7 Using Flashback Database and Restore Points
Use RMAN to configure, monitor, and maintain restore points as part of an overall data protection strategy
This chapter explains Flashback Database and restore points. It discusses configuring, monitoring, and maintaining these features as part of an overall data protection strategy.
Note:
Detailed information on recovery scenarios that use Flashback Database and normal and guaranteed restore points can be found in Performing Flashback and Database Point-in-Time Recovery.
7.1 Overview of Flashback Database, Restore Points and Guaranteed Restore Points
Oracle Flashback Database and restore points are related data protection features that enable you to rewind data back in time to correct any problems caused by logical data corruption or user errors within a designated time window.
These features provide a more efficient alternative to point-in-time recovery and does not require a backup of the database to be restored first. The effects are similar to database point-in-time recovery (DBPITR). Flashback Database and restore points are not only effective in traditional database recovery situations but can also be useful during database upgrades, application deployments and testing scenarios when test databases must be quickly created and re-created. Flashback Database also provides an efficient alternative to rebuilding a failed primary database after a Data Guard failover.
Restore points provide capabilities related to Flashback Database and other media recovery operations. In particular, a guaranteed restore point created at a system change number (SCN) ensures that you can use Flashback Database to rewind the database to this SCN. You can use restore points and Flashback Database independently or together.
Flashback Database is accessible through both RMAN and SQL as FLASHBACK DATABASE
. You can use either language to quickly recover the database from logical data corruption or user errors. The following examples return the database to a specified SCN or restore point:
FLASHBACK DATABASE TO RESTORE POINT before_upgrade;
FLASHBACK DATABASE TO SCN 202381;
7.1.1 About Flashback Database
Flashback Database is similar to conventional point-in-time recovery in its effects. It enables you to return a database to its state at a time in the recent past. Flashback Database is much faster than point-in-time recovery because it does not require restoring data files from backup and requires applying fewer changes from the archived redo logs.
You can use Flashback Database to reverse most unwanted changes to a database if the data files are intact. You can return a database to its state in a previous incarnation, and undo the effects of an ALTER DATABASE OPEN RESETLOGS
statement. "Rewinding a Database with Flashback Database" explains how to use the FLASHBACK
DATABASE
command to reverse database changes.
Flashback Database uses its own logging mechanism, creating flashback logs and storing them in the fast recovery area. You can only use Flashback Database if flashback logs are available. To take advantage of this feature, you must set up your database in advance to create flashback logs.
To enable Flashback Database, you configure a fast recovery area and set a flashback retention target. This retention target specifies how far back you can rewind a database with Flashback Database.
From that time onwards, at regular intervals, the database copies images of each altered block in every data file into the flashback logs. These block images can later be reused to reconstruct the data file contents for any moment at which logs were captured.
When you use Flashback Database to rewind a database to a past target time, the command determines which blocks changed after the target time and restores them from the flashback logs. The database restores the version of each block that is immediately before the target time. The database then uses redo logs to reapply changes that were made after these blocks were written to the flashback logs.
Redo logs on disk or tape must be available for the entire time period spanned by the flashback logs. For example, if the flashback retention target is 1 week, then you must ensure that online and archived redo logs that contain all changes for the past week are accessible. In practice, redo logs are typically needed much longer than the flashback retention target to support point-in-time recovery.
7.1.2 About Flashback Database Window
The range of SCNs for which there is currently enough flashback log data to support the FLASHBACK DATABASE
command is called the flashback database window. The flashback database window cannot extend further back than the earliest SCN in the available flashback logs.
By default, flashback logs are always stored in the fast recovery area. To increase the likelihood that enough flashback logs are retained to meet the flashback database window, you can increase the space in your fast recovery area.
To eliminate the manual administration required to manage the fast recovery area storage space, starting with Oracle Database 23ai, you can optionally store flashback logs in a separate storage disk location, preferably a fast disk location, outside the fast recovery area. For example, if you have write-intensive database workloads, then flashback database logging can slow down the database and may require that you manually manage disk space. In this scenario, you can choose to write the flashback logs to a faster disk storage location, outside the fast recovery area, to improve database performance.
