
Oracle® Database
Advanced Security Guide

23ai
F46692-06
May 2024



Oracle Database Advanced Security Guide, 23ai

F46692-06

Copyright © 1996, 2024, Oracle and/or its affiliates.

Primary Author: Patricia Huey

Contributors: Sudha Duraiswamy , Michael Hwa, Sudha Iyer, Supriya Kalyanasundaram, Lakshmi Kethana,
Peter Knaggs, Andrew Koyfman, Dah-Yoh Lim, Adam Lee, Yunrui Li, Adam Lindsey, Rahil Mir, Gopal
Mulagund, Andy Philips, Preetam Ramakrishna, Philip Thornton, Peter Wahl, Lixia Yuan, Paul Youn

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xix

Documentation Accessibility xix

Diversity and Inclusion xix

Related Documents xx

Conventions xx

 Changes in This Release for Oracle Database Advanced Security Guide

Changes in Oracle Database Advanced Security 23ai xxi

Updates to Oracle Database Advanced Security 23ai xxiii

1   Introduction to Oracle Advanced Security

1.1 Transparent Data Encryption 1-1

1.2 Oracle Data Redaction 1-1

Part I   Using Transparent Data Encryption

2   Introduction to Transparent Data Encryption

2.1 What Is Transparent Data Encryption? 2-1

2.2 How Configuring Transparent Data Encryption Works 2-2

2.3 Benefits of Using Transparent Data Encryption 2-3

2.4 Who Can Configure Transparent Data Encryption? 2-4

2.5 Types and Components of Transparent Data Encryption 2-5

2.5.1 About Transparent Data Encryption Types and Components 2-5

2.5.2 How Transparent Data Encryption Tablespace Encryption Works 2-5

2.5.3 How Transparent Data Encryption Column Encryption Works 2-7

2.5.4 How the Keystore for the Storage of TDE Master Encryption Keys Works 2-8

2.5.4.1 About the Keystore Storage of TDE Master Encryption Keys 2-8

2.5.4.2 Benefits of the Keystore Storage Framework 2-8

iii



2.5.4.3 Types of Keystores 2-9

2.5.5 Supported Encryption and Integrity Algorithms 2-10

2.6 Transparent Data Encryption in a Multitenant Environment 2-11

2.7 Transparent Data Encryption Keystore Search Order 2-12

3   Configuring United Mode

3.1 About Configuring United Mode 3-1

3.2 Operations That Are Allowed in United Mode 3-2

3.3 Configuring the Keystore Location and Type for United Mode 3-6

3.3.1 About Configuring the Keystore Location and Type for United Mode 3-7

3.3.2 Configuring United Mode with the Initialization Parameter File and ALTER
SYSTEM 3-7

3.3.3 Example: Configuring a TDE Wallet When Multiple Databases Share the Same
Host 3-9

3.3.4 Example: Configuring a TDE Wallet for an Oracle Automatic Storage
Management Disk Group 3-9

3.4 Configuring a TDE Wallet and TDE Master Encryption Key for United Mode 3-9

3.4.1 About Configuring a TDE Wallet and TDE Master Encryption Key for United
Mode 3-10

3.4.2 Step 1: Create the TDE Wallet 3-11

3.4.2.1 About Creating TDE Wallets 3-11

3.4.2.2 Creating a Password-Protected TDE Wallet 3-11

3.4.2.3 Creating an Auto-Login or a Local Auto-Login TDE Wallet 3-12

3.4.3 Step 2: Open the TDE Wallet 3-13

3.4.3.1 About Opening TDE Wallets 3-13

3.4.3.2 Opening the TDE Wallet in a United Mode PDB 3-14

3.4.4 Step 3: Set the TDE Master Encryption Key in the TDE Wallet 3-15

3.4.4.1 About Setting the TDE Wallet TDE Master Encryption Key 3-16

3.4.4.2 Setting the TDE Master Encryption Key in the United Mode TDE Wallet 3-16

3.4.5 Step 4: Encrypt Your Data in United Mode 3-17

3.5 Operations That Are Not Allowed in a United Mode PDB 3-18

3.6 Configuring a Container Database with United Mode PDBs for Oracle Key Vault 3-18

3.6.1 About Configuring a Container Database with United Mode PDBs for Oracle
Key Vault 3-19

3.6.2 About Configuring a Container Database with United Mode PDBs for Oracle
Key Vault 3-19

3.6.3 Step 1: Configure Oracle Key Vault for United Mode 3-20

3.6.4 Step 2: Open the Connection to Oracle Key Vault 3-20

3.6.4.1 About Opening the Connection to Oracle Key Vault 3-20

3.6.4.2 Opening the Oracle Key Vault Connection in a United Mode PDB 3-21

3.6.5 Step 3: Set the TDE Master Encryption Key in Oracle Key Vault 3-22

3.6.5.1 About Setting the External Keystore TDE Master Encryption Key 3-22

iv



3.6.5.2 Heartbeat Batch Size for External Keystores 3-23

3.6.5.3 Setting the TDE Master Encryption Key for United Mode PDBs in an
External Keystore 3-24

3.6.5.4 Migration of an Encrypted Database from a TDE Wallet to Oracle Key
Vault or OCI KMS 3-26

3.6.6 Step 4: Encrypt Your Data in United Mode 3-26

4   Configuring Isolated Mode

4.1 About Configuring Isolated Mode 4-1

4.2 Operations That Are Allowed in Isolated Mode 4-2

4.3 Operations That Are Not Allowed in an Isolated Mode PDB 4-7

4.4 Configuring the Keystore Location and Type for Isolated Mode 4-7

4.4.1 About Configuring the Keystore Location and Type for Isolated Mode 4-7

4.4.2 Configuring the Keystore Location and Keystore Type for an Isolated Mode
PDB 4-8

4.4.3 Example: Restoring an Older Version of a Control File 4-9

4.4.4 Example: Addressing the Problem of a Lost Control File 4-10

4.4.5 Example: Configuring Isolated Mode in an Oracle Real Application Clusters
Environment 4-11

4.5 Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode 4-11

4.5.1 About Configuring a TDE Wallet in Isolated Mode 4-12

4.5.2 Step 1: Create a TDE Wallet in a PDB Configured in Isolated Mode 4-12

4.5.3 Step 2: Open the TDE Wallet in an Isolated Mode PDB 4-13

4.5.4 Step 3: Set the TDE Master Encryption Key in the TDE Wallet of the Isolated
Mode PDB 4-14

4.5.5 Step 4: Encrypt Your Data in Isolated Mode 4-15

4.6 Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault 4-15

4.6.1 About Configuring an External Keystore in Isolated Mode 4-15

4.6.2 Step 1: Configure Isolated PDBs for Oracle Key Vault 4-16

4.6.3 Step 2: Open the Isolated Mode PDB External Keystore 4-16

4.6.4 Step 3: Set the First TDE Master Encryption Key in the External Keystore 4-17

4.6.4.1 Setting the TDE Master Encryption Key in the Isolated Mode External
Keystore 4-17

4.6.4.2 Migration of a Previously Configured Encryption Key in Isolated Mode 4-18

4.6.5 Step 4: Encrypt Your Data in Isolated Mode 4-18

5   Encrypting Columns in Tables

5.1 About Encrypting Columns in Tables 5-1

5.2 Data Types That Can Be Encrypted with TDE Column Encryption 5-2

5.3 Restrictions on Using TDE Column Encryption 5-3

5.4 Creating Tables with Encrypted Columns 5-4

v



5.4.1 About Creating Tables with Encrypted Columns 5-4

5.4.2 Creating a Table with an Encrypted Column Using the Default Algorithm 5-4

5.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a Non-
Default Algorithm 5-5

5.4.4 Using the NOMAC Parameter to Save Disk Space and Improve Performance 5-6

5.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE Statement 5-6

5.4.6 Example: Changing the Integrity Algorithm for a Table 5-7

5.4.7 Creating an Encrypted Column in an External Table 5-7

5.5 Encrypting Columns in Existing Tables 5-8

5.5.1 About Encrypting Columns in Existing Tables 5-8

5.5.2 Adding an Encrypted Column to an Existing Table 5-8

5.5.3 Encrypting an Unencrypted Column 5-8

5.5.4 Disabling Encryption on a Column 5-9

5.6 Creating an Index on an Encrypted Column 5-9

5.7 Adding Salt to an Encrypted Column 5-9

5.8 Removing Salt from an Encrypted Column 5-10

5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 5-10

5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables 5-10

6   Encryption Conversions for Tablespaces and Databases

6.1 About Encryption Conversion for Tablespaces and Databases 6-2

6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces 6-4

6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption 6-5

6.4 Creating an Encrypted New Tablespace 6-6

6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace
Encryption 6-6

6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace
Encryption 6-6

6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace
Encryption 6-7

6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key 6-8

6.4.3 Step 3: Create the Encrypted Tablespace 6-8

6.4.3.1 About Creating Encrypted Tablespaces 6-8

6.4.3.2 Creating an Encrypted Tablespace 6-9

6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192 6-9

6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default
Algorithm 6-9

6.5 Setting the Tablespace Encryption Default Algorithm 6-10

6.6 Encrypting Future Tablespaces 6-11

6.6.1 About Encrypting Future Tablespaces 6-11

6.6.2 Setting Future Tablespaces to be Encrypted 6-12

6.7 Encrypted Sensitive Credential Data in the Data Dictionary 6-13

vi



6.8 Encryption Conversions for Existing Offline Tablespaces 6-13

6.8.1 About Encryption Conversions for Existing Offline Tablespaces 6-14

6.8.2 Encrypting an Existing User-Defined Tablespace with Offline Conversion 6-16

6.8.3 Decrypting an Existing Tablespace with Offline Conversion 6-17

6.9 Encryption Conversions for Existing Online Tablespaces 6-18

6.9.1 About Encryption Conversions for Existing Online Tablespaces 6-18

6.9.2 Encrypting an Existing Tablespace with Online Conversion 6-20

6.9.3 Rekeying an Existing Tablespace with Online Conversion 6-22

6.9.4 Rekeying the SYSAUX and UNDO Tablespaces with Online Conversion 6-23

6.9.5 Decrypting an Existing Tablespace with Online Conversion 6-24

6.9.6 Finishing an Interrupted Online Encryption Conversion 6-25

6.10 Rekeying an Encrypted Tablespace 6-26

6.11 Creating an Encrypted Database Using DBCA 6-27

6.11.1 Using DBCA to Create an Encrypted Database 6-27

6.11.2 Using DBCA to Create an Oracle Data Guard Standby Database from an
Encrypted Primary Database 6-28

6.11.3 Best Practice after DBCA Creates an Encrypted Database 6-29

6.12 Encryption Conversions for Existing Databases 6-30

6.12.1 About Encryption Conversions for Existing Databases 6-30

6.12.2 Encrypting an Existing Database with Offline Conversion 6-31

6.12.3 Encrypting an Existing Database with Online Conversion 6-33

7   Managing the Keystore and the Master Encryption Key

7.1 Managing the Keystore 7-1

7.1.1 Performing Operations That Require a Keystore Password 7-2

7.1.2 Configuring Auto-Open Connections into External Key Managers 7-3

7.1.2.1 About Auto-Open Connections into External Key Managers 7-3

7.1.2.2 Configuring an Auto-Open Connection into an External Key Manager 7-3

7.1.3 Changing the Oracle Key Vault Password 7-5

7.1.4 Configuring an External Store for a Keystore Password 7-5

7.1.4.1 About Configuring an External Store for a Keystore Password 7-6

7.1.4.2 Configuring the External Keystore Password Store with WALLET_ROOT 7-6

7.1.4.3 When to Use the EXTERNAL STORE Clause After Configuration 7-6

7.1.5 Backing Up Password-Protected TDE Wallets 7-7

7.1.5.1 About Backing Up Password-Protected TDE Wallets 7-7

7.1.5.2 Creating a Backup Identifier String for the Backup TDE Wallet 7-7

7.1.5.3 Backing Up a Password-Protected TDE Wallet 7-8

7.1.6 How the V$ENCRYPTION_WALLET View Interprets Backup Operations 7-9

7.1.7 Backups of the External Keystore 7-9

7.1.8 Merging TDE Wallets 7-10

7.1.8.1 About Merging TDE Wallets 7-10

vii



7.1.8.2 Merging One TDE Wallet into an Existing TDE Wallet 7-11

7.1.8.3 Merging Two TDE Wallets into a Third New TDE Wallet 7-11

7.1.8.4 Merging an Auto-Login TDE Wallet into an Existing Password-Protected
TDE Wallet 7-12

7.1.8.5 Reversing a TDE Wallet Merge Operation 7-13

7.1.9 Moving a TDE Wallet to a New Location 7-13

7.1.10 Moving a TDE Wallet Out of Automatic Storage Management 7-14

7.1.11 Migrating from a TDE Wallet to Oracle Key Vault 7-15

7.1.11.1 Migrating from a Password-Protected TDE Wallet to an External
Keystore 7-15

7.1.11.2 Migrating from an External Keystore to a Password-Based TDE Wallet 7-17

7.1.11.3 Keystore Order After a Migration 7-19

7.1.12 Migration of Keystores to and from Oracle Key Vault 7-20

7.1.13 Configuring Keystores for Automatic Storage Management 7-21

7.1.13.1 About Configuring Keystores for Automatic Storage Management 7-21

7.1.13.2 Configuring a Keystore to Point to an ASM Location 7-22

7.1.13.3 Configuring a Keystore to Point to an ASM Location When the
WALLET_ROOT Location Does Not Follow OMF Guidelines 7-22

7.1.14 Managing Updates to the PKCS#11 Library 7-23

7.1.14.1 About Managing Updates to the PKCS#11 Library 7-23

7.1.14.2 Switching Over to an Updated PKCS#11 Library 7-24

7.1.15 Backup and Recovery of Encrypted Data 7-25

7.1.16 Dangers of Deleting TDE Wallets 7-26

7.1.17 Features That Are Affected by Deleted Keystores 7-27

7.2 Managing the TDE Master Encryption Key 7-28

7.2.1 TDE Master Encryption Key Attribute Management 7-28

7.2.1.1 TDE Master Encryption Key Attributes 7-29

7.2.1.2 Finding the TDE Master Encryption Key That Is in Use 7-30

7.2.2 Creating Custom TDE Master Encryption Key Attributes for Reports 7-30

7.2.2.1 About Creating Custom Attribute Tags 7-30

7.2.2.2 Creating a Custom Attribute Tag 7-31

7.2.3 Setting or Rekeying the TDE Master Encryption Key in the Keystore 7-32

7.2.3.1 About Setting or Rekeying the TDE Master Encryption Key in the
Keystore 7-32

7.2.3.2 Creating, Tagging, and Backing Up a TDE Master Encryption Key 7-33

7.2.3.3 About Rekeying the TDE Master Encryption Key 7-34

7.2.3.4 Rekeying the TDE Master Encryption Key 7-34

7.2.3.5 Changing the TDE Master Encryption Key for a Tablespace 7-35

7.2.4 Exporting and Importing the TDE Master Encryption Key 7-36

7.2.4.1 About Exporting and Importing the TDE Master Encryption Key 7-37

7.2.4.2 About Exporting TDE Master Encryption Keys 7-37

7.2.4.3 Exporting a TDE Master Encryption Key 7-37

viii



7.2.4.4 Example: Exporting a TDE Master Encryption Key by Using a Subquery 7-38

7.2.4.5 Example: Exporting a List of TDE Master Encryption Key Identifiers to a
File 7-38

7.2.4.6 Example: Exporting All TDE Master Encryption Keys of the Database 7-39

7.2.4.7 About Importing TDE Master Encryption Keys 7-39

7.2.4.8 Importing a TDE Master Encryption Key 7-39

7.2.4.9 Example: Importing a TDE Master Encryption Key 7-40

7.2.4.10 How Keystore Merge Differs from TDE Master Encryption Key Export or
Import 7-40

7.2.5 Converting from ENCRYPTION_WALLET_LOCATION to WALLET_ROOT and
TDE_CONFIGURATION 7-41

7.2.6 Management of TDE Master Encryption Keys Using Oracle Key Vault 7-42

7.3 Transparent Data Encryption Data Dynamic and Data Dictionary Views 7-42

8   Administering United Mode

8.1 Administering Keystores and Master Encryption Keys in United Mode 8-1

8.1.1 Changing the Keystore Password in United Mode 8-2

8.1.1.1 Changing the Password-Protected TDE Wallet Password in United Mode 8-2

8.1.1.2 Changing the Password of an External Keystore in United Mode 8-3

8.1.2 Backing Up a Password-Protected TDE Wallet in United Mode 8-4

8.1.3 Closing Keystores in United Mode 8-5

8.1.3.1 About Closing Keystores 8-6

8.1.3.2 Closing a TDE Wallet in United Mode 8-6

8.1.3.3 Closing an External Keystore in United Mode 8-7

8.1.4 Creating TDE Master Encryption Keys for Later Use in United Mode 8-7

8.1.4.1 About Creating a TDE Master Encryption Key for Later Use 8-8

8.1.4.2 Creating a TDE Master Encryption Key for Later Use in United Mode 8-8

8.1.5 Example: Creating a Master Encryption Key in All PDBs 8-9

8.1.6 Activating TDE Master Encryption Keys in United Mode 8-10

8.1.6.1 About Activating TDE Master Encryption Keys 8-10

8.1.6.2 Activating a TDE Master Encryption Key in United Mode 8-10

8.1.6.3 Example: Activating a TDE Master Encryption Key 8-11

8.1.7 Creating User-Defined TDE Master Encryption Keys 8-11

8.1.7.1 About User-Defined TDE Master Encryption Keys 8-12

8.1.7.2 Creating a User-Defined TDE Master Encryption Key in United Mode 8-12

8.1.8 Rekeying the TDE Master Encryption Key in United Mode 8-14

8.1.9 Finding the TDE Master Encryption Key That Is in Use in United Mode 8-15

8.1.10 Creating a Custom Attribute Tag in United Mode 8-15

8.1.11 Moving TDE Master Encryption Keys into a New Keystore in United Mode 8-16

8.1.11.1 About Moving TDE Master Encryption Keys into a New Keystore 8-16

ix



8.1.11.2 Moving a TDE Master Encryption Key into a New Keystore in United
Mode 8-17

8.1.12 Automatically Removing Inactive TDE Master Encryption Keys in United
Mode 8-19

8.1.13 Isolating a Pluggable Database Keystore 8-19

8.2 Administering Transparent Data Encryption in United Mode 8-20

8.2.1 Moving PDBs from One CDB to Another in United Mode 8-20

8.2.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in United Mode 8-21

8.2.2.1 Unplugging a PDB That Has Encrypted Data in United Mode 8-21

8.2.2.2 Plugging a PDB That Has Encrypted Data into a CDB in United Mode 8-22

8.2.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an
External Keystore in United Mode 8-23

8.2.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in United Mode 8-24

8.2.3 Managing Cloned PDBs with Encrypted Data in United Mode 8-24

8.2.3.1 About Managing Cloned PDBs That Have Encrypted Data in United
Mode 8-25

8.2.3.2 Cloning a PDB with Encrypted Data in a CDB in United Mode 8-25

8.2.3.3 Remotely Clone an Encrypted PDB in United Mode 8-26

8.2.3.4 Relocating an Encrypted PDB in United Mode 8-27

8.2.4 How Keystore Open and Close Operations Work in United Mode 8-28

8.2.5 Finding the Keystore Status for All of the PDBs in United Mode 8-29

9   Administering Isolated Mode

9.1 Administering Keystores and TDE Master Encryption Keys in Isolated Mode 9-1

9.1.1 Changing the Keystore Password in Isolated Mode 9-2

9.1.1.1 Changing the Password-Protected TDE Wallet Password in Isolated
Mode 9-3

9.1.1.2 Changing the Password of an External Keystore in Isolated Mode 9-4

9.1.2 Backing Up a Password-Protected TDE Wallet in Isolated Mode 9-4

9.1.3 Merging TDE Wallets in Isolated Mode 9-5

9.1.3.1 Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode 9-6

9.1.3.2 Merging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode 9-6

9.1.4 Closing Keystores in Isolated Mode 9-7

9.1.4.1 Closing a TDE Wallet in Isolated Mode 9-8

9.1.4.2 Closing an External Keystore in Isolated Mode 9-9

9.1.5 Creating a User-Defined TDE Master Encryption Key in Isolated Mode 9-9

9.1.6 Creating a TDE Master Encryption Key for Later Use in Isolated Mode 9-11

9.1.7 Activating a TDE Master Encryption Key in Isolated Mode 9-12

9.1.8 Rekeying the TDE Master Encryption Key in Isolated Mode 9-13

9.1.9 Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode 9-14

9.1.10 Creating a Custom Attribute Tag in Isolated Mode 9-15

x



9.1.11 Exporting and Importing the TDE Master Encryption Key in Isolated Mode 9-16

9.1.11.1 Exporting a TDE Master Encryption Key in Isolated Mode 9-16

9.1.11.2 Importing a TDE Master Encryption Key in Isolated Mode 9-17

9.1.12 Storing Oracle Database Secrets in Isolated Mode 9-18

9.1.12.1 About Storing Oracle Database Secrets in a Keystore in Isolated Mode 9-18

9.1.12.2 Storing Oracle Database Secrets in a TDE Wallet in Isolated Mode 9-19

9.1.12.3 Example: Adding an Oracle Key Vault Password to a TDE Wallet 9-20

9.1.12.4 Example: Changing an Oracle Key Vault Password Stored as a Secret
in a TDE Wallet 9-20

9.1.12.5 Example: Deleting an Oracle Key Vault Password Stored as a Secret in
a TDE Wallet 9-21

9.1.12.6 Storing Oracle Database Secrets in an External Keystore in Isolated
Mode 9-21

9.1.12.7 Example: Adding an Oracle Database Secret to an External Keystore 9-22

9.1.12.8 Example: Changing an Oracle Database Secret in an External Keystore 9-23

9.1.12.9 Example: Deleting an Oracle Database Secret in an External Keystore 9-23

9.1.13 Storing Oracle GoldenGate Secrets in a Keystore in Isolated Mode 9-23

9.1.13.1 About Storing Oracle GoldenGate Secrets in Keystores in Isolated
Mode 9-23

9.1.13.2 Oracle GoldenGate Extract Classic Capture Mode TDE Requirements 9-24

9.1.13.3 Configuring Keystore Support for Oracle GoldenGate 9-24

9.1.14 Migrating Keystores in Isolated Mode 9-27

9.1.14.1 Reverse Migrating an Isolated PDB from Oracle Key Vault to a TDE
Wallet 9-28

9.1.14.2 Migrating from an External Keystore to a Password-Protected TDE
Wallet in Isolated Mode 9-29

9.1.15 Uniting a Pluggable Database Keystore 9-30

9.1.16 Creating a Keystore When the PDB Is Closed 9-31

9.1.16.1 About Creating a Keystore When the PDB Is Closed 9-31

9.1.16.2 Reverting a Keystore Creation Operation When a PDB Is Closed 9-33

9.2 Administering Transparent Data Encryption in Isolated Mode 9-33

9.2.1 Cloning or Relocating Encrypted PDBs in Isolated Mode 9-34

9.2.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in Isolated
Mode 9-34

9.2.2.1 Unplugging a PDB That Has Encrypted Data in Isolated Mode 9-35

9.2.2.2 Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode 9-35

9.2.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an
External Keystore in Isolated Mode 9-36

9.2.2.4 Plugging a PDB That Has Master Keys Stored in an External Keystore in
Isolated Mode 9-36

9.2.3 Cloning a PDB with Encrypted Data in a CDB in Isolated Mode 9-37

9.2.4 Remotely Cloning an Encrypted PDB in Isolated Mode 9-38

9.2.5 Relocating an Encrypted PDB in Isolated Mode 9-39

xi



9.2.6 How Keystore Open and Close Operations Work in Isolated Mode 9-40

9.2.7 Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode 9-41

9.2.7.1 About Exporting and Importing Master Encryption Keys for a PDB in
Isolated Mode 9-42

9.2.7.2 Exporting or Importing a Master Encryption Key for a PDB in Isolated
Mode 9-43

9.2.7.3 Example: Exporting a Master Encryption Key from a PDB in Isolated
Mode 9-43

9.2.7.4 Example: Importing a Master Encryption Key into a PDB in Isolated Mode 9-43

10  
 

General Considerations of Using Transparent Data Encryption

10.1 Migrating Encrypted TDE Columns or Tablespaces after a Database Upgrade from
Release 11g 10-1

10.2 Compression and Data Deduplication of Encrypted Data 10-3

10.3 Security Considerations for Transparent Data Encryption 10-4

10.3.1 Transparent Data Encryption General Security Advice 10-4

10.3.2 Transparent Data Encryption Column Encryption-Specific Advice 10-4

10.3.3 Managing Security for Plaintext Fragments 10-5

10.4 Performance and Storage Overhead of Transparent Data Encryption 10-5

10.4.1 Performance Overhead of Transparent Data Encryption 10-5

10.4.2 Storage Overhead of Transparent Data Encryption 10-6

10.5 Modifying Your Applications for Use with Transparent Data Encryption 10-7

10.6 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT 10-7

10.7 Data Loads from External Files to Tables with Encrypted Columns 10-10

10.8 Transparent Data Encryption and Database Close Operations 10-11

11  
 

Using Transparent Data Encryption with Other Oracle Features

11.1 How Transparent Data Encryption Works with Export and Import Operations 11-1

11.1.1 About Exporting and Importing Encrypted Data 11-2

11.1.2 Exporting and Importing Tables with Encrypted Columns 11-2

11.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets 11-3

11.1.4 Using Oracle Data Pump with Encrypted Data Dictionary Data 11-4

11.2 How Transparent Data Encryption Works with Oracle Data Guard 11-5

11.2.1 About Using Transparent Data Encryption with Oracle Data Guard 11-5

11.2.2 Encryption of Tablespaces in an Oracle Data Guard Environment 11-6

11.2.2.1 About the Encryption of Tablespaces in an Oracle Data Guard
Environment 11-6

11.2.2.2 Configuring the Encryption of Tablespaces in an Oracle Data Guard
Environment 11-8

11.2.2.3 Encrypting an Existing Tablespace in Oracle Data Guard with Online
Conversion 11-9

xii



11.2.3 Configuring TDE and Oracle Key Vault in an Oracle Data Guard Environment 11-12

11.2.4 Configuring TDE Wallet-Based Transparent Data Encryption in Oracle Data
Guard 11-20

11.2.5 Migrating a TDE Wallet in an Oracle Data Guard Environment to Oracle Key
Vault 11-26

11.2.6 Enabling a PDB to Have an Isolated Keystore in an Oracle Data Guard
Environment 11-32

11.2.7 Uncoupling the Standby Database from the Primary Database Online
Encryption Process 11-33

11.3 How Transparent Data Encryption Works with Oracle Real Application Clusters 11-33

11.3.1 About Using Transparent Data Encryption with Oracle Real Application
Clusters 11-34

11.3.2 Configuring TDE in Oracle Real Application Clusters for Oracle Key Vault 11-35

11.4 How Transparent Data Encryption Works with SecureFiles 11-41

11.4.1 About Transparent Data Encryption and SecureFiles 11-41

11.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm 11-41

11.4.3 Example: Creating a SecureFiles LOB with a Column Password Specified 11-41

11.5 How Transparent Data Encryption Works with Oracle Call Interface 11-42

11.6 How Transparent Data Encryption Works with Editions 11-42

11.7 Configuring Transparent Data Encryption to Work in a Multidatabase Environment 11-42

12  
 

Frequently Asked Questions About Transparent Data Encryption

12.1 Transparency Questions About Transparent Data Encryption 12-1

12.2 Performance Questions About Transparent Data Encryption 12-4

Part II   Using Oracle Data Redaction

13  
 

Introduction to Oracle Data Redaction

13.1 What Is Oracle Data Redaction? 13-1

13.2 When to Use Oracle Data Redaction 13-2

13.3 Benefits of Using Oracle Data Redaction 13-2

13.4 Example Use Cases for Oracle Data Redaction 13-3

13.4.1 Oracle Data Redaction for Sensitive Data in Read-Only Static Pages 13-3

13.4.2 Oracle Data Redaction for Preventing Data Exposure by Management Tools 13-3

13.4.3 Oracle Data Redaction to Prevent Disclosure of Data from Offline Analytics 13-4

13.4.4 Oracle Data Redaction with Ad Hoc Database Queries Considerations 13-4

13.5 Oracle Data Redaction in a Multitenant Environment 13-4

xiii



14  
 

Oracle Data Redaction Features and Capabilities

14.1 Getting Started with Oracle Data Redaction 14-1

14.2 Full Data Redaction to Redact All Data 14-2

14.3 Partial Data Redaction to Redact Portions of Data 14-3

14.4 Regular Expressions to Redact Patterns of Data 14-4

14.5 Redaction Using Null Values 14-5

14.6 Random Data Redaction to Generate Random Values 14-5

14.7 Comparison of Full, Partial, and Random Redaction Based on Data Types 14-6

14.7.1 Oracle Built-in Data Types Redaction Capabilities 14-7

14.7.2 ANSI Data Types Redaction Capabilities 14-7

14.7.3 Built-in and ANSI Data Types Full Redaction Capabilities 14-8

14.7.4 User-Defined Data Types or Oracle Supplied Types Redaction Capabilities 14-10

14.8 No Redaction for Testing Purposes 14-10

14.9 Central Management of Named Data Redaction Policy Expressions 14-10

15  
 

Configuring Oracle Data Redaction Policies

15.1 About Oracle Data Redaction Policies 15-2

15.2 Privileges for Managing Oracle Data Redaction Policies 15-3

15.3 Planning an Oracle Data Redaction Policy 15-4

15.4 General Syntax of the DBMS_REDACT.ADD_POLICY Procedure 15-5

15.5 Using Expressions to Define Conditions for Data Redaction Policies 15-7

15.5.1 About Using Expressions in Data Redaction Policies 15-8

15.5.2 Supported Functions for Data Redaction Expressions 15-8

15.5.2.1 Expressions Using Namespace Functions 15-9

15.5.2.2 Expressions Using the SUBSTR Function 15-9

15.5.2.3 Expressions Using Length of Character String Functions 15-10

15.5.2.4 Expressions Using Oracle Application Express Functions 15-10

15.5.2.5 Expressions Using Oracle Label Security Functions 15-11

15.5.3 Applying the Redaction Policy Based on User Environment 15-12

15.5.4 Applying the Redaction Policy Based on Database Roles 15-12

15.5.5 Applying the Redaction Policy Based on Oracle Label Security Label
Dominance 15-13

15.5.6 Applying the Redaction Policy Based on Application Express Session States 15-13

15.5.7 Applying the Redaction Policy to All Users 15-14

15.6 Creating and Managing Multiple Named Policy Expressions 15-14

15.6.1 About Data Redaction Policy Expressions to Define Conditions 15-15

15.6.2 Creating and Applying a Named Data Redaction Policy Expression 15-16

15.6.3 Updating a Named Data Redaction Policy Expression 15-17

15.6.4 Dropping a Named Data Redaction Expression Policy 15-18

15.6.5 Tutorial: Creating and Sharing a Named Data Redaction Policy Expression 15-18

xiv



15.6.5.1 Step 1: Create Users for This Tutorial 15-19

15.6.5.2 Step 2: Create an Oracle Data Redaction Policy 15-19

15.6.5.3 Step 3: Test the Oracle Data Redaction Policy 15-20

15.6.5.4 Step 4: Create and Apply a Policy Expression to the Redacted Table
Columns 15-21

15.6.5.5 Step 5: Test the Data Redaction Policy Expression 15-22

15.6.5.6 Step 6: Modify the Data Redaction Policy Expression 15-22

15.6.5.7 Step 7: Test the Modified Policy Expression 15-22

15.6.5.8 Step 8: Remove the Components of This Tutorial 15-23

15.7 Creating a Full Redaction Policy and Altering the Full Redaction Value 15-24

15.7.1 Creating a Full Redaction Policy 15-25

15.7.1.1 About Creating Full Data Redaction Policies 15-25

15.7.1.2 Syntax for Creating a Full Redaction Policy 15-25

15.7.1.3 Example: Full Redaction Policy 15-26

15.7.1.4 Example: Fully Redacted Character Values 15-26

15.7.2 Altering the Default Full Data Redaction Value 15-27

15.7.2.1 About Altering the Default Full Data Redaction Value 15-27

15.7.2.2 Syntax for the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure 15-28

15.7.2.3 Modifying the Default Full Data Redaction Value 15-28

15.8 Creating a Nullify Redaction Policy 15-29

15.8.1 About Creating a Policy That Returns Null Values 15-29

15.8.2 Syntax for Creating a Nullify Redaction Policy 15-29

15.8.3 Example: Redaction Policy That Returns Null Values 15-30

15.9 Creating a Partial Redaction Policy 15-31

15.9.1 About Creating Partial Redaction Policies 15-31

15.9.2 Syntax for Creating a Partial Redaction Policy 15-32

15.9.3 Creating Partial Redaction Policies Using Fixed Character Formats 15-32

15.9.3.1 Settings for Fixed Character Formats 15-33

15.9.3.2 Example: Partial Redaction Policy Using a Fixed Character Format 15-35

15.9.4 Creating Partial Redaction Policies Using Character Data Types 15-35

15.9.4.1 Settings for Character Data Types 15-36

15.9.4.2 Example: Partial Redaction Policy Using a Character Data Type 15-37

15.9.5 Creating Partial Redaction Policies Using Number Data Types 15-37

15.9.5.1 Settings for Number Data Types 15-37

15.9.5.2 Example: Partial Redaction Policy Using a Number Data Type 15-38

15.9.6 Creating Partial Redaction Policies Using Date-Time Data Types 15-39

15.9.6.1 Settings for Date-Time Data Types 15-39

15.9.6.2 Example: Partial Redaction Policy Using Date-Time Data Type 15-39

15.10 Creating a Regular Expression-Based Redaction Policy 15-40

15.10.1 About Creating Regular Expression-Based Redaction Policies 15-40

15.10.2 Syntax for Creating a Regular Expression-Based Redaction Policy 15-41

xv



15.10.3 Regular Expression-Based Redaction Policies Using Formats 15-43

15.10.3.1 Regular Expression Formats 15-43

15.10.3.2 Example: Regular Expression Redaction Policy Using Formats 15-46

15.10.4 Custom Regular Expression Redaction Policies 15-47

15.10.4.1 Settings for Custom Regular Expressions 15-47

15.10.4.2 Example: Custom Regular Expression Redaction Policy 15-47

15.11 Creating a Random Redaction Policy 15-48

15.11.1 Syntax for Creating a Random Redaction Policy 15-48

15.11.2 Example: Random Redaction Policy 15-49

15.12 Creating a Policy That Uses No Redaction 15-49

15.12.1 Syntax for Creating a Policy with No Redaction 15-50

15.12.2 Example: Performing No Redaction 15-50

15.13 Exemption of Users from Oracle Data Redaction Policies 15-51

15.14 Altering an Oracle Data Redaction Policy 15-51

15.14.1 About Altering Oracle Data Redaction Policies 15-52

15.14.2 Syntax for the DBMS_REDACT.ALTER_POLICY Procedure 15-52

15.14.3 Parameters Required for DBMS_REDACT.ALTER_POLICY Actions 15-53

15.14.4 Tutorial: Altering an Oracle Data Redaction Policy 15-54

15.15 Redacting Multiple Columns 15-57

15.15.1 Adding Columns to a Data Redaction Policy for a Single Table or View 15-58

15.15.2 Example: Redacting Multiple Columns 15-58

15.16 Disabling and Enabling an Oracle Data Redaction Policy 15-58

15.16.1 Disabling an Oracle Data Redaction Policy 15-59

15.16.2 Enabling an Oracle Data Redaction Policy 15-59

15.17 Dropping an Oracle Data Redaction Policy 15-60

15.18 Tutorial: SQL Expressions to Build Reports with Redacted Values 15-61

15.19 Using Trace Files to Troubleshoot Oracle Data Redaction Policies 15-62

15.20 Oracle Data Redaction Policy Data Dictionary Views 15-63

16  
 

Managing Oracle Data Redaction Policies in Oracle Enterprise Manager

16.1 About Using Oracle Data Redaction in Oracle Enterprise Manager 16-1

16.2 Oracle Data Redaction Workflow 16-2

16.3 Management of Sensitive Column Types in Enterprise Manager 16-2

16.4 Managing Oracle Data Redaction Formats Using Enterprise Manager 16-4

16.4.1 About Managing Oracle Data Redaction Formats Using Enterprise Manager 16-5

16.4.2 Creating a Custom Oracle Data Redaction Format Using Enterprise Manager 16-5

16.4.3 Editing a Custom Oracle Data Redaction Format Using Enterprise Manager 16-7

16.4.4 Viewing Oracle Data Redaction Formats Using Enterprise Manager 16-8

16.4.5 Deleting a Custom Oracle Data Redaction Format Using Enterprise Manager 16-9

16.5 Managing Oracle Data Redaction Policies Using Enterprise Manager 16-10

xvi



16.5.1 About Managing Oracle Data Redaction Policies Using Enterprise Manager 16-10

16.5.2 Creating an Oracle Data Redaction Policy Using Enterprise Manager 16-11

16.5.3 Editing an Oracle Data Redaction Policy Using Enterprise Manager 16-14

16.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise Manager 16-15

16.5.5 Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager 16-16

16.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise Manager 16-17

16.6 Managing Named Data Redaction Policy Expressions Using Enterprise Manager 16-17

16.6.1 About Named Data Redaction Policy Expressions in Enterprise Manager 16-18

16.6.2 Creating a Named Data Redaction Policy Expression in Enterprise Manager 16-18

16.6.3 Editing a Named Data Redaction Policy Expression in Enterprise Manager 16-19

16.6.4 Viewing Named Data Redaction Policy Expressions in Enterprise Manager 16-20

16.6.5 Deleting a Named Data Redaction Policy Expression in Enterprise Manager 16-21

17  
 

Using Oracle Data Redaction with Oracle Database Features

17.1 Oracle Data Redaction General Usage Guidelines 17-2

17.2 Oracle Data Redaction and DML and DDL Operations 17-4

17.3 Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE
Clause 17-5

17.4 Oracle Data Redaction and Queries on Columns Protected by Data Redaction
Policies 17-5

17.5 Oracle Data Redaction and Database Links 17-6

17.6 Oracle Data Redaction and Aggregate Functions 17-6

17.7 Oracle Data Redaction and Object Types 17-6

17.8 Oracle Data Redaction and XML Generation 17-6

17.9 Oracle Data Redaction and Editions 17-7

17.10 Oracle Data Redaction and Oracle Data Warehouse Query Rewrite Operation 17-7

17.11 Oracle Data Redaction and Oracle Virtual Private Database 17-7

17.12 Oracle Data Redaction and Oracle Database Real Application Security 17-8

17.13 Oracle Data Redaction and Oracle Database Vault 17-8

17.14 Oracle Data Redaction and Oracle Data Pump 17-8

17.14.1 Oracle Data Pump Security Model for Oracle Data Redaction 17-8

17.14.2 Export of Objects That Have Oracle Data Redaction Policies Defined 17-9

17.14.2.1 Finding Object Types Used by Oracle Data Pump 17-9

17.14.2.2 Exporting Only the Data Dictionary Metadata Related to Data
Redaction Policies 17-10

17.14.2.3 Importing Only the Data Dictionary Metadata Using the INCLUDE
Parameter in IMPDP 17-10

17.14.3 Export of Data Using the EXPDP Utility access_method Parameter 17-11

17.14.4 Import of Data into Objects Protected by Oracle Data Redaction 17-11

17.15 Oracle Data Redaction and Data Masking and Subsetting Pack 17-12

xvii



17.16 Oracle Data Redaction and JSON 17-12

18  
 

Security Considerations for Oracle Data Redaction

18.1 Oracle Data Redaction General Security Guidelines 18-1

18.2 Restriction of Administrative Access to Oracle Data Redaction Policies 18-2

18.3 How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas 18-2

18.4 Policy Expressions That Use SYS_CONTEXT Attributes 18-3

18.5 Oracle Data Redaction Policies on Materialized Views 18-3

18.6 REDACTION_COLUMNS Data Dictionary View Behavior When a View Is Invalid 18-4

18.7 Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled 18-4

Glossary

Index

xviii



Preface

Welcome to Oracle Database Advanced Security Guide. This guide describes how to
implement, configure, and administer Transparent Data Encryption (TDE) and Oracle Data
Redaction.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
Oracle Database Advanced Security Guide is intended for users and systems professionals
involved with the implementation, configuration, and administration of Oracle Advanced
Security including:

• Implementation consultants

• System administrators

• Security administrators

• Database administrators (DBAs)

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry

xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


standards evolve. Because of these technical constraints, our effort to remove
insensitive terms is ongoing and will take time and external cooperation.

Related Documents
Before you configure Oracle Advanced Security features, you should be familiar with
the following guides:

• Oracle Database Administrator’s Guide

• Oracle Database Security Guide

• Oracle Database SQL Language Reference

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Multitenant Administrator's Guide

Many books in the documentation set use the sample schemas of the default
database. Refer to Oracle Database Sample Schemas for information about how
these schemas were created and how you can use them.

Oracle Technical Services

To download the product data sheet, frequently asked questions, links to the latest
product documentation, product download, and other collateral, visit Oracle Technical
Resources (formerly Oracle Technology Network). You must register online before
using Oracle Technical Services. Registration is free and can be done at

https://www.oracle.com/technical-resources/

My Oracle Support

You can find information about security patches, certifications, and the support
knowledge base by visiting My Oracle Support (formerly OracleMetaLink) at

https://support.oracle.com

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xx

https://www.oracle.com/technical-resources/
https://support.oracle.com


Changes in This Release for Oracle Database
Advanced Security Guide

This preface contains:

• Changes in Oracle Database Advanced Security 23ai

• Updates to Oracle Database Advanced Security 23ai

Changes in Oracle Database Advanced Security 23ai
Oracle Database Advanced Security Guide for Oracle Database 23ai has new security
features.

• Changes for Encryption Algorithms and Modes
Starting with Oracle Database 23ai, the default encryption algorithms and the encryption
modes have changed.

• AES-XTS Encryption Mode Support for TDE Tablespace Encryption
Starting with Oracle Database 23ai, Transparent Database Encryption (TDE) tablespace
encryption supports Advanced Encryption Standard (AES) XTS (XEX-based mode with
ciphertext stealing mode) in the CREATE TABLESPACE and ALTER TABLESPACE statements.

• Schema Privileges to Simplify Access Control in Oracle Data Redaction
Starting with Oracle Database 23ai, Oracle Database supports schema privileges, which
affects Oracle Data Redaction.

• BOOLEAN Data Type Supported in Oracle Data Redaction
Starting with Oracle Database 23ai, Oracle Data Redaction supports the BOOLEAN data
type.

• Oracle Data Guard Redo Decryption for Hybrid Disaster Recovery Configurations
Available with Oracle Database 23ai, Oracle Data Guard enables you to decrypt redo
operations in hybrid cloud disaster recovery configurations where the Cloud database is
encrypted with TDE and the on-premises database is not.

Changes for Encryption Algorithms and Modes
Starting with Oracle Database 23ai, the default encryption algorithms and the encryption
modes have changed.

Encryption algorithm changes:

• Encryption algorithm changes:

– The default encryption algorithm for both TDE column encryption and TDE
tablespace encryption is now AES256. The previous default for TDE column
encryption was AES192. For TDE tablespace encryption, the default was AES128.

xxi



– The decryption libraries for the GOST and SEED algorithms are deprecated.
New keys cannot use these algorithms. The encryption libraries for both of
these libraries are desupported. The GOST decryption libraries are
desupported on HP Itanium platforms.

• The column encryption mode is now Galois/Counter mode (GCM) instead of
cipher block chaining (CBC), and in tablespace encryption, you can choose
between the new "tweakable block ciphertext stealing (XTS)" operating mode or
cipher feedback (CFB). XTS is the default.

• The Oracle Recovery Manager (Oracle RMAN) integrity check for column
encryption keys now uses SHA512 instead of SHA1.

• The keys for Oracle RMAN and column keys are now derived from SHA512/AES for
key generation. In previous releases, they used SHA-1/3DES as a pseudo-random
function.

These enhancements enable your Oracle Database environment to use the latest,
most secure algorithms and encryption modes.

Related Topics

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

AES-XTS Encryption Mode Support for TDE Tablespace Encryption
Starting with Oracle Database 23ai, Transparent Database Encryption (TDE)
tablespace encryption supports Advanced Encryption Standard (AES) XTS (XEX-
based mode with ciphertext stealing mode) in the CREATE TABLESPACE and ALTER
TABLESPACE statements.

AES-XTS provides improved security and better performance, especially on platforms
where TDE can take advantage of parallel processing and specialized instructions built
into processor hardware.

Related Topics

• Oracle Database SQL Language Reference

Schema Privileges to Simplify Access Control in Oracle Data
Redaction

Starting with Oracle Database 23ai, Oracle Database supports schema privileges,
which affects Oracle Data Redaction.

This enhancement is as follows:

• The ADMINISTER REDACTION POLICY privilege must be granted to users as either a
system privilege or a schema privilege for using the DBMS_REDACT PL/SQL package
and not CREATE TABLE or CREATE ANY TABLE, which was required in Oracle
Database 21c. This privilege is required in addition to the EXECUTE privilege on the
DBMS_REDACT package for data redaction policies.

• The EXEMPT REDACTION POLICY privilege can be granted as either a system
privilege or a schema privilege.

Changes in This Release for Oracle Database Advanced Security Guide

xxii



Related Topics

• Privileges for Managing Oracle Data Redaction Policies
Because data redaction involves the protection of highly sensitive data, only trusted users
should create Oracle Data Redaction policies.

• Oracle Database Security Guide

BOOLEAN Data Type Supported in Oracle Data Redaction
Starting with Oracle Database 23ai, Oracle Data Redaction supports the BOOLEAN data type.

The BOOLEAN data type is now an Oracle Database built-in data type.

As part of this enhancement, the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure
has a new parameter, boolean_val, to support changing the default value for full redaction.

Related Topics

• Oracle Built-in Data Types Redaction Capabilities
Oracle Data Redaction handles the Oracle built-in data types depending on the type of
Data Redaction policies that are used.

• Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure
The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure accommodates the
standard supported Oracle Database data types.

Oracle Data Guard Redo Decryption for Hybrid Disaster Recovery
Configurations

Available with Oracle Database 23ai, Oracle Data Guard enables you to decrypt redo
operations in hybrid cloud disaster recovery configurations where the Cloud database is
encrypted with TDE and the on-premises database is not.

To enable this feature, Oracle Database introduces the TABLESPACE_ENCRYPTION initialization
parameter, which enables you to control the automatic encryption of tablespaces in both the
primary and standby databases, for on-premises and Oracle Cloud Infrastructure (OCI)
environments. For example, an on-premises database can be unencrypted and an OCI
database can be encrypted.

Hybrid disaster recovery is often considered a quick-stepping stone to cloud adoption. By
enabling the ability to quickly configure disaster recovery even in cases where on-premises
databases might not already be encrypted with TDE, the steps required to configure hybrid
disaster recovery environments are reduced while still ensuring that redo data is still
encrypted during the transportation process.

Related Topics

• Encryption of Tablespaces in an Oracle Data Guard Environment
You can control tablespace encryption in the primary and standby databases in an Oracle
Data Guard environment.

• Hybrid Oracle Data Guard without Transparent Data Encryption (TDE) License

Updates to Oracle Database Advanced Security 23ai
Oracle Database Advanced Security Guide for Oracle Database 23ai as the following update.

Changes in This Release for Oracle Database Advanced Security Guide

xxiii

https://youtu.be/HsnOtef87mM


• New Parameter to Control the TDE Rekey Operations for Oracle Data Guard
You now can use the DB_RECOVERY_AUTO_REKEY initialization parameter for Oracle
Data Guard environments..

New Parameter to Control the TDE Rekey Operations for Oracle Data
Guard

You now can use the DB_RECOVERY_AUTO_REKEY initialization parameter for Oracle Data
Guard environments..

DB_RECOVERY_AUTO_REKEY controls whether an Oracle Data Guard standby database
recovery operation automatically performs the corresponding tablespace rekey when it
encounters a redo that says the primary database has performed a tablespace rekey
operation. 

This feature is useful for standby deployments with large tablespaces whose users
must perform an online TDE conversion.

Related Topics

• Uncoupling the Standby Database from the Primary Database Online Encryption
Process
You can use the DB_RECOVERY_AUTO_REKEY initialization parameter to control how
Transparent Data Encryption (TDE) rekey operations are performed in an Oracle
Data Guard environment.

Changes in This Release for Oracle Database Advanced Security Guide

xxiv



1
Introduction to Oracle Advanced Security

Two features comprise Oracle Advanced Security: Transparent Data Encryption and Oracle
Data Redaction.

• Transparent Data Encryption
Transparent Data Encryption (TDE) transparently encrypts data at rest and is transparent
to database users and applications.

• Oracle Data Redaction
Data Redaction enables you to dynamically mask data as it is selected from the Oracle
Database.

1.1 Transparent Data Encryption
Transparent Data Encryption (TDE) transparently encrypts data at rest and is transparent to
database users and applications.

Use TDE to protect sensitive data from attacks that bypass the database and attempt to
directly read the underlying database files. Examples of this type of attack might include
ransomware (most ransomware also scrapes data from disk and infiltrates it for use in
extortion attempts), lost, or stolen backup files, or direct access to the stored data using
operating system tools like strings or cat. You can encrypt individual columns in a database
table, or you can encrypt an entire tablespace. In almost all cases, tablespace encryption
should be your first choice.

To use Transparent Data Encryption, you do not need to modify your applications. TDE
enables your applications to continue working seamlessly as before. It automatically encrypts
data when it is written to disk, and then automatically decrypts the data when your
applications access it. Key management is built-in, eliminating the complex task of managing
and securing encryption keys.

1.2 Oracle Data Redaction
Data Redaction enables you to dynamically mask data as it is selected from the Oracle
Database.

Unlike the static data masking (see Oracle Data SafeOracle Data Safe or Oracle Data
Masking and SubsettingOracle Data Masking and Subsetting for more information on this
type of masking), Oracle Data Redaction does not actually change the stored data. It simply
alters the presentation of that data at query time to prevent disclosure of sensitive information
for those sessions that should not be able to view the actual data values, while still making
the data available to authorized users under acceptable session conditions.

Data Redaction performs the redaction before the data is returned by the SQL query.
Redaction is suited for production systems when you want to selectively obfuscate selected
sensitive data for certain database users. While the data is being redacted, Oracle Database
is able to process all of the data normally and to preserve the back-end referential integrity
constraints. Data redaction can help you to comply with industry regulations such as Payment

1-1

https://docs.oracle.com/en-us/iaas/data-safe/index.html
https://www.oracle.com/security/database-security/data-masking/


Card Industry Data Security Standard (PCI DSS) and the Sarbanes-Oxley Act by
minimizing exposure of sensitive data such as PII to unauthorized persons.

Chapter 1
Oracle Data Redaction

1-2



Part I
Using Transparent Data Encryption

Part I describes how to use Transparent Data Encryption.

• Introduction to Transparent Data Encryption
Transparent data encryption enables you to encrypt database data files or selected
columns of data. This helps you protect sensitive data contained in your database, such
as credit card numbers or Social Security numbers.

• Configuring United Mode
United mode enables you to create a common keystore for the CDB and the PDBs for
which the keystore is in united mode.

• Configuring Isolated Mode
Isolated mode enables you to create a keystore for each pluggable database (PDB).

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

• Managing the Keystore and the Master Encryption Key
You can modify settings for the keystore and TDE master encryption key, and store
Oracle Database and store Oracle GoldenGate secrets in a keystore.

• Administering United Mode
Administering united mode means managing the keystores, master encryption keys, and
general Transparent Database Encryption (TDE) functionality.

• Administering Isolated Mode
Administering isolated mode means managing the keystores, master encryption keys,
and general Transparent Database Encryption (TDE) functionality.

• General Considerations of Using Transparent Data Encryption
When you use Transparent Data Encryption, you should consider factors such as
security, performance, and storage overheads.

• Using Transparent Data Encryption with Other Oracle Features
You can use Oracle Data Encryption with other Oracle features, such as Oracle Data
Guard or Oracle Real Application Clusters.

• Frequently Asked Questions About Transparent Data Encryption
Users frequently have questions about transparency and performance issues with
Transparent Data Encryption.



2
Introduction to Transparent Data Encryption

Transparent data encryption enables you to encrypt database data files or selected columns
of data. This helps you protect sensitive data contained in your database, such as credit card
numbers or Social Security numbers.

• What Is Transparent Data Encryption?
Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you store
in tables and tablespaces. It also enables you to encrypt database backups.

• How Configuring Transparent Data Encryption Works
To configure Transparent Data Encryption, you must perform a one-time setup before you
create keystores and encrypt data.

• Benefits of Using Transparent Data Encryption
Transparent Data Encryption (TDE) ensures that sensitive data is encrypted, helps
address compliance requirements, and provides functionality that streamlines encryption
operations.

• Who Can Configure Transparent Data Encryption?
To configure Transparent Data Encryption (TDE), you must be granted either the SYSKM
administrative privilege or the ADMINISTER KEY MANAGEMENT system privilege.

• Types and Components of Transparent Data Encryption
Transparent Data Encryption can be applied to individual columns or entire tablespaces.

• Transparent Data Encryption in a Multitenant Environment
In a multitenant environment, you can configure keystores for either the entire container
database (CDB) or for individual pluggable databases (PDBs).

• Transparent Data Encryption Keystore Search Order
The search order for the TDE keystore depends on how you have set either the instance
initialization parameters, the sqlnet.ora parameters, or the environment variables.

2.1 What Is Transparent Data Encryption?
Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you store in
tables and tablespaces. It also enables you to encrypt database backups.

After the data is encrypted, this data is transparently decrypted for authorized users or
applications when they access this data. TDE helps protect data stored on media (also called
data at rest) in the event that the storage media or data file is stolen.

Oracle Database uses authentication, authorization, and auditing mechanisms to secure data
in the database, but not in the operating system data files where data is stored. To protect
these data files, Oracle Database provides Transparent Data Encryption (TDE). TDE
encrypts sensitive data stored in data files. To prevent unauthorized decryption, TDE stores
the encryption keys in a security module that is external to the database. This security
module can be referred to as follows:

• TDE wallets are wallets used for TDE. They cannot contain other security artifacts such
as certificates. In previous releases, they were called software keystores or just wallets.

2-1



• External keystores refer to Oracle Key Vault or Oracle Cloud Infrastructure (OCI)
Key Management Service (KMS).

• Keystores is a generic term for both TDE wallets and external keystores.

You can configure Oracle Key Vault as part of the TDE implementation. This enables
you to centrally manage keystores in your enterprise. For example, you can upload a
TDE wallet to Oracle Key Vault, migrate the database to use Oracle Key Vault as the
default keystore, and then share the contents of this keystore with other primary and
standby Oracle Real Application Clusters (Oracle RAC) nodes of that database to
streamline daily database administrative operations with encrypted databases.

Note:

Tranparent Data Encryption (TDE) public key infrastructure (PKI) keys are
desupported with Oracle Database 23ai.

Related Topics

• Oracle Key Vault Administrator's Guide

2.2 How Configuring Transparent Data Encryption Works
To configure Transparent Data Encryption, you must perform a one-time setup before
you create keystores and encrypt data.

Before you can begin to encrypt data, you must perform a one-time configuration using
the static WALLET_ROOT parameter and the dynamic TDE_CONFIGURATION parameter to
designate the location and type of keystores that you plan to use. See Oracle
Database Reference for details about the TDE_CONFIGURATION parameter.

The WALLET_ROOT parameter specifies the keystore directory location. Before you set
WALLET_ROOT, ensure that you have an existing directory that you can use to store
keystores (for example, WALLET_ROOT can be set to the existing directory /etc/ORACLE/
KEYSTORES/${ORACLE_SID}).

The TDE_CONFIGURATION parameter specifies the type of keystore (TDE wallet or
Oracle Key Vault). After you set the type of keystore using TDE_CONFIGURATION, when
you create the keystore, Oracle Database creates a directory within the WALLET_ROOT
location for the keystore type. For example, if you set TDE_CONFIGURATION to FILE,
then Oracle Database creates a TDE wallet in WALLET_ROOT/tde. To use Oracle Key
Vault, install the Oracle Key Vault client software into WALLET_ROOT/okv and set
TDE_CONFIGURATION to OKV. An auto-open connection helps with automatically
restarting databases (for example, primary and standby databases that switch roles
(planned or unplanned)). Oracle Real Application Clusters (Oracle RAC) databases
should also have an auto-open connection into Oracle Key Vault to not interfere with
an automated Oracle RAC instance restart. To establish an auto-open Oracle Key
Vault configuration, add the Oracle Key Vault password as a secret into a (local) auto-
open wallet in WALLET_ROOT/tde. The Oracle Key Vault password is the password that
you created when you installed the Oracle Key Vault endpoint software. If you want to
migrate from one keystore type to another, then you must first set TDE_CONFIGURATION
parameter to the keystore type that you want to use, and then use the ADMINISTER KEY

Chapter 2
How Configuring Transparent Data Encryption Works

2-2



MANAGEMENT statement to perform the migration. For example, you can migrate from a TDE
wallet to Oracle Key Vault.

The KEYSTORE_MODE column of the V$ENCRYPTION_WALLET dynamic view shows whether united
mode or isolated mode has been configured. For example, from a PDB:

SELECT KEYSTORE_MODE FROM V@ENCRYPTION_WALLET;

KEYSTORE
–-------
UNITED

From the root, you can find how all containers are configured:

SELECT KEYSTORE_MODE, CON_ID FROM V@ENCRYPTION_WALLET;

KEYSTORE  CON_ID
–-------  –-----
NONE           1
UNITED         2
UNITED         3

Note:

The configuration of TDE using the sqlnet.ora file is desupported. Upgrades of
Oracle Database 19c and 21c databases to release 23ai will fail if the source
databases do not have the WALLET_ROOT and TDE_CONFIGURATION parameters set.

Related Topics

• Transparent Data Encryption Keystore Search Order
The search order for the TDE keystore depends on how you have set either the instance
initialization parameters, the sqlnet.ora parameters, or the environment variables.

2.3 Benefits of Using Transparent Data Encryption
Transparent Data Encryption (TDE) ensures that sensitive data is encrypted, helps address
compliance requirements, and provides functionality that streamlines encryption operations.

Benefits are as follows:

• As a security administrator, you can be sure that sensitive data is encrypted and
therefore safe in the event that the storage media or data file is stolen, or when an
intruder tries to access the data files from the operating system, bypassing the access
controls of the database.

• Using TDE helps you address security-related regulatory compliance issues.

• You do not need to create auxiliary tables, triggers, or views to decrypt data for the
authorized user or application. Data from tables is transparently decrypted for the
database user and application. An application that processes sensitive data can use TDE
to provide strong data encryption with little or no change to the application.

Chapter 2
Benefits of Using Transparent Data Encryption

2-3



• Data is transparently decrypted for database users and applications that access
this data. Database users and applications do not need to be aware that the data
they are accessing is stored in encrypted form.

• Using online or offline encryption of existing un-encrypted tablespaces enables
you to implement Transparent Data Encryption with little or no downtime.

• You do not need to modify your applications to handle the encrypted data. The
database manages the data encryption and decryption.

• Oracle Database automates TDE master encryption key and keystore
management operations. The user or application does not need to manage TDE
master encryption keys.

2.4 Who Can Configure Transparent Data Encryption?
To configure Transparent Data Encryption (TDE), you must be granted either the SYSKM
administrative privilege or the ADMINISTER KEY MANAGEMENT system privilege.

A user can authenticate as a security administrator in two ways, which are quite
different, and both authentication approaches allow the security administrator to issue
the ADMINISTER KEY MANAGEMENT statement. To check if a user is allowed to perform a
TDE operation, Oracle Database checks whether the user has the ADMINISTER KEY
MANAGEMENT privilege or was authenticated using the SYSKM administrative privilege.
Any ADMINISTER KEY MANAGEMENT statement will be allowed for the following users:

• A user who is granted the SYSKM administrative privilege (this grant is recorded in
the password file) and issues the ADMINISTER KEY MANAGEMENT statement from a
session that connected to the database using the AS SYSKM clause. For example:

sqlplus c##sec_admin AS SYSKM
Enter password: password

The reason for this is that ADMINISTER KEY MANAGEMENT statements need to be
supported when the Oracle data dictionary is not available. The only way to do the
necessary privilege check in that situation is to check for the SYSKM administrative
privilege in the password file. Note that the system needs to be configured with a
password file in order to be able to grant the SYSKM administrative privilege to a
user. If the user needs to perform ADMINISTER KEY MANAGEMENT operations such as
opening the TDE keystore when the Oracle database is in the MOUNTED state, then
the user must be granted the SYSKM administrative privilege.

• A user who has been granted the ADMINISTER KEY MANAGEMENT system privilege,
and logs in to the database without the AS SYSKM clause. For example:

sqlplus c##sec_officer
Enter password: password

To use TDE, you do not need the SYSKM or ADMINISTER KEY MANAGEMENT privileges.
You must have the following privileges to encrypt table columns and tablespaces:

• CREATE TABLE
• ALTER TABLE
• CREATE TABLESPACE
• ALTER TABLESPACE (for online and offline tablespace encryption)

• ALTER DATABASE (for offline tablespace encryption)

Chapter 2
Who Can Configure Transparent Data Encryption?

2-4



2.5 Types and Components of Transparent Data Encryption
Transparent Data Encryption can be applied to individual columns or entire tablespaces.

• About Transparent Data Encryption Types and Components
You can encrypt sensitive data at the column level or the tablespace level.

• How Transparent Data Encryption Tablespace Encryption Works
Transparent Data Encryption (TDE) tablespace encryption enables you to encrypt an
entire tablespace.

• How Transparent Data Encryption Column Encryption Works
Transparent Data Encryption (TDE) column encryption protects confidential data, such as
credit card and Social Security numbers, that is stored in table columns.

• How the Keystore for the Storage of TDE Master Encryption Keys Works
To control the encryption, you use a keystore and a TDE master encryption key.

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

2.5.1 About Transparent Data Encryption Types and Components
You can encrypt sensitive data at the column level or the tablespace level.

At the column level, you can encrypt sensitive data in application table columns. TDE
tablespace encryption enables you to encrypt all of the data that is stored in a tablespace.

Both TDE column encryption and TDE tablespace encryption use a two-tiered key-based
architecture. Unauthorized users, such as intruders who are attempting security attacks,
cannot read the data from storage and back up media unless they have the TDE master
encryption key to decrypt it.

2.5.2 How Transparent Data Encryption Tablespace Encryption Works
Transparent Data Encryption (TDE) tablespace encryption enables you to encrypt an entire
tablespace.

All of the objects that are created in the encrypted tablespace are automatically encrypted.
TDE tablespace encryption is useful if your tables contain sensitive data in multiple columns,
or if you want to protect the entire table and not just individual columns. You do not need to
perform a granular analysis of each table column to determine the columns that need
encryption.

In addition, TDE tablespace encryption takes advantage of bulk encryption and caching to
provide enhanced performance. The actual performance impact on applications can vary.

TDE tablespace encryption encrypts all of the data stored in an encrypted tablespace
including its redo data. TDE tablespace encryption does not encrypt data that is stored
outside of the tablespace. For example, BFILE data is not encrypted because it is stored
outside the database. If you create a table with a BFILE column in an encrypted tablespace,
then this particular column will not be encrypted.

All of the data in an encrypted tablespace is stored in encrypted format on the disk. Data is
transparently decrypted for an authorized user having the necessary privileges to view or
modify the data. A database user or application does not need to know if the data in a

Chapter 2
Types and Components of Transparent Data Encryption

2-5



particular table is encrypted on the disk. In the event that the data files on a disk or
backup media is stolen, the data remains protected.

TDE tablespace encryption uses the two-tiered, key-based architecture to
transparently encrypt (and decrypt) tablespaces. The TDE master encryption key is
stored in a security module (Oracle wallet, Oracle Key Vault, or Oracle Cloud
Infrastructure (OCI) key management service (KMS)). This TDE master encryption key
is used to encrypt the TDE tablespace encryption key, which in turn is used to encrypt
and decrypt data in the tablespace.

Figure 2-1 shows an overview of the TDE tablespace encryption process.

Figure 2-1    TDE Tablespace Encryption

TDE Master
Encryption Key

External Security
Module

(Software/Hardware
Keystore)

Tablespace

TDE Tablespace
Encryption Key

Encrypt/
Decrypt

Encrypt/
Decrypt

Oracle Database

TDE Tablespace Encryption

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

Encrypted Data Files

Tablespace

TDE Tablespace
Encryption Key

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

Encrypted Data Files

Note:

The encrypted data is protected during operations such as JOIN and SORT.
This means that the data is safe when it is moved to temporary tablespaces.
Data in undo and redo logs is also protected.

TDE tablespace encryption also allows index range scans on data in encrypted
tablespaces. It does not interfere with Exadata Hybrid Columnar Compression
(EHCC), Oracle Advanced Compression, or Oracle Recovery Manager (Oracle
RMAN) compression. This is not possible with TDE column encryption.

Chapter 2
Types and Components of Transparent Data Encryption

2-6



2.5.3 How Transparent Data Encryption Column Encryption Works
Transparent Data Encryption (TDE) column encryption protects confidential data, such as
credit card and Social Security numbers, that is stored in table columns.

TDE column encryption uses the two-tiered key-based architecture to transparently encrypt
and decrypt sensitive table columns. The TDE master encryption key is stored in an external
keystore, which can be an Oracle wallet or in Oracle Key Vault. The Oracle wallet is a
PKCS#12 container for certificates and encryption keys. It is encrypted with an AES256 key
that is derived from the TDE wallet password. This TDE master encryption key encrypts and
decrypts the TDE table key, which in turn encrypts and decrypts data in the table column.

Figure 2-2 shows an overview of the TDE column encryption process.

Figure 2-2    TDE Column Encryption Overview

Data Dictionary

S.No Name
Credit Card

No.

1. SCOTT #!&*!%@)$(

3. MARY @!@*!$%)#&

2. JOHN !#%&*@!)$(

TDE Master
Encryption Key

External Security
Module

(Software/Hardware
Keystore)

TDE Table
Keys

Encrypt/Decrypt

Encrypt/
Decrypt

Oracle Database

As shown in Figure 2-2, the TDE master encryption key is stored in an external security
module that is outside of the database and accessible only to a user who was granted the
appropriate privileges. For this external security module, Oracle Database uses an Oracle
TDE wallet (TDE wallet, in previous releases) or Oracle Key Vault. Storing the TDE master
encryption key in this way prevents its unauthorized use.

Using an external security module separates ordinary program functions from encryption
operations, making it possible to assign separate, distinct duties to database administrators
and security administrators. Security is enhanced because the keystore password can be
unknown to the database administrator, requiring the security administrator to provide the
password.

Chapter 2
Types and Components of Transparent Data Encryption

2-7



When a table contains encrypted columns, TDE uses a single TDE table key
regardless of the number of encrypted columns. Each TDE table key is individually
encrypted with the TDE master encryption key.

2.5.4 How the Keystore for the Storage of TDE Master Encryption
Keys Works

To control the encryption, you use a keystore and a TDE master encryption key.

• About the Keystore Storage of TDE Master Encryption Keys
Oracle Database provides a key management framework for Transparent Data
Encryption (TDE) that stores and manages keys and credentials.

• Benefits of the Keystore Storage Framework
The key management framework provides several benefits for Transparent Data
Encryption.

• Types of Keystores
Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud
Infrastructure (OCI) key management systems (KMS).

2.5.4.1 About the Keystore Storage of TDE Master Encryption Keys
Oracle Database provides a key management framework for Transparent Data
Encryption (TDE) that stores and manages keys and credentials.

The key management framework includes the keystore to securely store the TDE
master encryption keys and the management framework to securely and efficiently
manage keystore and key operations for various database components.

The Oracle keystore stores a history of retired TDE master encryption keys, which
enables you to rotate the TDE master encryption key, and still be able to decrypt data
(for example, for incoming Oracle Recovery Manager (Oracle RMAN) backups) that
was encrypted under an earlier TDE master encryption key.

2.5.4.2 Benefits of the Keystore Storage Framework
The key management framework provides several benefits for Transparent Data
Encryption.

• Enables separation of duty between the database administrator and the security
administrator who manages the keys. You can grant the ADMINISTER KEY
MANAGEMENT or SYSKM privilege to users who are responsible for managing the
keystore and key operations.

• Facilitates compliance, because it helps you to track encryption keys and
implement requirements such as keystore password rotation and TDE master
encryption key re-key operations. Both wallet password rotations and TDE master
key re-key operation do not require database or application downtime.

• Facilitates and helps enforce keystore backup requirements. A backup is a copy of
the password-protected TDE wallet that is created for all of the critical keystore
operations.

The mandatory WITH BACKUP clause of the ADMINISTER KEY MANAGEMENT statement
creates a backup of the password-protected wallet before the changes are applied
to the original password-protected wallet.

Chapter 2
Types and Components of Transparent Data Encryption

2-8



• Enables the keystore to be stored on an Oracle Automatic Storage Management (Oracle
ASM) file system. This is particularly useful for Oracle Real Application Clusters (Oracle
RAC) environments where database instances share a unified file system view. In Oracle
RAC, you must store the Oracle wallet in a shared location (Oracle ASM or Oracle
Advanced Cluster File System (ACFS)), to which all Oracle RAC instances that belong to
one database, have access to. Individual TDE wallets for each Oracle RAC instances are
not supported.

• Enables reverse migration from an external keystore to a file system-based TDE wallet.
This option is useful if you must migrate back to a TDE wallet.

2.5.4.3 Types of Keystores
Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud Infrastructure
(OCI) key management systems (KMS).

Figure 2-3 illustrates the types of keystores that Oracle Database supports.

Figure 2-3    Oracle Database Supported Keystores

Keystore

Software 
Keystore

External Key
Manager

Oracle Key Vault 
(OKV)

OCI Vault - Key 
Management

Auto-Login 
Keystore

Local Auto-Login 
Keystore

Password-Protected 
Keystore

These keystores are as follows:

• Auto-login TDE wallets: Auto-login TDE wallets are protected by a system-generated
password, and do not need to be explicitly opened by a security administrator. Auto-login
TDE wallets are automatically opened when accessed at database startup. Auto-login
TDE wallets can be used across different systems. If your environment does not require
the extra security provided by a keystore that must be explicitly opened for use, then you
can use an auto-login TDE wallet. Auto-login TDE wallets are ideal for unattended
scenarios (for example, Oracle Data Guard standby databases).

• Local auto-login TDE wallets: Local auto-login TDE wallets are auto-login TDE wallets
that are local to the computer on which they are created. Local auto-login TDE wallets
cannot be opened on any computer other than the one on which they are created. This
type of keystore is typically used for scenarios where additional security is required (that
is, to limit the use of the auto-login for that computer) while supporting an unattended
operation. You cannot use local auto-open wallets in Oracle RAC-enabled databases,
because only shared wallets (in ACFS or ASM) are supported.

• Password-protected TDE wallets: Password-protected TDE wallets are protected by
using a password that you create. You must open this type of wallet before the keys can
be retrieved or used, and use a password to open this type of keystore..

Chapter 2
Types and Components of Transparent Data Encryption

2-9



TDE wallets can be stored in Oracle Automatic Storage Management (Oracle ASM),
Oracle Advanced Cluster File System (Oracle ACFS), or regular file systems.

Under External Keystore Manager are the following categories:

• Oracle Key Vault (OKV): Oracle Key Vault is a software appliance that provides
continuous key availability and scalable key management through clustering with
up to 16 Oracle Key Vault nodes, potentially deployed across geographically
distributed data centers. It is purpose-built for Oracle Database and its many
deployment models (Oracle RAC, Oracle Data Guard, Exadata, multitenant
environments). In addition, Oracle Key Vault provides online key management for
Oracle GoldenGate encrypted trail files and encrypted ACFS. It is also certified for
ExaDB-C@C and Autonomous Database (dedicated) (ADB-C@C). Oracle Key
Vault is distributed as a full-stack software appliance for installation on dedicated
hardware. It is also available in the OCI Marketplace and can be deployed in your
OCI tenancy quickly and easily. See the video Deploying Oracle Key Vault in OCI.

• OCI Vault - Key Management: The Oracle Cloud Infrastructure (OCI) Key
Management Service (KMS) is a cloud-based service that provides centralized
management and control of encryption keys for data stored in OCI. It enables
integration of encryption with other OCI services such as storage, database, and
Fusion Applications for protecting data stored in these services.

Related Topics

• Oracle Key Vault Administrator's Guide

2.5.5 Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

Note:

Starting with Oracle Database 23ai, the following updates are in place:

• The Transparent Data Encryption (TDE) decryption libraries for the
GOST and SEED algorithms are deprecated.

• The Transparent Data Encryption (TDE) encryption libraries for the
GOST and SEED algorithms are desupported and removed.

• The GOST decryption libraries are desupported on HP Itanium
platforms.

The default encryption algorithm for TDE column encryption and TDE tablespace
encryption is AES256.

For TDE column encryption, salt is added by default to plaintext before encryption
unless specified otherwise. You cannot add salt to indexed columns that you want to
encrypt. For indexed columns, choose the NO SALT parameter for the SQL ENCRYPT
clause.

You can change encryption algorithms and encryption keys on existing encrypted
columns by setting a different algorithm with the SQL ENCRYPT clause.

Table 2-1 lists the supported encryption algorithms.

Chapter 2
Types and Components of Transparent Data Encryption

2-10

https://www.oracle.com/security/database-security/key-vault/?ytid=ULKHmTyqu6s


Table 2-1    Supported Encryption Algorithms for Transparent Data Encryption

Algorithm Key Size Parameter Name

Advanced Encryption Standard (AES) • 128 bit
• 192 bits
• 256 bits (default

for TDE column
encryption and
TDE tablespace
encryption)

• AES128
• AES192
• AES256

ARIA • 128 bits
• 192 bits
• 256 bits

• ARIA128
• ARIA192
• ARIA256

Triple Encryption Standard (DES) 168 bits 3DES168

For integrity protection of TDE column encryption, the SHA-1 hashing algorithm is used.

Related Topics

• Setting the Tablespace Encryption Default Algorithm
The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption
scenarios.

2.6 Transparent Data Encryption in a Multitenant Environment
In a multitenant environment, you can configure keystores for either the entire container
database (CDB) or for individual pluggable databases (PDBs).

Oracle Database supports the following multitenant modes for the management of keystores:

• United mode enables you to configure one keystore for the CDB root and any associated
united mode PDBs. United mode operates much the same as how TDE was managed in
an multitenant environment in previous releases.

• Isolated mode enables you to create and manage both keystores and TDE master
encryption keys in an individual PDB. Different isolated mode PDBs can have different
keystore types.

Oracle Database supports isolated PDBs with TDE wallets (wallets) and Oracle Key Vault.
The cloud tooling in Oracle Cloud Infrastructure (OCI) and the OCI Key Management Service
(KMS), do not support isolated PDBs. This includes Oracle Exadata Cloud@Customer
(ExaDB-C@C), Autonomous Database Cloud@Customer (ADB-C@C), and Oracle Exadata
Database Service (ExaDB-D and ExaDB-D@Azure).

Depending on your site’s needs, you can use a mixture of both united mode and isolated
mode. For example, if you want most of the PDBs to use one type of a keystore, then you
can configure the keystore type in the CDB root (united mode). For the PDBs in this CDB that
must use a different type of keystore, then you can configure the PDB itself to use the
keystore it needs (isolated mode). The isolated mode setting for the PDB will override the
united mode setting for the CDB.

Before you can configure keystores for use in united or isolated mode, you must perform a
one-time configuration by using initialization parameters. To configure keystores for united
mode and isolated mode, you use the ADMINISTER KEY MANAGEMENT statement.

Chapter 2
Transparent Data Encryption in a Multitenant Environment

2-11



Related Topics

• Configuring United Mode
United mode enables you to create a common keystore for the CDB and the PDBs
for which the keystore is in united mode.

• Configuring Isolated Mode
Isolated mode enables you to create a keystore for each pluggable database
(PDB).

2.7 Transparent Data Encryption Keystore Search Order
The search order for the TDE keystore depends on how you have set either the
instance initialization parameters, the sqlnet.ora parameters, or the environment
variables.

Oracle Database retrieves the keystore by searching in these locations, in the
following order:

1. The location set by the WALLET_ROOT instance initialization parameter, when the
KEYSTORE_CONFIGURATION attribute of the TDE_CONFIGURATION initialization
parameter is set. Oracle recommends that you use this parameter to configure the
keystore location.

2. If the KEYSTORE_CONFIGURATION attribute of the TDE_CONFIGURATION initialization
parameter is not set or WALLET_ROOT is not set, then the location specified by the
ENCRYPTION_WALLET_LOCATION setting (now deprecated in favor of WALLET_ROOT) in
the sqlnet.ora file.

3. If none of these parameters are set, and if the ORACLE_BASE environment variable
is set, then the $ORACLE_BASE/admin/db_unique_name/wallet directory. If
ORACLE_BASE is not set, then $ORACLE_HOME/admin/db_unique_name/wallet.

Chapter 2
Transparent Data Encryption Keystore Search Order

2-12



3
Configuring United Mode

United mode enables you to create a common keystore for the CDB and the PDBs for which
the keystore is in united mode.

The keys for the CDB and the PDBs reside in the common keystore.

• About Configuring United Mode
In united mode (the default), the keystore is shared between the CDB root and all PDBs
that are configured in united mode. Each united mode PDB has its own set of encryption
keys in the shared keystore.

• Operations That Are Allowed in United Mode
Many ADMINISTER KEY MANAGEMENT operations performed in the CDB root apply to
keystores and encryption keys in the united mode PDB.

• Configuring the Keystore Location and Type for United Mode
For united mode, you can configure the keystore location and type by setting parameters
and running the ALTER SYSTEM statement.

• Configuring a TDE Wallet and TDE Master Encryption Key for United Mode
In united mode, the TDE wallet resides in the CDB root but the master keys from this
wallet are available for the PDBs that have their TDE wallets in united mode.

• Operations That Are Not Allowed in a United Mode PDB
ADMINISTER KEY MANAGEMENT operations that are not allowed in a united mode PDB can
be performed in the CDB root.

• Configuring a Container Database with United Mode PDBs for Oracle Key Vault
The TDE master keys of all united mode PDBs and the CDB reside in the same virtual
wallet in Oracle Key Vault.

3.1 About Configuring United Mode
In united mode (the default), the keystore is shared between the CDB root and all PDBs that
are configured in united mode. Each united mode PDB has its own set of encryption keys in
the shared keystore.

The keys for PDBs having keystore in united mode, can be created from CDB root or from
the PDB.

This design enables you to have one keystore to manage the entire CDB environment,
enabling the PDBs to share this keystore, but you can customize the behavior of this keystore
in the individual united mode PDBs. For example, in a united mode PDB, you can configure a
TDE master encryption key for the PDB in the united keystore that you created in the CDB
root, open the keystore locally, and close the keystore locally. In order to perform these
actions, the keystore in the CDB root must be open.

Before you configure your environment to use united mode or isolated mode, all the PDBs in
the CDB environment are considered to be in united mode.

To use united mode, you must follow these general steps:

3-1



1. In the CDB root, configure the database to use united mode by setting the
WALLET_ROOT and TDE_CONFIGURATION parameters.

The WALLET_ROOT parameter sets the location for the wallet directory and the
TDE_CONFIGURATION parameter sets the type of keystore to use.

2. Restart the database after setting the static initialization parameter WALLET_ROOT,
then set the dynamic initialization parameter TDE_CONFIGURATION.

3. In the CDB root, create the keystore, open the keystore, and then create the TDE
master encryption key.

4. In each united mode PDB, perform TDE master encryption key tasks as needed,
such as opening the keystore locally in the united mode PDB and creating the
TDE master encryption key for the PDB. Remember that the keystore is managed
by the CDB root, but must contain a TDE master encryption key that is specific to
the PDB for the PDB to be able to use TDE.

When you run ADMINISTER KEY MANAGEMENT statements in united mode from the CDB
root, if the statement accepts the CONTAINER clause, and if you set it to ALL, then the
statement applies only to the CDB root and its associated united mode PDBs. Any
PDB that is in isolated mode is not affected.

3.2 Operations That Are Allowed in United Mode
Many ADMINISTER KEY MANAGEMENT operations performed in the CDB root apply to
keystores and encryption keys in the united mode PDB.

Available United Mode-Related Operations in a CDB Root

Table 3-1 describes the ADMINISTER KEY MANAGEMENT operations that you can perform
in the CDB root.

Table 3-1    ADMINISTER KEY MANAGEMENT United Mode Operations in a CDB
Root

Operation Syntax Notes

Creating a keystore ADMINISTER KEY MANAGEMENT
CREATE KEYSTORE 
IDENTIFIED BY keystore_password;

After you create the keystore in
the CDB root, by default it is
available in the united mode
PDBs. Do not include the
CONTAINER clause.

Opening a keystore ADMINISTER KEY MANAGEMENT 
SET KEYSTORE OPEN
IDENTIFIED BY
[EXTERNAL STORE | 
keystore_password]
[CONTAINER = ALL | CURRENT];

In this operation, the EXTERNAL
STORE clause fetches the
keystore password from the
SSO wallet located in the
WALLET_ROOT/tde_seps
directory.

Chapter 3
Operations That Are Allowed in United Mode

3-2



Table 3-1    (Cont.) ADMINISTER KEY MANAGEMENT United Mode Operations in
a CDB Root

Operation Syntax Notes

Changing a
keystore password

ADMINISTER KEY MANAGEMENT 
ALTER KEYSTORE PASSWORD
IDENTIFIED BY 
old_keystore_password
SET new_keystore_password WITH 
BACKUP 
[USING 'backup_identifier'];

Do not include the CONTAINER
clause.

Backing up a
keystore

ADMINISTER KEY MANAGEMENT
BACKUP KEYSTORE 
[USING 'backup_identifier']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | 
keystore_password]
[TO 'keystore_location'];

Do not include the CONTAINER
clause.

Closing a keystore
without force

ADMINISTER KEY MANAGEMENT 
SET KEYSTORE CLOSE
[IDENTIFIED BY [EXTERNAL STORE | 
keystore_password]]
[CONTAINER = ALL | CURRENT];

-

Closing a keystore
with force

ADMINISTER KEY MANAGEMENT 
FORCE KEYSTORE CLOSE
[IDENTIFIED BY [EXTERNAL STORE | 
keystore_password]]
[CONTAINER = ALL | CURRENT];

-

Creating and
activating a new
TDE master
encryption key
(rekeying)

ADMINISTER KEY MANAGEMENT
SET [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | 
keystore_password]
WITH BACKUP [USING 
'backup_identifier']
[CONTAINER = ALL | CURRENT]

-

Creating a user-
defined TDE
master encryption
key for either now
(SET) or later on
(CREATE)

ADMINISTER KEY MANAGEMENT [SET | 
CREATE] [ENCRYPTION] KEY
'mkid:mk | mk' 
[USING ALGORITHM 'algorithm'] 
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | 
keystore_password]
[WITH BACKUP [USING 
'backup_identifier']]
[CONTAINER = CURRENT];

-

Chapter 3
Operations That Are Allowed in United Mode

3-3



Table 3-1    (Cont.) ADMINISTER KEY MANAGEMENT United Mode Operations in
a CDB Root

Operation Syntax Notes

Activating an
existing TDE
master encryption
key

ADMINISTER KEY MANAGEMENT 
USE [ENCRYPTION] KEY 'key_id' 
IDENTIFIED BY [EXTERNAL STORE | 
keystore_password]
WITH BACKUP 
[USING 'backup_identifier'];

Do not include the CONTAINER
clause.

Tagging a TDE
master encryption
key

ADMINISTER KEY MANAGEMENT 
SET TAG 'tag' FOR 'key_id'
IDENTIFIED BY [EXTERNAL STORE | 
keystore_password ]
WITH BACKUP 
[USING 'backup_identifier'];

Do not include the CONTAINER
clause.

Moving a TDE
master encryption
key to a new
keystore

ADMINISTER KEY MANAGEMENT 
MOVE [ENCRYPTION] KEYS
TO NEW KEYSTORE 
'keystore_location1'
IDENTIFIED BY keystore1_password
FROM [FORCE] KEYSTORE
IDENTIFIED BY keystore_password
[WITH IDENTIFIER IN
{ 'key_id' [, 'key_id' ]... | 
( subquery ) } ]
WITH BACKUP [USING 
'backup_identifier'];

You can only move the master
encryption key to a keystore
that is within the same
container (for example,
between keystores in the CDB
root or between keystores in
the same PDB). You cannot
move the master encryption
key from a keystore in the CDB
root to a keystore in a PDB,
and vice versa.

Do not include the CONTAINER
clause.

Available Operations in a United Mode PDB

Table 3-2 describes the ADMINISTER KEY MANAGEMENT operations that you can perform
in a united mode PDB.

Table 3-2    ADMINISTER KEY MANAGEMENT United Mode PDB Operations

Operation Syntax Notes

Opening a keystore ADMINISTER KEY MANAGEMENT
SET KEYSTORE CLOSE
[IDENTIFIED BY EXTERNAL 
STORE | keystore_password]
[CONTAINER = CURRENT];

In this operation, the
EXTERNAL_STORE clause uses
the password in the TDE
SEPS SSO wallet. This wallet
is located in the tde_seps
directory in the WALLET_ROOT
location.

Closing a keystore without
force

ADMINISTER KEY MANAGEMENT 
SET KEYSTORE CLOSE
[EXTERNAL STORE | 
keystore_password]
[CONTAINER = CURRENT];

-

Chapter 3
Operations That Are Allowed in United Mode

3-4



Table 3-2    (Cont.) ADMINISTER KEY MANAGEMENT United Mode PDB
Operations

Operation Syntax Notes

Closing a keystore with force ADMINISTER KEY MANAGEMENT 
FORCE KEYSTORE CLOSE
IDENTIFIED BY
[EXTERNAL STORE | 
keystore_password]
[CONTAINER = CURRENT];

-

Creating and activating a new
TDE master encryption key
(rekeying or rotating)

ADMINISTER KEY MANAGEMENT
SET [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY EXTERNAL 
STORE | keystore_password
WITH BACKUP [USING 
'backup_identifier']
[CONTAINER = CURRENT];

-

Creating a user-defined TDE
master encryption key for use
either now (SET) or later on
(CREATE)

ADMINISTER KEY MANAGEMENT 
SET | CREATE [ENCRYPTION] 
KEY
'mkid:mk | mk'
[USING ALGORITHM 
'algorithm']
[FORCE KEYSTORE]
[USING TAG 'tag']
IDENTIFIED BY EXTERNAL 
STORE | keystore_password
WITH BACKUP [USING 
'backup_identifier']
[CONTAINER = CURRENT];

-

Activating an existing TDE
master encryption key

ADMINISTER KEY MANAGEMENT
USE [ENCRYPTION] KEY 
'key_id'
IDENTIFIED BY
EXTERNAL STORE | 
keystore_password
WITH BACKUP
[USING 
'backup_identifier'];

Do not include the CONTAINER
clause.

Tagging a TDE master
encryption key

ADMINISTER KEY MANAGEMENT
SET TAG 'tag' FOR 'key_id'
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL 
STORE | keystore_password
WITH BACKUP [USING 
'backup_identifier'];

Do not include the CONTAINER
clause.

Chapter 3
Operations That Are Allowed in United Mode

3-5



Table 3-2    (Cont.) ADMINISTER KEY MANAGEMENT United Mode PDB
Operations

Operation Syntax Notes

Moving an encryption key to a
new keystore

ADMINISTER KEY MANAGEMENT
MOVE [ENCRYPTION] KEYS
TO NEW KEYSTORE 
'new_keystore_location'
IDENTIFIED BY 
new_keystore_password
FROM [FORCE] KEYSTORE
IDENTIFIED BY 
keystore_password
[WITH IDENTIFIER IN
{ 'key_id' [, 
'key_id' ]... | 
( subquery ) } ]
WITH BACKUP [USING 
'backup_identifier'];

Do not include the CONTAINER
clause.

Moving a key from a united
mode keystore in the CDB root
to an isolated mode keystore
in a PDB

ADMINISTER KEY MANAGEMENT
ISOLATE KEYSTORE
IDENTIFIED BY 
isolated_keystore_password
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY
EXTERNAL STORE | 
united_keystore_password
WITH BACKUP [USING 
backup_id];

Do not include the CONTAINER
clause.

Using the FORCE clause when
a clone of a PDB is using the
TDE master encryption key
that is being isolated; then
copying (rather than moving)
the TDE master encryption
keys from the keystore that is
in the CDB root into the
isolated mode keystore of the
PDB

ADMINISTER KEY MANAGEMENT 
FORCE ISOLATE KEYSTORE
IDENTIFIED BY 
isolated_keystore_password
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY
[EXTERNAL STORE | 
united_keystore_password]
[WITH BACKUP [USING 
backup_id]];

-

3.3 Configuring the Keystore Location and Type for United
Mode

For united mode, you can configure the keystore location and type by setting
parameters and running the ALTER SYSTEM statement.

• About Configuring the Keystore Location and Type for United Mode
A keystore is a container that stores the TDE master encryption key.

Chapter 3
Configuring the Keystore Location and Type for United Mode

3-6



• Configuring United Mode with the Initialization Parameter File and ALTER SYSTEM
If your environment relies on server parameter files (spfile), then you can set
WALLET_ROOT and TDE_CONFIGURATION using ALTER SYSTEM SET with SCOPE.

• Example: Configuring a TDE Wallet When Multiple Databases Share the Same Host
You can configure multiple databases to share the same host by setting the WALLET_ROOT
parameter.

• Example: Configuring a TDE Wallet for an Oracle Automatic Storage Management Disk
Group
In an Oracle Real Applications Clusters (Oracle RAC) environment, the WALLET_ROOT
parameter points to a shared directory in Oracle Automatic Storage Management (ASM)
that is accessible from all Oracle RAC instances of that database.

3.3.1 About Configuring the Keystore Location and Type for United Mode
A keystore is a container that stores the TDE master encryption key.

Before you can configure the keystore, you first must define a location for it by setting the
static initialization parameter WALLET_ROOT. Then, after a database restart, you must set the
dynamic initialization parameter TDE_CONFIGURATION to instruct the database to retrieve the
master encryption key from a TDE wallet, Oracle Key Vault, or Oracle Cloud Interface (OCI)
Key Management Service (KMS), according to their documentation. If this setting has not
been created, then Oracle Database checks the sqlnet.ora file. You can create other TDE
wallets, such as copies of the wallet and export files that contain keys, depending on your
needs. If you must remove or delete the wallet that you configured in the WALLET_ROOT
location, then you must do so only after you copied all wallets (including backups and auto-
login wallets) in the old to the new location. Then you must reset WALLET_ROOT to point to the
new location of the TDE wallet.

After you configure the keystore location by using the WALLET_ROOT and TDE_CONFIGURATION
parameters, you can log in to the CDB to create and open the TDE wallet, and then set the
TDE master encryption key. After you complete these steps, you can begin to encrypt data.

3.3.2 Configuring United Mode with the Initialization Parameter File and
ALTER SYSTEM

If your environment relies on server parameter files (spfile), then you can set WALLET_ROOT
and TDE_CONFIGURATION using ALTER SYSTEM SET with SCOPE.

1. Log in to the database server where the CDB root of the Oracle database resides.

2. If necessary, create a wallet directory.

This directory cannot contain any wallets. Oracle recommends that you create a directory
outside of $ORACLE_HOME or $ORACLE_BASE, to avoid backing up the keystore (wallet or
Oracle Key Vault installation tree) with the encrypted database during an operating
system-level backup.

3. Connect to the CDB root as a common user who has been granted the ALTER SYSTEM
privilege.

4. Run the following ALTER SYSTEM statement:

ALTER SYSTEM SET WALLET_ROOT='/etc/ORACLE/KEYSTORES/${ORACLE_SID}' SCOPE = SPFILE;
5. Restart the CDB.

Chapter 3
Configuring the Keystore Location and Type for United Mode

3-7



SHUTDOWN IMMEDIATE
STARTUP

6. In the CDB root, check the WALLET_ROOT setting.

SHOW PARAMETER WALLET_ROOT

The VALUE column of the output should show the absolute path location of the
wallet directory. For example:

wallet_root string /etc/ORACLE/KEYSTORES/finance
7. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the

keystore type, using the following syntax:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type" 
SCOPE=BOTH;

In this specification:

• keystore_type can be one of the following settings:

– FILE configures a TDE keystore.

– OKV configures an Oracle Key Vault keystore.

• scope_type sets the type of scope, which in this case is BOTH.

To configure a TDE keystore if the server parameter file (spfile) is in use:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE" 
SCOPE=BOTH SID = '*';

8. Check the TDE_CONFIGURATION parameter setting.

SHOW PARAMETER TDE_CONFIGURATION

The VALUE column should show the keystore type, prepended with
KEYSTORE_CONFIGURATION=.

9. Confirm that the TDE_CONFIGURATION parameter was set correctly.

SELECT CON_ID, KEYSTORE_MODE FROM V$ENCRYPTION_WALLET;

The output should be similar to the following:

    CON_ID KEYSTORE
---------- --------
         1 NONE
         2 UNITED
         3 UNITED
         4 UNITED
         5 UNITED

The CDB root (CON_ID 1) will always be in the NONE state, and at this stage, the
remaining CON_IDs should be set to UNITED. PDBs can be either UNITED or
ISOLATED, depending on how you configure them. When you query the
V$ENCRYPTION_WALLET view, if the ORA-46691: The value of the
KEYSTORE_CONFIGURATION attribute is invalid error appears, then check the
initialization parameter file where you added this setting.

After you configure united mode, you can create keystores and master encryption
keys, and when these are configured, you can encrypt data.

Chapter 3
Configuring the Keystore Location and Type for United Mode

3-8



3.3.3 Example: Configuring a TDE Wallet When Multiple Databases Share
the Same Host

You can configure multiple databases to share the same host by setting the WALLET_ROOT
parameter.

Because the WALLET_ROOT parameter is internal to an Oracle database, you only need to set
the parameter to enable multiple databases to share the same host.

For example:

ALTER SYSTEM SET WALLET_ROOT = '/etc/ORACLE/KEYSTORES/${ORACLE_SID}' SCOPE = SPFILE;

To implement clean separation of individual TDE wallets for each database, add the
ORACLE_SID (or ORACLE_UNQNAME in Oracle Real Application Clusters) into the WALLET_ROOT
parameter setting.

3.3.4 Example: Configuring a TDE Wallet for an Oracle Automatic Storage
Management Disk Group

In an Oracle Real Applications Clusters (Oracle RAC) environment, the WALLET_ROOT
parameter points to a shared directory in Oracle Automatic Storage Management (ASM) that
is accessible from all Oracle RAC instances of that database.

The following example shows you how to set WALLET_ROOT and TDE_CONFIGURATION for a TDE
wallet in ASM:

ALTER SYSTEM SET WALLET_ROOT = '+DATA/unique_name_of_database' SCOPE = SPFILE SID = 
'*';

For example, if you set this value to +DATA/FINRAC, then the /tde directory is automatically
generated when you create a TDE wallet.

Related Topics

• Configuring Keystores for Automatic Storage Management
You can store a TDE wallet on an Automatic Storage Management (ASM) disk group.

3.4 Configuring a TDE Wallet and TDE Master Encryption Key
for United Mode

In united mode, the TDE wallet resides in the CDB root but the master keys from this wallet
are available for the PDBs that have their TDE wallets in united mode.

• About Configuring a TDE Wallet and TDE Master Encryption Key for United Mode
In united mode, the TDE wallet that you create in the CDB root will be accessible by the
united mode PDBs.

• Step 1: Create the TDE Wallet
After you have specified a directory location for the TDE wallet, you can create this
wallet.

Chapter 3
Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

3-9



• Step 2: Open the TDE Wallet
Depending on the type of TDE wallet you create, you must manually open the
wallet before you can use it.

• Step 3: Set the TDE Master Encryption Key in the TDE Wallet
Once the TDE wallet is open, you can set a TDE master encryption key for it.

• Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration, you can begin to encrypt data.

3.4.1 About Configuring a TDE Wallet and TDE Master Encryption Key
for United Mode

In united mode, the TDE wallet that you create in the CDB root will be accessible by
the united mode PDBs.

In general, to configure a united mode TDE wallet after you have enabled united
mode, you create and open the TDE wallet in the CDB root, and then create a master
encryption key for this TDE wallet. Afterward, you can begin to encrypt data for tables
and tablespaces that will be accessible throughout the CDB environment.

The V$ENCRYPTION_WALLET dynamic view describes the status and location of the TDE
wallet. For example, the following query shows the open-closed status and the TDE
wallet location of the CDB root TDE wallet (CON_ID 1) and its associated united mode
PDBs. The WRL_PARAMETER column shows the CDB root TDE wallet location being in
the WALLET_ROOT/tde directory.

SELECT CON_ID, STATUS, WRL_PARAMETER FROM V$ENCRYPTION_WALLET;

CON_ID STATUS WRL_PARAMETER
------ ------ -----------------------------
     1 OPEN   /app/oracle/wallet/tde/
     2 CLOSED 
     3 OPEN 
     4 OPEN
     5 OPEN  

In this output, there is no keystore path listed for the other PDBs in this CDB because
these PDBs use the keystore in the CDB root. If any of these PDBs are isolated and
you create a keystore in the isolated mode PDB, then when you perform this query, the
WRL_PARAMETER column will show the keystore path for the isolated mode PDB.

You can hide the TDE wallet password in a secure external password store:

ADMINISTER KEY MANAGEMENT ADD SECRET 'TDE_wallet_password' 
FOR CLIENT 'TDE_WALLET' INTO [LOCAL] 
AUTO_LOGIN KEYSTORE 'WALLET_ROOT/tde_seps';

This feature enables you to hide the password from the operating system: it removes
the need for storing clear-text keystore passwords in scripts or other tools that can
access the database without user intervention, such as overnight batch scripts. The
location for this wallet is wallet_root/tde_seps. In a multitenant environment,
different PDBs can access this external store location when you run the ADMINISTER
KEY MANAGEMENT statement using the IDENTIFIED BY EXTERNAL STORE clause. This
way, you can centrally locate the password and then update it only once in the external
store.

Chapter 3
Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

3-10



3.4.2 Step 1: Create the TDE Wallet
After you have specified a directory location for the TDE wallet, you can create this wallet.

• About Creating TDE Wallets
There are three different types of TDE wallets.

• Creating a Password-Protected TDE Wallet
A password-protected TDE wallet requires a password, which is used to protect the TDE
master keys. In united mode, you must create the TDE wallet in the CDB root.

• Creating an Auto-Login or a Local Auto-Login TDE Wallet
As an alternative to password-protected TDE wallets, you can create either an auto-login
or local auto-login TDE wallet.

3.4.2.1 About Creating TDE Wallets
There are three different types of TDE wallets.

You can create password-protected TDE wallets, auto-login TDE wallets, and local auto-login
TDE wallets.

Be aware that running the query SELECT * FROM V$ENCRYPTION_WALLET will automatically
open an auto-login TDE wallet. For example, suppose you have a password-protected TDE
wallet and an auto-login TDE wallet. If the password-protected TDE wallet is open and you
close the password-protected TDE wallet and then query the V$ENCRYPTION_WALLET view,
then the output will indicate that a TDE wallet is open. However, this is because
V$ENCRYPTION_WALLET opened up the auto-login TDE wallet and then displayed the status of
the auto-login wallet.

Related Topics

• Types of Keystores
Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud
Infrastructure (OCI) key management systems (KMS).

3.4.2.2 Creating a Password-Protected TDE Wallet
A password-protected TDE wallet requires a password, which is used to protect the TDE
master keys. In united mode, you must create the TDE wallet in the CDB root.

After you create this TDE wallet in the CDB root, it becomes available for all united PDBs, but
not for isolated PDBs.

A TDE wallet can only contain TDE-related security objects, and no security objects used by
other database or application components. In addition, do not use orapki or mkstore to create
password-protected or (local) auto-open TDE wallets. Instead, use the ADMINISTER KEY
MANAGEMENT statement.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Use the SHOW PARAMETER command to confirm that WALLET_ROOT is set, and
TDE_CONFIGURATION is set to KEYSTORE_CONFIGURATION=FILE.

3. Run the ADMINISTER KEY MANAGEMENT SQL statement to create the TDE wallet using the
following syntax:

Chapter 3
Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

3-11



ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 
IDENTIFIED BY TDE_wallet_password;

The /tde directory is automatically created under WALLET_ROOT, if it does not
already exist. In Oracle Automatic Storage Management (Oracle ASM), for
the /tde directory to be automatically created if it does not already exist,
WALLET_ROOT must point to +DATA/ORACLE_UNQNAME.

In this specification, TDE_wallet_password is the password of the TDE wallet that
you, the security administrator, creates.

For example, to create the TDE wallet in the WALLET_ROOT/tde directory:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY TDE_wallet_password;

keystore altered.

After you run this statement, the ewallet.p12 file, which is the TDE wallet,
appears in the TDE wallet location.

After you complete these steps, the ewallet.p12 file, which contains the TDE wallet,
appears in the designated TDE wallet location. For example, if you had set the
WALLET_ROOT parameter to /etc/ORACLE/KEYSTORES/${ORACLE_SID} and the
TDE_CONFIGURATION parameter to FILE (for TDE, which creates a tde directory in the
wallet root location), then the TDE wallet will be created in the /etc/ORACLE/
KEYSTORES/${ORACLE_SID}/tde directory. The name of the TDE wallet is ewallet.p12.

Related Topics

• Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a
centrally accessed and managed location.

3.4.2.3 Creating an Auto-Login or a Local Auto-Login TDE Wallet
As an alternative to password-protected TDE wallets, you can create either an auto-
login or local auto-login TDE wallet.

Both of these TDE wallets have system-generated passwords. They are also
PKCS#12-based files. The auto-login TDE wallet can be opened from different
computers from the computer where this TDE wallet resides, but the local auto-login
TDE wallet can only be opened from the computer on which it was created. Both the
auto-login and local auto-login TDE wallets are created from the password-protected
TDE wallets. Creating any of them does not require database downtime.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Use the SHOW PARAMETER command to confirm that WALLET_ROOT is set, and
TDE_CONFIGURATION is set to KEYSTORE_CONFIGURATION=FILE.

3. Create the auto-login or local auto-login TDE wallet by using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE 
FROM KEYSTORE IDENTIFIED BY TDE_wallet_password;

In this specification:

• LOCAL enables you to create a local auto-login TDE wallet. Otherwise, omit this
clause if you want the TDE wallet to be accessible by other computers. LOCAL

Chapter 3
Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

3-12



creates a local auto-login wallet file, cwallet.sso, and this wallet will be tied to the
host on which it was created. For an Oracle Real Application Clusters (Oracle RAC)
environment, omit the LOCAL keyword, because each Oracle RAC node has a
different host name. If you configure a local auto-login wallet for the Oracle RAC
instance, then only the first Oracle RAC node, where the cwallet.sso file was
created, would be able to access the TDE wallet. If you try to open the TDE wallet
from another node instead of from that first node, there would be a problem auto-
opening cwallet.sso, and so it would result in a failure to auto-open the TDE wallet.
This restriction applies if you are using a shared location to hold the cwallet.sso file
for the Oracle RAC cluster, because using LOCAL only works if you have a separate
cwallet.sso file (containing the same credentials) on each node of the Oracle RAC
environment.

• TDE_wallet_password is the password of the TDE wallet from which you want to
create.

For example, to create an auto-login TDE wallet of the password-protected TDE wallet
that is located in the ORACLE_WALLET/tde directory:

ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE 
FROM KEYSTORE IDENTIFIED BY password;

keystore altered.

After you run this statement, the cwallet.sso file appears in the TDE wallet location. The
ewallet.p12 file is the password-protected wallet.

Follow these guidelines:

• Do not remove the PKCS#12 wallet (ewallet.p12 file) after you create the auto-login TDE
wallet (.sso file). You must have the PKCS#12 wallet to regenerate or rekey the TDE
master encryption key in the future.

• Remember that Transparent Data Encryption uses an auto login TDE wallet only if it is
available at the correct location (WALLET_ROOT/tde), and the SQL statement to open an
encrypted TDE wallet has not already been run. If you have the
ENCRYPTION_WALLET_LOCATION parameter set, then be aware this parameter is
deprecated. Oracle recommends that you use the WALLET_ROOT static initialization
parameter and TDE_CONFIGURATION dynamic initialization parameter instead.

3.4.3 Step 2: Open the TDE Wallet
Depending on the type of TDE wallet you create, you must manually open the wallet before
you can use it.

• About Opening TDE Wallets
A password-protected TDE wallet must be open before any TDE master encryption keys
can be created or accessed in the wallet.

• Opening the TDE Wallet in a United Mode PDB
To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

3.4.3.1 About Opening TDE Wallets
A password-protected TDE wallet must be open before any TDE master encryption keys can
be created or accessed in the wallet.

Chapter 3
Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

3-13



Many Transparent Data Encryption operations require the TDE wallet to be open.
There are two ways that you can open the TDE wallet:

• Manually open the wallet by issuing the ADMINISTER KEY MANAGEMENT SET
KEYSTORE OPEN statement. Afterward, you can perform the operation.

• Include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement
that is used to perform the operation. FORCE KEYSTORE temporarily opens the TDE
wallet for the duration of the operation, and when the operation completes, the
TDE wallet is closed again. FORCE KEYSTORE is useful for situations when the
database is heavily loaded. In this scenario, because of concurrent access to
encrypted objects in the database, the auto-login TDE wallet continues to open
immediately after it has been closed but before a user has had chance to open the
password-based TDE wallet.

TDE wallets can be in the following states: open, closed, open but with no master
encryption key, open but with an unknown master encryption key, undefined, or not
available (that is, not present in the WALLET_ROOT/tde location).

After you manually open a TDE wallet, it remains open until you manually close it.
Each time you restart a PDB or CDB, you must manually open the password TDE
wallet to reenable encryption and decryption operations.

You can check the status of whether a TDE wallet is open or not by querying the
STATUS column of the V$ENCRYPTION_WALLET view.

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore
password, for both TDE wallets and external keystores.

• How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united
mode.

3.4.3.2 Opening the TDE Wallet in a United Mode PDB
To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Open the TDE wallet in the CDB root.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY password;

keystore altered.

If the CDB is configured with the TDE wallet password stored in WALLET_ROOT/
tde_seps and has a (local) auto-login TDE wallet in WALLET_ROOT/tde, you must
include the FORCE KEYSTORE clause and the IDENTIFIED BY EXTERNAL STORE
clause in the ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN statement, as
follows:

Chapter 3
Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

3-14



ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE;

keystore altered.

If the WALLET_ROOT parameter has been set, then Oracle Database finds the external
store in the WALLET_ROOT/tde_seps directory.

3. Ensure that the PDB in which you want to open the TDE wallet is in READ WRITE mode.

For example:

SHOW PDBS

CON_ID CON_NAME   OPEN MODE    RESTRICTED
------ ---------- ------------ -----------
2      PDB$SEED   READ ONLY    NO
3      CDB1_PDB1  READ WRITE   NO

If any PDB has an OPEN MODE value that is different from READ WRITE, then run the
following statement to open the PDB, which will set it to READ WRITE mode:

ALTER PLUGGABLE DATABASE CDB1_PDB1 OPEN;

Now the TDE wallet can be opened in both the CDB root and the PDB.

4. Connect to the PDB.

5. Run the ADMINISTER KEY MANAGEMENT statement to open the TDE wallet.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY TDE_wallet_password | EXTERNAL STORE;
keystore altered.

To open a password-protected TDE wallet when a (local) auto-login TDE wallet is open,
specify the FORCE KEYSTORE clause as follows.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
FORCE KEYSTORE 
IDENTIFIED BY TDE_wallet_password | EXTERNAL STORE;
keystore altered.

FORCE KEYSTORE is also useful for databases that are heavily loaded. The IDENTIFIED BY
EXTERNAL STORE clause is included in the statement because the TDE wallet credentials
exist in an external store. This enables the password-protected TDE wallet to be opened
without specifying the TDE wallet password within the statement itself.

If the WALLET_ROOT parameter has been set in the CDB, then united PDBs find the
external store in the WALLET_ROOT/tde_seps directory.

6. Confirm that the TDE wallet is open.

SELECT STATUS FROM V$ENCRYPTION_WALLET;
Note that if the TDE wallet is open but you have not created a TDE master encryption key
yet, the STATUS column of the V$ENCRYPTION_WALLET view reminds you with an
OPEN_NO_MASTER_KEY status.

3.4.4 Step 3: Set the TDE Master Encryption Key in the TDE Wallet
Once the TDE wallet is open, you can set a TDE master encryption key for it.

Chapter 3
Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

3-15



• About Setting the TDE Wallet TDE Master Encryption Key
The TDE master encryption key is stored in the TDE wallet.

• Setting the TDE Master Encryption Key in the United Mode TDE Wallet
To set the TDE master encryption key in the TDE wallet when the PDB is
configured in united mode, use the ADMINISTER KEY MANAGEMENT statement with
the SET KEY clause.

3.4.4.1 About Setting the TDE Wallet TDE Master Encryption Key
The TDE master encryption key is stored in the TDE wallet.

The TDE master encryption key protects the TDE table keys and tablespace
encryption keys. By default, the TDE master encryption key is a key that TDE
generates. You can find if a TDE wallet has no TDE master encryption key set or an
unknown TDE master encryption key by querying the STATUS column of the
V$ENCRYPTION_WALLET view.

You can import a master encryption key (bring your own key (BYOK)), that was
created outside of the database, into the TDE wallet. You can set a key for immediate
use, using ADMINISTER KEY MANAGEMENT SET, or create a key for later use, by
activating it with the ADMINISTER KEY MANAGEMENT USE KEY statement.

Related Topics

• Creating User-Defined TDE Master Encryption Keys
You can create a user-defined TDE master encryption key outside the database by
generating a TDE master encryption key ID.

• Creating TDE Master Encryption Keys for Later Use in United Mode
You can create a TDE master encryption key that can be activated at a later date.

3.4.4.2 Setting the TDE Master Encryption Key in the United Mode TDE Wallet
To set the TDE master encryption key in the TDE wallet when the PDB is configured in
united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Ensure that the CDB is open in READ WRITE mode.

You can set the TDE master encryption key if OPEN_MODE is set to READ WRITE. To
find the status, query the OPEN_MODE column of the V$DATABASE dynamic view. (If
you cannot access this view, then connect as SYSDBA and try the query again. In
order to connect as SYSKM for this type of query, you must create a password file
for it.)

3. Run the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY statement to set the
TDE master encryption key in the TDE wallet.

Use the following syntax:

ADMINISTER KEY MANAGEMENT SET KEY 
[USING TAG 'tag'] 
[FORCE KEYSTORE] 
IDENTIFIED BY EXTERNAL STORE | TDE_wallet_password 
WITH BACKUP [USING 'backup_identifier'];

Chapter 3
Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

3-16



In this specification:

• tag is the associated attributes and information that you define. Enclose this setting
in single quotation marks (' ').

• FORCE KEYSTORE should be included if the TDE wallet is closed. This automatically
opens the keystore before setting the TDE master encryption key. The FORCE
KEYSTORE clause also switches over to opening the password-protected TDE wallet
when an auto-login TDE wallet is configured and is currently open.

• IDENTIFIED BY specifies the TDE wallet password. Alternatively, if the TDE wallet
password is in an external store, you can use the IDENTIFIED BY EXTERNAL STORE
clause.

• WITH BACKUP creates a backup of the TDE wallet. You must use this option for
password-protected TDE wallets. Optionally, you can use the USING clause to add a
brief description of the backup. Enclose this description in single quotation marks
(' '). This identifier is appended to the named TDE wallet file (for example,
ewallet_time_stamp_emp_key_backup.p12, with emp_key_backup being the backup
identifier). Follow the file naming conventions that your operating system uses.

For example, if the TDE wallet is password-protected and open, and you want to set the
TDE master encryption key in the current container:

ADMINISTER KEY MANAGEMENT SET KEY 
IDENTIFIED BY EXTERNAL STORE | TDE_wallet_password 
WITH BACKUP USING 'emp_key_backup';

If the TDE wallet is closed:

ADMINISTER KEY MANAGEMENT SET KEY 
[USING TAG 'tag']
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE | TDE_wallet_password 
WITH BACKUP USING 'emp_key_backup';

4. Confirm that the TDE master encryption key is set.

SELECT MASTERKEY_ACTIVATED FROM V$DATABASE_KEY_INFO;

The output should be YES.

Related Topics

• About Setting the TDE Wallet TDE Master Encryption Key
The TDE master encryption key is stored in the TDE wallet.

3.4.5 Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration, you can begin to encrypt data.

Related Topics

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

Chapter 3
Configuring a TDE Wallet and TDE Master Encryption Key for United Mode

3-17



3.5 Operations That Are Not Allowed in a United Mode PDB
ADMINISTER KEY MANAGEMENT operations that are not allowed in a united mode PDB
can be performed in the CDB root.

