metadata for the exported view cannot
be nested tables.

Tables created using the VIEWS AS TABLES parameter do not contain any hidden or
invisible columns that were part of the specified view.

Views that you want exported as tables must exist, and must be relational views with only
scalar columns. If you specify an invalid or non-existent view, then the view is skipped, and
an error message is returned.

The VIEWS AS TABLES parameter does not support tables that have columns with a data
type of LONG.

Example

The following example exports the contents of view scott.viewl to a dump file named
scottl.dmp.

> expdp scott/password views as tables=viewl directory=data pump dir
dumpfile=scottl.dmp

The dump file contains a table named viewl with rows obtained from the view.

2.5 Commands Available in Data Pump Export Interactive-
Command Mode

Check which command options are available to you when using Data Pump Export in
interactive mode.

ORACLE

About Oracle Data Pump Export Interactive Command Mode
Learn about commands you can use with Oracle Data Pump Export in interactive
command mode while your current job is running.

ADD_FILE
The Oracle Data Pump Export interactive command mode ADD FILE parameter adds
additional files or substitution variables to the export dump file set.

CONTINUE_CLIENT
The Oracle Data Pump Export interactive command mode CONTINUE CLIENT parameter
changes the Export mode from interactive-command mode to logging mode.

EXIT_CLIENT

The Oracle Data Pump Export interactive command mode EXIT CLIENT parameter stops
the export client session, exits Export, and discontinues logging to the terminal, but leaves
the current job running.

2-80

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

* FILESIZE

The Oracle Data Pump Export interactive command mode FILESIZE parameter redefines
the maximum size of subsequent dump files.

« HELP

The Oracle Data Pump Export interactive command mode HELP parameter provides
information about Data Pump Export commands available in interactive-command mode.

« KILL_JOB

The Oracle Data Pump Export interactive command mode KILL JOB parameter detaches
all currently attached worker client sessions, and then terminates the current job. It exits
Export, and returns to the terminal prompt.

* PARALLEL

The Export Interactive-Command Mode PARALLEL parameter enables you to increase or
decrease the number of active processes (child and parallel child processes) for the
current job.

« START_JOB

The Oracle Data Pump Export interactive command mode START JOB parameter starts the
current job to which you are attached.

« STATUS

The Oracle Data Pump Export interactive command STATUS parameter displays status
information about the export, and enables you to set the display interval for logging mode
status.

« STOP_JOB
The Oracle Data Pump Export interactive command mode STOP_JOB parameter stops the
current job. It stops the job either immediately, or after an orderly shutdown, and exits
Export.

2.5.1 About Oracle Data Pump Export Interactive Command Mode

ORACLE

Learn about commands you can use with Oracle Data Pump Export in interactive command
mode while your current job is running.

In interactive command mode, the current job continues running, but logging to the terminal is
suspended, and the Export prompt (Export>) is displayed.

To start interactive-command mode, do one of the following:

e From an attached client, press Ctrl+C.

e From a terminal other than the one on which the job is running, specify the ATTACH
parameter in an expdp command to attach to the job. ATTACH is a useful feature in
situations in which you start a job at one location, and need to check on it at a later time
from a different location.

The following table lists the activities that you can perform for the current job from the Data
Pump Export prompt in interactive-command mode.

Table 2-1 Supported Activities in Data Pump Export's Interactive-Command Mode
]

Activity Command Used
Add additional dump files. ADD FILE

Exit interactive mode and enter logging mode. CONTINUE CLIENT
Stop the export client session, but leave the job running. EXIT_CLIENT

2-81

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

Table 2-1 (Cont.) Supported Activities in Data Pump Export's Interactive-Command

Mode
___|
Activity Command Used

Redefine the default size to be used for any subsequent dump files. FILESIZE

Display a summary of available commands. HELP
Detach all currently attached client sessions and terminate the KILL_JOB
current job.

Increase or decrease the number of active worker processes for the PARALLEL
current job. This command is valid only in the Enterprise Edition of
Oracle Database 119 or later.

Restart a stopped job to which you are attached. START_JOB
Display detailed status for the current job and/or set status interval. STATUS
Stop the current job for later restart. STOP_JOB

2.5.2 ADD_FILE

The Oracle Data Pump Export interactive command mode ADD FILE parameter adds additional
files or substitution variables to the export dump file set.

Purpose

Adds additional files or substitution variables to the export dump file set.

Syntax and Description

ADD FILE=[directory object:]file name [,...]

Each file name can have a different directory object. If no directory object is specified, then the
default is assumed.

The file name must not contain any directory path information. However, it can include a
substitution variable, $U, which indicates that multiple files can be generated using the
specified file name as a template.

The size of the file being added is determined by the setting of the FILESIZE parameter.

Example

The following example adds two dump files to the dump file set. A directory object is not
specified for the dump file named hr2.dmp, so the default directory object for the job is
assumed. A different directory object, dpump_dir2, is specified for the dump file named
hr3.dmp.

Export> ADD FILE=hr2.dmp, dpump dir2:hr3.dmp

Related Topics

* File Allocation with Oracle Data Pump

ORACLE 589

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2.5.3 CONTINUE_CLIENT

The Oracle Data Pump Export interactive command mode CONTINUE CLIENT parameter
changes the Export mode from interactive-command mode to logging mode.

Purpose

Changes the Export mode from interactive-command mode to logging mode.

Syntax and Description

CONTINUE CLIENT

In logging mode, status is continually output to the terminal. If the job is currently stopped, then
CONTINUE CLIENT also causes the client to attempt to start the job.

Example

Export> CONTINUE CLIENT

2.5.4 EXIT_CLIENT

The Oracle Data Pump Export interactive command mode EXIT CLIENT parameter stops the
export client session, exits Export, and discontinues logging to the terminal, but leaves the
current job running.

Purpose

Stops the export client session, exits Export, and discontinues logging to the terminal, but
leaves the current job running.

Syntax and Description

EXIT CLIENT

Because EXIT CLIENT leaves the job running, you can attach to the job at a later time. To see
the status of the job, you can monitor the log file for the job, or you can query the

USER DATAPUMP JOBS view, or the V$SSESSION LONGOPS view.

Example

Export> EXIT CLIENT

2.5.5 FILESIZE

ORACLE

The Oracle Data Pump Export interactive command mode FILESIZE parameter redefines the
maximum size of subsequent dump files.

Purpose

Redefines the maximum size of subsequent dump files. If the size is reached for any member
of the dump file set, then that file is closed and an attempt is made to create a new file, if the
file specification contains a substitution variable or if additional dump files have been added to
the job.

2-83

2.5.6 HELP

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

Syntax and Description

FILESIZE=integer[B | KB | MB | GB | TB]

The integer can be immediately followed (do not insert a space) by B, KB, MB, GB, ofr TB
(indicating bytes, kilobytes, megabytes, gigabytes, and terabytes respectively). Bytes is the
default. The actual size of the resulting file may be rounded down slightly to match the size of
the internal blocks used in dump files.

A file size of 0 is equivalent to the maximum file size of 16 TB.

Restrictions

¢ The minimum size for a file is ten times the default Oracle Data Pump block size, which is
4 kilobytes.

¢ The maximum size for a file is 16 terabytes.

Example

Export> FILESIZE=100MB

The Oracle Data Pump Export interactive command mode HELP parameter provides
information about Data Pump Export commands available in interactive-command mode.

Purpose

Provides information about Oracle Data Pump Export commands available in interactive-
command mode.

Syntax and Description

HELP
Displays information about the commands available in interactive-command mode.

Example

Export> HELP

2.5.7 KILL_JOB

ORACLE

The Oracle Data Pump Export interactive command mode KILL JOB parameter detaches all
currently attached worker client sessions, and then terminates the current job. It exits Export,
and returns to the terminal prompt.

Purpose

Detaches all currently attached child client sessions, and then terminates the current job. It
exits Export and returns to the terminal prompt.

Syntax and Description

KILL_JOB

2-84

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

A job that is terminated using KILL JOB cannot be restarted. All attached clients, including the
one issuing the KILL JOB command, receive a warning that the job is being terminated by the
current user and are then detached. After all child clients are detached, the job's process
structure is immediately run down and the Data Pump control job table and dump files are
deleted. Log files are not deleted.

Example

Export> KILL JOB

2.5.8 PARALLEL

The Export Interactive-Command Mode PARALLEL parameter enables you to increase or
decrease the number of active processes (child and parallel child processes) for the current
job.

Purpose

Enables you to increase or decrease the number of active processes (child and parallel child
processes) for the current job.

Syntax and Description

PARALLEL=integer

PARALLEL is available as both a command-line parameter, and as an interactive-command
mode parameter. You set it to the desired number of parallel processes (child and parallel child
processes). An increase takes effect immediately if there are sufficient files and resources. A
decrease does not take effect until an existing process finishes its current task. If the value is
decreased, then child processes are idled but not deleted until the job exits.

Restrictions

e This parameter is valid only in the Enterprise Edition of Oracle Database 119 or later
releases.

e Transportable tablespace metadata cannot be imported in parallel.

* Metadata cannot be imported in parallel when the NETWORK LINK parameter is used.
In addition, the following objects cannot be imported in parallel:

e TRIGGER

e VIEW

* OBJECT GRANT

° SEQUENCE

e CONSTRAINT

* REF CONSTRAINT
Example

Export> PARALLEL=10

ORACLE 5 g5

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

Related Topics
e PARALLEL

2.5.9 START_JOB

The Oracle Data Pump Export interactive command mode START JOB parameter starts the
current job to which you are attached.

Purpose

Starts the current job to which you are attached.
Syntax and Description

START JOB

The START JOB command restarts the current job to which you are attached. The job cannot be
running at the time that you enter the command. The job is restarted with no data loss or
corruption after an unexpected failure or after you issued a SToP_JOB command, provided the
dump file set and parent job table have not been altered in any way.

Example

Export> START JOB

2.5.10 STATUS

ORACLE

The Oracle Data Pump Export interactive command STATUS parameter displays status

information about the export, and enables you to set the display interval for logging mode
status.

Purpose

Displays cumulative status of the job, a description of the current operation, and an estimated
completion percentage. It also allows you to reset the display interval for logging mode status.

Syntax and Description

STATUS [=integer]

You have the option of specifying how frequently, in seconds, this status should be displayed in
logging mode. If no value is entered, or if the default value of 0 is used, then the periodic status
display is turned off, and status is displayed only once.

This status information is written only to your standard output device, not to the log file (even if
one is in effect).

Example

The following example displays the current job status, and changes the logging mode display
interval to five minutes (300 seconds):

Export> STATUS=300

2-86

Chapter 2
Examples of Using Oracle Data Pump Export

2.5.11 STOP_JOB

The Oracle Data Pump Export interactive command mode STOP_JOB parameter stops the
current job. It stops the job either immediately, or after an orderly shutdown, and exits Export.

Purpose

Stops the current job, either immediately, or after an orderly shutdown, and exits Export.

Syntax and Description

STOP JOB[=IMMEDIATE]

If the Data Pump control job table and dump file set are not disturbed when or after the
SToP_JOB command is issued, then the job can be attached to and restarted at a later time with
the START JOB command.

To perform an orderly shutdown, use STOP _JOB (without any associated value). A warning
requiring confirmation will be issued. An orderly shutdown stops the job after worker processes
have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning requiring
confirmation will be issued. All attached clients, including the one issuing the STOP JOB
command, receive a warning that the job is being stopped by the current user and they will be
detached. After all clients are detached, the process structure of the job is immediately run
down. That is, the Data Pump control job process will not wait for the child processes to finish
their current tasks. There is no risk of corruption or data loss when you specify

STOP JOB=IMMEDIATE. However, some tasks that were incomplete at the time of shutdown may
have to be redone at restart time.

Example

Export> STOP_ JOB=IMMEDIATE

2.6 Examples of Using Oracle Data Pump Export

ORACLE

You can use these common scenario examples to learn how you can create parameter files
and use Oracle Data Pump Export to move your data.

* Performing a Table-Mode Export
This example shows a table-mode export, specified using the TABLES parameter.

* Data-Only Unload of Selected Tables and Rows
This example shows data-only unload of selected tables and rows.

« Estimating Disk Space Needed in a Table-Mode Export
This example shows how to estimate the disk space needed in a table-mode export.

» Performing a Schema-Mode Export
This example shows you how to perform a schema-mode export.

» Performing a Parallel Full Database Export
To learn how to perform a parallel full database export, use this example to understand the
syntax.

e Using Interactive Mode to Stop and Reattach to a Job
This example shows you how to use interactive mode to stop and reattach to a job.

2-87

Chapter 2
Examples of Using Oracle Data Pump Export

e Continuing Table Loads when LOB Data Type Corruptions are Found
This example shows you how to address ORA-1555 errors with an Oracle Data Pump
export job.

2.6.1 Performing a Table-Mode Export

This example shows a table-mode export, specified using the TABLES parameter.

In this example, the Data Pump export command performs a table export of the tables
employees and jobs from the human resources (hr) schema.

Because user hr is exporting tables in his own schema, it is not necessary to specify the
schema name for the tables. The NOLOGFILE=YES parameter indicates that an Export log file of
the operation is not generated.

Example 2-1 Performing a Table-Mode Export

expdp hr TABLES=employees,jobs DUMPFILE=dpump dirl:table.dmp NOLOGFILE=YES

2.6.2 Data-Only Unload of Selected Tables and Rows

This example shows data-only unload of selected tables and rows.

The example shows the contents of a parameter file (exp.par), which you can use to perform a
data-only unload of all the tables in the human resources (hr) schema, except for the tables
countries and regions. Rows in the employees table are unloaded that have a department id
other than 50. The rows are ordered by employee id.

You can issue the following command to execute the exp.par parameter file:

> expdp hr PARFILE=exp.par

This export performs a schema-mode export (the default mode), but the CONTENT parameter
effectively limits the export to an unload of just the table data. The DBA previously created the
directory object dpump_dirl, which points to the directory on the server where user hr is
authorized to read and write export dump files. The dump file dataonly.dmp is created in
dpump dirl.

Example 2-2 Data-Only Unload of Selected Tables and Rows

DIRECTORY=dpump dirl

DUMPFILE=dataonly.dmp

CONTENT=DATA ONLY

EXCLUDE=TABLE:"IN ('COUNTRIES', 'REGIONS')"
QUERY=employees:"WHERE department id !=50 ORDER BY employee id"

2.6.3 Estimating Disk Space Needed in a Table-Mode Export

ORACLE

This example shows how to estimate the disk space needed in a table-mode export.

In this example, the ESTIMATE ONLY parameter is used to estimate the space that is consumed
in a table-mode export, without actually performing the export operation. Issue the following
command to use the BLOCKS method to estimate the number of bytes required to export the
data in the following three tables located in the human resource (hr) schema: employees,
departments, and locations.

2-88

Chapter 2
Examples of Using Oracle Data Pump Export

The estimate is printed in the log file and displayed on the client's standard output device. The
estimate is for table row data only; it does not include metadata.

Example 2-3 Estimating Disk Space Needed in a Table-Mode Export

> expdp hr DIRECTORY=dpump dirl ESTIMATE ONLY=YES TABLES=employees,
departments, locations LOGFILE=estimate.log

2.6.4 Performing a Schema-Mode Export

This example shows you how to perform a schema-mode export.

The example shows a schema-mode export of the hr schema. In a schema-mode export, only
objects belonging to the corresponding schemas are unloaded. Because schema mode is the
default mode, it is not necessary to specify the SCHEMAS parameter on the command line,
unless you are specifying more than one schema or a schema other than your own.

Example 2-4 Performing a Schema Mode Export

> expdp hr DUMPFILE=dpump dirl:expschema.dmp LOGFILE=dpump dirl:expschema.log

2.6.5 Performing a Parallel Full Database Export

To learn how to perform a parallel full database export, use this example to understand the
syntax.

The example shows a full database Export that can use 3 parallel processes (worker or parallel
query worker processes).

Example 2-5 Parallel Full Export

> expdp hr FULL=YES DUMPFILE=dpump dirl:fulll%U.dmp, dpump dir2:full2%U.dmp
FILESIZE=2G PARALLEL=3 LOGFILE=dpump dirl:expfull.log JOB NAME=expfull

Because this export is a full database export, all data and metadata in the database is
exported. Dump files ful1101.dmp, full201.dmp, fulll02.dmp, and so on, are created in a
round-robin fashion in the directories pointed to by the dpump dirl and dpump dir2 directory
objects. For best performance, Oracle recommends that you place the dump files on separate
input/output (1/0) channels. Each file is up to 2 gigabytes in size, as necessary. Initially, up to
three files are created. If needed, more files are created. The job and Data Pump control
process table has a name of expfull. The log file is written to expfull.log in the dpump dirl
directory.

2.6.6 Using Interactive Mode to Stop and Reattach to a Job

ORACLE

This example shows you how to use interactive mode to stop and reattach to a job.
To start this example, reexecute the parallel full export described here:
Performing a Parallel Full Database Export

While the export is running, press Ctrl+C. This keyboard command starts the interactive-
command interface of Data Pump Export. In the interactive interface, logging to the terminal
stops, and the Export prompt is displayed.

2-89

Chapter 2
Examples of Using Oracle Data Pump Export

After the job status is displayed, you can issue the CONTINUE CLIENT command to resume
logging mode and restart the expfull job.

Export> CONTINUE CLIENT

A message is displayed that the job has been reopened, and processing status is output to the
client.

Example 2-6 Stopping and Reattaching to a Job

At the Export prompt, issue the following command to stop the job:

Export> STOP_JOB=IMMEDIATE
Are you sure you wish to stop this job ([y]/n): y

The job is placed in a stopped state, and exits the client.

To reattach to the job you just stopped, enter the following command:

> expdp hr ATTACH=EXPFULL

2.6.7 Continuing Table Loads when LOB Data Type Corruptions are Found

ORACLE

This example shows you how to address ORA-1555 errors with an Oracle Data Pump export
job.

Suppose you have a table with large object datatype (LOB) columns (BLOB, CLOB, NCLOB or
BFILE) that has a large number of rows that require several hours to complete. During the
export job, Oracle Data Pump encounters an ORA-1555 error ("ORA-01555: snapshot too old:
rollback segment number with name "™ too small"). Oracle recommends that you do not
attempt to export partial rows, because attempting this workaround can cause further
corruption. Instead, before exporting the LOB table, Oracle recommends that you use the
script in this example to find the corrupted LOB rowids, and then repair the table by either
emptying those rows before export, or excluding those rows from the export.

Example 2-7 Finding LOB Corruption in Large Tables

Use this script to verify LOB corruption, and to find and store the corrupted LOB IDs in a
temporary table so that you can then exclude them from the table you want to export.

1. Create a new temporary table for storing all rowids called corrupt lobs

SQL> create table corrupt lobs (corrupt rowid rowid, err num number);

2. Make a desc on the large table <TABLE NAME> containing the LOB column:

DESC <TABLE NAME>

Name Null? Type
<COL1> NOT NULL NUMBER
<LOB_COLUMN> BLOB

2-90

ORACLE

Chapter 2
Examples of Using Oracle Data Pump Export

Run the following PL/SQL block:

declare

error 1578 exception;

error 1555 exception;

error 22922 exception;

pragma exception init (error 1578,-1578);
pragma exception init (error 1555,-1555);
pragma exception init (error 22922,-22922);
n number;

begin

for cursor lob in (select rowid r, <LOB COLUMN> from <TABLE NAME>) loop
begin
n:=dbms_lob.instr (cursor lob.<LOB COLUMN>,hextoraw('889911"));
exception
when error 1578 then
insert into corrupt lobs values (cursor lob.r, 1578);
commit;
when error 1555 then
insert into corrupt lobs values (cursor lob.r, 1555);
commit;
when error 22922 then
insert into corrupt lobs values (cursor lob.r, 22922);
commit;
end;
end loop;

end;

/

The result of this PL/SQL script is that all rowids of the corrupted LOBs will be inserted into
the newly created corrupt lobs table.

Resolve the issue with the corrupted LOB rowids either by emptying the corrupted LOB
rows, or by exporting the table without the corrupted LOB rows.

Empty the corrupted LOB rows

With this option, you run a SQL statement to empty the rows. In this example, the rows
that you select are BLOB or BFILE columns, so we use EMPTY BLOB. For CLOB and
NCLOB columns, or use EMPTY CLOB:

SQL> update <TABLE NAME> set <LOB COLUMN> = empty_blob()
where rowid in (select corrupt rowid from corrupt lobs);

Export the table without the corrupted LOB rows
Use this script with values for your environment:

$ expdp system/<PASSWORD> DIRECTORY=my dir DUMPFILE=<dump name>.dmp
LOGFILE:<logfile_name>.log TABLES=<SCHEMA NAME>.<TABLE NAME> QUERY=\"WHERE
rowid NOT IN \ (\'<corrupt rowid>\"\)\"

For more information about identifying and resolving ORA-1555 errors, and distinguishing them
from LOB segment issues due to LOB PCTVERSION or RETENTION being low, see the My
Oracle Support document "Export Receives The Errors ORA-1555 ORA-22924 ORA-1578
ORA-22922 (Doc ID 787004.1"

2-91

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

Related Topics

* Export Receives The Errors ORA-1555 ORA-22924 ORA-1578 ORA-22922 (Doc ID
787004.1

2.7 Syntax Diagrams for Oracle Data Pump Export

You can use syntax diagrams to understand the valid SQL syntax for Oracle Data Pump
Export.

How to Read Graphic Syntax Diagrams

Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram, trace it from
left to right, in the direction shown by the arrows.

For more information about standard SQL syntax notation, see:

How to Read Syntax Diagrams in Oracle Database SQL Language Reference

Explnit

ExpStart

I{ExpModes){ExpOpts){ExpFiIeOptsh
ExpE t
WaSCEDa
f@ (job_name }— I

ATTACH

ORACLE 599

https://support.oracle.com/rs?type=doc&id=787004.1
https://support.oracle.com/rs?type=doc&id=787004.1

ExpModes

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

schema_name

M)

TABLESPACES

¥| TRANSPORT_TABLESPACES

tablespace_name

\
| O O |
> _ / N\
TABLES = ¥ table_name)

tablespace_name

YES
f—){ TRANSPORT_FULL_CHECK g l%‘

ORACLE

2-93

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

ExpOpts

ALL ﬁ
CONTENT DATA_ONLY

N
METADATA_ONLY J

— ExpCompression)
GROUP_PARTITION_TABLE_DATA
DATA_OPTIONS »@»—[=
VERIFY_STREAM_FORMAT
BLOCKS
ESTIMATE »@»—[
STATISTICS [/

VES |
ESTIMATE_ONLY a@»—[

No
— ExpEncrypt)

ExpFilter
FLASHBACK_SCN @@
FLASHBACK_TIME @@

-

ORACLE 504

ExpOpts_Cont

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

NONE
l STATUS l

NETWORK_LINK Q database_link

O
—(ExpRacOpt)

—(ExpRemap)

—| SOURCE_EDITION |—>®—>(source_edition_nam9)

—| STATUS P@—)(integer)

TRANSPORTABLE

—(ExpVersion)

‘ schema_object.
- VIEWS_AS_TABLES @

()
U
‘table_name J
i
(view_name)

(ExpDiagnostics)

ExpCompression

METADATA_ONLY

COMPRESSION

ORACLE

2-95

ExpEncrypt

ALL

DATA_ONLY

,| ENCRYPTION |»®+-| METADATA_ONLY |7—

-| ENCRYPTED_COLUMNS_ONLY |—

\| NONE

—I ENCRYPTION_ALGORITHM

i=al

-| ENCRYPTION_MODE a

TRANSPARENT

ExpFilter

Chapter 2

Syntax Diagrams for Oracle Data Pump Export

-name_clause I
~—] ExcLuDE @{ohject_type)

—{ INCLUDE @{object_type)

‘ name_clause]

[b

schema_name ‘
table_name

query_clause

—[RER

schema_name '
table_name

sample_percent

ExpRacOpt

SERVICE_NAME (=)>((service_name

ORACLE

2-96

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

ExpRemap

| = - |

ExpVersion

COMPATIBLE
I LATEST d

VERSION
(o)

ExpFileOpts

| DIRECTORY |—>®e(directory_object)

(M)
N\
directory_object ‘
DUMPFILE = file_name

—| FILESIZE P@e(number_of_bytes)
directory_object ‘
LOGFILE

NOLOGFILE

file_name I

directory_path
PARFILE |5(= (fle_name)——————

YES

\| REUSE_DUMPFILES a

ORACLE 2-97

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

ExpDynOpts

()
N

[directory_object ‘
ADD_FILE = file_name

- CONTINUE_CLIENT |
- FILESIZE P@e(number,of,bytes)
. e integer —

SKIP_CURRENT

—| START_JOB
—| STATUS

\| STOP_JOB

ExpDiagnostics

| ABORT STEP P@—)(integer)

INSERT_AS_SELECT

ACCESS_METHOD

KEEP_MASTER

ORACLE 508

Oracle Data Pump Import

With Oracle Data Pump Import, you can load an export dump file set into a target database, or
load a target database directly from a source database with no intervening files.

e What Is Oracle Data Pump Import?
Oracle Data Pump Import is a utility for loading an Oracle export dump file set into a target
system.

e Starting Oracle Data Pump Import
Start the Oracle Data Pump Import utility by using the impdp command.

* Filtering During Import Operations
Oracle Data Pump Import provides data and metadata filtering capability, which can help
you limit the type of information that you import.

e Parameters Available in Oracle Data Pump Import Command-Line Mode
Use Oracle Data Pump parameters for Import (impdp) to manage your data imports.

* Commands Available in Oracle Data Pump Import Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended, and the Import prompt (Import>) is displayed.

e Examples of Using Oracle Data Pump Import
You can use these common scenario examples to learn how you can use Oracle Data
Pump Import to move your data.

e Syntax Diagrams for Oracle Data Pump Import
You can use syntax diagrams to understand the valid SQL syntax for Oracle Data Pump
Import.

3.1 What Is Oracle Data Pump Import?

Oracle Data Pump Import is a utility for loading an Oracle export dump file set into a target
system.

An export dump file set is made up of one or more disk files that contain table data, database
object metadata, and control information. The files are written in a proprietary, binary format.
During an Oracle Data Pump import operation, the Import utility uses these files to locate each
database object in the dump file set.

You can also use Import to load a target database directly from a source database with no
intervening dump files. This type of import is called a network import.

Import enables you to specify whether a job should move a subset of the data and metadata
from the dump file set or the source database (in the case of a network import), as determined
by the import mode. This is done by using data filters and metadata filters, which are
implemented through Import commands.

3.2 Starting Oracle Data Pump Import

ORACLE

Start the Oracle Data Pump Import utility by using the impdp command.

3-1

Chapter 3
Starting Oracle Data Pump Import

The characteristics of the import operation are determined by the import parameters you
specify. These parameters can be specified either on the command line or in a parameter file.

Note:

e Do not start Import as SYSDBA, except at the request of Oracle technical support.
SYSDBA is used internally and has specialized functions; its behavior is not the
same as for general users.

* Be aware that if you are performing a Data Pump Import into a table or
tablespace created with the NOLOGGING clause enabled, then a redo log file may
still be generated. The redo that is generated in such a case is generally for
maintenance of the Data Pump control table, or related to underlying recursive
space transactions, data dictionary changes, and index maintenance for indices
on the table that require logging.

« If the timezone version used by the export database is older than the version
used by the import database, then loading columns with data type TIMESTAMP
WITH TIMEZONE takes longer than it would otherwise. This additional time is
required because the database must check to determine if the new timezone
rules change the values being loaded.

Oracle Data Pump Import Interfaces
You can interact with Oracle Data Pump Import by using a command line, a parameter file,
or an interactive-command mode.

Oracle Data Pump Import Modes
The import mode that you use for Oracle Data Pump determines what is imported.

Network Considerations for Oracle Data Pump Import

Learn how Oracle Data Pump Import utility impdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and how they
are different from import operations using the NETWORK_LINK parameter.

3.2.1 Oracle Data Pump Import Interfaces

ORACLE

You can interact with Oracle Data Pump Import by using a command line, a parameter file, or
an interactive-command mode.

Command-Line Interface: Enables you to specify the Import parameters directly on the
command line. For a complete description of the parameters available in the command-line
interface.

Parameter File Interface: Enables you to specify command-line parameters in a parameter
file. The only exception is the PARFILE parameter because parameter files cannot be
nested. The use of parameter files is recommended if you are using parameters whose
values require quotation marks.

Interactive-Command Interface: Stops logging to the terminal and displays the Import
prompt, from which you can enter various commands, some of which are specific to
interactive-command mode. This mode is enabled by pressing Ctrl+C during an import
operation started with the command-line interface or the parameter file interface.
Interactive-command mode is also enabled when you attach to an executing or stopped
job.

3-2

Chapter 3
Starting Oracle Data Pump Import

Related Topics

Parameters Available in Oracle Data Pump Import Command-Line Mode
Use Oracle Data Pump parameters for Import (impdp) to manage your data imports.

Commands Available in Oracle Data Pump Import Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended, and the Import prompt (Import>) is displayed.

3.2.2 Oracle Data Pump Import Modes

The import mode that you use for Oracle Data Pump determines what is imported.

About Oracle Data Pump Import Modes
Learn how Oracle Data Pump Import modes operate during the import.

Full Import Mode
To specify a full import with Oracle Data Pump, use the FULL parameter.

Schema Mode
To specify a schema import with Oracle Data Pump, use the SCHEMAS parameter.

Table Mode
To specify a table mode import with Oracle Data Pump, use the TABLES parameter.

Tablespace Mode
To specify a tablespace mode import with Oracle Data Pump, use the TABLESPACES
parameter.

Transportable Tablespace Mode
To specify a transportable tablespace mode import with Oracle Data Pump, use the
TRANSPORT TABLESPACES parameter.

3.2.2.1 About Oracle Data Pump Import Modes

Learn how Oracle Data Pump Import modes operate during the import.

ORACLE

The Oracle Data Pump import mode that you specify for the import applies to the source of the
operation. If you specify the NETWORK_LINK parameter, then that source is either a dump file set,
or another database.

When the source of the import operation is a dump file set, specifying a mode is optional. If you
do not specify a mode, then Import attempts to load the entire dump file set in the mode in

which the export operation was run.

The mode is specified on the command line, using the appropriate parameter.

Note:

When you import a dump file that was created by a full-mode export, the import
operation attempts to copy the password for the sys account from the source
database. This copy sometimes fails (For example, if the password is in a shared
password file). If it does fail, then after the import completes, you must set the
password for the sys account at the target database to a password of your choice.

3-3

Chapter 3
Starting Oracle Data Pump Import

3.2.2.2 Full Import Mode

To specify a full import with Oracle Data Pump, use the FULL parameter.

In full import mode, the entire content of the source (dump file set or another database) is
loaded into the target database. This mode is the default for file-based imports. If the source is
another database containing schemas other than your own, then you must have the
DATAPUMP IMP FULL DATABASE role.

Cross-schema references are not imported for non-privileged users. For example, a trigger
defined on a table within the schema of the importing user, but residing in another user
schema, is not imported.

The DATAPUMP IMP FULL DATABASE role is required on the target database. If the NETWORK LINK
parameter is used for a full import, then the DATAPUMP EXP FULL DATABASE role is required on
the source database

Using the Transportable Option During Full Mode Imports

You can use the transportable option during a full-mode import to perform a full transportable
import.

Network-based full transportable imports require use of the FULL=YES, TRANSPORTABLE=ALWAYS,
and TRANSPORT DATAFILES=datafile name parameters.

File-based full transportable imports only require use of the
TRANSPORT DATAFILES=datafile name parameter. Data Pump Import infers the presence of the
TRANSPORTABLE=ALWAYS and FULL=Y parameters.

There are several requirements when performing a full transportable import:

» Either you must also specify the NETWORK LINK parameter, or the dump file set being
imported must have been created using the transportable option during export.

* If you are using a network link, then the database specified on the NETWORK LINK
parameter must be Oracle Database 119 release 2 (11.2.0.3) or later, and the Oracle Data
Pump VERSION parameter must be set to at least 12. (In a non-network import, VERSION=12
is implicitly determined from the dump file.)

« If the source platform and the target platform are of different endianness, then you must
convert the data being transported so that it is in the format of the target platform. To
convert the data, you can use either the DBMS FILE TRANSFER package or the RMAN
CONVERT command.

e If the source and target platforms do not have the same endianness, then a full
transportable import of encrypted tablespaces is not supported in network mode or in
dump file mode

For a detailed example of performing a full transportable import, see Oracle Database
Administrator’s Guide.

Related Topics

« FULL
The Oracle Data Pump Import command-line mode FULL parameter specifies that you want
to perform a full database import.

ORACLE 32

Chapter 3
Starting Oracle Data Pump Import

¢ TRANSPORTABLE
The optional Oracle Data Pump Import command-line mode TRANSPORTABLE parameter
specifies either that transportable tables are imported with KEEP_ READ ONLY, Or
NO_BITMAP REBUILD.

e Transporting Tablespaces Between Databases in Oracle Database Administrator’s Guide

3.2.2.3 Schema Mode

To specify a schema import with Oracle Data Pump, use the SCHEMAS parameter.

In a schema import, only objects owned by the specified schemas are loaded. The source can
be a full, table, tablespace, or a schema-mode export dump file set, or another database. If you
have the DATAPUMP IMP FULL DATABASE role, then you can specify a list of schemas, and the
schemas themselves (including system privilege grants) are created in the database in addition
to the objects contained within those schemas.

Cross-schema references are not imported for non-privileged users unless the other schema is
remapped to the current schema. For example, a trigger defined on a table within the importing
user's schema, but residing in another user's schema, is not imported.

Related Topics

« SCHEMAS
The Oracle Data Pump Import command-line mode SCHEMAS parameter specifies that you
want a schema-mode import to be performed.

3.2.2.4 Table Mode

ORACLE

To specify a table mode import with Oracle Data Pump, use the TABLES parameter.

A table-mode import is specified using the TABLES parameter. In table mode, only the specified
set of tables, partitions, and their dependent objects are loaded. The source can be a full,
schema, tablespace, or table-mode export dump file set, or another database. You must have
the DATAPUMP IMP FULL DATABASE role to specify tables that are not in your own schema.

You can use the transportable option during a table-mode import by specifying the
TRANPORTABLE=ALWAYS parameter with the TABLES parameter. If you use this option, then you
must also use the NETWORK LINK parameter.

To recover tables and table partitions, you can also use RMAN backups, and the RMAN RECOVER
TABLE command. During this process, RMAN creates (and optionally imports) an Oracle Data
Pump export dump file that contains the recovered objects.

Related Topics

e TABLES
The Oracle Data Pump Import command-line mode TABLES parameter specifies that you
want to perform a table-mode import.

e TRANSPORTABLE
The optional Oracle Data Pump Import command-line mode TRANSPORTABLE parameter
specifies either that transportable tables are imported with KEEP READ ONLY, Or
NO_BITMAP REBUILD.

« Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target database
without interpreting or altering the data.

e Oracle Database Backup and Recovery User’s Guide

3-5

Chapter 3
Starting Oracle Data Pump Import

3.2.2.5 Tablespace Mode

To specify a tablespace mode import with Oracle Data Pump, use the TABLESPACES parameter.

A tablespace-mode import is specified using the TABLESPACES parameter. In tablespace mode,
all objects contained within the specified set of tablespaces are loaded, along with the
dependent objects. The source can be a full, schema, tablespace, or table-mode export dump
file set, or another database. For unprivileged users, objects not remapped to the current
schema will not be processed.

Related Topics

e TABLESPACES
The Oracle Data Pump Import command-line mode TABLESPACES parameter specifies that
you want to perform a tablespace-mode import.

3.2.2.6 Transportable Tablespace Mode

To specify a transportable tablespace mode import with Oracle Data Pump, use the
TRANSPORT TABLESPACES parameter.

In transportable tablespace mode, the metadata from another database is loaded by using
either a database link (specified with the NETWORK LINK parameter), or by specifying a dump
file that contains the metadata. The actual data files, specified by the TRANSPORT DATAFILES
parameter, must be made available from the source system for use in the target database,
typically by copying them over to the target system.

When transportable jobs are performed, Oracle recommends that you keep a copy of the data
files on the source system until the import job has successfully completed on the target
system. With a copy of the data files, if the import job should fail for some reason, then you still
have uncorrupted copies of the data files.

Using this mode requires the DATAPUMP IMP FULL DATABASE role.

Note:

You cannot export transportable tablespaces and then import them into a database at
a lower release level. The target database must be at the same or later release level
as the source database.

Related Topics

* How Does Oracle Data Pump Handle Timestamp Data?
Learn about factors that can affect successful completion of export and import jobs that
involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP WITH LOCAL
TIMEZONE.

e Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target database
without interpreting or altering the data.

ORACLE .

Chapter 3
Starting Oracle Data Pump Import

3.2.3 Network Considerations for Oracle Data Pump Import

ORACLE

Learn how Oracle Data Pump Import utility impdp identifies instances with connect identifiers in
the connection string using Oracle*Net or a net service name, and how they are different from
import operations using the NETWORK_LINK parameter.

When you start impdp, you can specify a connect identifier in the connect string that can be
different from the current instance identified by the current Oracle System ID (SID).

You can specify a connect identifier by using either an Oracle*Net connect descriptor, or by
using a net service name (usually defined in the tnsnames.ora file) that maps to a connect
descriptor. Use of a connect identifier requires that you have Oracle Net Listener running (to
start the default listener, enter 1snrctl start).

The following example shows this type of connection, in which instl is the connect identifier:

impdp hr@instl DIRECTORY=dpump dirl DUMPFILE=hr.dmp TABLES=employees

Import then prompts you for a password:

Password: password

To specify an Easy Connect string, the connect string must be an escaped quoted string. The
Easy Connect string in its simplest form consists of a string database host[:port] [/
[service name]. For example, if the hostis inst1, and you run Export on pdb1l, then the Easy
Connect string can be:

impdp hr€\"instl@example.com/pdbl" DIRECTORY=dpump dirl DUMPFILE=hr.dmp
TABLES=employees

If you prefer to use an unquoted string, then you can specify the Easy Connect connect string
in a parameter file.

The local Import client connects to the database instance identified by the connect identifier
instl (a net service name), and imports the data from the dump file hr.dmp to inst1.

Specifying a connect identifier when you start the Import utility is different from performing an
import operation using the NETWORK_LINK parameter. When you start an import operation and
specify a connect identifier, the local Import client connects to the database instance identified
by the connect identifier and imports the data from the dump file named on the command line
to that database instance.

By contrast, when you perform an import using the NETWORK LINK parameter, the import is
performed using a database link, and there is no dump file involved. (A database link is a
connection between two physical database servers that allows a client to access them as one
logical database.)

Related Topics

* NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK LINK parameter enables an
import from a source database identified by a valid database link.

* Database Links

e Understanding the Easy Connect Naming Method

3-7

Chapter 3
Filtering During Import Operations

3.3 Filtering During Import Operations

Oracle Data Pump Import provides data and metadata filtering capability, which can help you
limit the type of information that you import.

e Oracle Data Pump Import Data Filters
You can specify restrictions on the table rows that you import by using Oracle Data Pump
Data-specific filtering through the QUERY and SAMPLE parameters.

e Oracle Data Pump Import Metadata Filters
To exclude or include objects in an import operation, use Oracle Data Pump metadata
filters.

3.3.1 Oracle Data Pump Import Data Filters

You can specify restrictions on the table rows that you import by using Oracle Data Pump
Data-specific filtering through the QUERY and SAMPLE parameters.

Oracle Data Pump can also implement Data filtering indirectly because of metadata filtering,
which can include or exclude table objects along with any associated row data.

Each data filter can be specified once for each table within a job. If different filters using the
same name are applied to both a particular table and to the whole job, then the filter parameter
supplied for the specific table takes precedence.

3.3.2 Oracle Data Pump Import Metadata Filters

ORACLE

To exclude or include objects in an import operation, use Oracle Data Pump metadata filters.

Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters. Metadata
filters identify a set of objects to be included or excluded from a Data Pump operation. For
example, you could request a full import, but without Package Specifications or Package
Bodies. Data Pump Import provides much greater metadata filtering capability than was
provided by the original Import utility.

To use filters correctly and to get the results you expect, remember that dependent objects of
an identified object are processed along with the identified object.

For example, if a filter specifies that a package is to be included in an operation, then grants
upon that package will also be included. Likewise, if a table is excluded by a filter, then
indexes, constraints, grants, and triggers upon the table will also be excluded by the filter.

Starting with Oracle Database 21c, Oracle Data Pump permits you to set both INCLUDE and
EXCLUDE parameters in the same command. When you include both parameters in a command,
Oracle Data Pump processes the INCLUDE parameter first, and includes all objects identified by
the parameter. Then it processes the exclude parameters. Specifically, the
EXCLUDE PATH EXPR, EXCLUDE PATH LIST and EXCLUDE TABLE parameters are processed last..
Any objects specified by the EXCLUDE parameter that are in the list of include objects are
removed as the command executes.

If multiple filters are specified for an object type, then an implicit AND operation is applied to
them. That is, objects participating in the job must pass all of the filters applied to their object
types.

The same filter name can be specified multiple times within a job.

3-8

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

To see a list of valid object types, query the following views: DATABASE EXPORT OBJECTS for full
mode, SCHEMA EXPORT OBJECTS for schema mode, and TABLE EXPORT OBJECTS for table and
tablespace mode. The values listed in the OBJECT PATH column are the valid object types. Note
that full object path names are determined by the export mode, not by the import mode.

Related Topics

Oracle Data Pump Metadata Filters
To exclude or include objects in an export operation, use Oracle Data Pump metadata
filters

EXCLUDE

The Oracle Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to exclude from
the import job.

INCLUDE

The Oracle Data Pump Import command-line mode INCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types for the current
import mode.

3.4 Parameters Available in Oracle Data Pump Import
Command-Line Mode

Use Oracle Data Pump parameters for Import (impdp) to manage your data imports.

ORACLE

About Import Command-Line Mode

Learn how to use Oracle Data Pump Import parameters in command-line mode, including
case sensitivity, quotation marks, escape characters, and information about how to use
examples.

ABORT_STEP

The Oracle Data Pump Import command-line mode ABORT STEP parameter stops the job
after it is initialized. Stopping the job enables the Data Pump control job table to be queried
before any data is imported.

ACCESS_METHOD
The Oracle Data Pump Import command-line mode ACCESS METHOD parameter instructs
Import to use a particular method to load data

ATTACH

The Oracle Data Pump Import command-line mode ATTACH parameter attaches a worker
session to an existing Data Pump control import job, and automatically places you in
interactive-command mode.

CLUSTER

The Oracle Data Pump Import command-line mode CLUSTER parameter determines
whether Data Pump can use Oracle Real Application Clusters (Oracle RAC) resources,
and start workers on other Oracle RAC instances.

CONTENT
The Oracle Data Pump Import command-line mode CONTENT parameter enables you to
filter what is loaded during the import operation.

CREDENTIAL

The Oracle Data Pump Import command-line mode CREDENTIAL parameter specifies the
credential object name owned by the database user that Import uses to process files in the
dump file set imported into cloud storage.

3-9

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

DATA_OPTIONS
The Oracle Data Pump Import command-line mode DATA OPTIONS parameter designates
how you want certain types of data to be handled during import operations.

DIRECTORY

The Oracle Data Pump Import command-line mode DIRECTORY parameter specifies the
default location in which the import job can find the dump file set, and create log and SQL
files.

DUMPFILE
The Oracle Data Pump Import command-line mode DUMPFILE parameter specifies the
names, and optionally, the directory objects of the dump file set that Export created.

ENABLE_SECURE_ROLES
The Oracle Data Pump Import command-line utility ENABLE SECURE_ROLES parameter
prevents inadvertent use of protected roles during exports.

ENCRYPTION_PASSWORD
The Oracle Data Pump Import command-line mode ENCRYPTION PASSWORD parameter
specifies a password for accessing encrypted column data in the dump file set.

ENCRYPTION_PWD_PROMPT
The Oracle Data Pump Import command-line mode ENCRYPTION PWD PROMPT parameter
specifies whether Data Pump should prompt you for the encryption password.

ESTIMATE

The Oracle Data Pump Import command-line mode ESTIMATE parameter instructs the
source system in a network import operation to estimate how much data is generated
during the import.

EXCLUDE

The Oracle Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to exclude from
the import job.