(see "Table 5-4").
If the fast recovery area is not large enough to hold the flashback logs and files such as archived redo logs and other backups needed for the retention policy, then the database may delete flashback logs from the earliest SCNs forward to make room for other files. Consequently, the flashback database window can be shorter than the flashback retention target, depending on the size of the fast recovery area, other backups that must be retained, and how much flashback logging data is needed. The flashback retention target is a target, not a guarantee that Flashback Database is available.
If you cannot use FLASHBACK DATABASE
because the flashback database window is not long enough, then usually you can use database point-in-time recovery (DBPITR) to achieve a similar result. Guaranteed restore points are the only way to ensure that you can use Flashback Database to return to a specific point in time or guarantee the size of the flashback window.
Note:
Some database operations, such as dropping a tablespace cannot be reversed with Flashback Database. See "Limitations of Flashback Database" for details.
See Also:
-
Rewinding a Database with Flashback Database to learn about Flashback Database
-
Performing Database Point-in-Time Recovery to learn about DBPITR
7.1.3 Limitations of Flashback Database
Because Flashback Database works by undoing changes to the data files that exist at the moment when you run the command, it has certain limitations.
Following are the limitations of Flashback Database:
-
Flashback Database can only undo changes to a data file made by Oracle Database. It cannot be used to repair media failures, or to recover from accidental deletion of data files.
-
You cannot use Flashback Database alone to retrieve a dropped data file. If you flash back a database to a time when a dropped data file existed in the database, only the data file entry is added to the control file. You can only recover the dropped data file by using RMAN to fully restore and recover the data file.
-
If the database control file is restored from backup or re-created, all accumulated flashback log information is discarded. You cannot use
FLASHBACK DATABASE
to return to a point in time before the restore or re-creation of a control file. -
When using Flashback Database with a target time at which a
NOLOGGING
operation was in progress, block corruption is likely in the database objects and data files affected by theNOLOGGING
operation. For example, if you perform a direct-pathINSERT
operation inNOLOGGING
mode, and that operation runs from 9:00 to 9:15 on April 3, 2005, and you later use Flashback Database to return to the target time 09:07 on that date, the objects and data files updated by the direct-pathINSERT
may be left with block corruption after the Flashback Database operation completes.If possible, avoid using Flashback Database with a target time or SCN that coincides with a
NOLOGGING
operation. Also, perform a full or incremental backup of the affected data files immediately after anyNOLOGGING
operation to ensure recoverability to points in time after the operation. If you expect to use Flashback Database to return to a point in time during an operation such as a direct-pathINSERT
, consider performing the operation inLOGGING
mode.See Also:
Oracle Database SQL Language Reference for more information about operations that support
NOLOGGING
mode.
7.1.4 About Normal Restore Points
Creating a normal restore point assigns a restore point name to an SCN or specific point in time.
Thus, a restore point functions as a bookmark or alias for this SCN. Before performing any operation that you may have to reverse, you can create a normal restore point. The control file stores the name of the restore point and the SCN.
If you use flashback features or point-in-time recovery, then you can use the name of the restore point instead of a time or SCN. The following commands support this use of restore points:
-
The
RECOVER DATABASE
andFLASHBACK DATABASE
commands in RMAN -
The
FLASHBACK TABLE
statement in SQL
Creating a normal restore point eliminates manually recording an SCN in advance or determine the correct SCN after the fact by using features such as Flashback Query.
Normal restore points are lightweight. The control file can maintain a record of thousands of normal restore points with no significant effect on database performance. Normal restore points eventually age out of the control file if not manually deleted, so they require no ongoing maintenance.
See Also:
Oracle Database Development Guide to learn how to use Flashback Query
7.1.5 About Guaranteed Restore Points
Like a normal restore point, a guaranteed restore point serves as an alias for an SCN in recovery operations. A principal difference is that guaranteed restore points never age out of the control file and must be explicitly dropped.