These operations are as follows:

• Keystore operations:

– Performing merge operations on keystores

– Exporting a keystore

– Importing a keystore

– Migrating a keystore

– Reverse-migrating a keystore

– Moving the keys of a keystore that is in the CDB root into the keystores of a
PDB

– Moving the keys from a PDB into a united mode keystore that is in the CDB
root

• Encryption key operations:

– Using the CONTAINER = ALL clause to create a new TDE master encryption
key for later user in each pluggable database (PDB)

• Client secret operations:

– Adding client secrets

– Updating client secrets

– Deleting client secrets

3.6 Configuring a Container Database with United Mode
PDBs for Oracle Key Vault

The TDE master keys of all united mode PDBs and the CDB reside in the same virtual
wallet in Oracle Key Vault.

• About Configuring a Container Database with United Mode PDBs for Oracle Key
Vault
Oracle Key Vault is a fault-tolerant, scalable, and continuously available key and
secrets management platform that was purpose-built for TDE master key
management even for the largest, and most diverse, Oracle database
deployments.

• About Configuring a Container Database with United Mode PDBs for Oracle Key
Vault
In united mode, you can configure Oracle Key Vault by setting the WALLET_ROOT
and TDE_CONFIGURATION parameters in the container database (CDB).

• Step 1: Configure Oracle Key Vault for United Mode
You can configure Oracle Key Vault for united mode PDBs by setting the
WALLET_ROOT and TDE_CONFIGURATION parameters in the container database
(CDB).

Chapter 3
Operations That Are Not Allowed in a United Mode PDB

3-18



• Step 2: Open the Connection to Oracle Key Vault
After you have configured the database to use Oracle Key Vault for TDE key
management, you must open the connection to Oracle Key Vault before you can use it.

• Step 3: Set the TDE Master Encryption Key in Oracle Key Vault
After you have opened the connection to Oracle Key Vault, you are ready to set the TDE
master encryption key.

• Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration for an external keystore or for an Oracle
Key Vault keystore, you can begin to encrypt data.

3.6.1 About Configuring a Container Database with United Mode PDBs for
Oracle Key Vault

Oracle Key Vault is a fault-tolerant, scalable, and continuously available key and secrets
management platform that was purpose-built for TDE master key management even for the
largest, and most diverse, Oracle database deployments.

External keystores are external to an Oracle database. Oracle Database can interface with
external keystores but cannot manipulate them outside of the Oracle interface. The Oracle
database can request the external keystore to create a key but it cannot define how this key
is stored in an external database. Examples of external keystores are Oracle Key Vault
keystores. Supported external keystores are Oracle Key Vault and the Oracle Cloud
Infrastructure Vault. (Conversely, for TDE wallets that are created using TDE, Oracle
Database has full control: that is, you can use SQL statements to manipulate this type of
keystore.)

To configure an external keystore, you must first define the keystore type in the
TDE_CONFIGURATION parameter setting, configure and open the external keystore, and then
set the first TDE master encryption key in the external keystore. In short, there is one external
keystore per database, and the database locates this keystore by checking the keystore type
that you define in the TDE_CONFIGURATION parameter.

3.6.2 About Configuring a Container Database with United Mode PDBs for
Oracle Key Vault

In united mode, you can configure Oracle Key Vault by setting the WALLET_ROOT and
TDE_CONFIGURATION parameters in the container database (CDB).

Oracle recommends that you set the parameters WALLET_ROOT and TDE_CONFIGURATION for
new deployments. Alternatively, you can migrate from the old configuration in the sqlnet.ora
file to the new configuration with WALLET_ROOT and TDE_CONFIGURATION at your earliest
convenience (for example, the next time you apply a quarterly bundle patch).

United Mode is the default TDE setup that is used in Oracle Database release 12.1.0.2 and
later with the TDE configuration in sqlnet.ora. In Oracle Database release 18c and later,
TDE configuration in sqlnet.ora is deprecated. You must first set the static initialization
parameter WALLET_ROOT to an existing directory; for this change to be picked up, a database
restart is necessary. After the restart, set the KEYSTORE_CONFIGURATION attribute of the
dynamic TDE_CONFIGURATION parameter to OKV (for a password-protected connection into
Oracle Key Vault), or OKV|FILE for an auto-open connection into Oracle Key Vault, and then
open the configured external keystore, and then set the TDE master encryption keys. After
you complete these tasks, you can begin to encrypt data in your database.

Chapter 3
Configuring a Container Database with United Mode PDBs for Oracle Key Vault

3-19



3.6.3 Step 1: Configure Oracle Key Vault for United Mode
You can configure Oracle Key Vault for united mode PDBs by setting the WALLET_ROOT
and TDE_CONFIGURATION parameters in the container database (CDB).

1. If the WALLET_ROOT parameter is set, then install the Oracle Key Vault client
software into the WALLET_ROOT/okv directory.

2. Log in to the database instance as a user who has been granted the ALTER
SYSTEM administrative privilege.

3. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the
keystore type by using the following syntax:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type" 
SCOPE=BOTH SID = '*';

In this specification:

• keystore_type is OKV, to configure an Oracle Key Vault keystore.

For example, to configure your database to use Oracle Key Vault:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV" 
SCOPE=BOTH SID = '*";

3.6.4 Step 2: Open the Connection to Oracle Key Vault
After you have configured the database to use Oracle Key Vault for TDE key
management, you must open the connection to Oracle Key Vault before you can use it.

• About Opening the Connection to Oracle Key Vault
You must open the connection to Oracle Key Vault so that it is accessible to the
database before you can perform any encryption or decryption.

• Opening the Oracle Key Vault Connection in a United Mode PDB
To open the Oracle Key Vault connection in united mode, you must use the
ADMINISTER KEY MANAGEMENT statement with the SET KEYSTORE OPEN clause.

3.6.4.1 About Opening the Connection to Oracle Key Vault
You must open the connection to Oracle Key Vault so that it is accessible to the
database before you can perform any encryption or decryption.

If a recovery operation is needed on your database (for example, if the database was
not cleanly shut down, and has an encrypted tablespace that needs recovery), then
you must open the connection to Oracle Key Vault before you can open the database
itself.

There are two ways that you can open the Oracle Key Vault connection:

• Manually open the keystore by issuing the ADMINISTER KEY MANAGEMENT SET
KEYSTORE OPEN statement. Afterward, you can perform the operation.

• Include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement.
FORCE KEYSTORE temporarily opens the keystore for the duration of the operation,
and when the operation completes, the keystore is closed again. FORCE KEYSTORE
is useful for situations when the database is heavily loaded. In this scenario,

Chapter 3
Configuring a Container Database with United Mode PDBs for Oracle Key Vault

3-20



because of concurrent access to encrypted objects in the database, the auto-login
keystore continues to open immediately after it has been closed but before a user has
had a chance to open the password-based keystore.

To check the status of the keystore, query the STATUS column of the V$ENCRYPTION_WALLET
view. Keystores can be in the following states: CLOSED, NOT_AVAILABLE (that is, not present in
the WALLET_ROOT location), OPEN, OPEN_NO_MASTER_KEY, OPEN_UNKNOWN_MASTER_KEY_STATUS.

Be aware that for external keystores, if the database is in the mounted state, then it cannot
check if the master key is set because the data dictionary is not available. In this situation,
the status will be OPEN_UNKNOWN_MASTER_KEY_STATUS.

Related Topics

• How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united mode.

3.6.4.2 Opening the Oracle Key Vault Connection in a United Mode PDB
To open the Oracle Key Vault connection in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Open the keystore in the CDB root by using the following syntax.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY EXTERNAL STORE | "Oracle_Key_Vault_password" 
[CONTAINER = ALL | CURRENT];

In this specification:

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– Oracle_Key_Vault_password is the Oracle Key Vault password that was giving
during the Oracle Key Vault client installation. If no password was given, then the
password in the ADMINISTER KEY MANAGEMENT statement becomes NULL. Enclose
this password in double quotation marks.

• CONTAINER specifies the scope in which to open the Oracle Key Vault connection.

– ALL opens the connection to Oracle Key Vault for the root container and all open
united PDBs.

– CURRENT opens the connection to Oracle Key Vault for the root container.

If the password contains a semi-colon (;), then enclose the password in double quotation
marks.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY "Oracle_Key_Vault_password";

3. Ensure that the PDB in which you want to open the keystore is in READ WRITE mode.

4. Connect to the PDB and run the ADMINISTER KEY MANAGEMENT statement to open the
keystore.

For example:

Chapter 3
Configuring a Container Database with United Mode PDBs for Oracle Key Vault

3-21



ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY "external_key_manager_password";

5. Confirm that the keystore is open.

SELECT STATUS FROM V$ENCRYPTION_WALLET;
6. Repeat this procedure each time you restart the PDB.

3.6.5 Step 3: Set the TDE Master Encryption Key in Oracle Key Vault
After you have opened the connection to Oracle Key Vault, you are ready to set the
TDE master encryption key.

• About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external
keystore.

• Heartbeat Batch Size for External Keystores
You can control the size of the batch of heartbeats issued during each heartbeat
period.

• Setting the TDE Master Encryption Key for United Mode PDBs in an External
Keystore
To set the TDE master encryption key in the keystore when the PDB is configured
in united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY
clause.

• Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or OCI
KMS
To switch from a TDE wallet to centralized key management with Oracle Key Vault
or Oracle Cloud Infrastructure (OCI) Key Management Service (KMS), after you
upload all current and retired TDE master keys you must migrate the database
from the TDE wallet to Oracle Key Vault or OCI KMS.

3.6.5.1 About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external
keystore.

Oracle Database uses the master encryption key from Oracle Key Vault or Oracle
Cloud Infrastructure (OCI) Key Management Service (KMS) to encrypt or decrypt TDE
table keys or tablespace encryption keys (data encryption keys) inside the database.

If you have not previously configured TDE with a wallet, then you must set the master
encryption key in Oracle Key Vault or OCI KMS. If you have already configured TDE
with a wallet, then you must migrate the database to Oracle Key Vault or OCI KMS.

Along with the current master encryption key, all TDE keystores (TDE wallet, Oracle
Key Vault, and OCI KMS) maintain historical master encryption keys that are
generated after every re-key operation that rekeys the master encryption key. These
historical master keys help to restore Oracle Database backups that were taken
previously using one of the master encryption keys. Only Oracle Key Vault allows you
to upload all historical key from a TDE wallet before migrating the database to use
Oracle Key Vault. After migration to Oracle Key Vault, the TDE wallet can be deleted,
which satisfies security regulation that mandate that encryption keys cannot reside on
the encrypting server.

Chapter 3
Configuring a Container Database with United Mode PDBs for Oracle Key Vault

3-22



3.6.5.2 Heartbeat Batch Size for External Keystores
You can control the size of the batch of heartbeats issued during each heartbeat period.

When a PDB is configured to use an external key manager, the GEN0 background process
must perform a heartbeat request on behalf of the PDB to the external key manager. This
background process ensures that the external key manager is available and that the TDE
master encryption key of the PDB is available from the external key manager and can be
used for both encryption and decryption. The GEN0 background process must complete this
request within the heartbeat period (which defaults to three seconds).

When a very large number of PDBs (for example, 1000) are configured to use an external
key manager, you can configure the HEARTBEAT_BATCH_SIZE database instance initialization
parameter to batch heartbeats and thereby mitigate the possibility of the hang analyzer
mistakenly flagging the GEN0 process as being stalled when there was not enough time for it
to perform a heartbeat for each PDB within the allotted heartbeat period.

By setting the heartbeat batch size, you can stagger the heartbeats across batches of PDBs
to ensure that for each batch a heartbeat can be completed for each PDB within the batch
during the heartbeat period, and also ensure that PDB master encryption keys can be reliably
fetched from an Oracle Key Vault server and cached in the Oracle Key Vault persistent
cache. The HEARTBEAT_BATCH_SIZE parameter configures the size of the batch of heartbeats
sent per heartbeat period to the external key manager. The value must be between 2 and 100
and it defaults to 5. The default duration of the heartbeat period is three seconds.

For example, if 500 PDBs are configured and are using Oracle Key Vault, the usual time
taken by GEN0 to perform a heartbeat on behalf of a single PDB is less than half a second. In
addition, assume that the CDB$ROOT has been configured to use an external key manager
such as Oracle Key Vault (OKV). Therefore, it should generally be possible to send five
heartbeats (one for the CDB$ROOT and four for a four-PDB batch) in a single batch within every
three-second heartbeat period.

Even though the HEARTBEAT_BATCH_SIZE parameter configures the number of heartbeats sent
in a batch, if the CDB$ROOT is configured to use an external key manager, then each heartbeat
batch must include a heartbeat for the CDB$ROOT. The minimum value of the
HEARTBEAT_BATCH_SIZE parameter is 2 and its maximum value is 100. When the CDB$ROOT is
configured to use an external key manager, then each batch of heartbeats includes one
heartbeat for the CDB$ROOT. This is why the minimum batch size is two: one must be reserved
for the CDB$ROOT, because it might be configured to use an external key manager.

For example, suppose you set the HEARTBEAT_BATCH_SIZE parameter as follows:

ALTER SYSTEM SET HEARTBEAT_BATCH_SIZE=3 SCOPE=BOTH SID='*';

Each iteration corresponds to one GEN0 three-second heartbeat period.

Example 1: Setting the Heartbeat for Containers That Are Configured to Use Oracle
Key Vault

Suppose the container list is 1 2 3 4 5 6 7 8 9 10, with all containers configured to use Oracle
Key Vault (OKV). The iterations are as follows:

• Iteration 1: batch consists of containers: 1 2 3

• Iteration 2: batch consists of containers: 1 4 5

Chapter 3
Configuring a Container Database with United Mode PDBs for Oracle Key Vault

3-23



• Iteration 3: batch consists of containers: 1 6 7

• Iteration 4: batch consists of containers: 1 8 9

• Iteration 5: batch consists of containers: 1 10

• Repeat this cycle.

Example 2: Setting the Heartbeat for Isolated PDBs with Different Keystores
(Root Container in Oracle Key Vault)

In this example, the container list is 1 2 3 4 5 6 7 8 9 10, with only odd-numbered
PDBs configured to use OKV, and the even-numbered PDBs configured to use a TDE
wallet (FILE).

• Iteration 1: batch consists of containers: 1 3 5

• Iteration 2: batch consists of containers: 1 7 9

• Iteration 3: batch consists of containers: 1

• Repeat this cycle.

Example 3: Setting the Heartbeat for Isolated PDBs with Different Keystores
(Root Container in TDE Wallet)

Assume that the container list is 1 2 3 4 5 6 7 8 9 10, with only even-numbered
container numbers configured to use Oracle Key Vault, and the odd-numbered
containers configured to use FILE. In the following example, there is no heartbeat for
the CDB$ROOT, because it is configured to use FILE.

• Iteration 1: batch consists of containers: 2 4 6

• Iteration 2: batch consists of containers: 8 10

• Repeat this cycle.

Related Topics

• Setting the TDE Master Encryption Key for United Mode PDBs in an External
Keystore
To set the TDE master encryption key in the keystore when the PDB is configured
in united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY
clause.

• Setting the TDE Master Encryption Key in the Isolated Mode External Keystore
You should complete this procedure if you have not previously configured an
external keystore for Transparent Data Encryption.

3.6.5.3 Setting the TDE Master Encryption Key for United Mode PDBs in an
External Keystore

To set the TDE master encryption key in the keystore when the PDB is configured in
united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Ensure that the database is open in READ WRITE mode.

You can set the master encryption key if OPEN_MODE is set to READ WRITE. To find
the status, for a non-multitenant environment, query the OPEN_MODE column of the

Chapter 3
Configuring a Container Database with United Mode PDBs for Oracle Key Vault

3-24



V$DATABASE dynamic view. If you are in a multitenant environment, then run the show
pdbs command.

3. To enable or disable in-memory caching of master encryption keys, set the
TDE_KEY_CACHE initialization parameter.

This optional setting is only available for databases in Oracle Cloud Infrastructure (OCI)
that use the OCI Key Management Service (KMS) for key management.

Enabling in-memory caching of master encryption keys helps to reduce the dependency
on the OCI KMS during the decryption of data encryption keys. By having the master
encryption key local to the database, you can improve the database availability by
avoiding the failures that can happen because of intermittent network issues if the calls
were made to the key server instead. A setting of TRUE enables in-memory caching;
FALSE disables it.

ALTER SYSTEM SET TDE_KEY_CACHE = TRUE SCOPE=BOTH SID='*';

4. To configure the heartbeat batch size, set the HEARTBEAT_BATCH_SIZE initialization
parameter.

The HEARTBEAT_BATCH_SIZE parameter configures the size of the "batch of heartbeats"
sent per heartbeat period to the external key manager. Enter a value between 2 and 100.
The default value is 5. The default duration of the heartbeat period is three seconds. By
setting the heartbeat batch size, you can stagger the heartbeats across batches of PDBs
to ensure that for each batch a heartbeat can be completed for each PDB within the
batch during the heartbeat period, and also ensure that the TDE master encryption key of
the PDB can be reliably fetched from an Oracle Key Vault server and cached in the
Oracle Key Vault persistent cache. (See Heartbeat Batch Size for External Keystores for
details about how HEARTBEAT_BATCH_SIZE works.)

ALTER SYSTEM SET HEARTBEAT_BATCH_SIZE=3 SCOPE=BOTH SID='*';

5. Run the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY statement to set the TDE
master encryption key in the keystore.

ADMINISTER KEY MANAGEMENT SET KEY 
[USING TAG 'tag'] 
[FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | "external_key_manager_password"];

In this specification:

• tag is the associated attributes and information that you define. Enclose this setting
in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– external_key_manager_password is for an external keystore manager, which can
be Oracle Key Vault or OCI Vault - Key Management. Enclose this password in
double quotation marks. For Oracle Key Vault, enter the password that was given
during the Oracle Key Vault client installation. If at that time no password was

Chapter 3
Configuring a Container Database with United Mode PDBs for Oracle Key Vault

3-25



given, then the password in the ADMINISTER KEY MANAGEMENT statement
becomes NULL.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
FORCE KEYSTORE 
IDENTIFIED BY "external_key_manager_password";

keystore altered.
6. Confirm that the TDE master encryption key is set.

SELECT MASTERKEY_ACTIVATED FROM V$DATABASE_KEY_INFO;

The output should be YES.

3.6.5.4 Migration of an Encrypted Database from a TDE Wallet to Oracle Key
Vault or OCI KMS

To switch from a TDE wallet to centralized key management with Oracle Key Vault or
Oracle Cloud Infrastructure (OCI) Key Management Service (KMS), after you upload
all current and retired TDE master keys you must migrate the database from the TDE
wallet to Oracle Key Vault or OCI KMS.

Tools such as Oracle Data Pump and Oracle Recovery Manager require access to the
old TDE wallet to perform decryption and encryption operations on data exported or
backed up using the TDE wallet. Along with the current master encryption key, Oracle
keystores maintain historical master encryption keys that are generated after every re-
key operation that rotates the master encryption key. These historical master
encryption keys help to restore Oracle database backups that were taken previously
using one of the historical master encryption keys.

Related Topics

• Migrating from a TDE Wallet to Oracle Key Vault
You can migrate between password-protected TDE wallets and external keystores
in Oracle Key Vault.

3.6.6 Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration for an external keystore or for an
Oracle Key Vault keystore, you can begin to encrypt data.

Related Topics

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in
database tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

• Oracle Key Vault Administrator's Guide

Chapter 3
Configuring a Container Database with United Mode PDBs for Oracle Key Vault

3-26



4
Configuring Isolated Mode

Isolated mode enables you to create a keystore for each pluggable database (PDB).

• About Configuring Isolated Mode
In isolated mode, where a pluggable database (PDB) has its own keystore and keystore
password, you manage the keystore and its TDE master encryption keys from the PDB
only.

• Operations That Are Allowed in Isolated Mode
You can perform many ADMINISTER KEY MANAGEMENT operations in isolated mode.

• Operations That Are Not Allowed in an Isolated Mode PDB
There are several ADMINISTER KEY MANAGEMENT operations that you cannot perform in an
isolated mode PDB.

• Configuring the Keystore Location and Type for Isolated Mode
For isolated mode, you can configure the keystore location and type by using only
parameters or a combination of parameters and the ALTER SYSTEM statement.

• Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode
In isolated mode, the TDE wallet is associated with a PDB.

• Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault
Isolated PDBs have their own virtual wallet, with their own password, in Oracle Key Vault.

4.1 About Configuring Isolated Mode
In isolated mode, where a pluggable database (PDB) has its own keystore and keystore
password, you manage the keystore and its TDE master encryption keys from the PDB only.

Similar to united mode, you must first configure a PDB to use isolated mode by setting the
WALLET_ROOT and TDE_CONFIGURATION parameters. After you set these parameters, you can
create and manage the keystore from the PDB. In this way, you can have the following
scenario:

• United mode PDBs inherit the TDE configuration from the root container. For example,
the keystore that you create in the CDB root will be used by the root’s associated united
mode PDBs.

• The PDBs that are configured in isolated mode are allowed to independently create and
manage their own keystore. An isolated mode PDB can have its own keystore,
independent of the keystore of the CDB root.

This scenario is useful in cases where you have many PDBs that must use one type of
keystore, but you have a few PDBs that must use a different type. By different types of
keystores, this refers to either TDE wallet or to one of the external keystores that Oracle
supports (for example, Oracle Key Vault or Cloud Key Management Service). You cannot
have a mixture of different external keystore types in one CDB environment because the
Oracle server can load only one PKCS#11 vendor library. If necessary, you can configure
these PDBs in isolated mode so that each PDB can use its own keystore.

4-1



Note:

Oracle Cloud Infrastructure (OCI) cloud tooling does not support isolated
PDBs. This non-support applies to Oracle Base Database Service (BaseDB),
ExaDB-D, ExaDB-D@Azure, ExaDB-C@C, ADB-C@C, even when Oracle
Key Vault provides key management for those database deployments.

4.2 Operations That Are Allowed in Isolated Mode
You can perform many ADMINISTER KEY MANAGEMENT operations in isolated mode.

These operations include creating, backing up, opening keystores; changing keystore
passwords, merging keystores, closing keystores; creating, activating, tagging,
moving, exporting, importing, and migrating encryption keys; and adding, updating,
and deleting client secrets.

Table 4-1 describes the ADMINISTER KEY MANAGEMENT operations that you can perform
in an isolated mode PDB.

Table 4-1    ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Notes

Creating a keystore ADMINISTER KEY MANAGEMENT 
CREATE KEYSTORE 
IDENTIFIED BY 
isolated_PDB_keystore_passw
ord;

You can create password-
protected, local auto-login,
and auto-login keystores in
an isolated mode PDB.

Creating an auto-login
keystore

ADMINISTER KEY MANAGEMENT
CREATE [LOCAL] AUTO_LOGIN 
KEYSTORE
FROM KEYSTORE IDENTIFIED 
BY 
isolated_PDB_keystore_passw
ord;

The isolated PDB knows the
keystore location of both
password protected and
(local) auto-open wallet from
WALLET_ROOT/pdb_guid/
tde.

Opening a keystore ADMINISTER KEY MANAGEMENT
SET KEYSTORE OPEN
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL 
STORE | 
isolated_PDB_keystore_passw
ord;

The EXTERNAL_STORE
clause retrieves the isolated
mode PDB keystore
password from a wallet in the
tde_seps directory in the
WALLET_ROOT/PDB-GUID
location.

Chapter 4
Operations That Are Allowed in Isolated Mode

4-2



Table 4-1    (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Notes

Changing a keystore password ADMINISTER KEY MANAGEMENT 
ALTER KEYSTORE PASSWORD
IDENTIFIED BY 
old_isolated_PDB_keystore_p
assword
SET 
new_isolated_PDB_keystore_p
assword  
WITH BACKUP [USING 
'backup_identifier'];

-

Backing up a TDE wallet ADMINISTER KEY MANAGEMENT 
BACKUP KEYSTORE 
[USING 'backup_identifier']
IDENTIFIED BY EXTERNAL 
STORE | 
TDE_wallet_password]
[TO 
'TDE_wallet_backup_location
'];

-

Merging the contents of one
keystore into an existing
keystore

ADMINISTER KEY MANAGEMENT 
MERGE KEYSTORE 
'keystore1_location'
[IDENTIFIED BY 
TDE_wallet1_password]
INTO EXISTING KEYSTORE 
'keystore2_location'
IDENTIFIED BY 
TDE_wallet2_password
WITH BACKUP [USING 
'backup_identifier'];

-

Merging the contents of two
keystores to create a third
keystore

ADMINISTER KEY MANAGEMENT
MERGE KEYSTORE 
'keystore1_location'
[IDENTIFIED BY 
TDE_wallet1_password]
AND KEYSTORE 
'keystore2_password'
[IDENTIFIED BY 
TDE_wallet2_password]
INTO NEW KEYSTORE 
'keystore3_location'
IDENTIFIED BY 
TDE_wallet3_password;

-

Chapter 4
Operations That Are Allowed in Isolated Mode

4-3



Table 4-1    (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Notes

Closing a keystore ADMINISTER KEY MANAGEMENT 
SET KEYSTORE CLOSE
[IDENTIFIED BY [EXTERNAL 
STORE | 
keystore_password]];

-

Closing the keystore of the
CDB root when a PDB in
isolated mode has its keystore
open

ADMINISTER KEY MANAGEMENT 
FORCE KEYSTORE CLOSE
[IDENTIFIED BY [EXTERNAL 
STORE | 
keystore_password]];

The FORCE clause allows the
keystore to be closed in the
CDB root even when a PDB
in isolated mode still has its
keystore open

Creating and activating a new
TDE master encryption key
(rekeying)

ADMINISTER KEY MANAGEMENT 
SET [ENCRYPTION] KEY 
[USING TAG 'tag_name']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL 
STORE | keystore_password
]WITH BACKUP [USING 
'backup_identifier'];

-

Creating a user-defined TDE
master encryption key for
either now (SET) or later on
(CREATE)

ADMINISTER KEY MANAGEMENT 
SET | CREATE [ENCRYPTION] 
KEY
'mkid:mk | mk' 
[USING ALGORITHM 
'algorithm'] 
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY EXTERNAL 
STORE | 
TDE_wallet_password 
WITH BACKUP [USING 
'backup_identifier']
[CONTAINER = CURRENT];

-

Activating an existing TDE
master encryption key

ADMINISTER KEY MANAGEMENT 
USE [ENCRYPTION] KEY 
'key_id' 
[USING TAG 'tag']
IDENTIFIED BY
[EXTERNAL STORE | 
keystore_password] 
WITH BACKUP [USING 
'backup_identifier'];

-

Chapter 4
Operations That Are Allowed in Isolated Mode

4-4



Table 4-1    (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Notes

Tagging a TDE master
encryption key

ADMINISTER KEY MANAGEMENT 
SET TAG 'tag' FOR 'key_id'
IDENTIFIED BY
[EXTERNAL STORE | 
keystore_password]
WITH BACKUP [USING 
'backup_identifier'];

-

Exporting a TDE master
encryption key

ADMINISTER KEY MANAGEMENT 
EXPORT [ENCRYPTION] KEYS 
WITH SECRET secret TO 
'filename'
IDENTIFIED BY 
TDE_wallet_password
[WITH IDENTIFIER IN 
{ 'key_id' [, 
'key_id' ]... | 
( subquery ) }];

-

Importing a TDE master
encryption key

ADMINISTER KEY MANAGEMENT 
IMPORT [ENCRYPTION] KEYS 
WITH SECRET secret FROM 
'filename'
IDENTIFIED BY 
TDE_wallet_password
WITH BACKUP [USING 
'backup_identifier'];

-

Migrating an encrypted
database from a TDE wallet to
Oracle Key Vault

ADMINISTER KEY MANAGEMENT
SET [ENCRYPTION] KEY
IDENTIFIED BY 
Oracle_Key_Vault_password
[FORCE KEYSTORE]
MIGRATE USING 
TDE_wallet_password;

-

Reverse-migrating an
encrypted database from an
external keystore to a TDE
wallet

ADMINISTER KEY MANAGEMENT 
SET [ENCRYPTION] KEY
IDENTIFIED BY 
TDE_wallet_password
REVERSE MIGRATE USING 
Oracle_Key_Vault_password;

-

Chapter 4
Operations That Are Allowed in Isolated Mode

4-5



Table 4-1    (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Notes

Adding a client secret ADMINISTER KEY MANAGEMENT 
ADD SECRET 'secret' FOR 
CLIENT 'client_identifier'
[USING TAG 'tag_name' ]
IDENTIFIED BY
[EXTERNAL STORE | 
keystore_password]
WITH BACKUP [USING 
'backup_identifier'];

-

Updating a client secret ADMINISTER KEY MANAGEMENT 
UPDATE SECRET 'secret'
FOR CLIENT 
'client_identifier'
[USING TAG 'tag_name' ]
IDENTIFIED BY
[EXTERNAL STORE | 
keystore_password]
WITH BACKUP [USING 
'backup_identifier'];

-

Deleting a client secret ADMINISTER KEY MANAGEMENT 
DELETE SECRET
FOR CLIENT 
'client_identifier
IDENTIFIED BY
[EXTERNAL STORE | 
keystore_password]
WITH BACKUP [USING 
'backup_identifier'];

-

Isolating a PDB ADMINISTER KEY MANAGEMENT 
ISOLATE KEYSTORE
IDENTIFIED BY 
isolated_keystore_password
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY
[EXTERNAL STORE | 
united_keystore_password]
WITH BACKUP [USING 
backup_id];

This operation performs two
actions. First, it changes the
TDE_CONFIGURATION of the
PDB so that it is in isolated
mode. Second, it moves the
PDB's current and previously
active TDE master
encryption keys from the root
keystore to a newly-created
isolated keystore of the PDB,
having its own isolated
keystore password, where
the PDB will be able to
manage its own keys.

Chapter 4
Operations That Are Allowed in Isolated Mode

4-6



4.3 Operations That Are Not Allowed in an Isolated Mode PDB
There are several ADMINISTER KEY MANAGEMENT operations that you cannot perform in an
isolated mode PDB.

These operations include the following:

• Using the CONTAINER = ALL clause to create a new TDE master encryption key for later
use in each pluggable database (PDB)

• Moving encryption keys from the keystore of the CDB root into a keystore of a PDB that
is configured in isolated mode

4.4 Configuring the Keystore Location and Type for Isolated
Mode

For isolated mode, you can configure the keystore location and type by using only
parameters or a combination of parameters and the ALTER SYSTEM statement.

• About Configuring the Keystore Location and Type for Isolated Mode
Configuring the WALLET_ROOT and TDE_CONFIGURATION parameters for the CDB
environment is similar to the procedure used for united mode.

• Configuring the Keystore Location and Keystore Type for an Isolated Mode PDB
You can configure isolated mode by setting WALLET_ROOT in the initialization parameter file
in the CDB root and TDE_CONFIGURATION in the PDB you want to isolate.

• Example: Restoring an Older Version of a Control File
You can set TDE_CONFIGURATION if you have an older version of a control file that must be
restored and only a few PDBs were configured in isolated mode.

• Example: Addressing the Problem of a Lost Control File
You can address the problem of a lost control file by using the ALTER SYSTEM statement.

• Example: Configuring Isolated Mode in an Oracle Real Application Clusters Environment
You can use ALTER SYSTEM to configure isolated mode in an Oracle Real Application
Clusters (Oracle RAC) environment.

4.4.1 About Configuring the Keystore Location and Type for Isolated Mode
Configuring the WALLET_ROOT and TDE_CONFIGURATION parameters for the CDB environment is
similar to the procedure used for united mode.

The difference is that rather than using the RESET clause of the ALTER SYSTEM statement, you
use the SET clause. You can perform the configuration by adding the WALLET_ROOT and
TDE_CONFIGURATION parameters to the initialization parameter file. To configure a PDB in
isolated mode, you must set a value for the TDE_CONFIGURATION parameter of the PDB, which
you can do either by using the ALTER SYSTEM statement or by issuing the ADMINISTER KEY
MANAGEMENT ISOLATE KEYSTORE statement. This section focuses on the use of the ALTER
SYSTEM statement.

Depending on whether your system uses pfile or spfile, you must set the SCOPE clause in the
ALTER SYSTEM statement appropriately when setting the value of the TDE_CONFIGURATION
parameter for the PDB. The value of the TDE_CONFIGURATION parameter is a list of attribute-

Chapter 4
Operations That Are Not Allowed in an Isolated Mode PDB

4-7



value pairs, and it is the value of the KEYSTORE_CONFIGURATION attribute that specifies
the type of the keystore, as follows:

• FILE specifies a TDE wallet.

• OKV specifies Oracle Key Vault.

• FILE|OKV specifies a reverse-migration from the OKV keystore type to the FILE
keystore type has occurred.

• FILE|HSM specifies a reverse-migration from the HSM keystore type to the FILE
keystore type has occurred.

• OKV|FILE specifies a migration from the FILE keystore type to the OKV keystore
type has occurred. The keystore type has two meanings: it either means that you
are migrating from FILE to OKV, or it means that the configuration started out as
using OKV but is now using an auto-login OKV configuration, where the OKV
password resides in a cwallet.sso file in the WALLET_ROOT/pdb_guid/tde
directory.

After you have used ALTER SYSTEM to configure the TDE_CONFIGURATION value for the
selected PDB, the PDB in the CDB environment is in isolated mode. The steps in this
procedure explain in detail how to configure an individual PDB to be in isolated mode,
using its own keystore type.

4.4.2 Configuring the Keystore Location and Keystore Type for an
Isolated Mode PDB

You can configure isolated mode by setting WALLET_ROOT in the initialization parameter
file in the CDB root and TDE_CONFIGURATION in the PDB you want to isolate.

1. In the root, ensure that the WALLET_ROOT parameter is set correctly.

For example:

SHOW PARAMETER WALLET_ROOT

2. As a user who has the ADMINISTER KEY MANAGEMENT or SYSKM privilege, run the
following statement in the PDB:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY 
"iso_PDB_TDE_wallet_password";

This statement does the following:

• Sets the TDE_CONFIGURATION in the isolated PDB to FILE.

• Creates the directories pdb_guid/tde under WALLET_ROOT.

• Creates a new TDE wallet with its own password (which might be not known to
the CDB administrator).

3. Check the configuration.

• To check the TDE_CONFIGURATION parameter setting in the isolated PDB:

SHOW PARAMETER TDE_CONFIGURATION

The output should reflect the keystore configuration that you set for the current
PDB. If it shows a different keystore configuration (for example, FILE if you

Chapter 4
Configuring the Keystore Location and Type for Isolated Mode

4-8



had set it to OKV), then the setting may be showing the keystore configuration that
was set for the CDB root, in united mode.

• To check the keystore mode:

SELECT KEYSTORE_MODE FROM V$ENCRYPTION_WALLET;

The output should be ISOLATED.

After you configure isolated mode, the CDB root keystore that was available to the PDB when
it was in united mode is no longer available to this PDB. At this stage, the PDB is configured
to use its own keystore. If the KEYSTORE_CONFIGURATION parameter was FILE (meaning that
the PDB is configured to use a TDE wallet), then the keystore location configured for the PDB
is WALLET_ROOT/PDB-GUID/tde. If a keystore exists at that location and contains a TDE master
encryption key, then that key is only available to this PDB, not to any other PDB. If no
keystore exists at that location, you now can now proceed to create a TDE wallet and set a
TDE master encryption key. If you later decide that you want the isolated mode PDB to
become a united mode PDB again, then you can use the ADMINISTER KEY MANAGEMENT UNITE
KEYSTORE statement. When you run ADMINISTER KEY MANAGEMENT UNITE KEYSTORE, it moves
the keys from the PDB's keystore to the keystore of the CDB root, but it leaves any client
secrets behind. So if there were no client secrets in the first place, then it would leave the
PDB's keystore essentially "empty". It can now be backed up, and removed. Always back up
keystores before you remove them, even empty keystores.

Related Topics

• Configuring United Mode with the Initialization Parameter File and ALTER SYSTEM
If your environment relies on server parameter files (spfile), then you can set
WALLET_ROOT and TDE_CONFIGURATION using ALTER SYSTEM SET with SCOPE.

• Uniting a Pluggable Database Keystore
Uniting a PDB keystore moves the TDE master encryption keys from the PDB keystore
into the keystore of the CDB root. This enables the administrator of the keystore of the
CDB root to manage the keys.

• Example: Configuring a TDE Wallet When Multiple Databases Share the Same Host
You can configure multiple databases to share the same host by setting the WALLET_ROOT
parameter.

• Example: Configuring a TDE Wallet for an Oracle Automatic Storage Management Disk
Group
In an Oracle Real Applications Clusters (Oracle RAC) environment, the WALLET_ROOT
parameter points to a shared directory in Oracle Automatic Storage Management (ASM)
that is accessible from all Oracle RAC instances of that database.

4.4.3 Example: Restoring an Older Version of a Control File
You can set TDE_CONFIGURATION if you have an older version of a control file that must be
restored and only a few PDBs were configured in isolated mode.

When the CDB root and the PDB are both in the mount state, then you can only change the
PDB’s keystore configuration from the CDB root.

1. Log in to the CDB root as a user who was granted the SYSDBA administrative privilege.

2. For each PDB that you want to change, use the following syntax:

ALTER SYSTEM SET 
TDE_CONFIGURATION="CONTAINER=pdb_name;KEYSTORE_CONFIGURATION=keystore_type" 
SCOPE=memory;

Chapter 4
Configuring the Keystore Location and Type for Isolated Mode

4-9



For example, for the hrpdb and salespdb PDBs using FILE (for TDE wallets) as
the keystore type:

ALTER SYSTEM SET 
TDE_CONFIGURATION="CONTAINER=hrpdb;KEYSTORE_CONFIGURATION=FILE" SCOPE=memory;
ALTER SYSTEM SET 
TDE_CONFIGURATION="CONTAINER=salespdb;KEYSTORE_CONFIGURATION=FILE" 
SCOPE=memory;

3. After you set the TDE_CONFIGURATION parameter for each PDB, log in to the CDB
root and then set TDE_CONFIGURATION for the CDB root itself.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE";

At this stage, CDB root is in the mounted state. The value of the
TDE_CONFIGURATION parameter that was set using ALTER SYSTEM with the
CONTAINER attribute is only present in the memory of the CDB root. To ensure that
the configuration is properly applied to each PDB, you must close and then reopen
the PDB. When an isolated mode PDB is opened, the configuration set by the
ALTER SYSTEM statement that was issued in the CDB root is read from the control
file and then is automatically applied to the PDB.

4. Connect to each PDB and then close and reopen the PDB.

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

4.4.4 Example: Addressing the Problem of a Lost Control File
You can address the problem of a lost control file by using the ALTER SYSTEM
statement.

Running these statements with SCOPE set to memory will store the CONTAINER value in
memory. When you open the isolated PDB, this configuration will automatically be
updated for the PDB.

If you are using an Oracle Data Guard environment, then to correct the control file, run
these statements on both the primary and the standby databases.

1. Log in to the CDB root as a user who was granted the SYSDBA administrative
privilege.

2. If you are unsure of the exact state of the system, then you should run ALTER
SYSTEM with RESET.

For example:

ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=memory;
3. For each PDB that you want to change, use the following syntax:

ALTER SYSTEM SET 
TDE_CONFIGURATION="CONTAINER=pdb_name;KEYSTORE_CONFIGURATION=FILE" 
SCOPE=memory; 

For example, for the hrpdb and salespdb PDBs with FILE (for TDE wallets) as the
keystore type:

ALTER SYSTEM SET 
TDE_CONFIGURATION="CONTAINER=hrpdb;KEYSTORE_CONFIGURATION=FILE" 
SCOPE=memory; 
ALTER SYSTEM SET 

Chapter 4
Configuring the Keystore Location and Type for Isolated Mode

4-10



TDE_CONFIGURATION="CONTAINER=salespdb;KEYSTORE_CONFIGURATION=FILE" SCOPE=memory; 
4. After you set the TDE_CONFIGURATION parameter for each PDB, log in to the CDB root and

then set TDE_CONFIGURATION for the CDB root itself.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE";

At this stage, CDB root is in the mounted state. The value of the TDE_CONFIGURATION
parameter that was set using ALTER SYSTEM with the CONTAINER attribute is only present
in the memory of the CDB root. To ensure that the configuration is properly applied to
each PDB, you must close and then reopen the PDB. When an isolated mode PDB is
opened, the configuration set by the ALTER SYSTEM statement that was issued in the CDB
root is read from the control file and then is automatically applied to the PDB.

5. Connect to each PDB and then close and reopen the PDB.

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

4.4.5 Example: Configuring Isolated Mode in an Oracle Real Application
Clusters Environment

You can use ALTER SYSTEM to configure isolated mode in an Oracle Real Application Clusters
(Oracle RAC) environment.

• To ensure that the effect of the ALTER SYSTEM statement is applied on each Oracle RAC
node, specify the wildcard (*) in the SID clause of the ALTER SYSTEM statement, as
follows. You can run this statement from either the CDB root or a PDB.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type" SID='*';

4.5 Configuring a TDE Wallet and TDE Master Encryption Key in
Isolated Mode

In isolated mode, the TDE wallet is associated with a PDB.

• About Configuring a TDE Wallet in Isolated Mode
You can create all types of TDE wallets in isolated mode: password-protected, password
protected with the credential provided from an external store, auto-login, local auto-login.

• Step 1: Create a TDE Wallet in a PDB Configured in Isolated Mode
A password-protected TDE wallet requires a password to protect the keystore keys and
credentials.

• Step 2: Open the TDE Wallet in an Isolated Mode PDB
To open a TDE wallet in isolated mode, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

• Step 3: Set the TDE Master Encryption Key in the TDE Wallet of the Isolated Mode PDB
To set the TDE master encryption key in a TDE wallet in an isolated mode PDB, use the
ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

• Step 4: Encrypt Your Data in Isolated Mode
Now that you have completed the configuration, you can begin to encrypt data in the
PDB.

Chapter 4
Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode

4-11



4.5.1 About Configuring a TDE Wallet in Isolated Mode
You can create all types of TDE wallets in isolated mode: password-
protected, password protected with the credential provided from an external store,
auto-login, local auto-login.

To enable encryption in the PDB after it is configured in isolated mode with the
KEYSTORE_CONFIGURATION attribute set to FILE (that is, to use a TDE wallet), you must
create a TDE wallet, open the TDE wallet, and then set a TDE master encryption key
in the TDE wallet. Afterward, you can begin to encrypt data for tables and tablespaces
that will be accessible in the PDB.

In a multitenant environment, you can create a secure external store to hold the
credentials of the TDE wallet. This feature enables you to hide the keystore password:
it removes the need for storing the wallet password in any script or tool that accesses
the database without user intervention, such as an overnight batch script. When the
WALLET_ROOT parameter is specified, the location of the external store for the CDB root
is WALLET_ROOT/tde_seps and for the PDB it is WALLET_ROOT/pdb_guid/tde_seps.
When the WALLET_ROOT parameter is set, there is no longer a single central external
store, so when a keystore password is updated, the corresponding external store must
be updated as well. When the WALLET_ROOT parameter is not specified, then the
location of the external store is the same for both the CDB root and for every PDB.
The external store location must then be set by the
EXTERNAL_KEYSTORE_CREDENTIAL_LOCATION initialization parameter. When the
WALLET_ROOT parameter is not specified, then there is a single central external store,
so when you update the keystore password, only the central external store at the
EXTERNAL_KEYSTORE_CREDENTIAL_LOCATION must be updated.

In a multitenant environment, different PDBs can access this external store location
when you run the ADMINISTER KEY MANAGEMENT statement using the IDENTIFIED BY
EXTERNAL STORE clause. This way, you can centrally locate the password and then
update it only once in the external store.

Related Topics

• Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a
centrally accessed and managed location.

4.5.2 Step 1: Create a TDE Wallet in a PDB Configured in Isolated
Mode

A password-protected TDE wallet requires a password to protect the keystore keys
and credentials.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Use the SHOW PARAMETER command to confirm that WALLET_ROOT is set, and
TDE_CONFIGURATION is set to KEYSTORE_CONFIGURATION=FILE.

3. Run the ADMINISTER KEY MANAGEMENT SQL statement to create the TDE wallet
using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY TDE_wallet_password;

Chapter 4
Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode

4-12



This command creates the /tde directory under WALLET_ROOT/pdb_guid (unless it already
exists), and creates a password-protected TDE wallet in this directory. If WALLET_ROOT
points to a shared directory in ASM (+DATA/DB_UNIQUE_NAME), then the pdb_guid/tde
subdirectory and the TDE wallet is auto-created by the CREATE KEYSTORE statement.

In this specification, TDE_wallet_password is the password of the TDE wallet that you,
the security administrator, creates.

For example, to create the TDE wallet in the WALLET_ROOT/pdb_guid/tde directory:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY password;

keystore altered.
After you complete these steps, the ewallet.p12 file, which is the TDE wallet, appears in the
TDE wallet location.

Related Topics

• Creating an Auto-Login or a Local Auto-Login TDE Wallet
As an alternative to password-protected TDE wallets, you can create either an auto-login
or local auto-login TDE wallet.

4.5.3 Step 2: Open the TDE Wallet in an Isolated Mode PDB
To open a TDE wallet in isolated mode, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Run the ADMINISTER KEY MANAGEMENT statement to open the TDE wallet.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY TDE_wallet_password | EXTERNAL STORE;

Keystore altered.

To switch over to opening the password-protected TDE wallet when an auto-login wallet
is configured and is currently open, specify the FORCE KEYSTORE clause as follows.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
FORCE KEYSTORE 
IDENTIFIED BY TDE_wallet_password | EXTERNAL STORE;

Keystore altered.

Here, the IDENTIFIED BY EXTERNAL STORE clause is included in the statement because
the wallet credentials exist in an external store. This enables the password-protected
TDE wallet to be opened without specifying the TDE wallet password within the
statement itself.

If the WALLET_ROOT parameter has been set, then Oracle Database finds the external
store by searching in this path: WALLET_ROOT/pdb_guid/tde_seps.

3. Confirm that the TDE wallet is open.

SELECT STATUS FROM V$ENCRYPTION_WALLET;

Chapter 4
Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode

4-13



Related Topics

• About Opening TDE Wallets
A password-protected TDE wallet must be open before any TDE master
encryption keys can be created or accessed in the wallet.

4.5.4 Step 3: Set the TDE Master Encryption Key in the TDE Wallet of
the Isolated Mode PDB

To set the TDE master encryption key in a TDE wallet in an isolated mode PDB, use
the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Ensure that the database is open in READ WRITE mode.

To find the status, run the show pdbs command.

3. Run the ADMINISTER KEY MANAGEMENT SQL statement to set the key in the TDE
wallet.

For example, if the TDE wallet of the PDB is password-protected, the PDB is
open, and the TDE wallet of the PDB is open:

ADMINISTER KEY MANAGEMENT SET KEY 
IDENTIFIED BY TDE_wallet_password 
WITH BACKUP USING 'emp_key_backup';

keystore altered.

If the TDE wallet is closed:

ADMINISTER KEY MANAGEMENT SET KEY 
FORCE KEYSTORE 
IDENTIFIED BY TDE_wallet_password 
WITH BACKUP USING 'emp_key_backup';

keystore altered.

In this specification:

• FORCE KEYSTORE should be included if the TDE wallet is closed. This
automatically opens the TDE wallet before setting the TDE master encryption
key. The FORCE KEYSTORE clause also switches over to opening the password-
protected TDE wallet when an auto-login TDE wallet is configured and is
currently open.

• IDENTIFIED BY specifies the TDE wallet password. Alternatively, if the TDE
wallet password is in an external store, you can use the IDENTIFIED BY
EXTERNAL STORE clause.

4. Confirm that the TDE master encryption key is set.

SELECT MASTERKEY_ACTIVATED FROM V$DATABASE_KEY_INFO;

The output should be YES.

Chapter 4
Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode

4-14



Related Topics

• About Setting the TDE Wallet TDE Master Encryption Key
The TDE master encryption key is stored in the TDE wallet.

4.5.5 Step 4: Encrypt Your Data in Isolated Mode
Now that you have completed the configuration, you can begin to encrypt data in the PDB.

Related Topics

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

4.6 Configuring a Container Database with Isolated Mode PDBs
for Oracle Key Vault

Isolated PDBs have their own virtual wallet, with their own password, in Oracle Key Vault.

• About Configuring an External Keystore in Isolated Mode
You can configure an external keystore for a PDB when the PDB is configured in isolated
mode.

• Step 1: Configure Isolated PDBs for Oracle Key Vault
You can configure isolated mode PDBs for Oracle Key Vault by setting the
TDE_CONFIGURATION parameter.

• Step 2: Open the Isolated Mode PDB External Keystore
If the isolated PDB does not have an auto-open connection into the external keystore,
then you must open it manually before your open the PDB.

• Step 3: Set the First TDE Master Encryption Key in the External Keystore
After you have opened the external keystore in an isolated mode PDB, you are ready to
set the TDE master encryption key for the PDB.

• Step 4: Encrypt Your Data in Isolated Mode
Now that you have completed the keystore configuration and the PDB is configured in
isolated mode, you can begin to encrypt data in the PDB.

4.6.1 About Configuring an External Keystore in Isolated Mode
You can configure an external keystore for a PDB when the PDB is configured in isolated
mode.

To configure an external keystore for a PDB in isolated mode, you first must set the
WALLET_ROOT parameter. This is necessary for two reasons: first, to have support for migrating
to a TDE wallet in the future, and second, because the configuration file for Oracle Key Vault
is retrieved from a location under WALLET_ROOT. Afterwards, you must set the
KEYSTORE_CONFIGURATION attribute of the TDE_CONFIGURATION parameter to OKV, open the
configured external keystore, and then set the TDE master encryption key for the PDB. After
you complete these tasks, you can begin to encrypt data in your database.

Chapter 4
Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault

4-15



How you specify the IDENTIFIED BY clause when you run the ADMINISTER KEY
MANAGEMENT statement depends on the type of external keystore. Use the following
syntax:

IDENTIFIED BY EXTERNAL STORE|Oracle_Key_Vault_password

Enter the Oracle Key Vault password that was given during the Oracle Key Vault client
installation. If at that time no password was given, then the password in the
ADMINISTER KEY MANAGEMENT statement becomes NULL.

4.6.2 Step 1: Configure Isolated PDBs for Oracle Key Vault
You can configure isolated mode PDBs for Oracle Key Vault by setting the
TDE_CONFIGURATION parameter.

1. If the WALLET_ROOT parameter is set, then install the Oracle Key Vault client
software into the WALLET_ROOT/pdb_guid/okv directory.

2. Log in to the database instance as a user who has been granted the ALTER
SYSTEM administrative privilege.

3. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the
keystore type by using the following syntax:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type" 
SCOPE=BOTH SID = '*';

In this specification:

• keystore_type can be OKV, to configure a password-protected Oracle Key
Vault keystore, or OKV|TDE for an auto-open connection into Oracle Key Vault.

For example, to configure your database to use Oracle Key Vault:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV" SCOPE=BOTH 
SID = '*';

4.6.3 Step 2: Open the Isolated Mode PDB External Keystore
If the isolated PDB does not have an auto-open connection into the external keystore,
then you must open it manually before your open the PDB.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Open the external keystore as follows, by enclosing the password in double
quotation marks:

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY "Oracle_Key_Vault_password" | EXTERNAL STORE;

3. Repeat this procedure each time you restart the database instance.

You must open the keystore of the CDB root first.

Chapter 4
Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault

4-16



Related Topics

• About Opening the Connection to Oracle Key Vault
You must open the connection to Oracle Key Vault so that it is accessible to the database
before you can perform any encryption or decryption.

4.6.4 Step 3: Set the First TDE Master Encryption Key in the External
Keystore

After you have opened the external keystore in an isolated mode PDB, you are ready to set
the TDE master encryption key for the PDB.

• Setting the TDE Master Encryption Key in the Isolated Mode External Keystore
You should complete this procedure if you have not previously configured an external
keystore for Transparent Data Encryption.

• Migration of a Previously Configured Encryption Key in Isolated Mode
You must migrate the previously configured master encryption key if you previously
configured a TDE wallet.

4.6.4.1 Setting the TDE Master Encryption Key in the Isolated Mode External
Keystore

You should complete this procedure if you have not previously configured an external
keystore for Transparent Data Encryption.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Ensure that the database is open in READ WRITE mode.

You can set the TDE master encryption key if OPEN_MODE is set to READ WRITE. To find the
status, run the show pdbs command.

3. To configure the heartbeat batch size, set the HEARTBEAT_BATCH_SIZE initialization
parameter.

The HEARTBEAT_BATCH_SIZE parameter configures the size of the "batch of heartbeats"
sent per heartbeat period to the external key manager. Enter a value between 2 and 100.
The default value is 5. The default duration of the heartbeat period is three seconds. By
setting the heartbeat batch size, you can stagger the heartbeats across batches of PDBs
to ensure that for each batch a heartbeat can be completed for each PDB within the
batch during the heartbeat period, and also ensure that the TDE master encryption key of
the PDB can be reliably fetched from an Oracle Key Vault server and cached in the
Oracle Key Vault persistent cache. (See Heartbeat Batch Size for External Keystores for
details about how HEARTBEAT_BATCH_SIZE works.)

ALTER SYSTEM SET HEARTBEAT_BATCH_SIZE=30 SCOPE=BOTH SID='*';

4. Set the new TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEY 
[USING TAG 'tag'] 
[FORCE KEYSTORE] 
IDENTIFIED BY EXTERNAL STORE|Oracle_Key_Vault_password;

In this specification:

Chapter 4
Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault

4-17



• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation if the TDE wallet is closed, if an auto-login TDE wallet is configured
and is currently open, or if a password-protected TDE wallet is configured and
is currently closed.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– Oracle_Key_Vault_password is the password that was given during the
Oracle Key Vault client installation. If at that time no password was given,
then the password in the ADMINISTER KEY MANAGEMENT statement
becomes NULL.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG 'sessionid=3205062574:terminal=xcvt' 
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE;

keystore altered.
5. Confirm that the TDE master encryption key is set.

SELECT MASTERKEY_ACTIVATED FROM V$DATABASE_KEY_INFO;

The output should be YES.

Related Topics

• About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external
keystore.

4.6.4.2 Migration of a Previously Configured Encryption Key in Isolated Mode
You must migrate the previously configured master encryption key if you previously
configured a TDE wallet.

Related Topics

• Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or OCI
KMS
To switch from a TDE wallet to centralized key management with Oracle Key Vault
or Oracle Cloud Infrastructure (OCI) Key Management Service (KMS), after you
upload all current and retired TDE master keys you must migrate the database
from the TDE wallet to Oracle Key Vault or OCI KMS.

4.6.5 Step 4: Encrypt Your Data in Isolated Mode
Now that you have completed the keystore configuration and the PDB is configured in
isolated mode, you can begin to encrypt data in the PDB.

Related Topics

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in
database tables.

Chapter 4
Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault

4-18



• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

• Oracle Key Vault Administrator's Guide

Chapter 4
Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault

4-19



5
Encrypting Columns in Tables

You can use Transparent Data Encryption to encrypt individual columns in database tables.

• About Encrypting Columns in Tables
You can encrypt individual columns in tables.

• Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE column
encryption.

• Restrictions on Using TDE Column Encryption
TDE column encryption is performed at the SQL layer. Oracle Database utilities that
bypass the SQL layer cannot use TDE column encryption services.

• Creating Tables with Encrypted Columns
Oracle Database provides a selection of different algorithms that you can use to define
the encryption used in encrypted columns.

• Encrypting Columns in Existing Tables
You can encrypt columns in existing tables. As with new tables, you have a choice of
different algorithms to use to definite the encryption.

• Creating an Index on an Encrypted Column
You can create an index on an encrypted column.

• Adding Salt to an Encrypted Column
Salt, which is a random string added to data before encryption, is a way to strengthen the
security of encrypted data.

• Removing Salt from an Encrypted Column
You can use the ALTER TABLE SQL statement to remove salt from an encrypted
column.

• Changing the Encryption Key or Algorithm for Tables with Encrypted Columns
You can use the ALTER TABLE SQL statement to change the encryption key or algorithm
used in encrypted columns.

• Migrating the Algorithm to the Latest Supported Algorithm for Tables
Re-encrypting an already encrypted table column enables you to migrate an earlier
algorithm (for example, 3DES168) to the latest supported algorithm.

5.1 About Encrypting Columns in Tables
You can encrypt individual columns in tables.

Whether you choose to encrypt individual columns or entire tablespaces depends on the data
types that the table has. There are also several features that do not support TDE column
encryption.

5-1



Related Topics

• Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE
column encryption.

• Restrictions on Using TDE Column Encryption
TDE column encryption is performed at the SQL layer. Oracle Database utilities
that bypass the SQL layer cannot use TDE column encryption services.

5.2 Data Types That Can Be Encrypted with TDE Column
Encryption

Oracle Database supports a specific set of data types that can be used with TDE
column encryption.

You can encrypt data columns that use a variety of different data types.

Supported data types are as follows:

• BINARY_DOUBLE
• BINARY_FLOAT
• CHAR
• DATE
• INTERVAL DAY TO SECOND
• INTERVAL YEAR TO MONTH
• NCHAR
• NUMBER
• NVARCHAR2
• RAW (legacy or extended)

• TIMESTAMP (includes TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE)

• VARCHAR2 (legacy or extended)

If you want to encrypt large binary objects (LOBs), then you can use Oracle
SecureFiles. Oracle SecureFiles enables you to store LOB data securely. To encrypt a
LOB using SecureFiles, you use the CREATE TABLE or ALTER TABLE statements.

You cannot encrypt a column if the encrypted column size is greater than the size
allowed by the data type of the column.

Table 5-1 shows the maximum allowable sizes for various data types.

Table 5-1    Maximum Allowable Size for Data Types

Data Type Maximum Size

CHAR 1932 bytes

VARCHAR2 (legacy) 3932 bytes

Chapter 5
Data Types That Can Be Encrypted with TDE Column Encryption

5-2



Table 5-1    (Cont.) Maximum Allowable Size for Data Types

Data Type Maximum Size

VARCHAR2 (extended) 32,699 bytes

NVARCHAR2 (legacy) 1966 bytes

NVARCHAR2 (extended) 16,315 bytes

NCHAR 966 bytes

RAW (extended) 32,699 bytes

Note:

TDE tablespace encryption does not have these data type restrictions.

Related Topics

• Restrictions on Using Transparent Data Encryption Tablespace Encryption
You should be aware of restrictions on using Transparent Data Encryption when you
encrypt a tablespace.

• Oracle Database SecureFiles and Large Objects Developer's Guide

5.3 Restrictions on Using TDE Column Encryption
TDE column encryption is performed at the SQL layer. Oracle Database utilities that bypass
the SQL layer cannot use TDE column encryption services.

Do not use TDE column encryption with the following database features:

• Index types other than B-tree

• Range scan search through an index

• Synchronous change data capture

• Transportable tablespaces

• Columns that have been created as identity columns

In addition, you cannot use TDE column encryption to encrypt columns used in foreign key
constraints.

Applications that must use these unsupported features can use the DBMS_CRYPTO PL/SQL
package for their encryption needs.

Transparent Data Encryption protects data stored on a disk or other media. It does not
protect data in transit. Use the network encryption solutions discussed in Oracle Database
Security Guide to encrypt data over the network.

Related Topics

• How Transparent Data Encryption Works with Export and Import Operations
Oracle Data Pump can export and import tables that contain encrypted columns, as well
as encrypt entire dump sets.

Chapter 5
Restrictions on Using TDE Column Encryption

5-3



• Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE
column encryption.

• Oracle Database Security Guide

5.4 Creating Tables with Encrypted Columns
Oracle Database provides a selection of different algorithms that you can use to define
the encryption used in encrypted columns.

• About Creating Tables with Encrypted Columns
You can use the CREATE TABLE SQL statement to create a table with an encrypted
column.

• Creating a Table with an Encrypted Column Using the Default Algorithm
By default, TDE uses the AES encryption algorithm with a 192-bit key length
(AES192).

• Creating a Table with an Encrypted Column Using No Algorithm or a Non-Default
Algorithm
You an use the CREATE TABLE SQL statement to create a table with an encrypted
column.

• Using the NOMAC Parameter to Save Disk Space and Improve Performance
You can bypass checks that Transparent Data Encryption (TDE) performs. This
can save up to 20 bytes of disk space per encrypted value.

• Example: Using the NOMAC Parameter in a CREATE TABLE Statement
You can use the CREATE TABLE SQL statement to encrypt a table column using the
NOMAC parameter.

• Example: Changing the Integrity Algorithm for a Table
You can use the ALTER TABLE SQL statement in different foregrounds to convert
different offline tablespaces in parallel.

• Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the
data were in a database table.

5.4.1 About Creating Tables with Encrypted Columns
You can use the CREATE TABLE SQL statement to create a table with an encrypted
column.

To create relational tables with encrypted columns, you can specify the SQL ENCRYPT
clause when you define database columns with the CREATE TABLE SQL statement.

5.4.2 Creating a Table with an Encrypted Column Using the Default
Algorithm

By default, TDE uses the AES encryption algorithm with a 192-bit key length (AES192).

If you encrypt a table column without specifying an algorithm, then the column is
encrypted using the AES192 algorithm. TDE adds salt to plaintext before encrypting it.
Adding salt makes it harder for attackers to steal data through a brute force attack.

Chapter 5
Creating Tables with Encrypted Columns

5-4



TDE also adds a Message Authentication Code (MAC) to the data for integrity checking. The
SHA-1 integrity algorithm is used by default. (Starting with Oracle Database release 21c,
SHA-1 is deprecated. If you use TDE column encryption, then Oracle recommends that you
implement TDE tablespace encryption instead.)

• To create a table that encrypts a column, use the CREATE TABLE SQL statement with the
ENCRYPT clause.

For example, to encrypt a table column using the default algorithm:

CREATE TABLE employee (
     first_name VARCHAR2(128),
     last_name VARCHAR2(128),
     empID NUMBER,
     salary NUMBER(6) ENCRYPT);

This example creates a new table with an encrypted column (salary). The column is
encrypted using the default encryption algorithm (AES192). Salt and MAC are added by
default. This example assumes that the keystore is open and a master encryption key is
set.

Note:

If there are multiple encrypted columns in a table, then all of these columns
must use the same pair of encryption and integrity algorithms.

Salt is specified at the column level. This means that an encrypted column in a
table can choose not to use salt irrespective of whether or not other encrypted
columns in the table use salt.

5.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a
Non-Default Algorithm

You an use the CREATE TABLE SQL statement to create a table with an encrypted column.

By default, TDE adds salt to plaintext before encrypting it. Adding salt makes it harder for
attackers to steal data through a brute force attack. However, if you plan to index the
encrypted column, then you must use the NO SALT parameter.

• To create a table that uses an encrypted column that is a non-default algorithm or no
algorithm, run the CREATE TABLE SQL statement as follows:

– If you do not want to use any algorithm, then include the ENCRYPT NO SALT clause.

– If you want to use a non-default algorithm, then use the ENCRYPT USING clause,
followed by one of the following algorithms enclosed in single quotation marks:

* 3DES168
* AES128
* AES192 (default)

* AES256
The following example shows how to specify encryption settings for the empID and
salary columns.

Chapter 5
Creating Tables with Encrypted Columns

5-5



CREATE TABLE employee (
     first_name VARCHAR2(128),
     last_name VARCHAR2(128),
     empID NUMBER ENCRYPT NO SALT,
     salary NUMBER(6) ENCRYPT USING '3DES168');

In this example:

* The empID column is encrypted and does not use salt. Both the empID and
salary columns will use the 3DES168 encryption algorithm, because all of
the encrypted columns in a table must use the same encryption algorithm.

* The salary column is encrypted using the 3DES168 encryption algorithm.
Note that the string that specifies the algorithm must be enclosed in single
quotation marks (' '). The salary column uses salt by default.

5.4.4 Using the NOMAC Parameter to Save Disk Space and Improve
Performance

You can bypass checks that Transparent Data Encryption (TDE) performs. This can
save up to 20 bytes of disk space per encrypted value.

If the number of rows and encrypted columns in the table is large, then bypassing TDE
checks can add up to a significant amount of disk space. In addition, this saves
processing cycles and reduces the performance overhead associated with TDE. TDE
uses the SHA-1 integrity algorithm by default. (Starting with Oracle Database release
21c, SHA-1 is deprecated. If you use TDE column encryption, then Oracle recommends
that you implement TDE tablespace encryption instead.) All of the encrypted columns
in a table must use the same integrity algorithm. If you already have a table column
using the SHA-1 algorithm, then you cannot use the NOMAC parameter to encrypt
another column in the same table.

• To bypass the integrity check during encryption and decryption operations, use the
NOMAC parameter in the CREATE TABLE and ALTER TABLE statements.

Related Topics

• Performance and Storage Overhead of Transparent Data Encryption
The performance of Transparent Data Encryption can vary.

5.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE
Statement

You can use the CREATE TABLE SQL statement to encrypt a table column using the
NOMAC parameter.

Example 5-1 creates a table with an encrypted column. The empID column is encrypted
using the NOMAC parameter.

Example 5-1    Using the NOMAC parameter in a CREATE TABLE statement

CREATE TABLE employee (
     first_name VARCHAR2(128),
     last_name VARCHAR2(128),
     empID NUMBER ENCRYPT 'NOMAC' ,
     salary NUMBER(6));

Chapter 5
Creating Tables with Encrypted Columns

5-6



5.4.6 Example: Changing the Integrity Algorithm for a Table
You can use the ALTER TABLE SQL statement in different foregrounds to convert different
offline tablespaces in parallel.

Example 5-2 shows how to change the integrity algorithm for encrypted columns in a table.
The encryption algorithm is set to AES256 and the integrity algorithm is set to SHA-1. The
second ALTER TABLE statement sets the integrity algorithm to NOMAC.

Example 5-2    Changing the Integrity Algorithm for a Table

ALTER TABLE EMPLOYEE REKEY USING 'AES256' 'SHA-1';

ALTER TABLE EMPLOYEE REKEY USING 'AES256' 'NOMAC';

5.4.7 Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the data were
in a database table.

External tables can be updated using the ORACLE_DATAPUMP access driver.

• To encrypt specific columns in an external table, use the ENCRYPT clause when you define
those columns:

A system-generated key encrypts the columns. For example, the following CREATE TABLE
SQL statement encrypts the ssn column using the AES256 algorithm:

CREATE TABLE emp_ext (
    first_name,
    ....
    ssn ENCRYPT USING 'AES256',
    ....

If you plan to move an external table to a new location, then you cannot use a randomly
generated key to encrypt the columns. This is because the randomly generated key will
not be available at the new location.

For such scenarios, you should specify a password while you encrypt the columns. After
you move the data, you can use the same password to regenerate the key required to
access the encrypted column data at the new location.

Table partition exchange also requires a password-protected TDE table key.

The following example creates an external table using a password to create the TDE
table key:

CREATE TABLE emp_ext (
     first_name,
     last_name,
     empID,
     salary,
     ssn ENCRYPT IDENTIFIED BY password
)  ORGANIZATION EXTERNAL
   (
    TYPE ORACLE_DATAPUMP
    DEFAULT DIRECTORY "D_DIR"
    LOCATION('emp_ext.dat')
    )

Chapter 5
Creating Tables with Encrypted Columns

5-7



    REJECT LIMIT UNLIMITED
AS SELECT * FROM EMPLOYEE;

5.5 Encrypting Columns in Existing Tables
You can encrypt columns in existing tables. As with new tables, you have a choice of
different algorithms to use to definite the encryption.

• About Encrypting Columns in Existing Tables
The ALTER TABLE SQL statement enables you to encrypt columns in an existing
table.

• Adding an Encrypted Column to an Existing Table
You can encrypt columns in existing tables, use a different algorithm, and use NO
SALT to index the column.

• Encrypting an Unencrypted Column
You can use the ALTER TABLE MODIFY statement to encrypt an existing
unencrypted column.

• Disabling Encryption on a Column
You may want to disable encryption for reasons of compatibility or performance.

5.5.1 About Encrypting Columns in Existing Tables
The ALTER TABLE SQL statement enables you to encrypt columns in an existing table.

To add an encrypted column to an existing table, or to encrypt or decrypt an existing
column, you use the ALTER TABLE SQL statement with the ADD or MODIFY clause.

5.5.2 Adding an Encrypted Column to an Existing Table
You can encrypt columns in existing tables, use a different algorithm, and use NO SALT
to index the column.

• To add an encrypted column to an existing table, use the ALTER TABLE ADD
statement, specifying the new column with the ENCRYPT clause.

The following example adds an encrypted column, ssn, to an existing table, called
employee. The ssn column is encrypted with the default AES192 algorithm. Salt and
MAC are added by default.

ALTER TABLE employee ADD (ssn VARCHAR2(11) ENCRYPT);

5.5.3 Encrypting an Unencrypted Column
You can use the ALTER TABLE MODIFY statement to encrypt an existing unencrypted
column.

• To encrypt an existing unencrypted column, use the ALTER TABLE MODIFY
statement, specifying the unencrypted column with the ENCRYPT clause.

The following example encrypts the first_name column in the employee table. The
first_name column is encrypted with the default AES192 algorithm. Salt is added to
the data, by default. You can encrypt the column using a different algorithm. If you

Chapter 5
Encrypting Columns in Existing Tables

5-8



want to index a column, then you must specify NO SALT. You can also bypass integrity
checks by using the NOMAC parameter.

ALTER TABLE employee MODIFY (first_name ENCRYPT);

The following example encrypts the first_name column in the employee table using the
NOMAC parameter.

ALTER TABLE employee MODIFY (first_name ENCRYPT 'NOMAC');

5.5.4 Disabling Encryption on a Column
You may want to disable encryption for reasons of compatibility or performance.

• To disable column encryption, use the ALTER TABLE MODIFY command with the DECRYPT
clause.

The following example decrypts the first_name column in the employee table.

ALTER TABLE employee MODIFY (first_name DECRYPT);

5.6 Creating an Index on an Encrypted Column
You can create an index on an encrypted column.

The column being indexed must be encrypted without salt. If the column is encrypted with
salt, then the ORA-28338: cannot encrypt indexed column(s) with salt error is raised.

• To create an index on an encrypted column, use the CREATE INDEX statement with the
ENCRYPT NO SALT clause.

The following example shows how to create an index on a column that has been
encrypted without salt.

CREATE TABLE employee (
   first_name VARCHAR2(128),
   last_name VARCHAR2(128),
   empID NUMBER ENCRYPT NO SALT,
   salary NUMBER(6) ENCRYPT USING 'AES256');

CREATE INDEX employee_idx on employee (empID);

5.7 Adding Salt to an Encrypted Column
Salt, which is a random string added to data before encryption, is a way to strengthen the
security of encrypted data.

Salt ensures that the same plaintext data does not always translate to the same encrypted
text. Salt removes the one common method that intruders use to steal data, namely, matching
patterns of encrypted text. Adding salt requires an additional 16 bytes of storage per
encrypted data value.

• To add or remove salt from encrypted columns, use the ALTER TABLE MODIFY SQL
statement.

For example, suppose you want to encrypt the first_name column using salt. If the
first_name column was encrypted without salt earlier, then the ALTER TABLE MODIFY
statement reencrypts it using salt.

Chapter 5
Creating an Index on an Encrypted Column

5-9



ALTER TABLE employee MODIFY (first_name ENCRYPT SALT);

5.8 Removing Salt from an Encrypted Column
You can use the ALTER TABLE SQL statement to remove salt from an encrypted
column.

• To remove salt from an encrypted column, use the ENCRYPT NO SALT clause in the
ALTER TABLE SQL statement.

For example, suppose you wanted to remove salt from the first_name column. If
you must index a column that was encrypted using salt, then you can use this
statement to remove the salt before indexing.

ALTER TABLE employee MODIFY (first_name ENCRYPT NO SALT);

5.9 Changing the Encryption Key or Algorithm for Tables
with Encrypted Columns

You can use the ALTER TABLE SQL statement to change the encryption key or
algorithm used in encrypted columns.

Each table can have only one TDE table key for its columns. You can regenerate the
TDE table key with the ALTER TABLE statement. This process generates a new key,
decrypts the data in the table using the previous key, reencrypts the data using the
new key, and then updates the table metadata with the new key information. You can
also use a different encryption algorithm for the new TDE table key.

• To change the encryption key or algorithm for tables that contain encrypted
columns, use the ALTER TABLE SQL statement with the REKEY or REKEY USING
clause.

For example:

ALTER TABLE employee REKEY;

The following example regenerates the TDE table key for the employee table by
using the AES256 algorithm.

ALTER TABLE employee REKEY USING 'AES256';

5.10 Migrating the Algorithm to the Latest Supported
Algorithm for Tables

Re-encrypting an already encrypted table column enables you to migrate an earlier
algorithm (for example, 3DES168) to the latest supported algorithm.

1. Find the encryption algorithms that the tables currently use.

Chapter 5
Removing Salt from an Encrypted Column

5-10



For example, to find the 3DES168 encryption algorithm, which is represented by the ID 1:

SELECT OBJ.OBJECT_NAME AS TABLE_NAME,ENCALG AS ENCRYPTION_ALG 
FROM ENC$ENC,DBA_OBJECTS OBJ 
WHERE ENC.OBJ#=OBJ.OBJECT_ID AND ENCALG = 1;

Output similar to the following appears:

TABLE_NAME           ENCRYPTION_ALG
-------------------- --------------
EMPS                 1

Alternatively, you can query the DBA_ENCRYPTED_COLUMNS data dictionary view.

SELECT TABLE_NAME, ENCRYPTION_ALG 
FROM DBA_ENCRYPTED_COLUMNS 
WHERE ENCRYPTION_ALG = '3 Key Triple DES 168 bits key';

Output similar to the following appears:

TABLE_NAME           ENCRYPTION_ALG
-------------------- -----------------------------
EMPS                 3 Key Triple DES 168 bits key

2. Re-encrypt each table that is listed in the output.

For example, to migrate to the AES256 algorithm:

ALTER TABLE TEST REKEY USING 'AES256';

You can write a PL/SQL procedure to put all the tables in a list, and then iterate over the
list and re-encrypt the tables in the procedure, or you can manually re-encrypt all tables.

3. To verify the re-encryption:

The following example queries the DBA_ENCRYPTED_COLUMNS data dictionary view:

SELECT TABLE_NAME, ENCRYPTION_ALG 
FROM DBA_ENCRYPTED_COLUMNS 
WHERE TABLE_NAME = 'EMPS';

TABLE_NAME           ENCRYPTION_ALG
-------------------- -----------------------------
EMPS                 AES 256 bits key

Alternatively you can perform the following query. The ID for AES256 is 4.

SELECT OBJ.OBJECT_NAME AS TABLE_NAME,ENCALG AS ENCRYPTION_ALG 
FROM ENC$ENC,DBA_OBJECTS OBJ 
WHERE ENC.OBJ#=OBJ.OBJECT_ID AND OBJ.OBJECT_NAME ='EMPS';

TABLE_NAME           ENCRYPTION_ALG

Chapter 5
Migrating the Algorithm to the Latest Supported Algorithm for Tables

5-11



-------------------- --------------
EMPS                 4

Chapter 5
Migrating the Algorithm to the Latest Supported Algorithm for Tables

5-12



6
Encryption Conversions for Tablespaces and
Databases

You can perform encryption operations on both offline and online tablespaces and databases.

• About Encryption Conversion for Tablespaces and Databases
The CREATE TABLESPACE SQL statement can be used to encrypt new tablespaces. ALTER
TABLESPACE can encrypt existing tablespaces.

• Impact of a Closed TDE Keystore on Encrypted Tablespaces
A TDE keystore can be closed or migrated when an Oracle-managed tablespace is
encrypted, and the database system itself must be shut down to disallow operations on
an Oracle-managed tablespace.

• Restrictions on Using Transparent Data Encryption Tablespace Encryption
You should be aware of restrictions on using Transparent Data Encryption when you
encrypt a tablespace.

• Creating an Encrypted New Tablespace
When you create a new tablespace, you can configure its encryption settings during the
creation process.

• Setting the Tablespace Encryption Default Algorithm
The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption
scenarios.

• Encrypting Future Tablespaces
You can configure Oracle Database to automatically encrypt future tablespaces that you
will create.

• Encrypted Sensitive Credential Data in the Data Dictionary
You can encrypt sensitive credential data in the SYS.LINK$ and
SYS.SCHEDULER$_CREDENTIAL system tables.

• Encryption Conversions for Existing Offline Tablespaces
You can perform offline encryption conversions by using the ALTER TABLESPACE SQL
statement OFFLINE, ENCRYPT, and DECRYPT clauses.

• Encryption Conversions for Existing Online Tablespaces
You can encrypt and decrypt an online existing tablespace by using the ALTER
TABLESPACE SQL statement with the ONLINE and ENCRYPT or DECRYPT clauses.

• Rekeying an Encrypted Tablespace
Rekying an already encrypted tablespace enables you to change the data encryption
keys from one algorithm to another, for example from AES128 to AES256.

• Creating an Encrypted Database Using DBCA
You can use DBCA to create an encrypted database in both single instance multitenant
and Oracle Data Guard environments.

• Encryption Conversions for Existing Databases
You can encrypt both offline and online databases.

6-1



6.1 About Encryption Conversion for Tablespaces and
Databases

The CREATE TABLESPACE SQL statement can be used to encrypt new tablespaces.
ALTER TABLESPACE can encrypt existing tablespaces.

In addition to encrypting new and existing tablespaces, you can encrypt full databases,
which entails the encryption of the Oracle-managed tablespaces (in this release, the
SYSTEM, SYSAUX, TEMP, and UNDO tablespaces). An Oracle-supplied tablespace contains
information necessary for the correct functioning (confidentiality, integrity, and
availability) of the database system. This information includes the system's data
dictionary, the system's temporary sort area, the system's undo segment, and the
system's auxiliary data. This information is only expected to be updated internally by
the Oracle database server itself, and does not normally be updated directly by users.

To encrypt a full database, you use the ALTER TABLESPACE statement, not ALTER
DATABASE, to encrypt the Oracle-managed tablespaces.

The following table compares the differences between an offline and an online
encryption conversion of tablespaces and databases.

Table 6-1    Offline and Online Tablespace and Database Encryption Conversions

Functionality Offline Conversion Online Conversion

Release with minimum
conversion capability

Oracle Database 11g release
2 (11.2)

Oracle Database 12c release
2 (12.2) and later

What can be backported? The ability to encrypt or
decrypt a data file with the
AES128 algorithm (using
ALTER DATABASE DATAFILE
data_file ENCRYPT or
DECRYPT) can be used in
Oracle Database releases
12.1.0.2 and 11.2.0.4.

No

Algorithms supported All symmetric encryption
algorithms that TDE supports.

All symmetric encryption
algorithm that TDE supports.

When can the conversion be
run?

When the tablespace is offline
or the database is in the
mount stage.

When the tablespace is online
and database is open in read/
write mode.

Is auxiliary space required for
the conversion?

No Yes.

Oracle Data Guard conversion
guidelines

Convert both the primary and
standby manually. Convert the
standby first and then switch
over to minimum downtime

After you convert the primary,
the standby conversion takes
place automatically. You
cannot perform an online
conversion directly on the
standby.

Chapter 6
About Encryption Conversion for Tablespaces and Databases

6-2



Table 6-1    (Cont.) Offline and Online Tablespace and Database Encryption
Conversions

Functionality Offline Conversion Online Conversion

Encrypt the SYSTEM, SYSAUX,
and UNDO tablespaces
(database conversion)

Oracle Database 12c release
2 (12.2) and later only. You
must set COMPATIBILITY to
12.2.0.0. Only auto-login
keystores are supported.

Oracle Database 12c release
2 (12.2) and later only. You
must set COMPATIBILITY to
12.2.0.0.

Can an existing TEMP
tablespace be converted?

No, but you can create an
encrypted TEMP tablespace in
Oracle Database 12c release
2 (12.2) and later, make it the
default temporary tablespace,
and then drop the original
TEMP tablespace.

No, but you can create an
encrypted TEMP tablespace in
Oracle Database 12c release
2 (12.2) and later, make it the
default temporary tablespace,
and then drop the original
TEMP tablespace.

Can an existing tablespace be
decrypted?

You only can decrypt a
tablespace or data file that
was previously encrypted by
an offline encrypt operation.
Oracle does not recommend
that you decrypt the UNDO
tablespace once it is
encrypted.

Yes, but Oracle does not
recommend that you decrypt
the UNDO tablespace once it is
encrypted.

Can encryption keys be
rekeyed?

No, but after the tablespace is
encrypted, you can then use
online conversion to rekey in
Oracle Database 12c release
2 (12.2) compatibility.

Yes

Can encryption operations be
run in parallel?

You can run parallel
encryption conversions at the
data file level with multiple
user sessions running.

You can run parallel
encryption conversions at the
tablespace level with multiple
user sessions running.

What to do if an encryption
conversion SQL statement
fails to complete?

Re-issue the encryption or
decryption SQL statement to
ensure that all the data files
within the tablespace are
consistently either encrypted
or decrypted.

Rerun the SQL statement but
use the FINISH clause.

Related Topics

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

• About Encryption Conversions for Existing Offline Tablespaces
You can encrypt or decrypt an existing data file of a user tablespace when the tablespace
is offline or when the database is not open.

• About Encryption Conversions for Existing Online Tablespaces
You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM, SYSAUX,
and UNDO tablespace when they are online.

Chapter 6
About Encryption Conversion for Tablespaces and Databases

6-3



6.2 Impact of a Closed TDE Keystore on Encrypted
Tablespaces

A TDE keystore can be closed or migrated when an Oracle-managed tablespace is
encrypted, and the database system itself must be shut down to disallow operations
on an Oracle-managed tablespace.

A closed TDE keystore has no impact on operations that involve an encrypted Oracle-
managed tablespace (in this release, the SYSTEM, SYSAUX, TEMP, and UNDO
tablespaces). This enables operations that are performed by background processes
(for example, the log writer) to continue to work on these tablespaces while the TDE
keystore is closed. If you want to disallow operations on an encrypted Oracle-
managed tablespace, then you must shut down the database.

With regard to user-created tablespaces, a closed TDE keystore causes operations
such as rotating a key or decrypting the tablespace to fail with an ORA-28365 wallet
is not open error, just as it did in earlier releases. If you want to disallow operations
on the user-created tablespace, then close the TDE keystore (or shut down the
database).

User-created data can be copied into an encrypted Oracle-managed tablespace (for
example, by an internal process such as DBMS_STATS statistics gathering) from a user-
created tablespace while the TDE keystore is open. Closing the keystore does not
prevent a user from viewing this data afterward, when the TDE keystore is in the
CLOSED state at the time that you query the V$ENCRYPTION_WALLET view. Access to the
original data by attempting to query an encrypted user-created tablespace will fail,
resulting in an ORA-28365 wallet is not open error.

Table 6-2 describes the operations that are necessary to disallow or allow operations
on encrypted data in user-created tablespaces and Oracle-managed tablespaces. For
example, in the first scenario, both the user-created tablespaces and the Oracle-
managed tablespaces are encrypted. In this case, for the encrypted data in the
encrypted user-created tablespace, an administrator can close or open keystores, and
shut down and open a database with an encrypted user-created tablespace. When an
encrypted Oracle-managed tablespace is configured, the administrator can disallow
operations by shutting down the database, and can allow operations by starting up in
mount mode, opening the TDE keystore, and then opening the database. (It is
necessary to open the TDE keystore before opening the database because the system
may need the TDE master encryption key to decrypt the bootstrap dictionary tables,
which are located in the encrypted Oracle-managed tablespace.) The N/A flags in this
table refer to non-encrypted data, which you can always operate on, unless the
instance is shut down.

Chapter 6
Impact of a Closed TDE Keystore on Encrypted Tablespaces

6-4



Table 6-2    Necessary Commands to Disallow or Allow Operations on Encrypted Data

Tablespace
Encryption
Scenarios

Commands to
Disallow
Operations on
Encrypted User-
Created Tablespace
Data

Commands to
Disallow
Operations on
Encrypted Oracle-
Managed
Tablespace Data

Commands to
Allow Operations
on Encrypted User-
Created Tablespace
Data

Commands to
Allow Operations
on Encrypted
Oracle-Managed
Tablespace Data

Both user-created
and Oracle-managed
tablespaces
encrypted

• ADMINISTER
KEY
MANAGEMENT
SET KEYSTORE
CLOSE
IDENTIFIED BY
password;

• SHUTDOWN

SHUTDOWN • STARTUP
MOUNT;

• ADMINISTER
KEY
MANAGEMENT
SET KEYSTORE
OPEN
IDENTIFIED BY
password;

• ALTER
DATABASE OPEN

• STARTUP
MOUNT;

• ADMINISTER
KEY
MANAGEMENT
SET KEYSTORE
OPEN
IDENTIFIED BY
password;

• ALTER
DATABASE OPEN

User tablespace
encrypted; Oracle-
managed tablespace
not encrypted

• ADMINISTER
KEY
MANAGEMENT
SET KEYSTORE
CLOSE
IDENTIFIED BY
password;

• SHUTDOWN

N/A • STARTUP
MOUNT;

• ADMINISTER
KEY
MANAGEMENT
SET KEYSTORE
OPEN
IDENTIFIED BY
password;

• ALTER
DATABASE OPEN

N/A

User tablespace not
encrypted; Oracle-
managed tablespace
encrypted

N/A SHUTDOWN N/A • STARTUP
MOUNT;

• ADMINISTER
KEY
MANAGEMENT
SET KEYSTORE
OPEN
IDENTIFIED BY
password;

• ALTER
DATABASE OPEN

Neither user nor
Oracle-managed
tablespaces
encrypted

N/A N/A N/A N/A

6.3 Restrictions on Using Transparent Data Encryption
Tablespace Encryption

You should be aware of restrictions on using Transparent Data Encryption when you encrypt
a tablespace.

Chapter 6
Restrictions on Using Transparent Data Encryption Tablespace Encryption

6-5



Note the following restrictions:

• Transparent Data Encryption (TDE) tablespace encryption encrypts or decrypts
data during read and write operations, as opposed to TDE column encryption,
which encrypts and decrypts data at the SQL layer. This means that most
restrictions that apply to TDE column encryption, such as data type restrictions
and index type restrictions, do not apply to TDE tablespace encryption.

• To perform import and export operations, use Oracle Data Pump.

Related Topics

• Encrypting an Unencrypted Column
You can use the ALTER TABLE MODIFY statement to encrypt an existing
unencrypted column.

• Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE
column encryption.

• Oracle Database Utilities

6.4 Creating an Encrypted New Tablespace
When you create a new tablespace, you can configure its encryption settings during
the creation process.

• Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption
You must set the COMPATIBLE initialization parameter before creating an encrypted
tablespace.

• Step 2: Set the Tablespace TDE Master Encryption Key
You should ensure that you have configured the TDE master encryption key.

• Step 3: Create the Encrypted Tablespace
After you have set the COMPATIBLE initialization parameter, you are ready to create
the encrypted tablespace.

6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for
Tablespace Encryption

You must set the COMPATIBLE initialization parameter before creating an encrypted
tablespace.

• About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
A minimum COMPATIBLE initialization parameter setting of 11.2.0.0 enables the full
set of tablespace encryption features.

• Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
To set the COMPATIBLE initialization parameter, you must edit the initialization
parameter file for the database instance.

6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace
Encryption

A minimum COMPATIBLE initialization parameter setting of 11.2.0.0 enables the full set
of tablespace encryption features.

Chapter 6
Creating an Encrypted New Tablespace

6-6



Setting the compatibility to 11.2.0.0 enables the following functionality:

• The 11.2.0.0 setting enables the database to use any of the four supported algorithms
for data encryption (3DES168, AES128, AES192, and AES256).

• The 11.2.0.0 setting enables the migration of a key from a TDE wallet to an external
keystore (ensure that the TDE master encryption key was configured for the external
keystore)

• The 11.2.0.0 setting enables rekeying the TDE master encryption key

Be aware that once you set the COMPATIBLE parameter to 11.2.0.0, the change is
irreversible. To use tablespace encryption, ensure that the compatibility setting is at the
minimum, which is 11.2.0.0.

Related Topics

• Oracle Database SQL Language Reference

• Oracle Database Administrator’s Guide

6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
To set the COMPATIBLE initialization parameter, you must edit the initialization parameter file
for the database instance.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been
granted administrative privileges.

2. Check the current setting of the COMPATIBLE parameter.

For example:

SHOW PARAMETER COMPATIBLE
 
NAME                                 TYPE        VALUE
------------------------------------ ----------- ------------------------------
compatible                           string      12.2.0.0
noncdbcompatible                     BOOLEAN     FALSE

3. If you must change the COMPATIBLE parameter, then complete the remaining steps in this
procedure.

The value should be 11.2.0.0 or later.

4. From the command line, locate the initialization parameter file for the database instance.

• UNIX systems: This file is in the ORACLE_HOME/dbs directory and is named
initORACLE_SID.ora (for example, initmydb.ora).

• Windows systems: This file is in the ORACLE_HOME\database directory and is named
initORACLE_SID.ora (for example, initmydb.ora).

5. Edit the initialization parameter file to use the new COMPATIBLE setting.

For example:

COMPATIBLE=20.1.0.0
6. Connect as a user who has the SYSDBA administrative privilege, and then restart the

database.

• From the CDB root:

Chapter 6
Creating an Encrypted New Tablespace

6-7



SHUTDOWN IMMEDIATE
STARTUP

• From a PDB:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

7. If tablespace encryption is in use, then open the keystore at the database mount.
The keystore must be open before you can access data in an encrypted
tablespace.

For example:

STARTUP MOUNT;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY keystore_password;
ALTER DATABASE OPEN;

6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key
You should ensure that you have configured the TDE master encryption key.

• Set the TDE master encryption key for either software TDE master encryption
keys or hardware TDE master encryption keys, using the same steps that you
would use for united mode or isolated mode.

6.4.3 Step 3: Create the Encrypted Tablespace
After you have set the COMPATIBLE initialization parameter, you are ready to create the
encrypted tablespace.

• About Creating Encrypted Tablespaces
To create an encrypted tablespace, you can use the CREATE TABLESPACE SQL
statement.

• Creating an Encrypted Tablespace
To create an encrypted tablespace, you must use the CREATE TABLESPACE
statement with the ENCRYPTION USING clause.

• Example: Creating an Encrypted Tablespace That Uses AES192
You can use the CREATE TABLESPACE SQL statement to create an encrypted
tablespace.

• Example: Creating an Encrypted Tablespace That Uses the Default Algorithm
You can use the CREATE TABLESPACE SQL statement to create an encrypted
tablespace that uses the default algorithm.

6.4.3.1 About Creating Encrypted Tablespaces
To create an encrypted tablespace, you can use the CREATE TABLESPACE SQL
statement.

You must have the CREATE TABLESPACE system privilege to create an encrypted
tablespace.

You can import data into an encrypted tablespace by using Oracle Data Pump. You
can also use a SQL statement such as CREATE TABLE...AS SELECT... or ALTER
TABLE...MOVE... to move data into an encrypted tablespace. The CREATE TABLE...AS

Chapter 6
Creating an Encrypted New Tablespace

6-8



SELECT... statement creates a table from an existing table. The ALTER TABLE...MOVE...
statement moves a table into the encrypted tablespace.

For security reasons, you cannot encrypt a tablespace with the NO SALT option.

You can query the ENCRYPTED column of the DBA_TABLESPACES and USER_TABLESPACES data
dictionary views to verify if a tablespace was encrypted.

6.4.3.2 Creating an Encrypted Tablespace
To create an encrypted tablespace, you must use the CREATE TABLESPACE statement with the
ENCRYPTION USING clause.

Run the CREATE TABLESPACE statement, using its encryption clauses.
For example:

CREATE TABLESPACE encrypt_ts
  DATAFILE '$ORACLE_HOME/dbs/encrypt_df.dbf' SIZE 1M
  ENCRYPTION USING 'AES256' ENCRYPT;

In this specification:

• ENCRYPTION USING 'AES256' ENCRYPT specifies the encryption algorithm and the key
length for the encryption. The ENCRYPT clause encrypts the tablespace. Enclose this
setting in single quotation marks (' '). The key lengths are included in the names of the
algorithms. If you do not specify an encryption algorithm, then the default encryption
algorithm, AES128, is used.

Related Topics

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192
You can use the CREATE TABLESPACE SQL statement to create an encrypted tablespace.

Example 6-1 creates a tablespace called securespace_1 that is encrypted using the AES192
algorithm.

Example 6-1    Creating an Encrypted Tablespace That Uses AES192

CREATE TABLESPACE securespace_1
DATAFILE '/home/user/oradata/secure01.dbf'
SIZE 150M
ENCRYPTION USING 'AES192' ENCRYPT;

6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default
Algorithm

You can use the CREATE TABLESPACE SQL statement to create an encrypted tablespace that
uses the default algorithm.

Example 6-2 creates a tablespace called securespace_2. Because no encryption algorithm is
specified, the default encryption algorithm (AES128) is used. The key length is 128 bits.

You cannot encrypt an existing tablespace.

Chapter 6
Creating an Encrypted New Tablespace

6-9



Example 6-2    Creating an Encrypted Tablespace That Uses the Default
Algorithm

CREATE TABLESPACE securespace_2
DATAFILE '/home/user/oradata/secure01.dbf'
SIZE 150M
ENCRYPTION ENCRYPT;

6.5 Setting the Tablespace Encryption Default Algorithm
The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption
scenarios.

These scenarios are as follows:

• Encryption commands that do not allow to specify the encryption algorithm

• New tablespaces that are created without the encryption syntax

• The encryption algorithm for the SYSTEM tablespace

TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM only becomes effective if it is set before
the first SET KEY operation with Oracle Key Vault, or the CREATE KEYSTORE command
for TDE wallet-based TDE configuration.

TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to both offline and online
tablespace encryption operations. It also applies to future encrypted tablespaces, if
TABLESPACE_ENCRYPTION has been set appropriately. In a multitenant environment, you
can set TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM in the CDB root or in individual
PDBs.

• Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM = value SCOPE=BOTH;

In this specification, value can be one of the following encryption algorithms:
AES128, AES192, AES256, 3DES168, ARIA128, ARIA192, or ARIA256. The default
encryption algorithm is AES256. Note that for 3DES168, in FIPS mode, this
parameter can take only AES128, AES192, and AES256.

Chapter 6
Setting the Tablespace Encryption Default Algorithm

6-10



Note:

Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE)
decryption libraries for the GOST and SEED algorithms are deprecated, and
encryption to GOST and SEED are desupported. Starting with Oracle Database
23ai, the Transparent Data Encryption (TDE) encryption libraries for the GOST
and SEED algorithms are desupported and removed. The GOST and SEED
decryption libraries are deprecated. Both are removed on HP Itanium platforms.
GOST 28147-89 has been deprecated by the Russian government, and SEED
has been deprecated by the South Korean government. If you need South
Korean government-approved TDE cryptography, then use ARIA instead. If you
are using GOST 28147-89, then you must decrypt and encrypt with another
supported TDE algorithm. The decryption algorithms for GOST 28147-89 and
SEED are included with Oracle Database 23ai, but are deprecated, and the
GOST encryption algorithm is desupported with Oracle Database 23ai. If you
are using GOST or SEED for TDE encryption, then Oracle recommends that
you decrypt and encrypt with another algorithm before upgrading to Oracle
Database 23ai. However, with the exception of the HP Itanium platform, the
GOST and SEED decryption libraries are available with Oracle Database 23ai,
so you can also decrypt after upgrading.

6.6 Encrypting Future Tablespaces
You can configure Oracle Database to automatically encrypt future tablespaces that you will
create.

• About Encrypting Future Tablespaces
The ENCRYPT_NEW_TABLESPACES dynamic database initialization parameter controls if
future tablespaces are encrypted.

• Setting Future Tablespaces to be Encrypted
You can set the ENCRYPT_NEW_TABLESPACES database initialization parameter to
automatically encrypt future tablespaces that you create.

6.6.1 About Encrypting Future Tablespaces
The ENCRYPT_NEW_TABLESPACES dynamic database initialization parameter controls if future
tablespaces are encrypted.

By default, all Oracle Cloud databases are encrypted. If you install an off-the-shelf application
into such a database, its installation scripts most likely do not have the encryption syntax. In
this case, because ENCRYPT_NEW_TABLESPACES is set to CLOUD_ONLY, those tablespaces would
be created encrypted regardless.

Chapter 6
Encrypting Future Tablespaces

6-11



Note:

Starting with Oracle Database 23ai, the ENCRYPT_NEW_TABLESPACES
initialization parameter is deprecated.
Oracle recommends that you use the initialization parameter
TABLESPACE_ENCRYPTION, which is new for Oracle Database 23ai.

In an Oracle Cloud environment, the following scenarios may occur when you create
encrypted tablespaces in Oracle Cloud and on-premises environments:

• You create a test database in Oracle Cloud and the tablespaces were encrypted
by using when the ENCRYPT_NEW_TABLESPACE parameter has been set to
automatically create the Cloud database as encrypted. However, you may not
have the intention or even an Advanced Security Option license to bring the
encrypted database back on premises. For this use case, Oracle Recovery
Manager (Oracle RMAN) provides the option to duplicate or restore AS DECRYPTED.

• You create a hybrid environment where the primary database is on premises and
the standby database is on Oracle Cloud. If a switchover operation takes place,
then the new primary is on Oracle Cloud. If a new tablespace is transparently
encrypted, then a similar scenario to the first item in this list may occur. For
example, suppose you do not have an Advanced Security Option (ASO) license,
and you have an automatically encrypted tablespace in the Oracle Cloud. The
standby database on premises is also automatically encrypted. In this case, you
either need an Advanced Security license (which includes Transparent Data
Encryption and Data Redaction) for the on-premises standby database, or you
cannot use the standby database.

Related Topics

• Encryption of Tablespaces in an Oracle Data Guard Environment
You can control tablespace encryption in the primary and standby databases in an
Oracle Data Guard environment.

6.6.2 Setting Future Tablespaces to be Encrypted
You can set the ENCRYPT_NEW_TABLESPACES database initialization parameter to
automatically encrypt future tablespaces that you create.

Note:

Starting with Oracle Database 23ai, the ENCRYPT_NEW_TABLESPACES
initialization parameter is deprecated.
Oracle recommends that you use the initialization parameter
TABLESPACE_ENCRYPTION, which is new for Oracle Database 23ai.

• Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET ENCRYPT_NEW_TABLESPACES = value;

In this specification, value can be:

Chapter 6
Encrypting Future Tablespaces

6-12



– CLOUD_ONLY transparently encrypts the tablespace in the Cloud using the tablespace
encryption default algorithm if you do not specify the ENCRYPTION clause of the
CREATE TABLESPACE SQL statement, or to the algorithm specified by the
TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM dynamic parameter. It applies only to
an Oracle Cloud environment. If you create the tablespace on premises, then it will
follow the CREATE TABLESPACE statement specification that you enter. For example, if
you omit the ENCRYPTION clause, then the tablespace is created unencrypted. If you
include this clause and use a different algorithm, then the tablespace will use that
algorithm. CLOUD_ONLY is the default.

– ALWAYS automatically encrypts the tablespace using the tablespace encryption default
algorithm, or to the algorithm specified by the
TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM dynamic parameter, if you omit the
ENCRYPTION clause of CREATE TABLESPACE, for both the Cloud and premises
scenarios.

If you do provide the ENCRYPTION clause, however, the algorithm that you specify
takes precedence over the tablespace encryption default algorithm.

– DDL encrypts the tablespace using the specified setting of the ENCRYPTION clause of
CREATE TABLESPACE, for both Oracle Cloud and on-premises environments.

Related Topics

• Encryption of Tablespaces in an Oracle Data Guard Environment
You can control tablespace encryption in the primary and standby databases in an Oracle
Data Guard environment.

• Oracle Database Reference

6.7 Encrypted Sensitive Credential Data in the Data Dictionary
You can encrypt sensitive credential data in the SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL
system tables.

By default, the credential data in the SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system
tables is obfuscated. However, because of the availability of many types of de-obfuscation
algorithms, Oracle recommends that you encrypt this sensitive credential data. To check the
status the data dictionary credentials, you can query the DICTIONARY_CREDENTIALS_ENCRYPT
data dictionary view.

The encryption of sensitive credential data in these two system tables uses Transparent Data
Encryption. Encryption of credential data uses the AES256 algorithm. To encrypt credential
data, you do not need an Oracle Advanced Security Option license, but you must be granted
the SYSKM administrative privilege and the database must have an open keystore.

Related Topics

• Oracle Database Security Guide

6.8 Encryption Conversions for Existing Offline Tablespaces
You can perform offline encryption conversions by using the ALTER TABLESPACE SQL
statement OFFLINE, ENCRYPT, and DECRYPT clauses.

Chapter 6
Encrypted Sensitive Credential Data in the Data Dictionary

6-13



• About Encryption Conversions for Existing Offline Tablespaces
You can encrypt or decrypt an existing data file of a user tablespace when the
tablespace is offline or when the database is not open.

• Encrypting an Existing User-Defined Tablespace with Offline Conversion
To encrypt an existing tablespace with offline conversion, you can use the ALTER
TABLESPACE SQL statement with the OFFLINE and ENCRYPT clauses.

• Decrypting an Existing Tablespace with Offline Conversion
To decrypt an existing tablespace with offline conversion, you can use the ALTER
TABLESPACE SQL statement with the OFFLINE and DECRYPT clauses.

6.8.1 About Encryption Conversions for Existing Offline Tablespaces
You can encrypt or decrypt an existing data file of a user tablespace when the
tablespace is offline or when the database is not open.

There are two options for performing the encryption or decryption:

• Offline encryption of the data file level: This type does not have the option to
specify an encryption algorithm. It uses the default encryption algorithm. For
example:

ALTER DATABASE DATAFILE 'path_to_data_file.dbf' ENCRYPT;

• Offline encrypting a tablespace: Use the following syntax. If you omit the [USING
'algorithm'], then the default encryption algorithm is used.

ALTER TABLESPACE tablespace_name ENCRYPTION OFFLINE [USING 
'algorithm'] ENCRYPT;

Use the offline encryption method if you do not plan to change the compatibility of your
databases from Oracle Database 11c release 2 (11.2) or Oracle Database 12c release
1 (12.1) to release 19c, which is irreversible. The offline encryption method is also
useful if you want to quickly make use of Transparent Data Encryption before you
upgrade this database to release 19c. You can both encrypt and decrypt offline
tablespaces.

Note the following:

• If you want to encrypt the Oracle Database-supplied tablespaces (SYSTEM, SYSAUX,
and UNDO) using the offline conversion method, then you must use the method that
is recommended when you encrypt an existing database with offline conversion.

• You can use the online method to rekey, change the encryption algorithm, or
decrypt a tablespace that was previously encrypted with the offline method.

• If you want to change the algorithm in the offline mode, then you must first decrypt
the tablespace and re-encrypt with the new algorithm.

• If you have configured Oracle Data Guard, then you can minimize downtime by
encrypting the tablespaces on the standby first, switching over to the primary, and
then performing an offline encryption the tablespaces on the new standby
database. Offline encryption (both on the data file and tablespace level) are is
performed on the standby first. Online encryption is an Oracle Data Guard
transaction, and as such, it is replayed on the standby database.

Chapter 6
Encryption Conversions for Existing Offline Tablespaces

6-14



• You can use the USING ... ENCRYPT clause to specify an encryption algorithm.
Supported algorithms are AES and ARIA with 128, 192, and 256 bits key length. To
check the encryption key, query the ENCRYPTIONALG column in the V$DATABASE_KEY_INFO
view.

Note:

Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE)
decryption libraries for the GOST and SEED algorithms are deprecated, and
encryption to GOST and SEED are desupported. Starting with Oracle Database
23ai, the Transparent Data Encryption (TDE) encryption libraries for the GOST
and SEED algorithms are desupported and removed. The GOST and SEED
decryption libraries are deprecated. Both are removed on HP Itanium platforms.
GOST 28147-89 has been deprecated by the Russian government, and SEED
has been deprecated by the South Korean government. If you need South
Korean government-approved TDE cryptography, then use ARIA instead. If you
are using GOST 28147-89, then you must decrypt and encrypt with another
supported TDE algorithm. The decryption algorithms for GOST 28147-89 and
SEED are included with Oracle Database 23ai, but are deprecated, and the
GOST encryption algorithm is desupported with Oracle Database 23ai. If you
are using GOST or SEED for TDE encryption, then Oracle recommends that
you decrypt and encrypt with another algorithm before upgrading to Oracle
Database 23ai. However, with the exception of the HP Itanium platform, the
GOST and SEED decryption libraries are available with Oracle Database 23ai,
so you can also decrypt after upgrading.

• To set the default encryption algorithm for future offline tablespace encryption operations,
set the TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM dynamic parameter.

• You can use the ALTER TABLESPACE statement to convert offline tablespaces in parallel by
using multiple foreground sessions to encrypt different data files.

• If you are using Oracle Data Guard, you can minimize the downtime by encrypting the
tablespaces on the standby first, switching over, and then encrypting the tablespaces on
the original primary next.

• For Oracle Database 11g release 2 (11.2.0.4) and Oracle Database 12c release 1
(12.1.0.2), you cannot perform an offline encryption of the SYSTEM and SYSAUX
tablespaces. For releases earlier than Oracle Database 19c, you cannot encrypt the
SYSTEM, SYSAUX, TEMP, and UNDO tablespaces. Also, Oracle does not recommend
encrypting offline the UNDO tablespace in these releases. Doing so prevents the keystore
from being closed, and this prevents the database from functioning. In addition,
encrypting the UNDO tablespace while the database is offline is not necessary because all
undo records that are associated with any encrypted tablespaces are already
automatically encrypted in the UNDO tablespace. If you want to encrypt the TEMP
tablespace, you must drop and then recreate it as encrypted.

Related Topics

• Encrypting an Existing Database with Offline Conversion
When you encrypt an existing database with offline conversion, for the Oracle-managed
tablespaces, you do not specify an encryption algorithm.

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

Chapter 6
Encryption Conversions for Existing Offline Tablespaces

6-15



• Setting the Tablespace Encryption Default Algorithm
The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption
scenarios.

6.8.2 Encrypting an Existing User-Defined Tablespace with Offline
Conversion

To encrypt an existing tablespace with offline conversion, you can use the ALTER
TABLESPACE SQL statement with the OFFLINE and ENCRYPT clauses.

The procedure that is described in this section applies to the case where you want to
encrypt individual user-created tablespaces within a database. These tablespaces can
be encrypted offline. However, the Oracle Database-supplied SYSTEM and UNDO
tablespaces cannot be brought offline. If you want to encrypt the tablespaces offline,
then you must use the method that is described in Encrypting an Existing Database
with Offline Conversion.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted administrative privileges.

You must have the SYSDBA administrative privilege to work with the SYSTEM and
SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Bring the tablespace offline.

ALTER TABLESPACE users OFFLINE NORMAL;
3. Back up the tablespace.

The offline conversion method does not use auxiliary disk space or files, and it
operates directly in-place to the data files. Therefore, you should perform a full
backup of the user tablespace before converting it offline.

4. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM
privilege, open the TDE wallet.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY 
TDEk_wallet_password; 

5. Encrypt the tablespace.

For example, to encrypt an entire tablespace, include its data files:

ALTER TABLESPACE users1 ENCRYPTION OFFLINE ENCRYPT;

This example encrypts the tablespace with the default encryption algorithm,
AES128. (AES256 is the default.) To use a different encryption algorithm, enter a
statement similar to the following:

ALTER TABLESPACE users2 ENCRYPTION OFFLINE USING 'AES128' ENCRYPT;

To encrypt individual data files within a tablespace, use the ALTER DATABASE
DATAFILE SQL statement. For example, to encrypt the data files user_01.dbf and
user_02.dbf:

ALTER DATABASE DATAFILE 'user_01.dbf' ENCRYPT;
ALTER DATABASE DATAFILE 'user_02.dbf' ENCRYPT;

Chapter 6
Encryption Conversions for Existing Offline Tablespaces

6-16



In the same database session, these statements encrypt each of the data files in
sequence, one after another. If you run each statement in its own database session, then
they will be run in parallel.

If the encryption process is interrupted, then rerun the ALTER TABLESPACE statement. The
kinds of errors that you can expect in an interruption are general errors, such as file
system or storage file system errors. The data files within the tablespace should be
consistently encrypted. For example, suppose you offline a tablespace that has 10 files
but for some reason, the encryption only completes for nine of the files, leaving one
decrypted. Although it is possible to bring the tablespace back online with such
inconsistent encryption if the COMPATIBLE parameter is set to 12.2.0.0 or later, then it is
not recommended to leave the tablespace in this state. If COMPATIBLE is less than
12.2.0.0, then it is not possible to bring the tablespace online if the encryption property
is inconsistent across the data files.

6. Bring the tablespace back online or open the database.

• To bring the tablespace back online:

ALTER TABLESPACE users ONLINE;
• To open a database in a non-multitenant environment:

ALTER DATABASE OPEN
• In a multitenant environment, you can encrypt a data file or tablespace with the offline

method if the root is open and the PDB is not open. For example, for a PDB named
hr_pdb:

ALTER PLUGGABLE DATABASE hr_pdb OPEN
7. Perform a full backup of the converted tablespace.

Related Topics

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

6.8.3 Decrypting an Existing Tablespace with Offline Conversion
To decrypt an existing tablespace with offline conversion, you can use the ALTER TABLESPACE
SQL statement with the OFFLINE and DECRYPT clauses.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been
granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX
tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Bring the tablespace offline.

ALTER TABLESPACE users OFFLINE NORMAL;
3. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege,

open the keystore.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY TDE_wallet_password; 
4. Run the ALTER TABLESPACE SQL statement to perform the decryption.

For example, for a tablespace called users:

Chapter 6
Encryption Conversions for Existing Offline Tablespaces

6-17



ALTER TABLESPACE users ENCRYPTION OFFLINE DECRYPT; 

If the decryption process is interrupted, then rerun the ALTER TABLESPACE
statement. The kinds of errors that you can expect in an interruption are general
errors, such as file system or storage file system errors. The data files within the
tablespace should be consistently decrypted. For example, suppose you offline a
tablespace that has 10 files but for some reason, the decryption only completes for
nine of the files, leaving one encrypted. Although it is possible to bring the
tablespace back online with such inconsistent decryption if the COMPATIBLE
parameter is set to 12.2.0.0 or later, then it is not recommended to leave the
tablespace in this state. If COMPATIBLE is less than 12.2.0.0, then it is not possible
to bring the tablespace online if the encryption property is inconsistent across the
data files.

5. Bring the tablespace online.

ALTER TABLESPACE users ONLINE;

6.9 Encryption Conversions for Existing Online Tablespaces
You can encrypt and decrypt an online existing tablespace by using the ALTER
TABLESPACE SQL statement with the ONLINE and ENCRYPT or DECRYPT clauses.

• About Encryption Conversions for Existing Online Tablespaces
You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM,
SYSAUX, and UNDO tablespace when they are online.

• Encrypting an Existing Tablespace with Online Conversion
To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE
with the ONLINE and ENCRYPT clauses.

• Rekeying an Existing Tablespace with Online Conversion
To rekey an existing tablespace that is online, you can use the REKEY clause of the
ALTER TABLESPACE SQL statement.

• Rekeying the SYSAUX and UNDO Tablespaces with Online Conversion
To rekey the SYSAUX and UNDO onlne tablespaces, you can use the REKEY clause of
the ALTER TABLESPACE SQL statement.

• Decrypting an Existing Tablespace with Online Conversion
To decrypt an existing tablespace with online conversion, you can use the ALTER
TABLESPACE SQL statement with DECRYPT clause.

• Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the
conversion by rerunning the ALTER TABLESPACE statement using the FINISH
clause.

6.9.1 About Encryption Conversions for Existing Online Tablespaces
You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM, SYSAUX,
and UNDO tablespace when they are online.

However, you cannot encrypt, decrypt, or rekey a temporary tablespace online.

Chapter 6
Encryption Conversions for Existing Online Tablespaces

6-18



An online tablespace can be created by using the ONLINE clause of the CREATE TABLESPACE
SQL statement. When you encrypt or rekey a tablespace online, the tablespace will have its
own independent encryption keys and algorithms.

Note the following:

• If an offline tablespace has been encrypted, then you can rekey it online to use a different
algorithm.

• You can encrypt multiple tablespaces online in parallel by using multiple foreground
sessions to encrypt different tablespaces. Within each tablespace, the data files are
encrypted sequentially.

• To set the default encryption algorithm for future online tablespace encryption operations,
set the TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM dynamic parameter.

• If the conversion is interrupted, then you can resume the process by issuing the FINISH
clause of the ALTER TABLESPACE SQL statement.

• A redo log is generated for each online tablespace conversion.

• Do not encrypt the SYSTEM and UNDO tablespaces concurrently with other tablespaces.

• You cannot use the transportable tablespace feature with Oracle Data Pump while you
are encrypting a tablespace.