FLASHBACK_SCN
The Oracle Data Pump Import command-line mode FLASHBACK SCN specifies the system
change number (SCN) that Import uses to enable the Flashback utility.

FLASHBACK_TIME
The Oracle Data Pump Import command-line mode FLASHBACK TIME parameter specifies
the system change number (SCN) that Import uses to enable the Flashback utility.

FULL
The Oracle Data Pump Import command-line mode FULL parameter specifies that you want
to perform a full database import.

HELP
The Oracle Data Pump Import command-line mode HELP parameter displays online help
for the Import utility.

INCLUDE

The Oracle Data Pump Import command-line mode INCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types for the current
import mode.

JOB_NAME
The Oracle Data Pump Import command-line mode JoB NAME parameter is used to identify
the import job in subsequent actions.

3-10

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

KEEP_MASTER

The Oracle Data Pump Import command-line mode KEEP_MASTER parameter indicates
whether the Data Pump control job table should be deleted or retained at the end of an
Oracle Data Pump job that completes successfully.

LOGFILE
The Oracle Data Pump Import command-line mode LOGFILE parameter specifies the
name, and optionally, a directory object, for the log file of the import job.

LOGTIME
The Oracle Data Pump Import command-line mode LOGTIME parameter specifies that you
want to have messages displayed with timestamps during import.

MASTER_ONLY

The Oracle Data Pump Import command-line mode MASTER ONLY parameter indicates
whether to import just the Data Pump control job table, and then stop the job so that the
contents of the Data Pump control job table can be examined.

METRICS
The Oracle Data Pump Import command-line mode METRICS parameter indicates whether
additional information about the job should be reported to the log file.

NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK LINK parameter enables an
import from a source database identified by a valid database link.

NOLOGFILE
The Oracle Data Pump Import command-line mode NOLOGFILE parameter specifies
whether to suppress the default behavior of creating a log file.

PARALLEL
The Oracle Data Pump Import command-line mode PARALLEL parameter sets the
maximum number of worker processes that can load in parallel.

PARALLEL_THRESHOLD

The Oracle Data Pump Import command-line utility PARALLEL THRESHOLD parameter
specifies the size of the divisor that Data Pump uses to calculate potential parallel DML
based on table size.

PARFILE
The Oracle Data Pump Import command-line mode PARFILE parameter specifies the name
of an import parameter file.

PARTITION_OPTIONS
The Oracle Data Pump Import command-line mode PARTITION OPTIONS parameter
specifies how you want table partitions created during an import operation.

QUERY
The Oracle Data Pump Import command-line mode QUERY parameter enables you to
specify a query clause that filters the data that is imported.

REMAP_DATA
The Oracle Data Pump Import command-line mode REMAP DATA parameter enables you to
remap data as it is being inserted into a new database.

REMAP_DATAFILE

The Oracle Data Pump Import command-line mode REMAP DATAFILE parameter changes
the name of the source data file to the target data file name in all SQL statements where
the source data file is referenced.

3-11

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

REMAP_DIRECTORY
The Oracle Data Pump Import command-line mode REMAP DIRECTORY parameter lets you
remap directories when you move databases between platforms.

REMAP_SCHEMA
The Oracle Data Pump Import command-line mode REMAP SCHEMA parameter loads all
objects from the source schema into a target schema.

REMAP_TABLE
The Oracle Data Pump Import command-line mode REMAP TABLE parameter enables you to
rename tables during an import operation.

REMAP_TABLESPACE

The Oracle Data Pump Import command-line mode REMAP TABLESPACE parameter remaps
all objects selected for import with persistent data in the source tablespace to be created in
the target tablespace.

SCHEMAS
The Oracle Data Pump Import command-line mode SCHEMAS parameter specifies that you
want a schema-mode import to be performed.

SERVICE_NAME
The Oracle Data Pump Import command-line mode SERVICE NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

SKIP_UNUSABLE_INDEXES

The Oracle Data Pump Import command-line mode SKIP_UNUSABLE INDEXES parameter
specifies whether Import skips loading tables that have indexes that were set to the Index
Unusable state (by either the system or the user).

SOURCE_EDITION
The Oracle Data Pump Import command-line mode SOURCE_EDITION parameter specifies
the database edition on the remote node from which objects are fetched.

SQLFILE

The Oracle Data Pump Import command-line mode SQLFILE parameter specifies a file into
which all the SQL DDL that Import prepares to execute is written, based on other Import
parameters selected.

STATUS
The Oracle Data Pump Import command-line mode STATUS parameter specifies the
frequency at which the job status is displayed.

STREAMS_CONFIGURATION

The Oracle Data Pump Import command-line mode STREAMS CONFIGURATION parameter
specifies whether to import any GoldenGate Replication metadata that may be present in
the export dump file.

TABLE_EXISTS_ACTION
The Oracle Data Pump Import command-line mode TABLE EXISTS ACTION parameter
specifies for Import what to do if the table it is trying to create already exists.

REUSE_DATAFILES
The Oracle Data Pump Import command-line mode REUSE_DATAFILES parameter specifies
whether you want the import job to reuse existing data files for tablespace creation.

TABLES
The Oracle Data Pump Import command-line mode TABLES parameter specifies that you
want to perform a table-mode import.

3-12

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

TABLESPACES
The Oracle Data Pump Import command-line mode TABLESPACES parameter specifies that
you want to perform a tablespace-mode import.

TARGET_EDITION
The Oracle Data Pump Import command-line mode TARGET EDITION parameter specifies
the database edition into which you want objects imported.

TRANSFORM
The Oracle Data Pump Import command-line mode TRANSFORM parameter enables you to
alter object creation DDL for objects being imported.

TRANSPORT_DATAFILES

The Oracle Data Pump Import command-line mode TRANSPORT DATAFILES parameter
specifies a list of data files that are imported into the target database when
TRANSPORTABLE=ALWAYS is set during the export.

TRANSPORT_FULL_CHECK

The Oracle Data Pump Import command-line mode TRANSPORT FULL CHECK parameter
specifies whether to verify that the specified transportable tablespace set is being
referenced by objects in other tablespaces.

TRANSPORT_TABLESPACES

The Oracle Data Pump Import command-line mode TRANSPORT TABLESPACES parameter
specifies that you want to perform an import in transportable-tablespace mode over a
database link.

TRANSPORTABLE

The optional Oracle Data Pump Import command-line mode TRANSPORTABLE parameter
specifies either that transportable tables are imported with KEEP_ READ ONLY, Or
NO_BITMAP REBUILD.

VERIFY_CHECKSUM
The Oracle Data Pump Import command-line utility VERIFY CHECKSUM parameter specifies
whether to verify dump file checksums.

VERIFY_ONLY
The Oracle Data Pump Import command-line utility VERIFY ONLY parameter enables you to
verify the checksum for the dump file.

VERSION
The Oracle Data Pump Import command-line mode VERSION parameter specifies the
version of database objects that you want to import.

VIEWS_AS_ TABLES (Network Import)
The Oracle Data Pump Import command-line mode VIEWS AS TABLES (Network Import)
parameter specifies that you want one or more views to be imported as tables.

Related Topics

PARFILE
The Oracle Data Pump Import command-line mode PARFILE parameter specifies the name
of an import parameter file.

Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and SQL
files are accessed relative to server-based directory paths.

Examples of Using Oracle Data Pump Import
You can use these common scenario examples to learn how you can use Oracle Data
Pump Import to move your data.

3-13

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

* Syntax Diagrams for Oracle Data Pump Import
You can use syntax diagrams to understand the valid SQL syntax for Oracle Data Pump
Import.

3.4.1 About Import Command-Line Mode

ORACLE

Learn how to use Oracle Data Pump Import parameters in command-line mode, including case
sensitivity, quotation marks, escape characters, and information about how to use examples.

Before using Oracle Data Pump import parameters, read the following sections:

* Specifying Import Parameter
* Use of Quotation Marks On the Data Pump Command Line

Many of the descriptions include an example of how to use the parameter. For background
information on setting up the necessary environment to run the examples, see:

e Using the Import Parameter Examples

Specifying Import Parameters

For parameters that can have multiple values specified, the values can be separated by
commas or by spaces. For example, you could specify TABLES=employees, jobs Or
TABLES=employees jobs.

For every parameter you enter, you must enter an equal sign (=) and a value. Data Pump has
no other way of knowing that the previous parameter specification is complete and a new
parameter specification is beginning. For example, in the following command line, even though
NOLOGFILE is a valid parameter, it would be interpreted as another dump file name for the
DUMPFILE parameter:

impdp DIRECTORY=dpumpdir DUMPFILE=test.dmp NOLOGFILE TABLES=employees

This would result in two dump files being created, test.dmp and nologfile.dmp.

To avoid this, specify either NOLOGFILE=YES Oor NOLOGFILE=NO.

Case Sensitivity When Specifying Parameter Values

For tablespace names, schema names, table names, and so on that you enter as parameter
values, Oracle Data Pump by default changes values entered as lowercase or mixed-case into
uppercase. For example, if you enter TABLE=hr.employees, then it is changed to
TABLE=HR.EMPLOYEES. To maintain case, you must enclose the value within quotation marks.
For example, TABLE="hr.employees" would preserve the table name in all lower case. The
name you enter must exactly match the name stored in the database.

Use of Quotation Marks On the Data Pump Command Line

Some operating systems treat quotation marks as special characters and will therefore not
pass them to an application unless they are preceded by an escape character, such as the
backslash (\). This is true both on the command line and within parameter files. Some
operating systems may require an additional set of single or double quotation marks on the
command line around the entire parameter value containing the special characters.

The following examples are provided to illustrate these concepts. Be aware that they may not
apply to your particular operating system and that this documentation cannot anticipate the
operating environments unique to each user.

Suppose you specify the TABLES parameter in a parameter file, as follows:

3-14

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

TABLES = \"MixedCaseTableName\"

If you were to specify that on the command line, then some operating systems would require
that it be surrounded by single quotation marks, as follows:

TABLES = '\"MixedCaseTableName\"'

To avoid having to supply additional quotation marks on the command line, Oracle
recommends the use of parameter files. Also, note that if you use a parameter file and the
parameter value being specified does not have quotation marks as the first character in the
string (for example, TABLES=scott."EmP"), then the use of escape characters may not be
necessary on some systems.

Using the Import Parameter Examples

If you try running the examples that are provided for each parameter, then be aware of the
following:

» After you enter the username and parameters as shown in the example, Import is started
and you are prompted for a password. You must supply a password before a database
connection is made.

* Most of the examples use the sample schemas of the seed database, which is installed by
default when you install Oracle Database. In particular, the human resources (hr) schema
is often used.

» Examples that specify a dump file to import assume that the dump file exists. Wherever
possible, the examples use dump files that are generated when you run the Export
examples.

* The examples assume that the directory objects, dpump dirl and dpump dir2, already
exist and that READ and WRITE privileges have been granted to the hr user for these
directory objects.

* Some of the examples require the DATAPUMP EXP FULL DATABASE and
DATAPUMP IMP FULL DATABASE roles. The examples assume that the hr user has been
granted these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning the
necessary privileges and roles.

Unless specifically noted, these parameters can also be specified in a parameter file.

¢ See Also:
Oracle Database Sample Schemas

Your Oracle operating system-specific documentation for information about how
special and reserved characters are handled on your system.

ORACLE 15

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.2 ABORT_STEP

The Oracle Data Pump Import command-line mode ABORT STEP parameter stops the job after it
is initialized. Stopping the job enables the Data Pump control job table to be queried before
any data is imported.

Default

Null

Purpose

Stops the job after it is initialized. Stopping the job enables the Data Pump control job table to
be queried before any data is imported.

Syntax and Description
ABORT STEP=[n | -1]

The possible values correspond to a process order number in the Data Pump control job table.
The result of using each number is as follows:

* n:If the value is zero or greater, then the import operation is started. The job is stopped at

the object that is stored in the Data Pump control job table with the corresponding process
order number.

* -1 The import job uses a NETWORK_LINK: Abort the job after setting it up but before
importing any objects.

* -1 The import job does not use NETWORK LINK: Abort the job after loading the master table
and applying filters.

Restrictions

¢ None

Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump dirl LOGFILE=schemas.log
DUMPFILE=expdat.dmp ABORT STEP=-1

3.4.3 ACCESS_METHOD

ORACLE

The Oracle Data Pump Import command-line mode ACCESS METHOD parameter instructs Import
to use a particular method to load data

Default

AUTOMATIC

Purpose

Instructs Import to use a particular method to load data.

3-16

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Syntax and Description

ACCESS METHOD=[AUTOMATIC | DIRECT PATH | EXTERNAL TABLE | CONVENTIONAL |
INSERT AS SELECT]

The ACCESS METHOD parameter is provided so that you can try an alternative method if the
default method does not work for some reason. If the data for a table cannot be loaded with the
specified access method, then the data displays an error for the table and continues with the
next work item.

The available options are:

° AUTOMATIC: This access method is the default. Data Pump determines the best way to load
data for each table. Oracle recommends that you use AUTOMATIC whenever possible,
because it enables Data Pump to automatically select the most efficient method.

* DIRECT PATH: Data Pump uses direct path load for every table.

* EXTERNAL TABLE: Data Pump creates an external table over the data stored in the dump
file, and uses a SQL INSERT AS SELECT statement to load the data into the table. Data
Pump applies the APPEND hint to the INSERT Statement.

° CONVENTIONAL: Data Pump creates an external table over the data stored in the dump file
and reads rows from the external table one at a time. Every time it reads a row, Data Pump
executes an insert statement that loads that row into the target table. This method takes a
long time to load data, but it is the only way to load data that cannot be loaded by direct
path and external tables.

e INSERT AS SELECT: Data Pump loads tables by executing a SQL INSERT AS SELECT
statement that selects data from the remote database and inserts it into the target table.
This option is available only for network mode imports. It is used to disable use of
DIRECT PATH when data is moved over the network.

Restrictions

* The valid options for network mode import are AUTOMATIC, DIRECT PATH and
INSERT AS SELECT .

* The only valid options when importing from a dump file are AUTOMATIC, DIRECT PATH,
EXTERNAL TABLE and CONVENTIONAL.

* To use the ACCESS METHOD parameter with network imports, you must be using Oracle
Database 12c Release 2 (12.2.0.1) or later

* The ACCESS METHOD parameter for Oracle Data Pump Import is not valid for transportable
tablespace jobs.

Example

The following example enables Oracle Data Pump to load data for multiple partitions of the
pre-existing table SALES at the same time.

impdp hr SCHEMAS=hr DIRECTORY=dpump dirl LOGFILE=schemas.log
DUMPFILE=expdat.dmp ACCESS METHOD=CONVENTIONAL

ORACLE 3-17

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.4 ATTACH

ORACLE

The Oracle Data Pump Import command-line mode ATTACH parameter attaches a worker
session to an existing Data Pump control import job, and automatically places you in
interactive-command mode.

Default

If there is only one running job, then the current job in user's schema.

Purpose

This command attaches the client worker session to an existing import job, and automatically
places you in interactive-command mode.

Syntax and Description

ATTACH [=[schema name.]job name]

Specify a schema_name if the schema to which you are attaching is not your own. To do this,
you must have the DATAPUMP IMP FULL DATABASE role.

A job_name does not have to be specified if only one running job is associated with your
schema, and if the job is active. If the job you are attaching to is stopped, then you must supply
the job name. To see a list of Oracle Data Pump job names, you can query the

DBA DATAPUMP JOBS view or the USER DATAPUMP JOBS View.

When you are attached to the job, Import displays a description of the job, and then displays
the Import prompt.

Restrictions

* When you specify the ATTACH parameter, the only other Oracle Data Pump parameter you
can specify on the command line is ENCRYPTION PASSWORD.

« If the job you are attaching to was initially started using an encryption password, then when
you attach to the job, you must again enter the ENCRYPTION PASSWORD parameter on the
command line to re-specify that password.

* You cannot attach to a job in another schema unless it is already running.

- If the dump file set or master table for the job have been deleted, then the attach operation
fails.

« Altering the Data Pump control table in any way can lead to unpredictable results.
Example

The following is an example of using the ATTACH parameter.

> impdp hr ATTACH=import job

This example assumes that a job named import job exists in the hr schema.

Related Topics

e Commands Available in Oracle Data Pump Import Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended, and the Import prompt (Import>) is displayed.

3-18

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.5 CLUSTER

ORACLE

The Oracle Data Pump Import command-line mode CLUSTER parameter determines whether
Data Pump can use Oracle Real Application Clusters (Oracle RAC) resources, and start
workers on other Oracle RAC instances.

Default

YES

Purpose

Determines whether Oracle Data Pump can use Oracle Real Application Clusters (Oracle
RAC) resources, and start workers on other Oracle RAC instances.

Syntax and Description

CLUSTER=[YES | NO]

To force Data Pump Import to use only the instance where the job is started and to replicate
pre-Oracle Database 11g Release 2 (11.2) behavior, specify CLUSTER=NO.

To specify a specific, existing service, and constrain worker processes to run only on instances
defined for that service, use the SERVICE NAME parameter with the CLUSTER=YES parameter.

Using the CLUSTER parameter can affect performance, because there is some additional
overhead in distributing the import job across Oracle RAC instances. For small jobs, it can be
better to specify CLUSTER=NO, so that the job is constrained to run on the instance where it is
started. Jobs that obtain the most performance benefits from using the CLUSTER parameter are
those involving large amounts of data.

Example

> impdp hr DIRECTORY=dpump dirl SCHEMAS=hr CLUSTER=NO PARALLEL=3
NETWORK LINK=dbsl

This example performs a schema-mode import of the hr schema. Because CLUSTER=NO is
used, the job uses only the instance where it is started. Up to 3 parallel processes can be
used. The NETWORK LINK value of dbs1 would be replaced with the name of the source
database from which you were importing data. (Note that there is no dump file generated,
because this is a network import.)

In this example, the NETWORK _LINK parameter is only used as part of the example. It is not
required when using the CLUSTER parameter.

Related Topics

e SERVICE_NAME
The Oracle Data Pump Import command-line mode SERVICE NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

¢ Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC) environment
requires you to perform a few checks to ensure that you are making cluster member nodes
available.

3-19

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.6 CONTENT

The Oracle Data Pump Import command-line mode CONTENT parameter enables you to filter
what is loaded during the import operation.

Default

ALL

Purpose

Enables you to filter what is loaded during the import operation.

Syntax and Description

CONTENT=[ALL | DATA ONLY | METADATA ONLY]

e ALL: loads any data and metadata contained in the source. This is the default.
* DATA ONLY: loads only table row data into existing tables; no database objects are created.

* METADATA ONLY: loads only database object definitions. It does not load table row data. Be
aware that if you specify CONTENT=METADATA ONLY, then any index or table statistics
imported from the dump file are locked after the import operation is complete.

Restrictions

* The CONTENT=METADATA ONLY parameter and value cannot be used in conjunction with the
TRANSPORT TABLESPACES (transportable-tablespace mode) parameter or the QUERY
parameter.

* The CONTENT=ALL and CONTENT=DATA ONLY parameter and values cannot be used in
conjunction with the SQLFILE parameter.

Example

The following is an example of using the CONTENT parameter. You can create the expfull.dmp
dump file used in this example by running the example provided for the Export FULL parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp CONTENT=METADATA ONLY

This command runs a full import that loads only the metadata in the expfull.dmp dump file. It
runs a full import, because a full import is the default for file-based imports in which no import
mode is specified.

Related Topics

e FULL
The Export command-line FULL parameter specifies that you want to perform a full
database mode export

ORACLE 350

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.7 CREDENTIAL

ORACLE

The Oracle Data Pump Import command-line mode CREDENTIAL parameter specifies the
credential object name owned by the database user that Import uses to process files in the
dump file set imported into cloud storage.

Default

none.

Purpose

Specifies the credential object name owned by the database user that Import uses to process
files in the dump file set imported into Oracle Cloud Infrastructure cloud storage.

Syntax and Description

CREDENTIAL=credential object name
The import operation reads and processes files in the dump file set stored in the cloud the
same as files stored on local file systems.

If the CREDENTIAL parameter is specified, then the value for the DUMPFILE parameter is a list of
comma-delimited strings that Import treats as URI values. Starting with Oracle Database 19c,
the URI files in the dump file set can include templates that contain the Data Pump substitution
variables, such as %U, %L, and so on. For example: urlpathexp%U.dmp.

< Note:

Substitution variables are only allowed in the filename portion of the URI.

The DUMPFILE parameter enables you to specify an optional directory object, using the format
directory object name:file name. However, if you specify the CREDENTIAL parameter, then
Import does not attempt to look for a directory object name in the strings passed for DUMPFILE.
Instead, the strings are treated as URI strings.

The DIRECTORY parameter is still used as the location of log files and SQL files. Also, you can
still specify directory object names as part of the file names for LOGFILE and SQLFILE.

Oracle Data Pump import is no longer constrained to using the default credential value in
Oracle Autonomous Database. The Import CREDENTIAL parameter now accepts any Oracle
Cloud Infrastructure (OCI) Object Storage credential created in the Oracle Autonomous
Database that is added to the database using the DBMS CLOUD.CREATE CREDENTIAL ()
procedure. Oracle Data Pump validates if the credential exists, and if the user has access to
read the credential. Any errors are returned back to the impdp client.

Starting with Oracle Database 21c, Oracle Data Pump Import and Export support use of Object
Storage URIs for the DUMPFILE parameter. To use this feature for exports or imports from an
object store, the CREDENTIAL parameter must be set to the Object Storage URI. This feature
eases migration to and from Oracle Cloud, because it relieves you of the extra step of
transferring a dumpfile to or from the object store. Note that export and import performance is
slower when accessing the object store, compared to local disk access, but the process is
simpler. In addition, the process should be faster than running two separate export operations
from Oracle Cloud, and transferring the dumpfile from the object store to an on premises

3-21

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

location, or transferring the dumpfile from on premises to the object store, and then importing
into Oracle Cloud.

Restrictions

The credential parameter cannot be an OCI resource principal, Azure service principal,
Amazon Resource Name (ARN), or a Google service account.

Example: Using the Import CREDENTIAL Parameter

The following is an example of using the Import CREDENTIAL parameter. You can create the
dump files used in this example by running the example provided for the Export DUMPFILE
parameter, and then uploading the dump files into your cloud storage.

> impdp hr/your password DIRECTORY=dpump dirl
CREDENTIAL=user accessible credential
DUMPFILE="https://objectstorage.example.com/expl.dmp’,
"https://objectstorage.example.com/exp201.dmp’,
"https://objectstorage.example.com/exp202.dmp’

The import job looks in the specified cloud storage for the dump files. The log file is written to
the path associated with the directory object, dpump dirl, that was specified with the
DIRECTORY parameter.

Example: Specifying a User-Defined Credential

The following example creates a new user-defined credential in the Oracle Autonomous
Database, and uses the same credential in an impdp command:

BEGIN
DBMS CLOUD.CREATE CREDENTIAL (
credential name => ‘MY CRED NAME',
username => 'adwc user@example.com’,
password => ‘Auth token'); END;

> impdp admin/password@ADWC1 high
directory=data pump dir
credential=MY cred name ..

Example: Importing Into Autonomous Data Warehouse Using an Object Store Credential

impdp admin/password@ADWC1 high \

directory=data pump dir \

credential=def cred name \

dumpfile= https://objectstorage.us-ashburn-1.oraclecloud.com/n/namespace-
string/b/bucketname/o/exportsu.dmp \

parallel=16 \

encryption pwd prompt=yes \

partition options=merge \

transform=segment attributes:n \

transform=dwcs cvt iots:y transform=constraint use default index:y \

exclude=index, cluster, indextype, materialized view,materialized view log,materi
alized zonemap,db link

3-22

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.8 DATA_OPTIONS

ORACLE

The Oracle Data Pump Import command-line mode DATA OPTIONS parameter designates how
you want certain types of data to be handled during import operations.

Default

There is no default. If this parameter is not used, then the special data handling options it
provides simply do not take effect.

Purpose

The DATA OPTIONS parameter designates how you want certain types of data to be handled
during import operations.

Syntax and Description

DATA OPTIONS = [DISABLE APPEND HINT | SKIP CONSTRAINT ERRORS |
REJECT ROWS WITH REPL CHAR | GROUP_PARTITION TABLE DATA |
TRUST EXISTING TABLE PARTITIONS |

VALIDATE TABLE DATA | ENABLE NETWORK COMPRESSION |
CONTINUE LOAD ON_FORMAT ERROR]

* DISABLE APPEND HINT: Specifies that you do not want the import operation to use the
APPEND hint while loading the data object. Disabling the APPEND hint can be useful to
address duplicate data. For example, you can use DISABLE APPEND HINT when there is a
small set of data objects to load that exists already in the database, and some other
application can be concurrently accessing one or more of the data objects.

DISABLE APPEND HINT: Changes the default behavior, so that the APPEND hint is not used
for loading data objects. When not set, the default is to use the APPEND hint for loading data
objects.

° GROUP PARTITION TABLE DATA: Tells Oracle Data Pump to import the table data in all
partitions of a table as one operation. The default behavior is to import each table partition
as a separate operation. If you know that the data for a partition will not move, then choose
this parameter to accelerate the import of partitioned table data. There are cases when
Oracle Data Pump attempts to load only one partition at a time. It does this when the table
already exists, or when there is a risk that the data for one partition might be moved to
another partition.

* REJECT ROWS WITH REPL CHAR: Specifies that you want the import operation to reject any
rows that experience data loss because the default replacement character was used
during character set conversion.

If REJECT ROWS WITH REPL CHAR is not set, then the default behavior is to load the
converted rows with replacement characters.

* SKIP CONSTRAINT ERRORS: Affects how non-deferred constraint violations are handled while
a data object (table, partition, or subpatrtition) is being loaded.

If deferred constraint violations are encountered, then SKIP_CONSTRAINT ERRORS has no
effect on the load. Deferred constraint violations always cause the entire load to be rolled
back.

The SKIP CONSTRAINT ERRORS option specifies that you want the import operation to
proceed even if non-deferred constraint violations are encountered. It logs any rows that

3-23

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

cause non-deferred constraint violations, but does not stop the load for the data object
experiencing the violation.

SKIP CONSTRAINT ERRORS: Prevents roll back of the entire data object when non-deferred
constraint violations are encountered.

If SKIP_CONSTRAINT ERRORS is not set, then the default behavior is to roll back the entire
load of the data object on which non-deferred constraint violations are encountered.

TRUST EXISTING TABLE PARTITIONS: Tells Data Pump to load partition data in parallel into
existing tables.

Use this option when you are using Data Pump to create the table from the definition in the
export database before the table data import is started. Typically, you use this parameter
as part of a migration when the metadata is static, and you can move it before the
databases are taken off line to migrate the data. Moving the metadata separately
minimizes downtime. If you use this option, and if other attributes of the database are the
same (for example, character set), then the data from the export database goes to the
same partitions in the import database.

You can create the table outside of Oracle Data Pump. However, if you create tables as a
separate option from using Oracle Data Pump, then the partition attributes and partition
names must be identical to the export database.

¢ Note:

This option can be used for import no matter the source version of the export.

VALIDATE TABLE DATA: Directs Oracle Data Pump to validate the number and date data
types in table data columns.

If the import encounters invalid data, then an ORA-39376 error is written to the . 1og file. The
error text includes the column name. The default is to do no validation. Use this option if
the source of the Oracle Data Pump dump file is not trusted.

ENABLE NETWORK COMPRESSION: Used for network imports in which the Oracle Data Pump
ACCESS METHOD parameter is set to DIRECT PATH to load remote table data.

When ENABLE NETWORK COMPRESSION is specified, Oracle Data Pump compresses data on
the remote node before it is sent over the network to the target database, where it is
decompressed. This option is useful if the network connection between the remote and
local database is slow, because it reduces the amount of data sent over the network.

Setting ACCESS METHOD=AUTOMATIC enables Oracle Data Pump to set
ENABLE NETWORK COMPRESSION automatically during the import if Oracle Data Pump uses
DIRECT PATH for a network import.

The ENABLE NETWORK COMPRESSION option is ignored if Oracle Data Pump is importing data
from a dump file, if the remote data base is earlier than Oracle Database 12c Release 2
(12.2), or if an INSERT AS SELECT statement is being used to load data from the remote
database.

CONTINUE LOAD ON FORMAT ERROR: Directs Oracle Data Pump to skip forward to the start of
the next granule when a stream format error is encountered while loading table data.

Stream format errors typically are the result of corrupt dump files. If Oracle Data Pump
encounters a stream format error, and the original export database is not available to
export the table data again, then you can use CONTINUE LOAD ON FORMAT ERROR. If Oracle
Data Pump skips over data, then not all data from the source database is imported, which
potentially skips hundreds or thousands of rows.

3-24

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Restrictions
* Ifyou use DISABLE APPEND HINT, then it can take longer for data objects to load.

* If you use SKIP CONSTRAINT ERRORS, and if a data object has unique indexes or constraints
defined on it at the time of the load, then the APPEND hint is not used for loading that data
object. Therefore, loading such data objects can take longer when the
SKIP CONSTRAINT ERRORS option is used.

* Evenif SKIP CONSTRAINT ERRORS is specified, it is not used unless a data object is being
loaded using the external table access method.

Example
This example shows a data-only table mode import with SKIP_ CONSTRAINT ERRORS enabled:

> impdp hr TABLES=employees CONTENT=DATA ONLY
DUMPFILE=dpump dirl:table.dmp DATA OPTIONS=skip constraint errors

If any non-deferred constraint violations are encountered during this import operation, then
they are logged. The import continues on to completion.

3.4.9 DIRECTORY

The Oracle Data Pump Import command-line mode DIRECTORY parameter specifies the default
location in which the import job can find the dump file set, and create log and SQL files.

Default

DATA PUMP DIR

Purpose

Specifies the default location in which the import job can find the dump file set and where it
should create log and SQL files.

Syntax and Description

DIRECTORY=directory object

The directory object is the name of a database directory object. It is not the file path of an
actual directory. Privileged users have access to a default directory object named

DATA PUMP DIR. The definition of the DATA PUMP DIR directory can be changed by Oracle
during upgrades, or when patches are applied.

Users with access to the default DATA PUMP DIR directory object do not need to use the
DIRECTORY parameter.

A directory object specified on the DUMPFILE, LOGFILE, Or SQLFILE parameter overrides any
directory object that you specify for the DIRECTORY parameter. You must have Read access to
the directory used for the dump file set. You must have Write access to the directory used to
create the log and SQL files.

ORACLE .

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Example

The following is an example of using the DIRECTORY parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the Export
FULL parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp
LOGFILE=dpump dir2:expfull.log

This command results in the import job looking for the expfull.dmp dump file in the directory
pointed to by the dpump dirl directory object. The dpump dir2 directory object specified on the
LOGFILE parameter overrides the DIRECTORY parameter so that the log file is written to

dpump dir2. Refer to Oracle Database SQL Language Reference for more information about
the CREATE DIRECTORY command.

Related Topics

* Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and SQL
files are accessed relative to server-based directory paths.

* Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC) environment
requires you to perform a few checks to ensure that you are making cluster member nodes
available.

 CREATE DIRECTORY in Oracle Database SQL Language Reference

3.4.10 DUMPFILE

ORACLE

The Oracle Data Pump Import command-line mode DUMPFILE parameter specifies the names,
and optionally, the directory objects of the dump file set that Export created.

Default

expdat.dmp

Purpose

Specifies the names, and, if you choose, the directory objects or default credential of the dump
file set that was created by Export.

Syntax and Description

DUMPFILE=[directory object:]file name [, ...]

Or

DUMPFILE=[DEFAULT CREDENTIAL:]URI file [, ...]

The directory object is optional if one is already established by the DIRECTORY parameter. If
you do supply a value, then it must be a directory object that already exists, and to which you
have access. A database directory object that is specified as part of the DUMPFILE parameter
overrides a value specified by the DIRECTORY parameter.

3-26

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

The file name is the name of a file in the dump file set. The file names can also be templates
that contain the substitution variable $U. The Import process checks each file that matches the
template to locate all files that are part of the dump file set, until no match is found. Sufficient
information is contained within the files for Import to locate the entire set, provided that the file
specifications defined in the DUMPFILE parameter encompass the entire set. The files are not
required to have the same names, locations, or order used at export time.

< Note:

When you use a dumpfile in Object Storage with a credential in it, ensure that the
URI file does notinclude the $ character except when using substitution variable
reserved characters after it.

For example, if a URL-encoded forward slash (/) is encoded as %2F in the URI_file,
then this encoded character can cause an error.

The possible substitution variables are described in the following table.

Substitution Variable Description

o\

U If U is used, then the%U expands to a 2-digit incrementing integer
starting with 01.

o©
=
o°
=

Specifies a system-generated unique file name.

The file names can contain a substitution variable (L), which implies
that multiple files may be generated. The substitution variable is
expanded in the resulting file names into a 2-digit, fixed-width,
incrementing integer starting at 01 and ending at 99 which is the
same as (%U). In addition, the substitution variable is expanded in the
resulting file names into a 3-digit to 10-digit, variable-width,
incrementing integers starting at 100 and ending at 2147483646.
The width field is determined by the number of digits in the integer.
For example if the current integer is 1, then exp%Laa$L.dmp
resolves to the following sequence order

exp0laal0l.dmp
exp02aa02.dmp

The 2-digit increment continues increasing, up to 99. Then, the next
file names substitute a 3-digit increment:

expl00aal00.dmp
expl0laalll.dmp

The 3-digit increments continue up until 999. Then, the next file
names substitute a 4-digit increment. The substitutions continue up
to the largest number substitution allowed, which is 2147483646.

Restrictions

Dump files created on Oracle Database 11g releases with the Oracle Data Pump parameter
VERSION=12 can only be imported on Oracle Database 12c¢ Release 1 (12.1) and later.

ORACLE 3-27

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Example of Using the Import DUMPFILE Parameter

You can create the dump files used in this example by running the example provided for the
Export DUMPFILE parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=dpump dir2:expl.dmp, exp2%U.dmp

Because a directory object (dpump_dir2) is specified for the expl.dmp dump file, the import job
looks there for the file. It also looks in dpump dirl for dump files of the form exp2nn.dmp. The
log file is written to dpump_dirl.

If you use the alternative DEFAULT CREDENTIAL keyword syntax for the Import DUMPFILE
parameter, then a default credential with user access must already exist. The import operation
uses the default credential to read and process files in the dump file set that is stored in the
cloud at the specified URI file location.

The variable URI file represents the name of a URI file in the dump file set. The file name
cannot be the same as templates that contain the Data Pump substitution variables, such as
%U, %L, and so on.

The DUMPFILE parameter DEFAULT CREDENTIAL keyword syntax is mutually exclusive to the
directory object syntax. Only one form can be used in the same command line.

Example of Using the Import DUMPFILE with User-Defined Credentials

This example specifies the default location in which the import job can find the dump file set,
and create log and SQL files, and specifies the credential object name owned by the database
user that Import uses to process files in the dump file set that were previously imported into
cloud storage.

> impdp admin/password@ADWCl high
directory=data pump dir
credential=MY cred name ..

Example of Using the Import DUMPFILE parameter with DEFAULT_CREDENTIAL
Keywords.

You can create the dump files used in this example by running the example provided for the
Export DUMPFILE parameter.

> impdp hr/your password DIRECTORY=dpump dirl
DUMPFILE='DEFAULT CREDENTIAL:https://objectstorage.example.com/
expl.dmp’,
'DEFAULT CREDENTIAL:https://objectstorage.example.com/exp201l.dmp’,
"DEFAULT CREDENTIAL:https://objectstorage.example.com/exp202.dmp’

The import job looks in the specified URI file location for the dump files using the default
credential that has already been set up for the user. The log file is written to the path
associated with the directory object, dpump dirl that was specified with the DIRECTORY
parameter.

Example of Using the Import DUMPFILE parameter with User-Defined Credentials

This example specifies the default location in which the import job can find the dump file set,
and create log and SQL files, and specifies the credential object name owned by the database

3-28

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

user that Import uses to process files in the dump file set that were previously imported into
cloud storage.

> impdp impdp admin/password@ADWC1 high DIRECTORY=data pump dir
DUMPFILE='MY cred name:https://objectstorage.example.com/expl.dmp’,
'MY cred name:https://objectstorage.example.com/exp201.dmp’,
"MY cred name:https://objectstorage.example.com/exp202.dmp’

Related Topics
¢« DUMPFILE
e File Allocation with Oracle Data Pump

e Performing a Data-Only Table-Mode Import

3.4.11 ENABLE_SECURE_ROLES

The Oracle Data Pump Import command-line utility ENABLE SECURE_ROLES parameter prevents
inadvertent use of protected roles during exports.

Default

In Oracle Database 19c and later releases, the default value is NO.

Purpose

Some Oracle roles require authorization. If you need to use these roles with Oracle Data Pump
imports, then you must explicitly enable them by setting the ENABLE SECURE_ROLES parameter
to YES.

Syntax

ENABLE SECURE_ROLES=[NO|YES]

e NO Disables Oracle roles that require authorization.
* YES Enables Oracle roles that require authorization.

Example

impdp hr SCHEMAS=hr DIRECTORY=dpump dirl DUMPFILE=dpump dir2:impl.dmp,
imp2%U.dmp ENABLE SECURE ROLES=YES

3.4.12 ENCRYPTION_PASSWORD

ORACLE

The Oracle Data Pump Import command-line mode ENCRYPTION PASSWORD parameter specifies
a password for accessing encrypted column data in the dump file set.

Default

There is no default; the value is user-supplied.

Purpose

Specifies a password for accessing encrypted column data in the dump file set. Using
passwords prevents unauthorized access to an encrypted dump file set.

3-29

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

This parameter is also required for the transport of keys associated with encrypted
tablespaces, and transporting tables with encrypted columns during a full transportable export
or import operation.

The password that you enter is echoed to the screen. If you do not want the password shown
on the screen as you enter it, then use the ENCRYPTION PWD PROMPT parameter.

Syntax and Description

ENCRYPTION PASSWORD = password

If an encryption password was specified on the export operation, then this parameter is
required on an import operation. The password that is specified must be the same one that
was specified on the export operation.

Restrictions

* The export operation using this parameter requires the Enterprise Edition release of Oracle
Database 119 or later, It is not possible to use ENCRYPTION PASSWORD for an export from
Standard Edition, so you cannot use this this parameter for a migration from Standard
Edition to Enterprise Edition. You can use this parameter for migrations from Enterprise
Edition to Standard Edition.

» Data Pump encryption features require that you have the Oracle Advanced Security option
enabled. Refer to Oracle Database Licensing Information for information about licensing
requirements for the Oracle Advanced Security option.

* The ENCRYPTION PASSWORD parameter is not valid if the dump file set was created using the
transparent mode of encryption.

* The ENCRYPTION PASSWORD parameter is required for network-based full transportable
imports where the source database has encrypted tablespaces or tables with encrypted
columns.

« If the source table and target tables have different column encryption attributes, then
import can fail to load the source table rows into the target table. If this issue occurs, then
an error indicating a difference in column encryption properties is raised.

Example

In the following example, the encryption password, 123456, must be specified, because it was
specified when the dpcd2bel . dmp dump file was created.

> impdp hr TABLES=employee s encrypt DIRECTORY=dpump dir
DUMPFILE=dpcd2bel.dmp ENCRYPTION PASSWORD=123456

During the import operation, any columns in the employee s encrypt table encrypted during
the export operation are decrypted before being imported.

Related Topics

e Oracle Database Licensing Information User Manual

ORACLE 330

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.13 ENCRYPTION_PWD_PROMPT

ORACLE

The Oracle Data Pump Import command-line mode ENCRYPTION PWD PROMPT parameter
specifies whether Data Pump should prompt you for the encryption password.

Default

NO

Purpose

Specifies whether Oracle Data Pump should prompt you for the encryption password.
Syntax and Description

ENCRYPTION PWD PROMPT=[YES | NO]

Specify ENCRYPTION PWD PROMPT=YES on the command line to instruct Oracle Data Pump to
prompt you for the encryption password. If you do not specify the value to YES, then you must
enter the encryption password on the command line with the ENCRYPTION PASSWORD parameter.
The advantage to setting the parameter to YES is that the encryption password is not echoed to
the screen when it is entered at the prompt. By contrast, if you enter the password on the
command line using the ENCRYPTION PASSWORD parameter, then the password appears in plain
text.

The encryption password that you enter at the prompt is subject to the same criteria described
for the ENCRYPTION PASSWORD parameter.

If you specify an encryption password on the export operation, then you must also supply it on
the import operation.

Restrictions

Concurrent use of the ENCRYPTION PWD PROMPT and ENCRYPTION PASSWORD parameters is
prohibited.

Example

The following example shows Oracle Data Pump first prompting for the user password, and
then for the encryption password.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp ENCRYPTION PWD PROMPT=YES

Copyright (c) 1982, 2017, Oracle and/or its affiliates. All rights reserved.
Password:

Connected to: Oracle Database 18c Enterprise Edition Release 18.0.0.0.0 -
Development

Version 18.1.0.0.0

Encryption Password:

3-31

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Master table "HR"."SYS IMPORT FULL 01" successfully loaded/unloaded
Starting "HR"."SYS IMPORT FULL 01": hr/******** directory=dpump dirl
dumpfile=hr.dmp encryption pwd prompt=Y

3.4.14 ESTIMATE

ORACLE

The Oracle Data Pump Import command-line mode ESTIMATE parameter instructs the source
system in a network import operation to estimate how much data is generated during the
import.

Default

STATISTICS

Purpose

Instructs the source system in a network import operation to estimate how much data is
generated during the import.
Syntax and Description

ESTIMATE=[BLOCKS | STATISTICS]

The valid choices for the ESTIMATE parameter are as follows:

° BLOCKS: The estimate is calculated by multiplying the number of database blocks used by
the source objects times the appropriate block sizes.

e STATISTICS: The estimate is calculated using statistics for each table. For this method to
be as accurate as possible, all tables should have been analyzed recently. (Table analysis
can be done with either the SQL ANALYZE statement or the DBMS STATS PL/SQL package.)

You can use the estimate that is generated to determine a percentage of the import job that is
completed throughout the import.

Restrictions

* The Import ESTIMATE parameter is valid only if the NETWORK LINK parameter is also
specified.

* When the import source is a dump file set, the amount of data to be loaded is already
known, so the percentage complete is automatically calculated.

* The estimate may be inaccurate if either the QUERY or REMAP DATA parameter is used.

Example

In the following syntax example, you replace the variable source database 1ink with the
name of a valid link to the source database.

> impdp hr TABLES=job history NETWORK LINK=source database link
DIRECTORY=dpump dirl ESTIMATE=STATISTICS

The job_history table in the hr schema is imported from the source database. A log file is
created by default and written to the directory pointed to by the dpump dirl directory object.
When the job begins, an estimate for the job is calculated based on table statistics.

3-32

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.15 EXCLUDE

ORACLE

The Oracle Data Pump Import command-line mode EXCLUDE parameter enables you to filter the
metadata that is imported by specifying objects and object types to exclude from the import
job.

Default

There is no default.

Purpose

Enables you to filter the metadata that is imported by specifying objects and object types to
exclude from the import job.

Syntax and Description

EXCLUDE=object type[:name clause] [, ...]

The object type specifies the type of object to be excluded. To see a list of valid values for
object type, query the following views: DATABASE EXPORT OBJECTS for full mode,

SCHEMA EXPORT OBJECTS for schema mode, and TABLE EXPORT OBJECTS for table and
tablespace mode. The values listed in the OBJECT PATH column are the valid object types.

For the given mode of import, all object types contained within the source (and their
dependents) are included, except those specified in an EXCLUDE statement. If an object is
excluded, then all of its dependent objects are also excluded. For example, excluding a table
will also exclude all indexes and triggers on the table.

The name clause is optional. It allows fine-grained selection of specific objects within an object
type. It is a SQL expression used as a filter on the object names of the type. It consists of a
SQL operator and the values against which the object names of the specified type are to be
compared. The name clause applies only to object types whose instances have names (for
example, it is applicable to TABLE and VIEW, but not to GRANT). It must be separated from the
object type with a colon and enclosed in double quotation marks, because single quotation
marks are required to delimit the name strings. For example, you could set
EXCLUDE=INDEX:"LIKE 'DEPT%'" to exclude all indexes whose names start with dept.

