Oracle® Database
Database Concepts

23C
FA6741-04
December 2023

ORACLE"

Oracle Database Database Concepts, 23c

F46741-04

Copyright © 1993, 2023, Oracle and/or its affiliates.

Primary Authors: Mark Doran, Lance Ashdown, Donna Keesling, Tom Kyte

Contributors: Drew Adams, Ashish Agrawal, Troy Anthony, Vikas Arora, Jagan Athraya, David Austin,
Thomas Baby, Vladimir Barriere, Hermann Baer, Srinagesh Battula, Nigel Bayliss, Tammy Bednar, Virginia
Beecher, Bjorn Bolltoft, Ashmita Bose, David Brower, Larry Carpenter, Lakshminaray Chidambaran, Deba
Chatterjee, Shasank Chavan, Tim Chien, Gregg Christman, Bernard Clouse, Maria Colgan, Carol Colrain,
Nelson Corcoran, Michael Coulter, Jonathan Creighton, Judith D'Addieco, Mark Dilman, Kurt Engeleiter,
Bjgrn Engsig, Marcus Fallon, Steve Fogel, Jonathan Giloni, Naveen Gopal, Bill Habeck , Min-Hank Ho, Lijie
Heng, Bill Hodak, Yong Hu, Pat Huey, Praveen Kumar Tupati Jaganath, Sanket Jain, Prakash Jashnani,
Caroline Johnston, Shantanu Joshi, Jesse Kamp, Vikram Kapoor, Feroz Khan, Jonathan Klein, Andre
Kruglikov, Sachin Kulkarni, Surinder Kumar, Paul Lane, Adam Lee, Allison Lee, Jaebock Lee, Sue Lee, Teck
Hua Lee, Yunrui Li, llya Listvinski, Bryn Llewellyn, Rich Long, Barb Lundhild, Neil Macnaughton, Vineet
Marwah, Susan Mavris, Bob McGuirk, Joseph Meeks, Mughees Minhas, Sheila Moore, Valarie Moore, Gopal
Mulagund, Charles Murray, Kevin Neel, Sue Pelski, Raymond Pfau, Gregory Pongracz, Vivek Raja, Ashish
Ray, Bert Rich, Kathy Rich, Andy Rivenes, Scott Rotondo, Vivian Schupmann, Venkat Senaptai, Shrikanth
Shankar, Prashanth Shanthaveerappa, Cathy Shea, Susan Shepard, Kam Shergill, Mike Skarpelos, Sachin
Sonawane, James Spiller, Suresh Sridharan, Jim Stenoish, Janet Stern, Rich Strohm, Roy Swonger, Kamal
Tbeileh, Juan Tellez, Ravi Thammaiah, Lawrence To, Tomohiro Ueda, Randy Urbano, Badhri Varanasi, Nick
Wagner, Steve Wertheimer, Patrick Wheeler, Doug Williams, James Williams, Andrew Witkowski, Daniel
Wong, Hailing Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XXiii
Documentation Accessibility XXili
Related Documentation XXV
Conventions XXV

1 Introduction to Oracle Database

About Relational Databases 1-1
Database Management System (DBMS) 1-2
Relational Model 1-2
Relational Database Management System (RDBMS) 1-3
Brief History of Oracle Database 1-3
Schema Obijects 1-5
Tables 1-5
Indexes 1-6
Data Access 1-6
Structured Query Language (SQL) 1-6
PL/SQL, Java, and JavaScript 1-7
Transaction Management 1-8
Transactions 1-8
Data Concurrency 1-8
Data Consistency 1-9
Oracle Database Architecture 1-9
Database and Instance 1-10
Multitenant Architecture 1-10
Sharding Architecture 1-14
Database Storage Structures 1-15
Physical Storage Structures 1-15
Logical Storage Structures 1-16
Database Instance Structures 1-17
Oracle Database Processes 1-17
Instance Memory Structures 1-18

ORACLE

Application and Networking Architecture 1-18
Application Architecture 1-18
Oracle Net Services Architecture 1-19
Oracle Database Documentation Roadmap 1-20
Oracle Database Documentation: Basic Group 1-20
Oracle Database Documentation: Intermediate Group 1-21
Oracle Database Documentation: Advanced Group 1-21
Part | Multitenant Architecture
2 CDBs and PDBs
About Containers in a CDB 2-1
The CDB Root and System Container 2-4
PDBs 2-5
Types of PDBs 2-6
Purpose of PDBs 2-7
Proxy PDBs 2-8
Names for PDBs 2-9
Database Links Between PDBs 2-9
3 Application Containers
About Application Containers 3-1
Purpose of Application Containers 3-2
Key Benefits of Application Containers 3-2
Application Container Use Case: SaaS 3-3
Application Containers Use Case: Logical Data Warehouse 3-4
Application Root 3-5
Application PDBs 3-6
Application Seed 3-6
Application Common Objects 3-6
About Commonality in a CDB 3-7
Principles of Commonality 3-7
Namespaces in a CDB 3-8
Creation of Application Common Objects 3-9
Metadata-Linked Application Common Objects 3-10
Metadata Links 3-11
Data-Linked Application Common Objects 3-12
Extended Data-Linked Application Objects 3-13
Container Maps 3-14

ORACLE

Cross-Container Operations 3-17
Part Il Oracle Data Structures
4 Tables and Table Clusters

Introduction to Schema Objects 4-1
About Common and Local User Accounts 4-2
Common User Accounts 4-4

Local User Accounts 4-8
Common and Local Objects 4-10
Schema Object Types 4-10
Schema Object Storage 4-11
Schema Object Dependencies 4-13
Sample Schemas 4-15
Overview of Tables 4-15
Columns 4-17
Virtual Columns 4-17
Invisible Columns 4-17
Lock-Free Reservation 4-18

Rows 4-20
Example: CREATE TABLE and ALTER TABLE Statements 4-21
Oracle Data Types 4-23
Character Data Types 4-24
Numeric Data Types 4-26
Datetime Data Types 4-27

Rowid Data Types 4-28
Boolean Data Type 4-30

Format Models and Data Types 4-30
Integrity Constraints 4-31
Table Storage 4-31
Table Organization 4-32

Row Storage 4-33

Rowids of Row Pieces 4-33
Storage of Null Values 4-34

Table Compression 4-34
Basic Table Compression and Advanced Row Compression 4-34

Hybrid Columnar Compression 4-36
Overview of Table Clusters 4-40
Overview of Indexed Clusters 4-41
Overview of Hash Clusters 4-43

ORACLE

Hash Cluster Creation 4-44

Hash Cluster Queries 4-44

Hash Cluster Variations 4-45

Hash Cluster Storage 4-46
Overview of Attribute-Clustered Tables 4-47
Advantages of Attribute-Clustered Tables 4-48
Join Attribute Clustered Tables 4-49

I/0O Reduction Using Zones 4-49
Purpose of Zones 4-50

Zone Maps 4-50

Zone Map Creation 4-51

How a Zone Map Works: Example 4-52
Attribute-Clustered Tables with Linear Ordering 4-53
Attribute-Clustered Tables with Interleaved Ordering 4-54
Overview of Temporary Tables 4-56
Purpose of Temporary Tables 4-57
Segment Allocation in Temporary Tables 4-57
Temporary Table Creation 4-57
Overview of External Tables 4-58
Purpose of External Tables 4-58
Data in Object Stores 4-59
External Table Access Drivers 4-59
External Table Creation 4-60
Overview of Blockchain Tables 4-61
Row Chains 4-62
Row Content 4-62
User Interface for Blockchain Tables 4-63
Overview of Immutable Tables 4-64
Overview of Object Tables 4-64

5 Indexes and Index-Organized Tables

Introduction to Indexes 5-1
Advantages and Disadvantages of Indexes 5-3
Index Usability and Visibility 5-4
Keys and Columns 5-4
Composite Indexes 5-5
Unique and Nonunique Indexes 5-6
Types of Indexes 5-7
How the Database Maintains Indexes 5-8
Index Storage 5-8

ORACLE vi

Overview of B-Tree Indexes 5-9

Branch Blocks and Leaf Blocks 5-10
Index Scans 5-11

Full Index Scan 5-12

Fast Full Index Scan 5-12

Index Range Scan 5-13

Index Unique Scan 5-13

Index Skip Scan 5-14

Index Clustering Factor 5-15
Reverse Key Indexes 5-17
Ascending and Descending Indexes 5-18
Index Compression 5-18
Prefix Compression 5-19
Advanced Index Compression 5-21
Overview of Bitmap Indexes 5-22
Example: Bitmap Indexes on a Single Table 5-23
Bitmap Join Indexes 5-25
Bitmap Storage Structure 5-27
Overview of Function-Based Indexes 5-28
Uses of Function-Based Indexes 5-28
Optimization with Function-Based Indexes 5-30
Overview of Application Domain Indexes 5-30
Overview of Index-Organized Tables 5-31
Index-Organized Table Characteristics 5-32
Index-Organized Tables with Row Overflow Area 5-35
Secondary Indexes on Index-Organized Tables 5-35
Logical Rowids and Physical Guesses 5-36

Bitmap Indexes on Index-Organized Tables 5-37

6 Partitions, Views, and Other Schema Objects

Overview of Partitions 6-1
Partition Characteristics 6-3
Partition Key 6-3
Partitioning Strategies 6-3
Partitioned Tables 6-11
Segments for Partitioned Tables 6-11
Compression for Partitioned Tables 6-11
Partitioned Indexes 6-12
Local Partitioned Indexes 6-13

Global Partitioned Indexes 6-15

ORACLE vii

Partial Indexes for Partitioned Tables 6-18
Using Object Store for Older Partitions 6-19
Moving Older Partitions and Read-Only Tablespaces to Object Store 6-20
Accessing Objects in Object Storage 6-21
Credential Management For Object Store Files 6-22

Moving Datafiles Back From Object Storage Into Traditional Storage 6-22
Deleting Object Store Data Files 6-23
Overview of Sharded Tables 6-23
Sharded Tables 6-24
Overview of Views 6-25
Characteristics of Views 6-27
Data Manipulation in Views 6-27

How Data Is Accessed in Views 6-28
Updatable Join Views 6-29
Object Views 6-30
Overview of Materialized Views 6-31
Characteristics of Materialized Views 6-33
Refresh Methods for Materialized Views 6-34
Complete Refresh 6-34
Incremental Refresh 6-34
In-Place and Out-of-Place Refresh 6-35
Automatic Materialized Views 6-35
Query Rewrite 6-36
Overview of Sequences 6-37
Sequence Characteristics 6-37
Concurrent Access to Sequences 6-38
Overview of Dimensions 6-39
Hierarchical Structure of a Dimension 6-39
Creation of Dimensions 6-40
Overview of Synonyms 6-41

7 Data Integrity

Introduction to Data Integrity 7-1
Techniques for Guaranteeing Data Integrity 7-1
Advantages of Integrity Constraints 7-2
Types of Integrity Constraints 7-3
NOT NULL Integrity Constraints 7-4
Unique Constraints 7-5
Primary Key Constraints 7-6
Foreign Key Constraints 7-8

ORACLE

viii

Self-Referential Integrity Constraints 7-10
Nulls and Foreign Keys 7-10
Parent Key Modifications and Foreign Keys 7-11
Indexes and Foreign Keys 7-12
Check Constraints 7-12
Precheckable JSON Constraints 7-13
States of Integrity Constraints 7-14
Checks for Modified and Existing Data 7-14
When the Database Checks Constraints for Validity 7-15
Nondeferrable Constraints 7-16
Deferrable Constraints 7-16
Examples of Constraint Checking 7-17

Example: Insertion of a Value in a Foreign Key Column When No Parent Key Value
Exists 7-17
Example: Update of All Foreign Key and Parent Key Values 7-18

8 Application Data Usage
Application Usage Domains 8-1
Application Usage Annotations 8-2
O Data Dictionary and Dynamic Performance Views

Overview of the Data Dictionary 9-1
Purpose of the Data Dictionary 9-1
Data Management 9-2
Data Dictionary Separation in a CDB 9-2
Data Dictionary Components 9-3
Container Data Objects in a CDB 9-5
Views with the Prefix DBA_ 9-7
Views with the Prefix ALL_ 9-8
Views with the Prefix USER _ 9-8
The DUAL Table 9-9
How the Data Dictionary Works 9-9
Metadata and Data Links 9-10
Public Synonyms for Data Dictionary Views 9-11
Data Dictionary Cache 9-12
Other Programs and the Data Dictionary 9-12
Data Dictionary Storage 9-12
Overview of the Dynamic Performance Views 9-13
Contents of the Dynamic Performance Views 9-13
Storage of the Dynamic Performance Views 9-14

ORACLE

Database Object Metadata 9-14
Part [ll Oracle Data Access
10 SQL
Introduction to SQL 10-1
SQL Data Access 10-2
SQL Standards 10-3
Overview of SQL Statements 10-3
Data Definition Language (DDL) Statements 10-4
Data Manipulation Language (DML) Statements 10-6
SELECT Statements 10-7
Joins 10-7
Subqueries 10-9
Transaction Control Statements 10-10
Session Control Statements 10-11
System Control Statement 10-11
Embedded SQL Statements 10-12
Overview of the Optimizer 10-13
Use of the Optimizer 10-13
Optimizer Components 10-14
Query Transformer 10-16
Estimator 10-16
Plan Generator 10-16
Access Paths 10-17
Optimizer Statistics 10-18
Optimizer Hints 10-19
Overview of SQL Processing 10-20
Stages of SQL Processing 10-20
SQL Parsing 10-21
SQL Optimization 10-22
SQL Row Source Generation 10-23
SQL Execution 10-23
Differences Between DML and DDL Processing 10-23
11 Server-Side Programming: PL/SQL, Java, and JavaScript
Introduction to Server-Side Programming 11-1
Overview of PL/SQL 11-3
PL/SQL Subprograms 11-4

ORACLE

Advantages of PL/SQL Subprograms 11-4
Creation of PL/SQL Subprograms 11-6
Execution of PL/SQL Subprograms 11-7
PL/SQL Packages 11-8
Advantages of PL/SQL Packages 11-8
Creation of PL/SQL Packages 11-9
Execution of PL/SQL Package Subprograms 11-10
PL/SQL Anonymous Blocks 11-11
PL/SQL Language Constructs 11-12
PL/SQL Collections and Records 11-12
Collections 11-13
Records 11-13

How PL/SQL Runs 11-13
Overview of Java in Oracle Database 11-15
Overview of the Java Virtual Machine (JVM) 11-16
Overview of Oracle JVM 11-17

Main Components of Oracle JVM 11-18

Java Programming Environment 11-19
Java Stored Procedures 11-19

Java and PL/SQL Integration 11-20
Overview of JavaScript in Oracle Database 11-21
Storing Business Logic as Modules in the Database 11-22
Dynamic Execution of JavaScript Code 11-24
Inline JavaScript Stored Procedures 11-24
Overview of Triggers 11-25
Advantages of Triggers 11-26
Types of Triggers 11-26
Timing for Triggers 11-27
Creation of Triggers 11-28
Example: CREATE TRIGGER Statement 11-29
Example: Invoking a Row-Level Trigger 11-30
Execution of Triggers 11-32
Storage of Triggers 11-32

Part IV Oracle Transaction Management
12 Data Concurrency and Consistency

Introduction to Data Concurrency and Consistency 12-1
Multiversion Read Consistency 12-2
Statement-Level Read Consistency 12-3

ORACLE

Xi

Transaction-Level Read Consistency 12-3

Read Consistency and Undo Segments 12-4

Read Consistency and Deferred Inserts 12-6
Locking Mechanisms 12-7
ANSI/ISO Transaction Isolation Levels 12-7
Overview of Oracle Database Transaction Isolation Levels 12-8
Read Committed Isolation Level 12-9
Read Consistency in the Read Committed Isolation Level 12-9
Conflicting Writes in Read Committed Transactions 12-10
Serializable Isolation Level 12-12
Read-Only Isolation Level 12-17
Overview of the Oracle Database Locking Mechanism 12-17
Summary of Locking Behavior 12-18
Use of Locks 12-19
Lock Modes 12-22
Lock Conversion and Escalation 12-23
Lock Duration 12-23
Locks and Deadlocks 12-24
Overview of Automatic Locks 12-25
DML Locks 12-26
Row Locks (TX) 12-27

Table Locks (TM) 12-31

Locks and Foreign Keys 12-32

DDL Locks 12-35
Exclusive DDL Locks 12-35

Share DDL Locks 12-36
Breakable Parse Locks 12-36
System Locks 12-36
Latches 12-37
Mutexes 12-38

Internal Locks 12-38
Overview of Manual Data Locks 12-39
Overview of User-Defined Locks 12-39

13 Transactions

Introduction to Transactions 13-1
Sample Transaction: Account Debit and Credit 13-2
Structure of a Transaction 13-3
Beginning of a Transaction 13-4

End of a Transaction 13-4

ORACLE

Statement-Level Atomicity 13-6
System Change Numbers (SCNSs) 13-7
Overview of Transaction Control 13-7
Transaction Names 13-9
Active Transactions 13-10
Savepoints 13-11
Rollback to Savepoint 13-11
Enqueued Transactions 13-12
Rollback of Transactions 13-13
Commits of Transactions 13-14
Overview of Quarantined Transactions 13-16
Overview of Transaction Guard 13-17
Benefits of Transaction Guard 13-18
How Transaction Guard Works 13-18
Lost Commit Messages 13-19

Logical Transaction ID 13-19
Transaction Guard: Example 13-20
Overview of Application Continuity 13-21
Benefits of Application Continuity 13-21
Use Case for Application Continuity 13-22
Application Continuity for Planned Maintenance 13-22
Application Continuity Architecture 13-23
Overview of Autonomous Transactions 13-24
Overview of Distributed Transactions 13-25
Two-Phase Commit 13-26
In-Doubt Transactions 13-26

Part \VV Oracle Database Storage Structures
14 Physical Storage Structures

Introduction to Physical Storage Structures 14-1
Mechanisms for Storing Database Files 14-3
Oracle Managed Files and User-Managed Files 14-4
Oracle Automatic Storage Management (Oracle ASM) 14-4
Oracle ASM Storage Components 14-5

Oracle ASM Instances 14-7

Oracle Persistent Memory Filestore (PMEM Filestore) 14-8
Directly Mapped Buffer Cache 14-8

File System Interface for PMEM Filestore 14-9

User Interface for PMEM Filestore 14-10

ORACLE

Xiii

Overview of Data Files 14-10
Use of Data Files 14-11
Permanent and Temporary Data Files 14-12
Online and Offline Data Files 14-13
Data File Structure 14-13

Overview of Control Files 14-14
Use of Control Files 14-15
Multiple Control Files 14-15
Control File Structure 14-16

Overview of the Online Redo Log 14-17
Use of the Online Redo Log 14-17
How Oracle Database Writes to the Online Redo Log 14-18

Online Redo Log Switches 14-18
Multiple Copies of Online Redo Log Files 14-20
Archived Redo Log Files 14-21
Structure of the Online Redo Log 14-22
15 Logical Storage Structures

Introduction to Logical Storage Structures 15-1
Logical Storage Hierarchy 15-2
Logical Space Management 15-4

Locally Managed Tablespaces 15-5
Dictionary-Managed Tablespaces 15-8

Overview of Data Blocks 15-8

Data Blocks and Operating System Blocks 15-9
Database Block Size 15-9
Tablespace Block Size 15-10

Data Block Format 15-10
Data Block Overhead 15-11
Row Format 15-12

Data Block Compression 15-16

Space Management in Data Blocks 15-17
Percentage of Free Space in Data Blocks 15-17
Optimization of Free Space in Data Blocks 15-18
Chained and Migrated Rows 15-21

Overview of Index Blocks 15-23
Types of Index Blocks 15-23
Storage of Index Entries 15-24
Reuse of Slots in an Index Block 15-24
Coalescing an Index Block 15-24

ORACLE

Xiv

Overview of Extents 15-26
Allocation of Extents 15-27
Deallocation of Extents 15-28
Storage Parameters for Extents 15-29

Overview of Segments 15-30
User Segments 15-31

User Segment Creation 15-31
Temporary Segments 15-33
Allocation of Temporary Segments for Queries 15-33
Allocation of Segments for Temporary Tables and Indexes 15-34
Undo Segments 15-35
Undo Segments and Transactions 15-36
Transaction Rollback 15-38
Temporary Undo Segments 15-38
Segment Space and the High Water Mark 15-39

Overview of Tablespaces 15-42
Tablespaces in a Multitenant Environment 15-42
Permanent Tablespaces 15-45

The SYSTEM Tablespace 15-46
The SYSAUX Tablespace 15-47
Undo Tablespaces 15-47
Shadow Tablespaces 15-49
Temporary Tablespaces 15-53
Shared and Local Temporary Tablespaces 15-53
Default Temporary Tablespaces 15-54
Tablespace Modes 15-56
Read/Write and Read-Only Tablespaces 15-56
Online and Offline Tablespaces 15-57
Tablespace File Size 15-58
Part VI Oracle Instance Architecture
16 Oracle Database Instance

Introduction to the Oracle Database Instance 16-1
Database Instance Structure 16-2
Database Instance Configurations 16-3
Read/Write and Read-Only Instances 16-4
Duration of a Database Instance 16-5
Identification of a Database Instance 16-6

Oracle Base Directory 16-7

ORACLE

XV

Oracle Home Directory
Oracle System Identifier (SID)
Overview of Database Instance Startup and Shutdown
Overview of Instance and Database Startup
Connection with Administrator Privileges
How an Instance Is Started
How a Database Is Mounted
How a Database Is Opened
Overview of Database and Instance Shutdown
Shutdown Modes
How a Database Is Closed
How a Database Is Unmounted
How an Instance Is Shut Down
Overview of Checkpoints
Purpose of Checkpoints
When Oracle Database Initiates Checkpoints
Overview of Instance Recovery
Purpose of Instance Recovery
When Oracle Database Performs Instance Recovery
Importance of Checkpoints for Instance Recovery
Instance Recovery Phases
Overview of Parameter Files
Initialization Parameters
Functional Groups of Initialization Parameters
Basic and Advanced Initialization Parameters
Server Parameter Files
Text Initialization Parameter Files
Modification of Initialization Parameter Values
Overview of Diagnostic Files
Automatic Diagnostic Repository
Problems and Incidents
ADR Structure
Alert Log
Attention Log
DDL Log
Trace Files
Types of Trace Files
Locations of Trace Files
Segmentation of Trace Files
Diagnostic Dumps

ORACLE

XVi

16-7

16-8

16-9

16-9
16-11
16-12
16-12
16-13
16-14
16-16
16-17
16-17
16-18
16-18
16-19
16-19
16-20
16-20
16-21
16-21
16-22
16-23
16-24
16-24
16-24
16-25
16-25
16-27
16-28
16-29
16-29
16-30
16-31
16-32
16-32
16-32
16-33
16-33
16-34
16-34

ORACLE

Trace Dumps and Incidents 16-34
17 Memory Architecture

Introduction to Oracle Database Memory Structures 17-1
Basic Memory Structures 17-2
Oracle Database Memory Management 17-4
Overview of the System Global Area (SGA) 17-4
Database Buffer Cache 17-6
Purpose of the Database Buffer Cache 17-7

Buffer States 17-8

Buffer Modes 17-8

Buffer I/O 17-9

Buffer Pools 17-13

Buffers and Full Table Scans 17-15

DRAM and PMEM Buffers 17-18

Redo Log Buffer 17-19
Shared Pool 17-20
Library Cache 17-21

Data Dictionary Cache 17-24

Server Result Cache 17-24
Reserved Pool 17-27

Large Pool 17-28
Large Pool Memory Management 17-29

Large Pool Buffers for Deferred Inserts 17-29

Java Pool 17-31
Fixed SGA 17-31
Optional Performance-Related SGA Subareas 17-32
In-Memory Area 17-32
Memoptimize Pool 17-32
Overview of the Program Global Area (PGA) 17-34
Contents of the PGA 17-35
Private SQL Area 17-35

SQL Work Areas 17-37

PGA Usage in Dedicated and Shared Server Modes 17-38
Overview of the User Global Area 17-38
Overview of the Managed Global Area (MGA) 17-39
Overview of Software Code Areas 17-40

XVii

18

Process Architecture

Introduction to Processes 18-1
Types of Processes 18-2
Multiprocess and Multithreaded Oracle Database Systems 18-3

Overview of Client Processes 18-5
Client and Server Processes 18-5
Connections and Sessions 18-6
Current Container 18-6
Database Operations 18-9

Overview of Server Processes 18-9
Dedicated Server Processes 18-10
Shared Server Processes 18-10
How Oracle Database Creates Server Processes 18-11

Overview of Background Processes 18-12
Mandatory Background Processes 18-13

Process Monitor Process (PMON) Group 18-14
Process Manager (PMAN) 18-16
Listener Registration Process (LREG) 18-16
System Monitor Process (SMON) 18-16
Database Writer Process (DBW) 18-17
Log Writer Process (LGWR) 18-17
Checkpoint Process (CKPT) 18-19
Manageability Monitor Processes (MMON and MMNL) 18-20
Recoverer Process (RECO) 18-21
Background Process (BGnn) 18-21
Virtual Operating System Daemon Process (VOSD) 18-21
Optional Background Processes 18-21
Archiver Processes (ARCn) 18-22
Job Queue Processes (CJQO and Jnnn) 18-22
Flashback Data Archive Process (FBDA) 18-23
Space Management Coordinator Process (SMCO) 18-24
Secondary Processes 18-24
I/O Secondary Processes 18-24
Parallel Execution (PX) Server Processes 18-25
19 Application and Oracle Net Services Architecture

Overview of Oracle Application Architecture 19-1

Overview of Client/Server Architecture 19-1
Distributed Processing 19-2
Advantages of a Client/Server Architecture 19-3

ORACLE

Overview of Multitier Architecture 19-4
Clients 19-5
Application Servers 19-5
Database Servers 19-6
Service-Oriented Architecture (SOA) 19-6

Overview of Grid Architecture 19-7

Overview of Oracle Net Services Architecture 19-7

How Oracle Net Services Works 19-8

The Oracle Net Listener 19-9
Service Names 19-10
Services in a Multitenant Environment 19-11
Service Registration 19-15

Dedicated Server Architecture 19-15

Shared Server Architecture 19-17
Dispatcher Request and Response Queues 19-18
Restricted Operations of the Shared Server 19-21

Database Resident Connection Pooling 19-21

Overview of the Program Interface 19-23

Program Interface Structure 19-23

Program Interface Drivers 19-23

Communications Software for the Operating System 19-24

Part VIl Oracle Database Administration and Application Development
20 Topics for Database Administrators and Developers
Overview of Database Security 20-1

User Accounts 20-2
Privileges 20-3
Roles 20-3
Privilege Analysis 20-4
User Profiles 20-5

Database Authentication 20-5

Encryption 20-6
Network Encryption 20-6
Transparent Data Encryption 20-6

Oracle Data Redaction 20-7

Orientation 20-8
Oracle Database Vault 20-8
Virtual Private Database (VPD) 20-9
Oracle Label Security (OLS) 20-9

ORACLE

XiX

Data Access Monitoring 20-10

Database Auditing 20-10

Unified Audit Trail 20-12
Enterprise Manager Auditing Support 20-13

Oracle Audit Vault and Database Firewall 20-14
Overview of High Availability 20-14
High Availability and Unplanned Downtime 20-14
Site Failures 20-15
Computer Failures 20-16
Storage Failures 20-17

Data Corruption 20-17

Human Errors 20-19

High Availability and Planned Downtime 20-20
System and Database Changes 20-20

Data Changes 20-21
Application Changes 20-22
Overview of Grid Computing 20-22
Database Server Grid 20-24
Scalability 20-24

Fault Tolerance 20-25
Services 20-25

Oracle Flex Clusters 20-26
Database Storage Grid 20-26
Overview of Data Warehousing and Business Intelligence 20-27
Data Warehousing and OLTP 20-27
Data Warehouse Architecture 20-28
Data Warehouse Architecture (Basic) 20-29

Data Warehouse Architecture (with a Staging Area) 20-30

Data Warehouse Architecture (with a Staging Area and Data Marts) 20-30
Overview of Extraction, Transformation, and Loading (ETL) 20-31
Business Intelligence 20-32
Analytic SQL 20-32
Analytic Views 20-33

Oracle Advanced Analytics 20-34
Overview of Oracle Information Integration 20-35
Federated Access 20-35
Distributed SQL 20-36
Database Links 20-36
Information Sharing 20-37
Oracle GoldenGate 20-37

ORACLE XX

Oracle Database Advanced Queuing (AQ) 20-38
21 Concepts for Database Administrators

Duties of Database Administrators 21-1
Tools for Database Administrators 21-2
Oracle Enterprise Manager 21-2
Oracle Enterprise Manager Cloud Control 21-3

Oracle Enterprise Manager Database Express 12¢ 21-3
SQL*Plus 21-4
Tools for Database Installation and Configuration 21-4
Tools for Oracle Net Configuration and Administration 21-5
Tools for Data Movement and Analysis 21-6
SQL*Loader 21-7

Oracle Data Pump Export and Import 21-8

Oracle LogMiner 21-10

ADR Command Interpreter (ADRCI) 21-11

Topics for Database Administrators 21-11
Backup and Recovery 21-12
Backup and Recovery Techniques 21-13
Recovery Manager Architecture 21-13
Database Backups 21-15

Data Repair 21-17

Zero Data Loss Recovery Appliance 21-20
Memory Management 21-23
Automatic Memory Management 21-24

Shared Memory Management of the SGA 21-25
Memory Management of the Instance PGA 21-26
Summary of Memory Management Methods 21-27
Resource Management and Task Scheduling 21-29
Database Resource Manager 21-29

CPU Management 21-30

Oracle Scheduler 21-31
Performance and Tuning 21-32
Database Self-Monitoring 21-33
Automatic Workload Repository (AWR) 21-34
Automatic Database Monitor (ADDM) 21-35

Active Session History (ASH) 21-36
Application and SQL Tuning 21-36

ORACLE

XXi

27 Concepts for Database Developers

Duties of Database Developers 22-1
Tools for Database Developers 22-2
SQL Developer 22-2
Oracle Application Express 22-3
Oracle JDeveloper 22-3
Oracle Developer Tools for Visual Studio .NET 22-4
Topics for Database Developers 22-4
Principles of Application Design and Tuning 22-4
Client-Side Database Programming 22-6
Embedded SQL 22-6
Client-Side APIs 22-9
Globalization Support 22-11
Globalization Support Environment 22-12
Oracle Globalization Development Kit 22-15
Unstructured Data 22-15
Overview of XML in Oracle Database 22-16
Overview of JSON in Oracle Database 22-17
Overview of LOBs 22-20
Overview of Oracle Text 22-22
Overview of Oracle Spatial and Graph 22-23
Overview of SQL Property Graphs 22-23
Glossary
Index

ORACLE XXii

Preface

Audience

This manual provides an architectural and conceptual overview of the Oracle database
server, which is an object-relational database management system.