In general, you can use a guaranteed restore point as an alias for an SCN with any command that works with a normal restore point. Except as noted, the information about where and how to use normal restore points applies to guaranteed restore points as well.
A guaranteed restore point ensures that you can use Flashback Database to rewind a database to its state at the restore point SCN, even if the generation of flashback logs is disabled. If flashback logging is enabled, then a guaranteed restore point enforces the retention of flashback logs required for Flashback Database to any SCN after the earliest guaranteed restore point. Thus, if flashback logging is enabled, you can rewind the database to any SCN in the continuum rather than to a single SCN only.
Note:
If flashback logging is disabled, then you cannot FLASHBACK DATABASE
directly to SCNs between the guaranteed restore points and the current time. You can, however, flashback to the guaranteed restore point first and then recover to SCN's between the guaranteed restore point and current time.
If the recovery area has enough disk space to store the needed logs, then you can use a guaranteed restore point to rewind a whole database to a known good state days or weeks ago. As with Flashback Database, even the effects of NOLOGGING
operations like direct load inserts can be reversed with guaranteed restore points.
Note:
Limitations that apply to Flashback Database also apply to guaranteed restore points. For example, dropping a tablespace can prevent flashing back the affected data files to the guaranteed restore point. See "Limitations of Flashback Database" for details. In addition, when there are guaranteed restore points in the database, the database compatibility parameter cannot be set to a higher database version. An attempt to do so results in an error. This restriction exists because flashback database is currently unable to reverse the effects of increasing the database version with the compatibility initialization parameter.
7.1.5.1 Guaranteed Restore Points versus Storage Snapshots
In practice, guaranteed restore points provide a useful alternative to storage snapshots.
Storage snapshots are often used to protect a database before risky operations such as large-scale database updates or application patches or upgrades. Rather than creating a snapshot or duplicate database to test the operation, you can create a guaranteed restore point on a primary or physical standby database. You can then perform the risky operation with the certainty that the required flashback logs are retained.
7.1.6 Overview of Restore Points in a Multitenant Environment
You can create both normal and guaranteed restore points in a multitenant environment.
The basic concepts of restore points for databases are also applicable to restore points in a multitenant environment. You can create the following types of restore points in a multitenant environment:
-
CDB restore point
-
PDB restore point
-
Clean PDB restore point
7.1.6.1 About CDB Restore Points
A CDB restore point serves as an alias for an SCN or a point in time in a multitenant container database (CDB). It can be a normal restore point or a guaranteed restore point.
You connect to the root of the target database as a common user with the
SYSDBA
or SYSBACKUP
privilege to create CDB
restore points. You can create CDB restore points starting with Oracle Database
12c Release 1 (12.1). CDB restore points are accessible to every pluggable
database within the CDB. However, a CDB restore point does not reflect the PDB
sub-incarnation of any of its PDBs.
CDB restore points are useful in the following scenarios:
-
The whole CDB needs to be recovered to a particular point in time
-
Multiple PDBs in a CDB need to be recovered to a particular point in time
See Also:
7.1.6.2 About Restore Points in PDBs
You can create normal and guaranteed restore points in a pluggable database (PDB). PDB restore points are accessible only to the PDB in which they are defined.
PDB Restore Points
A PDB restore point is a bookmark to a point in time or an SCN in a particular pluggable database (PDB). It pertains only to the PDB for which it is created and is only usable for operations on that PDB. A PDB restore point represents the PDB sub-incarnation of the point in time at which it was created.
PDB restore points can be normal restore points or guaranteed restore points. A guaranteed PDB restore point guarantees that you can perform a flashback operation for the PDB to this restore point.
A PDB restore point can be used to perform Flashback Database operations or point-in-time recovery only for the PDB in which it was created.
Note:
Creating a guaranteed PDB restore point requires careful consideration because such a restore point can prevent required flashback logs in the multitenant container database (CDB) from being reused. This can potentially impact CDB functioning because the fast recovery area could run out of space.Clean PDB Restore Points
A clean PDB restore point is a PDB restore point that is created when the PDB is closed and when there are no outstanding transactions for that PDB. Clean PDB restore points are only applicable to CDBs that use shared undo.