The name that you supply for the name clause must exactly match, including upper and lower
casing, an existing object in the database. For example, if the name clause you supply is for a
table named EMPLOYEES, then there must be an existing table named EMPLOYEES using all upper
case. If the name clause were supplied as Employees or employees or any other variation, then
the table would not be found.

More than one EXCLUDE statement can be specified.

Depending on your operating system, the use of quotation marks when you specify a value for
this parameter may also require that you use escape characters. Oracle recommends that you
place this parameter in a parameter file, which can reduce the number of escape characters
that might otherwise be needed on the command line.

As explained in the following sections, you should be aware of the effects of specifying certain
objects for exclusion, in particular, CONSTRAINT, GRANT, and USER.

Excluding Constraints

The following constraints cannot be excluded:

3-33

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

» Constraints needed for the table to be created and loaded successfully (for example,
primary key constraints for index-organized tables or REF SCOPE and WITH ROWID constraints
for tables with REF columns).

This means that the following EXCLUDE statements will be interpreted as follows:

° EXCLUDE=CONSTRAINT excludes all constraints, except for any constraints needed for
successful table creation and loading.

* EXCLUDE=REF CONSTRAINT excludes referential integrity (foreign key) constraints.

Excluding Grants and Users

Specifying EXCLUDE=GRANT excludes object grants on all object types and system privilege
grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects contained
within users' schemas.

To exclude a specific user and all objects of that user, specify a command such as the
following, where hr is the schema name of the user you want to exclude.

impdp FULL=YES DUMPFILE=expfull.dmp EXCLUDE=SCHEMA:"='HR'"

Note that in this example, the FULL import mode is specified. If no mode is specified, then
SCHEMAS is used, because that is the default mode. However, with this example, if you do not
specify FULL, and instead use SCHEMAS, followed by the EXCLUDE=SCHEMA argument, then that
causes an error, because in that case you are indicating that you want the schema both to be
imported and excluded at the same time.

If you try to exclude a user by using a statement such as EXCLUDE=USER: "= 'HR'", then only
CREATE USER hr DDL statements are excluded, which can return unexpected results.

Starting with Oracle Database 21c, Oracle Data Pump permits you to set both INCLUDE and
EXCLUDE parameters in the same command. When you include both parameters in a command,
Oracle Data Pump processes the INCLUDE parameter first, and include all objects identified by
the parameter. Then it processes the exclude parameters. Any objects specified by the
EXCLUDE parameter that are in the list of include objects are removed as the command
executes.

Example

Assume the following is in a parameter file, exclude.par, being used by a DBA or some other
user with the DATAPUMP IMP FULL DATABASE role. (To run the example, you must first create
this file.)

EXCLUDE=FUNCTION
EXCLUDE=PROCEDURE

EXCLUDE=PACKAGE
EXCLUDE=INDEX:"LIKE 'EMP%' "

You then issue the following command:

> impdp system DIRECTORY=dpump dirl DUMPFILE=expfull.dmp PARFILE=exclude.par

3-34

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

You can create the expfull.dmp dump file used in this command by running the example
provided for the Export FULL parameter. in the FULL reference topic. All data from the
expfull.dmp dump file is loaded, except for functions, procedures, packages, and indexes
whose names start with emp.

Related Topics

« FULL

e Oracle Data Pump Import Metadata Filters
e Filtering During Import Operations

e About Import Command-Line Mode

3.4.16 FLASHBACK_SCN

ORACLE

The Oracle Data Pump Import command-line mode FLASHBACK SCN specifies the system
change number (SCN) that Import uses to enable the Flashback utility.

Default

There is no default

Purpose

Specifies the system change number (SCN) that Import will use to enable the Flashback utility.

Syntax and Description

FLASHBACK SCN=scn number

The import operation is performed with data that is consistent up to the specified scn number.

Starting with Oracle Database 12¢ Release 2 (12.2), the SCN value can be a big SCN (8
bytes). See the following restrictions for more information about using big SCNs.

Restrictions

* The FLASHBACK_ SCN parameter is valid only when the NETWORK LINK parameter is also
specified.

* The FLASHBACK_ SCN parameter pertains only to the Flashback Query capability of Oracle
Database. It is not applicable to Flashback Database, Flashback Drop, or Flashback Data
Archive.

e FLASHBACK SCN and FLASHBACK TIME are mutually exclusive.

* You cannot specify a big SCN for a network export or network import from a version that
does not support big SCNs.

Example
The following is a syntax example of using the FLASHBACK SCN parameter.

> impdp hr DIRECTORY=dpump dirl FLASHBACK SCN=123456
NETWORK LINK=source database link

When using this command, replace the variables 123456 and source database link with the
SCN and the name of a source database from which you are importing data.

3-35

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Note:

If you are on a logical standby system, then the FLASHBACK SCN parameter is ignored,
because SCNs are selected by logical standby. See Oracle Data Guard Concepts
and Administration for information about logical standby databases.

Related Topics

» Logical Standby Databases in Oracle Data Guard Concepts and Administration

3.4.17 FLASHBACK_TIME

ORACLE

The Oracle Data Pump Import command-line mode FLASHBACK TIME parameter specifies the
system change number (SCN) that Import uses to enable the Flashback utility.

Default

There is no default

Purpose

Specifies the system change number (SCN) that Import will use to enable the Flashback utility.

Syntax and Description

FLASHBACK TIME="TO TIMESTAMP ()"

The SCN that most closely matches the specified time is found, and this SCN is used to enable
the Flashback utility. The import operation is performed with data that is consistent up to this
SCN. Because the TO TIMESTAMP value is enclosed in quotation marks, it would be best to put
this parameter in a parameter file.

< Note:

If you are on a logical standby system, then the FLASHBACK TIME parameter is
ignored because SCNs are selected by logical standby. See Oracle Data Guard
Concepts and Administration for information about logical standby databases.

Restrictions
* This parameter is valid only when the NETWORK LINK parameter is also specified.

* The FLASHBACK TIME parameter pertains only to the flashback query capability of Oracle
Database. It is not applicable to Flashback Database, Flashback Drop, or Flashback Data
Archive.

e FLASHBACK TIME and FLASHBACK SCN are mutually exclusive.

Example

You can specify the time in any format that the DBMS FLASHBACK.ENABLE AT TIME procedure
accepts,. For example, suppose you have a parameter file, f1ashback imp.par, that contains
the following:

3-36

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

FLASHBACK TIME="TO TIMESTAMP('27-10-2012 13:40:00', 'DD-MM-YYYY HH24:MI:SS')"

You could then issue the following command:
> impdp hr DIRECTORY=dpump dirl PARFILE=flashback imp.par
NETWORK_LINK=source database link

The import operation will be performed with data that is consistent with the SCN that most
closely matches the specified time.

Note:

See Oracle Database Development Guide for information about using flashback

Related Topics

e About Import Command-Line Mode
Learn how to use Oracle Data Pump Import parameters in command-line mode, including
case sensitivity, quotation marks, escape characters, and information about how to use
examples.

e Logical Standby Databases in Oracle Data Guard Concepts and Administration
e Using Oracle Flashback Query (SELECT AS OF) in Oracle Database Development Guide

3.4.18 FULL

ORACLE

The Oracle Data Pump Import command-line mode FULL parameter specifies that you want to
perform a full database import.

Default

YES

Purpose

Specifies that you want to perform a full database import.

Syntax and Description

FULL=YES

A value of FULL=YES indicates that all data and metadata from the source is imported. The
source can be a dump file set for a file-based import or it can be another database, specified
with the NETWORK LINK parameter, for a network import.

If you are importing from a file and do not have the DATAPUMP IMP FULL DATABASE role, then
only schemas that map to your own schema are imported.

If the NETWORK_LINK parameter is used and the user executing the import job has the
DATAPUMP IMP FULL DATABASE role on the target database, then that user must also have the
DATAPUMP EXP FULL DATABASE role on the source database.

Filtering can restrict what is imported using this import mode.

3-37

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

FULL is the default mode, and does not need to be specified on the command line when you
are performing a file-based import, but if you are performing a network-based full import then
you must specify FULL=Y on the command line.

You can use the transportable option during a full-mode import to perform a full transportable
import.

Restrictions

e The Automatic Workload Repository (AWR) is not moved in a full database export and
import operation. (See Oracle Database Performance Tuning Guide for information about
using Data Pump to move AWR snapshots.)

* The XDB repository is not moved in a full database export and import operation. User
created XML schemas are moved.

* Ifthe target is Oracle Database 12c Release 1 (12.1.0.1) or later, and the source is Oracle
Database 11g Release 2 (11.2.0.3) or later, then Full imports performed over a network link
require that you set VERSION=12

Example

The following is an example of using the FULL parameter. You can create the expfull.dmp
dump file used in this example by running the example provided for the Export FULL parameter.

> impdp hr DUMPFILE=dpump dirl:expfull.dmp FULL=YES
LOGFILE=dpump dir2:full imp.log

This example imports everything from the expfull.dmp dump file. In this example, a DIRECTORY
parameter is not provided. Therefore, a directory object must be provided on both the DUMPFILE
parameter and the LOGFILE parameter. The directory objects can be different, as shown in this
example.

Related Topics

e Transporting Automatic Workload Repository Data in Oracle Database Performance
Tuning Guide

e Transporting Databases in Oracle Database Administrator’s Guide
e FULL

3.4.19 HELP

ORACLE

The Oracle Data Pump Import command-line mode HELP parameter displays online help for the
Import utility.

Default

NO

Purpose

Displays online help for the Import utility.

Syntax and Description

HELP=YES

3-38

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

If HELP=YES is specified, then Import displays a summary of all Import command-line
parameters and interactive commands.

Example

This example displays a brief description of all Import parameters and commands.

> impdp HELP = YES

3.4.20 INCLUDE

ORACLE

The Oracle Data Pump Import command-line mode INCLUDE parameter enables you to filter the
metadata that is imported by specifying objects and object types for the current import mode.

Default

There is no default.

Purpose

Enables you to filter the metadata that is imported by specifying objects and object types for
the current import mode.

Syntax and Description

INCLUDE = object typel:name clause] [, ...]

The variable object type in the syntax specifies the type of object that you want to include. To
see a list of valid values for object type, query the following views:

* Full mode: DATABASE EXPORT OBJECTS
» Schema mode: SCHEMA EXPORT OBJECTS
* Table and Tablespace mode: TABLE EXPORT OBJECTS

In the query result, the values listed in the OBJECT PATH column are the valid object types. (See
"Metadata Filters" for an example of how to perform such a query.)

Only object types in the source (and their dependents) that you explicitly specify in the INCLUDE
statement are imported.

The variable name clause in the syntax is optional. It enables you to perform fine-grained
selection of specific objects within an object type. It is a SQL expression used as a filter on the
object names of the type. It consists of a SQL operator, and the values against which the
object names of the specified type are to be compared. The name clause applies only to object
types whose instances have names (for example, it is applicable to TABLE, but not to GRANT). It
must be separated from the object type with a colon, and enclosed in double quotation marks.
You must use double quotation marks, because single quotation marks are required to delimit
the name strings.

The name string that you supply for the name clause must exactly match an existing object in
the database, including upper and lower case. For example, if the name clause that you supply
is for a table named EMPLOYEES, then there must be an existing table named EMPLOYEES, using
all upper case characters. If the name clause is supplied as Employees, Of employees, Or USES
any other variation from the existing table names string, then the table is not found.

You can specify more than one INCLUDE statement.

3-39

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Depending on your operating system, when you specify a value for this parameter with the use
of quotation marks, you can also be required to use escape characters. Oracle recommends
that you place this parameter in a parameter file, which can reduce the number of escape
characters that you otherwise must use in the command line..

To see a list of valid paths for use with the INCLUDE parameter, query the following views:

* Full mode: DATABASE EXPORT OBJECTS

» Schema mode: SCHEMA EXPORT OBJECTS

» Table and Tablespace mode: TABLE EXPORT OBJECTS

Starting with Oracle Database 21c, the following additional enhancements are available:
e You can set both INCLUDE and EXCLUDE parameters in the same command.

When you include both parameters in a command, Oracle Data Pump processes the
INCLUDE parameter first, and includes all objects identified by the parameter. Then it
processes the exclude parameters. Any objects specified by the EXCLUDE parameter that
are in the list of include objects are removed as the command executes.

Example

Assume the following is in a parameter file named imp include.par. This parameter file is
being used by a DBA or some other user that is granted the role
DATAPUMP IMP FULL DATABASE:

INCLUDE=FUNCTION
INCLUDE=PROCEDURE
INCLUDE=PACKAGE
INCLUDE=INDEX:"LIKE 'EMP%' "

With the aid of this parameter file, you can then issue the following command:

> impdp system SCHEMAS=hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp
PARFILE=imp include.par

You can create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter.

The Import operation will load only functions, procedures, and packages from the hr schema
and indexes whose names start with EMP. Although this is a privileged-mode import (the user
must have the DATAPUMP IMP FULL DATABASE role), the schema definition is not imported,
because the USER object type was not specified in an INCLUDE statement.

Related Topics
e Oracle Data Pump Metadata Filters
e About Import Command-Line Mode

« FULL

ORACLE 340

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.21 JOB_NAME

The Oracle Data Pump Import command-line mode JoB NAME parameter is used to identify the
import job in subsequent actions.

Default

A system-generated name of the form SYS IMPORT or SQLFILE mode NN

Purpose

Use the JOB_NAME parameter when you want to identify the import job in subsequent actions.
For example, when you want to use the ATTACH parameter to attach to a job, you use the
JOB_NAME parameter to identify the job that you want to attach. You can also use JOB_NAME to
identify the job by using the views DBA DATAPUMP JOBS Of USER DATAPUMP JOBS.

Syntax and Description

JOB_NAME=jobname string

The variable jobname string specifies a name of up to 128 bytes for the import job. The bytes
must represent printable characters and spaces. If the string includes spaces, then the name
must be enclosed in single quotation marks (for example, 'Thursday Import'). For additional
information about job name restrictions, see "Database Object Names and Qualifiers" item 7 in
Oracle Database SQL Language Reference. The job name is implicitly qualified by the schema
of the user performing the import operation. The job nhame is used as the name of the Data
Pump control import job table, which controls the export job.

The default job name is system-generated in the form SYS IMPORT mode NN Of
SYS SQLFILE mode NN, where NN expands to a 2-digit incrementing integer, starting at 01. For
example, SYS IMPORT TABLESPACE 02'is a default job name.

Example

The following is an example of using the JOB_NAME parameter. You can create the expfull.dmp
dump file that is used in this example by running the example provided in the Export FULL
parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp JOB NAME=impjob0l
Related Topics

» Database Object Names and Qualifiers in Oracle Database SQL Language Reference
e FULL

3.4.22 KEEP_MASTER

ORACLE

The Oracle Data Pump Import command-line mode KEEP_MASTER parameter indicates whether
the Data Pump control job table should be deleted or retained at the end of an Oracle Data
Pump job that completes successfully.

Default

NO

3-41

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Purpose

Indicates whether the Data Pump control job table should be deleted or retained at the end of
an Oracle Data Pump job that completes successfully. The Data Pump control job table is
automatically retained for jobs that do not complete successfully.

Syntax and Description
KEEP_MASTER=[YES | NO]
Restrictions

* None
Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump dirl LOGFILE=schemas.log
DUMPFILE=expdat.dmp KEEP MASTER=YES

3.4.23 LOGFILE

The Oracle Data Pump Import command-line mode LOGFILE parameter specifies the name,
and optionally, a directory object, for the log file of the import job.

Default

import.log

Purpose

Specifies the name, and optionally, a directory object, for the log file of the import job.

Syntax and Description

LOGFILE=[directory object:]file name

If you specify a directory object, then it must be one that was previously established by the
DBA, and to which you have access. This parameter overrides the directory object specified
with the DIRECTORY parameter. The default behavior is to create import.log in the directory
referenced by the directory object specified in the DIRECTORY parameter.

If the file name you specify already exists, then it is overwritten.

All messages regarding work in progress, work completed, and errors encountered are written
to the log file. (For a real-time status of the job, use the STATUS command in interactive mode.)

A log file is always created, unless you specify the NOLOGFILE parameter. As with the dump file
set, the log file is relative to the server, and not the client.

ORACLE 340

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Note:

Oracle Data Pump Import writes the log file using the database character set. If your
client NLS_LANG environment sets up a different client character set from the database
character set, then it is possible that table names can be different in the log file than
they are when displayed on the client output screen.

Restrictions

e To perform an Oracle Data Pump Import using Oracle Automatic Storage Management
(Oracle ASM), you must specify a LOGFILE parameter that includes a directory object that
does not include the Oracle ASM + notation. That is, the log file must be written to a disk
file, and not written into the Oracle ASM storage. Alternatively, you can specify
NOLOGFILE=YES. However, this prevents the writing of the log file.

Example

The following is an example of using the LOGFILE parameter. You can create the expfull.dmp
dump file used in this example by running the example provided for the Export FULL parameter.

> impdp hr SCHEMAS=HR DIRECTORY=dpump dir2 LOGFILE=imp.log
DUMPFILE=dpump dirl:expfull.dmp

Because no directory object is specified on the LOGFILE parameter, the log file is written to the
directory object specified on the DIRECTORY parameter.

Related Topics

e STATUS

e Using Directory Objects When Oracle Automatic Storage Management Is Enabled
e FULL

3.4.24 LOGTIME

ORACLE

The Oracle Data Pump Import command-line mode LOGTIME parameter specifies that you want
to have messages displayed with timestamps during import.

Default

No timestamps are recorded

Purpose

Specifies that you want to have messages displayed with timestamps during import.. You can
use the timestamps to figure out the elapsed time between different phases of a Data Pump
operation. Such information can be helpful in diagnosing performance problems and estimating
the timing of future similar operations.

Syntax and Description

LOGTIME=[NONE | STATUS | LOGFILE | ALL]

The available options are defined as follows:

3-43

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

* NONE: No timestamps on status or log file messages (same as default)
e STATUS: Timestamps on status messages only
e LOGFILE: Timestamps on log file messages only

e ALL: Timestamps on both status and log file messages

Restrictions

If the file specified by LOGFILE exists and it is not identified as a Data Pump LOGFILE, such as
using more than one dot in the filename (specifically, a compound suffix), then it cannot be
overwritten. You must specify a different filename.

Example

The following example records timestamps for all status and log file messages that are
displayed during the import operation:

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expdat.dmp SCHEMAS=hr LOGTIME=ALL
TABLE EXISTS ACTION=REPLACE

For an example of what the LOGTIME output looks like, see the Export LOGTIME parameter.

Related Topics
« LOGTIME

3.4.25 MASTER_ONLY

The Oracle Data Pump Import command-line mode MASTER ONLY parameter indicates whether
to import just the Data Pump control job table, and then stop the job so that the contents of the
Data Pump control job table can be examined.

Default

NO

Purpose

Indicates whether to import just the Data Pump control job table and then stop the job so that
the contents of the Data Pump control job table can be examined.

Syntax and Description

MASTER ONLY=[YES | NOJ

Restrictions

* If the NETWORK LINK parameter is also specified, then MASTER ONLY=YES iS not supported.
Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump dirl LOGFILE=schemas.log
DUMPFILE=expdat.dmp MASTER ONLY=YES

ORACLE 342

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.26 METRICS

The Oracle Data Pump Import command-line mode METRICS parameter indicates whether
additional information about the job should be reported to the log file.

Default
NO

Purpose

Indicates whether additional information about the job should be reported to the Oracle Data
Pump log file.

Syntax and Description

METRICS=[YES | NO]

When METRICS=YES is used, the number of objects and the elapsed time are recorded in the
Oracle Data Pump log file.

Restrictions

¢ None
Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump dirl LOGFILE=schemas.log
DUMPFILE=expdat.dmp METRICS=YES

3.4.27 NETWORK_LINK

ORACLE

The Oracle Data Pump Import command-line mode NETWORK LINK parameter enables an
import from a source database identified by a valid database link.

Default:

There is no default

Purpose

Enables an import from a source database identified by a valid database link. The data from
the source database instance is written directly back to the connected database instance.

Syntax and Description

NETWORK LINK=source database link

The NETWORK_LINK parameter initiates an import using a database link. This means that the
system to which the impdp client is connected contacts the source database referenced by the
source database link, retrieves data from it, and writes the data directly to the database on
the connected instance. There are no dump files involved.

The source database link provided must be the name of a database link to an available
database. If the database on that instance does not already have a database link, then you or
your DBA must create one using the SQL CREATE DATABASE LINK statement.

3-45

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

When you perform a network import using the transportable method, you must copy the source
data files to the target database before you start the import.

If the source database is read-only, then the connected user must have a locally managed
tablespace assigned as the default temporary tablespace on the source database. Otherwise,
the job will fail.

This parameter is required when any of the following parameters are specified: FLASHBACK SCN,
FLASHBACK TIME, ESTIMATE, TRANSPORT TABLESPACES, Or TRANSPORTABLE.

The following types of database links are supported for use with Oracle Data Pump Import:
* Public fixed user

¢ Public connected user

e Public shared user (only when used by link owner)

e Private shared user (only when used by link owner)

e Private fixed user (only when used by link owner)

Caution:

If an import operation is performed over an unencrypted network link, then all data is
imported as clear text even if it is encrypted in the database. See Oracle Database
Security Guide for more information about network security.

Restrictions

* The following types of database links are not supported for use with Oracle Data Pump
Import:

— Private connected user
— Current user

* The Import NETWORK_LINK parameter is not supported for tables containing SecureFiles
that have ContentType set, or that are currently stored outside of the SecureFiles segment
through Oracle Database File System Links.

* Network imports do not support the use of evolved types.

* When operating across a network link, Data Pump requires that the source and target
databases differ by no more than two versions. For example, if one database is Oracle
Database 12c, then the other database must be 12c, 11g, or 10g. Note that Oracle Data
Pump checks only the major version number (for example, 10g, 11g, 12c), not specific
release numbers (for example, 12.1, 12.2, 11.1, 11.2, 10.1, or 10.2).

» If the USERID that is executing the import job has the DATAPUMP IMP FULL DATABASE role on
the target database, then that user must also have the DATAPUMP EXP FULL DATABASE role
on the source database.

e Network mode import does not use parallel query (PQ) child processes.
* Metadata cannot be imported in parallel when the NETWORK LINK parameter is also used

* When transporting a database over the network using full transportable import, auditing
cannot be enabled for tables stored in an administrative tablespace (such as SYSTEM and
SYSAUX) if the audit trail information itself is stored in a user-defined tablespace.

3-46

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Example

In the following syntax example, replace source database link with the name of a valid
database link.

> impdp hr TABLES=employees DIRECTORY=dpump dirl
NETWORK LINK=source database link EXCLUDE=CONSTRAINT

This example results in an import of the employees table (excluding constraints) from the
source database. The log file is written to dpump dirl, specified on the DIRECTORY parameter.

Related Topics
e« PARALLEL

See Also:

e Oracle Database Administrator’s Guide for more information about database
links

* Oracle Database SQL Language Reference for more information about the
CREATE DATABASE LINK statement

» Oracle Database Administrator’s Guide for more information about locally
managed tablespaces

3.4.28 NOLOGFILE

ORACLE

The Oracle Data Pump Import command-line mode NOLOGFILE parameter specifies whether to
suppress the default behavior of creating a log file.

Default

NO

Purpose
Specifies whether to suppress the default behavior of creating a log file.

Syntax and Description

NOLOGFILE=[YES | NO]

If you specify NOLOGFILE=YES to suppress creation of a log file, then progress and error
information is still written to the standard output device of any attached clients, including the
client that started the original export operation. If there are no clients attached to a running job,
and you specify NOLOGFILE=YES, then you run the risk of losing important progress and error
information.

Example

The following is an example of using the NOLOGFILE parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp NOLOGFILE=YES

3-47

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

This command results in a full mode import (the default for file-based imports) of the
expfull.dmp dump file. No log file is written, because NOLOGFILE is set to YES.

3.4.29 PARALLEL

ORACLE

The Oracle Data Pump Import command-line mode PARALLEL parameter sets the maximum
number of worker processes that can load in parallel.

Default

1

Purpose

Specifies the maximum number of worker processes of active execution operating on behalf of
the Data Pump control import job.

Syntax and Description

PARALLEL=integer

The value that you specify for integer specifies the maximum number of processes of active
execution operating on behalf of the import job. This execution set consists of a combination of
worker processes and parallel input/output (1/O) server processes. The Data Pump control
process, idle worker processes, and worker processes acting as parallel execution
coordinators in parallel 1/O operations do not count toward this total. This parameter enables
you to make trade-offs between resource consumption and elapsed time.

If the source of the import is a dump file set consisting of files, then multiple processes can
read from the same file, but performance can be limited by 1/O contention.

To increase or decrease the value of PARALLEL during job execution, use interactive-command
mode.

Using PARALLEL During a Network Mode Import

During a network mode import, the PARALLEL parameter defines the maximum number of
worker processes that can be assigned to the job. To understand the effect of the PARALLEL
parameter during a network import mode, it is important to understand the concept of

"table data objects" as defined by Oracle Data Pump. When Oracle Data Pump moves data,
it considers the following items to be individual "table data objects:"

e acomplete table (one that is not partitioned or subpartitioned)

e partitions, if the table is partitioned but not subpartitioned

e subpartitions, if the table is subpartitioned

For example:

* Anonpartitioned table, scott.non part table, has one table data object:
scott.non part table

* A partitioned table, scott.part table (having partition p1 and partition p2), has two
table data objects:

scott.part table:pl

scott.part table:p2

3-48

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

* A subpartitioned table, scott.sub part table (having partition p1 and p2, and
subpartitions plsl, pls2, p2sl, and p2s2) has four table data objects:

scott.sub part table:plsl
scott.sub part table:pls2
scott.sub part table:p2sl
scott.sub part table:p2s2

During a network mode import, each table data object is assigned its own worker process, up
to the value specified for the PARALLEL parameter. No parallel query (PQ) worker processes are
assigned because network mode import does not use parallel query (PQ) worker processes.
Multiple table data objects can be unloaded at the same time. However, each table data
object is unloaded using a single process.

Using PARALLEL During An Import In An Oracle RAC Environment

In an Oracle Real Application Clusters (Oracle RAC) environment, if an import operation has
PARALLEL=1, then all Oracle Data Pump processes reside on the instance where the job is
started. Therefore, the directory object can point to local storage for that instance.

If the import operation has PARALLEL set to a value greater than 1, then Oracle Data Pump
processes can reside on instances other than the one where the job was started. Therefore,
the directory object must point to shared storage that is accessible by all Oracle RAC cluster
member nodes.

Restrictions
e This parameter is valid only in the Enterprise Edition of Oracle Database 119 or later.
e Transportable tablespace metadata cannot be imported in parallel.

e To import a table or table partition in parallel (using parallel query worker processes), you
must have the DATAPUMP IMP FULL DATABASE role.

* In addition, the following objects cannot be imported in parallel:
— TRIGGER
— VIEW
— OBJECT_ GRANT
— SEQUENCE
— CONSTRAINT

— REF_CONSTRAINT

Example

The following is an example of using the PARALLEL parameter.

> impdp hr DIRECTORY=dpump dirl LOGFILE=parallel import.log
JOB_NAME=imp par3 DUMPFILE=par exp%U.dmp PARALLEL=3

This command imports the dump file set that is created when you run the example for the
Export PARALLEL parameter) The names of the dump files are par exp01.dmp, par exp02.dmp,
and par _exp03.dmp.

3-49

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Related Topics
¢ PARALLEL

3.4.30 PARALLEL_THRESHOLD

ORACLE

The Oracle Data Pump Import command-line utility PARALLEL THRESHOLD parameter specifies
the size of the divisor that Data Pump uses to calculate potential parallel DML based on table
size.

Default

250MB

Purpose

PARALLEL THRESHOLD should only be used with export or import jobs of a single unpartitioned
table, or one partition of a partitioned table. When you specify PARALLEL in the job, you can
specify PARALLEL THRESHOLD to modify the size of the divisor that Oracle Data Pump uses to
determine if a table should be exported or imported using parallel data manipulation
statements (PDML) during imports and exports. If you specify a lower value than the default,
then it enables a smaller table size to use the Oracle Data Pump parallel algorithm. For
example, if you have a 100MB table and you want it to use PDML of 5, to break it into five
units, then you specify PARALLEL THRESHOLD=20M

Syntax and Description

The parameter value specifies the threshold size in bytes:

PARALLEL THRESHOLD=size-in-bytes

For a single table export or import, if you want a higher degree of parallelism, then you may
want to set PARALLEL THRESHOLD to lower values, to take advantage of parallelism for a smaller
table or table partition. However, the benefit of this resource allocation can be limited by the
performance of the 1/O of the file systems to which you are loading or unloading. Also, if the job
involves more than one object, for both tables and metadata objects, then the PQ allocation
request specified by PARALLEL with PARALLEL THRESHOLD is of limited value. The actual amount
of PQ processes allocated to a table is impacted by how many operations Oracle Data Pump is
running concurrently, where the amount of parallelism has to be shared. The database, the
optimizer, and the execution plan produced by the optimizer for the SQL determine the actual
degree of parallelism used to load or unload the object specified in the job.

One use case for this parameter: Using Oracle Data Pump to load a large table from one
database into a larger table in another database. For example: Uploading weekly sales data
from an OLTP database into a reporting or business analytics data warehouse database.

Restrictions

PARALLEL THRESHOLD is used only in conjunction when the PARALLEL parameter is specified
with a value greater than 1.

Example

The following is an example of using the PARALLEL THRESHOLD parameter to export the table
table to use PDML, where the size of the divisor for PQ processes is set to 1 KB, the

3-50

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

variables user and user-password are the user and password of the user running Import
(impdp), and the job name is parathresh example.

impdp user/user-password \
directory=dpump dir \
dumpfile=parathresh example.dmp
tables=table to use PDML \
parallel=8 \
parallel threshold=1K \
job_name=parathresh example

3.4.31 PARFILE

ORACLE

The Oracle Data Pump Import command-line mode PARFILE parameter specifies the name of
an import parameter file.

Default

There is no default

Purpose

Specifies the name of an import parameter file, also known as a parfile.

Syntax and Description

PARFILE=[directory path]file name

A parameter file allows you to specify Oracle Data Pump parameters within a file. Whe you
create a parameter file, that file can be specified on the command line instead of entering all
the individual commands. This option can be useful if you use the same parameter
combination many times. The use of parameter files is also highly recommended if you are
using parameters whose values require the use of quotation marks.

A directory object is not specified for the parameter file because unlike dump files, log files,
and SQL files which are created and written by the server, the parameter file is opened and
read by the impdp client. The default location of the parameter file is the user's current
directory.

Within a parameter file, a comma is implicit at every newline character so you do not have to
enter commas at the end of each line. If you have a long line that wraps, such as a long table
name, enter the backslash continuation character (\) at the end of the current line to continue
onto the next line.

The contents of the parameter file are written to the Oracle Data Pump log file.

Restrictions

e The PARFILE parameter cannot be specified within a parameter file.

Example

Suppose the content of an example parameter file, hr imp.par, are as follows:

TABLES= countries, locations, regions
DUMPFILE=dpump dir2:expl.dmp,exp2%U.dmp

3-51

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

DIRECTORY=dpump dirl
PARALLEL=3

You can then issue the following command to execute the parameter file:

> impdp hr PARFILE=hr imp.par

As a result of the command, the tables named countries, locations, and regions are
imported from the dump file set that is created when you run the example for the Export
DUMPFILE parameter. (See the Export DUMPFILE parameter.) The import job looks for the
expl.dmp file in the location pointed to by dpump dir2. It looks for any dump files of the form
exp2nn.dmp in the location pointed to by dpump_dirl. The log file for the job is also written to
dpump dirl.

Related Topics
DUMPFILE

e About Import Command-Line Mode

3.4.32 PARTITION_OPTIONS

ORACLE

The Oracle Data Pump Import command-line mode PARTITION OPTIONS parameter specifies
how you want table partitions created during an import operation.

Default

The default is departition when partition names are specified on the TABLES parameter and
TRANPORTABLE=ALWAYS is set (whether on the import operation or during the export). Otherwise,
the default is none.

Purpose

Specifies how you want table partitions created during an import operation.
Syntax and Description

PARTITION OPTIONS=[NONE | DEPARTITION | MERGE]

A value of NONE creates tables as they existed on the system from which the export operation
was performed. If the export was performed with the transportable method, with a partition or
subpartition filter, then you cannot use either the NONE option or the MERGE option. In that case,
you must use the DEPARTITION option.

A value of DEPARTITION promotes each partition or subpartition to a new individual table. The
default name of the new table is the concatenation of the table and partition name, or the table
and subpartition name, as appropriate.

A value of MERGE combines all partitions and subpartitions into one table.
Parallel processing during import of partitioned tables is subject to the following:

« If a partitioned table is imported into an existing partitioned table, then Data Pump only
processes one partition or subpartition at a time, regardless of any value specified with the
PARALLEL parameter.

3-52

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

« If the table into which you are importing does not already exist, and Data Pump has to
create it, then the import runs in parallel up to the parallelism specified on the PARALLEL
parameter when the import is started.

Restrictions

* You use departitioning to create and populate tables that are based on the source tables
partitions.

To avoid naming conflicts, when the value for PARTITION OPTIONS is set to DEPARTITION,
then the dependent objects, such as constraints and indexes, are not created along with
these tables. This error message is included in the log file if any tables are affected by this
restriction: ORA-39427: Dependent objects of partitioned tables will not be
imported. To suppress this message, you can use the EXCLUDE parameter to exclude
dependent objects from the import.

* When the value for PARTITION OPTIONS is set to MERGE, domain indexes are not created
with these tables. If this event occurs, then the error is reported in the log file: 0RA-39426:
Domain indexes of partitioned tables will not be imported. To suppress this
message, you can use the EXCLUDE parameter to exclude the indexes:

EXCLUDE=DOMAIN INDEX.

« If the export operation that created the dump file was performed with the transportable
method, and if a partition or subpartition was specified, then the import operation must use
the DEPARTITION option.

« If the export operation that created the dump file was performed with the transportable
method, then the import operation cannot use PARTITION OPTIONS=MERGE.

» If there are any grants on objects being departitioned, then an error message is generated,
and the objects are not loaded.

Example

The following example assumes that the sh.sales table has been exported into a dump file
named sales.dmp. It uses the merge option to merge all the partitions in sh.sales into one
non-partitioned table in scott schema.

> impdp system TABLES=sh.sales PARTITION OPTIONS=MERGE
DIRECTORY=dpump dirl DUMPFILE=sales.dmp REMAP SCHEMA=sh:scott

Related Topics
e TRANSPORTABLE

¢ See Also:

The Export TRANSPORTABLE parameter for an example of performing an import
operation using PARTITION OPTIONS=DEPARTITION

ORACLE 53

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.33 QUERY

ORACLE

The Oracle Data Pump Import command-line mode QUERY parameter enables you to specify a
query clause that filters the data that is imported.

Default

There is no default

Purpose

Enables you to specify a query clause that filters the data that is imported.

Syntax and Description

QUERY=[[schema name.]table name:]query clause

The query clause typically is a SQL WHERE clause for fine-grained row selection. However, it
can be any SQL clause. For example, you can use an ORDER BY clause to speed up a
migration from a heap-organized table to an index-organized table. If a schema and table
name are not supplied, then the query is applied to (and must be valid for) all tables in the
source dump file set or database. A table-specific query overrides a query applied to all tables.

When you want to apply the query to a specific table, you must separate the table name from
the query cause with a colon (:). You can specify more than one table-specific query , but only
one query can be specified per table.

If the NETWORK_LINK parameter is specified along with the QUERY parameter, then any objects
specified in the query clause that are on the remote (source) node must be explicitly qualified
with the NETWORK LINK value. Otherwise, Data Pump assumes that the object is on the local
(target) node; if it is not, then an error is returned and the import of the table from the remote
(source) system fails.

For example, if you specify NETWORK LINK=dblinkl, then the query clause of the QUERY
parameter must specify that link, as shown in the following example:

QUERY= (hr.employees:"WHERE last name IN(SELECT last name
FROM hr.employees@dblinkl)")

Depending on your operating system, the use of quotation marks when you specify a value for
this parameter may also require that you use escape characters. Oracle recommends that you
place this parameter in a parameter file, which can reduce the number of escape characters
that might otherwise be needed on the command line. See "About Import Command-Line
Mode."

If you use the QUERY parameter , then the external tables method (rather than the direct path
method) is used for data access.

To specify a schema other than your own in a table-specific query, you must be granted access
to that specific table.

Restrictions

e When trying to select a subset of rows stored in the export dump file, the QUERY parameter
cannot contain references to virtual columns for import

3-54

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

The reason for this restriction is that virtual column values are only present in a table in the
database. Such a table does not contain the virtual column data in an Oracle Data Pump
export file, so having a reference to a virtual column in an import QUERY parameter does not
match any known column in the source table in the dump file. However, you can include
the virtual column in an import QUERY parameter if you use a network import link
(NETWORK_LINK=dblink to source db) thatimports directly from the source table in the
remote database.

You cannot use the QUERY parameter with the following parameters:
— CONTENT=METADATA ONLY

— SQLFILE

— TRANSPORT DATAFILES

When the QUERY parameter is specified for a table, Oracle Data Pump uses external tables
to load the target table. External tables uses a SQL INSERT statement with a SELECT
clause. The value of the QUERY parameter is included in the WHERE clause of the SELECT
portion of the INSERT statement. If the QUERY parameter includes references to another
table with columns whose names match the table being loaded, and if those columns are
used in the query, then you must use a table alias to distinguish between columns in the
table being loaded, and columns in the SELECT statement with the same name.

For example, suppose you are importing a subset of the sh.sales table based on the
credit limit for a customer in the sh.customers table. In the following example, the table
alias used by Data Pump for the table being loaded is KU$. KUS is used to qualify the
cust_id field in the QUERY parameter for loading sh.sales. As a result, Data Pump imports
only rows for customers whose credit limit is greater than $10,000.

QUERY='"sales:"WHERE EXISTS (SELECT cust id FROM customers c
WHERE cust credit limit > 10000 AND ku$.cust id = c.cust id)"'

If KUS is not used for a table alias, then all rows are loaded:

QUERY='sales:"WHERE EXISTS (SELECT cust id FROM customers c
WHERE cust credit limit > 10000 AND cust id = c.cust id)"'

The maximum length allowed for a QUERY string is 4000 bytes, including quotation marks,
which means that the actual maximum length allowed is 3998 bytes.

Example

The following is an example of using the QUERY parameter. You can create the expfull.dmp
dump file used in this example by running the example provided for the Export FULL parameter.
See the Export FULL parameter. Because the QUERY value uses quotation marks, Oracle
recommends that you use a parameter file.

Suppose you have a parameter file, query imp.par, that contains the following:

QUERY=departments:"WHERE department id < 120"

You can then enter the following command:

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp
PARFILE=query imp.par NOLOGFILE=YES

3-55

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

All tables in expfull.dmp are imported, but for the departments table, only data that meets the
criteria specified in the QUERY parameter is imported.

Related Topics
e About Import Command-Line Mode

« FULL

3.4.34 REMAP_DATA

ORACLE

The Oracle Data Pump Import command-line mode REMAP DATA parameter enables you to
remap data as it is being inserted into a new database.

Default

There is no default

Purpose

The REMAP DATA parameter enables you to remap data as it is being inserted into a new
database. A common use is to regenerate primary keys to avoid conflict when importing a table
into a pre-existing table on the target database.

You can specify a remap function that takes as a source the value of the designated column
from either the dump file or a remote database. The remap function then returns a remapped
value that replaces the original value in the target database.

The same function can be applied to multiple columns being dumped. This function is useful
when you want to guarantee consistency in remapping both the child and parent column in a
referential constraint.

Syntax and Description
REMAP DATA=[schema.]tablename.column name: [schema.]pkg.function
The following is a list of each syntax element, in the order in which they appear in the syntax:

schema: the schema containing the table that you want remapped. By default, this schema is
the schema of the user doing the import.

tablename: the table whose column is remapped.
column name: the column whose data is to be remapped.

schema: the schema containing the PL/SQL package you created that contains the remapping
function. As a default, this is the schema of the user doing the import.

pkg: the name of the PL/SQL package you created that contains the remapping function.

function; the name of the function within the PL/SQL that is called to remap the column table
in each row of the specified table.

Restrictions

* The data types and sizes of the source argument and the returned value must both match
the data type and size of the designated column in the table.

* Remapping functions should not perform commits or rollbacks except in autonomous
transactions.

3-56

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

* The use of synonyms as values for the REMAP DATA parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, an error would be
returned if you specified regn as part of the REMPA DATA specification.

e Remapping LOB column data of a remote table is not supported.

* REMAP DATA does not support columns of the following types: User-Defined Types,
attributes of User-Defined Types, LONG, REF, VARRAY, Nested Tables, BFILE, and XMLtype.

Example

The following example assumes a package named remap has been created that contains a

function named plusx that changes the values for first name in the employees table.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP DATA=hr.employees.first name:hr.remap.plusx

3.4.35 REMAP_DATAFILE

ORACLE

The Oracle Data Pump Import command-line mode REMAP DATAFILE parameter changes the
name of the source data file to the target data file name in all SQL statements where the
source data file is referenced.

Default

There is no default

Purpose

Changes the name of the source data file to the target data file name in all SQL statements
where the source data file is referenced: CREATE TABLESPACE, CREATE LIBRARY, and CREATE
DIRECTORY.

Syntax and Description

REMAP DATAFILE=source datafile:target datafile

Remapping data files is useful when you move databases between platforms that have
different file naming conventions. The source datafile and target datafile names should
be exactly as you want them to appear in the SQL statements where they are referenced.
Oracle recommends that you enclose data file names in quotation marks to eliminate ambiguity
on platforms for which a colon is a valid file specification character.

Depending on your operating system, escape characters can be required if you use quotation
marks when you specify a value for this parameter. Oracle recommends that you place this
parameter in a parameter file, which can reduce the number of escape characters that you
otherwise would require on the command line.

You must have the DATAPUMP IMP FULL DATABASE role to specify this parameter.

Example

Suppose you had a parameter file, payroll.par, with the following content:

DIRECTORY=dpump dirl
FULL=YES
DUMPFILE=db full.dmp

3-57

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

REMAP DATAFILE="'DB1S$: [HRDATA.PAYROLL]tbs6.dbf':'/dbl/hrdata/payroll/
tbs6.dbf""

You can then issue the following command:

> impdp hr PARFILE=payroll.par

This example remaps a VMS file specification (DR1$: [HRDATA. PAYROLL] tbs6.dbf) to a Unix file
specification, (/dbl/hrdata/payroll/tbs6.dbf) for all SQL DDL statements during the import.
The dump file, db_full.dmp, is located by the directory object, dpump dirl.

Related Topics

e About Import Command-Line Mode

3.4.36 REMAP_DIRECTORY

ORACLE

The Oracle Data Pump Import command-line mode REMAP DIRECTORY parameter lets you
remap directories when you move databases between platforms.

Default

There is no default.

Purpose

The REMAP DIRECTORY parameter changes the source directory string to the target directory
string in all SQL statements where the source directory is the left-most portion of a full file or
directory specification: CREATE TABLESPACE, CREATE LIBRARY, and CREATE DIRECTORY.

Syntax and Description

REMAP DIRECTORY=source directory string:target directory string

Remapping a directory is useful when you move databases between platforms that have
different directory file naming conventions. This provides an easy way to remap multiple data
files in a directory when you only want to change the directory file specification while
preserving the original data file names.

The source directory stringand target directory string should be exactly as you want
them to appear in the SQL statements where they are referenced. In addition, Oracle
recommends that the directory be properly terminated with the directory file terminator for the
respective source and target platform. Oracle recommends that you enclose the directory
names in quotation marks to eliminate ambiguity on platforms for which a colon is a valid
directory file specification character.

Depending on your operating system, escape characters can be required if you use quotation
marks when you specify a value for this parameter. Oracle recommends that you place this
parameter in a parameter file, which can reduce the number of escape characters that you
otherwise would require on the command line.

You must have the DATAPUMP IMP FULL DATABASE role to specify this parameter.

Restrictions

* The REMAP DIRECTORY and REMAP DATAFILE parameters are mutually exclusive.