The book describes how the Oracle database server functions, and it lays a conceptual
foundation for much of the practical information contained in other manuals. Information in
this manual applies to the Oracle database server running on all operating systems.

This preface contains these topics:

* Audience

* Documentation Accessibility
* Related Documentation

e Conventions

* Audience

* Documentation Accessibility
* Related Documentation

 Conventions

Oracle Database Concepts is intended for technical users, primarily database administrators
and database application developers, who are new to Oracle Database. Typically, the reader
of this manual has had experience managing or developing applications for other relational
databases.

To use this manual, you must know the following:

* Relational database concepts in general
* Concepts and terminology in Introduction to Oracle Database

* The operating system environment under which you are running Oracle

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

XXiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documentation

For related documentation, see "Oracle Database Documentation Roadmap".

Many publications in the Oracle Database documentation set use the sample schemas
of the database that is installed by default when you install Oracle Database. Refer to
Oracle Database Sample Schemas for information on how these schemas were
created and how you can use them.

Conventions

The following text conventions are used in this manual:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates manual titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XXiV

Introduction to Oracle Database

This chapter provides an overview of Oracle Database.

This chapter contains the following topics:

About Relational Databases
Schema Objects

Data Access

Transaction Management
Oracle Database Architecture

Oracle Database Documentation Roadmap

About Relational Databases

Every organization has information that it must store and manage to meet its
requirements. For example, a corporation must collect and maintain human resources
records for its employees. This information must be available to those who need it.

Schema Objects
One characteristic of an RDBMS is the independence of physical data storage from
logical data structures.

Data Access

A general requirement for a DBMS is to adhere to accepted industry standards for a data

access language.

Transaction Management

Oracle Database is designed as a multiuser database. The database must ensure that

multiple users can work concurrently without corrupting one another's data.

Oracle Database Architecture
A database server is the key to information management.

Oracle Database Documentation Roadmap

The documentation set is designhed with specific access paths to ensure that users are

able to find the information they need as efficiently as possible.

About Relational Databases

Every organization has information that it must store and manage to meet its requirements.
For example, a corporation must collect and maintain human resources records for its
employees. This information must be available to those who need it.

ORACLE

An information system is a formal system for storing and processing information. An

information system could be a set of cardboard boxes containing manila folders along with

rules for how to store and retrieve the folders. However, most companies today use a
database to automate their information systems. A database is an organized collection of
information treated as a unit. The purpose of a database is to collect, store, and retrieve
related information for use by database applications.

1-1

Chapter 1
About Relational Databases

Database Management System (DBMS)
A database management system (DBMS) is software that controls the storage,
organization, and retrieval of data.

Relational Model

In his seminal 1970 paper "A Relational Model of Data for Large Shared Data
Banks," E. F. Codd defined a relational model based on mathematical set theory.
Today, the most widely accepted database model is the relational model.

Relational Database Management System (RDBMS)

The relational model is the basis for a relational database management system
(RDBMS). An RDBMS moves data into a database, stores the data, and retrieves
it so that applications can manipulate it.

Brief History of Oracle Database
The current version of Oracle Database is the result of over 40 years of innovative
development.

Database Management System (DBMS)

A database management system (DBMS) is software that controls the storage,
organization, and retrieval of data.

Typically, a DBMS has the following elements:

Kernel code

This code manages memory and storage for the DBMS.
Repository of metadata

This repository is usually called a data dictionary.
Query language

This language enables applications to access the data.

A database application is a software program that interacts with a database to access
and manipulate data.

The first generation of database management systems included the following types:

Hierarchical

A hierarchical database organizes data in a tree structure. Each parent record has
one or more child records, similar to the structure of a file system.

Network

A network database is similar to a hierarchical database, except records have a
many-to-many rather than a one-to-many relationship.

The preceding database management systems stored data in rigid, predetermined
relationships. Because no data definition language existed, changing the structure of
the data was difficult. Also, these systems lacked a simple query language, which
hindered application development.

Relational Model

In his seminal 1970 paper "A Relational Model of Data for Large Shared Data Banks,"
E. F. Codd defined a relational model based on mathematical set theory. Today, the
most widely accepted database model is the relational model.

ORACLE

1-2

Chapter 1
About Relational Databases

A relational database is a database that conforms to the relational model. The relational
model has the following major aspects:

e Structures
Well-defined objects store or access the data of a database.
e Operations

Clearly defined actions enable applications to manipulate the data and structures of a
database.

* Integrity rules
Integrity rules govern operations on the data and structures of a database.

A relational database stores data in a set of simple relations. A relation is a set of tuples. A
tuple is an unordered set of attribute values.

A table is a two-dimensional representation of a relation in the form of rows (tuples) and
columns (attributes). Each row in a table has the same set of columns. A relational database
is a database that stores data in relations (tables). For example, a relational database could
store information about company employees in an employee table, a department table, and a
salary table.

Related Topics
* A Relational Model of Data for Large Shared Data Banks by E.F. Codd

Relational Database Management System (RDBMS)

The relational model is the basis for a relational database management system (RDBMS).
An RDBMS moves data into a database, stores the data, and retrieves it so that applications
can manipulate it.

An RDBMS distinguishes between the following types of operations:

e Logical operations

In this case, an application specifies what content is required. For example, an
application requests an employee name or adds an employee record to a table.

e Physical operations

In this case, the RDBMS determines how things should be done and carries out the
operation. For example, after an application queries a table, the database may use an
index to find the requested rows, read the data into memory, and perform many other
steps before returning a result to the user. The RDBMS stores and retrieves data so that
physical operations are transparent to database applications.

Oracle Database is an RDBMS. An RDBMS that implements object-oriented features such as
user-defined types, inheritance, and polymorphism is called an object-relational database
management system (ORDBMS). Oracle Database has extended the relational model to an
object-relational model, making it possible to store complex business models in a relational
database.

Brief History of Oracle Database

The current version of Oracle Database is the result of over 40 years of innovative
development.

Highlights in the evolution of Oracle Database include the following:

ORACLE 1-3

unilink:codd_relational

ORACLE

Chapter 1
About Relational Databases

Founding of Oracle Corporation

In 1977, Larry Ellison, Bob Miner, and Ed Oates started the consultancy Software
Development Laboratories, which became Relational Software, Inc. (RSI). In 1983,
RSI became Oracle Systems Corporation and then later Oracle Corporation.

First commercially available RDBMS

In 1979, RSl introduced Oracle V2 (Version 2) as the first commercially available
SQL-based RDBMS, a landmark event in the history of relational databases.

Portable version of Oracle Database

Oracle Version 3, released in 1983, was the first relational database to run on
mainframes, minicomputers, and personal computers. The database was written in
C, enabling the database to be ported to multiple platforms.

Enhancements to concurrency control, data distribution, and scalability

Version 4 introduced multiversion read consistency. Version 5, released in 1985,
supported client/server computing and distributed database systems. Version 6
brought enhancements to disk I/O, row locking, scalability, and backup and
recovery. Also, Version 6 introduced the first version of the PL/SQL language, a
proprietary procedural extension to SQL.

PL/SQL stored program units
Oracle7, released in 1992, introduced PL/SQL stored procedures and triggers.
Objects and partitioning

Oracle8 was released in 1997 as the object-relational database, supporting many
new data types. Additionally, Oracle8 supported partitioning of large tables.

Internet computing

Oracle8i Database, released in 1999, provided native support for internet protocols
and server-side support for Java. Oracle8i was designed for internet computing,
enabling the database to be deployed in a multitier environment.

Oracle Real Application Clusters (Oracle RAC)

Oracle9i Database introduced Oracle RAC in 2001, enabling multiple instances to
access a single database simultaneously. Additionally, Oracle XML Database
(Oracle XML DB) introduced the ability to store and query XML.

Grid computing

Oracle Database 10g introduced grid computing in 2003. This release enabled
organizations to virtualize computing resources by building a grid infrastructure
based on low-cost commodity servers. A key goal was to make the database self-
managing and self-tuning. Oracle Automatic Storage Management (Oracle ASM)
helped achieve this goal by virtualizing and simplifying database storage
management.

Manageability, diagnosability, and availability

Oracle Database 11g, released in 2007, introduced a host of new features that
enabled administrators and developers to adapt quickly to changing business
requirements. The key to adaptability is simplifying the information infrastructure
by consolidating information and using automation wherever possible.

Plugging In to the Cloud

Oracle Database 12c, released in 2013, was designed for the Cloud, featuring a
new Multitenant architecture, In-Memory Column Store (IM column store), and

1-4

Chapter 1
Schema Objects

support for JISON documents. Oracle Database 12c helped DBAs make more efficient
use of their IT resources, while continuing to reduce costs and improve service levels for
end users.

* Integration and memory performance

Oracle Database 18c simplified integration with directory services such as Microsoft
Active Directory. It also introduced functionality to exploit memory for columnar data
models and high-speed row access.

* Enhanced stability

Oracle Database 19c was the long-support version of the Oracle Database 12¢ (Release
12.2) family of products. A major focus of this release was stability. Oracle Database 19c
also introduced several small but significant improvements to features such as JSON and
Active Data Guard.

* Improved developer experience

Oracle Database 21c improves the developer experience with features such as Oracle
Blockchain Tables and native JSON data types. Enhancements to Automatic In-Memory
make the IM column store largely self-managing.

Schema Objects

Tables

ORACLE

One characteristic of an RDBMS is the independence of physical data storage from logical
data structures.

In Oracle Database, a database schema is a collection of logical data structures, or schema
objects. A database user owns a database schema, which has the same name as the user
name.

Schema objects are user-created structures that directly refer to the data in the database.
The database supports many types of schema objects, the most important of which are
tables and indexes.

A schema object is one type of database object. Some database objects, such as profiles
and roles, do not reside in schemas.

* Tables
A table describes an entity such as employees.

* Indexes
An index is an optional data structure that you can create on one or more columns of a
table. Indexes can increase the performance of data retrieval.

Related Topics

* Introduction to Schema Objects

A table describes an entity such as employees.

You define a table with a table name, such as employees, and set of columns. In general, you
give each column a name, a data type, and a width when you create the table.

A table is a set of rows. A column identifies an attribute of the entity described by the table,
whereas a row identifies an instance of the entity. For example, attributes of the employees

1-5

Indexes

Chapter 1
Data Access

entity correspond to columns for employee ID and last name. A row identifies a
specific employee.

You can optionally specify a rule, called an integrity constraint, for a column. One
example is a NOT NULL integrity constraint. This constraint forces the column to contain
a value in every row.

Related Topics
e Overview of Tables

« Data Integrity

An index is an optional data structure that you can create on one or more columns of
a table. Indexes can increase the performance of data retrieval.

When processing a request, the database can use available indexes to locate the
requested rows efficiently. Indexes are useful when applications often query a specific
row or range of rows.

Indexes are logically and physically independent of the data. Thus, you can drop and
create indexes with no effect on the tables or other indexes. All applications continue
to function after you drop an index.

Related Topics

e Introduction to Indexes

Data Access

A general requirement for a DBMS is to adhere to accepted industry standards for a
data access language.

¢ Note:

JavaScript requires Oracle 23c running on Linux x86-64.

e Structured Query Language (SQL)
SQL is a set-based declarative language that provides an interface to an RDBMS
such as Oracle Database.

e PL/SQL, Java, and JavaScript
PL/SQL is a procedural extension to Oracle SQL. Java and JavaScript are
additional options that you can use to store business logic in the database.

Structured Query Language (SQL)

ORACLE

SQL is a set-based declarative language that provides an interface to an RDBMS such
as Oracle Database.

Procedural languages such as C describe how things should be done. SQL is
nonprocedural and describes what should be done.

1-6

Chapter 1
Data Access

SQL is the ANSI standard language for relational databases. All operations on the data in an
Oracle database are performed using SQL statements. For example, you use SQL to create
tables and query and modify data in tables.

A SQL statement can be thought of as a very simple, but powerful, computer program or
instruction. Users specify the result that they want (for example, the names of employees),
not how to derive it. A SQL statement is a string of SQL text such as the following:

SELECT first name, last name FROM employees;

SQL statements enable you to perform the following tasks:

* Query data

* Insert, update, and delete rows in a table

» Create, replace, alter, and drop objects

» Control access to the database and its objects
* Guarantee database consistency and integrity

SQL unifies the preceding tasks in one consistent language. Oracle SQL is an
implementation of the ANSI standard. Oracle SQL supports numerous features that extend
beyond standard SQL.

Related Topics
e SQL

PL/SQL, Java, and JavaScript

ORACLE

PL/SQL is a procedural extension to Oracle SQL. Java and JavaScript are additional options
that you can use to store business logic in the database.

PL/SQL is integrated with Oracle Database, enabling you to use all of the Oracle Database
SQL statements, functions, and data types. You can use PL/SQL to control the flow of a SQL
program, use variables, and write error-handling procedures.

A primary benefit of PL/SQL is the ability to store application logic in the database itself. A
PL/SQL procedure or function is a schema object that consists of a set of SQL statements
and other PL/SQL constructs, grouped together, stored in the database, and run as a unit to
solve a specific problem or to perform a set of related tasks. The principal benefit of server-
side programming is that built-in functionality can be deployed anywhere.

Oracle Database can also store program units written in Java and JavaScript. A Java stored
procedure is a Java method published to SQL and stored in the database for general use.
You can call existing PL/SQL programs from Java and JavaScript, and Java and JavaScript
programs from PL/SQL.

Multilingual Engine (MLE) offers you the ability to write business logic in JavaScript and store
the code in the database as MLE Modules. Functions exported by MLE Modules can be
exposed to SQL and PL/SQL by means of Call Specifications. These call specifications are
PL/SQL units (functions, procedures, and packages) and can be called anywhere PL/SQL is
called.

Related Topics
» Server-Side Programming: PL/SQL, Java, and JavaScript

* Choosing a Programming Environment

1-7

Chapter 1
Transaction Management

Transaction Management

Oracle Database is designed as a multiuser database. The database must ensure that
multiple users can work concurrently without corrupting one another's data.

e Transactions
A transaction is a logical, atomic unit of work that contains one or more SQL
statements.

e Data Concurrency
A requirement of a multiuser RDBMS is the control of data concurrency, which is
the simultaneous access of the same data by multiple users.

» Data Consistency
In Oracle Database, each user must see a consistent view of the data, including
visible changes made by a user's own transactions and committed transactions of
other users.

Transactions

A transaction is a logical, atomic unit of work that contains one or more SQL
statements.

An RDBMS must be able to group SQL statements so that they are either all
committed, which means they are applied to the database, or all rolled back, which
means they are undone.

An illustration of the need for transactions is a funds transfer from a savings account to
a checking account. The transfer consists of the following separate operations:

1. Decrease the savings account.
2. Increase the checking account.
3. Record the transaction in the transaction journal.

Oracle Database guarantees that all three operations succeed or fail as a unit. For
example, if a hardware failure prevents a statement in the transaction from executing,
then the other statements must be rolled back.

Transactions are one feature that set Oracle Database apart from a file system. If you
perform an atomic operation that updates several files, and if the system fails halfway
through, then the files will not be consistent. In contrast, a transaction moves an
Oracle database from one consistent state to another. The basic principle of a
transaction is "all or nothing": an atomic operation succeeds or fails as a whole.

Related Topics

e Transactions

Data Concurrency

ORACLE

A requirement of a multiuser RDBMS is the control of data concurrency, which is the
simultaneous access of the same data by multiple users.

Without concurrency controls, users could change data improperly, compromising data
integrity. For example, one user could update a row while a different user
simultaneously updates it.

1-8

Chapter 1
Oracle Database Architecture

If multiple users access the same data, then one way of managing concurrency is to make
users wait. However, the goal of a DBMS is to reduce wait time so it is either nonexistent or
negligible. All SQL statements that modify data must proceed with as little interference as
possible. Destructive interactions, which are interactions that incorrectly update data or alter
underlying data structures, must be avoided.

Oracle Database uses locks to control concurrent access to data. A lock is a mechanism that
prevents destructive interaction between transactions accessing a shared resource. Locks
help ensure data integrity while allowing maximum concurrent access to data.

Related Topics

e Overview of the Oracle Database Locking Mechanism

Data Consistency

In Oracle Database, each user must see a consistent view of the data, including visible
changes made by a user's own transactions and committed transactions of other users.

For example, the database must prevent the dirty read problem, which occurs when one
transaction sees uncommitted changes made by another concurrent transaction.

Oracle Database always enforces statement-level read consistency, which guarantees that
the data that a single query returns is committed and consistent for a single point in time.
Depending on the transaction isolation level, this point is the time at which the statement was
opened or the time the transaction began. The Oracle Flashback Query feature enables you
to specify this point in time explicitly.

The database can also provide read consistency to all queries in a transaction, known as
transaction-level read consistency. In this case, each statement in a transaction sees data
from the same point in time, which is the time at which the transaction began.

Related Topics
» Data Concurrency and Consistency
* Using Oracle Flashback Query (SELECT AS OF)

Oracle Database Architecture

ORACLE

A database server is the key to information management.

In general, a server reliably manages a large amount of data in a multiuser environment so
that users can concurrently access the same data. A database server also prevents
unauthorized access and provides efficient solutions for failure recovery.

» Database and Instance
An Oracle database server consists of a database and at least one database instance,
commonly referred to as simply an instance.

e Database Storage Structures
A database can be considered from both a physical and logical perspective.

» Database Instance Structures
An Oracle database uses memory structures and processes to manage and access the
CDB. All memory structures exist in the main memory of the computers that constitute
the RDBMS.

1-9

Chapter 1
Oracle Database Architecture

* Application and Networking Architecture
To take full advantage of a given computer system or network, Oracle Database
enables processing to be split between the database server and the client
programs. The computer running the RDBMS handles the database server
responsibilities while the computers running the applications handle the
interpretation and display of data.

Database and Instance

An Oracle database server consists of a database and at least one database
instance, commonly referred to as simply an instance.

Because an instance and a database are so closely connected, the term Oracle
database sometimes refers to both instance and database. In the strictest sense, the
terms have the following meanings:

« Database

A database is a set of files, located on disk, that store user data. These data files
can exist independently of a database instance. Starting in Oracle Database 21c,
"database" refers specifically to the data files of a multitenant container
database (CDB), pluggable database (PDB), or application container.

» Database instance

An instance is a named set of memory structures that manage database files. A
database instance consists of a shared memory area, called the system global
area (SGA), and a set of background processes. An instance can exist
independently of database files.

e Multitenant Architecture
The multitenant architecture enables an Oracle database to be a CDB.

* Sharding Architecture
Oracle Sharding is a database scaling technique based on horizontal partitioning
of data across multiple PDBs. Applications perceive the pool of PDBs as a single
logical database.

Multitenant Architecture

ORACLE

The multitenant architecture enables an Oracle database to be a CDB.

Every Oracle database must contain or be able to be contained by another database.
For example, a CDB contains PDBs, and an application container contains application
PDBs. A PDB is contained by a CDB or application container, and an application
container is contained by a CDB.

Starting in Oracle Database 21c, a multitenant container database is the only
supported architecture. In previous releases, Oracle supported non-container
databases (non-CDBSs).

« CDBs
A CDB contains one or more user-created PDBs and application containers.
« PDBs

A PDB is a portable collection of schemas, schema objects, and nonschema
objects that appears to an application as a separate database.

1-10

CDBs

Chapter 1
Oracle Database Architecture

* Application Containers
An application container is an optional, user-created container within a CDB that stores
data and metadata for one or more applications.

A CDB contains one or more user-created PDBs and application containers.

At the physical level, a CDB is a set of files: control file, online redo log files, and data files.
The database instance manages the files that make up the CDB.

The following figure shows a CDB and an associated database instance.

Figure 1-1 Database Instance and CDB

Instance

System Global Area (SGA) B eniasy

Shared Pool Large Pool I/O Buffer Area
Library Cache e
Shared SQL Area | |Private O [] . [] y
M SRTROT * FROM | SQL Area O
SELECT * FROM | [| |
! (Shared O O O G
1 _employees i IServer Only) a ¥ - gt = PMON
<4 | SMON
Data Server | |Other | |Reserved Response Request
Dictionary | | Result Pool Queue Queue
Cache Cache <4—) | RECO
> [uwon]
Database Fixed Java Streams
Buffer Cache SGA Pool Pool <4—p | MMNL
= o]
* Background

| Processes
PGA v v

1
T T
SIQL Work Arelas Server

o

|D Wn| |CKPT| |LGWR| |ARCn| |van|

Session Memory FPrivate %LQL Area
1

Process

TA

ORACLE

: Database| | i _____
1Data 'V 'V Control
1 Files Files

Client ! 10101} 10101
Process 1 1

01

1-11

PDBs

ORACLE

Chapter 1
Oracle Database Architecture

A PDB is a portable collection of schemas, schema objects, and nonschema objects
that appears to an application as a separate database.

At the physical level, each PDB has its own set of data files that store the data for the
PDB. The CDB includes all the data files for the PDBs contained within it, and a set of
system data files that store metadata for the CDB itself.

To move or archive a PDB, you can unplug it. An unplugged PDB consists of the PDB
data files and a metadata file. An unplugged PDB is not usable until it is plugged in to
a CDB.

The following figure shows a CDB named MYCDB.

Figure 1-2 PDBs in a CDB

/r \W T - -
\<3 00] ////"/"—————_—__———_—55\\\\\\\\\
p . MYCDB
||
-]
. J
Root
O (CDB$ROOT)
[lton
salespdb
N J e

Physically, MYCDB is an Oracle database, in the sense of a set of data files associated
with an instance. MYCDB has one database instance, although multiple instances are
possible in Oracle Real Application Clusters, and one set of database files.

MYCDB contains two PDBs: hrpdb and salespdb. As shown in Figure 1-2, these PDBs
appear to their respective applications as separate, independent databases. An
application has no knowledge of whether it is connecting to a CDB or PDB.

To administer the CDB itself or any PDB within it, you can connect to the CDB root.
The root is a collection of schemas, schema objects, and honschema objects to which
all PDBs and application containers belong.

1-12

Chapter 1
Oracle Database Architecture

Application Containers

An application container is an optional, user-created container within a CDB that stores
data and metadata for one or more applications.

In this context, an application (also called the master application definition) is a named,
versioned set of common data and metadata stored in the application root. For example, the
application might include definitions of tables, views, user accounts, and PL/SQL packages
that are common to a set of PDBs.

In some ways, an application container functions as an application-specific CDB within a
CDB. An application container, like the CDB itself, can include multiple application PDBs, and
enables these PDBs to share metadata and data. At the physical level, an application
container has its own set of data files, just like a PDB.

For example, a SaaS deployment can use multiple application PDBs, each for a separate
customer, which share application metadata and data. For example, in the following figure,
sales_app is the application model in the application root. The application PDB named
custl pdb contains sales data only for customer 1, whereas the application PDB named
cust2_pdb contains sales data only for customer 2. Plugging, unplugging, cloning, and other
PDB-level operations are available for individual customer PDBs.

Figure 1-3 SaaS Use Case

CcDB
Application
Container
Root (CDB$ROOQT)
] k|
]

|
A[)plication Root

—

Seed B w E
(PDB$SEED) @ ‘ |
Application cust2_pdb
Seed cust_pdb
Applicltation
PDBs

ORACLE 1-13

Chapter 1
Oracle Database Architecture

Sharding Architecture

Oracle Sharding is a database scaling technique based on horizontal partitioning of
data across multiple PDBs. Applications perceive the pool of PDBs as a single logical
database.

Key benefits of sharding for OLTP applications include linear scalability, fault
containment, and geographical data distribution. Sharding is well suited to deployment
in the Oracle Cloud. Unlike NoSQL data stores that implement sharding, Oracle
Sharding provides the benefits of sharding without sacrificing the capabilities of an
enterprise RDBMS.

In a sharding architecture, each CDB is hosted on a dedicated server with its own local
resources: CPU, memory, flash, or disk. You can designate a PDB as a shard. PDB
shards from different CDBs make up a single logical database, which is referred to as
a sharded database. Two shards in the same CDB cannot be members of the same
sharded database. However, within the same CDB, one PDB could be in one sharded
database, and another PDB could be in a separate sharded database.

Horizontal partitioning involves splitting a database table across shards so that each
shard contains the table with the same columns but a different subset of rows. A table
split up in this manner is also known as a sharded table. The following figure shows a
sharded table horizontally partitioned across three shards, each of which is a PDB in a
separate CDB.

Figure 1-4 Horizontal Partitioning of a Table Across Shards

Unsharded Table in Sharded Table in Three Databases
One Database

Server

Server A Server B Server C

A use case is distributing customer account data across multiple CDBs. For example,
a customer with ID 28459361 may look up his records. The following figure shows a
possible architecture. The customer request is routed through a connection pool,
where sharding directors (network listeners) direct the request to the appropriate PDB
shard, which contains all the customer rows.

ORACLE 1-14

Chapter 1
Oracle Database Architecture

Figure 1-5 Oracle Sharding Architecture

Sharding Key
CustomerlD=28459361

Connection
Pools

Shard ‘ Shard

Directors Catalog

2 Sharded
Database

Related Topics

e Overview of Oracle Sharding

Database Storage Structures

A database can be considered from both a physical and logical perspective.