Clean PDB restore points can be normal or guaranteed restore points. Use the CREATE CLEAN RESTORE POINT
command to explicitly create a clean PDB restore point. For a CDB that uses shared undo, if a PDB is closed and it has no outstanding transactions, any PDB restore point created is marked as a clean PDB restore point.
If you anticipate that you may need to rewind a PDB to a particular point in time, for example, to a state just before an application upgrade, then it is recommended that you create a clean PDB guaranteed restore point.
For CDBs that use shared undo, a Flashback Database operation to a clean PDB restore point is faster than a Flashback Database operation to an SCN or other restore points that are not clean PDB restore points. This is because RMAN does not need to restore any backups while performing a flashback operation to a clean PDB restore point.
7.1.6.3 About the Namespace for PDB Restore Points
Each pluggable database (PDB) has its own namespace for restore points. Therefore, you can define a PDB restore point with the same name in more than one PDB.
In a multitenant environment, when you use a restore point name in a PDB or for a PDB operation, the name is first interpreted as a PDB restore point for the concerned PDB. If a PDB restore point with the specified name is not found, then it is interpreted as a CDB restore point.
See Also:
7.2 About Logging for Flashback Database and Guaranteed Restore Points
Logging for Flashback Database and guaranteed restore points involves capturing images of data file blocks before changes are applied. The FLASHBACK DATABASE
command can use these images to return the data files to their previous state.
The chief differences between normal flashback logging and logging for guaranteed restore points are related to when blocks are logged and whether the logs can be deleted in response to space pressure in the fast recovery area. These differences affect space usage for logs and database performance.
Your recoverability goals partially determine whether to enable logging for flashback database, or use guaranteed restore points, or both. The implications in performance and in space usage for these features, separately and when used together, also factor into your decision.
Flashback logs are stored in the fast recovery area by default. Starting with Oracle Database 23ai, you can choose to write the flashback logs to faster disks outside the fast recovery area to improve database performance and eliminate the manual administration required to manage the fast recovery area space usage.
7.2.1 Guaranteed Restore Points and Fast Recovery Area Space Usage
Certain rules govern the usage of space in the fast recovery area.
When you create a guaranteed restore point, with or without enabling full flashback database logging, you must monitor the space available in your fast recovery area. "Managing Space for Flashback Logs" explains how to monitor fast recovery area disk space usage.
The following rules govern creating, retaining, overwriting and deleting of flashback logs in the fast recovery area:
-
If the fast recovery area has enough space, then a flashback log is created whenever necessary to satisfy the flashback retention target.
-
If a flashback log is old enough that it is no longer needed to satisfy the flashback retention target, then the flashback log may be reused or deleted.
-
If the database must create a flashback log and the fast recovery area is full or there is no disk space, then the oldest flashback log is reused instead.
Note:
Reusing the oldest flashback log shortens the flashback database window. If enough flashback logs are reused due to a lack of disk space, then the flashback retention target may not be satisfied.
-
If the fast recovery area is full, then an archived redo log that is reclaimable according to the fast recovery area rules may be automatically deleted by the fast recovery area to make space for other files. In this case, any flashback logs that require the use of that redo log file for the use of
FLASHBACK DATABASE
are also deleted.Note:
According to fast recovery area rules, a file is reclaimable when one of the following criteria is true:
-
The file is reported as obsolete and not needed by the flashback database. For example, the file is outside the
DB_FLASHBACK_RETENTION_TARGET
parameters. -
The file is backed up to tape.
-
-
Files in the fast recovery area are not eligible for deletion or reuse if they are required to satisfy a guaranteed restore point. However, archived redo logs required to satisfy a guaranteed restore point may be deleted after they are backed up to disk or tape. When you use the RMAN
FLASHBACK DATABASE
command, if the archived redo logs required to satisfy a specified guaranteed restore point are not available in the fast recovery area, they are restored from the backups.Retention of flashback logs and other files required to satisfy the guaranteed restore point, in addition to files required to satisfy the backup retention policy, can cause the fast recovery area to fill completely. Consult "Responding to a Full Fast Recovery Area" if your fast recovery area becomes full.