3-58

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Example

Suppose you want to remap the following data files:

DB1$: [HRDATA.PAYROLL] tbs5.dbf
DB1$: [HRDATA.PAYROLL] tbs6.dbf

In addition, you have a parameter file, payroll.par, with the following content:

DIRECTORY=dpump dirl

FULL=YES

DUMPFILE=db full.dmp

REMAP DIRECTORY="'DB1$: [HRDATA.PAYROLL]':'/dbl/hrdata/payroll/'"

You can issue the following command:

> impdp hr PARFILE=payroll.par

This example remaps the VMS file specifications (DB1$: [HRDATA. PAYROLL] tbs5.dbf, and
DB1$: [HRDATA.PAYROLL] tbs6.dbf) to UNIX file specifications, (/dbl/hrdata/payroll/
tbs5.dbf, and /dbl/hrdata/payroll/tbs6.dbf) for all SQL DDL statements during the import.
The dump file, db_full.dmp, is located by the directory object, dpump dirl.

3.4.37 REMAP_SCHEMA

ORACLE

The Oracle Data Pump Import command-line mode REMAP_SCHEMA parameter loads all objects
from the source schema into a target schema.

Default

There is no default

Purpose

Loads all objects from the source schema into a target schema.

Syntax and Description

REMAP SCHEMA=source schema:target schema

Multiple REMAP SCHEMA lines can be specified, but the source schema must be different for each
one. However, different source schemas can map to the same target schema. The mapping
can be incomplete; see the Restrictions section in this topic.

If the schema you are remapping to does not exist before the import, then the import operation
can create it, except in the case of REMAP SCHEMA for the SYSTEM user. The target schema of the
REMAP SCHEMA must exist before the import. To create the schema, the dump file set must
contain the necessary CREATE USER metadata for the source schema, and you must be
carrying out the import with enough privileges. For example, the following Export commands
create dump file sets with the necessary metadata to create a schema, because the user
SYSTEM has the necessary privileges:

> expdp system SCHEMAS=hr
Password: password

3-59

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

> expdp system FULL=YES
Password: password

If your dump file set does not contain the metadata necessary to create a schema, or if you do
not have privileges, then the target schema must be created before the import operation is
performed. You must have the target schema created before the import, because the
unprivileged dump files do not contain the necessary information for the import to create the
schema automatically.

For Oracle Database releases earlier than Oracle Database 11g, if the import operation does
create the schema, then after the import is complete, you must assign it a valid password to
connect to it. You can then use the following SQL statement to assign the password; note that
you require privileges:

SQL> ALTER USER schema name IDENTIFIED BY new password

In Oracle Database releases after Oracle Database 11g Release 1 (11.1.0.1), it is no longer
necessary to reset the schema password; the original password remains valid.

Restrictions

e Unprivileged users can perform schema remaps only if their schema is the target schema
of the remap. (Privileged users can perform unrestricted schema remaps.) For example,
SCOTT can remap his BLAKE'S objects to SCOTT, but SCOTT cannot remap SCOTT's objects to
BLAKE.

* The mapping can be incomplete, because there are certain schema references that Import
is not capable of finding. For example, Import does not find schema references embedded
within the body of definitions of types, views, procedures, and packages.

» For triggers, REMAP SCHEMA affects only the trigger owner.

< If any table in the schema being remapped contains user-defined object types, and that
table changes between the time it is exported and the time you attempt to import it, then
the import of that table fails. However, the import operation itself continues.

« By default, if schema objects on the source database have object identifiers (OIDs), then
they are imported to the target database with those same OIDs. If an object is imported
back into the same database from which it was exported, but into a different schema, then
the OID of the new (imported) object is the same as that of the existing object and the
import fails. For the import to succeed, you must also specify the TRANSFORM=0ID:N
parameter on the import. The transform 01D:N causes a hew OID to be created for the new
object, which allows the import to succeed.

Example

Suppose that, as user SYSTEM, you run the following Export and Import commands to remap
the hr schema into the scott schema:

> expdp system SCHEMAS=hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp

> impdp system DIRECTORY=dpump dirl DUMPFILE=hr.dmp REMAP SCHEMA=hr:scott

In this example, if user scott already exists before the import, then the Import REMAP SCHEMA
command adds objects from the hr schema into the existing scott schema. You can connect
to the scott schema after the import by using the existing password (without resetting it).

3-60

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

If user scott does not exist before you execute the import operation, then Import automatically
creates it with an unusable password. This action is possible because the dump file, hr.dmp,
was created by sYSTEM, which has the privileges necessary to create a dump file that contains
the metadata needed to create a schema. However, you cannot connect to scott on
completion of the import, unless you reset the password for scott on the target database after
the import completes.

3.4.38 REMAP_TABLE

The Oracle Data Pump Import command-line mode REMAP TABLE parameter enables you to
rename tables during an import operation.

Default

There is no default

Purpose

Enables you to rename tables during an import operation.

Syntax and Description

You can use either of the following syntaxes (see the Usage Notes):

REMAP TABLE=[schema.]old tablename|[.partition]:new tablename

OR
REMAP TABLE=[schema.]old tablename|:partition]:new tablename

If the table is being departitioned, then you can use the REMAP TABLE parameter to rename
entire tables, or to rename table partitions (See PARTITION OPTIONS).

You can also use REMAP TABLE to override the automatic naming of exported table partitions.

Usage Notes

With the first syntax, if you specify REMAP TABLE=A.B:C, then Import assumes that 2 is a
schema name, B is the old table name, and cC is the new table name. To use the first syntax to
rename a partition that is being promoted to a nonpartitioned table, you must specify a schema
name.

To use the second syntax to rename a partition being promoted to a nonpartitioned table, you
qualify it with the old table name. No schema name is required.

Restrictions

» The REMAP TABLE parameter only handles user-created tables. Data Pump does not have
enough information for any dependent tables created internally. Therefore, the
REMAP TABLE parameter cannot remap internally created tables.

* Only objects created by the Import are remapped. In particular, pre-existing tables are not
remapped.

* If the table being remapped has named constraints in the same schema, and the
constraints must be created when the table is created, then REMAP TABLE parameter does
not work

ORACLE 261

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Example

The following is an example of using the REMAP TABLE parameter to rename the employees
table to a new name of emps:

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP TABLE=hr.employees:emps

Related Topics
¢ PARTITION_OPTIONS

3.4.39 REMAP_TABLESPACE

ORACLE

The Oracle Data Pump Import command-line mode REMAP TABLESPACE parameter remaps all
objects selected for import with persistent data in the source tablespace to be created in the
target tablespace.

Default

There is no default

Purpose

Remaps all objects selected for import with persistent data in the source tablespace to be
created in the target tablespace.

Syntax and Description

REMAP TABLESPACE=source tablespace:target tablespace

Multiple REMAP TABLESPACE parameters can be specified, but no two can have the same source
tablespace. The target schema must have sufficient quota in the target tablespace.

The Data Pump Import method of using the REMAP TABLESPACE parameter works for all objects,
including the CREATE USER statement.

With Oracle Database 21c and later releases, the % wildcard can used in place of the source
tablespaces for the REMAP TABLESPACE parameter. When you specify the source database
using the % wildcard, Oracle Data Pump combines the tablespaces from the source database
export dumpfile into a target permanent tablespace. It is applied to the object types USER,
TABLE, INDEX, MVIEW, MVIEW LOG, MVIEW ZONEMAP, and CLUSTERS.

A production database can have multiple tablespaces. You may want to consolidate those
tablespaces during migration into a particular target tablespace. For example, you may want to
consolidate tablespaces when migrating to Oracle Autonomous Database where only the USER
tablespace is available for applications. Using this parameter with the % wildcard makes it easy
to do so without specifying all of the source tablespaces.

The s wildcard can also replace the source tablespace specified in place of 'TBS OLD' in this
APl example: DBMS METADATA.SET REMAP PARAM (handle,
'"REMAP TABLESPACE','TBS OLD', 'TBS NEW','object-type');

Restrictions

e Oracle Data Pump Import can only remap tablespaces for transportable imports in
databases where the compatibility level is set to 10.1 or later.

3-62

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

* Only objects created by the Import are remapped. In particular, if TABLE EXISTS ACTION is
set to SKIP, TRUNCATE, Or APPEND, then the tablespaces for pre-existing tables are not
remapped.

* You cannot use REMAP TABLESPACE with domain indexes to exclude the storage clause of
the source metadata. If you customized the tablespace using storage clauses, then
REMAP TABLESPACE does not apply to those storage clauses. If you used a default
tablespace without storage clauses, then REMAP TABLESPACE should work for that
tablespace.

* If the index preferences have customized tablespaces in the storage clauses at the source
table, then you must recreate those customized tablespaces on the target before
attempting to import those tablespaces. If you do not recreate the customized tablespaces
on the target database, then the Text index rebuild will fail.

e The target tablespace must be a permanent tablespace, and it must exist before the
import.

* The target tablespace cannot be a temporary tablespace.
* The % wildcard cannot be used with multiple REMAP_TABLESPACE parameters.

e The REMAP TABLESPACE parameter and TRANSFORM=TABLESPACE:N transform parameter are
mutually exclusive.

Example

The following is an example of using the REMAP TABLESPACE parameter.

> impdp hr REMAP TABLESPACE=tbs l:tbs 6 DIRECTORY=dpump dirl
DUMPFILE=employees.dmp

3.4.40 SCHEMAS

ORACLE

The Oracle Data Pump Import command-line mode SCHEMAS parameter specifies that you want
a schema-mode import to be performed.

Default

There is no default

Purpose

Specifies that you want a schema-mode import to be performed.

Syntax and Description

SCHEMAS=schema name [, ...]

If you have the DATAPUMP IMP FULL DATABASE role, then you can use this parameter to perform
a schema-mode import by specifying a list of schemas to import. First, the user definitions are

imported (if they do not already exist), including system and role grants, password history, and
so on. Then all objects contained within the schemas are imported. Unprivileged users can

specify only their own schemas, or schemas remapped to their own schemas. In that case, no
information about the schema definition is imported, only the objects contained within it.

To restrict what is imported by using this import mode, you can use filtering.

Schema mode is the default mode when you are performing a network-based import.

3-63

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Example
The following is an example of using the SCHEMAS parameter. You can create the expdat.dmp
file used in this example by running the example provided for the Export SCHEMAS parameter.

> impdp hr SCHEMAS=hr DIRECTORY=dpump dirl LOGFILE=schemas.log
DUMPFILE=expdat .dmp

The hr schema is imported from the expdat . dmp file. The log file, schemas.log, is written to
dpump dirl.

Related Topics

e Filtering During Import Operations

* SCHEMAS

3.4.41 SERVICE_NAME

ORACLE

The Oracle Data Pump Import command-line mode SERVICE NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

Default

There is no default

Purpose

Used to specify a service name to be used with the CLUSTER parameter.

Syntax and Description

SERVICE NAME=name

The SERVICE NAME parameter can be used with the CLUSTER=YES parameter to specify an
existing service associated with a resource group that defines a set of Oracle Real Application
Clusters (Oracle RAC) instances belonging to that resource group, typically a subset of all the
Oracle RAC instances.

The service name is only used to determine the resource group and instances defined for that
resource group. The instance where the job is started is always used, regardless of whether it
is part of the resource group.

The SERVICE NAME parameter is ignored whenCLUSTER=NO is also specified.

Suppose you have an Oracle RAC configuration containing instances A, B, C, and D. Also
suppose that a service named my service exists with a resource group consisting of instances
A, B, and C only. In such a scenario, the following would be true:

» If you start an Oracle Data Pump job on instance A, and specify CLUSTER=YES (or accept
the default, which is YES), and you do not specify the SERVICE NAME parameter, then Oracle
Data Pump creates workers on all instances: A, B, C, and D, depending on the degree of
parallelism specified.

» If you start an Oracle Data Pump job on instance A, and specify CLUSTER=YES and
SERVICE NAME=my service, then workers can be started on instances A, B, and C only.

3-64

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

e If you start an Oracle Data Pump job on instance D, and specify CLUSTER=YES and
SERVICE NAME=my service, then workers can be started on instances A, B, C, and D. Even
though instance D is not in my service it is included because it is the instance on which
the job was started.

e If you start an Oracle Data Pump job on instance A, and specify CLUSTER=NO, then any
SERVICE NAME parameter that you specify is ignored, and all processes start on instance A.

Example

> impdp system DIRECTORY=dpump dirl SCHEMAS=hr
SERVICE NAME=sales NETWORK LINK=dbsl

This example starts a schema-mode network import of the hr schema. Even though
CLUSTER=YES is not specified on the command line, it is the default behavior, so the job uses all
instances in the resource group associated with the service name sales. The NETWORK LINK
value of dbs1 is replaced with the name of the source database from which you are importing
data. (Note that there is no dump file generated with a network import.)

The NETWORK_LINK parameter is simply being used as part of the example. It is not required
when using the SERVICE NAME parameter.

Related Topics
e CLUSTER

3.4.42 SKIP_UNUSABLE_INDEXES

ORACLE

The Oracle Data Pump Import command-line mode SKIP UNUSABLE INDEXES parameter
specifies whether Import skips loading tables that have indexes that were set to the Index
Unusable state (by either the system or the user).

Default

The value of the Oracle Database configuration parameter, SKIP_UNUSABLE INDEXES.

Purpose

Specifies whether Import skips loading tables that have indexes that were set to the Index
Unusable state (by either the system or the user).

Syntax and Description

SKIP UNUSABLE INDEXES=[YES | NO]

If SKIP UNUSABLE INDEXES is set to YES, and a table or partition with an index in the Unusable
state is encountered, then the load of that table or partition proceeds anyway, as if the
unusable index did not exist.

If SKIP UNUSABLE INDEXES is set to NO, and a table or partition with an index in the Unusable
state is encountered, then that table or partition is not loaded. Other tables, with indexes not
previously set Unusable, continue to be updated as rows are inserted.

If the SKIP_UNUSABLE INDEXES parameter is not specified, then the setting of the Oracle
Database configuration parameter, SKIP_UNUSABLE INDEXES is used to determine how to
handle unusable indexes. The default value for that parameter is vy).

3-65

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

If indexes used to enforce constraints are marked unusable, then the data is not imported into
that table.

Note:

SKIP UNUSABLE INDEXES is useful only when importing data into an existing table. It
has no practical effect when a table is created as part of an import. In that case, the
table and indexes are newly created, and are not marked unusable.

Example

The following is an example of using the SKIP_UNUSABLE INDEXES parameter. You can create
the expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp LOGFILE=skip.log
SKIP_UNUSABLE INDEXES=YES

Related Topics
e FULL

3.4.43 SOURCE_EDITION

ORACLE

The Oracle Data Pump Import command-line mode SOURCE_EDITION parameter specifies the
database edition on the remote node from which objects are fetched.

Default

The default database edition on the remote node from which objects are fetched.

Purpose

Specifies the database edition on the remote node from which objects are e fetched.

Syntax and Description

SOURCE_EDITION=edition name

If SOURCE_EDITION=edition name is specified, then the objects from that edition are imported.
Oracle Data Pump selects all inherited objects that have not changed, and all actual objects
that have changed.

If this parameter is not specified, then the default edition is used. If the specified edition does
not exist or is not usable, then an error message is returned.

Restrictions

» The SOURCE EDITION parameter is valid on an import operation only when the
NETWORK_LINK parameter is also specified.

e This parameter is only useful if there are two or more versions of the same versionable
objects in the database.

e The job version must be set to 11.2 or later.

3-66

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Example
The following is an example of using the import SOURCE_EDITION parameter:

> impdp hr DIRECTORY=dpump dirl SOURCE EDITION=exp edition
NETWORK LINK=source database link EXCLUDE=USER

In this example, we assume the existence of an edition named exp edition on the system
from which objects are being imported. Because no import mode is specified, the default,
which is schema mode, is used. Replace source database link with the name of the source
database from which you are importing data. The EXCLUDE=USER parameter excludes only the
definitions of users, not the objects contained within user schemas. No dump file is generated,
because this is a network import.

Related Topics
* NETWORK_LINK
* VERSION

See Also:

e CREATE EDITION in Oracle Database SQL Language Reference for information
about how editions are created

e Editions in Oracle Database Development Guide for more information about the
editions feature, including inherited and actual objects

3.4.44 SQLFILE

ORACLE

The Oracle Data Pump Import command-line mode SQLFILE parameter specifies a file into
which all the SQL DDL that Import prepares to execute is written, based on other Import
parameters selected.

Default

There is no default

Purpose

Specifies a file into which all the SQL DDL that Import prepares to execute is written, based on
other Import parameters selected.

Syntax and Description

SQLFILE=[directory object:]file name

The file name specifies where the import job writes the DDL that is prepared to run during the
job. The SQL is not actually run, and the target system remains unchanged. The file is written
to the directory object specified in the DIRECTORY parameter, unless you explicitly specify
another directory object. Any existing file that has a name matching the one specified with this
parameter is overwritten.

Note that passwords are not included in the SQL file. For example, if a CONNECT statement is
part of the DDL that was run, then it is replaced by a comment with only the schema name

3-67

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

shown. In the following example, the dashes (--) indicate that a comment follows. The hr
schema name is shown, but not the password.

-- CONNECT hr

Therefore, before you can run the SQL file, you must edit it by removing the dashes indicating
a comment, and adding the password for the hr schema.

Oracle Data Pump places any ALTER SESSION statements at the top of the SQL file created by
the Oracle Data Pump import. If the import operation has different connection statements, then
you must manually copy each of the ALTER SESSION statements, and paste them after the
appropriate CONNECT statements.

For some Oracle Database options, anonymous PL/SQL blocks can appear within the SQLFILE
output. Do not run these PL/SQL blocks directly.

Restrictions

e If SQLFILE is specified, then the CONTENT parameter is ignored if it is set to either ALL or
DATA ONLY.

e To perform an Oracle Data Pump Import to a SQL file using Oracle Automatic Storage
Management (Oracle ASM), the SQLFILE parameter that you specify must include a
directory object that does not use the Oracle AsM + notation. That is, the SQL file must be
written to a disk file, not into the Oracle ASM storage.

* You cannot use the SQLFILE parameter in conjunction with the QUERY parameter.

* When you specify the same filename, the SQLFILE filename you provide must have a file
extension (SQL, sql, LOG, log, LST, 1st). The file name you provide cannot have multiple
dots in the filename (specifically, a compound suffix). Compound suffixes are not
supported.

Example

The following is an example of using the SQLFILE parameter. You can create the expfull.dmp
dump file used in this example by running the example provided for the Export FULL parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp
SQLFILE=dpump dir2:expfull.sql
A SQL file named expfull.sql is written to dpump dir2.

Related Topics
¢ FULL

3.4.45 STATUS

The Oracle Data Pump Import command-line mode STATUS parameter specifies the frequency
at which the job status is displayed.

Default
0

ORACLE 368

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Purpose

Specifies the frequency at which the job status is displayed.

Syntax and Description

STATUS [=integer]

If you supply a value for integer, then it specifies how frequently, in seconds, job status should
be displayed in logging mode. If no value is entered, or if the default value of 0 is used, then no
additional information is displayed beyond information about the completion of each object
type, table, or partition.

This status information is written only to your standard output device, not to the log file (if one
is in effect).

Example

The following is an example of using the STATUS parameter. You can create the expfull.dmp
dump file used in this example by running the example provided for the Export FULL
parameter..

> impdp hr NOLOGFILE=YES STATUS=120 DIRECTORY=dpump dirl DUMPFILE=expfull.dmp

In this example, the status is shown every two minutes (120 seconds).

Related Topics
« FULL

3.4.46 STREAMS_CONFIGURATION

ORACLE

The Oracle Data Pump Import command-line mode STREAMS CONFIGURATION parameter
specifies whether to import any GoldenGate Replication metadata that may be present in the
export dump file.

Default

YES

Purpose

Specifies whether to import any GoldenGate Replication metadata that can be present in the
export dump file.

Syntax and Description

STREAMS CONFIGURATION=[YES | NO]

Example

The following is an example of using the STREAMS CONFIGURATION parameter. You can create
the expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp STREAMS CONFIGURATION=NO

3-69

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.47 TABLE_EXISTS_ACTION

The Oracle Data Pump Import command-line mode TABLE EXISTS ACTION parameter specifies
for Import what to do if the table it is trying to create already exists.
Default

SKIP

Note:

If CONTENT=DATA ONLY is specified, then the default is APPEND, not SKIP.

Purpose

Specifies for Import what to do if the table it is trying to create already exists.

Syntax and Description

TABLE EXISTS ACTION=[SKIP | APPEND | TRUNCATE | REPLACE]

The possible values have the following effects:

° SKIP leaves the table as is, and moves on to the next object. This option is not valid when
the CONTENT parameter is set to DATA ONLY.

e APPEND loads rows from the source and leaves existing rows unchanged.
e TRUNCATE deletes existing rows and then loads rows from the source.

e REPLACE drops the existing table, and then creates and loads it from the source. This option
is not valid when the CONTENT parameter is set to DATA ONLY.

When you are using these options, be aware of the following:

* When you use TRUNCATE or REPLACE, ensure that rows in the affected tables are not targets
of any referential constraints.

e When you use SKIP, APPEND, Or TRUNCATE, existing table-dependent objects in the source,
such as indexes, grants, triggers, and constraints, are not modified. For REPLACE, the
dependent objects are dropped and recreated from the source, if they are not explicitly or
implicitly excluded (using EXCLUDE) and if they exist in the source dump file or system.

* When you use APPEND or TRUNCATE, Import checks that rows from the source are
compatible with the existing table before performing any action.

If the existing table has active constraints and triggers, then it is loaded using the external
tables access method. If any row violates an active constraint, then the load fails and no
data is loaded. You can override this behavior by specifying

DATA OPTIONS=SKIP CONSTRAINT ERRORS on the Import command line.

If you have data that must be loaded, but that can cause constraint violations, then
consider disabling the constraints, loading the data, and then deleting the problem rows
before re-enabling the constraints.

* When you use APPEND, the data is always loaded into new space; existing space, even if
available, is not reused. For this reason, you may want to compress your data after the
load.

ORACLE 370

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

* If you use parallel processing, then review the description of the Import
PARTITION OPTIONS parameter for information about how parallel processing of partitioned
tables is affected, depending on whether the target table already exists or not.

* If you are importing into an existing table (TABLE EXISTS ACTION=REPLACE Or TRUNCATE),
then follow these guidelines, depending on the table partitioning scheme:

— If the partitioning scheme matches between the source and target, then use
DATA OPTIONS=TRUST EXISTING TABLE PARTITIONS on import.

— If the partitioning scheme differs between source and target, then use
DATA OPTIONS=GROUP PARTITION TABLE DATA ON export.

Note:

When Oracle Data Pump detects that the source table and target table do not match
(the two tables do not have the same number of columns or the target table has a
column name that is not present in the source table), it then compares column names
between the two tables. If the tables have at least one column in common, then the
data for the common columns is imported into the table (assuming the data types are
compatible). The following restrictions apply:

e This behavior is not supported for network imports.

e The following types of columns cannot be dropped: object columns, object
attributes, nested table columns, and ref columns based on a primary key.

Restrictions

e TRUNCATE cannot be used on clustered tables.

Example

The following is an example of using the TABLE EXISTS ACTION parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the Export
FULL parameter.

> impdp hr TABLES=employees DIRECTORY=dpump dirl DUMPFILE=expfull.dmp
TABLE EXISTS ACTION=REPLACE

Related Topics
e PARTITION_OPTIONS
« FULL

3.4.48 REUSE_DATAFILES

The Oracle Data Pump Import command-line mode REUSE_DATAFILES parameter specifies
whether you want the import job to reuse existing data files for tablespace creation.

Default

NO

ORACLE _—

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Purpose
Specifies whether you want the import job to reuse existing data files for tablespace creation.

Syntax and Description

REUSE DATAFILES=[YES | NO]

If you use the default (n), and the data files specified in CREATE TABLESPACE Statements already
exist, then an error message from the failing CREATE TABLESPACE statement is issued, but the
import job continues.

If this parameter is specified as v, then the existing data files are reinitialized.

Caution:

Specifying REUSE_DATAFILES=YES can result in a loss of data.

Example

The following is an example of using the REUSE_DATAFILES parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the Export
FULL parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp LOGFILE=reuse.log
REUSE_DATAFILES=YES

This example reinitializes data files referenced by CREATE TABLESPACE Statements in the
expfull.dmp file.

Related Topics
e FULL

3.4.49 TABLES

ORACLE

The Oracle Data Pump Import command-line mode TABLES parameter specifies that you want
to perform a table-mode import.

Default

There is no default.

Purpose

Specifies that you want to perform a table-mode import.

Syntax and Description

TABLES=[schema name.]table name[:partition name]

In a table-mode import, you can filter the data that is imported from the source by specifying a
comma-delimited list of tables and partitions or subpartitions.

3-72

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

If you do not supply a schema_name, then it defaults to that of the current user. To specify a
schema other than your own, you must either have the DATAPUMP IMP FULL DATABASE role or
remap the schema to the current user.

If you want to restrict what is imported, you can use filtering with this import mode.

If you specify partition name, then it must be the name of a partition or subpartition in the
associated table.

You can specify table names and partition names by using the wildcard character %.
The following restrictions apply to table names:

« By default, table names in a database are stored as uppercase characters. If you have a
table name in mixed-case or lowercase characters, and you want to preserve case
sensitivity for the table name, then you must enclose the name in quotation marks. The
name must exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be preceded
by an escape character. The following are examples of how case-sensitivity can be
preserved in the different Import modes.

— In command-line mode:
TABLES="'\"Emp\"'

— In parameter file mode:
TABLES='"Emp"'

* Table names specified on the command line cannot include a pound sign (#), unless the
table name is enclosed in quotation marks. Similarly, in the parameter file, if a table name
includes a pound sign (#), then unless the table name is enclosed in quotation marks, the
Import utility interprets the rest of the line as a comment.

For example, if the parameter file contains the following line, then Import interprets
everything on the line after emp# as a comment, and does not import the tables dept and
mydata:

TABLES= (emp#, dept, mydata)
However, if the parameter file contains the following line, then the Import utility imports all
three tables because emp# is enclosed in quotation marks:

TABLES=('"emp#"', dept, mydata)

Note:

Some operating systems require single quotation marks rather than double
quotation marks, or the reverse; see your operating system documentation.
Different operating systems also have other restrictions on table naming.

For example, the Unix C shell attaches a special meaning to a dollar sign () or
pound sign (#), or certain other special characters. You must use escape
characters to use these special characters in the names so that the operating
system shell ignores them, and they can be used with Import.

ORACLE 373

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Restrictions

e The use of synonyms as values for the TABLES parameter is not supported. For example, if
the regions table in the hr schema had a synonym of regn, then it would not be valid to
use TABLES=regn. An error would be returned.

* You can only specify partitions from one table if PARTITION OPTIONS=DEPARTITION is also
specified on the import.

» If you specify TRANSPORTABLE=ALWAYS, then all partitions specified on the TABLES parameter
must be in the same table.

* The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4 MB, unless you are using the NETWORK LINK parameter to an Oracle

Database release 10.2.0.3 or earlier or to a read-only database. In such cases, the limit is
4 KB.

Example

The following example shows a simple use of the TABLES parameter to import only the
employees and jobs tables from the expfull.dmp file. You can create the expfull.dmp dump
file used in this example by running the example provided for the Export FULL parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp TABLES=employees, jobs

The following example is a command to import partitions using the TABLES:

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expdat.dmp
TABLES=sh.sales:sales Q1 2012,sh.sales:sales Q2 2012

This example imports the partitions sales Q1 2012 and sales 02 2012 for the table sales in
the schema sh.

Related Topics
e Filtering During Import Operations
« FULL

3.4.50 TABLESPACES

ORACLE

The Oracle Data Pump Import command-line mode TABLESPACES parameter specifies that you
want to perform a tablespace-mode import.

Default

There is no default

Purpose

Specifies that you want to perform a tablespace-mode import.

Syntax and Description

TABLESPACES=tablespace name [, ...]

3-74

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Use TABLESPACES to specify a list of tablespace names whose tables and dependent objects
are to be imported from the source (full, schema, tablespace, or table-mode export dump file
set or another database).

During the following import situations, Data Pump automatically creates the tablespaces into
which the data will be imported:

* The import is being done in FULL or TRANSPORT TABLESPACES mode
e The import is being done in table mode with TRANSPORTABLE=ALWAYS

In all other cases, the tablespaces for the selected objects must already exist on the import
database. You could also use the Import REMAP TABLESPACE parameter to map the tablespace
name to an existing tablespace on the import database.

If you want to restrict what is imported, you can use filtering with this import mode.

Restrictions

* The length of the list of tablespace names specified for the TABLESPACES parameter is
limited to a maximum of 4 MB, unless you are using the NETWORK LINK parameter to a
10.2.0.3 or earlier database or to a read-only database. In such cases, the limit is 4 KB.

Example

The following is an example of using the TABLESPACES parameter. It assumes that the
tablespaces already exist. You can create the expfull.dmp dump file used in this example by
running the example provided for the Export FULL parameter.

> impdp hr DIRECTORY=dpump dirl DUMPFILE=expfull.dmp
TABLESPACES=tbs 1,tbs 2,tbs 3,tbs 4

This example imports all tables that have data in tablespaces tbs 1, tbs 2, tbs 3, and tbs_4.

Related Topics
e Filtering During Import Operations
e FULL

3.4.51 TARGET_EDITION

ORACLE

The Oracle Data Pump Import command-line mode TARGET EDITION parameter specifies the
database edition into which you want objects imported.

Default

The default database edition on the system.

Purpose

Specifies the database edition into which you want objects imported.

Syntax and Description

TARGET EDITION=name

If you specify TARGET EDITION=name, then Data Pump Import creates all of the objects found in
the dump file. Objects that are not editionable are created in all editions.

3-75

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

For example, tables are not editionable, so if there is a table in the dump file, then the table is
created, and all editions see it. Objects in the dump file that are editionable, such as
procedures, are created only in the specified target edition.

If this parameter is not specified, then Import uses the default edition on the target database,
even if an edition was specified in the export job. If the specified edition does not exist, or is not
usable, then an error message is returned.

Restrictions

e This parameter is only useful if there are two or more versions of the same versionable
objects in the database.

e The job version must be 11.2 or later.

Example

The following is an example of using the TARGET EDITION parameter:

> impdp hr DIRECTORY=dpump dirl DUMPFILE=exp dat.dmp
TARGET EDITION=exp edition

This example assumes the existence of an edition named exp edition on the system to which
objects are being imported. Because no import mode is specified, the default of schema mode
will be used.

See Oracle Database SQL Language Reference for information about how editions are
created. See Oracle Database Development Guide for more information about the editions
features.

Related Topics
* VERSION
 CREATE EDITION in Oracle Database SQL Language Reference

« Editions in Oracle Database Development Guide

3.4.52 TRANSFORM

ORACLE

The Oracle Data Pump Import command-line mode TRANSFORM parameter enables you to alter
object creation DDL for objects being imported.

Default

There is no default

Purpose

Enables you to alter object creation DDL for objects being imported.

Syntax and Description

TRANSFORM = transform name:value[:object type]

The transform name specifies the name of the transform.

3-76

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Specifying object type is optional. If supplied, this parameter designates the object type to
which the transform is applied. If no object type is specified, then the transform applies to all
valid object types.

The available transforms are as follows, in alphabetical order:

ORACLE

CONSTRAINT NAME FROM INDEX: [Y | N]
This transform is valid for the following object types:TABLE and CONSTRAINT object types.

This transform parameter affects the generation of the pk or £k constraint which reference
user created indexes. If set to Y, then it forces the name of the constraint to match the
name of the index.

If set to N (the default), then the constraint is created as named on the source database.
CONSTRAINT NOVALIDATE: [Y|N]

The default value for this parameter is N. If the parameter is set to Y, then constraints are
not validated during import. Validating constraints during import that were valid on the
source can be unnecessary and slow the migration process. Validation can be done after
import.

You cannot choose CONSTRAINT NOVALIDATE = Y for tables with the following properties
because these constraints must be in the VALIDATE state to complete the import:

— Reference partitioned table

— Reference partitioned child table

— Table with Primary key OID

— Table is clustered

CONSTRAINT USE DEFAULT INDEX: [Y | N]

This transform is valid for the following object types:TABLE and CONSTRAINT object types.

This transform parameter affects the generation of index relating to the pk or £k constraint.
If set to v, then the transform parameter forces the name of an index automatically created
to enforce the constraint to be identical to the constraint name. In addition, the index is
created using the default constraint definition for the target database, and will not use any
special characteristics that might have been defined in the source database.

Default Indexes are not allowed unless they use standard schema integrity constraints,
such as UNIQUE, PRIMARY KEY, or FOREIGN KEY. Accordingly, if you run an Oracle Data
Pump import from a system where no restrictions exist, and you have additional
constraints in the source index (for example, user generated constraints, such as a hash-
partitioned index), then these additional constraints are removed during the import.

If set to N (the default), then the index is created as named on the source database.
DISABLE ARCHIVE LOGGING:[Y | NJ
This transform is valid for the following object types: INDEX and TABLE.

If set to v, then the logging attributes for the specified object types (TABLE and/or INDEX)
are disabled before the data is imported. If set to N (the default), then archive logging is not
disabled during import. After the data has been loaded, the logging attributes for the
objects are restored to their original settings. If no object type is specified, then the
DISABLE ARCHIVE LOGGING behavior is applied to both TABLE and INDEX object types. This
transform works for both file mode imports and network mode imports. It does not apply to
transportable tablespace imports.

3-77

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Note:

If the database is in FORCE LOGGING mode, then the DISABLE ARCHIVE LOGGING
option does not disable logging when indexes and tables are created.

DWCS_CVT IOTS: [Y | N]
This transform is valid for TABLE object types.

If set to v, it directs Oracle Data Pump to transform Index Organized tables to heap
organized tables by suppressing the ORGANIZATION INDEX clause when creating the table.

If set to N (the default), the generated DDL retains the table characteristics of the source
object.

DWCS_CVT CONSTRAINTS: [Y | N]
This transform is valid for the following object types:TABLE and CONSTRAINT object types.
If set to v, it directs Oracle Data Pump to create pk, fk, or uk constraints as disabled.

If set to N (the default), it directs Oracle Data Pump to createpk, £k, or uk constraints based
on the source database status.

INDEX COMPRESSION CLAUSE [NONE | compression clause]

This transform is valid for the object type INDEX. As with the TABLE COMPRESSION CLAUSE,
the INDEX COMPRESSION CLAUSE enables you to control index compression on import.

If NONE is specified, then the index compression clause is omitted (and the index is given
the default compression for the tablespace). However, if you use compression, then Oracle
recommends that you use COMPRESS ADVANCED LOW). Indexes are created with the
specified compression. See Oracle Database SQL Language Reference for information
about valid table compression syntax.

If the index compression clause is more than one word, then it must be contained in single
or double quotation marks. Also, your operating system can require you to enclose the
clause in escape characters, such as the backslash character. For example:

TRANSFORM=INDEX COMPRESSION CLAUSE:\"COMPRESS ADVANCED LOW\"

Specifying this transform changes the type of compression for all indexes in the job.
INMEMORY: [Y | N]
This transform is valid for the following object types: TABLE and TABLESPACE

The INMEMORY transform is related to the In-Memory Column Store (IM column store). The
IM column store is an optional portion of the system global area (SGA) that stores copies
of tables, table partitions, and other database objects. In the IM column store, data is
populated by column rather than row as it is in other parts of the SGA, and data is
optimized for rapid scans. The IM column store does not replace the buffer cache, but acts
as a supplement so that both memory areas can store the same data in different formats.
The IM column store is included with the Oracle Database In-Memory option.

If Y (the default value) is specified on import, then Data Pump keeps the IM column store
clause for all objects that have one. When those objects are recreated at import time, Data
Pump generates the IM column store clause that matches the setting for those objects at
export time.

3-78

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

If N is specified on import, then Data Pump drops the IM column store clause from all
objects that have one. If there is no IM column store clause for an object that is stored in a
tablespace, then the object inherits the IM column store clause from the tablespace. So if
you are migrating a database, and you want the new database to use IM column store
features, then you can pre-create the tablespaces with the appropriate IM column store
clause and then use TRANSFORM=INMEMORY : N on the import command. The object then
inherits the IM column store clause from the new pre-created tablespace.

If you do not use the INMEMORY transform, then you must individually alter every object to
add the appropriate IM column store clause.

¢ Note:

The INMEMORY transform is available only in Oracle Database 12c¢ Release 1
(12.1.0.2) or later.

See Oracle Database Administrator’s Guide for information about using the In-
Memory Column Store (IM column store).

° INMEMORY CLAUSE:"string with a valid in-memory parameter”
This transform is valid for the following object types: TABLE and TABLESPACE.

The INMEMORY CLAUSE transform is related to the In-Memory Column Store (IM column
store). The IM column store is an optional portion of the system global area (SGA) that
stores copies of tables, table partitions, and other database objects. In the IM column
store, data is populated by column rather than row as it is in other parts of the SGA, and
data is optimized for rapid scans. The IM column store does not replace the buffer cache,
but acts as a supplement so that both memory areas can store the same data in different
formats. The IM column store is included with the Oracle Database In-Memory option.

When you specify this transform, Data Pump uses the contents of the string as the
INMEMORY CLAUSE for all objects being imported that have an IM column store clause in
their DDL. This transform is useful when you want to override the IM column store clause
for an object in the dump file.

The string that you supply must be enclosed in double quotation marks. If you are entering
the command on the command line, be aware that some operating systems can strip out
the quotation marks during parsing of the command, which causes an error. You can avoid
this error by using backslash escape characters (\). For example:

transform=inmemory clause:\"INMEMORY MEMCOMPRESS FOR DML PRIORITY
CRITICAL\"

Alternatively you can put parameters in a parameter file. Quotation marks in the parameter
file are maintained during processing.

ORACLE 379

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Note:

The INMEMORY CLAUSE transform is available only in Oracle Database 12¢
Release 1 (12.1.0.2) or later.

See Oracle Database Administrator's Guide for information about using the In-
Memory Column Store (IM column store). See Oracle Database Reference for a
listing and description of parameters that can be specified in an IM column store
clause

LOB STORAGE: [SECUREFILE | BASICFILE | DEFAULT | NO CHANGE]
This transform is valid for the object type TABLE.

LOB segments are created with the specified storage, either SECUREFILE Or BASICFILE. If
the value is NO_CHANGE (the default), then the LOB segments are created with the same
storage that they had in the source database. If the value is DEFAULT, then the keyword
(SECUREFILE Or BASICFILE) is omitted, and the LOB segment is created with the default
storage.

Specifying this transform changes LOB storage for all tables in the job, including tables
that provide storage for materialized views.

The LOB_STORAGE transform is not valid in transportable import jobs.
OID:[Y | NJ]
This transform is valid for the following object types: INC_TYPE, TABLE, and TYPE.

If Y (the default value) is specified on import, then the exported OIDs are assigned to new
object tables and types. Data Pump also performs OID checking when looking for an
existing matching type on the target database.

If N is specified on import, then:

— The assignment of the exported OID during the creation of new object tables and types
is inhibited. Instead, a new OID is assigned. Inhibiting assignment of exported OIDs
can be useful for cloning schemas, but does not affect referenced objects.

— Before loading data for a table associated with a type, Data Pump skips normal type
OID checking when looking for an existing matching type on the target database.
Other checks using a hash code for a type, version humber, and type name are still
performed.

OMIT ENCRYPTION CLAUSE: [Y | N]
This transform is valid for TABLE object types.

If set to v, it directs Oracle Data Pump to suppress column encryption clauses. Columns
which were encrypted in the source database are not encrypted in imported tables.

If set to N (the default), it directs Oracle Data Pump to create column encryption clauses,
as in the source database.

PCTSPACE: some number greater than zero

This transform is valid for the following object types: CLUSTER, CONSTRAINT, INDEX,
ROLLBACK SEGMENT, TABLE, and TABLESPACE.

The value supplied for this transform must be a number greater than zero. It represents
the percentage multiplier used to alter extent allocations and the size of data files.

3-80

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

You can use the PCTSPACE transform with the Data Pump Export SAMPLE parameter so that
the size of storage allocations matches the sampled data subset. (See the SAMPLE export
parameter.)

SEGMENT ATTRIBUTES:[Y | N]

This transform is valid for the following object types: CLUSTER, CONSTRAINT, INDEX,
ROLLBACK SEGMENT, TABLE, and TABLESPACE.

If the value is specified as Y, then segment attributes (physical attributes, storage
attributes, tablespaces, and logging) are included, with appropriate DDL. The default is v.

SEGMENT CREATION:[Y | NJ
This transform is valid for the object type TABLE.

If set to Y (the default), then this transform causes the SQL SEGMENT CREATION clause to be
added to the CREATE TABLE statement. That is, the CREATE TABLE statement explicitly says
either SEGMENT CREATION DEFERRED Or SEGMENT CREATION IMMEDIATE. If the value is N,
then the SEGMENT CREATION clause is omitted from the CREATE TABLE statement. Set this
parameter to N to use the default segment creation attributes for the tables being loaded.
(This functionality is available with Oracle Database 11g release 2 (11.2.0.2) and later
releases.

STORAGE: [Y | N]

This transform is valid for the following object types: CLUSTER, CONSTRAINT, INDEX,
ROLLBACK SEGMENT, and TABLE.

If the value is specified as Y, then the storage clauses are included, with appropriate DDL.
The default is Y. This parameter is ignored if SEGMENT ATTRIBUTES=N.

TABLESPACE: [Y | N]

The TABLESPACE option for the TRANSFORM parameter (transform=TABLESPACE:[Y | N]),
allows you to associate many source tablespaces with the user default tablespace for the
target database.

If you set the TABLESPACE parameter to No during import, then the tablespace space clause
is omitted from the DDL for creating the object types TABLE, INDEX, CONSTRAINT, CLUSTER,
MATERIALIZED VIEW, MATERIALIZED VIEW LOG, and MATERIALIZED ZONEMAP. If you set the
TABLESPACE parameter to Yes (the default), then the tablespace space clause is emitted for
these object types. A production database can have multiple tablespaces. You may want to
consolidate those tablespaces during migration into a particular target tablespace. For
example, you may want to consolidate tablespaces when migrating to Oracle Autonomous
Database where only the USER tablespace is available for applications. Using this
parameter with the $ wildcard makes it easy to do so without specifying all of the source
tablespaces.

TABLE COMPRESSION CLAUSE: [NONE | compression clause]
This transform is valid for the object type TABLE.

If NONE is specified, then the table compression clause is omitted (and the table is given the
default compression for the tablespace). Otherwise, the value is a valid table compression
clause (for example, NOCOMPRESS, COMPRESS BASIC, and so on). Tables are created with the
specified compression. See Oracle Database SQL Language Reference for information
about valid table compression syntax.

3-81

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

If the table compression clause is more than one word, then it must be contained in single
or double quotation marks. Also, your operating system can require you to enclose the
clause in escape characters, such as the backslash character. For example:

TRANSFORM=TABLE COMPRESSION CLAUSE:\"COLUMN STORE COMPRESS FOR QUERY HIGH\"

Specifying this transform changes the type of compression for all tables in the job,
including tables that provide storage for materialized views.

XMLTYPE STORAGE CLAUSE: [TRANSPORTABLE BINARY XML | BINARY XML]

There is no default. If the transform is not used, then he source datatype in the dumpfile is
the datatype defined on the target, and the NOT TRANSPORTABLE clauses remain as they
are.

Oracle recommends that you use the TRANSPORTABLE BINARY XML XMLType with Oracle
Database 23ai to store data in a self-contained binary format. This format supports
sharding and greater scalability. It does not store the metadata used to encode or decode
XML data in a central table (central token tables and schema registries), which simplifies
the XML data storage and makes it easier to transport. If TRANSPORTABLE BINARY XML is
set, then it forces the TRANSPORTABLE clause to be present in table creation DDLs for Binary
XML data. This data type is available for Oracle Database 21c and Oracle Database 19c in
Oracle Cloud Infrastructure.

Use the BINARY XML storage XMLType (which is non-transportable) to store the data in a
post-parse, binary format designed specifically for XML data. Binary XML is compact, post-
parse, XML schema-aware XML data. The metadata used to encode or decode XML data
is stored efficiently in a central table. When BINARY XML is set, it forces the NOT
TRANSPORTABLE clause to be present in table creation DDLs for Binary XML data. When
tables with Binary XML data have neither TRANSPORTABLE nor NOT TRANSPORTABLE clauses,
the default is NOT TRANSPORTABLE, and the XMLType column remains stored as Binary
XML.