Physical data is data viewable at the operating system level. For example, operating system
utilities such as the Linux 1s and ps can list database files and processes. Logical data such
as a table is meaningful only for the database. A SQL statement can list the tables in an
Oracle database, but an operating system utility cannot.

The database has physical structures and logical structures. Because the physical and logical
structures are separate, you can manage the physical storage of data without affecting
access to logical storage structures. For example, renaming a physical database file does not
rename the tables whose data is stored in this file.

* Physical Storage Structures
The physical database structures are the files that store the data.

* Logical Storage Structures
Logical storage structures enable Oracle Database to have fine-grained control of disk
space use.

Physical Storage Structures

The physical database structures are the files that store the data.

ORACLE 1-15

Chapter 1
Oracle Database Architecture

When you execute a CREATE DATABASE command, you create a CDB. The following
files are created:

e Datafiles

Every CDB has one or more physical data files, which contain all the database
data. The data of logical database structures, such as tables and indexes, is
physically stored in the data files.

e Control files

Every CDB has a control file. A control file contains metadata specifying the
physical structure of the database, including the database name and the names
and locations of the database files.

e Online redo log files

Every CDB has an online redo log, which is a set of two or more online redo log
files. An online redo log is made up of redo entries (also called redo log records),
which record all changes made to data.

When you execute a CREATE PLUGGABLE DATABASE command within a CDB, you create
a PDB. The PDB contains a dedicated set of data files within the CDB. A PDB does
not have a separate, dedicated control file and online redo log: these files are shared
by the PDBs.

Many other files are important for the functioning of a CDB. These include parameter
files and networking files. Backup files and archived redo log files are offline files
important for backup and recovery.

Related Topics

e Physical Storage Structures

¢ See Also:

"Physical Storage Structures”

Logical Storage Structures

ORACLE

Logical storage structures enable Oracle Database to have fine-grained control of disk
space use.

This topic discusses logical storage structures:

e Data blocks

At the finest level of granularity, Oracle Database data is stored in data blocks.
One data block corresponds to a specific number of bytes on disk.

e Extents

An extent is a specific number of logically contiguous data blocks, obtained in a
single allocation, used to store a specific type of information.

* Segments

A segment is a set of extents allocated for a user object (for example, a table or
index), undo data, or temporary data.

1-16

Chapter 1
Oracle Database Architecture

e Tablespaces

A database is divided into logical storage units called tablespaces. A tablespace is the
logical container for segments. Each tablespace consists of at least one data file.

Related Topics

* Logical Storage Structures

Database Instance Structures

An Oracle database uses memory structures and processes to manage and access the CDB.
All memory structures exist in the main memory of the computers that constitute the RDBMS.

When applications connect to a CDB or PDB, they connect to a database instance. The
instance services applications by allocating other memory areas in addition to the SGA, and
starting other processes in addition to background processes.

e Oracle Database Processes
A process is a mechanism in an operating system that can run a series of steps. Some
operating systems use the terms job, task, or thread.

* Instance Memory Structures
Oracle Database creates and uses memory structures for program code, data shared
among users, and private data areas for each connected user.

Oracle Database Processes

ORACLE

A process is a mechanism in an operating system that can run a series of steps. Some
operating systems use the terms job, task, or thread.

For the purposes of this topic, a thread is equivalent to a process. An Oracle database
instance has the following types of processes:

e Client processes

These processes are created and maintained to run the software code of an application
program or an Oracle tool. Most environments have separate computers for client
processes.

e Background processes

These processes consolidate functions that would otherwise be handled by multiple
Oracle Database programs running for each client process. Background processes
asynchronously perform I/O and monitor other Oracle Database processes to provide
increased parallelism for better performance and reliability.

e Server processes

These processes communicate with client processes and interact with Oracle Database
to fulfill requests.

Oracle processes include server processes and background processes. In most
environments, Oracle processes and client processes run on separate computers.

Related Topics

* Process Architecture

1-17

Chapter 1
Oracle Database Architecture

Instance Memory Structures

Oracle Database creates and uses memory structures for program code, data shared
among users, and private data areas for each connected user.

The following memory structures are associated with a database instance:

e System Global Area (SGA)

The SGA is a group of shared memory structures that contain data and control
information for one database instance. Examples of SGA components include the
database buffer cache and shared SQL areas. The SGA can contain an optional
In-Memory Column Store (IM column store), which enables data to be populated in
memory in a columnar format.

e Program Global Areas (PGA)

A PGA is a memory region that contains data and control information for a server
or background process. Access to the PGA is exclusive to the process. Each
server process and background process has its own PGA.

Related Topics

* Memory Architecture

Application and Networking Architecture

To take full advantage of a given computer system or network, Oracle Database
enables processing to be split between the database server and the client programs.
The computer running the RDBMS handles the database server responsibilities while
the computers running the applications handle the interpretation and display of data.

* Application Architecture
The application architecture is the computing environment in which a database
application connects to an Oracle database. The two most common database
architectures are client/server and multitier.

e Oracle Net Services Architecture
Oracle Net Services is the interface between the database and the network
communication protocols that facilitate distributed processing and distributed
databases.

Application Architecture

ORACLE

The application architecture is the computing environment in which a database
application connects to an Oracle database. The two most common database
architectures are client/server and multitier.

Client-Server Architecture

In a client/server architecture, the client application initiates a request for an operation
to be performed on the database server. The server runs Oracle Database software
and handles the functions required for concurrent, shared data access. The server
receives and processes requests that originate from clients.

1-18

Chapter 1
Oracle Database Architecture

Multitier Architecture

In a multitier architecture, one or more application servers perform parts of the operation. An
application server contains a large part of the application logic, provides access to the data
for the client, and performs some query processing. In this way, the load on the database
decreases. The application server can serve as an interface between clients and multiple
databases and provide an additional level of security.

A service-oriented architecture (SOA) is a multitier architecture in which application
functionality is encapsulated in services. SOA services are usually implemented as Web
services. Web services are accessible through HTTP and are based on XML-based
standards such as Web Services Description Language (WSDL) and SOAP. Oracle Database
can act as a Web service provider in a traditional multitier or SOA environment.

Simple Oracle Document Access (SODA) is an adaption of SOA that enables you to
access to data stored in the database. SODA is designed for schemaless application
development without knowledge of relational database features or languages such as SQL
and PL/SQL. You can create and store collections of documents in Oracle Database, retrieve
them, and query them, without needing to know how the documents are stored. SODA for
REST uses the representational state transfer (REST) architectural style to implement SODA.

Related Topics
e Overview of Multitier Architecture

* Native Oracle XML DB Web Services

Oracle Net Services Architecture

ORACLE

Oracle Net Services is the interface between the database and the network communication
protocols that facilitate distributed processing and distributed databases.

Communication protocols define the way that data is transmitted and received on a network.
Oracle Net Services supports communications on all major network protocols, including
TCP/IP, HTTP, FTP, and WebDAV.

Oracle Net, a component of Oracle Net Services, establishes and maintains a network
session from a client application to a database server. After a network session is established,
Oracle Net acts as the data courier for both the client application and the database server,
exchanging messages between them. Oracle Net can perform these jobs because it is
located on each computer in the network.

An important component of Net Services is the Oracle Net Listener (called the listener), which
is a process that runs on the database or elsewhere in the network. Client applications send
connection requests to the listener, which manages the traffic of these requests to the
database. When a connection is established, the client and database communicate directly.

The most common ways to configure an Oracle database to service client requests are:

» Dedicated server architecture

Each client process connects to a dedicated server process. The server process is not
shared by any other client for the duration of the client's session. Each new session is
assigned a dedicated server process.

e Shared server architecture

The database uses a pool of shared server processes for multiple sessions. A client
process communicates with a dispatcher, which is a process that enables many clients to

1-19

Chapter 1
Oracle Database Documentation Roadmap

connect to the same database instance without the need for a dedicated server
process for each client.

Related Topics

* Overview of Oracle Net Services Architecture
» Understanding Oracle Net Architecture

* WebDAV and Oracle XML DB

Oracle Database Documentation Roadmap

The documentation set is designed with specific access paths to ensure that users are
able to find the information they need as efficiently as possible.

The documentation set is divided into three layers or groups: basic, intermediate, and
advanced. Users begin with the manuals in the basic group, proceed to the manuals in
the intermediate group (the 2 Day + series), and finally to the advanced manuals,
which include the remainder of the documentation.

You can find the documentation for supported releases of Oracle Database at https://
docs.oracle.com/en/database/oracle/oracle-database/.

* Oracle Database Documentation: Basic Group
Technical users who are new to Oracle Database begin by reading one or more
manuals in the basic group from cover to cover. Each manual in this group is
designed to be read in two days.

e Oracle Database Documentation: Intermediate Group
The next step up from the basic group is the intermediate group.

» Oracle Database Documentation: Advanced Group
The advanced group manuals are intended for expert users who require more
detailed information about a particular topic than can be provided by the 2 Day +
manuals.

Oracle Database Documentation: Basic Group

ORACLE

Technical users who are new to Oracle Database begin by reading one or more
manuals in the basic group from cover to cover. Each manual in this group is designed
to be read in two days.

In addition to this manual, the basic group includes the manuals shown in the following
table.

Table 1-1 Basic Group
|

Manual Description
Oracle Database 2 Day This task-based quick start guide explains how to use the
Developer's Guide basic features of Oracle Database through SQL and PL/SQL.

The manuals in the basic group are closely related, which is reflected in the number of
cross-references. For example, Oracle Database Concepts frequently sends users to
a 2 Day manual to learn how to perform a task based on a concept. The 2 Day
manuals frequently reference Oracle Database Concepts for conceptual background
about a task.

1-20

https://docs.oracle.com/en/database/oracle/oracle-database/
https://docs.oracle.com/en/database/oracle/oracle-database/

Chapter 1
Oracle Database Documentation Roadmap

Oracle Database Documentation: Intermediate Group

The next step up from the basic group is the intermediate group.

Manuals in the intermediate group are prefixed with the word 2 Day + because they expand
on and assume information contained in the 2 Day manuals. The 2 Day + manuals cover
topics in more depth than is possible in the basic manuals, or cover topics of special interest.
The manuals are intended for different audiences:

« Database administrators

Oracle Database 2 Day + Performance Tuning Guide is a quick start guide that describes
how to perform day-to-day database performance tuning tasks using features provided by
Oracle Diagnostics Pack, Oracle Tuning Pack, and Oracle Enterprise Manager Cloud
Control (Cloud Control).

e Database developers

Oracle Database 2 Day + Java Developer's Guide helps you understand all Java
products used to build a Java application. The manual explains how to use Oracle JDBC
Thin driver, Universal Connection Pool (UCP), and Java in the Database (OJVM) in a
sample Web application.

Oracle Database Documentation: Advanced Group

ORACLE

The advanced group manuals are intended for expert users who require more detailed
information about a particular topic than can be provided by the 2 Day + manuals.

The following table lists essential reference manuals in the advanced group.

Table 1-2 Essential Reference Manuals

- __|
Manual Description

Oracle Database SQL Language Reference Provides a complete description of the Structured
Query Language (SQL) used to manage information
in an Oracle Database.

Oracle Database Reference Describes database initialization parameters, data
dictionary views, dynamic performance views, wait
events, and background processes.

Oracle Database PL/SQL Packages and Types Describes the PL/SQL packages provided with the

Reference Oracle database server. You can use the supplied
packages when creating your applications or for
ideas in creating your own stored procedures.

The advanced guides are too numerous to list in this section. The following table lists guides
that the majority of expert Oracle DBAs use.

Table 1-3 Advanced Group for DBAs

. __|
Manual Description

Oracle Database Administrator’'s Guide Explains how to perform tasks such as creating and
configuring databases, maintaining and monitoring
databases, creating schema objects, scheduling
jobs, and diagnosing problems.

1-21

Chapter 1
Oracle Database Documentation Roadmap

Table 1-3 (Cont.) Advanced Group for DBAs

L __|
Manual Description

Oracle Database Security Guide Describes how to configure security for Oracle
Database by using the default database features.

Oracle Database Performance Tuning Guide Describes how to use Oracle Database tools to
optimize database performance. This guide also
describes performance best practices for creating a
database and includes performance-related
reference information.

Oracle Database SQL Tuning Guide Describes SQL processing, the optimizer, execution
plans, SQL operators, optimizer statistics,
application tracing, and SQL advisors.

Oracle Database Backup and Recovery User's Explains how to back up, restore, and recover

Guide Oracle databases, perform maintenance on
backups of database files, and transfer data
between storage systems.

Oracle Real Application Clusters Administration Explains how to install, configure, manage, and
and Deployment Guide troubleshoot an Oracle RAC database.

The following table lists guides that the majority of expert Oracle developers use.

Table 1-4 Advanced Group for Developers

___|
Manual Description

Oracle Database Development Guide Explains how to develop applications or
convert existing applications to run in the
Oracle Database environment. The manual
explains fundamentals of application design,
and describes essential concepts for
developing in SQL and PL/SQL.

Oracle Database PL/SQL Language Describes all aspects of the PL/SQL language,

Reference including data types, control statements,
collections, triggers, packages, and error
handling.

Oracle Database Java Developer's Guide Describes how to develop, load, and run Java
applications in Oracle Database.

Oracle Database SecureFiles and Large Explains how to develop new applications

Objects Developer's Guide using Large Objects (LOBs), SecureFiles

LOBs, and Database File System (DBFS).

Other advanced guides required by a particular user depend on the area of
responsibility of this user.

ORACLE 1-22

Multitenant Architecture

The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

e CDBs and PDBs
The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

» Application Containers
Within a CDB, you can create a container for application data and metadata that can be
shared by PDBs.

ORACLE

CDBs and PDBs

The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

Starting in Oracle Database 21c, a multitenant container database is the only supported
architecture. In previous releases, Oracle supported non-container databases (non-CDBSs).

e About Containers in a CDB
A container is a collection of schemas, objects, and related structures in a multitenant
container database (CDB). Within a CDB, each container has a unique ID and name.

* The CDB Root and System Container

The CDB root, also called simply the root, is a collection of schemas, schema objects,
and nonschema objects to which all PDBs belong.

 PDBs
A PDB is a user-created set of schemas, objects, and related structures that appears
logically to a client application as a separate database.

About Containers in a CDB

A container is a collection of schemas, objects, and related structures in a multitenant
container database (CDB). Within a CDB, each container has a unique ID and name.

A CDB includes zero, one, or many customer-created pluggable databases (PDBs) and
application containers. A PDB is a portable collection of schemas, schema objects, and
nonschema objects that appears to an Oracle Net client as a separate database. An
application container is an optional, user-created CDB component that stores data and
metadata for one or more application back ends. A CDB includes zero or more application
containers.

" Note:

"Application Containers" explains application containers in detail.

The following figure represents possible containers in a CDB.

ORACLE 2-1

Chapter 2
About Containers in a CDB

Figure 2-1 Containers in a CDB

cDB
Application Application
Container Container
Root (CDB$ROOT)
g !‘I 1 m m
[
L

[I
Application Root AppHcaﬁon Root

Seed *

(PDB$SEED)
App“catlon/% @ @ @ @ @
Seed

Apphcanon Apphcanon
PDBs PDBs

I
PDBs and Application Containers

Every CDB has the following containers:

ORACLE

Exactly one CDB root container (also called simply the root)

The CDB root is a collection of schemas, schema objects, and nonschema objects
to which all PDBs belong (see "CDBs and PDBs"). The root stores Oracle-supplied
metadata and common users. An example of metadata is the source code for
Oracle-supplied PL/SQL packages. A common user is a database user known in
every container (see "Common User Accounts"). The root container is named
CDBSROOT.

Exactly one system container

The system container includes the root CDB and all PDBs in the CDB. Thus, the
system container is the logical container for the CDB itself.

Zero or more application containers

An application container consists of exactly one application root, and the PDBs
plugged in to this root. Whereas the system container contains the CDB root and
all the PDBs within the CDB, an application container includes only the PDBs
plugged into the application root. An application root belongs to the CDB root and
no other container.

Zero or more user-created PDBs

A PDB contains the data and code required for a specific set of features (see
"PDBs"). For example, a PDB can support a specific application, such as a human
resources or sales application. No PDBs exist at creation of the CDB. You add
PDBs based on your business requirements.

A PDB belongs to exactly zero or one application container. If a PDB belongs to an
application container, then it is an application PDB. For example, the custl pdb
and cust2_ pdb application PDBs might belong to the saas sales ac application

2-2

ORACLE

Chapter 2
About Containers in a CDB

container, in which case they belong to no other application containers. An application
seed is an optional application PDB that acts as a user-created PDB template, enabling
you to create new application PDBs rapidly.

» Exactly one seed PDB

The seed PDB is a system-supplied template that the CDB can use to create new PDBs.
The seed PDB is named PDBS$SEED. You cannot add or modify objects in PDBSSEED.

Example 2-1 CDB with No Application Containers

This example shows a simple CDB with five containers: the system container (the entire
CDB), the CDB root, the PDB seed (PDB$SEED), and two PDBs. Each PDB has its own
dedicated application. A different PDB administrator manages each PDB. A common user
exists across a CDB with a single identity. In this example, common user SYS can manage the
root and every PDB. At the physical level, this CDB is managed by one or more database
instances, and contains a set of data files for each PDB and for the CDB itself.

Figure 2-2 CDB with No Application Containers

cDB i
PDB

Administrator Root CDB
for hrpdb (CDB$ROOT) Administrator

—| Sales Application
HR Application

" Seed
PDB | (PDBSSEED)

Administrator N
for salespdb

Logical
Physical
! Database
Data Control
Files Files

Redo Log

Example 2-2 CDB with an Application Container

In this variation, the CDB contains an application container named saas_sales_ac. Within the
application container, the application PDB custl pdb supports an application for one
customer, and the application PDB cust2_pdb supports an application for a different
customer. The CDB also contains a PDB named hrpdb, which supports an HR application,
but does not belong to an application container.

2-3

Chapter 2
The CDB Root and System Container

Figure 2-3 CDB with an Application Container

CcDB Application
Container O
saas_sales_ac
CDB
Hool(CRE HOON) Administrator
0 m
(4
=
Application Root
Seed H [—:l—]:L Application
(PDB$SEED) i =t Container
Administrator

Application ‘custLpdb cust2_pdb ‘
Seed

DBs

Application
P | Application
PDB

Administrator

[
Egrﬁinistrator PDBs and Application Containers

for hrpdb

In this example, multiple DBAs manage the CDB environment:

* A CDB administrator manages the CDB itself.

* An application container administrator manages the saas_sales_ac container,
including application installation and upgrades.

* An application PDB administrator manages the two PDBs in the saas sales ac
container: custl pdb and cust2 pdb.

* A PDB administrator manages hrpdb.

The CDB Root and System Container

ORACLE

The CDB root, also called simply the root, is a collection of schemas, schema objects,
and nonschema objects to which all PDBs belong.

Every CDB has one and only one root container named CDBSROOT. The root stores the
system metadata required to manage PDBs. All PDBs belong to the root. The system
container is the CDB root and all PDBs that belong to this root.

The CDB root does not store user data. Oracle recommends that you do not add
common objects to the root or modify Oracle-supplied schemas in the root. However,
you can create common users and roles for database administration. A common user
with the necessary privileges can switch between containers.

Oracle recommends AL32UTFS8 for the root character set. PDBs with different
character sets can reside in the same CDB without requiring character set conversion.

2-4

PDBs

ORACLE

Chapter 2

PDBs

Example 2-3 All Containers in a CDB
The following query, issued by an administrative user connected to the CDB root, lists alll
containers in the CDB (including the seed and CDB root), ordered by CON_ID.
COL NAME FORMAT Al5
SELECT NAME, CON ID, DBID, CON UID, GUID
FROM VSCONTAINERS ORDER BY CON ID;
NAME CON ID DBID CON UID GUID
CDBSROOT 1 1895287725 1 2003321EDD4F60D6E0534E40E40A41C5
PDBSSEED 2 2795386505 2795386505 200AC90679F07B55E05396C0E40A23FE
SAAS SALES AC 3 1239646423 1239646423 200B4CEOA8DC1D24E05396C0E40AF8EE
SALESPDB 4 3692549634 3692549634 200B4928319C1BCCE05396C0E40A2432
HRPDB 5 3784483090 3784483090 200B4928319D1BCCE05396C0E40A2432

" See Also:

"Common User Accounts"

A PDB is a user-created set of schemas, objects, and related structures that appears
logically to a client application as a separate database.

Every PDB is owned by sys, regardless of which user created the PDB. sys is a common
user in the CDB, which means that this user that has the same identity in the root and in
every existing and future PDB within the CDB.

* Types of PDBs
All PDBs are user-created with the CREATE PLUGGABLE DATABASE Statement except for
PDBSSEED, which is Oracle-supplied.

e Purpose of PDBs
For an application, a PDB is a self-contained, fully functional Oracle database. You can
consolidate PDBs into a single CDB to achieve economies of scale, while maintaining
isolation between PDBs.

* Proxy PDBs
A proxy PDB refers to a remote PDB, called the referenced PDB.

* Names for PDBs
Containers in a CDB share the same namespace, which means that they must have
unique names within this namespace.

o Database Links Between PDBs
By default, a user connected to one PDB must use database links to access objects in a
different PDB.

2-5

Chapter 2
PDBs

Types of PDBs

ORACLE

All PDBs are user-created with the CREATE PLUGGABLE DATABASE Statement except for
PDBSSEED, which is Oracle-supplied.

You can create the following types of PDBs.

Standard PDB

This type of PDB results from running CREATE PLUGGABLE DATABASE without specifying
the PDB as a seed, proxy PDB, or application root. Its capabilities depend on the
container in which you create it:

* PDB plugged in to the CDB root

This PDB belongs to the CDB root container and not an application container. This
type of PDB cannot use application common objects. See "Application Common
Objects".

* Application PDB

An application PDB belongs to exactly one application container. Unlike PDBs
plugged in to the CDB root, application PDBs can share a master application
definition within an application container. For example, a usa_zipcodes table in an
application root might be a data-linked common object, which means it contains
data accessible by all application PDBs plugged in to this root. PDBs that do not
reside within the application container cannot access its application common
objects.

Application Root

Consider an application root as an application-specific root container. It serves as a
repository for a master definition of an application back end, including common data
and metadata. To create an application root, connect to the CDB root and specify the
AS APPLICATION CONTAINER clause in a CREATE PLUGGABLE DATABASE statement. See
"Application Root".

Seed PDBs

Unlike a standard PDB, a seed PDB is not intended to support an application. Rather,
the seed is a template for the creation of PDBs that support applications. A seed can
be either of the following:

* Seed PDB plugged in the CDB root (PDB$SEED)

You can use this system-supplied template to create new PDBs either in an
application container or the system container. The system container contains
exactly one PDB seed. You cannot drop PDBSSEED, or add objects to or modify
objects within it.

* Application seed PDB

To accelerate creation of application PDBs within an application container, you can
create an optional application seed. An application container contains either zero
or one application seed.

You create an application seed by connecting to the application container and
executing the CREATE PLUGGABLE DATABASE ... AS SEED statement. See
"Application Seed".

2-6

Chapter 2
PDBs

Proxy PDBs

A proxy PDB is a PDB that uses a database link to reference a PDB in a remote CDB. When
you issue a statement in a proxy PDB while the PDB is open, the statement executes in the
referenced PDB.

You must create a proxy PDB while connected to the CDB root or application root. You can
alter or drop a proxy PDB just as you can a standard PDB.

Purpose of PDBs

For an application, a PDB is a self-contained, fully functional Oracle database. You can
consolidate PDBs into a single CDB to achieve economies of scale, while maintaining
isolation between PDBs.

You can use PDBs to achieve the following specific goals:

ORACLE

Store data specific to an application

For example, a sales application can have its own dedicated PDB, and a human
resources application can have its own dedicated PDB. Alternatively, you can create an
application container, which is a named collection of PDBs, to store an application back
end containing common data and metadata.

Move data into a different CDB

A database is "pluggable” because you can package it as a self-contained unit, called an
unplugged PDB, and then move it into another CDB.

Perform rapid upgrades

You can unplug a PDB from CDB at a lower Oracle Database release, and then plug it in
to a CDB at a higher release.

Copy data quickly without loss of availability

For testing and development, you can clone a PDB while it remains open, storing the
clone in the same or a different CDB. Optionally, you can specify the PDB as a
refreshable clone PDB. Alternatively, you use the Oracle-supplied seed PDB or a user-
created application seed to copy new PDBs.

Reference data in a different CDB

You can create a proxy PDB that refers to a different PDB, either in the same CDB or in a
separate CDB. When you issue statements in the proxy PDB, they execute in the
referenced PDB.

Isolate grants within PDBs

A local or common user with appropriate privileges can grant EXECUTE privileges on a
schema object to PUBLIC within an individual PDB.

2-7

Chapter 2
PDBs

¢ See Also:

e "About Application Containers"

e Oracle Database Security Guide to learn how to grant roles and
privileges in a CDB

Proxy PDBs

ORACLE

A proxy PDB refers to a remote PDB, called the referenced PDB.

Although you issue SQL statements in the proxy (referring) PDB, the statements
execute in the referenced PDB. In this respect, a proxy PDB is loosely analogous to a
symbolic link file in Linux.

Proxy PDBs provide the following benefits:

e Aggregate data from multiple application models

Proxy PDBs enable you to build location-transparent applications that can
aggregate data from multiple sources. These sources can be in the same data
center or distributed across data centers.

e Enable an application root in one CDB to propagate application changes to a
different application root

Assume that CDBs cdb _prod and cdb_test have the same application model. You
create a proxy PDB in an application container in cdb_prod that refers to an
application root in cdb_test. When you run installation and upgrade scripts in the
application root in cdb_prod, Oracle Database propagates these statements to the
proxy PDB, which in turn sends them remotely to the application root in cdb_test.
In this way, the application root in cdb_test becomes a replica of the application
root in cdb_prod.

To create a proxy PDB, execute CREATE PLUGGABLE DATABASE with the AS PROXY FROM
clause, where FROM specifies the referenced PDB name and a database link. The
creation statement copies only the data files belonging to the SYSTEM and SYSAUX
tablespaces.

Example 2-4 Creating a Proxy PDB

This example connects to the container saas_sales_ac in a local production CDB. The
sales_admin common user creates a proxy PDB named sales _sync_pdb. This
application PDB references an application root named saas_sales test acina
remote development CDB, which it accesses using the cdb_dev_rem database link.
When an application upgrade occurs in saas_sales_ac in the production CDB, the
upgrade automatically propagates to the application root saas sales test ac inthe
remote development CDB.

CONNECT sales adminf@saas_sales_ac
Password: ***xxkkkkx*

CREATE PLUGGABLE DATABASE sales sync pdb AS PROXY FROM
saas sales test aclcdb dev rem;

2-8

Chapter 2
PDBs

Names for PDBSs

Containers in a CDB share the same namespace, which means that they must have unique
names within this namespace.

Names for the following containers must not conflict within the same CDB:

e The CDB root

e PDBs plugged in to the CDB root
e Application roots

e Application PDBs

For example, if the same CDB contains the application containers saas_sales_ac and
saas_sales test ac, then two application PDBs that are both named cust1 cannot
simultaneously reside in both containers. The namespace rules also prevent creation of a
PDB named custlpdb in the CDB root and a PDB named custlpdb in an application root.

Names for PDBs and application root containers must follow the same rules as net service
names. Moreover, because a PDB or application root has a service with its own name, the
container name must be unique across all CDBs whose services are exposed through a
specific listener. The first character of a user-created container name must be alphanumeric,
with remaining characters either alphanumeric or an underscore (_). Because service names
are case-insensitive, container names are case-insensitive, and are in upper case even if
specified using delimited identifiers.

See Also:

Oracle Database Net Services Reference for the rules for service names

Database Links Between PDBs

By default, a user connected to one PDB must use database links to access objects in a
different PDB.

Figure 2-4 Database Link Between PDBs

In this illustration, a PDB administrator is connected to the PDB named hrpdbl. By default,

during this user session, c##dba cannot query the emp2 table in hrpdb2 without specifying a
database link.