Caution:
If no files are eligible for deletion from the fast recovery area because of the requirements imposed by your retention policy and the guaranteed restore point, then the database performs as if it has encountered a disk full condition. In many circumstances, this causes your database to halt. See "Responding to a Full Fast Recovery Area".
7.2.2 About Logging for Guaranteed Restore Points with Flashback Logging Disabled
Assume that you create a guaranteed restore point when logging for Flashback Database is disabled. In this case, the first time a data file block is modified after the time of the guaranteed restore point, the database stores an image of the block before the modification in the flashback logs. Thus, the flashback logs preserve the contents of every changed data block when the guaranteed restore point was created. Later modifications to the same block do not cause the contents to be logged again unless another guaranteed restore point was created after the block was last modified or a subsequent flashback database operation has restored the original contents of the block. When you use Flashback Database to restore a database multiple times to the same restore point, it is common practise to drop and recreate the guaranteed restore point each time. This deletes the old flashback logs and also ensures that the space quota for the fast recovery area is not exceeded.
This method of logging has the following important consequences:
-
FLASHBACK DATABASE
can re-create the data file contents at the time of a guaranteed restore point by using the block images. -
For workloads that repeatedly modify the same data, disk space usage can be less than normal flashback logging. Less space is needed because each changed block is only logged once. Applications with low volume inserts may benefit from this disk space saving. This advantage is less likely for applications with high volume inserts or large batch inserts. The performance overhead of logging for a guaranteed restore point without flashback database logging enabled can also be lower.
Assume that your primary goal is the ability to return your database to the time at which the guaranteed restore point was created. In this case, it is usually more efficient to turn off flashback logging and use only guaranteed restore points. For example, suppose that you are performing an application upgrade on a database host over a weekend. You could create a guaranteed restore point at the start of the upgrade. If the upgrade fails, then reverse the changes with the FLASHBACK DATABASE
command.
7.2.3 About Logging for Flashback Database with Guaranteed Restore Points Defined
If you enable Flashback Database and define one or more guaranteed restore points, then the database performs normal flashback logging.
In this case, the recovery area retains the flashback logs required to flash back to any arbitrary time between the present and the earliest currently defined guaranteed restore point. Flashback logs are not deleted in response to space pressure if they are required to satisfy the guarantee.
Flashback logs are stored in the fast recovery area by default. Flashback logging causes some performance overhead. Depending upon the pattern of activity on your database, it can also cause significant space pressure in the fast recovery area. Thus, you should monitor space used in the fast recovery area.
However, if you have write-intensive database workloads and if flashback logging slows down database performance, starting with Oracle Database 23ai, you can choose to write the flashback logs to faster disks outside the fast recovery area. Maintaining the flashback logs in a separate disk location helps to eliminate the need to monitor disk space usage in the fast recovery area and also improves database performance.
7.3 Prerequisites for Flashback Database and Restore Points
To ensure successful operation of Flashback Database and guaranteed restore points, you must first set some key database options.
Flashback Database
Configure the following database settings before enabling Flashback Database:
-
Your database must be running in
ARCHIVELOG
mode, because archived logs are used in the Flashback Database operation. -
You must have a fast recovery area enabled.
By default, flashback logs are stored in the fast recovery area. However, starting with Oracle Database 23ai, you can optionally store flashback logs in a separate storage disk location, preferably a fast disk storage, outside the fast recovery area. Storing flashback logs outside the fast recovery area can help reduce performance issues and eliminate the need to manually manage the fast recovery area space usage caused by flashback logging.
-
For Oracle Real Application Clusters (Oracle RAC) databases, the fast recovery area must be in a clustered file system or in ASM.
-
For creating restore points in CDBs, the
COMPATIBLE
initialization parameter must be set to 12.1.0 or higher.