You can export and import data of type XMLType regardless of the source database
XMLType storage format (object-relational, binary XML or CLOB). However, Oracle Data
Pump exports and imports XML data as binary XML data only. The underlying tables and
columns used for object-relational storage of XMLType are consequently not exported.
Instead, they are converted to binary form and exported as self-describing binary XML data
with a token map preamble.

Because XMLType data is exported and imported as XML data, the source and target
databases can use different XMLType storage models for that data. You can export data
from a database that stores XMLType data one way and import it into a database that
stores XMLType data a different way. For details, see Oracle XML DB Developer’s Guide

Restrictions

For the XMLTYPE STORAGE CLAUSE data type, the following restrictions apply:

Do not use the option table exists action=append to import more than once from the
same dump file into an XMLType table, regardless of the XMLType storage model used.
Doing so raises a unique-constraint violation error, because rows in XMLType tables are
always exported and imported using a unique object identifier.

Transportable Binary XML can only be stored using SecureFile LOB. If a BasicFile clause
is specified for TBX, then an error is raised. The only exceptions are for the sys and XDB
users, which are permitted to use the BasicFile clause.

3-82

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

* Binary XML defaults to SecureFiles storage option. However, if either of the following is

true, it is not possible to use SecureFiles LOB storage. In that case, BasicFile is the default
option for binary XML data:

— The tablespace for the XMLType table does not use automatic segment space
management.

— A setting in file init.ora prevents SecureFiles LOB storage. For example, see
parameter DB SECUREFILE.

Example

For the following example, assume that you have exported the employees table in the hr
schema. The SQL CREATE TABLE statement that results when you then import the table is
similar to the following:

CREATE TABLE "HR"."EMPLOYEES"
("EMPLOYEE ID" NUMBER(6,0),
"FIRST NAME" VARCHARZ (20),
"LAST NAME" VARCHAR2 (25) CONSTRAINT "EMP LAST NAME NN" NOT NULL ENABLE,
"EMAIL" VARCHARZ (25) CONSTRAINT "EMP EMAIL NN" NOT NULL ENABLE,
"PHONE NUMBER" VARCHARZ (20),
"HIRE DATE" DATE CONSTRAINT "EMP HIRE DATE NN" NOT NULL ENABLE,
"JOB_ID" VARCHARZ (10) CONSTRAINT "EMP JOB NN" NOT NULL ENABLE,
"SALARY" NUMBER(8,2),
"COMMISSION PCT" NUMBER(2,2),
"MANAGER ID" NUMBER(6,0),
"DEPARTMENT ID" NUMBER(4,0)

) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE (INITIAL 10240 NEXT 16384 MINEXTENTS 1 MAXEXTENTS 121
PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1 BUFFER POOL DEFAULT)
TABLESPACE "SYSTEM" ;

If you do not want to retain the STORAGE clause or TABLESPACE clause, then you can remove
them from the CREATE STATEMENT by using the Import TRANSFORM parameter. Specify the value
of SEGMENT ATTRIBUTES as N. This results in the exclusion of segment attributes (both storage
and tablespace) from the table.

> impdp hr TABLES=hr.employees DIRECTORY=dpump dirl DUMPFILE=hr emp.dmp
TRANSFORM=SEGMENT ATTRIBUTES:N:table

The resulting CREATE TABLE statement for the employees table then looks similar to the
following. It does not contain a STORAGE or TABLESPACE clause; the attributes for the default
tablespace for the HR schema are used instead.

CREATE TABLE "HR"."EMPLOYEES"

("EMPLOYEE ID" NUMBER(6,0),
"FIRST NAME" VARCHAR2 (20),
"LAST NAME" VARCHAR2 (25) CONSTRAINT "EMP LAST NAME NN" NOT NULL ENABLE,
"EMATL" VARCHAR2 (25) CONSTRAINT "EMP EMAIL NN" NOT NULL ENABLE,
"PHONE_ NUMBER" VARCHAR2 (20),
"HIRE DATE" DATE CONSTRAINT "EMP HIRE DATE NN" NOT NULL ENABLE,
"JOB_ID" VARCHAR2 (10) CONSTRAINT "EMP JOB NN" NOT NULL ENABLE,
"SALARY" NUMBER(8,2),
"COMMISSION PCT" NUMBER(2,2),

3-83

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

"MANAGER ID" NUMBER (6,0),
"DEPARTMENT ID" NUMBER(4,0)
)7

As shown in the previous example, the SEGMENT ATTRIBUTES transform applies to both storage
and tablespace attributes. To omit only the STORAGE clause and retain the TABLESPACE clause,
you can use the STORAGE transform, as follows:

> impdp hr TABLES=hr.employees DIRECTORY=dpump dirl DUMPFILE=hr emp.dmp
TRANSFORM=STORAGE:N:table

The SEGMENT ATTRIBUTES and STORAGE transforms can be applied to all applicable table and
index objects by not specifying the object type on the TRANSFORM parameter, as shown in the
following command:

> impdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp SCHEMAS=hr TRANSFORM=SEGMENT ATTRIBUTES:N

Related Topics

e XMLTYPE_STORAGE_CLAUSE: Export/Import Limitations for Oracle XML DB Repository
in Oracle XML DB Developer’s Guide

e XMLTYPE_STORAGE_CLAUSE: Oracle XML DB Features in Oracle XML DB Developer’s
Guide

« CREATE INDEX in Oracle Database Administrator’s Guide

e Improved Analytics Using the In-Memory Column Store in Oracle Database Data
Warehousing Guide

* SAMPLE
The Oracle Data Pump Export command-line utility SAMPLE parameter specifies a
percentage of the data rows that you want to be sampled and unloaded from the source
database.

 CREATE TABLE in Oracle Database SQL Language Reference

3.4.53 TRANSPORT_DATAFILES

ORACLE

The Oracle Data Pump Import command-line mode TRANSPORT DATAFILES parameter specifies
a list of data files that are imported into the target database when TRANSPORTABLE=ALWAYS is set
during the export.

Default

There is no default

Purpose

Specifies a list of data files that are imported into the target database by a transportable-
tablespace mode import, or by a table-mode or full-mode import, when
TRANSPORTABLE=ALWAYSiS set during the export. The data files must already exist on the target
database system.

Syntax and Description

TRANSPORT DATAFILES=datafile name

3-84

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

The datafile name mustinclude an absolute directory path specification (not a directory object
name) that is valid on the system where the target database resides.

The datafile name can also use wildcards in the file name portion of an absolute path
specification. An Asterisk (*) matches 0 to N characters. A question mark (?) matches exactly
one character. You cannot use wildcards in the directory portions of the absolute path
specification. If a wildcard is used, then all matching files must be part of the transport set. If
any files are found that are not part of the transport set, then an error is displayed, and the
import job terminates.

At some point before the import operation, you must copy the data files from the source system
to the target system. You can copy the data files by using any copy method supported by your
operating system. If desired, you can rename the files when you copy them to the target
system. See Example 2.

If you already have a dump file set generated by any transportable mode export, then you can
perform a transportable-mode import of that dump file by specifying the dump file (which
contains the metadata) and the TRANSPORT DATAFILES parameter. The presence of the
TRANSPORT DATAFILES parameter tells import that it is a transportable-mode import and where
to get the actual data.

Depending on your operating system, the use of quotation marks when you specify a value for
this parameter can also require that you use escape characters. Oracle recommends that you
place this parameter in a parameter file, which can reduce the number of escape characters
that you would otherwise be required to use on the command line.

Restrictions

* You cannot use the TRANSPORT DATAFILES parameter in conjunction with the QUERY
parameter.

* The TRANSPORT DATAFILES directory portion of the absolute file path cannot contain
wildcards. However, the file name portion of the absolute file path can contain wildcards

Example 1

The following is an example of using the TRANSPORT DATAFILES parameter. ASsume you have a
parameter file, trans datafiles.par, with the following content:

DIRECTORY=dpump dirl
DUMPFILE=tts.dmp
TRANSPORT DATAFILES='/user0l/data/tbsl.dbf’

You can then issue the following command:

> impdp hr PARFILE=trans datafiles.par

Example 2

This example illustrates the renaming of data files as part of a transportable tablespace export
and import operation. Assume that you have a data file named employees.dat on your source
system.

1. Using a method supported by your operating system, manually copy the data file named
employees.dat from your source system to the system where your target database
resides. As part of the copy operation, rename it to workers.dat.

3-85

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

2. Perform a transportable tablespace export of tablespace tbs 1.

> expdp hr DIRECTORY=dpump dirl DUMPFILE=tts.dmp
TRANSPORT TABLESPACES=tbs 1

The metadata only (no data) for tbs 1 is exported to a dump file named tts.dmp. The
actual data was copied over to the target database in step 1.

3. Perform a transportable tablespace import, specifying an absolute directory path for the
data file named workers.dat:

> impdp hr DIRECTORY=dpump dirl DUMPFILE=tts.dmp
TRANSPORT DATAFILES='/user(Ol/data/workers.dat’

The metadata contained in tts.dmp is imported and Data Pump then assigns the
information in the workers.dat file to the correct place in the database.

Example 3

This example illustrates use of the asterisk (*) wildcard character in the file name when used
with the TRANSPORT DATAFILES parameter.

TRANSPORT DATAFILES='/dbl/hrdata/payroll/emp*.dbf"

This parameter use results in Oracle Data Pump validating that all files in the directory /db1/
hrdata/payroll/ of type .dbf whose names begin with emp are part of the transport set.

Example 4
This example illustrates use of the question mark (?) wildcard character in the file name when
used with the TRANSPORT DATAFILES parameter.

TRANSPORT DATAFILES='/dbl/hrdata/payroll/m?emp.dbf"’

This parameter use results in Oracle Data Pump validating that all files in the directory /db1/
hrdata/payroll/ of type .dbf whose name begins with m, followed by any other single
character, and ending in emp are part of the transport set. For example, a file named myemp . dbf
is included, but memp. dbf is not included.

Related Topics

e About Import Command-Line Mode

3.4.54 TRANSPORT_FULL_CHECK

ORACLE

The Oracle Data Pump Import command-line mode TRANSPORT FULL CHECK parameter
specifies whether to verify that the specified transportable tablespace set is being referenced
by objects in other tablespaces.

Default

NO

3-86

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Purpose

Specifies whether to verify that the specified transportable tablespace set is being referenced
by objects in other tablespaces.

Syntax and Description

TRANSPORT FULL CHECK=[YES | NO]

If TRANSPORT FULL_CHECK=YES, then Import verifies that there are no dependencies between
those objects inside the transportable set and those outside the transportable set. The check
addresses two-way dependencies. For example, if a table is inside the transportable set but its
index is not, then a failure is returned and the import operation is terminated. Similarly, a failure
is also returned if an index is in the transportable set but the table is not.

If TRANSPORT FULL CHECK=NO, then Import verifies only that there are no objects within the
transportable set that are dependent on objects outside the transportable set. This check
addresses a one-way dependency. For example, a table is not dependent on an index, but an
index is dependent on a table, because an index without a table has no meaning. Therefore, if
the transportable set contains a table, but not its index, then this check succeeds. However, if
the transportable set contains an index, but not the table, then the import operation is
terminated.

In addition to this check, Import always verifies that all storage segments of all tables (and their
indexes) defined within the tablespace set specified by TRANSPORT TABLESPACES are actually
contained within the tablespace set.

Restrictions

e This parameter is valid for transportable mode (or table mode or full mode when
TRANSPORTABLE=ALWAYS was specified on the export) only when the NETWORK LINK
parameter is specified.

Example

In the following example, source database link would be replaced with the name of a valid
database link. The example also assumes that a data file named tbs6.dbf already exists.

Assume you have a parameter file, full check.par, with the following content:

DIRECTORY=dpump dirl

TRANSPORT TABLESPACES=tbs 6

NETWORK LINK=source database link
TRANSPORT FULL CHECK=YES

TRANSPORT DATAFILES='/wkdir/data/tbs6.dbf"

You can then issue the following command:

> impdp hr PARFILE=full check.par

3-87

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.55 TRANSPORT_TABLESPACES

The Oracle Data Pump Import command-line mode TRANSPORT TABLESPACES parameter
specifies that you want to perform an import in transportable-tablespace mode over a database
link.

Default

There is no default.

Purpose

Specifies that you want to perform an import in transportable-tablespace mode over a
database link (as specified with the NETWORK LINK parameter.)

Syntax and Description

TRANSPORT TABLESPACES=tablespace name [, ...]

Use the TRANSPORT TABLESPACES parameter to specify a list of tablespace names for which
object metadata are imported from the source database into the target database.

Because this import is a transportable-mode import, the tablespaces into which the data is
imported are automatically created by Data Pump.You do not need to pre-create them.
However, copy the data files to the target database before starting the import.

When you specify TRANSPORT TABLESPACES on the import command line, you must also use the
NETWORK_LINK parameter to specify a database link. A database link is a connection between
two physical database servers that allows a client to access them as one logical database.
Therefore, the NETWORK LINK parameter is required, because the object metadata is exported
from the source (the database being pointed to by NETWORK LINK) and then imported directly
into the target (database from which the impdp command is issued), using that database link.
There are no dump files involved in this situation. If you copied the actual data to the target in a
separate operation using some other means, then specify the TRANSPORT DATAFILES parameter
and indicate where the data is located.

Note:

If you already have a dump file set generated by a transportable-tablespace mode
export, then you can perform a transportable-mode import of that dump file, but in
this case you do not specify TRANSPORT TABLESPACES or NETWORK LINK. Doing so
would result in an error. Rather, you specify the dump file (which contains the
metadata) and the TRANSPORT DATAFILES parameter. The presence of the
TRANSPORT DATAFILES parameter tells import that it's a transportable-mode import
and where to get the actual data.

When transportable jobs are performed, it is best practice to keep a copy of the data files on
the source system until the import job has successfully completed on the target system. If the
import job fails, then you still have uncorrupted copies of the data files.

ORACLE 388

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Restrictions

* You cannot export transportable tablespaces and then import them into a database at a
lower release level. The target database into which you are importing must be at the same
or later release level as the source database.

* The TRANSPORT TABLESPACES parameter is valid only when the NETWORK LINK parameter is
also specified.

» To use the TRANSPORT TABLESPACES parameter to perform a transportable tablespace
import, the COMPATIBLE initialization parameter must be set to at least 11.0.0.

« Depending on your operating system, the use of quotation marks when you specify a value
for this parameter can also require that you use escape characters. Oracle recommends
that you place this parameter in a parameter file. If you use a parameter file, then that can
reduce the number of escape characters that you have to use on a command line.

« Transportable tablespace jobs do not support the ACCESS METHOD parameter for Data Pump
Import.

Example

In the following example, the source database link would be replaced with the name of a
valid database link. The example also assumes that a data file named tbs6.dbf has already
been copied from the source database to the local system. Suppose you have a parameter file,
tablespaces.par, with the following content:

DIRECTORY=dpump_ dirl

NETWORK LINK=source database link

TRANSPORT TABLESPACES=tbs 6

TRANSPORT FULL CHECK=NO

TRANSPORT DATAFILES='user0l/data/tbs6.dbf’

You can then issue the following command:

> impdp hr PARFILE=tablespaces.par

Related Topics

o Database Links in Oracle Database Administrator’s Guide
* Using Data File Copying to Move Data

* How Does Oracle Data Pump Handle Timestamp Data?

* About Import Command-Line Mode

3.4.56 TRANSPORTABLE

ORACLE

The optional Oracle Data Pump Import command-line mode TRANSPORTABLE parameter
specifies either that transportable tables are imported with KEEP_READ ONLY, or
NO_BITMAP REBUILD.

Default

None.

3-89

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Purpose

This optional parameter enables you to specify two values to control how transportable table
imports are managed: KEEP_READ ONLY and NO_BITMAP REBUILD.There is no default value for
the TRANSPORTABLE parameter.

Syntax and Description

TRANSPORTABLE = [ALWAYS|NEVER|KEEP READ ONLY|NO BITMAP REBUILD]

The definitions of the allowed values are as follows:

e ALWAYS (valid for Full and Table Export) indicates a transportable export. If specified, then
only the metadata is exported, and data files are plugged into the target database during
the import.

* NEVER indicates that only a traditional data export is enabled.

* KEEP READ ONLY: Valid with transportable mode imports (table, tablespace, full). If
specified, then tablespaces and data files remain in read-only mode. Keeping tablespaces
and data files in read-only mode enables the transportable data file set to be available to
be plugged in to multiple target databases. When data files are in read-only mode, this
disables updating tables containing TSTZ column data, if that data needs to be updated, to
avoid issues with different TSTZ versions. For this reason, tables with TSTz columns are
dropped from the transportable import. Placing data files in read-only mode also disables
rebuilding of tablespace storage bitmaps to reclaim segments.

e NO BITMAP REBUILD: Indicates that you do not want Oracle Data Pump to reclaim storage
segments by rebuilding tablespace storage bitmaps during the transportable import. Not
rebuilding the bitmaps can speed up the import. You can reclaim segments at a later time
by using the DBMS SPACE ADMIN.TABLESPACE REBUILD BITMAPS () procedure.

APIs or Classes

You can set the TRANSPORTABLE parameter value by using the existing procedure
DBMS DATAPUMP.SET PARAMETER.

Restrictions

* The Import TRANSPORTABLE parameter is valid only if the NETWORK_LINK parameter is also
specified.

e The TRANSPORTABLE parameter is only valid in table mode imports and full mode imports.

e The user performing a transportable import requires both the
DATAPUMP EXP FULL DATABASE role on the source database, and the
DATAPUMP IMP FULL DATABASE role on the target database.

« All objects with storage that are selected for network import must have all of their storage
segments on the source system either entirely within administrative, non-transportable
tablespaces (SYSTEM / SYSAUX), or entirely within user-defined, transportable tablespaces.
Storage for a single object cannot straddle the two kinds of tablespaces.

e To use the TRANSPORTABLE parameter to perform a network-based full transportable import,
the Data Pump VERSION parameter must be set to at least 12.0 if the source database is
release 11.2.0.3. If the source database is release 12.1 or later, then the VERSTON
parameter is not required, but the COMPATIBLE database initialization parameter must be
set to 12.0.0 or later.

3-90

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Example of a Network Link Import

The following example shows the use of the TRANSPORTABLE parameter during a network link
import, where datafile name is the data file that you want to import.

> impdp system TABLES=hr.sales TRANSPORTABLE=ALWAYS
DIRECTORY=dpump dirl NETWORK LINK=dbsl PARTITION OPTIONS=DEPARTITION
TRANSPORT DATAFILES=datafile name

Example of a Full Transportable Import

The following example shows the use of the TRANSPORTABLE parameter when performing a full
transportable import over the database link dbs1. The import specifies a password for the
tables with encrypted columns.

> impdp import admin FULL=Y TRANSPORTABLE=ALWAYS VERSION=12 NETWORK LINK=dbsl
ENCRYPTION PASSWORD=password TRANSPORT DATAFILES=datafile name
LOGFILE=dpump dirl:fullnet.log

Example of Setting NEVER or ALWAYS

Setting the TRANSPORTABLE parameter with string values is limited to NEVER or ALWAYS values:

SYS.DBMS DATAPUMP.SET PARAMETER (jobhdl, ‘TRANSPORTABLE’,’ALWAYS');
SYS.DBMS DATAPUMP.SET PARAMETER (jobhdl, ‘TRANSPORTABLE’,’NEVER’);

The new TRANSPORTABLE parameter options are set using the new numeric bitmask values:
DBMS DATAPUMP.KU$ TTS NEVER is the value 1
DBMS_DATAPUMP.KU$ TTS ALWAYS is the value 2

DBMS DATAPUMP.KU$ TTS KEEP READ ONLY is the value 4

DBMS_DATAPUMP.KU$ TTS NO BITMAP REBUILD is the value 8

SYS.DBMS DATAPUMP.SET PARAMETER (jobhdl, ‘TRANSPORTABLE’,
DBMS DATAPUMP.KU$ TTS ALWAYS+DBMS DATAPUMP.KU$ TTS KEEP READ ONLY);

Example of a File-Based Transportable Tablespace Import

The following example shows the use of the TRANSPORTABLE parameter during a file-based
transportable tablespace import. The specified KEEP READ ONLY option indicates that the data
file remains in read—only access throughout the import operation. The required data files are
reported by the transportable tablespace export.

impdp system DIRECTORY=dpump dir DUMPFILE=dumpfile name
TRANSPORT DATAFILES=datafile name TRANSPORTABLE=KEEP READ ONLY

Related Topics
e About Import Command-Line Mode

* Using Data File Copying to Move Data

3-91

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3.4.57 VERIFY_CHECKSUM

The Oracle Data Pump Import command-line utility VERIFY CHECKSUM parameter specifies
whether to verify dump file checksums.

Default

If checksums were generated when the export dump files were first produced, then the default
value is YES.

Purpose

Specifies whether Oracle Data Pump verifies dump file checksums before proceeding with the
import operation.

Syntax and Description

VERIFY CHECKSUM=[YES|NO]

e YES Specifies that Oracle Data Pump performs file checksum verification for each dump file
in the export dump file set.

* NO Specifies that Oacle Data Pump does not perform checksum verification for the dump
file set.

Restrictions

* To use this checksum feature, the COMPATIBLE initialization parameter must be set to at
least 20.0.

e The VERIFY_CHECKSUM and VERIFY_ONLY parameters are mutually exclusive.

Example

This example performs a schema-mode load of the HR schema. Checksum verification of the
dump files is performed before the actual import operation begins.

impdp hr DIRECTORY=dpump dirl DUMPFILE=hr.dmp VERIFY CHECKSUM=YES

3.4.58 VERIFY_ONLY

ORACLE

The Oracle Data Pump Import command-line utility VERIFY ONLY parameter enables you to
verify the checksum for the dump file.

Default

NO

Purpose

Specifies whether Oracle Data Pump verifies the dump file checksums.

Syntax and Description

VERIFY ONLY=[YES|NO]

3-92

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

When set to YES, Oracle Data Pump verifies the checksum. If there are no errors, then you can
issue another import command for the dump file set.

Restrictions

* When you set the VERIFY ONLY parameter to YES, no actual import operation is performed.
The Oracle Data Pump Import job only completes the listed verification checks.

* The VERIFY CHECKSUM and VERIFY ONLY parameters are mutually exclusive.

Example

This example performs a verification check of the hr.dmp dump file. Beyond the verification
checks, no actual import of data is performed.

impdp system directory=dpump dirl dumpfile=hr.dmp verify checksum=yes

3.4.59 VERSION

ORACLE

The Oracle Data Pump Import command-line mode VERSION parameter specifies the version of
database objects that you want to import.

Default

You should rarely have to specify the VERSION parameter on an import operation. Oracle Data
Pump uses whichever of the following is earlier:

e The version associated with the dump file, or source database in the case of network
imports

e The version specified by the COMPATIBLE initialization parameter on the target database

Purpose

Specifies the version of database objects that you want to be imported (that is, only database
objects and attributes that are compatible with the specified release will be imported). Note that
this does not mean that Oracle Data Pump Import can be used with releases of Oracle
Database earlier than 10.1. Oracle Data Pump Import only works with Oracle Database 10g
release 1 (10.1) or later. The VERSION parameter simply allows you to identify the version of the
objects being imported.

Syntax and Description

VERSION=[COMPATIBLE | LATEST | version string]

This parameter can be used to load a target system whose Oracle Database is at an earlier
compatibility release than that of the source system. When the VERSION parameter is set,
database objects or attributes on the source system that are incompatible with the specified
release are not moved to the target. For example, tables containing new data types that are
not supported in the specified release are not imported. Legal values for this parameter are as
follows:

° COMPATIBLE - This is the default value. The version of the metadata corresponds to the
database compatibility level. Database compatibility must be set to 9.2.0 or later.

e LATEST - The version of the metadata corresponds to the database release. Specifying
VERSION=LATEST on an import job has no effect when the target database's actual version
is later than the version specified in its COMPATIBLE initialization parameter.

3-93

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

* version string - A specific database release (for example, 12.2.0).

Restrictions

e If the Oracle Data Pump VERSION parameter is specified as any value earlier than 12.1,
then the Oracle Data Pump dump file excludes any tables that contain VARCHAR2 or
NVARCHAR?2 columns longer than 4000 bytes and any RaW columns longer than 2000 bytes.

* Fullimports performed over a network link require that you set VERSION=12 if the target is
Oracle Database 12c Release 1 (12.1.0.1) or later and the source is Oracle Database 119
Release 2 (11.2.0.3) or later.

« Dump files created on Oracle Database 11g releases with the Oracle Data Pump
parameter VERSION=12 can only be imported on Oracle Database 12c¢ Release 1 (12.1) and
later.

e The value of the VERSTON parameter affects the import differently depending on whether
data-bound collation (DBC) is enabled.

Example

In the following example, assume that the target is an Oracle Database 12c Release 1
(12.1.0.1) database and the source is an Oracle Database 11g Release 2 (11.2.0.3) database.
In that situation, you must set VERSION=12 for network-based imports. Also note that even
though full is the default import mode, you must specify it on the command line when the
NETWORK_LINK parameter is being used.

> impdp hr FULL=Y DIRECTORY=dpump dirl
NETWORK LINK=source database link VERSION=12

Related Topics
e Oracle Data Pump Behavior with Data-Bound Collation

* Exporting and Importing Between Different Oracle Database Releases

3.4.60 VIEWS _AS TABLES (Network Import)

ORACLE

The Oracle Data Pump Import command-line mode VIEWS AS TABLES (Network Import)
parameter specifies that you want one or more views to be imported as tables.

Default

There is no default.

Note:

This description of VIEWS AS TABLES is applicable during network imports, meaning
that you supply a value for the Data Pump Import NETWORK LINK parameter.

Purpose

Specifies that you want one or more views to be imported as tables.

3-94

ORACLE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

Syntax and Description

VIEWS AS TABLES=[schema name.]view name[:table name],

Oracle Data Pump imports a table with the same columns as the view and with row data
fetched from the view. Oracle Data Pump also imports objects dependent on the view, such as
grants and constraints. Dependent objects that do not apply to tables (for example, grants of
the UNDER object privilege) are not imported. You can use the VIEWS AS TABLES parameter by
itself, or along with the TABLES parameter. If either is used, then Oracle Data Pump performs a
table-mode import.

The syntax elements are defined as follows:

schema_name: The name of the schema in which the view resides. If a schema name is not
supplied, it defaults to the user performing the import.

view name: The name of the view to be imported as a table. The view must exist and it must be
a relational view with only scalar, non-LOB columns. If you specify an invalid or non-existent
view, the view is skipped and an error message is returned.

table name: The name of a table that you want to serve as the source of the metadata for the
imported view. By default, Oracle Data Pump automatically creates a temporary "template
table" with the same columns and data types as the view, but no rows. If the database is read-
only, then this default creation of a template table fails. In such a case, you can specify a table
name. The table must be in the same schema as the view. It must be a non-partitioned
relational table with heap organization. It cannot be a nested table.

If the import job contains multiple views with explicitly specified template tables, then the
template tables must all be different. For example, in the following job (in which two views use
the same template table), one of the views is skipped:

impdp hr DIRECTORY=dpump dir NETWORK LINK=dblinkl
VIEWS AS TABLES=vl:employees,v2:employees

An error message is returned reporting the omitted object.

Template tables are automatically dropped after the import operation is completed. While they
exist, you can perform the following query to view their names (which all begin with KUSVAT):

SQL> SELECT * FROM user tab comments WHERE table name LIKE 'KUSVAT%';

TABLE NAME TABLE TYPE
COMMENTS
KUSVAT 63629 TABLE

Data Pump metadata template table for view HR.EMPLOYEESV

Restrictions

* The VIEWS AS TABLES parameter cannot be used with the TRANSPORTABLE=ALWAYS
parameter.

» Tables created using the VIEWS AS TABLES parameter do not contain any hidden columns
that were part of the specified view.

» The VIEWS AS TABLES parameter does not support tables that have columns with a data
type of LONG.

3-95

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

Example

The following example performs a network import to import the contents of the view hr.v1 from
a read-only database. The hr schema on the source database must contain a template table
with the same geometry as the view viewl (call this table viewl tab). The VIEWS AS TABLES
parameter lists the view name and the table name separated by a colon:

> impdp hr VIEWS AS TABLES=viewl:viewl tab NETWORK LINK=dblinkl

The view is imported as a table named viewl with rows fetched from the view. The metadata
for the table is copied from the template table viewl tab.

3.5 Commands Available in Oracle Data Pump Import
Interactive-Command Mode

In interactive-command mode, the current job continues running, but logging to the terminal is
suspended, and the Import prompt (Import>) is displayed.

ORACLE

About Oracle Data Pump Import Interactive Command Mode
Learn how to run Oracle Data Pump commands from an attached client, or from a terminal
other than the one on which the job is running.

CONTINUE_CLIENT
The Oracle Data Pump Import interactive command mode CONTINUE CLIENT parameter
changes the mode from interactive-command mode to logging mode.

EXIT_CLIENT

The Oracle Data Pump Import interactive command mode EXIT CLIENT parameter stops
the import client session, exits Import, and discontinues logging to the terminal, but leaves
the current job running.

HELP
The Oracle Data Pump Import interactive command mode HELP parameter provides
information about Import commands available in interactive-command mode.

KILL_JOB

The Oracle Data Pump Import interactive command mode KILL JOB parameter detaches
all currently attached client sessions and then terminates the current job. It exits Import
and returns to the terminal prompt.

PARALLEL

The Oracle Data Pump Import interactive command mode PARALLEL parameter enables
you to increase or decrease the number of active child processes, PQ child processes, or
both, for the current job.

START_JOB
The Oracle Data Pump Import interactive command mode START JOB parameter starts the
current job to which you are attached.

STATUS
The Oracle Data Pump Import interactive command STATUS parameter displays job status,
and enables update of the display intervals for logging mode status.

STOP_JOB
The Oracle Data Pump Import interactive command mode STOP_JOB parameter stops the
current job, either immediately or after an orderly shutdown, and exits Import.

3-96

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3.5.1 About Oracle Data Pump Import Interactive Command Mode

Learn how to run Oracle Data Pump commands from an attached client, or from a terminal
other than the one on which the job is running.

To start interactive-command mode, do one of the following:

e From an attached client, press Ctrl+C.

* From a terminal other than the one on which the job is running, use the ATTACH parameter
to attach to the job. This feature is useful in situations in which you start a job at one
location, and must check it at a later time from a different location.

Commands for Oracle Data Pump Interactive Mode
The following table lists the activities that you can perform for the current job from the Oracle
Data Pump Import prompt in interactive-command mode.

Table 3-1 Supported Activities in Oracle Data Pump Import's Interactive-Command
Mode

Activity Command Used
Exit interactive-command mode. CONTINUE CLIENT
Stop the import client session, but leave the current job running. EXIT CLIENT
Display a summary of available commands. HELP

Detach all currently attached client sessions and terminate the KILL JOB

current job.

Increase or decrease the number of active worker processes for the PARALLEL
current job. This command is valid only in Oracle Database
Enterprise Edition.

Restart a stopped job to which you are attached. START JOB
Display detailed status for the current job. STATUS
Stop the current job. STOP_JOB

3.5.2 CONTINUE_CLIENT

ORACLE

The Oracle Data Pump Import interactive command mode CONTINUE CLIENT parameter
changes the mode from interactive-command mode to logging mode.

Purpose

Changes the mode from interactive-command mode to logging mode.

Syntax and Description

CONTINUE CLIENT

In logging mode, the job status is continually output to the terminal. If the job is currently
stopped, then CONTINUE CLIENT also causes the client to attempt to start the job.

3-97

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

Example

Import> CONTINUE CLIENT

3.5.3 EXIT_CLIENT

The Oracle Data Pump Import interactive command mode EXIT CLIENT parameter stops the
import client session, exits Import, and discontinues logging to the terminal, but leaves the
current job running.

Purpose

Stops the import client session, exits Import, and discontinues logging to the terminal, but
leaves the current job running.

Syntax and Description

EXIT CLIENT

Because EXIT CLIENT leaves the job running, you can attach to the job at a later time if the job
is still running, or if the job is in a stopped state. To see the status of the job, you can monitor
the log file for the job, or you can query the USER_DATAPUMP_JOBS view or the

VSSESSION LONGOPS view.

Example

Import> EXIT CLIENT

3.5.4 HELP

The Oracle Data Pump Import interactive command mode HELP parameter provides
information about Import commands available in interactive-command mode.

Purpose

Provides information about Oracle Data Pump Import commands available in interactive-
command mode.

Syntax and Description

HELP

Displays information about the commands available in interactive-command mode.

Example

Import> HELP

ORACLE 308

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3.5.5KILL_JOB

The Oracle Data Pump Import interactive command mode KILL JOB parameter detaches all
currently attached client sessions and then terminates the current job. It exits Import and
returns to the terminal prompt.

Purpose

Detaches all currently attached client sessions and then terminates the current job. It exits
Import and returns to the terminal prompt.

Syntax and Description

KILL JOB

A job that is terminated using KILL JOB cannot be restarted. All attached clients, including the
one issuing the KILL JOB command, receive a warning that the job is being terminated by the
current user, and are then detached. After all clients are detached, the job process structure is

immediately run down, and the Data Pump control job table is deleted. Log files are not
deleted.

Example

Import> KILL JOB

3.5.6 PARALLEL

ORACLE

The Oracle Data Pump Import interactive command mode PARALLEL parameter enables you to
increase or decrease the number of active child processes, PQ child processes, or both, for
the current job.

Purpose

Enables you to increase or decrease the number of active child processes, parallel query (PQ)
child processes, or both, for the current job.

Syntax and Description

PARALLEL=integer

PARALLEL is available as both a command-line parameter and an interactive-mode parameter.
You set it to the desired number of parallel processes. An increase takes effect immediately if
there are enough resources, and if there is enough work requiring parallelization. A decrease
does not take effect until an existing process finishes its current task. If the integer value is
decreased, then child processes are idled but not deleted until the job exits.

Restrictions

e This parameter is valid only in the Enterprise Edition of Oracle Database 11g or later
releases.

e Transportable tablespace metadata cannot be imported in parallel.
* Metadata cannot be imported in parallel when the NETWORK LINK parameter is also used

* The following objects cannot be imported in parallel:

3-99

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

— TRIGGER

— VIEW

— OBJECT GRANT
— SEQUENCE

— CONSTRAINT

— REF_CONSTRAINT
Example

Import> PARALLEL=10

3.5.7 START_JOB

The Oracle Data Pump Import interactive command mode START JOB parameter starts the
current job to which you are attached.

Purpose

Starts the current job to which you are attached.

Syntax and Description

START JOB[=SKIP CURRENT=YES]

The START JOB command restarts the job to which you are currently attached (the job cannot
be currently running). The job is restarted with no data loss or corruption after an unexpected
failure, or after you issue a STOP_JoB command, provided the dump file set and Data Pump
control job table remain undisturbed.

The SKIP CURRENT option enables you to restart a job that previously failed, or that is hung or
performing slowly on a particular object. The failing statement or current object being
processed is skipped, and the job is restarted from the next work item. For parallel jobs, this
option causes each worker to skip whatever it is currently working on and to move on to the
next item at restart.

You cannot restart SQLFILE jobs.
Example

Tmport> START JOB

3.5.8 STATUS

The Oracle Data Pump Import interactive command STATUS parameter displays job status, and
enables update of the display intervals for logging mode status.

Purpose

Displays cumulative status of the job, a description of the current operation, and an estimated
completion percentage. It also allows you to reset the display interval for logging mode status.

ORACLE 3100

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

Syntax and Description

STATUS [=integer]

You have the option of specifying how frequently, in seconds, this status should be displayed in
logging mode. If no value is entered or if the default value of 0 is used, then the periodic status
display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log file (even if
one is in effect).

Example

The following example displays the current job status, and changes the logging mode display
interval to two minutes (120 seconds).

Import> STATUS=120

3.5.9 STOP_JOB

ORACLE

The Oracle Data Pump Import interactive command mode STOP JOB parameter stops the
current job, either immediately or after an orderly shutdown, and exits Import.

Purpose

Stops the current job, either immediately or after an orderly shutdown, and exits Import.

Syntax and Description

STOP_JOB[=IMMEDIATE]

After you run STOP JOB, you can attach and restart jobs later with START JOB. To attach and
restart jobs, the master table and dump file set must not be disturbed, either when you issue
the command, or after you issue the command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A warning
requiring confirmation is then issued. An orderly shutdown stops the job after worker processes
have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning requiring
confirmation is then issued. All attached clients, including the one issuing the STOP JOB
command, receive a warning that the current user is stopping the job. They are then detached.
After all clients are detached, the process structure of the job is immediately run down. That is,
the Data Pump control job process does not wait for the worker processes to finish their
current tasks. When you specify STOP JOB=IMMEDIATE, there is no risk of corruption or data
loss. However, you can be required to redo some tasks that were incomplete at the time of
shutdown at restart time.

Example

Import> STOP JOB=IMMEDIATE

3-101

Chapter 3
Examples of Using Oracle Data Pump Import

3.6 Examples of Using Oracle Data Pump Import

You can use these common scenario examples to learn how you can use Oracle Data Pump
Import to move your data.

e Performing a Data-Only Table-Mode Import
See how to use Oracle Data Pump to perform a data-only table-mode import.

e Performing a Schema-Mode Import
See how to use Oracle Data Pump to perform a schema-mode import.

e Performing a Network-Mode Import
See how to use Oracle Data Pump to perform a network-mode import.

e Using Wildcards in URL-Based Dumpfile Names
Oracle Data Pump simplifies importing multiple dump files into Oracle Autonomous
Database from the Oracle Object Store Service by allowing wildcards for URL-based
dumpfile names.

3.6.1 Performing a Data-Only Table-Mode Import

See how to use Oracle Data Pump to perform a data-only table-mode import.

In the example, the table is named employees. It uses the dump file created in "Performing a
Table-Mode Export.".

The CONTENT=DATA ONLY parameter filters out any database object definitions (metadata). Only
table row data is loaded.

Example 3-1 Performing a Data-Only Table-Mode Import

> impdp hr TABLES=employees CONTENT=DATA ONLY DUMPFILE=dpump dirl:table.dmp
NOLOGFILE=YES

Related Topics

e Performing a Table-Mode Export

3.6.2 Performing a Schema-Mode Import

ORACLE

See how to use Oracle Data Pump to perform a schema-mode import.

The example is a schema-mode import of the dump file set created in "Performing a Schema-
Mode Export".

Example 3-2 Performing a Schema-Mode Import

> impdp hr SCHEMAS=hr DIRECTORY=dpump dirl DUMPFILE=expschema.dmp
EXCLUDE=CONSTRAINT, REF CONSTRAINT, INDEX TABLE EXISTS ACTION=REPLACE

The EXCLUDE parameter filters the metadata that is imported. For the given mode of import, all
the objects contained within the source, and all their dependent objects, are included except
those specified in an EXCLUDE statement. If an object is excluded, then all of its dependent
objects are also excluded. The TABLE EXISTS ACTION=REPLACE parameter tells Import to drop
the table if it already exists and to then re-create and load it using the dump file contents.

3-102

Chapter 3
Examples of Using Oracle Data Pump Import

Related Topics

e Performing a Schema-Mode Export

3.6.3 Performing a Network-Mode Import

See how to use Oracle Data Pump to perform a network-mode import.

The network-mode import uses as its source the database specified by the NETWORK LINK
parameter.

Example 3-3 Network-Mode Import of Schemas

> impdp hr TABLES=employees REMAP SCHEMA=hr:scott DIRECTORY=dpump dirl
NETWORK LINK=dblink

This example imports the employees table from the hr schema into the scott schema. The
dblink references a source database that is different than the target database.

To remap the schema, user hr must have the DATAPUMP IMP FULL DATABASE role on the local
database and the DATAPUMP EXP FULL DATABASE role on the source database.

REMAP SCHEMA loads all the objects from the source schema into the target schema.

Related Topics

* NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK LINK parameter enables an
import from a source database identified by a valid database link.

3.6.4 Using Wildcards in URL-Based Dumpfile Names

Oracle Data Pump simplifies importing multiple dump files into Oracle Autonomous Database
from the Oracle Object Store Service by allowing wildcards for URL-based dumpfile names.

Example 3-4 Wildcards Used in a URL-based Filename

This example shows how to use wildcards in the file name for importing multiple dump files into
Oracle Autonomous Database from the Oracle Object Store Service.

> impdp admin/password@ATPC1l high

directory=data pump dir credential=my cred name
dumpfile= https://objectstorage.example.com/vl/atpc/atpc user/exp%u.dmp"

Note:

You cannot use wildcard characters in the bucket-name component of the URL.

ORACLE 3103

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

3.7 Syntax Diagrams for Oracle Data Pump Import

You can use syntax diagrams to understand the valid SQL syntax for Oracle Data Pump
Import.

How to Read Graphic Syntax Diagrams

Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram, trace it from
left to right, in the direction shown by the arrows.

For more information about standard SQL syntax notation, see:

How to Read Syntax Diagrams in Oracle Database SQL Language Reference

Implnit

password

® e,

ImpStart

fe(lmpModes)e(lmpOpts)—(ImpFileOptsh
ImpE t
WaE=Da
f@ 5 job_name }— I

ATTACH

ImpModes

YES

[FI}-(O)

O
e schema_name

("

)
[___ |
TABLES = 3 table_name)

TABLESPACES e tablespace_name

ORACLE 3104

ImpOpts

Chapter 3

Syntax Diagrams for Oracle Data Pump Import

A ImpContent)

4 DISABLE_APPEND_HINT %

—| SKIP_CONSTRAINT_ERRORS |7

REJECT_ROWS_WITH_REPL_CHAR

—| TRUST_EXISTING_TABLE_PARTITIONS |

—| VALIDATE_TABLE_DATA |—

ENABLE_NETWORK_COMPRESSION

¥| CONTINUE_LOAD_ON_FORMAT_ERROR |/

—(ImpEncrypt)
-(ImFiter)

ImpFilter

LOGTIME

PARALLEL

NONE

STATUS

LOGFILE

ALL

-t JOBNAME |5('=)>(jobname_string

= integer

—(ImpRemap }

—| REUSE_DATAFILES

YES

—(ImpPartitioning)

NO

(ImpRacOpt)

ORACLE

3-105

ImpOpts_Cont

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

>

YES

,ISKIP_UNUSABLE_INDEXES Q

—| STATUS F@»{integer}

YES

—|STREAMS_CONFIGURATION g

W]
SR
APPEND

-| TABLE_EXISTS_ACTION a

(]

TARGET_EDITION a target_edition_name

—(ImpTransforms)

—(ImpVersion)

M

N\
schema_object. ’
i
s(view_name)

—| VIEWS_AS_TABLES

(X
N\

schema_object

 view_name J

_

(ImpDiagnostics)

ImpContent

ALL

l DATA_ONLY -
l METADATA_ONLY I

ImpEnc

rypt

ENCRYPTION_PASSWORD a

password

ENCRYPTION_PWD_PROMPT e

ORACLE

3-106

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

ImpFilter

‘ name_clause]

—{ ExcLuDE @(object_type)

—{ INCLUDE @{object_type)

‘ name_clause]

SO0

query_clause
ImpPartitioning
NONE
I DEPARTITION l
PARTITION_OPTIONS H
l EXCHANGE '
MERGE
ImpRacOpt
CLUSTER
SERVICE_NAME @{sewice_name
ImpRemap
(R

schema M
o 2N @ 0@ 0 2N @ o
e N

i{ REMAP_DATAFILE F@{source_datafiIe)e@{target_datafile)J
—q REMAP_DIRECTORY P@{source_directory_string)e@a(target_directory_string}J
—q REMAP_SCHEMA P@{sourcefschema)a@{targetﬁschemap

O 0O
REMAP_TABLE (= 5 old_table_name) :

\—q REMAP_TABLESPACE F@{source_tablespace W : P target_tablespace }) ~

ORACLE 3-107

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

Note: The REMAP DATAFILE and REMAP DIRECTORY parameters are mutually exclusive.