ORACLE 2-9

Chapter 2
PDBs

C/ CDB

PDB

Administrator Root

for hrpdb (CDB$ROOT)
Gl

A
/ Pegg$SEED mp2 T
e
\()vp

Exceptions to the rule include:

* A data-linked common object, which is accessible by all application PDBs that
contain a data link that points to this object. For example, the application container
saas_sales ac might contain the data-linked table usa zipcodes within its
application. In this case, common CDB user c##dba can connect to an application
PDB in this container, and then query usa_zipcodes even though the actual table
resides in the application root. In this case, no database link is required.

e The CONTAINERS () clause in SQL issued from the CDB root or application root.

Using this clause, you can query data across all PDBs plugged in to the container
root.

When creating a proxy PDB, you must specify a database link name in the FROM clause
of the CREATE PLUGGABLE DATABASE ... AS PROXY statement. If the proxy PDB and
referenced PDB reside in separate CDBs, then the database link must be defined in
the root of the CDB that will contain the proxy PDB. The database link must connect
either to the remote referenced PDB or to the CDB root of the remote CDB.

¢ See Also:

"Common and Local Objects"

ORACLE 2-10

Application Containers

Within a CDB, you can create a container for application data and metadata that can be
shared by PDBs.

* About Application Containers
An application container is an optional, user-created CDB component that stores data
and metadata for one or more application back ends. A CDB includes zero or more
application containers.

* Application Common Objects
An application common object is a common object created within an application in an
application root. Common objects are either data-linked or metadata-linked.

e Container Maps
A container map enables a session connected to application root to issue SQL
statements that are routed to the appropriate PDB, depending on the value of a predicate
used in the SQL statement.

* Cross-Container Operations
A cross-container operation is a DDL or DML statement that affects multiple containers
at once.

" See Also:

Common and Local Objects to learn about application common objects

About Application Containers

ORACLE

An application container is an optional, user-created CDB component that stores data and
metadata for one or more application back ends. A CDB includes zero or more application
containers.

Within an application container, an application is the named, versioned set of common
data and metadata stored in the application root. In this context of an application container,
the term “application” means “master application definition.” For example, the application
might include definitions of tables, views, and packages.

For example, you might create multiple sales-related PDBs within one application container,
with these PDBs sharing an application that consists of a set of common tables and table
definitions. You might store multiple HR-related PDBs within a separate application container,
with their own common tables and table definitions.

The CREATE PLUGGABLE DATABASE statement with the AS APPLICATION CONTAINER clause
creates the application root of the application container, and thus implicitly creates the
application container itself. When you first create the application container, it contains no
PDBs. To create application PDBs, you must connect to the application root, and then
execute the CREATE PLUGGABLE DATABASE statement.

3-1

Chapter 3
About Application Containers

In the CREATE PLUGGABLE DATABASE Statement, you must specify a container name
(which is the same as the application root name), for example, saas_sales_ac. The
application container name must be unique within the CDB, and within the scope of all
the CDBs whose instances are reached through a specific listener. Every application
container has a default service with the same name as the application container.

* Purpose of Application Containers
In some ways, an application container functions as an application-specific CDB
within a CDB. An application container, like the CDB itself, can include multiple
PDBs, and enables these PDBs to share metadata and data.

e Application Root
An application container has exactly one application root, which is the parent of
the application PDBs in the container.

e Application PDBs
An application PDB is a PDB that resides in an application container. Every PDB
in a CDB resides in either zero or one application containers.

e Application Seed
An application seed is an optional, user-created PDB within an application
container. An application container has either zero or one application seed.

Purpose of Application Containers

In some ways, an application container functions as an application-specific CDB within
a CDB. An application container, like the CDB itself, can include multiple PDBs, and
enables these PDBs to share metadata and data.

The application root enables application PDBs to share an application, which in this
context means a named, versioned set of common metadata and data. A typical
application installs application common users, metadata-linked common objects, and
data-linked common objects.

» Key Benefits of Application Containers
Application containers provide several benefits over storing each application in a
separate PDB.

» Application Container Use Case: SaaS
A SaaS deployment can use multiple application PDBs, each for a separate
customer, that share metadata and data.

* Application Containers Use Case: Logical Data Warehouse
A customer can use multiple application PDBs to address data sovereignty issues.

Key Benefits of Application Containers

ORACLE

Application containers provide several benefits over storing each application in a
separate PDB.

e The application root stores metadata and data that all application PDBs can share.

For example, all application PDBs can share data in a central table, such as a
table listed default application roles. Also, all PDBs can share a table definition to
which they add PDB-specific rows.

e You maintain your master application definition in the application root, instead of
maintaining a separate copy in each PDB.

3-2

Chapter 3
About Application Containers

If you upgrade the application in the application root, then the changes are automatically
propagated to all application PDBs. The application back end might contain the data-
linked common object app roles, which is a table that list default roles: admin,
manager, sales_rep, and so on. A user connected to any application PDB can query this
table.

* An application container can include an application seed, application PDBs, and proxy
PDBs (which refer to PDBs in other CDBs).

* You can rapidly create new application PDBs from the application seed.
* You can query views that report on all PDBs in the application container.

* While connected to the application root, you can use the CONTAINERS function to perform
DML on objects in multiple PDBs.

For example, if the products table exists in every application PDB, then you can connect
to the application root and query the products in all application PDBs using a single
SELECT statement.

* You can unplug a PDB from an application root, and then plug it in to an application root
in a higher Oracle database release. Thus, PDBs are useful in an Oracle database
upgrade.

Application Container Use Case: SaaS

ORACLE

A SaaS deployment can use multiple application PDBs, each for a separate customer, that
share metadata and data.

In a pure SaaS environment, the master application definition resides in the application root,
but the customer-specific data resides in its own application PDB. For example, sales app is
the application model in the application root. The application PDB named custl pdb contains
sales data only for customer 1, whereas the application PDB named cust2_pdb contains
sales data only for customer 2. Plugging, unplugging, cloning, and other PDB-level
operations are available for individual customer PDBs.

3-3

Chapter 3
About Application Containers

Figure 3-1 SaaS Use Case

CcbB
Application
Container
Root (CDB$ROOT)
. -]
(O
J
Appllcat|on Root
—] Emi

(PDB$SEED) @ i 'i

Application cust2_pdb
Seed cust1_pdb
Applicl:ation
PDBs

A pure SaaS configuration provides the following benefits:
* Performance

e Security

e Support for multiple customers

The data for each customer resides in its own container, but is consolidated so
that you can manage many customers collectively. This model extends the
economies of scale of managing many as one to the application administrator, not
only the DBA.

Application Containers Use Case: Logical Data Warehouse

ORACLE

A customer can use multiple application PDBs to address data sovereignty issues.

In a sample use case, a company puts data specific to each financial quarter in a
separate PDB. For example, the application container named sales_ac includes

gl 2016 pdb, g2 2016 pdb, g3 2016 pdb, and g4 2016 pdb. You define each
transaction in the PDB corresponding to the associated quarter. To generate a report
that aggregates performance across a year, you aggregate across the four PDBs
using the CONTAINERS () clause.

Benefits of this logical warehouse design include:

e ETL for data specific to a single PDB does not affect the other PDBs.

3-4

Chapter 3
About Application Containers

» Execution plans are more efficient because they are based on actual data distribution.

Application Root

ORACLE

An application container has exactly one application root, which is the parent of the
application PDBs in the container.

The property of being an application root is established at creation time, and cannot be
changed. The only container to which an application root belongs is the CDB root. An
application root is like the CDB root in some ways, and like a PDB in other ways:

e Like the CDB root, an application root serves as parent container to the PDBs plugged
into it. When connected to the application root, you can manage common users and
privileges, create application PDBs, switch containers, and issue DDL that applies to all
PDBs in the application container.

e Like a PDB, you create an application root with
the CREATE PLUGGABLE DATABASE statement, alter it with ALTER PLUGGABLE DATABASE, and
change its availability with STARTUP and SHUTDOWN. You can use DDL to plug, unplug, and
drop application roots. The application root has its own service name, and users can
connect to the application root in the same way that they connect to a PDB.

An application root differs from both the CDB root and standard PDB because it can store
user-created common objects, which are called application common objects. Application
common objects are accessible to the application PDBs plugged in to the application root.
Application common objects are not visible to the CDB root, other application roots, or PDBs
that do not belong to the application root.

Example 3-1 Creating an Application Root

In this example, you log in to the CDB root as administrative common user c##system. You
create an application container named saas_sales_ac, and then open the application root,
which has the same name as the container.

-- Create the application container called saas_sales ac
CREATE PLUGGABLE DATABASE saas sales ac AS APPLICATION CONTAINER
ADMIN USER saas_sales ac_adm IDENTIFIED BY manager;

-- Open the application root
ALTER PLUGGABLE DATABASE saas_sales ac OPEN;

You set the current container to saas_sales_ac, and then verify that this container is the
application root:

-- Set the current container to saas_sales _ac
ALTER SESSION SET CONTAINER = saas_sales_ac;

COL NAME FORMAT alb

COL ROOT FORMAT a4

SELECT CON_ID, NAME, APPLICATION ROOT AS ROOT,
APPLICATION PDB AS PDB,

FROM VSCONTAINERS;

CON_ID NAME ROOT PDB

3-5

Chapter 3
Application Common Objects

3 SAAS SALES AC YES NO

Application PDBs

An application PDB is a PDB that resides in an application container. Every PDB in a
CDB resides in either zero or one application containers.

For example, the saas_sales_ac application container might support multiple
customers, with each customer application storing its data in a separate PDB. The
application PDBs custl sales pdb and cust2 sales pdb might reside in
saas_sales_ac, in which case they belong to no other application container (although
as PDBs they necessarily belong also to the CDB root).

Create an application PDB by executing CREATE PLUGGABLE DATABASE while connected
to the application root. You can either create the application PDB from a seed, or clone
a PDB or plug in an unplugged PDB. Like a PDB that is plugged in to CDB root, you
can clone, unplug, or drop an application PDB. However, an application PDB must
always belong to an application root.

Application Seed

An application seed is an optional, user-created PDB within an application container.
An application container has either zero or one application seed.

An application seed enables you to create application PDBs quickly. It serves the
same role within the application container as PDBSSEED serves within the CDB itself.

The application seed name is always application container name$SEED, where
application container name is the name of the application container. For example,
use the CREATE PDB ... AS SEED statement to create saas sales ac$SEED in the
saas_sales ac application container.

Application Common Objects

ORACLE

An application common object is a common object created within an application in
an application root. Common objects are either data-linked or metadata-linked.

For a data-linked common object, application PDBs share a single set of data. For
example, an application for the saas sales_ac application container is named
saas_sales_app, has version 1.0, and includes a data-linked usa_zipcodes table. In
this case, the rows are stored once in the table in the application root, but are visible in
all application PDBs.

For a metadata-linked common object, application PDBs share only the metadata, but
contain different sets of data. For example, a metadata-linked products table has the
same definition in every application PDB, but the rows themselves are specific to the
PDB. The application PDB named custlpdb might have a products table that contains
books, whereas the application PDB named cust2pdb might have a products table
that contains auto parts.

e About Commonality in a CDB
A common phenomenon defined in a CDB or application root is the same in alll
containers plugged in to this root.

3-6

Chapter 3
Application Common Objects

Creation of Application Common Objects
To create common objects, connect to an application root, and then execute a CREATE
statement that specifies a sharing attribute.

Metadata-Linked Application Common Objects
A metadata link is a dictionary object that supports referring to, and granting privileges
on, common metadata shared by all PDBs in the application container.

Data-Linked Application Common Objects
A data-linked object is an object whose metadata and data reside in an application root,
and are accessible from all application PDBs in this application container.

Extended Data-Linked Application Objects
An extended data-linked object is a hybrid of a data-linked object and metadata-linked
object.

¢ See Also:

"Common and Local Objects" to learn about common objects

About Commonality in a CDB

A common phenomenon defined in a CDB or application root is the same in all containers
plugged in to this root.

Principles of Commonality
In a CDB, a phenomenon can be common within either the system container (the CDB
itself), or within a specific application container.

Namespaces in a CDB
In a CDB, the namespace for every object is scoped to its container.

Principles of Commonality

ORACLE

In a CDB, a phenomenon can be common within either the system container (the CDB itself),
or within a specific application container.

For example, if you create a common user account while connected to CDBSROOT, then this
user account is common to all PDBs and application roots in the CDB. If you create an
application common user account while connected to an application root, however, then this
user account is common only to the PDBs in this application container.

Within the context of CDBSROOT or an application root, the principles of commonality are as
follows:

A common phenomenon is the same in every existing and future container.

Therefore, a common user defined in the CDB root has the same identity in every PDB
plugged in to the CDB root; a common user defined in an application root has the same
identity in every application PDB plugged in to this application root. In contrast, a local
phenomenon is scoped to exactly one existing container.

Only a common user can alter the existence of common phenomena.

3-7

Chapter 3
Application Common Objects

More precisely, only a common user logged in to either the CDB root or an
application root can create, destroy, or modify attributes of a user, role, or object
that is common to the current container.

Namespaces in a CDB

ORACLE

In a CDB, the namespace for every object is scoped to its container.
The following principles summarize the scoping rules:

e From an application perspective, a PDB is a separate database that is distinct
from any other PDBs.

e Local phenomena are created within and restricted to a single container.

Note:

In this topic, the word “phenomenon” means “user account, role, or
database object.”

* Common phenomena are defined in a CDB root or application root, and exist in all
PDBs that are or will be plugged into this root.

The preceding principles have implications for local and common phenomena.

Local Phenomena

A local phenomenon must be uniquely named within a container, but not across alll
containers in the CDB. Identically named local phenomena in different containers are
distinct. For example, local user sh in one PDB does not conflict with local user sh in
another PDB.

CDB$ROOT Common Phenomena

Common phenomena defined in CDBSROOT exist in multiple containers and must be
unique within each of these namespaces. For example, the CDB root includes
predefined common users such as SYSTEM and SYS. To ensure namespace separation,
Oracle Database prevents creation of a SYSTEM user within another container.

To ensure namespace separation, the name of user-created common phenomena in
the CDB root must begin with the value specified by the COMMON USER PREFIX
initialization parameter. The default prefix is c## or C##. The names of all other user-
created phenomena must not begin with c## or C##. For example, you cannot create a
local user in hrpdb named c##hr, nor can you create a common user in the CDB root
named hr.

Application Common Phenomena

Within an application container, names for local and application common phenomena
must not conflict.

* Application common users and roles

The same principles apply to application common users as to CDB common users.
The difference is that for CDB common users, the default value for the common

3-8

Chapter 3
Application Common Objects

user prefix is c## or C##, whereas in application root the default value for the common
user prefix is the empty string.

The multitenant architecture assumes that you create application PDBs from an
application root, or convert a single-tenant application to a multitenant application.

Application common objects

The multitenant architecture assumes that you create application common objects in the
application root. Later, you add data locally within the application PDBs. However, Oracle
Database supports creation of /ocal tables within an application PDB. In this case, the
local tables reside in the same namespace as application common objects within the
application PDB.

¢ See Also:

Oracle Database Security Guide to learn more about common users and roles

Creation of Application Common Objects

To create common objects, connect to an application root, and then execute a CREATE
statement that specifies a sharing attribute.

You can only create or change application common objects as part of an application
installation, upgrade, or patch. You can specify sharing in the following ways:

DEFAULT SHARING initialization parameter

The setting is the default sharing attribute for all database objects of a supported type
created in the root.

SHARING clause

You specify this clause in the CREATE statement itself. When a SHARING clause is included
in a SQL statement, it takes precedence over the value specified in the DEFAULT SHARING
initialization parameter. Possible values are METADATA, DATA, EXTENDED DATA, and NONE.

The following table shows the types of application common objects, and where the data and
metadata is stored.

Table 3-1 Application Common Objects
]

Object Type SHARING Value Metadata Storage Data Storage
Data-Linked DATA Application root Application root
Extended Data-Linked | EXTENDED DATA Application root Application root and

application PDB

Metadata-Linked METADATA Application root Application PDB

ORACLE

3-9

Chapter 3
Application Common Objects

¢ See Also:

Oracle Database Security Guide to learn how to manage privileges for
common objects

Metadata-Linked Application Common Objects

ORACLE

A metadata link is a dictionary object that supports referring to, and granting
privileges on, common metadata shared by all PDBs in the application container.

Specifying the METADATA value in either the SHARING clause or the DEFAULT SHARING
initialization parameter specifies a link to an object’'s metadata, called a metadata-
linked common object. The metadata for the object is stored once in the application
root.

Tables, views, and code objects (such as PL/SQL procedures) can share metadata. In
this context, “metadata” includes column definitions, constraints, triggers, and code.
For example, if sales mlt is a metadata-linked common table, then all application
PDBs access the same definition of this table, which is stored in the application root,
by means of a metadata link. The rows in sales mlt are different in every application
PDB, but the column definitions are the same.

Typically, most objects in an application will be metadata-linked. Thus, you need only
maintain one master application definition. This approach centralizes management of
the application in multiple application PDBs.

Example 3-2 Creating a Metadata-Linked Common Object

In this example, the SYSTEM user logs in to the saas sales ac application container.
SYSTEM installs an application named saas_sales_app at version 1.0. This application
creates a common user account named saas_sales_adm. The schema contains a
metadata-linked common table named sales mlt.

-- Begin the install of saas_sales_app
ALTER PLUGGABLE DATABASE APPLICATION saas sales app BEGIN INSTALL
'1.0";

-- Create the tablespace for the app
CREATE TABLESPACE saas_sales tbs DATAFILE SIZE 100M AUTOEXTEND ON NEXT
10M MAXSIZE 200M;

-- Create the user account saas_sales_adm, which will own the app
CREATE USER saas_sales _adm IDENTIFIED BY ****** CONTAINER=ALL;

-- Grant necessary privileges to this user account
GRANT CREATE SESSION, DBA TO saas sales adm;

-- Makes the tablespace that you just created the default for
saas_sales _adm

ALTER USER saas_sales adm DEFAULT TABLESPACE saas sales tbs;

-- Now connect as the application owner
CONNECT saas sales adm/******@saas sales ac

3-10

Chapter 3
Application Common Objects

-- Create a metadata-linked table

CREATE TABLE saas_sales adm.sales mlt SHARING=METADATA
(YEAR NUMBER (4) ,

REGION VARCHAR2 (10),

QUARTER VARCHAR2 (4),

REVENUE NUMBER) ;

-- End the application installation
ALTER PLUGGABLE DATABASE APPLICATION saas sales app END INSTALL '1.0';

You can use the ALTER PLUGGABLE DATABASE APPLICATION ... SYNC statement to
synchronize the application PDBs to use the same master application definition. In this way,
every application PDB has a metadata link to the saas_sales adm.sales mlt common table.
The middle-tier code that updates sales mlt within the PDB named custl pdb adds rows to
this table in custl pdb, whereas the middle-tier code that updates sales mlt in cust2 pdb
adds rows to the copy of this table in cust2 pdb. Only the table metadata, which is stored in
the application root, is shared.

< Note:

Oracle Database Security Guide to learn more about how commonly granted object
privileges work

* Metadata Links
For metadata-linked application common objects, the metadata for the object is stored
once in the application root. A metadata link is a dictionary object whose object type is
the same as the metadata it is sharing.

Metadata Links

ORACLE

For metadata-linked application common objects, the metadata for the object is stored once
in the application root. A metadata link is a dictionary object whose object type is the same as
the metadata it is sharing.

The description of a metadata link is stored in the data dictionary of the PDB in which it is
created. A metadata link must be owned by an application common user. You can only use
metadata links to share metadata of common objects owned by their creator in the CDB root
or an application root.

Unlike a data link, a metadata link depends only on common data. For example, if an
application contains the local tables dow close 1t and nasdag_close 1t in the application
root, then a common user cannot create metadata links to these objects. However, an
application common table named sales mlt may be metadata-linked.

If a privileged common user changes the metadata for sales mlt, for example, adds a
column to the table, then this change propagates to the metadata links. Application PDB
users may not change the metadata in the metadata link. For example, a DBA who manages
the application PDB named custl pdb cannot add a column to sales mlt in this PDB only:
such metadata changes can be made only in the application root.

3-11

Chapter 3
Application Common Objects

Data-Linked Application Common Objects

ORACLE

A data-linked object is an object whose metadata and data reside in an application
root, and are accessible from all application PDBs in this application container.

Specifying the DATA value in either the SHARING clause or the DEFAULT SHARING
initialization parameter specifies a link to a common object, called a data-linked
common object. Dimension tables in a data warehouse are often good candidates for
data-linked common tables.

A data link is a dictionary object that functions much like a synonym. For example, if
countries is an application common table, then all application PDBs access the same
copy of this table by means of a data link. If a row is added to this table, then this row
is visible in all application PDBs.

A data link must be owned by an application common user. The link inherits the object
type from the object to which it is pointing. The description of a data link is stored in
the dictionary of the PDB in which it is created. For example, if an application container
contains 10 application PDBs, and if every PDB contains a link to the countries
application common table, then all 10 PDBs contain dictionary definitions for this link.

Example 3-3 Creating a Data-Linked Object

In this example, SYSTEM connects to the saas_sales_ac application container. SYSTEM
upgrades the application named saas_sales_app from version 1.0 to 2.0. This
application upgrade logs in to the container as common user saas_sales_adm, creates
a data-linked table named countries dlt, and then inserts rows into it.

-- Begin an upgrade of the application
ALTER PLUGGABLE DATABASE APPLICATION saas sales app BEGIN UPGRADE
'1.0" to '2.0';

-- Connect as application owner to application root
CONNECT saas_sales adm/manager@saas sales_ac

-- Create data-linked table named countries dlt
CREATE TABLE countries dlt SHARING=DATA
(country id NUMBER,

country name VARCHAR2Z (20));

-- Insert records into countries dlt
INSERT INTO countries dlt VALUES(1, 'USA');
INSERT INTO countries dlt VALUES (44, 'UK');
INSERT INTO countries dlt VALUES (86, 'China');
INSERT INTO countries dlt VALUES (91, 'India');

-- End application upgrade
ALTER PLUGGABLE DATABASE APPLICATION saas sales app END UPGRADE TO
'2.0';

Use the ALTER PLUGGABLE DATABASE APPLICATION ... SYNC statement to synchronize
application PDBs with the application root. In this way, every synchronized application
PDB has a data link to the saas_sales adm.countries dlt data-linked table.

3-12

Chapter 3
Application Common Objects

Extended Data-Linked Application Objects

ORACLE

An extended data-linked object is a hybrid of a data-linked object and metadata-linked
object.

In an extended data-linked object, the data stored in the application root is common to all
application PDBs, and all PDBs can access this data. However, each application PDB can
create its own, PDB-specific data while sharing the common data in application root. Thus,
the PDBs supplement the common data with their own data.

For example, a sales application might support several application PDBs. All application
PDBs need the postal codes for the United States. In this case, you might create a
zipcodes_edt extended data-linked table in the application root. The application root stores
the United States postal codes, so all application PDBs can access them. However, one
application PDB requires the postal codes for the United States and Canada. This application
PDB can store the postal codes for Canada in the extended data-linked object in the
application PDB instead of in the application root.

Create an extended data-linked object by connecting to the application root and specifying
the SHARING=EXTENDED DATA keyword in the CREATE statement.

Example 3-4 Creating an Extended-Data Object

In this example, SYSTEM connects to the saas sales ac application container, and then
upgrades the application named saas_sales_app (created in "Example 3-2") from version 2.0
to 3.0. This application logs in to the container as common user saas_sales_adm, creates an
extended data-linked table named zipcodes edt, and then inserts rows into it.

-- Begin an upgrade of the app
ALTER PLUGGABLE DATABASE APPLICATION saas sales app BEGIN UPGRADE '2.0' to
'3.0';

-- Connect as app owner to app root
CONNECT saas_sales adm/manager@saas sales_ac

-- Create a common-data table named zipcodes edt
CREATE TABLE zipcodes edt SHARING=EXTENDED DATA
(code VARCHAR2 (5),

country id NUMBER,

region VARCHARZ2 (10)) ;

-- Load rows into zipcodes edt
INSERT INTO zipcodes edt VALUES ('08820','l','East')
INSERT INTO zipcodes edt VALUES ('10005','l'",'East');
INSERT INTO zipcodes edt VALUES ('44332','l','North');
(l
(l

’

INSERT INTO zipcodes edt VALUES 94065','1', 'West ") ;
INSERT INTO zipcodes edt VALUES 73301','1",'South');
COMMIT;

-- End app upgrade
ALTER PLUGGABLE DATABASE APPLICATION saas sales app END UPGRADE TO '3.0';

Use the ALTER PLUGGABLE DATABASE APPLICATION ... SYNC statement to synchronize
application PDBs with the application. In this way, every synchronized application PDB has a

3-13

Chapter 3
Container Maps

data link to the saas_sales adm.zipcodes edt data-linked table. Applications that
connect to these PDBs can see the postal codes that were inserted into zipcodes edt
during the application upgrade, but can also insert their own postal codes into this
table.

Container Maps

ORACLE

A container map enables a session connected to application root to issue SQL
statements that are routed to the appropriate PDB, depending on the value of a
predicate used in the SQL statement.

A map table specifies a column in a metadata-linked common table, and uses
partitions to associate different application PDBs with different column values. In this
way, container maps enable the partitioning of data at the PDB level when the data is
not physically partitioned at the table level.

The key components for using container maps are:

* Metadata-linked table

This table is intended to be queried using the container map. For example, you
might create a metadata-linked table named countries mlt that stores different
data in each application PDB. In amer pdb, the countries mlt.cname column
stores North American country names; in euro_pdb, the countries mlt.cname
column stores European country names; and in asia pdb, the

countries mlt.cname column stores Asian country names.

* Map table

In the application root, you create a single-column map table partitioned by list,
hash, or range. The map table enables the metadata-linked table to be queried
using the partitioning strategy that is enabled by the container map. The names of
the partitions in the map object table must match the names of the application
PDBs in the application container.

For example, the map table named pdb map_tbl may partition by list on the cname
column. The partitions named amer pdb, euro pdb, and asia pdb correspond to
the names of the application PDBs. The values in each partition are the nhames of
the countries, for example, PARTITION amer pdb VALUES

('US', "MEXICO', 'CANADA').

Starting in Oracle Database 18c, for a CONTAINERS () query to use a map, the
partitioning column in the map table does not need to match a column in the
metadata-linked table. Assume that the table sh.sales is enabled for the container
map pdb_map_tbl, and cname is the partitioning column for the map table. Even
though sh.sales does not include a cname column, the map table routes the
following query to the appropriate PDB: SELECT * FROM CONTAINERS (sh.sales)
WHERE cname = 'US' ORDER BY time id.

e Container map

A container map is a database property that specifies a map table. To set the
property, you connect to the application root and execute the ALTER PLUGGABLE
DATABASE SET CONTAINER MAP=map table statement, where map table is the
name of the map table.

3-14

ORACLE

Chapter 3

Container Maps

Example 3-5 Creating a Metadata-Linked Table, Map Table, and Container Map: Part 1

In this example, you log in as an application administrator to the application root. Assume that

an application container has three application PDBS: amer pdb, euro pdb, and asia pdb.

Each application PDB stores country names for a different region. A metadata-linked table

named oe.countries mlt has a cname column that stores the country name. For this
partitioning strategy, you use partition by list to create a map object named

salesadm.pdb map tbl that creates a partition for each region. The country name determines

the region.
ALTER PLUGGABLE DATABASE APPLICATION saas sales app BEGIN INSTALL '1.0';

-- Create the metadata-linked table.

CREATE TABLE oe.countries mlt SHARING=METADATA (
region VARCHAR2 (30),
cname VARCHAR2 (30)) ;

-- Create the partitioned map table, which is list partitioned on the
-- cname column. The names of the partitions are the names of the
-- application PDBs.
CREATE TABLE salesadm.pdb map tbl (cname VARCHARZ (30) NOT NULL)
PARTITION BY LIST (cname) (
PARTITION amer pdb VALUES ('US','MEXICO', 'CANADA'),
PARTITION euro pdb VALUES ('UK','FRANCE', 'GERMANY'),
PARTITION asia pdb VALUES ('INDIA', 'CHINA','JAPAN'));

-- Set the CONTAINER MAP database property to the map object.
ALTER PLUGGABLE DATABASE SET CONTAINER MAP='salesadm.pdb map tbl';

-- Enable the container map for the metadata-linked table to be queried.
ALTER TABLE oe.countries mlt ENABLE CONTAINER MAP;

-- Ensure that the table to be queried is enabled for the
-- CONTAINERS clause.
ALTER TABLE oe.countries mlt ENABLE CONTAINERS DEFAULT;

-- End the application installation.
ALTER PLUGGABLE DATABASE APPLICATION saas sales app END INSTALL '1.0';

" Note:

Partitioning.