Guaranteed Restore Points
To use guaranteed restore points, the database must satisfy the following additional prerequisite: the COMPATIBLE
initialization parameter must be set to 10.2.0 or greater.
Note:
There are no special prerequisites to set before using normal restore points.
Restore Points in PDBs
To create restore points in a pluggable database (PDB), theCOMPATIBLE
initialization parameter must be set to 12.2.0 or higher.
7.4 Using Normal and Guaranteed Restore Points
You can create, monitor, and drop both normal and guaranteed restore points.
See Also:
-
Oracle Database SQL Language Reference for reference information about the SQL
CREATE RESTORE POINT
statement
7.4.1 Creating CDB Restore Points
To create or guaranteed restore points in a multitenant container database
(CDB), use the CREATE RESTORE POINT
SQL command. Provide a name for the
restore point and specify whether it is to be a guaranteed restore point or a normal one
(the default).
To create a CDB restore point:
See Also:
7.4.2 Creating PDB Restore Points
You use the CREATE RESTORE POINT
SQL statement to create
normal PDB restore points, guaranteed PDB restore points, or clean PDB restore points in a
pluggable database (PDB).
You can create PDB restore points either when connected to the PDB or to the root. When a PDB uses shared undo, you can create a clean restore point only if the PDB does not have any outstanding transactions.
To create a PDB restore point when connected to the PDB:
-
Ensure that the prerequisites described in Prerequisites for Flashback Database and Restore Points are met.
-
Connect SQL*Plus to the PDB as a common user or local user with the
SYSDBA
orSYSBACKUP
privilege. -
If you are creating a clean PDB restore point in a CDB that uses shared undo, then the PDB must be closed.
The following command displays the state of the PDB:
SQL> SELECT name, open_mode FROM V$PDBs;
Use the following command to close the PDB:
SQL> ALTER PLUGGABLE DATABASE CLOSE;
-
If the multitenant container database (CDB) is in mounted state, then it must have been shut down consistently (unless it is a physical standby database).
-
Set the current container to the PDB.
The following command sets to current container to the PDB
my_pdb
:SQL> ALTER SESSION SET CONTAINER=my_pdb;
-
Create a PDB restore point by using the
CREATE RESTORE POINT
command.The following command creates a normal PDB restore point:
SQL> CREATE RESTORE POINT before_patching;
The following command creates a guaranteed PDB restore point:
SQL> CREATE RESTORE POINT before_upgrade GUARENTEE FLASHBACK DATABASE;
The following command explicitly creates a clean PDB restore point. If a clean restore point cannot be created, then an error is returned.
SQL> CREATE CLEAN RESTORE POINT before_patching;
To create a PDB restore point when connected to the CDB:
7.4.3 Listing Restore Points Using the LIST Command
Use the LIST
command to list either a specific restore point or all
restore points known to the RMAN repository.
The variations of the LIST
command are as follows:
LIST RESTORE POINT restore_point_name;
LIST RESTORE POINT ALL;
RMAN indicates the SCN and time of the restore point, the type of restore point, and the name of the restore point. The following example shows sample output:
RMAN> LIST RESTORE POINT ALL; using target database control file instead of recovery catalog SCN RSP Time Type Time Name ---------------- --------- ---------- --------- ---- 341859 28-APR-15 28-APR-15 NORMAL_RS 343690 28-APR-15 GUARANTEED 28-APR-15 GUARANTEED_RS
Note:
TheLIST
command does not display details such as the PDB incarnation number and whether a restore point is a PDB restore point. To view additional details about restore points in a multitenant environment, see Listing Restore Points Using the V$RESTORE_POINT View.
See Also:
7.4.4 Listing Restore Points Using the V$RESTORE_POINT View
You can use the V$RESTORE_POINT
control file view to obtain information about all currently-defined restore points (normal and guaranteed), including CDB restore points and PDB restore points.
V$RESTORE_POINT
view contains additional information about restore points in a multitenant environment that is not displayed by the LIST RESTORE POINT
command. This includes details such as the incarnation of the pluggable database (PDB) in which a PDB restore point was created and whether a restore point is a PDB restore point or clean PDB restore point.