ImpFileOpts

- o)
| DIRECTORY |—>®{d|rectory_objectj
NETWORK_LINK @{database_link)»(lmpNetworkOpts

(M)
O/
‘ directory_object ‘
file_name
directory_object ‘
file_name

directory_path
PARFILE |5(= @—

directory_object ‘
SQLFILE (= (fle_name }————

ImpNetworkOpts
e 7
BLOCKS
-ESTIMATE N
° STATISTICS

FLASHBACK_SCN P@{scmnumbe%
FLASHBACK_TIME F@{timestamp)—)

e

TRANSPORTABLE

)

s ™
ﬂ TRANSPORT_DATAFILES Q
TRANSPORT_TABLESPACES Q '.
YES
¥|TRANSPORT7FULL70HECK a b,
N J \J

ORACLE 3108

ImpDynOpts

,| CONTINUE_CLIENT

—| EXIT_CLIENT
—| HELP

—| KILL_JOB

(e

SKIP_CURRENT Q

—| START_JOB

—| STATUS

\| STOP_JOB

ImpTransforms

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

TRANSFORM a

/| SEGMENT ATTRIBUTES |—

STORAGE

OID

PARTITION

HHL

PCTSPACE

—I DISABLE_ARCHIVE_LOGGING l—

LOB_STORAGE

|

\| TABLE_COMPRESSION_CLAUSE |/

ImpVersion

I COMPATIBLE I
VERSION LATEST

l version_string '

ORACLE

3-109

ImpDiagnostics

A ABORT_STEP |x(=)»((integer)
AUTOMATIC

—| EXTERNAL_TABLE |—

-| ACCESS_METHOD F@+—| DIRECT_PATH
CONVENTIONAL

\| INSERT_AS_SELECT |/

KEEP_MASTER

MASTER_ONLY

AN

ORACLE

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

3-110

Oracle Data Pump Legacy Mode

With Oracle Data Pump legacy mode, you can use original Export and Import parameters on
the Oracle Data Pump Export and Data Pump Import command lines.

e Oracle Data Pump Legacy Mode Use Cases
Oracle Data Pump enters legacy mode when it encounters legacy export or import
parameters, so that you can continue using existing scripts.

e Parameter Mappings
You can use original Oracle Export and Import parameters when they map to Oracle Data
Pump Export and Import parameters that supply similar functionality.

e Management of File Locations in Oracle Data Pump Legacy Mode
Original Export and Import and Oracle Data Pump Export and Import differ on where dump
files and log files can be written to and read from, because the original version is client-
based, and Data Pump is server-based.

e Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors
When you use Oracle Data Pump in legacy mode, you must review and update your
existing scripts written for original Export and Import

4.1 Oracle Data Pump Legacy Mode Use Cases

Oracle Data Pump enters legacy mode when it encounters legacy export or import parameters,
so that you can continue using existing scripts.

If you previously used original Export (exp) and Import (imp), then you probably have scripts
that you have been using for many years. Oracle Data Pump provides a legacy mode, which
allows you to continue to use your existing scripts with Oracle Data Pump.

Oracle Data Pump enters legacy mode when it determines that a parameter unique to original
Export or Import is present, either on the command line, or in a script. As Oracle Data Pump
processes the parameter, the analogous Oracle Data Pump Export or Oracle Data Pump
Import parameter is displayed. Oracle strongly recommends that you view the new syntax, and
make script changes as time permits.

Note:

The Oracle Data Pump Export and Import utilities created and read dump files and
log files in Oracle Data Pump format only. They never create or read dump files
compatible with original Export or Import. If you have a dump file created with original
Export, then you must use original Import (imp) to import the data into the database.
The original Export utility (exp) can no longer be used.

4.2 Parameter Mappings

ORACLE

You can use original Oracle Export and Import parameters when they map to Oracle Data
Pump Export and Import parameters that supply similar functionality.

4-1

Chapter 4
Parameter Mappings

e Using Original Export Parameters with Oracle Data Pump
Oracle Data Pump Export accepts original Export parameters when they map to a
corresponding Oracle Data Pump parameter.

e Using Original Import Parameters with Oracle Data Pump
Oracle Data Pump Import accepts original Import parameters when they map to a
corresponding Oracle Data Pump parameter.

4.2.1 Using Original Export Parameters with Oracle Data Pump

Oracle Data Pump Export accepts original Export parameters when they map to a
corresponding Oracle Data Pump parameter.

Oracle Data Pump Interpretation of Original Export Parameters

To see how Oracle Data Pump Export interprets original Export parameters, refer to the table
for comparisons. Parameters that have the same name and functionality in both original Export
and Oracle Data Pump Export are not included in this table.

Table 4-1 How Oracle Data Pump Export Handles Original Export Parameters
]

Original Export Parameter Action Taken by Data Pump Export Parameter
BUFFER This parameter is ignored.
COMPRESS This parameter is ignored. In original Export, the

COMPRESS parameter affected how the initial extent
was managed. Setting COMPRESS=n caused
original Export to use current storage parameters
for the initial and next extent.

The Oracle Data Pump Export COMPRESSION
parameter is used to specify how data is
compressed in the dump file, and is not related to
the original Export COMPRESS parameter.

CONSISTENT Oracle Data Pump Export determines the current
time, and uses FLASHBACK TIME.

CONSTRAINTS If original Export used CONSTRAINTS=n, then
Oracle Data Pump Export uses
EXCLUDE=CONSTRAINTS.
The default behavior is to include constraints as
part of the export.

DIRECT This parameter is ignored. Oracle Data Pump
Export automatically chooses the best export
method.

FEEDBACK The Oracle Data Pump Export STATUS=30

command is used. Note that this is not a direct
mapping because the STATUS command returns
the status of the export job, as well as the rows
being processed.

In original Export, feedback was given after a
certain number of rows, as specified with the
FEEDBACK command. In Oracle Data Pump Export,
the status is given every so many seconds, as
specified by STATUS.

ORACLE 4o

Chapter 4
Parameter Mappings

Table 4-1 (Cont.) How Oracle Data Pump Export Handles Original Export Parameters

Original Export Parameter

Action Taken by Data Pump Export Parameter

FILE

GRANTS

INDEXES

LOG

OBJECT CONSISTENT

OWNER

RECORDLENGTH

RESUMABLE

RESUMABLE NAME

ORACLE

Oracle Data Pump Export attempts to determine
the path that was specified or defaulted to for the
FILE parameter, and also to determine whether a
directory object exists to which the schema has
read and write access. Original Export and Import
and Data Pump Export and Import differ on where
dump files and log files can be written to and read
from, because the original version is client-based,
and Oracle Data Pump is server-based.

If original Export used GRANTS=n, then Data Pump
Export uses EXCLUDE=GRANT.

If original Export used GRANTS=y, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data Pump
Export default behavior.

If original Export used INDEXES=n, then Oracle
Data Pump Export uses the EXCLUDE=INDEX
parameter.

If original Export used INDEXES=y, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data Pump
Export default behavior.

Oracle Data Pump Export attempts to determine
the path that was specified or defaulted to for the
LOG parameter, and also to determine whether a
directory object exists to which the schema has
read and write access.

Original Export and Import and Data Pump Export
and Import differ on where dump files and log files
can be written to and read from, because the
original version is client-based, and Oracle Data
Pump is server-based.

The contents of the log file will be those of an
Oracle Data Pump Export operation.

This parameter is ignored, because Oracle Data
Pump Export processing ensures that each object
is in a consistent state when being exported.

The Oracle Data Pump SCHEMAS parameter is
used.

This parameter is ignored, because Oracle Data
Pump Export automatically takes care of buffer
sizing.

This parameter is ignored, because Oracle Data
Pump Export automatically provides this
functionality to users who have been granted the
EXP_FULL DATABASE role.

This parameter is ignored, because Oracle Data
Pump Export automatically provides this
functionality to users who have been granted the
EXP _FULL DATABASE role.

4-3

Chapter 4
Parameter Mappings

Table 4-1 (Cont.) How Oracle Data Pump Export Handles Original Export Parameters

Original Export Parameter

Action Taken by Data Pump Export Parameter

RESUMABLE TIMEOUT

ROWS

STATISTICS

TABLESPACES

TRANSPORT TABLESPACE

TRIGGERS

TTS_FULL_CHECK

VOLSIZE

This parameter is ignored, because Oracle Data
Pump Export automatically provides this
functionality to users who have been granted the
EXP FULL DATABASE role.

If original Export used ROWS=y, then Oracle Data
Pump Export uses the CONTENT=ALL parameter.

If original Export used ROWS=n, then Oracle Data
Pump Export uses the CONTENT=METADATA ONLY
parameter.

This parameter is ignored, because statistics are
always saved for tables as part of an Oracle Data
Pump export operation.

If original Export also specified
TRANSPORT TABLESPACE=n, then Oracle Data
Pump Export ignores the TABLESPACES parameter.

If original Export also specified

TRANSPORT TABLESPACE=y, then Oracle Data
Pump Export takes the names listed for the
TABLESPACES parameter and uses them on the
Oracle Data Pump Export

TRANSPORT TABLESPACES parameter.

If original Export used TRANSPORT TABLESPACE=n
(the default), then Oracle Data Pump Export uses
the TABLESPACES parameter.

If original Export used

TRANSPORT TABLESPACE=y, then Oracle Data
Pump Export uses the TRANSPORT TABLESPACES
parameter, and only the metadata is exported.

If original Export used TRIGGERS=n, then Oracle
Data Pump Export uses the EXCLUDE=TRIGGER
parameter.

If original Export used TRIGGERS=y, then the
parameter is ignored. The parameter does not
need to be remapped, because that is the Oracle
Data Pump Export default behavior.

If original Export used TTS_FULL_CHECK=y, then
Oracle Data Pump Export uses the
TRANSPORT FULL CHECK parameter.

If original Export used TTS FULL CHECK=y, then
the parameter is ignored. The parameter does not
need to be remapped, because that is the Oracle
Data Pump Export default behavior.

When the original Export VOLSIZE parameter is
used, it means the location specified for the dump
file is a tape device. The Oracle Data Pump Export
dump file format does not support tape devices.
Therefore, this operation terminates with an error.

ORACLE

4-4

Related Topics

Chapter 4
Parameter Mappings

e Management of File Locations in Oracle Data Pump Legacy Mode
Original Export and Import and Oracle Data Pump Export and Import differ on where dump
files and log files can be written to and read from, because the original version is client-

based, and Data Pump is server-based.

4.2.2 Using Original Import Parameters with Oracle Data Pump

Oracle Data Pump Import accepts original Import parameters when they map to a

corresponding Oracle Data Pump parameter.

To see how Oracle Data Pump Import interprets original Export parameters, refer to the table
for comparisons. Parameters that have the same name and functionality in both original Import
and Oracle Data Pump Import are not included in this table.

Table 4-2 How Oracle Data Pump Import Handles Original Import Parameters

Original Import Parameter

Action Taken by Oracle Data Pump Import
Parameter

BUFFER
CHARSET

COMMIT

COMPILE

CONSTRAINTS

DATAFILES

DESTROY

ORACLE

This parameter is ignored.

This parameter was desupported several releases
ago, and should no longer be used. Attempting to
use this desupported parametr causes the Oracle
Data Pump Import operation to abort.

This parameter is ignored. Oracle Data Pump
Import automatically performs a commit after each
table is processed.

This parameter is ignored. Oracle Data Pump
Import compiles procedures after they are created.
If necessary for dependencies, a recompile can be
run.

If original Import used CONSTRAINTS=n, then
Oracle Data Pump Import uses the
EXCLUDE=CONSTRAINT parameter.

If original Import used CONSTRAINTS=y, then the
parameter is ignored. The parameter does not
need to be remapped, because that is the Oracle
Data Pump Import default behavior.

The Oracle Data Pump Import
TRANSPORT DATAFILES parameter is used.

If original Import used DESTROY=y, then Oracle
Data Pump Import uses the REUSE_DATAFILES=y
parameter.

If original Import used DESTROY=n, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data Pump
Import default behavior.

4-5

Chapter 4
Parameter Mappings

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import Parameters

Original Import Parameter

Action Taken by Oracle Data Pump Import
Parameter

FEEDBACK

FILE

FILESIZE

FROMUSER

GRANTS

IGNORE

ORACLE

The Oracle Data Pump Import STATUS=30
command is used. Note that this is not a direct
mapping, because the STATUS command returns
the status of the import job, as well as the rows
being processed.

In original Import, feedback was given after a
certain number of rows, as specified with the
FEEDBACK command. In Oracle Data Pump Import,
the status is given every so many seconds, as
specified by STATUS.

Oracle Data Pump Import attempts to determine
the path that was specified or defaulted to for the
FILE parameter, and also to determine whether a
directory object exists to which the schema has
read and write access.

Original Export and Import and Data Pump Export
and Import differ on where dump files and log files
can be written to and read from because the
original version is client-based and Data Pump is
server-based.

This parameter is ignored, because the information
is already contained in the Oracle Data Pump
dump file set.

The Oracle Data Pump Import SCHEMAS parameter
is used. If FROMUSER was used without TOUSER
also being used, then import schemas that have
the IMP FULL DATABASE role cause Oracle Data
Pump Import to attempt to create the schema and
then import that schema's objects. Import schemas
that do not have the IMP_FULL DATABASE role can
only import their own schema from the dump file
set.

If original Import used GRANTS=n, then Oracle Data
Pump Import uses the EXCLUDE=0OBJECT GRANT
parameter.

If original Import used GRANTS=y, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data Pump
Import default behavior.

If original Import used IGNORE=y, then Oracle Data
Pump Import uses the

TABLE EXISTS ACTION=APPEND parameter. This
causes the processing of table data to continue.

If original Import used IGNORE=n, then the
parameter is ignored and does not need to be
remapped, because that is the Oracle Data Pump
Import default behavior.

4-6

Chapter 4
Parameter Mappings

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import Parameters

Original Import Parameter

Action Taken by Oracle Data Pump Import
Parameter

INDEXES

INDEXFILE

LOG

RECORDLENGTH

RESUMABLE

RESUMABLE NAME

RESUMABLE TIMEOUT

ROWS=N

ORACLE

If original Import used INDEXES=n, then Oracle
Data Pump Import uses the EXCLUDE=INDEX
parameter.

If original Import used INDEXES=y, then the
parameter is ignored and does not need to be
remapped, because that is the Oracle Data Pump
Import default behavior.

The Oracle Data Pump Import
SQLFILE={directory-object:}filename and
INCLUDE=INDEX parameters are used.

The same method and attempts made when
looking for a directory object described for the FILE
parameter also take place for the INDEXFILE
parameter.

If no directory object was specified on the original
Import, then Oracle Data Pump Import uses the
directory object specified with the DIRECTORY
parameter.

Oracle Data Pump Import attempts to determine
the path that was specified or defaulted to for the
LOG parameter, and also to determine whether a
directory object exists to which the schema has
read and write access.

The contents of the log file will be those of an
Oracle Data Pump Import operation.

This parameter is ignored, because Oracle Data
Pump handles issues about record length
internally.

This parameter is ignored, because this
functionality is automatically provided for users who
have been granted the IMP FULL DATABASE role.

This parameter is ignored, because this
functionality is automatically provided for users who
have been granted the IMP_FULL DATABASE role.

This parameter is ignored, because this
functionality is automatically provided for users who
have been granted the IMP FULL DATABASE role.

If original Import used ROWS=n, then Oracle Data
Pump Import uses the CONTENT=METADATA ONLY
parameter.

If original Import used ROWS=y, then Oracle Data
Pump Import uses the CONTENT=ALL parameter.

4-7

Chapter 4
Parameter Mappings

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import Parameters

Original Import Parameter

Action Taken by Oracle Data Pump Import
Parameter

SHOW

STATISTICS

STREAMS CONFIGURATION

STREAMS INSTANTIATION

TABLESPACES

TOID NOVALIDATE

TOUSER

ORACLE

If SHOW=y is specified, then the Oracle Data Pump
Import parameter

SQLFILE=[directory object:]file nameis
used to write the DDL for the import operation to a
file. Only the DDL (not the entire contents of the
dump file) is written to the specified file. (Note that
the output is not shown on the screen, as it was in
original Import.)

The file name given is the file name specified on
the DUMPFILE parameter (or on the original Import
FILE parameter, which is remapped to DUMPFILE).
If multiple dump file names are listed, then the first
file name in the list is used. The file is placed in the
directory object location specified on the
DIRECTORY parameter, or the directory object
included on the DUMPFILE parameter. (Directory
objects specified on the DUMPFILE parameter take
precedence.)

This parameter is ignored, because statistics are
always saved for tables as part of an Oracle Data
Pump Import operation.

This parameter is ignored, because Oracle Data
Pump Import automatically determines it; it does
not need to be specified.

This parameter is ignored, because Oracle Data
Pump Import automatically determines it; it does
not need to be specified

If original Import also specified

TRANSPORT TABLESPACE=n (the default), then
Oracle Data Pump Import ignores the
TABLESPACES parameter.

If original Import also specified

TRANSPORT TABLESPACE=y, then Oracle Data
Pump Import takes the names supplied for this
TABLESPACES parameter and applies them to the
Oracle Data Pump Import

TRANSPORT TABLESPACES parameter.

This parameter is ignored. OIDs are no longer used
for type validation.

The Oracle Data Pump Import REMAP SCHEMA
parameter is used. There can be more objects
imported than with original Import. Also, Oracle
Data Pump Import can create the target schema, if
it does not already exist.

The FROMUSER parameter must also have been
specified in original Import. If FROMUSER was not
originally specified, then the operation fails.

4-8

Chapter 4
Management of File Locations in Oracle Data Pump Legacy Mode

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter
TRANSPORT TABLESPACE The TRANSPORT TABLESPACE parameter is

ignored, but if you also specified the DATAFILES
parameter, then the import job continues to load
the metadata. If the DATAFILES parameter is not
specified, then an ORA-39002:1invalid
operation error message is returned.

TTS OWNERS This parameter is ignored because this information
is automatically stored in the Oracle Data Pump
dump file set.

VOLSIZE When the original Import VOLSIZE parameter is

used, it means the location specified for the dump
file is a tape device. The Oracle Data Pump Import
dump file format does not support tape devices.
Therefore, this operation terminates with an error.

Related Topics

* Management of File Locations in Oracle Data Pump Legacy Mode
Original Export and Import and Oracle Data Pump Export and Import differ on where dump
files and log files can be written to and read from, because the original version is client-
based, and Data Pump is server-based.

e Log Files
Oracle Data Pump Export and Import do not generate log files in the same format as those
created by original Export and Import.

4.3 Management of File Locations in Oracle Data Pump Legacy

Mode

ORACLE

Original Export and Import and Oracle Data Pump Export and Import differ on where dump files
and log files can be written to and read from, because the original version is client-based, and
Data Pump is server-based.

Original Export and Import used the FILE and 1.0G parameters to specify dump file and log file
names, respectively. These file names always refer to files local to the client system. They can
also contain a path specification.

Oracle Data Pump Export and Import used the DUMPFILE and LOGFILE parameters to specify
dump file and log file names, respectively. These file names always refer to files local to the
server system, and cannot contain any path information. Instead, a directory object is used to
indirectly specify path information. The path value defined by the directory object must be
accessible to the server. The directory object is specified for an Oracle Data Pump job through
the DIRECTORY parameter. It is also possible to prepend a directory object to the file names
passed to the DUMPFILE and LOGFILE parameters. For privileged users, Oracle Data Pump
supports the use of a default directory object if one is not specified on the command line. This
default directory object, DATA PUMP DIR, is set up at installation time.

If Oracle Data Pump legacy mode is enabled, and if the original Export FILE=filespec
parameter and/or LOG=f1lespec parameter are present on the command line, then the
following rules of precedence are used to determine file location:

4-9

ORACLE

Chapter 4
Management of File Locations in Oracle Data Pump Legacy Mode

If the FILE parameter and LOG parameter are both present on the command line, then the
rules of precedence are applied separately to each parameter.

If a mix of original Export/Import and Oracle Data Pump Export/Import parameters are
used, then separate rules apply to them.

For example, suppose you have the following command:

expdp system FILE=/user/disk/foo.dmp LOGFILE=foo.log DIRECTORY=dpump dir

In this case, the Oracle Data Pump legacy mode file management rules, as explained in
this section, apply to the FILE parameter. The normal (that is, non-legacy mode) Oracle
Data Pump file management rules for default locations of Dump, Log, and SQL files
locations apply to the LOGFILE parameter.

Example 4-1 Oracle Data Pump Legacy Mode File Management Rules Applied

File management proceeds in the following sequence:

1.

If you specify a path location as part of the file specification, then Oracle Data Pump
attempts to look for a directory object accessible to the schema running the export job
whose path location matches the path location of the file specification. If such a directory
object cannot be found, then an error is returned. For example, suppose that you defined a
server-based directory object named USER DUMP_FILES with a path value of '/diskl/
userl/dumpfiles/', and that read and write access to this directory object has been
granted to the hr schema. The following command causes Oracle Data Pump to look for a
server-based directory object whose path value contains ' /diskl/userl/dumpfiles/' and
to which the hr schema has been granted read and write access:

expdp hr FILE=/diskl/userl/dumpfiles/hrdata.dmp

In this case, Oracle Data Pump uses the directory object USER_DUMP_FILES. The path
value, in this example ' /diskl/userl/dumpfiles/"', must refer to a path on the server
system that is accessible to Oracle Database.

If a path location is specified as part of the file specification, then any directory object
provided using the DIRECTORY parameter is ignored. For example, if you issue the following
command, then Oracle Data Pump does not use the DPUMP DIR directory object for the file
parameter, but instead looks for a server-based directory object whose path value contains
'/diskl/userl/dumpfiles/' and to which the hr schema has been granted read and write
access:

expdp hr FILE=/diskl/userl/dumpfiles/hrdata.dmp DIRECTORY=dpump dir

If you have not specified a path location as part of the file specification, then the directory
object named by the DIRECTORY parameter is used. For example, if you issue the following
command, then Oracle Data Pump applies the path location defined for the DPUMP DIR
directory object to the hrdata. dmp file:

expdp hr FILE=hrdata.dmp DIRECTORY=dpump dir

If you specify no path location as part of the file specification, and no directory object is

named by the DIRECTORY parameter, then Oracle Data Pump does the following, in the
order shown:

4-10

Chapter 4
Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors

Oracle Data Pump looks for the existence of a directory object of the form

DATA PUMP DIR schema name, Where schema name is the schema that is running the
Oracle Data Pump job. For example, if you issued the following command, then it
would cause Oracle Data Pump to look for the existence of a server-based directory
object named DATA PUMP DIR HR:

expdp hr FILE=hrdata.dmp

The hr schema also must have been granted read and write access to this directory
object. If such a directory object does not exist, then the process moves to step b.

Oracle Data Pump looks for the existence of the client-based environment variable
DATA PUMP DIR. For instance, suppose that a server-based directory object named
DUMP_FILESI has been defined, and the hr schema has been granted read and write
access to it. Then on the client system, you can set the environment variable

DATA PUMP DIR to point to DUMP_FILESI as follows:

setenv DATA PUMP DIR DUMP FILESI
expdp hr FILE=hrdata.dmp

Oracle Data Pump then uses the served-based directory object DuMP_FILES1 for the
hrdata.dmp file.

If a client-based environment variable DATA PUMP DIR does not exist, then the process
moves to step c.

If the schema that is running the Oracle Data Pump job has DBA privileges, then the
default Oracle Data Pump directory object, DATA PUMP DIR, is used. This default
directory object is established at installation time. For example, the following command
causes Oracle Data Pump to attempt to use the default DATA PUMP DIR directory
object, assuming that system has DBA privileges:

expdp system FILE=hrdata.dmp

Related Topics

Understanding Dump, Log, and SQL File Default Locations

4.4 Adjusting Existing Scripts for Oracle Data Pump Log Files
and Errors

When you use Oracle Data Pump in legacy mode, you must review and update your existing
scripts written for original Export and Import

ORACLE

Oracle Data Pump legacy mode requires that you make adjustments to existing scripts,
because of differences in file format and error reporting.

Log Files
Oracle Data Pump Export and Import do not generate log files in the same format as those
created by original Export and Import.

Error Cases
The errors that Oracle Data Pump Export and Import generate can be different from the
errors generated by original Export and Import.

4-11

Chapter 4
Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors

* Exit Status
Oracle Data Pump Export and Import have enhanced exit status values to enable scripts to
better determine the success or failure of export and import jobs.

4.4.1 Log Files

Oracle Data Pump Export and Import do not generate log files in the same format as those
created by original Export and Import.

You must update any scripts you have that parse the output of original Export and Import, so
that they handle the log file format used by Oracle Data Pump Export and Import. For example,
the message Successfully Terminated does not appear in Oracle Data Pump log files.

4.4.2 Error Cases

The errors that Oracle Data Pump Export and Import generate can be different from the errors
generated by original Export and Import.

For example, suppose that a parameter that is ignored by Oracle Data Pump Export would
have generated an out-of-range value in original Export. In that case, an informational
message is written to the log file stating that the parameter is being ignored. However, no value
checking is performed, so no error message is generated.

4.4.3 Exit Status

ORACLE

Oracle Data Pump Export and Import have enhanced exit status values to enable scripts to
better determine the success or failure of export and import jobs.

Because Oracle Data Pump Export and Import can have different exit status values, Oracle
recommends that you review, and if necessary, update, any scripts that look at the exit status.

4-12

Oracle Data Pump Performance

Learn how Oracle Data Pump Export and Import is better than that of original Export and
Import, and how to enhance performance of export and import operations.

The Oracle Data Pump Export and Import utilities are designed especially for very large
databases. If you have large quantities of data versus metadata, then you should experience
increased data performance compared to the original Export and Import utilities. (Performance
of metadata extraction and database object creation in Data Pump Export and Import remains
essentially equivalent to that of the original Export and Import utilities.)

* Data Performance Improvements for Oracle Data Pump Export and Import
Oracle Data Pump Export (expdp) and Import (impdp) contain many features that improve
performance compared to legacy Export (exp) and Import (imp).

e Tuning Performance
Oracle Data Pump is designed to fully use all available resources to maximize throughput,
and minimize elapsed job time.

« Initialization Parameters That Affect Oracle Data Pump Performance
Learn what you can do to obtain the best performance from your Oracle Data Pump
exports and imports.

5.1 Data Performance Improvements for Oracle Data Pump
Export and Import

ORACLE

Oracle Data Pump Export (expdp) and Import (impdp) contain many features that improve
performance compared to legacy Export (exp) and Import (imp).

The improved performance of the Data Pump Export and Import utilities is attributable to
several factors, including the following:

* Multiple worker processes can perform intertable and interpartition parallelism to load and
unload tables in multiple, parallel, direct-path streams.

« For very large tables and partitions, single worker processes can choose intrapartition
parallelism through multiple parallel queries and parallel DML 1/O server processes when
the external tables method is used to access data.

e Oracle Data Pump uses parallelism to build indexes and load package bodies.

» Because Dump files are read and written directly by the server, they do not require any
data movement to the client.

e The dump file storage format is the internal stream format of the direct path API. This
format is very similar to the format stored in Oracle Database data files inside of
tablespaces. Therefore, no client-side conversion to INSERT statement bind variables is

performed.

e The supported data access methods, direct path and external tables, are faster than
conventional SQL. The direct path API provides the fastest single-stream performance.
The external tables feature makes efficient use of the parallel queries and parallel DML
capabilities of Oracle Database.

5-1

Chapter 5
Tuning Performance

* Metadata and data extraction can be overlapped during export.

5.2 Tuning Performance

Oracle Data Pump is designed to fully use all available resources to maximize throughput, and
minimize elapsed job time.

To maximize available resources, a system must be well-balanced across CPU, memory, and
I/0. In addition, standard performance tuning principles apply. For example, for maximum
performance, ensure that the files that are members of a dump file set reside on separate
disks, because the dump files are written and read in parallel. Also, the disks should not be the
same ones on which the source or target tablespaces reside.

Any performance tuning activity involves making trade-offs between performance and resource
consumption.

* How To Manage Oracle Data Pump Resource Consumption
With the PARALLEL parameter, you cab dynamically increase and decrease Oracle Data
Pump Export and Import resource consumption for each job.

« Effect of Compression and Encryption on Performance
You can improve performance by using Oracle Data Pump parameters related to
compression and encryption, particularly in the case of jobs performed in network mode.

« Memory Considerations When Exporting and Importing Statistics
When you use Oracle Data Pump Export dump files created with a release prior to 12.1,
and that contain large amounts of statistics data, this can cause large memory demands
during an import operation.

5.2.1 How To Manage Oracle Data Pump Resource Consumption

ORACLE

With the PARALLEL parameter, you cab dynamically increase and decrease Oracle Data Pump
Export and Import resource consumption for each job.

You can manage resource allocations for Oracle Data Pump by using the PARALLEL parameter
to specify a degree of parallelism for the Oracle Data Pump job. For maximum throughput, do
not set PARALLEL to much more than twice the number of CPUs (two workers for each CPU).

As you increase the degree of parallelism, CPU usage, memory consumption, and 1/O
bandwidth usage also increase. You must ensure that adequate amounts of these resources
are available. If necessary, to obtain the needed I/O bandwidth, you can distribute files across
different disk devices or channels.

To maximize parallelism, you must supply at least one file for each degree of parallelism. The
simplest way of doing this is to use substitution variables in your file names (for example,
file%u.dmp). However, if your disk setup could creat contention issues (for example, with
simple, non-striped disks), you can prefr not to put all dump files on one device. In this case,
Oracle recommends that you specify multiple file names using substitution variables, with each
file in a separate directory resolving to a separate disk. Even with fast CPUs and fast disks, the
path between the CPU and the disk can be the constraining factor in the degree of parallelism
that your system can sustain.

The Oracle Data Pump PARALLEL parameter is valid only in Oracle Database Enterprise Edition
119 or later.

5-2

Chapter 5
Initialization Parameters That Affect Oracle Data Pump Performance

5.2.2 Effect of Compression and Encryption on Performance

You can improve performance by using Oracle Data Pump parameters related to compression
and encryption, particularly in the case of jobs performed in network mode.

When you attempt to tune performance, keep in mind your resource availability. Performance
can be affected negatively with compression and encryption, because of the additional CPU
resources required to perform transformations on the raw data. There are trade-offs on both
sides.

5.2.3 Memory Considerations When Exporting and Importing Statistics

When you use Oracle Data Pump Export dump files created with a release prior to 12.1, and
that contain large amounts of statistics data, this can cause large memory demands during an
import operation.

To avoid running out of memory during the import operation, be sure to allocate enough
memory before beginning the import. The exact amount of memory needed depends on how
much data you are importing, the platform you are using, and other variables unique to your
configuration.

One way to avoid this problem altogether is to set the Data Pump EXCLUDE=STATISTICS
parameter on either the export or import operation. To regenerate the statistics on the target
database, you can use the DBMS STATS PL/SQL package after the import has completed.

Related Topics

« EXCLUDE

« EXCLUDE

e Oracle Database SQL Tuning Guide

5.3 Initialization Parameters That Affect Oracle Data Pump
Performance

Learn what you can do to obtain the best performance from your Oracle Data Pump exports
and imports.

e Performance Guidelines for Oracle Data Pump Parameters
To obtain optimal performance with exports and imports, review and test initialization
parameter settings that can improve performance.

e Setting the Size Of the Buffer Cache In a GoldenGate Replication Environment
Oracle Data Pump uses GoldenGate Replication functionality to communicate between
processes.

e Managing Resource Usage for Multiple User Oracle Data Pump Jobs
To obtain more control over resource use when you have multiple users performing data
pump jobs in the same database environment, use the MAX DATAPUMP JOBS PER PDB and
MAX DATAPUMP PARALLEL PER JOB initialization parameters .

ORACLE -

Chapter 5
Initialization Parameters That Affect Oracle Data Pump Performance

5.3.1 Performance Guidelines for Oracle Data Pump Parameters

To obtain optimal performance with exports and imports, review and test initialization
parameter settings that can improve performance.

The settings for certain Oracle Database initialization parameters can affect the performance of
Data Pump Export and Import.

In particular, you can try using the following settings to improve performance, although the
effect may not be the same on all platforms.

° DISK ASYNCH TO=TRUE
° DB BLOCK CHECKING=FALSE
° DB BLOCK CHECKSUM=FALSE

The following initialization parameters must have values set high enough to allow for maximum
parallelism;

e PROCESSES
e SESSIONS
° PARALLEL MAX SERVERS

Additionally, the SHARED POOL_SIZE and UNDO TABLESPACE initialization parameters should be
generously sized. The exact values depend upon the size of your database.

5.3.2 Setting the Size Of the Buffer Cache In a GoldenGate Replication
Environment

Oracle Data Pump uses GoldenGate Replication functionality to communicate between
processes.

If the SGA_TARGET initialization parameter is set, then the STREAMS POOL_SIZE initialization
parameter is automatically set to a reasonable value.

If the SGA_ TARGET initialization parameter is not set and the STREAMS POOL_SIZE initialization
parameter is not defined, then the size of the streams pool automatically defaults to 10% of the
size of the shared pool.

When the streams pool is created, the required SGA memory is taken from memory allocated
to the buffer cache, reducing the size of the cache to less than what was specified by the

DB CACHE SIZE initialization parameter. This means that if the buffer cache was configured with
only the minimal required SGA, then Data Pump operations may not work properly. A minimum
size of 10 MB is recommended for STREAMS POOL_SIZE to ensure successful Data Pump
operations.

5.3.3 Managing Resource Usage for Multiple User Oracle Data Pump Jobs

ORACLE

To obtain more control over resource use when you have multiple users performing data pump
jobs in the same database environment, use the MAX DATAPUMP JOBS PER_PDB and
MAX DATAPUMP PARALLEL PER JOB initialization parameters .

The initialization parameter MAX DATAPUMP JOBS PER_PDB determines the maximum number of
concurrent Oracle Data Pump jobs for each pluggable database (PDB). With Oracle Database
19c and later releases, you can set the parameter to AUTO. This setting means that Oracle Data

5-4

ORACLE

Chapter 5
Initialization Parameters That Affect Oracle Data Pump Performance

Pump derives the actual value of MAX DATAPUMP JOBS PER PDB to be 50 percent (50%) of the
value of the SESSTONS initialization parameter. If you do not set the value to AUTO, then the
default value is 100. You can set the value from 0 to 250.

Oracle Database Release 19c and later releases contain the initialization parameter

MAX DATAPUMP PARALLEL PER JOB. When you have multiple users performing data pump jobs
at the same time in a given database environment, you can use this parameter to obtain more
control over resource utilization. The parameter MAX DATAPUMP PARALLEL PER JOB specifies the
maximum number of parallel processes that are made available for each Oracle Data Pump
job. You can specify a specific maximum number of processes, or you can select AUTO. If you
choose to specify a set value, then this maximum number can be from1 to 1024 (the default is
1024). If you choose to specify AUTO, then Oracle Data Pump derives the actual value of the
parameter MAX DATAPUMP PARALLEL PER JOB to be 25 percent (25%) of the value of the
SESSIONS initialization parameter.

Related Topics
e MAX DATAPUMP_JOBS_ PER_PDB Oracle Database Reference
e MAX DATAPUMP_PARALLEL_PER_JOB Oracle Database Reference

5-5

Using the Oracle Data Pump API

You can automate data movement operations by using the Oracle Data Pump PL/SQL API
DBMS_DATAPUMP.

The Oracle Data Pump APl DBMS DATAPUMP provides a high-speed mechanism that you can
use to move all or part of the data and metadata for a site from one Oracle Database to
another. The Oracle Data Pump Export and Oracle Data Pump Import utilities are based on the
Oracle Data Pump API.

Oracle Database PL/SQL Packages and Types Reference

e How Does the Oracle Data Pump Client Interface APl Work?
The main structure used in the client interface is a job handle, which appears to the caller
as an integer.

 DBMS_DATAPUMP Job States
Use Oracle Data Pump DBMS DATAPUMP job states show to know which stage your data
movement job is performing, and what options are available at each stage.

* What Are the Basic Steps in Using the Oracle Data Pump API?
To use the Oracle Data Pump API, you use the procedures provided in the DBMS DATAPUMP
package.

* Examples of Using the Oracle Data Pump API
To get started using the Oracle Data Pump API, review examples that show what you can
do with Oracle Data Pump exports and imports.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

6.1 How Does the Oracle Data Pump Client Interface API Work?

The main structure used in the client interface is a job handle, which appears to the caller as
an integer.

Handles are created using the DBMS DATAPUMP.OPEN Or DBMS DATAPUMP.ATTACH function. Other
sessions can attach to a job to monitor and control its progress. Handles are session specific.
The same job can create different handles in different sessions. As a DBA, the benefit of this
feature is that you can start up a job before departing from work, and then watch the progress
of the job from home.

6.2 DBMS_DATAPUMP Job States

ORACLE

Use Oracle Data Pump DBMS DATAPUMP job states show to know which stage your data
movement job is performing, and what options are available at each stage.

Job State Definitions
Each phase of a job is associated with a state:

* Undefined — before a handle is created

6-1

Chapter 6
DBMS_DATAPUMP Job States

* Defining — when the handle is first created
* Executing — when the DBMS DATAPUMP.START JOB procedure is running

e Completing — when the job has finished its work and the Oracle Data Pump processes
are ending

e Completed — when the job is completed
e Stop Pending — when an orderly job shutdown has been requested
e Stopping — when the job is stopping

* Idling — the period between the time that a DBMS DATAPUMP.ATTACH is run to attach to a
stopped job, and the time that a DBMS DATAPUMP.START JOB is run to restart that job

* Not Running — when a Data Pump control job table exists for a job that is not running
(has no Oracle Data Pump processes associated with it)

Usage Notes

Performing DBMS DATAPUMP.START JOB on a job in an Idling state returns that job to an
Executing state.

If all users execute DBMS DATAPUMP.DETACH to detach from a job in the Defining state, then the
job is totally removed from the database.

If a job abnormally terminates, or if an instance running the job is shut down, and the job was
previously in an Executing or Idling state, then the job is placed in the Not Running state.
You can then then restart the job.

The Data Pump control job process is active in the Defining, Idling, Executing, Stopping,
Stop Pending, and Completing states. It is also active briefly in the Stopped and Completed
states. The Data Pump control table for the job exists in all states except the Undefined state.
Child processes are only active in the Executing and Stop Pending states, and briefly in the
Defining state for import jobs.

Detaching while a job is in the Executing state does not halt the job. You can reattach to a
running job at any time to resume obtaining status information about the job.

A Detach can occur explicitly, when the DBMS DATAPUMP.DETACH procedure is run, or it can
occur implicitly when an Oracle Data Pump API session is run down, when the Oracle Data
Pump API is unable to communicate with an Oracle Data Pump job, or when the
DBMS_DATAPUMP.STOP_JOB procedure is run.

The Not Running state indicates that a Data Pump control job table exists outside the context
of a running job. This state occurs if a job is stopped (and likely can restart later), or if a job has
abnormally terminated. You can also see this state momentarily during job state transitions at
the beginning of a job, and at the end of a job before the Data Pump control job table is
dropped. Note that the Not Running state is shown only in the views DBA DATAPUMP JOBS and
USER_DATAPUMP JOBS. It is never returned by the GET STATUS procedure.

The following table shows the valid job states in which DBMS DATAPUMP procedures can be run.
The states listed are valid for both export and import jobs, unless otherwise noted.

ORACLE 6.0

ORACLE

Chapter 6
DBMS_DATAPUMP Job States

Table 6-1 Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Executed

Procedure Name

Valid States

Description

ADD FILE

ATTACH

DATA FILTER
DETACH

GET DUMPFILE INFO

GET_STATUS

LOG_ENTRY

METADATA FILTER

METADATA REMAP

METADATA TRANSFORM

OPEN
SET PARALLEL
SET PARAMETER

START JOB

STOP_JOB

WAIT FOR JOB

Defining (valid for both export
and import jobs)

Executing and Idling (valid only
for specifying dump files for
export jobs)

Defining, Executing, Idling,
Stopped, Completed,
Completing, Not Running

Defining
All

All

All, except Completed, Not
Running, Stopped, and
Undefined

Defining, Executing, Idling,
Stop Pending, Completing

Defining

Defining

Defining

Undefined
Defining, Executing, Idling

Defining

Note: You can enter the
ENCRYPTION PASSWORD
parameter during the Defining
and Idling states.

Defining, Idling

Defining, Executing, Idling,
Stop Pending

All, except Completed, Not
Running, Stopped, and
Undefined

Specifies a file for the dump file
set, the log file, or the SQLFILE
output.

Enables a user session to
monitor a job, or to restart a
stopped job. If the dump file set
or Data Pump control job table for
the job have been deleted or
altered in any way, then the
attach fails.

Restricts data processed by a job.

Disconnects a user session from
a job.

Retrieves dump file header
information.

Obtains the status of a job.

Adds an entry to the log file.

Restricts metadata processed by
a job.

Remaps metadata processed by
a job.

Alters metadata processed by a
job.

Creates a new job.
Specifies parallelism for a job.

Alters default processing by a job.

Begins or resumes execution of a
job.

Initiates shutdown of a job.

Waits for a job to end.

6-3

Chapter 6
What Are the Basic Steps in Using the Oracle Data Pump API?

6.3 What Are the Basic Steps in Using the Oracle Data Pump

API?

To use the Oracle Data Pump API, you use the procedures provided in the DBMS DATAPUMP
package.

The following steps list the basic activities involved in using the Data Pump API, including the
point in running an Oracle Data Pump job in which you can perform optional steps. The steps
are presented in the order in which you would generally perform the activities.

1.

N o g & w DN

To create an Oracle Data Pump job and its infrastructure, run the DBMS DATAPUMP . OPEN
procedure.

When you run the procedure, the Oracle Data Pump job is started.
Define any parameters for the job.

Start the job.

(Optional) Monitor the job until it completes.

(Optional) Detach from the job, and reattach at a later time.
(Optional) Stop the job.

(Optional) Restart the job, if desired.

Related Topics

Oracle Database PL/SQL Packages and Types Reference

6.4 Examples of Using the Oracle Data Pump API

To get started using the Oracle Data Pump API, review examples that show what you can do
with Oracle Data Pump exports and imports.

ORACLE

Using the Oracle Data Pump API Examples with Your Database
If you want to copy these scripts and run them, then you must complete setup tasks on
your database before you run the scripts.

Performing a Simple Schema Export with Oracle Data Pump
See an example of how you can create, start, and monitor an Oracle Data Pump job to
perform a schema export.

Performing a Table Mode Export to Object Store with Oracle Data Pump
See an example of how you can use DBMS DATAPUMP.ADD FILE to perform a table mode
export.

Importing a Dump File and Remapping All Schema Objects
See an example of how you can create, start, and monitor an Oracle Data Pump job to
import a dump file.

Importing a Table from an Object Store Using Oracle Data Pump
See an example of how you can create, start, and monitor an Oracle Data Pump job to
import a table from an object store.

Using Exception Handling During a Simple Schema Export
See an example of how you can create, start, and monitor an Oracle Data Pump job to
perform a schema export.

6-4

Chapter 6
Examples of Using the Oracle Data Pump API

* Displaying Dump File Information for Oracle Data Pump Jobs
See an example of how you can display information about an Oracle Data Pump dump file
outside the context of any Data Pump job.

6.4.1 Using the Oracle Data Pump API Examples with Your Database

If you want to copy these scripts and run them, then you must complete setup tasks on your
database before you run the scripts.

The Oracle Data Pump APl examples are in the form of PL/SQL scripts. To run these example
scripts on your own database, You have to ensure that you have the required directory objects.
permissions, roles, and display settings configured.

Example 6-1 Create a Directory Object and Grant READ AND WRITE Access

In this example, you create a directory object named dmpdir to which you have access, and
then replace user with your username.

SQL> CREATE DIRECTORY dmpdir AS '/rdbms/work';
SQL> GRANT READ, WRITE ON DIRECTORY dmpdir TO user;

Example 6-2 Ensure You Have EXP_FULL DATABASE and IMP_FULL DATABASE Roles

To see a list of all roles assigned to you within your security domain, enter the following
statement:

SQL> SELECT * FROM SESSION ROLES;

Review the roles that you see displayed. If you do not have the EXP_FULL DATABASE and
IMP FULL DATABASE roles assigned to you, then contact your database administrator for help.

Example 6-3 Turn on Server Display Output

To see output display on your screen, ensure that server output is turned on. To do this, enter
the following command:

SQL> SET SERVEROUTPUT ON

If server display output is not turned on, then output is not displayed to your screen. You must
set the display output to ON in the same session in which you run the example. If you exit
SQL*Plus, then this setting is lost and must be reset when you begin a hew session. If you
connect to the database using a different user name, then you must also reset SERVEROUTPUT
to on for that user.