Although you create container maps using partitioning syntax, the database does
not use partitioning functionality. Defining a container map does not require Oracle

In the preceding script, the ALTER TABLE oe.countries mlt ENABLE CONTAINERS DEFAULT
statement specifies that queries and DML statements issued in the application root must use

the CONTAINERS () clause by default for the database object.

3-15

ORACLE

Example 3-6 Synchronizing the Application, and Adding Data: Part 2

Chapter 3
Container Maps

This example continues from the previous example. While connected to the application

root, you switch the current container to each PDB in turn, synchronize the

saas_sales_app application, and then add PDB-specific data to the oe.countries mlt

table.

ALTER SESSION SET CONTAINER=amer pdb;

ALTER PLUGGABLE DATABASE APPLICATION saas _sales app SYNC;
INSERT INTO oe.countries mlt VALUES ('AMER',6'US');

INSERT INTO oe.countries_mlt VALUES ('AMER', "MEXICO'");
INSERT INTO oe.countries_mlt VALUES ('AMER', "CANADA');
COMMIT;

ALTER SESSION SET CONTAINER=euro pdb;

ALTER PLUGGABLE DATABASE APPLICATION saas_sales app SYNC;
INSERT INTO oe.countries mlt VALUES ('EURO','UK');

INSERT INTO oe.countries_mlt VALUES ('EURO', 'FRANCE');
INSERT INTO oe.countries_mlt VALUES ('EURO', '"GERMANY');
COMMIT;

ALTER SESSION SET CONTAINER=asia pdb;

ALTER PLUGGABLE DATABASE APPLICATION saas_sales app SYNC;
INSERT INTO oe.countries mlt VALUES ('ASIA', 'INDIA');
INSERT INTO oe.countries mlt VALUES ('ASIA','CHINA');
INSERT INTO oe.countries mlt VALUES ('ASIA', 'JAPAN');
COMMIT;

Example 3-7 Querying the Metadata-Linked Table: Part 3

This example continues from the previous example. You connect to the application
root, and then query oe.countries _mlt multiple times, specifying different countries in

the WHERE clause. The query returns the correct value from the
oe.countries mlt.region column.

ALTER SESSION SET CONTAINER=saas_ sales ac;

SELECT region FROM oe.countries mlt WHERE cname='MEXICO';

REGION

SELECT region FROM oe.countries mlt WHERE cname='GERMANY';

REGION
SELECT region FROM oe.countries mlt WHERE cname='JAPAN';

REGION

3-16

Chapter 3
Cross-Container Operations

Cross-Container Operations

A cross-container operation is a DDL or DML statement that affects multiple containers at
once.

Only a common user connected to either the CDB root or an application root can perform
cross-container operations. A cross-container operation can affect:

e The CDB itself
e Multiple containers within a CDB

e Multiple phenomena such as common users or common roles that are represented in
multiple containers

e A container to which the user issuing the DDL or DML statement is currently not
connected

Examples of cross-container DDL operations include user SYSTEM granting a privilege
commonly to another common user, and an ALTER DATABASE . . . RECOVER Statement that
applies to the entire CDB.

When you are connected to either the CDB root or an application root, you can execute a
single DML statement to modify tables or views in multiple PDBs within the container. The
database infers the target PDBs from the value of the CON_ID column specified in the DML
statement. If no CON_ID is specified, then the database uses the CONTAINERS DEFAULT TARGET
property specified by the ALTER PLUGGABLE DATABASE CONTAINERS DEFAULT TARGET
statement.

Example 3-8 Updating Multiple PDBs in a Single DML Statement

In this example, your goal is to set the country name column to the value US2 in the sh.sales
table. This table exists in two separate PDBs, with container IDs of 7 and 8. Both PDBs are in
the application container named saas_sales_ac. You can connect to the application root as
an administrator, and make the update as follows:

CONNECT sales admin@saas_sales ac
Password: ***xxkx

UPDATE CONTAINERS (sh.sales) sal
SET sal.country name = 'USA'
WHERE sal.CON_ID IN (7,8);

In the preceding UPDATE statement, sal is an alias for CONTAINERS (sh.sales).

¢ See Also:

"Common User Accounts"

ORACLE 3-17

Oracle Data Structures

ORACLE

This part describes the basic data structures of a database, including data integrity rules, and
the structures that store metadata.

Tables and Table Clusters
This chapter provides an introduction to schema objects and discusses tables, which are
the most common types of schema objects.

Indexes and Index-Organized Tables
Indexes are schema objects that can speed access to table rows. Index-organized tables
are tables stored in an index structure.

Partitions, Views, and Other Schema Objects

Although tables and indexes are the most important and commonly used schema objects,
the database supports many other types of schema objects, the most common of which
are discussed in this chapter.

Data Integrity
This chapter explains how integrity constraints enforce the business rules associated with
a database and prevent the entry of invalid information into tables.

Application Data Usage
This chapter explains what application usage domains and application usage annotations
are.

Data Dictionary and Dynamic Performance Views

The central set of read-only reference tables and views of each Oracle database is
known collectively as the data dictionary. The dynamic performance views are special
views that are continuously updated while a database is open and in use.

Tables and Table Clusters

This chapter provides an introduction to schema objects and discusses tables, which are the
most common types of schema objects.

e Introduction to Schema Objects
A database schema is a logical container for data structures, called schema objects.
Examples of schema objects are tables and indexes. You create and manipulate schema
objects with SQL.

* Overview of Tables
A table is the basic unit of data organization in an Oracle database.

* Overview of Table Clusters
A table cluster is a group of tables that share common columns and store related data in
the same blocks.

* Overview of Attribute-Clustered Tables
An attribute-clustered table is a heap-organized table that stores data in close proximity
on disk based on user-specified clustering directives. The directives specify columns in
single or multiple tables.

e Overview of Temporary Tables
A temporary table holds data that exists only for the duration of a transaction or session.

e Overview of External Tables
An external table accesses data in external sources as if this data were in a table in the
database.

* Overview of Blockchain Tables
A blockchain table is an append-only table designed for centralized blockchain
applications.

* Overview of Immutable Tables
Immutable tables are append-only tables that prevent unauthorized data modifications by
insiders and accidental data modifications resulting from human errors.

e Overview of Object Tables
An object table is a special kind of table in which each row represents an object.

Introduction to Schema Objects

ORACLE

A database schema is a logical container for data structures, called schema objects.
Examples of schema objects are tables and indexes. You create and manipulate schema
objects with SQL.

This section contains the following topics:

e About Common and Local User Accounts
* Schema Object Types
* Schema Object Storage

* Schema Object Dependencies

4-1

Chapter 4
Introduction to Schema Objects

e Sample Schemas

* About Common and Local User Accounts
A database user account has a password and specific database privileges.

e Common and Local Objects
A common object is defined in either the CDB root or an application root, and can
be referenced using metadata links or object links. A local object is every object
that is not a common object.

* Schema Object Types
Oracle SQL enables you to create and manipulate many other types of schema
objects.

» Schema Object Storage
Some schema objects store data in a type of logical storage structure called a
segment. For example, a nonpartitioned heap-organized table or an index creates
a segment.

» Schema Object Dependencies
Some schema objects refer to other objects, creating a schema object
dependency.

e Sample Schemas
An Oracle database may include sample schemas, which are a set of interlinked
schemas that enable Oracle documentation and Oracle instructional materials to
illustrate common database tasks.

¢ See Also:

Oracle Database Security Guide to learn more about users and privileges

About Common and Local User Accounts

A database user account has a password and specific database privileges.

User Accounts and Schemas

Each user account owns a single schema, which has the same name as the user. The
schema contains the data for the user owning the schema. For example, the hr user
account owns the hr schema, which contains schema objects such as the employees
table. In a production database, the schema owner usually represents a database
application rather than a person.

Within a schema, each schema object of a particular type has a unique name. For
example, hr.employees refers to the table employees in the hr schema. The following
figure depicts a schema owner named hr and schema objects within the hr schema.

ORACLE 4-2

ORACLE

Chapter 4
Introduction to Schema Objects

Figure 4-1 HR Schema

1
U

Schema

Objects

HR Schema
Indexes
‘ \E

Tables

|
o _ows

HR User

g;r

Common and Local User Accounts

If a user account owns objects that define the database, then this user account is common.
User accounts that are not Oracle-supplied are either local or common. A CDB common user
is @ common user that is created in the CDB root. An application common user is a user that
is created in an application root, and is common only within this application container.

The following graphic shows the possible user account types in a CDB.

Figure 4-2 User Accounts in a CDB

Oracle-Supplied
SYS, SYSTEM

CDB Common User

User-Created

Name must begin with
Common User C## or C##

Same Identity in
Every Container

Application Common User

Local User

Identity Restricted
to One PDB

A CDB common user can connect to any container in the CDB to which it has sufficient
privileges. In contrast, an application common user can only connect to the application root in
which it was created, or a PDB that is plugged in to this application root, depending on its
privileges.

4-3

Chapter 4
Introduction to Schema Objects

* Common User Accounts
Within the context of either the system container (CDB) or an application
container, a common user is a database user that has the same identity in the
root and in every existing and future PDB within this container.

* Local User Accounts
A local user is a database user that is not common and can operate only within a
single PDB.

Common User Accounts

ORACLE

Within the context of either the system container (CDB) or an application container, a
common user is a database user that has the same identity in the root and in every
existing and future PDB within this container.

Every common user can connect to and perform operations within the root of its
container, and within any PDB in which it has sufficient privileges. Some administrative
tasks must be performed by a common user. Examples include creating a PDB and
unplugging a PDB.

For example, SYSTEM is a CDB common user with DBA privileges. Thus, SYSTEM can
connect to the CDB root and any PDB in the database. You might create a common
user saas_sales_admin in the saas_sales application container. In this case, the
saas_sales admin user could only connect to the saas sales application root or to an
application PDB within the saas_sales application container.

Every common user is either Oracle-supplied or user-created. Examples of Oracle-
supplied common users are SYS and SYSTEM. Every user-created common user is
either a CDB common user, or an application common user.

The following figure shows sample users and schemas in two PDBs: hrpdb and
salespdb. SYS and c##dba are CDB common users who have schemas in CDBSROOT,
hrpdb, and salespdb. Local users hr and rep exist in hrpdb. Local users hr and rep
also exist in salespdb.

4-4

ORACLE

Chapter 4
Introduction to Schema Objects

Figure 4-3 Users and Schemas in a CDB

Local
Users
Common hrin
Users hrpdb
SYS PUBLIC
Root (CDB$ROOT)
/ hrin
SYS — salespdb
” Seed 4 4
(PDB$SEED)
~_hrpdb_ _salespdb__ rep in
sYs salespdb
cttdba [svs | ||| [sYs e 1
[c#tidbal [rep || | [c##dbal[rep |4
repin
hrpdb

Common users have the following characteristics:

A common user can log in to any container (including CDBSROOT) in which it has the
CREATE SESSION privilege.

A common user need not have the same privileges in every container. For example, the
c##dba user may have the privilege to create a session in hrpdb and in the root, but not to
create a session in salespdb. Because a common user with the appropriate privileges
can switch between containers, a common user in the root can administer PDBs

An application common user does not have the CREATE SESSION privilege in any
container outside its own application container.

Thus, an application common user is restricted to its own application container. For
example, the application common user created in the saas_sales application can
connect only to the application root and the PDBs in the saas_sales application
container.

The names of user-created CDB common users must follow the naming rules for other
database users. Additionally, the names must begin with the characters specified by the
COMMON USER PREFIX initialization parameter, which are c## or C## by default. Oracle-
supplied common user names and user-created application common user names do not
have this restriction.

4-5

Chapter 4
Introduction to Schema Objects

No local user name may begin with the characters c## or C##.

Every common user is uniquely named across all PDBs within the container (either
the system container or a specific application container) in which it was created.

A CDB common user is defined in the CDB root, but must be able to connect to
every PDB with the same identity. An application common user resides in the
application root, and may connect to every application PDB in its container with
the same identity.

Characteristics of Common Users
Every common user is either Oracle-supplied or user-created.

SYS and SYSTEM Accounts
All Oracle databases include default common user accounts with administrative
privileges.

Characteristics of Common Users

ORACLE

Every common user is either Oracle-supplied or user-created.

Common user accounts have the following characteristics:

A common user can log in to any container (including CDBSROOT) in which it has the
CREATE SESSION privilege.

A common user need not have the same privileges in every container. For
example, the c##dba user may have the privilege to create a session in hrpdb and
in the root, but not to create a session in salespdb. Because a common user with
the appropriate privileges can switch between containers, a common user in the
root can administer PDBs.

An application common user does not have the CREATE SESSION privilege in any
container outside its own application container.

Thus, an application common user is restricted to its own application container.
For example, the application common user created in the saas sales application
can connect only to the application root and the PDBs in the saas_sales
application container.

The names of user-created CDB common users must follow the nhaming rules for
other database users. Additionally, the names must begin with the characters
specified by the COMMON USER PREFIX initialization parameter, which are c## or C##
by default. Oracle-supplied common user names and user-created application
common user names do not have this restriction.

No local user name may begin with the characters c## or C##.

Every common user is uniquely named across all PDBs within the container (either
the system container or a specific application container) in which it was created.

A CDB common user is defined in the CDB root, but must be able to connect to
every PDB with the same identity. An application common user resides in the
application root, and may connect to every application PDB in its container with
the same identity.

The following figure shows sample users and schemas in two PDBs: hrpdb and
salespdb. SYS and c##dba are CDB common users who have schemas in CDBSROOT,
hrpdb, and salespdb. Local users hr and rep exist in hrpdb. Local users hr and rep
also exist in salespdb.

4-6

Chapter 4
Introduction to Schema Objects

Figure 4-4 Users and Schemas in a CDB

Local
Users
Common hrin
Users hrpdb
SYS PUBLIC
T Root (CDB$ROOT)
/ hrin
SYS PR salespdb
4 Seed ' '
(PDBS$SEED)
hrpdb salespdb_ |
| = = Dot
. o5 , |
[sys [pr JI | [SYS [[hr]
[ctitdbal[rep || | [cH#tdbal[rep |4
A
rep in
hrpdb
¢ See Also:
e Oracle Database Security Guide to learn about common user accounts
* Oracle Database Reference to learn about COMMON USER PREFIX
SYS and SYSTEM Accounts
All Oracle databases include default common user accounts with administrative privileges.
Administrative accounts are highly privileged and are intended only for DBAs authorized to
perform tasks such as starting and stopping the database, managing memory and storage,
creating and managing database users, and so on.
ORACLE

4-7

Chapter 4
Introduction to Schema Objects

The sYS common user account is automatically created when a database is created.
This account can perform all database administrative functions. The sys schema
stores the base tables and views for the data dictionary. These base tables and views
are critical for the operation of Oracle Database. Tables in the sys schema are
manipulated only by the database and must never be modified by any user.

The sYSTEM administrative account is also automatically created when a database is
created. The SYSTEM schema stores additional tables and views that display
administrative information, and internal tables and views used by various Oracle
Database options and tools. Never use the SYSTEM schema to store tables of interest to
nonadministrative users.

¢ See Also:

e Oracle Database Security Guide to learn about user accounts

e Oracle Database Administrator’s Guide to learn about SYS, SYSTEM, and
other administrative accounts

Local User Accounts

ORACLE

A local user is a database user that is not common and can operate only within a
single PDB.

Local users have the following characteristics:

* Alocal user is specific to a PDB and may own a schema in this PDB.

In the example shown in "Characteristics of Common Users", local user hr on
hrpdb owns the hr schema. On salespdb, local user rep owns the rep schema,
and local user hr owns the hr schema.

e Alocal user can administer a PDB, including opening and closing it.

A common user with SYSDBA privileges can grant SYSDBA privileges to a local user.
In this case, the privileged user remains local.

* Alocal user in one PDB cannot log in to another PDB or to the CDB root.

For example, when local user hr connects to hrpdb, hr cannot access objects in
the sh schema that reside in the salespdb database without using a database link.
In the same way, when local user sh connects to the salespdb PDB, sh cannot
access objects in the hr schema that resides in hrpdb without using a database
link.

e The name of a local user must not begin with the characters c## or C##.
* The name of a local user must only be unique within its PDB.

The user name and the PDB in which that user schema is contained determine a
unique local user. "Characteristics of Common Users" shows that a local user and
schema named rep exist on hrpdb. A completely independent local user and
schema named rep exist on the salespdo PDB.

4-8

Chapter 4
Introduction to Schema Objects

The following table describes a scenario involving the CDB in "Characteristics of Common
Users". Each row describes an action that occurs after the action in the preceding row.
Common user SYSTEM creates local users in two PDBs.

Table 4-1 Local Usersin a CDB

Operation

Description

SQL> CONNECT SYSTEM@hrpdb
Enter password: ****x*xx
Connected.

SYSTEM connects to the hrpdb container
using the service name hrpdb.

SQL> CREATE USER rep IDENTIFIED BY password;
User created.
SQL> GRANT CREATE SESSION TO rep;

Grant succeeded.

SYSTEM now creates a local user rep and
grants the CREATE SESSION privilege in this
PDB to this user. The user is local because
common users can only be created by a
common user connected to the root.

SQL> CONNECT rep@salespdb

Enter password: **x**xxx

ERROR:

ORA-01017: invalid username/password; logon
denied

The rep user, which is local to hrpdb,
attempts to connect to salespdb. The
attempt fails because rep does not exist in
PDB salespdb.

SQL> CONNECT SYSTEM@salespdb
Enter password: **x**xxx#*x
Connected.

SYSTEM connects to the salespdb container
using the service name salespdb.

SQL> CREATE USER rep IDENTIFIED BY password;
User created.
SQL> GRANT CREATE SESSION TO rep;

Grant succeeded.

SYSTEM creates a local user rep in salespdb
and grants the CREATE SESSION privilege in
this PDB to this user. Because the name of a
local user must only be unique within its PDB,
a user named rep can exist in both
salespdb and hrpdb.

SQL> CONNECT rep@salespdb
Enter password: ***x**x*xx*
Connected.

The rep user successfully logs in to
salespdb.

ORACLE

4-9

Chapter 4
Introduction to Schema Objects

¢ See Also:

Oracle Database Security Guide to learn about local user accounts

Common and Local Objects

A common object is defined in either the CDB root or an application root, and can be
referenced using metadata links or object links. A local object is every object that is not
a common object.

Database-supplied common objects are defined in CDBSROOT and cannot be changed.
Oracle Database does not support creation of common objects in CDBSROOT.

You can create most schema objects—such as tables, views, PL/SQL and Java
program units, sequences, and so on—as common objects in an application root. If the
object exists in an application root, then it is called an application common object.

A local user can own a common object. Also, a common user can own a local object,
but only when the object is not data-linked or metadata-linked, and is also neither a
metadata link nor a data link.

¢ See Also:

Oracle Database Security Guide to learn more about privilege management
for common objects

Schema Object Types

ORACLE

Oracle SQL enables you to create and manipulate many other types of schema
objects.

The principal types of schema objects are shown in the following table.

Table 4-2 Schema Objects

___|
Object Description To Learn More

Table A table stores data in rows. Tables are the "Overview of Tables"
most important schema objects in a
relational database.

Indexes Indexes are schema objects that contain "Indexes and Index-Organized
an entry for each indexed row of the table Tables"
or table cluster and provide direct, fast
access to rows. Oracle Database supports
several types of index. An index-organized
table is a table in which the data is stored
in an index structure.

4-10

Chapter 4
Introduction to Schema Objects

Table 4-2 (Cont.) Schema Objects

___|
Object Description To Learn More

Partitions Partitions are pieces of large tables and "Overview of Partitions"
indexes. Each partition has its own name
and may optionally have its own storage
characteristics.

Views Views are customized presentations of "Overview of Views"
data in one or more tables or other views.
You can think of them as stored queries.
Views do not actually contain data.

Sequences A sequence is a user-created object that "Overview of Sequences"
can be shared by multiple users to
generate integers. Typically, you use
sequences to generate primary key
values.

Dimensions A dimension defines a parent-child "Overview of Dimensions"
relationship between pairs of column sets,
where all the columns of a column set
must come from the same table.
Dimensions are commonly used to
categorize data such as customers,
products, and time.

Synonyms A synonym is an alias for another schema "Overview of Synonyms"
object. Because a synonym is simply an
alias, it requires no storage other than its
definition in the data dictionary.

PL/SQL PL/SQL is the Oracle procedural "PL/SQL Subprograms "
subprograms and extension of SQL. A PL/SQL subprogram
packages is a named PL/SQL block that can be

invoked with a set of parameters. A
PL/SQL package groups logically related
PL/SQL types, variables, and
subprograms.

Other types of objects are also stored in the database and can be created and manipulated
with SQL statements but are not contained in a schema. These objects include database
user account, roles, contexts, and dictionary objects.

See Also:

e Oracle Database Administrator’s Guide to learn how to manage schema objects

e Oracle Database SQL Language Reference for more about schema objects
and database objects

Schema Object Storage

Some schema objects store data in a type of logical storage structure called a segment. For
example, a nonpartitioned heap-organized table or an index creates a segment.

ORACLE 4-11

Chapter 4

Introduction to Schema Objects

Other schema objects, such as views and sequences, consist of metadata only. This
topic describes only schema objects that have segments.

Oracle Database stores a schema object logically within a tablespace. There is no
relationship between schemas and tablespaces: a tablespace can contain objects from

different schemas, and the objects for a schema can be contained in different

tablespaces. The data of each object is physically contained in one or more data files.

The following figure shows a possible configuration of table and index segments,
tablespaces, and data files. The data segment for one table spans two data files,

which are both part of the same tablespace. A segment cannot span multiple

tablespaces.

Figure 4-5 Segments, Tablespaces, and Data Files

ORACLE

]
[TE] [TD
uj O =
[] []
5 Ei[] 3 EDD .

| SO |[FaB
[] []

U || ol

ul 0=

. [] []
S| |3 Ei[] 3 EDD

Data Files

(stored in tablespaces-

(physical structures associated
with only one tablespace)

may span several data files)

4-12

Chapter 4
Introduction to Schema Objects

¢ See Also:

* "Logical Storage Structures” to learn about tablespaces and segments

e Oracle Database Administrator’s Guide to learn how to manage storage for
schema objects

Schema Object Dependencies

ORACLE

Some schema objects refer to other objects, creating a schema object dependency.

For example, a view contains a query that references tables or views, while a PL/SQL
subprogram invokes other subprograms. If the definition of object A references object B, then
A is a dependent object on B, and B is a referenced object for A.

Oracle Database provides an automatic mechanism to ensure that a dependent object is
always up to date with respect to its referenced objects. When you create a dependent
object, the database tracks dependencies between the dependent object and its referenced
objects. When a referenced object changes in a way that might affect a dependent object, the
database marks the dependent object invalid. For example, if a user drops a table, no view
based on the dropped table is usable.

An invalid dependent object must be recompiled against the new definition of a referenced
object before the dependent object is usable. Recompilation occurs automatically when the
invalid dependent object is referenced.

As an illustration of how schema objects can create dependencies, the following sample
script creates a table test table and then a procedure that queries this table:

CREATE TABLE test table (coll INTEGER, col2 INTEGER);

CREATE OR REPLACE PROCEDURE test proc
AS
BEGIN
FOR x IN (SELECT coll, col2 FROM test table)
LOOP
-- process data
NULL;
END LOOP;
END;
/

The following query of the status of procedure test proc shows that it is valid:

SQL> SELECT OBJECT NAME, STATUS FROM USER OBJECTS WHERE OBJECT NAME =
'TEST PROC';

OBJECT NAME STATUS

TEST PROC VALID

4-13

Chapter 4
Introduction to Schema Objects

After adding the col3 column to test table, the procedure is still valid because the
procedure has no dependencies on this column:

SQL> ALTER TABLE test_table ADD col3 NUMBER;
Table altered.

SQL> SELECT OBJECT NAME, STATUS FROM USER OBJECTS WHERE OBJECT NAME =
'TEST PROC';

OBJECT NAME STATUS

TEST PROC VALID

However, changing the data type of the col11 column, which the test proc procedure
depends on, invalidates the procedure:

SQL> ALTER TABLE test_table MODIFY coll VARCHAR2 (20);
Table altered.

SQL> SELECT OBJECT NAME, STATUS FROM USER OBJECTS WHERE OBJECT NAME =
'TEST PROC';

OBJECT NAME STATUS

TEST PROC INVALID

Running or recompiling the procedure makes it valid again, as shown in the following
example:

SQL> EXECUTE test proc
PL/SQL procedure successfully completed.

SQL> SELECT OBJECT NAME, STATUS FROM USER OBJECTS WHERE OBJECT NAME =
'TEST PROC';

OBJECT NAME STATUS

TEST PROC VALID

¢ See Also:

Oracle Database Administrator’s Guide and Oracle Database Development
Guide to learn how to manage schema object dependencies

ORACLE 4-14

Sample Schemas

Chapter 4
Overview of Tables

An Oracle database may include sample schemas, which are a set of interlinked schemas
that enable Oracle documentation and Oracle instructional materials to illustrate common

database tasks.

The hr sample schema contains information about employees, departments and locations,
work histories, and so on. The following illustration depicts an entity-relationship diagram of

the tables in hr. Most examples in this manual use objects from this schema.

Figure 4-6 HR Schema

DEPARTMENTS LOCATIONS
HR] department_id location_id
department_name street_address
manager_id postal_code
AN location_id city
state_province
JOB_HISTORY country_id
employee_id 7
start_date EMPLOYEES H
end_date R
job_id employee.id > | COUNTRIES
. irst_name H .
department_id | i last name [country_id
) country_name
emai region_id
< phone_number glon_.
h|_re_d_ate N
JoBS Soary *
Job_id commission_pct REGIONS
job_title - - id
min_salary manager_lq region_i
max_salary department_id region_name
" See Also:

Oracle Database Sample Schemas to learn how to install the sample schemas

Overview of Tables

ORACLE

A table is the basic unit of data organization in an Oracle database.

A table describes an entity, which is something of significance about which information must
be recorded. For example, an employee could be an entity.

Oracle Database tables fall into the following basic categories:

* Relational tables

Relational tables have simple columns and are the most common table type.

Example 4-1 shows a CREATE TABLE statement for a relational table.

4-15

ORACLE

Chapter 4
Overview of Tables

* Object tables

The columns correspond to the top-level attributes of an object type. See
"Overview of Object Tables".

You can create a relational table with the following organizational characteristics:

* A heap-organized table does not store rows in any particular order. The CREATE
TABLE statement creates a heap-organized table by default.

e Anindex-organized table orders rows according to the primary key values. For
some applications, index-organized tables enhance performance and use disk
space more efficiently. See "Overview of Index-Organized Tables".

e An external table is a read-only table whose metadata is stored in the database
but whose data is stored outside the database. See "Overview of External Tables".

A table is either permanent or temporary. A permanent table definition and data persist
across sessions. A temporary table definition persists in the same way as a permanent
table definition, but the data exists only for the duration of a transaction or session.
Temporary tables are useful in applications where a result set must be held
temporarily, perhaps because the result is constructed by running multiple operations.

This topic contains the following topics:

e Columns

* Rows

* Example: CREATE TABLE and ALTER TABLE Statements
e Oracle Data Types

* Integrity Constraints

e Table Storage

* Table Compression

e Columns
A table definition includes a table name and set of columns.