The following steps display information about PDB restore points for all PDBs in the CDB:
Example 7-1 Displaying Restore Points in a Multitenant Environment
The following query displays details about all restore points in a multitenant environment (query output formatted to fit in the page):
SELECT name, guarantee_flashback_database, pdb_restore_point, clean_pdb_restore_point, pdb_incarnation#, storage_sizeFROM v$restore_point;
NAME GUARANTEE_ PDB_RESTORE_POINT CLEAN_PDB_RESTORE_POINT STORAGE_SIZE -------- ---------- ---------------- ----------------------- ------------ CDB_GRP_BEFORE_PATCH YES NO NO 84586 PDB_GRP_BEFORE_UPGRADE_TEMP YES YES NO 4562 CDB_RP1 NO NO NO 0 PDB1_BEFORE_PATCHING NO YES NO 0 MYPDB_CLEAN_GRP_BEFORE_UPGRADE NO YES YES 0
For normal restore points, STORAGE_SIZE
is zero. For guaranteed restore points, STORAGE_SIZE
indicates the approximate number of bytes of disk space in the fast recovery area that is tied up retaining logs required to guarantee FLASHBACK
DATABASE
to that restore point.
See Also:
7.4.5 Dropping Restore Points
When you are satisfied that you do not need an existing restore point, or when you want to create a restore point with the name of an existing restore point, you can drop the restore point, using the DROP RESTORE POINT
SQL*Plus statement.
For example:
SQL> DROP RESTORE POINT before_app_upgrade;
Restore point dropped.
The same statement is used to drop both normal and guaranteed restore points.
Note:
Normal restore points eventually age out of the control file, even if not explicitly dropped. The rules governing retention of restore points in the control file are:
-
The most recent 2048 restore points are always kept in the control file, regardless of their age.
-
Any restore point more recent than the value of
CONTROL_FILE_RECORD_KEEP_TIME
is retained, regardless of how many restore points are defined.
Normal restore points that do not meet either of these conditions may age out of the control file.
Guaranteed restore points never age out of the control file. They remain until they are explicitly dropped.
See also:
Oracle Database SQL
Language Reference for reference information about the SQL DROP RESTORE POINT
statement
7.5 Using Flashback Database
To use flashback logging for a target database, you must enable Flashback Database. Certain guidelines can be followed to ensure optimal performance of Flashback Database.
This section contains the following topics:
7.5.1 Enabling Flashback Database
Use the ALTER DATABASE
command to enable Flashback Database
To enable flashback logging:
When you enable Flashback Database while the database is open, there is a very small chance the command may not be able to obtain the memory it needs. If the command fails because of that reason, retry the command after a while or retry after a shutdown and restart of the instance.
When you enable Flashback Database on a physical standby database, you can flash back a standby database. Flashback Database of standby databases has some applications in the Data Guard environment.
See Also:
Oracle Data Guard Concepts and Administration for details about standby databases
7.5.2 Disabling Flashback Database Logging
Use the ALTER DATABASE
command to disable Flashback Database.
On a database instance that is either in mount or open state, issue the following command:
ALTER DATABASE FLASHBACK OFF;
7.5.3 Configuring the Environment for Optimal Flashback Database Performance
Maintaining flashback logs imposes comparatively limited overhead on a database instance. Changed blocks are written from memory to the flashback logs at relatively infrequent, regular intervals, to limit processing and I/O overhead.
To achieve good performance for large production databases with Flashback Database enabled, Oracle recommends the following:
-
Use a fast file system for your fast recovery area, preferably without operating system file caching.
Files that the database creates in the fast recovery area, including flashback logs, are typically large. Operating system file caching is typically not effective for these files, and may actually add CPU overhead for reading from and writing to these files. Thus, it is recommended to use a file system that avoids operating system file caching, such as Automatic Storage Management (ASM).
-
Configure enough disk spindles for the file system that holds the fast recovery area.