• You cannot run the ALTER TABLESPACE statement concurrently with the following features:

– ADMINISTER KEY MANAGEMENT SET KEY SQL statement

– FLASHBACK DATABASE SQL statement

• If you are using Oracle-managed files for the data files, then the encryption process
rekeys the data files that are associated with the tablespace and then copies or moves
them to the default Oracle-managed files location.

• You can add new files to the tablespace after you have encrypted it. Oracle Database
reformats the new file with the new encryption key. Blocks will be encrypted using the
new key.

• Previous operations that took place in the root or the PDB may require the control files to
be cross-checked against the data dictionary before you can begin the online conversion
process. An ORA-241 operation disallowed: control file is not yet checked
against data dictionary error may occur. To resolve this problem, restart the root or
PDB, and then try issuing the online conversion commands again.

• For security reasons, once online conversion processes a data file, Oracle will zero out
the original data file before deletion. This prevents the database from leaving ghost data
on disk sectors. However, there is a known limitation that can occur if you are performing
an online tablespace conversion at the same time that Oracle Recovery Manager (Oracle
RMAN) is validating files. The online tablespace conversion processes each file one at a
time. If Oracle RMAN is validating a file at the same time that it is being processed by the
online tablespace conversion, then Oracle RMAN could report a corruption problem
(ORA-01578: ORACLE data block corrupted (file # , block # )). It does this
because it sees the blocks that comprise the file as zero. This is a false alarm and you
can ignore the error. If this occurs, then try running the Oracle RMAN validation process
again.

Related Topics

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

Chapter 6
Encryption Conversions for Existing Online Tablespaces

6-19



• Setting the Tablespace Encryption Default Algorithm
The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption
scenarios.

6.9.2 Encrypting an Existing Tablespace with Online Conversion
To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE with
the ONLINE and ENCRYPT clauses.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and
SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

You can use the SHOW PARAMETER command to check the current setting of a
parameter.

3. Ensure that the database is open in read-write mode.

You can query the STATUS column of the V$INSTANCE dynamic view to find if a
database is open and the OPEN_MODE column of the V$DATABASE view to find if it in
read-write mode.

4. If necessary, open the database in read-write mode.

ALTER DATABASE OPEN READ WRITE;
5. Ensure that the auxiliary space is at least the same size as the largest data file of

this tablespace.

This size requirement is because Oracle Database performs the conversion one
file at a time. For example, if the largest data file of the tablespace is 32 GB, then
ensure that you have 32 GB of auxiliary space. To find the space used by a data
file, query the BYTES or BLOCKS column of the V$DATAFILE dynamic performance
view.

6. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM
privilege, create and open a master encryption key.

For example:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 'TDE_wallet_location' IDENTIFIED 
BY TDE_wallet_password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY 
TDE_wallet_password;
ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY TDE_wallet_password WITH 
BACKUP;

7. Run the ALTER TABLESPACE statement using the ENCRYPTION and ENCRYPT clauses
to perform the encryption.

For example, for a non-Oracle managed files tablespace named users:

ALTER TABLESPACE users ENCRYPTION ONLINE USING 'AES256' ENCRYPT 
FILE_NAME_CONVERT = ('users.dbf', 'users_enc.dbf');

In this example:

• ENCRYPTION ONLINE USING ‘AES256’ ENCRYPT sets the statement to encrypt
the tablespace users while it is online and assigns it the AES256 encryption

Chapter 6
Encryption Conversions for Existing Online Tablespaces

6-20



algorithm. If you omit the USING algorithm clause, then the default algorithm,
AES256, is used. For the SYSTEM tablespace, you can use the ENCRYPT clause to
encrypt the tablespace, but you cannot specify an encryption algorithm because it is
encrypted with the existing database key the first time. After encrypting the SYSTEM
tablespace, use the REKEY clause to specify the algorithm.

• FILE_NAME_CONVERT specifies one or more pairs of data files that are associated with
the tablespace. The first name in the pair is an existing data file, and the second
name is for the encrypted version of this data file, which will be created after the
ALTER TABLESPACE statement successfully runs. If the tablespace has more than one
data file, then you must process them all in this statement. Note the following:

– Separate each file name with a comma, including multiple pairs of files. For
example:

FILE_NAME_CONVERT = ('users1.dbf', 'users1_enc.dbf', 'users2.dbf', 
'users2_enc.dbf')

– You can specify directory paths in the FILE_NAME_CONVERT clause. For example,
the following clause converts and moves the matching files of the tablespace
from the dbs directory to the dbs/enc directory:

FILE_NAME_CONVERT = ('dbs', 'dbs/enc')
– The FILE_NAME_CONVERT clause recognizes patterns. The following example

converts the data files users_1.dbf and users_2.dbf to users_enc1.dbf and
users_enc2.dbf:

FILE_NAME_CONVERT = ('users', 'users_enc')
– In an Oracle Data Guard environment, include the name of the standby database

data file in the FILE_NAME_CONVERT settings.

– If you are using Oracle-managed file mode, then the new file name is internally
assigned, so this file name should not affect your site's file-naming standards. If
you are using non-Oracle-managed file mode and if you omit the
FILE_NAME_CONVERT clause, then Oracle Database internally assigns an auxiliary
file name, and then later renames it back to the original name. This enables the
encryption process to use the name that you had originally given the file to be
encrypted. The renaming operation is effectively creating another copy of the file,
hence it is slower than explicitly including the FILE_NAME_CONVERT clause. For
better performance, include the FILE_NAME_CONVERT clause.

– You can find the data files for a tablespace by querying the V$DATAFILE or
V$DATAFILE_HEADER dynamic views.

By default, data files are in the $ORACLE_HOME/dbs directory. If the data files are
located there, then you do not have to specify a path.

After you complete the conversion, you can check the encryption status by querying the
STATUS column of the V$ENCRYPTED_TABLESPACES dynamic view. The ENCRYPTIONALG column
of this view shows the encryption algorithm that is used. If the conversion process was
interrupted, then you can resume it by running ALTER TABLESPACE with the FINISH clause. For
example, if the primary data file converts but the standby data file does not, then you can run
ALTER TABLESPACE ... FINISH on the standby database for the standby data files.

Related Topics

• Best Practice after DBCA Creates an Encrypted Database
After DBCA has created an encrypted stand-alone or Oracle Data Guard primary and
standby database, you can implement Transparent Data Encryption (TDE) best practices.

Chapter 6
Encryption Conversions for Existing Online Tablespaces

6-21



• Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
To set the COMPATIBLE initialization parameter, you must edit the initialization
parameter file for the database instance.

• Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the
conversion by rerunning the ALTER TABLESPACE statement using the FINISH
clause.

6.9.3 Rekeying an Existing Tablespace with Online Conversion
To rekey an existing tablespace that is online, you can use the REKEY clause of the
ALTER TABLESPACE SQL statement.

Before you perform a rekey operation, be aware of the following:

• You cannot rekey the TEMP tablespace. If you want to assign a different encryption
algorithm to a TEMP tablespace, then drop TEMP and recreate it with the correct
encryption algorithm.

• Do not perform an online tablespace rekey operation with a master key operation
concurrently. To find if any tablespaces are currently being rekeyed, issue the
following query to find the rekey status of encrypted tablespaces:

SELECT TS#,ENCRYPTIONALG,STATUS FROM V$ENCRYPTED_TABLESPACES;

A status of REKEYING means that the corresponding tablespace is still being
rekeyed. Do not rekey the master key while this status is in effect.

To rekey an existing tablespace with online conversion:

1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and
SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Ensure that the following requirements are met:

• The COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

• The database is open and in read-write mode.

• A master encryption key has been created and is open.

3. Query the KEY_VERSION and STATUS columns of the V$ENCRYPTED_TABLESPACES
dynamic view to find the current status of the encryption algorithm used by the
master encryption key.

4. Perform the rekey operation, based on the status returned by the
V$ENCRYPTED_TABLESPACES dynamic view:

• If the key version status of the tablespace is NORMAL, then specify the new
algorithm of the online tablespace rekey.

For example:

ALTER TABLESPACE users ENCRYPTION USING 'AES192' REKEY FILE_NAME_CONVERT 
= ('users.dbf', 'users_enc.dbf');

• If the key version status is ENCRYPTING, DECRYPTING, or REKEYING, then use the
FINISH clause.

Chapter 6
Encryption Conversions for Existing Online Tablespaces

6-22



For example:

ALTER TABLESPACE users ENCRYPTION ONLINE FINISH REKEY FILE_NAME_CONVERT = 
('users.dbf', 'users_enc.dbf');

5. If the ORA-00241 operation disallowed: control file inconsistent with data
dictionary error appears, then restart the CDB root and then retry Step 4.

If the conversion process was interrupted, then you can resume it by running ALTER
TABLESPACE with the FINISH clause.

Related Topics

• Encrypting an Existing Tablespace with Online Conversion
To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE with the
ONLINE and ENCRYPT clauses.

• About Encryption Conversions for Existing Online Tablespaces
You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM, SYSAUX,
and UNDO tablespace when they are online.

• Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the conversion by
rerunning the ALTER TABLESPACE statement using the FINISH clause.

6.9.4 Rekeying the SYSAUX and UNDO Tablespaces with Online
Conversion

To rekey the SYSAUX and UNDO onlne tablespaces, you can use the REKEY clause of the ALTER
TABLESPACE SQL statement.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been
granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX
tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Ensure that the following requirements are met:

• The COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

• The database is open and in read-write mode.

• A master encryption key has been created and is open.

3. Depending on how the _TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM parameter is set,
perform the rekey operation as follows:

• If _TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM is set to AES256, then you only
need the REKEY clause in the ALTER TABLESPACE statement for SYSAUX or UNDO. For
example:

ALTER TABLESPACE SYSAUX ENCRYPTION REKEY;

• If _TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM is not set, then you must manually
specify the AES256 algorithm. For example:

ALTER TABLESPACE SYSAUX ENCRYPTION USING 'AES256' REKEY;

Chapter 6
Encryption Conversions for Existing Online Tablespaces

6-23



Related Topics

• About Encryption Conversions for Existing Online Tablespaces
You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM,
SYSAUX, and UNDO tablespace when they are online.

6.9.5 Decrypting an Existing Tablespace with Online Conversion
To decrypt an existing tablespace with online conversion, you can use the ALTER
TABLESPACE SQL statement with DECRYPT clause.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and
SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Ensure that the following requirements are met:

• The COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

• The database is open and in read-write mode.

• A master encryption key has been created and is open.

• There is enough auxiliary space to complete the decryption.

3. Run the ALTER TABLESPACE SQL statement with the DECRYPT clause.

For example:

ALTER TABLESPACE users ENCRYPTION ONLINE DECRYPT FILE_NAME_CONVERT = 
('users_enc.dbf', 'users.dbf');

In this specification:

• When you specify the files to decrypt, enter them in the reverse order in which
they were originally encrypted. That is, first enter the name of the encrypted
file (users_enc.dbf), followed by the data file (users.dbf).

• Do not provide an algorithm key for the decryption.

If the conversion process was interrupted, then you can resume it by running ALTER
TABLESPACE with the FINISH clause.

Related Topics

• Encrypting an Existing Tablespace with Online Conversion
To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE
with the ONLINE and ENCRYPT clauses.

• Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the
conversion by rerunning the ALTER TABLESPACE statement using the FINISH
clause.

Chapter 6
Encryption Conversions for Existing Online Tablespaces

6-24



6.9.6 Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the conversion by
rerunning the ALTER TABLESPACE statement using the FINISH clause.

An interrupted encryption process (encryption, rekey, or decryption) can be, for example, an
ORA-28425: missing a valid FILE_NAME_CONVERT clause error in the FILE_NAME_CONVERT
clause of the ALTER TABLESPACE SQL statement. Other examples of interrupted processes
are if the conversion skips a data file, which can happen if there is an error when an Oracle
DataBase WRiter (DBWR) process offlines a data file, or if there is not enough space for the
auxiliary file. The tablespace should be operational even if you do not rerun the ALTER
TABLESPACE statement with the FINISH clause.

In addition to interrupted encryption processes, the tablespace encryption process can fail
during the period when the status is ENCRYPTING. In this case, you can either decrypt the
tablespace back to its original state, or you can resume the encryption by using the
ENCRYPTION ONLINE FINISH ENCRYPT clause of ALTER TABLEPSPACE.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been
granted the SYSDBA or SYSKM administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX
tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Query the V$ENCRYPTED_TABLESPACES to check the STATUS column for the tablespace.

If the STATUS column reports ENCRYPTING, DECRYPTING, or REKEYING, then re-run the ALTER
TABLESPACE statement with the FINISH clause, as described in this procedure. If the
STATUS reports NORMAL, then you can rerun ALTER TABLESPACE without the FINISH clause.

You can find the tablespace name that matches the TS# and TABLESPACE_NAME columns
by querying the V$DATAFILE_HEADER view.

3. If necessary query the following additional views to find information about the tablespace
whose online conversion was interrupted:

• DBA_TABLESPACES to find if the STATUS of the tablespace indicates if it is online or
offline.

• V$ENCRYPTED_TABLESPACES to find if the STATUS of the tablespace indicates if it is
encrypted, and what the KEY_VERSION of the encryption key is.

• V$DATAFILE and V$DATAFILE_HEADER to find the data files that are associated with a
tablespace.

4. Run the ALTER TABLESPACE statement using the FINISH clause.

Examples are as follows:

• For an encryption operation:

ALTER TABLESPACE users ENCRYPTION ONLINE FINISH ENCRYPT FILE_NAME_CONVERT = 
('users.dbf', 'users_enc.dbf');

• For a decryption operation:

ALTER TABLESPACE users ENCRYPTION ONLINE FINISH DECRYPT FILE_NAME_CONVERT = 
('users_enc.dbf', 'users.dbf');

Chapter 6
Encryption Conversions for Existing Online Tablespaces

6-25



Note the order in which the files are specified: first, the name of the encrypted
file, and then the name of the data file. (In the encryption operation, the name
of the data file is specified first, followed by the name of the encrypted file.)

• For a rekey operation:

ALTER TABLESPACE users ENCRYPTION ONLINE FINISH REKEY FILE_NAME_CONVERT 
= ('users.dbf', 'users_enc.dbf');

You cannot specify an algorithm when you use the FINISH clause in an ALTER
TABLESPACE statement.

5. To check the conversion, query the STATUS column of the
V$ENCRYPTED_TABLESPACES view.

The status should be NORMAL. In an Oracle Data Guard environment, if the
database does not have NORMAL as the STATUS, then run the ALTER
TABLESPACE ... FINISH statement on the primary or the standby data file that did
not successfully convert.

6.10 Rekeying an Encrypted Tablespace
Rekying an already encrypted tablespace enables you to change the data encryption
keys from one algorithm to another, for example from AES128 to AES256.

1. Find the tablespaces that use the earlier algorithm.

For example, to find tablespaces that use the AES128:

SELECT TSVIEW.CON_ID, TSVIEW.NAME AS TS_NAME, ETSVIEW.ENCRYPTIONALG 
AS ENCRYPTION_ALG FROM V$TABLESPACE TSVIEW , 
V$ENCRYPTED_TABLESPACES ETSVIEW
WHERE TSVIEW.TS# = ETSVIEW.TS# 
AND ETSVIEW.ENCRYPTEDTS = 'YES' 
AND ETSVIEW.ENCRYPTIONALG = 'AES128';

Output similar to the following appears:

CON_ID  TS_NAME           ENCRYPTION_ALG
------  ----------------  ------------------------
     1  ENCRYPTED_TS_CDB  AES128

2. Re-encrypt each tablepace that is listed in the output.

For example, to migrate the ENCRYPTED_TS_CDB tablespace to use the latest
supported algorithm, which is AES256:

ALTER TABLESPACE ENCRYPTED_TS_CDB ENCRYPTION REKEY;

3. To verify the re-encryption:

SELECT C.NAME AS PDB_NAME, T.NAME AS TBS_NAME, E.ENCRYPTIONALG AS 
ALG, E.CIPHERMODE AS "MODE", E.STATUS FROM V$TABLESPACE T, 
V$ENCRYPTED_TABLESPACES E, V$CONTAINERS C 

Chapter 6
Rekeying an Encrypted Tablespace

6-26



WHERE E.TS# = T.TS# AND E.CON_ID = T.CON_ID AND E.CON_ID = C.CON_ID 
ORDER BY E.CON_ID, T.NAME;

6.11 Creating an Encrypted Database Using DBCA
You can use DBCA to create an encrypted database in both single instance multitenant and
Oracle Data Guard environments.

• Using DBCA to Create an Encrypted Database
Before you run DBCA to create an encrypted database, you must create the WALLET_ROOT
directory.

• Using DBCA to Create an Oracle Data Guard Standby Database from an Encrypted
Primary Database
Before you run DBCA to create the encrypted database in an Oracle Data Guard
environment, you must copy the wallet from the primary to the standby database, and
then create the WALLET_ROOT directory.

• Best Practice after DBCA Creates an Encrypted Database
After DBCA has created an encrypted stand-alone or Oracle Data Guard primary and
standby database, you can implement Transparent Data Encryption (TDE) best practices.

6.11.1 Using DBCA to Create an Encrypted Database
Before you run DBCA to create an encrypted database, you must create the WALLET_ROOT
directory.

1. Log into the host where DBCA will create the database with the united mode PDBs.

DBCA cannot create PDBs in isolated mode.

2. Create the WALLET_ROOT directory.

For example:

mkdir -pvm700 /etc/ORACLE/KEYSTORES/finance

When you run DBCA in the next step, DBCA will create the WALLET_ROOT/tde sub-
directory.

3. Run the dbca -createDatabase command to create the encrypted database, and include
the appropriate TDE-related parameters.

For example:

-configureTDE TRUE 
    -tdeWalletRoot /etc/ORACLE/KEYSTORES/finance 
    -tdeWalletLoginType LOCAL_AUTO_LOGIN  
    -TdeWalletPassword tde_password 
    -encryptPDBTablespaces ALL

If you omit the following values, then DBCA uses their defaults, as follows:

• tdeAlgorithm: The default is AES256 with XTS cipher mode.

• encryptTablespaces: Only the USERS tablespace is encrypted in the CDB$ROOT.

Chapter 6
Creating an Encrypted Database Using DBCA

6-27



• encryptPDBTablespaces: The SYSTEM, SYSAUX and USERS tablespaces are
encrypted. The TEMP and UNDO tablespaces remain unencrypted. The ALL
setting encrypts all tablespaces in the PDB.

If you add -initParameter TABLESPACE_ENCRYPTION = AUTO_ENABLE, then all
tablespaces in CDB$ROOT and PDB are encrypted. This directive is incompatible
with setting -encryptPDBTablespaces and -encryptTablespaces.

Related Topics

• Oracle Multitenant Administrator's Guide

6.11.2 Using DBCA to Create an Oracle Data Guard Standby
Database from an Encrypted Primary Database

Before you run DBCA to create the encrypted database in an Oracle Data Guard
environment, you must copy the wallet from the primary to the standby database, and
then create the WALLET_ROOT directory.

1. Log into the server where DBCA will create the standby database from an
encrypted primary database.

DBCA cannot create a standby database from an encrypted primary database if
the REDO_TRANSPORT_USER initialization parameter is set to a common user.

2. Copy the TDE wallet from the primary host to the standby host.

When you run DBCA, you will specify this wallet location when you set the
primaryDBTdeWallet parameter.

3. Create the WALLET_ROOT directory.

For example:

mkdir -pvm700 /etc/ORACLE/KEYSTORES/finance

When you run DBCA in the next step, DBCA will create the WALLET_ROOT/tde sub-
directory.

4. Run the dbca -createDuplicateDB command to create the encrypted standby
database, and include the appropriate TDE-related parameters.

For example:

dbca -silent -createDuplicateDB -createAsStandby
  -configureTDE TRUE 
    -tdeWalletRoot /etc/ORACLE/KEYSTORES/finance
    -primaryDBTdeWallet /tmp 
    -tdeWalletLoginType LOCAL_AUTO_LOGIN
    -sourceTdeWalletPassword tde_password 
    -TdeWalletPassword tde_password

Related Topics

• Oracle Multitenant Administrator's Guide

Chapter 6
Creating an Encrypted Database Using DBCA

6-28



6.11.3 Best Practice after DBCA Creates an Encrypted Database
After DBCA has created an encrypted stand-alone or Oracle Data Guard primary and
standby database, you can implement Transparent Data Encryption (TDE) best practices.

1. Add the wallet password to another (local) auto-open wallet so that the wallet password
on the SQL*Plus command line can be replaced by EXTERNAL STORE.

This helps with separation of duties and automation. In Oracle Data Guard, you should
run both commands on the primary and standby databases.

$ mkdir -pvm700 WALLET_ROOT/tde_seps

SQL> ADMINISTER KEY MANAGEMENT ADD SECRET 'wallet_password' 
FOR CLIENT 'TDE_WALLET' TO [LOCAL] AUTO-LOGIN KEYSTORE 'wallet_root/
tde_seps';

2. Add a tag to the TDE master key for the PDB.

When DBCA creates a TDE master key for the PDB, it does not add a tag to this key. The
following ADMINISTER KEY MANAGEMENT command adds the tag to the PDB. The tag
consists of the string pdb_name date time (IN UTC). The date and time is derived from
the time when the key was first activated, not the current time. Run this command in the
primary PDB.

SELECT ' ADMINISTER KEY MANAGEMENT 
SET TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR 
(SYS_EXTRACT_UTC (ACTIVATION_TIME), 
'YYYY-MM-DD HH24:MI:SS"Z"')||''' FOR '''||KEY_ID||''' 
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE WITH BACKUP;' 
AS "SET TAG COMMAND" FROM V$ENCRYPTION_KEYS;

For Oracle Data Guard, copy the primary wallet (with the tagged PDB key) to the standby
side. If you are using local auto-login wallets, then delete and recreate the local auto-
open wallet on the standby database.

3. Encrypt the data dictionary.

This is a Data Guard transaction and as such, it is automatically applied to the standby
database. As a user with the SYSKM administrative privilege, perform the following ALTER
DATABASE DICTIONARY command:

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS CONTAINER = CURRENT;

4. Optionally, you can isolate the encrypted PDB with a single command.

a. From within the primary PDB:

ADMINISTER KEY MANAGEMENT FORCE ISOLATE KEYSTORE IDENTIFIED BY 
"new_pdb_wallet_password" 
FROM ROOT KEYSTORE FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE WITH BACKUP;

Chapter 6
Creating an Encrypted Database Using DBCA

6-29



You can run this command without knowing the root wallet password, and the
root administrator will not know the new isolated wallet password. This
command performs the following actions:

• Creates the WALLET_ROOT/pdb_guid/tde directrory

• Creates a wallet in the WALLET_ROOT/pdb_guid/tde directory

• Moves the PDB keys from the root wallet to the PDB wallet

• Sets the TDE_CONFIGURATION parameter for the PDB to FILE
Next, create an isolated (local) auto-open wallet; from within the primary PDB:

ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE 
FROM KEYSTORE IDENTIFIED BY "new_pdb_wallet_password";

b. From within the isolated PDB, create a directory and another local auto-open
wallet that enables you to hide the isolated wallet password from the SQL*Plus
command line.

SELECT ' HOST MKDIR -PVM700 '||B.VALUE||'/'||A.GUID||'/TDE_SEPS' 
AS "CREATE DIRECTORY FOR IDENTIFIED BY EXTERNAL STORE (IBES)" 
FROM V$PDBS A, V$PARAMETER B WHERE B.NAME = 'WALLET_ROOT';

SELECT 'ADMINISTER KEY MANAGEMENT ADD SECRET ''NEW-PDB-WALLET-
PWD'' 
FOR CLIENT ''TDE_WALLET'' TO LOCAL AUTO_LOGIN KEYSTORE '''||
B.VALUE||'/'||A.GUID||'/TDE_SEPS''' 
AS "CREATE ISOLATED WALLET FOR IBES" 
FROM V$PDBS A, V$PARAMETER B WHERE B.NAME = 'WALLET_ROOT';

6.12 Encryption Conversions for Existing Databases
You can encrypt both offline and online databases.

• About Encryption Conversions for Existing Databases
The encryption conversion of an entire database encrypts all tablespaces,
including the Oracle-supplied SYSTEM, SYSAUX, UNDO, and TEMP tablespaces.

• Encrypting an Existing Database with Offline Conversion
When you encrypt an existing database with offline conversion, for the Oracle-
managed tablespaces, you do not specify an encryption algorithm.

• Encrypting an Existing Database with Online Conversion
When you encrypt an existing database with online conversion, you do not specify
an encryption algorithm.

6.12.1 About Encryption Conversions for Existing Databases
The encryption conversion of an entire database encrypts all tablespaces, including
the Oracle-supplied SYSTEM, SYSAUX, UNDO, and TEMP tablespaces.

Note the following:

• If you are using Database Configuration Assistant (DBCA) to create or configure a
database, then you can create a TDE wallet in the database as part of the creation

Chapter 6
Encryption Conversions for Existing Databases

6-30



or configuration process. When you drop a database by using DBCA, any TDE wallets
that are in this database are also removed. Important: Before you drop a database by
using DBCA, and if it has any local TDE wallets, then back these wallets up to a
secure location. If the database has been migrated to use Oracle Key Vault, then be
aware that its TDE encryption keys reside in the Oracle Key Vault server. It is the
responsibility of the Oracle Key Vault administrator to back up Oracle Key Vault.

• To perform the encryption, you can use the offline and online functionality of the
tablespace encryption conversions.

• You can encrypt any or all of the Oracle-supplied tablespaces, and in any order. The
encryption of the Oracle-supplied tablespaces has no impact on the encryption of user-
created tablespaces.

• When you encrypt the Oracle-supplied tablespaces, Oracle Database prevents the
keystore from being closed.

• You cannot encrypt an existing temporary tablespace, but you can create an encrypted
temporary tablespace, configure the database to use that new encrypted temporary
tablespace as the default temporary tablespace, and then drop the old clear-text
temporary tablespace.

• The UNDO and TEMP metadata that is generated from sensitive data in an encrypted
tablespace is already automatically encrypted. Therefore, encrypting UNDO and TEMP is
optional.

• The performance effect of encrypting all the tablespaces in a database depends on the
workload and platform. Many modern CPUs provide built-in hardware acceleration, which
results in a minimal performance impact.

• In a multitenant environment, you can encrypt any tablespaces in any pluggable
databases (PDBs), including the Oracle-supplied tablespaces. However, the keystore in
the CDB root must be open at all times so that a PDB can open its keystore. You can
check the status of whether a keystore is open by querying the STATUS column of the
V$ENCRYPTION_WALLET view

6.12.2 Encrypting an Existing Database with Offline Conversion
When you encrypt an existing database with offline conversion, for the Oracle-managed
tablespaces, you do not specify an encryption algorithm.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been
granted the SYSDBA administrative privilege.

You must have the SYSDBA administrative privilege to work with the SYSTEM and SYSAUX
tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Mount the database.

STARTUP MOUNT
3. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege,

open the keystore.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY keystore_password;
4. Run the ALTER TABLESPACE SQL statement to encrypt the SYSTEM, SYSAUX, and UNDO

tablespaces. Do not encrypt the SYSTEM tablespace concurrently with the encryption of
other tablespaces.

For example, to encrypt the SYSTEM tablespace:

Chapter 6
Encryption Conversions for Existing Databases

6-31



ALTER TABLESPACE SYSTEM ENCRYPTION OFFLINE ENCRYPT;
5. Open the CDB root or the PDB.

• For a CDB, to open in read/write mode, for example:

ALTER DATABASE OPEN READ WRITE;
• For a PDB:

ALTER PLUGGABLE DATABASE pdb_name OPEN READ WRITE;
6. Run the ALTER TABLESPACE SQL statement to encrypt other user tablespaces.

Alternatively, you can proceed to the next step and open the database first, and
then perform the steps to encrypt an existing user-defined tablespace with offline
conversion.

7. Open the CDB root or the PDB.

• For a CDB:

ALTER DATABASE OPEN;
• For a PDB:

ALTER PLUGGABLE DATABASE pdb_name OPEN;
After you have encrypted the tablespace, if you want to use a different encryption
algorithm (change the TDE master encryption key) for the SYSTEM, SYSAUX, and UNDO
tablespaces, then you must use online conversion. In addition to AES128, supported
encryption algorithms are AES192 and AES256, in addition to other algorithms such as
ARIA and GOST.

Note:

Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE)
decryption libraries for the GOST and SEED algorithms are deprecated, and
encryption to GOST and SEED are desupported. Starting with Oracle
Database 23ai, the Transparent Data Encryption (TDE) encryption libraries
for the GOST and SEED algorithms are desupported and removed. The
GOST and SEED decryption libraries are deprecated. Both are removed on
HP Itanium platforms.
GOST 28147-89 has been deprecated by the Russian government, and
SEED has been deprecated by the South Korean government. If you need
South Korean government-approved TDE cryptography, then use ARIA
instead. If you are using GOST 28147-89, then you must decrypt and encrypt
with another supported TDE algorithm. The decryption algorithms for GOST
28147-89 and SEED are included with Oracle Database 23ai, but are
deprecated, and the GOST encryption algorithm is desupported with Oracle
Database 23ai. If you are using GOST or SEED for TDE encryption, then
Oracle recommends that you decrypt and encrypt with another algorithm
before upgrading to Oracle Database 23ai. However, with the exception of
the HP Itanium platform, the GOST and SEED decryption libraries are
available with Oracle Database 23ai, so you can also decrypt after
upgrading.

Chapter 6
Encryption Conversions for Existing Databases

6-32



Related Topics

• Encrypting an Existing User-Defined Tablespace with Offline Conversion
To encrypt an existing tablespace with offline conversion, you can use the ALTER
TABLESPACE SQL statement with the OFFLINE and ENCRYPT clauses.

• Changing the TDE Master Encryption Key for a Tablespace
You can use the ENCRYPT and REKEY clauses of the ALTER TABLESPACE statement to
encrypt a tablespace.

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

6.12.3 Encrypting an Existing Database with Online Conversion
When you encrypt an existing database with online conversion, you do not specify an
encryption algorithm.

The reason that you do not need to specify an encryption algorithm the first time you perform
the encryption is that the tablespaces that you must use to encrypt the database are
automatically encrypted with the database key. If you want to change the algorithm, then you
can issue the ALTER TABLESPACE ENCRYPTION REKEY SQL statement after the initial
encryption.

1. Perform the following tasks, which are performed when encrypting an existing tablespace
with online conversion:

a. Connect as a user who has been granted the SYSDBA administrative privilege.

b. Ensure that the COMPATIBLE parameter is set to 12.2.0.0 or later.

c. Ensure that the database is open in read-write mode.

d. Ensure that you have enough auxiliary space to complete the encryption.

e. Back up the tablespaces that you must encrypt.

f. Open the keystore.

2. Run the ALTER TABLESPACE SQL statement to encrypt the SYSTEM, SYSAUX, and UNDO
tablespaces. Do not specify an algorithm, and do not encrypt the SYSTEM tablespace
concurrently with the encryption of other tablespaces.

For example, to encrypt the SYSTEM tablespace:

ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE ENCRYPT 
FILE_NAME_CONVERT=('system01.dbf','system01_enc.dbf');

3. Create a temporary tablespace.

a. Create a new (encrypted) TEMP tablespace with the identical characteristics as the
original TEMP tablespace, as follows:

SELECT ' CREATE TEMPORARY TABLESPACE '
||tablespace_name||'_ENC tempfile '''
||substr(file_name,1,length(file_name)-4)
||'_enc.dbf'' size '
||bytes||' ENCRYPTION USING ''AES256'' ENCRYPT;' 
AS " Create new encrypted TEMP tablespace" 
FROM DBA_TEMP_FILES; 

Chapter 6
Encryption Conversions for Existing Databases

6-33



Alternatively, you could extract the original parameters by running
DBMS_METADATA.GET_DDL. If you omit the USING algorithm clause, then Oracle
Database applies the default algorithm.

b. Run the command (that is, the output of the SELECT statement).

c. Change the database default temporary tablespace to the new encrypted TEMP
tablespace.

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE temp_enc;

d. Drop the original TEMP tablespace.

DROP TABLESPACE TEMP INCLUDING CONTENTS AND DATAFILES;

Optionally, you can rename temp_enc to TEMP.

Related Topics

• Encrypting an Existing Tablespace with Online Conversion
To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE
with the ONLINE and ENCRYPT clauses.

• Changing the TDE Master Encryption Key for a Tablespace
You can use the ENCRYPT and REKEY clauses of the ALTER TABLESPACE statement to
encrypt a tablespace.

Chapter 6
Encryption Conversions for Existing Databases

6-34



7
Managing the Keystore and the
Master Encryption Key

You can modify settings for the keystore and TDE master encryption key, and store Oracle
Database and store Oracle GoldenGate secrets in a keystore.

• Managing the Keystore
You can perform maintenance activities on keystores such as changing passwords, and
backing up, merging, and moving keystores.

• Managing the TDE Master Encryption Key
You can manage the TDE master encryption key in several ways.

• Transparent Data Encryption Data Dynamic and Data Dictionary Views
You can query a set of dynamic and data dictionary views to find more information about
Transparent Data Encryption (TDE) data.

7.1 Managing the Keystore
You can perform maintenance activities on keystores such as changing passwords, and
backing up, merging, and moving keystores.

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password,
for both TDE wallets and external keystores.

• Configuring Auto-Open Connections into External Key Managers
An external key manager can be configured to use the auto-login capability.

• Changing the Oracle Key Vault Password
To change the password of Oracle Key Vault, you use okvutil, which is part of the
Oracle Key Vault endpoint software on the database host.

• Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a centrally
accessed and managed location.

• Backing Up Password-Protected TDE Wallets
When you back up a password-protected TDE wallet, you can create a backup identifier
string to describe the backup type.

• How the V$ENCRYPTION_WALLET View Interprets Backup Operations
The BACKUP column of the V$ENCRYPTION_WALLET view indicates a how a copy of the
keystore was created.

• Backups of the External Keystore
You cannot use Oracle Database to back up external keystores.

• Merging TDE Wallets
You can merge TDE wallets in a variety of ways.

7-1



• Moving a TDE Wallet to a New Location
You move a TDE wallet to a new location after you have updated the WALLET_ROOT
parameter.

• Moving a TDE Wallet Out of Automatic Storage Management
You can use the ADMINISTER KEY MANAGEMENT statement to move a TDE wallet out
Automatic Storage Management.

• Migrating from a TDE Wallet to Oracle Key Vault
You can migrate between password-protected TDE wallets and external keystores
in Oracle Key Vault.

• Migration of Keystores to and from Oracle Key Vault
You can use Oracle Key Vault to migrate both TDE wallets and external keystores
to and from Oracle Key Vault.

• Configuring Keystores for Automatic Storage Management
You can store a TDE wallet on an Automatic Storage Management (ASM) disk
group.

• Managing Updates to the PKCS#11 Library
Periodically, you may need to update the endpoint shared PKCS#11 library.

• Backup and Recovery of Encrypted Data
For TDE wallets, you cannot access encrypted data without the TDE master
encryption key.

• Dangers of Deleting TDE Wallets
Oracle strongly recommends that you do not delete TDE wallets.

• Features That Are Affected by Deleted Keystores
Some features can be adversely affected if a keystore is deleted and a TDE
master encryption key residing in that keystore is later needed.

7.1.1 Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password,
for both TDE wallets and external keystores.

In some cases, a keystore depends on an auto-login TDE wallet before the operation
can succeed. Auto-login TDE wallets open automatically when they are configured and
a key is requested. They are generally used for operations where the TDE wallet could
be closed but a database operation needs a key (for example, after the database is
restarted). Because the auto-login TDE wallet opens automatically, it can be retrieved
to perform a database operation without manual intervention. However, some keystore
operations that require the keystore password cannot be performed when the auto-
login keystore is open. The auto-login TDE wallet must be closed and the password-
protected keystore must be opened for the keystore operations that require a
password.

In a multitenant environment, the re-opening of keystores affects other PDBs. For
example, an auto-login TDE wallet in the root must be accessible by the PDBs in the
CDB for this root.

You can temporarily open the TDE wallet by including the FORCE KEYSTORE clause in
the ADMINISTER KEY MANAGEMENT statement when you perform the following
operations: rotating a TDE wallet password; creating, using, rekeying, tagging,
importing, exporting, migrating, or reverse migrating encryption keys; opening or
backing up TDE wallet; adding, updating, or deleting secret TDE wallets. In a

Chapter 7
Managing the Keystore

7-2



multitenant environment, if no TDE wallet is open in the root, then FORCE KEYSTORE opens the
password-protected TDE wallet in the root.

7.1.2 Configuring Auto-Open Connections into External Key Managers
An external key manager can be configured to use the auto-login capability.

• About Auto-Open Connections into External Key Managers
An auto-open connection into an external key manager stores the external keystore
credentials in an auto-login keystore.

• Configuring an Auto-Open Connection into an External Key Manager
To configure the auto-open connection, you must use the ADMINISTER KEY MANAGEMENT
statement to add or update a client secret to authenticate to the external key manager.

7.1.2.1 About Auto-Open Connections into External Key Managers
An auto-open connection into an external key manager stores the external keystore
credentials in an auto-login keystore.

You can configure a connection to an external key manager so that the database can open
the keystore without prompting for the keystore password. This configuration is essential in
Oracle Real Application Clusters (Oracle RAC) environments, and is highly recommended for
Oracle Data Guard standby databases. Be aware that this configuration reduces the security
of the system as a whole. However, this configuration does support unmanned or automated
operations, and is useful in deployments where TDE-enabled databases that are enrolled into
an external keystore for key management can start automatically.

Be aware that running the query SELECT * FROM V$ENCRYPTION_WALLET will automatically
open an auto-login external keystore. For example, suppose you have an auto-login external
keystore configured. If you close the keystore and query the V$ENCRYPTION_WALLET view, then
the output will indicate that a keystore is open. This is because V$ENCRYPTION_WALLET opened
up the auto-login external keystore and then displayed the status of the auto-login keystore.

To enable the auto-login capability for an external keystore, you must store the external
keystore's credentials in an auto-login wallet.

When you use the ADMINISTER KEY MANAGEMENT statement, there are conceptually two sets of
commands that act on client secrets:

• ADMINISTER KEY MANAGEMENT commands that act on the wallet that is currently in use (in
other words, a wallet that contains an active TDE master encryption key).

• ADMINISTER KEY MANAGEMENT commands that act on a wallet that is not currently being
used to hold the active TDE master encryption key. Oracle recommends that you use this
approach when you configure an auto-login external keystore.

7.1.2.2 Configuring an Auto-Open Connection into an External Key Manager
To configure the auto-open connection, you must use the ADMINISTER KEY MANAGEMENT
statement to add or update a client secret to authenticate to the external key manager.

Before you begin this procedure, ensure that you have configured the external keystore.

In this procedure, the wallet that is created does not contain any keys. It only holds the client
secret. So, when you query the V$ENCRYPTION_WALLET dynamic view for this wallet, the

Chapter 7
Managing the Keystore

7-3



STATUS column shows OPEN_NO_MASTER_KEY rather than OPEN, because the wallet only
contains the client secret.

1. Reconfigure the WALLET_ROOT parameter in the init.ora file to include the location
of the TDE wallet, if it is not already present.

The TDE wallet location may already be present if you had previously migrated to
using the external key manager.

For example:

WALLET_ROOT=/etc/ORACLE/WALLETS/orcl
2. Add or update the secret in the TDE wallet.

The secret is the external keystore password and the client is the OKV_PASSWORD.
OKV_PASSWORD is an Oracle-defined client name that is used to represent the
external key manager password as a secret in the TDE wallet.

For example:

ADMINISTER KEY MANAGEMENT ADD SECRET 'external_key_manager_password' 
FOR CLIENT 'OKV_PASSWORD' 
TO LOCAL AUTO_LOGIN KEYSTORE TDE_wallet_location 
WITH BACKUP;

In this example:

• TDE_wallet_location is the location of the TDE wallet within the WALLET_ROOT
location that you just defined in Step 1.
For the CDB root and for any PDB that is configured in united mode, the value
to use for the TDE_wallet_location location is WALLET_ROOT/tde.

For any PDB that is configured in isolated mode, the value to use for the
TDE_wallet_location location is WALLET_ROOT/pdb_guid/tde. When you are
in the PDB, run the following query to find this GUID: SELECT GUID FROM
V$PDBS;

• LOCAL creates a local auto-login wallet file, cwallet.sso, to hold the
credentials for the external key manager. This wallet is tied to the host on
which it was created.
For an Oracle Real Application Clusters environment, omit the LOCAL keyword,
because each Oracle RAC node has a different host name, yet they all use the
same external key manager. If you configure a local auto-login wallet for the
Oracle RAC instance, then only the first Oracle RAC node, where the
cwallet.sso file was created, would be able to access the external key
manager credentials. If you try to open the TDE wallet from another node
instead of from that first node, there would be a problem auto-opening
cwallet.sso, and so it would result in a failure to auto-open the auto-login
external keystore. This restriction applies if you are using a shared location to
hold the cwallet.sso file for the Oracle RAC cluster, because using LOCAL
only works if you have a separate cwallet.sso file (containing the same
credentials) on each node of the Oracle RAC environment.

At this stage, the next time a TDE operation runs, the external key manager auto-login
TDE wallet opens automatically. An example of a TDE operation is to query the
V$ENCRYPTION_WALLET view, for example:

SELECT * FROM V$ENCRYPTION_WALLET;

Chapter 7
Managing the Keystore

7-4



7.1.3 Changing the Oracle Key Vault Password
To change the password of Oracle Key Vault, you use okvutil, which is part of the Oracle
Key Vault endpoint software on the database host.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Close the external keystore.

• Close the connection to the external key manager:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY Oracle_Key_Vault_password | EXTERNAL STORE CONTAINER = ALL;

If the keystore was auto-opened by the database, then close the connection to
Oracle Key Vault as follows:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
CONTAINER = ALL;

3. Change the Oracle Key Vault password.

WALLET_ROOT/okv/bin/okvutil changepwd -t wallet -l WALLET_ROOT/okv/ssl

4. Open the external keystore.

• For example, for Oracle Key Vault:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN FORCE KEYSTORE 
IDENTIFIED BY new_Oracle_Key_Vault_pwd CONTAINER =ALL;

• If the old Oracle Key Vault password was stored in a [local] auto-open wallet in the
WALLET_ROOT/tde_seps directory, then update the password using the following
syntax:

ADMINISTER KEY MANAGEMENT UPDATE SECRET 'new-Oracle_Key_Vault_password' 
FOR CLIENT 'Oracle_Key_Vault_password" TO [LOCAL] AUTO_LOGIN KEYSTORE 
'WALLET_ROOT/tde_seps;

Then you can open the connection to Oracle Key Vault as follows:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
[FORCE KEYSTORE] IDENTIFIED BY EXTERNAL STORE CONTAINER = ALL;

7.1.4 Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a centrally
accessed and managed location.

• About Configuring an External Store for a Keystore Password
An external store for a keystore password allows you to easily remove that keystore
password from the ADMINISTER KEY MANAGEMENT command line.

• Configuring the External Keystore Password Store with WALLET_ROOT
When you configure TDE by using the WALLET_ROOT parameter, the external keystore
password store is auto-discovered in the WALLET_ROOT/tde_seps directory.

Chapter 7
Managing the Keystore

7-5



• When to Use the EXTERNAL STORE Clause After Configuration
After you configure the external store for a keystore password, you can use the
EXTERNAL_STORE clause in the ADMINISTER KEY MANAGEMENT statement.

7.1.4.1 About Configuring an External Store for a Keystore Password
An external store for a keystore password allows you to easily remove that keystore
password from the ADMINISTER KEY MANAGEMENT command line.

This feature implements separation of duties between database administrators and
key administrators. It is also useful for situations in which you use automated tools to
perform Transparent Data Encryption operations that require a password, when the
scripts that run the automated tools include hard-coded password. To avoid hard-
coding the password in a script, you can store this password in an external store on
the database server. In a multitenant environment, different PDBs can make use of the
external store.

In a multitenant environment, all PDBs in united mode use the hidden password of the
root container. In isolated mode, each PDB can have its own keystore password in its
own external store.

Related Topics

• Storing Oracle Database Secrets in Isolated Mode
Secrets are data that support internal Oracle Database features that integrate
external clients such as Oracle GoldenGate into the database.

7.1.4.2 Configuring the External Keystore Password Store with
WALLET_ROOT

When you configure TDE by using the WALLET_ROOT parameter, the external keystore
password store is auto-discovered in the WALLET_ROOT/tde_seps directory.

• Run the ADMINISTER KEY MANAGEMENT statement by using the following syntax:

ADMINISTER KEY MANAGEMENT ADD SECRET 'keystore_password' 
FOR CLIENT 'TDE_WALLET|OKV_PASSWORD' 
TO [LOCAL] AUTO_LOGIN KEYSTORE 'WALLET_ROOT/tde_seps';

Related Topics

• When to Use the EXTERNAL STORE Clause After Configuration
After you configure the external store for a keystore password, you can use the
EXTERNAL_STORE clause in the ADMINISTER KEY MANAGEMENT statement.

7.1.4.3 When to Use the EXTERNAL STORE Clause After Configuration
After you configure the external store for a keystore password, you can use the
EXTERNAL_STORE clause in the ADMINISTER KEY MANAGEMENT statement.

You must use the EXTERNAL STORE clause in the ADMINISTER KEY MANAGEMENT
statement for the following operations: opening, closing, backing up the keystore;
adding, updating, or deleting a secret keystore; creating, using, rekeying, tagging,
importing, exporting encryption keys.

For example:

Chapter 7
Managing the Keystore

7-6



ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY EXTERNAL STORE;

You can change or delete external keystore passwords by using the ADMINISTER KEY
MANAGEMENT UPDATE CLIENT SECRET statement or the ADMINISTER KEY MANAGEMENT DELETE
CLIENT SECRET statement.

7.1.5 Backing Up Password-Protected TDE Wallets
When you back up a password-protected TDE wallet, you can create a backup identifier
string to describe the backup type.

• About Backing Up Password-Protected TDE Wallets
You must back up password-protected TDE wallets, as per the security policy and
requirements of your site.

• Creating a Backup Identifier String for the Backup TDE Wallet
The backup file name of a software password wallet is derived from the name of the
password-protected TDE wallet.

• Backing Up a Password-Protected TDE Wallet
The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a
password-protected TDE wallet.

7.1.5.1 About Backing Up Password-Protected TDE Wallets
You must back up password-protected TDE wallets, as per the security policy and
requirements of your site.

A backup of the TDE wallet contains all of the keys contained in the original TDE wallet.
Oracle Database prefixes the backup TDE wallet with the creation time stamp (UTC). If you
provide an identifier string, then this string is inserted between the time stamp and TDE wallet
name.

After you complete the backup operation, the keys in the original TDE wallet are marked as
"backed up". You can check the status of keys querying the V$ENCRYPTION_WALLET data
dictionary view.

You cannot back up auto-login or local auto-login TDE wallets. No new keys can be added to
them directly through the ADMINISTER KEY MANAGEMENT statement operations. The information
in these TDE wallets is only read and hence there is no need for a backup.

You must include the WITH BACKUP clause in any ADMINISTER KEY MANAGEMENT statement that
changes the wallet (for example, changing the wallet password, or setting the master
encryption key).

7.1.5.2 Creating a Backup Identifier String for the Backup TDE Wallet
The backup file name of a software password wallet is derived from the name of the
password-protected TDE wallet.

• To create a backup identifier string for a backup TDE wallet, use the ADMINISTER KEY
MANAGEMENT SQL statement with the BACKUP KEYSTORE clause, with the following syntax:

ewallet_creation-time-stamp-in-UTC_user-defined-string.p12

Chapter 7
Managing the Keystore

7-7



When you create the backup identifier (user_defined_string), use the operating
system file naming convention. For example, in UNIX systems, you may want to
ensure that this setting does not have spaces.

The following example shows the creation of a backup TDE wallet that uses a
user-identified string, and how the resultant TDE wallet appears in the file system.
This example includes the FORCE KEYSTORE clause in the event the auto-login TDE
wallet is in use or the TDE wallet is closed.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING 'Monthly-backup-2013-04' 
FORCE KEYSTORE 
IDENTIFIED BY TDE_wallet_password;

This version is for a scenario in which the password is stored in an external store:

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING 'Monthly-backup-2013-04' 
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE;

Resultant TDE wallet file:

ewallet_2013041513244657_Monthly-backup-2013-04.p12

7.1.5.3 Backing Up a Password-Protected TDE Wallet
The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up
a password-protected TDE wallet.

• Back up the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE 
[USING 'backup_identifier'] 
FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password] 
[TO 'keystore_location'];

In this specification:

– USING backup_identifier is an optional string that you can provide to identify
the backup. Enclose this identifier in single quotation marks (' '). This
identifier is appended to the named keystore file (for example, ewallet_time-
stamp_emp_key_backup.p12).

– FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

– IDENTIFIED BY can be one of the following settings:

* EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

* TDE_wallet_password is the password for the keystore.

– keystore_location is the path at which the backup keystore is stored. If you
do not specify the keystore_location, then the backup is created in the same
directory as the original keystore. Enclose this location in single quotation
marks (' ').

The following example backs up a TDE wallet into another location.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE 
USING 'hr.emp_wallet' 

Chapter 7
Managing the Keystore

7-8



FORCE KEYSTORE 
IDENTIFIED BY TDE_wallet_password
TO '/etc/ORACLE/KEYSTORE/DB1/';

keystore altered.

In the following version, the password for the TDE wallet is external, so the EXTERNAL
STORE clause is used. The TDE wallet is backed up into the same directory as the current
TDE wallet.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE 
USING 'hr.emp_wallet' 
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE;

After you run this statement, an ewallet_identifier.p12 file (for example,
ewallet_time-stamp_hr.emp_wallet.p12) appears in the keystore location.

7.1.6 How the V$ENCRYPTION_WALLET View Interprets Backup
Operations

The BACKUP column of the V$ENCRYPTION_WALLET view indicates a how a copy of the keystore
was created.

The column indicates if a copy of the keystore had been created with the WITH BACKUP clause
of the ADMINISTER KEY MANAGEMENT statement or the ADMINISTER KEY MANAGEMENT BACKUP
KEYSTORE statement.

When you modify a key or a secret, the modifications that you make do not exist in the
previously backed-up copy, because you make a copy and then modify the key itself.
Because there is no copy of the modification in the previous keystores, the BACKUP column is
set to NO, even if the BACKUP had been set to YES previously. Hence, if the BACKUP column is
YES, then after you perform an operation that requires a backup, such as adding a custom
attribute tag, the BACKUP column value changes to NO.

7.1.7 Backups of the External Keystore
You cannot use Oracle Database to back up external keystores.

Uploading TDE wallets into Oracle Key Vault is another way of backing up the wallet and
having it available immediately if the need arises (for example after accidental deletion of the
wallet, or file corruption). If the database is not migrated to online key management with
Oracle Key Vault, then it keeps relying on the TDE wallet, even if the wallet has been
uploaded into Oracle Key Vault.

You can use the Oracle Key Vault okvutil upload and okvutil download commands to
upload and download TDE wallets to and from Oracle Key Vault.

For example, to upload a TDE wallet to Oracle Key Vault:

$ okvutil upload -l "/etc/oracle/wallets" -t wallet -g "HRWallet"
Enter wallet password (<enter> for auto-login): password
Enter Oracle Key Vault endpoint password: Key_Vault_endpoint_password

Chapter 7
Managing the Keystore

7-9



This example shows how to download a TDE wallet from Oracle Key Vault:

$ okvutil download -l "/etc/oracle/wallets/orcl/" -t WALLET -g HRWallet
Enter new wallet password(<enter> for auto-login): 
Oracle_wallet_password
Confirm new wallet password: Oracle_wallet_password
Enter Oracle Key Vault endpoint password: Key_Vault_endpoint_password

Related Topics

• Oracle Key Vault Administrator's Guide

7.1.8 Merging TDE Wallets
You can merge TDE wallets in a variety of ways.

• About Merging TDE Wallets
You can merge any combination of TDE wallets, but the merged keystore must be
password-protected. It can have a password that is different from the constituent
wallets.

• Merging One TDE Wallet into an Existing TDE Wallet
You can use the ADMINISTER KEY MANAGEMENT statement with the MERGE KEYSTORE
clause to merge one TDE wallet into another existing TDE wallet.

• Merging Two TDE Wallets into a Third New TDE Wallet
You can merge two TDE wallets into a third new TDE wallet. The two existing
source TDE wallets are not changed.

• Merging an Auto-Login TDE Wallet into an Existing Password-Protected TDE
Wallet
You can merge an auto-login TDE wallet into an existing password-protected TDE
wallet.

• Reversing a TDE Wallet Merge Operation
You cannot directly reverse a TDE wallet merge operation.

7.1.8.1 About Merging TDE Wallets
You can merge any combination of TDE wallets, but the merged keystore must be
password-protected. It can have a password that is different from the constituent
wallets.

To use the merged TDE wallet, you must explicitly open the merged TDE wallet after
you create it, even if one of the constituent TDE wallets was already open before the
merge.

Whether a common key from two source TDE wallets is added or overwritten to a
merged TDE wallet depends on how you write the ADMINISTER KEY MANAGEMENT merge
statement. For example, if you merge TDE wallet 1 and TDE wallet 2 to create TDE
wallet 3, then the key in TDE wallet 1 is added to TDE wallet 3. If you merge TDE
wallet 1 into TDE wallet 2, then the common key in TDE wallet 2 is not overwritten.

The ADMINISTER KEY MANAGEMENT merge statement has no bearing on the configured
TDE wallet that is in use. However, the merged TDE wallet can be used as the new
configured database TDE wallet if you want. Remember that you must reopen the TDE

Chapter 7
Managing the Keystore

7-10



wallet if you are using the newly created TDE wallet as the TDE wallet for the database at the
location configured by the WALLET_ROOT parameter.

Related Topics

• Migrating from a TDE Wallet to Oracle Key Vault
You can migrate between password-protected TDE wallets and external keystores in
Oracle Key Vault.

7.1.8.2 Merging One TDE Wallet into an Existing TDE Wallet
You can use the ADMINISTER KEY MANAGEMENT statement with the MERGE KEYSTORE clause to
merge one TDE wallet into another existing TDE wallet.

• To perform this type of merge, use the following SQL statement:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'TDE_wallet1_location' 
[IDENTIFIED BY TDE_wallet1_password] 
INTO EXISTING KEYSTORE 'TDE_wallet2_location' 
IDENTIFIED BY TDE_wallet2_password 
[WITH BACKUP [USING 'backup_identifier]];

In this specification:

– TDE_wallet1_location is the directory location of the first TDE wallet, which will be
left unchanged after the merge. Enclose this path in single quotation marks (' ').

– The IDENTIFIED BY clause is required for the first TDE wallet if it is a password-
protected TDE wallet. TDE_wallet1_password is the password for the first TDE wallet.

– TDE_wallet2_location is the directory location of the second TDE wallet into which
the first TDE wallet is to be merged. Enclose this path in single quotation marks (' ').

– TDE_wallet2_password is the password for the second keystore.

– WITH BACKUP creates a backup of the TDE wallet. Optionally, you can use the USING
clause to add a brief description of the backup. Enclose this description in single
quotation marks (' '). This identifier is appended to the named TDE wallet file (for
example, ewallet_time_stamp_emp_key_backup.p12, with emp_key_backup being the
backup identifier). Follow the file naming conventions that your operating system
uses.

The resultant TDE wallet after the merge operation is always a password-protected TDE
wallet.

7.1.8.3 Merging Two TDE Wallets into a Third New TDE Wallet
You can merge two TDE wallets into a third new TDE wallet. The two existing source TDE
wallets are not changed.

• Merge the TDE wallets by using the following syntax:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'TDE_wallet1_location' 
[IDENTIFIED BY TDE_wallet1_password] 
AND KEYSTORE 'TDE_wallet2_location' 
[IDENTIFIED BY TDE_wallet2_password] 
INTO NEW KEYSTORE 'TDE_wallet3_location' 
IDENTIFIED BY TDE_wallet3_password;

In this specification:

Chapter 7
Managing the Keystore

7-11



– TDE_wallet1_location is the directory location of the first TDE wallet, which
will be left unchanged after the merge. Enclose this path in single quotation
marks (' ').

– The IDENTIFIED BY clause is required for the first TDE wallet if it is a
password-protected TDE wallet. TDE_wallet1_password is the current
password for the first TDE wallet.

– TDE_wallet2_location is the directory location of the second TDE wallet.
Enclose this path in single quotation marks (' ').

– The IDENTIFIED BY clause is required for the second TDE wallet if it is a
password-protected TDE wallet. TDE_wallet2_password is the current
password for the second TDE wallet.

– TDE_wallet3_location specifies the directory location of the new, merged
TDE wallet. Enclose this path in single quotation marks (' '). If there is
already an existing TDE wallet at this location, the command exits with an
error.

– TDE_wallet3_password is the new password for the merged TDE wallet.

The following example merges an auto-login TDE wallet with a password-
protected TDE wallet to create a merged password-protected TDE wallet at a new
location:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1' 
AND KEYSTORE '/etc/ORACLE/KEYSTORE/DB2' 
IDENTIFIED BY existing_password_for_keystore_2 
INTO NEW KEYSTORE '/etc/ORACLE/KEYSTORE/DB3' 
IDENTIFIED BY new_password_for_keystore_3;

keystore altered.

7.1.8.4 Merging an Auto-Login TDE Wallet into an Existing Password-Protected
TDE Wallet

You can merge an auto-login TDE wallet into an existing password-protected TDE
wallet.

• Use the ADMINISTER KEY MANAGEMENT MERGE KEYSTORE SQL statement to merge
an auto-login TDE wallet into an existing password-protected TDE wallet.

The following example shows how to merge an auto-login TDE wallet into a
password-protected TDE wallet. It also creates a backup of the second TDE wallet
before creating the merged TDE wallet.

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1' 
INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB2' 
IDENTIFIED BY keystore_password WITH BACKUP;

In this specification:

– MERGE KEYSTORE must specify the auto-login TDE wallet.

– EXISTING KEYSTORE refers to the password TDE wallet.

Chapter 7
Managing the Keystore

7-12



7.1.8.5 Reversing a TDE Wallet Merge Operation
You cannot directly reverse a TDE wallet merge operation.

When you merge a TDE wallet into an existing TDE wallet (rather than creating a new one),
you must include the WITH BACKUP clause in the ADMINISTER KEY MANAGEMENT statement to
create a backup of this existing TDE wallet. Later on, if you decide that you must reverse the
merge, you can replace the merged TDE wallet with the one that you backed up. In other
words, suppose you want merge TDE wallet A into TDE wallet B. By using the WITH BACKUP
clause, you create a backup for TDE wallet B before the merge operation begins. (The
original TDE wallet A is still intact.) To reverse the merge operation, revert to the backup that
you made of TDE wallet B.

• Use the ADMINISTER KEY MANAGEMENT MERGE KEYSTORE SQL statement to perform merge
operations.

– For example, to perform a merge operation into an existing TDE wallet:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1' 
INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB2' 
IDENTIFIED BY password WITH BACKUP USING "merge1";

Replace the new TDE wallet with the backup TDE wallet, which in this case would be
named ewallet_time-stamp_merge1.p12.

– To merge an auto-login TDE wallet into a password-based TDE wallet, use the
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE SQL statement.

7.1.9 Moving a TDE Wallet to a New Location
You move a TDE wallet to a new location after you have updated the WALLET_ROOT parameter.

If you are using Oracle Key Vault, then you can configure a TDE direct connection where Key
Vault directly manages the master encryption keys. In this case, you will never need to
manually move the TDE wallet to a new location.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been
granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Back up the TDE wallet.

For example:

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE 
USING 'hr.emp_keystore' 
FORCE KEYSTORE 
IDENTIFIED BY 
TDE_wallet_password TO '/etc/ORACLE/KEYSTORE/DB1/';

3. Close the TDE wallet.

Examples of ways that you can close the TDE wallet are as follows.

For an auto-login TDE wallet:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE; 

For a password-protected TDE wallet:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
IDENTIFIED BY TDE_wallet_password;

Chapter 7
Managing the Keystore

7-13



For a TDE wallet for which the password is stored externally:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
IDENTIFIED BY EXTERNAL STORE; 

4. Exit the database session.

For example, if you are logged in to SQL*Plus:

EXIT
5. In the init.ora file for the database instance, update the WALLET_ROOT parameter

to point to the new location where you want to move the TDE wallet.

6. Use the operating system move command (such as mv) to move the TDE wallet
with all of its keys to the new directory location.

Related Topics

• Oracle Key Vault Administrator's Guide

7.1.10 Moving a TDE Wallet Out of Automatic Storage Management
You can use the ADMINISTER KEY MANAGEMENT statement to move a TDE wallet out
Automatic Storage Management.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Initialize a target TDE wallet on the file system by using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE target_TDE_wallet_path 
IDENTIFIED BY target_TDE_wallet_password;

In this specification:

• target_TDE_wallet_path is the directory path to the target TDE wallet on the
file system.

• target_TDE_wallet_password is a password that you create for the TDE
wallet.

For example:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1/' 
IDENTIFIED BY "target_TDE_wallet_password"; 

3. Copy the TDE wallet from ASM to the target TDE wallet that you just created.

This step requires that you merge the TDE wallet from ASM to the file system, as
follows:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE source_TDE_wallet_path 
IDENTIFIED BY source_TDE_wallet_password 
INTO EXISTING KEYSTORE target_TDE_wallet_path 
IDENTIFIED BY target_TDE_wallet_password 
WITH BACKUP USING backupIdentifier;

In this specification:

• source_TDE_wallet_path is the directory path to the source TDE wallet.

• source_TDE_wallet_password is th source TDE wallet password.

• target_TDE_wallet_path is the path to the target TDE wallet.

Chapter 7
Managing the Keystore

7-14



• target_TDE_wallet_password is the target TDE wallet password.

• backupIdentifier is the backup identifier to be added to the backup file name.

For example:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '+DATAFILE' 
IDENTIFIED BY "source_TDE_wallet_password" 
INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB1/' 
IDENTIFIED BY "target_TDE_wallet_password" 
WITH BACKUP USING "bkup";

7.1.11 Migrating from a TDE Wallet to Oracle Key Vault
You can migrate between password-protected TDE wallets and external keystores in Oracle
Key Vault.

• Migrating from a Password-Protected TDE Wallet to an External Keystore
You can migrate from a password-protected TDE wallet to an external keystore.

• Migrating from an External Keystore to a Password-Based TDE Wallet
You can migrate an external keystore to a TDE wallet.

• Keystore Order After a Migration
After you perform a migration, keystores can be either primary or secondary in their
order.

7.1.11.1 Migrating from a Password-Protected TDE Wallet to an External Keystore
You can migrate from a password-protected TDE wallet to an external keystore.

• Step 1: Convert the TDE Wallet to Open with the External Keystore
Some Oracle tools require access to the old TDE wallet to encrypt or decrypt data that
was exported or backed up using the TDE wallet.

• Step 2: Configure the External Keystore Type
You can use the ALTER SYSTEM statement to configure the external keystore type.

• Step 3: Perform the External Keystore Migration
You can use the ADMINISTER KEY MANAGEMENT SQL statement to perform an external
keystore migration.

7.1.11.1.1 Step 1: Convert the TDE Wallet to Open with the External Keystore
Some Oracle tools require access to the old TDE wallet to encrypt or decrypt data that was
exported or backed up using the TDE wallet.

Examples of these tools are Oracle Data Pump and Oracle Recovery Manager.

• Use the ADMINISTER KEY MANAGEMENT SQL statement to convert a TDE wallet to open
with an external keystore.

– To set the TDE wallet password as that of the external keystore, use the following
syntax:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD 
FORCE KEYSTORE
IDENTIFIED BY TDE_wallet_password 
SET "external_key_manager_password" WITH BACKUP 
[USING 'backup_identifier'];

Chapter 7
Managing the Keystore

7-15



In this specification:

* TDE_wallet_password is the same password that you used when creating
the TDE wallet.

* external_key_manager_password is the new TDE wallet password which
is the same as the password of the external keystore.

* WITH BACKUP creates a backup of the TDE wallet. Optionally, you can use
the USING clause to add a brief description of the backup. Enclose this
description in single quotation marks (' '). This identifier is appended to
the named TDE wallet file (for example, ewallet_time-
stamp_emp_key_backup.p12, with emp_key_backup being the backup
identifier). Follow the file naming conventions that your operating system
uses.

– To create an auto-login TDE wallet for a TDE wallet, use the following syntax:

ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE 
FROM KEYSTORE 'keystore_location' 
IDENTIFIED BY TDE_wallet_password;

In this specification:

* LOCAL enables you to create a local auto-login TDE wallet. Otherwise, omit
this clause if you want the TDE wallet to be accessible by other
computers.

* TDE_wallet_location is the path to the TDE wallet directory location of
the wallet that is configured in the sqlnet.ora file.

* TDE_wallet_password is the existing password of the configured TDE
wallet.

7.1.11.1.2 Step 2: Configure the External Keystore Type
You can use the ALTER SYSTEM statement to configure the external keystore type.

For the TDE wallet to open with the external keystore, either the TDE wallet must have
the same password as the external keystore, or alternatively, you can create an auto-
login TDE wallet for the TDE wallet.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Set the TDE_CONFIGURATION dynamic initialization parameter.

This example migrates the database from a TDE wallet to Oracle Key Vault.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV|FILE" SCOPE = 
"BOTH" SID = "*";

7.1.11.1.3 Step 3: Perform the External Keystore Migration
You can use the ADMINISTER KEY MANAGEMENT SQL statement to perform an external
keystore migration.

To migrate from the TDE wallet to external keystore, you must use the MIGRATE USING
external_key_manager_password clause in the ADMINISTER KEY MANAGEMENT SET KEY
SQL statement to decrypt the existing TDE table keys and tablespace encryption keys
with the TDE master encryption key in the TDE wallet and then reencrypt them with

Chapter 7
Managing the Keystore

7-16



the newly created TDE master encryption key in the external keystore. After you complete the
migration, you do not need to restart the database, nor do you need to manually re-open the
external keystore. The migration process automatically reloads the keystore keys in memory.

• Migrate the external keystores by using the following syntax:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
IDENTIFIED BY "external_key_manager_password" 
MIGRATE USING TDE_wallet_password 
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

– external_key_manager_password is the password that was created when the
external keystore was created. Enclose this setting in double quotation marks (" ").

– TDE_wallet_password is the same password that you used when you created the
TDE wallet or that you have changed to (when converting a TDE wallet to open with
an external keystore).

– USING enables you to add a brief description of the backup. Enclose this description
in single quotation marks (' '). This identifier is appended to the named keystore file
(for example, ewallet_time-stamp_emp_key_backup.p12, with emp_key_backup being
the backup identifier). Follow the file naming conventions that your operating system
uses.

7.1.11.2 Migrating from an External Keystore to a Password-Based TDE Wallet
You can migrate an external keystore to a TDE wallet.

• About Migrating Back from an External Keystore
To switch from using an external keystore solution to a TDE wallet, you can use reverse
migration of the TDE wallet.

• Step 1: Configure the External Keystore Type
You can use the ALTER SYSTEM statement to configure the external keystore type.

• Step 2: Configure the Keystore for the Reverse Migration
The ADMINISTER KEY MANAGEMENT statement with the SET ENCRYPTION KEY and REVERSE
MIGRATE clauses can be used to reverse the migration of a keystore.

• Step 3: Configure the External Keystore to Open with the TDE Wallet
After you complete the migration, the migration process automatically reloads the
keystore keys in memory.

7.1.11.2.1 About Migrating Back from an External Keystore
To switch from using an external keystore solution to a TDE wallet, you can use reverse
migration of the TDE wallet.

After you complete the switch, keep the external keystore, in case earlier backup files rely on
the TDE master encryption keys in the external key manager.

If you had originally migrated from the TDE wallet to the external keystore and reconfigured
the TDE wallet, then you already have an existing TDE wallet with the same password as the
external keystore password. Reverse migration configures this keystore to act as the new
TDE wallet with a new password. If your existing TDE wallet is an auto-login TDE wallet and
you have the password-based TDE wallet for this auto-login TDE wallet, then use the
password-based TDE wallet. If the password-based TDE wallet is not available, then merge

Chapter 7
Managing the Keystore

7-17



the auto-login TDE wallet into a newly created empty password-based TDE wallet, and
use the newly created password-based TDE wallet.

If you do not have an existing TDE wallet, then you must specify a TDE wallet location
using the WALLET_ROOT parameter in the init.ora file. When you perform the reverse
migration, migrate to the previous TDE wallet so that you do not lose the keys.

Related Topics

• Merging TDE Wallets
You can merge TDE wallets in a variety of ways.

• Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or OCI
KMS
To switch from a TDE wallet to centralized key management with Oracle Key Vault
or Oracle Cloud Infrastructure (OCI) Key Management Service (KMS), after you
upload all current and retired TDE master keys you must migrate the database
from the TDE wallet to Oracle Key Vault or OCI KMS.

7.1.11.2.2 Step 1: Configure the External Keystore Type
You can use the ALTER SYSTEM statement to configure the external keystore type.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted the ALTER SYSTEM privilege.

2. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the
keystore type.

For example:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV|FILE" SCOPE = 
"BOTH" SID = "*";

Setting KEYSTORE_CONFIGURATION to "OKV" indicates a configuration where the
connection into Oracle Key Vault must be opened by providing the Oracle Key
Vault password. To use an auto-open Oracle Key Vault configuration, you set
KEYSTORE_CONFIGURATION to "OKV|FILE", where the Oracle Key Vault password is
stored in an auto-open keystore in WALLET_ROOT/tde.

7.1.11.2.3 Step 2: Configure the Keystore for the Reverse Migration
The ADMINISTER KEY MANAGEMENT statement with the SET ENCRYPTION KEY and
REVERSE MIGRATE clauses can be used to reverse the migration of a keystore.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Reverse migrate the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
IDENTIFIED BY TDE_wallet_password 
REVERSE MIGRATE USING "external_key_manager_password" 
[WITH BACKUP [USING 'backup_identifier']]; 

In this specification:

• TDE_wallet_password is the password for the existing keystore or the new
keystore.

Chapter 7
Managing the Keystore

7-18



• external_key_manager_password is the password that was created when you first
created the external keystore. If the pre-external TDE wallet is the new keystore, then
you must ensure that it has the same password as the
external_key_manager_password before issuing the reverse migration command.
Enclose this setting in double quotation marks (" ").

• WITH BACKUP creates a backup of the TDE wallet. Optionally, you can include the
USING clause to add a brief description of the backup. Enclose this description in
single quotation marks (' '). This identifier is appended to the named keystore file
(for example, ewallet_time-stamp_emp_key_backup.p12, with emp_key_backup being
the backup identifier). Follow the file naming conventions that your operating system
uses.

For example:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
IDENTIFIED BY TDE_wallet_password 
REVERSE MIGRATE USING "external_key_manager_password" WITH BACKUP;

keystore altered.
3. Optionally, change the keystore password.

For example:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD 
IDENTIFIED BY old_TDE_wallet_password 
SET new_TDE_wallet_password 
WITH BACKUP USING 'before_password_was_changed';

7.1.11.2.4 Step 3: Configure the External Keystore to Open with the TDE Wallet
After you complete the migration, the migration process automatically reloads the keystore
keys in memory.

You do not need to restart the database, nor do you need to manually re-open the TDE
wallet.

The external keystore may still be required after reverse migration because the old keys are
likely to have been used for Oracle Data Pump Export and Oracle Recovery Manager (Oracle
RMAN)-encrypted backups. You should add the external keystore credentials to the keystore
so that the HSM can be opened with the TDE wallet.

Related Topics

• Configuring Auto-Open Connections into External Key Managers
An external key manager can be configured to use the auto-login capability.

7.1.11.3 Keystore Order After a Migration
After you perform a migration, keystores can be either primary or secondary in their order.

The WALLET_ORDER column of the V$ENCRYPTION_WALLET dynamic view describes whether a
TDE wallet is primary (that is, it holds the current TDE master encryption key) or if it is
secondary (it holds the previous TDE master encryption key). The WRL_TYPE column
describes the type of locator for the TDE wallet (for example, FILE for the sqlnet.ora file).
The WALLET_ORDER column shows SINGLE if two TDE wallets are not configured together and
no migration was ever performed previously.

Table 7-1 describes how the keystore order works after you perform a migration.

Chapter 7
Managing the Keystore

7-19



Table 7-1    Keystore Order After a Migration

Type of Migration Done WRL_TYPE WALLET_ORDER Description

Migration of TDE wallet
to external keystore

OKV
FILE

PRIMARY
SECONDARY

Both the external and TDE wallet are
configured. The TDE master encryption key
can be either in Oracle Key Vault or the TDE
wallet.

The TDE master encryption key is first
searched in Oracle Key Vault.

If the TDE master encryption key is not in the
primary keystore (Oracle Key Vault), then it
will be searched for in the TDE wallet.

All of the new TDE master encryption keys
will be created in the primary keystore (in this
case, Oracle Key Vault).

Reverse migration from
Oracle Key Vault (HSM) to
TDE wallet

FILE
HSM

PRIMARY
SECONDARY

Both the external and TDE wallet are
configured. The TDE master encryption key
can be either in the external keystore or the
TDE wallet.

The TDE master encryption key is first
searched for in the TDE wallet.

If the TDE master encryption key is not
present in the primary (that is, software) TDE
wallet, then it will be searched for in the
HSM's external keystore.

All of the new TDE master encryption keys
will be created in the primary keystore (in this
case, the TDE wallet).

7.1.12 Migration of Keystores to and from Oracle Key Vault
You can use Oracle Key Vault to migrate both TDE wallets and external keystores to
and from Oracle Key Vault.

This enables you to manage the keystores centrally, and then share the keystores as
necessary with other TDE-enabled databases in your enterprise.

Oracle Key Vault enables you to upload a keystore to a container called a virtual
wallet, and then create a new virtual wallet from the contents of previously uploaded
keystore. For example, suppose you previously uploaded a keystore that contains 5
keys. You can create a new virtual wallet that consists of only 3 of these keys. You
then can download this keystore to another TDE-enabled database. This process does
not modify the original keystore.

In addition to Oracle keystores, Oracle Key Vault enables you to securely share other
security objects, such as credential files and Java keystores, across the enterprise. It
prevents the loss of keys and keystores due to forgotten passwords or accidentally
deleted keystores. You can use Oracle Key Vault with products other than TDE: Oracle
Real Application Security, Oracle Active Data Guard, and Oracle GoldenGate. Oracle
Key Vault facilitates the movement of encrypted data using Oracle Data Pump and
Oracle Transportable Tablespaces.

Related Topics

• Oracle Key Vault Administrator's Guide

Chapter 7
Managing the Keystore

7-20



7.1.13 Configuring Keystores for Automatic Storage Management
You can store a TDE wallet on an Automatic Storage Management (ASM) disk group.

• About Configuring Keystores for Automatic Storage Management
You can configure a TDE wallet for Automatic Storage Management (ASM) for a
standalone database or a multitenant environment. The WALLET_ROOT location can be
compliant or non-compliant with Oracle Managed File (OMF) systems.

• Configuring a Keystore to Point to an ASM Location
You can set WALLET_ROOT to point to an ASM directory within which the TDE wallet of the
CDB root (which all united mode PDBs share) and the TDE wallets of all isolated mode
PDBs are located.

• Configuring a Keystore to Point to an ASM Location When the WALLET_ROOT Location
Does Not Follow OMF Guidelines
If the chosen WALLET_ROOT location does not comply with the Oracle Managed File (OMF)
guidelines, then the Oracle database cannot perform automation of the directory creation.

7.1.13.1 About Configuring Keystores for Automatic Storage Management
You can configure a TDE wallet for Automatic Storage Management (ASM) for a standalone
database or a multitenant environment. The WALLET_ROOT location can be compliant or non-
compliant with Oracle Managed File (OMF) systems.

You should use the WALLET_ROOT and TDE_CONFIGURATION initialization parameters to
configure the TDE wallet location in an ASM system. The TDE_CONFIGURATION parameter
must be set with the attribute KEYSTORE_CONFIGURATION=FILE in order for the WALLET_ROOT
parameter to work. Note that starting with Oracle Database release 19c, the
ENCRYPTION_WALLET_LOCATION, set in the sqlnet.ora file, is deprecated in favor of
WALLET_ROOT and TDE_CONFIGURATION.

To perform the configuration, you must specify a + sign, followed by the ASM disk group and
path where the TDE wallet will be located. For example:

WALLET_ROOT=+disk_group/path

Note the following:

• When you open a local TDE wallet, it opens only on the ASM node on which it was
created.

• When you designate the path for the WALLET_ROOT for databases in standalone or
multitenant environments, or environments where the WALLET_ROOT location either
complies or does not comply with the Oracle Managed File (OMF) directory naming
convention, be aware that this path must follow certain conventions so that the database
can automate the creation of the directory components of the TDE wallet locations for
you. Otherwise, you must manually create the directories under the WALLET_ROOT
location.

• If you must move or merge TDE wallets between a regular file system and an ASM file
system, then you can use the same TDE wallet merge statements that are used to merge
TDE wallets.

• To run commands to manage TDE wallets in an ASM environment, you can use the
ASMCMD utility.

Chapter 7
Managing the Keystore

7-21



Related Topics

• Merging TDE Wallets
You can merge TDE wallets in a variety of ways.

• Oracle Automatic Storage Management Administrator's Guide

7.1.13.2 Configuring a Keystore to Point to an ASM Location
You can set WALLET_ROOT to point to an ASM directory within which the TDE wallet of
the CDB root (which all united mode PDBs share) and the TDE wallets of all isolated
mode PDBs are located.

1. Ensure that the KEYSTORE_CONFIGURATION attribute of the TDE_CONFIGURATION
dynamic initialization parameter is set to FILE.

For a CDB, set TDE_CONFIGURATION in the CDB root; for an isolated PDB, set it in
the PDB.

For example, in SQL*Plus:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE";
2. Set the WALLET_ROOT static initialization parameter to the ASM disk group location

followed by the DB_UNIQUE_NAME initialization parameter value.

The inclusion of the value of DB_UNIQUE_NAME is necessary to allow the database
server to automate the creation of the necessary directories under this location.

You must not use OMF as a directory component of the WALLET_ROOT location
(unlike in the standalone database configuration section).

For example:

WALLET_ROOT=+disk_group_name/db_unique_name

This setting locates the TDE wallet that is used by the root and by all of the united
mode PDBs in the WALLET_ROOT/db_unique_name/tde directory (that is, in
+disk_group_name/db_unique_name/tde).

This setting locates the TDE wallet which is used by each isolated mode PDB in
the WALLET_ROOT/db_unique_name/pdb_guid/tde directory (that is, in
+disk_group_name/db_unique_name/pdb_guid/tde).

7.1.13.3 Configuring a Keystore to Point to an ASM Location When the
WALLET_ROOT Location Does Not Follow OMF Guidelines

If the chosen WALLET_ROOT location does not comply with the Oracle Managed File
(OMF) guidelines, then the Oracle database cannot perform automation of the
directory creation.

In this case, you must use the ALTER DISKGROUP command to manually create the
necessary directories under the WALLET_ROOT location. You must use the ALTER
DISKGROUP ... ADD DIRECTORY statement to manually create the necessary directories,
because no automation of the directory creation is possible when the WALLET_ROOT
parameter is not using an OMF-compliant value.

1. Connect to the united mode CDB root or isolated mode PDB using the SYSASM
administrative privilege.

Chapter 7
Managing the Keystore

7-22



2. Ensure that the KEYSTORE_CONFIGURATION attribute of the TDE_CONFIGURATION dynamic
initialization parameter is set to FILE.

For example:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE";
3. In the init.ora file, set the WALLET_ROOT static initialization parameter to the ASM disk

group location.

For example, the following path after disk_group_name contains no uppercase OMF
directory elements:

WALLET_ROOT="+disk_group_name/mydir/wallets"
4. As a user with the SYSDBA administrative privilege, run the ALTER DISKGROUP statements

to create the necessary directories.

You must perform this step because the database server cannot automate the creation of
these directories, since the location chosen for WALLET_ROOT is not compliant with the
Oracle Managed Files guideline (that is, it does not have the OMF component included in it
in uppercase letters).

a. Find the PDB GUID of the PDB that will store the keystore, as follows:

SELECT GUID FROM DBA_PDBS WHERE PDB_NAME = 'pdb name';
b. Include the PDB GUID in the following ALTER DISKGROUP statements to create the

necessary directories for the isolated mode PDB within the WALLET_ROOT location. For
example, assuming the GUID is 4756C705E52A8768E053F82DC40A5329:

ALTER DISKGROUP "disk_group_name" ADD DIRECTORY
    '+disk_group_name/mydir/wallets/4756C705E52A8768E053F82DC40A5329'

ALTER DISKGROUP "disk_group_name" ADD DIRECTORY
    '+disk_group_name/mydir/wallets/4756C705E52A8768E053F82DC40A5329/tde';

7.1.14 Managing Updates to the PKCS#11 Library
Periodically, you may need to update the endpoint shared PKCS#11 library.

• About Managing Updates to the PKCS#11 Library
The Oracle Database uses Oracle Key Vault's PKCS#11 endpoint shared library to
retrieve the TDE master encryption key from Oracle Key Vault.

• Switching Over to an Updated PKCS#11 Library
When an updated PKCS#11 endpoint shared library is available, you can switch over to
the updated library without incurring any database downtime.

7.1.14.1 About Managing Updates to the PKCS#11 Library
The Oracle Database uses Oracle Key Vault's PKCS#11 endpoint shared library to retrieve
the TDE master encryption key from Oracle Key Vault.

To switch an Oracle database over to an updated PKCS#11 shared library, you must run the
following statement:

ADMINISTER KEY MANAGEMENT SWITCHOVER TO LIBRARY 
'updated_fully_qualified_file_name_of_library' FOR ALL CONTAINERS;

Note the following:

Chapter 7
Managing the Keystore

7-23



• The path of the updated fully qualified file name must begin with /opt/oracle/
extapi/64/pkcs11/. The path provided in the fully qualified file name will be
validated to ensure that each directory is owned by root and is not writable by
group or other (the permissions of each directory should look like drwxr-xr-x
root root), and that none of the components of the path are symbolic links. If you
receive an ORA-02097: parameter cannot be modified because specified
value is invalid or ORA-46702: failed to switch over the PKCS#11 library
error, then check the trace file for details regarding the path validation failure.

• Run this command from the root container database (CDB$ROOT). The PKCS#11
library is switched for the root container database and all PDBs that currently use
the PKCS#11 library.

• Be aware that after you switch over to an updated PKCS#11 library, there may be
a temporary decrease in TDE performance while the internal state of the PKCS#11
library is re-established, due to the internal state being lost during the library
switchover.

7.1.14.2 Switching Over to an Updated PKCS#11 Library
When an updated PKCS#11 endpoint shared library is available, you can switch over
to the updated library without incurring any database downtime.

1. Log in to the CDB root as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Perform the following steps.

The following steps assume that the current Oracle Key Vault version is 21.5 and
that you are upgrading to version 21.6. These versions are for illustrative purposes
only.

a. Create appropriate directories under /opt/oracle/extapi/64/. For example,
for the Oracle Key Vault client software versions 21.5 and 21.6:

$ sudo sh -c 'mkdir -pvm755 /opt/oracle/extapi/64/pkcs11/okv/lib/
{21.5,21.6}'

b. Run the Oracle Key Vault 21.5 client root script to copy the Oracle Key Vault
PKCS#11 library into the legacy directory:

$ sudo sh -c '/etc/ORACLE/KEYSTORES/finance/okv/bin/root.sh'

c. Move the Oracle Key Vault PKCS#11 library into the correct version-
depending directory:

$ sudo sh -c 'mv -v
/opt/oracle/extapi/64/hsm/oracle/1.0.0/liborapkcs.so
/opt/oracle/extapi/64/pkcs11/okv/lib/21.5/'

d. Confirm that the copy operation succeeed.

$ tree -np /opt/oracle/extapi/64

Chapter 7
Managing the Keystore

7-24



e. As a user with the ALTER SYSTEM privilege, set the static initialization parameter
PKCS11_LIBRARY_LOCATION.

ALTER SYSTEM SET PKCS11_LIBRARY_LOCATION = '/opt/oracle/extapi/64/
pkcs11/okv/lib/21.5/liborapkcs.so' SCOPE = SPFILE SID = '*';

After a database restart, your database is now ready to switch to new PKCS#11 libraries
without DB downtime.

3. After you upgrade Oracle Key Vault to the new release (for example, 21.6), copy the new
PKCS#11 library from the legacy directory into the following location:

$ sudo sh -c 'mv -v /opt/oracle/extapi/64/hsm/oracle/1.0.0/
liborapkcs.so /opt/oracle/extapi/64/pkcs11/okv/lib/21.6/'

4. Switch over to the updated PKCS#11 library.

ADMINISTER KEY MANAGEMENT SWITCHOVER TO LIBRARY 
'updated_fully_qualified_file_name_of_library' FOR ALL CONTAINERS;

For example:

ADMINISTER KEY MANAGEMENT SWITCHOVER TO LIBRARY '/opt/oracle/extapi/64/
pkcs11/okv/lib/21.6/liborapkcs.so' FOR ALL CONTAINERS;

In this example, the library path uses the convention /opt/oracle/extapi/64/pkcs11/
vendor/lib/version/. Oracle recommends that you have at minimum version in the
library path because it will help in provisioning more libraries under /opt/oracle/
extapi/64/pkcs11, which is needed for the library switchover operation.

If the database uses SPFILE to manage its parameters, then the library is switched. If the
database uses PFILE, then the configuration is not changed, although the system does
switch over to the updated PKCS#11 library. Otherwise any restart of the database
instance would cause it to revert to using the earlier PKCS#11 library.

7.1.15 Backup and Recovery of Encrypted Data
For TDE wallets, you cannot access encrypted data without the TDE master encryption key.

Because the TDE master encryption key is stored in the TDE wallet, you should periodically
back up the TDE wallet in a secure location. You must back up a copy of the TDE wallet
whenever you set a new TDE master encryption key or perform any operation that writes to
the TDE wallet.

Do not back up the TDE wallet in the same location as the encrypted data. Back up the TDE
wallet separately. This is especially true when you use the auto-login TDE wallet, which does
not require a password to open. In case the backup tape is lost, a malicious user should not
be able to get both the encrypted data and the TDE wallet.

Oracle Recovery Manager (Oracle RMAN) does not back up the TDE wallet as part of the
database backup. When using a media manager such as Oracle Secure Backup with Oracle
RMAN, Oracle Secure Backup automatically excludes auto-open TDE wallets (the
cwallet.sso files). However, it does not automatically exclude encryption TDE wallets (the
ewallet.p12 files). It is a good practice to add the following exclude data set statement to
your Oracle Secure Backup configuration:

exclude name *.p12

Chapter 7
Managing the Keystore

7-25



This setting instructs Oracle Secure Backup to exclude the encryption TDE wallet from
the backup set.

If you lose the TDE wallet that stores the TDE master encryption key, then you can
restore access to encrypted data by copying the backed-up version of the TDE wallet
to the appropriate location. If you archived the restored TDE wallet after the last time
that you reset the TDE master encryption key, then you do not need to take any
additional action.

If the restored TDE wallet does not contain the most recent TDE master encryption
key, then you can recover old data up to the point when the TDE master encryption
key was reset by rolling back the state of the database to that point in time. All of the
modifications to encrypted columns after the TDE master encryption key was reset are
lost.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

7.1.16 Dangers of Deleting TDE Wallets
Oracle strongly recommends that you do not delete TDE wallets.

If a TDE wallet becomes overly full, any TDE master encryption key other than the
currently active TDE master encryption key can be moved to a new TDE wallet to
reduce the overall size of the TDE wallet, but it is important to keep a backup of the old
and new TDE wallets because even though the keys have been moved out of the
currently active TDE wallet, they may still be needed by other Oracle features, such as
Oracle Recovery Manager backup operations. (See Related Topics at the end of this
topic for a listing of features that are affected by deleted TDE wallets.)

Deleting a TDE wallet that still contains keys is particularly dangerous if you have
configured Transparent Data Encryption and the TDE wallet is in use. You can find if a
TDE wallet is in use by querying the STATUS column of the V$ENCRYPTION_WALLET view
after you open the TDE wallet. How you should proceed depends on whether you are
using united mode or isolated mode.

• In isolated mode, if the STATUS column of the V$ENCRYPTION_WALLET is
OPEN_NO_MASTER_KEY, then it is safe to archive and later delete the this TDE wallet,
because there are no keys in it.

• In united mode, you must run the query of V$ENCRYPTION_WALLET from the
CDB$ROOT, not the PDB. If you run the query in a PDB that does not yet have a key
set, then the STATUS is OPEN_NO_MASTER_KEY. However, this can be misleading,
because a key could have been set in the CDB$ROOT. After you run the query in the
root and if the STATUS is OPEN_NO_MASTER_KEY, then you can safely archive and
later delete the TDE wallet.

The reason that you should be cautious when moving keys out of the currently-active
TDE keystore is that this wallet may contain keys that are still needed by the database
(even though the TDE master encryption key has been rekeyed). Deleting the TDE
wallet deletes these keys, and could result in the loss of encrypted data. Even if you
decrypted all of the data in your database, you still should not delete the TDE wallet,
because doing so could still hamper the normal functioning of the Oracle database.
This is because a TDE master encryption key in the TDE wallet can also be required
for other Oracle Database features. (See Related Topics at the end of this topic for a
listing of features that are affected by deleted TDE wallets.)

Chapter 7
Managing the Keystore

7-26



Even after you performed TDE keystore migration (which rekeys in such a way that the
location of your currently-active TDE master encryption key changes place between your
TDE wallet and your external keystore), you still should not delete your original TDE wallet.
The keys in the original TDE wallet may be needed at a later time (for example, when you
must recover an offline encrypted tablespace). Even if all online tablespaces are not
encrypted, the key may still be in use.

The exception is in the case of software auto-login (or local auto-login) TDE wallets. If you do
not want to use this type of TDE wallet, then ideally you should move it to a secure directory.
Only delete an auto-login TDE wallet if you are sure that it was created from a specific
password-based TDE wallet because an auto-login TDE wallet is always based on an
ordinary TDE wallet. The TDE wallet should be available and known.

If you must delete a TDE wallet, then do so with great caution. You must first move the keys
within the TDE wallet to a new TDE wallet by using the ADMINISTER KEY MANAGEMENT MOVE
KEYS TO NEW KEYSTORE statement.

Related Topics

• Features That Are Affected by Deleted Keystores
Some features can be adversely affected if a keystore is deleted and a TDE master
encryption key residing in that keystore is later needed.

• Moving a TDE Master Encryption Key into a New Keystore in United Mode
In united mode, you can move an existing TDE master encryption key into a new
keystore from an existing password-based TDE wallet.

• Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode
In isolated mode, you can move an existing TDE master encryption key into a new TDE
wallet from an existing password TDE wallet.

7.1.17 Features That Are Affected by Deleted Keystores
Some features can be adversely affected if a keystore is deleted and a TDE master
encryption key residing in that keystore is later needed.

Before you delete a keystore, consider the impact that the deletion will have in the event that
you need the any TDE master encryption key in the TDE keystore at a later time. The
following features and activities are affected:

• Offlined tablespace operations

• Oracle Secure Backup operations

• Media recovery and block media recovery operations

• Point-in-time recovery operations

• Physical and logical Oracle Data Guard standby operations

• Golden Gate operations

• Oracle Streams operations

• Oracle Recovery Manager operations, including restoring Oracle Recovery Manager
backups

• Applying archived redo logs to a database during database crash recovery operations

• Database online block recovery. (Online block recovery implies that the database is still
open. Deleting a wallet in an open database with encrypted tablespaces will cause

Chapter 7
Managing the Keystore

7-27



additional problems other than those associated with online block recovery.) These
problems can include the following:

– Encrypted online data in encrypted tablespaces would no longer be decrypted.
Encrypted metadata in the SYSTEM, UNDO, and TEMP tablespaces would no
longer be decrypted. You will no longer have control over what metadata is
encrypted or where that metadata can reside.

– Buffered data or metadata needs to be encrypted before it can be written back
to the disk, but if the wallet is deleted, then the buffered data or metadata
would no longer be encrypted. This could cause redo generation to fail, and
the DBWR background process would not be able to write the data, which
would possibly lead to a database instance failure.

– After a database instance failure, the database instance recovery and
database crash recovery would fail, leading to the database not being able to
be restarted.

Related Topics

• Dangers of Deleting TDE Wallets
Oracle strongly recommends that you do not delete TDE wallets.

7.2 Managing the TDE Master Encryption Key
You can manage the TDE master encryption key in several ways.

• TDE Master Encryption Key Attribute Management
TDE master encryption key attributes store information about the TDE master
encryption key.

• Creating Custom TDE Master Encryption Key Attributes for Reports
Custom TDE master encryption key attributes enable you to defined attributes that
are specific to your needs.

• Setting or Rekeying the TDE Master Encryption Key in the Keystore
You can set or rekey the TDE master encryption key for both TDE wallets and
external keystores.

• Exporting and Importing the TDE Master Encryption Key
You can export and import the TDE master encryption key in different ways.

• Converting from ENCRYPTION_WALLET_LOCATION to WALLET_ROOT and
TDE_CONFIGURATION
You can convert the wallet location from using the sqlnet.ora
ENCRYPTION_WALLET_LOCATION parameter to using the WALLET_ROOT and
TDE_CONFIGURATION parameters instead.

• Management of TDE Master Encryption Keys Using Oracle Key Vault
You can use Oracle Key Vault to manage and share TDE master encryption keys
across an enterprise.

7.2.1 TDE Master Encryption Key Attribute Management
TDE master encryption key attributes store information about the TDE master
encryption key.

Chapter 7
Managing the TDE Master Encryption Key

7-28



• TDE Master Encryption Key Attributes
TDE master encryption key attributes include detailed information about the TDE master
encryption key.

• Finding the TDE Master Encryption Key That Is in Use
A TDE master encryption key that is in use is the encryption key that was activated most
recently for the database.

7.2.1.1 TDE Master Encryption Key Attributes
TDE master encryption key attributes include detailed information about the TDE master
encryption key.

The information contains the following types:

• Key time stamp information: Internal security policies and compliance policies usually
determine the key rekeying frequency. You should expire keys when they reach the end
of their lifetimes and then generate new keys. Time stamp attributes such as key creation
time and activation time help you to determine the key age accurately, and automate key
generation.

The V$ENCRYPTION_KEYS view includes columns such as CREATION_TIME and
ACTIVATION_TIME. See Oracle Database Reference for a complete description of the
V$ENCRYPTION_KEYS view.

• Key owner information: Key owner attributes help you to determine the user who
created or activated the key. These attributes can be important for security, auditing, and
tracking purposes. Key owner attributes also include key use information, such as
whether the key is used for standalone TDE operations or used in a multitenant
environment.

The V$ENCRYPTION_KEYS view includes columns such as CREATOR, CREATOR_ID, USER,
USER_ID, and KEY_USE.

• Key source information: Keys often must be moved between databases for operations
such as import-export operations and Data Guard-related operations. Key source
attributes enable you to track the origin of each key. You can track whether a key was
created locally or imported, and the database name and instance number of the database
that created the key. In a multitenant environment, you can track the PDB where the key
was created.

The V$ENCRYPTION_KEYS view includes columns such as CREATOR_DBNAME,
CREATOR_DBID, CREATOR_INSTANCE_NAME, CREATOR_INSTANCE_NUMBER,
CREATOR_PDBNAME, and so on.

• Key usage information: Key usage information determines the database or PDB where
the key is being used. It also helps determine whether a key is in active use or not.

The V$ENCRYPTION_KEYS view includes columns such as ACTIVATING_DBNAME,
ACTIVATING_DBID, ACTIVATING_INSTANCE_NAME, ACTIVATING_PDBNAME, and so on.

• User-defined information and other information: When creating a key, you can tag it
with information using the TAG option. Each key contains important information such as
whether or not it has been backed up.

The V$ENCRYPTION_KEYS view includes columns such as KEY_ID, TAG, and other
miscellaneous columns, for example BACKED_UP.

Chapter 7
Managing the TDE Master Encryption Key

7-29



Note:

TDE Master Key Attributes and Tag are only supported with Oracle Key Vault
and Oracle Cloud Infrastructure (OCI) Key Management Service (KMS).

7.2.1.2 Finding the TDE Master Encryption Key That Is in Use
A TDE master encryption key that is in use is the encryption key that was activated
most recently for the database.

• To find the TDE master encryption key, query the V$ENCRYPTION_KEYS dynamic
view.

For example:

SELECT KEY_ID 
FROM V$ENCRYPTION_KEYS 
WHERE ACTIVATION_TIME = (SELECT MAX(ACTIVATION_TIME) 
                         FROM V$ENCRYPTION_KEYS
                         WHERE ACTIVATING_DBID = (SELECT DBID FROM 
V$DATABASE));

7.2.2 Creating Custom TDE Master Encryption Key Attributes for
Reports

Custom TDE master encryption key attributes enable you to defined attributes that are
specific to your needs.

• About Creating Custom Attribute Tags
Attribute tags enable you to monitor specific activities users perform, such as
accessing a particular terminal ID.

• Creating a Custom Attribute Tag
To create a custom attribute tag, you must use the SET TAG clause of the
ADMINISTER KEY MANAGEMENT statement.

7.2.2.1 About Creating Custom Attribute Tags
Attribute tags enable you to monitor specific activities users perform, such as
accessing a particular terminal ID.

By default, Oracle Database defines a set of attributes that describe various
characteristics of the TDE master encryption keys that you create, such as the
creation time, database in which the TDE master encryption key is used, and so on.
These attributes are captured by the V$ENCRYPTION_KEY dynamic view.

You can create custom attributes that can be captured by the TAG column of the
V$ENCRYPTION_KEYS dynamic view. This enables you to define behaviors that you may
want to monitor, such as users who perform activities on encryption keys. The tag can
encompass multiple attributes, such as session IDs from a specific terminal.

After you create the tag for a TDE master encryption key, its name should appear in
the TAG column of the V$ENCRYPTION_KEYS view for that TDE master encryption key. If
you create a tag for the secret, then the tag appears in the SECRET_TAG column of the

Chapter 7
Managing the TDE Master Encryption Key

7-30



V$CLIENT_SECRETS view. If you create a secret with a tag, then the tag appears in the
SECRET_TAG column of the V$CLIENT_SECRETS view.

7.2.2.2 Creating a Custom Attribute Tag
To create a custom attribute tag, you must use the SET TAG clause of the ADMINISTER KEY
MANAGEMENT statement.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been
granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. If necessary, query the TAG column of the V$ENCRYPTION_KEY dynamic view to find a
listing of existing tags for the TDE master encryption keys.

When you create a new tag for a TDE master encryption key, it overwrites the existing
tag for that TDE master encryption key.

3. Create the custom attribute tag by using the following syntax:

ADMINISTER KEY MANAGEMENT SET TAG 'tag' 
FOR 'master_key_identifier' 
[FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
[WITH BACKUP [USING 'backup_identifier']];

In this specification

• tag is the associated attributes or information that you define. Enclose this
information in single quotation marks (' ').

• master_key_identifier identifies the TDE master encryption key for which the tag
is set. To find a list of TDE master encryption key identifiers, query the KEY_ID column
of the V$ENCRYPTION_KEYS dynamic view.

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– keystore_password is the password that was used to create the keystore.

• backup_identifier defines the tag values. Enclose this setting in single quotation
marks (' ') and separate each value with a colon.

For example, to create a tag that uses two values, one to capture a specific session ID
and the second to capture a specific terminal ID:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
USING TAG 'sessionid=3205062574:terminal=xcvt' 
IDENTIFIED BY keystore_password 
WITH BACKUP;

keystore altered.

Both the session ID (3205062574) and terminal ID (xcvt) can derive their values by using
either the SYS_CONTEXT function with the USERENV namespace, or by using the USERENV
function.

Chapter 7
Managing the TDE Master Encryption Key

7-31



7.2.3 Setting or Rekeying the TDE Master Encryption Key in the
Keystore

You can set or rekey the TDE master encryption key for both TDE wallets and external
keystores.

• About Setting or Rekeying the TDE Master Encryption Key in the Keystore
You can set or rekey the TDE master encryption key for both software password-
based and external keystores.

• Creating, Tagging, and Backing Up a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement enables you to create, tag, and back
up a TDE master encryption key.

• About Rekeying the TDE Master Encryption Key
Oracle Database uses a unified TDE Master Encryption Key for both TDE column
encryption and TDE tablespace encryption.

• Rekeying the TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT statement to rekey a TDE master
encryption key.

• Changing the TDE Master Encryption Key for a Tablespace
You can use the ENCRYPT and REKEY clauses of the ALTER TABLESPACE statement to
encrypt a tablespace.

7.2.3.1 About Setting or Rekeying the TDE Master Encryption Key in the
Keystore

You can set or rekey the TDE master encryption key for both software password-
based and external keystores.

The TDE master encryption key is stored in an external security module (keystore),
and it is used to protect the TDW table keys and tablespace encryption keys. By
default, the TDE master encryption key is a system-generated random value created
by Transparent Data Encryption (TDE).

Use the ADMINISTER KEY MANAGEMENT statement to set or reset (REKEY) the TDE
master encryption key. When the master encryption key is set, then TDE is considered
enabled and cannot be disabled.

Before you can encrypt or decrypt database columns or tablespaces, you must
generate a TDE master encryption key. Oracle Database uses the same TDE master
encryption key for both TDE column encryption and TDE tablespace encryption. The
instructions for setting a software or hardware TDE master encryption key explain how
to generate a tDE master encryption key.

Related Topics

• Step 3: Set the TDE Master Encryption Key in the TDE Wallet
Once the TDE wallet is open, you can set a TDE master encryption key for it.

• Step 3: Set the TDE Master Encryption Key in Oracle Key Vault
After you have opened the connection to Oracle Key Vault, you are ready to set
the TDE master encryption key.

Chapter 7
Managing the TDE Master Encryption Key

7-32



7.2.3.2 Creating, Tagging, and Backing Up a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement enables you to create, tag, and back up a TDE
master encryption key.

• Create and back up the TDE master encryption key, and apply a tag, by using the
following syntax:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
[USING TAG 'tag'] 
[FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
WITH BACKUP [USING 'backup_identifier'];

In this specification:

– tag is the tag that you want to create. Enclose this tag in single quotation marks ('
').

– FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

– IDENTIFIED BY can be one of the following settings:

* EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

* keystore_password is either TDE_wallet_password or
external_key_manager_password. You must enclose the password string in
double quotation marks (" ").

– WITH BACKUP backs the TDE master encryption key up in the same location as the
key, as identified by the WRL_PARAMETER column of the V$ENCRYPTION_WALLET view. To
find the WRL_PARAMETER values for all of the database instances, query the
GV$ENCRYPTION_WALLET view.

You must back up password-based TDE wallets. You do not need to use it for auto-
login or local auto-login TDE wallets. Optionally, include the USING
backup_identifier clause to add a description of the backup. Enclose this identifier
in single quotation marks (' ').

For example:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
USING TAG 'backups" 
IDENTIFIED BY keystore_password 
WITH BACKUP USING 'hr.emp_key_backup';

keystore altered.

Oracle Database uses the keystore in the keystore location specified by the WALLET_ROOT
parameter in the initialization parameter file to store the TDE master encryption key.

Related Topics

• Creating Custom TDE Master Encryption Key Attributes for Reports
Custom TDE master encryption key attributes enable you to defined attributes that are
specific to your needs.

Chapter 7
Managing the TDE Master Encryption Key

7-33



7.2.3.3 About Rekeying the TDE Master Encryption Key
Oracle Database uses a unified TDE Master Encryption Key for both TDE column
encryption and TDE tablespace encryption.

When you rekey the TDE master encryption key for TDE column encryption, the TDE
Master Encryption Key for TDE tablespace encryption also is rekeyed. Rekey the TDE
Master Encryption Key only if it was compromised or as per the security policies of the
organization. This process deactivates the previous TDE master encryption key.

For better security and to meet compliance regulations, periodically rekey the TDE
master encryption key. This process deactivates the previous TDE master encryption
key, creates a new TDE master encryption key, and then activates it. You can check
the keys that were created recently by querying the CREATION_TIME column in the
V$ENCRYPTION_KEYS view. To find the keys that were activated recently, query the
ACTIVATION_TIME column in the V$ENCRYPTION_KEYS view.

You cannot change the TDE master encryption key or rekey a TDE master encryption
key for an auto-login keystore. Because auto-login keystores do not have a password,
an administrator or a privileged user can change the keys without the knowledge of the
security officer. However, if both the auto-login and the password-based keystores are
present in the configured location (as set in the sqlnet.ora file), then when you rekey
the TDE master encryption key, a TDE master encryption key is added to both the
auto-login and password-based keystores. If the auto-login keystore is in use in a
location that is different from that of the password-based keystore, then you must re-
create the auto-login keystore.

Do not perform a rekey operation of the master key concurrently with an online
tablespace rekey operation. You can find if an online tablespace is in the process of
being TDE Master Encryption Keyed by issuing the following query:

SELECT TS#,ENCRYPTIONALG,STATUS FROM V$ENCRYPTED_TABLESPACES;

A status of REKEYING means that the corresponding tablespace is still being rekeyed.

Note:

You cannot add new information to auto-login keystores separately.

7.2.3.4 Rekeying the TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT statement to rekey a TDE master
encryption key.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. If you are rekeying the TDE master encryption key for a keystore that has auto
login enabled, then ensure that both the auto login keystore, identified by the .sso
file, and the encryption keystore, identified by the .p12 file, are present.

Chapter 7
Managing the TDE Master Encryption Key

7-34



You can find the location of these files by querying the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the database
instances, query the GV$ENCRYPTION_WALLET view.

3. Rekey the TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY 
[FORCE KEYSTORE]
[USING TAG 'tag_name'] 
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• tag is the associated attributes and information that you define. Enclose this setting
in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– keystore_password is the mandatory keystore password that you created when
you created the keystore in Step 1: Create the TDE Wallet.

• WITH BACKUP creates a backup of the keystore. You must use this option for
password-based and external keystores. Optionally, you can use the USING clause to
add a brief description of the backup. Enclose this description in single quotation
marks (' '). This identifier is appended to the named keystore file (for example,
ewallet_time-stamp_emp_key_backup.p12). Follow the file naming conventions that
your operating system uses.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
FORCE KEYSTORE
IDENTIFIED BY keystore_password 
WITH BACKUP USING 'emp_key_backup';

keystore altered.

Related Topics

• Step 2: Open the TDE Wallet
Depending on the type of TDE wallet you create, you must manually open the wallet
before you can use it.

• Step 2: Open the Connection to Oracle Key Vault
After you have configured the database to use Oracle Key Vault for TDE key
management, you must open the connection to Oracle Key Vault before you can use it.

7.2.3.5 Changing the TDE Master Encryption Key for a Tablespace
You can use the ENCRYPT and REKEY clauses of the ALTER TABLESPACE statement to encrypt a
tablespace.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been
granted administrative privileges.

Chapter 7
Managing the TDE Master Encryption Key

7-35



2. Ensure that the tablespace open in read-write mode.

You can query the STATUS column of the V$INSTANCE dynamic view to find if a
database is open and the OPEN_MODE column of the V$DATABASE view to find if it in
read-write mode.

3. If necessary, open the database in read-write mode.

ALTER DATABASE OPEN READ WRITE;
4. Run the ALTER TABLESPACE SQL statement to encrypt the tablespace.

If the tablespace has not yet been encrypted, then use the ENCRYPT clause:

ALTER TABLESPACE encrypt_ts ENCRYPTION USING 'AES256' ENCRYPT;

To change the encryption of the SYSTEM, SYSAUX, or UNDO tablespace, you must
rekey the tablespace online. Use the ONLINE and REKEY clauses. For example, to
change the encryption algorithm of the SYSTEM tablespace:

ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE USING 'AES256' REKEY;

7.2.4 Exporting and Importing the TDE Master Encryption Key
You can export and import the TDE master encryption key in different ways.

• About Exporting and Importing the TDE Master Encryption Key
Oracle Database features such as transportable tablespaces and Oracle Data
Pump move data that is possibly encrypted between databases.

• About Exporting TDE Master Encryption Keys
You can use ADMINISTER KEY MANAGEMENT EXPORT to export TDE master
encryption keys from a keystore, and then import them into another keystore.

• Exporting a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement with the EXPORT [ENCRYPTION] KEYS
WITH SECRET clause exports a TDE master encryption key.

• Example: Exporting a TDE Master Encryption Key by Using a Subquery
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export
a TDE master encryption key by using a subquery.

• Example: Exporting a List of TDE Master Encryption Key Identifiers to a File
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET
statement can export a list of TDE master encryption key identifiers to a file.

• Example: Exporting All TDE Master Encryption Keys of the Database
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS SQL statement can
export all TDE master encryption keys of a database.

• About Importing TDE Master Encryption Keys
The ADMINISTER KEY MANAGEMENT IMPORT statement can import exported TDE
master encryption keys from a key export file into a target keystore.

• Importing a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS
WITH SECRET clause can import a TDE master encryption key.

• Example: Importing a TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT IMPORT KEYS SQL statement to
import a TDE master encryption key.

Chapter 7
Managing the TDE Master Encryption Key

7-36



• How Keystore Merge Differs from TDE Master Encryption Key Export or Import
The keystore merge operation differs from the TDE master encryption key export and
import operations.

7.2.4.1 About Exporting and Importing the TDE Master Encryption Key
Oracle Database features such as transportable tablespaces and Oracle Data Pump move
data that is possibly encrypted between databases.

These are some common scenarios in which you can choose to export and import TDE
master encryption keys to move them between source and target keystores. For Data Guard
(Logical Standby), you must copy the keystore that is in the primary database to the standby
database. Instead of merging the primary database keystore with the standby database, you
can export the TDE master encryption key that is in use and then import it to the standby
database. Moving transportable tablespaces that are encrypted between databases requires
that you export the TDE master encryption key at the source database and then import it into
the target database.

7.2.4.2 About Exporting TDE Master Encryption Keys
You can use ADMINISTER KEY MANAGEMENT EXPORT to export TDE master encryption keys
from a keystore, and then import them into another keystore.

A TDE master encryption key is exported together with its key identifier and key attributes.
The exported keys are protected with a password (secret) in the export file.

You can specify the TDE master encryption keys to be exported by using the WITH
IDENTIFIER clause of the ADMINSITER KEY MANAGENT EXPORT statement. To export the TDE
master encryption keys, you can either specify their key identifiers as a comma-separated
list, or you can specify a query that enumerates their key identifiers. Be aware that Oracle
Database runs the query determining the key identifiers within the current user's rights and
not with definer's rights.

If you omit the WITH IDENTIFER clause, then all of the TDE master encryption keys of the
database are exported.

Related Topics

• Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT EXPORT
can export or import master encryption keys for a PDB.

7.2.4.3 Exporting a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement with the EXPORT [ENCRYPTION] KEYS WITH
SECRET clause exports a TDE master encryption key.

• Export the TDE master encryption keys by using the following syntax:

ADMINISTER KEY MANAGEMENT EXPORT [ENCRYPTION] KEYS 
WITH SECRET "export_secret" 
TO 'file_path' 
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH IDENTIFIER IN 'key_id1', 'key_id2', 'key_idn' | (SQL_query)];

In this specification:

Chapter 7
Managing the TDE Master Encryption Key

7-37



– export_secret is a password that you can specify to encrypt the export the
file that contains the exported keys. Enclose this secret in double quotation
marks (" "), or you can omit the quotation marks if the secret has no spaces.

– file_path is the complete path and name of the file to which the keys must be
exported. Enclose this path in single quotation marks (' '). You can export to
regular file systems only.

– FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

– IDENTIFIED BY can be one of the following settings:

* EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

* TDE_wallet_password is the password of the keystore containing the keys.

– key_id1, key_id2, key_idn is a string of one or more TDE master encryption
key identifiers for the TDE master encryption key being exported. Separate
each key identifier with a comma and enclose each of these key identifiers in
single quotation marks (' '). To find a list of TDE master encryption key
identifiers, query the KEY_ID column of the V$ENCRYPTION_KEYS dynamic view.

– SQL_query is a query that fetches a list of the TDE master encryption key
identifiers. It should return only one column which contains the TDE master
encryption key identifiers. This query is run with current user rights.

7.2.4.4 Example: Exporting a TDE Master Encryption Key by Using a Subquery
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export a
TDE master encryption key by using a subquery.

Example 7-2 shows how to export TDE master encryption keys whose identifiers are
fetched by a query to a file called export.exp. The TDE master encryption keys in the
file are encrypted using the secret my_secret. The SELECT statement finds the
identifiers for the TDE master encryption keys to be exported.

Example 7-1    Exporting a List of TDE Master Encryption Key Identifiers to a File

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS 
WITH SECRET "my_secret" 
TO '/TDE/export.exp' 
FORCE KEYSTORE
IDENTIFIED BY password 
WITH IDENTIFIER IN 'AdoxnJ0uH08cv7xkz83ovwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAA',
'AW5z3CoyKE/yv3cNT5CWCXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA';

keystore altered.