* Rows
A row is a collection of column information corresponding to a record in a table.

e Example: CREATE TABLE and ALTER TABLE Statements
The Oracle SQL statement to create a table is CREATE TABLE.

e Oracle Data Types
Each column has a data type, which is associated with a specific storage format,
constraints, and valid range of values. The data type of a value associates a fixed
set of properties with the value.

e Integrity Constraints
An integrity constraint is a named rule that restrict the values for one or more
columns in a table.

e Table Storage
Oracle Database uses a data segment in a tablespace to hold table data.

e Table Compression
The database can use table compression to reduce the amount of storage
required for the table.

4-16

Chapter 4
Overview of Tables

¢ See Also:

Oracle Database Administrator’s Guide to learn how to manage tables

Columns

A table definition includes a table name and set of columns.

A column identifies an attribute of the entity described by the table. For example, the column
employee idin the employees table refers to the employee ID attribute of an employee entity.

In general, you give each column a column name, a data type, and a width when you create
a table. For example, the data type for employee id is NUMBER (6), indicating that this column
can only contain numeric data up to 6 digits in width. The width can be predetermined by the
data type, as with DATE.

e Virtual Columns
A table can contain a virtual column, which unlike a nonvirtual column does not
consume disk space.

e Invisible Columns
An invisible column is a user-specified column whose values are only visible when the
column is explicitly specified by name. You can add an invisible column to a table without
affecting existing applications, and make the column visible if necessary.

e Lock-Free Reservation
A Lock-Free Reservation allows multiple concurrent updates on a numeric column value
to proceed without being blocked by uncommitted updates when adding or subtracting
from the column value.

Virtual Columns

A table can contain a virtual column, which unlike a nonvirtual column does not consume
disk space.

The database derives the values in a virtual column on demand by computing a set of user-
specified expressions or functions. For example, the virtual column income could be a
function of the salary and commission pct columns.

¢ See Also:

Oracle Database Administrator’s Guide to learn how to manage virtual columns

Invisible Columns

An invisible column is a user-specified column whose values are only visible when the
column is explicitly specified by name. You can add an invisible column to a table without
affecting existing applications, and make the column visible if necessary.

ORACLE 4-17

Chapter 4
Overview of Tables

In general, invisible columns help migrate and evolve online applications. A use case
might be an application that queries a three-column table with a SELECT * statement.
Adding a fourth column to the table would break the application, which expects three
columns of data. Adding a fourth invisible column makes the application function
normally. A developer can then alter the application to handle a fourth column, and
make the column visible when the application goes live.

The following example creates a table products with an invisible column count, and
then makes the invisible column visible:

CREATE TABLE products (prod id INT, count INT INVISIBLE);
ALTER TABLE products MODIFY (count VISIBLE);

See Also:

e Oracle Database Administrator’s Guide to learn how to manage invisible
columns

e Oracle Database SQL Language Reference for more information about
invisible columns

Lock-Free Reservation

ORACLE

A Lock-Free Reservation allows multiple concurrent updates on a numeric column
value to proceed without being blocked by uncommitted updates when adding or
subtracting from the column value.

By avoiding the traditional locking mechanism during updates, this feature allows you
to greatly improve on the user experience with reduced blocking in the presence of
frequent concurrent updates to reservable columns. In previous releases, when a
column value of a row is updated by adding or subtracting from it, all other updates to
that row are blocked until the transaction is committed. With the introduction of the
Lock-Free Reservation feature in Oracle Database 23c, you can allow transactions to
concurrently add or subtract from the same row’s reservable column without blocking
each other by specifying the conditions for which the updates may proceed. This is
accomplished by specifying that the numeric column is a RESERVABLE column and
creating a CHECK constraint for the column. Additional throughput improvement may
also be achieved because the reservable column updates do not lock the rows and
hence do not block another transaction from updating non-reservable columns of the
same row concurrently.

For example, you can allow addition and subtraction operations on an inventory
guantity to succeed if the quantity on hand is sufficient for the request and does not
exceed our shelf space for 100 items. Any such update to the quantity value is allowed
to proceed without being blocked by uncommitted updates as long as the quantity
value is greater than zero and less than or equal to 100. The amount being added or
subtracted is reserved and guaranteed through an internal reservation mechanism so
that the transaction may proceed without waiting on other transactions that have made
earlier reservations on the same row’s reservable column to be committed.

Table level CHECK constraints are allowed to include both reservable and non-
reservable columns. A pending lock-free reservation that was approved at the time

4-18

ORACLE

Chapter 4
Overview of Tables

that an update is issued may later violate such a constraint at the commit time of the
transaction. This can happen if the non-reservable columns of the constraint had been
updated in the time after the reservation had been made such that their current values may
violate the CHECK constraint. The transaction will have to be terminated if the constraint is
violated. However, the non-reservable columns in a table level constraint are typically
thresholds which are modified very infrequently. Shelf space, the required balance in an
account, and spending limits are examples of such thresholds.

The following example creates a table inventory with a reservable column gty on hand. The
CHECK constraint on gty on_hand specifies that there must be zero or more items in stock
and not more than the shelf capacity for this item for an update on gty on hand to proceed
without blocking other updates. In the example below, the inventory table is created with the
appropriate constraints, several rows of data is inserted, and the data dictionary for the
inventory table is queried

CREATE TABLE inventory

(item id NUMBER CONSTRAINT inv_pk PRIMARY KEY,
item display name VARCHARZ (100) NOT NULL,
item desc VARCHAR2 (2000),
gty on hand NUMBER RESERVABLE CONSTRAINT gty ck CHECK
(qgty _on _hand >= 0) NOT NULL,
shelf capacity NUMBER NOT NULL,

CONSTRAINT shelf ck CHECK (gty on hand <= shelf capacity)
)i

-- Insert a few rows in the inventory table

INSERT INTO inventory VALUES (123, 'Milk', 'Lowfat 2%', 100, 120);
INSERT INTO inventory VALUES (456, 'Bread', 'Multigrain', 50, 100);
INSERT INTO inventory VALUES (789, 'Eggs', 'Organic', 50, 75);

COMMIT;
SELECT * FROM inventory;

-- Check views user tab cols and user tables to check
-- 1f the table is a reservable table and the names of the reservable columns

SELECT table name, has_reservable column
FROM user tables
WHERE table name = 'INVENTORY';

SELECT column name, reservable column
FROM user tab cols
WHERE table name = 'INVENTORY'

AND reservable column = 'YES';

An example of multiple concurrent updates to the reservable column:
* Transaction 1:
UPDATE inventory

SET gty on _hand = gty on hand - 10
WHERE item id = 123;

4-19

Rows

ORACLE

Chapter 4
Overview of Tables

e Transaction 2:
UPDATE inventory
SET gty on hand = gty on hand + 20
WHERE item id = 123;
e Transaction 3:
UPDATE inventory
SET gty on _hand = gty on hand - 30
WHERE item id = 123;
e Transaction 2:
commit;
e Transaction 3:
commit;
e Transaction 1:

commit;

A reservable column may be added to a table using the ALTER TABLE command
specifying an optional CHECK constraint. For Example:

ALTER TABLE inventory ADD
(qty _on_hold NUMBER RESERVABLE DEFAULT 0
CONSTRAINT gty hold CHECK (qty on hold >= 0 and gty on hold <= 25));

A reservable column can be converted to a non-reservable column using the following
ALTER TABLE command. Applications may choose to enforce the constraints although
the reservable reservations are disabled, therefore the constraint is not automatically
dropped when a column is converted to a non-reservable column. Dropping the
constraint is optional, depending on your requirements. For example:

ALTER TABLE inventory MODIFY (gty on hand NOT RESERVABLE);
ALTER TABLE inventory DROP CONSTRAINT gty ck;

A non-reservable column may be converted to a reservable column using the ALTER
TABLE command. For Example:

ALTER TABLE inventory MODIFY
(gty _on _hand RESERVABLE
CONSTRAINT gty ck CHECK (gty on hand >= 0 and gty on hand <= 100));

A row is a collection of column information corresponding to a record in a table.

4-20

ORACLE

Chapter 4
Overview of Tables

For example, a row in the employees table describes the attributes of a specific employee:
employee ID, last name, first name, and so on. After you create a table, you can insert, query,
delete, and update rows using SQL.

Example: CREATE TABLE and ALTER TABLE Statements

The Oracle SQL statement to create a table is CREATE TABLE.

Example 4-1 CREATE TABLE employees

The following example shows the CREATE TABLE statement for the employees table in the hr
sample schema. The statement specifies columns such as employee id, first name, and so
on, specifying a data type such as NUMBER or DATE for each column.

CREATE TABLE employees

(

4

4

employee id NUMBER (6)

first name VARCHAR2 (20)
last name VARCHAR2 (25)

CONSTRAINT emp last name nn NOT NULL
email VARCHAR2 (25)

CONSTRAINT emp email nn NOT NULL
phone number VARCHAR2 (20)
hire date DATE

CONSTRAINT emp hire date nn NOT NULL
job id VARCHAR2 (10)

CONSTRAINT emp job nn NOT NULL
salary NUMBER (8, 2)
commission pct NUMBER(2Z,2)
manager id NUMBER (6)
department id NUMBER (4)
CONSTRAINT emp salary min

CHECK (salary > 0)

CONSTRAINT emp email uk

UNIQUE (email)

Example 4-2 ALTER TABLE employees

The following example shows an ALTER TABLE statement that adds integrity constraints to the
employees table. Integrity constraints enforce business rules and prevent the entry of invalid
information into tables.

ALTER
ADD (

TABLE employees
CONSTRAINT emp emp id pk

PRIMARY KEY (employee id)
CONSTRAINT emp dept fk

FOREIGN KEY (department id)
REFERENCES departments
CONSTRAINT emp job fk
FOREIGN KEY (job id)
REFERENCES jobs (job_id)
CONSTRAINT emp manager fk
FOREIGN KEY (manager id)

4-21

ORACLE

Example 4-3 Rows in the employees Table

Chapter 4
Overview of Tables

REFERENCES employees

The following sample output shows 8 rows and 6 columns of the hr.employees table.

EMPLOYEE ID FIRST NAME LAST NAME
DEPARTMENT ID

SALARY COMMISSION PCT

100 Steven King
24000 90
101 Neena Kochhar
17000 90
102 Lex De Haan
17000 90
103 Alexander Hunold
9000 60
107 Diana Lorentz
4200 60
149 Eleni Zlotkey
10500 .2 80
174 Ellen Abel
11000 .3 80
178 Kimberely Grant 7000 .15

The preceding output illustrates some of the following important characteristics of
tables, columns, and rows:

A row of the table describes the attributes of one employee: name, salary,
department, and so on. For example, the first row in the output shows the record
for the employee named Steven King.

A column describes an attribute of the employee. In the example, the employee id
column is the primary key, which means that every employee is uniquely identified
by employee ID. Any two employees are guaranteed not to have the same
employee ID.

A non-key column can contain rows with identical values. In the example, the
salary value for employees 101 and 102 is the same: 17000.

A foreign key column refers to a primary or unique key in the same table or a
different table. In this example, the value of 90 in department id corresponds to
the department id column of the departments table.

A field is the intersection of a row and column. It can contain only one value. For
example, the field for the department ID of employee 103 contains the value 60.

A field can lack a value. In this case, the field is said to contain a null value. The
value of the commission pct column for employee 100 is null, whereas the value
in the field for employee 149 is .2. A column allows nulls unless a NOT NULL or
primary key integrity constraint has been defined on this column, in which case no
row can be inserted without a value for this column.

4-22

Chapter 4
Overview of Tables

¢ See Also:

Oracle Database SQL Language Reference for CREATE TABLE syntax and
semantics

Oracle Data Types

ORACLE

Each column has a data type, which is associated with a specific storage format, constraints,
and valid range of values. The data type of a value associates a fixed set of properties with
the value.

These properties cause Oracle Database to treat values of one data type differently from
values of another. For example, you can multiply values of the NUMBER data type, but not
values of the RaW data type.

When you create a table, you must specify a data type for each of its columns. Each value
subsequently inserted in a column assumes the column data type.

Oracle Database provides several built-in data types. The most commonly used data types
fall into the following categories:

e Character Data Types

* Numeric Data Types

* Datetime Data Types

* Rowid Data Types

e Boolean Data Type

* Format Models and Data Types

Other important categories of built-in types include raw, large objects (LOBSs), and collections.
PL/SQL has data types for constants and variables, which include BOOLEAN, reference types,
composite types (records), and user-defined types.

e Character Data Types
Character data types store alphanumeric data in strings. The most common character
data type is VARCHAR2, which is the most efficient option for storing character data.

* Numeric Data Types
The Oracle Database numeric data types store fixed and floating-point numbers, zero,
and infinity. Some numeric types also store values that are the undefined result of an
operation, which is known as "not a number" or NaN.

* Datetime Data Types
The datetime data types are DATE and TIMESTAMP. Oracle Database provides
comprehensive time zone support for time stamps.

* Rowid Data Types
Every row stored in the database has an address— an internal representation to locate
that row within the database. Oracle Database uses a ROWID data type to store the
address (rowid) of every row in the database.

* Boolean Data Type
The BOOLEAN data type comprises the distinct truth values True and False.

4-23

Chapter 4
Overview of Tables

* Format Models and Data Types
A format model is a character literal that describes the format of datetime or
numeric data stored in a character string. A format model does not change the
internal representation of the value in the database.

See Also:

e Oracle Database SecureFiles and Large Objects Developer's Guide

e Oracle Database SQL Language Reference to learn about built-in SQL
data types

e Oracle Database PL/SQL Packages and Types Reference to learn about
PL/SQL data types

e Oracle Database Development Guide to learn how to use the built-in
data types

Character Data Types

Character data types store alphanumeric data in strings. The most common character
data type is VARCHAR2, which is the most efficient option for storing character data.

The byte values correspond to the character encoding scheme, generally called a
character set. The database character set is established at database creation.
Examples of character sets are 7-bit ASCII, EBCDIC, and Unicode UTF-8.

The length semantics of character data types are measurable in bytes or characters.
The treatment of strings as a sequence of bytes is called byte semantics. This is the
default for character data types. The treatment of strings as a sequence of characters
is called character semantics. A character is a code point of the database character
set.

* VARCHARZ2 and CHAR Data Types
* NCHAR and NVARCHAR2 Data Types

¢ See Also:

e Oracle Database Globalization Support Guide to learn more about
character sets

e Oracle Database 2 Day Developer's Guide for a brief introduction to data
types

e Oracle Database Development Guide to learn how to choose a character
data type

VARCHAR?2 and CHAR Data Types

The VARCHAR? data type stores variable-length character literals. A literal is a fixed
data value.

ORACLE 4-24

Chapter 4
Overview of Tables

For example, '"LILA', 'St. George Island',and '101' are all character literals; 5001 is a
numeric literal. Character literals are enclosed in single quotation marks so that the database
can distinguish them from schema object names.

Note:

This manual uses the terms text literal, character literal, and string interchangeably.

When you create a table with a VARCHAR2 column, you specify a maximum string length. In
Example 4-1, the last name column has a data type of VARCHAR2 (25), which means that any
name stored in the column has a maximum of 25 bytes.

For each row, Oracle Database stores each value in the column as a variable-length field
unless a value exceeds the maximum length, in which case the database returns an error.
For example, in a single-byte character set, if you enter 10 characters for the last name
column value in a row, then the column in the row piece stores only 10 characters (10 bytes),
not 25. Using VARCHAR? reduces space consumption.

In contrast to VARCHAR2, CHAR stores fixed-length character strings. When you create a table
with a CHAR column, the column requires a string length. The default is 1 byte. The database
uses blanks to pad the value to the specified length.

Oracle Database compares VARCHAR? values using nonpadded comparison semantics and
compares CHAR values using blank-padded comparison semantics.

See Also:

Oracle Database SQL Language Reference for details about blank-padded and
nonpadded comparison semantics

NCHAR and NVARCHAR?2 Data Types

The NCHAR and NVARCHAR? data types store Unicode character data.

Unicode is a universal encoded character set that can store information in any language
using a single character set. NCHAR stores fixed-length character strings that correspond to
the national character set, whereas NVARCHAR? stores variable length character strings.

You specify a national character set when creating a database. The character set of NCHAR
and NVARCHAR? data types must be either AL16UTF16 or UTF8. Both character sets use
Unicode encoding.

When you create a table with an NCHAR or NVARCHAR2 column, the maximum size is always in
character length semantics. Character length semantics is the default and only length
semantics for NCHAR or NVARCHAR?.

ORACLE 4-25

Chapter 4
Overview of Tables

¢ See Also:

Oracle Database Globalization Support Guide for information about Oracle's
globalization support feature

Numeric Data Types

The Oracle Database numeric data types store fixed and floating-point numbers, zero,
and infinity. Some numeric types also store values that are the undefined result of an
operation, which is known as "not a number" or NaX.

Oracle Database stores numeric data in variable-length format. Each value is stored in
scientific notation, with 1 byte used to store the exponent. The database uses up to 20
bytes to store the mantissa, which is the part of a floating-point number that contains
its significant digits. Oracle Database does not store leading and trailing zeros.

« NUMBER Data Type
The NUMBER data type stores fixed and floating-point numbers. The database can
store numbers of virtually any magnitude. This data is guaranteed to be portable
among different operating systems running Oracle Database. The NUMBER data
type is recommended for most cases in which you must store numeric data.

* Floating-Point Numbers
Oracle Database provides two numeric data types exclusively for floating-point
numbers: BINARY FLOAT and BINARY DOUBLE.

NUMBER Data Type

ORACLE

The NUMBER data type stores fixed and floating-point numbers. The database can store
numbers of virtually any magnitude. This data is guaranteed to be portable among
different operating systems running Oracle Database. The NUMBER data type is
recommended for most cases in which you must store numeric data.

You specify a fixed-point number in the form NUMBER (p, s), where p and s refer to the
following characteristics:

e Precision

The precision specifies the total number of digits. If a precision is not specified,
then the column stores the values exactly as provided by the application without
any rounding.

e Scale

The scale specifies the number of digits from the decimal point to the least
significant digit. Positive scale counts digits to the right of the decimal point up to
and including the least significant digit. Negative scale counts digits to the left of
the decimal point up to but not including the least significant digit. If you specify a
precision without a scale, as in NUMBER (6), then the scale is 0.

In Example 4-1, the salary column is type NUMBER (8, 2), SO the precision is 8 and the
scale is 2. Thus, the database stores a salary of 100,000 as 100000.00.

4-26

Chapter 4
Overview of Tables

Floating-Point Numbers

Oracle Database provides two numeric data types exclusively for floating-point numbers:
BINARY FLOAT and BINARY DOUBLE.

These types support all of the basic functionality provided by the NUMBER data type. However,
whereas NUMBER uses decimal precision, BINARY FLOAT and BINARY DOUBLE use binary
precision, which enables faster arithmetic calculations and usually reduces storage
requirements.

BINARY FLOAT and BINARY DOUBLE are approximate numeric data types. They store
approximate representations of decimal values, rather than exact representations. For
example, the value 0.1 cannot be exactly represented by either BINARY DOUBLE or

BINARY FLOAT. They are frequently used for scientific computations. Their behavior is similar
to the data types FLOAT and DOUBLE in Java and XMLSchema.

¢ See Also:

Oracle Database SQL Language Reference to learn about precision, scale, and
other characteristics of numeric types

Datetime Data Types

The datetime data types are DATE and TIMESTAMP. Oracle Database provides comprehensive
time zone support for time stamps.

 DATE Data Type
The DATE data type stores date and time. Although datetimes can be represented in
character or number data types, DATE has special associated properties.

e TIMESTAMP Data Type
The TIMESTAMP data type is an extension of the DATE data type.

DATE Data Type

ORACLE

The DATE data type stores date and time. Although datetimes can be represented in character
or number data types, DATE has special associated properties.

The database stores dates internally as numbers. Dates are stored in fixed-length fields of 7
bytes each, corresponding to century, year, month, day, hour, minute, and second.

" Note:

Dates fully support arithmetic operations, so you add to and subtract from dates just
as you can with numbers.

The database displays dates according to the specified format model. A format model is a
character literal that describes the format of a datetime in a character string. The standard
date format is DD-MON-RR, which displays dates in the form 01-JaAN-11.

4-27

Chapter 4
Overview of Tables

RR is similar to YY (the last two digits of the year), but the century of the return value
varies according to the specified two-digit year and the last two digits of the current
year. Assume that in 1999 the database displays 01-JaN-11. If the date format uses
RR, then 11 specifies 2011, whereas if the format uses YY, then 11 specifies 1911. You
can change the default date format at both the database instance and session level.

Oracle Database stores time in 24-hour format—HH:MI:Ss. If no time portion is
entered, then by default the time in a date field is 00:00: 00 A.M. In a time-only entry,
the date portion defaults to the first day of the current month.

¢ See Also:

e Oracle Database Development Guide for more information about
centuries and date format masks

e Oracle Database SQL Language Reference for information about
datetime format codes

e Oracle Database Development Guide to learn how to perform arithmetic
operations with datetime data types

TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATE data type.

TIMESTAMP stores fractional seconds in addition to the information stored in the DATE
data type. The TIMESTAMP data type is useful for storing precise time values, such as in
applications that must track event order.

The DATETIME data types TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE are time-zone aware. When a user selects the data, the value is adjusted to
the time zone of the user session. This data type is useful for collecting and evaluating
date information across geographic regions.

¢ See Also:

Oracle Database SQL Language Reference for details about the syntax of
creating and entering data in time stamp columns

Rowid Data Types

ORACLE

Every row stored in the database has an address— an internal representation to locate
that row within the database. Oracle Database uses a ROWID data type to store the
address (rowid) of every row in the database.

Rowids fall into the following categories:

» Physical rowids store the addresses of rows in heap-organized tables, table
clusters, and table and index partitions.

4-28

Use of Rowids

Chapter 4
Overview of Tables

* Logical rowids store the addresses of rows in index-organized tables.

» Foreign rowids are identifiers in foreign tables, such as DB2 tables accessed through a
gateway. They are not standard Oracle Database rowids.

A data type called the universal rowid, or urowid, supports all types of rowids.

e Use of Rowids

« ROWID Pseudocolumn
Every table in an Oracle database has a pseudocolumn named ROWID.

Oracle Database uses rowids internally for the construction of indexes.

A B-tree index, which is the most common type, contains an ordered list of keys divided into
ranges. Each key is associated with a rowid that points to the associated row's address for
fast access.

End users and application developers can also use rowids for several important functions:

* Rowids are a fast means of re-accessing a row if its rowid has previously been retrieved
with a SELECT statement.

* Rowids provide the ability to see how a table is organized.

While you can create tables with columns defined using the ROWID data type, you should not
store rowids with the intention of using them to access data at a later stage. Using rowids in
this manner may yield unpredictable or incorrect results. The rowid for a row may change for
a number of reasons which may be user initiated or internally by the database engine. You
cannot depend on the rowid to be pointing to the same row or a valid row at all after any of
these operations has occurred.

ROWID Pseudocolumn

ORACLE

Every table in an Oracle database has a pseudocolumn named ROWID.

A pseudocolumn behaves like a table column, but is not actually stored in the table. You can
select from pseudocolumns, but you cannot insert, update, or delete their values. A
pseudocolumn is also similar to a SQL function without arguments. Functions without
arguments typically return the same value for every row in the result set, whereas
pseudocolumns typically return a different value for each row.

Values of the ROWID pseudocolumn are strings representing the address of each row. These
strings have the data type ROWID. This pseudocolumn is not evident when listing the structure
of a table by executing SELECT or DESCRIBE, nor does the pseudocolumn consume space.
However, the rowid of each row can be retrieved with a SQL query using the reserved word
ROWID as a column name.

The following example queries the ROWID pseudocolumn to show the rowid of the row in the
employees table for employee 100:

SQL> SELECT ROWID FROM employees WHERE employee id = 100;

AAAPecAAFAAAABSAAA

4-29

Chapter 4
Overview of Tables

¢ See Also:

* "Rowid Format"

e Oracle Database Development Guide to learn how to identify rows by
address

e Oracle Database SQL Language Reference to learn about rowid types

Boolean Data Type

The BOOLEAN data type comprises the distinct truth values True and False.

Unless prohibited by a NOT NULL constraint, the Boolean data type also supports the
truth value UNKOWN as the null value. You can use the Boolean data type wherever
datatype appears in Oracle SQL syntax.Boolean Data Type

" See Also:

e Oracle Database SQL Language Quick Reference for information about
the Boolean data type.

Format Models and Data Types

A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. A format model does not change the internal
representation of the value in the database.

When you convert a character string into a date or number, a format model determines
how the database interprets the string. In SQL, you can use a format model as an
argument of the TO_CHAR and TO DATE functions to format a value to be returned from
the database or to format a value to be stored in the database.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHAR function to convert these salaries into character values with the
format specified by the number format model '$99,990.99":

SQL> SELECT last name employee, TO CHAR(salary, '$99,990.99') AS
"SALARY"

2 FROM employees

3 WHERE department id = 80 AND last name = 'Russell’;

EMPLOYEE SALARY

Russell $14,000.00

ORACLE 4-30

Chapter 4
Overview of Tables

The following example updates a hire date using the TO DATE function with the format mask
'YYYY MM DD' to convert the string '1998 05 20' to a DATE value:

SQL> UPDATE employees
2 SET hire date = TO DATE('1998 05 20','YYYY MM DD')
3 WHERE last name = 'Hunold';

¢ See Also:

Oracle Database SQL Language Reference to learn more about format models

Integrity Constraints

An integrity constraint is a named rule that restrict the values for one or more columns in a
table.

Data integrity rules prevent invalid data entry into tables. Also, constraints can prevent the
deletion of a table when certain dependencies exist.

If a constraint is enabled, then the database checks data as it is entered or updated. Oracle
Database prevents data that does not conform to the constraint from being entered. If a
constraint is disabled, then Oracle Database allows data that does not conform to the
constraint to enter the database.

In Example 4-1, the CREATE TABLE statement specifies NOT NULL constraints for the
last_name, email, hire date, and job_ id columns. The constraint clauses identify the
columns and the conditions of the constraint. These constraints ensure that the specified
columns contain no null values. For example, an attempt to insert a new employee without a
job ID generates an error.

You can create a constraint when or after you create a table. You can temporarily disable
constraints if needed. The database stores constraints in the data dictionary.

" See Also:

< "Data Integrity" to learn about integrity constraints
e "Overview of the Data Dictionary" to learn about the data dictionary

e Oracle Database SQL Language Reference to learn about SQL constraint
clauses

Table Storage

Oracle Database uses a data segment in a tablespace to hold table data.

ORACLE 4-31

Chapter 4
Overview of Tables

A segment contains extents made up of data blocks. The data segment for a table (or
cluster data segment, for a table cluster) is located in either the default tablespace of
the table owner or in a tablespace named in the CREATE TABLE Statement.

* Table Organization
By default, a table is organized as a heap, which means that the database places
rows where they fit best rather than in a user-specified order. Thus, a heap-
organized table is an unordered collection of rows.

* Row Storage
The database stores rows in data blocks. Each row of a table containing data for
less than 256 columns is contained in one or more row pieces.

* Rowids of Row Pieces
A rowid is effectively a 10-byte physical address of a row.

e Storage of Null Values
A null is the absence of a value in a column. Nulls indicate missing, unknown, or
inapplicable data.

" See Also:

"User Segments" to learn about the types of segments and how they are
created

Table Organization

ORACLE

By default, a table is organized as a heap, which means that the database places rows
where they fit best rather than in a user-specified order. Thus, a heap-organized table
is an unordered collection of rows.

" Note:

Index-organized tables use a different principle of organization.

As users add rows, the database places the rows in the first available free space in the
data segment. Rows are not guaranteed to be retrieved in the order in which they were
inserted.

The hr.departments table is a heap-organized table. It has columns for department
ID, name, manager ID, and location ID. As rows are inserted, the database stores
them wherever they fit. A data block in the table segment might contain the unordered
rows shown in the following example:

50, Shipping,121,1500

120, Treasury,, 1700

70,Public Relations,204,2700
30, Purchasing,114,1700
130,Corporate Tax,,1700

4-32

Row Storage

Chapter 4
Overview of Tables

10,Administration,200,1700
110, Accounting,205,1700

The column order is the same for all rows in a table. The database usually stores columns in
the order in which they were listed in the CREATE TABLE statement, but this order is not
guaranteed. For example, if a table has a column of type 1L.0ONG, then Oracle Database always
stores this column last in the row. Also, if you add a new column to a table, then the new
column becomes the last column stored.