6.4.2 Performing a Simple Schema Export with Oracle Data Pump

ORACLE

See an example of how you can create, start, and monitor an Oracle Data Pump job to perform
a schema export.

The PL/SQL script in this example shows how to use the Oracle Data Pump API to perform a
simple schema export of the HR schema. The example shows how to create a job, start it, and
monitor it. Additional information about the example is contained in the comments within the
script. To keep the example simple, exceptions from any of the API calls will not be trapped.
However, in a production environment, Oracle recommends that you define exception handlers
and call GET STATUS to retrieve more detailed error information when a failure occurs.

6-5

Chapter 6
Examples of Using the Oracle Data Pump API

Example 6-4 Performing a Simple Schema Export

Connect as user SYSTEM to use this script.

DECLARE

ind NUMBER; -- Loop index

hl NUMBER; -- Data Pump job handle

percent done NUMBER; -- Percentage of job complete

job _state VARCHAR2(30); -- To keep track of job state

le ku$ LogEntry; -- For WIP and error messages

js ku$ JobStatus; -- The job status from get status

jd ku$ JobDesc; -- The job description from get status

sts ku$ Status; -- The status object returned by get status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.

hl := DBMS DATAPUMP.OPEN ('EXPORT', 'SCHEMA',NULL, 'EXAMPLEL', 'LATEST');
-- Specify a single dump file for the job (using the handle just returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.

DBMS DATAPUMP.ADD FILE (hl, 'examplel.dmp', 'DMPDIR');
-- A metadata filter is used to specify the schema that will be exported.

DBMS DATAPUMP.METADATA FILTER (hl,'SCHEMA EXPR', "IN (''HR'')'");

-- Start the job. An exception will be generated if something is not set up
-- properly.

DBMS DATAPUMP.START JOB (hl);

-- The export job should now be running. In the following loop, the Jjob
-- is monitored until it completes. In the meantime, progress information is

-- displayed.
percent done := 0;
job state := 'UNDEFINED';
while (job state != 'COMPLETED') and (job state != 'STOPPED') loop

dbms_datapump.get status (hl,
dbms_datapump.ku$ status job error +
dbms_datapump.ku$ status job status +
dbms _datapump.ku$ status wip,-1,job state,sts);
js := sts.job status;

-- If the percentage done changed, display the new value.

if js.percent done != percent done
then
dbms output.put line('*** Job percent done = ' ||
to char(js.percent done));
percent done := js.percent done;
end if;

ORACLE 66

Chapter 6
Examples of Using the Oracle Data Pump API

-- If any work-in-progress (WIP) or error messages were received for the job,
-- display them.

if (bitand(sts.mask,dbms datapump.ku$ status wip) != 0)
then
le := sts.wip;
else
if (bitand(sts.mask,dbms datapump.ku$ status job error) != 0)
then
le := sts.error;
else
le := null;
end if;
end if;
if le is not null
then

ind := le.FIRST;
while ind is not null loop
dbms_output.put line(le(ind).LogText);
ind := le.NEXT (ind);
end loop;
end if;
end loop;

-- Indicate that the job finished and detach from it.

dbms output.put line('Job has completed');

dbms output.put line('Final job state = ' || Jjob state);
dbms_datapump.detach (hl);

END;

/

6.4.3 Performing a Table Mode Export to Object Store with Oracle Data
Pump

See an example of how you can use DBMS DATAPUMP.ADD FILE to perform a table mode export.

In this PL/SQL script, the Oracle Data Pump DBMS DATAPUMP API uses the ADD FILE call to
specify the object-store URI, credential and filetype in a table export. It shows how to create a
job, start it, and monitor it. Additional information about the example is contained in the
comments within the script. To keep the example simple, exceptions from any of the API calls
will not be trapped. However, in a production environment, Oracle recommends that you define
exception handlers and call GET STATUS to retrieve more detailed error information when a
failure occurs.

Note:

All credential, object-store, and network ACLS setup, and so on, are presumed to be
in place, and therefore are not included in the scripts.

ORACLE .

ORACLE

Chapter 6
Examples of Using the Oracle Data Pump API

In comparison to an Oracle Data Pump script to perform an expert for an on oremises system,
note the differences in the script in the call:

dbms_datapump.add file(hdl, dumpFile, credName, '3MB', dumpType, 1);
Where the procedure parameter filename (dumpFile) contains the object store URI, directory
(credName) contains the credential, and filetype (dumpType) contains a new filetype keyword

Note the following calls:

DBMS DATAPUMP.ADD FILE (handle IN NUMBER, filename IN VARCHARZ,

directory IN VARCHAR2, filesize IN VARCHAR2 DEFAULT NULL, filetype IN NUMBER
DEFAULT

DBMS DATAPUMP.KUS FILE TYPE DUMP FILE, reusefile IN NUMBER DEFAULT NULL);

And note the object store definitions in the script:

dumpFile VARCHAR2 (1024) := 'https://example.oraclecloud.com/test/
den02ten foo3b split %u.dat';
dumpType NUMBER := dbms_datapump.ku$ file type uridump file;

Example 6-5 Table Mode Export to Object Store

This table mode export example assumes that object store credentials, network ACLs, the
database account and object-store information is already set up.

Rem

Rem

Rem tkdpose.sqgl

Rem

Rem NAME

Rem tkdpose.sqgl - <one-line expansion of the name>
Rem

Rem DESCRIPTION

Rem Performs a table mode export to the object store.
Rem

Rem NOTES

Rem Assumes that credentials, network ACLs, database account and
Rem object-store information already been setup.

Rem

connect test/mypwd@CDB1 PDB1

SET SERVEROUTPUT ON
SET ECHO ON

SET FEEDBACK 1

SET NUMWIDTH 10

SET LINESIZE 80

SET TRIMSPOOL ON
SET TAB OFF

SET PAGESIZE 100

DECLARE
hdl NUMBER; -- Datapump handle

6-8

ORACLE

Chapter 6
Examples of Using the Oracle Data Pump API

ind NUMBER; Loop index

le ku$ LogEntry; For WIP and error messages

js ku$ JobStatus; The job status from get status

jd ku$ JobDesc; The job description from get status

sts ku$ Status; The status object returned by get status

jobState VARCHAR? (30) ; -- To keep track of job state

dumpType NUMBER := dbms datapump.ku$ file type uridump file;

dumpFile VARCHAR2 (1024) := 'https://example.oraclecloud.com/test/
denO2ten foo3b split %u.dat';

dumpType NUMBER := dbms datapump.ku$ file type uridump file;

credName VARCHAR? (1024) := 'BMCTEST';

logFile VARCHARZ2 (1024) := 'tkopc export3b cdb2.log';

logDir VARCHARZ (9) '"WORK';

logType NUMBER := dbms_datapump.ku$ file type log file;

BEGIN

-- Open a schema-based export job and perform defining-phase initialization.
hdl := dbms_datapump.open ('EXPORT', 'TABLE');

dbms_datapump.set parameter (hdl, 'COMPRESSION', 'ALL');

dbms datapump.set parameter (hdl, 'CHECKSUM', 1);

dbms datapump.add file(hdl, logfile, logdir, null, logType);
dbms_datapump.add file(hdl, dumpFile, credName, '3MB', dumpType, 1);

dbms datapump.data filter (hdl, 'INCLUDE ROWS', 1);

dbms_datapump.metadata filter(hdl, 'TABLE FILTER', 'FOO', '');

-- Start the job.

dbms_datapump.start job (hdl);

-- Now grab output from the job and write to standard out.

jobState := 'UNDEFINED';
WHILE (jobState != 'COMPLETED') AND (jobState != 'STOPPED')
LOOP

dbms datapump.get status (hdl,
dbms_datapump.ku$ status job error +
dbms_datapump.ku$ status job status +
dbms_datapump.ku$ status wip, -1, jobState,sts);
Jjs := sts.job status;

-- If we received any WIP or Error messages for the job, display them.

IF (BITAND (sts.mask,dbms datapump.ku$ status wip) != 0) THEN
le := sts.wip;
ELSE
IF (bitand(sts.mask,dbms datapump.ku$ status job error) != 0) THEN
le := sts.error;
ELSE
le := NULL;
END IF;
END IF;

6-9

ORACLE

Chapter 6

Examples of Using the Oracle Data Pump API

IF le IS NOT NULL THEN

ind := le.FIRST;

WHILE ind IS NOT NULL LOOP
dbms_output.put line(le(ind).LogText);
ind := le.NEXT (ind);

END LOOP;

END IF;
END LOOP;

-- Detach from job.

dbms_datapump.detach (hdl) ;

-- Any exceptions that propagated to this point will be captured.
-- The details are retrieved from get status and displayed.
EXCEPTION
WHEN OTHERS THEN
BEGIN

dbms_datapump.get status(hdl, dbms datapump.ku$ status job error, 0,

jobState, sts);
IF (BITAND(sts.mask,dbms datapump.ku$ status job error) != 0)
le := sts.error;
IF le IS NOT NULL THEN
ind := le.FIRST;
WHILE ind IS NOT NULL LOOP
dbms output.put line(le(ind).LogText);
ind := le.NEXT (ind);
END LOOP;
END IF;
END IF;

BEGIN

dbms_datapump.stop job (hdl, 1, 0, 0);
EXCEPTION

WHEN OTHERS THEN NULL;
END;

EXCEPTION
WHEN OTHERS THEN

THEN

dbms output.put line('Unexpected exception while in exception ' ||
'handler. sqlcode = ' || TO_CHAR(SQLCODE)) ;

END;
END;

EXIT;

The log reports the following information

Starting "TEST"."SYS EXPORT TABLE 01":
Processing object type TABLE EXPORT/TABLE/TABLE DATA

6-10

Chapter 6
Examples of Using the Oracle Data Pump API

Processing object type TABLE EXPORT/TABLE/STATISTICS/TABLE STATISTICS
Processing object type TABLE EXPORT/TABLE/STATISTICS/MARKER
Processing object type TABLE EXPORT/TABLE/TABLE
. exported "TEST"."FOO" 147.8 KB 70000 rows
Master table "TEST"."SYS EXPORT TABLE 01" successfully loaded/unloaded
Generating checksums for dump file set
ok hkhkhkhkhkhkhkhkhkhk bk hkhkhkhkhkhkhkhkh bk hkkhkhkhkhkhkhkhkhkhkrhkhkhkhkhkhkhkhkrrhkhkhkhkhkhkhkrkkkx k%
Dump file set for TEST.SYS EXPORT TABLE 01 is:
https://example.oraclecloud.com/test/den02ten_foo3b split 01.dat
Job "TEST"."SYS EXPORT TABLE 01" successfully completed at Sun Dec 13
22:22:30 2020 elapsed 0 00:00:22

6.4.4 Importing a Dump File and Remapping All Schema Objects

ORACLE

See an example of how you can create, start, and monitor an Oracle Data Pump job to import
a dump file.

The script in this example imports the dump file created in the Oracle Data Pump API example
"Performing a Simple Schema Export with Oracle Data Pump" (an export of the hr schema).
All schema objects are remapped from the hr schema to the blake schema. To keep the
example simple, exceptions from any of the API calls will not be trapped. However, in a
production environment, Oracle recommends that you define exception handlers and call

GET STATUS to retrieve more detailed error information when a failure occurs.

Example 6-6 Importing the dump file and remapping all schema objects

Connect as user SYSTEM to use this script.

DECLARE

ind NUMBER; -- Loop index

hl NUMBER; -- Data Pump job handle

percent done NUMBER; -- Percentage of job complete

job_state VARCHARZ2(30); -- To keep track of job state

le ku$ LogEntry; -- For WIP and error messages

js ku$ JobStatus; -- The job status from get status

jd ku$ JobDesc; -- The job description from get status

sts ku$ Status; -- The status object returned by get status
BEGIN

-- Create a (user-named) Data Pump job to do a "full" import (everything
-- in the dump file without filtering).

hl := DBMS DATAPUMP.OPEN ('IMPORT','FULL',NULL, 'EXAMPLE2");
-- Specify the single dump file for the job (using the handle just returned)
-- and directory object, which must already be defined and accessible
-- to the user running this procedure. This is the dump file created by
-- the export operation in the first example.
DBMS DATAPUMP.ADD FILE (hl, 'examplel.dmp', 'DMPDIR');
-- A metadata remap will map all schema objects from HR to BLAKE.

DBMS DATAPUMP.METADATA REMAP (hl, 'REMAP SCHEMA', 'HR', 'BLAKE');

-- If a table already exists in the destination schema, skip it (leave

6-11

Chapter 6
Examples of Using the Oracle Data Pump API

-- the preexisting table alone). This is the default, but it does not hurt
-- to specify it explicitly.

DBMS DATAPUMP.SET PARAMETER (hl, 'TABLE EXISTS ACTION', 'SKIP');

-- Start the job. An exception is returned if something is not set up
properly.

DBMS DATAPUMP.START JOB(hl);
-- The import job should now be running. In the following loop, the job is

-- monitored until it completes. In the meantime, progress information is
-- displayed. Note: this is identical to the export example.

percent done := 0;
job state := 'UNDEFINED';
while (job state != 'COMPLETED') and (job state != 'STOPPED') loop

dbms datapump.get status(hl,
dbms_datapump.ku$ status job error +
dbms_datapump.ku$ status job status +
dbms_datapump.ku$ status wip,-1,job state,sts);
Jjs := sts.job status;

-- If the percentage done changed, display the new value.

if js.percent done != percent done
then
dbms output.put line('*** Job percent done = ' ||
to char(js.percent done));
percent done := js.percent done;
end if;

-- If any work-in-progress (WIP) or Error messages were received for the job,
-- display them.

if (bitand(sts.mask,dbms datapump.ku$ status wip) != 0)
then
le := sts.wip;
else
if (bitand(sts.mask,dbms datapump.ku$ status job error) != 0)
then
le := sts.error;
else
le := null;
end if;
end if;
if le is not null
then

ind := le.FIRST;
while ind is not null loop
dbms_output.put line(le(ind).LogText);
ind := le.NEXT (ind);
end loop;
end if;
end loop;

ORACLE 610

Chapter 6
Examples of Using the Oracle Data Pump API

-- Indicate that the job finished and gracefully detach from it.

dbms output.put line('Job has completed');

dbms output.put line('Final job state = ' || Jjob state);
dbms_datapump.detach (hl);

END;

/

6.4.5 Importing a Table from an Object Store Using Oracle Data Pump

ORACLE

See an example of how you can create, start, and monitor an Oracle Data Pump job to import
a table from an object store.

In this PL/SQL script, the Oracle Data Pump DBMS_DATAPUMP API uses the ADD_FILE call
to specify the object-store URI, credential and filetype in a table export. It shows how to create
a job, start it, and monitor it. Additional information about the example is contained in the
comments within the script. To keep the example simple, exceptions from any of the API calls
will not be trapped. However, in a production environment, Oracle recommends that you define
exception handlers and call GET _STATUS to retrieve more detailed error information when a
failure occurs.

Note:

All credential, object-store, and network ACLS setup, and so on, are presumed to be
in place, and therefore are not included in the scripts.

Example 6-7 Table Mode Import to Object Store

This table mode import example assumes that object store credentials, network ACLs, the
database account and object-store information is already set up.

Rem NAME

Rem tkdposi.sql

Rem

Rem DESCRIPTION

Rem Performs a table mode import from the object-store.
Rem

connect test/mypwd@CDB1 PDBI

SET SERVEROUTPUT ON
SET ECHO ON

SET FEEDBACK 1

SET NUMWIDTH 10

SET LINESIZE 80

SET TRIMSPOOL ON
SET TAB OFF

SET PAGESIZE 100

DECLARE
hdl NUMBER; -- Datapump handle
ind NUMBER; -- Loop index
le ku$ LogEntry; -- For WIP and error messages

6-13

Chapter 6
Examples of Using the Oracle Data Pump API

js ku$ JobStatus; -- The job status from get status

jd ku$ JobDesc; -- The job description from get status

sts ku$ Status; -- The status object returned by get status

jobState VARCHAR? (30) ; -- To keep track of job state

dumpFile VARCHAR2 (1024) := 'https://example.oraclecloud.com/test/
denO2ten foo3b split %u.dat';

dumpType NUMBER := dbms datapump.ku$ file type uridump file;

credName VARCHAR? (1024) := 'BMCTEST';

logFile VARCHARZ2 (1024) := 'tkopc import3b cdb2.log';

logDir VARCHAR2 (9) := '"WORK';

logType NUMBER := dbms_datapump.ku$ file type log file;
BEGIN

-- Open a schema-based export job and perform defining-phase initialization.
hdl := dbms_datapump.open ('IMPORT', 'TABLE', NULL, 'OSI');

dbms datapump.add file(hdl, logfile, logdir, null, logType);

dbms datapump.add file(hdl, dumpFile, credName, null, dumpType);
dbms_datapump.metadata filter(hdl, 'TABLE FILTER', 'FOO', '');

dbms datapump.set parameter (hdl, 'TABLE EXISTS ACTION', 'REPLACE');
dbms_datapump.set parameter (hdl, 'VERIFY CHECKSUM', 1);

-- Start the job.

dbms_datapump.start job (hdl);

-- Now grab output from the job and write to standard out.

jobState := 'UNDEFINED';
WHILE (jobState != 'COMPLETED') AND (jobState != 'STOPPED')
LOOP

dbms datapump.get status (hdl,
dbms_datapump.ku$ status job error +
dbms_datapump.ku$ status job status +
dbms_datapump.ku$ status wip, -1, jobState,sts);
Jjs := sts.job status;

-- If we received any WIP or Error messages for the job, display them.

IF (BITAND (sts.mask,dbms datapump.ku$ status wip) != 0) THEN
le := sts.wip;
ELSE
IF (bitand(sts.mask,dbms datapump.ku$ status job error) != 0) THEN
le := sts.error;
ELSE
le := NULL;
END IF;
END IF;

IF le IS NOT NULL THEN
ind := 1le.FIRST;

ORACLE 614

ORACLE

Chapter 6
Examples of Using the Oracle Data Pump API

WHILE ind IS NOT NULL LOOP
dbms_output.put line(le(ind).LogText);
ind := le.NEXT (ind);

END LOOP;

END IF;
END LOOP;

-- Detach from job.

dbms_datapump.detach (hdl) ;

-- Any exceptions that propagated to this point will be captured.
-- The details are retrieved from get status and displayed.
EXCEPTION
WHEN OTHERS THEN
BEGIN
dbms_datapump.get status(hdl, dbms datapump.ku$ status job error, 0,
jobState, sts);
IF (BITAND(sts.mask,dbms datapump.ku$ status job error) != 0) THEN
le := sts.error;
IF le IS NOT NULL THEN
ind := le.FIRST;
WHILE ind IS NOT NULL LOOP
dbms output.put line(le(ind).LogText);
ind := le.NEXT (ind);
END LOOP;
END IF;
END IF;

BEGIN

dbms_datapump.stop job (hdl, 1, 0, 0);
EXCEPTION

WHEN OTHERS THEN NULL;
END;

EXCEPTION
WHEN OTHERS THEN
dbms output.put line('Unexpected exception while in exception ' ||
'handler. sqlcode = ' || TO_CHAR(SQLCODE)) ;
END;

END;

EXIT;

The log file reports the following information:

Verifying dump file checksums

Master table "TEST"."OSI" successfully loaded/unloaded
Starting "TEST"."OSI":

Processing object type TABLE EXPORT/TABLE/TABLE
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA

6-15

Chapter 6
Examples of Using the Oracle Data Pump API

imported "TEST"."FOO" 147.8 KB 70000 rows
Processing object type TABLE EXPORT/TABLE/STATISTICS/TABLE STATISTICS
Processing object type TABLE EXPORT/TABLE/STATISTICS/MARKER
;77 Ext Tbl Query Coord.: worker id 1 for "SYS"."IMPDP STATS"
;77 Ext Tbl Query Coord.: worker id 1 for "SYS"."IMPDP STATS"
;77 Ext Tbl Shadow: worker id 1 for "SYS"."IMPDP STATS"
Job "TEST"."OSI" successfully completed at Sun Dec 13 22:24:16 2020 elapsed 0
00:00:40

6.4.6 Using Exception Handling During a Simple Schema Export

ORACLE

See an example of how you can create, start, and monitor an Oracle Data Pump job to perform
a schema export.

The script in this example shows a simple schema export using the Data Pump API. It extends
the example shown in "Performing a Simple Schema Export with Oracle Data Pump" to show
how to use exception handling to catch the SUCCESS WITH INFO case, and how to use the

GET STATUS procedure to retrieve additional information about errors. To obtain exception
information about a DBMS DATAPUMP.OPEN Or DBMS DATAPUMP.ATTACH failure, call

DBMS DATAPUMP.GET STATUS with a DBMS DATAPUMP.KU$ STATUS JOB_ERROR information mask
and a NULL job handle to retrieve the error details.

Example 6-8 Exception handing in simple schema export using the Data Pump API

Connect as user SYSTEM to use this script.

DECLARE
ind NUMBER; -- Loop index
spos NUMBER; -- String starting position
slen NUMBER; -- String length for output
hl NUMBER; -- Data Pump job handle
percent done NUMBER; -- Percentage of job complete
job_state VARCHARZ2(30); -- To keep track of job state
le ku$ LogEntry; -- For WIP and error messages
js ku$ JobStatus; -- The job status from get status
jd ku$ JobDesc; -- The job description from get status
sts ku$ Status; -- The status object returned by get status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.
hl := dbms_datapump.open ('EXPORT', 'SCHEMA',NULL, 'EXAMPLE3', 'LATEST') ;

-- Specify a single dump file for the job (using the handle just returned)

-- and a directory object, which must already be defined and accessible

-- to the user running this procedure.
dbms_datapump.add file(hl, 'example3.dmp', 'DMPDIR");

-- A metadata filter is used to specify the schema that will be exported.
dbms_datapump.metadata filter (hl,'SCHEMA EXPR','IN (''HR'')');

-- Start the job. An exception will be returned if something is not set up

-- properly.One possible exception that will be handled differently is the
-- success_with info exception. success with info means the job started

6-16

Chapter 6
Examples of Using the Oracle Data Pump API

-- successfully, but more information is available through get status about
-- conditions around the start job that the user might want to be aware of.

begin
dbms datapump.start job(hl);
dbms output.put line('Data Pump job started successfully');
exception
when others then
if sglcode = dbms datapump.success with info num
then
dbms output.put line('Data Pump job started with info available:');
dbms_datapump.get status(hl,
dbms_datapump.ku$ status_job error,0,
job_state, sts);
if (bitand(sts.mask,dbms datapump.ku$ status job error) != 0)
then
le := sts.error;
if le is not null
then
ind := le.FIRST;
while ind is not null loop
dbms_output.put line(le(ind).LogText);
ind := le.NEXT (ind);
end loop;
end if;
end 1if;
else
raise;
end 1if;
end;

-- The export job should now be running. In the following loop,
-- the job is monitored until it completes. In the meantime, progress

information -- is displayed.
percent done := 0;
job state := 'UNDEFINED';
while (job state != 'COMPLETED') and (job state != 'STOPPED') loop

dbms datapump.get status(hl,
dbms_datapump.ku$ status job error +
dbms_datapump.ku$ status job status +
dbms_datapump.ku$ status wip,-1,job state,sts);
Jjs := sts.job status;

-- If the percentage done changed, display the new value.

if js.percent done != percent done
then
dbms output.put line('*** Job percent done = ' ||
to char(js.percent done));
percent done := js.percent done;
end if;

-- Display any work-in-progress (WIP) or error messages that were received for
-- the job.

ORACLE 6-17

Chapter 6
Examples of Using the Oracle Data Pump API

if (bitand(sts.mask,dbms datapump.ku$ status wip) != 0)
then
le := sts.wip;
else
if (bitand(sts.mask,dbms datapump.ku$ status job error) != 0)
then
le := sts.error;
else
le := null;
end if;
end if;
if le is not null
then

ind := le.FIRST;
while ind is not null loop
dbms_output.put line(le(ind).LogText);
ind := le.NEXT (ind);
end loop;
end if;
end loop;

-- Indicate that the job finished and detach from it.

dbms output.put line('Job has completed');
dbms output.put line('Final job state = ' || Jjob state);
dbms_datapump.detach (hl);

-- Any exceptions that propagated to this point will be captured. The
-- details will be retrieved from get status and displayed.

exception
when others then
dbms output.put line('Exception in Data Pump job');
dbms_datapump.get status(hl,dbms datapump.ku$ status job error,0,
job _state, sts);
if (bitand(sts.mask,dbms datapump.ku$ status job error) != 0)
then
le := sts.error;
if le is not null
then
ind := le.FIRST;
while ind is not null loop
spos := 1;
slen := length(le(ind) .LogText);
if slen > 255
then
slen := 255;
end if;
while slen > 0 loop
dbms output.put line (substr(le(ind).LogText,spos,slen));
Spos := spos + 255;
slen := length(le(ind) .LogText) + 1 - spos;
end loop;
ind := le.NEXT (ind);
end loop;
end 1if;

ORACLE 618

Chapter 6
Examples of Using the Oracle Data Pump API

end if;
END;

6.4.7 Displaying Dump File Information for Oracle Data Pump Jobs

ORACLE

See an example of how you can display information about an Oracle Data Pump dump file
outside the context of any Data Pump job.

The PL/SQL script in this example shows how to use the Oracle Data Pump API procedure
DBMS DATAPUMP.GET DUMPFILE INFO to display information about a Data Pump dump file at any
point, not just when you are running the job. This example displays information contained in
the dump file examplel.dmp dump file created by the example PL/SQL script in "Performing a
Simple Schema Export with Oracle Data Pump."

You can also use this PL/SQL script to display information for dump files created by original
Export (the exp utility), as well as by the ORACLE DATAPUMP external tables access driver.

Example 6-9 Using the Oracle Data Pump API procedure to display dumpfile
information

Connect as user SYSTEM to use this script.

SET VERIFY OFF
SET FEEDBACK OFF

DECLARE
ind NUMBER;
fileType NUMBER;
value VARCHAR?2 (2048) ;

infoTab KU$ DUMPFILE INFO := KU$ DUMPFILE INFO();

BEGIN

-- Get the information about the dump file into the infoTab.

BEGIN
DBMS DATAPUMP.GET DUMPFILE INFO('examplel.dmp', 'DMPDIR',infoTab,fileType);
DBMS OUTPUT.PUT LINE ('———--=== === mmmmmmmmm oo oo ")
DBMS OUTPUT.PUT LINE('Information for file: examplel.dmp');

-- Determine what type of file is being looked at.
CASE fileType
WHEN 1 THEN
DBMS OUTPUT.PUT LINE ('examplel.dmp is a Data Pump dump file');
WHEN 2 THEN
DBMS OUTPUT.PUT LINE ('examplel.dmp is an Original Export dump file');
WHEN 3 THEN
DBMS OUTPUT.PUT LINE ('examplel.dmp is an External Table dump file');
ELSE
DBMS OUTPUT.PUT LINE ('examplel.dmp is not a dump file');
DBMS OUTPUT.PUT LINE('-----------————==———————————————————————————— ')
END CASE;

6-19

Chapter 6
Examples of Using the Oracle Data Pump API

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(’ ——— "),
DBMS OUTPUT.PUT LINE('Error retrieving information for file: ' ||
'examplel.dmp');

DBMS OUTPUT.PUT LINE (SQLERRM) ;
DBMS_OUTPUT.PUT_LINE(’ ——— "),
fileType := 0;

END;

-- If a valid file type was returned, then loop through the infoTab and
-- display each item code and value returned.

IF fileType > O

THEN
DBMS OUTPUT.PUT LINE('The information table has ' ||
TO _CHAR (infoTab.COUNT) || ' entries');
DBMS_OUTPUT.PUT LINE ('—----—=—== == mmmmmmmmmmm oo mm oo ") ;

ind := infoTab.FIRST;
WHILE ind IS NOT NULL
LOOP

-- The following item codes return boolean values in the form
--of a 'l'" or a '0'. Display them as 'Yes' or 'No'.

value := NVL(infoTab (ind).value, 'NULL');

IF infoTab(ind).item code IN
(DBMS_DATAPUMP.KU$_DFHDR_MASTER_PRESENT,
DBMS_DATAPUMP.KU$_DFHDR_DIRPATH,
DBMS_DATAPUMP.KU$_DFHDR_METADATA_COMPRESSED,
DBMS_DATAPUMP.KU$_DFHDR_DATA_COMPRESSED,
DBMS_DATAPUMP.KU$_DFHDR_METADATA_ENCRYPTED,
DBMS_DATAPUMP.KU$_DFHDR_DATA_ENCRYPTED,
DBMS_DATAPUMP.KU$_DFHDR_COLUMNS_ENCRYPTED)

THEN
CASE value
WHEN 'l' THEN value := 'Yes';
WHEN '0' THEN value := 'No';
END CASE;
END IF;

-- Display each item code with an appropriate name followed by
-- its value.

CASE infoTab(ind).item code

-- The following item codes have been available since Oracle
-- Database 10g, Release 10.2.

WHEN DBMS DATAPUMP.KUS DFHDR FILE VERSION THEN

DBMS OUTPUT.PUT LINE('Dump File Version: ' || value);
WHEN DBMS DATAPUMP.KUS DFHDR MASTER PRESENT THEN
DBMS OUTPUT.PUT LINE ('Master Table Present: "Il value);

ORACLE 620

ORACLE

Chapter 6

Examples of Using the Oracle Data Pump API

WHEN DBMS DATAPUMP.KUS DFHDR GUID THEN

DBMS OUTPUT.PUT LINE('Job Guid: "Il value);
WHEN DBMS DATAPUMP.KUS DFHDR FILE NUMBER THEN

DBMS OUTPUT.PUT LINE('Dump File Number: ' || value);
WHEN DBMS DATAPUMP.KUS DFHDR CHARSET ID THEN

DBMS OUTPUT.PUT LINE ('Character Set ID: "Il value);
WHEN DBMS DATAPUMP.KUS DFHDR CREATION DATE THEN

DBMS OUTPUT.PUT LINE ('Creation Date: "Il value);
WHEN DBMS DATAPUMP.KUS DFHDR FLAGS THEN

DBMS OUTPUT.PUT LINE ('Internal Dump Flags: ' || value);
WHEN DBMS DATAPUMP.KUS DFHDR JOB NAME THEN

DBMS OUTPUT.PUT LINE ('Job Name: "Il value);
WHEN DBMS DATAPUMP.KUS DFHDR PLATFORM THEN

DBMS OUTPUT.PUT LINE ('Platform Name: ' || value);
WHEN DBMS DATAPUMP.KUS DFHDR INSTANCE THEN

DBMS OUTPUT.PUT LINE ('Instance Name: "Il value);
WHEN DBMS DATAPUMP.KUS DFHDR LANGUAGE THEN

DBMS OUTPUT.PUT LINE ('Language Name: ' || value);
WHEN DBMS DATAPUMP.KUS DFHDR BLOCKSIZE THEN

DBMS OUTPUT.PUT LINE('Dump File Block Size: ' || value);
WHEN DBMS DATAPUMP.KUS DFHDR DIRPATH THEN

DBMS OUTPUT.PUT LINE('Direct Path Mode: "Il value);
WHEN DBMS DATAPUMP.KUS DFHDR METADATA COMPRESSED THEN

DBMS OUTPUT.PUT LINE ('Metadata Compressed: "Il value);
WHEN DBMS DATAPUMP.KUS DFHDR DB VERSION THEN

DBMS OUTPUT.PUT LINE ('Database Version: "Il value);

-- The following item codes were introduced in Oracle Database 1llg

-- Release 11.1

WHEN DBMS DATAPUMP.KUS DFHDR MASTER PIECE COUNT THEN

DBMS OUTPUT.PUT LINE ('Master Table Piece Count: ' || value);
WHEN DBMS DATAPUMP.KUS DFHDR MASTER PIECE NUMBER THEN

DBMS OUTPUT.PUT LINE ('Master Table Piece Number: ' || value);
WHEN DBMS DATAPUMP.KUS DFHDR DATA COMPRESSED THEN

DBMS OUTPUT.PUT LINE ('Table Data Compressed: "Il value);
WHEN DBMS DATAPUMP.KUS DFHDR METADATA ENCRYPTED THEN

DBMS OUTPUT.PUT LINE ('Metadata Encrypted: "Il value);
WHEN DBMS DATAPUMP.KUS DFHDR DATA ENCRYPTED THEN

DBMS OUTPUT.PUT LINE ('Table Data Encrypted: "Il value);
WHEN DBMS DATAPUMP.KUS DFHDR COLUMNS ENCRYPTED THEN

DBMS OUTPUT.PUT LINE ('TDE Columns Encrypted: ' || value);

-- For the DBMS_DATAPUMP.KU$_DFHDR_ENCRYPTION_MODE item code a
-- numeric value is returned. So examine that numeric value
-- and display an appropriate name value for it.
WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCRYPTION_MODE THEN
CASE TO_NUMBER(Value)
WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_NONE THEN
DBMS_OUTPUT.PUT_LINE('Encryption Mode: None') ;
WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_PASSWORD THEN

DBMS OUTPUT.PUT LINE('Encryption Mode: Password') ;

6-21

Chapter 6
Examples of Using the Oracle Data Pump API

WHEN DBMS DATAPUMP.KUS DFHDR ENCMODE DUAL THEN

DBMS OUTPUT.PUT LINE('Encryption Mode: Dual');
WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_TRANS THEN
DBMS OUTPUT.PUT LINE('Encryption Mode: Transparent');
END CASE;

-- The following item codes were introduced in Oracle Database 1l2c
-- Release 12.1

-- For the DBMS_DATAPUMP.KU$_DFHDR_COMPRESSION_ALG item code a
-- numeric value is returned. So examine that numeric value and
-- display an appropriate name value for it.

WHEN DBMS DATAPUMP.KUS DFHDR COMPRESSION ALG THEN
CASE TO NUMBER (value)
WHEN DBMS DATAPUMP.KUS DFHDR CMPALG NONE THEN

DBMS OUTPUT.PUT LINE ('Compression Algorithm: None') ;
WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_BASIC THEN
DBMS OUTPUT.PUT LINE ('Compression Algorithm: Basic');
WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_LOW THEN
DBMS OUTPUT.PUT LINE ('Compression Algorithm: Low');
WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_MEDIUM THEN
DBMS OUTPUT.PUT LINE ('Compression Algorithm: Medium');
WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_HIGH THEN
DBMS OUTPUT.PUT LINE ('Compression Algorithm: High');
END CASE;
ELSE NULL; -- Ignore other, unrecognized dump file attributes.
END CASE;
ind := infoTab.NEXT (ind) ;
END LOOP;
END IF;
END;
/

ORACLE 699

SQL*Loader

ORACLE

Learn about SQL*Loader and its features, as well as data loading concepts, including object
support.

Understanding How to Use SQL*Loader
Learn about the basic concepts you should understand before loading data into an Oracle
Database using SQL*Loader.

SQL*Loader Command-Line Reference
To start regular SQL*Loader, use the command-line parameters.

SQL*Loader Control File Reference
The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions for a SQL*Loader job.

SQL*Loader Field List Reference
The field-list portion of a SQL*Loader control file provides information about fields being
loaded, such as position, data type, conditions, and delimiters.

Loading Objects, LOBs, and Collections with SQL*Loader
You can use SQL*Loader to load column objects in various formats and to load object
tables, REF columns, LOBs, and collections.

Conventional and Direct Path Loads
SQL*Loader provides the option to load data using a conventional path load method, and a
direct path load method.

SQL*Loader Express
SQL*Loader express mode allows you to quickly and easily use SQL*Loader to load
simple data types.

Understanding How to Use SQL*Loader

Learn about the basic concepts you should understand before loading data into an Oracle
Database using SQL*Loader.

SQL*Loader Features
SQL*Loader loads data from external files into Oracle Database tables.

SQL*Loader Parameters
SQL*Loader is started either when you specify the sql1dr command, or when you specify
parameters that establish various characteristics of the load operation.

SQL*Loader Control File
The control file is a text file written in a language that SQL*Loader understands.

Input Data and Data Fields in SQL*Loader
Learn how SQL*Loader loads data and identifies record fields.

LOBFILEs and Secondary Data Files (SDFs)
Large Object (LOB) data can be lengthy enough that it makes sense to load it from a
LOBFILE.

Data Conversion and Data Type Specification

During a conventional path load, data fields in the data file are converted into columns in
the database (direct path loads are conceptually similar, but the implementation is
different).

SQL*Loader Discarded and Rejected Records
SQL*Loader can reject or discard some records read from the input file, either because of
issues with the files, or because you have selected to filter the records out of the load.

Log File and Logging Information
When SQL*Loader begins processing, it creates a log file.

Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides several methods to load data.

Loading Objects, Collections, and LOBs with SQL*Loader
You can bulk-load the column, row, LOB, and JSON database objects that you need to
model real-world entities, such as customers and purchase orders.

Partitioned Object Support in SQL*Loader
Partitioned database objects enable you to manage sections of data, either collectively or
individually. SQL*Loader supports loading partitioned objects.

Application Development: Direct Path Load API
Direct path loads enable you to load data from external files into tables and
partitions.Oracle provides a direct path load API for application developers.

SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case studies that
Oracle provides.

7.1 SQL*Loader Features

SQL*Loader loads data from external files into Oracle Database tables.

ORACLE

7-1

ORACLE

Chapter 7
SQL*Loader Features

SQL*Loader has a powerful data parsing engine that puts few limitations on the format of the
data in the data file. You can use SQL*Loader to do the following:

» Load data across a network, if your data files are on a different system than the database.
e Load data from multiple data files during the same load session.

e Load data into multiple tables during the same load session.

e Specify the character set of the data.

e Selectively load data (you can load records based on the records' values).
e Manipulate the data before loading it, using SQL functions.

e Generate unique sequential key values in specified columns.

« Use the operating system's file system to access the data files.

e Load data from disk, tape, or named pipe.

e Generate sophisticated error reports, which greatly aid troubleshooting.

e Load arbitrarily complex object-relational data.

« Use secondary data files for loading Large Objects (LOBs) and collections.
e Use conventional, direct path, or external table loads.

LOBs are used to hold large amounts of data inside Oracle Database. SQL*Loader and
external tables use LOBFILEs. Data for a LOB can be very large, and not fit in line in a
SQL*Loader data file. Also, if the file contains binary data, then it can’t be in line. Instead, the
data file has the name of a file containing the data for the LOB field. In that case, SQL*Loader
and the external table code open the LOBFILE, and load the contents into the LOB column for
the current row. The data is then passed to the server, just as with data for any other column

type.

JSON columns can be loaded using the same methods used to load scalars and LOBs

You can use SQL*Loader in two ways: with or without a control file. A control file controls the
behavior of SQL*Loader and one or more data files used in the load. Using a control file gives
you more control over the load operation, which might be desirable for more complicated load
situations. But for simple loads, you can use SQL*Loader without specifying a control file; this
is referred to as SQL*Loader express mode.

The output of SQL*Loader is an Oracle Database database (where the data is loaded), a log
file, a bad file if there are rejected records, and potentially, a discard file.

The following figure shows an example of the flow of a typical SQL*Loader session that uses a
control file.

7-2

Chapter 7
SQL*Loader Parameters

Figure 7-1 SQL*Loader Overview

—
Loader
Input) -
Datafiles 1 Cc;:riilt;ol
—
Log * Bad
File SQL*Loader Files
—
Discard
Database > Files
Tables

Related Topics

« Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides several methods to load data.

e SQL*Loader Express
SQL*Loader express mode allows you to quickly and easily use SQL*Loader to load
simple data types.

7.2 SQL*Loader Parameters

ORACLE

SQL*Loader is started either when you specify the sq11dr command, or when you specify
parameters that establish various characteristics of the load operation.

In situations where you always use the same parameters for which the values seldom change,
it can be more efficient to specify parameters by using the following methods, rather than on
the command line:

* You can group parameters together in a parameter file. You can then specify the name of
the parameter file on the command line by using the PARFILE parameter.

* You can specify some parameters within the SQL*Loader control file by using the 0OPTIONS
clause.

Parameters specified on the command line override any parameter values specified in a
parameter file or OPTIONS clause.

Related Topics

e SQL*Loader Command-Line Reference
To start regular SQL*Loader, use the command-line parameters.

 PARFILE
The PARFILE SQL*Loader command-line parameter specifies the name of a file that
contains commonly used command-line parameters.

7-3

Chapter 7
SQL*Loader Control File

* OPTIONS Clause
The following command-line parameters can be specified using the 0PTIONS clause.

7.3 SQL*Loader Control File

The control file is a text file written in a language that SQL*Loader understands.

The control file tells SQL*Loader where to find the data, how to parse and interpret the data,
where to insert the data, and more.

In general, the control file has three main sections, in the following order:

e Session-wide information
* Table and field-list information
e Input data (optional section)

Some control file syntax considerations to keep in mind are:

e The syntax is free-format (statements can extend over multiple lines).

e The syntax is case-insensitive; however, strings enclosed in single or double quotation
marks are taken literally, including case.

e In control file syntax, comments extend from the two hyphens (--) that mark the beginning
of the comment to the end of the line. The optional third section of the control file is
interpreted as data rather than as control file syntax; consequently, comments in this
section are not supported.

* The keywords CONSTANT and ZONE have special meaning to SQL*Loader and are therefore
reserved. To avoid potential conflicts, Oracle recommends that you do not use either
CONSTANT or ZONE as a name for any tables or columns.

Related Topics

e SQL*Loader Control File Reference
The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions for a SQL*Loader job.

7.4 Input Data and Data Fields in SQL*Loader

ORACLE

Learn how SQL*Loader loads data and identifies record fields.

* How SQL*Loader Reads Input Data and Data Files
SQL*Loader reads data from one or more data files (or operating system equivalents of
files) specified in the control file.

* Fixed Record Format
A file is in fixed record format when all records in a data file are the same byte length.

e Variable Record Format and SQL*Loader
A file is in variable record format when the length of each record in a character field is
included at the beginning of each record in the data file.

e Stream Record Format and SQL*Loader
A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator.

7-4

Chapter 7
Input Data and Data Fields in SQL*Loader

e Logical Records and SQL*Loader
SQL*Loader organizes input data into physical records, according to the specified record
format. By default, a physical record is a logical record.

e Data Field Setting and SQL*Loader
Learn how SQL*Loader determines the field setting on the logical record after a logical
record is formed.

7.4.1 How SQL*Loader Reads Input Data and Data Files

SQL*Loader reads data from one or more data files (or operating system equivalents of files)
specified in the control file.

From SQL*Loader's perspective, the data in the data file is organized as records. A particular
data file can be in fixed record format, variable record format, or stream record format. The
record format can be specified in the control file with the INFILE parameter. If no record format
is specified, then the default is stream record format.

¢ Note:

If data is specified inside the control file (that is, INFILE * was specified in the control
file), then the data is interpreted in the stream record format with the default record
terminator.

7.4.2 Fixed Record Format

A file is in fixed record format when all records in a data file are the same byte length.

Although the fixed record format is the least flexible format, using it results in better
performance than variable or stream format. Fixed format is also simple to specify. For
example:

INFILE datafile name "fix n"

This example specifies that SQL*Loader should interpret the particular data file as being in
fixed record format where every record is n bytes long.

The following example shows a control file that specifies a data file (examplel.dat) to be
interpreted in the fixed record format. The data file in the example contains five physical
records; each record has fields that contain the number and name of an employee. Each of the
five records is 11 bytes long, including spaces. For the purposes of explaining this example,
periods are used to represent spaces in the records, but in the actual records there would be
no periods. With that in mind, the first physical record is 396, .. .ty, . which is exactly eleven
bytes (assuming a single-byte character set). The second record is 4922, beth, followed by
the newline character (\n) which is the eleventh byte, and so on. (Newline characters are not
required with the fixed record format; it is simply used here to illustrate that if used, it counts as
a byte in the record length.)

ORACLE .

Chapter 7
Input Data and Data Fields in SQL*Loader

Example 7-1 Loading Data in Fixed Record Format

Loading data:

load data

infile 'examplel.dat' "fix 11"

into table example

fields terminated by ',' optionally enclosed by '"'
(coll, col2)

Contents of examplel.dat:

396,...ty,.4922,beth, \n
68773, ben, .
1,.."dave",
5455, mike, .