7.2.4.5 Example: Exporting a List of TDE Master Encryption Key Identifiers to a
File

The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET statement
can export a list of TDE master encryption key identifiers to a file.

Example 7-1 shows how to export TDE master encryption keys by specifying their
identifiers as a list, to a file called export.exp. TDE master encryption keys in the file

Chapter 7
Managing the TDE Master Encryption Key

7-38



are encrypted using the secret my_secret. The identifiers of the TDE master encryption key
to be exported are provided as a comma-separated list.

Example 7-2    Exporting TDE Master Encryption Key Identifiers by Using a Subquery

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS 
WITH SECRET "my_secret" TO '/etc/TDE/export.exp' 
FORCE KEYSTORE
IDENTIFIED BY password 
WITH IDENTIFIER IN (SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM <3);

keystore altered.

7.2.4.6 Example: Exporting All TDE Master Encryption Keys of the Database
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS SQL statement can export all
TDE master encryption keys of a database.

Example 7-3 shows how to export all of the TDE master encryption keys of the database to a
file called export.exp. The TDE master encryption keys in the file are encrypted using the
secret my_secret.

Example 7-3    Exporting All of the TDE Master Encryption Keys of the Database

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS 
WITH SECRET "my_secret" TO '/etc/TDE/export.exp' 
FORCE KEYSTORE
IDENTIFIED BY password;

keystore altered.

7.2.4.7 About Importing TDE Master Encryption Keys
The ADMINISTER KEY MANAGEMENT IMPORT statement can import exported TDE master
encryption keys from a key export file into a target keystore.

You cannot re-import TDE master encryption keys that have already been imported.

Related Topics

• Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT EXPORT
can export or import master encryption keys for a PDB.

7.2.4.8 Importing a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS WITH
SECRET clause can import a TDE master encryption key.

• Use the following syntax to import a TDE master encryption key:

ADMINISTER KEY MANAGEMENT IMPORT [ENCRYPTION] KEYS 
WITH SECRET "import_secret"  
FROM 'file_name' 
[FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

Chapter 7
Managing the TDE Master Encryption Key

7-39



– import_secret is the same password that was used to encrypt the keys
during the export operation. Enclose this secret in double quotation marks ("
"), or you can omit the quotation marks if the secret has no spaces.

– file_name is the complete path and name of the file from which the keys need
to be imported. Enclose this setting in single quotation marks (' ').

– FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

– IDENTIFIED BY can be one of the following settings:

* EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

* TDE_wallet_password is the password of the TDE wallet where the keys
are being imported.

– WITH BACKUP must be used in case the target keystore was not backed up
before the import operation. backup_identifier is an optional string that you
can provide to identify the keystore backup. Enclose this setting in single
quotation marks (' ').

7.2.4.9 Example: Importing a TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT IMPORT KEYS SQL statement to import
a TDE master encryption key.

Example 7-4 shows how to import the TDE master encryption key identifiers that are
stored in the file export.exp and encrypted with the secret my_secret.

Example 7-4    Importing TDE Master Encryption Key Identifiers from an Export
File

ADMINISTER KEY MANAGEMENT IMPORT KEYS 
WITH SECRET "my_secret" 
FROM '/etc/TDE/export.exp' 
FORCE KEYSTORE
IDENTIFIED BY password WITH BACKUP;

keystore altered.

7.2.4.10 How Keystore Merge Differs from TDE Master Encryption Key Export
or Import

The keystore merge operation differs from the TDE master encryption key export and
import operations.

Even though both the ADMINISTER KEY MANAGEMENT MERGE statement and the
ADMINISTER KEY MANAGEMENT EXPORT and IMPORT statements eventually move the
TDE master encryption keys from one keystore to the next, there are differences in
how these two statements function.

• The MERGE statement merges two keystores whereas the EXPORT and IMPORT
statements export the keys to a file or import the keys from a file. The keystore is
different from the export file, and the two cannot be used interchangeably. The
export file is not a keystore and cannot be configured to be used with a database

Chapter 7
Managing the TDE Master Encryption Key

7-40



as a keystore. Similarly, the IMPORT statement cannot extract the TDE master encryption
keys from the keystore.

• The MERGE statement merges all of the TDE master encryption keys of the specified
keystores where as the EXPORT and IMPORT statements can be selective.

• The EXPORT and IMPORT statements require the user to provide both a location (filepath)
and the file name of the export file, whereas the MERGE statement only takes in the
location of the keystores.

• The file name of the keystores is fixed and is determined by the MERGE operation and can
be either ewallet.p12 or cwallet.sso. The file names for the export files used in the
EXPORT the IMPORT statements are specified by the user.

• The keystores on Automatic Storage Management (ASM) disk groups or regular file
systems can be merged with MERGE statements. The export files used in the EXPORT and
the IMPORT statements can only be a regular operating system file and cannot be located
on an ASM disk group.

• The keystores merged using the MERGE statement do not need to be configured or in use
with the database. The EXPORT statement can only export the keys from a keystore that is
configured and in use with the database and is also open when the export is done. The
IMPORT statement can only import the keys into a keystore that is open, configured, and in
use with the database.

• The MERGE statement never modifies the metadata associated with the TDE master
encryption keys. The EXPORT and IMPORT operations can modify the metadata of the TDE
master encryption keys when required, such as during a PDB plug operation.

7.2.5 Converting from ENCRYPTION_WALLET_LOCATION to
WALLET_ROOT and TDE_CONFIGURATION

You can convert the wallet location from using the sqlnet.ora ENCRYPTION_WALLET_LOCATION
parameter to using the WALLET_ROOT and TDE_CONFIGURATION parameters instead.

The conversion applies to either file systems or Oracle Automatic Storage Management
(Oracle ASM) configurations. This procedure assumes that you have already set the
WALLET_ROOT static initialization parameter and created a WALLET_ROOT/tde directory.

1. Copy all the wallets to the WALLET_ROOT/tde directory.

2. Restart the database.

3. Back up the database.

4. Connect to the CDB root as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

5. Set the TDE_CONFIGURATION dynamic initialization parameter to FILE.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE" SCOPE = 
"BOTH" SID = "*";

6. Rename the wallets from where you copied them.

7. Remove the old ENCRYPTION_WALLET_LOCATION configuration setting from the sqlnet.ora
file.

Chapter 7
Managing the TDE Master Encryption Key

7-41



7.2.6 Management of TDE Master Encryption Keys Using Oracle Key
Vault

You can use Oracle Key Vault to manage and share TDE master encryption keys
across an enterprise.

Oracle Key Vault securely stores the keys in a central repository, along with other
security objects such as credential files and Java keystores, and enables you to share
these objects with other TDE-enabled databases.

Related Topics

• Migration of Keystores to and from Oracle Key Vault
You can use Oracle Key Vault to migrate both TDE wallets and external keystores
to and from Oracle Key Vault.

• Oracle Key Vault Administrator's Guide

7.3 Transparent Data Encryption Data Dynamic and Data
Dictionary Views

You can query a set of dynamic and data dictionary views to find more information
about Transparent Data Encryption (TDE) data.

Table 7-2 describes these dynamic and data dictionary views.

Table 7-2    Transparent Data Encryption Related Views

View Description

ALL_ENCRYPTED_COLUMNS Displays encryption information about encrypted columns in
the tables accessible to the current user

DICTIONARY_CREDENTIALS_E
NCRYPT

Indicates if credential data in the SYS.LINK$ and
SYS.SCHEDULER$_CREDENTIAL system tables is encrypted

DBA_ENCRYPTED_COLUMNS Displays encryption information for all of the encrypted
columns in the database

USER_ENCRYPTED_COLUMNS Displays encryption information for encrypted table columns
in the current user's schema

DBA_TABLESPACE_USAGE_MET
RICS

Describes tablespace usage metrics for all types of
tablespaces, including permanent, temporary, and undo
tablespaces

V$CLIENT_SECRETS Lists the properties of the strings (secrets) that were stored in
the keystore for various features (clients).

In a multitenant environment, when you query this view in a
PDB, then it displays information about keys that were created
or activated for the current PDB. If you query this view in the
root, then it displays this information about keys for all of the
PDBs.

V$DATABASE_KEY_INFO Displays information about the default encryption key that is
used for the current database. The default is AES256.

V$ENCRYPTED_TABLESPACES Displays information about the tablespaces that are encrypted

Chapter 7
Transparent Data Encryption Data Dynamic and Data Dictionary Views

7-42



Table 7-2    (Cont.) Transparent Data Encryption Related Views

View Description

V$ENCRYPTION_KEYS When used with keys that have been rekeyed with the
ADMINISTER KEY MANAGEMENT statement, displays
information about the TDE master encryption keys.

In a multitenant environment, when you query this view in a
PDB, it displays information about keys that were created or
activated for the current PDB. If you query this view in the
root, it displays this information about keys for all of the PDBs.

V$ENCRYPTION_WALLET Displays information on the status of the keystore and the
keystore location for TDE

V$RMAN_ENCRYPTION_ALGORI
THMS

Displays supported encryption algorithms in the current PDB
and is used by Oracle Recovery Manager (Oracle RMAN) to
validate user-requested algorithms

Related Topics

• Oracle Database Reference

Chapter 7
Transparent Data Encryption Data Dynamic and Data Dictionary Views

7-43



8
Administering United Mode

Administering united mode means managing the keystores, master encryption keys, and
general Transparent Database Encryption (TDE) functionality.

• Administering Keystores and Master Encryption Keys in United Mode
After you configure a keystore and master encryption key for use in united mode, you can
perform tasks such as rekeying TDE master encryption keys.

• Administering Transparent Data Encryption in United Mode
You can perform general administrative tasks with Transparent Data Encryption in united
mode.

8.1 Administering Keystores and Master Encryption Keys in
United Mode

After you configure a keystore and master encryption key for use in united mode, you can
perform tasks such as rekeying TDE master encryption keys.

• Changing the Keystore Password in United Mode
You can change the password of either a TDE wallet or an external keystore only in the
CDB root.

• Backing Up a Password-Protected TDE Wallet in United Mode
The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a
password-protected TDE wallet.

• Closing Keystores in United Mode
You can close both TDE wallet and external keystores in united mode, unless the system
tablespace is encrypted.

• Creating TDE Master Encryption Keys for Later Use in United Mode
You can create a TDE master encryption key that can be activated at a later date.

• Example: Creating a Master Encryption Key in All PDBs
You can use the ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG statement to
create a TDE master encryption key in all PDBs.

• Activating TDE Master Encryption Keys in United Mode
After you activate a TDE master encryption key, it can be used.

• Creating User-Defined TDE Master Encryption Keys
You can create a user-defined TDE master encryption key outside the database by
generating a TDE master encryption key ID.

• Rekeying the TDE Master Encryption Key in United Mode
You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause to
rekey a TDE master encryption key.

• Finding the TDE Master Encryption Key That Is in Use in United Mode
A TDE master encryption key that is in use is the key that was activated most recently for
the database.

8-1



• Creating a Custom Attribute Tag in United Mode
To create a custom attribute tag in united mode, you must use the SET TAG clause
of the ADMINISTER KEY MANAGEMENT statement.

• Moving TDE Master Encryption Keys into a New Keystore in United Mode
You can move an existing TDE master encryption key into a new keystore from an
existing password-protected keystore.

• Automatically Removing Inactive TDE Master Encryption Keys in United Mode
In united mode, the REMOVE_INACTIVE_STANDBY_TDE_MASTER_KEY initialization
parameter can configure the automatic removal of inactive TDE master encryption
keys.

• Isolating a Pluggable Database Keystore
Isolating a PDB keystore moves the master encryption key from the CDB root
keystore into an isolated mode keystore in the a PDB.

8.1.1 Changing the Keystore Password in United Mode
You can change the password of either a TDE wallet or an external keystore only in
the CDB root.

• Changing the Password-Protected TDE Wallet Password in United Mode
To change the password of a password-protected TDE wallet in united mode, you
must use the ADMINISTER KEY MANAGEMENT statement in the CDB root.

• Changing the Password of an External Keystore in United Mode
To change the password of an external keystore, you must close the external
keystore and then change the password from the external keystore management
interface.

8.1.1.1 Changing the Password-Protected TDE Wallet Password in United
Mode

To change the password of a password-protected TDE wallet in united mode, you
must use the ADMINISTER KEY MANAGEMENT statement in the CDB root.

You can change this password at any time, as per the security policies, compliance
guidelines, and other security requirements of your site. As part of the command to
change the password, you will be forced to specify the WITH BACKUP clause, and thus
forced to make a backup of the current TDE wallet. During the password change
operation, Transparent Data Encryption operations such as encryption and decryption
will continue to work normally. You can change this password at any time. You should
change this password if you think it was compromised.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Use the following syntax to change the password for the keystore:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD 
[FORCE KEYSTORE] 
IDENTIFIED BY
old_TDE_wallet_password SET new_TDE_wallet_password 
WITH BACKUP [USING 'backup_identifier'];

In this specification:

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-2



• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation if the TDE wallet is closed, if an auto-login TDE wallet is configured and is
currently open, or if a password-protected TDE wallet is configured and is currently
closed.

• old_TDE_wallet_password is the current password that you want to change.

• new_TDE_wallet_password is the new password.

• You do not need to include the CONTAINER clause because the password can only be
changed locally, in the CDB root.

The following example creates a backup of the keystore and then changes the password:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD 
IDENTIFIED BY old_password SET new_password 
WITH BACKUP USING 'before_password_change';

keystore altered.

This example performs the same operation but uses the FORCE KEYSTORE clause in case
the auto-login TDE wallet is in use or the password-protected TDE wallet is closed.

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
FORCE KEYSTORE 
IDENTIFIED BY old_password SET new_password 
WITH BACKUP USING 'before_password_change';

keystore altered.

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password,
for both TDE wallets and external keystores.

8.1.1.2 Changing the Password of an External Keystore in United Mode
To change the password of an external keystore, you must close the external keystore and
then change the password from the external keystore management interface.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Close the external keystore.

• Close the connection to the external key manager:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
IDENTIFIED BY "external_key_manager_password"|EXTERNAL STORE 
CONTAINER = ALL;

• If the keystore was auto-opened by the database, then close the connection to the
external key manager as follows:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
CONTAINER = ALL;

3. Change the Oracle Key Vault password.

WALLET_ROOT/okv/bin/okvutil changepwd -t wallet -l WALLET_ROOT/okv/ssl

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-3



4. Update the Oracle Key Vault password that enables an auto-open Oracle Key
Vault keystore to use the new password that you set in step 3.

ADMINISTER KEY MANAGEMENT UPDATE SECRET 
'new_Oracle_Key_Vault_password' 
FOR CLIENT 'OKV-PASSWORD' TO [LOCAL] AUTO-LOGIN KEYSTORE 
'WALLET_ROOT/tde';

5. Update the Oracle Key Vault password that enables IDENTIFIED BY EXTERNAL
STORE (IBES) to the new password that you set in step 3.

ADMINISTER KEY MANAGEMENT UPDATE SECRET 
'new_Oracle_Key_Vault_password' 
FOR CLIENT 'OKV-PASSWORD' TO [LOCAL] AUTO-LOGIN KEYSTORE 
'WALLET_ROOT/tde_seps';

6. Open the connection to Oracle Key Vault.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY EXTERNAL STORE;

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore
password, for both TDE wallets and external keystores.

8.1.2 Backing Up a Password-Protected TDE Wallet in United Mode
The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up
a password-protected TDE wallet.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Back up the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE 
[USING 'backup_identifier'] 
[FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password] 
[TO 'keystore_location'];

In this specification:

• USING backup_identifier is an optional string that you can provide to identify
the backup. Enclose this identifier in single quotation marks (' '). This
identifier is appended to the named keystore file (for example, ewallet_time-
stamp_emp_key_backup.p12).

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• IDENTIFIED BY is required for the BACKUP KEYSTORE operation on a password-
protected keystore because although the backup is simply a copy of the
existing keystore, the status of the TDE master encryption key in the

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-4



password-protected keystore must be set to BACKED UP and for this change the
keystore password is required.

• keystore_location is the path at which the backup keystore is stored. This setting is
restricted to the PDB when the PDB lockdown profile EXTERNAL_FILE_ACCESS setting
is blocked in the PDB or when the PATH_PREFIX variable was not set when the PDB
was created. If you do not specify the keystore_location, then the backup is
created in the same directory as the original keystore. Enclose this location in single
quotation marks (' ').

• You do not need to include the CONTAINER clause because the keystore can only be
backup up locally, in the CDB root.

The following example backs up a TDE wallet in the same location as the source
keystore.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE 
USING 'hr.emp_keystore' 
FORCE KEYSTORE 
IDENTIFIED BY 
TDE_wallet_password ;

keystore altered.

In the following version, the password for the keystore is external, so the EXTERNAL STORE
clause is used.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE 
USING 'hr.emp_keystore' 
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE;

After you run this statement, an ewallet_identifier.p12 file (for example,
ewallet_time-stamp_hr.emp_keystore.p12) appears in the TDE wallet backup location.

Related Topics

• Backing Up Password-Protected TDE Wallets
When you back up a password-protected TDE wallet, you can create a backup identifier
string to describe the backup type.

8.1.3 Closing Keystores in United Mode
You can close both TDE wallet and external keystores in united mode, unless the system
tablespace is encrypted.

• About Closing Keystores
After you open a keystore, it remains open until you shut down the database instance.

• Closing a TDE Wallet in United Mode
You can close password-protected TDE wallets, auto-login TDE wallets, and local auto-
login TDE wallets in united mode.

• Closing an External Keystore in United Mode
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement
with the SET KEYSTORE CLOSE clause.

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-5



8.1.3.1 About Closing Keystores
After you open a keystore, it remains open until you shut down the database instance.

When you restart the database instance, then auto-login and local auto-login TDE
wallets automatically open when required (that is, when the TDE master encryption
key must be accessed). However, TDE wallet password-based and external keystores
do not automatically open. You must manually open them again before you can use
them.

When you close a TDE wallet or an external keystore, you disable all of the encryption
and decryption operations on the database. Hence, a database user or application
cannot perform any operation involving encrypted data until the TDE wallet or keystore
is reopened.

When you re-open a TDE wallet keystore after closing it, its contents are reloaded
back into the database. Thus, if the contents had been modified (such as during a
migration), the database will have the latest TDE wallet or keystore contents.

When you run the ALTER PLUGGABLE DATABASE CLOSE statement or the SHUTDOWN
command for a PDB, a keystore in the OPEN state for the PDB remains open until a
user who has the SYSKM administrative privilege manually closes it with the ADMINISTER
KEY MANAGEMENT SET KEYSTORE CLOSE statement.

You can check if a TDE wallet or keystore is closed by querying the STATUS column of
the V$ENCRYPTION_WALLET view.

The following data operations will fail if the TDE wallet or keystore is not accessible:

• SELECT data from an encrypted column

• INSERT data into on an encrypted column

• CREATE a table with encrypted columns

• CREATE an encrypted tablespace

8.1.3.2 Closing a TDE Wallet in United Mode
You can close password-protected TDE wallets, auto-login TDE wallets, and local
auto-login TDE wallets in united mode.

In the case of an auto-login TDE wallet, which opens automatically when it is
accessed, you must first move it to a new location where it cannot be automatically
opened, then you must manually close it. You must do this if you are changing your
configuration from an auto-login TDE wallet to a password-protected TDE wallet: you
change the configuration to stop using the auto-login TDE wallet (by moving the auto-
login TDE wallet to another location where it cannot be automatically opened), and
then closing the auto-login TDE wallet.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Use the ADMINISTER KEY MANAGEMENT statement to close the TDE wallet.

• For a password-protected TDE wallet, use the following syntax if you are in the
CDB root:

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-6



ADMINISTER KEY MANAGEMENT SET | FORCE KEYSTORE CLOSE 
[IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password]]
[CONTAINER = ALL | CURRENT];

Use the SET clause to close the TDE wallet without force. If there is a dependent TDE
wallet that is open (for example, an isolated mode PDB TDE wallet and you are trying
to close the CDB root TDE wallet), then an ORA-46692 cannot close wallet error
appears. If this happens, then use the FORCE clause instead of SET to temporarily
close the dependent TDE wallet during the close operation. The STATUS column of
the V$ENCRYPTION_WALLET view shows if a TDE wallet is open.

If you are in the united mode PDB, then either omit the CONTAINER clause or set it to
CURRENT.

• For an auto-login or local auto-login TDE wallet, use this syntax if you are in the CDB
root:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
[CONTAINER =  ALL | CURRENT];

Closing a TDE wallet disables all of the encryption and decryption operations. Any attempt to
encrypt or decrypt data or access encrypted data results in an error.

8.1.3.3 Closing an External Keystore in United Mode
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement with
the SET KEYSTORE CLOSE clause.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Use the ADMINISTER KEY MANAGEMENT statement to close the external keystore.

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
IDENTIFIED BY [EXTERNAL STORE | "external_key_manager_password"]
[CONTAINER = ALL | CURRENT];

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
IDENTIFIED BY "external_key_manager_password"
CONTAINER = ALL;

If an ORA-46692 cannot close wallet error appears, then check if any isolated mode
keystores are open. To find the status of a keystore, query the STATUS column of the
V$ENCRYPTION_WALLET view.

Closing a keystore disables all of the encryption and decryption operations. Any attempt to
encrypt or decrypt data or access encrypted data results in an error.

8.1.4 Creating TDE Master Encryption Keys for Later Use in United Mode
You can create a TDE master encryption key that can be activated at a later date.

• About Creating a TDE Master Encryption Key for Later Use
The CREATE KEY clause of the ADMINISTER KEY MANAGEMENT statement can create a TDE
master encryption key to be activated at a later date.

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-7



• Creating a TDE Master Encryption Key for Later Use in United Mode
A TDE wallet must be opened before you can create a TDE master encryption key
for use later on in united mode.

8.1.4.1 About Creating a TDE Master Encryption Key for Later Use
The CREATE KEY clause of the ADMINISTER KEY MANAGEMENT statement can create a
TDE master encryption key to be activated at a later date.

You then can activate this key on the same database or export it to another database
and activate it there.

This method of TDE master encryption key creation is useful in a multitenant
environment when you must re-create the TDE master encryption keys. The CREATE
KEY clause enables you to use a single SQL statement to generate a new TDE master
encryption key for all of the PDBs within a multitenant environment. The creation time
of the new TDE master encryption key is later than the activation of the TDE master
encryption key that is currently in use. Hence, the creation time can serve as a
reminder to all of the PDBs to activate the most recently created TDE master
encryption key as soon as possible.

8.1.4.2 Creating a TDE Master Encryption Key for Later Use in United Mode
A TDE wallet must be opened before you can create a TDE master encryption key for
use later on in united mode.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Create the TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEY [USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE | keystore_password
WITH BACKUP [USING 'backup_identifier']
[CONTAINER = ALL | CURRENT];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• tag is the associated attribute and information that you define. Enclose this
setting in single quotation marks (' ').

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– TDE_wallet_password is the mandatory TDE wallet password that you
used when you created the original TDE wallet. It is case sensitive.

• WITH BACKUP backs up the TDE master encryption key in the same location as
the key, as identified by the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view. To find the key locations for all of the database
instances, query the GV$ENCRYPTION_WALLET view.

You must back up password-based TDE wallets. You do not need to back up
auto-login or local auto-login TDE wallets. Optionally, include the USING

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-8



backup_identifier clause to add a description of the backup. Enclose
backup_identifier in single quotation marks (' ').

• CONTAINER: In the CDB root, set CONTAINER to either ALL or CURRENT. In a PDB, set it
to CURRENT. In both cases, omitting CONTAINER defaults to CURRENT.

For example:

ADMINISTER KEY MANAGEMENT CREATE KEY 
FORCE KEYSTORE 
IDENTIFIED BY keystore_password
WITH BACKUP
CONTAINER = CURRENT;

3. If necessary, activate the TDE master encryption key.

a. Find the key ID.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS; 

KEY_ID
----------------------------------------------------
AWsHwVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

b. Use this key ID to activate the key.

ADMINISTER KEY MANAGEMENT USE KEY 
'AWsHwVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' 
USING TAG 'quarter:second;description:Activate Key on standby' 
IDENTIFIED BY password 
WITH BACKUP;

8.1.5 Example: Creating a Master Encryption Key in All PDBs
You can use the ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG statement to create a
TDE master encryption key in all PDBs.

Example 8-1 shows how to create a master encryption key in all of the PDBs in a multitenant
environment. It uses the FORCE KEYSTORE clause in the event that the auto-login keystore in
the CDB root is open. The password is stored externally, so the EXTERNAL STORE setting is
used for the IDENTIFIED BY clause. After you run this statement, a master encryption key is
created in each PDB. You can find the identifiers for these keys as follows:

• Log in to the PDB and then query the TAG column of the V$ENCRYPTION_KEYS view.

• Log in to the CDB root and then query the INST_ID and TAG columns of the
GV$ENCRYPTION_KEYS view.

You also can check the CREATION_TIME column of these views to find the most recently
created key, which would be the key that you created from this statement. After you create
the keys, you can individually activate the keys in each of the PDBs.

Example 8-1    Creating a Master Encryption Key in All of the PDBs

ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG 
'scope:all pdbs;description:Create Key for ALL PDBS' 
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE 
WITH BACKUP
CONTAINER = ALL;
 
keystore altered.

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-9



8.1.6 Activating TDE Master Encryption Keys in United Mode
After you activate a TDE master encryption key, it can be used.

• About Activating TDE Master Encryption Keys
You can activate a previously created or imported TDE master encryption key by
using the USE KEY clause of ADMINISTER KEY MANAGEMENT.

• Activating a TDE Master Encryption Key in United Mode
To activate a TDE master encryption key in united mode, you must open the
keystore and use ADMINISTER KEY MANAGEMENT with the USE KEY clause.

• Example: Activating a TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT SQL statement to activate a
TDE master encryption key.

8.1.6.1 About Activating TDE Master Encryption Keys
You can activate a previously created or imported TDE master encryption key by using
the USE KEY clause of ADMINISTER KEY MANAGEMENT.

After you activate the master encryption key, it is used to encrypt all data encryption
keys in your database. The key will be used to protect all of the column keys and all of
the tablespace encryption keys. If you have deployed a logical standby database, then
you must export the TDE master encryption keys after recreating them, and then
import them into the standby database. You can have the TDE master encryption key
in use on both the primary and the standby databases. To do so, you must activate the
TDE master encryption key after you import it to the logical standby database.

8.1.6.2 Activating a TDE Master Encryption Key in United Mode
To activate a TDE master encryption key in united mode, you must open the keystore
and use ADMINISTER KEY MANAGEMENT with the USE KEY clause.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Query the ORIGIN and KEY_ID columns of the V$ENCRYPTION_KEYS view to find the
key identifier.

For example:

SELECT ORIGIN, KEY_ID FROM V$ENCRYPTION_KEYS; 

ORIGIN  KEY_ID
------  ----------------------------------------------
LOCAL   ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. Use this key identifier to activate the TDE master encryption key by using the
following syntax:

ADMINISTER KEY MANAGEMENT USE KEY 'key_identifier_from_V$ENCRYPTION_KEYS' 
[USING TAG 'tag'] 
[FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
WITH BACKUP [USING 'backup_identifier'];

In this specification:

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-10



• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• WITH BACKUP backs up the wallet in the same location as original wallet, as identified
by WALLET_ROOT/tde. To find the key locations for all of the database instances, query
the V$ENCRYPTION_WALLET or GV$ENCRYPTION_WALLET view.

The WITH BACKUP clause is mandatory for all ADMINISTER KEY MANAGEMENT
statements that modify the wallet. Optionally, include the USING backup_identifier
clause to add a description of the backup. Enclose backup_identifier in single
quotation marks (' ').

For example:

ADMINISTER KEY MANAGEMENT USE KEY 
'ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' 
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE
WITH BACKUP;

8.1.6.3 Example: Activating a TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT SQL statement to activate a TDE master
encryption key.

Example 8-2 shows how to activate a previously imported TDE master encryption key and
then update its tag. This key is activated with the current database time stamp and time zone.

Example 8-2    Activating a TDE Master Encryption Key

ADMINISTER KEY MANAGEMENT USE KEY 
'ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' 
USING TAG 'quarter:second;description:Activate Key on standby' 
IDENTIFIED BY password WITH BACKUP;

keystore altered.

In this version of the same operation, the FORCE KEYSTORE clause is added in the event that
the auto-login keystore is in use, or if the keystore is closed. The password of the keystore is
stored externally, so the EXTERNAL STORE setting is used for the IDENTIFIED BY clause.

ADMINISTER KEY MANAGEMENT USE KEY 
'ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' 
USING TAG 'quarter:second;description:Activate Key on standby' 
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE WITH BACKUP;

keystore altered.

8.1.7 Creating User-Defined TDE Master Encryption Keys
You can create a user-defined TDE master encryption key outside the database by
generating a TDE master encryption key ID.

• About User-Defined TDE Master Encryption Keys
A TDE master encryption key that is outside the database has its own user-generated ID,
which tracks the use of the TDE master encryption key.

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-11



• Creating a User-Defined TDE Master Encryption Key in United Mode
To create a user-defined TDE master encryption key, use the ADMINISTER KEY
MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

8.1.7.1 About User-Defined TDE Master Encryption Keys
A TDE master encryption key that is outside the database has its own user-generated
ID, which tracks the use of the TDE master encryption key.

You can use the ADMINISTER KEY MANAGEMENT to create and set user-defined TDE
master encryption key IDs. After you generate the TDE master encryption key, you can
bring this key into the database. Optionally, you can specify the TDE master encryption
key ID in various ADMINISTER KEY MANAGEMENT statements.

This type of configuration benefits Oracle Fusion SaaS Cloud environments in that it
enables you to generate a TDE master encryption key this complies with your site’s
requirements. This key that you generate supports the current encryption algorithms
and can be used for TDE wallets.

After you generate the TDE master encryption key ID, you can encrypt your data as
you normally would.

The TDE master encryption key and its corresponding ID will not be captured by any
auditing logs.

8.1.7.2 Creating a User-Defined TDE Master Encryption Key in United Mode
To create a user-defined TDE master encryption key, use the ADMINISTER KEY
MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Create the user-defined TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET | CREATE [ENCRYPTION] KEY
'mkid:mk | mk' 
[USING ALGORITHM 'algorithm'] 
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
WITH BACKUP [USING 'backup_identifier'];
[CONTAINER = CURRENT];

In this specification:

• SET | CREATE : Enter SET if you want to create the master and activate the
TDE master encryption key now, or enter CREATE if you want to create the key
for later use, without activating it yet. For SET KEY and USE KEY, you must be
connected to the database that is supposed to use that key (CDB root
container, united or isolated PDB). For CREATE KEY, you can be connected any
united PDB, or the CDB root container, or the specific isolated PDB that is
supposed to use that key later.

• mkid and mk:

– mkid, the TDE master encryption key ID, is an optional 16-byte hex-
encoded value that you can specify or have Oracle Database generate.

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-12



– mk, the TDE master encryption key, is a 32-byte hex-encoded value.

If you omit the mkid value but include the mk, then Oracle Database generates the
mkid for the mk.

• USING ALGORITHM: Specify one of the following supported algorithms:

– AES256
– ARIA256
If you omit the algorithm, then the default, AES256, is used.

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

The following example includes a user-created TDE master encryption key but no TDE
master encryption key ID, so that the TDE master encryption key is generated:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
'3D432109DF88967A541967062A6F4E460E892318E307F017BA048707B402493C' 
USING ALGORITHM 'ARIA256'
FORCE KEYSTORE
IDENTIFIED BY keystore_password WITH BACKUP;

The next example creates user-defined keys for both the master encryption ID and the
TDE master encryption key. It omits the algorithm specification, so the default algorithm
AES256 is used.

ADMINISTER KEY MANAGEMENT CREATE ENCRYPTION KEY 
'10203040506070801112131415161718:3D432109DF88967A541967062A6F4E460E892318E307F017B
A048707B402493C' 
IDENTIFIED BY keystore_password WITH BACKUP;

The next scenario, where TDE master encryption key and key-ID are generated outside
of the database, shows how to support separation of duties. A key administrator inserts
the key with a key_ID into the wallet by using the ADMINISTER KEY MANAGEMENT CREATE
[ENCRYPTION] KEY statement. Then, the key administrator sends the key_ID to the
database administrator, who then activates the key by using the ADMINISTER KEY
MANAGEMENT USE KEY clause.

a. Create the key-ID, converting characters to upper case. For example, using
OpenSSL:

$ openssl rand 16 | xxd -u -p
D20765EB721AF44D054B30FE87F8E49A

b. Create the TDE master encryption key. For example, using OpenSSL:

$ openssl rand -hex 32
5a089c8ea6ee21cba774f61e58d102665df4a979a34757836b3d066a3eb3db11

c. Create (but do not activate) a default AES256 master encryption key by inserting
both the random key-ID and the key itself, separated by a :, into the wallet.

ADMINISTER KEY MANAGEMENT CREATE ENCRYPTION KEY
'D20765EB721AF44D054B30FE87F8E49A:5a089c8ea6ee21cba774f61e58d102665df4a979a3475
7836b3d066a3eb3db11'
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
WITH BACKUP [USING 'backup_identifier'];

d. The database administrator can retrieve the BASE64 key-ID from the database with
the following SELECT statement:

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-13



SELECT ' ADMINISTER KEY MANAGEMENT USE KEY '''||KEY_ID||''' 
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR 
(SYS_EXTRACT_UTC (SYSTIMESTAMP), 
'YYYY-MM-DD HH24:MI:SS"Z"')||''' 
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE WITH BACKUP;'
AS "USE KEY COMMAND" FROM V$ENCRYPTION_KEYS WHERE TAG IS NULL;

Related Topics

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

8.1.8 Rekeying the TDE Master Encryption Key in United Mode
You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause to
rekey a TDE master encryption key.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. If you are rekeying the TDE master encryption key for a keystore that has auto
login enabled, then ensure that both the auto login keystore, identified by the .sso
file, and the encryption keystore, identified by the .p12 file, are present.

You can find the location of these files by querying the WRL_PARAMETER column of
the V$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the
database instances, query the GV$ENCRYPTION_WALLET view.

3. Rekey the TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY 
[FORCE KEYSTORE]
[USING TAG 'tag_name'] 
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
[WITH BACKUP [USING 'backup_identifier']]
[CONTAINER = ALL | CURRENT];

In this specification:

• tag is the associated attributes and information that you define. Enclose this
setting in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– keystore_password is the password that was created for this keystore.

• CONTAINER: In the CDB root, set CONTAINER to either ALL or CURRENT. In a PDB,
set it to CURRENT. In both cases, omitting CONTAINER defaults to CURRENT.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
FORCE KEYSTORE 
IDENTIFIED BY keystore_password 
WITH BACKUP USING 'emp_key_backup'

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-14



CONTAINER = CURRENT;

keystore altered.

Related Topics

• About Rekeying the TDE Master Encryption Key
Oracle Database uses a unified TDE Master Encryption Key for both TDE column
encryption and TDE tablespace encryption.

8.1.9 Finding the TDE Master Encryption Key That Is in Use in United
Mode

A TDE master encryption key that is in use is the key that was activated most recently for the
database.

In united mode, the TDE master encryption key in use of the PDB is the one that was
activated most recently for that PDB.

• To find the TDE master encryption key that is in use, query the V$ENCRYPTION_KEYS
dynamic view.

For example:

SELECT KEY_ID 
FROM V$ENCRYPTION_KEYS 
WHERE ACTIVATION_TIME = (SELECT MAX(ACTIVATION_TIME) 
       FROM V$ENCRYPTION_KEYS
       WHERE ACTIVATING_PDBID = SYS_CONTEXT('USERENV', 'CON_ID'));

8.1.10 Creating a Custom Attribute Tag in United Mode
To create a custom attribute tag in united mode, you must use the SET TAG clause of the
ADMINISTER KEY MANAGEMENT statement.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. If necessary, query the TAG column of the V$ENCRYPTION_KEY dynamic view to find a
listing of existing tags for the TDE master encryption keys.

When you create a new tag for a TDE master encryption key, it overwrites the existing
tag for that TDE master encryption key.

3. Create the custom attribute tag by using the following syntax:

ADMINISTER KEY MANAGEMENT SET TAG 'tag' 
FOR 'master_key_identifier' 
[FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
WITH BACKUP [USING 'backup_identifier'];

In this specification

• tag is the associated attributes or information that you define. Enclose this
information in single quotation marks (' ').

• master_key_identifier identifies the TDE master encryption key for which the tag
is set. To find a list of TDE master encryption key identifiers, query the KEY_ID column
of the V$ENCRYPTION_KEYS dynamic view.

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-15



• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– keystore_password is the password that was created for this keystore.

• backup_identifier defines the tag values. Enclose this setting in single
quotation marks (' ') and separate each value with a colon.

For example, to create a tag that uses two values, one to capture a specific
session ID and the second to capture a specific terminal ID:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
USING TAG 'sessionid=3205062574:terminal=xcvt' 
IDENTIFIED BY keystore_password 
WITH BACKUP;

keystore altered.

Both the session ID (3205062574) and terminal ID (xcvt) can derive their values by
using either the SYS_CONTEXT function with the USERENV namespace, or by using
the USERENV function.

Related Topics

• About Creating Custom Attribute Tags
Attribute tags enable you to monitor specific activities users perform, such as
accessing a particular terminal ID.

8.1.11 Moving TDE Master Encryption Keys into a New Keystore in
United Mode

You can move an existing TDE master encryption key into a new keystore from an
existing password-protected keystore.

• About Moving TDE Master Encryption Keys into a New Keystore
You can move an unused (and safely archived) TDE master encryption key into a
new keystore.

• Moving a TDE Master Encryption Key into a New Keystore in United Mode
In united mode, you can move an existing TDE master encryption key into a new
keystore from an existing password-based TDE wallet.

8.1.11.1 About Moving TDE Master Encryption Keys into a New Keystore
You can move an unused (and safely archived) TDE master encryption key into a new
keystore.

Use great caution when you decide to run ADMINISTER KEY MANAGEMENT MOVE KEYS.
Even though this statement will not move an active master encryption key, it can still
affect keys that are necessary for a range of database features. If you have deleted a
key, then the data that was encrypted by that key is rendered permanently
inaccessible (equivalent to deleting the data) for these features to be used. See

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-16



Related Topics at the end of this topic for more information about features that are affected by
deleted keystores.

Therefore, before you move the keystore, it is very important that you safely archive it. Delete
the keystore only after a period of time has passed, to ensure that the keystore is no longer
really useful.

To move a TDE master encryption key into a new keystore, you use the ADMINISTER KEY
MANAGEMENT MOVE KEYS statement. This statement does not move the active TDE master
encryption key (that is, the key that is currently in use at the time that ADMINISTER KEY
MANAGEMENT MOVE KEYS is issued) because the database is currently using it.

If you mistakenly use the ADMINISTER KEY MANAGEMENT MOVE KEYS statement instead of
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE when you are configuring a new TDE keystore
(for example, when you are changing the TDE keystore configuration from one where the
TDE wallet is located in the operating system's file system to one where the TDE wallet is
located in Oracle Automatic Storage Management (Oracle ASM)), then the following
symptoms may help you to identify the TDE misconfiguration that was introduced by the use
of the wrong key management command:

• When you open the TDE keystore that was the target of the earlier ADMINISTER KEY
MANAGEMENT MOVE KEYS operation, an ORA-28374: typed master key not found in
wallet error is seen, because the active TDE master encryption key was not moved to
that keystore.

• The value shown in the STATUS column of the V$ENCRYPTION_WALLET view is
OPEN_NO_MASTER_KEY after you open the new keystore. The OPEN_NO_MASTER_KEY status is
expected, because the new TDE keystore that was mistakenly populated by means of the
ADMINISTER KEY MANAGEMENT MOVE KEYS statement does not contain the active TDE
master encryption key.

Related Topics

• Dangers of Deleting TDE Wallets
Oracle strongly recommends that you do not delete TDE wallets.

• Features That Are Affected by Deleted Keystores
Some features can be adversely affected if a keystore is deleted and a TDE master
encryption key residing in that keystore is later needed.

8.1.11.2 Moving a TDE Master Encryption Key into a New Keystore in United Mode
In united mode, you can move an existing TDE master encryption key into a new keystore
from an existing password-based TDE wallet.

This feature enables you to delete unused keystores. Before you move the keystore, ensure
that it is safely archived. After you move the encryption key to a new keystore, and when you
are sure that the old keystore is no longer needed, you then can delete the old keystore.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Query the KEY_ID column of the V$ENCRYPTION_KEYS view to find the key identifier of the
keystore to which you want to move the keys.

For example:

SELECT CREATION_TIME, KEY_ID FROM V$ENCRYPTION_KEYS; 

CREATION TIME

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-17



----------------------------------------------------
23-SEP-19 08.55.12.956170 PM +00:00

KEY_ID
----------------------------------------------------
ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. Move the key into a new keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT 
MOVE [ENCRYPTION] KEYS
TO NEW KEYSTORE 'keystore_location1'
IDENTIFIED BY keystore1_password
FROM [FORCE] KEYSTORE
IDENTIFIED BY keystore_password
[WITH IDENTIFIER IN
{ 'key_identififier' [, 'key_identifier' ]... | ( subquery ) } ]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• keystore_location1 is the path to the wallet directory that will store the new
keystore .p12 file. By default, this directory is in $ORACLE_BASE/admin/
db_unique_name/wallet.

• keystore1_password is the password for the keystore from which the new
keystore is moved.

• FORCE temporarily opens the keystore for this operation.

• keystore_password is the password for the keystore from which the key is
moving.

• subquery can be used to find the exact key identifier that you want.

• backup_identifier is an optional description of the backup. Enclose
backup_identifier in single quotation marks (' ').

For example:

ADMINISTER KEY MANAGEMENT MOVE KEYS 
TO NEW KEYSTORE '$ORACLE_BASE/admin/orcl/wallet' 
IDENTIFIED BY keystore_password 
FROM FORCE KEYSTORE 
IDENTIFIED BY keystore_password 
WITH IDENTIFIER IN 
(SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM < 2)
WITH BACKUP;

4. To delete the old keystore, go to the wallet directory and do the following:

a. Back up the .p12 file containing the keystore that you want to delete.

b. Manually delete the .p12 file containing the keystore.

To find the location of the keystore, open the keystore, and then query the
WRL_PARAMETER column of the V$ENCRYPTION_WALLET view.

Related Topics

• Dangers of Deleting TDE Wallets
Oracle strongly recommends that you do not delete TDE wallets.

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-18



8.1.12 Automatically Removing Inactive TDE Master Encryption Keys in
United Mode

In united mode, the REMOVE_INACTIVE_STANDBY_TDE_MASTER_KEY initialization parameter can
configure the automatic removal of inactive TDE master encryption keys.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Locate the initialization parameter file for the database.

By default, the initialization parameter fileis located in the $ORACLE_HOME/dbs directory.

3. Edit the initialization parameter file to include the
REMOVE_INACTIVE_STANDBY_TDE_MASTER_KEY initialization parameter.

For example:

remove_inactive_standby_tde_master_key = true

Setting this parameter to TRUE enables the automatic removal of inactive TDE master
encryption keys; setting it to FALSE disables the automatic removal.

8.1.13 Isolating a Pluggable Database Keystore
Isolating a PDB keystore moves the master encryption key from the CDB root keystore into
an isolated mode keystore in the a PDB.

This process enables the keystore to be managed as a separate keystore in isolated mode.
This way, an administrator who has been locally granted the ADMINISTER KEY MANAGEMENT
privilege for the PDB can manage the keystore.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Move the keys from the keystore of the CDB root into the isolated mode keystore of the
PDB by using the following syntax:

ADMINISTER KEY MANAGEMENT [FORCE] ISOLATE KEYSTORE
IDENTIFIED BY isolated_keystore_password
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY
[EXTERNAL STORE | united_keystore_password]
[WITH BACKUP [USING backup_id]];

In this specification:

• FORCE is used when a clone of the PDB is using the master encryption key that is
being isolated. The ADMINISTER KEY MANAGEMENT statement then copies (rather than
moves) the keys from the wallet of the CDB root into the isolated mode PDB.

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation if an auto-login TDE wallet is open (and in use) or if the TDE wallet is
closed.

• united_keystore_password: Knowledge of this password does not enable the user
who performs the ISOLATE KEYSTORE operation privileges to perform ADMINISTER KEY

Chapter 8
Administering Keystores and Master Encryption Keys in United Mode

8-19



MANAGEMENT UNITE KEYSTORE operations on the CDB root. This password is
the same as the keystore password in the CDB root.

After the keystore of a CDB root has been united with that of a PDB, all of the
previously active (historical) master encryption keys that were associated with the
CDB are moved to the keystore of the PDB.

3. Confirm that the united mode PDB is now an isolated mode PDB.

SELECT KEYSTORE_MODE FROM V$ENCRYPTION_WALLET;

The output should be ISOLATED.

After the united mode PDB has been converted to an isolated mode PDB, you can
change the password of the keystore.

8.2 Administering Transparent Data Encryption in United
Mode

You can perform general administrative tasks with Transparent Data Encryption in
united mode.

• Moving PDBs from One CDB to Another in United Mode
You can clone or relocate encrypted PDBs within the same container database, or
across container databases.

• Unplugging and Plugging a PDB with Encrypted Data in a CDB in United Mode
In united mode, for a PDB that has encrypted data, you can plug it into a CDB.
Conversely, you can unplug this PDB from the CDB.

• Managing Cloned PDBs with Encrypted Data in United Mode
In united mode, you can clone a PDB that has encrypted data in a CDB.

• How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united
mode.

• Finding the Keystore Status for All of the PDBs in United Mode
You can create a convenience function that uses the V$ENCRYPTION_WALLET view
to find the status for keystores in all PDBs in a CDB.

8.2.1 Moving PDBs from One CDB to Another in United Mode
You can clone or relocate encrypted PDBs within the same container database, or
across container databases.

If you are trying to move a non-CDB or a PDB in which the SYSTEM, SYSAUX, UNDO, or
TEMP tablespace is encrypted, and using the manual export or import of keys, then you
must first import the keys for the non-CDB or PDB in the target database's CDB$ROOT
before you create the PDB. Import of the keys are again required inside the PDB to
associate the keys to the PDB.

• Clone or relocate the non-CDB or PDB using the following syntax:

CREATE|RELOCATE PLUGGABLE DATABASE database_name KEYSTORE 
IDENTIFIED BY EXTERNAL STORE|target_keystore_password [NO REKEY];

Chapter 8
Administering Transparent Data Encryption in United Mode

8-20



Related Topics

• Oracle Multitenant Administrator's Guide

8.2.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in
United Mode

In united mode, for a PDB that has encrypted data, you can plug it into a CDB. Conversely,
you can unplug this PDB from the CDB.

• Unplugging a PDB That Has Encrypted Data in United Mode
In united mode, you can unplug a PDB with encrypted data and export it into an XML file
or an archive file.

• Plugging a PDB That Has Encrypted Data into a CDB in United Mode
To plug a PDB that has encrypted data into a CDB, you first plug in the PDB and then you
create a master encryption key for the PDB.

• Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in
United Mode
You can unplug a PDB from one CDB that has been configured with an external keystore
and then plug it into another CDB also configured with an external keystore.

• Plugging a PDB That Has Master Encryption Keys Stored in an External Keystore in
United Mode
The ADMINISTER KEY MANAGEMENT statement can import a TDE master encryption key
from an external keystore to a PDB that has been moved to another CDB.

8.2.2.1 Unplugging a PDB That Has Encrypted Data in United Mode
In united mode, you can unplug a PDB with encrypted data and export it into an XML file or
an archive file.

You can check if a PDB has been unplugged by querying the STATUS column of the DBA_PDBS
data dictionary view.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Query the V$ENCRYPTION_WALLET dynamic view to ensure that the keystore is open.

3. Use the ENCRYPT USING transport_secret clause in the ALTER PLUGGABLE DATABASE
statement when you unplug the PDB.

This process extracts the master encryption keys that belong to that PDB from the open
wallet, and encrypts those keys with the transport_secret clause.

You must use this clause if the PDB has encrypted data. Otherwise, an ORA-46680:
master keys of the container database must be exported error is returned.

• For example, to export the PDB data into an XML file:

ALTER PLUGGABLE DATABASE CDB1_PDB2 
UNPLUG INTO '/tmp/cdb1_pdb2.xml' 
ENCRYPT USING transport_secret;

• To export the PDB data into an archive file:

ALTER PLUGGABLE DATABASE CDB1_PDB2 
UNPLUG INTO '/tmp/cdb1_pdb2.pdb' 
ENCRYPT USING transport_secret; 

Chapter 8
Administering Transparent Data Encryption in United Mode

8-21



Related Topics

• Opening the TDE Wallet in a United Mode PDB
To open a TDE wallet in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

8.2.2.2 Plugging a PDB That Has Encrypted Data into a CDB in United Mode
To plug a PDB that has encrypted data into a CDB, you first plug in the PDB and then
you create a master encryption key for the PDB.

After you plug the PDB into the target CDB, and you must create a master encryption
key that is unique to this plugged-in PDB. This is because the plugged-in PDB initially
uses the key that was extracted from the wallet of the source PDB. When you plug an
unplugged PDB into another CDB, the key version is set to 0 because this operation
invalidates the history of the previous keys. You can check the key version by querying
the KEY_VERSION column of the V$ENCRYPTED_TABLESPACES dynamic view. Similarly, if a
control file is lost and recreated, then the previous history of the keys is reset to 0. You
can check if a PDB has already been plugged in by querying the STATUS column of the
DBA_PDBS data dictionary view.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Create the PDB by plugging the unplugged PDB into the CDB.

To perform this operation for united mode, include the DECRYPT USING
transport_secret clause.

You must use this clause if the XML or archive file for the PDB has encrypted data.
Otherwise, an ORA-46680: master keys of the container database must be
exported error is returned.

• For example, if you had exported the PDB data into an XML file:

CREATE PLUGGABLE DATABASE CDB1_PDB2 
USING '/tmp/cdb1_pdb2.xml' 
KEYSTORE IDENTIFIED BY EXTERNAL STORE|TDE_wallet_password
DECRYPT USING transport_secret;

• If you had exported the PDB into an archive file:

CREATE PLUGGABLE DATABASE CDB1_PDB2 
USING '/tmp/cdb1_pdb2.pdb' 
KEYSTORE IDENTIFIED BY EXTERNAL STORE|TDE_wallet_password
DECRYPT USING transport_secret;

During the open operation of the PDB after the plug operation, Oracle Database
determines if the PDB has encrypted data. If so, it opens the PDB in the
RESTRICTED mode.

If you want to create the PDB by cloning another PDB or from a non-CDB, and if
the source database has encrypted data or a TDE master encryption key that has
been set, then you must provide the TDE wallet password of the target TDE wallet
by including the KEYSTORE IDENTIFIED BY TDE_wallet_password clause in the
CREATE PLUGGABLE DATABASE ... FROM SQL statement. You must provide this
password even if the target database is using an auto-login TDE wallet. You can

Chapter 8
Administering Transparent Data Encryption in United Mode

8-22



find if the source database has encrypted data or a TDE master encryption key set in the
TDE wallet by querying the V$ENCRYPTION_KEYS dynamic view

3. Open the PDB.

ALTER PLUGGABLE DATABASE pdb_name OPEN;
4. Open the TDE wallet in the CDB root by using one of the following methods:

• If the TDE wallet of the CDB is not open, open it for the container and all open PDBs
by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN [FORCE KEYSTORE] 
IDENTIFIED BY EXTERNAL STORE|KEYSTORE_PASSWORD CONTAINER = ALL;

• If the TDE wallet of the CDB is open, connect to the plugged-in PDB and then open
the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN [FORCE KEYSTORE] 
IDENTIFIED BY EXTERNAL STORE|KEYSTORE_PASSWORD [CONTAINER = CURRENT];

5. Optionally, open the keystore in the PDB.

6. In the plugged-in PDB, set the TDE master encryption key for the PDB by using the
following syntax:

ADMINISTER KEY MANAGEMENT SET KEY
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE|TDE_wallet_password
WITH BACKUP [USING 'backup_identifier'];

Related Topics

• Opening the TDE Wallet in a United Mode PDB
To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

• Setting the TDE Master Encryption Key in the United Mode TDE Wallet
To set the TDE master encryption key in the TDE wallet when the PDB is configured in
united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

8.2.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in United Mode

You can unplug a PDB from one CDB that has been configured with an external keystore and
then plug it into another CDB also configured with an external keystore.

1. Unplug the PDB.

You can check if a PDB has already been unplugged by querying the STATUS column of
the DBA_PDBS data dictionary view.

2. Move the master encryption keys of the unplugged PDB in the external keystore that was
used at the source CDB to the external keystore that is in use at the destination CDB.

Refer to the documentation for the external keystore for information about moving master
encryption keys between external keystores.

Related Topics

• Oracle Multitenant Administrator's Guide

Chapter 8
Administering Transparent Data Encryption in United Mode

8-23



8.2.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in United Mode

The ADMINISTER KEY MANAGEMENT statement can import a TDE master encryption key
from an external keystore to a PDB that has been moved to another CDB.

1. Plug the unplugged PDB into the destination CDB that has been configured with
the external keystore.

You can check if a PDB has already been plugged in by querying the STATUS
column of the DBA_PDBS data dictionary view.

After the plug-in operation, the PDB that has been plugged in will be in restricted
mode.

2. Ensure that the master encryption keys from the external keystore that has been
configured with the source CDB are available in the external keystore of the
destination CDB.

3. Connect to the plugged PDB as a user who was granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

4. Open the master encryption key of the plugged PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY keystore_passsword;

5. Import the external keystore master encryption key into the PDB.

ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS 
WITH SECRET "OKV" FROM 'OKV' 
IDENTIFIED BY keystore_password; 

6. Restart the PDB.

ALTER PLUGGABLE DATABASE PDB1 CLOSE;
ALTER PLUGGABLE DATABASE PDB1 OPEN;

Related Topics

• Oracle Multitenant Administrator's Guide

8.2.3 Managing Cloned PDBs with Encrypted Data in United Mode
In united mode, you can clone a PDB that has encrypted data in a CDB.

• About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source
PDB available to cloned PDB.

• Cloning a PDB with Encrypted Data in a CDB in United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause can clone a PDB that has encrypted data.

• Remotely Clone an Encrypted PDB in United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause can remotely clone a PDB that has encrypted data.

Chapter 8
Administering Transparent Data Encryption in United Mode

8-24



• Relocating an Encrypted PDB in United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause
can relocate a PDB with encrypted data across CDBs.

8.2.3.1 About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source PDB
available to cloned PDB.

This allows a cloned PDB to operate on the encrypted data. To perform the clone, you do not
need to export and import the keys because Oracle Database transports the keys for you
even if the cloned PDB is in a remote CDB. However, you will need to provide the keystore
password of the CDB where you are creating the clone.

If the PDBs have encrypted data, then you can perform remote clone operations on PDBs
between CDBs, and relocate PDBs across CDBs.

8.2.3.2 Cloning a PDB with Encrypted Data in a CDB in United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can
clone a PDB that has encrypted data.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Query the STATUS column of the V$ENCRYPTION_WALLET dynamic view to ensure that the
keystore is open in the CDB root.

3. Log in to the PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT and
the CREATE PLUGGABLE DATABASE privileges.

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause to clone the PDB.

For example:

CREATE PLUGGABLE DATABASE cdb1_pdb3 
FROM cdb1_pdb1 
FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE 
IDENTIFIED BY EXTERNAL STORE|keystore_password [NO REKEY];

Replace keystore_password with the password of the keystore of the CDB where the
cdb1_pdb3 clone is created.

By default, during a PDB clone or relocate operation, the data encryption keys are
rekeyed, which implies a re-encryption of all encrypted tablespaces. This rekey operation
can increase the time it takes to clone or relocate a large PDB. With the optional NO
REKEY clause, the data encryption keys are not renewed, and encrypted tablespaces are
not re-encrypted.

After you create the cloned PDB, encrypted data is still accessible by the clone using the
master encryption key of the original PDB. After a PDB is cloned, there may be user data
in the encrypted tablespaces. This encrypted data is still accessible because the master
encryption key of the source PDB is copied over to the destination PDB. Because the
clone is a copy of the source PDB but will eventually follow its own course and have its
own data and security policies, you should rekey the master encrytion key of the cloned
PDB.

5. Rekey the master encryption key of the cloned PDB.

Chapter 8
Administering Transparent Data Encryption in United Mode

8-25



For example:

ADMINISTER KEY MANAGEMENT SET KEY 
FORCE KEYSTORE
IDENTIFIED BY keystore_password 
WITH BACKUP USING 'emp_key_backup';

In this example, FORCE KEYSTORE is included because the keystore must be open
during the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still
use master encryption keys that belong to the original PDB. However, these
master encryption keys do not appear in the cloned PDB V$ dynamic views.
Rekeying the master encryption key ensures that the cloned PDB uses its own
unique keys, which will be viewable in the V$ views.

Related Topics

• Opening the TDE Wallet in a United Mode PDB
To open a TDE wallet in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

8.2.3.3 Remotely Clone an Encrypted PDB in United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause
can remotely clone a PDB that has encrypted data.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Query the STATUS column of the V$ENCRYPTION_WALLET dynamic view to ensure
that the keystore is open in the CDB root.

3. In this root container of the target database, create a database link that connects
to the root container of the source CDB.

CREATE DATABASE LINK clone_link 
CONNECT TO C##REMOTE_CLONE_USER 
IDENTIFIED BY C##REMOTE_CLONE_USER_PASSWORD 
USING '//source_ip_address:port/DB_NAME';

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED
BY clause to perform the clone of the PDB.

For example:

CREATE PLUGGABLE DATABASE cdb1_pdb3 
FROM cbd_1_pdb1@clone_link 
FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE 
KEYSTORE IDENTIFIED BY EXTERNAL STORE|keystore_password;

Replace keystore_password with the password of the keystore of the CDB where
the cdb1_pdb3 clone is created.

After you create the cloned PDB, encrypted data is still accessible by the clone
using the master encryption key of the original PDB. After a PDB is cloned, there
may be user data in the encrypted tablespaces. This encrypted data is still
accessible because the master encryption key of the source PDB is copied over to
the destination PDB. Because the clone is a copy of the source PDB but will

Chapter 8
Administering Transparent Data Encryption in United Mode

8-26



eventually follow its own course and have its own data and security policies, you should
rekey the master encrytion key of the cloned PDB.

5. Rekey the master encryption key of the remotely cloned PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
FORCE KEYSTORE
IDENTIFIED BY keystore_password 
WITH BACKUP USING 'emp_key_backup';

In this example, FORCE KEYSTORE is included because the keystore must be open during
the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still use
master encryption keys that belong to the original PDB. However, these master
encryption keys do not appear in the cloned PDB V$ dynamic views. Rekeying the master
encryption key ensures that the cloned PDB uses its own unique keys, which will be
viewable in the V$ views.

Related Topics

• Opening the TDE Wallet in a United Mode PDB
To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

• Oracle Multitenant Administrator's Guide

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

8.2.3.4 Relocating an Encrypted PDB in United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can
relocate a PDB with encrypted data across CDBs.

1. Connect to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Query the STATUS column of the V$ENCRYPTION_WALLET dynamic view to ensure that the
keystore is open in the CDB root.

3. Create a database link for the PDB that you want to clone.

Use the CREATE DATABASE LINK SQL statement to create the database link. You must
create the database link by following the database link prerequisites that are required for
cloning a remote PDB.

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause to relocate the PDB.

For example:

CREATE PLUGGABLE DATABASE cdb1_pdb3 
FROM cdb1_pdb1@clone_link RELOCATE [AVAILABILITY MAX] 
[FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3')] 
KEYSTORE IDENTIFIED BY EXTERNAL STORE|keystore_password;

Chapter 8
Administering Transparent Data Encryption in United Mode

8-27



Replace keystore_password with the password of the keystore of the CDB where
the cdb1_pdb3 clone is created.

After you have relocated the PDB, the encrypted data is still accessible because
the master encryption key of the source PDB is copied over to the destination
PDB. The relocated PDB is a copy of the source PDB, but it will eventually follow
its own course and have its own data and security policies. Therefore, you should
rekey the master encrytion key of the cloned PDB.

5. Connect to the PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

6. Rekey the master encryption key of the relocated PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE|keystore_password 
WITH BACKUP [USING 'emp_key_backup'];

In this example, FORCE KEYSTORE is included because the keystore must be open
during the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still
use master encryption keys that belong to the original PDB. However, these
master encryption keys do not appear in the cloned PDB V$ dynamic views.
Rekeying the master encryption key ensures that the cloned PDB uses its own
unique keys, which will be viewable in the V$ views.

Related Topics

• Opening the TDE Wallet in a United Mode PDB
To open a TDE wallet in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Oracle Multitenant Administrator's Guide

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

8.2.4 How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united mode.

For each PDB in united mode, you must explicitly open the password-protected TDE
wallet or external keystore in the PDB to enable the Transparent Data Encryption
operations to proceed. (Auto-login and local auto-login TDE wallets open
automatically.) Closing a keystore on a PDB blocks all of the Transparent Data
Encryption operations on that PDB.

The open and close keystore operations in a PDB depend on the open and close
status of the keystore in the CDB root.

Note the following:

• You can create a separate keystore password for each PDB in united mode.

Chapter 8
Administering Transparent Data Encryption in United Mode

8-28



• Before you can manually open a password-protected TDE wallet or an external keystore
in an individual PDB, you must open the wallet or keystore in the CDB root.

• If an auto-login TDE wallet is in use, or if the keystore is closed, then include the FORCE
KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement when you open the
wallet.

• If the keystore is a password-protected TDE wallet that uses an external store for
passwords, then replace the password in the IDENTIFIED BY clause with EXTERNAL
STORE.

• Before you can set a TDE master encryption key in an individual PDB, you must set the
key in the CDB root. Oracle highly recommends that you include the USING TAG clause
when you set keys in PDBs. For example:

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR (SYSDATE, 
'YYYY-MM-DD HH24:MI:SS')||''' 
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE 
WITH BACKUP CONTAINER = CURRENT;' AS "SET KEY COMMAND" FROM DUAL;

Including the USING TAG clause enables you to quickly and easily identify the keys that
belong to a certain PDB, and when they were created.

• Auto-login and local auto-login TDE wallets open automatically. You do not need to
manually open these from the CDB root first, or from the PDB.

• If you close the keystore in the CDB root, then the keystores in the dependent PDBs also
close. A keystore close operation in the root is the equivalent of performing a keystore
close operation with the CONTAINER clause set to ALL.

• If you perform an ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN statement in the
CDB root and set the CONTAINER clause to ALL, then the keystore will only be opened in
each open PDB that is configured in united mode. Keystores for any PDBs that are
configured in isolated mode are not opened.

8.2.5 Finding the Keystore Status for All of the PDBs in United Mode
You can create a convenience function that uses the V$ENCRYPTION_WALLET view to find the
status for keystores in all PDBs in a CDB.

The V$ENCRYPTION_WALLET view displays the status of the keystore in a PDB, whether it is
open, closed, uses a software or an external keystore, and so on.

• To create a function that uses theV$ENCRYPTION_WALLET view to find the keystore status,
use the CREATE PROCEDURE PL/SQL statement.

Example 8-3 shows how to create this function.

Example 8-3    Function to Find the Keystore Status of All of the PDBs in a CDB

CREATE OR REPLACE PROCEDURE all_pdb_v$encryption_wallet
IS
    err_occ            BOOLEAN;
    curr_pdb           VARCHAR2(30);
    pdb_name           VARCHAR2(30);
    wrl_type           VARCHAR2(20);
    status             VARCHAR2(30);
    wallet_type        VARCHAR2(20);

Chapter 8
Administering Transparent Data Encryption in United Mode

8-29



    wallet_order       VARCHAR2(12);
    fully_backed_up    VARCHAR2(15);
    wrl_parameter      VARCHAR2(4000);
    cursor sel_pdbs IS SELECT NAME FROM V$CONTAINERS
                       WHERE NAME <> 'PDB$SEED' order by con_id desc;
  BEGIN
 
    -- Store the original PDB name
    SELECT sys_context('userenv', 'con_name') INTO curr_pdb FROM DUAL;
    IF curr_pdb <> 'CDB$ROOT' THEN
      dbms_output.put_line('Operation valid in ROOT only');
    END IF;
 
    err_occ := FALSE;
    dbms_output.put_line('---');
    dbms_output.put_line('PDB_NAME                       WRL_TYPE STATUS                        
');
    dbms_output.put_line('------------------------------ -------- 
------------------------------');
    dbms_output.put_line('WALLET_TYPE          WALLET_ORDER FULLY_BACKED_UP');
    dbms_output.put_line('-------------------- ------------ ---------------');
    dbms_output.put_line('WRL_PARAMETER');
    
dbms_output.put_line('--------------------------------------------------------------------------'
);
    FOR pdbinfo IN sel_pdbs LOOP
 
      pdb_name := DBMS_ASSERT.ENQUOTE_NAME(pdbinfo.name, FALSE);
      EXECUTE IMMEDIATE 'ALTER SESSION SET CONTAINER = ' || pdb_name;
 
      BEGIN
        pdb_name := rpad(substr(pdb_name,1,30), 30, ' ');
        EXECUTE IMMEDIATE 'SELECT wrl_type from V$ENCRYPTION_WALLET' into wrl_type; 
        wrl_type := rpad(substr(wrl_type,1,8), 8, ' ');
        EXECUTE IMMEDIATE 'SELECT status from V$ENCRYPTION_WALLET' into status;
        status := rpad(substr(status,1,30), 30, ' ');
        EXECUTE IMMEDIATE 'SELECT wallet_type from V$ENCRYPTION_WALLET' into wallet_type;
        wallet_type := rpad(substr(wallet_type,1,20), 20, ' ');
        EXECUTE IMMEDIATE 'SELECT wallet_order from V$ENCRYPTION_WALLET' into 
wallet_order;        
        wallet_order := rpad(substr(wallet_order,1,9), 12, ' ');
        EXECUTE IMMEDIATE 'SELECT fully_backed_up from V$ENCRYPTION_WALLET' into fully_backed_up;
        fully_backed_up := rpad(substr(fully_backed_up,1,9), 15, ' ');
        EXECUTE IMMEDIATE 'SELECT wrl_parameter from V$ENCRYPTION_WALLET' into wrl_parameter;
        wrl_parameter := rpad(substr(wrl_parameter,1,79), 79, ' ');
        dbms_output.put_line(pdb_name || ' ' || wrl_type || ' ' || status);
        dbms_output.put_line(wallet_type || ' ' || wallet_order || ' ' || fully_backed_up);
        dbms_output.put_line(wrl_parameter);
 
      EXCEPTION
        WHEN OTHERS THEN
        err_occ := TRUE;
      END;
    END LOOP;
 
    IF err_occ = TRUE THEN
       dbms_output.put_line('One or more PDB resulted in an error');
    END IF;
  END;
.
/

Chapter 8
Administering Transparent Data Encryption in United Mode

8-30



set serveroutput on
exec all_pdb_v$encryption_wallet;

Chapter 8
Administering Transparent Data Encryption in United Mode

8-31



9
Administering Isolated Mode

Administering isolated mode means managing the keystores, master encryption keys, and
general Transparent Database Encryption (TDE) functionality.

• Administering Keystores and TDE Master Encryption Keys in Isolated Mode
After you create a keystore and a TDE master encryption key in isolated mode, you can
perform administration tasks such as rekeying or tagging encryption keys.

• Administering Transparent Data Encryption in Isolated Mode
You can perform a number of general administrative tasks with Transparent Data
Encryption in isolated mode.

9.1 Administering Keystores and TDE Master Encryption Keys
in Isolated Mode

After you create a keystore and a TDE master encryption key in isolated mode, you can
perform administration tasks such as rekeying or tagging encryption keys.

To change the password of an external keystore, you must use the administrative interface of
the external keystore. You cannot perform this operation by using the ADMINISTER KEY
MANAGEMENT statement.

• Changing the Keystore Password in Isolated Mode
You can change the password of a TDE wallet when the PDB is in isolated mode.

• Backing Up a Password-Protected TDE Wallet in Isolated Mode
The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a
password-protected TDE wallet.

• Merging TDE Wallets in Isolated Mode
In isolated mode, you can merge TDE wallets.

• Closing Keystores in Isolated Mode
You can close both software and external keystores in isolated mode, unless the system
tablespace is encrypted.

• Creating a User-Defined TDE Master Encryption Key in Isolated Mode
To create a user-defined TDE master encryption key, use the ADMINISTER KEY
MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

• Creating a TDE Master Encryption Key for Later Use in Isolated Mode
A keystore must be open before you can create a TDE master encryption key for use
later on in isolated mode.

• Activating a TDE Master Encryption Key in Isolated Mode
To activate a TDE master encryption key in isolated mode, you must open the keystore
and use ADMINISTER KEY MANAGEMENT with the USE KEY clause.

9-1



• Rekeying the TDE Master Encryption Key in Isolated Mode
You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause
to rekey a TDE master encryption key.

• Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode
In isolated mode, you can move an existing TDE master encryption key into a new
TDE wallet from an existing password TDE wallet.

• Creating a Custom Attribute Tag in Isolated Mode
To create a custom attribute tag in isolated mode, you must use the SET TAG
clause of the ADMINISTER KEY MANAGEMENT statement.

• Exporting and Importing the TDE Master Encryption Key in Isolated Mode
You can export and import the TDE master encryption key in different ways in
isolated mode.

• Storing Oracle Database Secrets in Isolated Mode
Secrets are data that support internal Oracle Database features that integrate
external clients such as Oracle GoldenGate into the database.

• Storing Oracle GoldenGate Secrets in a Keystore in Isolated Mode
You can store Oracle GoldenGate secrets in Transparent Data Encryption
keystores.

• Migrating Keystores in Isolated Mode
You can perform migration and reverse migration operations between TDE wallets
and external keystores in isolated mode.

• Uniting a Pluggable Database Keystore
Uniting a PDB keystore moves the TDE master encryption keys from the PDB
keystore into the keystore of the CDB root. This enables the administrator of the
keystore of the CDB root to manage the keys.

• Creating a Keystore When the PDB Is Closed
When you create a keystore in a PDB that is closed, the new keystore is empty
and the PDB is converted to isolated mode.

9.1.1 Changing the Keystore Password in Isolated Mode
You can change the password of a TDE wallet when the PDB is in isolated mode.

To change the password of an external keystore, you must use the administrative
interface of the external keystore. You cannot perform this operation by using the
ADMINISTER KEY MANAGEMENT statement.

• Changing the Password-Protected TDE Wallet Password in Isolated Mode
To change the password of a password-protected TDE wallet in isolated mode,
you must use the ADMINISTER KEY MANAGEMENT statement.

• Changing the Password of an External Keystore in Isolated Mode
To change the password of an external keystore, you must close the external
keystore and then change the password from the external keystore’s management
interface.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-2



9.1.1.1 Changing the Password-Protected TDE Wallet Password in Isolated Mode
To change the password of a password-protected TDE wallet in isolated mode, you must use
the ADMINISTER KEY MANAGEMENT statement.

You can change this password at any time, as per the security policies, compliance
guidelines, and other security requirements of your site. As part of the command to change
the password, you will be forced to specify the WITH BACKUP clause, and thus forced to make
a backup of the current TDE wallet. During the password change operation, Transparent Data
Encryption operations such as encryption and decryption will continue to work normally. You
can change this password at any time. You may want to change this password if you think it
was compromised.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Change the password for the TDE wallet by using the following syntax:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD 
[FORCE KEYSTORE] 
IDENTIFIED BY
old_password SET new_password 
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation if the TDE wallet is closed, if an auto-login TDE wallet is configured and is
currently open, or if a password-protected TDE wallet is configured and is currently
closed.

• old_password is the current TDE wallet password that you want to change.

• new_password is the new password that you set for the TDE wallet.

The following example creates a backup of the TDE wallet and then changes the TDE
wallet password:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD 
IDENTIFIED BY
old_password SET new_password 
WITH BACKUP USING 'pwd_change';

keystore altered.

This example performs the same operation but uses the FORCE KEYSTORE clause in case
the auto-login TDE wallet is in use or the password-protected TDE wallet is closed.

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
FORCE KEYSTORE 
IDENTIFIED BY
old_password SET new_password 
WITH BACKUP USING 'pwd_change';

keystore altered.

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password,
for both TDE wallets and external keystores.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-3



9.1.1.2 Changing the Password of an External Keystore in Isolated Mode
To change the password of an external keystore, you must close the external keystore
and then change the password from the external keystore’s management interface.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Close the external keystore.

• For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
IDENTIFIED BY "external_key_manager_password";

• For an external keystore whose password is stored externally:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
IDENTIFIED BY EXTERNAL STORE;

3. Update the credentials of the external store to use
"new_external_key_manager_password".

Currently, the external store contains the old credentials, which would no longer
work.

For example:

ADMINISTER KEY MANAGEMENT
UPDATE SECRET 'new_external_key_manager_password' 
FOR CLIENT 'TDE_WALLET' 
TO LOCAL AUTO_LOGIN KEYSTORE '/etc/ORACLE/WALLETS/orcl/external_store';

4. Open the external keystore.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY "new_external_key_manager_password";

For an external keystore whose password is stored externally:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY EXTERNAL STORE;

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore
password, for both TDE wallets and external keystores.

9.1.2 Backing Up a Password-Protected TDE Wallet in Isolated Mode
The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up
a password-protected TDE wallet.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Back up the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE 
[USING 'backup_identifier'] 

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-4



[FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password] 
[TO 'TDE_wallet_location'];

In this specification:

• USING backup_identifier is an optional string that you can provide to identify the
backup. Enclose this identifier in single quotation marks (' '). This identifier is
appended to the named keystore file (for example, ewallet_time-
stamp_emp_key_backup.p12).

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• IDENTIFIED BY is required for the BACKUP KEYSTORE operation on a password-
protected keystore because although the backup is simply a copy of the existing
keystore, the status of the TDE master encryption key in the password-protected
keystore must be set to BACKED UP and for this change the keystore password is
required.

• TDE_wallet_location is the path at which the backup TDE wallet is stored. This
setting is restricted to the PDB when the PDB lockdown profile
EXTERNAL_FILE_ACCESS setting is blocked in the PDB or when the PATH_PREFIX
variable was set when the PDB was created. If you do not specify the
TDE_wallet_location, then the backup is created in the same directory as the
original TDE wallet. Enclose this location in single quotation marks (' ').

The following example backs up a TDE wallet in the same location as the source TDE
wallet.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE 
USING 'hr.emp_keystore' 
FORCE KEYSTORE 
IDENTIFIED BY 
'TDE_wallet_password';

keystore altered.

In the following version, the password for the TDE wallet is stored externally, so the
EXTERNAL STORE clause is used.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE 
USING 'hr.emp_keystore' 
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE;

After you run this statement, an ewallet_identifier.p12 file (for example,
ewallet_time-stamp_hr.emp_keystore.p12) appears in the TDE wallet backup location.

Related Topics

• Backing Up Password-Protected TDE Wallets
When you back up a password-protected TDE wallet, you can create a backup identifier
string to describe the backup type.

9.1.3 Merging TDE Wallets in Isolated Mode
In isolated mode, you can merge TDE wallets.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-5



• Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode
In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement with the
MERGE KEYSTORE clause to merge one TDE wallet into another existing TDE wallet.

• Merging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode
In isolated mode, you can merge two TDE wallets into a third new TDE wallet, so
that the two existing TDE wallets are not changed and the new TDE wallet
contains the keys of both source TDE wallets.

9.1.3.1 Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode
In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement with the
MERGE KEYSTORE clause to merge one TDE wallet into another existing TDE wallet.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Merge the TDE wallets by using the following syntax:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'TDE_wallet1_location' 
[IDENTIFIED BY TDE_wallet1_password] 
INTO EXISTING KEYSTORE 'TDE_wallet2_location' 
IDENTIFIED BY TDe_wallet2_password 
[WITH BACKUP [USING 'backup_identifier]];

In this specification:

• TDE_wallet1_location is the directory location of the first TDE wallet, which
will be left unchanged after the merge. Enclose this path in single quotation
marks (' ').

• The IDENTIFIED BY clause is required for the first TDE wallet if it is a
password-protected TDE wallet. TDE_wallet1_password is the password for
the first TDE wallet.

• TDE_wallet2_location is the directory location of the second TDE wallet into
which the first TDE wallet is to be merged. Enclose this path in single
quotation marks (' ').

• TDE_wallet2_password is the password for the second TDE wallet.

The target TDE wallet (TDE_wallet2) remains a password-protected TDE wallet after
the TDE wallet merge operation.

Related Topics

• About Merging TDE Wallets
You can merge any combination of TDE wallets, but the merged keystore must be
password-protected. It can have a password that is different from the constituent
wallets.

9.1.3.2 Merging Two TDE Wallets into a Third New TDE Wallet in Isolated
Mode

In isolated mode, you can merge two TDE wallets into a third new TDE wallet, so that
the two existing TDE wallets are not changed and the new TDE wallet contains the
keys of both source TDE wallets.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-6



1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Merge the TDE wallets by using the following syntax:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'TDE_wallet1_location' 
[IDENTIFIED BY TDE_wallet1_password] AND TDE_wallet 'TDE_wallet2_location' 
[IDENTIFIED BY TDE_wallet2_password] 
INTO NEW KEYSTORE 'TDE_wallet3_location' 
IDENTIFIED BY TDE_wallet3_password;

In this specification:

• TDE_wallet1_location is the directory location of the first TDE wallet, which will be
left unchanged after the merge. Enclose this path in single quotation marks (' ').

• The IDENTIFIED BY clause is required for the first TDE wallet if it is a password-
protected TDE wallet. TDE_wallet1_password is the current password for the first
TDE wallet.

• TDE_wallet2_location is the directory location of the second TDE wallet. Enclose
this path in single quotation marks (' ').

• The IDENTIFIED BY clause is required for the second TDE wallet if it is a password-
protected TDE wallet. TDE_wallet2_password is the current password for the second
TDE wallet.

• TDE_wallet3_location specifies the directory location of the new, merged TDE
wallet. Enclose this path in single quotation marks (' '). If there is already an
existing TDE wallet at this location, the command exits with an error.

• TDE_wallet3_password is the new password for the merged TDE wallet.

The following example merges an auto-login TDE wallet with a password-protected TDE
wallet to create a merged password-protected TDE wallet at a new location:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1' 
AND KEYSTORE '/etc/ORACLE/KEYSTORE/DB2' 
IDENTIFIED BY existing_password_for_TDE_wallet_2 
INTO NEW KEYSTORE '/etc/ORACLE/KEYSTORE/DB3' 
IDENTIFIED BY new_password_for_TDE_wallet_3;

keystore altered.

Related Topics

• About Merging TDE Wallets
You can merge any combination of TDE wallets, but the merged keystore must be
password-protected. It can have a password that is different from the constituent wallets.

9.1.4 Closing Keystores in Isolated Mode
You can close both software and external keystores in isolated mode, unless the system
tablespace is encrypted.

• Closing a TDE Wallet in Isolated Mode
You can close password-protected TDE wallets, auto-login TDE wallets, and local auto-
login TDE wallets in isolated mode.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-7



• Closing an External Keystore in Isolated Mode
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE CLOSE clause.

9.1.4.1 Closing a TDE Wallet in Isolated Mode
You can close password-protected TDE wallets, auto-login TDE wallets, and local
auto-login TDE wallets in isolated mode.

In the case of an auto-login TDE wallet, which opens automatically when it is
accessed, you must first move it to a new location where it cannot be automatically
opened, then you must manually close it. You must do this if you are changing your
configuration from an auto-login TDE wallet to a password-protected TDE wallet: you
change the configuration to stop using the auto-login TDE wallet (by moving the auto-
login TDE wallet to another location where it cannot be automatically opened), and
then closing the auto-login TDE wallet.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Close the TDE wallet by using the following syntax.

Note that the only difference between the following two ADMINISTER KEY
MANAGEMENT SET KEYSTORE CLOSE statements is that a password must be provided
for a password-protected TDE wallet.

• For a password-protected TDE wallet:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password];

Closing a password-protected TDE wallet disables all encryption and
decryption operations. Any attempt to encrypt or decrypt data or access
encrypted data results in an error.

• For an auto-login or local auto-login TDE wallet:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE;

The result of this statement will not necessarily be that the TDE wallet status
will change to CLOSED, because unless you also moved the cwallet.sso file to
a location that Oracle Database cannot find, then a background job or
background process could automatically re-open the auto-login TDE wallet.
This can cause the status to potentially always appear to be OPEN even after
the ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE statement completed
successfully.

Related Topics

• About Closing Keystores
After you open a keystore, it remains open until you shut down the database
instance.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-8



9.1.4.2 Closing an External Keystore in Isolated Mode
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement with
the SET KEYSTORE CLOSE clause.

For an Oracle Key Vault keystore, you can only provide the password. No user name is
allowed in the IDENTIFIED BY clause. Enclose the password in double quotation marks.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Close the external keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
IDENTIFIED BY [EXTERNAL STORE | "external_key_manager_password"];

Closing a keystore disables all encryption and decryption operations. Any attempt to encrypt
or decrypt data or access encrypted data results in an error.

Related Topics

• About Closing Keystores
After you open a keystore, it remains open until you shut down the database instance.

9.1.5 Creating a User-Defined TDE Master Encryption Key in Isolated
Mode

To create a user-defined TDE master encryption key, use the ADMINISTER KEY MANAGEMENT
statement with the SET | CREATE [ENCRYPTION] KEY clause.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Create the user-defined TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET | CREATE [ENCRYPTION] KEY
'mkid:mk | mk' 
[USING ALGORITHM 'algorithm'] 
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• SET | CREATE : Enter SET if you want to create the master and activate the TDE
master encryption key now, or enter CREATE if you want to create the key for later use,
without activating it yet.

• mkid and mk:

– mkid, the TDE master encryption key ID, is a 16–byte hex-encoded value that
you can specify or have Oracle Database generate.

– mk, the TDE master encryption key, is a hex-encoded value that you can specify
or have Oracle Database generate, either 32 bytes (for the for AES256, ARIA256,
and GOST256 algorithms) or 16 bytes (for the SEED128 algorithm).

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-9



Note:

Starting with Oracle Database 23ai, the Transparent Data
Encryption (TDE) decryption libraries for the GOST and SEED
algorithms are deprecated, and encryption to GOST and SEED
are desupported. Starting with Oracle Database 23ai, the
Transparent Data Encryption (TDE) encryption libraries for the
GOST and SEED algorithms are desupported and removed. The
GOST and SEED decryption libraries are deprecated. Both are
removed on HP Itanium platforms.
GOST 28147-89 has been deprecated by the Russian
government, and SEED has been deprecated by the South
Korean government. If you need South Korean government-
approved TDE cryptography, then use ARIA instead. If you are
using GOST 28147-89, then you must decrypt and encrypt with
another supported TDE algorithm. The decryption algorithms for
GOST 28147-89 and SEED are included with Oracle Database
23ai, but are deprecated, and the GOST encryption algorithm is
desupported with Oracle Database 23ai. If you are using GOST
or SEED for TDE encryption, then Oracle recommends that you
decrypt and encrypt with another algorithm before upgrading to
Oracle Database 23ai. However, with the exception of the HP
Itanium platform, the GOST and SEED decryption libraries are
available with Oracle Database 23ai, so you can also decrypt
after upgrading.

If you omit the mkid:mk|mkid clause but include the mk value, then Oracle
Database generates the mkid for the mk.

If you omit the entire mkid:mk|mkid clause, then Oracle Database generates
these values for you.

• USING ALGORITHM: Specify one of the following supported algorithms:

– AES256
– ARIA256
– SEED128 (deprecated)

– GOST256 (deprecated)

If you omit the algorithm, then the default, AES256, is used.

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

The following example includes a user-created TDE master encryption key but no
TDE master encryption key ID, so that the TDE master encryption key ID is
generated:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
'3D432109DF88967A541967062A6F4E460E892318E307F017BA048707B402493C' 
USING ALGORITHM 'ARIA256'
FORCE KEYSTORE
IDENTIFIED BY keystore_password WITH BACKUP;

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-10



The next example creates user-defined keys for both the master encryption ID and the
TDE master encryption key. It omits the algorithm specification, so the default algorithm
AES256 is used.

ADMINISTER KEY MANAGEMENT CREATE ENCRYPTION KEY 
'10203040506070801112131415161718:3D432109DF88967A541967062A6F4E460E892318E307F017B
A048707B402493C' 
IDENTIFIED BY keystore_password WITH BACKUP;

Related Topics

• About User-Defined TDE Master Encryption Keys
A TDE master encryption key that is outside the database has its own user-generated ID,
which tracks the use of the TDE master encryption key.

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

9.1.6 Creating a TDE Master Encryption Key for Later Use in Isolated
Mode

A keystore must be open before you can create a TDE master encryption key for use later on
in isolated mode.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Create the TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEY [USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE | keystore_password
WITH BACKUP [USING 'backup_identifier'];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• IDENTIFIED BY is required for the BACKUP KEYSTORE operation on a password-
protected keystore because although the backup is simply a copy of the existing
keystore, the status of the TDE master encryption key in the password-protected
keystore must be set to BACKED UP and for this change the keystore password is
required.

• keystore_location is the path at which the backup keystore is stored. This setting is
restricted to the PDB when the PDB lockdown profile EXTERNAL_FILE_ACCESS setting
is blocked in the PDB or when the PATH_PREFIX variable was not set when the PDB
was created. If you do not specify the keystore_location, then the backup is
created in the same directory as the original keystore. Enclose this location in single
quotation marks (' ').

For example:

ADMINISTER KEY MANAGEMENT CREATE KEY 
FORCE KEYSTORE 
IDENTIFIED BY keystore_password
WITH BACKUP;

3. If necessary, activate the TDE master encryption key.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-11



a. Find the key ID.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS; 

KEY_ID
----------------------------------------------------
AWsHwVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

b. Use this key ID to activate the key.

ADMINISTER KEY MANAGEMENT USE KEY 
'AWsHwVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' 
USING TAG 'quarter:second;description:Activate Key on standby' 
IDENTIFIED BY password 
WITH BACKUP;

Related Topics

• About Creating a TDE Master Encryption Key for Later Use
The CREATE KEY clause of the ADMINISTER KEY MANAGEMENT statement can create
a TDE master encryption key to be activated at a later date.

9.1.7 Activating a TDE Master Encryption Key in Isolated Mode
To activate a TDE master encryption key in isolated mode, you must open the keystore
and use ADMINISTER KEY MANAGEMENT with the USE KEY clause.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Query the KEY_ID column of the V$ENCRYPTION_KEYS view to find the key identifier.

For example:

SELECT KEY_ID FROM V$ENCRYPTION_KEYS; 

KEY_ID
----------------------------------------------------
ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. Use this key identifier to activate the TDE master encryption key by using the
following syntax:

ADMINISTER KEY MANAGEMENT USE KEY 'key_identifier_from_V$ENCRYPTION_KEYS' 
[USING TAG 'tag'] 
[FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

For example:

ADMINISTER KEY MANAGEMENT USE KEY 
'ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP;

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-12



Related Topics

• About Activating TDE Master Encryption Keys
You can activate a previously created or imported TDE master encryption key by using
the USE KEY clause of ADMINISTER KEY MANAGEMENT.

9.1.8 Rekeying the TDE Master Encryption Key in Isolated Mode
You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause to rekey a
TDE master encryption key.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. If you are rekeying the TDE master encryption key for a keystore that has auto login
enabled, then ensure that both the auto login keystore, identified by the .sso file, and the
encryption keystore, identified by the .p12 file, are present.

You can find the location of these files by querying the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the database
instances, query the GV$ENCRYPTION_WALLET view.

3. Rekey the TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY 
[FORCE KEYSTORE]
[USING TAG 'tag_name'] 
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• tag is the associated attributes and information that you define. Enclose this setting
in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– keystore_password is the password that was created for this keystore.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
FORCE KEYSTORE
IDENTIFIED BY keystore_password 
WITH BACKUP USING 'emp_key_backup';

keystore altered.

Related Topics

• About Rekeying the TDE Master Encryption Key
Oracle Database uses a unified TDE Master Encryption Key for both TDE column
encryption and TDE tablespace encryption.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-13



9.1.9 Moving a TDE Master Encryption Key into a New Keystore in
Isolated Mode

In isolated mode, you can move an existing TDE master encryption key into a new
TDE wallet from an existing password TDE wallet.

This feature enables you to move a subset, or all, of a TDE wallet’s keys into a new
TDE wallet. After you move the key or keys to the new TDE wallet and then back up
the old TDE wallet, optionally you then can delete this old TDE wallet.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Query the CREATION_TIME and KEY_ID columns of the V$ENCRYPTION_KEYS view to
find the key identifier of the key that you want to move.

For example:

SELECT CREATION_TIME, KEY_ID FROM V$ENCRYPTION_KEYS; 

CREATION TIME
----------------------------------------------------
22-SEP-19 08.55.12.956170 PM +00:00

KEY_ID
----------------------------------------------------
ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. Move the key into a new TDE wallet by using the following syntax:

ADMINISTER KEY MANAGEMENT 
MOVE [ENCRYPTION] KEYS
TO NEW KEYSTORE 'TDE_wallet_location1'
IDENTIFIED BY TDE_wallet1_password
FROM [FORCE] KEYSTORE
IDENTIFIED BY TDE_wallet2_password
[WITH IDENTIFIER IN
{ 'key_identifier' [, 'key_identifier' ]... | ( subquery ) }]
[WITH BACKUP [USING 'backup_identifier'] ];

In this specification:

• TDE_wallet_location1 is the path to the wallet directory that will store the
new TDE wallet .p12 file. By default, this directory is in $ORACLE_BASE/admin/
db_unique_name/wallet.

• TDE_wallet1_password is the password for the TDE wallet from which the new
TDE wallet is moved.

• FORCE temporarily opens the TDE wallet for this operation.

• TDE_wallet2_password is the password for the TDE wallet from which the key
is moving.

• subquery can be used to find the exact key identifier that you want.

• backup_identifier is an optional description of the backup. Enclose
backup_identifier in single quotation marks (' ').

For example:

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-14



ADMINISTER KEY MANAGEMENT MOVE KEYS 
TO NEW KEYSTORE '$ORACLE_BASE/admin/orcl/wallet' 
IDENTIFIED BY TDE_wallet1_password 
FROM FORCE KEYSTORE 
IDENTIFIED BY TDE_wallet2_password 
WITH IDENTIFIER IN 
(SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM < 2)
WITH BACKUP;

After the keys are moved to the new TDE wallet, they no longer exist in the old TDE
wallet.

4. To delete the old TDE wallet, go to the wallet directory and do the following:

a. Back up the .p12 file containing the TDE wallet that you want to delete.

b. Manually delete the .p12 file containing the TDE wallet.

To find the location of the TDE wallet, open the TDE wallet, and then query the
WRL_PARAMETER column of the V$ENCRYPTION_WALLET view.

Related Topics

• About Moving TDE Master Encryption Keys into a New Keystore
You can move an unused (and safely archived) TDE master encryption key into a new
keystore.

• Dangers of Deleting TDE Wallets
Oracle strongly recommends that you do not delete TDE wallets.

9.1.10 Creating a Custom Attribute Tag in Isolated Mode
To create a custom attribute tag in isolated mode, you must use the SET TAG clause of the
ADMINISTER KEY MANAGEMENT statement.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. If necessary, query the TAG column of the V$ENCRYPTION_KEY dynamic view to find a
listing of existing tags for the TDE master encryption keys.

When you create a new tag for a TDE master encryption key, it overwrites the existing
tag for that TDE master encryption key.

3. Create the custom attribute tag by using the following syntax:

ADMINISTER KEY MANAGEMENT SET TAG 'tag' 
FOR 'master_key_identifier' 
[FORCE KEYSTORE] 
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• tag is the associated attributes or information that you define. Enclose this
information in single quotation marks (' ').

• master_key_identifier identifies the TDE master encryption key for which the tag
is set. To find a list of TDE master encryption key identifiers, query the KEY_ID column
of the V$ENCRYPTION_KEYS dynamic view.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-15



• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– keystore_password is the password that was created for this keystore.

– backup_identifier defines the tag values. Enclose this setting in single
quotation marks (' ') and separate each value with a colon.

For example, to create a tag that uses two values, one to capture a specific
session ID and the second to capture a specific terminal ID:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
USING TAG 'sessionid=3205062574:terminal=xcvt' 
IDENTIFIED BY keystore_password 
WITH BACKUP;

keystore altered.

Both the session ID (3205062574) and terminal ID (xcvt) can derive their values by
using either the SYS_CONTEXT function with the USERENV namespace, or by using
the USERENV function.

Related Topics

• About Creating Custom Attribute Tags
Attribute tags enable you to monitor specific activities users perform, such as
accessing a particular terminal ID.

9.1.11 Exporting and Importing the TDE Master Encryption Key in
Isolated Mode

You can export and import the TDE master encryption key in different ways in isolated
mode.

• Exporting a TDE Master Encryption Key in Isolated Mode
In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement to
export a TDE master encryption key.

• Importing a TDE Master Encryption Key in Isolated Mode
The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS
WITH SECRET clause can import a TDE master encryption key.

9.1.11.1 Exporting a TDE Master Encryption Key in Isolated Mode
In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement to export a
TDE master encryption key.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Export the TDE master encryption keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT EXPORT [ENCRYPTION] KEYS 
WITH SECRET "export_secret" 

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-16



TO 'file_path' 
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH IDENTIFIER IN 'key_id1', 'key_id2', 'key_idn' | (SQL_query)];

In this specification:

• export_secret is a password that you can specify to encrypt the export the file that
contains the exported keys. Enclose this secret in double quotation marks (" "), or
you can omit the quotation marks if the secret has no spaces.

• file_path is the complete path and name of the file to which the keys must be
exported. Enclose this path in single quotation marks (' '). You can export to regular
file systems only.

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• key_id1, key_id2, key_idn is a string of one or more TDE master encryption key
identifiers for the TDE master encryption key being exported. Separate each key
identifier with a comma and enclose each of these key identifiers in single quotation
marks (' '). To find TDE master encryption key identifiers, query the KEY_ID column
of the V$ENCRYPTION_KEYS dynamic view.

• SQL_query is a query that fetches a list of the TDE master encryption key identifiers.
It should return only one column that contains the TDE master encryption key
identifiers. This query is run with current user rights.

Related Topics

• Exporting and Importing the TDE Master Encryption Key
You can export and import the TDE master encryption key in different ways.

9.1.11.2 Importing a TDE Master Encryption Key in Isolated Mode
The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS WITH
SECRET clause can import a TDE master encryption key.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Import the TDE master encryption keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT IMPORT [ENCRYPTION] KEYS 
WITH SECRET "import_secret"  
FROM 'file_name'  
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password] 
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• import_secret is the same password that was used to encrypt the keys during the
export operation. Enclose this secret in double quotation marks (" "), or you can omit
the quotation marks if the secret has no spaces.

• file_name is the complete path and name of the file from which the keys need to be
imported. Enclose this setting in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-17



Related Topics

• Exporting and Importing the TDE Master Encryption Key
You can export and import the TDE master encryption key in different ways.

9.1.12 Storing Oracle Database Secrets in Isolated Mode
Secrets are data that support internal Oracle Database features that integrate external
clients such as Oracle GoldenGate into the database.

• About Storing Oracle Database Secrets in a Keystore in Isolated Mode
Keystores (both TDE wallets and external keystores) can store secrets that
support internal Oracle Database features and integrate external clients such as
Oracle GoldenGate.

• Storing Oracle Database Secrets in a TDE Wallet in Isolated Mode
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET
statements can add secrets, update secrets, and delete secrets in a TDE wallet.

• Example: Adding an Oracle Key Vault Password to a TDE Wallet
The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle Key
Vault password to a TDE wallet.

• Example: Changing an Oracle Key Vault Password Stored as a Secret in a TDE
Wallet
The ADMINISTER KEY MANAGEMENT UPDATE SECRET statement can change an
Oracle Key Vault password that is stored as a secret in a TDE wallet.

• Example: Deleting an Oracle Key Vault Password Stored as a Secret in a TDE
Wallet
The ADMINISTER KEY MANAGEMENT DELETE SECRET statement can delete Oracle
Key Vault passwords that are stored as secrets in a TDE wallet.

• Storing Oracle Database Secrets in an External Keystore in Isolated Mode
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET
statements can add secrets, update secrets, and delete secrets in a keystore.

• Example: Adding an Oracle Database Secret to an External Keystore
The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle
Database secret to an external keystore.

• Example: Changing an Oracle Database Secret in an External Keystore
The ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET statement can
change an Oracle Database secret in an external keystore.

• Example: Deleting an Oracle Database Secret in an External Keystore
The ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT statement can
delete an Oracle Database secret that is in an external keystore.

9.1.12.1 About Storing Oracle Database Secrets in a Keystore in Isolated Mode
Keystores (both TDE wallets and external keystores) can store secrets that support
internal Oracle Database features and integrate external clients such as Oracle
GoldenGate.

The secret key must be a string adhering to Oracle identifier rules. You can add,
update, or delete a client secret in an existing keystore. The Oracle GoldenGate
Extract process must have data encryption keys to decrypt the data that is in data files
and in REDO or UNDO logs. Keys are encrypted with shared secrets when you share the

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-18



keys between an Oracle database and an Oracle GoldenGate client. The TDE wallet stores
the shared secrets.

Depending on your site's requirements, you may require automated open keystore operations
even when an external keystore is configured. For this reason, the external key manager
password can be stored in an auto-login TDE wallet, which enables the auto-login capability
for the external key manager. The Oracle Database side can also store the credentials for the
database to log in to an external storage server in the TDE wallet.

You can store Oracle Database secrets in both TDE wallets and external keystores:

• TDE wallets: You can store secrets in password-based, auto-login, and local auto-login
TDE wallets. If you want to store secrets in an auto-login (or auto-login local) TDE wallet,
then note the following:

– If the auto-login TDE wallet is in the same location as its corresponding password-
based TDE wallet, then the secrets are added automatically.

– If the auto-login TDE wallet is in a different location from its corresponding password-
based TDE wallet, then you must create the auto-login TDE wallet again from the
password-based TDE walllet, and keep the two walltets in synchronization.

• External keystores: You can store secrets in standard external key managers.

Related Topics

• Configuring Auto-Open Connections into External Key Managers
An external key manager can be configured to use the auto-login capability.

9.1.12.2 Storing Oracle Database Secrets in a TDE Wallet in Isolated Mode
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET statements
can add secrets, update secrets, and delete secrets in a TDE wallet.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Add, update, or delete a database secret in a TDE wallet by using the following syntax:

• To add a secret:

ADMINISTER KEY MANAGEMENT
ADD SECRET 'secret' FOR CLIENT 'client_identifier' 
[USING TAG 'tag']
[TO [[LOCAL] AUTO_LOGIN] KEYSTORE TDE_wallet_location 
[WITH BACKUP [USING backup_id]] 
| [FORCE KEYSTORE]  
IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password] 
[WITH BACKUP [USING backup_id]]];

• To update a secret:

ADMINISTER KEY MANAGEMENT
UPDATE SECRET 'secret' FOR CLIENT 'client_identifier' 
[USING TAG 'tag']
[TO [[LOCAL] AUTO_LOGIN] KEYSTORE TDE_wallet_location 
[WITH BACKUP [USING backup_id]] 
| [FORCE KEYSTORE]  
IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password] 
[WITH BACKUP [USING backup_id]]]; 

• To delete a secret:

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-19



ADMINISTER KEY MANAGEMENT
DELETE SECRET FOR CLIENT 'client_identifier' 
[FROM [[LOCAL] AUTO_LOGIN] KEYSTORE TDE_wallet_location 
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | TDE_wallet_password] 
[WITH BACKUP [USING backup_id]]]; 

The specification is as follows:

• secret is the client secret key to be stored, updated, or deleted. To find
information about existing secrets and their client identifiers, query the
V$CLIENT_SECRETS dynamic view.

• client_identifier is an alphanumeric string used to identify the secret key.

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

Related Topics

• Storing Oracle Database Secrets in Isolated Mode
Secrets are data that support internal Oracle Database features that integrate
external clients such as Oracle GoldenGate into the database.

9.1.12.3 Example: Adding an Oracle Key Vault Password to a TDE Wallet
The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle Key Vault
password to a TDE wallet.

Example 9-1 shows how to add an Oracle Key Vault password as a secret into an
existing TDE wallet (for example, after migrating to Oracle Key Vault, the Oracle Key
Vault password can be added to the old TDE wallet to set up an auto-open connection
into Oracle Key Vault.

Example 9-1    Adding an Oracle Database Secret to a TDE wallet

ADMINISTER KEY MANAGEMENT 
ADD SECRET 'external_key_manager_password' FOR CLIENT 'OKV_PASSWORD' 
IDENTIFIED BY TDE_wallet_password WITH BACKUP;

Before migrating from a TDE wallet to Oracle Key Vault, you can upload the TDE
wallet into the virtual wallet of that endpoint in Oracle Key Vault. After migrating, you
now can delete the old TDE wallet, because its key is in Oracle Key Vault. In order to
configure auto-open Oracle Key Vault without a wallet being already present, run the
following statement:

ADMINISTER KEY MANAGEMENT ADD SECRET 'external_keystore_password' 
FOR CLIENT 'OKV_PASSWORD' INTO [LOCAL] AUTO_LOGIN KEYSTORE 'WALLET_ROOT/tde';

Note that the setting TDE_CONFIGURATION='KEYSTORE_CONFIGUARTION=OKV' is for a
password-protected connection into Oracle Key Vault. After the Oracle Key Vault
password has been inserted into an existing or newly created wallet, change the
TDE_CONFIGURATION setting to 'KEYSTORE_CONFIGURATION=OKV|FILE'.

9.1.12.4 Example: Changing an Oracle Key Vault Password Stored as a Secret
in a TDE Wallet

The ADMINISTER KEY MANAGEMENT UPDATE SECRET statement can change an Oracle
Key Vault password that is stored as a secret in a TDE wallet.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-20



Example 9-2 shows how to change an Oracle Key Vault password that is stored as a secret in
a TDE wallet.

Example 9-2    Changing an Oracle Key Vault Password Secret to a TDE Wallet

ADMINISTER KEY MANAGEMENT
UPDATE SECRET admin_password FOR CLIENT 'admin@myhost' 
USING TAG 'new_host_credentials' FORCE KEYSTORE
IDENTIFIED BY TDE_wallet_password;

In this version, the password for the keystore is in an external store:

DMINISTER KEY MANAGEMENT
UPDATE SECRET admin_password FOR CLIENT 'admin@myhost' 
USING TAG 'new_host_credentials' FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;

9.1.12.5 Example: Deleting an Oracle Key Vault Password Stored as a Secret in a
TDE Wallet

The ADMINISTER KEY MANAGEMENT DELETE SECRET statement can delete Oracle Key Vault
passwords that are stored as secrets in a TDE wallet.

Example 9-3 shows how to delete an Oracle Key Vault password that is stored as a secret in
the TDE wallet.

Example 9-3    Deleting an Oracle Key Vault Password Secret in a TDE Wallet

ADMINISTER KEY MANAGEMENT 
DELETE SECRET FOR CLIENT 'OKV_PASSWORD' 
FORCE KEYSTORE
IDENTIFIED BY TDE_wallet_password WITH BACKUP;

In this version, the password for the TDE wallet is in an external store:

ADMINISTER KEY MANAGEMENT 
DELETE SECRET FOR CLIENT 'OKV_PASSWORD'
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE WITH BACKUP;

9.1.12.6 Storing Oracle Database Secrets in an External Keystore in Isolated Mode
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET statements
can add secrets, update secrets, and delete secrets in a keystore.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Add, update, or delete a database secret in an external keystore by using the following
syntax:

• To add a secret:

ADMINISTER KEY MANAGEMENT
ADD SECRET 'secret' FOR CLIENT 'client_identifier' 
[USING TAG 'tag']
[TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location 
[FORCE KEYSTORE]
IDENTIFIED BY "external_key_manager_password"]
[WITH BACKUP [USING backup_id]];

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-21



• To update a secret:

ADMINISTER KEY MANAGEMENT
UPDATE SECRET 'secret' FOR CLIENT 'client_identifier' 
[USING TAG 'tag']
 [TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location 
[FORCE KEYSTORE]
IDENTIFIED BY "external_key_manager_password"
[WITH BACKUP [USING backup_id]]; 

• To delete a secret:

ADMINISTER KEY MANAGEMENT
DELETE SECRET FOR CLIENT 'client_identifier' 
[FROM [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location 
[FORCE KEYSTORE]
IDENTIFIED BY "eexternal_key_manager_password"; 

The specification is as follows:

• secret is the client secret key to be stored, updated, or deleted. To find
information about existing secrets and their client identifiers, query the
V$CLIENT_SECRETS dynamic view.

• client_identifier is an alphanumeric string used to identify the secret key.

• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

• external_key_manager_password is for an external keystore manager, which
can be Oracle Key Vault or OCI Vault - Key Management. Enclose this
password in double quotation marks. For Oracle Key Vault, enter the
password that was given during the Oracle Key Vault client installation. If at
that time no password was given, then the password in the ADMINISTER KEY
MANAGEMENT statement becomes NULL.

Related Topics

• Storing Oracle Database Secrets in Isolated Mode
Secrets are data that support internal Oracle Database features that integrate
external clients such as Oracle GoldenGate into the database.

9.1.12.7 Example: Adding an Oracle Database Secret to an External Keystore
The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle Database
secret to an external keystore.

Example 9-4 shows how to add a password for a user to an external keystore.

Example 9-4    Adding an Oracle Database Secret to an External Keystore

ADMINISTER KEY MANAGEMENT ADD SECRET 'password' 
FOR CLIENT 'admin@myhost' USING TAG 'myhost admin credentials' 
IDENTIFIED BY "external_key_manager_password";

In this version, the keystore password is in an external store, so the EXTERNAL STORE
setting is used for IDENTIFIED BY:

ADMINISTER KEY MANAGEMENT ADD SECRET 'password' 
FOR CLIENT 'admin@myhost' USING TAG 'myhost admin credentials' 
IDENTIFIED BY EXTERNAL STORE;

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-22



9.1.12.8 Example: Changing an Oracle Database Secret in an External Keystore
The ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET statement can change an
Oracle Database secret in an external keystore.

Example 9-5 shows how to change a password that is stored as a secret in an external
keystore.

Example 9-5    Changing an Oracle Database Secret in an External Keystore

ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET 'password2' 
FOR CLIENT 'admin@myhost' USING TAG 'New host credentials' 
IDENTIFIED BY "external_key_manager_password";

In this version, the password for the keystore is in an external store:

ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET 'password2' 
FOR CLIENT 'admin@myhost' USING TAG 'New host credentials' 
IDENTIFIED BY EXTERNAL STORE;

9.1.12.9 Example: Deleting an Oracle Database Secret in an External Keystore
The ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT statement can delete an
Oracle Database secret that is in an external keystore.

Example 9-6 shows how to delete an external key manager password that is stored as a
secret in the external keystore.

Example 9-6    Deleting an Oracle Database Secret in an External Keystore

ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'admin@myhost' 
IDENTIFIED BY "external_key_manager_password";

In this version, the password for the keystore is in an external store:

ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'admin@myhost' 
IDENTIFIED BY EXTERNAL STORE;

9.1.13 Storing Oracle GoldenGate Secrets in a Keystore in Isolated Mode
You can store Oracle GoldenGate secrets in Transparent Data Encryption keystores.

• About Storing Oracle GoldenGate Secrets in Keystores in Isolated Mode
You can use a keystore (TDE wallet or external keystore) to store secret keys for tools
and external clients such as Oracle GoldenGate.

• Oracle GoldenGate Extract Classic Capture Mode TDE Requirements
Ensure that you meet the requirements for Oracle GoldenGate Extract to support
Transparent Data Encryption capture.

• Configuring Keystore Support for Oracle GoldenGate
You can configure Transparent Data Encryption keystore support for Oracle GoldenGate
by using a shared secret for the keystore.

9.1.13.1 About Storing Oracle GoldenGate Secrets in Keystores in Isolated Mode
You can use a keystore (TDE wallet or external keystore) to store secret keys for tools and
external clients such as Oracle GoldenGate.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-23



The secret key must be a string adhering to Oracle identifier rules. You can add,
update, or delete a client secret in an existing keystore. This section describes how to
capture Transparent Data Encryption encrypted data in the Oracle GoldenGate Extract
(Extract) process using classic capture mode.

TDE support when Extract is in classic capture mode requires the exchange of the
following keys:

• TDE support for Oracle GoldenGate in the classic capture mode of the Extract
process requires that an Oracle database and the Extract process share the secret
to encrypt sensitive information being exchanged. The shared secret is stored
securely in the Oracle database and Oracle GoldenGate domains. The shared
secret is stored in the TDE wallet or the external keystore as the database secret.

• The decryption key is a password known as the shared secret that is stored
securely in the Oracle database and Oracle GoldenGate domains. Only a party
that has possession of the shared secret can decrypt the table and redo log keys.

After you configure the shared secret, Oracle GoldenGate Extract uses the shared
secret to decrypt the data. Oracle GoldenGate Extract does not handle the TDE
master encryption key itself, nor is it aware of the keystore password. The TDE master
encryption key and password remain within the Oracle database configuration.

Oracle GoldenGate Extract only writes the decrypted data to the Oracle GoldenGate
trail file, which Oracle GoldenGate persists during transit. You can protect this file
using your site's operating system standard security protocols, as well as the Oracle
GoldenGate AES encryption options. Oracle GoldenGate does not write the encrypted
data to a discard file (specified with the DISCARDFILE parameter). The word ENCRYPTED
will be written to any discard file that is in use.

Oracle GoldenGate does require that the keystore be open when processing
encrypted data. There is no performance effect of Oracle GoldenGate feature on the
TDE operations.

9.1.13.2 Oracle GoldenGate Extract Classic Capture Mode TDE Requirements
Ensure that you meet the requirements for Oracle GoldenGate Extract to support
Transparent Data Encryption capture.

The requirements are as follows:

• To maintain high security standards, ensure that the Oracle GoldenGate Extract
process runs as part of the Oracle user (the user that runs the Oracle database).
That way, the keys are protected in memory by the same privileges as the Oracle
user.

• Run the Oracle GoldenGate Extract process on the same computer as the Oracle
database installation.

9.1.13.3 Configuring Keystore Support for Oracle GoldenGate
You can configure Transparent Data Encryption keystore support for Oracle
GoldenGate by using a shared secret for the keystore.

• Step 1: Decide on a Shared Secret for the Keystore
A shared secret for a keystore is a password.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-24



• Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate
The DBMS_INTERNAL_CLKM PL/SQL package enables you to configure TDE support for
Oracle GoldenGate.

• Step 3: Store the TDE GoldenGate Shared Secret in the Keystore
The ADMINISTER KEY MANAGEMENT statement can store a TDE GoldenGate shared secret
in a keystore.

• Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract Process
The GoldenGate Software Command Interface (GGSCI) utility sets the TDE Oracle
GoldenGate shared secret in the extract process.

9.1.13.3.1 Step 1: Decide on a Shared Secret for the Keystore
A shared secret for a keystore is a password.

• Decide on a shared secret that meets or exceeds Oracle Database password standards.

Do not share this password with any user other than trusted administrators who are
responsible for configuring Transparent Data Encryption to work with Oracle GoldenGate
Extract.

Related Topics

• Oracle Database Security Guide

9.1.13.3.2 Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate
The DBMS_INTERNAL_CLKM PL/SQL package enables you to configure TDE support for Oracle
GoldenGate.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been
granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Load the Oracle Database-supplied DBMS_INTERNAL_CLKM PL/SQL package.

For example:

@?/app/oracle/product/20.1/rdbms/admin/prvtclkm.plb

The prvtclkm.plb file also enables Oracle GoldenGate to extract encrypted data from an
Oracle database.

3. Grant the EXECUTE privilege on the DBMS_INTERNAL_CLKM PL/SQL package to the Oracle
GoldenGate Extract database user.

For example:

GRANT EXECUTE ON DBMS_INTERNAL_CLKM TO psmith;

This procedure enables the Oracle database and Oracle GoldenGate Extract to
exchange information.

9.1.13.3.3 Step 3: Store the TDE GoldenGate Shared Secret in the Keystore
The ADMINISTER KEY MANAGEMENT statement can store a TDE GoldenGate shared secret in a
keystore.

Before you begin this procedure, ensure that you have configured the TDE software or
external keystore.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-25



1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Set the Oracle GoldenGate-TDE key in the keystore by using the following syntax.

ADMINISTER KEY MANAGEMENT ADD|UPDATE|DELETE SECRET 'secret' 
FOR CLIENT 'secret_identifier' [USING TAG 'tag'] 
IDENTIFIED BY keystore_password [WITH BACKUP [USING 'backup_identifier']];

In this specification:

• secret is the client secret key to be stored, updated, or deleted. Enclose this
setting in single quotation marks (' ').