A table can contain a virtual column, which unlike normal columns does not consume space
on disk. The database derives the values in a virtual column on demand by computing a set
of user-specified expressions or functions. You can index virtual columns, collect statistics on
them, and create integrity constraints. Thus, virtual columns are much like nonvirtual
columns.

See Also:

e "Overview of Index-Organized Tables"

e Oracle Database SQL Language Reference to learn about virtual columns

The database stores rows in data blocks. Each row of a table containing data for less than
256 columns is contained in one or more row pieces.

If possible, Oracle Database stores each row as one row piece. However, if all of the row
data cannot be inserted into a single data block, or if an update to an existing row causes the
row to outgrow its data block, then the database stores the row using multiple row pieces.

Rows in a table cluster contain the same information as rows in nonclustered tables.
Additionally, rows in a table cluster contain information that references the cluster key to
which they belong.

" See Also:

"Data Block Format" to learn about the components of a data block

Rowids of Row Pieces

ORACLE

A rowid is effectively a 10-byte physical address of a row.

Every row in a heap-organized table has a rowid unique to this table that corresponds to the
physical address of a row piece. For table clusters, rows in different tables that are in the
same data block can have the same rowid.

Oracle Database uses rowids internally for the construction of indexes. For example, each
key in a B-tree index is associated with a rowid that points to the address of the associated

4-33

Chapter 4
Overview of Tables

row for fast access. Physical rowids provide the fastest possible access to a table row,
enabling the database to retrieve a row in as little as a single 1/O.

¢ See Also:

* "Rowid Format" to learn about the structure of a rowid

e "Overview of B-Tree Indexes" to learn about the types and structure of B-
tree indexes

Storage of Null Values

A null is the absence of a value in a column. Nulls indicate missing, unknown, or
inapplicable data.

Nulls are stored in the database if they fall between columns with data values. In these
cases, they require 1 byte to store the length of the column (zero). Trailing nulls in a
row require no storage because a new row header signals that the remaining columns
in the previous row are null. For example, if the last three columns of a table are null,
then no data is stored for these columns.

¢ See Also:

Oracle Database SQL Language Reference to learn more about null values

Table Compression

The database can use table compression to reduce the amount of storage required
for the table.

Compression saves disk space, reduces memory use in the database buffer cache,
and in some cases speeds query execution. Table compression is transparent to
database applications.

» Basic Table Compression and Advanced Row Compression

Dictionary-based table compression provides good compression ratios for heap-
organized tables.

e Hybrid Columnar Compression
With Hybrid Columnar Compression, the database stores the same column for a
group of rows together. The data block does not store data in row-major format,
but uses a combination of both row and columnar methods.

Basic Table Compression and Advanced Row Compression

Dictionary-based table compression provides good compression ratios for heap-
organized tables.

Oracle Database supports the following types of dictionary-based table compression:

ORACLE 4-34

Chapter 4
Overview of Tables

» Basic table compression

This type of compression is intended for bulk load operations. The database does not
compress data modified using conventional DML. You must use direct path INSERT
operations, ALTER TABLE . . . MOVE operations, or online table redefinition to achieve
basic table compression.

* Advanced row compression

This type of compression is intended for OLTP applications and compresses data
manipulated by any SQL operation. The database achieves a competitive compression
ratio while enabling the application to perform DML in approximately the same amount of
time as DML on an uncompressed table.

For the preceding types of compression, the database stores compressed rows in row major
format. All columns of one row are stored together, followed by all columns of the next row,
and so on. The database replaces duplicate values with a short reference to a symbol table
stored at the beginning of the block. Thus, information that the database needs to re-create
the uncompressed data is stored in the data block itself.

Compressed data blocks look much like normal data blocks. Most database features and
functions that work on regular data blocks also work on compressed blocks.

You can declare compression at the tablespace, table, partition, or subpartition level. If
specified at the tablespace level, then all tables created in the tablespace are compressed by
default.

Example 4-4 Table-Level Compression

The following statement applies advanced row compression to the orders table:

ALTER TABLE oe.orders ROW STORE COMPRESS ADVANCED;

Example 4-5 Partition-Level Compression

The following example of a partial CREATE TABLE statement specifies advanced row
compression for one partition and basic table compression for the other partition:

CREATE TABLE sales (
prod_id NUMBER NOT NULL,
Cust_id NUMBER NOT NULL, ...)
PCTFREE 5 NOLOGGING NOCOMPRESS
PARTITION BY RANGE (time_id)

(partition sales 2013 VALUES LESS THAN(TO DATE(...)) ROW STORE COMPRESS
BASIC,
partition sales 2014 VALUES LESS THAN (MAXVALUE) ROW STORE COMPRESS
ADVANCED) ;

ORACLE 4-35

Chapter 4
Overview of Tables

¢ See Also:

* "Row Format" to learn how values are stored in a row

* "Data Block Compression" to learn about the format of compressed data
blocks

e Oracle Database Ultilities to learn about using SQL*Loader for direct path
loads

e Oracle Database Administrator’s Guide and Oracle Database
Performance Tuning Guide to learn about table compression

Hybrid Columnar Compression

ORACLE

With Hybrid Columnar Compression, the database stores the same column for a group
of rows together. The data block does not store data in row-major format, but uses a
combination of both row and columnar methods.

Storing column data together, with the same data type and similar characteristics,
dramatically increases the storage savings achieved from compression. The database
compresses data manipulated by any SQL operation, although compression levels are
higher for direct path loads. Database operations work transparently against
compressed objects, so no application changes are required.

Note:

Hybrid Column Compression and In-Memory Column Store (IM column
store) are closely related. The primary difference is that Hybrid Column
Compression optimizes disk storage, whereas the IM column store optimizes
memory storage.

e Types of Hybrid Columnar Compression
If your underlying storage supports Hybrid Columnar Compression, then you can
specify different types of compression, depending on your requirements.

e Compression Units
Hybrid Columnar Compression uses a logical construct called a compression
unit to store a set of rows.

DML and Hybrid Columnar Compression
Hybrid Columnar Compression has implications for row locking in different types of
DML operations.

¢ See Also:

"In-Memory Area" to learn more about the IM column store

4-36

Chapter 4
Overview of Tables

Types of Hybrid Columnar Compression

If your underlying storage supports Hybrid Columnar Compression, then you can specify
different types of compression, depending on your requirements.

The compression options are:

e Warehouse compression

This type of compression is optimized to save storage space, and is intended for data
warehouse applications.

e Archive compression

This type of compression is optimized for maximum compression levels, and is intended
for historical data and data that does not change.

Hybrid Columnar Compression is optimized for data warehousing and decision support
applications on Oracle Exadata storage. Oracle Exadata maximizes the performance of
gueries on tables that are compressed using Hybrid Columnar Compression, taking
advantage of the processing power, memory, and Infiniband network bandwidth that are
integral to the Oracle Exadata storage server.

Other Oracle storage systems support Hybrid Columnar Compression, and deliver the same
space savings as on Oracle Exadata storage, but do not deliver the same level of query
performance. For these storage systems, Hybrid Columnar Compression is ideal for in-
database archiving of older data that is infrequently accessed.

Compression Units

Hybrid Columnar Compression uses a logical construct called a compression unit to store a
set of rows.

When you load data into a table, the database stores groups of rows in columnar format, with
the values for each column stored and compressed together. After the database has
compressed the column data for a set of rows, the database fits the data into the
compression unit.

For example, you apply Hybrid Columnar Compression to a daily sales table. At the end of
every day, you populate the table with items and the number sold, with the item ID and date
forming a composite primary key. The following table shows a subset of the rows in

daily sales.

Table 4-3 Sample Table daily_sales

Item_ID Date Num_Sold Shipped_From Restock
1000 01-JUN-18 2 WAREHOUSE1 Y
1001 01-JUN-18 0 WAREHOUSE3 N
1002 01-JUN-18 1 WAREHOUSE3 N
1003 01-JUN-14 0 WAREHOUSE?2 N
1004 01-JUN-18 2 WAREHOUSE1 N
1005 01-JUN-18 1 WAREHOUSE?2 N

Assume that this subset of rows is stored in one compression unit. Hybrid Columnar
Compression stores the values for each column together, and then uses multiple algorithms

ORACLE 4-37

Chapter 4
Overview of Tables

to compress each column. The database chooses the algorithms based on a variety of
factors, including the data type of the column, the cardinality of the actual values in the
column, and the compression level chosen by the user.

As shown in the following graphic, each compression unit can span multiple data
blocks. The values for a particular column may or may not span multiple blocks.

Figure 4-7 Compression Unit

=2

Data Block 4

| =

Data Block 3

] oo | o
S

Data Block 1

If Hybrid Columnar Compression does not lead to space savings, then the database
stores the data in the DBMS COMPRESSION.COMP BLOCK format. In this case, the
database applies OLTP compression to the blocks, which reside in a Hybrid Columnar
Compression segment.

¢ See Also:

e "Row Locks (TX)"

e Oracle Database Licensing Information User Manual to learn about
licensing requirements for Hybrid Columnar Compression

e Oracle Database Administrator’s Guide to learn how to use Hybrid
Columnar Compression

e Oracle Database SQL Language Reference for CREATE TABLE syntax
and semantics

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_COMPRESSION package

ORACLE 4-38

Chapter 4
Overview of Tables

DML and Hybrid Columnar Compression

Hybrid Columnar Compression has implications for row locking in different types of DML
operations.

Direct Path Loads and Conventional Inserts

When loading data into a table that uses Hybrid Columnar Compression, you can use either
conventional inserts or direct path loads. Direct path loads lock the entire table, which
reduces concurrency.

Starting with Oracle Database 12c release 2 (12.2), support is added for conventional array
inserts into the Hybrid Columnar Compression format. The advantages of conventional array
inserts are:

e Inserted rows use row-level locks, which increases concurrency.

e Automatic Data Optimization (ADO) and Heat Map support Hybrid Columnar
Compression for row-level policies. Thus, the database can use Hybrid Columnar
Compression for eligible blocks even when DML activity occurs on other parts of the
segment.

When the application uses conventional array inserts, Oracle Database stores the rows in
compression units when the following conditions are met:

* The table is stored in an ASSM tablespace.
e The compatibility level is 12.2.0.1 or later.

* The table definition satisfies the existing Hybrid Columnar Compression table constraints,
including no columns of type LONG, and no row dependencies.

Conventional inserts generate redo and undo. Thus, compression units created by
conventional DML statement are rolled back or committed along with the DML. The database
automatically performs index maintenance, just as for rows that are stored in conventional
data blocks.

Starting with Oracle Database 23c, Automatic Storage Compression enables Oracle
Database to direct load data into an uncompressed format initially, and then gradually move
rows into Hybrid Columnar Compression format in the background. This is transparent to
users and is desirable if the user wants to speed up direct loads or ETLs.

Updates and Deletes

By default, the database locks all rows in the compression unit if an update or delete is
applied to any row in the unit. To avoid this issue, you can choose to enable row-level locking
for a table. In this case, the database only locks rows that are affected by the update or
delete operation.

ORACLE 4-39

Chapter 4
Overview of Table Clusters

¢ See Also:

e "Automatic Segment Space Management"
* "Row Locks (TX)"

e Oracle Database Administrator’s Guide to learn how to perform
conventional inserts

e Oracle Database SQL Language Reference to learn about the INSERT
statement

Overview of Table Clusters

ORACLE

A table cluster is a group of tables that share common columns and store related
data in the same blocks.

When tables are clustered, a single data block can contain rows from multiple tables.
For example, a block can store rows from both the employees and departments tables
rather than from only a single table.

The cluster key is the column or columns that the clustered tables have in common.
For example, the employees and departments tables share the department id
column. You specify the cluster key when creating the table cluster and when creating
every table added to the table cluster.

The cluster key value is the value of the cluster key columns for a particular set of
rows. All data that contains the same cluster key value, such as department id=20, is
physically stored together. Each cluster key value is stored only once in the cluster and
the cluster index, no matter how many rows of different tables contain the value.

For an analogy, suppose an HR manager has two book cases: one with boxes of
employee folders and the other with boxes of department folders. Users often ask for
the folders for all employees in a particular department. To make retrieval easier, the
manager rearranges all the boxes in a single book case. She divides the boxes by
department ID. Thus, all folders for employees in department 20 and the folder for
department 20 itself are in one box; the folders for employees in department 100 and
the folder for department 100 are in another box, and so on.

Consider clustering tables when they are primarily queried (but not modified) and
records from the tables are frequently queried together or joined. Because table
clusters store related rows of different tables in the same data blocks, properly used
table clusters offer the following benefits over nonclustered tables:

» Disk I/O is reduced for joins of clustered tables.
* Access time improves for joins of clustered tables.

* Less storage is required to store related table and index data because the cluster
key value is not stored repeatedly for each row.

Typically, clustering tables is not appropriate in the following situations:
e The tables are frequently updated.
e The tables frequently require a full table scan.

e The tables require truncating.

4-40

Chapter 4
Overview of Table Clusters

e Overview of Indexed Clusters
An index cluster is a table cluster that uses an index to locate data. The cluster index is
a B-tree index on the cluster key. A cluster index must be created before any rows can be
inserted into clustered tables.

e Overview of Hash Clusters
A hash cluster is like an indexed cluster, except the index key is replaced with a hash
function. No separate cluster index exists. In a hash cluster, the data is the index.

Overview of Indexed Clusters

An index cluster is a table cluster that uses an index to locate data. The cluster index is a
B-tree index on the cluster key. A cluster index must be created before any rows can be
inserted into clustered tables.

Example 4-6 Creating a Table Cluster and Associated Index

Assume that you create the cluster employees departments cluster with the cluster key
department id, as shown in the following example:

CREATE CLUSTER employees departments cluster
(department id NUMBER(4))
SIZE 512;

CREATE INDEX idx emp dept cluster
ON CLUSTER employees departments cluster;

Because the HASHKEYS clause is not specified, employees departments cluster is an
indexed cluster. The preceding example creates an index named idx emp dept cluster on
the cluster key department id.

Example 4-7 Creating Tables in an Indexed Cluster

You create the employees and departments tables in the cluster, specifying the
department id column as the cluster key, as follows (the ellipses mark the place where the
column specification goes):

CREATE TABLE employees (...)
CLUSTER employees departments cluster (department id);

CREATE TABLE departments (...)
CLUSTER employees departments cluster (department id);

Assume that you add rows to the employees and departments tables. The database
physically stores all rows for each department from the employees and departments tables in
the same data blocks. The database stores the rows in a heap and locates them with the
index.

Figure 4-8 shows the employees departments cluster table cluster, which contains
employees and departments. The database stores rows for employees in department 20
together, department 110 together, and so on. If the tables are not clustered, then the
database does not ensure that the related rows are stored together.

ORACLE 4-41

Figure 4-8 Clustered Table Data

N 2 n
. h :‘
. i)
: g
— o
z >
z g T
)
=
£ |
= - o
I 5| =o€
[} oo el £=
d|loocoo -~ = €
R=T IRSURSVIRS S SO €| @ >
S| <o
p— ol § g
§|1=<
©
)
1S3 =
S22 o 2
c 2 ie]
2. Ssod n =
D | s Tl .22 c kS
S| TwL=oITO6 @ @
— £ £
t<] =
<
2 g & o2
2 I 2 s|l&~
8 8 © -7
> = -
o o9 P
S 2| -—am<sno o=
€ E|loococooo .-
§ oldddCQx -
3 2| e 3 2
= oy c
5 S 2l S gle .,
g 5l8 S| € 5l8 4| 3%
S| © Ol 8 ol K o | 2.2
% o - S| T w ol ~ ST
|
[7)
2))
s £ S
I3 < <
£ c c
5= =l .'9‘ =l .'9‘
@ = c| o
o | @ Q o| £ [
[y e| £] el = o]
k=] | 5 = E= c >
{ 5|2 ° sl 3 k)
2 ol 5 2 — ol 3 2| v o
3 ol & Eloo ol © E|l 2o
3 © ol ISRV S| ® (o IRSVRSY
o
=
o
§ = =

Cluster Key is
department_id

Chapter 4
Overview of Table Clusters

(]
2
o

©
-
°

[

=

(]
=

[Z]
=
o

The B-tree cluster index associates the cluster key value with the database block
address (DBA) of the block containing the data. For example, the index entry for key
20 shows the address of the block that contains data for employees in department 20:

20, AADAAAAY]

The cluster index is separately managed, just like an index on a nonclustered table,

and can exist in a separate tablespace from the table cluster.

ORACLE

4-42

Chapter 4
Overview of Table Clusters

¢ See Also:

* "Introduction to Indexes"

e Oracle Database Administrator’s Guide to learn how to create and manage
indexed clusters

e Oracle Database SQL Language Reference for CREATE CLUSTER syntax and
semantics

Overview of Hash Clusters

ORACLE

A hash cluster is like an indexed cluster, except the index key is replaced with a hash
function. No separate cluster index exists. In a hash cluster, the data is the index.

With an indexed table or indexed cluster, Oracle Database locates table rows using key
values stored in a separate index. To find or store a row in an indexed table or table cluster,
the database must perform at least two 1/Os:

e One or more I/Os to find or store the key value in the index
e Another I/O to read or write the row in the table or table cluster

To find or store a row in a hash cluster, Oracle Database applies the hash function to the
cluster key value of the row. The resulting hash value corresponds to a data block in the
cluster, which the database reads or writes on behalf of the issued statement.

Hashing is an optional way of storing table data to improve the performance of data retrieval.
Hash clusters may be beneficial when the following conditions are met:

* Atable is queried much more often than modified.

e The hash key column is queried frequently with equality conditions, for example, WHERE
department 1d=20. For such queries, the cluster key value is hashed. The hash key
value points directly to the disk area that stores the rows.

* You can reasonably guess the number of hash keys and the size of the data stored with
each key value.

* Hash Cluster Creation
To create a hash cluster, you use the same CREATE CLUSTER statement as for an indexed
cluster, with the addition of a hash key. The number of hash values for the cluster
depends on the hash key.

e Hash Cluster Queries
In queries of a hash cluster, the database determines how to hash the key values input
by the user.

* Hash Cluster Variations
A single-table hash cluster is an optimized version of a hash cluster that supports only
one table at a time. A one-to-one mapping exists between hash keys and rows.

e Hash Cluster Storage
Oracle Database allocates space for a hash cluster differently from an indexed cluster.

4-43

Chapter 4
Overview of Table Clusters

Hash Cluster Creation

To create a hash cluster, you use the same CREATE CLUSTER statement as for an
indexed cluster, with the addition of a hash key. The number of hash values for the
cluster depends on the hash key.

The cluster key, like the key of an indexed cluster, is a single column or composite key
shared by the tables in the cluster. A hash key value is an actual or possible value
inserted into the cluster key column. For example, if the cluster key is department id,
then hash key values could be 10, 20, 30, and so on.

Oracle Database uses a hash function that accepts an infinite number of hash key
values as input and sorts them into a finite number of buckets. Each bucket has a
unigue numeric ID known as a hash value. Each hash value maps to the database
block address for the block that stores the rows corresponding to the hash key value
(department 10, 20, 30, and so on).

In the following example, the number of departments that are likely to exist is 100, so
HASHKEYS is set to 100:

CREATE CLUSTER employees departments cluster
(department id NUMBER(4))
SIZE 8192 HASHKEYS 100;

After you create employees departments_cluster, you can create the employees and
departments tables in the cluster. You can then load data into the hash cluster just as
in the indexed cluster.

¢ See Also:

« "Overview of Indexed Clusters"

e Oracle Database Administrator’s Guide to learn how to create and
manage hash clusters

Hash Cluster Queries

ORACLE

In queries of a hash cluster, the database determines how to hash the key values input
by the user.

For example, users frequently execute queries such as the following, entering different
department ID numbers for p_id:

SELECT *
FROM employees
WHERE department id = :p id;

SELECT *
FROM departments
WHERE department id

:p_id;

4-44

Chapter 4
Overview of Table Clusters

SELECT *

FROM employees e, departments d

WHERE e.department id = d.department id
AND d.department id = :p id;

If a user queries employees in department 1d=20, then the database might hash this value to
bucket 77. If a user queries employees in department 1d=10, then the database might hash
this value to bucket 15. The database uses the internally generated hash value to locate the
block that contains the employee rows for the requested department.

The following illustration depicts a hash cluster segment as a horizontal row of blocks. As
shown in the graphic, a query can retrieve data in a single I/O.

Figure 4-9 Retrieving Data from a Hash Cluster

Data Blocks in Cluster Segment

A limitation of hash clusters is the unavailability of range scans on nonindexed cluster keys.
Assume no separate index exists for the hash cluster created in Hash Cluster Creation. A
guery for departments with IDs between 20 and 100 cannot use the hashing algorithm
because it cannot hash every possible value between 20 and 100. Because no index exists,
the database must perform a full scan.

¢ See Also:

"Index Range Scan"

Hash Cluster Variations

ORACLE

A single-table hash cluster is an optimized version of a hash cluster that supports only one
table at a time. A one-to-one mapping exists between hash keys and rows.

A single-table hash cluster can be beneficial when users require rapid access to a table by
primary key. For example, users often look up an employee record in the employees table by
employee id.

4-45

Chapter 4
Overview of Table Clusters

A sorted hash cluster stores the rows corresponding to each value of the hash function
in such a way that the database can efficiently return them in sorted order. The
database performs the optimized sort internally. For applications that always consume
data in sorted order, this technique can mean faster retrieval of data. For example, an
application might always sort on the order date column of the orders table.

¢ See Also:

Oracle Database Administrator’s Guide to learn how to create single-table
and sorted hash clusters

Hash Cluster Storage

Oracle Database allocates space for a hash cluster differently from an indexed cluster.

In the example in Hash Cluster Creation, HASHKEYS specifies the number of
departments likely to exist, whereas S1zE specifies the size of the data associated with
each department. The database computes a storage space value based on the
following formula:

HASHKEYS * SIZE / database block size

Thus, if the block size is 4096 bytes in the example shown in Hash Cluster Creation,
then the database allocates at least 200 blocks to the hash cluster.

Oracle Database does not limit the number of hash key values that you can insert into
the cluster. For example, even though HASHKEYS is 100, nothing prevents you from
inserting 200 unique departments in the departments table. However, the efficiency of
the hash cluster retrieval diminishes when the number of hash values exceeds the
number of hash keys.

To illustrate the retrieval issues, assume that block 100 in Figure 4-9 is completely full
with rows for department 20. A user inserts a new department with department id 43
into the departments table. The number of departments exceeds the HASHKEYS value,
so the database hashes department id 43 to hash value 77, which is the same hash
value used for department id 20. Hashing multiple input values to the same output
value is called a hash collision.

When users insert rows into the cluster for department 43, the database cannot store
these rows in block 100, which is full. The database links block 100 to a new overflow
block, say block 200, and stores the inserted rows in the new block. Both block 100
and 200 are now eligible to store data for either department. As shown in Figure 4-10,
a query of either department 20 or 43 now requires two 1/Os to retrieve the data: block
100 and its associated block 200. You can solve this problem by re-creating the cluster
with a different HASHKEYS value.

ORACLE 4-46

Chapter 4
Overview of Attribute-Clustered Tables

Figure 4-10 Retrieving Data from a Hash Cluster When a Hash Collision Occurs

=3
n =
99]
g’""l o
by i
£
£ < <
o o
ga e 88
] o o m
E
-
g -
]]
@ 2
S=—»g
" =
iz i
21 =
o
B
0P
N
gﬂ
) £
c
* Q
- E
o
OE @
<} 7]
1] S
e g
7]
3
o
£
[
4
Q
o
1]
©
s
©
(=]

¢ See Also:

Oracle Database Administrator’s Guide to learn how to manage space in hash
clusters

Overview of Attribute-Clustered Tables

An attribute-clustered table is a heap-organized table that stores data in close proximity on
disk based on user-specified clustering directives. The directives specify columns in single or
multiple tables.

ORACLE"

The directives are as follows:

The CLUSTERING ... BY LINEAR ORDER directive orders data in a table according to
specified columns.

Consider using BY LINEAR ORDER clustering, which is the default, when queries qualify
the prefix of columns specified in the clustering clause. For example, if queries of
sh.sales often specify either a customer ID or both customer ID and product ID, then you
could cluster data in the table using the linear column order cust_id, prod id.

The CLUSTERING ... BY INTERLEAVED ORDER directive orders data in one or more tables
using a special algorithm, similar to a Z-order function, that permits multicolumn 1/O
reduction.

4-47

Chapter 4
Overview of Attribute-Clustered Tables

Consider using BY INTERLEAVED ORDER clustering when queries specify a variety
of column combinations. For example, if queries of sh.sales specify different
dimensions in different orders, then you can cluster data in the sales table
according to columns in these dimensions.

Attribute clustering is only available for direct path INSERT operations. It is ignored for
conventional DML.

This section contains the following topics:

Advantages of Attribute-Clustered Tables

Join Attribute Clustered Tables

I/O Reduction Using Zones

Attribute-Clustered Tables with Linear Ordering

Attribute-Clustered Tables with Interleaved Ordering

Advantages of Attribute-Clustered Tables

The primary benefit of attribute-clustered tables is 1/O reduction, which can
significantly reduce the 1/0 cost and CPU cost of table scans. I/O reduction occurs
either with zones or by reducing physical I/O through closer physical proximity on
disk for the clustered values.

Join Attribute Clustered Tables

Attribute clustering that is based on joined columns is called join attribute
clustering. In contrast with table clusters, join attribute clustered tables do not
store data from a group of tables in the same database blocks.

I/O Reduction Using Zones
A zone is a set of contiguous data blocks that stores the minimum and maximum
values of relevant columns.

Attribute-Clustered Tables with Linear Ordering

A linear ordering scheme for a table divides rows into ranges based on user-
specified attributes in a specific order. Oracle Database supports linear ordering
on single or multiple tables that are connected through a primary-foreign key
relationship.

Attribute-Clustered Tables with Interleaved Ordering
Interleaved ordering uses a technique that is similar to a Z-order.

Advantages of Attribute-Clustered Tables

The primary benefit of attribute-clustered tables is I/O reduction, which can
significantly reduce the I/O cost and CPU cost of table scans. I/O reduction occurs
either with zones or by reducing physical I/O through closer physical proximity on disk
for the clustered values.

ORACLE

An attribute-clustered table has the following advantages:

You can cluster fact tables based on dimension columns in star schemas.

In star schemas, most queries qualify dimension tables and not fact tables, so
clustering by fact table columns is not effective. Oracle Database supports
clustering on columns in dimension tables.

I/0 reduction can occur in several different scenarios:

4-48

Chapter 4
Overview of Attribute-Clustered Tables

— When used with Oracle Exadata Storage Indexes, Oracle In-Memory min/max
pruning, or zone maps

— In OLTP applications for queries that qualify a prefix and use attribute clustering with
linear order

— On a subset of the clustering columns for BY INTERLEAVED ORDER clustering

* Attribute clustering can improve data compression, and in this way indirectly improve
table scan costs.

When the same values are close to each other on disk, the database can more easily
compress them.

» Oracle Database does not incur the storage and maintenance cost of an index.

¢ See Also:

Oracle Database Data Warehousing Guide for more advantages of attribute-
clustered tables

Join Attribute Clustered Tables

Attribute clustering that is based on joined columns is called join attribute clustering. In
contrast with table clusters, join attribute clustered tables do not store data from a group of
tables in the same database blocks.

For example, consider an attribute-clustered table, sales, joined with a dimension table,
products. The sales table contains only rows from the sales table, but the ordering of the
rows is based on the values of columns joined from products table. The appropriate join is
executed during data movement, direct path insert, and CREATE TABLE AS SELECT operations.
In contrast, if sales and products were in a standard table cluster, the data blocks would
contain rows from both tables.

See Also:

Oracle Database Data Warehousing Guide to learn more about join attribute
clustering

/0 Reduction Using Zones

ORACLE

A zone is a set of contiguous data blocks that stores the minimum and maximum values of
relevant columns.