For large production databases, multiple disk spindles may be needed to support the required disk throughput for the database to write the flashback logs effectively.
-
If the storage system used to hold the fast recovery area does not have nonvolatile RAM, then try to configure the file system on striped storage volumes.
Use a relatively small stripe size such as 128 KB. This technique enables each write to the flashback logs to be spread across multiple spindles, improving performance.
-
For large databases, set the initialization parameter
LOG_BUFFER
to at least 8 MB.
The overhead of logging for Flashback Database depends on the mixture of reads and writes in the database workload. When you have a write-intensive workload, the Flashback Database logging overhead is high since it must log all those database changes. Queries do not change data and thus do not contribute to logging activity for Flashback Database.
7.5.4 Monitoring the Effect of Flashback Database on Performance
Several data analysis methods are available to monitor the Flashback Database workload on your system.
-
AWR reports
The Automatic Workload Repository (AWR) automates database statistics gathering by collecting, processing, and maintaining performance statistics for database problem detection and self-tuning. You can compare AWR reports from before and after the Flashback Database was turned on to monitor performance effects.
-
AWR snapshots
You can review AWR snapshots to pinpoint system usage caused by flashback logging. For example, if
flashback buf free by RVWR
is the top wait event, then you know that Oracle Database cannot write flashback logs very quickly. Therefore, you might want to tune the file system and storage used by the fast recovery area, possibly using a technique described in "Configuring the Environment for Optimal Flashback Database Performance" -
V$FLASHBACK_DATABASE_STAT
viewThe
V$FLASHBACK_DATABASE_STAT
view shows the bytes of flashback data logged by the database. Each row in the view shows the statistics accumulated (typically over the course of an hour). TheFLASHBACK_DATA
andREDO_DATA
columns describe bytes of flashback data and redo data written respectively during the time interval, while theDB_DATA
column describes bytes of data blocks read and written. The columnsFLASHBACK_DATA
andREDO_DATA
correspond to sequential writes, whereasDB_DATA
column corresponds to random reads and writes. -
V$SYSSTAT
viewBecause of the difference between sequential I/O and random I/O, a better indication of I/O overhead is the number of I/O operations issued for flashback logs. The
V$SYSSTAT
statistics shown in Table 7-1 can tell you the number of I/O operations that your instance has issued for various purposes.
Table 7-1 V$SYSSTAT Statistics
Column Name | Column Meaning |
---|---|
Physical write I/O request |
The number of write operations issued for writing data blocks |
Physical read I/O request |
The number of read operations issued for reading data blocks |
Redo writes |
The number of write operations issued for writing to the redo log |
Flashback log writes |
The number of write operations issued for writing to flashback logs |
Flashback log write bytes |
Total size in bytes of flashback database data written from this instance |
See Also:
-
Oracle Database Reference for more details on columns in the
V$SYSSTAT
view -
Oracle Database Performance Tuning Guide to learn about AWR
-
Oracle Database Get Started with Performance Tuning for more information about AWR reports
7.5.5 About Flashback Writer (RVWR) Behavior with I/O Errors
When flashback is enabled or when there are guaranteed restore points, the background process RVWR writes flashback data to flashback database logs in the fast recovery area.
If RVWR encounters an I/O error, then the following behavior is expected:
-
If there are any guaranteed restore points defined, then the instance fails when RVWR encounters I/O errors.
-
If no guaranteed restore points are defined, then the instance remains unaffected when RVWR encounters I/O errors. Note the following cases:
-
On a primary database, Oracle Database automatically disables Flashback Database while the database is open. All existing transactions and queries proceed unaffected. This behavior is expected for both single-instance and Oracle RAC databases.
-
On a physical or logical standby, RVWR appears to have stopped responding, retrying the I/O periodically. This may eventually cause the logical standby or the managed recovery of the physical standby to suspend. (Oracle Database does not cause the standby instance to fail because it does not want to cause the primary database to fail in maximum protection mode.) To resolve the issue, you can issue either a
SHUTDOWN ABORT
or anALTER DATABASE FLASHBACK OFF
command.
-