• secret_identifier is an alphanumeric string used to identify the secret key.
secret_identifier does not have a default value. Enclose this setting in
single quotation marks (' ').

• tag is an optional, user-defined description for the secret key to be stored. tag
can be used with the ADD and UPDATE operations. Enclose this setting in single
quotation marks (' '). This tag appears in the SECRET_TAG column of the
V$CLIENT_SECRETS view.

• keystore_password is the password for the keystore that is configured.

• WITH BACKUP is required in case the keystore was not backed up before the
ADD, UPDATE or DELETE operation. backup_identifier is an optional user-
defined description for the backup. Enclose backup_identifier in single
quotation marks (' ').

The following example adds a secret key to the keystore and creates a backup in
the same directory as the keystore:

ADMINISTER KEY MANAGEMENT ADD SECRET 'some_secret' 
FOR CLIENT 'ORACLE_GG' USING TAG 'GoldenGate Secret' 
IDENTIFIED BY password WITH BACKUP USING 'GG backup';

3. Verify the entry that you just created.

For example:

SELECT CLIENT, SECRET_TAG FROM V$CLIENT_SECRETS WHERE CLIENT = 'ORACLEGG';

CLIENT   SECRET_TAG
-------- ------------------------------------------
ORACLEGG some_secret

4. Switch the log files.

CONNECT / AS SYSDBA

ALTER SYSTEM SWITCH LOGFILE;

9.1.13.3.4 Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract Process
The GoldenGate Software Command Interface (GGSCI) utility sets the TDE Oracle
GoldenGate shared secret in the extract process.

1. Start the GGSCI utility.

ggsci

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-26



2. In the GGSCI utility, run the ENCRYPT PASSWORD command to encrypt the shared secret
within the Oracle GoldenGate Extract parameter file.

ENCRYPT PASSWORD shared_secret algorithm ENCRYPTKEY keyname

In this specification:

• shared_secret is the clear-text shared secret that you created when you decided on
a shared secret for the keystore. This setting is case sensitive.

• algorithm is AES256.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file. Oracle
GoldenGate uses this name to look up the actual key in the ENCKEYS file.

For example:

ENCRYPT PASSWORD password AES256 ENCRYPTKEY mykey1
3. In the Oracle GoldenGate Extract parameter file, set the DBOPTIONS parameter with the

DECRYPTPASSWORD option.

As input, supply the encrypted shared secret and the Oracle GoldenGate-generated or
user-defined decryption key.

DBOPTIONS DECRYPTPASSWORD shared_secret algorithm ENCRYPTKEY keyname

In this specification:

• shared_secret is the clear-text shared secret that you created when you decided on
a shared secret for the keystore. This setting is case sensitive.

• algorithm is AES256.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

For example:

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH AES256 ENCRYPTKEY 
mykey1

9.1.14 Migrating Keystores in Isolated Mode
You can perform migration and reverse migration operations between TDE wallets and
external keystores in isolated mode.

• Reverse Migrating an Isolated PDB from Oracle Key Vault to a TDE Wallet
Isolated PDBs have individual keystores (TDE wallets or Oracle Key Vault external
keystores), and can individually be migrated from the TDE wallet to Oracle Key Vault, and
individually reverse migrated from Oracle Key Vault back to the TDE wallet.

• Migrating from an External Keystore to a Password-Protected TDE Wallet in Isolated
Mode
In isolated mode, you can migrate from an external keystore to a password-protected
TDE wallet.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-27



9.1.14.1 Reverse Migrating an Isolated PDB from Oracle Key Vault to a TDE
Wallet

Isolated PDBs have individual keystores (TDE wallets or Oracle Key Vault external
keystores), and can individually be migrated from the TDE wallet to Oracle Key Vault,
and individually reverse migrated from Oracle Key Vault back to the TDE wallet.

For both the TDE wallet and the external keystore to open at the same time, either the
TDE wallet must have the same password as the external keystore, or alternatively,
after the migration has completed you can create an auto-login keystore for the TDE
wallet.

1. Before migrating any database from wallet to Oracle Key Vault, upload the
contents of the wallet (the current and retired TDE master encryption keys) into the
virtual wallet that you created in Oracle Key Vault for that database.

In the following example, the static initialization parameter WALLET_ROOT is set
to /etc/ORACLE/KEYSTORES/${ORACLE_SID}:

/etc/ORACLE/KEYSTORES/${ORACLE_SID}/pdb-guid/okv/bin/okvutil upload 
-l 
/etc/ORACLE/KEYSTORES/${ORACLE_SID}/pdb-guid/tde/ -t wallet -g 
virtual_wallet_name_in_Oracle_Key_Vault -v 2

2. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

3. Set the password of the external keystore so that it matches that of the TDE
wallet.

Some Oracle tools, such as Oracle Data Pump and Oracle Recovery Manager,
require access to the old TDE wallet to decrypt data that was exported or backed
up using the TDE master encryption key from the old TDE wallet.

• To set the TDE wallet password so that it is the same as that of the external
keystore, use the following syntax:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD 
[FORCE KEYSTORE]
IDENTIFIED BY TDE_wallet_password 
SET "external_key_manager_password" 
WITH BACKUP [USING 'backup_identifier'];

In this specification:

– TDE_wallet_password is the password that was assigned to this wallet
when it was created.

– external_key_manager_password is for an external keystore manager,
which can be Oracle Key Vault or OCI Vault - Key Management. Enclose
this password in double quotation marks. For Oracle Key Vault, enter the
password that was given during the Oracle Key Vault client installation. If
at that time no password was given, then the password in the ADMINISTER
KEY MANAGEMENT statement becomes NULL.

• Alternatively, to create an auto-login keystore for a TDE wallet, use the
following syntax:

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-28



ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE 
FROM KEYSTORE 'keystore_location' 
IDENTIFIED BY TDE_wallet_password;

4. Provision Oracle Key Vault for the isolated mode PDB by following the instructions in 
Oracle Key Vault Administrator's GuideOracle Key Vault Administrator's Guide to install
the Oracle Key Vault software onto the endpoint.

5. Set the configuration of the keystore so that the external keystore becomes the new
primary, and the password-protected TDE wallet becomes the secondary, as follows:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV|FILE";
6. Migrate the external keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
IDENTIFIED BY "external_key_manager_password" 
[FORCE KEYSTORE]
MIGRATE USING TDE_wallet_password;

After you complete the migration, you do not need to restart the database, nor do you
need to manually re-open the external keystore.

Related Topics

• Keystore Order After a Migration
After you perform a migration, keystores can be either primary or secondary in their
order.

• Migration of Keystores to and from Oracle Key Vault
You can use Oracle Key Vault to migrate both TDE wallets and external keystores to and
from Oracle Key Vault.

9.1.14.2 Migrating from an External Keystore to a Password-Protected TDE Wallet in
Isolated Mode

In isolated mode, you can migrate from an external keystore to a password-protected TDE
wallet.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Ensure that you have enrolled the PDB endpoint and that the Oracle Key Vault
configuration is present at the $WALLET_ROOT/pdb_guid/okv location.

For both the TDE wallet and the external keystore to open at the same time, either the
TDE wallet must have the same password as the external keystore, or alternatively, after
the reverse migration has completed, you can create an auto-login TDE wallet.

3. Set the TDE_CONFIGURATION parameter as follows, so that FILE becomes the new primary
keystore, and OKV becomes the secondary keystore.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE|OKV";
4. Now that the keystore configuration has been completed, issue the following statement to

reverse migrate from the external keystore to the password-protected TDE wallet:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY 
IDENTIFIED BY TDE_wallet_password 
REVERSE MIGRATE USING "external_key_manager_password" 
[WITH BACKUP [USING 'backup_identifier']]; 

5. Optionally, change the password of the newly migrated TDE wallet.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-29



For example:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD 
IDENTIFIED BY
old_password SET new_password 
WITH BACKUP USING 'pwd_change';

After you complete these steps, the migration process automatically reloads the TDE
wallet keys in memory. You do not need to restart the database, nor do you need to
manually re-open the TDE wallet. The external keystore may still be required after
reverse migration because the old keys are likely to have been used for encrypted
backups or by tools such as Oracle Data Pump and Oracle Recovery Manager. You
should create an auto-login TDE wallet and put the HSM_PASSWORD client secret into it.
For example:

ADMINISTER KEY MANAGEMENT ADD SECRET 'external_key_manager_password'
FOR CLIENT 'EXTERNAL_PASSWORD'
TO LOCAL AUTO_LOGIN KEYSTORE TDE_wallet_location
WITH BACKUP;

Related Topics

• About Migrating Back from an External Keystore
To switch from using an external keystore solution to a TDE wallet, you can use
reverse migration of the TDE wallet.

• Keystore Order After a Migration
After you perform a migration, keystores can be either primary or secondary in
their order.

• Migration of Keystores to and from Oracle Key Vault
You can use Oracle Key Vault to migrate both TDE wallets and external keystores
to and from Oracle Key Vault.

9.1.15 Uniting a Pluggable Database Keystore
Uniting a PDB keystore moves the TDE master encryption keys from the PDB
keystore into the keystore of the CDB root. This enables the administrator of the
keystore of the CDB root to manage the keys.

The client secrets are not moved. Instead, they are left behind in the keystore that the
PDB used while it was configured in isolated mode. Oracle recommends that you
delete client secrets from that keystore before you unite the PDB keystore. Similarly,
when a PDB becomes isolated, no client secret contained in the keystore of the CDB
root is moved.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Unite the PDB keystore, which moves the TDE master encryption keys from the
PDB keystore into the keystore of the CDB root, by using the following syntax:

ADMINISTER KEY MANAGEMENT UNITE KEYSTORE
IDENTIFIED BY isolated_keystore_password
WITH ROOT KEYSTORE [FORCE KEYSTORE]
IDENTIFIED BY 
[EXTERNAL STORE | keystore_password_of_cdb_root]
[WITH BACKUP [USING backup_id]];

In this specification:

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-30



• FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation if an auto-login TDE wallet is open (and in use) or if the TDE wallet is
closed.

• united_keystore_password: Knowledge of this password does not enable the user
who performs the UNITE KEYSTORE operation privileges to perform ADMINISTER KEY
MANAGEMENT UNITE KEYSTORE operations on the PDB.

When the keystore of a PDB is united with a keystore in the CDB root, all of the
previously active (historical) TDE master encryption keys that were associated with the
PDB are moved to the keystore of the CDB root. (If an ORA-46694: The keys are
already in the root keystore error appears, see below.)

3. Confirm that the isolated mode PDB is now a united mode PDB.

SELECT KEYSTORE_MODE FROM V$ENCRYPTION_WALLET;

The output should be UNITED.

The keystore no longer exists but its master encryption key is now in the keystore in the CDB
root. If you later decide that you want the united mode PDB to be an isolated mode PDB
again, then you can use the ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE statement.
ORA-46694 error: If a wallet is created in the in a PDB context, then it changes the keystore
type of the PDB to isolated, and unless a key is set for the PDB, the wallet status will be
OPEN_NO_MASTER_KEY. Uniting this type of PDB using the ADMINISTER KEY MANAGEMENT UNITE
KEYSTORE statement will result in an ORA-46694: The keys are already in the root
keystore error. To change the KEYSTORE_MODE to UNITED for this PDB, you must change the
TDE configuration for the PDB. In the PDB, run the following statement:

ALTER SYSTEM RESET TDE_CONFIGURATION;

Related Topics

• Isolating a Pluggable Database Keystore
Isolating a PDB keystore moves the master encryption key from the CDB root keystore
into an isolated mode keystore in the a PDB.

9.1.16 Creating a Keystore When the PDB Is Closed
When you create a keystore in a PDB that is closed, the new keystore is empty and the PDB
is converted to isolated mode.

• About Creating a Keystore When the PDB Is Closed
Creating a keystore in a PDB that is closed could inadvertently cause problems in rekey
operations, but the keystore creation can be reverted.

• Reverting a Keystore Creation Operation When a PDB Is Closed
If you have inadvertently created a keystore in a PDB (and thereby caused it to become
configured in isolated mode), then you should reverse the keystore creation operation.

9.1.16.1 About Creating a Keystore When the PDB Is Closed
Creating a keystore in a PDB that is closed could inadvertently cause problems in rekey
operations, but the keystore creation can be reverted.

In previous releases, if you tried to create a keystore in a closed PDB, you were prevented
and an ORA-65040: operation not allowed from within a pluggable database error

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-31



would appear. Starting in Oracle Database release 18c, for convenience, when the
keystore of the PDB is closed and if you run the ADMINISTER KEY MANAGEMENT CREATE
KEYSTORE statement in the PDB, Oracle Database allows the operation.

If the closed PDB has not been configured to use encryption (that is, it has never had
an ADMINISTER KEY MANAGEMENT SET KEY statement performed in it), after you run
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE, resulting in an empty keystore and
the configuration of the PDB being changed to isolated mode, then you can create a
TDE master encryption key in this empty keystore.

If, however, the PDB was already configured to use encryption, then the PDB may be
configured in united mode (and thus have its TDE master encryption key being
managed in the keystore of the CDB root).

Mistakenly running an ADMINISTER KEY MANAGEMENT CREATE KEYSTORE statement on
such a closed PDB will create an additional keystore (which will be empty), and will
then configure the PDB to be in isolated mode. This effectively misconfigures the PDB,
because the PDB is now in isolated mode (whereas it should be in united mode), yet
its TDE master encryption key is still in the keystore of the CDB root. This
misconfiguration can cause problems later on, if you try to rekey the TDE master
encryption key by using the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
statement . An ORA-28362: master key not found error will appear, because when
encryption has already been enabled and a key has been set, Oracle Database treats
the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY statement as a rekey
operation. In order to perform a rekey operation, Oracle Database must locate the
currently active TDE master encryption key of the PDB. But in this misconfigured PDB,
Oracle Database cannot locate the TDE master encryption key, because the PDB is
now in isolated mode and the necessary key is in the keystore of the CDB root. Hence,
the PDB is no longer configured to search in the keystore of the PDB, and the rekey
operation fails.

To remedy the misconfiguration of the PDB, you must reconfigure the PDB to united
mode and you must remove the empty keystore. (Always make a backup before
removing any keystore.) When the PDB is configured back to united mode, then the
currently active TDE master encryption key is once again available for rekey and other
TDE master encryption key operations.

If later on you want to configure the PDB to be in isolated mode, then you can open
the PDB and run the ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE statement,
which isolates the PDB and moves its TDE master encryption key and previously-
active (historical) keys from the keystore of the CDB root to a newly-created keystore
for the isolated PDB.

Related Topics

• Reverting a Keystore Creation Operation When a PDB Is Closed
If you have inadvertently created a keystore in a PDB (and thereby caused it to
become configured in isolated mode), then you should reverse the keystore
creation operation.

Chapter 9
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

9-32



9.1.16.2 Reverting a Keystore Creation Operation When a PDB Is Closed
If you have inadvertently created a keystore in a PDB (and thereby caused it to become
configured in isolated mode), then you should reverse the keystore creation operation.

Use this procedure if you created a keystore in a closed PDB that already had encryption
enabled (that is, it already had a TDE master encryption key).

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Confirm the mode of the PDB by querying the KEYSTORE_MODE column of the
V$ENCRYPTION_WALLET dynamic view.

3. If the V$ENCRYPTION_WALLET output is ISOLATED, then run the ALTER SYSTEM statement to
reconfigure the PDB to united mode.

• When pfile is in use, clear the TDE_CONFIGURATION parameter by using the following
statement:

ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=MEMORY;

In an Oracle Real Application Clusters environment, include the SID parameter:

ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=MEMORY SID='*';
• When spfile is in use, clear the TDE_CONFIGURATION parameter by using this

statement:

ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=BOTH;

In an Oracle Real Application Clusters environment, include the SID parameter:

ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=BOTH SID='*';
4. In the WALLET_ROOT/pdb_guid/tde directory, find and back up the ewallet.p12 keystore

file that was mistakenly created.

5. Delete the mistakenly-created empty keystore file.

At this stage, the PDB will be in united mode and the correct keystore and TDE master
encryption key will be available for any future rekey operations.

9.2 Administering Transparent Data Encryption in Isolated Mode
You can perform a number of general administrative tasks with Transparent Data Encryption
in isolated mode.

• Cloning or Relocating Encrypted PDBs in Isolated Mode
You can clone or relocate encrypted PDBs within the same container database, or across
container databases.

• Unplugging and Plugging a PDB with Encrypted Data in a CDB in Isolated Mode
In isolated mode, for a PDB that has encrypted data, you can plug it into a CDB.
Conversely, you can unplug this PDB from the CDB.

• Cloning a PDB with Encrypted Data in a CDB in Isolated Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause
can clone a PDB that has encrypted data.

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-33



• Remotely Cloning an Encrypted PDB in Isolated Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause can remotely clone a PDB that has encrypted data.

• Relocating an Encrypted PDB in Isolated Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause can relocate across CDBs a cloned PDB that has encrypted data.

• How Keystore Open and Close Operations Work in Isolated Mode
You should be aware of how keystore (TDE wallets or external keystores) open
and close operations work in isolated mode.

• Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT
EXPORT can export or import master encryption keys for a PDB.

9.2.1 Cloning or Relocating Encrypted PDBs in Isolated Mode
You can clone or relocate encrypted PDBs within the same container database, or
across container databases.

If you are trying to move a PDB in which the SYSTEM, SYSAUX, UNDO, or TEMP tablespace
is encrypted, and using the manual export or import of keys, then you must first import
the keys for the PDB in the target database's CDB$ROOT before you create the PDB.
Import of the keys are again required inside the PDB to associate the keys to the PDB.

• Clone or relocate the PDB using the following syntax:

CREATE|RELOCATE PLUGGABLE DATABASE database_name KEYSTORE 
IDENTIFIED BY EXTERNAL STORE|target_keystore_password [NO REKEY];

Related Topics

• Oracle Multitenant Administrator's Guide

9.2.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB
in Isolated Mode

In isolated mode, for a PDB that has encrypted data, you can plug it into a CDB.
Conversely, you can unplug this PDB from the CDB.

• Unplugging a PDB That Has Encrypted Data in Isolated Mode
You can unplug a PDB (that has encrypted data) from one CDB and then
optionally plug it into another CDB.

• Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode
After you plug a PDB that has encrypted data into a CDB, you can set the
encryption key in the PDB.

• Unplugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in Isolated Mode
You can unplug a PDB from one CDB that has been configured with an external
keystore and then plug it into another CDB also configured with an external
keystore.

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-34



• Plugging a PDB That Has Master Keys Stored in an External Keystore in Isolated Mode
The ADMINISTER KEY MANAGEMENT statement can import an external keystore master
encryption key to a PDB that has been moved to another CDB.

9.2.2.1 Unplugging a PDB That Has Encrypted Data in Isolated Mode
You can unplug a PDB (that has encrypted data) from one CDB and then optionally plug it
into another CDB.

Unlike united mode, you do not need to specify the ENCRYPT clause in the ALTER PLUGGABLE
DATABASE statement. The database that is unplugged contains data files and other associated
files. Because each PDB can have its own unique keystore, you do not need to export the
TDE master encryption key of the PDB that you want to unplug. You can check if a PDB has
already been unplugged by querying the STATUS column of the DBA_PDBS data dictionary view.

• Unplug the isolated mode PDB as you normally unplug PDBs.

For example:

ALTER PLUGGABLE DATABASE pdb1
  UNPLUG INTO '/oracle/data/pdb1.xml';

Related Topics

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

9.2.2.2 Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode
After you plug a PDB that has encrypted data into a CDB, you can set the encryption key in
the PDB.

Unlike united mode, you do not need to specify the DECRYPT clause in the CREATE PLUGGABLE
DATABASE statement. When you plug an unplugged PDB into another CDB, the key version is
set to 0 because this operation invalidates the history of the previous keys. You can check the
key version by querying the KEY_VERSION column of the V$ENCRYPTED_TABLESPACES dynamic
view. Similarly, if a control file is lost and recreated, then the previous history of the keys is
reset to 0. You can check if a PDB has already been plugged in by querying the STATUS
column of the DBA_PDBS data dictionary view.

1. Create the PDB by plugging the unplugged PDB into the CDB.

• For example, if you had exported the PDB data into a metadata XML file:

CREATE PLUGGABLE DATABASE CDB1_PDB2 
USING '/tmp/cdb1_pdb2.xml' 
NOCOPY KEYSTORE 
IDENTIFIED BY password;

• If you had exported the PDB into an archive file:

CREATE PLUGGABLE DATABASE CDB1_PDB2 
USING '/tmp/cdb1_pdb2.pdb';

During the open operation of the PDB after the plug operation, Oracle Database
determines if the PDB has encrypted data. If so, it opens the PDB in the RESTRICTED
mode.

You can find if the source database has encrypted data or a TDE master encryption key
set in the keystore by querying the V$ENCRYPTION_KEYS dynamic view.

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-35



2. Open the PDB.

For example:

ALTER PLUGGABLE DATABASE CDB1_PDB2 OPEN;
3. Open the keystore in the CDB root.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY password;

Optionally, open the keystore in the PDB.

4. In the PDB, open the keystore and set the TDE master encryption key for the
PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
IDENTIFIED BY keystore_password 
WITH BACKUP USING 'emp_key_backup';

9.2.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an
External Keystore in Isolated Mode

You can unplug a PDB from one CDB that has been configured with an external
keystore and then plug it into another CDB also configured with an external keystore.

1. Unplug the PDB.

You can check if a PDB has already been unplugged by querying the STATUS
column of the DBA_PDBS data dictionary view.

2. Move the master encryption keys of the unplugged PDB from the hardware that
was used at the source CDB to the hardware that is in use at the destination CDB.

Refer to the documentation for the external keystore for information about moving
master keys between external keystores.

Related Topics

• Oracle Multitenant Administrator's Guide

9.2.2.4 Plugging a PDB That Has Master Keys Stored in an External Keystore
in Isolated Mode

The ADMINISTER KEY MANAGEMENT statement can import an external keystore master
encryption key to a PDB that has been moved to another CDB.

1. Plug the unplugged isolated mode PDB into the destination CDB that has been
configured with the external keystore.

You can check if a PDB has already been plugged in by querying the STATUS
column of the DBA_PDBS data dictionary view.

After the plug-in operation, the PDB that has been plugged in will be in restricted
mode.

2. Ensure that the master keys from the external keystore that has been configured
with the source CDB are available in the external keystore of the destination CDB.

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-36



3. Connect to the plugged PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

4. Open the keystore of the plugged PDB.

For example, for a PDB called PDB1:

ALTER SESSION SET CONTAINER = PDB1;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY "external_key_manager_password";

5. Import the external keystore master encryption key into the PDB.

ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS 
WITH SECRET "external_keystore" FROM 'external_keystore' 
IDENTIFIED BY "external_key_manager_password"; 

6. Close and re-open the PDB.

ALTER PLUGGABLE DATABASE PDB1 CLOSE;
ALTER PLUGGABLE DATABASE PDB1 OPEN;

Related Topics

• Oracle Multitenant Administrator's Guide

9.2.3 Cloning a PDB with Encrypted Data in a CDB in Isolated Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can
clone a PDB that has encrypted data.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Ensure that the TDE wallet of the PDB that you plan to clone is open.

You can query the STATUS column of the V$ENCRYPTION_WALLET view to find if the TDE
wallet is open.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN FORCE KEYSTORE IDENTIFIED BY 
TDE_wallet_password;

3. Clone the PDB.

For example:

CREATE PLUGGABLE DATABASE cdb1_pdb3 FROM cdb1_pdb1 
FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE 
IDENTIFIED BY TDE_wallet_password;

Replace TDE_wallet_password with the password of the TDE wallet of the CDB where
the cdb1_pdb3 clone is created.

After you create the cloned PDB, encrypted data is still accessible by the clone using the
master encryption key of the original PDB. After a PDB is cloned, there may be user data
in the encrypted tablespaces. This encrypted data is still accessible because the master
encryption key of the source PDB is copied over to the destination PDB. Because the
clone is a copy of the source PDB but will eventually follow its own course and have its
own data and security policies, you should rekey the master encryption key of the cloned
PDB.

4. Rekey the master encryption key of the cloned PDB.

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-37



For example:

ADMINISTER KEY MANAGEMENT SET KEY 
IDENTIFIED BY TDE_wallet_password 
WITH BACKUP USING 'emp_key_backup';

Before you rekey the master encryption key of the cloned PDB, the clone can still
use master encryption keys that belong to the original PDB. However, these
master encryption keys do not appear in the cloned PDB V$ dynamic views.
Rekeying the master encryption key ensures that the cloned PDB uses its own
unique keys, which will be viewable in the V$ views.

Related Topics

• About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source
PDB available to cloned PDB.

9.2.4 Remotely Cloning an Encrypted PDB in Isolated Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause
can remotely clone a PDB that has encrypted data.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Query the STATUS column of the V$ENCRYPTION_WALLET view to ensure that the
TDE wallet of the PDB that you plan to clone is open.

3. Create a database link for the PDB that you want to clone remotely.

Use the CREATE DATABASE LINK SQL statement to create the database link. You
must create the database link by following the database link prerequisites that are
required for cloning a remote PDB.

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED
BY clause to perform the clone of the PDB.

For example:

CREATE PLUGGABLE DATABASE target_pdb
FROM source_pdb@clone_link KEYSTORE
IDENTIFIED BY TDE_wallet_password;

The TDE_wallet_password is the password of a new TDE wallet that will be
created in WALLET_ROOT/target_pdb_guid/tde for the incoming PDB.

After you create the cloned PDB, encrypted data is still accessible because the
master encryption key of the source PDB is copied over to the destination PDB.
Because it will eventually follow its own course and have its own data and security
policies, you should rekey the master encryption key of the cloned PDB.

5. Rekey the master encryption key of the remotely cloned PDB.

Run the following SQL statement to create an administer key management
command with a TAG:

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR 

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-38



(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')||''' 
IDENTIFIED BY KEYSTORE_PASSWORD WITH BACKUP;' 
AS "SET KEY COMMAND" FROM DUAL;

ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'PDB_NAME DATE TIME' 
IDENTIFIED BY KEYSTORE_PASSWORD WITH BACKUP;

Before you rekey the master encryption key of the cloned PDB, the clone can still use
master encryption keys that belong to the original PDB. However, these master
encryption keys do not appear in the cloned PDB V$ dynamic views. Rekeying the master
encryption key ensures that the cloned PDB uses its own unique keys, which will be
viewable in the V$ views.

Related Topics

• About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source PDB
available to cloned PDB.

• Opening the TDE Wallet in a United Mode PDB
To open a TDE wallet in united mode, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

• Oracle Multitenant Administrator's Guide

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

9.2.5 Relocating an Encrypted PDB in Isolated Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can
relocate across CDBs a cloned PDB that has encrypted data.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Query the STATUS column of the V$ENCRYPTION_WALLET view to ensure that the TDE wallet
of the PDB that you want to relocate is open.

3. Create a database link for the PDB that you want to relocate.

Use the CREATE DATABASE LINK SQL statement to create the database link. You must
create the database link by following the database link prerequisites that are required for
relocating a remote PDB or a non-CDB.

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause to relocate the PDB.

For example:

CREATE PLUGGABLE DATABASE target_pdb_name 
FROM src_pdb_name@dblink RELOCATE  
KEYSTORE IDENTIFIED BY TDE_wallet_password;

Replace TDE_wallet_password with the password of the TDE wallet of the CDB where
the cdb1_pdb3 clone is created.

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-39



After you create the cloned PDB, encrypted data is still accessible by the clone
using the master encryption key of the original PDB. After a PDB is cloned, there
may be user data in the encrypted tablespaces. This encrypted data is still
accessible because the master encryption key of the source PDB is copied over to
the destination PDB. Because the clone is a copy of the source PDB but will
eventually follow its own course and have its own data and security policies, you
should rekey the master encrytion key of the cloned PDB.

5. Rekey the master encryption key of the remotely cloned PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
FORCE KEYSTORE
IDENTIFIED BY TDE_wallet_password 
WITH BACKUP USING 'emp_key_backup';

In this example, FORCE KEYSTORE is included because the TDE wallet must be
open during the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still
use master encryption keys that belong to the original PDB. However, these
master encryption keys do not appear in the cloned PDB V$ dynamic views.
Rekeying the master encryption key ensures that the cloned PDB uses its own
unique keys, which will be viewable in the V$ views.

Related Topics

• About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source
PDB available to cloned PDB.

• Opening the TDE Wallet in a United Mode PDB
To open a TDE wallet in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Oracle Multitenant Administrator's Guide

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

9.2.6 How Keystore Open and Close Operations Work in Isolated
Mode

You should be aware of how keystore (TDE wallets or external keystores) open and
close operations work in isolated mode.

For each PDB in isolated mode, you must explicitly open the password-protected TDE
wallet or external keystore in the PDB to enable the Transparent Data Encryption
operations to proceed. (Auto-login and local auto-login TDE wallets open
automatically.) Closing a keystore on a PDB blocks all of the Transparent Data
Encryption operations on that PDB.

The open and close keystore operations in a PDB depend on the open and close
status of the keystore in the PDB.

Note the following:

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-40



• You can create a separate keystore password for each PDB in the multitenant
environment.

• Before you can manually open a password-protected software or an external keystore in
an individual PDB, you must open the keystore in the CDB root.

• If an auto-login TDE wallet is in use, or if the TDE wallet is closed, then include the FORCE
KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement when you open the TDE
wallet.

• If the keystore is a password-protected TDE wallet that uses an external store for
passwords, then replace the password in the IDENTIFIED BY clause with EXTERNAL
STORE.

• Before you can set a TDE master encryption key in an individual PDB, you must set the
key in the CDB root. Oracle highly recommends that you include the USING TAG clause
when you set keys in PDBs. For example:

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||TO_CHAR (SYSDATE, 
'YYYY-MM-DD HH24:MI:SS')||''' 
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE 
WITH BACKUP CONTAINER = CURRENT;' AS "SET KEY COMMAND" FROM DUAL;

Including the USING TAG clause enables you to quickly and easily identify the keys that
belong to a certain PDB, and when they were created.

• Auto-login and local auto-login TDE wallets open automatically. You do not need to
manually open these from the root first, or from the PDB.

• If there is any PDB configured in isolated mode that has its keystore open, then an
attempt to close the keystore in the CDB root would fail with an ORA-46692 cannot close
wallet error. Use the FORCE CLOSE clause in the ADMINISTER KEY MANAGEMENT statement
to override this behavior.

• If you perform an ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN statement in the
CDB root and set the CONTAINER clause to ALL, then the keystore will only be opened in
each open PDB that is configured in united mode. Keystores for any PDBs that are
configured in isolated mode are not opened.

9.2.7 Exporting and Importing Master Encryption Keys for a PDB in
Isolated Mode

In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT EXPORT
can export or import master encryption keys for a PDB.

• About Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, you can export and import master encryption keys from the CDB root.

• Exporting or Importing a Master Encryption Key for a PDB in Isolated Mode
In isolated mode, the ADMINISTER KEY MANAGEMENT statement can export or import a
master encryption key for a PDB.

• Example: Exporting a Master Encryption Key from a PDB in Isolated Mode
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export
master encryption keys for a PDB.

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-41



• Example: Importing a Master Encryption Key into a PDB in Isolated Mode
The ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS statement can import
a master encryption key into a PDB.

9.2.7.1 About Exporting and Importing Master Encryption Keys for a PDB in
Isolated Mode

In isolated mode, you can export and import master encryption keys from the CDB
root.

You can export and import all of the master encryption keys that belong to the PDB by
exporting and importing the master encryption keys from within a PDB. Export and
import operations of master encryption keys in a PDB supports the PDB unplug and
plug operations. During a PDB unplug and plug operations, all the master encryption
keys that belong to a PDB, as well as the metadata, are involved. Therefore, the WITH
IDENTIFIER clause of the ADMINISTER KEY MANAGEMENT EXPORT statement is not
allowed when you export keys from within a PDB. The WITH IDENTIFIER clause is only
permitted in the CDB root.

You should include the FORCE KEYSTORE clause if the CDB root has an auto-login
keystore or if the keystore is closed. If the keystore has been configured to use an
external store for the password, then use the IDENTIFIED BY EXTERNAL STORE clause.
For example, to perform an export operation for this scenario:

ADMINISTER KEY MANAGEMENT EXPORT KEYS 
WITH SECRET "my_secret"
TO '/etc/TDE/export.exp'
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE;

This ADMINISTER KEY MANAGEMENT EXPORT operation exports not only the keys but
creates metadata that is necessary for PDB environments (as well as for cloning
operations).

Inside a PDB, the export operation of master encryption keys exports the keys that
were created or activated by a PDB with the same GUID as the PDB where the keys
are being exported. Essentially, all of the keys that belong to a PDB where the export
is being performed will be exported.

The importing of master encryption keys from an export file within a PDB takes place
only if the master encryption key was exported from another PDB with the same GUID.
To support the plug-in of a non-CDB as PDB into a CDB, you must have already
exported the TDE master encryption keys from the non-CDB and imported them into
the PDB without the WITH IDENTIFIER clause. Because the PDB-specific details, such
as the PDB name and database ID, can change from one CDB to the next, the PDB-
specific information is modified during the import to reflect the updated PDB
information.

Note:

Within a PDB, you can only export the keys of a PDB as a whole. The ability
to export them selectively based on a query or an identifier is restricted to the
root.

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-42



9.2.7.2 Exporting or Importing a Master Encryption Key for a PDB in Isolated Mode
In isolated mode, the ADMINISTER KEY MANAGEMENT statement can export or import a master
encryption key for a PDB.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Perform the export or import operation.

For example:

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS 
WITH SECRET "hr_secret" TO '/tmp/export.p12' 
FORCE KEYSTORE 
IDENTIFIED BY password;

Ensure that you include the FORCE KEYSTORE clause because the keystore must be open
for this operation.

Related Topics

• Example: Exporting a Master Encryption Key from a PDB in Isolated Mode
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export
master encryption keys for a PDB.

9.2.7.3 Example: Exporting a Master Encryption Key from a PDB in Isolated Mode
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export master
encryption keys for a PDB.

Example 9-7 shows how to export a master encryption key from the PDB hrpdb. In this
example, the FORCE KEYSTORE clause is included in case the auto-login keystore is in use, or
if the keystore is closed.

Example 9-7    Exporting a Master Encryption Key from a PDB

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS 
WITH SECRET "my_secret" TO '/tmp/export.p12' 
FORCE KEYSTORE 
IDENTIFIED BY password;

9.2.7.4 Example: Importing a Master Encryption Key into a PDB in Isolated Mode
The ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS statement can import a master
encryption key into a PDB.

Example 9-8 shows how to import a master encryption key into the PDB hrpdb.

Example 9-8    Importing a Master Encryption Key into a PDB

ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS 
WITH SECRET "my_secret" 
FROM '/tmp/export.p12' 
FORCE KEYSTORE 
IDENTIFIED BY password 
WITH BACKUP;

Chapter 9
Administering Transparent Data Encryption in Isolated Mode

9-43



10
General Considerations of
Using Transparent Data Encryption

When you use Transparent Data Encryption, you should consider factors such as security,
performance, and storage overheads.

• Migrating Encrypted TDE Columns or Tablespaces after a Database Upgrade from
Release 11g
If you are upgrading from Oracle Database release 11g, then you must manually convert
the typed master encryption keys to united mode master encryption keys.

• Compression and Data Deduplication of Encrypted Data
When you use Oracle's compression products and options with Transparent Data
Encryption (TDE) tablespace encryption, Oracle Database automatically applies
compression before performing the encryption.

• Security Considerations for Transparent Data Encryption
As with all Oracle Database features, you should consider security when you create TDE
policies.

• Performance and Storage Overhead of Transparent Data Encryption
The performance of Transparent Data Encryption can vary.

• Modifying Your Applications for Use with Transparent Data Encryption
You can modify your applications to use Transparent Data Encryption.

• How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
Many of the clauses from the ALTER SYSTEM statement correspond to the ADMINISTER KEY
MANAGEMENT statement.

• Data Loads from External Files to Tables with Encrypted Columns
You can use SQL*Loader to perform data loads from files to tables that have encrypted
columns.

• Transparent Data Encryption and Database Close Operations
You should ensure that the software or external keystore is open before you close the
database.

10.1 Migrating Encrypted TDE Columns or Tablespaces after a
Database Upgrade from Release 11g

If you are upgrading from Oracle Database release 11g, then you must manually convert the
typed master encryption keys to united mode master encryption keys.

You must perform this task for master encryption keys in both column encryption and
tablespace encryption configurations.

1. Navigate to directory that has the TDE password-based keystore ewallet.p12.

10-1



2. Check the keystore contents and look for typed keys (that is, identifiers starting
with ORACLE.SECURITY.TS.ENCRYPTION.B as follows).

mkstore -wrl ewallet.p12 -list
Enter wallet password: wallet_password

Output similar to the following appears. The entries with TS are the typed keys that
must be converted.

Oracle Secret Store entries:
ORACLE.SECURITY.DB.ENCRYPTION.AYTGHzMNxU9kv77shWptsxkAAAAAAAAAAAAAAA
AAAAAAAAAAAAAA
ORACLE.SECURITY.DB.ENCRYPTION.ARjWMYe05E9Bv4KULq1no8UAAAAAAAAAAAAAAA
AAAAAAAAAAAAAA
ORACLE.SECURITY.DB.ENCRYPTION.ASoO2D5jtk/
jv9FPW6rhhGcAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ORACLE.SECURITY.DB.ENCRYPTION.MASTERKEY
ORACLE.SECURITY.TS.ENCRYPTION.BW8QuLUTgOpV0PtEt/
lR028CAwAAAAAAAAAAAAAAAAAAAAAAAAAA
ORACLE.SECURITY.TS.ENCRYPTION.BWNFXbAc38AZMdFdi2kuWV0CAwAAAAAAAAAAAA
AAAAAAAAAAAAAA

3. Back up the keystore.

For example:

cp ewallet.p12 ewallet_ddddmmyy.p12

4. Create a united key for each typed key that you found in the keystore.

To accomplish this, you must modify the identifier name (Key ID) to have DB
instead of TS and the first letter from B to A. For this you must add a new entry to
the keystore. The following example shows how to convert the first typed key in
the list that was shown in the preceding steps.

a. List the value for identifier to double-check it. The bold text indicates the two
changes to be made.

For example:

ORACLE.SECURITY.TS.ENCRYPTION.BW8QuLUTgOpV0PtEt/
lR028CAwAAAAAAAAAAAAAAAAA

This example must be changed as follows:

ORACLE.SECURITY.DB.ENCRYPTION.AW8QuLUTgOpV0PtEt/
lR028CAwAAAAAAAAAAAAAAAAA

b. Using this updated entry, add a new entry to the keystore.

For example:

mkstore -wrl wallet_location -viewEntry
ORACLE.SECURITY.TS.ENCRYPTION.BW8QuLUTgOpV0PtEt/
lR028CAwAAAAAAAAAAAAAAAAAAAAAAAAAA

Chapter 10
Migrating Encrypted TDE Columns or Tablespaces after a Database Upgrade from Release 11g

10-2



The -viewEntry option of this command displays the identifier value for the TS
encryption, which you must include in the next command when you create the
keystore entry:

mkstore -wrl wallet_location -
createEntry ORACLE.SECURITY.DB.ENCRYPTION.AW8QuLUTgOpV0PtEt/
lR028CAwAAAAAAAAAAAAAAAA
AAAAAAAAAA value_for_ts_encryption_identifier

c. For an auto-login keystore, rename the old auto-login keystore and then create a new
one.

i. Back up the master encryption key. For example:

mv cwallet.sso cwallet_ddddmmyy.sso

ii. Use the ADMINISTER KEY MANAGEMENT command to create the auto-login
keystore.

Related Topics

• Creating an Auto-Login or a Local Auto-Login TDE Wallet
As an alternative to password-protected TDE wallets, you can create either an auto-login
or local auto-login TDE wallet.

10.2 Compression and Data Deduplication of Encrypted Data
When you use Oracle's compression products and options with Transparent Data Encryption
(TDE) tablespace encryption, Oracle Database automatically applies compression before
performing the encryption.

The compression products include the following: Oracle Recovery Manager (Oracle RMAN)
compression, Oracle Advanced Compression, Exadata Hybrid Columnar Compression
(EHCC), and so on.

This ensures that you receive the maximum space and performance benefits from
compression, while also receiving the security of encryption at rest. In the CREATE
TABLESPACE SQL statement, include both the COMPRESS and ENCRYPT clauses.

With column encryption, Oracle Database compresses the data after it encrypts the column.
This means that compression will have minimal effectiveness on encrypted columns. There is
one notable exception: if the column is a SecureFiles LOB, and the encryption is
implemented with SecureFiles LOB Encryption, and the compression (and possibly
deduplication) are implemented with SecureFiles LOB Compression & Deduplication, then
compression is performed before encryption. Similar to the CREATE TABLESPACE statement for
tablespace encryption, include both the COMPRESS and ENCRYPT clauses.

Note:

The type of compression that you can use depends on the licensing that you have
for Advanced Compression. See Oracle Database Licensing Information User
Manual.

Chapter 10
Compression and Data Deduplication of Encrypted Data

10-3



Related Topics

• Oracle Database Backup and Recovery User’s Guide

10.3 Security Considerations for Transparent Data
Encryption

As with all Oracle Database features, you should consider security when you create
TDE policies.

• Transparent Data Encryption General Security Advice
Security considerations for Transparent Data Encryption (TDE) operate within the
broader area of total system security.

• Transparent Data Encryption Column Encryption-Specific Advice
Additional security considerations apply to normal database and network
operations when using TDE.

• Managing Security for Plaintext Fragments
You should remove old plaintext fragments that can appear over time.

10.3.1 Transparent Data Encryption General Security Advice
Security considerations for Transparent Data Encryption (TDE) operate within the
broader area of total system security.

Follow these general guidelines:

• Identify the degrees of sensitivity of data in your database, the protection that they
need, and the levels of risk to be addressed. For example, highly sensitive data
requiring stronger protection can be encrypted with the AES256 algorithm. A
database that is not as sensitive can be protected with no salt or the nomac option
to enable performance benefits.

• Evaluate the costs and benefits that are acceptable to data and keystore
protection. Protection of keys determines the type of keystore to be used: auto-
login TDE wallets, password-based TDE wallets, or external keystores.

• Consider having separate security administrators for TDE and for the database.

• Consider having a separate and exclusive keystore for TDE.

• Implement protected back-up procedures for your encrypted data.

10.3.2 Transparent Data Encryption Column Encryption-Specific
Advice

Additional security considerations apply to normal database and network operations
when using TDE.

Encrypted column data stays encrypted in the data files, undo logs, redo logs, and the
buffer cache of the system global area (SGA). However, data is decrypted during
expression evaluation, making it possible for decrypted data to appear in the swap file
on the disk. Privileged operating system users can potentially view this data.

Column values encrypted using TDE are stored in the data files in encrypted form.
However, these data files may still contain some plaintext fragments, called ghost

Chapter 10
Security Considerations for Transparent Data Encryption

10-4



copies, left over by past data operations on the table. This is similar to finding data on the
disk after a file was deleted by the operating system.

10.3.3 Managing Security for Plaintext Fragments
You should remove old plaintext fragments that can appear over time.

Old plaintext fragments may be present for some time until the database overwrites the
blocks containing such values. If privileged operating system users bypass the access
controls of the database, then they might be able to directly access these values in the data
file holding the tablespace.

To minimize this risk:

1. Create a new tablespace in a new data file.

You can use the CREATE TABLESPACE statement to create this tablespace.

2. Move the table containing encrypted columns to the new tablespace. You can use the
ALTER TABLE.....MOVE statement.

Repeat this step for all of the objects in the original tablespace.

3. Drop the original tablespace.

You can use the DROP TABLESPACE tablespace INCLUDING CONTENTS KEEP DATAFILES
statement. Oracle recommends that you securely delete data files using platform-specific
utilities.

4. Use platform-specific and file system-specific utilities to securely delete the old data file.
Examples of such utilities include shred (on Linux) and sdelete (on Windows).

10.4 Performance and Storage Overhead of Transparent Data
Encryption

The performance of Transparent Data Encryption can vary.

• Performance Overhead of Transparent Data Encryption
Transparent Data Encryption tablespace encryption has small associated performance
overhead.

• Storage Overhead of Transparent Data Encryption
TDE tablespace encryption has no storage overhead, but TDE column encryption has
some associated storage overhead.

10.4.1 Performance Overhead of Transparent Data Encryption
Transparent Data Encryption tablespace encryption has small associated performance
overhead.

The actual performance impact on applications can vary. TDE column encryption affects
performance only when data is retrieved from or inserted into an encrypted column. No
reduction in performance occurs for operations involving unencrypted columns, even if these
columns are in a table containing encrypted columns. Accessing data in encrypted columns
involves small performance overhead, and the exact overhead you observe can vary.

Chapter 10
Performance and Storage Overhead of Transparent Data Encryption

10-5



The total performance overhead depends on the number of encrypted columns and
their frequency of access. The columns most appropriate for encryption are those
containing the most sensitive data.

Enabling encryption on an existing table results in a full table update like any other
ALTER TABLE operation that modifies table characteristics. Keep in mind the potential
performance and redo log impact on the database server before enabling encryption
on a large existing table.

A table can temporarily become inaccessible for write operations while encryption is
being enabled, TDE table keys are being rekeyed, or the encryption algorithm is being
changed. You can use online table redefinition to ensure that the table is available for
write operations during such procedures.

If you enable TDE column encryption on a very large table, then you may need to
increase the redo log size to accommodate the operation.

Encrypting an indexed column takes more time than encrypting a column without
indexes. If you must encrypt a column that has an index built on it, you can try
dropping the index, encrypting the column with NO SALT, and then re-creating the
index.

If you index an encrypted column, then the index is created on the encrypted values.
When you query for a value in the encrypted column, Oracle Database transparently
encrypts the value used in the SQL query. It then performs an index lookup using the
encrypted value.

Note:

If you must perform range scans over indexed, encrypted columns, then use
TDE tablespace encryption in place of TDE column encryption.

Related Topics

• Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the
data were in a database table.

• Oracle Database Administrator’s Guide

10.4.2 Storage Overhead of Transparent Data Encryption
TDE tablespace encryption has no storage overhead, but TDE column encryption has
some associated storage overhead.

Encrypted column data must have more storage space than plaintext data. In addition,
TDE pads out encrypted values to multiples of 16 bytes. This means that if a credit
card number requires nine bytes for storage, then an encrypted credit card value will
require an additional seven bytes.

Each encrypted value is also associated with a 20-byte integrity check. This does not
apply if you have encrypted columns using the NOMAC parameter. If data was encrypted
with salt, then each encrypted value requires an additional 16 bytes of storage.

The maximum storage overhead for each encrypted value is from one to 52 bytes.

Chapter 10
Performance and Storage Overhead of Transparent Data Encryption

10-6



Related Topics

• Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the data
were in a database table.

10.5 Modifying Your Applications for Use with Transparent Data
Encryption

You can modify your applications to use Transparent Data Encryption.

1. Configure the software or external keystore for TDE, and then set the master encryption
key.

2. Verify that the master encryption key was created by querying the KEY_ID column of the
V$ENCRYPTION_KEYS view.

3. Identify the sensitive columns (such as those containing credit card data) that require
Transparent Data Encryption protection.

4. Decide whether to use TDE column encryption or TDE tablespace encryption.

See the following sections for more information:

• How Transparent Data Encryption Column Encryption Works

• How Transparent Data Encryption Tablespace Encryption Works

5. Open the keystore.

6. Encrypt the columns or tablespaces.

See the following sections for more information:

• Encrypting Columns in Tables

• Encryption Conversions for Tablespaces and Databases

10.6 How ALTER SYSTEM and orapki Map to ADMINISTER
KEY MANAGEMENT

Many of the clauses from the ALTER SYSTEM statement correspond to the ADMINISTER KEY
MANAGEMENT statement.

Table 10-1 compares the Transparent Data Encryption usage of the ALTER SYSTEM statement
and the orapki utility from previous releases with the ADMINISTER KEY MANAGEMENT
statement.

Chapter 10
Modifying Your Applications for Use with Transparent Data Encryption

10-7



Table 10-1    How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior                      ALTER SYSTEM or
orapki               

ADMINISTER KEY MANAGEMENT                       

Creating a keystore For TDE wallets:

ALTER SYSTEM SET ENCRYPTION KEY
["certificate_ID"] IDENTIFIED
BY keystore_password;

For external keystores, the keystore
is available after you configure the
external key manager.

For TDE wallets:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE
IDENTIFIED BY TDE_wallet_password

For external keystores, the keystore is available
after you configure the external key manager.

Creating an auto-login
keystore

orapki wallet create -wallet
wallet_location 
-auto_login [-pwd password]

For TDE wallets:

ADMINISTER KEY MANAGEMENT CREATE [LOCAL]
AUTO_LOGIN KEYSTORE FROM KEYSTORE
IDENTIFIED BY TDE_wallet_password;

This type of keystore applies to TDE wallets only.

Opening a keystore ALTER SYSTEM SET [ENCRYPTION]
WALLET OPEN IDENTIFIED BY
keystore_password;

ADMINISTER KEY MANAGEMENT SET KEYSTORE 
OPEN [FORCE KEYSTORE] 
IDENTIFIED BY keystore_password | EXTERNAL 
STORE
[CONTAINER = ALL | CURRENT];

Closing a keystore ALTER SYSTEM SET [ENCRYPTION]
WALLET CLOSE IDENTIFIED BY
keystore_password;

For both TDE wallets and external keystores:

ADMINISTER KEY MANAGEMENT SET KEYSTORE 
CLOSE [IDENTIFIED BY keystore_password]
[CONTAINER = ALL | CURRENT];

Reverse migrating from
an external key
manager to a TDE
wallet

ALTER SYSTEM SET 
[ENCRYPTION] KEY 
IDENTIFIED BY 
wallet_password 
REVERSE MIGRATE USING 
"external_key_manager_pass
word";

ADMINISTER KEY MANAGEMENT SET [ENCRYPTION]
KEY IDENTIFIED BY
keystore_password
REVERSE MIGRATE USING 
"external_key_manager_password"
WITH BACKUP [USING 'backup_identifier'];

Migrating from a TDE
wallet to Oracle Key
Vault or Oracle Cloud
Interface (OCI) Key
Management Service
(KMS)

ALTER SYSTEM SET [ENCRYPTION] 
KEY
IDENTIFIED BY 
"Oracle_Key_Vault_password" 
MIGRATE USING wallet_password;

ADMINISTER KEY MANAGEMENT SET [ENCRYPTION]
KEY IDENTIFIED BY 
"Oracle_Key_Vault_password"
MIGRATE USING wallet_password;

Chapter 10
How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

10-8



Table 10-1    (Cont.) How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior                      ALTER SYSTEM or
orapki               

ADMINISTER KEY MANAGEMENT                       

Changing a keystore
password

orapki wallet change_pwd
-wallet wallet_location
[-oldpwd password ] 
[-newpwd password]

For password-based TDE wallets:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE
PASSWORD IDENTIFIED BY
TDE_wallet_old_password 
SET TDE_wallet_new_password
[WITH BACKUP [USING 'backup_identifier']];

For external keystores, you close the keystore,
change it in the external key manager interface,
and then reopen the keystore.

Backing up a
password-based TDE
wallet

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
[USING 'backup_identifier'] IDENTIFIED BY
TDE_wallet_password 
[TO 'TDE_wallet_location'];

Merging two TDE
wallets into a third new
keystore

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE
'TDE_wallet1_location' [IDENTIFIED BY
TDE_wallet1_password] 
AND KEYSTORE 'TDE_wallet2_location'
[IDENTIFIED BY TDE_wallet2_password]
INTO NEW KEYSTORE 'TDE_wallet3_location'
IDENTIFIED BY TDE_wallet3_password;

Merging one TDE
wallet into another
existing keystore

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE
'TDE_wallet1_location' [IDENTIFIED BY
TDE_wallet1_password] 
INTO EXISTNG KEYSTORE 
'TDE_wallet2_location'
IDENTIFIED BY TDE_wallet2_password
[WITH BACKUP [USING 'backup_identifier']];

Setting or rekeying the
master encryption key

ALTER SYSTEM SET [ENCRYPTION] 
KEY
IDENTIFIED BY 
keystore_password;

Note: The ALTER SYSTEM SET
ENCRYPTION KEY statement does
not update the
V$ENCRYPTION_KEYS dynamic view
after you rekey the encryption key.

ADMINISTER KEY MANAGEMENT 
SET ENCRYPTION KEY [USING TAG 'tag']
IDENTIFIED BY keystore_password 
WITH BACKUP [USING 'backup_identifier'] 
[CONTAINER = ALL | CURRENT];

After you rekey the encryption key, the
V$ENCRYPTION_KEYS dynamic view is updated.

Creating a master
encryption key for later
user

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT CREATE KEY 
[USING TAG 'tag'] 
IDENTIFIED BY keystore_password 
[WITH BACKUP [USING 'backup_identifier']]
[CONTAINER = (ALL|CURRENT)];

Chapter 10
How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

10-9



Table 10-1    (Cont.) How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior                      ALTER SYSTEM or
orapki               

ADMINISTER KEY MANAGEMENT                       

Activating a master
encryption key

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT USE KEY
'key_identifier' [USING TAG 'tag'] 
IDENTIFIED BY keystore_password 
[WITH BACKUP [USING 'backup_identifier']];

Creating custom tags
for master encryption
keys

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT SET TAG 'tag' 
FOR 'master_key_identifier' 
IDENTIFIED BY keystore_password 
[WITH BACKUP [USING 'backup_identifier']];

Exporting a master
encryption key

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT 
EXPORT [ENCRYPTION] KEYS 
WITH SECRET "export_secret" 
TO 'file_path' 
IDENTIFIED BY TDE_wallet_password
[WITH IDENTIFIER IN 
'key_id1', 'key_id2', 'key_idn' | 
(SQL_query)]

Importing a master
encryption key

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT 
IMPORT [ENCRYPTION] KEYS 
WITH SECRET "import_secret" |  
FROM 'file_name' 
IDENTIFIED BY TDE_wallet_password
[WITH BACKUP [USING 'backup_identifier']];

Storing Oracle
Database secrets in a
keystore

No ALTER SYSTEM or orapki
equivalent for this functionality

For TDE wallets:

ADMINISTER KEY MANAGEMENT
ADD SECRET|UPDATE SECRET|DELETE SECRET
"secret" FOR CLIENT 'client_identifier' 
[USING TAG'tag'] 
IDENTIFIED BY TDE_wallet_password 
[WITH BACKUP [USING 'backup_identifier'];

For external keystores:

ADMINISTER KEY MANAGEMENT
ADD SECRET|UPDATE SECRET|DELETE SECRET
"secret" FOR CLIENT 'client_identifier' 
[USING TAG 'tag'] 
IDENTIFIED BY 
"external_key_manager_password";

10.7 Data Loads from External Files to Tables with
Encrypted Columns

You can use SQL*Loader to perform data loads from files to tables that have
encrypted columns.

Chapter 10
Data Loads from External Files to Tables with Encrypted Columns

10-10



Be aware that with SQL*Loader, you cannot include the ENCRYPT clause in the column
definition of an external table of the type ORACLE_LOADER, but you can include it in the column
definitions of external tables of type ORACLE_DATAPUMP.

• External tables of type ORACLE_LOADER
The reason that you cannot include the ENCRYPT clause in the column definitions of
external tables of the type ORACLE_LOADER is because the contents of an external table
with the ORACLE_LOADER type must come from a user-specified plaintext "backing file,"
and such plaintext files cannot contain any TDE encrypted data.

If you use the ENCRYPT clause in the definition of an external table of type ORACLE_LOADER,
then when you query the TDE-encrypted column in this external table, the query fails.
This is because TDE expects the external data to have been encrypted, and
automatically tries to decrypt it on load. This action fails because the "backing file" only
contains plaintext.

• External tables of type ORACLE_DATAPUMP
You can use TDE column encryption with external tables of type ORACLE_DATAPUMP. This
is because for external tables of ORACLE_DATAPUMP type, the "backing file" is always
created by Oracle Database(during an unload operation) and thus does have support for
being populated with encrypted data.

10.8 Transparent Data Encryption and Database Close
Operations

You should ensure that the software or external keystore is open before you close the
database.

The master encryption keys may be required during the database close operation. The
database close operation automatically closes the software or external keystore.

Related Topics

• Step 2: Open the TDE Wallet
Depending on the type of TDE wallet you create, you must manually open the wallet
before you can use it.

• Step 2: Open the Connection to Oracle Key Vault
After you have configured the database to use Oracle Key Vault for TDE key
management, you must open the connection to Oracle Key Vault before you can use it.

Chapter 10
Transparent Data Encryption and Database Close Operations

10-11



11
Using Transparent Data Encryption
with Other Oracle Features

You can use Oracle Data Encryption with other Oracle features, such as Oracle Data Guard
or Oracle Real Application Clusters.

• How Transparent Data Encryption Works with Export and Import Operations
Oracle Data Pump can export and import tables that contain encrypted columns, as well
as encrypt entire dump sets.

• How Transparent Data Encryption Works with Oracle Data Guard
An Oracle Data Guard primary database and secondary secondary database can share
both a TDE wallet and an external keystore.

• How Transparent Data Encryption Works with Oracle Real Application Clusters
Oracle Real Application Clusters (Oracle RAC) nodes can share both a TDE wallets and
an external keystore.

• How Transparent Data Encryption Works with SecureFiles
SecureFiles, which stores LOBS, has three features: compression, deduplication, and
encryption.

• How Transparent Data Encryption Works with Oracle Call Interface
Transparent Data Encryption does not have any effect on the operation of Oracle Call
Interface (OCI).

• How Transparent Data Encryption Works with Editions
Transparent Data Encryption does not have any effect on the Editions feature of Oracle
Database.

• Configuring Transparent Data Encryption to Work in a Multidatabase Environment
Each Oracle database on the same server (such as databases sharing the same Oracle
binary but using different data files) must access its own TDE keystore.

11.1 How Transparent Data Encryption Works with Export and
Import Operations

Oracle Data Pump can export and import tables that contain encrypted columns, as well as
encrypt entire dump sets.

• About Exporting and Importing Encrypted Data
You can use Oracle Data Pump to export and import tables that have encrypted columns.

• Exporting and Importing Tables with Encrypted Columns
You can export and import tables with encrypted columns using the
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY setting.

• Using Oracle Data Pump to Encrypt Entire Dump Sets
Oracle Data Pump can encrypt entire dump sets, not just Transparent Data Encryption
columns.

11-1



• Using Oracle Data Pump with Encrypted Data Dictionary Data
Oracle Data Pump operations provide protections for encrypted passwords and
other encrypted data.

11.1.1 About Exporting and Importing Encrypted Data
You can use Oracle Data Pump to export and import tables that have encrypted
columns.

For both software and external keystores, the following points are important when you
must export tables containing encrypted columns:

• Sensitive data should remain unintelligible during transport.

• Authorized users should be able to decrypt the data after it is imported at the
destination.

When you use Oracle Data Pump to export and import tables containing encrypted
columns, it uses the ENCRYPTION parameter to enable encryption of data in dump file
sets. The ENCRYPTION parameter allows the following values:

• ENCRYPTED_COLUMNS_ONLY: Writes encrypted columns to the dump file set in
encrypted format

• DATA_ONLY: Writes all of the data to the dump file set in encrypted format

• METADATA_ONLY: Writes all of the metadata to the dump file set in encrypted format

• ALL: Writes all of the data and metadata to the dump file set in encrypted format

• NONE: Does not use encryption for dump file sets

11.1.2 Exporting and Importing Tables with Encrypted Columns
You can export and import tables with encrypted columns using the
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY setting.

1. Ensure that the keystore is open before you attempt to export tables containing
encrypted columns.

If you are exporting data in a pluggable database (PDB), then ensure that the
wallet is open in the PDB. If you are exporting into the root, then ensure that the
wallet is open in the root.

To find if the keystore is open, query the STATUS column of the
V$ENCRYPTION_WALLET view. If you must open the keystore, then run the following
SQL statement:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
IDENTIFIED BY TDE_wallet_password 
[CONTAINER = ALL | CURRENT];

The TDE_wallet_password setting is the password for the keystore. The keystore
must be open because the encrypted columns must be decrypted using the TDE
table keys, which requires access to the TDE master encryption key. The columns
are reencrypted using a password, before they are exported.

2. Run the EXPDP command, using the ENCRYPTION_PASSWORD parameter to specify a
password that is used to encrypt column data in the export dump file set.

Chapter 11
How Transparent Data Encryption Works with Export and Import Operations

11-2



The following example exports the employee_data table. The ENCRYPTION_PWD_PROMPT =
YES setting enables you to prompt for the password interactively, which is a
recommended security practice.

expdp hr TABLES=employee_data DIRECTORY=dpump_dir
DUMPFILE=dpcd2be1.dmp ENCRYPTION=ENCRYPTED_COLUMNS_ONLY
ENCRYPTION_PWD_PROMPT = YES

Password: password_for_hr
3. To import the exported data into the target database, ensure that you specify the same

password that you used for the export operation, as set by the ENCRYPTION_PASSWORD
parameter.

The password is used to decrypt the data. Data is reencrypted with the new TDE table
keys generated in the target database. The target database must have the keystore open
to access the TDE master encryption key. The following example imports the
employee_data table:

impdp hr TABLES=employee_data DIRECTORY=dpump_dir 
DUMPFILE=dpcd2be1.dmp 
ENCRYPTION_PWD_PROMPT = YES

Password: password_for_hr

11.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets
Oracle Data Pump can encrypt entire dump sets, not just Transparent Data Encryption
columns.

While importing, you can use either the password or the keystore TDE master encryption key
to decrypt the data. If the password is not supplied, then the TDE master encryption key in
the keystore is used to decrypt the data. The keystore must be present and open at the target
database. The open keystore is also required to reencrypt column encryption data at the
target database.

You can use the ENCRYPTION_MODE=TRANSPARENT setting to transparently encrypt the dump file
set with the TDE master encryption key stored in the keystore. A password is not required in
this case. The keystore must be present and open at the target database, and it must contain
the TDE master encryption key from the source database for a successful decryption of
column encryption metadata during an import operation.

The open keystore is also required to reencrypt column encryption metadata at the target
database. If a keystore already exists on the target database, then you can export the current
TDE master encryption key from the keystore of the source database and import it into the
keystore of the target database.

• Use the ENCRYPTION_MODE parameter to specify the encryption mode.
ENCRYPTION_MODE=DUAL encrypts the dump set using the TDE master encryption key
stored in the keystore and the password provided.

For example, to use dual encryption mode to export encrypted data:

expdp hr DIRECTORY=dpump_dir1 
DUMPFILE=hr_enc.dmp
ENCRYPTION=all 
ENCRYPTION_PASSWORD=encryption_password
ENCRYPTION_PWD_PROMPT=yes
ENCRYPTION_ALGORITHM=AES256 
ENCRYPTION_MODE=dual

Chapter 11
How Transparent Data Encryption Works with Export and Import Operations

11-3



Password: password_for_hr
Encryption Password: password_for_encryption

Related Topics

• Exporting and Importing the TDE Master Encryption Key
You can export and import the TDE master encryption key in different ways.

• Oracle Database Utilities

• Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the
data were in a database table.

11.1.4 Using Oracle Data Pump with Encrypted Data Dictionary Data
Oracle Data Pump operations provide protections for encrypted passwords and other
encrypted data.

When you enable the encryption of fixed-user database passwords in a source
database, then an Oracle Data Pump export operation dump stores a known invalid
password for the database link password. This password is in place instead of the
encrypted password that the export operation extracts from the database. An
ORA-39395: Warning: object <database link name> requires password reset
after import warning message is displayed as a result. If you import data into an
Oracle Database 18c or later database, then this same warning appears when the
database link object with its invalid password is created in the target database. When
this happens, you must reset the database link password, as follows:

ALTER DATABASE LINK database_link_name CONNECT TO schema_name IDENTIFIED BY 
password;

To find information about the database link, you can query the V$DBLINK dynamic view.

When the encryption of fixed-user database passwords has been disabled in a source
database, then there are no changes to Data Pump. The obfuscated database link
passwords are exported and imported as in previous releases.

In this case, Oracle recommends the following:

• Set the ENCRYPTION_PASSWORD parameter on the expdp command so that you can
further protect the obfuscated database link passwords.

• Set the ENCRYPTION_PWD_PROMPT parameter to YES so that the password can be
entered interactively from a prompt, instead of being echoed on the screen.

Both the ENCRYPTION_PASSWORD and the ENCRYPTION_PWD_PROMPT parameters are
available in import operations. ENCRYPTION_PWD_PROMPT is only available with the expdp
and impdp command-line clients, whereas ENCRYPTION_PASSWORD is available in both
the command-line clients and the DBMS_DATAPUMP PL/SQL package.

During an import operation, whether the keystore is open or closed affects the
behavior of whether or not an encryption password must be provided. If the keystore
was open during the export operation and you provided an encryption password, then
you do not need to provide the password during the import operation. If the keystore is
closed during the export operation, then you must provide the password during the
import operation.

Chapter 11
How Transparent Data Encryption Works with Export and Import Operations

11-4



Related Topics

• Oracle Database Reference

• Oracle Database Utilities

11.2 How Transparent Data Encryption Works with Oracle Data
Guard

An Oracle Data Guard primary database and secondary secondary database can share both
a TDE wallet and an external keystore.

• About Using Transparent Data Encryption with Oracle Data Guard
For both TDE wallets and external keystores, Oracle Data Guard supports Transparent
Data Encryption (TDE).

• Encryption of Tablespaces in an Oracle Data Guard Environment
You can control tablespace encryption in the primary and standby databases in an Oracle
Data Guard environment.

• Configuring TDE and Oracle Key Vault in an Oracle Data Guard Environment
You can configure Oracle Data Guard in a multitenant environment so that it can work
with TDE and Oracle Key Vault.

• Configuring TDE Wallet-Based Transparent Data Encryption in Oracle Data Guard
You can configure wallet-based Transparent Data Encryption (TDE) in an Oracle Data
Guard environment.

• Migrating a TDE Wallet in an Oracle Data Guard Environment to Oracle Key Vault
After you have configured TDE wallet-based Transparent Data Encryption (TDE) in an
Oracle Data Guard environment, you can migrate primary and standby databases to
Oracle Key Vault, without downtime.

• Enabling a PDB to Have an Isolated Keystore in an Oracle Data Guard Environment
In an Oracle Data Guard environment, to enable a PDB to have an isolated keystore on
the standby, you must manually perform the configuration.

• Uncoupling the Standby Database from the Primary Database Online Encryption Process
You can use the DB_RECOVERY_AUTO_REKEY initialization parameter to control how
Transparent Data Encryption (TDE) rekey operations are performed in an Oracle Data
Guard environment.

11.2.1 About Using Transparent Data Encryption with Oracle Data Guard
For both TDE wallets and external keystores, Oracle Data Guard supports Transparent Data
Encryption (TDE).

If the primary database uses TDE, then each standby database in a Data Guard configuration
must have a copy of the encryption keystore from the primary database. If you reset the TDE
master encryption key in the primary database, then you must copy the keystore from the
primary database that contains the TDE master encryption key to each standby database.

Note the following:

• Re-key operations with wallet-based TDE will cause the Managed Recovery Process
(MRP) on the standby databases to fail because the new TDE master encryption key is

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-5



not yet available. In order to circumvent this problem, you can configure TDE
wallet encryption in an Oracle Data Guard environment.

• Encrypted data in log files remains encrypted when data is transferred to the
standby database. Encrypted data also stays encrypted during transit.

Related Topics

• Merging TDE Wallets
You can merge TDE wallets in a variety of ways.

• Configuring TDE Wallet-Based Transparent Data Encryption in Oracle Data Guard
You can configure wallet-based Transparent Data Encryption (TDE) in an Oracle
Data Guard environment.

11.2.2 Encryption of Tablespaces in an Oracle Data Guard
Environment

You can control tablespace encryption in the primary and standby databases in an
Oracle Data Guard environment.

• About the Encryption of Tablespaces in an Oracle Data Guard Environment
In an Oracle Data Guard environment, you can control the automatic encryption of
tablespaces in both the primary and standby databases, for on-premises and
Oracle Cloud Infrastructure (OCI) environments.

• Configuring the Encryption of Tablespaces in an Oracle Data Guard Environment
To configure the hybrid encryption of tablespaces, you must set the
TABLESPACE_ENCRYPTION initialization parameter.

• Encrypting an Existing Tablespace in Oracle Data Guard with Online Conversion
To encrypt an existing tablespace in an Oracle Data Guard environment with
online conversion, use ALTER TABLESPACE with the ONLINE and ENCRYPT clauses.

11.2.2.1 About the Encryption of Tablespaces in an Oracle Data Guard
Environment

In an Oracle Data Guard environment, you can control the automatic encryption of
tablespaces in both the primary and standby databases, for on-premises and Oracle
Cloud Infrastructure (OCI) environments.

To control the encryption of new tablespaces, you set the TABLESPACE_ENCRYPTION
initialization parameter.

Oracle recommends that you encrypt primary databases. However, because
encryption requirements may vary depending on the site, you can use the
TABLESPACE_ENCRYPTION parameter to configure a mixed encryption environment for
on-premises and in-Cloud environments.

Note the following about using the TABLESPACE_ENCRYPTION parameter:

• Redo decryption takes place at the redo transport level.

• If you do not have an Advanced Security Option (ASO) license, which includes
Transparent Data Encryption, then you can configure an un-encrypted on-
premises primary database to have an encrypted standby database in Oracle
Cloud Infrastructure (OCI). Even after a role transition (planned or unplanned), the

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-6



new on-premises standby database remains un-encrypted, while the primary database in
OCI is encrypted. See the Oracle Database Product Management YouTube video Hybrid
Oracle Data Guard without Transparent Data Encryption (TDE) License.

• If the ENCRYPT_NEW_TABLESPACES setting that you choose conflicts with the
TABLESPACE_ENCRYPTION setting, then TABLESPACE_ENCRYPTION takes precedence.

Note:

In Oracle Database releases 19.16 and 23ai, the ENCRYPT_NEW_TABLESPACES
was deprecated, to be replaced with TABLESPACE_ENCRYPTION.

• You must set TABLESPACE_ENCRYPTION in the CDB root, not in any PDBs.

• The default TABLESPACE_ENCRYPTION setting for OCI databases is AUTO_ENABLE. The
setting is mandatory, and any changes to it are ignored.

• The default TABLESPACE_ENCRYPTION setting for on-premises databases is
MANUAL_ENABLE.

In an Oracle Data Guard environment that uses on-premises databases and Oracle Base
Database Service or Oracle Exadata Cloud (ExaCS), you can configure tablespace
encryption in either of the following scenarios:

• Encrypt the tablespace in the Cloud standby database but not in the on-premises
primary database: When an unencrypted on-premises primary database creates an
unencrypted tablespace, adds a data file, or updates a table, then the redo is not
encrypted. However, when the encrypted Cloud standby database applies the redo, it
ensures that the tablespace or data file is created, or that the block is updated, and are
all encrypted in the Cloud. After the switchover operation, if the encrypted Cloud primary
database adds an implicitly encrypted tablespace or data file, or updates a table, then the
tablespace is encrypted. The unencrypted on-premises standby database must decrypt
the redo, create an unencrypted tablespace or data file, and then ensure that the block is
not encrypted on-premises.

• Encrypt the tablespace in the Cloud primary database but not in the on-premises
standby database: When an encrypted Cloud primary database creates an implicitly
encrypted tablespace, adds a data file, or updates a table, then the redo is also
encrypted. The unencrypted on-premises standby database must decrypt the redo and
ensure that the tablespace and data file are created, or the updated files are all
unencrypted. After the switchover operation, if the unencrypted on-premises primary
database adds an unencrypted tablespace or data file, or updates a table, then the redo
is not encrypted. The encrypted Cloud standby database adds an encrypted tablespace
or data file, and then ensures that the block is encrypted in the Cloud.

For example, if you want to use TABLESPACE_ENCRYPTION in a configuration that followed the
best practice of having both on-premises and OCI databases encrypted, then you would set
TABLESPACE_ENCRYPTION to AUTO_ENABLE for both the on-premises and OCI databases.
Alternatively, if the on-premises database is not encrypted in a hybrid disaster recovery
configuration with Oracle Base Database Service or Oracle ExaCS, for example, you could
set TABLESPACE_ENCRYPTION to DECRYPT_ONLY. The OCI database is set to AUTO_ENABLE by
default.

See also the video Hybrid Oracle Data Guard without Transparent Data Encryption (TDE)
License.

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-7

https://www.youtube.com/watch?v=HsnOtef87mM
https://www.youtube.com/watch?v=HsnOtef87mM
https://www.youtube.com/watch?v=HsnOtef87mM
https://www.youtube.com/watch?v=HsnOtef87mM


11.2.2.2 Configuring the Encryption of Tablespaces in an Oracle Data Guard
Environment

To configure the hybrid encryption of tablespaces, you must set the
TABLESPACE_ENCRYPTION initialization parameter.

1. Log in to the CDB root of the primary or the standby database instance by using
SQL*Plus with the SYSDBA administrative privilege.

You cannot set the TABLESPACE_ENCRYPTION parameter in a pluggable database
(PDB).

2. Set the TABLESPACE_ENCRYPTION initialization parameter as follows:

ALTER SYSTEM SET TABLESPACE_ENCRYPTION = 'value' SCOPE = SPFILE SID 
= '*';

In this specification, replace value with one of the following settings:

• AUTO_ENABLE encrypts all new tablespaces if the database is licensed for
Oracle Advanced Security. This is the default setting for Cloud databases.
Note the following:

– If an existing tablespace is not encrypted, then the database writes a
warning to the alert log.

– Encrypted tablespaces cannot be converted to unencrypted tablespaces.
In all Oracle Cloud Infrastructure (OCI) databases (including BaseDB,
ExaDB-D, ExaDB-D@Azure, ExaDB-C@C, and ADB-C@C), encrypted
tablespaces cannot be converted to unencrypted tablespaces.

– Because all tablespaces must be encrypted in the Cloud, setting this
parameter to DECRYPT_ONLY or MANUAL_ENABLE on a Cloud database will
result in an error message.

– In the primary database, this setting encrypts the new tablespace with an
encryption key.

– In a standby database, this setting adds a key to the new tablespace and
encrypts all blocks.

• DECRYPT_ONLY prevents new tablespaces from being encrypted. Use this
setting if you do not have a TDE license for your on-premises primary
database that you want to protect with an encrypted standby database in OCI.
See the Hybrid Oracle Data Guard without Transparent Data Encryption (TDE)
License video. This setting is designed for sites that do not have the Advanced
Security Option.

• MANUAL_ENABLE enables you to selectively encrypt tablespaces if the database
is licensed for Oracle Advanced Security. This is the default for both on-
premises primary and standby databases and it uses the same behavior as in
previous Oracle Database releases.

In an Oracle Real Application Clusters (Oracle RAC) environment, set
TABLESPACE_ENCRYPTION to the same value for all instances of the primary
database, and for all instances of the standby database. Because the default value
is MANUAL_ENABLE, Oracle recommends that during an upgrade to the current
release of Oracle Database, until all database instances are rolled over and

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-8

https://www.youtube.com/watch?v=HsnOtef87mM
https://www.youtube.com/watch?v=HsnOtef87mM


upgraded, to not change TABLESPACE_ENCRYPTION for any of these database instances.
When all the database instances are upgraded, then you can modify the
TABLESPACE_ENCRYPTION parameter.

3. Depending on how you set TABLESPACE_ENCRYPTION, do the following:

• TABLESPACE_ENCRYPTION=AUTO_ENABLE:

– Set the master encryption key on the primary database for the root, if you have
not done so already.

– Set master encryption keys on all the PDBs associated with this root, if you have
not done so already.

– Copy the wallet from the primary database to the standby database.

• TABLESPACE_ENCRYPTION=DECRYPT_ONLY: Set the master encryption keys on the
primary database for the root and all the PDBs, and then copy the wallet to the
standby database before creating any new tablespaces.

Note the following with regard to rekey operations:

• Modifying the TABLESPACE_ENCRYPTION parameter does not affect master key rotation
operations.
If a tablespace key rotation is triggered on the primary database, then the standby
database will attempt to rotate the key for the tablespace as well. However if the standby
tablespace is unencrypted and does not have a key, then it will generate an error
because there is no key to regenerate. If the standby tablespace is unencrypted but it has
inherited a key from primary because of the DECRYPT_ONLY setting, then the key will be
rotated. In either case, it does not affect the unencrypted tablespace.

• Both the master encryption key and the tablespace key rotation can only be performed on
the primary database.

• When a tablespace key rotation is performed on the primary database, then the standby
database will attempt to rotate the key for the tablespace as well. However if the standby
tablespace is unencrypted, then the rekey operation attempt will generate an error,
because there is no key to regenerate.

Related Topics

• Encryption Conversions for Existing Offline Tablespaces
You can perform offline encryption conversions by using the ALTER TABLESPACE SQL
statement OFFLINE, ENCRYPT, and DECRYPT clauses.

• Configuring a TDE Wallet and TDE Master Encryption Key for United Mode
In united mode, the TDE wallet resides in the CDB root but the master keys from this
wallet are available for the PDBs that have their TDE wallets in united mode.

• Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode
In isolated mode, the TDE wallet is associated with a PDB.

11.2.2.3 Encrypting an Existing Tablespace in Oracle Data Guard with Online
Conversion

To encrypt an existing tablespace in an Oracle Data Guard environment with online
conversion, use ALTER TABLESPACE with the ONLINE and ENCRYPT clauses.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has been
granted the SYSDBA administrative privilege.

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-9



You must have the SYSDBA administrative privilege to work with the SYSTEM and
SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

You can use the SHOW PARAMETER command to check the current setting of a
parameter.

3. Ensure that the database is open in read-write mode.

You can query the STATUS column of the V$INSTANCE dynamic view to find if a
database is open and the OPEN_MODE column of the V$DATABASE view to find if it in
read-write mode.

4. If necessary, open the database in read-write mode.

ALTER DATABASE OPEN READ WRITE;
5. Ensure that the auxiliary space is at least the same size as the largest data file of

this tablespace.

This size requirement is because Oracle Database performs the conversion one
file at a time. For example, if the largest data file of the tablespace is 32 GB, then
ensure that you have 32 GB of auxiliary space. To find the space used by a data
file, query the BYTES or BLOCKS column of the V$DATAFILE dynamic performance
view.

6. Optionally, in the CDB root of the standby database, set the
DB_RECOVERY_AUTO_REKEY parameter to OFF to prevent the standby from falling
behind due to the additional computing resources that are needed to encrypt the
standby databases. (Use this step if the standby databases are not powerful
enough to handle the additional load of encryption.)

This setting prevents the standby recovery from performing an automatic rekey
operation on every data file, but it will remember the new key that the primary
database used.

For example:

ALTER SYSTEM SET DB_RECOVERY_AUTO_REKEY = OFF SCOPE = BOTH;
7. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM

privilege, create and open a master encryption key.

For example:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 'TDE_wallet_location' IDENTIFIED 
BY TDE_wallet_password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY 
TDE_wallet_password;
ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY TDE_wallet_password WITH 
BACKUP;

8. Run the ALTER TABLESPACE statement using the ENCRYPTION and ENCRYPT clauses
to perform the encryption.

For example, for a non-Oracle managed files tablespace named users:

ALTER TABLESPACE USERS ENCRYPTION ONLINE ENCRYPT FILE_NAME_CONVERT = 
('users.dbf', 'users_enc.dbf');

In this example:

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-10



• ENCRYPTION ONLINE ENCRYPT sets the statement to encrypt the tablespace USERS
while it is online and encrypts with the AES256 encryption algorithm (and XTS cipher
mode) by default. For the SYSTEM tablespace, you can use the ENCRYPT clause to
encrypt the tablespace, but you cannot specify an encryption algorithm because it is
encrypted with the existing database key the first time. After encrypting the SYSTEM
tablespace, use the REKEY clause to specify the algorithm.

• FILE_NAME_CONVERT specifies one or more pairs of data files that are associated with
the tablespace. The first name in the pair is an existing data file, and the second
name is for the encrypted version of this data file, which will be created after the
ALTER TABLESPACE statement successfully runs. If the tablespace has more than one
data file, then you must process them all in this statement. Note the following:

– Separate each file name with a comma, including multiple pairs of files. For
example:

FILE_NAME_CONVERT = ('users1.dbf', 'users1_enc.dbf', 'users2.dbf', 
'users2_enc.dbf')

– You can specify directory paths in the FILE_NAME_CONVERT clause. For example,
the following clause converts and moves the matching files of the tablespace
from the dbs directory to the dbs/enc directory:

FILE_NAME_CONVERT = ('dbs', 'dbs/enc')
– The FILE_NAME_CONVERT clause recognizes patterns. The following example

converts the data files users_1.dbf and users_2.dbf to users_enc1.dbf and
users_enc2.dbf:

FILE_NAME_CONVERT = ('users', 'users_enc')
– In an Oracle Data Guard environment, include the name of the standby database

data file in the FILE_NAME_CONVERT settings.

– If you are using Oracle-managed file mode, then the new file name is internally
assigned, so this file name should not affect your site's file-naming standards. If
you are using non-Oracle-managed file mode and if you omit the
FILE_NAME_CONVERT clause, then Oracle Database internally assigns an auxiliary
file name, and then later renames it back to the original name. This enables the
encryption process to use the name that you had originally given the file to be
encrypted. The renaming operation is effectively creating another copy of the file,
hence it is slower than explicitly including the FILE_NAME_CONVERT clause. For
better performance, include the FILE_NAME_CONVERT clause.

– You can find the data files for a tablespace by querying the V$DATAFILE or
V$DATAFILE_HEADER dynamic views.

By default, data files are in the $ORACLE_HOME/dbs directory. If the data files are
located there, then you do not have to specify a path.

9. Monitor the standby's STATUS column in the V$ENCRYPTED_TABLESPACE dynamic view.

10. If you had set the DB_RECOVERY_AUTO_REKEY to OFF, when V$ENCRYPTED_TABLESPACE in
the standby database shows ENCRYPTING (or REKEYING if the tablespace is already
encrypted), run the one of the following statements on the standby:

• Run ALTER TABLESPACE ENCRYPTION FINISH ENCRYPT to encrypt the tablespaces of
the standby database.

• Run ALTER TABLESPACE ENCRYPTION FINISH REKEY to rekey the already encrypted
tablespaces in the standby database.

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-11



After you complete the conversion, you can check the encryption status by querying
the STATUS column of the V$ENCRYPTED_TABLESPACES dynamic view. The
ENCRYPTIONALG column of this view shows the encryption algorithm that is used. If the
conversion process was interrupted, then you can resume it by running ALTER
TABLESPACE with the FINISH clause. For example, if the primary data file converts but
the standby data file does not, then you can run ALTER TABLESPACE ... FINISH on the
standby database for the standby data files.

Related Topics

• Best Practice after DBCA Creates an Encrypted Database
After DBCA has created an encrypted stand-alone or Oracle Data Guard primary
and standby database, you can implement Transparent Data Encryption (TDE)
best practices.

• Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
To set the COMPATIBLE initialization parameter, you must edit the initialization
parameter file for the database instance.

• Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the
conversion by rerunning the ALTER TABLESPACE statement using the FINISH
clause.

11.2.3 Configuring TDE and Oracle Key Vault in an Oracle Data Guard
Environment

You can configure Oracle Data Guard in a multitenant environment so that it can work
with TDE and Oracle Key Vault.

The following scenario shows the configuration with Oracle Key Vault in a single-
instance, multitenant Oracle Data Guard environment with one physical standby
database. The version for the primary and standby databases must be release 21.3 or
later. To complete this procedure, you must perform each step in the sequence shown.
After you complete the procedure, Oracle Data Guard will use Oracle Key Vault for
TDE key management exclusively, and there will be no TDE wallet on your database
servers. Oracle recommends that you monitor the alert logs of both primary and
standby databases.

1. On both the primary and standby databases, run the opatch lspatches command
to check the patch release.

$ORACLE_HOME/OPatch/opatch lspatches

Output similar to the following appears:

35149778;RHP RELEASE UPDATE 21.10.0.0.0 (35149778)
35134943;OCW RELEASE UPDATE 21.10.0.0.0 (35134943)
35134934;Database Release Update : 21.10.0.0.230418 (35134934)

2. Download the Oracle Key Vault deployment script that the Oracle Key Vault
administrators prepared to enable database administrators to automatically
register their Oracle databases with Oracle Key Vault.

Oracle Key Vault RESTful Services Administrator's Guide has an example of how
to create a script to automatically enroll Oracle databases as endpoints. The

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-12



deployment scripts reside on a shared file system from which database administrators
can download. There are two different versions of these deployment scripts. The
primary.zip file is for the primary database, and the secondary.zip file is for all standby
databases. You can use these scripts for an Oracle Data Guard or an Oracle RAC
environment.

Another component that the Oracle Key Vault administrators prepare and add to the
deployment script is a configuration file that contains all details for the deployment scripts
to connect to Oracle Key Vault.

3. Copy the two deployment scripts (primary.zip and secondary.zip) that an Oracle Key
Vault administrator created for database administrators to download from a shared
location.

a. Copy the primary.zip file to the primary database.

$ scp user@ip_address:/path/to/file/primary.zip .

b. Copy the secondary.zip file to the standby database.

$ scp user@ip_address:/path/to/file/secondary.zip .

4. On their respective servers, extract the zip files.

$ unzip primary.zip

$ unzip secondary.zip
5. Run the primary-run-me.sh and secondary-run-me.sh scripts, which contain the

commands for the RESTful API to run in Oracle Key Vault.

The Oracle Key Vault RESTful services will run these commands in order to register this
database in Oracle Key Vault with unique wallet and endpoint names.

a. Primary database: For example:

$ more primary-run-me.sh

#!/bin/bash
export EP_NAME=${ORACLE_SID^^}_on_${HOSTNAME/.*}
export WALLET_NAME=${ORACLE_SID^^}
curl -Ok --tlsv1.2 https://Oracle_Key_Vault_IP_address:5695/
okvrestclipackage.zip
unzip -Voj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-primary.sh  << EOF
#!/bin/bash
mkdir -pv ${ORACLE_BASE}/product/okv
okv manage-access wallet create --wallet ${WALLET_NAME} --unique FALSE
okv admin endpoint create --endpoint ${EP_NAME} --description "$HOSTNAME, $
(hostname -i)" 
    --type ORACLE_DB --platform LINUX64 --subgroup "USE CREATOR SUBGROUP" --
unique FALSE --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET_NAME} --endpoint $
{EP_NAME}
expect << _EOF
    set timeout 120
    spawn okv admin endpoint provision --endpoint ${EP_NAME} --location $
{ORACLE_BASE}/product/okv --auto-login FALSE
    expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"
    expect eof

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-13



_EOF
EOF

b. Standby database: For example:

$ more secondary-run-me.sh

$ more run-me.sh
#!/bin/bash
export EP_NAME=${ORACLE_SID^^}_on_$(hostname -s)
export WALLET_NAME=${ORACLE_SID^^}
curl -Ok --tlsv1.2 https://Oracle_Key_Vault_IP_address:5695/
okvrestclipackage.zip
unzip -oj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-standby.sh << EOF
#!/bin/bash
okv admin endpoint create --endpoint ${EP_NAME} --description "$
(hostname -f) $(hostname -i)" --subgroup "USE CREATOR SUBGROUP" --unique 
FALSE
okv admin endpoint update --endpoint ${EP_NAME} --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET_NAME} --endpoint $
{EP_NAME}
expect << _EOF
    set timeout 120
    spawn okv admin endpoint provision --endpoint ${EP_NAME} --
location /etc/ORACLE/KEYSTORES/${ORACLE_UNQNAME^^}/okv --auto-login FALSE
    expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"
    expect eof
_EOF
EOF

6. Create the following directories on the primary database and the standby
database.

For example:

$ mkdir -pv /u01/opt/oracle/product/okv 
$ mkdir -pv /u01/opt/oracle/product/tde 
$ mkdir -pv /u01/opt/oracle/product/tde_seps

In this specification:

• The /u01/opt/oracle/product directory will be defined as WALLET_ROOT in a
later step.

• /u01/opt/oracle/product/okv is the installation directory for the Oracle Key
Vault client software. Depending on how the TDE_CONFIGURATION parameter is
set, the Oracle Database will look for the Oracle Key Vault client software in
wallet_root/okv.

• /u01/opt/oracle/product/tde will store an auto-login wallet, which only
contains the future Oracle Key Vault password, enabling an auto-login Oracle
Key Vault configuration. Depending on how TDE_CONFIGURATION is set, the
Oracle Database will look for the TDE wallet or an auto-open wallet for Oracle
Key Vault, in wallet_root/tde.

• /u01/opt/oracle/product/tde_seps will store an auto-login wallet, which
only contains the future Oracle Key Vault password. This will hide the Oracle
Key Vault password from the SQL*Plus command line and potentially from the
database administrator to enforce separation of duties between Oracle
database administrators and Oracle Key Vault administrators.

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-14



7. Run the RESTful API on the primary database first, because the deployment script on the
standby databases depends on the presence of the shared virtual wallet in Oracle Key
Vault that the script on the primary database creates.

• Primary database:

$ ./deploy-primary.sh
• Standby databases:

$ ./deploy-standby.sh
8. Perform the following steps on the primary and the standby.

a. On the primary and standby databases, run the root.sh script to deploy the
PKCS#11 library.

# /u01/opt/oracle/product/okv/bin/root.sh

The following output should appear:

Creating directory: /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Copying PKCS library to /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Setting PKCS library file permissions

b. As root, or with sudo privileges, create the following directories

These directories must be owned by root, have 755 as their file and directory
permissions, and there must not be softlinks. The Oracle Key Vault versions are
fictitious and are used to explain the functionality.

$ sudo sh -c 'mkdir -pvm755 /opt/oracle/extapi/64/pkcs11/okv/lib/
{21.6,21.7}'

c. Move the PKCS#11 library from the legacy directory in to the new directory that you
just created that matches you current Oracle Key Vault version (for example 21.6):

$ sudo sh -c 'mv -v /opt/oracle/extapi/64/hsm/oracle/1.0.0/
liborapkcs.so /opt/oracle/extapi/64/pkcs11/okv/lib/21.6/'

d. Confirm the new tree structure.

$ tree -n /opt/oracle/extapi/64

e. As a user with the ALTER SYSTEM privilege, run the following statement on the primary
and standby databases:

ALTER SYSTEM SET PKCS11_LIBRARY_LOCATION = '/opt/oracle/extapi/64/
pkcs11/okv/lib/21.6/liborapkcs.so' SCOPE = SPFILE;

f. Shut down the primary, shut down the standby, then start the standby and the
primary (in this order) to apply the configuration changes.

g. At this stage, from now on, after upgrading the Oracle Key Vault server and client,
your database does not need to restart to load the updated PKCS#11 library. Instead,
after the updated PKCS#11 library has been moved into /opt/oracle/extapi/64/
pkcs11/okv/lib/21.7/liborapkcs.so, execute as a user with the SYSKM privilege:

ADMINISTER KEY MANAGEMENT 
SWITCHOVER TO LIBRARY '/opt/oracle/extapi/64/pkcs11/okv/lib/21.7/

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-15



liborapkcs.so' 
FOR ALL CONTAINERS;

9. Run the okvutil changepwd command to change the password for the wallet that
you installed, starting from the primary database and then to the standby.

Because all database administrators downloaded the same deployment script, all
databases have the same password into Oracle Key Vault. This step enables each
database to have a unique password.

$ /u01/opt/oracle/product/okv/bin/okvutil changepwd -t wallet -l /u01/opt/
oracle/product/okv/ssl/

Enter wallet password: default_password
Enter new wallet password: Oracle_Key_Vault_password
Confirm new wallet password: Oracle_Key_Vault_password
Wallet password changed successfully

10. On the primary and standby databases, run the following statements.

a. Run the following statement to add the Oracle Key Vault password as a secret
into an auto-open wallet to replace the Oracle Key Vault password in the
SQL*Plus command line with EXTERNAL STORE.

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password' 
FOR CLIENT 'OKV_PASSWORD' 
TO LOCAL AUTO_LOGIN KEYSTORE '/u01/opt/oracle/product/tde_seps';

b. Run the following statement to add the Oracle Key Vault password as a secret
into an auto-open wallet to enable auto-open Oracle Key Vault.

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password' 
FOR CLIENT 'OKV_PASSWORD' 
TO LOCAL AUTO_LOGIN KEYSTORE '/u01/opt/oracle/product/tde';

c. Optionally, change the database default algorithm from AES256 to any other
supported algorithm.

In Oracle Database 23ai, the default algorithm has been changed to AES256. If
you would like it to any another of the supported algorithms, then you must
change it before the first ADMINISTER KEY MANAGEMENT CREATE KEYSTORE or
ADMINISTER KEY MANAGEMENT SET KEY operation.

ALTER SYSTEM SET "TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM" = 'AES256' 
SCOPE = BOTH;

d. Configure the primary and standby databases to always encrypt new
tablespaces:

ALTER SYSTEM SET TABLESPACE_ENCRYPTION = 'value' SCOPE = SPFILE SID = 
'*';

e. In the primary and standby databases, define the WALLET_ROOT static
initialization parameter:

ALTER SYSTEM SET WALLET_ROOT = '/u01/opt/oracle/product' SCOPE = SPFILE;
f. Restart the primary and standby databases so that the preceding ALTER

SYSTEM SET WALLET_ROOT and ALTER SYSTEM SET TABLESPACE_ENCRYPTION
statements take effect.

g. After the database restarts, configure TDE to use Oracle Key Vault as the first
keystore and the auto-open wallet in WALLET_ROOT/tde as the secondary
keystore.

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-16



Run the following statement in both the primary and standby databases:

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV|FILE" SCOPE = 
BOTH;

11. In the primary database, create your first TDE master encryption keys in Oracle Key
Vault.

Check the alert.log of the standby database. The managed recovery process (MRP)
should not be stopped, since the standby database finds the correct master key in the
shared virtual wallet in Oracle Key Vault.

a. Primary root container: Set the first master encryption key.

For all ADMINISTER KEY MANAGEMENT statements that do not change the TDE
configuration, the password will be replaced by EXTERNAL STORE. This enables
separation of duties between the database administrators and the Oracle Key Vault
administrators because the Oracle Key Vault administrators do not need to share the
Oracle Key Vault password with the database administrators.

sqlplus sys as syskm
Enter password: password

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY EXTERNAL STORE 
CONTAINER = CURRENT;

b. All primary PDBs: Set the first, tagged, master key for each open PDB. The benefit
of tagging the PDB keys is that they can later be easily identified to belong to a
certain PDB.

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG '''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR 
(SYS_EXTRACT_UTC (SYSTIMESTAMP), 
'YYYY-MM-DD HH24:MI:SS"Z"')||''' FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;' 
AS "SET KEY COMMAND" FROM DUAL;

c. Run the generated output of this SELECT statement.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG 'pdb_name date time' 
IDENTIFIED BY EXTERNAL STORE;

12. Perform the following steps in the root container.

a. Optionally, encrypt the USERS tablespace in the root container. While technically
possible, you should not encrypt the SYSTEM, SYSAUX, TEMP, and UNDO tablespaces of
the root container.

For example:

ALTER TABLESPACE USERS ENCRYPTION ONLINE USING 'AES256' ENCRYPT;

b. Observe the alert.log of the standby database to confirm that the USERS tablespace
there is also encrypted.

c. As a user with the SYSKM administrative privilege, encrypt the data dictionary with the
AES256 algorithm.

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS CONTAINER = CURRENT;

13. Encrypt the PDB tablespaces:

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-17



a. Encrypt the USERS, SYSTEM, SYSAUX and all application tablespaces in the
PDBs.

Encrypting the TEMP and UNDO tablespaces is optional because data from
encrypted tablespaces is tracked and automatically encrypted before being
written into TEMP or UNDO.

ALTER TABLESPACE USERS ENCRYPTION ONLINE [USING 'algorithm'] ENCRYPT;
ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE ENCRYPT;
ALTER TABLESPACE SYSAUX ENCRYPTION ONLINE [USING 'algorithm'] ENCRYPT;

The SYSTEM tablespace can only be encrypted with the database default
algorithm, which is AES256 unless it has been changed in step 10. If you want
to encrypt the SYSTEM tablespace with another algorithm, then you can rekey
the SYSTEM tablespace, for example: For example:

ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE USING 
'any_supported_algorithm' REKEY;

Observe the alert.log of the standby database to confirm the encryption and
rekey operations are applied there as well.

b. Optionally, encrypt the UNDO and TEMP tablespaces.

For example, to encrypt an UNDO tablespace named UNDOTBS1:

ALTER TABLESPACE UNDOTBS1 ENCRYPTION ONLINE [USING 'algorithm'] 
ENCRYPT;

You cannot use the ALTER TABLESPACE statement to encrypt an existing TEMP
tablespac. To encrypt a TEMP tablespace, you must create a new one and
encrypt it. First, extract the DDL that was used to create the original TEMP
tablespace.

SELECT DBMS_METADATA.GET_DDL ('TABLESPACE', 'TEMP') FROM 
DBA_TEMP_FILES;

Modify the output so that tempfile and tablespace name are different. For
example:

CREATE TEMPORARY TABLESPACE "TEMP_ENC" 
TEMPFILE '/u01/opt/oracle/oradata/${ORACLE_SID}/${PDB-NAME}/
temp01_enc.dbf' 
SIZE 146800640 AUTOEXTEND ON NEXT 655360 
MAXSIZE 32767M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1048576 
ENCRYPTION [USING 'algorithm'] ENCRYPT;

You only need to add the ENCRYPTION [USING 'algorithm'] ENCRYPT clause
if you need to apply an algorithm other than the default. Omitting the
ENCRYPTION [USING 'algorithm'] ENCRYPT clause will automatically encrypt
the TEMP tablespace with the default algorithm.

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-18



Next, make this new encrypted TEMP tablespace the default temp tablespace of this
PDB, and then drop the old clear-text TEMP tablespace.

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP_ENC;
DROP TABLESPACE TEMP INCLUDING CONTENTS AND DATAFILES;

14. Optionally, create a tablespace and table in the primary database PDB.

When you create the tablespace in the primary database without encryption keywords in
that statement. It will be encrypted with AES128 by default unless the database default
algorithm has been changed in an earlier step, when you changed the database default
algorithm from AES128 to either AES192 or AES256.

CREATE TABLESPACE protected DATAFILE SIZE 50M;

CREATE TABLE SYSTEM.TEST TABLESPACE protected 
AS SELECT * FROM DBA_OBJECTS;

15. Confirm that you can select from the table that is stored in an encrypted tablespace.

SELECT COUNT(*), OWNER FROM SYSTEM.TEST 
GROUP BY OWNER 
ORDER BY 1 DESC;

16. On the primary and standby databases, run the following statements in the root:

SELECT c.name AS PDB_NAME, t.name 
AS TBS_NAME, e.ENCRYPTIONALG 
AS ALG, e.STATUS from v$tablespace t, v$encrypted_tablespaces e, v$containers c 
WHERE e.ts# = t.ts# AND e.con_id = t.con_id and e.con_id = c.con_id order by 
e.con_id, t.name;

PDB_NAME        TBS_NAME        ALG     STATUS
--------------- --------------- ------- -------------------------
CDB$ROOT        USERS           AES256  NORMAL
FINPDB19C       PROTECTED01     AES256  NORMAL
FINPDB19C       SYSAUX          AES256  NORMAL
FINPDB19C       SYSTEM          AES256  NORMAL
FINPDB19C       TEMP_ENC        AES256  NORMAL
FINPDB19C       UNDOTBS1        AES256  NORMAL
FINPDB19C       USERS           AES256  NORMAL

Note that the TEMP tablespace is not listed in the output of the standby databases.

17. Optionally, validate the configuration.

a. Perform an Oracle Data Guard switchover between the primary and standby
databases.

See Oracle Data Guard Concepts and Administration.

Perform the following steps in the new primary database.

b. Select from the encrypted table in your PDB.

Because there is an auto-open connection into Oracle Key Vault, the following query
does not require that you enter the Oracle Key Vault password.

SELECT COUNT(*), OWNER FROM SYSTEM.TEST 
GROUP BY OWNER 
ORDER BY 1 DESC;

24 rows selected.

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-19



c. Rekey the PDB.

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG '''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR 
(SYS_EXTRACT_UTC (SYSTIMESTAMP), 
'YYYY-MM-DD HH24:MI:SS"Z"')||''' 
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE;' 
AS "RE-KEY COMMAND" FROM DUAL;

d. Run the generated output of this SELECT statement.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG 'pdb_name date time' 
IDENTIFIED BY EXTERNAL STORE;

e. In the root container, as a user who has the SYSKM administrative privilege,
rekey the data dictionary.

ALTER DATABASE DICTIONARY REKEY CREDENTIALS CONTAINER = CURRENT;
f. Perform another Oracle Data Guard switchover.

See Oracle Data Guard Concepts and Administration.

g. Select from the encrypted table in your PDB.

Because there is an auto-open connection into Oracle Key Vault, the following
query does not require that you enter the Oracle Key Vault password.

SELECT COUNT(*), OWNER FROM SYSTEM.TEST 
GROUP BY OWNER 
ORDER BY 1 DESC;

24 rows selected.
h. Rekey the PDB.

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG '''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR 
(SYS_EXTRACT_UTC (SYSTIMESTAMP), 
'YYYY-MM-DD HH24:MI:SS"Z"')||''' 
FORCE KEYSTORE 
IDENTIFIED BY EXTERNAL STORE;' 
AS "RE-KEY COMMAND" FROM DUAL;

i. Run the generated output of this sSELECTtatement.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG 'pdb_name date time' 
IDENTIFIED BY EXTERNAL STORE;

11.2.4 Configuring TDE Wallet-Based Transparent Data Encryption in
Oracle Data Guard

You can configure wallet-based Transparent Data Encryption (TDE) in an Oracle Data
Guard environment.

The following scenario shows how to configure TDE wallet-based TDE in a single-
instance, multitenant Oracle Data Guard environment with one physical standby

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-20



database. The version for the primary and standby databases must be release 19.6 or later.
To complete this procedure, you must perform each step in the sequence shown. After you
complete this configuration, you can migrate the primary and standby databases from the
TDE wallet to Oracle Key Vault. Oracle recommends that you monitor the alert logs of both
primary and standby databases.

1. In the primary and standby databases, create the directories that are needed for a TDE
wallet-based TDE configuration.

For example:

# mkdir -pv /etc/ORACLE/KEYSTORES/finance/tde_seps
# cd /etc
# chown -Rv oracle:oinstall ./ORACLE
# chmod -Rv 700 ./ORACLE

2. In the CDB root of the primary and standby databases, as a user who has the ALTER
SYSTEM privilege, run the following statements in SQL*Plus to set the appropriate
parameters.

ALTER SYSTEM SET WALLET_ROOT = '/etc/ORACLE/KEYSTORES/${ORACLE_SID}' 
SCOPE = SPFILE;
ALTER SYSTEM SET TABLESPACE_ENCRYPTION = 'AUTO_ENABLE' SCOPE = SPFILE;

3. Restart the primary and standby databases.

4. Set the following parameters in the primary and standby databases:

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=FILE" SCOPE 
= BOTH;

5. Configure tablespace encryption.

a. On the primary database, as a user with the SYSKM privilege, create a password-
protected and a (local) auto-open TDE wallet.

When you create this keystore, Oracle Database automatically creates the
WALLET_ROOT/tde directory.

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY 
TDE_wallet_password;
ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE FROM 
KEYSTORE IDENTIFIED BY TDE_wallet_password;

b. Enable separation of duties by hiding the TDE wallet password in another (local)
auto-open wallet to replace the keystore password with EXTERNAL STORE for those
ADMINISTER KEY MANAGEMENT commands that do not change the TDE configuration in
the primary and all standby databases:

ADMINISTER KEY MANAGEMENT ADD SECRET 'TDE_wallet_password' 
FOR CLIENT 'TDE_WALLET'  
TO LOCAL AUTO_LOGIN KEYSTORE '/etc/ORACLE/KEYSTORES/finance/tde_seps';

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-21



6. Set the first key in the CDB$ROOT container of the primary database.

ADMINISTER KEY MANAGEMENT SET KEY FORCE KEYSTORE IDENTIFIED BY 
EXTERNAL STORE WITH BACKUP CONTAINER = CURRENT;

7. Log in to each open primary PDB and set the first, tagged key.

SELECT 'ADMINISTER KEY MANAGEMENT SET KEY USING TAG 
'''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR 
(SYS_EXTRACT_UTC (SYSTIMESTAMP), 'YYYY-MM-DD HH24:MI:SS"Z"')||''' 
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE 
WITH BACKUP;' AS "SET KEY COMMAND";

8. Copy the TDE wallets from primary to standby databases.

The local auto-open TDE wallet of the primary cannot be opened on the standby,
so it is excluded from the copy process. For example:

$ rsync -rvpt --exclude '*.sso' /etc/ORACLE/KEYSTORES/finance/tde/ 
standby_host:/etc/ORACLE/KEYSTORES/finance/tde/

9. On the CDB root of the standby, as a user who has the SYSKM administrative
privilege, create a local auto-login TDE wallet:

ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE 
FROM KEYSTORE IDENTIFIED BY TDE_wallet_password;

10. On the CDB root of the primary, encrypt the users tablespace.

ALTER TABLESPACE USERS ENCRYPTION ONLINE MODE 'XTS' ENCRYPT;

Encrypting the SYSTEM and SYSAUX tablespaces in the root container is optional
because those tablespaces do not normally contain sensitive application data from
the PDBs.

11. As a user with the SYSKM administrative privilege, encrypt the credentials of named
user database links in the root container.

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS CONTAINER = CURRENT;

12. As a user with the ALTER TABLESPACE privilege, encrypt the SYSTEM, SYSAUX, USERS,
and all sensitive application tablespaces in the PDB.

ALTER TABLESPACE USERS ENCRYPTION ONLINE MODE 'XTS' ENCRYPT;
ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE MODE 'XTS' ENCRYPT;
ALTER TABLESPACE SYSAUX ENCRYPTION ONLINE MODE 'XTS' ENCRYPT;

13. Optionally, encrypt the UNDO and TEMP tablespaces in the primary PDBs.

a. Perform the following ALTER TABLESPACE statement:

ALTER TABLESPACE UNDOTBS1 ENCRYPTION ONLINE MODE 'XTS' ENCRYPT;

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-22



b. Create a new encrypted TEMP tablespace with the same parameters that were applied
to the original TEMP tablespace.

You cannot use the ALTER TABLESPACE statement to encrypt an existing TEMP
tablespace, so you must create a new one.
First, extract the DDL that was used to create the original TEMP tablespace.

SELECT DBMS_METADATA.GET_DDL ('TABLESPACE', 'TEMP') FROM 
DBA_TEMP_FILES;

Second, modify the output so that the tempfile and tablespace names are different.
For example:

CREATE TEMPORARY TABLESPACE "TEMP_ENC"
TEMPFILE '/u01/opt/oracle/oradata/${ORACLE_SID}/${PDB-NAME}/
temp01_enc.dbf'
SIZE 146800640 AUTOEXTEND ON NEXT 655360
MAXSIZE 32767M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1048576
ENCRYPTION MODE 'XTS' ENCRYPT;

c. Make the new encrypted TEMP tablespace the default TEMP tablespace:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP_ENC;

d. Drop the old clear-text TEMP tablespace:

DROP TABLESPACE TEMP INCLUDING CONTENTS AND DATAFILES;

e. Rename the new TEMP tablesplace.

ALTER TABLESPACE TEMP_ENC RENAME TO TEMP;

14. Optionally, create a small sample tablespace (which will be encrypted with AES256 even
if no ENCRYPTION syntax is given), and create a copy of the DBA_OBJECTS table in this
encrypted sample tablespace.

CREATE TABLESPACE PROTECTED DATAFILE SIZE 50M;
CREATE TABLE SYSTEM.TEST TABLESPACE PROTECTED AS SELECT * FROM 
DBA_OBJECTS;

15. Optionally, select from the encrypted copy of the DBA_OBJECTS table.

For example:

SELECT OWNER, COUNT(*) FROM SYSTEM.test GROUP BY OWNER ORDER BY 2 DESC;

20 rows selected.

16. Connect to the CDB root of the primary and standby databases and confirm.

SELECT C.NAME AS PDB_NAME, T.NAME AS TBS_NAME, E.ENCRYPTIONALG AS ALG, 
E.CIPHERMODE AS "MODE", 
E.STATUS FROM V$TABLESPACE T, V$ENCRYPTED_TABLESPACES E, V$CONTAINERS C 

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-23



WHERE E.TS# = T.TS# AND E.CON_ID = T.CON_ID AND E.CON_ID = C.CON_ID 
ORDER BY E.CON_ID, T.NAME;

Output similar to the following should appear:

PDB_NAME         TBS_NAME        ALG     MODE  STATUS
---------------  --------------- ------- ----- 
-------------------------
CDB$ROOT         USERS           AES256  XTS  NORMAL
FINPDB23ai       PROTECTED       AES256  CFB  NORMAL
FINPDB23ai       SYSAUX          AES256  XTS  NORMAL
FINPDB23ai       SYSTEM          AES256  XTS  NORMAL
FINPDB23ai       TEMP            AES256  XTS  NORMAL
FINPDB23ai       UNDOTBS1        AES256  XTS  NORMAL
FINPDB23ai       USERS           AES256  XTS  NORMAL

The standby does not have a TEMP tablespace, so it will not be listed here. The
PROTECTED tablespace is encrypted because TABLESPACE_ENCRYPTION was set to
AUTO_ENABLE; it also applies the database default cipher mode, CFB.

17. Run the following statement to change the cipher mode for the PROTECTED
tablespace to XTS:

ALTER TABLESPACE PROTECTED ENCRYPTION ONLINE MODE 'XTS' REKEY;

Now all tablespaces are encrypted with MODE = 'XTS'.

18. Connect to the dgmgrl utility on the standby as a user who has the SYSDG
administrative privilege.

19. Perform a switchover operation.

DGMGRL> switchover to 'standby_database' wait 5;

20. To confirm the auto-open TDE wallet functionality, select from encrypted data (for
example, the copy of the DBA_OBJECTS table in the PDB) of the new primary
database after the role switch.

For example:

SELECT OWNER, COUNT(*) FROM SYSTEM.test GROUP BY OWNER ORDER BY 2 
DESC;

20 rows selected.

21. As a user who has the SYSKM administrative privilege, perform a rekey operation of
the data dictionary.

ALTER DATABASE DICTIONARY REKEY CREDENTIALS CONTAINER = CURRENT;

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-24



Oracle recommends that you create and then use the key. This way, the managed
recovery process on the standby database is not interrupted due to unknown TDE master
encryption keys. In the new primary PDB, run the following statement:

ADMINISTER KEY MANAGEMENT CREATE KEY FORCE KEYSTORE IDENTIFIED BY 
EXTERNAL STORE WITH BACKUP;

22. Copy the TDE wallet to the standby, excluding the local auto-open keystores, and
automatically deleting the obsolete local auto-open keystore on the standby side.

For example:

$ rsync -rvpt --exclude '*.sso' --delete-excluded /etc/ORACLE/KEYSTORES/
finance/tde/ SanDiego:/etc/ORACLE/KEYSTORES/finance/tde/

23. On the standby, re-create a local auto-open TDE wallet from the updated password-
protected keystore so that the new key is immediately available to the standby database
when needed.

ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE 
FROM KEYSTORE IDENTIFIED BY TDE_wallet_password;

24. Use the following SELECT statement to create an ADMINISTER KEY MANAGEMENT USE KEY
command that inserts the correct key-id, and adds a tag to the key:

SELECT ' ADMINISTER KEY MANAGEMENT 
USE KEY '''||KEY_ID||''' 
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||
TO_CHAR (SYS_EXTRACT_UTC (SYSTIMESTAMP), 'YYYY-MM-DD HH24:MI:SS"Z"')||''' 
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE 
WITH BACKUP;' AS "USE KEY COMMAND" 
FROM V$ENCRYPTION_KEYS  
WHERE TAG IS NULL;

The USE KEY clause updates the associations in the TDE wallet, so the updated
password-protected wallet is copied to the standby, again excluding the local auto-open
TDE wallet and deleting the obsolete local auto-open keystore on the receiving standby
side, for example, with the following command:

$ rsync -rvpt --exclude '*.sso' --delete-excluded /etc/ORACLE/KEYSTORES/
finance/tde/ SanDiego:/etc/ORACLE/KEYSTORES/finance/tde/

25. On the CDB root of the primary, recreate the local auto-login TDE wallet.

ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE FROM KEYSTORE 
IDENTIFIED BY TDE_wallet_password;

26. Using the dgmgrl utility, perform a switchover operation to the standby.

For example:

DGMGRL>  switchover to 'standby_database' wait 5;

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-25



27. Optionally, to confirm the auto-open functionality, select from an encrypted table
(for example, the copy of the DBA_OBJECTS table).

SELECT OWNER, COUNT(*) FROM SYSTEM.test GROUP BY OWNER ORDER BY 2 
DESC;

20 rows selected.