Note that the length is always interpreted in bytes, even if character-length semantics are in
effect for the file. This is necessary because the file can contain a mix of fields. Some are
processed with character-length semantics, and others are processed with byte-length
semantics.

Related Topics

e Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

7.4.3 Variable Record Format and SQL*Loader

A file is in variable record format when the length of each record in a character field is included
at the beginning of each record in the data file.

This format provides some added flexibility over the fixed record format and a performance
advantage over the stream record format. For example, you can specify a data file that is to be
interpreted as being in variable record format as follows:

INFILE "datafile name" "var n"

In this example, n specifies the number of bytes in the record length field. If n is not specified,
then SQL*Loader assumes a length of 5 bytes. Specifying n larger than 40 results in an error.

The following example shows a control file specification that tells SQL*Loader to look for data
in the data file example2.dat and to expect variable record format where the record's first three
bytes indicate the length of the field. The example2.dat data file consists of three physical
records. The first is specified to be 009 (9) bytes long, the second is 010 (10) bytes long (plus
a 1-byte newline), and the third is 012 (12) bytes long (plus a 1-byte newline). Note that
newline characters are not required with the variable record format. This example also
assumes a single-byte character set for the data file. For the purposes of this example, periods
in example2.dat represent spaces; the fields do not contain actual periods.

ORACLE .

Chapter 7
Input Data and Data Fields in SQL*Loader

Example 7-2 Loading Data in Variable Record Format

Loading data:

load data

infile 'example2.dat' "var 3"

into table example

fields terminated by ',' optionally enclosed by '"'
(coll char(5),

col2 char (7))

Contents of example?2.dat:

009.396, .ty,0104922,beth, 01268773, benji,

Note that the lengths are always interpreted in bytes, even if character-length semantics are in
effect for the file. This is necessary because the file can contain a mix of fields, some
processed with character-length semantics and others processed with byte-length semantics.

Related Topics

e Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

7.4.4 Stream Record Format and SQL*Loader

ORACLE

A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator.

Stream record format is the most flexible format, but using it can result in a negative effect on
performance. The specification of a data file to be interpreted as being in stream record format
looks similar to the following:

INFILE datafile name ["str terminator string"]

In the preceding example, str indicates that the file is in stream record format. The
terminator stringis specified as either 'char string' or X'hex string' where:

* 'char string' is a string of characters enclosed in single or double quotation marks
* X'hex string'is a byte string in hexadecimal format

When the terminator string contains special (nonprintable) characters, it should be specified
as a X'hex string' byte string. However, you can specify some nonprintable characters as
(*char string") by using a backslash. For example:

¢ \nindicates a line feed
e\t indicates a horizontal tab
* \f indicates a form feed

e \vindicates a vertical tab

e \r indicates a carriage return

7-7

Chapter 7
Input Data and Data Fields in SQL*Loader

If the character set specified with the NLS_LANG initialization parameter for your session is
different from the character set of the data file, then character strings are converted to the
character set of the data file. This is done before SQL*Loader checks for the default record
terminator.

Hexadecimal strings are assumed to be in the character set of the data file, so no conversion is
performed.

On UNIX-based platforms, if no terminator string is specified, then SQL*Loader defaults to
the line feed character, \n.

On Windows-based platforms, if no terminator string is specified, then SQL*Loader uses
either \n or \r\n as the record terminator, depending on which one it finds first in the data file.
This means that if you know that one or more records in your data file has \n embedded in a
field, but you want \r\n to be used as the record terminator, then you must specify it.

The following example illustrates loading data in stream record format where the terminator
string is specified using a character string, ' [\n'. The use of the backslash character allows
the character string to specify the nonprintable line feed character.

See Also:

e Oracle Database Globalization Support Guide for information about using the
Language and Character Set File Scanner (LCSSCAN) utility to determine the
language and character set for unknown file text

Example 7-3 Loading Data in Stream Record Format

Loading data:

load data

infile 'example3.dat' "str '|\n'"

into table example

fields terminated by ',' optionally enclosed by '"'
(coll char(5),

col2 char (7))

example3.dat

396, ty, |
4922 ,beth, |

7.4.5 Logical Records and SQL*Loader

ORACLE

SQL*Loader organizes input data into physical records, according to the specified record
format. By default, a physical record is a logical record.

For added flexibility, SQL*Loader can be instructed to combine several physical records into a
logical record.

SQL*Loader can be instructed to follow one of the following logical record-forming strategies:

« Combine a fixed number of physical records to form each logical record.

7-8

Chapter 7
LOBFILEs and Secondary Data Files (SDFs)

e Combine physical records into logical records while a certain condition is true.

Related Topics

e Assembling Logical Records from Physical Records
This section describes assembling logical records from physical records.

e SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case studies that
Oracle provides.

7.4.6 Data Field Setting and SQL*Loader

Learn how SQL*Loader determines the field setting on the logical record after a logical record
is formed.

Field setting is a process in which SQL*Loader uses control-file field specifications to
determine which parts of logical record data correspond to which control-file fields. It is
possible for two or more field specifications to claim the same data. Also, it is possible for a
logical record to contain data that is not claimed by any control-file field specification.

Most control-file field specifications claim a particular part of the logical record. This mapping
takes the following forms:

e The byte position of the data field's beginning, end, or both, can be specified. This
specification form is not the most flexible, but it provides high field-setting performance.

e The strings delimiting (enclosing, terminating, or both) a particular data field can be
specified. A delimited data field is assumed to start where the last data field ended, unless
the byte position of the start of the data field is specified.

e You can specify the byte offset, the length of the data field, or both. This way each field
starts a specified number of bytes from where the last one ended and continues for a
specified length.

« Length-value data types can be used. In this case, the first n number of bytes of the data
field contain information about how long the rest of the data field is.

Related Topics

* Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be marked
by delimiter characters contained in the input data record.

7.5 LOBFILEs and Secondary Data Files (SDFs)

ORACLE

Large Object (LOB) data can be lengthy enough that it makes sense to load it from a LOBFILE.

With LOBFILEs, LOB data instances are still considered to be in fields (predetermined size,
delimited, length-value). However, these fields are not organized into records (the concept of a
record does not exist within LOBFILES). Therefore, the processing overhead of dealing with
records is avoided. This type of organization of data is ideal for LOB loading.

For example, suppose you have a table that stores employee names, IDs, and their resumes.
When loading this table, you can read the employee names and IDs from the main data files
and you can read the resumes, which can be quite lengthy, from LOBFILEs.

You can also use LOBFILEs to facilitate the loading of XML data. You can use XML columns to
hold data that models structured and semistructured data. Such data can be quite lengthy.

7-9

Chapter 7
Data Conversion and Data Type Specification

Secondary data files (SDFs) are similar in concept to primary data files. As with primary data
files, SDFs are a collection of records, and each record is made up of fields. The SDFs are
specified as needed for a control file field. Only a collection fld spec can name an SDF as
its data source.

You specify SDFs by using the sDF parameter. You can enter a value for the SDF parameter
either by using the file specification string, or by using a FILLER field that is mapped to a data
field containing one or more file specification strings.

Related Topics

e Loading LOB Data from LOBFILEs
To load large LOB data files, consider using a LOBFILE with SQL*Loader.

e Secondary Data Files (SDFs)
When you need to load large nested tables and VARRAYS, you can use secondary data files
(SDFs). They are similar in concept to primary data files.

7.6 Data Conversion and Data Type Specification

During a conventional path load, data fields in the data file are converted into columns in the
database (direct path loads are conceptually similar, but the implementation is different).

There are two conversion steps:

1. SQL*Loader uses the field specifications in the control file to interpret the format of the
data file, parse the input data, and populate the bind arrays that correspond to a SQL
INSERT statement using that data. A bind array is an area in memory where SQL*Loader
stores data that is to be loaded. When the bind array is full, the data is transmitted to the
database. The bind array size is controlled by the SQL*Loader BINDSIZE and READSIZE
parameters.

2. The database accepts the data and executes the INSERT statement to store the data in the
database.

Oracle Database uses the data type of the column to convert the data into its final, stored form.
Keep in mind the distinction between a field in a data file and a column in the database.
Remember also that the field data types defined in a SQL*Loader control file are not the same
as the column data types.

See Also:
BINDSIZE
* READSIZE

7.7 SQL*Loader Discarded and Rejected Records

SQL*Loader can reject or discard some records read from the input file, either because of
issues with the files, or because you have selected to filter the records out of the load.

Rejected records are placed in a bad file, and discarded records are placed in a discard file.

ORACLE 7-10

Chapter 7
SQL*Loader Discarded and Rejected Records

e The SQL*Loader Bad File
The bad file contains records that were rejected, either by SQL*Loader or by Oracle
Database.

e The SQL*Loader Discard File
As SQL*Loader runs, it can filter some records out of the load, and create a file called the
discard file.

7.7.1 The SQL*Loader Bad File

The bad file contains records that were rejected, either by SQL*Loader or by Oracle Database.

If you do not specify a bad file, and there are rejected records, then SQL*Loader automatically
creates one. A rejected record has the same name as the data file, with a .bad extension.
There can be several causes for rejections.

* Records Rejected by SQL*Loader
Data file records are rejected by SQL*Loader when the input format is invalid.

* Records Rejected by Oracle Database During a SQL*Loader Operation
After a data file record is accepted for processing by SQL*Loader, it is sent to the database
for insertion into a table as a row.

7.7.1.1 Records Rejected by SQL*Loader

Data file records are rejected by SQL*Loader when the input format is invalid.

For example, if the second enclosure delimiter is missing, or if a delimited field exceeds its
maximum length, then SQL*Loader rejects the record. Rejected records are placed in the bad
file.

7.7.1.2 Records Rejected by Oracle Database During a SQL*Loader Operation

After a data file record is accepted for processing by SQL*Loader, it is sent to the database for
insertion into a table as a row.

If the database determines that the row is valid, then the row is inserted into the table. If the
row is determined to be invalid, then the record is rejected and SQL*Loader puts it in the bad
file. The row may be invalid, for example, because a key is not unique, because a required
field is null, or because the field contains invalid data for the Oracle data type.

7.7.2 The SQL*Loader Discard File

ORACLE

As SQL*Loader runs, it can filter some records out of the load, and create a file called the
discard file.

A discard file is created only when it is needed, and only if you have specified that a discard file
should be enabled. The discard file contains records that were filtered out of the load because
they did not match any record-selection criteria specified in the control file.

Because the discard file contains record filtered out of the load, the contents of the discard file
are records that were not inserted into any table in the database. You can specify the
maximum number of such records that the discard file can accept. Data written to any
database table is not written to the discard file.

7-11

Chapter 7
Log File and Logging Information

7.8 Log File and Logging Information

When SQL*Loader begins processing, it creates a log file.

If SQL*Loader cannot create a log file, then processing terminates. The log file contains a
detailed summary of the load, including a description of any errors that occurred during the
load.

7.9 Conventional Path Loads, Direct Path Loads, and External
Table Loads

SQL*Loader provides several methods to load data.

* Conventional Path Loads
During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array (an area in
memory where SQL*Loader stores data to be loaded).

» Direct Path Loads
A direct path load parses the input records according to the field specifications, converts
the input field data to the column data type, and builds a column array.

* Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently load the
same data segments (allows intrasegment parallelism).

e External Table Loads
External tables are defined as tables that do not reside in the database, and can be in any
format for which an access driver is provided.

e Choosing External Tables Versus SQL*Loader
Learn which method can provide the best load performance for your data load situations.

* Behavior Differences Between SQL*Loader and External Tables
Oracle recommends that you review the differences between loading data with external
tables, using the ORACLE LOADER access driver, and loading data with SQL*Loader
conventional and direct path loads.

* Loading Tables Using Data Stored into Object Storage
Learn how to load your data from Object Storage into standard Oracle Database tables
using SQL*Loader.

7.9.1 Conventional Path Loads

ORACLE

During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array (an area in memory
where SQL*Loader stores data to be loaded).

When the bind array is full (or no more data is left to read), an array insert operation is
performed.

SQL*Loader stores LOB fields after a bind array insert is done. Thus, if there are any errors in
processing the LOB field (for example, the LOBFILE could not be found), then the LOB field is
left empty. Note also that because LOB data is loaded after the array insert has been
performed, BEFORE and AFTER row triggers may not work as expected for LOB columns. This is
because the triggers fire before SQL*Loader has a chance to load the LOB contents into the

7-12

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

column. For instance, suppose you are loading a LOB column, c1, with data and you want a
BEFORE row trigger to examine the contents of this LOB column and derive a value to be loaded
for some other column, c2, based on its examination. This is not possible because the LOB
contents will not have been loaded at the time the trigger fires.

See Also:

e Data Loading Methods

e Bind Arrays and Conventional Path Loads

7.9.2 Direct Path Loads

A direct path load parses the input records according to the field specifications, converts the
input field data to the column data type, and builds a column array.

The column array is passed to a block formatter, which creates data blocks in Oracle database
block format. The newly formatted database blocks are written directly to the database,
bypassing much of the data processing that normally takes place. Direct path load is much
faster than conventional path load, but entails several restrictions.

7.9.3 Parallel Direct Path

A parallel direct path load allows multiple direct path load sessions to concurrently load the
same data segments (allows intrasegment parallelism).

Parallel direct path is more restrictive than direct path.

¢ See Also:
Parallel Data Loading Models

Direct Path Load

7.9.4 External Table Loads

ORACLE

External tables are defined as tables that do not reside in the database, and can be in any
format for which an access driver is provided.

Oracle Database provides two access drivers: ORACLE_LOADER, and ORACLE DATAPUMP. By
providing the database with metadata describing an external table, the database is able to
expose the data in the external table as if it were data residing in a regular database table.

An external table load creates an external table for data that is contained in an external data
file. The load runs INSERT statements to insert the data from the data file into the target table.

The advantages of using external table loads over conventional path and direct path loads are
as follows:

- If a data file is big enough, then an external table load attempts to load that file in parallel.

7-13

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

* An external table load allows modification of the data being loaded by using SQL functions
and PL/SQL functions as part of the INSERT statement that is used to create the external
table.

Note:

An external table load is not supported using a named pipe on Windows operating
systems.

Related Topics

¢ The ORACLE_LOADER Access Driver
Learn how to control the way external tables are accessed by using the
ORACLE_LOADER access driver parameters to modify the default behavior of the access
driver.

¢ The ORACLE_DATAPUMP Access Driver
The ORACLE DATAPUMP access driver provides a set of access parameters that are unique
to external tables of the type ORACLE DATAPUMP.

¢ Managing External Tables in Oracle Database Administrator’s Guide

7.9.5 Choosing External Tables Versus SQL*Loader

Learn which method can provide the best load performance for your data load situations.

The record parsing of external tables and SQL*Loader is very similar, so normally there is not a
major performance difference for the same record format. However, due to the different
architecture of external tables and SQL*Loader, there are situations in which one method may
be more appropriate than the other.

Use external tables for the best load performance in the following situations:

* You want to transform the data as it is being loaded into the database

e You want to use transparent parallel processing without having to split the external data
first

Use SQL*Loader for the best load performance in the following situations:

* You want to load data remotely

e Transformations are not required on the data, and the data does not need to be loaded in
parallel

* You want to load data, and additional indexing of the staging table is required

7.9.6 Behavior Differences Between SQL*Loader and External Tables

ORACLE

Oracle recommends that you review the differences between loading data with external tables,
using the ORACLE LOADER access driver, and loading data with SQL*Loader conventional and
direct path loads.

The information in this section does not apply to the ORACLE DATAPUMP access driver.

e Multiple Primary Input Data Files
If there are multiple primary input data files with SQL*Loader loads, then a bad file and a
discard file are created for each input data file.

7-14

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

e Syntax and Data Types
This section provides a description of unsupported syntax and data types with external
table loads.

e Byte-Order Marks
With SQL*Loader, whether the byte-order mark is written depends on the character set or
on the table load.

» Default Character Sets, Date Masks, and Decimal Separator
The display of NLS character sets are controlled by different settings for SQL*Loader and
external tables.

* Use of the Backslash Escape Character
SQL*Loader and external tables use different conventions to identify single quotation
marks as an enclosure character.

7.9.6.1 Multiple Primary Input Data Files

If there are multiple primary input data files with SQL*Loader loads, then a bad file and a
discard file are created for each input data file.

With external table loads, there is only one bad file and one discard file for all input data files. If
parallel access drivers are used for the external table load, then each access driver has its own
bad file and discard file.

7.9.6.2 Syntax and Data Types

This section provides a description of unsupported syntax and data types with external table
loads.

* Use of CONTINUEIF or CONCATENATE to combine multiple physical records into a single
logical record.

* Loading of the following SQL*Loader data types: GRAPHIC, GRAPHIC EXTERNAL, and

VARGRAPHIC
e Use of the following database column types: LONG, nested table, VARRAY, REF, primary key
REF, and SID
7.9.6.3 Byte-Order Marks

With SQL*Loader, whether the byte-order mark is written depends on the character set or on
the table load.

If a primary data file uses a Unicode character set (UTF8 or UTF16), and it also contains a byte-
order mark (BOM), then the byte-order mark is written at the beginning of the corresponding
bad and discard files.

With external table loads, the byte-order mark is not written at the beginning of the bad and
discard files.

7.9.6.4 Default Character Sets, Date Masks, and Decimal Separator

ORACLE

The display of NLS character sets are controlled by different settings for SQL*Loader and
external tables.

With SQL*Loader, the default character set, date mask, and decimal separator are determined
by the settings of NLS environment variables on the client.

7-15

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

For fields in external tables, the database settings of the NLS parameters determine the default
character set, date masks, and decimal separator.

7.9.6.5 Use of the Backslash Escape Character

SQL*Loader and external tables use different conventions to identify single quotation marks as
an enclosure character.

With SQL*Loader, to identify a single quotation mark as the enclosure character, you can use
the backslash (\) escape character. For example

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'

In external tables, the use of the backslash escape character within a string raises an error.
The workaround is to use double quotation marks to identify a single quotation mark as the
enclosure character. For example:

TERMINATED BY ',' ENCLOSED BY "'"

7.9.7 Loading Tables Using Data Stored into Object Storage

ORACLE

Learn how to load your data from Object Storage into standard Oracle Database tables using
SQL*Loader.

In the following example, you have a table (T) into which you are loading data:

SQL> create table t (x int, y int);

You have a data file that you want to load to this table, named filel.txt. The contents are as
follows:

S X
a1

To load this table into an object store, complete the following procedure:
1. Install the libraries required to enable object store input/output (I/O):
% cd SORACLE HOME/rdbms/lib
% make -f ins rdbms.mk opc on

2. Upload the file filel.txt to the bucket in Object Storage.

The easiest way to upload file to object storage is to upload the file from the Oracle Cloud
console:

a. Open the Oracle Cloud console.

b. Select the Object Storage tile.

c. If not already created, create a bucket.

d. Click Upload, and select the file filel.txt to upload it into the bucket.

3. In Oracle Database, create the wallet and the credentials.

7-16

Chapter 7
Loading Objects, Collections, and LOBs with SQL*Loader

For example:

$ orapki wallet create -wallet /home/oracle/wallets -pwd mypassword-
auto_login

$ mkstore -wrl /home/oracle/wallets -createEntry
oracle.sqglldr.credential.myfedcredential.username
oracleidentitycloudservice/myuseracct@example.com

$ mkstore -wrl /home/oracle/wallets -createEntry
oracle.sqglldr.credential.myfedcredential.password "MhAVCDfW+-ReskK4:Ho-
zH"

This example shows the use of a federated user account (myfedcredential). The
password is automatically generated, as described in Oracle Cloud Infrastructure
Documentation. "Managing Credentials," in the section "To create an auth token."

After creating the wallet, add the location in the sqlnet.ora file in the
directory $ORACLE HOME/network/admin directory.
For example:

vi test.ctl

LOAD DATA

INFILE 'https://objectstorage.eu-frankfurt-1.oraclecloud.com/n/
dbcloudoci/b/myobjectstore/o/filel.txt"

truncate

INTO TABLE T

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

(X,Y)

Run SQL*Loader to load the data into the object store.

For example:

sqlldr test/mypassword@pdbl /home/oracle/test.ctl
credential=myfedcredentiallog=test.log external table=not used

Related Topics

"Managing Credentials: To create an auth token," Oracle Cloud Infrastructure
Documentation

Using the Console, Oracle Cloud Infrastructure Documentation

7.10 Loading Objects, Collections, and LOBs with SQL*Loader

You can bulk-load the column, row, LOB, and JSON database objects that you need to model
real-world entities, such as customers and purchase orders.

ORACLE

Supported Object Types
SQL*Loader supports loading of the column and row object types.

Supported Collection Types
SQL*Loader supports loading of nested tables and VARRAY collection types.

Supported LOB Data Types
SQL*Loader supports multiple large object types (LOBS).

7-17

https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#three?intcmp=sutildw0421
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#three?intcmp=sutildw0421
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/console.htm?intcmp=sutildw0421

Chapter 7
Loading Objects, Collections, and LOBs with SQL*Loader

7.10.1 Supported Object Types

SQL*Loader supports loading of the column and row object types.

e column objects
When a column of a table is of some object type, the objects in that column are referred to
as column objects.

° row objects
These objects are stored in tables, known as object tables, that have columns
corresponding to the attributes of the object.

7.10.1.1 column objects

When a column of a table is of some object type, the objects in that column are referred to as
column objects.

Conceptually such objects are stored in their entirety in a single column position in a row.
These objects do not have object identifiers and cannot be referenced.

If the object type of the column object is declared to be nonfinal, then SQL*Loader allows a
derived type (or subtype) to be loaded into the column object.

7.10.1.2 row objects

These objects are stored in tables, known as object tables, that have columns corresponding
to the attributes of the object.

The object tables have an additional system-generated column, called SYS NC 01D$, that
stores system-generated unique identifiers (OIDs) for each of the objects in the table. Columns
in other tables can refer to these objects by using the OIDs.

If the object type of the object table is declared to be nonfinal, then SQL*Loader allows a
derived type (or subtype) to be loaded into the row object.

¢ See Also:

* Loading Column Objects

* Loading Object Tables

7.10.2 Supported Collection Types

ORACLE

SQL*Loader supports loading of nested tables and VARRAY collection types.

* Nested Tables
A nested table is a table that appears as a column in another table.

« VARRAYs
A VARRAY is a variable sized arrays.

7-18

Chapter 7
Loading Objects, Collections, and LOBs with SQL*Loader

7.10.2.1 Nested Tables

A nested table is a table that appears as a column in another table.

All operations that can be performed on other tables can also be performed on nested tables.

7.10.2.2 VARRAYS

A VARRAY is a variable sized arrays.

An array is an ordered set of built-in types or objects, called elements. Each array element is of
the same type and has an index, which is a number corresponding to the element's position in
the VARRAY.

When you create a VARRAY type, you must specify the maximum size. Once you have declared
a VARRAY type, it can be used as the data type of a column of a relational table, as an object
type attribute, or as a PL/SQL variable.

¢ See Also:

Loading Collections (Nested Tables and VARRAYS) for details on using SQL*Loader
control file data definition language to load these collection types

7.10.3 Supported LOB Data Types

SQL*Loader supports multiple large object types (LOBS).

This release of SQL*Loader supports loading of four LOB data types:

° BLOB: a LOB containing unstructured binary data

° CLOB: a LOB containing character data

e NCLOB: a LOB containing characters in a database national character set

e BFILE: a BLOB stored outside of the database tablespaces in a server-side operating
system file

LOBs can be column data types, and except for NCLOB, they can be an object's attribute data
types. LOBs can have an actual value, they can be null, or they can be "empty."

JSON columns can be loaded using the same methods used to load scalars and LOBs

See Also:

Loading LOBs for details on using SQL*Loader control file data definition language to
load these LOB types

ORACLE 7-19

Chapter 7
Partitioned Object Support in SQL*Loader

7.11 Partitioned Object Support in SQL*Loader

Partitioned database objects enable you to manage sections of data, either collectively or
individually. SQL*Loader supports loading partitioned objects.

A partitioned object in Oracle Database instances is a table or index consisting of partitions
(pieces) that have been grouped, typically by common logical attributes. For example, sales
data for a particular year might be partitioned by month. The data for each month is stored in a
separate partition of the sales table. Each patrtition is stored in a separate segment of the
database, and can have different physical attributes.

SQL*Loader partitioned object support enables SQL*Loader to load the following:
* A single partition of a partitioned table
e All partitions of a partitioned table

* A nonpartitioned table

7.12 Application Development: Direct Path Load API

Direct path loads enable you to load data from external files into tables and partitions.Oracle
provides a direct path load API for application developers.

Related Topics

e Oracle Call Interface Programmer's Guide

7.13 SQL*Loader Case Studies

To learn how you can use SQL*Loader features, you can run a variety of case studies that
Oracle provides.

* How to Access and Use the Oracle SQL*Loader Case Studies
Oracle provides 11 case studies that illustrate features of SQL*Loader

e Case Study Files
Each of the SQL*Loader case study files has a set of files required to use that case study

* Running the Case Studies
The typical steps for running SQL*Loader case studies is similar for all of the cases.

e Case Study Log Files
Log files for the case studies are not provided in the $SORACLE HOME/rdbms/demo directory.

* Checking the Results of a Case Study
To check the results of running a case study, start SQL*Plus and perform a select
operation from the table that was loaded in the case study.

7.13.1 How to Access and Use the Oracle SQL*Loader Case Studies

ORACLE

Oracle provides 11 case studies that illustrate features of SQL*Loader

The case studies are based upon the Oracle demonstration database tables, emp and dept,
owned by the user scott. (In some case studies, additional columns have been added.) The
case studies are numbered 1 through 11, starting with the simplest scenario and progressing in
complexity.

7-20

Chapter 7
SQL*Loader Case Studies

Note:

Files for use in the case studies are located in the $ORACLE HOME/rdbms/demo
directory. These files are installed when you install the Oracle Database Examples
(formerly Companion) media.

The following is a summary of the case studies:

e Case Study 1: Loading Variable-Length Data - Loads stream format records in which the
fields are terminated by commas and may be enclosed by quotation marks. The data is
found at the end of the control file.

e Case Study 2: Loading Fixed-Format Fields - Loads data from a separate data file.

e Case Study 3: Loading a Delimited, Free-Format File - Loads data from stream format
records with delimited fields and sequence numbers. The data is found at the end of the
control file.

e Case Study 4: Loading Combined Physical Records - Combines multiple physical records
into one logical record corresponding to one database row.

e Case Study 5: Loading Data into Multiple Tables - Loads data into multiple tables in one
run.

e Case Study 6: Loading Data Using the Direct Path Load Method - Loads data using the
direct path load method.

e Case Study 7: Extracting Data from a Formatted Report - Extracts data from a formatted
report.

e Case Study 8: Loading Partitioned Tables - Loads partitioned tables.

e Case Study 9: Loading LOBFILEs (CLOBS) - Adds a CLoB column called resume to the
table emp, uses a FILLER field (res _file), and loads multiple LOBFILESs into the emp table.

e Case Study 10: REF Fields and VARRAYs - Loads a customer table that has a primary key
as its OID and stores order items in a VARRAY. Loads an order table that has a reference to
the customer table and the order items in a VARRAY.

e Case Study 11: Loading Data in the Unicode Character Set - Loads data in the Unicode
character set, UTF16, in little-endian byte order. This case study uses character-length
semantics.

7.13.2 Case Study Files

ORACLE

Each of the SQL*Loader case study files has a set of files required to use that case study

Usage Notes

Generally, each case study is comprised of the following types of files:
e Control files (for example, ulcase5.ctl)

e Data files (for example, ulcase5.dat)

e Setup files (for example, ulcase5.sql)

These files are installed when you install the Oracle Database Examples (formerly Companion)
media. They are installed in the directory SORACLE HOME/rdbms/demo.

7-21

Chapter 7
SQL*Loader Case Studies

If the example data for the case study is contained within the control file, then there is no .dat
file for that case.

Case study 2 does not require any special set up, so there is no .sql script for that case. Case
study 7 requires that you run both a starting (setup) script and an ending (cleanup) script.

The following table lists the files associated with each case:

Table 7-1 Case Studies and Their Related Files
]

Case .ctl .dat .sql
1 ulcasel.ctl N/A ulcasel.sq
2 ulcase?2.ctl ulcase2.dat N/A
3 ulcase3.ctl N/A ulcase3.sql
4 ulcase4.ctl ulcase4.dat ulcase4.sql
5 ulcase5.ctl ulcase5.dat ulcase5.sql
6 ulcase6.ctl ulcase6.dat ulcase6.sql
7 ulcase7?.ctl ulcase7.dat ulcase7s.sql
ulcase7e.sql
8 ulcase8.ctl ulcase8.dat ulcase8.sql
ulcase9.ctl ulcase9.dat ulcase9.sql
10 ulcasel0.ctl N/A ulcasel0.sq
11 ulcasell.ctl ulcasell.dat ulcasell.sq

7.13.3 Running the Case Studies

ORACLE

The typical steps for running SQL*Loader case studies is similar for all of the cases.

Be sure you are in the $SORACLE HOME/rdbms/demo directory, which is where the case study files
are located.

Also, be sure to read the control file for each case study before you run it. The beginning of the
control file contains information about what is being demonstrated in the case study, and any
other special information you need to know. For example, case study 6 requires that you add
DIRECT=TRUE to the SQL*Loader command line.

1. Atthe system prompt, type sqlplus and press Enter to start SQL*Plus. At the user-name
prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.
2. Atthe SQL prompt, execute the SQL script for the case study. :

For example, to execute the SQL script for case study 1, enter the following command:

SQL> @ulcasel
This command prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, start SQL*Loader and run the case study.

7-22

Chapter 7
SQL*Loader Case Studies

For example, to run case 1, enter the following command:

sglldr USERID=scott CONTROL=ulcasel.ctl LOG=ulcasel.log

Substitute the appropriate control file name and log file name for the CONTROL and LOG
parameters, and press Enter. When you are prompted for a password, type tiger and
then press Enter.

7.13.4 Case Study Log Files

Log files for the case studies are not provided in the $SORACLE HOME/rdbms/demo directory.

ORACLE

This is because the log file for each case study is produced when you execute the case study,
provided that you use the 1.0G parameter. If you do not want to produce a log file, then omit the
L0OG parameter from the command line.

7.13.5 Checking the Results of a Case Study

To check the results of running a case study, start SQL*Plus and perform a select operation
from the table that was loaded in the case study.

1.

At the system prompt, type sqlplus and press Enter to start SQL*Plus. At the user-name
prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

At the SQL prompt, use the SELECT statement to select all rows from the table that the case
study loaded.

For example, if you load the table emp, then enter the following statement:

SQL> SELECT * FROM emp;

The contents of each row in the emp table are displayed.

7-23

SQL*Loader Command-Line Reference

To start regular SQL*Loader, use the command-line parameters.

Note:

Regular SQL*Loader and SQL*Loader Express mode share some of the same
parameters, but the behavior of these parameters can be different for each utility. The
parameter descriptions described here are for regular SQL*Loader. For SQL*Loader
Express options, refer to the SQL*Loader Express parameters.

Starting SQL*Loader
Learn how to start SQL*Loader, and how to specify parameters that manage how the load
is run.

Command-Line Parameters for SQL*Loader
Manage SQL*Loader by using the command-line parameters.

Exit Codes for Inspection and Display
Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon
completion.

8.1 Starting SQL*Loader

Learn how to start SQL*Loader, and how to specify parameters that manage how the load is
run.

To display a help screen that lists all SQL*Loader parameters, enter sql1dr at the prompt. and
press Enter. The output shows each parameter, including default values for parameters, and a
brief description of each parameter.

Specifying Parameters on the Command Line
When you start SQL*Loader, you specify parameters to establish various characteristics of
the load operation.

Alternative Ways to Specify SQL*Loader Parameters
Learn how you can move some command-line parameters into the control file, or place
commonly used parameters in a parameter file.

Using SQL*Loader to Load Data Across a Network
To use SQL*Loader to load data across a network connection, you can specify a connect
identifier in the connect string when you start the SQL*Loader utility.

8.1.1 Specifying Parameters on the Command Line

When you start SQL*Loader, you specify parameters to establish various characteristics of the
load operation.

ORACLE

To see how to specify SQL*Loader parameters, refer to the following examples:

8-1

Chapter 8
Starting SQL*Loader

You can separate the parameters by commas. However, it is not required to delimit parameters
by commas:

> sglldr CONTROL=ulcasel.ctl LOG=ulcasel.log
Username: scott
Password: password

Specifying by position means that you enter a value, but not the parameter name. In the
following example, the username scott is provided, and then the name of the control file,
ulcasel.ctl. You are prompted for the password:

> sqglldr scott ulcasel.ctl
Password: password

After a parameter name is used, you must supply parameter names for all subsequent
specifications. No further positional specification is allowed. For example, in the following
command, the CONTROL parameter is used to specify the control file name, but then the log file
name is supplied without the 1.0G parameter, even though the LOG parameter was previously
specified. Submitting this command now results in an error, even though the position of
ulcasel.log is correct:

> sglldr scott CONTROL=ulcasel.ctl ulcasel.log

For the command to run, you must enter the command with the LoG parameter specifically
specified:

> sglldr scott CONTROL=ulcasel.ctl LOG=ulcasel.log

8.1.2 Alternative Ways to Specify SQL*Loader Parameters

ORACLE

Learn how you can move some command-line parameters into the control file, or place
commonly used parameters in a parameter file.

If the length of the command line exceeds the maximum line size for your system, then you
can put certain command-line parameters in the control file by using the 0PTIONS clause.

You can also group parameters together in a parameter file. You specify the name of this file
on the command line using the PARFILE parameter when you start SQL*Loader.

These alternative ways of specifying parameters are useful when you often use the same
parameters with the same values.

Parameter values specified on the command line override parameter values specified in either
a parameter file or in the OPTIONS clause.

Related Topics

 OPTIONS Clause
The following command-line parameters can be specified using the 0PTIONS clause.

* PARFILE
The PARFILE SQL*Loader command-line parameter specifies the name of a file that
contains commonly used command-line parameters.

8-2

Chapter 8
Command-Line Parameters for SQL*Loader

8.1.3 Using SQL*Loader to Load Data Across a Network

To use SQL*Loader to load data across a network connection, you can specify a connect
identifier in the connect string when you start the SQL*Loader utility.

This identifier can specify a database instance that is different from the current instance
identified by the setting of the ORACLE_SID environment variable for the current user. The
connect identifier can be an Oracle Net connect descriptor or a net service name (usually
defined in the tnsnames.ora file) that maps to a connect descriptor. Use of a connect identifier
requires that you have Oracle Net Listener running (to start the default listener, enter 1snrctl
start). The following example starts SQL*Loader for user scott using the connect identifier
instl:

> sqglldr CONTROL=ulcasel.ctl
Username: scott@instl
Password: password

The local SQL*Loader client connects to the database instance defined by the connect
identifier inst1 (a net service name), and loads the data, as specified in the ulcasel.ctl
control file.

Note:

To load data into a pluggable database (PDB), simply specify its connect identifier on
the connect string when you start SQL*Loader.

See Also:

e Oracle Database Net Services Administrator's Guide for more information about
connect identifiers and Oracle Net Listener

e Oracle Database Concepts for more information about PDBs

8.2 Command-Line Parameters for SQL*Loader

ORACLE

Manage SQL*Loader by using the command-line parameters.

The defaults and maximum values listed for these parameters are for Linux and Unix-based
systems. They can be different on your operating system. Refer to your operating system
documentation for more information.

« BAD
The BAD command-line parameter for SQL*Loader specifies the name or location, or both,
of the bad file associated with the first data file specification.

* BINDSIZE
The BINDSIZE command-line parameter for SQL*Loader specifies the maximum size (in

bytes) of the bind array.

8-3

ORACLE

Chapter 8
Command-Line Parameters for SQL*Loader

COLUMNARRAYROWS
The COLUMNARRAYROWS command-line parameter for SQL*Loader specifies the number of
rows to allocate for direct path column arrays.

CONTROL
The cONTROL command-line parameter for SQL*Loader specifies the nhame of the
SQL*Loader control file that describes how to load the data.

CREDENTIAL
The CREDENTIAL command-line parameter for SQL*Loader enables reading data stored in
object stores.

DATA
The DATA command-line parameter for SQL*Loader specifies the names of the data files
containing the data that you want to load.

DATE_CACHE
The DATE CACHE command-line parameter for SQL*Loader specifies the date cache size (in
entries).

DEFAULTS
The DEFAULTS command-line parameter for SQL*Loader controls evaluation and loading of
default expressions.

DEGREE_OF PARALLELISM
The DEGREE OF PARALLELISM command-line parameter for SQL*Loader specifies the
degree of parallelism to use during the load operation.

DIRECT
The DIRECT command-line parameter for SQL*Loader specifies the load method to use,
either conventional path or direct path.

DIRECT_PATH_LOCK_WAIT
The DIRECT_PATH_LOCK_WAIT command-line parameter for SQL*Loader controls direct
path load behavior when waiting for table locks.

DISCARD
The DISCARD command-line parameter for SQL*Loader lets you optionally specify a discard
file to store records that are neither inserted into a table nor rejected.

DISCARDMAX
The DISCARDMAX command-line parameter for SQL*Loader specifies the number of discard
records to allow before data loading is terminated.

DNFS_ENABLE
The DNFS_ENABLE SQL*Loader command-line parameter lets you enable and disable use of
the Direct NFS Client on input data files during a SQL*Loader operation.

DNFS_READBUFFERS
The DNFS_READBUFFERS SQL*Loader command-line parameter lets you control the number
of read buffers used by the Direct NFS Client.

EMPTY_LOBS_ARE_NULL
The EMPTY LOBS ARE NULL SQL*Loader command-line parameter specifies that any LOB
column for which there is no data available is set to NULL, rather than to an empty LOB.

ERRORS
The ERRORS SQL*Loader command line parameter specifies the maximum number of
allowed insert errors.

EXTERNAL_TABLE
The EXTERNAL TABLE parameter instructs SQL*Loader whether to load data using the
external tables option.

8-4

ORACLE

Chapter 8
Command-Line Parameters for SQL*Loader

FILE
The FILE SQL*Loader command-line parameter specifies the database file from which the
extents are allocated.

HELP
The HELP SQL*Loader command-line parameter displays online help for the SQL*Loader
utility.

LOAD
The 1.0AD SQL*Loader command-line parameter specifies the maximum number of records
to load.

LOG

The 1.0G SQL*Loader command-line parameter specifies a directory path, or file name, or
both for the log file where SQL*Loader stores logging information about the loading
process.

MULTITHREADING
The MULTITHREADING SQL*Loader command-line parameter enables stream building on
the client system to be done in parallel with stream loading on the server system.

NO_INDEX_ERRORS
The NO_INDEX ERRORS SQL*Loader command-line parameter specifies whether indexing
errors are tolerated during a direct path load.

PARALLEL

The SQL*Loader PARALLEL parameter specifies whether loads that use direct path or
external tables can operate in multiple concurrent sessions to load data into the same
table.

PARFILE
The PARFILE SQL*Loader command-line parameter specifies the name of a file that
contains commonly used command-line parameters.

PARTITION_MEMORY
The PARFILE SQL*Loader command-line parameter specifies the amount of memory that
you want to have used when you are loading many patrtitions.

READSIZE
The READSIZE SQL*Loader command-line parameter specifies (in bytes) the size of the
read buffer, if you choose not to use the default.

RESUMABLE
The RESUMABLE SQL*Loader command-line parameter enables and disables resumable
space allocation.

RESUMABLE_NAME
The RESUMABLE NAME SQL*Loader command-line parameter identifies a statement that is
resumable.

RESUMABLE_TIMEOUT
The RESUMABLE_TIMEOUT SQL*Loader command-line parameter specifies the time period,
in seconds, during which an error must be fixed.

ROWS

For conventional path loads, the RowWS SQL*Loader command-line parameter specifies the
number of rows in the bind array, and in direct path loads, the number of rows to read from
data files before a save.

8-5

8.2.1 BAD

ORACLE

Chapter 8
Command-Line Parameters for SQL*Loader

e SDF _PREFIX
The sDF_PREFIX SQL*Loader command-line parameter specifies a directory prefix, which
is added to file names of LOBFILEs and secondary data files (SDFs) that are opened as
part of a load operation.

e SILENT
The SILENT SQL*Loader command-line parameter suppresses some of the content that is
written to the screen during a SQL*Loader operation.

e SKIP
The skIP SQL*Loader command-line parameter specifies the number of logical records
from the beginning of the file that should not be loaded.

e SKIP_INDEX_MAINTENANCE
The SKIP INDEX MAINTENANCE SQL*Loader command-line parameter specifies whether to
stop index maintenance for direct path loads.

¢ SKIP_UNUSABLE_INDEXES
The SKIP UNUSABLE INDEXES SQL*Loader command-line parameter specifies whether to
skip an index encountered in an Index Unusable state and continue the load operation.

« STREAMSIZE
The STREAMSIZE SQL*Loader command-line parameter specifies the size (in bytes) of the
data stream sent from the client to the server.

« TRIM
The TRIM SQL*Loader command-line parameter specifies whether you want spaces
trimmed from the beginning of a text field, the end of a text field, both, or neither.

e USERID
The USERID SQL*Loader command-line parameter provides your Oracle username and
password for SQL*Loader.

The BAD command-line parameter for SQL*Loader specifies the name or location, or both, of
the bad file associated with the first data file specification.

Default

The name of the data file, with an extension of .bad.

Purpose

Specifies the name or location, or both, of the bad file associated with the first data file
specification.

Syntax and Description

BAD=[directory/] [filename]

The bad file stores records that cause errors during insert, or that are improperly formatted. If
you specify the BAD parameter, then you must supply either a directory, or file name, or both. If
there are rejected records, and you have not specified a name for the bad file, then the name
defaults to the name of the data file with an extension or file type of .bad.

The value you provide for directory specifies the directory where you want the bad file to be
written. The specification can include the name of a device or network node. The value of
directory is determined as follows:

8-6

Chapter 8
Command-Line Parameters for SQL*Loader

» If the BAD parameter is not specified at all, and a bad file is needed, then the default
directory is the one in which the SQL*Loader control file resides.

» If the BAD parameter is specified with a file name, but without a directory, then the directory
defaults to the current directory.

e If the BAD parameter is specified with a directory, but without a file name, then the specified
directory is used, and the name defaults to the name of the data file, with an extension or
file type of .bad.

The value you provide for £ilename specifies a file name that is recognized as valid on your
platform. You must specify only a name (and extension, if you want to use one other

than .bad). Any spaces or punctuation marks in the file name must be enclosed within single
guotation marks.

A bad file specified on the command line becomes the bad file associated with the first INFILE
statement (if there is one) in the control file. You can also specify the of the bad file in the
SQL*Loader control file by using the BADFILE clause. If the bad file is specified in both the
control file and by command line, then the command-line value is used. If a bad file with that
name already exists, then it is either overwritten, or a new version is created, depending on
your operating system.

Example

The following specification creates a bad file named empl.bad in the current directory:

BAD=empl

Related Topics

* Understanding and Specifying the Bad File
When SQL*Loader executes, it can create a file called a bad file, or reject file, in which it
places records that were rejected because of formatting errors or because they caused
Oracle errors.

8.2.2 BINDSIZE

ORACLE

The BINDSIZE command-line parameter for SQL*Loader specifies the maximum size (in bytes)
of the bind array.

Default
256000

Purpose

Specifies the maximum size (in bytes) of the bind array.
Syntax and Description

BINDSIZE=n

A bind array is an area in memory where SQL*Loader stores data that is to be loaded. When
the bind array is full, the data is transmitted to the database. The bind array size is controlled
by the parameters BINDSIZE and READSIZE.

8-7

Chapter 8
Command-Line Parameters for SQL*Loader

The size of the bind array given by BINDSIZE overrides the default size (which is system
dependent) and any size determined by ROWS.

Restrictions

e The BINDSIZE parameter is used only for conventional path loads.

Example

The following BINDSIZE specification limits the maximum size of the bind array to 356,000
bytes.

BINDSIZE=356000

Related Topics

- Differences Between Bind Arrays and Conventional Path Loads
With bind arrays, you can use SQL*Loader to load an entire array of records in one
operation.

e READSIZE
The READSIZE SQL*Loader command-line parameter specifies (in bytes) the size of the
read buffer, if you choose not to use the default.

¢ ROWS
For conventional path loads, the Rows SQL*Loader command-line parameter specifies