11.2.5 Migrating a TDE Wallet in an Oracle Data Guard Environment
to Oracle Key Vault

After you have configured TDE wallet-based Transparent Data Encryption (TDE) in an
Oracle Data Guard environment, you can migrate primary and standby databases to
Oracle Key Vault, without downtime.

The following scenario shows how to configure one endpoint for each of the primary
and standby databases, and then migrate the primary and standby databases from a
TDE wallet to Oracle Key Vault. This scenario uses a single-instance, multitenant
Oracle Data Guard environment with one physical standby database. The version for
the primary and standby databases must be release 19.6 or later. To complete this
procedure, you must perform each step in the sequence shown. See Oracle Key Vault
RESTful Services Administrator's Guide for how an Oracle Key Vault administrator can
create these files, which are later used by database administrators to automatically
onboard their databases into Oracle Key Vault.

1. Copy the primary deployment script to the primary database host.

For example:

$ rsync -v 192.168.1.29:/directory_on_shared_server/OKVdeploy-DG-
primary.tgz .

2. Copy the secondary deployment script to all standby database hosts.

For example:

$ rsync -v 192.168.1.29:/directory_on_shared_server/OKVdeploy-DG-
standby.tgz .

3. On the primary and standby database hosts, extract the archive.

$ tar -xzvf OKVdeploy-DG*

4. On the primary database, run the primary-run-me.sh script.

This script creates the deployment script (okv-ep.sh), which contains unique
names for the wallet and endpoint that it creates in Oracle Key Vault for the
primary database.

$ /primary-run-me.sh 

  % Total    % Received % Xferd  Average Speed   Time    Time     
Time  Current
                                 Dload  Upload   Total   Spent    
Left  Speed

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-26



100 3750k  100 3750k    0     0  13.5M      0 --:--:-- --:--:-- --:--:-- 
13.5M
Archive:  okvrestclipackage.zip
  inflating: ./lib/okvrestcli.jar    
#!/bin/bash
mkdir -pv /etc/ORACLE/KEYSTORES/finance/okv
okv manage-access wallet create --wallet FINANCE --unique FALSE
okv admin endpoint create --endpoint FINANCE_on_SanDiego --description 
"SanDiego.us.oracle.com, 192.168.56.193" 
  --subgroup "USE CREATOR SUBGROUP" --unique FALSE --strict-ip-check TRUE
okv manage-access wallet set-default --wallet FINANCE --endpoint 
FINANCE_on_SanDiego
expect << _EOF
    set timeout 120
    spawn okv admin endpoint provision --endpoint FINANCE_on_SanDiego --
location /etc/ORACLE/KEYSTORES/finance/okv --auto-login FALSE
    expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"      
    expect eof
_EOF

5. On the standby databases, run the secondary-run-me.sh script.

This script creates the deployment script (okv-ep.sh), which contains unique names for
the endpoint that it creates in Oracle Key Vault for the standby databases. Note that the
standby endpoint uses the primary wallet as its default wallet, so that primary and
standby databases have access to same key material.

$ ./secondary-run-me.sh 

  % Total    % Received % Xferd  Average Speed   Time    Time     Time  
Current
                                 Dload  Upload   Total   Spent    Left  
Speed
100 3750k  100 3750k    0     0  16.0M      0 --:--:-- --:--:-- --:--:-- 
16.1M
Archive:  okvrestclipackage.zip
  inflating: ./lib/okvrestcli.jar    
#!/bin/bash
mkdir -pv /etc/ORACLE/KEYSTORES/finance/okv
okv admin endpoint create --endpoint FINANCE_on_Phoenix 
  --description "Phoenix.us.oracle.com, 192.168.56.194" 
  --subgroup "USE CREATOR SUBGROUP" 
  --unique FALSE
  --strict-ip-check TRUE
okv manage-access wallet set-default --wallet FINANCE --endpoint 
FINANCE_on_Phoenix
expect << _EOF
    set timeout 120
    spawn okv admin endpoint provision --endpoint FINANCE_on_Phoenix --
location /etc/ORACLE/KEYSTORES/finance/okv --auto-login FALSE
    expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"      
    expect eof
_EOF

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-27



6. On the primary database host, run the okv-ep.sh script.

This script creates a wallet and endpoint for the primary database in Oracle Key
Vault. It makes the wallet the default wallet of that endpoint. The following okv
admin endpoint provision command downloads and installs the Oracle Key
Vault endpoint software into the existing directory, WALLET_ROOT/okv.

$ ./deploy-OKV.sh

{
  "result" : "Success",
  "value" : {
    "status" : "PENDING",
    "locatorID" : "87E59AAD-0AAA-4AE8-ADCE-01D283ECE9C4"
  }
}
{
  "result" : "Success",
  "value" : {
    "status" : "PENDING",
    "locatorID" : "D13CC460-7BFB-451D-9998-DA387FC45783"
  }
}
{
  "result" : "Success"
}
spawn okv admin endpoint provision --endpoint finance_on_SanDiego --
location /etc/ORACLE/KEYSTORES/finance/okv --auto-login FALSE
Enter Oracle Key Vault endpoint password: 
{
  "result" : "Success"
}

7. On the standby database hosts, run the okv-ep.sh script.

This script creates an endpoint for the standby database in Oracle Key Vault. It
makes the primary wallet the default wallet of that endpoint. The following okv
admin endpoint provision command downloads and installs the Oracle Key
Vault endpoint software into the existing directory WALLET_ROOT/okv.

$ ./deploy-OKV.sh

{
  "result" : "Success",
  "value" : {
    "status" : "PENDING",
    "locatorID" : "4208FBB5-5FD4-47EE-B3DB-FA8277BAFB84"
  }
}
{
  "result" : "Success"
}
spawn okv admin endpoint provision --endpoint finance_on_Phoenix --
location /etc/ORACLE/KEYSTORES/finance/okv --auto-login FALSE
Enter Oracle Key Vault endpoint password: 

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-28



{
  "result" : "Success"
}

8. On the primary and standby database hosts, run the root.sh script in the
WALLET_ROOT/okv/bin.

This script deploys the PKCS#11 library into the correct destination directory.

$ sudo /etc/ORACLE/KEYSTORES/finance/okv/bin/root.sh

9. On the primary and standby databases, change the default password to a strong
password that the database administrator should not know.

This password is the same for all databases that used the deployment script.

$ /etc/ORACLE/KEYSTORES/finance/okv/bin/okvutil changepwd -l /etc/ORACLE/
KEYSTORES/finance/okv/ssl/ -t wallet

Enter wallet password: current_endpoint_password
Enter new wallet password: new_endpoint_password
Confirm new wallet password: new_endpoint_password
Wallet password changed successfully

10. Optionally, update the endpoint parameters.

This step and the next two steps are optional. By default, the persistent cache is a
password-protected wallet that is protected with the endpoint password from the
preceding step. With the change in steps 10, 11, and 12, the persistent cache will be
protected with a random password, which implies that the persistent cache will expire
after database shutdown, and needs to be rebuilt after each database restart.
Additionally, the persistent cache expiration time is changed to 4 hours, but the persistent
cache refresh window is extended to 21 days.

$ okv admin endpoint update --generate-json-input | jq '.service.options 
|= ({endpoint} | .endpointConfiguration 
|= (.expirePkcs11PersistentCacheOnDatabaseShutdown = "TRUE" 
| .pkcs11PersistentCacheRefreshWindow = "P21D" 
| .pkcs11PersistentCacheTimeout = "PT4H"))' 
> ./update-endpoint.json; more ./update-endpoint.json

{
  "service": {
    "category": "admin",
    "resource": "endpoint",
    "action": "update",
    "options": {
      "endpoint": "#VALUE",
      "endpointConfiguration": {
        "expirePkcs11PersistentCacheOnDatabaseShutdown": "TRUE",
        "pkcs11PersistentCacheRefreshWindow": "P21D",
        "pkcs11PersistentCacheTimeout": "PT4H"
      }
    }

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-29



  }
}

11. Optionally, on the primary, check the status of the endpoints on both the primary
and standby databases.

For example, for a primary with an endpoint called finance_on_SanDiego and a
standby with an endpoint called finance_on_Phoenix:

$ okv admin endpoint check-status --endpoint finance_on_SanDiego
$ okv admin endpoint check-status --endpoint finance_on_Phoenix

12. After both endpoints are active, apply and re-use the update-endpoint.json file to
update all endpoints of the primary and standby databases.:

$ okv admin endpoint update --from-json ./update-endpoint.json --
endpoint finance_on_SanDiego
$ okv admin endpoint update --from-json ./update-endpoint.json --
endpoint finance_on_Phoenix

13. On the primary database host, upload the current and retired master encryption
keys from the TDE wallet into the virtual wallet in Oracle Key Vault.

For example:

$ /etc/ORACLE/KEYSTORES/finance/okv/bin/okvutil upload -l /etc/
ORACLE/KEYSTORES/finance/tde/ -t wallet -g FINANCE -v 3

14. In the root of the primary, using SQL*Plus, add the Oracle Key Vault password
from step 9 into the TDE wallet to enable an auto-open Oracle Key Vault
connection.

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password' 
FOR CLIENT 'OKV_PASSWORD'
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE WITH BACKUP;

15. Copy the updated TDE wallet from the primary database host to the standby
database hosts, excluding the local auto-login TDE wallet and deleting the
obsolete local auto-login TDE wallet on the standby side.

For example:

$ rsync -rvpt --exclude '*.sso' --delete-excluded /etc/ORACLE/
KEYSTORES/finance/tde/ Phoenix:/etc/ORACLE/KEYSTORES/finance/tde/

16. On the CDB root of the standby, using SQL*Plus, recreate the local auto-login
TDE wallet, and then close it.

ADMINISTER KEY MANAGEMENT CREATE LOCAL AUTO_LOGIN KEYSTORE 
FROM KEYSTORE IDENTIFIED BY TDE_wallet_password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE CONTAINER = ALL;

At this stage, the primary and standby databases are ready to be migrated into
Oracle Key Vault.

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-30



17. In the primary and standby databases, change the TDE_CONFIGURATION dynamic
parameter to OKV|FILE.

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV|FILE" 
SCOPE = BOTH;

18. Run the ADMINISTER KEY MANAGEMENT…MIGRATE command.

This command decrypts the data encryption keys with the most recent key from the TDE
wallet, and re-encrypts them with a new TDE master encryption key that is created in
Oracle Key Vault. If this is a container database, then each open PDB will go through
these steps. This entails no downtime; the operation lists approximately 10 to 15 seconds
for each PDB.

ADMINISTER KEY MANAGEMENT SET KEY 
IDENTIFIED BY "Oracle_Key_Vault_password" 
FORCE KEYSTORE MIGRATE USING "TDE_wallet_password";

19. Add the Oracle Key Vault password, and remove the old TDE wallet password, from the
local auto-login wallet that enables to replace the TDE wallet password on the SQL*plus
command line with EXTERNAL STORE.

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password' 
FOR CLIENT "OKV_PASSWORD" 
TO LOCAL AUTO_LOGIN KEYSTORE '/etc/ORACLE/KEYSTORES/finance/tde_seps';

ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'TDE_WALLET' 
FROM LOCAL AUTO_LOGIN KEYSTORE '/etc/ORACLE/KEYSTORES/finance/tde_seps';

20. Now that primary and standby databases have been migrated to Oracle Key Vault, delete
the old wallets (only because you have uploaded the keys into Oracle Key Vault in step 
13.

$ rm -v /etc/ORACLE/KEYSTORES/finance/tde/*

21. On the primary and standby databases, create a local auto-login TDE wallet in
WALLET_ROOT/tde that only contains the Oracle Key Vault password to enable an auto-
login Oracle Key Vault configuration.

For example:

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password' 
FOR CLIENT 'OKV_PASSWORD' TO LOCAL AUTO_LOGIN KEYSTORE '/etc/ORACLE/
KEYSTORES/finance/tde';

22. Create a tag for each key that is associated with each PDB.

During migration, Oracle Key Vault created a new key for each PDB, but without a tag.
The tag that you create makes it easier to find which key belongs to which PDB. You
should give each key a tag that matches the PDB name, and a time stamp.

SELECT ' ADMINISTER KEY MANAGEMENT SET TAG '''||SYS_CONTEXT('USERENV', 
'CON_NAME')||' '||TO_CHAR (SYS_EXTRACT_UTC (ACTIVATION_TIME), 
'YYYY-MM-DD HH24:MI:SS"Z"')||''' FOR '''||KEY_ID||'''
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;' AS "SET TAG COMMAND"

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-31



FROM V$ENCRYPTION_KEYS
WHERE CREATOR_PDBNAME = SYS_CONTEXT('USERENV', 'CON_NAME')
ORDER BY CREATION_TIME DESC FETCH FIRST 1 ROWS ONLY; 

11.2.6 Enabling a PDB to Have an Isolated Keystore in an Oracle Data
Guard Environment

In an Oracle Data Guard environment, to enable a PDB to have an isolated keystore
on the standby, you must manually perform the configuration.

This is because the ADMINISTER KEY MANAGEMENT command that is run on the primary
does not affect the standby. First, you isolate the PDB in the primary database. The
ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE command performs the necessary
isolation tasks, such as changing the PDB's TDE_CONFIGURATION parameter to FILE
and moving the key from the united mode wallet to the newly created isolated mode
wallet. Next, you must perform these same tasks manually on the standby to complete
the isolation mode process.

1. If you have not done so you, log in to the CDB root of the primary database, and
then isolate the PDB.

ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE 
IDENTIFIED BY "new_isolated_pdb_keystore_password" 
FROM ROOT KEYSTORE 
IDENTIFIED BY "root_keystore_password" 
WITH BACKUP;

2. Log in to the server where the standby database is configured.

3. Ensure that there is a directory for the PDB (for example, $WALLET_ROOT/
pdb_guid/tde/).

4. Connect to the PDB as a user who has the ALTER SYSTEM privilege.

5. Set the KEYSTORE_CONFIGURATION parameter for this PDB.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE" 
SCOPE=BOTH;

6. At the command line, from the CDB root, copy the wallet (.p12 and .sso) from the
primary database to the standby; place this wallet in the $WALLET_ROOT/
pdb_guid/tde/ directory.

7. Close and then re-open the CDB root's wallet.

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE 
FORCE KEYSTORE IDENTIFIED BY root_wallet_password;

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
FORCE KEYSTORE IDENTIFIED BY root_wallet_password;

8. Connect to the PDB.

Chapter 11
How Transparent Data Encryption Works with Oracle Data Guard

11-32



9. Open the wallet in the PDB.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN 
FORCE KEYSTORE IDENTIFIED BY pdb_wallet_password;

11.2.7 Uncoupling the Standby Database from the Primary Database
Online Encryption Process

You can use the DB_RECOVERY_AUTO_REKEY initialization parameter to control how Transparent
Data Encryption (TDE) rekey operations are performed in an Oracle Data Guard
environment.

• Set DB_RECOVERY_AUTO_REKEY as follows:

– ON, which is the default for the standby, enables the standby to automatically perform
an online tablespace rekey operation as part of the standby media recovery process.
Be aware that this setting pauses media recovery. If the tablespace is large, then you
could observe extended standby apply lag. To enable DB_RECOVERY_AUTO_REKEY:

ALTER SYSTEM _RECOVERY_AUTO_REKEY = ON;

You can can set DB_RECOVERY_AUTO_REKEY to ON on primary so that media recovery
(for example, a restore from backup) will perform this rekey operation. However, this
setting can also slow down media recovery and hence, delay primary open operation.

– OFF, which is the default for the primary, does not perform a tablespace rekey
operation. This setting enables an extended standby database to avoid lag time
during an online conversion, and is designed for large Oracle Data Guard tablespace
deployments. This enables the standby recovery to only record the tablespace key
information but not perform the rekey operation inline. In the
V$ENCRYPTED_TABLESPACES dynamic view, after the STATUS column value for the
corresponding tablespace becomes REKEYING or ENCRYPTING on the standby
database, then you can use a standby SQL session to issue an ALTER TABLESPACE
ENCRYPTION ONLINE FINISH REKEY|ENCRYPT command to perform the rekey in
parallel of media recovery. For example, assuming that the STATUS column will
change to REKEYING:

ALTER SYSTEM _RECOVERY_AUTO_REKEY = OFF;
...
ALTER TABLESPACE ENCRYPTION ONLINE FINISH REKEY;

Related Topics

• Oracle Database Reference

11.3 How Transparent Data Encryption Works with Oracle Real
Application Clusters

Oracle Real Application Clusters (Oracle RAC) nodes can share both a TDE wallets and an
external keystore.

Chapter 11
How Transparent Data Encryption Works with Oracle Real Application Clusters

11-33



• About Using Transparent Data Encryption with Oracle Real Application Clusters
Oracle requires a shared TDE wallet for Oracle Real Application Clusters (Oracle
RAC), or a shared common virtual wallet in Oracle Key Vault among cluster
instances.

• Configuring TDE in Oracle Real Application Clusters for Oracle Key Vault
You can configure TDE in Oracle Real Application Clusters (Oracle RAC) on
Oracle Exadata Cloud at Customer (ExaCC) and other servers for centralized key
management provided by Oracle Key Vault.

11.3.1 About Using Transparent Data Encryption with Oracle Real
Application Clusters

Oracle requires a shared TDE wallet for Oracle Real Application Clusters (Oracle
RAC), or a shared common virtual wallet in Oracle Key Vault among cluster instances.

A TDE configuration with Oracle Key Vault uses a network connection from each
instance of the database to the external key manager. In Oracle Key Vault, you must
create one endpoint for each instance of the Oracle RAC-enabled database, and one
virtual wallet for each Oracle RAC-enabled database. Then, make that virtual wallet
the default wallet of all endpoints that belong to that database. In an Oracle RAC-
enabled Data Guard configuration, all instances (primary and all standby databases)
share that one virtual wallet. With this configuration, set key and re-key operations are
completely transparent because all participating instances are automatically
synchronized. This eliminates the need to manually copy the TDE wallet to each of the
other nodes in the cluster.

Oracle does not support the use of individual TDE wallets for each Oracle RAC node.
Instead, use shared wallets for TDE in the Oracle RAC environment. This enables all
of the instances to access the same shared TDE wallet. If your site uses Oracle
Automatic Storage Management Cluster File System (Oracle ACFS), then this is the
preferred location for a shared wallet. Directly sharing the wallet in Oracle Automatic
Storage Management (Oracle ASM) (for example, +DATA/$ORACLE_UNQNAME/WALLETS)
is an alternative if Oracle ACFS is not available.

Keystore operations (such as opening or closing the keystore, or rekeying the TDE
master encryption key) can be issued on any one Oracle RAC instance. Internally, the
Oracle database takes care of synchronizing the keystore context on each Oracle
RAC node, so that the effect of the keystore operation is visible to all of the other
Oracle RAC instances in the cluster. Similarly, when a TDE master encryption key
rekey operation takes place, the new key becomes available to each of the Oracle
RAC instances. You can perform other keystore operations, such as exporting TDE
master encryption keys, rotating the keystore password, merging keystores, or backing
up keystores, from a single instance only.

When using a shared file system, ensure that the WALLET_ROOT static system
parameter for all of the Oracle RAC instances point to the same shared TDE wallet
location, as follows:

ALTER SYSTEM SET WALLET_ROOT = '+DATA/DB_NAME' SCOPE = SPFILE SID = '*';
ALTER SYSTEM SET TABLESPACE_ENCRYPTION = 'AUTO_ENABLE' SCOPE = SPFILE SID = '*';

$ srvctl stop database -db DB_NAME -o immediate
$ srvctl start database -db DB_NAME

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV" SCOPE = BOTH 
SID = '*';

Chapter 11
How Transparent Data Encryption Works with Oracle Real Application Clusters

11-34



Note:

Storing TDE master encryption keys in individual wallets per Oracle Real
Application Clusters (Oracle RAC) instance is not supported. As an alternative, use
Oracle Key Vault for centralized key management across your on-premises or
Cloud-based database deployments, or Oracle Automatic Storage Management
(Oracle ASM), or Oracle ASM Cluster File System (Oracle ACFS) to provide local
shared wallets.

11.3.2 Configuring TDE in Oracle Real Application Clusters for Oracle Key
Vault

You can configure TDE in Oracle Real Application Clusters (Oracle RAC) on Oracle Exadata
Cloud at Customer (ExaCC) and other servers for centralized key management provided by
Oracle Key Vault.

The following scenario assumes that you have a multitenant two-node Oracle RAC
configuration. In this procedure, you must complete the following steps in the order shown.
After you have completed this procedure, the Oracle RAC environment will exclusively use
Oracle Key Vault for key management for Transparent Data Encryption. This procedure
assumes that you have installed the January 2020 (19.6) or later upgrade for Oracle
Database release 19c.

Before you begin, monitor the alert logs of your running Oracle RAC database. The Java
version that is included in the default Oracle Database release 19c installation can be used to
install the Oracle Key Vault client with the RESTful services.

1. Download the Oracle Key Vault deployment script that the Oracle Key Vault
administrators prepared to enable database administrators to automatically register their
Oracle databases with Oracle Key Vault.

Oracle Key Vault RESTful Services Administrator's Guide has an example of how to
create a script to automatically enroll Oracle databases as endpoints. The deployment
scripts reside on a shared file system from with database administrators can download.
There are two different versions of these deployment scripts. One script is for only the
first node (which is called lead node in this procedure) and the other script is for all other
nodes (which are called secondary nodes in this procedure). You can use these scripts
for an Oracle RAC or an Oracle Data Guard environment.

Another component that the Oracle Key Vault administrators prepare and add to the
deployment script is a configuration file that contains all details for the deployment scripts
to connect to Oracle Key Vault.

2. Copy the two deployment scripts (primary.zip and secondary.zip) that an Oracle Key
Vault administrator created for database administrators to download from a shared
location.

a. Copy the primary.zip file to the lead node.

$ scp user@ip_address:/path/to/file/primary.zip .

b. Copy the secondary.zip file to each secondary node.

$ scp user@ip_address:/path/to/file/secondary.zip .

Chapter 11
How Transparent Data Encryption Works with Oracle Real Application Clusters

11-35



3. Extract the zip files.

a. On the lead node: Extract the primary.zip file.

$ unzip primary.zip
b. On the secondary nodes: Extract the secondary.zip file.

$ unzip secondary.zip
4. Create the following directories on all nodes:

For example:

$ mkdir -pv /u01/opt/oracle/product/okv 
$ mkdir -pv /u01/opt/oracle/product/tde 
$ mkdir -pv /u01/opt/oracle/product/tde_seps

In this specification:

• The /u01/opt/oracle/product directory will be defined as WALLET_ROOT in a
later step.

• /u01/opt/oracle/product/okv is the installation directory for the Oracle Key
Vault client software. Depending on how the TDE_CONFIGURATION parameter is
set, the Oracle Database will look for the Oracle Key Vault client software in
wallet_root/okv.

• /u01/opt/oracle/product/tde will store an auto-login wallet, which only
contains the future Oracle Key Vault password, enabling an auto-login Oracle
Key Vault configuration. Depending on how TDE_CONFIGURATION is set, the
Oracle Database will look for the TDE wallet or an auto-open wallet for Oracle
Key Vault, in wallet_root/tde.

• /u01/opt/oracle/product/tde_seps will store an auto-login wallet, which
only contains the future Oracle Key Vault password. This will hide the Oracle
Key Vault password from the SQL*Plus command line and potentially from the
database administrator to enforce separation of duties between Oracle
database administrators and Oracle Key Vault administrators.

5. Run the primary-run-me.sh and secondary-run-me.sh scripts, which contain the
commands for the RESTful API to run in Oracle Key Vault.

The Oracle Key Vault RESTful services will run these commands in order to
register this database in Oracle Key Vault with unique wallet and endpoint names.

a. On the lead node: This script creates a shared wallet (for the lead and all
secondary nodes) and an endpoint in Oracle Key Vault, associates this
endpoint for the lead node with the shared wallet, and downloads and installs
the Oracle Key Vault client into an existing installation directory. With the
WALLET_ROOT configuration, this directory is wallet_root/okv.

$ more primary-run-me.sh

#!/bin/bash
export EP_NAME=${ORACLE_SID^^}_on_$(hostname -s)
export WALLET_NAME=${ORACLE_UNQNAME^^}${HOSTNAME//[!0-9]/}
curl -Ok https://192.168.1.181:5695/okvrestclipackage.zip --tlsv1.2
unzip -Voj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-OKV.sh << EOF
#!/bin/bash
okv manage-access wallet create --wallet ${WALLET_NAME} --unique FALSE
okv admin endpoint create --endpoint ${EP_NAME} --description "$

Chapter 11
How Transparent Data Encryption Works with Oracle Real Application Clusters

11-36



(hostname -f) $(hostname -i)" --subgroup "USE CREATOR SUBGROUP" --unique FALSE
okv admin endpoint update --endpoint ${EP_NAME} --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET_NAME} --endpoint $
{EP_NAME}
expect << _EOF
    set timeout 120
    spawn okv admin endpoint provision --endpoint ${EP_NAME} --location /etc/
ORACLE/KEYSTORES/${ORACLE_UNQNAME^^}/okv --auto-login FALSE
    expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"
    expect eof
_EOF
EOF

b. Secondary nodes: This script only creates an endpoint for the secondary nodes,
associates the endpoint of the secondary nodes with the shared wallet, and
downloads and installs the Oracle Key Vault client into the existing installation
directory on each secondary node.

$ more run-me.sh

#!/bin/bash
export EP_NAME=${ORACLE_SID^^}_on_$(hostname -s)
export WALLET_NAME=${ORACLE_UNQNAME^^}${HOSTNAME//[!0-9]/}
curl -Ok --tlsv1.2 https://<OKV-IP-addr>:5695/okvrestclipackage.zip
unzip -Voj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-OKV.sh << EOF
#!/bin/bash
okv admin endpoint create --endpoint ${EP_NAME} --description "$(hostname -f) $
(hostname -i)" --subgroup "USE CREATOR SUBGROUP" --unique FALSE
okv admin endpoint update --endpoint ${EP_NAME} --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET_NAME} --endpoint $
{EP_NAME}
expect << _EOF
    set timeout 120
    spawn okv admin endpoint provision --endpoint ${EP_NAME} --location /etc/
ORACLE/KEYSTORES/${ORACLE_UNQNAME^^}/okv --auto-login FALSE
    expect "Enter Oracle Key Vault endpoint password: "
    send "change-on-install\r"
    expect eof
_EOF
EOF

6. After successful installation of the Oracle Key Vault client, run the root.sh script to install
the PKCS library on all nodes.

# Oracle_Key_Vault_installation_directory/bin/root.sh

The following output should appear:

Creating directory: /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Copying PKCS library to /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Setting PKCS library file permissions

7. Run the Oracle Key Vault okvutil changepwd command on all nodes to change the
password for the Oracle Key Vault client that you installed.

Because all database administrators downloaded the same deployment script, all
databases have the same password into Oracle Key Vault. This step enables each
database to have a unique password.

$ /u01/opt/oracle/product/okv/bin/okvutil changepwd -t wallet -l /u01/opt/oracle/
product/okv/ssl/

Chapter 11
How Transparent Data Encryption Works with Oracle Real Application Clusters

11-37



Enter wallet password: default_password
Enter new wallet password: Oracle_Key_Vault_password
Confirm new wallet password: Oracle_Key_Vault_password
Wallet password changed successfully

8. On all nodes, add the Oracle Key Vault password into a local auto-login wallet to
hide the newly changed password from database administrators.

sqlplus c##sec_admin as syskm
Enter password: password

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password' 
FOR CLIENT 'OKV_PASSWORD' 
TO LOCAL AUTO_LOGIN KEYSTORE '/u01/opt/oracle/product/tde_seps';

9. In the root container, run the ALTER SYSTEM statement to set the static
WALLET_ROOT parameter to configure the encryption wallet location for all
instances:

CONNECT / AS SYSDBA

ALTER SYSTEM SET TABLESPACE_ENCRYPTION = 'AUTO_ENABLE' SCOPE = SPFILE SID = 
'*';
ALTER SYSTEM SET WALLET_ROOT = '/u01/opt/oracle/product/' SCOPE = SPFILE SID 
= '*';

10. Restart the database.

11. In the root container, use the ALTER SYSTEM statement to set the dynamic
TDE_CONFIGURATION parameter.

For example:

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV" 
SCOPE = BOTH SID = '*';

12. Optionally, define the database default encryption algorithm after applying Oracle
patch 30398099.

By default, Oracle Database applies the AES128 algorithm to encryption clauses
that do not specify an encryption algorithm. Patch 30398099 allows you to choose
from the AES128, AES192, and AES256 encryption algorithms. If you have applied
this patch, then you can run the following command to set the encryption clause:

ALTER SYSTEM SET "_TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM" = 
'encryption_algorithm' 
SCOPE = BOTH SID = '*';

13. In the root container, open the keystore, which opens the connection to Oracle Key
Vault for the root container and all open PDBs.

Note that the Oracle Key Vault password has been replaced in all subsequent
ADMINISTER KEY MANAGEMENT commands with EXTERNAL STORE, because the
database automatically retrieves the Oracle Key Vault password from the local
auto-login wallet that you created earlier.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY EXTERNAL STORE 
CONTAINER = ALL;

14. In the root container, set the master encryption key.

Chapter 11
How Transparent Data Encryption Works with Oracle Real Application Clusters

11-38



ADMINISTER KEY MANAGEMENT SET KEY 
IDENTIFIED BY EXTERNAL STORE 
CONTAINER = CURRENT;

15. Create and activate a tagged master encryption key in all PDBs in this container.

The benefit of adding tagged master encryption keys to PDBs is that it enables you to
easily identify keys that belong to a certain PDB.

a. Connect to each PDB and run the following SELECT statement to create an
ADMINISTER KEY MANAGEMENT command that contains the PDB name and time stamp
as a tag for the PDB's master encryption key.

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '|| 
TO_CHAR (SYSDATE, 'YYYY-MM-DD HH24:MI:SS')||''' 
IDENTIFIED BY EXTERNAL STORE;' "SET KEY COMMAND" FROM DUAL;

b. Run the generated output of this SELECT statement.

For example:

ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG 'pdb_name date time' 
IDENTIFIED BY EXTERNAL STORE;

16. On all nodes, add the Oracle Key Vault password into an auto-login wallet to enable auto-
login connection into Oracle Key Vault.

This step is mandatory in Oracle RAC. Having an auto-login connection into Oracle Key
Vault is especially important when Oracle RAC nodes are automatically restarted (for
example, while applying quarterly release upgrades using the opatchauto patch tool).

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password' 
FOR CLIENT 'OKV_PASSWORD' 
TO LOCAL AUTO_LOGIN KEYSTORE '/u01/opt/oracle/product/tde';

17. In the root container, run the ALTER SYSTEM statement to change the TDE_CONFIGURATION
parameter.

For example:

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV|FILE" 
SCOPE = BOTH SID = '*';

18. From the root, encrypt sensitive credential data with AES256 for database links in the
SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables.

This command requires the SYSKM administrative privilege:

sqlplus c##sec_admin as syskm
Enter password: password

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS;
19. Log in to the PDB and create a tablespace.

For example, to create a tablespace named protected:

CREATE TABLESPACE protected DATAFILE SIZE 50M;
20. Confirm that the tablespace is encrypted even though the encryption clauses were

omitted.

SELECT C.NAME AS pdb_name, T.NAME AS tablespace_name, E.ENCRYPTIONALG AS ALG 
FROM V$TABLESPACE T, V$ENCRYPTED_TABLESPACES E, V$CONTAINERS C 

Chapter 11
How Transparent Data Encryption Works with Oracle Real Application Clusters

11-39



WHERE E.TS# = T.TS# AND E.CON_ID = T.CON_ID AND E.CON_ID = C.CON_ID 
ORDER BY E.CON_ID, T.NAME;

21. Create a table in the encrypted tablespace that you just created.

For example:

CREATE TABLE SYSTEM.test TABLESPACE protected 
AS SELECT * FROM DBA_OBJECTS;

22. Select from this table to confirm that you can read encrypted data:

SELECT COUNT(*), OWNER FROM SYSTEM.test 
GROUP BY OWNER 
ORDER BY 1 DESC;

23. In the PDBs, encrypt the existing tablespaces.

Optionally, encrypt the SYSTEM, SYSAUX, and USERS tablespaces. If you omit the
encryption algorithm, then the default algorithm (AES128, or the algorithm that you
specified earlier) is applied.

ALTER TABLESPACE tablespace_name ENCRYPTION ONLINE ENCRYPT;
24. Optionally, validate the configuration.

a. Confirm that the auto-login for Oracle Key Vault is working.

You can test this by restarting the database, logging into the PDB, and then
selecting from the encrypted table. To restart the database:

$ srvctl stop database -db database_name -o immediate
$ srvctl start database -db database_name

After logging in to the PDB, select from the SYSTEM.test table.

SELECT COUNT(*), OWNER FROM SYSTEM.test 
GROUP BY OWNER 
ORDER BY 1 DESC;

b. Confirm that the master encryption key re-key operations in all open PDBs are
successful.

First, as a user who has the SYSKM administrative privilege, run the following
SELECT statement to create an ADMINISTER KEY MANAGEMENT command that
contains the PDB name and time stamp.

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '|| 
TO_CHAR (SYSDATE, 'YYYY-MM-DD HH24:MI:SS')||''' 
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;' "RE-KEY COMMAND" FROM DUAL;

Next, run the generated output of this SELECT statement.

ADMINISTER KEY MANAGEMENT SET KEY 
USING TAG 'pdb_name date time' 
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;

c. From the root container, re-key previously encrypted sensitive credential data
in the SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables.

This command requires the SYSKM administrative privilege:

ALTER DATABASE DICTIONARY REKEY CREDENTIALS;
d. Drop the protected tablespace and its table, test.

Chapter 11
How Transparent Data Encryption Works with Oracle Real Application Clusters

11-40



DROP TABLESPACE protected
INCLUDING CONTENTS AND DATAFILES;

Related Topics

• Supported Encryption and Integrity Algorithms
Oracle supports the AES, ARIA and DES algorithms.

11.4 How Transparent Data Encryption Works with SecureFiles
SecureFiles, which stores LOBS, has three features: compression, deduplication, and
encryption.

• About Transparent Data Encryption and SecureFiles
SecureFiles encryption uses TDE to provide the encryption facility for LOBs.

• Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm
The CREATE TABLE statement can create a SecureFiles LOB with encryption specified.

• Example: Creating a SecureFiles LOB with a Column Password Specified
The CREATE TABLE statement can create a SecureFiles LOB with a column password.

11.4.1 About Transparent Data Encryption and SecureFiles
SecureFiles encryption uses TDE to provide the encryption facility for LOBs.

When you create or alter tables, you can specify the SecureFiles encryption or LOB columns
that must use the SecureFiles storage. You can enable the encryption for a LOB column by
either using the current Transparent Data Encryption (TDE) syntax or by using the ENCRYPT
clause as part of the LOB parameters for the LOB column. The DECRYPT option in the current
syntax or the LOB parameters turn off encryption.

11.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption
Algorithm

The CREATE TABLE statement can create a SecureFiles LOB with encryption specified.

Example 11-1 shows how to create a SecureFiles LOB in a CREATE TABLE statement.

Example 11-1    Creating a SecureFiles LOB with a Specific Encryption Algorithm

CREATE TABLE table1 ( a BLOB ENCRYPT USING 'AES256')
    LOB(a) STORE AS SECUREFILE (
    CACHE
    );

11.4.3 Example: Creating a SecureFiles LOB with a Column Password
Specified

The CREATE TABLE statement can create a SecureFiles LOB with a column password.

Example 11-2 shows an example of creating a SecureFiles LOB that uses password
protections for the encrypted column.

All of the LOBS in the LOB column are encrypted with the same encryption specification.

Chapter 11
How Transparent Data Encryption Works with SecureFiles

11-41



Example 11-2    Creating a SecureFiles LOB with a Column Password Specified

CREATE TABLE table1 (a VARCHAR2(20), b BLOB)
    LOB(b) STORE AS SECUREFILE (
        CACHE
        ENCRYPT USING 'AES192' IDENTIFIED BY password
    );

11.5 How Transparent Data Encryption Works with Oracle
Call Interface

Transparent Data Encryption does not have any effect on the operation of Oracle Call
Interface (OCI).

For most practical purposes, TDE is transparent to OCI except for the row shipping
feature. You cannot use the OCI row shipping feature with TDE because the key to
make the row usable is not available at the receipt-point.

11.6 How Transparent Data Encryption Works with Editions
Transparent Data Encryption does not have any effect on the Editions feature of
Oracle Database.

For most practical purposes, TDE is transparent to Editions. Tables are always
noneditioned objects. TDE Column Encryption encrypts columns of the table. Editions
are not affected by TDE tablespace encryption.

11.7 Configuring Transparent Data Encryption to Work in a
Multidatabase Environment

Each Oracle database on the same server (such as databases sharing the same
Oracle binary but using different data files) must access its own TDE keystore.

Keystores are not designed to be shared among databases. By design, there must be
one keystore per database. You cannot use the same keystore for more than one
database.

• To configure the use of keystores in a multidatabase environment, use one of the
following options:

– Option 1: Specify the keystore location by individually setting the WALLET_ROOT
static initialization parameter and the TDE_CONFIGURATION dynamic initialization
parameter (its KEYSTORE_CONFIGURATION attribute set to FILE) for each CDB
(or standalone database). You must set the KEYSTORE_CONFIGURATION attribute
in order for the WALLET_ROOT parameter to work.

For example:

WALLET_ROOT = $ORACLE_BASE/admin/db_unique_name
TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE"

– Option 2: If WALLET_ROOT and TDE_CONFIGURATION are not set, and if the
databases share the same Oracle home, then ensure that the

Chapter 11
How Transparent Data Encryption Works with Oracle Call Interface

11-42



ENCRYPTION_WALLET_LOCATION parameter in sqlnet.ora is not set. By default,
sqlnet.ora is located in the $ORACLE_HOME/network/admin directory.

This enables Oracle Database to use the keystore that is located in either
the $ORACLE_BASE/admin/db_unique_name/wallet (assuming $ORACLE_BASE is set) or
the $ORACLE_HOME/admin/db_unique_name/wallet directory.

– Option 3: If options 1 and 2 are not feasible, then use separate sqlnet.ora files, one
for each database. Ensure that you correctly set the TNS_ADMIN environment variable
to point to the correct database configuration. However, be aware that the
ENCRYPTION_WALLET_LOCATION parameter in sqlnet.ora is deprecated, starting with
release 19c, in favor of the WALLET_ROOT and TDE_CONFIGURATION initialization
parameters.

Caution:

Using a keystore from another database can cause partial or complete data loss.

Related Topics

• Transparent Data Encryption Keystore Search Order
The search order for the TDE keystore depends on how you have set either the instance
initialization parameters, the sqlnet.ora parameters, or the environment variables.

• SQL*Plus User's Guide and Reference

Chapter 11
Configuring Transparent Data Encryption to Work in a Multidatabase Environment

11-43



12
Frequently Asked Questions About
Transparent Data Encryption

Users frequently have questions about transparency and performance issues with
Transparent Data Encryption.

• Transparency Questions About Transparent Data Encryption
Transparent Data encryption handles transparency in data in a variety of ways.

• Performance Questions About Transparent Data Encryption
There are several performance issues to consider when using Transparent Data
Encryption.

12.1 Transparency Questions About Transparent Data
Encryption

Transparent Data encryption handles transparency in data in a variety of ways.

Security auditors occasionally ask detailed questions about the encryption used by
Transparent Data Encryption (TDE). They request information about TDE keys, algorithms,
lengths, and keystores and then directly compare to requirements of regulations such as PCI-
DSS. This topic contains important details about TDE encryption and key management. This
information is current as of Oracle Database 12c (12.1.0.2). It is intended to help TDE
customers respond to auditor questions quickly and accurately.

1. Is Transparent Data Encryption compatible with my application software?

Transparent Data Encryption is compatible with applications by default because it does
not alter the inbound SQL statements or the outbound SQL query results. Oracle runs
internal testing and validation of certain Oracle and third-party application software to
capture helpful deployment tips or scripts, and to evaluate performance profiles.

Be aware of the difference between Transparent Data Encryption and the DBMS_CRYPTO
PL/SQL package. This package is intended for different customer use cases. It is an API
and toolkit solution and as such, it is non-transparent.

2. Is Transparent Data Encryption compatible with other Oracle Database tools and
technologies that I am using?

One of the chief benefits of Transparent Data Encryption is its integration with frequently
used Oracle Database tools and technologies such as high-availability clusters, storage
compression, backup compression, data movement, database backup and restore, and
database replication. Specific Oracle technologies that are integrated directly with
Transparent Data Encryption include Oracle Real Application Clusters (Oracle RAC),
Oracle Recovery Manager (RMAN), Oracle Data Guard, Advanced Compression, Oracle
Data Pump, and Oracle GoldenGate, among others. Transparent Data Encryption also
has special points of integration with Oracle Exadata that fully use unique features of
Oracle-engineered systems.

Transparent Data Encryption also works easily with security features of the Oracle
Database. With Transparent Data Encryption, privilege grants, roles, Oracle Database

12-1



Vault realms, Virtual Private Database policies, and Oracle Label Security labels
remain in effect. You can use these and other security features in tandem with
Transparent Data Encryption encryption.

3. Are there any known Transparent Data Encryption limitations or
incompatibilities?

• TDE column encryption: TDE column encryption encrypts and decrypts data
transparently when data passes through the SQL layer. Some features of
Oracle will bypass the SQL layer, and hence cannot benefit from TDE column
encryption. The following are known database features that TDE column
encryption does not support, and their relevant software version numbers:

– Materialized View Logs (not supported prior to Oracle Database 11g
release 2)

– Synchronous and asynchronous change data capture for data
warehousing (CDC)

– Transportable Tablespaces

– LOBs

Note that Secure Files were introduced in Oracle Database 11g release 1, so it
is not supported with TDE column encryption prior to that release

• TDE tablespace encryption: TDE tablespace encryption encrypts all content
that is stored in the tablespace at the block level in storage, and it generally
does not conflict with other database features. TDE tablespace encryption
does not have any of the limitations that TDE column encryption has.
However, you can use full transportable tablespaces (TTS) with Oracle Data
Pump compression and encryption when going from a TDE-encrypted source
to a TDE-encrypted destination. You must have an Oracle Database release
12c or later database instance available so that you can use its key export or
keystore (wallet) merge capabilities to get the correct master encryption key to
the destination database host without having to overwrite the original Oracle
wallet file. This process is subject to the standard TTS limitations, and you
must remember to check for compatible endianness.

4. What types of keys and algorithms does TDE use?

TDE relies on two distinct sets of encryption keys. The first set of encryption keys
are TDE tablespace encryption keys, which are used to transparently encrypt and
decrypt stored data. DEKs are generated automatically by the database, stored
internally in the database in encrypted form, and managed mostly behind the
scenes. One place where end-users interact with DEKs is when selecting the
encryption algorithm and key length that TDE will use, which can be 3DES168,
AES128, AES192, or AES256. This selection is made independently for each table
containing encrypted columns and for each encrypted tablespace. You may also
hear DEKs referred to as table keys (column encryption) or tablespace keys
(tablespace encryption). The table keys can be used in cipher block chaining
(CBC) or Galois/Counter (GCM) mode, and the tablespace keys can be used in
used in cipher feedback mode (CFB) or tweakable block ciphertext stealing (XTS)
operating mode.

The second set of encryption keys consists of current and historical key encryption
keys (KEK), also known as master encryption keys. The master encryption keys
are generated automatically by the database, used automatically to encrypt and
decrypt DEKs as needed, and stored externally in a protected keystore. Users
may interact with the current master encryption key by periodically rekeying it,

Chapter 12
Transparency Questions About Transparent Data Encryption

12-2



modifying certain key attributes, and so forth. Typically, the keystore for master
encryption keys is either an Oracle wallet (out-of-the-box solution) or Oracle Key Vault (a
specialized key management product). Although the database uses only one TDE master
key at a time, all rekeyed master encryption keys are retained in the keystore for long-
term recovery of encrypted data backups.Master encryption keys always are
AES256. They encrypt and decrypt DEKs using CBC operating mode. For both DEKs
and master encryption keys, the underlying key material is not directly exposed. End-
users see only attributes of keys necessary to manage TDE.

5. How are Oracle keystores containing master encryption keys protected?

There are three different types of keystore to consider when you use an Oracle wallet as
the keystore for master encryption keys: password-based, auto-login, and local auto-
login. All of these keystore externalize master encryption keys, so they are separate from
TDE-encrypted data. Oracle recommends that you place wallet files in local or network
directories that are protected by tight file permissions and other security measures.

The password-based wallet is an encrypted key storage file (ewallet.p12) that follows
the PKCS #12 standard. It is encrypted by a password-derived key according to the
PKCS #5 standard. A human user must enter a command containing the password for
the database to open the wallet, decrypt its contents, and gain access to keys. The
password-based wallet is the default keystore for TDE master keys. In the past, it was
encrypted using the 3DES168 encryption algorithm and CBC operating mode. The
orapki command convert wallet enables you to convert password-based wallets to
AES256 and CBC operating mode. For example, to use the compat_v12 setting to
perform the conversion from 3DES to AES256:

orapki wallet convert -wallet wallet_location [-pwd password] [-
compat_v12]

Auto-login wallets (cwallet.sso) optionally are derived from standard password-based
wallets for special cases where automatic startup of the database is required with no
human interaction to enter a wallet password. When using auto-login wallet, the master
password-based wallet must be preserved because it is needed to rekey the master
encryption key. In addition to the best practice of storing auto-login wallet in a local or
network directory that is protected by tight file permissions, the file contents are
scrambled by the database using a proprietary method for added security. A slight
variation on the auto-login wallet called local auto-login wallet has similar behavior. One
notable difference with local auto-login wallet is that its contents are scrambled using
additional factors taken from the host machine where the file was created. This renders
the local auto-login wallet unusable on other host machines. Details of the host factors
and scrambling technique are proprietary.

6. What is Oracle Key Vault and how does it manage TDE master keys?

Oracle Key Vault centrally manages TDE master keys, Oracle wallets, Java keystores,
and more. It helps you to take control of proliferating keys and key storage files. It
includes optimizations specifically for TDE and other components of the Oracle stack. 

Related Topics

• Oracle Database Security Guide

Chapter 12
Transparency Questions About Transparent Data Encryption

12-3



12.2 Performance Questions About Transparent Data
Encryption

There are several performance issues to consider when using Transparent Data
Encryption.

1. What is the typical performance overhead from Transparent Data
Encryption?

There are many different variables involved in the creation of an accurate
Transparent Data Encryption performance test. The results can vary depending on
the test environment, test case or workload, measurement metrics or methods,
and so on. Oracle cannot guarantee a specific performance overhead percentage
that can apply in all possible scenarios. In practice, the performance tests by many
Transparent Data Encryption customers are often in the low single digits as a
percentage, but that is not universally the case.

If possible, use Oracle Real Application Testing (Oracle RAT) to capture a real
production workload and then replay it against Transparent Data Encryption to get
a true indication of the performance overhead that the you can expect within your
environment.

2. How can I tune for optimal Transparent Data Encryption performance?

• TDE column encryption:

– Limit the crypto processing by only encrypting the subset of columns that
are strictly required to be protected. In addition, turn off the optional
integrity checking feature.

– After you apply column encryption, rebuild the column indexes.

• TDE tablespace encryption: TDE tablespace encryption improves
performance by caching unencrypted data in memory in the SGA buffer cache.
This feature reduces the number of crypto operations that must be performed
when users run SELECT queries, which draw from the SGA instead of drawing
from disk. (Drawing from disk forces the database to perform decrypt
operations.) Ensure that the size of the SGA buffer cache is large enough to
take full advantage of this performance optimization.

Another major performance boost comes from using hardware and software
that supports CPU-based cryptographic acceleration available in Intel AES-NI
and Oracle SPARC T4/T5. To take advantage of this feature, you must be
running a recent version of the database, have a recent version of the
operating system installed, and be using hardware that includes crypto
acceleration circuitry within its CPUs/cores.

Database compression further speeds up Transparent Data Encryption
performance because the crypto processing occurs on data that already is
compressed, resulting in less total data to encrypt and decrypt.

• In general:

– Ensure that you have applied the latest patches, which you can download
from My Oracle Support at

https://support.oracle.com/portal/

Chapter 12
Performance Questions About Transparent Data Encryption

12-4

https://support.oracle.com/portal/


– When you specify an encryption algorithm, remember that AES is slightly faster
than 3DES. Use AES128 where possible. Be aware that the performance benefit
is small.

– Use Exadata (described in Oracle Database Testing Guide), which includes
additional performance benefits.

3. Are there specific issues that may slow down TDE performance, and if so, how do I
avoid them?

TDE tablespace performance is slower if the database cannot use CPU-based hardware
acceleration on the host machine due to factors such as older hardware, an older
database version, or an older operating system.

Note the following with regard to specific database workloads:

• Encrypting the whole data set at once (for example, while doing “Bulk Data
Load" into an Oracle data warehouse): Lower crypto performance has been
observed during bulk load of new data into the database or data warehouse. New
data cannot be cached in SGA, so TDE tablespace encryption performance
optimizations are bypassed. Hence, Transparent Data Encryption has no bonus
performance benefits in this type of operation.

Follow these guidelines:

– Ensure that the database is running on servers with CPU-based cryptographic
acceleration. This accelerates not only decrypt operations, but also encrypt
operations as well (for loading new data). Take the crypto processing out of band
by pre-encrypting the data set and then using Transportable Tablespaces (TTS)
to load into the database. Try to parallelize this procedure where possible. This
requires the database instance to copy the required TDE key to the keystore on
the destination database. The procedure may not be feasible when there is a
fixed time window for encryption and loading, and these must be done serially.

– Consider using TDE column encryption. Encrypt only the handful of sensitive
regulated columns instead of encrypting an entire tablespace.

• Decrypting an entire data set at once (for example, while performing a full table
scan by reading directly from disk, with no reading from SGA):

Lower crypto performance is observed when running full table scan queries where
data is read directly from storage. Certain performance optimizations of TDE
tablespace encryption are bypassed (no caching). Hence, Transparent Data
Encryption has no bonus performance benefits in this type of operation.

Follow these guidelines:

– Ensure that the database is running on servers with CPU-based cryptographic
acceleration.

– Retest the full table scan queries with a larger SGA size to measure performance
when data is read from cache. Try setting the Oracle event number 10949 to
disable direct path read.

– Partition the database so that less data is scanned by full table scan operations.
Production databases often use partitioning for this kind of scenario (that is, to
limit the total amount of data scanned).

– Consider using TDE column encryption. Encrypt only the handful of sensitive
regulated columns instead of encrypting an entire tablespace.

Chapter 12
Performance Questions About Transparent Data Encryption

12-5



Related Topics

• Performance Overhead of Transparent Data Encryption
Transparent Data Encryption tablespace encryption has small associated
performance overhead.

• Oracle Database Testing Guide

• Oracle Database Testing Guide

Chapter 12
Performance Questions About Transparent Data Encryption

12-6



Part II
Using Oracle Data Redaction

Part II describes how to use Oracle Data Redaction.

• Introduction to Oracle Data Redaction
Oracle Data Redaction enables you to redact data that is returned from queries issued by
applications.

• Oracle Data Redaction Features and Capabilities
Oracle Data Redaction provides a variety of ways to redact different types of data.

• Configuring Oracle Data Redaction Policies
An Oracle Data Redaction policy defines how to redact data in a column based on the
table column type and the type of redaction you want to use.

• Managing Oracle Data Redaction Policies in Oracle Enterprise Manager
Oracle Enterprise Manager Cloud Control (Cloud Control) can manage Oracle Data
Redaction policies and formats.

• Using Oracle Data Redaction with Oracle Database Features
Oracle Data Redaction can be used with other Oracle features, but some Oracle features
may have restrictions with regard to Oracle Data Redaction.

• Security Considerations for Oracle Data Redaction
Oracle provides guidelines for using Oracle Data Redaction.



13
Introduction to Oracle Data Redaction

Oracle Data Redaction enables you to redact data that is returned from queries issued by
applications.

• What Is Oracle Data Redaction?
Redaction is the process of selectively removing or obscuring sensitive or confidential
information from documents or databases. Oracle Data Redaction enables you to redact
data that is returned from queries issued by applications.

• When to Use Oracle Data Redaction
Unlike data masking, which masks sensitive data by permanently replacing it with
fictitious but realistic data, data redaction masks data as it is received from the database,
leaving the data in the database unchanged.

• Benefits of Using Oracle Data Redaction
Oracle Data Redaction provides several benefits when you use it to protect your data.

• Example Use Cases for Oracle Data Redaction
Oracle Data Redaction addresses common use case scenarios.

• Oracle Data Redaction in a Multitenant Environment
Oracle Redaction policies are created and applied at the PDB level, and only apply to
objects in that PDB. You cannot create redaction policies in the CDB root.

13.1 What Is Oracle Data Redaction?
Redaction is the process of selectively removing or obscuring sensitive or confidential
information from documents or databases. Oracle Data Redaction enables you to redact data
that is returned from queries issued by applications.

You can redact column data by using one of the following methods:

• Full redaction. You redact all of the contents of the column data. The redacted value
returned to the querying application user depends on the data type of the column. For
example, columns of the NUMBER data type are redacted with a zero (0), and character
data types are redacted with a single space.

• Partial redaction. You redact a portion of the column data. For example, you can redact
a Social Security number with asterisks (*), except for the last 4 digits.

• Regular expressions. You can use regular expressions to look for patterns of data to
redact. For example, you can use regular expressions to redact email addresses, which
can have varying character lengths. It is designed for use with character data only.

• Random redaction. The redacted data presented to the querying application user
appears as randomly generated values each time it is displayed, depending on the data
type of the column.

• Nullify redation. The Nullify redaction type redacts all the data in a column and replaces
it with null values.

• No redaction. The No redaction type option enables you to test the internal operation of
your redaction policies, with no effect on the results of queries against tables with policies

13-1



defined on them. You can use this option to test the redaction policy definitions
before applying them to a production environment.

Data Redaction is transparent to application users because it preserves the original
data type and (optionally) the formatting. It is highly transparent to the database
because the data remains the same in buffers, caches, and storage—only being
changed at the last minute just before SQL query results are returned to the caller. The
redaction is enforced consistently across all of the applications that use the same
underlying database. You can specify which application users should see only
redacted data by checking application user information that is passed into the
database through the SYS_CONTEXT function; you can redact data based on attributes
of the current database or application user; and you can implement multiple logical
conditions within a given redaction policy. In addition, Data Redaction is implemented
in a way that minimizes performance overhead. These characteristics make Oracle
Data Redaction particularly well suited for usage by a range of applications, analytics
tools, reporting tools, and monitoring tools that share common production databases.

Oracle Database applies the redaction at runtime when users access the data (that is,
at query-execution time). This solution works well in a production system. During the
time that the data is being redacted, all of the data processing is performed normally,
and the back-end referential integrity constraints are preserved.

Data redaction can help you comply with industry regulations such as Payment Card
Industry Data Security Standard (PCI DSS) by, for example, helping to restrict access
to card holder data by business need to know.

Related Topics

• Oracle Database Security Guide

13.2 When to Use Oracle Data Redaction
Unlike data masking, which masks sensitive data by permanently replacing it with
fictitious but realistic data, data redaction masks data as it is received from the
database, leaving the data in the database unchanged.

Data Redaction enables you to easily disguise the data using several different
redaction styles.

Oracle Data Redaction is ideal for situations in which you must redact specific
characters out of the result set of queries of Personally Identifiable Information (PII)
returned to certain application users. For example, you may want to present a U.S.
Social Security number that ends with the numbers 4320 as ***-**-4320.

Oracle Data Redaction is particularly suited for call center applications and other
applications that are read-only. Take care when using Oracle Data Redaction with
applications that perform updates back to the database, because redacted data can be
written back to this database.

13.3 Benefits of Using Oracle Data Redaction
Oracle Data Redaction provides several benefits when you use it to protect your data.

These benefits are as follows:

• Applies the redaction at runtime, with no impact on underlying data or storage
requirements

Chapter 13
When to Use Oracle Data Redaction

13-2



• Runs with little or no performance impact

• Requires no application changes

• Enables you to to specify and manage Oracle Redaction with scripts or through the
Oracle Enterprise Manger user interface

• Is available for both on-premises and cloud databases

13.4 Example Use Cases for Oracle Data Redaction
Oracle Data Redaction addresses common use case scenarios.

• Oracle Data Redaction for Sensitive Data in Read-Only Static Pages
Oracle Data Redaction enables you to redact sensitive data in application screens that
have read-only static pages, such as dashboards and reports.

• Oracle Data Redaction for Preventing Data Exposure by Management Tools
Oracle Data Redaction prevents sensitive data from being exposed by data management
tools, such as tools for loading and viewing data.

• Oracle Data Redaction to Prevent Disclosure of Data from Offline Analytics
Oracle Data Redaction prevents the disclosure of sensitive data to users who perform
offline analytics on production data.

• Oracle Data Redaction with Ad Hoc Database Queries Considerations
You may encounter situations where it is convenient to redact sensitive data for ad hoc
queries that are performed by database users.

13.4.1 Oracle Data Redaction for Sensitive Data in Read-Only Static
Pages

Oracle Data Redaction enables you to redact sensitive data in application screens that have
read-only static pages, such as dashboards and reports.

You can define a redaction policy on sensitive columns so that the data is redacted before it
is passed to the application. Because the pages are for static display only, and data is not
posted back to the database, redacted data would not be written back to the database and
potentially corrupt records.

13.4.2 Oracle Data Redaction for Preventing Data Exposure by
Management Tools

Oracle Data Redaction prevents sensitive data from being exposed by data management
tools, such as tools for loading and viewing data.

Many applications include tools that enable users to load and manage their data. An example
could be an SaaS application that allows subscribers to bulk load and manage customer
information. You can define a redaction policy on the sensitive data so that sensitive data is
redacted when it is displayed to these users when they perform these administrative
activities.

Chapter 13
Example Use Cases for Oracle Data Redaction

13-3



13.4.3 Oracle Data Redaction to Prevent Disclosure of Data from
Offline Analytics

Oracle Data Redaction prevents the disclosure of sensitive data to users who perform
offline analytics on production data.

Oracle Data Redaction can be used to prevent the exposure of sensitive information to
users who perform analytics on data that is contrained in a data warehouse. You can
define a redaction policy on sensitive data so that it is redacted as it is retrieved from
the database and displayed to the user of the analytics software.

13.4.4 Oracle Data Redaction with Ad Hoc Database Queries
Considerations

You may encounter situations where it is convenient to redact sensitive data for ad hoc
queries that are performed by database users.

For example, in the course of supporting a production application, a user may need to
run ad hoc database queries to troubleshoot and fix an urgent problem with the
application. Even though Oracle Data Redaction is not designed to prevent data
exposure to database users who run ad hoc queries directly against the database, it
can provide an additional layer to reduce the chances of accidental data exposure.
Because such users may have rights to change data, alter the database schema, and
circumvent the SQL query interface entirely, it is possible for a malicious user to
bypass Data Redaction policies in certain circumstances.

Be aware that Data Redaction does not place any restriction on the WHERE clause of ad
hoc SQL, so the WHERE clause can be used in an iterative fashion to infer the actual
data even when there is a Data Redaction policy on the queried column and only the
redacted value is displayed.

Remember that the Oracle Database security tools are designed to be used together
to improve overall security. By deploying one or more of these tools as a complement
to Oracle Data Redaction, you can securely increase your overall security posture.

Related Topics

• Oracle Data Redaction General Security Guidelines
It is important to understand general security guidelines for using Oracle Data
Redaction.

13.5 Oracle Data Redaction in a Multitenant Environment
Oracle Redaction policies are created and applied at the PDB level, and only apply to
objects in that PDB. You cannot create redaction policies in the CDB root.

You cannot create a Data Redaction policy for a multitenant container database
(CDB); you can only create the Data Redaction policy at the PDB level. This is
because the objects for which you create Data Redaction policies typically reside in a
PDB. If you have the SYSDBA privilege, then you can list all the PDBs in a CDB by
running the SHOW PDBS command.

Chapter 13
Oracle Data Redaction in a Multitenant Environment

13-4



Note that certain users are exempt from redaction policies by default. These include users
with administrative privileges, such as those with the DBA role or the SYSDBA administrative
privilege. Other users who are exempt are users with the EXEMPT REDACTION POLICY system
privilege, and users with the ALTER ANY REDACTION POLICY system privilege..

Chapter 13
Oracle Data Redaction in a Multitenant Environment

13-5



14
Oracle Data Redaction Features and
Capabilities

Oracle Data Redaction provides a variety of ways to redact different types of data.

• Getting Started with Oracle Data Redaction
You can create and enable Oracle Data Redaction policies by using the DBMS_REDACT
package. You define redaction policies at several levels.

• Full Data Redaction to Redact All Data
Full data redaction redacts the entire contents of a specified column of a table or view.

• Partial Data Redaction to Redact Portions of Data
In partial data redaction, you redact portions of the displayed output.

• Regular Expressions to Redact Patterns of Data
Regular expressions redact specific data within a column data value, based on a pattern
search. You can use regular expressions to redact a column of strings of different
lengths.

• Redaction Using Null Values
You can create an Oracle Data Redaction policy that redacts column data by replacing it
with null values.

• Random Data Redaction to Generate Random Values
In random data redaction, the entire value is redacted by replacing it with a random
value.

• Comparison of Full, Partial, and Random Redaction Based on Data Types
The full, partial, and random data redaction styles affect the Oracle built-in, ANSI, user-
defined, and Oracle supplied types in different ways.

• No Redaction for Testing Purposes
You can create a Data Redaction policy that does not perform redaction. This enables
you to include redaction policies in your applications during testing, and then apply those
polices to your data as you move the application to production.

• Central Management of Named Data Redaction Policy Expressions
You can create a library of named policy expressions that can be used in the columns of
multiple tables and views.

14.1 Getting Started with Oracle Data Redaction
You can create and enable Oracle Data Redaction policies by using the DBMS_REDACT
package. You define redaction policies at several levels.

• The schema level specifies the exact schema to redact.

• The object level includes tables, views, and materialized views where Orace Data
Redaction policies are applied. You may apply a maximum of one policy per object.

14-1



• The column level includes where redaction functions operate. You can define a
redaction function on one column when you create a redaction policy. You then
can edit the policy to redact additional columns in the object.

For example, you can create an Oracle Data Redaction policy on the SALARY column of
an HR.EMPLOYEES table with the following procedure:

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema       => 'hr', 
   object_name         => 'employees', 
   column_name         => 'salary',
   policy_name         => 'hr_emp_redact_comp_pol', 
   function_type       => DBMS_REDACT.FULL,
   expression          => '1=1');
END;

In this case, we use the ADD_POLICY procedure in the DBMS_REDACT package to define
an Oracle Data Redaction policy called hr_emp_redact_comp_pol. The function type
DBMS_REDACT.FULL specifies that full data redaction be performed in retrieved values in
the salary column, which means that by default, number data types are replaced with
zero (0) in the output text. The expression parameter sets the policy to perform the
redaction if it evaluates to TRUE (1=1).

Oracle Data Redaction provides a variety of ways to redact different types of data,
which are described in this section.

14.2 Full Data Redaction to Redact All Data
Full data redaction redacts the entire contents of a specified column of a table or view.

By default the output is displayed as follows:

• Character data types: The output text is a single space.

• Number data types: The output text is a zero (0).

• Date-time data types: The output text is set to the first day of January, 2001,
which appears as 01-JAN-2001.

When you run the DBMS_REDACT.ADD_POLICY procedure, to set the function_type
parameter setting for full redaction, you enter the following setting:

function_type    => DBMS_REDACT.FULL

Full redaction is the default and is used whenever a Data Redaction policy specifies
the column but omits the function_type parameter setting.

You can use the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure to change
the full redaction output to different values. You can find the current values by querying
the REDACTION_VALUES_FOR_TYPE_FULL data dictionary view.

Related Topics

• Syntax for Creating a Full Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure enables you to create a full redaction
policy.

Chapter 14
Full Data Redaction to Redact All Data

14-2



• Altering the Default Full Data Redaction Value
The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default full data
redaction value.

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

14.3 Partial Data Redaction to Redact Portions of Data
In partial data redaction, you redact portions of the displayed output.

You can set the position within the actual data at which to begin the redaction, the number of
characters to redact starting from that position, and the redaction character to use. (Actual
data is the data in a protected table or view. An example of actual data could be the number
123456789, and the redacted data version of this number could be 999996789.) This type of
redaction is useful for situations where you want it to be obvious to the person viewing the
data that it was redacted in some way. Typically, you use this type of redaction for credit card
numbers or ID numbers.

Be aware that partial data redaction requires that your data width remain fixed. If you want to
redact columns containing string values of variable length, then you must use regular
expressions.

To specify partial redaction, you must set the DBMS_REDACT.ADD_POLICY or
DBMS_REDACT.ALTER_POLICY procedure function_type parameter to DBMS_REDACT.PARTIAL
and use the function_parameters parameter to define the partial redaction behavior.

The displayed output for partial data redaction can be as follows:

• Character data types: When partially redacted, a Social Security Number (represented
as a hyphenated string within a character data type) with value 987-65-4320 could be
redacted so that it is displayed as shown in the following examples. The code on the right
specifies how to redact the character data: it specifies the expected input format of the
actual data, the format to use for the display of the redacted output, the character to use
for the redaction, the start position at which to begin the redaction, and how many
characters to redact. The first example uses a predefined format (in previous releases
called a shortcut) for character data type Social Security Numbers, and the second
example replaces the first five numbers with an asterisk (*) while preserving the hyphens
(-) in between the numbers.

– function_parameters => DBMS_REDACT.REDACT_US_SSN_F5 results in XXX-XX-4320
– function_parameters => 'VVVFVVFVVVV,VVV-VV-VVVV,*,1,5' result in ***-**-4320
In these examples, V describes each character that potentially can be redacted, and F
describes each character that you want to format using a formatting character.

• Number data types: Partially redacted NUMBER data types appear with some numerals
replaced with specified characters. For example, a Social Security number stored as
987654321 could appear as follows. Both redact the first five digits. The first example
uses a predefined format that is designed for Social Security numbers in the NUMBER data
type, and the second replaces the first five numbers with the number 9, starting from the
first digit.

– function_parameters => DBMS_REDACT.REDACT_NUM_US_SSN_F5 results in XXXXX4321
– function_parameters => '9,1,5' results in 999994321

Chapter 14
Partial Data Redaction to Redact Portions of Data

14-3



• Date-time data types: Partially redacted datetime values can appear simply as
different dates. For example, the date 29-AUG-11 10.20.50.000000 AM could
appear as follows. In the first example, the day of the month is redacted to 02
(using the setting d02) and in the second example, the month is redacted to DEC
(using m12). The uppercase values show the actual day (D), actual month (M),
actual year (Y), actual hour (H), actual minute (M), and actual second (S).

– function_parameters => 'Md02YHMS' results in 02-AUG-11 10.20.50.000000
AM

– function_parameters => 'm12DYHMS' results in 29-DEC-11 10.20.50.000000
AM

Related Topics

• Regular Expressions to Redact Patterns of Data
Regular expressions redact specific data within a column data value, based on a
pattern search. You can use regular expressions to redact a column of strings of
different lengths.

• Syntax for Creating a Partial Redaction Policy
The DBMS_REDACT.ADD_POLICY statement enables you to create policies that redact
specific parts of the data returned to the application.

14.4 Regular Expressions to Redact Patterns of Data
Regular expressions redact specific data within a column data value, based on a
pattern search. You can use regular expressions to redact a column of strings of
different lengths.

For example, you can redact the user name of email addresses, so that only the
domain shows (for example, replacing hpreston in the email address
hpreston@example.com with [redacted] so that it appears as
[redacted]@example.com). To perform the redaction, set the DBMS_REDACT.ADD_POLICY
or DBMS_REDACT.ALTER_POLICY procedure function_type parameter to either
DBMS_REDACT.REGEXP or DBMS_REDACT.REGEXP_WIDTH, and then use the following
parameters to build the regular expression:

• A string search pattern (that is, the values to search for), such as:

regexp_pattern => '(.+)@(.+\.[A-Za-z]{2,4})' 

This setting looks for a pattern of the following form:

one_or_more_characters@one_or_more_characters.2-4_characters_in_range_A-
Z_or_a-z

• A replacement string that replaces the value matched by the regexp_pattern
setting. The replacement string can include back references to sub-expressions of
the main regular expression pattern. The following example replaces the data
before the @ symbol (from the regexp_pattern setting) with the text [redacted].
The \2 setting refers to the second match group, which is (.+\.[A-Za-z]{2,4})
from the regexp_pattern setting.

regexp_replace_string => '[redacted]@\2'
• The starting position for the string search string, such as the first character of the

data, such as:

Chapter 14
Regular Expressions to Redact Patterns of Data

14-4



regexp_position => DBMS_REDACT.RE_BEGINNING

This value is the default if it is not specified.

• The kind of search and replace operation to perform, such as the first occurrence, every
fifth occurrence, or all of the occurrences, such as:

regexp_occurrence => DBMS_REDACT.RE_ALL

This value is the default if it is not specified.

• The default matching behavior for the search and replace operation, such as whether the
search is case-sensitive (i sets it to be not case-sensitive):

regexp_match_parameter => 'i'
In addition to the default parameters, you can use a set of predefined formats that enable you
to use commonly used regular expressions for telephone numbers, email addresses, and
credit card numbers.

Related Topics

• Syntax for Creating a Regular Expression-Based Redaction Policy
The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a
regular expression-based redaction policy.

• Regular Expression-Based Redaction Policies Using Formats
The DBMS_REDACT.ADD_POLICY procedure regexp_pattern and regexp_replace_string
parameters both support formats.

14.5 Redaction Using Null Values
You can create an Oracle Data Redaction policy that redacts column data by replacing it with
null values.

This feature enables you to use the DBMS_REDACT.NULLIFY function to hide all of the sensitive
data in a table or view column and replace it with null values. You can set this function by
using the function_type parameter of the DBMS_REDACT.ADD_POLICY or
DBMS_REDACT.ALTER_POLICY procedure.

For example:

function_type => DBMS_REDACT.NULLIFY

Related Topics

• Creating a Nullify Redaction Policy
You can create Oracle Data Redaction policies that return null values for the displayed
value of the table or view column.

14.6 Random Data Redaction to Generate Random Values
In random data redaction, the entire value is redacted by replacing it with a random value.

The redacted values displayed in the result set of the query change randomly each time
application users run the query.

This type of redaction is useful in cases where you do not want it to be obvious that the data
was redacted. It works especially well for number and datetime data types, where it is difficult
to distinguish between random and real data.

Chapter 14
Redaction Using Null Values

14-5



The displayed output for random values changes based on the data type of the
redacted column, as follows:

• Character data types: The random output is a mixture of characters (for example,
HTU[G{\pjkEWcK). It behaves differently for the CHAR and VARCHAR2 data types, as
follows:

– CHAR data type: The redacted output is always in the same character set as
the character set of the column. The byte length of the redacted output is
always the same as the column definition length (that is, the column length
that was provided at the time of table creation). For example, if the column is
CHAR(20), then a string of 20 random characters is provided in the redacted
output of the user's query.

– VARCHAR2 data type: For random redaction of a VARCHAR data type, the
redacted output is always in the same character set as the character set of the
column. The length of the redacted output is limited based on the length of the 
actual data in the column. No characters in excess of the length of the actual
data are displayed. For example, if the column is VARCHAR2(20) and the row
being redacted contains actual data with a length of 12, then a string of 12
random characters (not 20) is provided in the redacted output of the user's
query for that row.

• Number data types: Each actual number value is redacted by replacing it with a
random, non-negative number modulo the absolute value of the actual data. This
redaction results in random numbers that do not exceed the precision of the actual
data. For example, the number 987654321 can be redacted by replacing it with any
of the numbers 12345678, 13579, 0, or 987654320, but not by replacing it with any
of the numbers 987654321, 99987654321, or -1. The number -123 could be
redacted by replacing it with the numbers 122, 0, or 83, but not by replacing it with
any of the numbers 123, 1123, or -2.

The only exception to the above is when the actual value is an integer between -1
and 9. In this case, the actual data is redacted by replacing it with a random, non-
negative integer modulo ten (10).

• Date-time data types: When values of the date data type are redacted using
random Data Redaction, Oracle Database displays them with random dates that
are always different from those of the actual data.

The setting for using random redaction is as follows:

function_type => DBMS_REDACT.RANDOM

Related Topics

• Syntax for Creating a Random Redaction Policy
A random redaction policy presents the redacted data to the querying application
user as randomly generated values, based on the column data type.

14.7 Comparison of Full, Partial, and Random Redaction
Based on Data Types

The full, partial, and random data redaction styles affect the Oracle built-in, ANSI,
user-defined, and Oracle supplied types in different ways.

Chapter 14
Comparison of Full, Partial, and Random Redaction Based on Data Types

14-6



• Oracle Built-in Data Types Redaction Capabilities
Oracle Data Redaction handles the Oracle built-in data types depending on the type of
Data Redaction policies that are used.

• ANSI Data Types Redaction Capabilities
Oracle Data Redaction converts ANSI data types in specific ways, depending on the type
of redaction that the Data Redaction policy has.

• Built-in and ANSI Data Types Full Redaction Capabilities
For full redaction, the default redacted value depends on whether the data type is Oracle
built-in or ANSI.

• User-Defined Data Types or Oracle Supplied Types Redaction Capabilities
Several data types or types are not supported by Oracle Data Redaction.

14.7.1 Oracle Built-in Data Types Redaction Capabilities
Oracle Data Redaction handles the Oracle built-in data types depending on the type of Data
Redaction policies that are used.

Table 14-1 describes the Oracle Data Redaction support for Oracle built-in data types.

Table 14-1    Redaction Support for Oracle Built-in Data Types

Column Data
Type

Full Partial Regexp Random Nullify

Character1 Yes Yes Yes Yes Yes

Number2 Yes Yes No Yes Yes

Date-time3 Yes Yes No Yes Yes

Interval4 No No No No No

BOOLEAN Yes No No Yes Yes

BFILE No No No No No

BLOB Yes No No No Yes

CLOB Yes No Yes No Yes

NCLOB Yes No Yes No Yes

ROWID No No No No No

UROWID No No No No No

Raw5 No No No No No

1 Includes CHAR, VARCHAR2 (including long VARCHAR2, for example, VARCHAR2(20000)), NCHAR,
NVARCHAR2

2 Includes NUMBER, FLOAT, BINARY_FLOAT, BINARY_DOUBLE
3 Includes DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE
4 Includes INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND
5 Includes LONG RAW, RAW

14.7.2 ANSI Data Types Redaction Capabilities
Oracle Data Redaction converts ANSI data types in specific ways, depending on the type of
redaction that the Data Redaction policy has.

Chapter 14
Comparison of Full, Partial, and Random Redaction Based on Data Types

14-7



Table 14-2 compares how the full, partial, and random redaction styles work for ANSI
data types, with regard to how they are converted and their support status.

Table 14-2    Redaction Support for the ANSI Data Types

Data Type How
Converted

Full
Redaction

Partial
Redaction

Regexp NULL
Redaction

Random
Redaction

CHARACTER(n),

CHAR(n)
Converted
to CHAR(n)

Yes Yes Yes Yes Yes

CHARACTER
VARYING(n),

CHAR VARYING(n)

Converted
to
VARCHAR2(
n)

Yes Yes Yes Yes Yes

NATIONAL
CHARACTER(n),

NATIONAL CHAR(n),

NCHAR(n)

Converted
to
NCHAR(n)

Yes Yes Yes Yes Yes

NATIONAL
CHARACTER
VARYING(n),

NATIONAL CHAR
VARYING(n),

NCHAR VARYING(n)

Converted
to
NVARCHAR
2(n)

Yes Yes Yes Yes Yes

NUMERIC[(p,s)]

DECIMAL[(p,s)]

Converted
to
NUMBER(p,
s)

Yes Yes Yes Yes Yes

INTEGER,

INT,

SMALLINT

Converted
to
NUMBER(38
)

Yes Yes Yes Yes Yes

FLOAT,

DOUBLE PRECISION
Converted
to
FLOAT(126
)

Yes Yes Yes Yes Yes

REAL Converted
to
FLOAT(63)

Yes Yes Yes Yes Yes

GRAPHIC,

LONG VARGRAPHIC,

VARGRAPHIC,

TIME

No
conversion

No No No No No

14.7.3 Built-in and ANSI Data Types Full Redaction Capabilities
For full redaction, the default redacted value depends on whether the data type is
Oracle built-in or ANSI.

ANSI Data Types Redaction Capabilities shows the default settings for both Oracle
built-in and ANSI data type columns that use full redaction.

Chapter 14
Comparison of Full, Partial, and Random Redaction Based on Data Types

14-8



Table 14-3    Default Settings and Categories for Columns That Use Full Redaction

Data Type Default Redacted Value Data Type Category

CHARACTER Single space (“ “) Oracle built-in

CHARACTER(n),

CHAR(n)
Single space (“ “) ANSI

CHARACTER VARYING(n),

CHAR VARYING(n)
Single space (“ “) ANSI

NATIONAL CHARACTER(n),

NATIONAL CHAR(n),

NCHAR(n)

Single space (“ “) ANSI

NATIONAL CHARACTER VARYING(n),

NATIONAL CHAR VARYING(n),

NCHAR VARYING(n)

Single space (“ “) ANSI

NUMBER Zero (0) Oracle built-in

NUMERIC[(p,s)]

DECIMAL[(p,s)]

Zero (0) Oracle built-in

INTEGER,

INT,

SMALLINT

Zero (0) ANSI

FLOAT,

DOUBLE PRECISION
Zero (0) ANSI

REAL Zero (0) ANSI

DATE-TIME 01–01–01 or 01–01–01
01:00:00

Oracle built-in

BLOB Oracle’s raw representation
of [redacted]
1

Oracle built-in

CLOB [redacted] Oracle built-in

NCLOB [redacted] Oracle built-in

1 If you have changed the character set, then you may need to invoke the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure to set the value to the raw representation in
the new character set, as follows:

DECLARE
 new_red_blob BLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(new_red_blob, TRUE);
 DBMS_LOB.WRITE(new_red_blob, 10, 1, UTL_RAW.CAST_TO_RAW('[redacted]'));
 dbms_redact.update_full_redaction_values(
  blob_val      => new_red_blob);
DBMS_LOB.FREETEMPORARY(new_red_blob);
END;
/

Chapter 14
Comparison of Full, Partial, and Random Redaction Based on Data Types

14-9



After you run this procedure, restart the database.

See also Altering the Default Full Data Redaction Value for more information about using the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure.

14.7.4 User-Defined Data Types or Oracle Supplied Types Redaction
Capabilities

Several data types or types are not supported by Oracle Data Redaction.

Table 14-4 compares how the full, partial, regular expression, and random redaction
styles work for user-defined and Oracle-supplied types.

Table 14-4    Redaction Support for the User-Defined Data Types or Oracle-Supplied Types

Data Type or Type Full
Redaction

Partial
Redaction

Regexp NULL
Redactio
n

Random
Redaction

User-defined data types No No No No No

Oracle supplied types: Any types, XML types,
Oracle Spatial types

No No No No No

14.8 No Redaction for Testing Purposes
You can create a Data Redaction policy that does not perform redaction. This enables
you to include redaction policies in your applications during testing, and then apply
those polices to your data as you move the application to production.

This is useful for cases in which you have a redacted base table, yet you want a
specific application user to have a view that always shows the actual data. By default,
a view created on a redacted table is redacted with the same policy used for the base
table. However, you can define a separate redaction policy for the view.You can create
a new view of the redacted table and then define a Data Redaction policy for this view.
The policy still exists on the base table, but no redaction is performed when the
application queries using the view as long as the DBMS_REDACT.NONE function_type
setting was used to create a policy on the view.

14.9 Central Management of Named Data Redaction Policy
Expressions

You can create a library of named policy expressions that can be used in the columns
of multiple tables and views.

By having named policy expressions, you can centrally manage all of the policy
expressions within a database.

When you modify the policy expression, the change is reflected in all table columns
that use the expression. The policy expression takes precedence over the expression
setting in the Data Redaction policy. To create the policy expression, you must use the
DBMS_REDACT.CREATE_POLICY_EXPRESSION procedure, and to apply the policy
expression to a column, you use DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL. This

Chapter 14
No Redaction for Testing Purposes

14-10



feature provides flexibility to redact different columns in a table or view, based on different
runtime conditions.

For example, consider a use case that involves a customer care application. A customer calls
the customer care center to request a return on a recent purchase. A level 1 support
representative of the call center must first verify the order ID, customer name, and customer
address before initiating the return. During the process, there is no need for the level 1
support representative to view the customer’s credit card number. So, the credit card column
is redacted when the support representative queries the customer details in the call center
application. When the return is initiated, a sales representative from the return department
may need to view the credit card number to process the return. However, there is no need for
the sales representative to view the expiration date of the credit card. So, when the sales
representative queries the customer details in the same application, the credit card number is
visible but the expiration date is redacted.

In this use case, different columns in the customer details table must be redacted in different
ways, based on who the logged in user is. Oracle Data Redaction simplifies the
implementation of this use case by using named Data Redaction policy expressions. This
type of policy expression enables you to define and associate different policy expressions on
different columns in the same table or view. Moreover, you can centrally manage named
policy expressions within a database. Any updates that you make to a named policy
expression are immediately propagated to all of the associated table or view columns.

Related Topics

• Creating and Managing Multiple Named Policy Expressions
A named, centrally managed Oracle Data Redaction policy expression can be used in
multiple redaction policies and applied to multiple tables or views.

Chapter 14
Central Management of Named Data Redaction Policy Expressions

14-11



15
Configuring Oracle Data Redaction Policies

An Oracle Data Redaction policy defines how to redact data in a column based on the table
column type and the type of redaction you want to use.

• About Oracle Data Redaction Policies
An Oracle Data Redaction policy defines the conditions in which redaction must occur for
a table or view.

• Privileges for Managing Oracle Data Redaction Policies
Because data redaction involves the protection of highly sensitive data, only trusted users
should create Oracle Data Redaction policies.

• Planning an Oracle Data Redaction Policy
Before you create a Oracle Data Redaction policy, you should plan the data redaction
policy that best suits your site’s needs.

• General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY
procedure.

• Using Expressions to Define Conditions for Data Redaction Policies
The expression parameter in the DBMS_REDACT.ADD_POLICY procedure sets the
conditions under which the policy applies.

• Creating and Managing Multiple Named Policy Expressions
A named, centrally managed Oracle Data Redaction policy expression can be used in
multiple redaction policies and applied to multiple tables or views.

• Creating a Full Redaction Policy and Altering the Full Redaction Value
You can create a full redaction policy to redact all contents in a data column, and
optionally, you can alter the default full redaction value.

• Creating a Nullify Redaction Policy
You can create Oracle Data Redaction policies that return null values for the displayed
value of the table or view column.

• Creating a Partial Redaction Policy
In partial data redaction, you can redact portions of data for different kinds of data types.

• Creating a Regular Expression-Based Redaction Policy
A regular expression-based redaction policy enables you to redact data based on a
search-and-replace model.

• Creating a Random Redaction Policy
A random redaction policy presents redacted data as randomly generated values, such
as Ukjsl32[[]]]s for the character data type.

• Creating a Policy That Uses No Redaction
You can create policies that use no redaction at all, for when you want to test the policy in
a development environment.

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the data
they access.

15-1



• Altering an Oracle Data Redaction Policy
The DBMS_REDACT.ALTER_POLICY procedure enables you to modify Oracle Data
Redaction policies.

• Redacting Multiple Columns
You can redact more than one column in a Data Redaction policy.

• Disabling and Enabling an Oracle Data Redaction Policy
You can disable and then reenable Oracle Data Redactions policies as necessary.

• Dropping an Oracle Data Redaction Policy
The DBMS_REDACT.DROP_POLICY procedure drops Oracle Data Redaction policies.

• Tutorial: SQL Expressions to Build Reports with Redacted Values
SQL expressions can be used to build reports based on columns that have Oracle
Data Redaction policies defined on them.

• Using Trace Files to Troubleshoot Oracle Data Redaction Policies
Trace files for Oracle Data Redaction can be generated at either the system level
or the session level.

• Oracle Data Redaction Policy Data Dictionary Views
Oracle Database provides data dictionary views that list information about Data
Redaction policies.

15.1 About Oracle Data Redaction Policies
An Oracle Data Redaction policy defines the conditions in which redaction must occur
for a table or view.

A Data Redaction policy has the following characteristics:

• Oracle Data Redaction polices are applied to tables, views, or materialized views.
You can apply only one policy on these objects.

• The Data Redaction policy defines the following: What kind of redaction to
perform, how the redaction should occur, and when the redaction takes place.
Oracle Database performs the redaction at execution time, just before the data is
returned to the application.

• A Data Redaction policy can fully redact values, partially redact values, or
randomly redact values. In addition, you can define a Data Redaction policy to not
redact any data at all, for when you want to test your policies in a test
environment.

• A Data Redaction policy can be defined with a policy expression which allows for
different application users to be presented with either redacted data or actual data,
based on whether the policy expression returns TRUE or FALSE. Redaction takes
place when the boolean result of evaluating the policy expression is TRUE. For
security reasons, the functions and operators that can be used in the policy
expression are limited to SYS_CONTEXT and a few others. User-created functions
are not allowed. Policy expressions can make use of the SYS_SESSION_ROLES
namespace with the SYS_CONTEXT function to check for enabled roles.

• Different named Data Redaction policy expressions can be created and then
applied individually for different columns within the same table or view.

Table 15-1 lists the procedures in the DBMS_REDACT package.

Chapter 15
About Oracle Data Redaction Policies

15-2



Table 15-1    DBMS_REDACT Procedures

Procedure Description

DBMS_REDACT.ADD_POLICY Adds a Data Redaction policy to a table or view

DBMS_REDACT.ALTER_POLICY Modifies a Data Redaction policy

DBMS_REDACT.APPLY_POLICY_EXPR_TO
_COL

Applies a named Data Redaction policy expression to a
table or view column

DBMS_REDACT.CREATE_POLICY_EXPRES
SION

Creates a named Data Redaction policy expression

DBMS_REDACT.DISABLE_POLICY Disables a Data Redaction policy

DBMS_REDACT.DROP_POLICY Drops a Data Redaction policy

DBMS_REDACT.DROP_POLICY_EXPRESSI
ON

Drops a named Data Redaction policy expression

DBMS_REDACT.ENABLE_POLICY Enables a Data Redaction policy

DBMS_REDACT.UPDATE_FULL_REDACTIO
N_VALUES

Globally updates the full redaction value for a given data
type. You must restart the database instance before the
updated values can be used.

DBMS_REDACT.UPDATE_POLICY_EXPRES
SION

Updates a named Data Redaction policy expression

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

15.2 Privileges for Managing Oracle Data Redaction Policies
Because data redaction involves the protection of highly sensitive data, only trusted users
should create Oracle Data Redaction policies.

You must have the EXECUTE privilege on the DBMS_REDACT package in order to run its
subprograms. Procedures in the interface are run with privileges of the current user.

In addition to the EXECUTE privilege on the DBMS_REDACT package to run its subprograms, you
must have the following privileges:

• The ADMINISTER REDACTION POLICY privilege, as follows:

– Syntax of the ADMINISTER REDACTION POLICY privilege grant if the privilege is to
apply to all non-SYS schemas across the database:

GRANT ADMINISTER REDACTION POLICY TO grantee;

– Syntax of the ADMINISTER REDACTION POLICY privilege grant if the privilege is to be
restricted to a specific schema:

GRANT ADMINISTER REDACTION POLICY ON SCHEMA schema TO grantee;

You do not need any Oracle Data Redaction-specific privileges to access the underlying
tables or views that will be protected by the policy. See Exemption of Users from Oracle Data
Redaction Policies for Oracle Data Redaction-specific privileges to access actual data.

Chapter 15
Privileges for Managing Oracle Data Redaction Policies

15-3



To find the privileges that a user has been granted, you can query the DBA_SYS_PRIVS
data dictionary view. To find schema-specific privileges that a user has been granted,
you can query any of the *SCHEMA_PRIVS data dictionary views.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Reference

15.3 Planning an Oracle Data Redaction Policy
Before you create a Oracle Data Redaction policy, you should plan the data redaction
policy that best suits your site’s needs.

1. Ensure that you have the appropriate privileges to create and manage Oracle Data
Redaction policies.

• To create redaction policies on objects in your own schema, you must have
the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the
ADMINISTER REDACTION POLICY system or schema privilege.

• To create redaction policies on objects in another user's schema, you must
have the EXECUTE privilege on the DBMS_REDACT PL/SQL package and the
ADMINISTER REDACTION POLICY system privilege.

2. Determine the data type of the table or view column that you want to redact.

3. Determine if the base object to which you want to add the Data Redaction policy
has dependent objects. If it does have dependent objects, then these objects will
become invalid when the Data Redaction policy is added to the base object, and
these objects will be recompiled automatically when they are used.

Alternatively, you can proactively recompile them yourself by using an ALTER ...
COMPILE statement. Be aware that invalidating dependent objects (by adding a
Data Redaction policy on their base object) and causing them to need to be
recompiled can decrease performance in the overall system. Oracle recommends
that you only add a Data Redaction policy to an object that has dependent objects
during off-peak hours or during a scheduled downtime.

4. Ensure that this column is not used in an Oracle Virtual Private Database (VPD)
row filtering condition. That is, it must not be part of the VPD predicate generated
by the VPD policy function.

5. Decide on the type of redaction that you want to perform: full, random, partial,
regular expressions, nullify, or none.

6. Decide which users to apply the Data Redaction policy to.

7. Based on this information, create the Data Redaction policy by using the
DBMS_REDACT.ADD_POLICY procedure.

8. Configure the policy to have additional columns to be redacted.

After you create the Data Redaction policy, it is automatically enabled and ready to
redact data.

Related Topics

• Privileges for Managing Oracle Data Redaction Policies
Because data redaction involves the protection of highly sensitive data, only
trusted users should create Oracle Data Redaction policies.

Chapter 15
Planning an Oracle Data Redaction Policy

15-4



• Redacting Multiple Columns
You can redact more than one column in a Data Redaction policy.

15.4 General Syntax of the DBMS_REDACT.ADD_POLICY
Procedure

To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY procedure.

The complete syntax for the DBMS_REDACT.ADD_POLICY procedure is as follows:

DBMS_REDACT.ADD_POLICY (
 object_schema               IN VARCHAR2 := NULL,
 object_name                 IN VARCHAR2,
 policy_name                 IN VARCHAR2, 
 policy_description          IN VARCHAR2 := NULL,
 column_name                 IN VARCHAR2 := NULL,
 column_description          IN VARCHAR2 := NULL,
 function_type               IN BINARY_INTEGER := DBMS_REDACT.FULL,
 function_parameters         IN VARCHAR2 := NULL,
 expression                  IN VARCHAR2,
 enable                      IN BOOLEAN := TRUE,
 regexp_pattern              IN VARCHAR2 := NULL,
 regexp_replace_string       IN VARCHAR2 := NULL,
 regexp_position             IN BINARY_INTEGER :=1,
 regexp_occurrence           IN BINARY_INTEGER :=0,
 regexp_match_parameter      IN VARCHAR2 := NULL);

In this specification:

• object_schema: Specifies the schema of the object on which the Data Redaction policy
will be applied. If you omit this setting (or enter NULL), then Oracle Database uses the
current user's name. Be aware that the meaning of "current user" here can change,
depending on where you invoke the DBMS_REDACT.ADD_POLICY procedure.

For example, suppose user mpike grants user fbrown the EXECUTE privilege on a definer's
rights PL/SQL package called mpike.protect_data in mpike's schema. From within this
package, mpike has coded a procedure called protect_cust_data, which invokes the
DBMS_REDACT.ADD_POLICY procedure. User mpike has set the object_schema parameter
to NULL.

When fbrown invokes the protect_cust_data procedure in the mpike.protect_data
package, Oracle Database attempts to define the Data Redaction policy around the
object cust_data in the mpike schema, not the cust_data object in the schema that
belongs to fbrown.

• object_name: Specifies the name of the table or view to which the Data Redaction policy
applies. Required for DBMS_REDACT.ADD_POLICY.

• policy_name: Specifies the name of the policy to be created. Ensure that this name is
unique in the database instance. You can find a list of existing Data Redaction policies by
querying the POLICY_NAME column of the REDACTION_POLICIES data dictionary view.
Required for DBMS_REDACT.ADD_POLICY.

• policy_description: Specifies a brief description of the purpose of the policy. Optional
with DBMS_REDACT.ADD_POLICY.

• column_name: Specifies the column whose data you want to redact. Note the following:

Chapter 15
General Syntax of the DBMS_REDACT.ADD_POLICY Procedure

15-5



– You can apply the Data Redaction policy to multiple columns. If you want
to apply the Data Redaction policy to multiple columns, then after you use
DBMS_REDACT.ADD_POLICY to create the policy, run the
DBMS_REDACT.ALTER_POLICY procedure as many times as necessary to add
each of the remaining required columns to the policy. See Altering an Oracle
Data Redaction Policy.

– Only one policy can be defined on a table or view. You can, however,
create a new view on the table, and by defining a second redaction policy on
this new view, you can choose to redact the columns in a different way when a
query is issued against this new view. When deciding how to redact a given
column, Oracle Database uses the policy of the earliest view in a view chain.

– If you do not specify a column (for example, by entering NULL), then no
columns are redacted by the policy. This enables you to create your policies
so that they are in place, and then later on, you can add the column
specification when you are ready. If you omit a column name when setting
DBMS_REDACT.ADD_POLICY, then only the expression parameter is required,
and the following parameters are optional: object_schema, enable, and
policy_description.

– Do not use a column that is currently used in an Oracle Virtual Private
Database (VPD) row filtering condition. In other words, the column should
not be part of the VPD predicate generated by the VPD policy function. (See 
Oracle Data Redaction and Oracle Virtual Private Database for more
information about using Data Redaction with VPD.)

• column_description: Specifies a brief description of the column that you are
redacting. The column_description can be specified only when column_name is
specified. Optional with DBMS_REDACT.ADD_POLICY.

• function_type: Specifies a function that sets the type of redaction. Can be
specified only when column_name is specified.

See the following sections for more information:

– Syntax for Creating a Full Redaction Policy

– Syntax for Creating a Partial Redaction Policy

– Syntax for Creating a Regular Expression-Based Redaction Policy

– Syntax for Creating a Nullify Redaction Policy

– Syntax for Creating a Random Redaction Policy

– Syntax for Creating a Policy with No Redaction

You can specify function_type only when column_name is specified for
DBMS_REDACT.ADD_POLICY. If you omit the function_type parameter, then the
default redaction function_type setting is DBMS_REDACT.FULL.

• function_parameters: Specifies how the column redaction should appear for
partial redaction. Required if function_type is DBMS_REDACT.PARTIAL. See Syntax
for Creating a Partial Redaction Policy.

• expression: Specifies a Boolean SQL expression to determine how the policy is
applied. Redaction takes place only if this policy expression evaluates to TRUE.
Required for DBMS_REDACT.ADD_POLICY. See Using Expressions to Define
Conditions for Data Redaction Policies.

Chapter 15
General Syntax of the DBMS_REDACT.ADD_POLICY Procedure

15-6



By default, a Data Redaction policy expression applies to all the columns that belong to
the Data Redaction policy defined on that table or view. Alternatively, you can choose to
create and associate a policy expression for individual columns to override the existing
expression. These column level expressions are called as named policy expressions.
See Creating and Managing Multiple Named Policy Expressions.

• enable: When set to TRUE, enables the policy upon creation. When set to FALSE, it creates
the policy as a disabled policy. The default is TRUE. After you create the policy, you can
disable or enable it. See the following sections:

– Disabling an Oracle Data Redaction Policy

– Enabling an Oracle Data Redaction Policy

• regexp_pattern, regexp_replace_string, regexp_position, regexp_position,
regexp_occurrence, regexp_match_parameter: Enable you to use regular expressions to
redact data, either fully or partially. If the regexp_pattern does not match anything in the
actual data, then full redaction will take place, so be careful when specifying the
regexp_pattern. Ensure that all of the values in the column conform to the semantics of
the regular expression you are using. See Syntax for Creating a Regular Expression-
Based Redaction Policy for more information.

To find information about redaction policies, you can query the REDACTION_POLICIES data
dictionary view.

15.5 Using Expressions to Define Conditions for Data Redaction
Policies

The expression parameter in the DBMS_REDACT.ADD_POLICY procedure sets the conditions
under which the policy applies.

• About Using Expressions in Data Redaction Policies
The DBMS_REDACT.ADD_POLICY and DBMS_REDACT.ALTER_POLICY expression parameter
define a Boolean expression that must evaluate to TRUE to enable redaction.

• Supported Functions for Data Redaction Expressions
You can create expressions that use functions to return specific types of data, such as
SYS_CONTEXT namespaces.

• Applying the Redaction Policy Based on User Environment
You can apply a Data Redaction policy based on the user’s environment, such as the
session user name or a client identifier.

• Applying the Redaction Policy Based on Database Roles
You can apply a Data Redaction policy based on a database role, such as the DBA role.

• Applying the Redaction Policy Based on Oracle Label Security Label Dominance
You can set a condition on which to apply a Data Redaction policy based on the
dominance of Oracle Label Security labels.

• Applying the Redaction Policy Based on Application Express Session States
You can apply a Data Redaction policy based on an Oracle Application Express (APEX)
session state.

• Applying the Redaction Policy to All Users
You can apply the policy irrespective of the context to any user, with no filtering.

Chapter 15
Using Expressions to Define Conditions for Data Redaction Policies

15-7



15.5.1 About Using Expressions in Data Redaction Policies
The DBMS_REDACT.ADD_POLICY and DBMS_REDACT.ALTER_POLICY expression parameter
define a Boolean expression that must evaluate to TRUE to enable redaction.

The expression that is defined in the expression parameter is the default expression
for the Oracle Data Redaction policy. If you apply a named policy expression for the
columns that will be redacted by the Data Redaction policy, then the named policy
expression takes precedence over the expression defined in the Data Redaction
policy. The expression parameter defaults to 1=1, which is a policy expression that
evaluates to TRUE. This setting enables the redaction to be performed so long as the
querying user is not exempt from the redaction policy. Using the default policy
expression by omitting the expression parameter saves CPU time during the fetch
operation from a redacted column. By avoiding the need to evaluate any policy
expression, the performance of fetching from any column that is protected by a Data
Redaction policy that uses the default policy expression is improved.

You can create expressions that make use of other Oracle Database features. For
example, you can create expressions that are based on a user’s environment (using
the SYS_CONTEXT and XS_SYS_CONTEXT functions), character string functions, the Oracle
Label Security label dominance functions, or Oracle Application Express functions.

Follow these guidelines when you write the expression:

• Use only the following operators: AND, OR, IN, NOT IN, =, !=, <>, <, >, >=, <=
• Because the expression must evaluate to TRUE for redaction, be careful when

making comparisons with NULL. Remember that in SQL the value NULL is
undefined, so comparisons with NULL tend to return FALSE.

• Do not use user-created functions in the expression parameter; this is not
permitted.

• Remember that for user SYS and users who have the EXEMPT REDACTION POLICY
system or schema privilege, all of the Data Redaction policies are bypassed, so
the results of their queries are not redacted. When you exempt a user from a Data
Redaction policy, you should be aware of how the exemption is affected by users
with specific privileges (such as the DBA role) and by Oracle Data Pump.

Related Topics

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the
data they access.

• Oracle Data Pump Security Model for Oracle Data Redaction
The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION
POLICY system privilege.

15.5.2 Supported Functions for Data Redaction Expressions
You can create expressions that use functions to return specific types of data, such as
SYS_CONTEXT namespaces.

Chapter 15
Using Expressions to Define Conditions for Data Redaction Policies

15-8



• Expressions Using Namespace Functions
You can use the SYS_CONTEXT and XS_SYS_CONTEXT namespace functions in Data
Redaction expressions.

• Expressions Using the SUBSTR Function
You can use the SUBSTR function, which returns portion (such as characters 1–3) of the
character string specified, in Data Redaction expressions. The first parameter must be a
constant string or a call to the SYS_CONTEXT function or the XS_SYS_CONTEXT function.

• Expressions Using Length of Character String Functions
You can use functions that return the length of character strings, in Data Redaction
expressions.

• Expressions Using Oracle Application Express Functions
You can use Oracle Application Express functions in Data Redaction expressions.

• Expressions Using Oracle Label Security Functions
You can use Oracle Label Security functions with Data Redaction expressions.

15.5.2.1 Expressions Using Namespace Functions
You can use the SYS_CONTEXT and XS_SYS_CONTEXT namespace functions in Data Redaction
expressions.

Table 15-2    Expressions Using Namespace Functions

Namespace Function Description

SYS_CONTEXT Returns the value associated with a namespace. The following
namespace functions are valid:

• USERENV (default namespace), which includes values such as
SESSION_USER and CLIENT_IDENTIFIER.

• SYS_SESSION_ROLES, which contains attributes for each role

• XS$SESSION, which contains attributes for the user session.

• User-defined namespaces, but these must exist in the
DBA_CONTEXT catalog view before the policy expression is created.

XS_SYS_CONTEXT Similar to SYS_CONTEXT but designed for an Oracle Real Application
Security environment.

XS_SYS_CONTEXT supports the same namespaces that SYS_CONTEXT
supports.

Related Topics

• Oracle Database SQL Language Reference

• Oracle Database Real Application Security Administrator's and Developer's Guide

15.5.2.2 Expressions Using the SUBSTR Function
You can use the SUBSTR function, which returns portion (such as characters 1–3) of the
character string specified, in Data Redaction expressions. The first parameter must be a
constant string or a call to the SYS_CONTEXT function or the XS_SYS_CONTEXT function.

Chapter 15
Using Expressions to Define Conditions for Data Redaction Policies

15-9



Table 15-3    Expressions Using SUBSTR String Functions

SUBSTR String Function Description

SUBSTR Returns a portion of the input char value, beginning at
character position, substring_length characters
long. SUBSTR calculates length using characters as
defined by the input character set.

SUBSTRB Returns the specified portion of the input value in bytes

SUBSTRC Returns the specified portion of the input value in Unicode
complete characters

SUBSTR2 Returns the specified portion of the input value in UCS2
code points

SUBSTR4 Returns the specified portion of the input value in UCS4
code points

Related Topics

• Oracle Database SQL Language Reference

15.5.2.3 Expressions Using Length of Character String Functions
You can use functions that return the length of character strings, in Data Redaction
expressions.

Oracle Database also checks that the arguments to each of these operators is either a
constant string or a call to the SYS_CONTEXT or XS_SYS_CONTEXT function.

Table 15-4    Expressions Using Character String Functions

Character String Function Description

LENGTH Returns the length of the input char value. LENGTH
calculates length using characters as defined by the input
character set.

LENGTHB Returns the length of the input value in bytes

LENGTHC Returns the length of the input value in Unicode complete
characters

LENGTH2 Returns the length of the input value in UCS2 code points

LENGTH4 Returns the length of the input value in UCS4 code points

Related Topics

• Oracle Database SQL Language Reference

15.5.2.4 Expressions Using Oracle Application Express Functions
You can use Oracle Application Express functions in Data Redaction expressions.

Chapter 15
Using Expressions to Define Conditions for Data Redaction Policies

15-10



Table 15-5    Oracle Application Express Functions

Oracle Application Express Function Description

V Returns the session state for an item. It is a
wrapper for the
APEX_UTIL.GET_SESSION_STATE function

NV Returns the numeric value for a numeric item. It is
a wrapper for the
APEX_UTIL.GET_NUMERIC_SESSION_STATE
function

Related Topics

• Oracle APEX API Reference

15.5.2.5 Expressions Using Oracle Label Security Functions
You can use Oracle Label Security functions with Data Redaction expressions.

For the functions in the bold font, Oracle Data Redaction checks that their parameters are
either constants or calls to only one of the SA_UTL.NUMERIC_LABEL, CHAR_TO_LABEL, and
SA_SESSION.LABEL functions, and that the arguments to those functions are constant.

Table 15-6    Oracle Label Security Functions

Oracle Label Security Function Description

LBACSYS.OLS_LABEL_DOMINATES Checks if the session label of an Oracle Label
Security policy dominates or is equal to another
OLS label

OLS_DOMINATES, DOMINATES, and S_DOM Checks if one OLS label is dominant to a second
OLS label.

DOMINATES and S_DOM, which were used in
releases earlier than Oracle Database 12.1, were
deprecated in that release. Use the
OLS_DOMINATES or OLS_DOM function instead.

OLS_DOM Checks if one OLS label is dominant to a second
OLS label

DOM Checks if one OLS label is dominant to a second
OLS label

OLS_STRICTLY_DOMINATES Checks if one OLS label is dominant to a second
OLS label and is not equal to it

STRICTLY_DOMINATES Checks if one OLS label is dominant to a second
OLS label and is not equal to it

SA_UTL.DOMINATES Checks if one OLS label dominates a second OLS
label or if the session label for a given OLS policy
dominates an OLS label

SA_UTL.CHECK_READ Checks if a user can read a policy-protected row

SA_UTL.NUMERIC_LABEL Returns the current session OLS label

CHAR_TO_LABEL Converts a character string to an OLS label tag

Chapter 15
Using Expressions to Define Conditions for Data Redaction Policies

15-11



Table 15-6    (Cont.) Oracle Label Security Functions

Oracle Label Security Function Description

SA_SESSION.LABEL Returns the label that is associated with the
specified OLS policy

Related Topics

• Using Oracle Label Security Administrator’s Guide

15.5.3 Applying the Redaction Policy Based on User Environment
You can apply a Data Redaction policy based on the user’s environment, such as the
session user name or a client identifier.

• Use the USERENV namespace of the SYS_CONTEXT function in the
DBMS_REDACT.ADD_POLICY expression parameter to apply the policy based on a
user’s environment.

For example, to apply the policy only to the session user name psmith:

expression  => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''PSMITH'''

Related Topics

• Oracle Database SQL Language Reference

15.5.4 Applying the Redaction Policy Based on Database Roles
You can apply a Data Redaction policy based on a database role, such as the DBA role.

• Use the SYS_SESSION_ROLES namespace in the SYS_CONTEXT function to apply the
policy based on a user role.

This namespace contains attributes for each role. The value of the attribute is TRUE
if the specified role is enabled for the querying application user; the value is FALSE
if the role is not enabled.

For example, suppose you wanted only supervisors to be allowed to see the actual
data. The following example shows how to use the DBMS_REDACT.ADD_POLICY
expression parameter to set the policy to show the actual data to any application
user who has the supervisor role enabled, but redact the data for all of the other
application users.

expression  => 'SYS_CONTEXT(''SYS_SESSION_ROLES'',''SUPERVISOR'') = 
''FALSE'''

You can specify multiple roles with the expression parameter. The following
example checks for the presence of the supervisor, clerk, and temp_worker
roles. In this example, the expression evaluates to TRUE if the session user has the
CLERK or TEMP_WORKER role unless the user has the SUPERVISOR role.

expression => 'SYS_CONTEXT(''SYS_SESSION_ROLES'',''SUPERVISOR'') = 
''FALSE'' 

Chapter 15
Using Expressions to Define Conditions for Data Redaction Policies

15-12



OR SYS_CONTEXT(''SYS_SESSION_ROLES'',''CLERK'') = ''TRUE'' 
OR SYS_CONTEXT(''SYS_SESSION_ROLES'',''TEMP_WORKER'') = ''TRUE'''

Related Topics

• Oracle Database SQL Language Reference

15.5.5 Applying the Redaction Policy Based on Oracle Label Security
Label Dominance

You can set a condition on which to apply a Data Redaction policy based on the dominance
of Oracle Label Security labels.

• Use the public standalone function OLS_LABEL_DOMINATES to check the dominance of a
session label.

This function returns 1 (TRUE) if the session label of the specified policy_name value
dominates or is equal to the label that is specified by the label parameter; otherwise, it
returns 0 (FALSE).

For example, to apply a Data Redaction policy only in cases where the session label for
the policy hr_ols_pol does not dominate nor is equal to label hs:

expression  => 'OLS_LABEL_DOMINATES (''hr_ols_pol'',''hs'') = 0'

Related Topics

• Oracle Label Security Administrator’s Guide

15.5.6 Applying the Redaction Policy Based on Application Express
Session States

You can apply a Data Redaction policy based on an Oracle Application Express (APEX)
session state.

• Use either of the following public Application Express APIs in the
DBMS_REDACT.ADD_POLICY expression parameter to apply the policy on an Oracle
Application Express session state:

– V, which is a synonym for the APEX_UTIL.GET_SESSION_STATE function

– NV, which is a synonym for the APEX_UTIL.GET_NUMERIC_SESSION_STATE function

If you want redaction to take place when the querying user is not within the context of an
APEX application (when the query is issued from outside the APEX framework, for
example directly through SQL*Plus), then use an IS NULL clause as shown in the
preceding example.

For example, to set the DBMS_REDACT.ADD_POLICY expression parameter, if you want
redaction to take place when the querying user is not within the context of an APEX
application (when the query is issued from outside the APEX framework, for example
directly through SQL*Plus), then use an IS NULL clause, as follows:

expression => 'V(''APP_USER'') != ''mavis@example.com'' or V(''APP_USER'') is null'

You can, for example, use these functions to redact data based on a job or a privilege
role that is stored in a session state in an APEX application.

Chapter 15
Using Expressions to Define Conditions for Data Redaction Policies

15-13



Related Topics

• Oracle APEX API Reference

15.5.7 Applying the Redaction Policy to All Users
You can apply the policy irrespective of the context to any user, with no filtering.

However, be aware that user SYS and users who have the EXEMPT REDACTION POLICY
system or schema privilege are always except from Oracle Data Redaction policies.

• To apply the policy to users who are not SYS or have been granted the EXEMPT
REDACTION POLICY privilege, write the DBMS_REDACT.ADD_POLICY expression
parameter to evaluate to TRUE.

For example:

expression  => '1=1'

This setting is the default for the expression parameter. If you omit it, then Oracle
Database performs the redaction but does not evaluate the policy expression. As a
result, the performance of fetching from the target column is improved.

Related Topics

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the
data they access.

15.6 Creating and Managing Multiple Named Policy
Expressions

A named, centrally managed Oracle Data Redaction policy expression can be used in
multiple redaction policies and applied to multiple tables or views.

• About Data Redaction Policy Expressions to Define Conditions
A named Oracle Data Redaction policy expression is designed to work as an
alternative to the policy expression that is used in existing Data Redaction policies.

• Creating and Applying a Named Data Redaction Policy Expression
The DBMS_REDACT.CREATE_POLICY_EXPRESSION and
DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL enable you to create and apply a
named Data Redaction policy expression.

• Updating a Named Data Redaction Policy Expression
You can use the DBMS_REDACT.UPDATE_POLICY_EXPRESSION procedure to update a
Data Redaction policy expression. The update takes place immediately and is
reflected in all the columns that use the policy expression.

• Dropping a Named Data Redaction Expression Policy
You can use the DBMS_REDACT.DROP_POLICY_EXPRESSION procedure to drop a Data
Redaction expression policy.

• Tutorial: Creating and Sharing a Named Data Redaction Policy Expression
This tutorial shows how to create an Oracle Data Redaction policy expression,
apply it to multiple tables, and centrally manage the policy expression.

Chapter 15
Creating and Managing Multiple Named Policy Expressions

15-14



15.6.1 About Data Redaction Policy Expressions to Define Conditions
A named Oracle Data Redaction policy expression is designed to work as an alternative to
the policy expression that is used in existing Data Redaction policies.

A named policy expression enables you to redact data based on runtime conditions. This
type of policy can only affect whether or not redaction takes place on columns of the table or
view on which the redaction policy is defined. By default, a Data Redaction policy expression
applies to all the columns that belong to the Data Redaction policy defined on that table or
view. Alternatively, you can choose to create and associate a policy expression for individual
columns of a table or view. These column level expressions are called named policy
expressions; in other words, a policy expression with a name. A named policy expressions
has the following properties:

You can use Data Redaction policy expressions in the following ways.:

• A single Data Redaction policy expression can be shared by more than one Data
Redaction policy by applying it to columns that are a part of separate Data Redaction
policies.

• Each named policy expression can be associated with multiple columns of the same or
different tables or views.

• Each named policy expression can be associated with columns within the same or
different Data Redaction policies.

• The named policy expression overrides the default policy expression of the associated
columns. The default policy expression still applies to redaction columns that have no
named policy expressions applied to them.

• Any updates made to a named policy expression apply to all of the column associations
of the expression.

• You cannot associate multiple named policy expressions for the same column.

• In a multitenant environment, you cannot associate named policy expressions with
columns in a different pluggable database (PDB).

The column to which you apply a named policy expression must already be redacted by a
Data Redaction policy. After the named policy expression is applied, the result of its
evaluation takes precedence over that of the default policy expression when deciding
whether or not to redact the column. When you modify a named policy expression, the
changes are applied to all the tables and views that use it. In a multitenant environment, as
with Data Redaction policies, a named policy expression is valid only in the PDB in which it
was created, and can only be applied to columns of objects within the PDB in which it was
created.

Table 15-7 describes the DBMS_REDACT PL/SQL procedures that you can use to create and
manage named policy expressions. To find information about policy expressions, query the
REDACTION_EXPRESSIONS data dictionary view.

Table 15-7    DBMS_REDACT Policy Expression Procedures

Procedure Description

DBMS_REDACT.CREATE_POLICY_EXPRESSION Creates a Data Redaction policy expression

DBMS_REDACT.UPDATE_POLICY_EXPRESSION Updates a Data Redaction policy expression

Chapter 15
Creating and Managing Multiple Named Policy Expressions

15-15



Table 15-7    (Cont.) DBMS_REDACT Policy Expression Procedures

Procedure Description

DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL Applies a Data Redaction policy expression to a
table or a view column

DBMS_REDACT.DROP_POLICY_EXPRESSION Drops a Data Redaction policy expression

Related Topics

• Managing Named Data Redaction Policy Expressions Using Enterprise Manager
You can manage Oracle Data Redaction policy expressions in Enterprise Manager
Cloud Control.

15.6.2 Creating and Applying a Named Data Redaction Policy
Expression

The DBMS_REDACT.CREATE_POLICY_EXPRESSION and
DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL enable you to create and apply a named
Data Redaction policy expression.

1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT
PL/SQL package and the ADMINISTER REDACTION POLICY system or schema
privilege.

2. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

To find the current COMPATIBLE setting, use the SHOW PARAMETER command.

3. To create the policy expression, run the DBMS_REDACT.CREATE_POLICY_EXPRESSION
procedure.

For example:

BEGIN
 DBMS_REDACT.CREATE_POLICY_EXPRESSION (
  policy_expression_name        => 'redact_pol',
  expression                    => '1=1',
  policy_expression_description => 'Determines whether the column will be 
redacted');
END;
/

4. Run the DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL procedure to apply the policy
expression to a table or view column.

For example, assume that you have already created a Data Redaction policy on
the SALARY column of the HR.EMPLOYEES table, as follows:

BEGIN
  DBMS_REDACT.ADD_POLICY  (
   object_schema           => 'hr',
   object_name             => 'employees',
   policy_name             => 'overall_policy',
   expression              => '1=0'); 
END;
/
BEGIN

Chapter 15
Creating and Managing Multiple Named Policy Expressions

15-16



  DBMS_REDACT.ALTER_POLICY (
   object_schema           => 'hr',
   object_name             => 'employees' ,
   policy_name             => 'overall_policy',
   function_type           => DBMS_REDACT.FULL,
   action                  => DBMS_REDACT.ADD_COLUMN,
   column_name             => 'salary');
END; 
/

Then you can apply the policy expression to the SALARY column as follows:

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL (
   object_schema           => 'hr',
   object_name             => 'employees',
   column_name             => 'salary',
   policy_expression_name  => 'redact_pol');
END;
/

In this specification:

• object_schema: Specifies the schema of the object on which the policy expression
will be used. If you omit this setting (or enter NULL), then Oracle Database uses the
name of the current schema.

• object_name: Specifies the name of the table or view to be used for the policy
expression.

• column_name: Specifies the column to which you want to apply the policy expression.

• policy_expression_name: Specifies the name of the policy expression.

After you create an Oracle Data Redaction policy expression, you can apply it to a
column of a table or view which is part of an existing Data Redaction policy.

15.6.3 Updating a Named Data Redaction Policy Expression
You can use the DBMS_REDACT.UPDATE_POLICY_EXPRESSION procedure to update a Data
Redaction policy expression. The update takes place immediately and is reflected in all the
columns that use the policy expression.

You can query the REDACTION_EXPRESSIONS data dictionary view to find existing Data
Redaction policy expressions.

1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL
package and the ADMINISTER REDACTION POLICY system or schema privilege.

2. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

To find the current COMPATIBLE setting, use the SHOW PARAMETER command.

3. Run the DBMS_REDACT.UPDATE_POLICY_EXPRESSION procedure to perform the update.

For example:

BEGIN
 DBMS_REDACT.UPDATE_POLICY_EXPRESSION(
  policy_expression_name => 'redact_pol',
  expression             => '1=0');

Chapter 15
Creating and Managing Multiple Named Policy Expressions

15-17



END;
/

15.6.4 Dropping a Named Data Redaction Expression Policy
You can use the DBMS_REDACT.DROP_POLICY_EXPRESSION procedure to drop a Data
Redaction expression policy.

You can query the REDACTION_EXPRESSIONS data dictionary view to find the existing
Data Redaction policy expressions.

1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT
PL/SQL package and the ADMINISTER REDACTION POLICY system or schema
privilege.

2. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

To find the current COMPATIBLE setting, use the SHOW PARAMETER command.

3. Remove the named policy expression's association with any table or view column.

You cannot drop a policy expression if it is associated with an existing table or
view column. To remove a given column’s association with a named policy
expression (to revert to redacting that column based on the evaluation result of the
default policy expression), you must set the policy_expression_name parameter
of the DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL procedure to NULL.

For example:

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
   object_schema          => 'hr',
   object_name            => 'employees', 
   column_name            => 'salary',
   policy_expression_name =>  null);
END;
/

4. Run DBMS_REDACT.DROP_POLICY_EXPRESSION to drop the policy expression.

For example:

BEGIN
 DBMS_REDACT.DROP_POLICY_EXPRESSION(
  policy_expression_name  => 'redact_pol');
END;
/

15.6.5 Tutorial: Creating and Sharing a Named Data Redaction Policy
Expression

This tutorial shows how to create an Oracle Data Redaction policy expression, apply it
to multiple tables, and centrally manage the policy expression.

• Step 1: Create Users for This Tutorial
You must create two users for this tutorial: dr_admin, who will create the Oracle
Data Redaction policies, and hr_clerk, who will test them.

Chapter 15
Creating and Managing Multiple Named Policy Expressions

15-18



• Step 2: Create an Oracle Data Redaction Policy
User dr_admin is ready to create an Oracle Data Redaction policy to protect the
HR.EMPLOYEES and HR.JOBS tables.

• Step 3: Test the Oracle Data Redaction Policy
User hr_clerk is ready to query the tables that have redacted data.

• Step 4: Create and Apply a Policy Expression to the Redacted Table Columns
Next, user dr_admin is ready to create a Data Redaction policy expression
(hr_redact_pol) and apply it to two of the three redacted table columns.

• Step 5: Test the Data Redaction Policy Expression
User hr_clerk is now ready to test the hr_redact_pol policy expression.

• Step 6: Modify the Data Redaction Policy Expression
User dr_admin decides to modify the Data Redaction policy expression so that user
hr_clerk will get redacted data, not user HR.

• Step 7: Test the Modified Policy Expression
Users HR and hr_clerk are ready to test the modified Data Redaction policy expression.

• Step 8: Remove the Components of This Tutorial
If you do not need the components of this tutorial, then you can remove them.

15.6.5.1 Step 1: Create Users for This Tutorial
You must create two users for this tutorial: dr_admin, who will create the Oracle Data
Redaction policies, and hr_clerk, who will test them.

Before you begin this tutorial, ensure that the COMPATIBLE initialization parameter is set to
12.2.0.0 or later. You can check this setting by using the SHOW PARAMETER command.

1. Connect to a PDB as user SYS with the SYSDBA administrative privilege.

2. Create the dr_admin and hr_clerk user accounts.

GRANT CREATE SESSION TO dr_admin IDENTIFIED BY password;
GRANT CREATE SESSION TO hr_clerk IDENTIFIED BY password;

3. Grant the following privileges to the dr_admin user:

GRANT EXECUTE ON DBMS_REDACT TO dr_admin;
GRANT ADMINISTER REDACTION TO dr_admin;

4. Connect as user HR.

5. Grant hr_clerk the SELECT privilege on the EMPLOYEES and JOBS tables.

GRANT SELECT on EMPLOYEES to hr_clerk;
GRANT SELECT on JOBS to hr_clerk;

15.6.5.2 Step 2: Create an Oracle Data Redaction Policy
User dr_admin is ready to create an Oracle Data Redaction policy to protect the
HR.EMPLOYEES and HR.JOBS tables.

1. Connect to the PDB as user dr_admin.

2. Create the hr_emp_redact_comp_pol policy, which will perform full redaction of the
HR.EMPLOYEES.SALARY column.

Chapter 15
Creating and Managing Multiple Named Policy Expressions

15-19



BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema       => 'hr', 
   object_name         => 'employees', 
   column_name         => 'salary',
   policy_name         => 'hr_emp_redact_comp_pol', 
   function_type       => DBMS_REDACT.FULL,
   expression          => '1=1');
END;
/

3. Alter the hr_redact_comp_pol policy to also redact the COMMISSION_PCT column of
the HR.EMPLOYEES table.

BEGIN
 DBMS_REDACT.ALTER_POLICY(
   object_schema       => 'hr', 
   object_name         => 'employees', 
   policy_name         => 'hr_emp_redact_comp_pol', 
   action              => DBMS_REDACT.ADD_COLUMN,
   column_name         => 'commission_pct',
   function_type       => DBMS_REDACT.FULL);
END;
/

4. Create the hr_jobs_redact_comp_pol policy for the max_salary column of the
HR.JOBS table.

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema       => 'hr', 
   object_name         => 'jobs', 
   column_name         => 'max_salary',
   policy_name         => 'hr_jobs_redact_comp_pol', 
   function_type       => DBMS_REDACT.FULL,
   expression          => '1=1');
END;
/

At this stage, the data in the HR.EMPLOYEES.SALARY, HR.EMPLOYEES.COMMISSION_PCT,
and HR.JOBS.MAX_SALARY columns are redacted.

15.6.5.3 Step 3: Test the Oracle Data Redaction Policy
User hr_clerk is ready to query the tables that have redacted data.

1. Connect as user hr_clerk.

2. Query the HR.EMPLOYEES table.

SELECT SALARY, COMMISSION_PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;

The output should be as follows:

    SALARY COMMISSION_PCT
---------- --------------
         0
         0
         0

3. Query the HR.JOBS table.

SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;

Chapter 15
Creating and Managing Multiple Named Policy Expressions

15-20



The output should be as follows:

MAX_SALARY
----------
         0
         0
         0
         0
         0

15.6.5.4 Step 4: Create and Apply a Policy Expression to the Redacted Table
Columns

Next, user dr_admin is ready to create a Data Redaction policy expression (hr_redact_pol)
and apply it to two of the three redacted table columns.

This policy expression will enable user hr_clerk to view the redacted data.

1. Connect as user dr_admin.
2. Create the policy expression.

BEGIN
 DBMS_REDACT.CREATE_POLICY_EXPRESSION(
   policy_expression_name  => 'hr_redact_pol',
   expression              => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') != 
''HR_CLERK''');
END;
/

This expression returns FALSE for the hr_clerk user, which enables the hr_clerk user to
view actual data in the HR.EMPLOYEES and HR.JOBS tables that are subject to the Data
Redaction policies.

3. Apply the hr_redact_pol policy expression to the HR.EMPLOYEES.SALARY column.

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
   object_schema          => 'hr',
   object_name            => 'employees', 
   column_name            => 'salary',
   policy_expression_name => 'hr_redact_pol');
END;
/

4. Apply the hr_redact_pol policy expression to the HR.JOBS.MAX_SALARY column.

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
   object_schema          => 'hr',
   object_name            => 'jobs', 
   column_name            => 'max_salary',
   policy_expression_name => 'hr_redact_pol');
END;
/

User hr_clerk can view data in the HR.EMPLOYEES.SALARY and HR.JOBS.MAX_SALARY, but the
data in the HR.EMPLOYEES.COMMISSION_PCT column will still be redacted for this user.

Chapter 15
Creating and Managing Multiple Named Policy Expressions

15-21



15.6.5.5 Step 5: Test the Data Redaction Policy Expression
User hr_clerk is now ready to test the hr_redact_pol policy expression.

1. Connect as user hr_clerk.

2. Query the HR.EMPLOYEES table.

SELECT SALARY, COMMISSION_PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;

The output should be as follows:

    SALARY COMMISSION_PCT
---------- --------------
     24000
     17000
     17000

User hr_clerk now can view the SALARY column data, but still has no access to
the COMMISSION_PCT column data.

3. Query the HR.JOBS table.

SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;

The output should be as follows:

MAX_SALARY
----------
     40000
     30000
     16000
     16000
     20080

User hr_clerk now can view the MAX_SALARY column data.

15.6.5.6 Step 6: Modify the Data Redaction Policy Expression
User dr_admin decides to modify the Data Redaction policy expression so that user
hr_clerk will get redacted data, not user HR.

1. Connect as user dr_admin.

2. Modify the hr_redact_pol policy as follows:

BEGIN
 DBMS_REDACT.UPDATE_POLICY_EXPRESSION(
  policy_expression_name => 'hr_redact_pol',
  expression             => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') != 
''HR''');
END;
/

15.6.5.7 Step 7: Test the Modified Policy Expression
Users HR and hr_clerk are ready to test the modified Data Redaction policy
expression.

Chapter 15
Creating and Managing Multiple Named Policy Expressions

15-22



1. Connect as user HR.

2. Query the HR.EMPLOYEES table.

SELECT SALARY, COMMISSION_PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;

The output should be as follows:

    SALARY COMMISSION_PCT
---------- --------------
     24000
     17000
     17000

User HR now has access to the actual data. A query by HR on the HR.JOBS.MAX_SALARY
column will produce similar results.

SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;

MAX_SALARY
----------
     40000
     30000
     16000
     16000
     20080

3. Connect as user hr_clerk.

4. Query the HR.EMPLOYEES and HR.JOBS tables and then observe the results.

SELECT SALARY, COMMISSION_PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;

    SALARY COMMISSION_PCT
---------- --------------
         0
         0
         0

SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;

MAX_SALARY
----------
         0
         0
         0
         0
         0

15.6.5.8 Step 8: Remove the Components of This Tutorial
If you do not need the components of this tutorial, then you can remove them.

1. Connect as user dr_admin.

2. Modify the policy expression so that it is no longer associated with the table columns that
are associated with the expression.

To do so, you must set the policy_expression_name parameter to NULL.

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
   object_schema          => 'hr',

Chapter 15
Creating and Managing Multiple Named Policy Expressions

15-23



   object_name            => 'employees', 
   column_name            => 'salary',
   policy_expression_name =>  null);
END;
/

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
   object_schema          => 'hr',
   object_name            => 'jobs', 
   column_name            => 'max_salary',
   policy_expression_name =>  null);
END;
/

3. Drop the policy expression.

BEGIN
 DBMS_REDACT.DROP_POLICY_EXPRESSION(
  policy_expression_name  => 'hr_redact_pol');
END;
/

4. Drop the hr_emp_redact_comp_pol and hr_jobs_redact_comp_pol Data
Redaction policies.

BEGIN
  DBMS_REDACT.DROP_POLICY (
    object_schema  => 'hr',
    object_name    => 'employees',
    policy_name    => 'hr_emp_redact_comp_pol');
END;
/

BEGIN
  DBMS_REDACT.DROP_POLICY (
    object_schema  => 'hr',
    object_name    => 'jobs',
    policy_name    => 'hr_jobs_redact_comp_pol');
END;
/

5. Connect as the SYSTEM user or a user who has privileges to drop user accounts.

6. Drop the dr_admin and hr_clerk user accounts.

DROP USER dr_admin;
DROP USER hr_clerk;

15.7 Creating a Full Redaction Policy and Altering the Full
Redaction Value

You can create a full redaction policy to redact all contents in a data column, and
optionally, you can alter the default full redaction value.

• Creating a Full Redaction Policy
A full data redaction policy redacts all the contents of a data column.

• Altering the Default Full Data Redaction Value
The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default
full data redaction value.

Chapter 15
Creating a Full Redaction Policy and Altering the Full Redaction Value

15-24



15.7.1 Creating a Full Redaction Policy
A full data redaction policy redacts all the contents of a data column.

• About Creating Full Data Redaction Policies
To set a redaction policy to redact all data in the column, you must set the function_type
parameter to DBMS_REDACT.FULL.

• Syntax for Creating a Full Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure enables you to create a full redaction policy.

• Example: Full Redaction Policy
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a full redaction
policy.

• Example: Fully Redacted Character Values
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a policy that fully
redacts character values.

15.7.1.1 About Creating Full Data Redaction Policies
To set a redaction policy to redact all data in the column, you must set the function_type
parameter to DBMS_REDACT.FULL.

By default, NUMBER data type columns are replaced with zero (0) and character data type
columns are replaced with a single space ( ). You can modify this default by using the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure.

Related Topics

• Altering the Default Full Data Redaction Value
The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default full data
redaction value.

15.7.1.2 Syntax for Creating a Full Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure enables you to create a full redaction policy.

The DBMS_REDACT.ADD_POLICY fields for creating a full data redaction policy are as follows:

DBMS_REDACT.ADD_POLICY (
   object_schema           IN VARCHAR2 := NULL, 
   object_name             IN VARCHAR2,
   column_name             IN VARCHAR2 := NULL,
   policy_name             IN VARCHAR2,
   function_type           IN BINARY_INTEGER := NULL,
   expression              IN VARCHAR2,
   enable                  IN BOOLEAN := TRUE);

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable: See 
General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.

• function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT.FULL.

Chapter 15
Creating a Full Redaction Policy and Altering the Full Redaction Value

15-25



If you omit the function_type parameter, then the default redaction
function_type setting is DBMS_REDACT.FULL.

Remember that the data type of the column determines which function_type
settings that you are permitted to use. See Comparison of Full, Partial, and
Random Redaction Based on Data Types.

15.7.1.3 Example: Full Redaction Policy
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a full redaction
policy.

Example 15-1 shows how to use full redaction for all the values in the HR.EMPLOYEES
table COMMISSION_PCT column. Because the expression parameter in this example
always evaluates to TRUE, the data redaction policy is applied to any user querying the
table except for users who have been granted the EXEMPT REDACTION POLICY system
or schema privilege, or the SYSDBA administrative privilege.

Example 15-1    Full Data Redaction Policy

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema    => 'hr', 
   object_name      => 'employees', 
   column_name      => 'commission_pct',
   policy_name      => 'redact_com_pct', 
   function_type    => DBMS_REDACT.FULL,
   expression       => '1=1');
END;
/

Query and redacted result:

SELECT COMMISSION_PCT FROM HR.EMPLOYEES;

COMMISSION_PCT
--------------
0
0
0

Related Topics

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the
data they access.

15.7.1.4 Example: Fully Redacted Character Values
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a policy that
fully redacts character values.

Example 15-2 shows how to redact fully the user IDs of the user_id column in the
mavis.cust_info table. The user_id column is of the VARCHAR2 data type. The output
is a blank string. The expression setting enables users who have the MGR role to view
the user IDs.

Chapter 15
Creating a Full Redaction Policy and Altering the Full Redaction Value

15-26



Example 15-2    Fully Redacted Character Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema   => 'mavis', 
   object_name     => 'cust_info', 
   column_name     => 'user_id',
   policy_name     => 'redact_cust_user_ids', 
   function_type   => DBMS_REDACT.FULL,
   expression      => 'SYS_CONTEXT(''SYS_SESSION_ROLES'',''MGR'') = ''FALSE''');
END;
/

Query and redacted result:

SELECT user_id FROM mavis.cust_info;

USER_ID
------------
0
0
0

15.7.2 Altering the Default Full Data Redaction Value
The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default full data
redaction value.

• About Altering the Default Full Data Redaction Value
You can alter the default displayed values for full Data Redaction polices.

• Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure
The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure accommodates the
standard supported Oracle Database data types.

• Modifying the Default Full Data Redaction Value
To modify the default full data redaction value, use the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure.

15.7.2.1 About Altering the Default Full Data Redaction Value
You can alter the default displayed values for full Data Redaction polices.

By default, 0 is the redacted value when Oracle Database performs full redaction
(DBMS_REDACT.FULL) on a column of the NUMBER data type. If you want to change it to another
value (for example, 7), then you can run the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES
procedure to modify this value. The modification applies to all of the Data Redaction policies
in the current database instance. After you modify a value, you must restart the database for
it to take effect. You can find the current values by querying the
REDACTION_VALUES_FOR_TYPE_FULL data dictionary view.

Be aware that this change affects all Data Redaction policies in the database that use full
data redaction. Before you alter the default full data redaction value, examine the affect that
this change would have on existing full Data Redaction policies.

Chapter 15
Creating a Full Redaction Policy and Altering the Full Redaction Value

15-27



15.7.2.2 Syntax for the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure

The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure accommodates the
standard supported Oracle Database data types.

The syntax is as follows:

DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES (
 number_val       IN NUMBER                    NULL,
 binfloat_val     IN BINARY_FLOAT              NULL,
 bindouble_val    IN BINARY_DOUBLE             NULL,
 char_val         IN CHAR                      NULL,
 varchar_val      IN VARCHAR2                  NULL,
 nchar_val        IN NCHAR                     NULL,
 nvarchar_val     IN NVARCHAR2                 NULL,
 date_val         IN DATE                      NULL,
 ts_val           IN TIMESTAMP                 NULL,
 tswtz_val        IN TIMESTAMP WITH TIME ZONE  NULL,
 blob_val         IN BLOB                      NULL,
 clob_val         IN CLOB                      NULL,
 nclob_val        IN NCLOB                     NULL,
 boolean_val      IN BOOLEAN                   NULL);

In this specification:

• number_val modifies the default value for columns of the NUMBER data type.

• binfloat_val modifies the default value for columns of the BINARY_FLOAT data
type.

• bindouble_val modifies the default value for columns of the BINARY_DOUBLE data
type.

• char_val modifies the default value for columns of the CHAR data type.

• varchar_val modifies the default value for columns of the VARCHAR2 data type.

• nchar_val modifies the default value for columns of the NCHAR data type.

• nvarchar_val modifies the default value for columns of the NVARCHAR2 data type.

• date_val modifies the default value for columns of the DATE data type.

• ts_val modifies the default value for columns of the TIMESTAMP data type.

• tswtz_val modifies the default value for columns of the TIMESTAMP WITH TIME
ZONE data type.

• blob_val modifies the default value for columns of the BLOB data type.

• clob_val modifies the default value for columns of the CLOB data type.

• nclob modifies the default value for columns of the NCLOB data type.

• boolean_val modifies the default value for columns of the BOOLEAN data type.

15.7.2.3 Modifying the Default Full Data Redaction Value
To modify the default full data redaction value, use the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure.

Chapter 15
Creating a Full Redaction Policy and Altering the Full Redaction Value

15-28



1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL
package and the ADMINISTER REDACTION POLICY system or schema privilege.

2. Check the value that you want to change.

For example, to check the current value for columns that use the NUMBER data type:

SELECT NUMBER_VALUE FROM REDACTION_VALUES_FOR_TYPE_FULL;

NUMBER_VALUE
------------
           0

3. Run the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure to modify the value.

For example:

EXEC DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES (number_val => 7);
4. Close and then re-open the PDB.

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

15.8 Creating a Nullify Redaction Policy
You can create Oracle Data Redaction policies that return null values for the displayed value
of the table or view column.

• About Creating a Policy That Returns Null Values
The DBMS_REDACT.NULLIFY function_type parameter redacts all the data in a column
and replaces it with null values.

• Syntax for Creating a Nullify Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure can create a redaction policy that performs a
full redaction and displays null values for the redacted columns.

• Example: Redaction Policy That Returns Null Values
The DBMS_REDACT.ADD_POLICY procedure will return null values for the
COMMISSION_PCT column of the HR.EMPLOYEES table.

15.8.1 About Creating a Policy That Returns Null Values
The DBMS_REDACT.NULLIFY function_type parameter redacts all the data in a column and
replaces it with null values.

You can use this function type on all supported column types that the DBMS_REDACT.FULL
function type supports. It also supports the CLOB and NCLOB data types. To use the
DBMS_REDACT.NULLIFY function, you must first ensure that the COMPATIBLE parameter is set to
12.2.0.0 or later.

15.8.2 Syntax for Creating a Nullify Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure can create a redaction policy that performs a full
redaction and displays null values for the redacted columns.

The syntax for using DBMS_REDACT.ADD_POLICY to return null values is as follows:

Chapter 15
Creating a Nullify Redaction Policy

15-29



DBMS_REDACT.ADD_POLICY (
   object_schema           IN VARCHAR2 := NULL, 
   object_name             IN VARCHAR2,
   column_name             IN VARCHAR2 := NULL,
   policy_name             IN VARCHAR2,
   function_type           IN BINARY_INTEGER := NULL,
   expression              IN VARCHAR2,
   enable                  IN BOOLEAN := TRUE);

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable:
See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.

• function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT.NULLIFY.

If you omit the function_type parameter, then the default setting is
DBMS_REDACT.FULL.

Remember that the data type of the column determines which function_type
settings that you are permitted to use. See Comparison of Full, Partial, and
Random Redaction Based on Data Types.

15.8.3 Example: Redaction Policy That Returns Null Values
The DBMS_REDACT.ADD_POLICY procedure will return null values for the
COMMISSION_PCT column of the HR.EMPLOYEES table.

The expression parameter applies the policy to any user who queries the table,
except for users who have been granted the EXEMPT REDACTION POLICY system or
schema privilege.

Example 15-3 shows how to create the Oracle Data Redaction policy.

Example 15-3    Redaction Policy That Returns Null Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema    => 'hr', 
   object_name      => 'employees', 
   column_name      => 'commission_pct',
   policy_name      => 'nullify_com_pct', 
   function_type    => DBMS_REDACT.NULLIFY,
   expression       => '1=1');
END;
/

Query and redacted result:

SELECT COMMISSION_PCT FROM HR.EMPLOYEES;

COMMISSION_PCT
--------------

Chapter 15
Creating a Nullify Redaction Policy

15-30



Related Topics

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the data
they access.

15.9 Creating a Partial Redaction Policy
In partial data redaction, you can redact portions of data for different kinds of data types.

• About Creating Partial Redaction Policies
In partial data redaction, only a portion of the data, such as the first five digits of an
identification number, are redacted.

• Syntax for Creating a Partial Redaction Policy
The DBMS_REDACT.ADD_POLICY statement enables you to create policies that redact
specific parts of the data returned to the application.

• Creating Partial Redaction Policies Using Fixed Character Formats
The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to use fixed
character formats.

• Creating Partial Redaction Policies Using Character Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to redact
character data types.

• Creating Partial Redaction Policies Using Number Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact number data
types.

• Creating Partial Redaction Policies Using Date-Time Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact date-time
data types.

15.9.1 About Creating Partial Redaction Policies
In partial data redaction, only a portion of the data, such as the first five digits of an
identification number, are redacted.

For example, you can redact most of a credit card number with asterisks (*), except for the
last 4 digits. You can create policies for columns that use character, number, or date-time
data types. For policies that redact character data types, you can use fixed character
redaction formats. If you have the Enterprise Manager for Oracle Database 12.1.0.7 plug-in
deployed on your system, then you can also create and save custom redaction formats.

Note:

In previous releases, the term shortcut was used for the term format.

Chapter 15
Creating a Partial Redaction Policy

15-31



15.9.2 Syntax for Creating a Partial Redaction Policy
The DBMS_REDACT.ADD_POLICY statement enables you to create policies that redact
specific parts of the data returned to the application.

The DBMS_REDACT.ADD_POLICY fields for creating a partial redaction policy are as
follows:

DBMS_REDACT.ADD_POLICY (
   object_schema           IN VARCHAR2 := NULL, 
   object_name             IN VARCHAR2,
   column_name             IN VARCHAR2 := NULL,
   policy_name             IN VARCHAR2,
   function_type           IN BINARY_INTEGER := NULL,
   function_parameters     IN VARCHAR2 := NULL,
   expression              IN VARCHAR2,
   enable                  IN BOOLEAN := TRUE);

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable:
See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure

• function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT.PARTIAL.

• function_parameters: The parameters that you set here depend on the data type
of the column specified for the column_name parameter. See the following sections
for details:

– Creating Partial Redaction Policies Using Fixed Character Formats

– Creating Partial Redaction Policies Using Character Data Types

– Creating Partial Redaction Policies Using Number Data Types

– Creating Partial Redaction Policies Using Date-Time Data Types

15.9.3 Creating Partial Redaction Policies Using Fixed Character
Formats

The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to use
fixed character formats.

• Settings for Fixed Character Formats
Oracle Data Redaction provides special predefined formats to configure policies
that use fixed characters.

• Example: Partial Redaction Policy Using a Fixed Character Format
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a partial
redaction policy that uses a fixed character format.

Chapter 15
Creating a Partial Redaction Policy

15-32



15.9.3.1 Settings for Fixed Character Formats
Oracle Data Redaction provides special predefined formats to configure policies that use
fixed characters.

Table 15-8 describes DBMS_REDACT.ADD_POLICY function_parameters parameter formats that
you can use for commonly redacted identity numbers (such as Social Security numbers or
Canadian Social Insurance Numbers), postal codes, and credit cards that use either the
VARCHAR2 or NUMBER data types for their columns.

Table 15-8    Partial Fixed Character Redaction Formats

Format Description

DBMS_REDACT.REDACT_US_SSN_F5 Redacts the first 5 numbers of Social Security
numbers when the column is a VARCHAR2 data type.
For example, the number 987-65-4320 becomes
XXX-XX-4320.

DBMS_REDACT.REDACT_US_SSN_L4 Redacts the last 4 numbers of Social Security
numbers when the column is a VARCHAR2 data type.
For example, the number 987-65-4320 becomes
987-65-XXXX.

DBMS_REDACT.REDACT_US_SSN_ENTIRE Redacts the entire Social Security number when the
column is a VARCHAR2 data type. For example, the
number 987-65-4320 becomes XXX-XX-XXXX.

DBMS_REDACT.REDACT_NUM_US_SSN_F5 Redacts the first 5 numbers of Social Security
numbers when the column is a NUMBER data type.
For example, the number 987654320 becomes
XXXXX4320.

DBMS_REDACT.REDACT_NUM_US_SSN_L4 Redacts the last 4 numbers of Social Security
numbers when the column is a NUMBER data type.
For example, the number 987654320 becomes
98765XXXX.

DBMS_REDACT.REDACT_NUM_US_SSN_ENTIRE Redacts the entire Social Security number when the
column is a NUMBER data type. For example, the
number 987654320 becomes XXXXXXXXX.

DBMS_REDACT.REDACT_SIN_NUMBER Redacts the Canadian Social Insurance number by
replacing the first 6 digits by 9 (number). For
example, 123456789 is redacted to 999999789.

DBMS_REDACT.REDACT_SIN_UNFORMATTED Redacts the Canadian Social Insurance number by
replacing the first 6 digits by X (string). For example,
123456789 is redacted to XXXXXX789.

DBMS_REDACT.REDACT_SIN_FORMATTED Redacts the Canadian Social Insurance Number by
replacing the first 6 digits by X (string). For example,
123-456-789 is redacted to XXX-XXX-789.

DBMS_REDACT.REDACT_UK_NIN_FORMATTED Redacts the UK National Insurance number by
replacing the first 6 digits by X (string) but leaving
the alphabetic characters as is. For example, ET 27
02 23 D is redacted to ET XX XX XX D.

Chapter 15
Creating a Partial Redaction Policy

15-33



Table 15-8    (Cont.) Partial Fixed Character Redaction Formats

Format Description

DBMS_REDACT.REDACT_UK_NIN_UNFORMATTED Redacts the UK National Insurance number by
replacing the first 6 digits by X (string) and leaving
the alphabetic characters as is. For example,
ET270223D is redacted to ETXXXXXXD.

DBMS_REDACT.REDACT_CCN_FORMATTED Redacts the credit card number (other than
American Express) by replacing everything but the
last 4 digits by *. For example, the credit card
number 5105–1051–0510–5100 is redacted to
****—****—****—5100.

DBMS_REDACT.REDACT_CCN_NUMBER Redacts the credit card number (other than
American Express) by replacing everything but the
last 4 digits by 9. For example, the credit card
number 5105105105105100 is redacted to
99999999999995100. Note that the last four digits
are not redacted.

DBMS_REDACT.REDACT_CCN16_F12 Redacts a 16-digit credit card number (other than
American Express), leaving the last 4 digits
displayed. For example, 5105 1051 0510 5100
becomes ****-****-****-5100.

DBMS_REDACT.REDACT_AMEX_CCN_FORMATTED Redacts the American Express credit card number
by replacing the digits with * except the last 5 digits.
For example, the credit card number 3782 822463
10005 is redacted to **** ****** 10005.

DBMS_REDACT.REDACT_AMEX_CCN_NUMBER Redacts the American Express Credit Card Number
by replacing the digits with 0 except the last 5 digits.
For example, the credit card number 3782 822463
10005 is redacted to 0000 000000 10005.

DBMS_REDACT.REDACT_ZIP_CODE Redacts a 5-digit postal code when the column is a
VARCHAR2 data type. For example, 95476 becomes
XXXXX.

DBMS_REDACT.REDACT_NUM_ZIP_CODE Redacts a 5-digit postal code when the column is a
NUMBER data type. For example, 95476 becomes
99999.

DBMS_REDACT.REDACT_DATE_EPOCH Redacts all dates to 01-JAN-70.

DBMS_REDACT.REDACT_NA_PHONE_FORMATTED Redacts the North American phone number by
leaving the area code, but replacing everything else
with X. For example, 650-555–0100 is redacted to
650-XXX-XXXX.

DBMS_REDACT.REDACT_NA_PHONE_NUMBER Redacts the North American phone number by
leaving the area code, but replacing everything else
with 0. For example, 6505550100 gets redacted to
650000000.

DBMS_REDACT.REDACT_NA_PHONE_UNFORMATT
ED

Redacts the North American phone number by
leaving the area code, but replacing everything else
with X. For example, 6505550100 is redacted to
650XXXXXXX.

Chapter 15
Creating a Partial Redaction Policy

15-34



Table 15-8    (Cont.) Partial Fixed Character Redaction Formats

Format Description

DBMS_REDACT.REDACT_DATE_MILLENNIUM Redacts dates that are in the DD-MON-YY format to
01-JAN-00 (January 1, 2000).

Related Topics

• General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY
procedure.

15.9.3.2 Example: Partial Redaction Policy Using a Fixed Character Format
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a partial redaction
policy that uses a fixed character format.

Example 15-4 shows how Social Security numbers in a VARCHAR2 data type column can be
redacted using the REDACT_US_SSN_F5 format.

Example 15-4    Partially Redacted Character Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema       => 'mavis', 
   object_name         => 'cust_info', 
   column_name         => 'ssn',
   policy_name         => 'redact_cust_ssns3', 
   function_type       => DBMS_REDACT.PARTIAL,
   function_parameters => DBMS_REDACT.REDACT_US_SSN_F5,
   expression          => '1=1',
   policy_description  => 'Partially redacts 1st 5 digits in SS numbers',
   column_description  => 'ssn contains Social Security numbers');
END;
/

Query and redacted result:

SELECT ssn FROM mavis.cust_info;

SSN
-------
XXX-XX-4320
XXX-XX-4323
XXX-XX-4325
XXX-XX-4329

15.9.4 Creating Partial Redaction Policies Using Character Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to redact
character data types.

• Settings for Character Data Types
Oracle Data Redaction provides special settings to configure policies that use character
data types.

Chapter 15
Creating a Partial Redaction Policy

15-35



• Example: Partial Redaction Policy Using a Character Data Type
The DBMS_REDACT.ADD_POLICY PL/SQL procedure can create a partial redaction
policy that uses a character data type.

15.9.4.1 Settings for Character Data Types
Oracle Data Redaction provides special settings to configure policies that use
character data types.

When you set the DBMS_REDACT.ADD_POLICY function_parameters parameter to
define partial redaction of character data types, enter values for the following settings
in the order shown. Separate each value with a comma

Note:

Be aware that you must use a fixed width character set for the partial
redaction. In other words, each character redacted must be replaced by
another of equal byte length. If you want to use a variable-length character
set (for example, UTF-8), then you must use a regular expression-based
redaction.

The settings are as follows:

1. Input format: Defines how the data is currently formatted. Enter V for each
character that potentially can be redacted, such as all of the digits in a credit card
number. Enter F for each character that you want to format using a formatting
character, such as hyphens or blank spaces in the credit card number. Ensure that
each character has a corresponding V or F value. (The input format values are not
case-sensitive.)

2. Output format: Defines how the displayed data should be formatted. Enter V for
each character to be potentially redacted. Replace each F character in the input
format with the character that you want to use for the displayed output, such as a
hyphen. (The output format values are not case-sensitive.)

3. Mask character: Specifies the character to be used for the redaction. Enter a
single character to use for the redaction, such as an asterisk (*).

4. Starting digit position: Specifies the starting V digit position for the redaction.

5. Ending digit position: Specifies the ending V digit position for the redaction. Do
not include the F positions when you decide on the ending position value.

For example, the following setting redacts the first 12 V digits of the credit card number
5105 1051 0510 5100, and replaces the F positions (which are blank spaces) with
hyphens to format it in a style normally used for credit card numbers, resulting in ****-
****-****-4320.

function_parameters  => 'VVVVFVVVVFVVVVFVVVV,VVVV-VVVV-VVVV-VVVV,*,1,12',

Related Topics

• Syntax for Creating a Regular Expression-Based Redaction Policy
The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a
regular expression-based redaction policy.

Chapter 15
Creating a Partial Redaction Policy

15-36



• General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY
procedure.

15.9.4.2 Example: Partial Redaction Policy Using a Character Data Type
The DBMS_REDACT.ADD_POLICY PL/SQL procedure can create a partial redaction policy that
uses a character data type.

Example 15-5 shows how to redact Social Security numbers that are in a VARCHAR2 data type
column and to preserve the character hyphens in the Social Security number.

Example 15-5    Partially Redacted Character Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema       => 'mavis', 
   object_name         => 'cust_info', 
   column_name         => 'ssn',
   policy_name         => 'redact_cust_ssns2', 
   function_type       => DBMS_REDACT.PARTIAL,
   function_parameters => 'VVVFVVFVVVV,VVV-VV-VVVV,*,1,5',
   expression          => '1=1',
   policy_description  => 'Partially redacts Social Security numbers',
   column_description  => 'ssn contains character Social Security numbers');
END;
/

Query and redacted result:

SELECT ssn FROM mavis.cust_info;

SSN
-----------
***-**-4320
***-**-4323
***-**-4325
***-**-4329

15.9.5 Creating Partial Redaction Policies Using Number Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact number data
types.

• Settings for Number Data Types
When you set values for the number data type, you must specify a redact character, a
starting digit position, and an ending digit position.

• Example: Partial Redaction Policy Using a Number Data Type
The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that uses a
number data type.

15.9.5.1 Settings for Number Data Types
When you set values for the number data type, you must specify a redact character, a
starting digit position, and an ending digit position.

Chapter 15
Creating a Partial Redaction Policy

15-37



For partial redaction of number data types, you can enter values for the following
settings for the function_parameters parameter of the DBMS_REDACT.ADD_POLICY
procedure, in the order shown.

1. Redact character: Specifies the character to display. Enter a number from 0 to 9.

2. Starting digit position: Specifies the starting digit position for the redaction, such
as 1 for the first digit.

3. Ending digit position: Specifies the ending digit position for the redaction.

For example, the following setting redacts the first five digits of the Social Security
number 987654321, resulting in 999994321.

function_parameters  => '9,1,5',

Related Topics

• General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY
procedure.

15.9.5.2 Example: Partial Redaction Policy Using a Number Data Type
The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that
uses a number data type.

Example 15-6 shows how to partially redact a set of Social Security numbers in the
mavis.cust_info table, for any application user who logs in. (Hence, the expression
parameter evaluates to TRUE.)

This type of redaction is useful when the application is expecting a formatted number
and not a string. In this scenario, the Social Security numbers are in a column of the
data type NUMBER. In other words, the ssn column contains numbers only, not other
characters such as hyphens or blank spaces.

Example 15-6    Partially Redacted Data Redaction Numeric Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema       => 'mavis', 
   object_name         => 'cust_info', 
   column_name         => 'ssn',
   policy_name         => 'redact_cust_ssns1', 
   function_type       => DBMS_REDACT.PARTIAL,
   function_parameters => '7,1,5',
   expression          => '1=1',
   policy_description  => 'Partially redacts Social Security numbers',
   column_description  => 'ssn contains numeric Social Security numbers');
END;
/

Query and redacted result:

SELECT ssn FROM mavis.cust_info;

SSN
---------
777774320
777774323

Chapter 15
Creating a Partial Redaction Policy

15-38



777774325
777774329

15.9.6 Creating Partial Redaction Policies Using Date-Time Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact date-time data
types.

• Settings for Date-Time Data Types
Oracle Data Redaction provides special settings for configuring date-time data types.

• Example: Partial Redaction Policy Using Date-Time Data Type
The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that uses
the date-time data type.

15.9.6.1 Settings for Date-Time Data Types
Oracle Data Redaction provides special settings for configuring date-time data types.

For partial redaction of date-time data types, enter values for the following
DBMS_REDACT.ADD_POLICY function_parameters parameter settings.

Enter these values in the order shown:

1. m: Redacts the month. To redact with a month name, append 1–12 to lowercase m. For
example, m5 displays as MAY. To omit redaction, enter an uppercase M.

2. d: Redacts the day of the month. To redact with a day of the month, append 1–31 to a
lowercase d. For example, d7 displays as 07. If you enter a higher number than the days
of the month (for example, 31 for the month of February), then the last day of the month
is displayed (for example, 28). To omit redaction, enter an uppercase D.

3. y: Redacts the year. To redact with a year, append 1–9999 to a lowercase y. For example,
y1984 displays as 84. To omit redaction, enter an uppercase Y.

4. h: Redacts the hour. To redact with an hour, append 0–23 to a lowercase h. For example,
h20 displays as 20. To omit redaction, enter an uppercase H.

5. m: Redacts the minute. To redact with a minute, append 0–59 to a lowercase m. For
example, m30 displays as 30. To omit redaction, enter an uppercase M.

6. s: Redacts the second. To redact with a second, append 0–59 to a lowercase s. For
example, s45 displays as 45. To omit redaction, enter an uppercase S.

Related Topics

• General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY
procedure.

15.9.6.2 Example: Partial Redaction Policy Using Date-Time Data Type
The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that uses the
date-time data type.

Example 15-7 shows how to partially redact a date. This example redacts the birth year of
customers; replacing it with 13, but retaining the remaining values.

Chapter 15
Creating a Partial Redaction Policy

15-39



Example 15-7    Partially Redacted Data Redaction Using Date-Time Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema       => 'mavis', 
   object_name         => 'cust_info', 
   column_name         => 'birth_date',
   policy_name         => 'redact_cust_bdate', 
   function_type       => DBMS_REDACT.PARTIAL,
   function_parameters => 'MDy2013HMS',
   expression          => '1=1',
   policy_description  => 'Replaces birth year with 2013',
   column_description  => 'birth_date contains customer's birthdate');
END;
/

Query and redacted result:

SELECT birth_date FROM mavis.cust_info;

BIRTH_DATE
07-DEC-13 09.45.40.000000 AM
12-OCT-13 04.23.29.000000 AM

15.10 Creating a Regular Expression-Based Redaction
Policy

A regular expression-based redaction policy enables you to redact data based on a
search-and-replace model.

• About Creating Regular Expression-Based Redaction Policies
Regular expression-based redaction enables you to search for patterns of data to
redact.

• Syntax for Creating a Regular Expression-Based Redaction Policy
The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a
regular expression-based redaction policy.

• Regular Expression-Based Redaction Policies Using Formats
The DBMS_REDACT.ADD_POLICY procedure regexp_pattern and
regexp_replace_string parameters both support formats.

• Custom Regular Expression Redaction Policies
You can customize regular expressions in Data Redaction policies.

15.10.1 About Creating Regular Expression-Based Redaction Policies
Regular expression-based redaction enables you to search for patterns of data to
redact.

For example, you can use regular expressions to redact email addresses, which can
have varying character lengths. It is designed for use with character data only. You can
use formats for the search and replace operation, or you can create custom pattern
formats.

You cannot use regular expressions to redact a subset of the values in a column. The
REGEXP_PATTERN (regular expression pattern) must match all of the values in order for

Chapter 15
Creating a Regular Expression-Based Redaction Policy

15-40



the REGEXP_REPLACE_STRING setting to take effect, and the REGEXP_REPLACE_STRING must
change the value.

For rows where the REGEXP_PATTERN fails to match, Data Redaction performs
DBMS_REDACT.FULL redaction. This mitigates the risk of a mistake in the REGEXP_PATTERN
which causes the regular expression to fail to match all of the values in the column, from
showing the actual data for those rows which it failed to match.

In addition, if no change to the value occurs as a result of the REGEXP_REPLACE_STRING setting
during regular expression replacement operation, Data Redaction performs
DBMS_REDACT.FULL redaction.

15.10.2 Syntax for Creating a Regular Expression-Based Redaction Policy
The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a regular
expression-based redaction policy.

The DBMS_REDACT.ADD_POLICY fields for creating a regular expression-based data redaction
policy are as follows:

DBMS_REDACT.ADD_POLICY (
   object_schema           IN VARCHAR2 := NULL, 
   object_name             IN VARCHAR2,
   column_name             IN VARCHAR2 := NULL,
   policy_name             IN VARCHAR2,
   function_type           IN BINARY_INTEGER := NULL,
   expression              IN VARCHAR2,
   enable                  IN BOOLEAN := TRUE,
   regexp_pattern          IN VARCHAR2 := NULL,
   regexp_replace_string   IN VARCHAR2 := NULL,
   regexp_position         IN BINARY_INTEGER := 1,
   regexp_occurrence       IN BINARY_INTEGER := 0,
   regexp_match_parameter  IN VARCHAR2 := NULL);

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable: See 
General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.

• function_type: Specifies the type of redaction. For regular expression based redaction,
use either DBMS_REDACT.REGEXP or DBMS_REDACT.REGEXP_WIDTH.

If you use the DBMS_REDACT.REGEXP redaction type, then no truncation occurs. This
applies even if the redacted value is wider than the column width, and if the Oracle Call
Interface width attribute (OCI_ATTR_CHAR_SIZE) of the column is not preserved. (It
becomes 4000, just as it does when the REGEXP_REPLACE SQL operator is used on a
column.)

Using the DBMS_REDACT.REGEXP_WIDTH redaction type truncates any redacted value that
exceeds the width of the column, and ensures that the OCI width attribute of the column
(OCI_ATTR_CHAR_SIZE) remains unchanged.

Note the following:

– Use the DBMS_REDACT.REGEXP_WIDTH function type if your applications depend on the
value of the OCI_ATTR_CHAR_SIZE attribute. For example, applications that are built
using the Oracle OLE DB Provider interface are sensitive to the value of the
OCI_ATTR_CHAR_SIZE attribute. If you use DBMS_REDACT.REGEXP as the redaction type,
then the OCI_ATTR_CHAR_SIZE always becomes 4000. This setting makes it

Chapter 15
Creating a Regular Expression-Based Redaction Policy

15-41



unsuitable as the redaction type of policies on tables that are used by Oracle
OLE DB based applications. See Oracle Call Interface Developer's Guide for
more information about Oracle Call Interface parameter attributes.

– When you set the function_type parameter to DBMS_REDACT.REGEXP or
DBMS_REDACT.REGEXP_WIDTH, omit the function_parameters parameter from
the DBMS_REDACT.ADD_POLICY procedure.

– Specify the regular expression parameters in much the same way that you
specify the pattern, replace, position, occurrence, and match_parameter
arguments to the REGEXP_REPLACE SQL function. See Oracle Database SQL
Language Reference for information about the REGEXP_REPLACE SQL function.

• regexp_pattern: Describes the search pattern for data that must be matched. If it
finds a match, then Oracle Database replaces the data as specified by the
regexp_replace_string setting. See the following sections for more information:

– Regular Expression-Based Redaction Policies Using Formats

– Custom Regular Expression Redaction Policies

• regexp_replace_string: Specifies how you want to replace the data to be
redacted. See the following sections for more information:

– Regular Expression-Based Redaction Policies Using Formats

– Custom Regular Expression Redaction Policies

• regexp_position: Specifies the starting position for the string search. The value
that you enter must be a positive integer indicating the character of the
column_name data where Oracle Database should begin the search. The default is
1 or the DBMS_REDACT.RE_BEGINNING format, meaning that Oracle Database begins
the search at the first character of the column_name data.

• regexp_occurrence: Specifies how to perform the search and replace operation.
The value that you enter must be a non-negative integer indicating the occurrence
of the replace operation:

– If you specify 0 or the DBMS_REDACT.RE_ALL format, then Oracle Database
replaces all the occurrences of the match.

– If you specify the DBMS_REDACT.RE_FIRST format, then Oracle Database
replaces the first occurrence of the match.

– If you specify a positive integer n, then Oracle Database replaces the nth
occurrence of the match.

If the occurrence is greater than 1, then the database searches for the second
occurrence beginning with the first character following the first occurrence of
pattern, and so forth.

• regexp_match_parameter: Specifies a text literal that lets you change the default
matching behavior of the function. The behavior of this parameter is the same for
this function as for the REGEXP_REPLACE SQL function. See Oracle Database SQL
Language Reference for detailed information.

To filter the search so that it is not case sensitive, specify the
RE_CASE_INSENSITIVE format.

Chapter 15
Creating a Regular Expression-Based Redaction Policy

15-42



15.10.3 Regular Expression-Based Redaction Policies Using Formats
The DBMS_REDACT.ADD_POLICY procedure regexp_pattern and regexp_replace_string
parameters both support formats.

• Regular Expression Formats
The regular expression formats represent commonly used expressions, such as the
replacement of digits within a credit card number.

• Example: Regular Expression Redaction Policy Using Formats
The DBMS_REDACT.ADD_POLICY procedure can create a regular expression redaction
policy that uses formats.

15.10.3.1 Regular Expression Formats
The regular expression formats represent commonly used expressions, such as the
replacement of digits within a credit card number.

Table 15-9 describes the formats that you can use with the regexp_pattern parameter in the
DBMS_REDACT.ADD_POLICY procedure.

Table 15-9    Formats for the regexp_pattern Parameter

Format Description

DBMS_REDACT.RE_PATTERN_ANY_DIGIT Searches for any digit. Replaces the identified pattern
with the characters specified by the
regexp_replace_string parameter. The
DBMS_REDACT.RE_PATTERN_ANY_DIGIT is
commonly used with the following values of the
regexp_replace_string parameter:

regexp_replace_string => 
DBMS_REDACT.RE_REDACT_WITH_SINGLE_X

This setting replaces any matched digit with the X
character.

The following setting replaces any matched digit with
the 1 character.

regexp_replace_string => 
DBMS_REDACT.RE_REDACT_WITH_SINGLE_1

DBMS_REDACT.RE_PATTERN_CC_L6_T4 Searches for the middle digits of any credit card
(other than American Express) that has 6 leading
digits and 4 trailing digits. Replaces the identified
pattern with the characters specified by the
regexp_replace_string parameter.

The appropriate regexp_replace_string setting to
use with this format is
DBMS_REDACT.RE_REDACT_CC_MIDDLE_DIGITS,
which finds any credit card that could have 6 leading
and 4 trailing digits left as actual data. It then redacts
the middle digits.

Chapter 15
Creating a Regular Expression-Based Redaction Policy

15-43



Table 15-9    (Cont.) Formats for the regexp_pattern Parameter

Format Description

DBMS_REDACT.RE_PATTERN_CCN Matches credit card numbers other than American
Express credit card numbers. The appropriate
regexp_replace_string setting to use with this
format is DBMS_REDACT.RE_REDACT_CCN. The end
result is a redaction of all the digits except the last 4.

DBMS_REDACT.RE_PATTERN_AMEX_CCN Matches American Express credit card numbers. The
appropriate regexp_replace_string setting to use
with this format is
DBMS_REDACT.RE_REDACT_AMEX_CCN. The end
result is a redaction of all the digits except the last 5.

DBMS_REDACT.RE_PATTERN_US_PHONE Searches for any U.S. telephone number. Replaces
the identified pattern with the characters specified by
the regexp_replace_string parameter

The appropriate regexp_replace_string setting to
use with this format is
DBMS_REDACT.RE_REDACT_US_PHONE_L7, which
finds United States phone numbers and then redacts
the last 7 digits.

DBMS_REDACT.RE_PATTERN_EMAIL_ADDRESS Searches for any email address. Replaces the
identified pattern with the characters specified by the
regexp_replace_string parameter

The appropriate regexp_replace_string settings
that you can use with this format are as follows:

RE_REDACT_EMAIL_NAME, which finds any email
address and redacts the email user name

RE_REDACT_EMAIL_DOMAIN, which finds any email
address and redacts the email domain

RE_REDACT_EMAIL_ENTIRE, which finds any email
address and redacts the entire email address

DBMS_REDACT.RE_PATTERN_IP_ADDRESS Searches for an IP address. Replaces the identified
pattern with the characters specified by the
regexp_replace_string parameter.

The appropriate regexp_replace_string setting to
use with this format is
DBMS_REDACT.RE_REDACT_IP_L3, which replaces
the last section of the dotted decimal string
representation of an IP address with the characters
999 to indicate that it was redacted.

Table 15-10 describes formats that you can use with the regexp_replace_string
parameter in the DBMS_REDACT.ADD_POLICY procedure.

Chapter 15
Creating a Regular Expression-Based Redaction Policy

15-44



Table 15-10    Formats for the regexp_replace_string Parameter

Format Description

DBMS_REDACT.RE_REDACT_WITH_SINGLE_X Replaces the data with a single X character for each
of the actual data characters. For example, the credit
card number 5105 1051 0510 5100 could be
replaced with XXXX XXXX XXXX XXXX.

DBMS_REDACT.RE_REDACT_WITH_SINGLE_1 Replaces the data with a single 1 digit for each of the
actual data digits. For example, the credit card
number 5105 1051 0510 5100 could be replaced
with 1111 1111 1111 1111.

DBMS_REDACT.RE_REDACT_CC_MIDDLE_DIGIT
S

Redacts the middle digits in credit card numbers, as
specified by setting the regexp_pattern parameter
with the RE_PATTERN_CC_L6_T4 format. The
redaction replaces each redacted character with an
X. For example, the credit card number 5105 1051
0510 5100 could be replaced with 5105 10XX
XXXX 5100.

DBMS_REDACT.RE_REDACT_CCN Redacts the first 12 digits of a credit card number
other than an American Express card number. For
example, 4012888888881881 is redacted to
************1881.

DBMS_REDACT.RE_REDACT_AMEX_CCN Redacts the first 10 digits of an American Express
number. For example, 378282246310005 is
redacted to **********10005.

DBMS_REDACT.RE_REDACT_PHONE_L7 Redacts the last 7 digits of U.S. telephone numbers,
as specified by setting the regexp_pattern
parameter with the RE_PATTERN_US_PHONE format.
The redaction replaces each redacted character with
an X. This setting only applies to hyphenated phone
numbers, not phone numbers with spaces. For
example, the telephone number 415-555-0100
could be replaced with 415-XXX-XXXX.

DBMS_REDACT.RE_REDACT_EMAIL_NAME Redacts the email name as specified by setting the
regexp_pattern parameter with the
RE_PATTERN_EMAIL_ADDRESS format. The
redaction replaces the email user name with four x
characters. For example, the email address
psmith@example.com could be replaced with
xxxx@example.com.

DBMS_REDACT.RE_REDACT_EMAIL_DOMAIN Redacts the email domain name as specified by
setting the regexp_pattern parameter with the
RE_PATTERN_EMAIL_ADDRESS format. The
redaction replaces the domain with five x characters.
For example, the email address
psmith@example.com could be replaced with
psmith@xxxxx.com.

Chapter 15
Creating a Regular Expression-Based Redaction Policy

15-45



Table 15-10    (Cont.) Formats for the regexp_replace_string Parameter

Format Description

DBMS_REDACT.RE_REDACT_IP_L3 Redacts the last three digits of the IP address as
specified by setting the regexp_pattern parameter
with the RE_PATTERN_IP_ADDRESS format. For
example, the IP address 192.0.2.254 could be
replaced with 192.0.2.999, which is an invalid IP
address.

Related Topics

• General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY
procedure.

15.10.3.2 Example: Regular Expression Redaction Policy Using Formats
The DBMS_REDACT.ADD_POLICY procedure can create a regular expression redaction
policy that uses formats.

Example 15-8 shows how to use regular expression formats to redact credit card
numbers.

Example 15-8    Regular Expression Data Redaction Character Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema          => 'mavis', 
   object_name            => 'cust_info', 
   column_name            => 'cc_num',
   policy_name            => 'redact_cust_cc_nums', 
   function_type          => DBMS_REDACT.REGEXP,
   function_parameters    => NULL,
   expression             => '1=1',
   regexp_pattern         => DBMS_REDACT.RE_PATTERN_CC_L6_T4,
   regexp_replace_string  => DBMS_REDACT.RE_REDACT_CC_MIDDLE_DIGITS,
   regexp_position        => DBMS_REDACT.RE_BEGINNING,
   regexp_occurrence      => DBMS_REDACT.RE_FIRST,
   regexp_match_parameter => DBMS_REDACT.RE_CASE_INSENSITIVE,
   policy_description     => 'Regular expressions to redact credit card numbers',
   column_description     => 'cc_num contains customer credit card numbers');
END;
/

Query and redacted result:

SELECT cc_num FROM mavis.cust_info;

CC_NUM
-------
401288XXXXXX1881
411111XXXXXX1111
555555XXXXXX1111
511111XXXXXX1118

Chapter 15
Creating a Regular Expression-Based Redaction Policy

15-46



15.10.4 Custom Regular Expression Redaction Policies
You can customize regular expressions in Data Redaction policies.

• Settings for Custom Regular Expressions
Oracle Data Redaction provides special settings to configure policies that use regular
expressions.

• Example: Custom Regular Expression Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure regexp* parameters can create a custom
regular expression redaction policy.

15.10.4.1 Settings for Custom Regular Expressions
Oracle Data Redaction provides special settings to configure policies that use regular
expressions.

To create custom regular expression redaction policies, you use the following parameters in
the DBMS_REDACT.ADD_POLICY procedure:

• regexp_pattern: This pattern is usually a text literal and can be of any of the data types
CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The pattern can contain up to 512 bytes. For
further information about writing the regular expression for the regexp_pattern
parameter, see the description of the pattern argument of the REGEXP_REPLACE SQL
function in Oracle Database SQL Language Reference, because the support that Data
Redaction provides for regular expression matching is similar to that of the
REGEXP_REPLACE SQL function.

• regexp_replace_string: This data can be of any of the data types CHAR, VARCHAR2,
NCHAR, or NVARCHAR2. The regexp_replace_string can contain up to 500 back references
to subexpressions in the form \n, where n is a number from 1 to 9. If you want to include
a backslash (\) in the regexp_replace_string setting, then you must precede it with the
escape character, which is also a backslash. For example, to literally replace the
matched pattern with \2 (rather than replace it with the second matched subexpression of
the matched pattern), you enter \\2 in the regexp_replace_string setting. For more
information, see Oracle Database SQL Language Reference.

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure for information
about other DBMS_REDACT.ADD_POLICY parameters

15.10.4.2 Example: Custom Regular Expression Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure regexp* parameters can create a custom regular
expression redaction policy.

Example 15-9 shows how to use regular expressions to redact the emp_id column data. In
this example, taken together, the regexp_pattern and regexp_replace_string parameters
do the following: first, find the pattern of 9 digits. For reference, break them into three groups

Chapter 15
Creating a Regular Expression-Based Redaction Policy

15-47



that contain the first 3, the next 2, and then the last 4 digits. Then, replace the first five
digits with XXXXX concatenated with the third group (the last 4 digits) as found in the
original pattern.

Example 15-9    Partially Redacted Data Redaction Using Regular Expressions

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema          => 'mavis', 
   object_name            => 'cust_info', 
   column_name            => 'emp_id',
   policy_name            => 'redact_cust_ids', 
   function_type          => DBMS_REDACT.REGEXP,
   expression             => '1=1',
   regexp_pattern         => '(\d\d\d)(\d\d)(\d\d\d\d)',
   regexp_replace_string  => 'XXXXX\3',
   regexp_position        => 1,
   regexp_occurrence      => 0,
   regexp_match_parameter => 'i',
   policy_description     => 'Redacts customer IDs using regular expression',
   column_description     => 'emp_id contains employee ID numbers');
END;
/

Query and redacted result:

SELECT emp_id FROM mavis.cust_info;

EMP_ID
------------
XXXXX1234
XXXXX5678

15.11 Creating a Random Redaction Policy
A random redaction policy presents redacted data as randomly generated values,
such as Ukjsl32[[]]]s for the character data type.

• Syntax for Creating a Random Redaction Policy
A random redaction policy presents the redacted data to the querying application
user as randomly generated values, based on the column data type.

• Example: Random Redaction Policy
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure create a random
redaction policy.

15.11.1 Syntax for Creating a Random Redaction Policy
A random redaction policy presents the redacted data to the querying application user
as randomly generated values, based on the column data type.

Be aware that LOB columns are not supported.

The DBMS_REDACT.ADD_POLICY fields for creating a random redaction policy are as
follows:

DBMS_REDACT.ADD_POLICY (
   object_schema           IN VARCHAR2 := NULL, 
   object_name             IN VARCHAR2,

Chapter 15
Creating a Random Redaction Policy

15-48



   column_name             IN VARCHAR2 := NULL,
   policy_name             IN VARCHAR2,
   function_type           IN BINARY_INTEGER := NULL,
   expression              IN VARCHAR2,
   enable                  IN BOOLEAN := TRUE);

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable: See 
General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.

• function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT.RANDOM.

If you omit the function_type parameter, then the default redaction function_type
setting is DBMS_REDACT.FULL.

Remember that the data type of the column determines which function_type settings
that you are permitted to use. See Comparison of Full, Partial, and Random Redaction
Based on Data Types.

15.11.2 Example: Random Redaction Policy
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure create a random redaction
policy.

Example 15-10 shows how to generate random values. Each time you run the SELECT
statement, the output will be different.

Example 15-10    Randomly Redacted Data Redaction Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema   => 'mavis', 
   object_name     => 'cust_info', 
   column_name     => 'login_username',
   policy_name     => 'redact_cust_rand_username', 
   function_type   => DBMS_REDACT.RANDOM,
   expression      => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''APP_USER''');
END;
/

Query and redacted result:

SELECT login_username FROM mavis.cust_info;

LOGIN_USERNAME
--------------
N[CG{\pTVcK
PL{opergHKV

15.12 Creating a Policy That Uses No Redaction
You can create policies that use no redaction at all, for when you want to test the policy in a
development environment.

• Syntax for Creating a Policy with No Redaction
The None redaction type option can be used to test the internal operation of redaction
policies.

Chapter 15
Creating a Policy That Uses No Redaction

15-49



• Example: Performing No Redaction
The DBMS_REDACT.ADD_POLICY procedure can create a policy that performs no
redaction.

15.12.1 Syntax for Creating a Policy with No Redaction
The None redaction type option can be used to test the internal operation of redaction
policies.

The None redaction type has no effect on the query results against tables that have
policies defined on them. You can use this option to test the redaction policy definitions
before applying them to a production environment. Be aware that LOB columns are
not supported.

The DBMS_REDACT.ADD_POLICY fields for creating a policy with no redaction are as
follows:

DBMS_REDACT.ADD_POLICY (
   object_schema           IN VARCHAR2 := NULL, 
   object_name             IN VARCHAR2,
   column_name             IN VARCHAR2 := NULL,
   policy_name             IN VARCHAR2,
   function_type           IN BINARY_INTEGER := NULL,
   expression              IN VARCHAR2,
   enable                  IN BOOLEAN := TRUE);

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable:
See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.

• function_type: Specifies the function used to set the type of data redaction. Enter
DBMS_REDACT.NONE.

If you omit the function_type parameter, then the default redaction
function_type setting is DBMS_REDACT.FULL.

15.12.2 Example: Performing No Redaction
The DBMS_REDACT.ADD_POLICY procedure can create a policy that performs no
redaction.

Example 15-11 shows how to create a Data Redaction policy that does not redact any
of the displayed values.

Example 15-11    No Redacted Data Redaction Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema    => 'mavis', 
   object_name      => 'cust_info', 
   column_name      => 'user_name',
   policy_name      => 'redact_cust_no_vals', 
   function_type    => DBMS_REDACT.NONE,
   expression       => '1=1');
END;
/

Query and redacted result:

Chapter 15
Creating a Policy That Uses No Redaction

15-50



SELECT user_name FROM mavis.cust_info;

USER_NAME
----------
IDA NEAU

15.13 Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the data they
access.

To do so, you should grant the users the EXEMPT REDACTION POLICY system or schema
privilege. Grant this privilege to trusted users only.

In addition to users who were granted this privilege, user SYS is also exempt from all Data
Redaction policies. The person who creates the Data Redaction policy is by default not
exempt from it, unless this person is user SYS or has the EXEMPT REDACTION POLICY system
or schema privilege.

Note the following:

• Users who have the INSERT privilege on a table can insert values into a redacted column,
regardless of whether a Data Redaction policy exists on the table. Data Redaction only
affects SQL SELECT statements (that is, queries) issued by a user, and has no effect on
any other SQL issued by a user, including INSERT, UPDATE, MERGE, or DELETE statements.
(See the next bullet for exceptions to this rule.)

• Users cannot perform a CREATE TABLE AS SELECT where any of the columns being
selected (source columns) is protected by a Data Redaction policy (and similarly, any
DML operation where the source column is a redacted column), unless the user was
granted the EXEMPT REDACTION POLICY system or schema privilege.

• The EXEMPT REDACTION POLICY system or schema privilege is included in the DBA role,
but this privilege must be granted explicitly to users because it is not included in the WITH
ADMIN OPTION for DBA role grants. Users who were granted the DBA role are exempt from
redaction policies because the DBA role contains the EXP_FULL_DATABASE role, which is
granted the EXEMPT REDACTION POLICY system or schema privilege.

• The EXEMPT REDACTION POLICY system or schema privilege, when granted to a user or
role on a schema, enables the grantee to bypass any existing Oracle Data Redaction
policies. This user will be able to view the actual data from tables or views on which Data
Redaction policies are defined in the schema.

Related Topics

• Restriction of Administrative Access to Oracle Data Redaction Policies
You can restrict the list of users who can create, view, and edit Data Redaction policies.

• Oracle Data Pump Security Model for Oracle Data Redaction
The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION POLICY
system privilege.

15.14 Altering an Oracle Data Redaction Policy
The DBMS_REDACT.ALTER_POLICY procedure enables you to modify Oracle Data Redaction
policies.

Chapter 15
Exemption of Users from Oracle Data Redaction Policies

15-51



• About Altering Oracle Data Redaction Policies
The DBMS_REDACT.ALTER_POLICY procedure alters a Data Redaction policy.

• Syntax for the DBMS_REDACT.ALTER_POLICY Procedure
The DBMS_REDACT.ALTER_POLICY procedure syntax can be used to alter all types of
Data Redaction policies.

• Parameters Required for DBMS_REDACT.ALTER_POLICY Actions
The DBMS_REDACT.ALTER_POLICY procedure provides parameters than can perform
various actions, such as adding or modifying a column.

• Tutorial: Altering an Oracle Data Redaction Policy
You can redact multiple columns in a table or view, with each column having its
own redaction setting.

15.14.1 About Altering Oracle Data Redaction Policies
The DBMS_REDACT.ALTER_POLICY procedure alters a Data Redaction policy.

If the policy is already enabled, then you do not need to disable it first, and after you
alter the policy, it remains enabled.

You can find the names of existing Data Redaction policies by querying the
POLICY_NAME column of the REDACTION_POLICIES data dictionary view, and information
about the columns, functions, and parameters specified in a policy by querying the
REDACTION_COLUMNS view. To find the current value for policies that use full data
redaction, you can query the REDACTION_VALUES_FOR_TYPE_FULL data dictionary view.

The action parameter specifies the type of modification that you want to perform. At a
minimum, you must include the object_name and policy_name parameters when you
run this procedure.

Related Topics

• REDACTION_COLUMNS Data Dictionary View Behavior When a View Is Invalid
When an Oracle Data Redaction policy exists on a column of a view, and the view
becomes invalid, the Data Redaction policy remains visible in the
REDACTION_COLUMNS data dictionary view.

15.14.2 Syntax for the DBMS_REDACT.ALTER_POLICY Procedure
The DBMS_REDACT.ALTER_POLICY procedure syntax can be used to alter all types of
Data Redaction policies.

The syntax for the DBMS_REDACT.ALTER_POLICY procedure is as follows:

DBMS_REDACT.ALTER_POLICY (
   object_schema          IN VARCHAR2 := NULL, 
   object_name            IN VARCHAR2, 
   policy_name            IN VARCHAR2, 
   action                 IN BINARY_INTEGER := DBMS_REDACT.ADD_COLUMN,
   column_name            IN VARCHAR2 := NULL,
   function_type          IN BINARY_INTEGER := DBMS_REDACT.FULL,
   function_parameters    IN VARCHAR2 := NULL,
   expression             IN VARCHAR2 := NULL,
   regexp_pattern         IN VARCHAR2 := NULL,
   regexp_replace_string  IN VARCHAR2 := NULL,
   regexp_position        IN BINARY_INTEGER := 1,
   regexp_occurrence      IN BINARY_INTEGER := 0,

Chapter 15
Altering an Oracle Data Redaction Policy

15-52



   regexp_match_parameter IN VARCHAR2 := NULL,
   policy_description     IN VARCHAR2 := NULL,
   column_description     IN VARCHAR2 := NULL);

In this specification:

• action: Enter one of the following values to define the kind of action to use:

– DBMS_REDACT.MODIFY_COLUMN if you plan to change function_parameters or the
redaction type in function_type.

– DBMS_REDACT.ADD_COLUMN if you plan to add a new column (in addition to columns
that are already protected by the policy) for redaction. This setting is the default for
the action parameter.

– DBMS_REDACT.DROP_COLUMN if you want to remove redaction from a column.

– DBMS_REDACT.MODIFY_EXPRESSION if you plan to change the expression value. Each
policy can have only one policy expression. In other words, when you modify the
policy expression, you are replacing the existing policy expression with a new policy
expression.

– DBMS_REDACT.SET_POLICY_DESCRIPTION if you want to change the description of the
policy.

– DBMS_REDACT.SET_COLUMN_DESCRIPTION if you want to change the description of the
column.

Related Topics

• Parameters Required for DBMS_REDACT.ALTER_POLICY Actions
The DBMS_REDACT.ALTER_POLICY procedure provides parameters than can perform
various actions, such as adding or modifying a column.

• General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY
procedure.

15.14.3 Parameters Required for DBMS_REDACT.ALTER_POLICY
Actions

The DBMS_REDACT.ALTER_POLICY procedure provides parameters than can perform various
actions, such as adding or modifying a column.

Table 15-11 shows the combinations of these parameters.

Chapter 15
Altering an Oracle Data Redaction Policy

15-53



Table 15-11    Parameters Required for Various DBMS_REDACT.ALTER_POLICY
Actions

Desired Alteration Parameters to Set

Add a column • action (DBMS_REDACT.ADD_COLUMN, optional, default is
DBMS_REDACT.ADD_COLUMN)

• column_name (required)

• function_type (optional, default is DBMS_REDACT.FULL)

• function_parameters (only when function_type is
DBMS_REDACT.PARTIAL)

• regexp* (only when function_type is
DBMS_REDACT.REGEXP or DBMS_REDACT.REGEXP_WIDTH)

• policy_description (optional)

• column_description (optional)

Modify a column • action (DBMS_REDACT.MODIFY_COLUMN, required)

• column_name (required)

• function_type (optional, default is DBMS_REDACT.FULL)

• function_parameters (only when function_type is
DBMS_REDACT.PARTIAL)

• regexp* (only when function_type is
DBMS_REDACT.REGEXP or DBMS_REDACT.REGEXP_WIDTH)

• policy_description (optional)

• column_description (optional)

Drop a column • action (DBMS_REDACT.DROP_COLUMN, required)

• column_name (required)

Change the policy
expression

• action (DBMS_REDACT.MODIFY_EXPRESSION, required)

• expression (required)

• policy_description (optional)

Change the description of
the policy

• action (DBMS_REDACT.SET_POLICY_DESCRIPTION,
required)

• policy_description (required)

Change the description of
the column

• action (DBMS_REDACT.SET_COLUMN_DESCRIPTION,
required)

• column_description (required)

• column_name (required)

15.14.4 Tutorial: Altering an Oracle Data Redaction Policy
You can redact multiple columns in a table or view, with each column having its own
redaction setting.

The exercise in this section shows how to modify a Data Redaction policy so that
multiple columns are redacted. It also shows how to change the expression setting for
the policy. To accomplish this, you must run the DBMS_REDACT.ALTER_POLICY procedure
in stages.

1. Connect to the PDB as a user who has privileges to create users and grant them
privileges.

2. Create the following users:

Chapter 15
Altering an Oracle Data Redaction Policy

15-54



GRANT CREATE SESSION TO dr_admin IDENTIFIED BY password;
GRANT CREATE SESSION TO sales_rep IDENTIFIED BY password;
GRANT CREATE SESSION TO support_rep IDENTIFIED BY password;

3. Grant EXECUTE on the DBMS_REDACT PL/SQL package to user dr_admin.

GRANT EXECUTE ON DBMS_REDACT TO dr_admin;
4. Grant the ADMINISTER REDACTION POLICY system privilege to user dr_admin.

GRANT ADMINISTER REDACTION POLICY TO dr_admin;
5. Connect as user OE.

6. Create and populate a table that contains customer credit card information.

CREATE TABLE cust_order_info(
 first_name varchar2(20),
 last_name varchar2(20),
 address varchar2(30),
 city varchar2(30),
 state varchar2(3),
 zip varchar2(5),
 cc_num varchar(19),
 cc_exp varchar2(7));

INSERT INTO cust_order_info VALUES ('Jane','Dough','39 Mockingbird Lane', 'San 
Francisco', 'CA', 94114, '5105 1051 0510 5100', '10/2018');
INSERT INTO cust_order_info VALUES ('Mary','Hightower','2319 Maple Street', 
'Sonoma', 'CA', 95476, '5111 1111 1111 1118', '03/2019'); 
INSERT INTO cust_order_info VALUES ('Herbert','Donahue','292 Winsome Way', 'San 
Francisco', 'CA', 94117, '5454 5454 5454 5454', '08/2018'); 

7. Grant the SELECT privilege on the cust_order_info table to the sales_rep and
support_rep users.

GRANT SELECT ON cust_order_info TO sales_rep, support_rep;
8. Connect as user dr_admin.

9. Create and enable policy to redact the credit card number.

BEGIN DBMS_REDACT.ADD_POLICY(
    object_schema              => 'oe',
    object_name                => 'cust_order_info',
    column_name                => 'cc_num',
    policy_name                => 'redact_cust_cc_info',
    function_type              => DBMS_REDACT.REGEXP,
    function_parameters        => NULL,
    expression                 => '1=1',
    regexp_pattern             => DBMS_REDACT.RE_PATTERN_CCN,
    regexp_replace_string      => DBMS_REDACT.RE_REDACT_CCN,
    regexp_position            => NULL,
    regexp_occurrence          => NULL,
    regexp_match_parameter     => NULL,
    policy_description         => 'Partially redacts credit card info',
    column_description         => 'cc_num_number lists credit card numbers');
END;
/

10. Modify the policy to include redaction of the expiration date.

BEGIN DBMS_REDACT.ALTER_POLICY(
    object_schema     => 'oe',

Chapter 15
Altering an Oracle Data Redaction Policy

15-55



    object_name       => 'cust_order_info',
    policy_name       => 'redact_cust_cc_info',
    action            => DBMS_REDACT.ADD_COLUMN,
    column_name       => 'cc_exp',
    function_type     => DBMS_REDACT.RANDOM);
END;
/

11. Modify the policy again, to use a condition so that the sales_rep user views the
redacted values and the support_rep user views the actual data.

BEGIN
   DBMS_REDACT.ALTER_POLICY(
   object_schema     => 'oe',
   object_name       => 'cust_order_info',
   policy_name       => 'redact_cust_cc_info',
   action            => DBMS_REDACT.MODIFY_EXPRESSION,
   expression        => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = 
''SALES_REP''');
END;
/

12. To test the policy, have the two users query the cust_order_info table.

First, connect as support_rep and query the table.

SELECT cc_num, cc_exp FROM OE.cust_order_info;

CC_NUM               CC_EXP
-------------------  -------
5105 1051 0510 5100  10/2018
5111 1111 1111 1118  03/2019
5454 5454 5454 5454  08/2018

User support_rep can view the actual data. Next, connect as sales_rep and
query the table.

SELECT cc_num, cc_exp FROM OE.cust_order_info;

CC_NUM             CC_EXP
----------------   -------
************5100   lST=033
************1119   OZA.w4C
************5454   B(9+;O1

The actual data is redacted for user sales_rep.

13. As user dr_admin, alter the cust_order_info to include a condition so that only
support_rep sees the redacted data but sales_rep sees the actual data.

BEGIN
   DBMS_REDACT.ALTER_POLICY(
   object_schema      => 'oe',
   object_name        => 'cust_order_info',
   policy_name        => 'redact_cust_cc_info',
   action             => DBMS_REDACT.MODIFY_EXPRESSION,
   expression         => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = 
''SUPPORT_REP''');
END;
/

14. Have the users test the policy again.

Chapter 15
Altering an Oracle Data Redaction Policy

15-56



First, support_rep tests the policy:

SELECT cc_num, cc_exp FROM OE.cust_order_info;

CC_NUM             CC_EXP
----------------   -------
************5100   1^XMF~`
************1119   qz+9=#S
************5454   *KCaUkm

User support_rep can no longer view the actual data; it is now redacted.

Next, connect as sales_rep and query the table.

SELECT cc_num, cc_exp FROM OE.cust_order_info;

CC_NUM               CC_EXP
-------------------  -------
5105 1051 0510 5100  10/2018
5111 1111 1111 1118  03/2019
5454 5454 5454 5454  08/2018

User sales_rep now can view the actual data.

15. If you do not need the components of this tutorial, then you can remove them.

Connect as dr_admin and then drop the policy.

BEGIN
  DBMS_REDACT.DROP_POLICY (
    object_schema  => 'oe',
    object_name    => 'cust_order_info',
    policy_name    => 'redact_cust_cc_info');
END;
/

Connect as a security administrator and drop the users.

DROP USER dr_admin;
DROP USER sales_rep;
DROP USER support_rep;

Connect as user OE and drop the cust_order_info table.

DROP TABLE cust_order_info;

15.15 Redacting Multiple Columns
You can redact more than one column in a Data Redaction policy.

• Adding Columns to a Data Redaction Policy for a Single Table or View
You can redact columns of different data types, using different redaction types, for one
table or view.

• Example: Redacting Multiple Columns
The DBMS_REDACT.ALTER_POLICY procedure can redact multiple columns.

Chapter 15
Redacting Multiple Columns

15-57



15.15.1 Adding Columns to a Data Redaction Policy for a Single Table
or View

You can redact columns of different data types, using different redaction types, for one
table or view.

1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT
PL/SQL package and the ADMINISTER REDACTION POLICY system or schema
privilege.

2. Create the policy for the first column that you want to redact.

3. Use the DBMS_REDACT.ALTER_POLICY procedure to add the next column to the
policy.

As necessary, set the action, column_name, function_type, and
function_parameters (or the parameters that begin with regexp_) parameters to
define the redaction for the new column, but do not change the object_schema,
object_name, policy_name, or expression parameters. Each redacted column
continues to have the same redaction parameters that were used to create it.

15.15.2 Example: Redacting Multiple Columns
The DBMS_REDACT.ALTER_POLICY procedure can redact multiple columns.

Example 15-12 shows how to add a column to an existing Data Redaction policy. In
this example, the action parameter specifies that a new column must be added, using
DBMS_REDACT.ADD_COLUMN. The name of the new column, card_num, is set by the
column_name parameter.

Example 15-12    Adding a Column to a Data Redaction Policy

BEGIN
 DBMS_REDACT.ALTER_POLICY(
  object_schema       => 'mavis', 
  object_name         => 'cust_info', 
  policy_name         => 'redact_cust_user_ids', 
  action              => DBMS_REDACT.ADD_COLUMN,
  column_name         => 'card_num',
  function_type       => DBMS_REDACT.FULL);
END;
/

15.16 Disabling and Enabling an Oracle Data Redaction
Policy

You can disable and then reenable Oracle Data Redactions policies as necessary.

• Disabling an Oracle Data Redaction Policy
The DBMS_REDACT.DISABLE_POLICY procedure disables Oracle Data Redaction
policies.

Chapter 15
Disabling and Enabling an Oracle Data Redaction Policy

15-58



• Enabling an Oracle Data Redaction Policy
The DBMS_REDACT.ENABLE_POLICY procedure enables Oracle Data Redaction policies.

15.16.1 Disabling an Oracle Data Redaction Policy
The DBMS_REDACT.DISABLE_POLICY procedure disables Oracle Data Redaction policies.

You can find the names of existing Data Redaction policies and whether they are enabled by
querying the POLICY_NAME and ENABLE columns of the REDACTION_POLICIES view. However,
as long as the policy still exists, you cannot create another policy for that table or view, even if
the original policy is disabled. In other words, if you want to create a different policy on the
same table column, then you must drop the first policy before you can create and use the
new policy.

1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL
package and the ADMINISTER REDACTION POLICY system or schema privilege.

2. Run the DBMS_REDACT.DISABLE_POLICY procedure, using the following syntax:

DBMS_REDACT.DISABLE_POLICY (
   object_schema       IN VARCHAR2 DEFAULT NULL, 
   object_name         IN VARCHAR2, 
   policy_name         IN VARCHAR2);

In this specification:

• object_schema: Specifies the schema of the object on which the Data Redaction
policy will be applied. If you omit this setting (or enter NULL), then Oracle Database
uses the name of the current schema.

• object_name: Specifies the name of the table or view to be used for the Data
Redaction policy.

• policy_name: Specifies the name of the policy to be disabled.

For example:

BEGIN
  DBMS_REDACT.DISABLE_POLICY (
    object_schema  => 'mavis',
    object_name    => 'cust_info',
    policy_name    => 'redact_cust_user_ids');
END;
/

15.16.2 Enabling an Oracle Data Redaction Policy
The DBMS_REDACT.ENABLE_POLICY procedure enables Oracle Data Redaction policies.

Immediately after you create a new policy, you do not need to enable it; the creation process
handles that for you. To find the names of existing Data Redaction policies and whether they
are enabled, you can query the POLICY_NAME and ENABLE columns of the
REDACTION_POLICIES view. After you run the procedure to enable the policy, the enablement
takes effect immediately.

1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL
package and the ADMINISTER REDACTION POLICY system or schema privilege.

2. Run the DBMS_REDACT.ENABLE_POLICY procedure, using the following syntax.

Chapter 15
Disabling and Enabling an Oracle Data Redaction Policy

15-59



DBMS_REDACT.ENABLE_POLICY (
   object_schema       IN VARCHAR2 DEFAULT NULL, 
   object_name         IN VARCHAR2, 
   policy_name         IN VARCHAR2);

In this specification:

• object_schema: Specifies the schema of the object on which the Data
Redaction policy will be applied. If you omit this setting (or enter NULL), then
Oracle Database uses the name of the current schema.

• object_name: Specifies the name of the table or view to be used for the Data
Redaction policy.

• policy_name: Specifies the name of the policy to be enabled.

For example:

BEGIN
  DBMS_REDACT.ENABLE_POLICY (
    object_schema  => 'mavis',
    object_name    => 'cust_info',
    policy_name    => 'redact_cust_user_ids');
END;
/

15.17 Dropping an Oracle Data Redaction Policy
The DBMS_REDACT.DROP_POLICY procedure drops Oracle Data Redaction policies.

You can drop an Oracle Data Redaction policy whether it is enabled or disabled. You
can find the names of existing Data Redaction policies, by querying the POLICY_NAME
column of the REDACTION_POLICIES view. When you drop a table or view that is
associated with an Oracle Data Redaction policy, the policy is automatically dropped.
As a best practice, drop the policy first, and then drop the table or view afterward.

1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT
PL/SQL package.

2. Run the DBMS_REDACT.DROP_POLICY procedure.

Use the following syntax:

DBMS_REDACT.DROP_POLICY (
   object_schema       IN VARCHAR2 DEFAULT NULL, 
   object_name         IN VARCHAR2,
   policy_name         IN VARCHAR2);

In this specification:

• object_schema: Specifies the schema of the object to which the Data
Redaction policy applies. If you omit this setting (or enter NULL), then Oracle
Database uses the name of the current schema.

• object_name: Specifies the name of the table or view to be used for the Data
Redaction policy.

• policy_name: Specifies the name of the policy to be dropped.

For example:

Chapter 15
Dropping an Oracle Data Redaction Policy

15-60



BEGIN
  DBMS_REDACT.DROP_POLICY (
    object_schema  => 'mavis',
    object_name    => 'cust_info',
    policy_name    => 'redact_cust_user_ids');
END;
/

After you run the DBMS_REDACT.DROP_POLICY procedure, the drop takes effect immediately.

Related Topics

• Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled
You should check if the recycle bin is enabled before you drop Oracle Data Redaction
policies.

15.18 Tutorial: SQL Expressions to Build Reports with Redacted
Values

SQL expressions can be used to build reports based on columns that have Oracle Data
Redaction policies defined on them.

The values used in the SQL expression will be redacted. This redaction occurs in such a way
that the redaction takes place before the SQL expression is evaluated: the result value that is
displayed in the report is the end result of the evaluated SQL expression over the redacted
values, rather than the redacted result of the SQL expression as a whole.

1. Connect to the PDB as a user who has the EXECUTE privilege on the DBMS_REDACT PL/SQL
package and the ADMINISTER REDACTION POLICY system or schema privilege.

2. Create the following Data Redaction policy for the HR.EMPLOYEES table.

This policy will replace the first 4 digits of the value from the SALARY column with the
number 9 and the first digit of the value from the COMMISSION_PCT column with a 9.

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema          => 'HR', 
   object_name            => 'EMPLOYEES', 
   column_name            => 'SALARY',
   column_description     => 'emp_sal_comm shows employee salary and commission',
   policy_name            => 'redact_emp_sal_comm', 
   policy_description     => 'Partially redacts the emp_sal_comm column',
   function_type          => DBMS_REDACT.PARTIAL,
   function_parameters    => '9,1,4',
   expression             => '1=1');
END;
/
BEGIN
 DBMS_REDACT.ALTER_POLICY(
   object_schema          => 'HR',
   object_name            => 'EMPLOYEES',
   policy_name            => 'redact_emp_sal_comm',
   action                 => DBMS_REDACT.ADD_COLUMN,
   column_name            => 'COMMISSION_PCT',
   function_type          => DBMS_REDACT.PARTIAL,
   function_parameters    => '9,1,1',
   expression             => '1=1');
END;
/

Chapter 15
Tutorial: SQL Expressions to Build Reports with Redacted Values

15-61



3. Connect as the HR user and then run the following report.

This report will use the SQL expression (SALARY + COMMISSION_PCT) to combine
the employees' salaries and commissions.

SELECT (SALARY + COMMISSION_PCT) total_emp_compensation
FROM HR.EMPLOYEES
WHERE DEPARTMENT_ID = 80;

TOTAL_EMP_COMPENSATION
----------------------
                9999.9
               9999.95
              99990.95
...

4. Use SQL expressions for the report, including concatenation.

For example:

SELECT 'Employee ID '          || EMPLOYEE_ID ||
       ' has a salary of '     || SALARY || 
       ' and a commission of ' || COMMISSION_PCT || '.' 
detailed_emp_compensation
FROM HR.EMPLOYEES
WHERE DEPARTMENT_ID = 80
ORDER BY EMPLOYEE_ID;

DETAILED_EMP_COMPENSATION
-------------------------------------------------------------
Employee ID 150 has a salary of 99990 and a commission of .9.
Employee ID 151 has a salary of 9999 and a commission of .95.
Employee ID 152 has a salary of 9999 and a commission of .95.
...

5. Connect the user who created the redact_emp_sal_comm Data Redaction policy.

6. Run the following statement to drop the policy.

BEGIN
  DBMS_REDACT.DROP_POLICY (
    object_schema => 'HR',
    object_name   => 'EMPLOYEES',
    policy_name   => 'redact_emp_sal_comm');
END;
/

15.19 Using Trace Files to Troubleshoot Oracle Data
Redaction Policies

Trace files for Oracle Data Redaction can be generated at either the system level or
the session level.

You must set the tracing to high. The is no low level tracing for Oracle Data Redaction.

1. Connect to the PDB as a user who has the ALTER SYSTEM or ALTER SESSION
privilege.

2. Enable tracing.

Chapter 15
Using Trace Files to Troubleshoot Oracle Data Redaction Policies

15-62



• At the system level, for all sessions:

ALTER SYSTEM SET events 'TRACE[RADM] disk=high';

• At the session level, for the current session:

ALTER SESSION SET events 'TRACE[RADM] disk=high';

To find problems with queries involving redacted columns, include /* KZDMPRQB_DUMP */
in the query. For example:

SELECT /* KZDMPRQB_DUMP */ redacted_column FROM 
table_with_redaction_policy;

Search for KCCF2MASK and KCCF2MASKDEP in the dump. The subsequent part of the dump
files gives Oracle Redaction-specific insights.

3. To disable tracing:

• At the system level, for all sessions:

ALTER SYSTEM SET EVENTS 'TRACE[RADM] OFF';

• At the session level, for the current session:

ALTER SESSION SET EVENTS 'TRACE[RADM] OFF';

15.20 Oracle Data Redaction Policy Data Dictionary Views
Oracle Database provides data dictionary views that list information about Data Redaction
policies.

Before you can query these views, you must be granted the SELECT_CATALOG_ROLE role.

Table 15-12 lists the Data Redaction data dictionary views.

Table 15-12    Data Redaction Views

View Description

REDACTION_COLUMNS Describes all of the redacted columns in the database,
providing the owner of the table or view within which the
column resides, the object name, the column name, the type
of redaction function, the parameters to the redaction function
(if any), and a description of the redaction function that is
performed on the column.

REDACTION_EXPRESSIONS Displays the names of existing policy expressions, their SQL
expressions, owner of the table or view that this named policy
expression is associated with, name of the table or view which
this named policy expression is associated with, name of the
column that this named policy expression is associated with,
and description of the named policy expression.

Chapter 15
Oracle Data Redaction Policy Data Dictionary Views

15-63



Table 15-12    (Cont.) Data Redaction Views

View Description

REDACTION_POLICIES Describes all of the data redaction policies in the database. It
includes information about the object owner, object name,
policy name, policy expression, whether the policy is enabled,
and a description of the Data Redaction policy.

REDACTION_VALUES_FOR_TYPE_FUL
L

Shows the current redaction values for Data Redaction policies
that use full redaction

Chapter 15
Oracle Data Redaction Policy Data Dictionary Views

15-64



16
Managing Oracle Data Redaction Policies in
Oracle Enterprise Manager

Oracle Enterprise Manager Cloud Control (Cloud Control) can manage Oracle Data
Redaction policies and formats.

• About Using Oracle Data Redaction in Oracle Enterprise Manager
Oracle Enterprise Manager Cloud Control provides an unified user interface for creating
and managing Oracle Data Redaction policies.

• Oracle Data Redaction Workflow
First, you should create sensitive column types and formats if necessary, and then create
the Oracle Data Redaction policy afterward.

• Management of Sensitive Column Types in Enterprise Manager
A sensitive column type categorizes table column sensitive information into a sensitive
information type, such as credit card numbers.

• Managing Oracle Data Redaction Formats Using Enterprise Manager
Oracle Data Redaction provides redaction formats to be used directly within a redaction
policy to redact data.

• Managing Oracle Data Redaction Policies Using Enterprise Manager
You can create, edit, view, and delete Oracle Data Redaction policies in Enterprise
Manager Cloud Control.

• Managing Named Data Redaction Policy Expressions Using Enterprise Manager
You can manage Oracle Data Redaction policy expressions in Enterprise Manager Cloud
Control.

16.1 About Using Oracle Data Redaction in Oracle Enterprise
Manager

Oracle Enterprise Manager Cloud Control provides an unified user interface for creating and
managing Oracle Data Redaction policies.

You can do the following:

• Create and manage custom Oracle Data Redaction formats, which were previously
known as Data Redaction shortcuts. (This functionality is not available from the command
line.)

• Create and manage sensitive column types directly from the Oracle Data Redaction
pages. While you create a Data Redaction policy, Cloud Control uses sensitive column
types to obtain the Oracle Data Redaction formats that are relevant to the column that
you are redacting.

16-1



Note:

Ensure that you have the latest plug-in for Oracle Enterprise Manager. If you
have the Oracle Database plug-in release 13.1.1.0.0, then you can create
named Data Redaction policy expressions in Oracle Enterprise Manager.

16.2 Oracle Data Redaction Workflow
First, you should create sensitive column types and formats if necessary, and then
create the Oracle Data Redaction policy afterward.

The following figure illustrates this process:

Create Sensitive
Column Types
(Optional)

Step 1 Step 2

Create Oracle
Data Redaction 
Formats
(Optional)

Step 3

Create an Oracle
Data Redaction
Policy

1. (Optional) If you want to map the database columns (that contain the data that you
want to redact) to new sensitive column types, then create the required sensitive
column types as described in Management of Sensitive Column Types in
Enterprise Manager.

2. (Optional) If you want to redact the data (present in a particular database column)
using a custom redaction format, then create the required redaction format as
described in Creating a Custom Oracle Data Redaction Format Using Enterprise
Manager.

3. Create an Oracle Data Redaction policy for the required database, as described in 
Creating an Oracle Data Redaction Policy Using Enterprise Manager.

Note:

When you create an Oracle Data Redaction policy, it is enabled by default.
For information on how to disable an enabled redaction policy, see Enabling
or Disabling an Oracle Data Redaction Policy in Enterprise Manager.

16.3 Management of Sensitive Column Types in Enterprise
Manager

A sensitive column type categorizes table column sensitive information into a sensitive
information type, such as credit card numbers.

Sensitive column types use a combination of the column name, column comments,
and the data pattern defined using a regular expression to tag a column to a particular
sensitive information type.

Chapter 16
Oracle Data Redaction Workflow

16-2



While you create Oracle Data Redaction policies, redaction formats are filtered on the basis
of the chosen sensitive column type, thus saving time and effort. For example, if the database
table column that you want to redact contains U.S. Social Security numbers, and you select
the SOCIAL_SECURITY_NUMBER sensitive column type for the column while adding it to the
Oracle Data Redaction policy, the default redaction formats that you can use to redact the
column data are filtered, and only the relevant redaction formats are displayed.

Figure 16-1 illustrates the filtering of Oracle Data Redaction formats based on sensitive
column types.

Figure 16-1    Oracle Data Redaction Formats Filtered on the Basis of Sensitive Column
Types

Note:

This functionality is available only if you have the Enterprise Manager for Oracle
Database plug-in 12.1.0.7 or later deployed in your system.

As part of the Application Data Modeling feature, Oracle provides a number of default
sensitive column types that a database column can be mapped to.

Figure 16-2 displays some of the default sensitive column types. To access this page, click
Manage Sensitive Column Types on the Data Redaction Formats page.

Chapter 16
Management of Sensitive Column Types in Enterprise Manager

16-3



Figure 16-2    Default Sensitive Column Types

If none of the default sensitive column types are suitable for the database column that
contains the data that you want to redact, you can create a new sensitive column type,
or create a sensitive column type that is based on an existing sensitive column type.

16.4 Managing Oracle Data Redaction Formats Using
Enterprise Manager

Oracle Data Redaction provides redaction formats to be used directly within a
redaction policy to redact data.

• About Managing Oracle Data Redaction Formats Using Enterprise Manager
The Oracle Data Redaction formats are used for commonly redacted data, such as
ID numbers, credit cards, or phone numbers.

• Creating a Custom Oracle Data Redaction Format Using Enterprise Manager
You can create and save custom Oracle Data Redaction formats using Enterprise
Manager Cloud Control.

• Editing a Custom Oracle Data Redaction Format Using Enterprise Manager
You can edit custom Oracle Data Redaction formats using Enterprise Manager
Cloud Control, but not in SQL*Plus.

• Viewing Oracle Data Redaction Formats Using Enterprise Manager
Enterprise Manager Cloud Control displays the details of the Oracle-supplied and
custom Oracle Data Redaction formats.

• Deleting a Custom Oracle Data Redaction Format Using Enterprise Manager
You can delete custom Oracle Data Redaction formats using Enterprise Manager
Cloud Control.

Chapter 16
Managing Oracle Data Redaction Formats Using Enterprise Manager

16-4



16.4.1 About Managing Oracle Data Redaction Formats Using Enterprise
Manager

The Oracle Data Redaction formats are used for commonly redacted data, such as ID
numbers, credit cards, or phone numbers.

You can use several default Oracle Data Redaction formats (previously known as Oracle
Data Redaction templates). As an example of the Oracle Data Redaction formats, a set of
Social Security number formats enable you to quickly designate ways to redact Social
Security numbers, such as redacting the first five numbers of the Social Security number.

Figure 16-3 displays the default Oracle Data Redaction formats.

Figure 16-3    Default Oracle Data Redaction Formats

Each default Oracle Data Redaction format consists of a specific redaction function that
determines the redacted output when the redaction format is used in an Oracle Data
Redaction policy. For example, the Credit Card Numbers - NUMBER default redaction format
replaces the first twelve digits of the column data with the digit 0, when it is used in an Oracle
Data Redaction policy. That is, if the column data is 5555555555554444, the redacted output
will be 0000000000004444.

If you have deployed the Enterprise Manager for Oracle Database plug-in 12.1.0.7 or higher
on your system, then you can also create and save custom redaction formats, which you can
then use in your redaction policies.

16.4.2 Creating a Custom Oracle Data Redaction Format Using Enterprise
Manager

You can create and save custom Oracle Data Redaction formats using Enterprise Manager
Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

Chapter 16
Managing Oracle Data Redaction Formats Using Enterprise Manager

16-5



https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. If you are prompted to do so, then log in to the database as a user who has the
EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER
REDACTION POLICY system or schema privilege.

6. Select the Formats tab.

7. Do one of the following:

• To create a new redaction format, click Create.

• To create a redaction format that is based on a default format, select the
format and then click Create Like.

If you select Create, then the following dialog box appears:

Chapter 16
Managing Oracle Data Redaction Formats Using Enterprise Manager

16-6



8. Provide a name and a description for the redaction format that you want to create.

If you want to map the redaction format to a particular sensitive column type (such that
the created redaction format can be used to redact the data of a column that is
associated with the sensitive column type), then select a value for Sensitive Column
Type.

Select the function that the format should use to redact the column data. For Redaction
Function, select as follows:

• FULL if the format should redact the entire column data.

• PARTIAL if the format should redact only a part of the column data. Ensure that you
provide the function attributes, as well as the data type that you want to use the
redaction format for.

• REGEX if the format should redact data based on a regular expression. Ensure that
you provide the function attributes.

• RANDOM if the format should redact data in a random manner, using randomly
generated values

• NONE if the format will be used to only test the definition of a redaction policy, and
not redact any column data

Note:

The Nullify redaction type is not supported in Oracle Enterprise Manager.

9. Click OK to create and save the custom redaction format.

This format now can be used to create a redaction policy.

Related Topics

• Oracle Data Redaction Features and Capabilities
Oracle Data Redaction provides a variety of ways to redact different types of data.

• Creating an Oracle Data Redaction Policy Using Enterprise Manager
You can create an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

16.4.3 Editing a Custom Oracle Data Redaction Format Using Enterprise
Manager

You can edit custom Oracle Data Redaction formats using Enterprise Manager Cloud Control,
but not in SQL*Plus.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

Chapter 16
Managing Oracle Data Redaction Formats Using Enterprise Manager

16-7



5. If you are prompted to do so, then log in to the database as a user who has the
EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER
REDACTION POLICY system or schema privilege.

6. Select the Formats tab.

7. Select the custom redaction format that you want to edit, then click Edit.

A dialog box similar to the following appears:
 

 

8. (Optional) Choose to edit the format description, sensitive column type, redaction
function, and the redaction function attributes.

9. Click OK to save the edited format.

16.4.4 Viewing Oracle Data Redaction Formats Using Enterprise
Manager

Enterprise Manager Cloud Control displays the details of the Oracle-supplied and
custom Oracle Data Redaction formats.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. Search List

3. From the Targets menu, select Databases.

4. Select , then click the name of a database target.

5. On the home page of the database target, from the Security menu, select Data
Redaction.

6. Log in to the database as a user who has privileges to view information in Oracle
Data Redaction data dictionary views.

7. Select the Formats tab.

Chapter 16
Managing Oracle Data Redaction Formats Using Enterprise Manager

16-8



The Data Redaction Formats page appears, similar to the following page.
 

 

8. Select the required redaction format, then click View.

16.4.5 Deleting a Custom Oracle Data Redaction Format Using Enterprise
Manager

You can delete custom Oracle Data Redaction formats using Enterprise Manager Cloud
Control.

You can only delete custom Oracle Data Redaction formats, and not the redaction formats
that are provided by Oracle.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE
privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY
system or schema privilege.

6. Select the Formats tab.

7. Select the custom redaction format that you want to delete, and then click Delete.

8. In the Confirmation dialog box, click Yes or No.

Chapter 16
Managing Oracle Data Redaction Formats Using Enterprise Manager

16-9



16.5 Managing Oracle Data Redaction Policies Using
Enterprise Manager

You can create, edit, view, and delete Oracle Data Redaction policies in Enterprise
Manager Cloud Control.

• About Managing Oracle Data Redaction Policies Using Enterprise Manager
Use the Data Redaction page in Cloud Control to manage Oracle Data Redaction
policies.

• Creating an Oracle Data Redaction Policy Using Enterprise Manager
You can create an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

• Editing an Oracle Data Redaction Policy Using Enterprise Manager
You can edit an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

• Viewing Oracle Data Redaction Policy Details Using Enterprise Manager
You can find Oracle Data Redaction policy details such as whether the policy is
enabled by using Enterprise Manager Cloud Control.

• Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager
An Oracle Data Redaction policy is executed at run time only if it is enabled. When
you create an Oracle Data Redaction policy, it is enabled by default.

• Deleting an Oracle Data Redaction Policy Using Enterprise Manager
You can delete an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

16.5.1 About Managing Oracle Data Redaction Policies Using
Enterprise Manager

Use the Data Redaction page in Cloud Control to manage Oracle Data Redaction
policies.

To redact the data present in a particular database table or view column, you must
create an Oracle Data Redaction policy. Data is redacted using a redaction format that
is specified by the Oracle Data Redaction policy. To redact data, you can use any of
the Oracle-supplied redaction formats, or create and use a custom redaction format. If
the table or view column that contains the data that you want to redact is mapped to a
sensitive column type, Oracle uses the mapping to recommend suitable redaction
formats for the data. Thus, Oracle Data Redaction policies encapsulate database
schemas, database table and view columns, sensitive column types, and Oracle Data
Redaction formats.

Figure 16-4 shows the Data Redaction page, which enables you to create and manage
Oracle Data Redaction policies in Cloud Control.

Chapter 16
Managing Oracle Data Redaction Policies Using Enterprise Manager

16-10



Figure 16-4    Oracle Data Redaction Policies Page

16.5.2 Creating an Oracle Data Redaction Policy Using Enterprise
Manager

You can create an Oracle Data Redaction policy using Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to create
an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE
privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY
system or schema privilege.

6. In the Policies section of the Policies tab, select Create.

If this is the first time that you are creating a Data Redaction policy, then the Data
Redaction setup for enabling column sensitive type discovery dialog box appears. This
feature enables the use of column sensitive type discovery for Data Redaction policies.

To accomplish this, Enterprise Manager creates the GET_COL_DATA_SENSITIVE_TYPES
procedure in the DBSNMP schema. To perform a sensitive type discovery for a selected
column while creating an Oracle Data Redaction policy, a user must have the EXECUTE
privilege on the DBSNMP.GET_COL_DATA_SENSITIVE_TYPES procedure. If the database is

Chapter 16
Managing Oracle Data Redaction Policies Using Enterprise Manager

16-11



protected by Oracle Database Vault, then ensure that any users who must create
Data Redaction policies are participants to realms that protect the DBSNMP schema.

7. If the Data Redaction setup for enabling column sensitive type discovery dialog
box appears and if the current login user does not have the correct requirements,
select a credential of a user who has the EXECUTE privilege on
DBSNMP.GET_COL_DATA_SENSITIVE_TYPES. Then click OK.

8. On the Create Data Redaction Policy page, enter the following information:

• Schema: Enter (or search for) the name of the schema that contains the data
you want to redact.

• Table/View: Enter (or search for) the table or field that contains the column
you want to redact.

• Policy Name: Enter a name for the policy, such as emp_wages_pol.

• Default Expression: Enter the default expression. The default setting is 1=1,
which means that the policy will always be enforced. If you are not familiar with
the components of a policy expression, then click the pencil icon beside the
Policy Expression field to use Policy Expression Builder. Select Policy is in
effect when, select the required conditions, then click Add. Click Edit if you
want to edit the policy expression manually. After building the required policy
expression, click OK. The Policy Expression Builder appears as follows:

9. In the Object Columns section, click Add to add a table or view column to the
redaction policy.

A dialog box similar to the following appears:

Chapter 16
Managing Oracle Data Redaction Policies Using Enterprise Manager

16-12



The redaction policy is applied only on the table or view columns that are added to it.

10. From the Column menu, select the table or view column to which you want to apply the
redaction policy.

To the right of the Column menu is an icon that you can click to view the contents of the
selected column.

If the column contains sensitive data and has been mapped to a sensitive column type,
then from the Sensitive Column Type menu, select the sensitive column type that it has
been mapped to. If the search pattern in the Sensitive Column Type menu matches,
then the sensitive column type is selected by default. For example, for a column listing
credit card numbers, if there is a match, then the menu will list Undefined and
CREDIT_CARD_TYPE. If there is no sensitive column type created, then the default
Sensitive Column Type menu listing is only Undefined.

11. From the Redaction Format menu, select the redaction format that you want to use.

The drop-down list is populated with the Oracle Database-supplied redaction formats, as
well as the custom redaction formats that you have created and saved.
If you do not want to use a pre-defined redaction format (that is, an Oracle-Database
supplied redaction format, or a custom redaction format that you have created), and
instead want to specify the redaction details while creating the redaction policy, select
CUSTOM for Redaction Format.

Chapter 16
Managing Oracle Data Redaction Policies Using Enterprise Manager

16-13



The Add dialog box adjusts to accommodate the type of redaction format and
function that you select. For example, if you select the CUSTOM redaction format
and the REGEX redaction function, then the Function Attributes region appears in
the dialog box.

12. From the Redaction Function menu, select the function that you want to use to
redact the column data.

Select FULL if you want to redact the entire column data, PARTIAL if you want to
redact only a part of the column data, REGEX if you want to redact the column
data based on a regular expression, RANDOM if you want to redact the column
data in a random manner, using randomly generated values, or NONE if you only
want to test the definition of the redaction policy, and not redact any column data.
Note that all the redaction functions may not be applicable for a particular
redaction format. The drop-down list displays only the redaction functions that are
applicable for the selected redaction format. (Note that the Nullify redaction type is
not supported in Oracle Enterprise Manager.)

If you selected CUSTOM for Redaction Format in the previous step, and
PARTIAL or REGEX for Redaction Function, ensure that you specify the function
attributes.

13. Click OK.

14. Repeat these steps starting with Step 8 for all the columns that you want to add to
the redaction policy.

15. On the Create Data Redaction Policy page, click OK to create the data redaction
policy.

When you create an Oracle Data Redaction policy, it is enabled by default.

Related Topics

• Creating a Custom Oracle Data Redaction Format Using Enterprise Manager
You can create and save custom Oracle Data Redaction formats using Enterprise
Manager Cloud Control.

• Oracle Data Redaction Features and Capabilities
Oracle Data Redaction provides a variety of ways to redact different types of data.

• Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager
An Oracle Data Redaction policy is executed at run time only if it is enabled. When
you create an Oracle Data Redaction policy, it is enabled by default.

16.5.3 Editing an Oracle Data Redaction Policy Using Enterprise
Manager

You can edit an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

Chapter 16
Managing Oracle Data Redaction Policies Using Enterprise Manager

16-14



3. Select Search List, then search for and click the name of the database target for which
the Oracle Data Redaction policy that you want to edit was created.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE
privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY
system or schema privilege.

6. In the Policies section of the Policies tab, select the redaction policy that you want to
edit, then click Edit..

7. On the Edit Data Redaction Policy page, choose to edit the policy expression, add new
columns to the redaction policy, modify the redaction details of a column that is part of the
policy, or delete a column from the redaction policy.

You can do the following:

• To add a new column to the redaction policy, in the Object Columns section, click
Add, select the table or view column that you want to add, then specify the redaction
details.

• To modify the redaction details of a column that is part of the policy, select the
column, click Modify, then edit the redaction details.

• To delete a column from the redaction policy, select the column, then click Delete.

8. On the Edit Data Redaction Policy page, after editing the required fields, click OK to save
and enable the edited redaction policy.

16.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise
Manager

You can find Oracle Data Redaction policy details such as whether the policy is enabled by
using Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em

Chapter 16
Managing Oracle Data Redaction Policies Using Enterprise Manager

16-15



2. From the Targets menu, select Databases.

3. Select Search List, then search for and click the name of the database target for
which the Oracle Data Redaction policy that you want to view was created.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database as a user who has privileges to view information in Oracle
Data Redaction data dictionary views.

6. In the Policies section of the Policies tab, do one of the following:

• Select the name of the policy in the table.

• Select the required redaction policy, then click View.

7. To exit, click OK.

16.5.5 Enabling or Disabling an Oracle Data Redaction Policy in
Enterprise Manager

An Oracle Data Redaction policy is executed at run time only if it is enabled. When you
create an Oracle Data Redaction policy, it is enabled by default.

You can disable an enabled redaction policy, or enable a disabled redaction policy
using Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then search for and click the name of the database target for
which the Oracle Data Redaction policy that you want to enable or disable was
created.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. If you are prompted to do so, then log in to the database as a user who has the
EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER
REDACTION POLICY system or schema privilege.

6. In the Policies section of the Policies tab, select the redaction policy that you want
to enable or disable, and then click Enable or Disable.

7. In the Confirmation dialog box, click Yes or No.

Chapter 16
Managing Oracle Data Redaction Policies Using Enterprise Manager

16-16



16.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise
Manager

You can delete an Oracle Data Redaction policy using Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then search for and click the name of the database target for which
the Oracle Data Redaction policy that you want to delete was created.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on the
DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY system or
schema privilege.

6. In the Policies section of the Policies tab, select the redaction policy that you want to
delete, and then click Delete.

7. In the Confirmation dialog box, click Yes or No.

16.6 Managing Named Data Redaction Policy Expressions
Using Enterprise Manager

You can manage Oracle Data Redaction policy expressions in Enterprise Manager Cloud
Control.

• About Named Data Redaction Policy Expressions in Enterprise Manager
You can create and apply named Oracle Data Redaction policy expression to multiple
columns in tables and views in Oracle Enterprise Manager Cloud Control.

• Creating a Named Data Redaction Policy Expression in Enterprise Manager
You can create and apply a named Oracle Data Redaction policy expression using
Enterprise Manager Cloud Control.

• Editing a Named Data Redaction Policy Expression in Enterprise Manager
You can edit a named Oracle Data Redaction policy expression using Enterprise
Manager Cloud Control.

• Viewing Named Data Redaction Policy Expressions in Enterprise Manager
You can view named Oracle Data Redaction policy expressions using Enterprise
Manager Cloud Control.

• Deleting a Named Data Redaction Policy Expression in Enterprise Manager
You can delete named Oracle Data Redaction policy expressions using Enterprise
Manager Cloud Control.

Chapter 16
Managing Named Data Redaction Policy Expressions Using Enterprise Manager

16-17



16.6.1 About Named Data Redaction Policy Expressions in Enterprise
Manager

You can create and apply named Oracle Data Redaction policy expression to multiple
columns in tables and views in Oracle Enterprise Manager Cloud Control.

When you modify the policy expression, the change is reflected in all redacted
columns in the database instance that use the policy expression. Cloud Control
enables you to create, edit, view, apply to columns, and delete policy expressions.

Related Topics

• Creating and Managing Multiple Named Policy Expressions
A named, centrally managed Oracle Data Redaction policy expression can be
used in multiple redaction policies and applied to multiple tables or views.

16.6.2 Creating a Named Data Redaction Policy Expression in
Enterprise Manager

You can create and apply a named Oracle Data Redaction policy expression using
Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to
create an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. If you are prompted to do so, then log in to the database as a user who has the
EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER
REDACTION POLICY system or schema privilege.

6. On the Oracle Data Redaction page, select the Expressions tab.

7. Click Create.

The Create dialog box appears.

Chapter 16
Managing Named Data Redaction Policy Expressions Using Enterprise Manager

16-18



8. In the Create dialog box, enter the following information:

• Expression Name: Enter a name for the policy expression. Existing policy
expressions are listed on the Data Redaction page.

• Description: Enter a brief description of the policy.

• Expression: Enter the expression. For more complex expressions, such as applying
or exempting the policy from specific users, click the Policy Expression Builder icon
at the right of the Expression field. Click OK in the Policy Expression Builder to
create the expression.

9. Click OK in the Create dialog box.

After you create the policy expression, it is listed in the Data Redaction page and ready to
be associated with a Data Redaction policy.

10. In the Data Redaction page, select the Policies tab.

11. Under Policies, select the row for the policy that redacts the column to which you want to
apply the policy expression, and then click Edit.

12. Under Object Columns, select the column that you want and then click the Modify button.

13. In the Modify dialog box, select the expression from the Expression Name list.

14. Click OK, and then click OK again in the Edit Data Redaction Policy dialog box.

16.6.3 Editing a Named Data Redaction Policy Expression in Enterprise
Manager

You can edit a named Oracle Data Redaction policy expression using Enterprise Manager
Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to create
an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

Chapter 16
Managing Named Data Redaction Policy Expressions Using Enterprise Manager

16-19



5. If you are prompted to do so, then log in to the database as a user who has the
EXECUTE privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER
REDACTION POLICY system or schema privilege.

6. On the Oracle Data Redaction page, select the Expressions tab.

7. Select the policy expression that you want to edit and then click Edit.

8. In the Edit dialog box, modify the Description and Expression fields as
necessary. For more complex expressions, click the Policy Expression Builder
icon, and then click OK after you have recreated the expression.

9. Click OK in the Edit dialog box.

16.6.4 Viewing Named Data Redaction Policy Expressions in
Enterprise Manager

You can view named Oracle Data Redaction policy expressions using Enterprise
Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to
create an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database as a user who has privileges to view information in Oracle
Data Redaction data dictionary views.

6. On the Oracle Data Redaction page, select the Expressions tab.

7. Select the policy expression that you want to view and then click View.

The View dialog box appears, showing the definition of the policy expression.

8. Click OK to exit the View dialog box.

Chapter 16
Managing Named Data Redaction Policy Expressions Using Enterprise Manager

16-20



16.6.5 Deleting a Named Data Redaction Policy Expression in Enterprise
Manager

You can delete named Oracle Data Redaction policy expressions using Enterprise Manager
Cloud Control.

The deletion process first dissociates the policy expression from all columns to which it is
applied.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to create
an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. If you are prompted to do so, then log in to the database as a user who has the EXECUTE
privilege on the DBMS_REDACT PL/SQL package and the ADMINISTER REDACTION POLICY
system or schema privilege.

6. On the Oracle Data Redaction page, select the Expressions tab.

7. Select the policy expression that you want to delete, and then click Delete.

The Delete Expressions confirmation dialog box appears.

8. Click OK.

Chapter 16
Managing Named Data Redaction Policy Expressions Using Enterprise Manager

16-21



17
Using Oracle Data Redaction with Oracle
Database Features

Oracle Data Redaction can be used with other Oracle features, but some Oracle features
may have restrictions with regard to Oracle Data Redaction.

• Oracle Data Redaction General Usage Guidelines
It is important to understand usage guidelines for using Oracle Data Redaction.

• Oracle Data Redaction and DML and DDL Operations
Oracle Data Redaction affects DML and DDL operations, especially for users who issue
ad-hoc SQL against tables with redacted columns.

• Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause
You can use Oracle Data Redaction with nested functions, inline views, and the WHERE
clause in SELECT statements.

• Oracle Data Redaction and Queries on Columns Protected by Data Redaction Policies
Queries that include the DISTINCT clause on columns that are protected by Oracle Data
Redaction policies may return fewer rows. Similarly, SQL queries that include the UNION
clause between SQL statements selecting columns that are protected by Oracle Data
Redaction policies may return fewer rows.

• Oracle Data Redaction and Database Links
Do not create Oracle Data Redaction policies on database views that reference database
links.

• Oracle Data Redaction and Aggregate Functions
Aggregate functions can affect performance overhead on Oracle Data Redaction policies.

• Oracle Data Redaction and Object Types
You can use object types to model real-world entities such as customer accounts.

• Oracle Data Redaction and XML Generation
You cannot use XML generation functions on columns that have Oracle Data Redaction
policies defined on them.

• Oracle Data Redaction and Editions
You cannot redact editioned views. You cannot redact editionable views in an editions-
enabled schema.

• Oracle Data Redaction and Oracle Data Warehouse Query Rewrite Operation
Oracle Data Warehouse request queries are subject to any Oracle Data Redaction
policies that are present against the relations that are specified in the query.

• Oracle Data Redaction and Oracle Virtual Private Database
Oracle Data Redaction does not affect Oracle Virtual Private Database policies because
the VPD inline view, which contains the VPD predicate, acts on actual values.

• Oracle Data Redaction and Oracle Database Real Application Security
Oracle Data Redaction differs from Oracle Database Real Application Security because
of how security is implemented for applications.

17-1



• Oracle Data Redaction and Oracle Database Vault
You can use Oracle Data Redaction in an Oracle Database Vault environment.

• Oracle Data Redaction and Oracle Data Pump
Oracle Data Pump export operations can affect objects that have Oracle Data
Redaction policies.

• Oracle Data Redaction and Data Masking and Subsetting Pack
Oracle Enterprise Manager Data Masking and Subsetting Pack can be used to
create a development or test copy of a production database.

• Oracle Data Redaction and JSON
You can use JavaScript Object Notation (JSON) on redacted data.

17.1 Oracle Data Redaction General Usage Guidelines
It is important to understand usage guidelines for using Oracle Data Redaction.

• Do not include any redacted columns in a SQL expression that is used in a GROUP
BY clause and SELECT list in a SQL statement. Oracle does not support this, and
raises an ORA-00979: not a GROUP BY expression error. This happens because
internally the expression in the SELECT list must be modified by Data Redaction,
but this causes it to no longer be found when it comes time to process the GROUP
BY clause (which is currently not updated by Data Redaction) leading to this
unintended error message.

• Do not include any redacted columns in a SQL expression that is used in both the
DISTINCT clause and ORDER BY clause in a SQL statement. Oracle does not
support this, and raises an error: ORA-01791: not a SELECTed expression. This
happens because internally the expression in the SELECT list must be modified by
Data Redaction, but this causes it to no longer be found when it comes time to
process the ORDER BY clause, leading to this unintended error message. To work
around this issue, rewrite the query to include an inline view so that the semantic
layer can find the column. For example, instead of the following query:

SELECT DISTINCT sensitive_column
FROM table_name
ORDER BY sensitive_column;

Rewrite the query as follows:

SELECT sensitive_column FROM
(SELECT DISTINCT sensitive_column
 FROM table_name
 ORDER BY sensitive_column);

• An ORA-28094: SQL construct not supported by data redaction error is
raised for complex SQL queries that involve redacted columns for users who are
not exempt from the redaction policy. This error is not raised if the users who are
running the complex SQL queries have the EXEMPT REDACTION POLICY system or
schema privilege.

To avoid the ORA-28094 error, ensure that the query has the following properties:

Chapter 17
Oracle Data Redaction General Usage Guidelines

17-2



– When a column in the UNION has a redaction policy, the corresponding column in
each branch of the UNION must use a redaction policy with the same values for all of
its properties:

* Function type

* Function parameters or REGEXP parameters

* Policy expression

* Enable flag

It can be a different redaction policy, but all these properties must be the same.

– In an inline view, a UNION cannot have a subquery.

– In a CREATE VIEW definition or an inline view, there cannot be any SQL expressions
(such as concat, sum, trim, min, max, and so on) that involve a redacted column. The
WITH clause is also processed as an inline view, thus there cannot be any SQL
expressions that involve a redacted column in the WITH clause.

• An ORA-28093: operation on column %s is not supported by data redaction error
is raised if a user issues a query that involves XML syntax and if the user does not have
the EXEMPT REDACTION POLICY system privilege. The ORA-28093 is raised only for users
who are not exempt from the redaction policy, and they cannot use XML syntax that
involves redacted columns, whereas, user who are exempt from the redaction policy are
allowed to.

• Oracle does not support the following:

– Adding a Data Redaction policy on a virtual column
A user with access to the DBA_TAB_COLS data dictionary view can look in the
VIRTUAL_COLUMN column of DBA_TAB_COLS using the following query to find the virtual
column to see if it is being provided to a DBMS_REDACT call to create a Data Redaction
policy.

SELECT COLUMN_ID, COLUMN_NAME, VIRTUAL_COLUMN
FROM DBA_TAB_COLS
WHERE TABLE_NAME = 'table_name_that_you_attempted_to_redact'
AND VIRTUAL_COLUMN = 'YES'
ORDER BY COLUMN_ID;

– Adding a Data Redaction policy on the base column of a virtual column
A user with access to the DBA_TAB_COLS data dictionary view can look in the
DATA_DEFAULT column of DBA_TAB_COLS using the following query to find the virtual
column expression (that is internally created for the above), to see if it contains any
column name that is being provided to a DBMS_REDACT call to create a Data Redaction
policy.

SELECT COLUMN_ID, COLUMN_NAME, VIRTUAL_COLUMN, DATA_DEFAULT
 FROM DBA_TAB_COLS
 WHERE TABLE_NAME = 'table_name_that_you_attempted_to_redact'
 AND VIRTUAL_COLUMN = 'YES'
 ORDER BY COLUMN_ID;

– Adding a Data Redaction policy on the base column of a functional index
A user with access to the DBA_TAB_COLS data dictionary view can look in the
DATA_DEFAULT column of DBA_TAB_COLS using the following query to find the virtual
column expression (that is internally created for the functional index being provided to

Chapter 17
Oracle Data Redaction General Usage Guidelines

17-3



a DBMS_REDACT PL/SQL call), to see if it contains any column name that is
being provided to a DBMS_REDACT call to create a Data Redaction policy.

SELECT COLUMN_ID, COLUMN_NAME, VIRTUAL_COLUMN, DATA_DEFAULT
FROM DBA_TAB_COLS
WHERE TABLE_NAME = 'table_name_that_you_attempted_to_redact'
AND VIRTUAL_COLUMN = 'YES'
ORDER BY COLUMN_ID;

– Adding a Data Redaction policy on any column which is part of extended
statistics
A user with access to the DBA_TAB_COLS data dictionary view can look in the
DATA_DEFAULT column of DBA_TAB_COLS using the following query to find the
virtual column expression (that is internally created for the extended statistics
being provided to a DBMS_REDACT PL/SQL call), to see if it contains any column
name that is being provided to a DBMS_REDACT call to create a Data Redaction
policy.

SELECT COLUMN_ID, COLUMN_NAME, VIRTUAL_COLUMN, DATA_DEFAULT
FROM DBA_TAB_COLS
WHERE TABLE_NAME = 'table_name_that_you_attempted_to_redact'
AND VIRTUAL_COLUMN = 'YES'
ORDER BY COLUMN_ID;

– Adding a virtual column whose base column has a Data Redaction policy
defined on it
You can look in the COLUMN_NAME column of REDACTION_COLUMNS data
dictionary view using the following query to check if the column being used to
create a virtual column has Data Redaction policy defined on it.

SELECT OBJECT_NAME, COLUMN_NAME
FROM REDACTION_COLUMNS
WHERE COLUMN_NAME = 'column_name_that_is_used_for_virtual_expr';

– Creating a functional index on a column with Data Redaction policy

– Creating extended statistics on a column with Data Redaction policy

17.2 Oracle Data Redaction and DML and DDL Operations
Oracle Data Redaction affects DML and DDL operations, especially for users who
issue ad-hoc SQL against tables with redacted columns.

Note the following:

• Oracle Data Redaction treats the RETURNING INTO clause of a DML statement as a
query, even though the result is not displayed. The result that is sent to the buffer
is what would have been displayed had the RETURNING INTO clause been run as
an ordinary SQL query, rather than as part of a DML statement. If your application
performs further processing on the buffer that contains the RETURNING INTO value,
then consider changing the application because it may not expect to find a
redacted value in the buffer.

• If a redacted column appears as the source in a DML or DDL operation, then
Oracle Data Redaction considers this as an attempt to circumvent the policy and

Chapter 17
Oracle Data Redaction and DML and DDL Operations

17-4



prevents it with an ORA-28081: Insufficient privileges. The command references a
redacted object error unless you have the EXEMPT REDACTION POLICY privilege. Note
that the EXEMPT REDACTION POLICY privilege can be granted at the schema in addition to
the system level. Internally, Oracle Data Pump issues these kinds of operations, so you
may also need to grant the EXEMPT REDACTION POLICY privilege at the schema or system
level to a user if they need to perform schema-level exports of tables that have redacted
columns.

• Internally, Oracle Data Mining issues DML and DDL operations, so you may need to
grant the EXEMPT REDACTION POLICY system privilege to a user if the user must create
data mining models on tables that have redacted columns.

Related Topics

• Privileges for Managing Oracle Data Redaction Policies
Because data redaction involves the protection of highly sensitive data, only trusted users
should create Oracle Data Redaction policies.

17.3 Oracle Data Redaction and Nested Functions, Inline Views,
and the WHERE Clause

You can use Oracle Data Redaction with nested functions, inline views, and the WHERE clause
in SELECT statements.

Oracle Data Redaction policies work as follows:

• Nested functions work on redacted data. For example, in SELECT
SUM(AVG(TO_NUMBER(((X))) FROM HR.EMPLOYEES WHERE ..., the column X is redacted
first and the functions are then executed on the redacted data with the execution order
being innermost to outer.

• Inline views are redacted outermost. For example, in SELECT XYZ … AS SELECT A… AS
SELECT B… AS SELECT C…, only SELECT XYZ is redacted after the execution of SELECT C,
SELECT B, and SELECT A.

• The WHERE clause is never redacted. Data Redaction redacts only data in the column
SELECT list.

17.4 Oracle Data Redaction and Queries on Columns Protected
by Data Redaction Policies

Queries that include the DISTINCT clause on columns that are protected by Oracle Data
Redaction policies may return fewer rows. Similarly, SQL queries that include the UNION
clause between SQL statements selecting columns that are protected by Oracle Data
Redaction policies may return fewer rows.

This happens because redaction is performed on the column first and then the DISTINCT
clause is applied on the redacted data. Similarly, for the UNION case, column is redacted first
and then the UNION is applied on the redacted data from the SELECT statements.

To work around this issue, rewrite the queries to include an inline view so that the DISTINCT
or UNION operation occurs before redaction. For example, instead of the following queries:

Chapter 17
Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause

17-5



SELECT DISTINCT sensitive_column
FROM table_name;

SELECT sensitive_column FROM table_name
UNION
SELECT sensitive_column FROM table_name;

Rewrite the queries as follows:

SELECT sensitive_column FROM
(SELECT DISTINCT sensitive_column
 FROM table_name);

SELECT sensitive_column FROM
(SELECT sensitive_column FROM table_name
 UNION
 SELECT sensitive_column FROM table_name);

17.5 Oracle Data Redaction and Database Links
Do not create Oracle Data Redaction policies on database views that reference
database links.

You can find information about existing database links by querying the DBA_DB_LINKS
data dictionary view.

Related Topics

• Oracle Database Administrator’s Guide

17.6 Oracle Data Redaction and Aggregate Functions
Aggregate functions can affect performance overhead on Oracle Data Redaction
policies.

Because Oracle Data Redaction dynamically modifies the value of each row in a
column, certain SQL queries that use aggregate functions cannot take full advantage
of database optimizations that presume the row values to be static.

In the case of SQL queries that call aggregate functions, it may be possible to notice
performance overhead due to redaction.

17.7 Oracle Data Redaction and Object Types
You can use object types to model real-world entities such as customer accounts.

An object type is a user-defined type. You cannot redact object types. This is because
Database Redaction cannot handle all of the possible ways that object types can be
configured, because they are user defined. You can find the type that an object uses
by querying the OBJECT_NAME and OBJECT_TYPE columns of the ALL_OBJECTS data
dictionary view.

17.8 Oracle Data Redaction and XML Generation
You cannot use XML generation functions on columns that have Oracle Data
Redaction policies defined on them.

Chapter 17
Oracle Data Redaction and Database Links

17-6



This restriction applies irrespective of whether the Oracle Data Redaction policy has been
enabled or disabled, or is active for the querying user.

Related Topics

• Oracle XML DB Developer’s Guide

17.9 Oracle Data Redaction and Editions
You cannot redact editioned views. You cannot redact editionable views in an editions-
enabled schema.

In addition to these two restrictions, you cannot use a redacted column in the definition of any
editiioned view. You can find information about editions by querying the DBA_EDITIONS data
dictionary view.

17.10 Oracle Data Redaction and Oracle Data Warehouse
Query Rewrite Operation

Oracle Data Warehouse request queries are subject to any Oracle Data Redaction policies
that are present against the relations that are specified in the query.

Query rewrite may rewrite the query to use a materialized view instead of accessing the detail
relations, but only if it can guarantee to deliver exactly the same results as if the rewrite had
not occurred. Specifically, the query rewrite must retain and respect any Oracle Data
Redaction policies against the relations that are specified in the request query. However, any
Oracle Data Redaction policies against the materialized view itself do not have any effect
when the materialized view is accessed during query rewrite. This is because the data is
already protected by the Oracle Data Redaction policies against the relations in the request
query.

17.11 Oracle Data Redaction and Oracle Virtual Private
Database

Oracle Data Redaction does not affect Oracle Virtual Private Database policies because the
VPD inline view, which contains the VPD predicate, acts on actual values.

Oracle Data Redaction differs from Oracle Virtual Private Database in the following ways:

• Oracle Data Redaction provides more redacting features than Oracle Virtual Private
Database, which only supports NULL redacting. Many applications cannot use NULL
redacting, so Data Redaction is a good solution for these applications.

• Oracle Virtual Private Database policies can be static, dynamic, and context sensitive,
whereas Data Redaction policies only allow static and context-sensitive policy
expressions.

• Data Redaction permits only one policy to be defined on a table or view, whereas you can
define multiple Virtual Private Database policies on an object.

• Application users can access an object that is protected by a Data Redaction policy using
a synonym, but (unlike Oracle Virtual Private Database) Data Redaction does not support
the creation of policies directly on the synonyms themselves.

Chapter 17
Oracle Data Redaction and Editions

17-7



17.12 Oracle Data Redaction and Oracle Database Real
Application Security

Oracle Data Redaction differs from Oracle Database Real Application Security
because of how security is implemented for applications.

Oracle Data Redaction differs from Oracle Database Real Application Security in that
Real Application Security provides a comprehensive authorization framework for
application security.

Column security within Real Application Security is based on application privileges that
are defined by applications using the Real Application Security framework.

Related Topics

• Oracle Database Real Application Security Administrator's and Developer's Guide

17.13 Oracle Data Redaction and Oracle Database Vault
You can use Oracle Data Redaction in an Oracle Database Vault environment.

For example, if there is an Oracle Database Vault realm around an object, a user who
does not belong to the authorized list of realm owners or participants cannot see the
object data, regardless of whether the user was granted the EXEMPT REDACTION
POLICY privilege. If the user attempts a DML or DDL statement on the data, error
messages result.

17.14 Oracle Data Redaction and Oracle Data Pump
Oracle Data Pump export operations can affect objects that have Oracle Data
Redaction policies.

• Oracle Data Pump Security Model for Oracle Data Redaction
The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION
POLICY system privilege.

• Export of Objects That Have Oracle Data Redaction Policies Defined
You can export objects that have already had Oracle Data Redaction policies
defined on them.

• Export of Data Using the EXPDP Utility access_method Parameter
Oracle Data Pump can export data from a schema that contains an object that has
a Data Redaction policy.

• Import of Data into Objects Protected by Oracle Data Redaction
During import operations into Oracle Data Redaction-protected objects, be aware
of issues that may occur.

17.14.1 Oracle Data Pump Security Model for Oracle Data Redaction
The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION
POLICY system privilege.

Chapter 17
Oracle Data Redaction and Oracle Database Real Application Security

17-8



Remember that by default the DBA role is granted the DATAPUMP_EXP_FULL_DATABASE role as
well as the DATAPUMP_IMP_FULL_DATABASE role.

This enables users who were granted these roles to be exempt from Data Redaction policies.
This means that, when you export objects with Data Redaction policies defined on them, the 
actual data in the protected tables is copied to the Data Pump target system without being
redacted. Users with these roles, including users who were granted the DBA role, are able to
see the actual data in the target system.

However, by default, all of the Data Redaction policies associated with any tables and views
in the Data Pump source system are also included in the export and import operation (along
with the objects themselves) and applied to the objects in the target system, so the data is
still redacted when users query the objects in the target system.

Related Topics

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the data
they access.

17.14.2 Export of Objects That Have Oracle Data Redaction Policies
Defined

You can export objects that have already had Oracle Data Redaction policies defined on
them.

• Finding Object Types Used by Oracle Data Pump
You must find the object types that Oracle Data Pump uses before exporting objects that
have Oracle Data Redaction policies defined on them.

• Exporting Only the Data Dictionary Metadata Related to Data Redaction Policies
You can export only the data dictionary metadata using Oracle Database Pump metadata
filters.

• Importing Only the Data Dictionary Metadata Using the INCLUDE Parameter in IMPDP
You can import only the data dictionary metadata using Oracle Database Pump metadata
filters.

17.14.2.1 Finding Object Types Used by Oracle Data Pump
You must find the object types that Oracle Data Pump uses before exporting objects that
have Oracle Data Redaction policies defined on them.

After you find these object types, you should use these object types as parameters for the
INCLUDE directive to the EXPDP utility, to selectively export only metadata of these specific
object types to the dump file.

• To find the object types, query the DATABASE_EXPORT_OBJECTS view.

For example:

SELECT OBJECT_PATH
FROM DATABASE_EXPORT_OBJECTS
WHERE OBJECT_PATH LIKE 'RADM_%'; 

Output similar to the following appears:

Chapter 17
Oracle Data Redaction and Oracle Data Pump

17-9



OBJECT_PATH
------------
RADM_FPTM
RADM_POLICY
RADM_POLICY_EXPR

17.14.2.2 Exporting Only the Data Dictionary Metadata Related to Data
Redaction Policies

You can export only the data dictionary metadata using Oracle Database Pump
metadata filters.

This kind of Data Pump export could, for example, be used if you must use the same
set of Data Redaction policies and settings across development, test, and production
databases. Because the flag content=metadata_only is specified, the dump file does
not contain any actual data.

• To export only the data dictionary metadata related to data redaction policies, full
redaction settings, and policy expressions, include RADM_POLICY, RADM_FPTM, and
RADM_POLICY_EXPR in the EXPDP utility command similar to the following:

expdp system/password \
full=y \
COMPRESSION=NONE \
content=metadata_only \
INCLUDE=RADM_FPTM,RADM_POLICY,RADM_POLICY_EXPR \
directory=my_directory \
job_name=my_job_name \
dumpfile=my_data_redaction_policy_metadata.dmp

Related Topics

• Oracle Database Utilities

• Oracle Database Utilities

17.14.2.3 Importing Only the Data Dictionary Metadata Using the INCLUDE
Parameter in IMPDP

You can import only the data dictionary metadata using Oracle Database Pump
metadata filters.

• To import only the data dictionary metadata related to data redaction policies, full
redaction settings, and policy expressions, include RADM_POLICY, RADM_FPTM, and
RADM_POLICY_EXPR in the IMPDP utility command similar to the following:

impdp system/password \
full=y \
content=metadata_only \
INCLUDE=RADM_FPTM,RADM_POLICY,RADM_POLICY_EXPR \
directory=my_directory \
job_name=my_job_name \
dumpfile=my_data_redaction_policy_metadata.dmp

Chapter 17
Oracle Data Redaction and Oracle Data Pump

17-10



17.14.3 Export of Data Using the EXPDP Utility access_method Parameter
Oracle Data Pump can export data from a schema that contains an object that has a Data
Redaction policy.

If you are using Oracle Data Pump to perform full database export operations using the Data
Pump default settings (direct_path), and if you receive error messages that you do not
understand, then use this section to repeat the operation in such a way as to better
understand the error.

If you try to use the Oracle Data Pump Export (EXPDP) utility with the access_method
parameter set to direct_path to export data from a schema that contains an object that has
a Data Redaction policy defined on it, then the following error message may appear and the
export operation fails:

ORA-31696: unable to export/import TABLE_DATA:"schema.table" using client specified 
DIRECT_PATH method

This problem only occurs when you perform a schema-level export as a user who was not
granted the EXP_FULL_DATABASE role. It does not occur during a full database export, which
requires the EXP_FULL_DATABASE role. The EXP_FULL_DATABASE role includes the EXEMPT
REDACTION POLICY system privilege, which bypasses Data Redaction policies.

To find the underlying problem, try the EXPDP invocation again, but do not set the
access_method parameter to direct_path. Instead, use either automatic or external_table.
The underlying problem could be a permissions problem, for example:

ORA-28081: Insufficient privileges - the command references a redacted object.

Related Topics

• Oracle Database Utilities

17.14.4 Import of Data into Objects Protected by Oracle Data Redaction
During import operations into Oracle Data Redaction-protected objects, be aware of issues
that may occur.

Inadvertent Drop of Oracle Data Redaction Policies

During an import operation, be careful that you do not inadvertently drop data redaction
policies that protect imported data.

Consider a scenario in which the source tables that were exported using the Oracle Data
Pump Export (EXPDP) utility do not have Oracle Data Redaction polices. However, the
destination tables to which the data is to be imported by using Oracle Data Pump Import
(IMPDP) have Oracle Data Redaction policies.

During the Data Pump import operation, the status of the Data Redaction policies on the
objects being imported depends on the CONTENT option of IMPDP command.

• If you use the CONTENT=ALL or CONTENT=METADATA_ONLY option in the IMPDP command,
then the Data Redaction policies on the destination tables are dropped. You must
recreate the Data Redaction policies.

• If you use CONTENT=DATA_ONLY in the IMPDP command, then the Data Redaction polices
on the destination tables are not dropped.

Chapter 17
Oracle Data Redaction and Oracle Data Pump

17-11



Data Redaction Policy Not Being Imported

During an import operation, you could get an ORA-28069: A Data Redaction Policy
Already Exists On This Object error.

Consider a scenario in which the source tables that were exported using the Oracle
Data Pump Export (EXPDP) utility have Oracle Data Redaction policies. The destination
tables to which the data is being imported by using Oracle Data Pump (IMPDP) also
have Oracle Data Redaction policies.

During the Data Pump import operation, you could get the ORA-28069 error. To avoid
this error, you must import only the data using the CONTENT=DATA_ONLY parameter.
Alternatively, you can drop the redaction policies on the target objects and then import
all the data.

Related Topics

• Oracle Database Utilities

17.15 Oracle Data Redaction and Data Masking and
Subsetting Pack

Oracle Enterprise Manager Data Masking and Subsetting Pack can be used to create
a development or test copy of a production database.

To accomplish this, you can mask this data in bulk, and then put the resulting masked
data in the development or test copy.

You can still apply Data Redaction policies to the non-production database, in order to
redact columns that contain data that was already masked by Oracle Enterprise
Manager Data Masking and Subsetting Pack.

Remember that Oracle Enterprise Manager Data Masking and Subsetting Pack is
used to mask data sets when you want to move the data to development and test
environments. Data Redaction is mainly designed for redacting at runtime for
production applications in a consistent fashion across multiple applications, without
having to make application code changes.

17.16 Oracle Data Redaction and JSON
You can use JavaScript Object Notation (JSON) on redacted data.

• You can create is json constraints on table columns.

However, you cannot create an Oracle Data Redaction policy on a table column
that has the is json constraint. If you attempt to do so, an ORA-28073 - The
column column_name has an unsupported datatype error is raised. As a
workaround solution, Oracle recommends that you create a relational view that
uses the JSON_TABLE row source operator on top of the JSON object, and then
apply the Data Redaction policy to this view.

Chapter 17
Oracle Data Redaction and Data Masking and Subsetting Pack

17-12



The following example shows how you can use json_table to create a relational view
and add a data redaction policy to this view.

create table tab1
        (c1 varchar2(4000) check (c1 is json))

insert into tab1 values
('{"id" : 4,
   "name" : "Large blue soda cup",
   "price" : 12,
   "tags" : ["large1", "green"],
   "phone" : "1-415-555-0100"}'
)

create or replace view json_view1 as
 select t.* from tab1,
  json_table(c1, '$' columns
       id number path '$.id',
       name varchar2(20) path '$.name',
       price number path '$.price',
       phone varchar2(20) path '$.phone') t ;

If the owner of the view queries column phone, then it is not redacted. Now, the redaction
policy can be added on any of the columns in the view (such as phone, price, and so on).

• You can create JSON duality views on top of redacted data.
However, there is a restriction to this ability: columns enabled for redaction cannot be
primary keys and cannot be part of the Duality View Entity Tag (ETAG).

Related Topics

• Oracle Database SQL Language Reference

• Oracle Database JSON Developer’s Guide

• JSON-Relational Duality Developer's Guide

Chapter 17
Oracle Data Redaction and JSON

17-13



18
Security Considerations for Oracle Data
Redaction

Oracle provides guidelines for using Oracle Data Redaction.

• Oracle Data Redaction General Security Guidelines
It is important to understand general security guidelines for using Oracle Data Redaction.

• Restriction of Administrative Access to Oracle Data Redaction Policies
You can restrict the list of users who can create, view, and edit Data Redaction policies.

• How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas
Both users SYS and SYSTEM automatically have the EXEMPT REDACTION POLICY system
privilege.

• Policy Expressions That Use SYS_CONTEXT Attributes
Be careful when writing a policy expression that depends on a SYS_CONTEXT attribute that
is populated by an application.

• Oracle Data Redaction Policies on Materialized Views
You can create Oracle Data Redaction policies on materialized views and on their base
tables.

• REDACTION_COLUMNS Data Dictionary View Behavior When a View Is Invalid
When an Oracle Data Redaction policy exists on a column of a view, and the view
becomes invalid, the Data Redaction policy remains visible in the REDACTION_COLUMNS
data dictionary view.

• Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled
You should check if the recycle bin is enabled before you drop Oracle Data Redaction
policies.

18.1 Oracle Data Redaction General Security Guidelines
It is important to understand general security guidelines for using Oracle Data Redaction.

• Oracle Data Redaction is not intended to protect against attacks by regular and privileged
database users who run ad hoc queries directly against the database. If the user can
issue arbitrary SQL or PL/SQL statements, then they will be able to access the actual
value.

• Oracle Data Redaction is not intended to protect against users who run ad hoc SQL
queries that attempt to determine the actual values by inference. Inference refers to the
process that is designed to find actual data by repeatedly trying queries. For example, to
find the users who earn the highest salaries, an intruder could use the following query
where column salary is redacted:

SELECT FIRST_NAME, LAST_NAME, SALARY 
FROM HR.EMPLOYEES 
WHERE SALARY > 16000 
ORDER BY SALARY DESC;

18-1



FIRST_NAME           LAST_NAME                     SALARY
-------------------- ------------------------- ----------
Steven               King                               0
Neena                Kochhar                            0
Lex                  De Haan                            0

• Oracle Data Redaction relies on the database and application context values. For
applications, it is the responsibility of the application to properly initialize the
context value.

• Oracle Data Redaction is not enforced for users who are logged in using the
SYSDBA administrative privilege.

• Certain DDL statements that attempt to copy the actual data out from under the
control of a data redaction policy (that is, CREATE TABLE AS SELECT, INSERT AS
SELECT) are blocked by default, but you can disable this behavior by granting the
user the EXEMPT REDACTION POLICY system privilege.

• Oracle Data Redaction does not affect day-to-day database operations, such as
backup and recovery, Oracle Data Pump exports and imports, Oracle Data Guard
operations, and replication.

18.2 Restriction of Administrative Access to Oracle Data
Redaction Policies

You can restrict the list of users who can create, view, and edit Data Redaction
policies.

To accomplish this, you can limit who has the EXECUTE privilege on the DBMS_REDACT
package and ADMINISTER REDACTION POLICY privilege and by limiting who has the
SELECT privilege on the REDACTION_POLICIES and REDACTION_COLUMNS views.

You also can restrict who is exempted from redaction by limiting the EXEMPT REDACTION
POLICY privilege. If you use Oracle Database Vault to restrict privileged user access,
then you can use realms to restrict granting of EXEMPT REDACTION POLICY.

Related Topics

• Oracle Data Redaction and Oracle Database Vault
You can use Oracle Data Redaction in an Oracle Database Vault environment.

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the
data they access.

• Introduction to Oracle Database Vault

18.3 How Oracle Data Redaction Affects the SYS,
SYSTEM, and Default Schemas

Both users SYS and SYSTEM automatically have the EXEMPT REDACTION POLICY system
privilege.

Chapter 18
Restriction of Administrative Access to Oracle Data Redaction Policies

18-2



SYSTEM has the EXP_FULL_DATABASE role, which includes the EXEMPT REDACTION POLICY
system privilege.

This means that the SYS and SYSTEM users can always bypass any existing Oracle Data
Redaction policies, and will always be able to view data from tables (or views) that have Data
Redaction policies defined on them.

A data redaction policy cannot be applied to an object owned by SYS.

Follow these guidelines:

• Do not create Data Redaction policies on the default Oracle Database schemas,
including the SYS and SYSTEM schemas.

• Be aware that granting the EXEMPT REDACTION POLICY system privilege to additional roles
may enable users to bypass Oracle Data Redaction, because the grantee role may have
been granted to additional roles.

• Do not revoke the EXEMPT REDACTION POLICY system privilege from the roles that it was
granted to by default.

18.4 Policy Expressions That Use SYS_CONTEXT Attributes
Be careful when writing a policy expression that depends on a SYS_CONTEXT attribute that is
populated by an application.

If the user somehow connects directly (rather than through the application), then the
SYS_CONTEXT attribute would not have been populated. If you do not handle this NULL scenario
in your policy expression, you could unintentionally reveal actual data to the querying user.

For example, suppose you wanted to create a policy expression that intends to redact the
query results for everyone except users who have the client identifier value of SUPERVISOR.
The following expression unintentionally enables querying users who have NULL as the value
for their CLIENT_IDENTIFIER to see the real data:

SYS_CONTEXT('USERENV', 'CLIENT_IDENTIFIER') IS NOT 'SUPERVISOR'

A more rigorous policy expression redacts the result of the query if the client identifier is not
set, that is, it has a NULL value.

SYS_CONTEXT('USERENV', 'CLIENT_IDENTIFIER') IS NOT 'SUPERVISOR' OR IS NULL

Remember that in SQL, comparisons with NULL are undefined, and are thus FALSE, but
redaction only takes place when the policy expression evaluates to TRUE.

18.5 Oracle Data Redaction Policies on Materialized Views
You can create Oracle Data Redaction policies on materialized views and on their base
tables.

However, ensure that the creator of the materialized view, or the user who performs the
refresh of the materialized view, is not blocked by any Data Redaction policies. In other
words, the user performing the materialized view creation or refresh operations should be
exempt from the Data Redaction policy. As a best practice, when you create a new
materalized view, treat it as a copy of the actual table, and then create a separate Data
Redaction policy to protect it.

Chapter 18
Policy Expressions That Use SYS_CONTEXT Attributes

18-3



18.6 REDACTION_COLUMNS Data Dictionary View
Behavior When a View Is Invalid

When an Oracle Data Redaction policy exists on a column of a view, and the view
becomes invalid, the Data Redaction policy remains visible in the REDACTION_COLUMNS
data dictionary view.

For example, a view can become invalid if one of its columns refers to a column that
was dropped from a table upon which the view depends.

The column continues to be visible in the REDACTION_COLUMNS data dictionary view
because the Data Redaction policy is not automatically dropped when the view
becomes invalid.

Instead, the decision on whether to drop the Data Redaction policy is taken when the
view is subsequently altered.

This approach was chosen in preference to automatically dropping the Data Redaction
policy when the view becomes invalid because it is less error-prone and presents less
risk of accidentally displaying actual data from the underlying table.

By deferring the decision to when the view is being altered, it allows the view to be
recompiled after the column is restored to the table. After the column is restored to the
table and the view is recompiled, then the view becomes valid and still has its Data
Redaction policy in place.

On the other hand, if the invalid view definition was subsequently replaced with a valid
view definition which no longer contains the column that the Data Redaction policy
was previously defined on, it is at that point that the Data Redaction policy is
automatically dropped. The REDACTION_COLUMNS data dictionary view is then updated
to no longer show the column (since it is no longer part of the new view's definition).

18.7 Dropped Oracle Data Redaction Policies When the
Recycle Bin Is Enabled

You should check if the recycle bin is enabled before you drop Oracle Data Redaction
policies.

If you drop a table or view that has an Oracle Data Redaction policy defined on it when
the recycle bin feature is enabled, and if you query the REDACTION_COLUMNS or
REDACTION_POLICIES data dictionary views before you purge the recycle bin, then you
will see object names such as BIN$... (for example,
BIN$1Xu5PSW5VaPgQxGS5AoAEA==$0).

This is normal behavior. These policies are removed when you purge the recycle bin.

To find if the recycle bin is enabled, you can run the SHOW PARAMETER RECYCLEBIN
command in SQL*Plus.

Related Topics

• Purging Objects in the Recycle Bin

Chapter 18
REDACTION_COLUMNS Data Dictionary View Behavior When a View Is Invalid

18-4



Glossary

actual data
In Oracle Data Redaction, the data in a protected table or view. An example of actual data
could be the number 123456789, and the redacted data version of this number could be
999996789.

auto-login TDE wallet
A software keystore that is protected by a system-generated password and does not need to
be explicitly opened by a security administrator. Auto-login TDE wallets are automatically
opened when accessed and can be used on any computer that runs an Oracle database. For
example, consider an Oracle RAC environment that has four nodes, and each node is on a
different computer. This environment uses an auto-login keystore. When a REKEY operation is
performed on node 1, the auto-login and password-based keystores must be copied to the
computers that host nodes 2, 3, and 4. In this configuration, the auto-login keystores will be
opened on all four nodes when required.

cipher suite
A set of authentication, encryption, and data integrity algorithms used to exchange messages
between network nodes using Transport Layer Security (TLS). During a TLS handshake, for
example, the two nodes negotiate to see which cipher suite they will use when transmitting
messages back and forth.

ciphertext
Message text that has been encrypted.

See also encrypted text.

data redaction
The ability to mask data with different values in real time, that is, at the moment a user tries to
access the data. You can mask all of the data, a partial subset of the data, or display random
values in place of the data. It does not change the actual data in the database.

Glossary-1



decryption
The process of converting an encrypted message (the ciphertext), back to its original
message (plaintext).

encrypted text
Text that has been encrypted, using an encryption algorithm and an encryption key;
the output stream of an encryption process. The text is not readable or decipherable,
without decrypting it first. Also called ciphertext.

encryption
The process of converting an original message (plaintext) to an encrypted message
(ciphertext).

external keystore
A container that stores a Transparent Data Encryption key for a hardware security
module. (The previous term for external keystore was hardware keystore.) An external
keystore can be Oracle Key Vault or Oracle Cloud Infrastructure (OCI) Key
Management Service (KMS). External keystores provide centralized key management
for TDE-enabled databases.

hardware security module
A physical device that provides secure storage for encryption keys. Oracle does not
support third-party hardware security modules to provide key management for
Transparent Data Encryption-enabled databases. (See My Oracle Support note 
2310066.1 for more information.) Oracle Key Vault can provide third-party hardware
security modules to provide root-of-trust to Oracle Key Vault. See Oracle Key Vault
Root of Trust HSM Configuration Guide.

inference
A process that is designed to find actual data by repeatedly trying queries. For
example, to find the users who earn the highest salaries where the column salary is a
redacted column, an intruder could use the following query:

SELECT FIRST_NAME, LAST_NAME, SALARY FROM HR.EMPLOYEES WHERE SALARY > 16000 
ORDER BY SALARY DESC;

FIRST_NAME           LAST_NAME                     SALARY
-------------------- ------------------------- ----------
Steven               King                               0
Neena                Kochhar                            0
Lex                  De Haan                            0

Glossary

Glossary-2

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=392345372613593&id=2310066.1&_adf.ctrl-state=tsma1yzfn_52


key pair
A public key and its associated private key. See public and private key pair.

keystore
A general term for any container that stores encryption keys, such as Transparent Data
Encryption keys and other encrypted data. It can refer to a TDE wallet, which is specific to
Oracle Database, or to an external keystore, which is specific to Oracle Key Vault or Oracle
Cloud Interface (OCI) Key Management Service (KMS).

local auto-login TDE wallet
A TDE wallet that is local and restricted to the computer on which it was created.

See also auto-login TDE wallet.

mask
The ability to redact data from a user or an application.

Oracle-managed tablespace
An Oracle-supplied tablespace that contains information necessary for the correct functioning
(confidentiality, integrity, and availability) of the database system. This information includes
the system's data dictionary, the system's temporary sort area, the system's undo segment,
and the system's auxiliary data. This information is only expected to be updated internally by
the Oracle database server itself, and does not normally be updated directly by users.

password-based TDE wallet
A TDE wallet that must be opened with a password before it can be accessed.

plaintext
Message text that has not been encrypted.

private key
In public-key cryptography, this key is the private key that is known only to its owner. It is
primarily used for encrypting message digests used with digital signatures.

See public and private key pair.

public key
One of two keys that are used in public key cryptography, the other key being the private key.
In typical public key cryptography usage, the public key is used to encrypt data or verify
digital signatures. The the private key is used to decrypt data or generate digital signatures.

Glossary

Glossary-3



The public key, unlike the private key, can be made available to anyone whereas the
private key must remain secret.

See public and private key pair.

public key encryption
The process where the sender of a message encrypts the encryption key of the
recipient. Upon delivery, the message is decrypted by the recipient using its private
key.

public and private key pair
A set of two related numbers used for encryption and decryption, where one is called
the private key and the other is called the public key. Public keys are typically made
widely available, while private keys are held by their respective owners. Data
encrypted with either a public key or a private key from a key pair can be decrypted
with its associated key from the key pair.

public key infrastructure (PKI)
Information security technology utilizing the principles of public key cryptography.
Public key cryptography involves encrypting and decrypting information using a shared
public and private key pair. Provides for secure, private communications within a public
network.

redacted data
Masked data that is displayed to the querying user. For example, if the actual data is
3714-4963-5398-4321, then the redacted data could appear, depending on the Data
Redaction policy, as XXXX-XXXX-XXXX-4321.

salt
In cryptography, a way to strengthen the security of encrypted data. Salt is a random
string that is added to the data before it is encrypted, making it more difficult for
attackers to steal the data by matching patterns of ciphertext to known ciphertext
samples. Salt is often also added to passwords, before the passwords are hashed, to
avoid dictionary attacks, a method that attackers use to determine sensitive
passwords. The addition of salt to a password before hashing makes it more difficult
for intruders to match the hash values (sometimes called verifiers) with their dictionary
list of common password hash values, because they do not know the salt beforehand.

software keystore
See TDE wallet,

Glossary

Glossary-4



tablespace encryption key
An encryption key for the encryption of a tablespace. The TDE tablespace encryption key
encrypts the tablespace encryption key, which in turn encrypts and decrypts data in the
tablespace.

TDE master encryption key
A key that is stored within a TDE wallet or a external keystore. For table encryption, this key
encrypts the TDE table key, and for tablespace encryption, it encrypts the tablespace
encryption key.

See also keystore.

TDE table key
An encryption key that is associated with a table whose columns are marked for encryption.
The TDE master encryption key encrypts this table encryption key.

TDE wallet
A container that stores a Transparent Data Encryption a TDE master encryption key for use
as an auto-login TDE wallet, a local auto-login TDE wallet, or a password-based TDE wallet
to store and manage security credentials for an individual entity. TDE wallets are specific to
Oracle Database only. A Wallet Resource Locator (WRL) provides all of the necessary
information to locate the TDE wallet. TDE wallets were previously referred to as software
keystores.

wallet obfuscation
The ability to store and access an Oracle TDE wallet without querying the user for a
password before access (supports single sign-on (SSO)).

Wallet Resource Locator (WRL)
A tool that provides all of the necessary information to locate a TDE wallet. It is a path to an
operating system directory that contains a TDE wallet.

Glossary

Glossary-5



Index

Symbols
, when to use, 7-6

A
actual data, 14-3
ad hoc tools

Oracle Data Redaction, 13-4
ADMINISTER KEY MANAGEMENT

isolated mode operations, 4-2
isolated mode operations not allowed, 4-7
united mode operations allowed in, 3-2
united mode operations not allowed, 3-18

administrative access to policies, restricting, 18-2
aggregate functions

affect on Data Redaction policy optimization,
17-6

ALTER SYSTEM statement
how compares with ADMINISTER KEY

MANAGEMENT statement, 10-7
APEX_UTIL.GET_NUMERIC_SESSION_STATE

function
Oracle Data Redaction policies (NV public

function), 15-13
APEX_UTIL.GET_SESSION_STATE function

Oracle Data Redaction policies (V public
function), 15-13

applications
modifying to use Transparent Data

Encryption, 10-7
auto login keystores

and Transparent Data Encryption (TDE),
7-34

Automatic Storage Management (ASM)
moving TDE wallets from, 7-14
non-OMF-compliant system pointing to ASM

location, 7-22
TDE wallet location configuration, 7-21
TDE wallet pointing to ASM location, 7-22

C
CDBs

cloning PDBs with encrypted data, 8-25

CDBs (continued)
cloning PDBs with encrypted data in isolated

mode, 9-37
cloning PDBs wth encrypted data, about,

8-25
Data Redaction masking policies, 13-4
moving PDB from one CDB to another in

united mode, 8-20
moving PDB from one PDB to another, 9-34
PDBs with encrypted data, 8-21
preserving keystore passwords in PDB move

operations, 9-34
preserving keystore passwords in PDB move

operations in united mode, 8-20
relocating PDBs with encrypted data across

CDBs in united mode, 8-27
remotely cloning PDBs with encrypted data in

isolated mode, 9-38, 9-39
remotely cloning PDBs with encrypted data in

united mode, 8-26
change data capture, synchronous, 5-3
closing external keystores, 8-6
closing TDE wallets, 8-6
column encryption

about, 2-7
changing algorithm, 5-10
changing encryption key, 5-10
creating encrypted table column with default

algorithm, 5-4
creating encrypted table column with non-

default algorithm, 5-5
creating index on encrypted column, 5-9
data loads from external file, 10-10
data types to encrypt, 5-2
existing tables

about, 5-8
adding encrypted column to, 5-8
disabling encryption, 5-9
encrypting unencrypted column, 5-8

external tables, 5-7
incompatibilities, 12-1
limitations, 12-1
migrating encryption key, 5-10
performance, optimum, 12-4
salt, 5-9

Index-1



column encryption (continued)
security considerations, 10-4
skipping integrity check, 5-6

column sensitive type discovery
enabling when creating a Data Redaction

policy, 16-11
compliance

Transparent Data Encryption, 2-3
compression of Transparent Data Encryption

data, 10-3
configuring TDE wallets

creating local auto-login TDe wallet, 3-12
control files

lost, 4-7

D
data at rest, 2-1
data deduplication of Transparent Data

Encryption data, 10-3
data redaction

See Oracle Data Redaction
Data Redaction supported functions, 15-8
data storage

Transparent Data Encryption, 10-6
database close operations

keystores, 10-11
database links

with Oracle Data Redaction policies, 17-6
database roles

Data Redaction policies, 15-12
databases

about encrypting, 6-2
creating encrypted with DBCA for Data

Guard, 6-28
creating encrypted with DBCA for

multitenant, 6-27
encrypting existing, 6-30
encrypting offline, 6-31
encrypting online, 6-33

DDL statements
Oracle Data Redaction policies, 17-4

decryption
tablespaces, offline, 6-14, 6-17
tablespaces, online, 6-18

DISTINCT clause, Data Redaction policies, 17-2
DML statements

Oracle Data Redaction policies, 17-4

E
editing custom formats, 16-7
editing policies, 16-14
Editions

Transparent Data Encryption, 11-42

ENCRYPT_NEW_TABLESPACES database
initialization parameter, 6-12

encrypted columns
data loads from external files, 10-10

encrypting data
in isolated mode, 4-15, 4-18
in united mode, 3-17

encryption, 2-7
algorithm, setting default, 6-10
cloning PDBs with encrypted data, 8-25
cloning PDBs with encrypted data in isolated

mode, 9-37
databases offline, 6-31
databases online, 6-33
encrypting future tablespaces, 6-12

about, 6-11
existing databases, 6-30
procedure, 6-12
relocating PDBs with encrypted data across

CDBs in united mode, 8-27
remotely cloning PDBs with encrypted data in

isolated mode, 9-38, 9-39
remotely cloning PDBs with encrypted data in

united mode, 8-26
supported encryption algorithms, 6-18
tablespaces, offline, 6-14
tablespaces, online, 6-18

See also Transparent Data Encryption (TDE)
encryption algorithms, supported, 6-18
encryption keys

setting in isolated mode, 4-14
setting in united mode, 3-16

ENCRYPTION_WALLET_LOCATION parameter
convert to WALLET_ROOT and

TDE_CONFIGURATION, 7-41
Errors:

ORA-46694, 9-30
EXEMPT REDACTION POLICY privilege

using with Database Vault, 18-2
expressions, 15-8

LENGTH functions, character string, 15-10
namespace functions, 15-9
Oracle Application Express, 15-10
Oracle Label Security functions, 15-11
SUBSTR function, 15-9

external credential store, external keystores, 7-6
external credential store, external keystores,

sqlnet.ora, 7-6
external credential store, password-based TDE

wallets, 7-6
external credential store, password-based TDE

wallets, sqlnet.ora, 7-6
external files

loading data to tables with encrypted
columns, 10-10

Index

Index-2



external keystores
about, 2-9
backing up, 7-9
changing password in isolated mode, 9-4
changing password in united mode, 8-3
closing, 8-6
closing in isolated mode, 9-9
closing in united mode, 8-7
heartbeat batch size, 3-23
opening in isolated mode, 4-16
plugging PDBs, 8-24, 9-36
unplugging PDBs, 8-23, 9-36
using external keystore, 7-6
using external keystore, sqlnet.ora, 7-6

external store for passwords
open and close operations in CDB, 8-28,

9-40
external tables, encrypting columns in

ORACLE_DATPUMP, 10-10
ORACLE_LOADER, 10-10

EXTERNAL_STORE clause, 7-6

G
GROUP BY clause, Data Redaction policies,

17-2
guidelines

materialized views and Data Redaction, 18-3
recycle bin and Data Redaction, 18-4
SYS_CONTEXT values and Data Redaction,

18-3
guidelines, general usage

redacted columns and DISTINCT clause,
17-2

redacted columns and GROUP BY clause,
17-2

redacted columns and ORDER BY clause,
17-2

guidelines, security
ad hoc query attacks and Data Redaction,

18-1
application context value handling by Data

Redaction policies, 18-1
day-to-day operations and Data Redaction,

18-1
DDL statements and Data Redaction

policies, 18-1
exhaustive SQL queries and inference and

Data Redaction, 18-1

H
HEARTBEAT_BATCH_SIZE initialization

parameter, 3-23

I
import/export utilities, original, 5-3
index range scans, 2-5
indexes

creating on encrypted column, 5-9
inference, used to find data by repeatedly using a

query, 18-1
inline views

Data Redaction policies order of redaction,
17-5

Data Redaction redaction, 17-5
intruders

ad hoc query attacks, 18-1
isolated mode, 4-2, 4-7

about, 4-1
about configuring wallet location and

keystore type, 4-7
ADMINISTER KEY MANAGEMENT

operations allowed in, 4-2
ADMINISTER KEY MANAGEMENT

operations not allowed in, 4-7
backing up TDE wallets, 9-4
changing PDB keystore from CDB root, 4-9
configuring external keystores, about, 4-15
configuring for Oracle Key Vault, 4-16
configuring keystore location and keystore

type, 4-8
configuring TDE wallets, about, 4-12
creating TDE master encryption key for later

use, 9-11
creating TDE wallet, 4-12
encrypting data, 4-15, 4-18
encryption key, setting, 4-14
exporting or importing master encryption

keys, 9-43
exporting, importing TDE master encryption

keys, 9-42
external keystores, closing, 9-9
external keystores, opening, 4-16
lost control file, 4-10
master encryption keys

moving key from PDB to CDB root, 9-30
master encryption keys, migrating, 4-18
migrating from external keystore to password

TDE wallet, 9-29
migrating from password TDE wallet to

external keystore, 9-28
moving encryption key into new TDE wallet,

9-14
moving PDB from one CDB to another, 9-34
Oracle RAC, 4-11
password change for external keystores, 9-4
password change for TDE wallets, 9-3

Index

Index-3



isolated mode (continued)
plugging PDB with master encryption keys

stored in external keystore, 9-36
plugging PDBs with encrypted data into CDB,

9-35
secrets in a keystore, Oracle Database, 9-18
secrets stored in external keystores, 9-21
secrets stored in TDE wallets, 9-19
setting new encryption key, 4-17
TDE wallets, closing, 9-8
TDE wallets, opening, 4-13
uniting PDB keystore, 9-30
unplugging PDBs, 9-36

J
JSON

Oracle Data Redaction, 17-12

K
keystore location

about setting for isolated mode, 4-7
setting for isolated mode, 4-8
setting for united mode, 3-7

keystore type
about setting for isolated mode, 4-7
setting for isolated mode, 4-8
setting for united mode, 3-7

keystores
about, 2-8
architecture, 2-7
auto login, 7-34
auto-login, open and close operations in

CDBs, 8-28, 9-40
backing up isolated mode password-

protected TDE wallets
procedure, 9-4

backing up password-protected TDE wallets
backup identifier rules, 7-7
procedure, 7-8

backing up united mode password-protected
TDE wallets

procedure, 8-4
changing Oracle Key Vault password, 7-5
closing external keystores, 8-6
closing in CDBs, 8-28, 9-40
closing TDE wallets, 8-6
creating when PDB is closed, 9-31
database close operations, 10-11
deleting unused, 8-17
deleting unused, about, 8-16
external, changing password in isolated

mode, 9-4

keystores (continued)
external, changing password in united mode,

8-3
external, opening in isolated mode, 4-16
merging

one into another existing keystore in
isolated mode, 9-6

one into another existing TDE wallet,
7-11

migrating
creating master encryption key for

external keystore-based
encryption, 7-16

external keystore to TDE wallet, 7-17
keystore order after migration, 7-19

migration using Oracle Key Vault, 7-20
moving out of ASM, 7-14
multiple databases sharing same host,

setting for, 3-9
non-OMF-compliant system pointing to ASM

location, 7-22
opening in CDBs, 8-28, 9-40
Oracle Database secrets

about, 9-18
password access, 7-2
password preservation in PDB move

operations, 9-34
password preservation in PDB move

operations in united mode, 8-20
reverting keystore creation operation, 9-33
search order for, 2-12
software, changing password in isolated

mode, 9-3
software, changing password in united mode,

8-2
TDE master encryption key merge differing

from import or export, 7-40
using auto-login external keystore, 7-3

L
LENGTH functions, character string

expressions, 15-10

M
masking

See Oracle Data Redaction
materialized views

Data Redaction guideline, 18-3
Transparent Data Encryption tablespace

encryption, 11-5
migration

migrating from external keystore to password
TDE wallets, 9-29

Index

Index-4



migration (continued)
migrating from password TDE wallet to

external keystore, 9-28
moving encryption key into new keystore

about, 8-16

N
namespace functions

expressions, 15-9
nested functions

Data Redaction policies order of redaction,
17-5

NV public function
(APEX_UTIL.GET_NUMERIC_SESSION
_STATE function), Data Redaction
policies, 15-13

O
OLS_LABEL_DOMINATES public function

Data Redaction policies, 15-13
opening connection to Oracle Key Vault, 3-20
opening TDE wallets, 3-13
operations allowed in, 3-2, 4-2
operations not allowed in, 3-18, 4-7
ORA-00979 error

not a GROUP BY expression error, 17-2
ORA-28081

Insufficient privileges - the command
references a redacted object error,
17-4

ORA-28365 error
wallet is not open, 6-4

ORA-46680 error, 8-21
ORA-46694 error, 9-30
ORA-65040 error, 9-31
Oracle Application Express

filtering using by session state in Data
Redaction policies, 15-13

Oracle Application Expression
expressions, 15-10

Oracle Call Interface
Transparent Data Encryption, 11-42

Oracle Data Guard
isolated keystore on PDB, 11-32
Rekey operations in TDE, 11-33
TDE and Oracle Key Vault, 11-12
TDE master encryption keys, removing from

standby database, 8-19
Transparent Data Encryption, 11-5
wallet-based TDE configuration, 11-20, 11-26

Oracle Data Pump
encrypted columns, 11-2
encrypted data, 11-2

Oracle Data Pump (continued)
encrypted data with database links, 11-4
encrypted data with dump sets, 11-3
exported data from Data Redaction policies,

17-11
exporting Oracle Data Redaction objects,

17-9
imported data from Data Redaction policies,

17-11
Oracle Data Redaction security policy, 17-8

Oracle Data Redaction, 13-1, 14-5
about, 13-1
actual data, 14-3
ad hoc tools, 13-4
aggregate functions, 17-6
benefits, 13-2
CDBs, 13-4
columns with XML-generated data, 17-6
creating custom format, 16-5
DBMS_REDACT.ADD_POLICY procedure

using, 15-4
DBMS_REDACT.ALTER_POLICY procedure

about, 15-52
example, 15-54
parameters required for various actions, 15-53
syntax, 15-52

DBMS_REDACT.DISABLE_POLICY
about, 15-59
example, 15-59
syntax, 15-59

DBMS_REDACT.DROP_POLICY
about, 15-60
examples, 15-60
syntax, 15-60

DBMS_REDACT.ENABLE_POLICY
about, 15-59
example, 15-59
syntax, 15-59

DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES
procedure

about, 15-27
syntax, 15-28
using, 15-28

deleting policies, 16-17
editing custom format, 16-7
editions, 17-7
Enterprise Manager Cloud Control, 16-5, 16-7, 16-10
Enterprise Manager Cloud Control workflow, 16-2
Enterprise Manager Cloud Control, about, 16-1
exporting data using Data Pump Export, 17-11
exporting objects using Data Pump, 17-9
full data redaction

about, 14-2
creating policy for, 15-25
examples, 15-26

Index

Index-5



Oracle Data Redaction (continued)
full data redaction (continued)
modifying default value, 15-27
syntax, 15-25

functions used in expressions, 15-8
getting started using, 14-1
how differs from Oracle Database Real Application

Security masking, 17-8
how differs from Oracle Virtual Private Database

masking, 17-7
importing data using Data Pump Import, 17-11
inline views order of redaction, 17-5
JSON, 17-12
managing policies, 16-10
named policy expressions

about, 14-10
nested functions order of redaction, 17-5
no data redaction

about, 14-10, 15-50
creating policies for, 15-50
example, 15-50
syntax, 15-50

Oracle Data Pump security policy, 17-8
Oracle Data Warehouse query rewrites, 17-7
Oracle Enterprise Manager Data Masking and Subsetting

Pack, 17-12
partial data redaction

about, 14-3
character types, policies for, 15-36
data-time data types, 15-39
example using character data type, 15-37
example using data-time data type, 15-39
example using fixed character format, 15-35
example using number data type, 15-38
formats, fixed character, 15-33
number data types, 15-37
syntax, 15-32

policy expressions
about, 15-15
creating, 15-16
dropping, 15-18
tutorial, 15-18
updating, 15-17

prevention of data exposure by management tools, 13-3
privileges for creating policies, 15-3
queries on columns protected by Data Redaction policies,

17-5
random data redaction

about, 15-48
creating policies for, 15-48
example, 15-49

randomized data redaction
about, 14-5

redaction of data in read-only static pages, 13-3
redaction of data used in offline analytics, 13-4

Oracle Data Redaction (continued)
regular expression data redaction

creating policies for, 15-40
custom, creating policies for, 15-47
example, 15-46
example of custom, 15-47
formats, 15-43
formats, creating policies for, 15-43
settings for, 15-47
syntax, 15-41

regular expression redaction
about, 14-4

returning null values
about, 15-29
example, 15-30
syntax, 15-29

SYS schema objects, 18-2
SYSTEM schema objects, 18-2
use cases, 13-3
when to use, 13-2
WHERE clause redaction, 17-5

Oracle Data Redaction formats
creating in Cloud Control, 16-5
deleting in Cloud Control, 16-9
editing in Cloud Control, 16-7
Enterprise Management Cloud Control,

managing in, 16-5
Enterprise Manager Cloud Control, sensitive

column types, 16-2
Enterprise Manager Cloud Control, viewing

in, 16-8
Oracle Data Redaction import operations

inadvertently dropping policies, 17-11
ORA-28069, 17-11

Oracle Data Redaction partial redaction
creating policies for, 15-31

Oracle Data Redaction policies, 15-12
about, 15-2
altering, 15-52
building reports, 15-61
creating

examples, 15-26
general syntax, 15-5
procedure, 15-4

creating in Cloud Control, 16-11
deleting in Cloud Control, 16-17
disabling, 15-59
disabling in Cloud Control, 16-16
dropping, 15-60
editing in Cloud Control, 16-14
enabling, 15-59
Enterprise Manager Cloud Control, viewing

in, 16-15
exempting users from, 15-51

Index

Index-6



Oracle Data Redaction policies (continued)
expressions

by Application Express session state,
15-13

by database role, 15-12
by OLS label dominance, 15-13
by user environment, 15-12

filtering users
about, 15-8
no filtering, 15-14

finding information about, 15-63
Oracle Enterprise Manager Cloud Control,

16-17
redacting multiple columns in one policy,

15-57
trace files, 15-62

Oracle Data Redaction policy expressions
Cloud Control, about, 16-18
creating in Cloud Control, 16-18
deleting in Cloud Control, 16-21
editing in Cloud Control, 16-19
viewing in Cloud Control, 16-20

Oracle Data Redaction, database links, 17-6
Oracle Data RedactionEnterprise Manager Cloud

Control
deleting custom format, 16-9

Oracle Database Real Application Security
Data Redaction, 17-8

Oracle Database Vault
using with Data Redaction, 18-2

Oracle Enterprise Manager Cloud Control, 16-14
creating custom formats, 16-5
creating policy expressions, 16-18
deleting policy expressions, 16-21
disabling policies, 16-16
editing policy expressions, 16-19
Oracle Data Redaction, 16-5, 16-7, 16-16,

16-18–16-21
Oracle Data Redaction formats, viewing in,

16-8
Oracle Data Redaction, creating policies,

16-11
Oracle Data Redaction, viewing details of a

policy, 16-15
policy expressions, about, 16-18
viewing policy expressions, 16-20

Oracle Enterprise Manager Data Masking and
Subsetting Pack

Oracle Data Redaction impact, 17-12
Oracle GoldenGate

storing secrets in Oracle keystores, 9-23
Oracle Key Vault

migration of keystores, 7-20
Oracle Key Vault connection

opening in united mode, 3-21

Oracle Label Security
functions using Data Redaction expressions,

15-11
Oracle Real Application Clusters

Oracle Key Vault and TDE in multitenant
configuration, 11-35

Transparent Data Encryption, 11-34
Oracle Recovery Manager

Transparent Data Encryption, 7-25
Oracle Securefiles

Transparent Data Encryption, 11-41
Oracle Virtual Private Database (VPD)

Data Redaction, 17-7
Oracle-managed tablespaces, 6-2
orapki utility

how compares with ADMINISTER KEY
MANAGEMENT statement, 10-7

ORDER BY clause, Data Redaction policies,
17-2

original import/export utilities, 5-3

P
passwords

access to for ADMINISTER KEY
MANAGEMENT operations, 7-2

preserving in PDB move operations, 9-34
preserving in PDB move operations in united

mode, 8-20
PDBs

Data Redaction policies, 13-4
finding TDE keystore status for all PDBs,

8-29
master encryption keys

exporting, 9-42
importing, 9-42

unplugging with encrypted data, 8-21
performance

Transparent Data Encryption, 10-5
PKCS#11 library, switching over to updated

library
about, 7-23
procedure for, 7-24

policy expressions, Oracle Data Redaction,
15-15

R
recycle bin

Data Redaction policies and, 18-4
REDACTION_COLUMNS data dictionary view

invalid views, 18-4
rekey operations

Oracle Data Guard in TDE configuration,
11-33

Index

Index-7



rekeying
master encryption key, 7-34
TDE master encryption key in isolated mode,

9-13
TDE master encryption key in united mode,

8-14
reports

based Data Redaction policies, 15-61
returning null values

about, 14-5

S
salt

removing, 5-10
salt (TDE)

adding, 5-9
secrets

storing Oracle Database secrets in keystore
about, 9-18

SecureFiles
Transparent Data Encryption, 11-41

sensitive credential data, 6-13
SUBSTR function

expressions, 15-9
synchronous change data capture, 5-3
SYS user

Data Redaction policies, 18-2
SYS_CONTEXT function

Data Redaction policies, 18-3
SYS_SESSION_ROLES namespace used in

Data Redaction, 15-12
SYS_SESSION_ROLES SYS_CONTEXT

namespace
Data Redaction, 15-12

SYSTEM user
Data Redaction policies, 18-2

T
tablespace encryption

about, 2-5
architecture, 2-5
creating encrypted tablespaces, 6-9
examples, 6-9
incompatibilities, 12-1
migrating encryption key, 6-26
opening keystore, 6-7
performance overhead, 10-5
performance, optimum, 12-4
procedure, 6-6
restrictions, 6-5
security considerations for plaintext

fragments, 10-5
setting tablespace key, 6-8

tablespace encryption (continued)
storage overhead, 10-6

tablespace master encryption key
setting, 6-8

TABLESPACE_ENCRYPTION initialization
parameter, 11-8

TABLESPACE_ENCRYPTION_DEFAULT_ALGO
RITHM dynamic parameter, 6-10

tablespaces
about encrypting, 6-2
comparison between offline and online

conversions, 6-2
Oracle managed, closed TDE keystore

impact on encrypted, 6-4
rekeying encryption algorithm, 7-35
tablespaces

encrypting, 7-35
tablespaces, offline decryption

procedure, 6-17
tablespaces, offline encryption

about, 6-14
procedure, 6-16

tablespaces, online encryption
about, 6-18
best practice, 6-29
decrypting, 6-24
finishing interrupted job, 6-25
procedure, 6-20
procedure for Oracle Data Guard, 11-9
rekeying, 6-22
rekeying SYSAUX, 6-23
rekeying UNDO, 6-23

TDE
See Transparent Data Encryption (TDE)

TDE column encryption
restrictions, 5-3

TDE columns
migrating from release 11g, 10-1

TDE master encryption key, 3-7
creating for later use in isolated mode, 9-11
creating for later use in united mode, 8-8

TDE master encryption keys
activating

about, 8-10
example, 8-11

activating in isolated mode, 9-12
activating in united mode, 8-10
architecture, 2-7
attributes, 7-29
creating for later use

about, 8-8
custom attribute tags

about, 7-30
creating, 7-31
creating in isolated mode, 9-15

Index

Index-8



TDE master encryption keys (continued)
custom attribute tags (continued)
creating in united mode, 8-15

disabling not allowed, 7-32
ENCRYPTION_WALLET_LOCATION to

WALLET_ROOT and
TDE_CONFIGURATION

creating, 7-41
exporting, 7-37
exporting in PDBs, 9-42
finding currently used encryption key in

united mode, 8-15
finding currently used TDE master encryption

key, 7-30
importing, 7-39
importing in PDBs, 9-42
keystore merge differing from import or

export, 7-40
outside the databaase

about, 8-12
outside the database

creating in isolated mode, 9-9
creating in united mode, 8-12

rekeying, 7-34, 8-14, 9-13
removing automatically from standby

database, 8-19
resetting in keystore, 7-34
setting in keystore, 7-32

TDE tablespaces
migrating from release 11g, 10-1

TDE wallets
about, 2-9
ASM-based, 7-21
backing up password-protected TDE wallets

about, 7-7
changing password in isolated mode, 9-3
changing password in united mode, 8-2
closing in isolated mode, 9-8
closing in united mode, 8-6
creating in united mode, 3-11
deleting, 7-26
deleting unused in isolated mode, 9-14
merging

about, 7-10
auto-login into password-protected, 7-12
reversing merge operation, 7-13
two into a third new TDE wallet, 7-11
two into a third new TDE wallet in

isolated mode, 9-6
migrating

password key into external keystore,
7-16

moving TDE wallet to a new location, 7-13
opening in isolated mode, 4-13
opening in united mode, 3-14

TDE wallets (continued)
opening, about, 3-13
Oracle ASM disk group, setting for, 3-9
password-based using external keystore, 7-6
password-based using external keystore,

sqlnet.ora, 7-6
pointing to ASM location, 7-22
software, opening in isolated mode, 4-13
software, opening in united mode, 3-14

Transparent Data Encryption (TDE), 2-1, 2-7
about, 2-1
about configuration, 2-2
benefits, 2-3
column encryption

about, 2-7, 5-1
adding encrypting column to existing

table, 5-8
changing algorithm, 5-10
changing encryption key, 5-10
creating encrypted column in external

table, 5-7
creating index on encrypted column, 5-9
creating tables with default encryption

algorithm, 5-4
creating tables with non-default

encryption algorithm, 5-5
data types supported, 5-2
disabling encryption in existing column,

5-9
encrypting columns in existing tables, 5-8
encrypting existing column, 5-8
encryption and integrity algorithms, 2-10
migrating encryption key, 5-10
restrictions, 5-3
salt in encrypted columns, 5-9

columns with identity columns, 5-3
compatibility with application software, 12-1
compatibility with Oracle Database tools,

12-1
compression of encrypted data, 10-3
configuring external keystores

reconfiguring TDE wallet, 3-26
setting master encryption key, 3-22

configuring external keystores in isolated
mode

reconfiguring TDE wallet, 4-18
configuring keystores

about, 3-7
configuring Oracle Key Vault for united mode,

3-20
configuring TDE wallets

creating auto-login TDE wallet, 3-12
data deduplication of encrypted data, 10-3
editions, 11-42
encryption and integrity algorithms, 2-10

Index

Index-9



Transparent Data Encryption (TDE) (continued)
finding information about, 7-42
frequently asked questions, 12-1
incompatibilities, 12-1
keystore management

changing Oracle Key Vault keystore
password, 7-5

closing external keystores, 8-6
closing TDE wallet, 8-6
merging keystores, one into an existing

in isolated mode, 9-6
merging TDE wallets, about, 7-10
merging TDE wallets, one into an

existing, 7-11
migrating password key and external

keystore, reverse migration, 7-17
TDE master encryption key attributes,

7-29
keystore search order, 2-12
keystores

about, 2-8
benefits, 2-8
types, 2-9

master encryption key
rekeying, 7-34
rekeying in united mode, 8-14

master encryption key attributes
creating custom tags, 7-31

master encryption keys
setting in keystore procedure, 7-32
setting in keystore, about, 7-32

modifying applications for use with, 10-7
multidatabase environments, 11-42
multitenant environment, 2-11
non-OMF-compliant system pointing to ASM

location, 7-22
opening the connection to Oracle Key Vault,

3-20
Oracle Call Interface, 11-42
Oracle Data Guard, 11-12
Oracle Data Guard rekey operations, 11-33
Oracle Data Guard, isolated keystore on

PDB, 11-32
Oracle Data Pump

export and import operations on dump
sets, 11-3

export and import operations on
encrypted columns, 11-2

export operations on database links, 11-4
Oracle Data Pump export and import

operations
about, 11-2

Oracle Real Application Clusters
about, 11-34

Transparent Data Encryption (TDE) (continued)
Oracle Real Application Clusters (continued)
Oracle Key Vault in multitenant

configuration, 11-35
Oracle Recovery Manager, 7-25

TDE wallets, 7-25
PDBs

finding keystore status for all PDBs, 8-29
performance

database workloads, 12-4
decrypting entire data set, 12-4
optimum, 12-4
worst case scenario, 12-4

performance overheads
about, 10-5
typical, 12-4

privileges required, 2-4
SecureFiles, 11-41
security considerations

column encryption, 10-4
general advice, 10-4
platintext fragments, 10-5

storage overhead, 10-6
storing Oracle GoldenGate secrets, 9-23
tablespace encryption

about, 2-5, 6-1
creating, 6-8
encryption and integrity algorithms, 2-10
examples, 6-9
migrating encryption key, 6-26
opening keystore, 6-7
restrictions, 6-5
setting master encryption key, 6-8

tablespace encryption, setting with
COMPATIBLE parameter, 6-6

TDE master encryption key
rekeying in isolated mode, 9-13

TDE master encryption key attributes
about, 7-30
creating custom tags in isolated mode,

9-15
creating custom tags in united mode,

8-15
TDE master encryption keys

exporting and importing, 7-37
TDE Master Encryption Keys

resetting in keystore, 7-34
TDE wallet management

ASM-based TDE wallet, 7-21
backing up password-protected TDE

wallets, 7-7
merging TDE wallets, auto-login into

password-protected, 7-12
merging TDE wallets, reversing merge

operation, 7-13

Index

Index-10



Transparent Data Encryption (TDE) (continued)
TDE wallet management (continued)
merging TDE wallets, two into a third

new TDE wallet, 7-11
merging TDE wallets, two into a third

new TDE wallet in isolated
mode, 9-6

migrating password key and external
keystore, 7-16

migrating password key and external
keystore, master encryption key
creation, 7-16

TDE wallet pointing to ASM location, 7-22
views, 7-42
wallet-based, in Oracle Data Guard, 11-20,

11-26
Transparent Data Encryption (TDE) keystores

features affected if deleted, 7-27
Transparent Data Encryption (TDE) TDE wallets

deleting, 7-26
moving TDE wallet to a new location, 7-13

Transparent Data Encryption (TDE), Oracle Data
Guard

about, 11-5
about controlling tablespace encryption, 11-6
controlling tablespace encryption, 11-8

Transparent Data Encryption (TDE)integrity
column encryption

creating tables without integrity checks
(NOMAC), 5-6

improving performance, 5-6
NOMAC parameter (TDE), 5-6

transportable tablespaces, 5-3
tutorials

named Data Redaction policy expressions,
15-18

U
united mode, 3-2, 3-18

about, 3-1
about managing cloned PDBs with encrypted

data, 8-25
ADMINISTER KEY MANAGEMENT

operations allowed in, 3-2
ADMINISTER KEY MANAGEMENT

operations not allowed in, 3-18
backing up TDE wallets, 8-4
cloning PDB with encrypted data, 8-25
configuring CDBs for PDBs for Oracle Key

Vault, about, 3-19
configuring TDE wallets, about, 3-10

united mode (continued)
configuring, procedure, 3-7
creating TDE master encryption key for later

use, 8-8
creating TDE wallet, 4-12
encrypting data, 3-17
encryption key, setting, 3-16
external keystores, closing, 8-7
finding keystore status for all PDBs, 8-29
heartbeat batch size for external keystores,

3-23
isolating PDB keystore, 8-19
keystore open and close operations, 8-28
master encryption keys

moving key from CDB root to PDB, 8-19
moving TDE master encryption key into new

keystore, 8-17
Oracle Key Vault connection, opening, 3-21
password change for external keystores, 8-3
password change for TDE wallets, 8-2
relocating PDBs with encrypted data across

CDBs in united mode, 8-27
remotely cloning PDB with encrypted data,

8-26, 9-38
remotely cloning PDBs with encrypted data,

9-39
setting external keystore encryption key, 3-24
TDE wallets, closing, 8-6
TDE wallets, creating in, 3-11
TDE wallets, opening, 3-14

utilities, import/export, 5-3

V
V public function

(APEX_UTIL.GET_SESSION_STATE
function), Data Redaction policies, 15-13

V$ENCRYPTION_WALLET view
keystore order after migration, 7-19

views
Data Redaction, 15-63

W
WALLET_ROOT parameter

convert from
ENCRYPTION_WALLET_LOCATION,
7-41

X
XML generation, 17-6

Index

Index-11


	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Advanced Security Guide
	Changes in Oracle Database Advanced Security 23ai
	Changes for Encryption Algorithms and Modes
	AES-XTS Encryption Mode Support for TDE Tablespace Encryption
	Schema Privileges to Simplify Access Control in Oracle Data Redaction
	BOOLEAN Data Type Supported in Oracle Data Redaction
	Oracle Data Guard Redo Decryption for Hybrid Disaster Recovery Configurations

	Updates to Oracle Database Advanced Security 23ai
	New Parameter to Control the TDE Rekey Operations for Oracle Data Guard


	1 Introduction to Oracle Advanced Security
	1.1 Transparent Data Encryption
	1.2 Oracle Data Redaction

	Part I Using Transparent Data Encryption
	2 Introduction to Transparent Data Encryption
	2.1 What Is Transparent Data Encryption?
	2.2 How Configuring Transparent Data Encryption Works
	2.3 Benefits of Using Transparent Data Encryption
	2.4 Who Can Configure Transparent Data Encryption?
	2.5 Types and Components of Transparent Data Encryption
	2.5.1 About Transparent Data Encryption Types and Components
	2.5.2 How Transparent Data Encryption Tablespace Encryption Works
	2.5.3 How Transparent Data Encryption Column Encryption Works
	2.5.4 How the Keystore for the Storage of TDE Master Encryption Keys Works
	2.5.4.1 About the Keystore Storage of TDE Master Encryption Keys
	2.5.4.2 Benefits of the Keystore Storage Framework
	2.5.4.3 Types of Keystores

	2.5.5 Supported Encryption and Integrity Algorithms

	2.6 Transparent Data Encryption in a Multitenant Environment
	2.7 Transparent Data Encryption Keystore Search Order

	3 Configuring United Mode
	3.1 About Configuring United Mode
	3.2 Operations That Are Allowed in United Mode
	3.3 Configuring the Keystore Location and Type for United Mode
	3.3.1 About Configuring the Keystore Location and Type for United Mode
	3.3.2 Configuring United Mode with the Initialization Parameter File and ALTER SYSTEM
	3.3.3 Example: Configuring a TDE Wallet When Multiple Databases Share the Same Host
	3.3.4 Example: Configuring a TDE Wallet for an Oracle Automatic Storage Management Disk Group

	3.4 Configuring a TDE Wallet and TDE Master Encryption Key for United Mode
	3.4.1 About Configuring a TDE Wallet and TDE Master Encryption Key for United Mode
	3.4.2 Step 1: Create the TDE Wallet
	3.4.2.1 About Creating TDE Wallets
	3.4.2.2 Creating a Password-Protected TDE Wallet
	3.4.2.3 Creating an Auto-Login or a Local Auto-Login TDE Wallet

	3.4.3 Step 2: Open the TDE Wallet
	3.4.3.1 About Opening TDE Wallets
	3.4.3.2 Opening the TDE Wallet in a United Mode PDB

	3.4.4 Step 3: Set the TDE Master Encryption Key in the TDE Wallet
	3.4.4.1 About Setting the TDE Wallet TDE Master Encryption Key
	3.4.4.2 Setting the TDE Master Encryption Key in the United Mode TDE Wallet

	3.4.5 Step 4: Encrypt Your Data in United Mode

	3.5 Operations That Are Not Allowed in a United Mode PDB
	3.6 Configuring a Container Database with United Mode PDBs for Oracle Key Vault
	3.6.1 About Configuring a Container Database with United Mode PDBs for Oracle Key Vault
	3.6.2 About Configuring a Container Database with United Mode PDBs for Oracle Key Vault
	3.6.3 Step 1: Configure Oracle Key Vault for United Mode
	3.6.4 Step 2: Open the Connection to Oracle Key Vault
	3.6.4.1 About Opening the Connection to Oracle Key Vault
	3.6.4.2 Opening the Oracle Key Vault Connection in a United Mode PDB

	3.6.5 Step 3: Set the TDE Master Encryption Key in Oracle Key Vault
	3.6.5.1 About Setting the External Keystore TDE Master Encryption Key
	3.6.5.2 Heartbeat Batch Size for External Keystores
	3.6.5.3 Setting the TDE Master Encryption Key for United Mode PDBs in an External Keystore
	3.6.5.4 Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or OCI KMS

	3.6.6 Step 4: Encrypt Your Data in United Mode


	4 Configuring Isolated Mode
	4.1 About Configuring Isolated Mode
	4.2 Operations That Are Allowed in Isolated Mode
	4.3 Operations That Are Not Allowed in an Isolated Mode PDB
	4.4 Configuring the Keystore Location and Type for Isolated Mode
	4.4.1 About Configuring the Keystore Location and Type for Isolated Mode
	4.4.2 Configuring the Keystore Location and Keystore Type for an Isolated Mode PDB
	4.4.3 Example: Restoring an Older Version of a Control File
	4.4.4 Example: Addressing the Problem of a Lost Control File
	4.4.5 Example: Configuring Isolated Mode in an Oracle Real Application Clusters Environment

	4.5 Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode
	4.5.1 About Configuring a TDE Wallet in Isolated Mode
	4.5.2 Step 1: Create a TDE Wallet in a PDB Configured in Isolated Mode
	4.5.3 Step 2: Open the TDE Wallet in an Isolated Mode PDB
	4.5.4 Step 3: Set the TDE Master Encryption Key in the TDE Wallet of the Isolated Mode PDB
	4.5.5 Step 4: Encrypt Your Data in Isolated Mode

	4.6 Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault
	4.6.1 About Configuring an External Keystore in Isolated Mode
	4.6.2 Step 1: Configure Isolated PDBs for Oracle Key Vault
	4.6.3 Step 2: Open the Isolated Mode PDB External Keystore
	4.6.4 Step 3: Set the First TDE Master Encryption Key in the External Keystore
	4.6.4.1 Setting the TDE Master Encryption Key in the Isolated Mode External Keystore
	4.6.4.2 Migration of a Previously Configured Encryption Key in Isolated Mode

	4.6.5 Step 4: Encrypt Your Data in Isolated Mode


	5 Encrypting Columns in Tables
	5.1 About Encrypting Columns in Tables
	5.2 Data Types That Can Be Encrypted with TDE Column Encryption
	5.3 Restrictions on Using TDE Column Encryption
	5.4 Creating Tables with Encrypted Columns
	5.4.1 About Creating Tables with Encrypted Columns
	5.4.2 Creating a Table with an Encrypted Column Using the Default Algorithm
	5.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a Non-Default Algorithm
	5.4.4 Using the NOMAC Parameter to Save Disk Space and Improve Performance
	5.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE Statement
	5.4.6 Example: Changing the Integrity Algorithm for a Table
	5.4.7 Creating an Encrypted Column in an External Table

	5.5 Encrypting Columns in Existing Tables
	5.5.1 About Encrypting Columns in Existing Tables
	5.5.2 Adding an Encrypted Column to an Existing Table
	5.5.3 Encrypting an Unencrypted Column
	5.5.4 Disabling Encryption on a Column

	5.6 Creating an Index on an Encrypted Column
	5.7 Adding Salt to an Encrypted Column
	5.8 Removing Salt from an Encrypted Column
	5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns
	5.10 Migrating the Algorithm to the Latest Supported Algorithm for Tables

	6 Encryption Conversions for Tablespaces and Databases
	6.1 About Encryption Conversion for Tablespaces and Databases
	6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces
	6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption
	6.4 Creating an Encrypted New Tablespace
	6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption
	6.4.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
	6.4.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption

	6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key
	6.4.3 Step 3: Create the Encrypted Tablespace
	6.4.3.1 About Creating Encrypted Tablespaces
	6.4.3.2 Creating an Encrypted Tablespace
	6.4.3.3 Example: Creating an Encrypted Tablespace That Uses AES192
	6.4.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm


	6.5 Setting the Tablespace Encryption Default Algorithm
	6.6 Encrypting Future Tablespaces
	6.6.1 About Encrypting Future Tablespaces
	6.6.2 Setting Future Tablespaces to be Encrypted

	6.7 Encrypted Sensitive Credential Data in the Data Dictionary
	6.8 Encryption Conversions for Existing Offline Tablespaces
	6.8.1 About Encryption Conversions for Existing Offline Tablespaces
	6.8.2 Encrypting an Existing User-Defined Tablespace with Offline Conversion
	6.8.3 Decrypting an Existing Tablespace with Offline Conversion

	6.9 Encryption Conversions for Existing Online Tablespaces
	6.9.1 About Encryption Conversions for Existing Online Tablespaces
	6.9.2 Encrypting an Existing Tablespace with Online Conversion
	6.9.3 Rekeying an Existing Tablespace with Online Conversion
	6.9.4 Rekeying the SYSAUX and UNDO Tablespaces with Online Conversion
	6.9.5 Decrypting an Existing Tablespace with Online Conversion
	6.9.6 Finishing an Interrupted Online Encryption Conversion

	6.10 Rekeying an Encrypted Tablespace
	6.11 Creating an Encrypted Database Using DBCA
	6.11.1 Using DBCA to Create an Encrypted Database
	6.11.2 Using DBCA to Create an Oracle Data Guard Standby Database from an Encrypted Primary Database
	6.11.3 Best Practice after DBCA Creates an Encrypted Database

	6.12 Encryption Conversions for Existing Databases
	6.12.1 About Encryption Conversions for Existing Databases
	6.12.2 Encrypting an Existing Database with Offline Conversion
	6.12.3 Encrypting an Existing Database with Online Conversion


	7 Managing the Keystore and the Master Encryption Key
	7.1 Managing the Keystore
	7.1.1 Performing Operations That Require a Keystore Password
	7.1.2 Configuring Auto-Open Connections into External Key Managers
	7.1.2.1 About Auto-Open Connections into External Key Managers
	7.1.2.2 Configuring an Auto-Open Connection into an External Key Manager

	7.1.3 Changing the Oracle Key Vault Password
	7.1.4 Configuring an External Store for a Keystore Password
	7.1.4.1 About Configuring an External Store for a Keystore Password
	7.1.4.2 Configuring the External Keystore Password Store with WALLET_ROOT
	7.1.4.3 When to Use the EXTERNAL STORE Clause After Configuration

	7.1.5 Backing Up Password-Protected TDE Wallets
	7.1.5.1 About Backing Up Password-Protected TDE Wallets
	7.1.5.2 Creating a Backup Identifier String for the Backup TDE Wallet
	7.1.5.3 Backing Up a Password-Protected TDE Wallet

	7.1.6 How the V$ENCRYPTION_WALLET View Interprets Backup Operations
	7.1.7 Backups of the External Keystore
	7.1.8 Merging TDE Wallets
	7.1.8.1 About Merging TDE Wallets
	7.1.8.2 Merging One TDE Wallet into an Existing TDE Wallet
	7.1.8.3 Merging Two TDE Wallets into a Third New TDE Wallet
	7.1.8.4 Merging an Auto-Login TDE Wallet into an Existing Password-Protected TDE Wallet
	7.1.8.5 Reversing a TDE Wallet Merge Operation

	7.1.9 Moving a TDE Wallet to a New Location
	7.1.10 Moving a TDE Wallet Out of Automatic Storage Management
	7.1.11 Migrating from a TDE Wallet to Oracle Key Vault
	7.1.11.1 Migrating from a Password-Protected TDE Wallet to an External Keystore
	7.1.11.1.1 Step 1: Convert the TDE Wallet to Open with the External Keystore
	7.1.11.1.2 Step 2: Configure the External Keystore Type
	7.1.11.1.3 Step 3: Perform the External Keystore Migration

	7.1.11.2 Migrating from an External Keystore to a Password-Based TDE Wallet
	7.1.11.2.1 About Migrating Back from an External Keystore
	7.1.11.2.2 Step 1: Configure the External Keystore Type
	7.1.11.2.3 Step 2: Configure the Keystore for the Reverse Migration
	7.1.11.2.4 Step 3: Configure the External Keystore to Open with the TDE Wallet

	7.1.11.3 Keystore Order After a Migration

	7.1.12 Migration of Keystores to and from Oracle Key Vault
	7.1.13 Configuring Keystores for Automatic Storage Management
	7.1.13.1 About Configuring Keystores for Automatic Storage Management
	7.1.13.2 Configuring a Keystore to Point to an ASM Location
	7.1.13.3 Configuring a Keystore to Point to an ASM Location When the WALLET_ROOT Location Does Not Follow OMF Guidelines

	7.1.14 Managing Updates to the PKCS#11 Library
	7.1.14.1 About Managing Updates to the PKCS#11 Library
	7.1.14.2 Switching Over to an Updated PKCS#11 Library

	7.1.15 Backup and Recovery of Encrypted Data
	7.1.16 Dangers of Deleting TDE Wallets
	7.1.17 Features That Are Affected by Deleted Keystores

	7.2 Managing the TDE Master Encryption Key
	7.2.1 TDE Master Encryption Key Attribute Management
	7.2.1.1 TDE Master Encryption Key Attributes
	7.2.1.2 Finding the TDE Master Encryption Key That Is in Use

	7.2.2 Creating Custom TDE Master Encryption Key Attributes for Reports
	7.2.2.1 About Creating Custom Attribute Tags
	7.2.2.2 Creating a Custom Attribute Tag

	7.2.3 Setting or Rekeying the TDE Master Encryption Key in the Keystore
	7.2.3.1 About Setting or Rekeying the TDE Master Encryption Key in the Keystore
	7.2.3.2 Creating, Tagging, and Backing Up a TDE Master Encryption Key
	7.2.3.3 About Rekeying the TDE Master Encryption Key
	7.2.3.4 Rekeying the TDE Master Encryption Key
	7.2.3.5 Changing the TDE Master Encryption Key for a Tablespace

	7.2.4 Exporting and Importing the TDE Master Encryption Key
	7.2.4.1 About Exporting and Importing the TDE Master Encryption Key
	7.2.4.2 About Exporting TDE Master Encryption Keys
	7.2.4.3 Exporting a TDE Master Encryption Key
	7.2.4.4 Example: Exporting a TDE Master Encryption Key by Using a Subquery
	7.2.4.5 Example: Exporting a List of TDE Master Encryption Key Identifiers to a File
	7.2.4.6 Example: Exporting All TDE Master Encryption Keys of the Database
	7.2.4.7 About Importing TDE Master Encryption Keys
	7.2.4.8 Importing a TDE Master Encryption Key
	7.2.4.9 Example: Importing a TDE Master Encryption Key
	7.2.4.10 How Keystore Merge Differs from TDE Master Encryption Key Export or Import

	7.2.5 Converting from ENCRYPTION_WALLET_LOCATION to WALLET_ROOT and TDE_CONFIGURATION
	7.2.6 Management of TDE Master Encryption Keys Using Oracle Key Vault

	7.3 Transparent Data Encryption Data Dynamic and Data Dictionary Views

	8 Administering United Mode
	8.1 Administering Keystores and Master Encryption Keys in United Mode
	8.1.1 Changing the Keystore Password in United Mode
	8.1.1.1 Changing the Password-Protected TDE Wallet Password in United Mode
	8.1.1.2 Changing the Password of an External Keystore in United Mode

	8.1.2 Backing Up a Password-Protected TDE Wallet in United Mode
	8.1.3 Closing Keystores in United Mode
	8.1.3.1 About Closing Keystores
	8.1.3.2 Closing a TDE Wallet in United Mode
	8.1.3.3 Closing an External Keystore in United Mode

	8.1.4 Creating TDE Master Encryption Keys for Later Use in United Mode
	8.1.4.1 About Creating a TDE Master Encryption Key for Later Use
	8.1.4.2 Creating a TDE Master Encryption Key for Later Use in United Mode

	8.1.5 Example: Creating a Master Encryption Key in All PDBs
	8.1.6 Activating TDE Master Encryption Keys in United Mode
	8.1.6.1 About Activating TDE Master Encryption Keys
	8.1.6.2 Activating a TDE Master Encryption Key in United Mode
	8.1.6.3 Example: Activating a TDE Master Encryption Key

	8.1.7 Creating User-Defined TDE Master Encryption Keys
	8.1.7.1 About User-Defined TDE Master Encryption Keys
	8.1.7.2 Creating a User-Defined TDE Master Encryption Key in United Mode

	8.1.8 Rekeying the TDE Master Encryption Key in United Mode
	8.1.9 Finding the TDE Master Encryption Key That Is in Use in United Mode
	8.1.10 Creating a Custom Attribute Tag in United Mode
	8.1.11 Moving TDE Master Encryption Keys into a New Keystore in United Mode
	8.1.11.1 About Moving TDE Master Encryption Keys into a New Keystore
	8.1.11.2 Moving a TDE Master Encryption Key into a New Keystore in United Mode

	8.1.12 Automatically Removing Inactive TDE Master Encryption Keys in United Mode
	8.1.13 Isolating a Pluggable Database Keystore

	8.2 Administering Transparent Data Encryption in United Mode
	8.2.1 Moving PDBs from One CDB to Another in United Mode
	8.2.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in United Mode
	8.2.2.1 Unplugging a PDB That Has Encrypted Data in United Mode
	8.2.2.2 Plugging a PDB That Has Encrypted Data into a CDB in United Mode
	8.2.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in United Mode
	8.2.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External Keystore in United Mode

	8.2.3 Managing Cloned PDBs with Encrypted Data in United Mode
	8.2.3.1 About Managing Cloned PDBs That Have Encrypted Data in United Mode
	8.2.3.2 Cloning a PDB with Encrypted Data in a CDB in United Mode
	8.2.3.3 Remotely Clone an Encrypted PDB in United Mode
	8.2.3.4 Relocating an Encrypted PDB in United Mode

	8.2.4 How Keystore Open and Close Operations Work in United Mode
	8.2.5 Finding the Keystore Status for All of the PDBs in United Mode


	9 Administering Isolated Mode
	9.1 Administering Keystores and TDE Master Encryption Keys in Isolated Mode
	9.1.1 Changing the Keystore Password in Isolated Mode
	9.1.1.1 Changing the Password-Protected TDE Wallet Password in Isolated Mode
	9.1.1.2 Changing the Password of an External Keystore in Isolated Mode

	9.1.2 Backing Up a Password-Protected TDE Wallet in Isolated Mode
	9.1.3 Merging TDE Wallets in Isolated Mode
	9.1.3.1 Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode
	9.1.3.2 Merging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode

	9.1.4 Closing Keystores in Isolated Mode
	9.1.4.1 Closing a TDE Wallet in Isolated Mode
	9.1.4.2 Closing an External Keystore in Isolated Mode

	9.1.5 Creating a User-Defined TDE Master Encryption Key in Isolated Mode
	9.1.6 Creating a TDE Master Encryption Key for Later Use in Isolated Mode
	9.1.7 Activating a TDE Master Encryption Key in Isolated Mode
	9.1.8 Rekeying the TDE Master Encryption Key in Isolated Mode
	9.1.9 Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode
	9.1.10 Creating a Custom Attribute Tag in Isolated Mode
	9.1.11 Exporting and Importing the TDE Master Encryption Key in Isolated Mode
	9.1.11.1 Exporting a TDE Master Encryption Key in Isolated Mode
	9.1.11.2 Importing a TDE Master Encryption Key in Isolated Mode

	9.1.12 Storing Oracle Database Secrets in Isolated Mode
	9.1.12.1 About Storing Oracle Database Secrets in a Keystore in Isolated Mode
	9.1.12.2 Storing Oracle Database Secrets in a TDE Wallet in Isolated Mode
	9.1.12.3 Example: Adding an Oracle Key Vault Password to a TDE Wallet
	9.1.12.4 Example: Changing an Oracle Key Vault Password Stored as a Secret in a TDE Wallet
	9.1.12.5 Example: Deleting an Oracle Key Vault Password Stored as a Secret in a TDE Wallet
	9.1.12.6 Storing Oracle Database Secrets in an External Keystore in Isolated Mode
	9.1.12.7 Example: Adding an Oracle Database Secret to an External Keystore
	9.1.12.8 Example: Changing an Oracle Database Secret in an External Keystore
	9.1.12.9 Example: Deleting an Oracle Database Secret in an External Keystore

	9.1.13 Storing Oracle GoldenGate Secrets in a Keystore in Isolated Mode
	9.1.13.1 About Storing Oracle GoldenGate Secrets in Keystores in Isolated Mode
	9.1.13.2 Oracle GoldenGate Extract Classic Capture Mode TDE Requirements
	9.1.13.3 Configuring Keystore Support for Oracle GoldenGate
	9.1.13.3.1 Step 1: Decide on a Shared Secret for the Keystore
	9.1.13.3.2 Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate
	9.1.13.3.3 Step 3: Store the TDE GoldenGate Shared Secret in the Keystore
	9.1.13.3.4 Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract Process


	9.1.14 Migrating Keystores in Isolated Mode
	9.1.14.1 Reverse Migrating an Isolated PDB from Oracle Key Vault to a TDE Wallet
	9.1.14.2 Migrating from an External Keystore to a Password-Protected TDE Wallet in Isolated Mode

	9.1.15 Uniting a Pluggable Database Keystore
	9.1.16 Creating a Keystore When the PDB Is Closed
	9.1.16.1 About Creating a Keystore When the PDB Is Closed
	9.1.16.2 Reverting a Keystore Creation Operation When a PDB Is Closed


	9.2 Administering Transparent Data Encryption in Isolated Mode
	9.2.1 Cloning or Relocating Encrypted PDBs in Isolated Mode
	9.2.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in Isolated Mode
	9.2.2.1 Unplugging a PDB That Has Encrypted Data in Isolated Mode
	9.2.2.2 Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode
	9.2.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in Isolated Mode
	9.2.2.4 Plugging a PDB That Has Master Keys Stored in an External Keystore in Isolated Mode

	9.2.3 Cloning a PDB with Encrypted Data in a CDB in Isolated Mode
	9.2.4 Remotely Cloning an Encrypted PDB in Isolated Mode
	9.2.5 Relocating an Encrypted PDB in Isolated Mode
	9.2.6 How Keystore Open and Close Operations Work in Isolated Mode
	9.2.7 Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
	9.2.7.1 About Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
	9.2.7.2 Exporting or Importing a Master Encryption Key for a PDB in Isolated Mode
	9.2.7.3 Example: Exporting a Master Encryption Key from a PDB in Isolated Mode
	9.2.7.4 Example: Importing a Master Encryption Key into a PDB in Isolated Mode



	10 General Considerations of Using Transparent Data Encryption
	10.1 Migrating Encrypted TDE Columns or Tablespaces after a Database Upgrade from Release 11g
	10.2 Compression and Data Deduplication of Encrypted Data
	10.3 Security Considerations for Transparent Data Encryption
	10.3.1 Transparent Data Encryption General Security Advice
	10.3.2 Transparent Data Encryption Column Encryption-Specific Advice
	10.3.3 Managing Security for Plaintext Fragments

	10.4 Performance and Storage Overhead of Transparent Data Encryption
	10.4.1 Performance Overhead of Transparent Data Encryption
	10.4.2 Storage Overhead of Transparent Data Encryption

	10.5 Modifying Your Applications for Use with Transparent Data Encryption
	10.6 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
	10.7 Data Loads from External Files to Tables with Encrypted Columns
	10.8 Transparent Data Encryption and Database Close Operations

	11 Using Transparent Data Encryption with Other Oracle Features
	11.1 How Transparent Data Encryption Works with Export and Import Operations
	11.1.1 About Exporting and Importing Encrypted Data
	11.1.2 Exporting and Importing Tables with Encrypted Columns
	11.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets
	11.1.4 Using Oracle Data Pump with Encrypted Data Dictionary Data

	11.2 How Transparent Data Encryption Works with Oracle Data Guard
	11.2.1 About Using Transparent Data Encryption with Oracle Data Guard
	11.2.2 Encryption of Tablespaces in an Oracle Data Guard Environment
	11.2.2.1 About the Encryption of Tablespaces in an Oracle Data Guard Environment
	11.2.2.2 Configuring the Encryption of Tablespaces in an Oracle Data Guard Environment
	11.2.2.3 Encrypting an Existing Tablespace in Oracle Data Guard with Online Conversion

	11.2.3 Configuring TDE and Oracle Key Vault in an Oracle Data Guard Environment
	11.2.4 Configuring TDE Wallet-Based Transparent Data Encryption in Oracle Data Guard
	11.2.5 Migrating a TDE Wallet in an Oracle Data Guard Environment to Oracle Key Vault
	11.2.6 Enabling a PDB to Have an Isolated Keystore in an Oracle Data Guard Environment
	11.2.7 Uncoupling the Standby Database from the Primary Database Online Encryption Process

	11.3 How Transparent Data Encryption Works with Oracle Real Application Clusters
	11.3.1 About Using Transparent Data Encryption with Oracle Real Application Clusters
	11.3.2 Configuring TDE in Oracle Real Application Clusters for Oracle Key Vault

	11.4 How Transparent Data Encryption Works with SecureFiles
	11.4.1 About Transparent Data Encryption and SecureFiles
	11.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm
	11.4.3 Example: Creating a SecureFiles LOB with a Column Password Specified

	11.5 How Transparent Data Encryption Works with Oracle Call Interface
	11.6 How Transparent Data Encryption Works with Editions
	11.7 Configuring Transparent Data Encryption to Work in a Multidatabase Environment

	12 Frequently Asked Questions About Transparent Data Encryption
	12.1 Transparency Questions About Transparent Data Encryption
	12.2 Performance Questions About Transparent Data Encryption


	Part II Using Oracle Data Redaction
	13 Introduction to Oracle Data Redaction
	13.1 What Is Oracle Data Redaction?
	13.2 When to Use Oracle Data Redaction
	13.3 Benefits of Using Oracle Data Redaction
	13.4 Example Use Cases for Oracle Data Redaction
	13.4.1 Oracle Data Redaction for Sensitive Data in Read-Only Static Pages
	13.4.2 Oracle Data Redaction for Preventing Data Exposure by Management Tools
	13.4.3 Oracle Data Redaction to Prevent Disclosure of Data from Offline Analytics
	13.4.4 Oracle Data Redaction with Ad Hoc Database Queries Considerations

	13.5 Oracle Data Redaction in a Multitenant Environment

	14 Oracle Data Redaction Features and Capabilities
	14.1 Getting Started with Oracle Data Redaction
	14.2 Full Data Redaction to Redact All Data
	14.3 Partial Data Redaction to Redact Portions of Data
	14.4 Regular Expressions to Redact Patterns of Data
	14.5 Redaction Using Null Values
	14.6 Random Data Redaction to Generate Random Values
	14.7 Comparison of Full, Partial, and Random Redaction Based on Data Types
	14.7.1 Oracle Built-in Data Types Redaction Capabilities
	14.7.2 ANSI Data Types Redaction Capabilities
	14.7.3 Built-in and ANSI Data Types Full Redaction Capabilities
	14.7.4 User-Defined Data Types or Oracle Supplied Types Redaction Capabilities

	14.8 No Redaction for Testing Purposes
	14.9 Central Management of Named Data Redaction Policy Expressions

	15 Configuring Oracle Data Redaction Policies
	15.1 About Oracle Data Redaction Policies
	15.2 Privileges for Managing Oracle Data Redaction Policies
	15.3 Planning an Oracle Data Redaction Policy
	15.4 General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
	15.5 Using Expressions to Define Conditions for Data Redaction Policies
	15.5.1 About Using Expressions in Data Redaction Policies
	15.5.2 Supported Functions for Data Redaction Expressions
	15.5.2.1 Expressions Using Namespace Functions
	15.5.2.2 Expressions Using the SUBSTR Function
	15.5.2.3 Expressions Using Length of Character String Functions
	15.5.2.4 Expressions Using Oracle Application Express Functions
	15.5.2.5 Expressions Using Oracle Label Security Functions

	15.5.3 Applying the Redaction Policy Based on User Environment
	15.5.4 Applying the Redaction Policy Based on Database Roles
	15.5.5 Applying the Redaction Policy Based on Oracle Label Security Label Dominance
	15.5.6 Applying the Redaction Policy Based on Application Express Session States
	15.5.7 Applying the Redaction Policy to All Users

	15.6 Creating and Managing Multiple Named Policy Expressions
	15.6.1 About Data Redaction Policy Expressions to Define Conditions
	15.6.2 Creating and Applying a Named Data Redaction Policy Expression
	15.6.3 Updating a Named Data Redaction Policy Expression
	15.6.4 Dropping a Named Data Redaction Expression Policy
	15.6.5 Tutorial: Creating and Sharing a Named Data Redaction Policy Expression
	15.6.5.1 Step 1: Create Users for This Tutorial
	15.6.5.2 Step 2: Create an Oracle Data Redaction Policy
	15.6.5.3 Step 3: Test the Oracle Data Redaction Policy
	15.6.5.4 Step 4: Create and Apply a Policy Expression to the Redacted Table Columns
	15.6.5.5 Step 5: Test the Data Redaction Policy Expression
	15.6.5.6 Step 6: Modify the Data Redaction Policy Expression
	15.6.5.7 Step 7: Test the Modified Policy Expression
	15.6.5.8 Step 8: Remove the Components of This Tutorial


	15.7 Creating a Full Redaction Policy and Altering the Full Redaction Value
	15.7.1 Creating a Full Redaction Policy
	15.7.1.1 About Creating Full Data Redaction Policies
	15.7.1.2 Syntax for Creating a Full Redaction Policy
	15.7.1.3 Example: Full Redaction Policy
	15.7.1.4 Example: Fully Redacted Character Values

	15.7.2 Altering the Default Full Data Redaction Value
	15.7.2.1 About Altering the Default Full Data Redaction Value
	15.7.2.2 Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure
	15.7.2.3 Modifying the Default Full Data Redaction Value


	15.8 Creating a Nullify Redaction Policy
	15.8.1 About Creating a Policy That Returns Null Values
	15.8.2 Syntax for Creating a Nullify Redaction Policy
	15.8.3 Example: Redaction Policy That Returns Null Values

	15.9 Creating a Partial Redaction Policy
	15.9.1 About Creating Partial Redaction Policies
	15.9.2 Syntax for Creating a Partial Redaction Policy
	15.9.3 Creating Partial Redaction Policies Using Fixed Character Formats
	15.9.3.1 Settings for Fixed Character Formats
	15.9.3.2 Example: Partial Redaction Policy Using a Fixed Character Format

	15.9.4 Creating Partial Redaction Policies Using Character Data Types
	15.9.4.1 Settings for Character Data Types
	15.9.4.2 Example: Partial Redaction Policy Using a Character Data Type

	15.9.5 Creating Partial Redaction Policies Using Number Data Types
	15.9.5.1 Settings for Number Data Types
	15.9.5.2 Example: Partial Redaction Policy Using a Number Data Type

	15.9.6 Creating Partial Redaction Policies Using Date-Time Data Types
	15.9.6.1 Settings for Date-Time Data Types
	15.9.6.2 Example: Partial Redaction Policy Using Date-Time Data Type


	15.10 Creating a Regular Expression-Based Redaction Policy
	15.10.1 About Creating Regular Expression-Based Redaction Policies
	15.10.2 Syntax for Creating a Regular Expression-Based Redaction Policy
	15.10.3 Regular Expression-Based Redaction Policies Using Formats
	15.10.3.1 Regular Expression Formats
	15.10.3.2 Example: Regular Expression Redaction Policy Using Formats

	15.10.4 Custom Regular Expression Redaction Policies
	15.10.4.1 Settings for Custom Regular Expressions
	15.10.4.2 Example: Custom Regular Expression Redaction Policy


	15.11 Creating a Random Redaction Policy
	15.11.1 Syntax for Creating a Random Redaction Policy
	15.11.2 Example: Random Redaction Policy

	15.12 Creating a Policy That Uses No Redaction
	15.12.1 Syntax for Creating a Policy with No Redaction
	15.12.2 Example: Performing No Redaction

	15.13 Exemption of Users from Oracle Data Redaction Policies
	15.14 Altering an Oracle Data Redaction Policy
	15.14.1 About Altering Oracle Data Redaction Policies
	15.14.2 Syntax for the DBMS_REDACT.ALTER_POLICY Procedure
	15.14.3 Parameters Required for DBMS_REDACT.ALTER_POLICY Actions
	15.14.4 Tutorial: Altering an Oracle Data Redaction Policy

	15.15 Redacting Multiple Columns
	15.15.1 Adding Columns to a Data Redaction Policy for a Single Table or View
	15.15.2 Example: Redacting Multiple Columns

	15.16 Disabling and Enabling an Oracle Data Redaction Policy
	15.16.1 Disabling an Oracle Data Redaction Policy
	15.16.2 Enabling an Oracle Data Redaction Policy

	15.17 Dropping an Oracle Data Redaction Policy
	15.18 Tutorial: SQL Expressions to Build Reports with Redacted Values
	15.19 Using Trace Files to Troubleshoot Oracle Data Redaction Policies
	15.20 Oracle Data Redaction Policy Data Dictionary Views

	16 Managing Oracle Data Redaction Policies in Oracle Enterprise Manager
	16.1 About Using Oracle Data Redaction in Oracle Enterprise Manager
	16.2 Oracle Data Redaction Workflow
	16.3 Management of Sensitive Column Types in Enterprise Manager
	16.4 Managing Oracle Data Redaction Formats Using Enterprise Manager
	16.4.1 About Managing Oracle Data Redaction Formats Using Enterprise Manager
	16.4.2 Creating a Custom Oracle Data Redaction Format Using Enterprise Manager
	16.4.3 Editing a Custom Oracle Data Redaction Format Using Enterprise Manager
	16.4.4 Viewing Oracle Data Redaction Formats Using Enterprise Manager
	16.4.5 Deleting a Custom Oracle Data Redaction Format Using Enterprise Manager

	16.5 Managing Oracle Data Redaction Policies Using Enterprise Manager
	16.5.1 About Managing Oracle Data Redaction Policies Using Enterprise Manager
	16.5.2 Creating an Oracle Data Redaction Policy Using Enterprise Manager
	16.5.3 Editing an Oracle Data Redaction Policy Using Enterprise Manager
	16.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise Manager
	16.5.5 Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager
	16.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise Manager

	16.6 Managing Named Data Redaction Policy Expressions Using Enterprise Manager
	16.6.1 About Named Data Redaction Policy Expressions in Enterprise Manager
	16.6.2 Creating a Named Data Redaction Policy Expression in Enterprise Manager
	16.6.3 Editing a Named Data Redaction Policy Expression in Enterprise Manager
	16.6.4 Viewing Named Data Redaction Policy Expressions in Enterprise Manager
	16.6.5 Deleting a Named Data Redaction Policy Expression in Enterprise Manager


	17 Using Oracle Data Redaction with Oracle Database Features
	17.1 Oracle Data Redaction General Usage Guidelines
	17.2 Oracle Data Redaction and DML and DDL Operations
	17.3 Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause
	17.4 Oracle Data Redaction and Queries on Columns Protected by Data Redaction Policies
	17.5 Oracle Data Redaction and Database Links
	17.6 Oracle Data Redaction and Aggregate Functions
	17.7 Oracle Data Redaction and Object Types
	17.8 Oracle Data Redaction and XML Generation
	17.9 Oracle Data Redaction and Editions
	17.10 Oracle Data Redaction and Oracle Data Warehouse Query Rewrite Operation
	17.11 Oracle Data Redaction and Oracle Virtual Private Database
	17.12 Oracle Data Redaction and Oracle Database Real Application Security
	17.13 Oracle Data Redaction and Oracle Database Vault
	17.14 Oracle Data Redaction and Oracle Data Pump
	17.14.1 Oracle Data Pump Security Model for Oracle Data Redaction
	17.14.2 Export of Objects That Have Oracle Data Redaction Policies Defined
	17.14.2.1 Finding Object Types Used by Oracle Data Pump
	17.14.2.2 Exporting Only the Data Dictionary Metadata Related to Data Redaction Policies
	17.14.2.3 Importing Only the Data Dictionary Metadata Using the INCLUDE Parameter in IMPDP

	17.14.3 Export of Data Using the EXPDP Utility access_method Parameter
	17.14.4 Import of Data into Objects Protected by Oracle Data Redaction

	17.15 Oracle Data Redaction and Data Masking and Subsetting Pack
	17.16 Oracle Data Redaction and JSON

	18 Security Considerations for Oracle Data Redaction
	18.1 Oracle Data Redaction General Security Guidelines
	18.2 Restriction of Administrative Access to Oracle Data Redaction Policies
	18.3 How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas
	18.4 Policy Expressions That Use SYS_CONTEXT Attributes
	18.5 Oracle Data Redaction Policies on Materialized Views
	18.6 REDACTION_COLUMNS Data Dictionary View Behavior When a View Is Invalid
	18.7 Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled


	Glossary
	actual data
	auto-login TDE wallet
	cipher suite
	ciphertext
	data redaction
	decryption
	encrypted text
	encryption
	external keystore
	hardware security module
	inference
	key pair
	keystore
	local auto-login TDE wallet
	mask
	Oracle-managed tablespace
	password-based TDE wallet
	plaintext
	private key
	public key
	public key encryption
	public and private key pair
	public key infrastructure (PKI)
	redacted data
	salt
	software keystore
	tablespace encryption key
	TDE master encryption key
	TDE table key
	TDE wallet
	wallet obfuscation
	Wallet Resource Locator (WRL)

	Index