When a SQL statement contains predicates on columns stored in a zone, the database
compares the predicate values to the minimum and maximum stored in the zone. In this way,
the database determines which zones to read during SQL execution.

I/O reduction is the ability to skip table or index blocks that do not contain data that the
database needs to satisfy a query. This reduction can significantly reduce the 1/0O and CPU
cost of table scans.

4-49

Chapter 4
Overview of Attribute-Clustered Tables

e Purpose of Zones
For a loose analogy of zones, consider a sales manager who uses a bookcase of
pigeonholes, which are analogous to data blocks.

e Zone Maps
A zone map is an independent access structure that divides data blocks into
zones. Oracle Database implements each zone map as a type of materialized
view.

e Zone Map Creation
Basic zone maps are created either manually or automatically.

* How a Zone Map Works: Example
This example illustrates how a zone map can prune data in a query whose
predicate contains a constant.

Purpose of Zones

Zone Maps

ORACLE

For a loose analogy of zones, consider a sales manager who uses a bookcase of
pigeonholes, which are analogous to data blocks.

Each pigeonhole has receipts (rows) describing shirts sold to a customer, ordered by
ship date. In this analogy, a zone map is like a stack of index cards. Each card
corresponds to a "zone" (contiguous range) of pigeonholes, such as pigeonholes 1-10.
For each zone, the card lists the minimum and maximum ship dates for the receipts
stored in the zone.

When someone wants to know which shirts shipped on a certain date, the manager
flips the cards until she comes to the date range that contains the requested date,
notes the pigeonhole zone, and then searches only pigeonholes in this zone for the
requested receipts. In this way, the manager avoids searching every pigeonhole in the
bookcase for the receipts.

A zone map is an independent access structure that divides data blocks into zones.
Oracle Database implements each zone map as a type of materialized view.

Like indexes, zone maps can reduce the 1/O and CPU costs of table scans. When a
SQL statement contains predicates on columns in a zone map, the database
compares the predicate values to the minimum and maximum table column values
stored in each zone to determine which zones to read during SQL execution.

A basic zone map is defined on a single table and maintains the minimum and
maximum values of some columns of this table. A join zone map is defined on a table
that has an outer join to one or more other tables and maintains the minimum and
maximum values of some columns in the other tables. Oracle Database maintains
both types of zone map automatically.

At most one zone map can exist on a table. In the case of a partitioned table, one zone
map exists for all partitions and subpartitions. A zone map of a partitioned table also
keeps track of the minimum and maximum values per zone, per partition, and per
subpartition. Zone map definitions can include minimum and maximum values of
dimension columns provided the table has an outer join with the dimension tables.

4-50

Chapter 4
Overview of Attribute-Clustered Tables

¢ See Also:

Oracle Database Data Warehousing Guide for an overview of zone maps

Zone Map Creation

Basic zone maps are created either manually or automatically.

e Manual Zone Maps
You can create, drop, and maintain zone maps using DDL statements.

e Automatic Zone Maps
Oracle Database can create basic zone maps automatically. These are known as
automatic zone maps.

Manual Zone Maps

You can create, drop, and maintain zone maps using DDL statements.

Whenever you specify the CLUSTERING clause in a CREATE TABLE or ALTER TABLE statement,
the database automatically creates a zone map on the specified clustering columns. The
zone map correlates minimum and maximum values of columns with consecutive data blocks
in the attribute-clustered table. Attribute-clustered tables use zone maps to perform 1/O
reduction.

You can also create zone maps explicitly by using the CREATE MATERIALIZED ZONEMAP
statement. In this case, you can create zone maps for use with or without attribute clustering.
For example, you can create a zone map on a table whose rows are naturally ordered on a
set of columns, such as a stock trade table whose trades are ordered by time.

¢ See Also:

* "Overview of Materialized Views"

e Oracle Database Data Warehousing Guide to learn more how to create zone
maps

Automatic Zone Maps

ORACLE

Oracle Database can create basic zone maps automatically. These are known as automatic
zone maps.

Oracle Database can create basic zone maps automatically for both partitioned and
nonpartitioned tables. A background process automatically maintains zone maps created in
this way.

Use the DBMS AUTO_ ZONEMAP procedure to enable automatic zone maps:

EXEC DBMS AUTO ZONEMAP.CONFIGURE ('AUTO ZONEMAP MODE','ON')

4-51

Chapter 4
Overview of Attribute-Clustered Tables

¢ See Also:

e Oracle Database Data Warehousing Guide to learn more about
managing automatic zone maps using the DBMS AUTO ZONEMAP package

e Oracle Database PL/SQL Packages and Types Reference to learn more
about the DBMS AUTO ZONEMAP package

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

How a Zone Map Works: Example

This example illustrates how a zone map can prune data in a query whose predicate
contains a constant.

Assume you create the following lineitem table:

CREATE TABLE lineitem
(orderkey NUMBER ,
shipdate DATE ,
receiptdate DATE ,
destination VARCHAR2 (50) ,
quantity NUMBER

~.

The table l1ineitem contains 4 data blocks with 2 rows per block. Table 4-4 shows the
8 rows of the table.

Table 4-4 Data Blocks for lineitem Table
]

Block orderkey shipdate receiptdate destination quantity
1 1 1-1-2014 1-10-2014 San_Fran 100
1 2 1-2-2014 1-10-2014 San_Fran 200
2 3 1-3-2014 1-9-2014 San_Fran 100
2 4 1-5-2014 1-10-2014 San_Diego 100
3 5 1-10-2014 1-15-2014 San_Fran 100
3 6 1-12-2014 1-16-2014 San_Fran 200
4 7 1-13-2014 1-20-2014 San_Fran 100
4 8 1-15-2014 1-30-2014 San_Jose 100

You can use the CREATE MATERIALIZED ZONEMAP statement to create a zone map on
the lineitem table. Each zone contains 2 blocks and stores the minimum and
maximum of the orderkey, shipdate, and receiptdate columns. Table 4-5 shows the
zone map.

ORACLE 4-52

Chapter 4
Overview of Attribute-Clustered Tables

Table 4-5 Zone Map for lineitem Table

Block min max min shipdate max min max
Range orderkey orderkey shipdate receiptdate receiptdate
1-2 1 4 1-1-2014 1-5-2014 1-9-2014 1-10-2014
3-4 5 8 1-10-2014 1-15-2014 1-15-2014 1-30-2014

When you execute the following query, the database can read the zone map and then scan
only blocks 1 and 2, and therefore skip blocks 3 and 4, because the date 1-3-2014 falls
between the minimum and maximum dates:

SELECT * FROM lineitem WHERE shipdate = '1-3-2014';

See Also:

e Oracle Database Data Warehousing Guide to learn how to use zone maps

e Oracle Database SQL Language Reference for syntax and semantics of the
CREATE MATERIALIZED ZONEMAP statement

Attribute-Clustered Tables with Linear Ordering

ORACLE

A linear ordering scheme for a table divides rows into ranges based on user-specified
attributes in a specific order. Oracle Database supports linear ordering on single or multiple
tables that are connected through a primary-foreign key relationship.

For example, the sales table divides the cust id and prod_id columns into ranges, and then
clusters these ranges together on disk. When you specify the BY LINEAR ORDER directive for a
table, significant I/O reduction can occur when a predicate specifies either the prefix column
or all columns in the directive.

Assume that queries of sales often specify either a customer ID or a combination of a
customer ID and product ID. You can create an attribute-clustered table so that such queries
benefit from I/O reduction:

CREATE TABLE sales
(
prod_id NOT NULL NUMBER

’ Cust_id NOT NULL NUMBER

, amount sold NUMBER (10, 2)

)

CLUSTERING
BY LINEAR ORDER (Cust_id, prod_id)
YES ON LOAD YES ON DATA MOVEMENT
WITH MATERIALIZED ZONEMAP;

Queries that qualify both columns cust_id and prod_id, or the prefix cust id experience I/O
reduction. Queries that qualify prod id only do not experience significant I/O reduction

4-53

Chapter 4
Overview of Attribute-Clustered Tables

because prod id is the suffix of the BY LINEAR ORDER clause. The following examples
show how the database can reduce 1/O during table scans.

Example 4-8 Specifying Only cust_id

An application issues the following query:

SELECT * FROM sales WHERE cust id = 100;

Because the sales table is a BY LINEAR ORDER cluster, the database must only read
the zones that include the cust_id value of 100.

Example 4-9 Specifying prod_id and cust_id

An application issues the following query:

SELECT * FROM sales WHERE cust id = 100 AND prod id = 2300;

Because the sales table is a BY LINEAR ORDER cluster, the database must only read
the zones that include the cust_id value of 100 and prod_id value of 2300.

See Also:

e Oracle Database Data Warehousing Guide to learn how to cluster tables
using linear ordering

e Oracle Database SQL Language Reference for syntax and semantics of
the BY LINEAR ORDER clause

Attribute-Clustered Tables with Interleaved Ordering

ORACLE

Interleaved ordering uses a technique that is similar to a Z-order.

Interleaved ordering enables the database to prune 1/0 based on any subset of
predicates in the clustering columns. Interleaved ordering is useful for dimensional
hierarchies in a data warehouse.

As with attribute-clustered tables with linear ordering, Oracle Database supports
interleaved ordering on single or multiple tables that are connected through a primary-
foreign key relationship. Columns in tables other than the attribute-clustered table
must be linked by foreign key and joined to the attribute-clustered table.

Large data warehouses frequently organize data in a star schema. A dimension table
uses a parent-child hierarchy and is connected to a fact table by a foreign key.
Clustering a fact table by interleaved order enables the database to use a special
function to skip values in dimension columns during table scans.

Example 4-10 Interleaved Ordering Example

Suppose your data warehouse contains a sales fact table and its two dimension
tables: customers and products. Most queries have predicates on the customers table
hierarchy (cust_state province, cust city) and the products hierarchy

4-54

Chapter 4
Overview of Attribute-Clustered Tables

(prod category, prod subcategory). You can use interleaved ordering for the sales table
as shown in the partial statement in the following example:

CREATE TABLE sales

(
prod_id NUMBER NOT NULL

, cust_id NUMBER NOT NULL

, amount sold NUMBER (10, 2)

)

CLUSTERING sales
JOIN products ON (sales.prod id = products.prod id)
JOIN customers ON (sales.cust id = customers.cust id)
BY INTERLEAVED ORDER

(products.prod category
, products.prod subcategory

(customers.cust state province
, customers.cust city

WITH MATERIALIZED ZONEMAP;

Note:

The columns specified in the BY INTERLEAVED ORDER clause need not be in actual
dimension tables, but they must be connected through a primary-foreign key
relationship.

Suppose an application queries the sales, products, and customers tables in a join. The
query specifies the customers.prod category and customers cust state province
columns in the predicate as follows:

SELECT cust city, prod sub category, SUM(amount sold)
FROM sales, products, customers
WHERE sales.prod id = products.prod id

AND sales.cust _id = customers.cust id
AND customers.prod category = 'Boys'
AND customers.cust state province = 'England - Norfolk'

GROUP BY cust city, prod sub category;

In the preceding query, the prod category and cust_state province columns are part of the
clustering definition shown in the CREATE TABLE example. During the scan of the sales table,
the database can consult the zone map and access only the rowids in this zone.

ORACLE 4-55

Chapter 4
Overview of Temporary Tables

¢ See Also:

¢ "Overview of Dimensions"

e Oracle Database Data Warehousing Guide to learn how to cluster tables
using interleaved ordering

e Oracle Database SQL Language Reference for syntax and semantics of
the BY INTERLEAVED ORDER clause

Overview of Temporary Tables

A temporary table holds data that exists only for the duration of a transaction or
session.

Data in a temporary table is private to the session. Each session can only see and
modify its own data.

You can create either a global temporary table or a private temporary table. The
following table shows the essential differences between them.

Table 4-6 Temporary Table Characteristics
|

Characteristic Global Private

Naming rules Same as for permanent tables Must be prefixed with
ORASPTT

Visibility of table definition All sessions Only the session that created
the table

Storage of table definition Disk Memory only

Types Transaction-specific (ON Transaction-specific (ON

COMMIT DELETE ROWS) or COMMIT DROP DEFINITION)

session-specific (ON COMMIT or session-specific (ON

PRESERVE ROWS) COMMIT PRESERVE
DEFINITION)

A third type of temporary table, known as a cursor-duration temporary table, is
created by the database automatically for certain types of queries.

e Purpose of Temporary Tables
Temporary tables are useful in applications where a result set must be buffered.

e Segment Allocation in Temporary Tables
Like permanent tables, global temporary tables are persistent objects that are
statically defined in the data dictionary. For private temporary tables, metadata
exists only in memory, but can reside in the temporary tablespace on disk.

* Temporary Table Creation
The CREATE ... TEMPORARY TABLE statement creates a temporary table.

ORACLE 4-56

Chapter 4
Overview of Temporary Tables

¢ See Also:

Oracle Database SQL Tuning Guide to learn more about cursor-duration temporary
tables

Purpose of Temporary Tables

Temporary tables are useful in applications where a result set must be buffered.

For example, a scheduling application enables college students to create optional semester
course schedules. A row in a global temporary table represents each schedule. During the
session, the schedule data is private. When the student chooses a schedule, the application
moves the row for the chosen schedule to a permanent table. At the end of the session, the
database automatically drops the schedule data that was in the global temporary table.

Private temporary tables are useful for dynamic reporting applications. For example, a
customer resource management (CRM) application might connect as the same user
indefinitely, with multiple sessions active at the same time. Each session creates a private
temporary table named ORASPTT crm for each new transaction. The application can use the
same table name for every session, but change the definition. The data and definition are
visible only to the session. The table definition persists until the transaction ends or the table
is manually dropped.

Segment Allocation in Temporary Tables

Like permanent tables, global temporary tables are persistent objects that are statically
defined in the data dictionary. For private temporary tables, metadata exists only in memory,
but can reside in the temporary tablespace on disk.

For global and private temporary tables, the database allocates temporary segments when a
session first inserts data. Until data is loaded in a session, the table appears empty. For
transaction-specific temporary tables, the database deallocates temporary segments at the
end of the transaction. For session-specific temporary tables, the database deallocates
temporary segments at the end of the session.

¢ See Also:

"Temporary Segments"

Temporary Table Creation

ORACLE

The CREATE ... TEMPORARY TABLE statement creates a temporary table.

Specify either GLOBAL TEMPORARY TABLE Or PRIVATE TEMPORARY TABLE. In both cases, the ON
coMMIT clause specifies whether the table data is transaction-specific (default) or session-
specific. You create a temporary table for the database itself, not for every PL/SQL stored
procedure.

4-57

Chapter 4
Overview of External Tables

You can create indexes for global (not private) temporary tables with the CREATE INDEX
statement. These indexes are also temporary. The data in the index has the same
session or transaction scope as the data in the temporary table. You can also create a
view or trigger on a global temporary table.

¢ See Also:

e "Overview of Views"
e "Overview of Triggers"

e Oracle Database Administrator’s Guide to learn how to create and
manage temporary tables

e Oracle Database SQL Language Reference for CREATE ... TEMPORARY
TABLE syntax and semantics

Overview of External Tables

An external table accesses data in external sources as if this data were in a table in
the database.

The data can be in any format for which an access driver is provided. You can use
SQL (serial or parallel), PL/SQL, and Java to query external tables.

e Purpose of External Tables
External tables are useful when an Oracle database application must access non-
relational data.

e Data in Object Stores
External tables can be used to access data in object stores.

* External Table Access Drivers
An access driver is an API that interprets the external data for the database. The
access driver runs inside the database, which uses the driver to read the data in
the external table. The access driver and the external table layer are responsible
for performing the transformations required on the data in the data file so that it
matches the external table definition.

* External Table Creation
Internally, creating an external table means creating metadata in the data
dictionary. Unlike an ordinary table, an external table does not describe data
stored in the database, nor does it describe how data is stored externally. Rather,
external table metadata describes how the external table layer must present data
to the database.

Purpose of External Tables

ORACLE

External tables are useful when an Oracle database application must access non-
relational data.

4-58

Chapter 4
Overview of External Tables

For example, a SQL-based application may need to access a text file whose records are in
the following form:

100, Steven, King, SKING,515.123.4567,17-JUN-03,AD PRES,31944,150,90
101, Neena, Kochhar,NKOCHHAR, 515.123.4568,21-SEP-05,AD _VP,17000,100, 90
102, Lex,De Haan, LDEHAAN, 515.123.4569,13-JAN-01,AD VP,17000,100,90

You could create an external table, copy the text file to the location specified in the external
table definition, and then use SQL to query the records in the text file. Similarly, you could use
external tables to give read-only access to JSON documents or LOBSs.

In data warehouse environments, external tables are valuable for performing extraction,
transformation, and loading (ETL) tasks. For example, external tables enable you to pipeline
the data loading phase with the transformation phase. This technique eliminates the need to
stage data inside the database in preparation for further processing inside the database.

You can partition external tables on virtual or non-virtual columns. Also, you can create a
hybrid partitioned table, where some partitions are internal and some external. Like internal
partitions, external benefit from performance enhancements such as partition pruning and
partition-wise joins. For example, you could use partitioned external tables to analyze large
volumes of non-relational data stored on Hadoop Distributed File System (HDFS) or a
NoSQL database.

¢ See Also:

"Partitioned Tables"

Data in Object Stores

External tables can be used to access data in object stores.

In addition to supporting access to external data residing in operating system files and Big
Data sources, Oracle supports access to external data in object stores. Object storage is
common in the Cloud and provides a flat architecture to manage individual objects, any type
of unstructured data with metadata, by grouping them in simple containers. Although object
storage is predominantly a data storage architecture in the Cloud, it is also available as on-
premises storage hardware.

You can access data in object stores by using the DBMS CLOUD package or by manually
defining external tables. Oracle strongly recommends using the DBMS CLOUD package
because it provides additional functionality and is fully compatible with Oracle Autonomous
Database.

External Table Access Drivers

ORACLE

An access driver is an API that interprets the external data for the database. The access
driver runs inside the database, which uses the driver to read the data in the external table.
The access driver and the external table layer are responsible for performing the
transformations required on the data in the data file so that it matches the external table
definition.

The following figure represents SQL access of external data.

4-59

Chapter 4
Overview of External Tables

Figure 4-11 External Tables

g.!

Queries of
External
Table

’

Data”
Dictionary

Database
External Table
Metadata
ﬁ /
7

’

\
\
\

Access
Driver

=

External
Files

Oracle provides the following access drivers for external tables:

ORACLE LOADER (default)

Enables access to external files using most of the formats supported by
SQL*Loader. You cannot create, update, or append to an external file using the
ORACLE LOADER driver.

ORACLE DATAPUMP

Enables you to unload or load external data. An unload operation reads data from
the database and inserts the data into an external table, represented by one or
more external files. After external files are created, the database cannot update or
append data to them. A load operation reads an external table and loads its data
into a database.

ORACLE HDFS
Enables the extraction of data stored in a Hadoop Distributed File System (HDFS).
ORACLE HIVE

Enables access to data stored in an Apache Hive database. The source data can
be stored in HDFS, HBase, Cassandra, or other systems. Unlike the other access
drivers, you cannot specify a location because ORACLE HIVE obtains location
information from an external metadata store.

ORACLE BIGDATA

Enables read-only access to data stored in both structured and unstructured
formats, including Apache Parquet, Apache Avro, Apache ORC, and text formats.
You can also use this driver to query local data, which is useful for testing and
smaller data sets.

External Table Creation

Internally, creating an external table means creating metadata in the data dictionary.
Unlike an ordinary table, an external table does not describe data stored in the

ORACLE

4-60

Chapter 4
Overview of Blockchain Tables

database, nor does it describe how data is stored externally. Rather, external table metadata
describes how the external table layer must present data to the database.

A CREATE TABLE ... ORGANIZATION EXTERNAL statement has two parts. The external table
definition describes the column types. This definition is like a view that enables SQL to query
external data without loading it into the database. The second part of the statement maps the
external data to the columns.

External tables are read-only unless created with CREATE TABLE AS SELECT with the
ORACLE DATAPUMP access driver. Restrictions for external tables include no support for
indexed columns and column objects.

¢ See Also:

e Oracle Database Utilities to learn about external tables

e Oracle Database Administrator's Guide to learn about managing external
tables, external connections, and directory objects

e Oracle Database SQL Language Reference for information about creating and
querying external tables

Overview of Blockchain Tables

ORACLE

A blockchain table is an append-only table designed for centralized blockchain applications.

In Oracle Blockchain Table, peers are database users who trust the database to maintain a
tamper-resistant ledger. The ledger is implemented as a blockchain table, which is defined
and managed by the application. Existing applications can protect against fraud without
requiring a new infrastructure or programming model. Although transaction throughput is
lower than for a standard table, performance for a blockchain table is better than for a
decentralized blockchain.

A blockchain table is append-only because the only permitted DML are INSERT commands.
The table disallows UPDATE, DELETE, MERGE, TRUNCATE, and direct-path loads. Database
transactions can span blockchain tables and standard tables. For example, a single
transaction can insert rows into a standard table and two different blockchain tables.

You can add or drop user columns from blockchain tables beginning with version 2
blockchain tables. Adding or dropping user columns from version 1 blockchain tables is not
allowed. The physical columns and data are not actually dropped but marked as invisible.

* Row Chains
In a blockchain table, a row chain is a series of rows linked together with a hashing
scheme.

* Row Content
The row content is a contiguous sequence of bytes containing the column data of the
row and the hash value of the previous row in the chain.

* User Interface for Blockchain Tables
Like a standard table, a blockchain table is created by SQL and supports scalar data
types, LOBs, JSON, and partitions. You can also create indexes and triggers for
blockchain tables.

4-61

Chapter 4
Overview of Blockchain Tables

Row Chains

In a blockchain table, a row chain is a series of rows linked together with a hashing
scheme.

A system row chain is identified by a unique combination of database instance ID and
chain ID in a version 1 blockchain table. Beginning with version 2 blockchain tables,
the global unique identifier of the database that inserted the row is needed in addition
to these two identifiers. A system row chain is identified by a unique combination of
pluggable database global unique ID, database instance ID, and chain ID in a version
2 blockchain table. A row in a blockchain table belongs to exactly one system row
chain. A single table supports multiple system row chains.

" Note:

A chained row in a standard table is orthogonal to a row chain in a
blockchain table. Only the word "chain" is the same.

Every row in a chain has a unique sequence number. The database sequences the
rows using an SHA2-512 hash computation on the rows of each chain. The hash for
every inserted row is derived from the hash value of the previously inserted row in the
chain and the row content of the inserted row.

While every row in a blockchain table belongs to exactly one system chain, it can also
belong to a user chain based on values from a set of user columns specified when the
blockchain table is created.

Row Content

ORACLE

The row content is a contiguous sequence of bytes containing the column data of the
row and the hash value of the previous row in the chain.

When you create a blockchain table, the database creates several hidden columns.
For example, you might create the blockchain table bank ledger with the columns
bank and deposit:

CREATE BLOCKCHAIN TABLE bank ledger (bank VARCHARZ (128), deposit
NUMBER)

NO DROP UNTIL 31 DAYS IDLE

NO DELETE UNTIL 31 DAYS AFTER INSERT

HASHING USING "SHA2_512" VERSION "v1";

The database automatically creates hidden columns with the prefix ORABCTAB:
ORABCTAB INST IDS$, ORABCTAB CHAIN ID$, ORABCTAB SEQ NUMS$, and others. These
hidden columns, most of which you cannot alter or manage, implement the anti-
tampering algorithm. This algorithm avoids deadlocks by acquiring unique, table-level
chain locks in a specific order at commit time.

4-62

Chapter 4
Overview of Blockchain Tables

< Note:

Row content for blockchain tables is stored in standard data blocks. In this release
of Oracle Database, blockchain tables do not support table clusters.

The instance ID, chain ID, and sequence number uniquely identify a row. Beginning with
version 2 blockchain tables, the global unique identifier of the database that inserted the row
is needed in addition to these three values. Each row has a platform-independent SHA2-512
hash that is stored in hidden column ORABCTAB HASHS. The hash is based on the content of
the inserted row and the hash of the previous row in the chain.

The data format for the column value of a row consists of bytes from the column metadata
and content. The column metadata is a 20-byte structure that describes characteristics such
as position in the table, data type, null status, and byte length. The column content is the set
of bytes representing the value in a row. For example, the ASCII representation of the value
Chase is 43 68 61 73 65. You can use the DUMP function in SQL to obtain both column
metadata and content.

The row content for a hash computation includes the column data formats from multiple
columns: the hash value in the previous row in the chain, the user-defined columns, and a
fixed number of hidden columns.

The order in which related rows are inserted, called row versions, can be tracked by the
system and recorded by specifying a set of columns over which row versions are defined.
Also, if row versions are specified, a view is automatically created and maintained that shows
the last row inserted for each combination of values in the user-specified set of columns. The
view name uses the naming convention Blockchain Table Name LASTS.

There are many cases where rows need to be signed additionally or alternatively by a
delegate of the end user. One example is a bank manager signing a row inserted by an end
user. A delegate signer is another database user that can add their signature on a row that is
computed over the row's system cryptographic hash. A row can be signed by an end user, a
delegate, or both. A delegate’s signature is accepted only if the signature can be verified
using the delegate’s certificate, and the delegate’s certificate is recorded in a database
dictionary table.

When a row is signed by an end user or delegate, the user may want to procure a
countersignature for the row. A countersignature can be considered a blockchain table digest
specifically for the row that has already been signed by an end user or delegate. When a row
is countersigned, the countersignature is returned to the row signer and also saved in that
row. The user requesting the countersignature on the row can save this information for non-
repudiation purposes in a separate data store.

User Interface for Blockchain Tables

ORACLE

Like a standard table, a blockchain table is created by SQL and supports scalar data types,
LOBs, JSON, and partitions. You can also create indexes and triggers for blockchain tables.

To create a blockchain table, use a CREATE BLOCKCHAIN TABLE statement. A blockchain table
has a retention period specified by the NO DROP UNTIL n DAYS IDLE clause. You can remove
the table by using DROP TABLE.

Oracle Blockchain Table supports the following interfaces:

4-63

Chapter 4
Overview of Immutable Tables

* The DBMS BLOCKCHAIN TABLE package enables you to perform various operations
on table rows. For example, to apply a signature to the content of a previously
inserted row, use the SIGN Row procedure. To verify that the rows have not been
tampered with, use VERIFY ROWS. To remove rows after the retention period
(specified by the NO DELETE clause) has passed, use DELETE EXPIRED ROWS.

* The DBA BLOCKCHAIN TABLES view shows table metadata such as the row retention
period, inactivity period before a table drop is permitted, and hash algorithm.

< Note:

e Oracle Database Administrator’s Guide to learn how to manage
blockchain tables

e Oracle Database PL/SQL Packages and Types Referenceto learn about
the DBMS BLOCKCHAIN TABLE package

* Oracle Database Reference to learn about the DBA BLOCKCHAIN TABLES
view

Overview of Immutable Tables

Overview

ORACLE

Immutable tables are append-only tables that prevent unauthorized data modifications
by insiders and accidental data modifications resulting from human errors.

Unauthorized modifications can be attempted by compromised or rogue employees
who have access to insider credentials.

New rows can be added to an immutable table, but existing rows cannot be modified.
You must specify a retention period both for the immutable table and for rows within
the immutable table. Rows become obsolete after the specified row retention period.
Only obsolete rows can be deleted from the immutable table.

Immutable tables contain system-generated hidden columns. The columns are the
same as those for blockchain tables. When a row is inserted, a non-NULL value is set
for the ORABCTAB CREATION TIMES and ORABCTAB USER NUMBERS columns. Except for
V1 immutable tables, a non-NULL value is set for the ORABCTAB PDB GUIDS$ column. If
the immutable table was created with row versions, a hon-NULL value is set for the
ORABCTAB_ROW_VERSIONS$ and ORABCTAB LAST ROW VERSION NUMBERS columns. The
value of remaining system-generated hidden columns is set to NULL.

Using immutable tables requires no changes to existing applications.

of Object Tables

An object table is a special kind of table in which each row represents an object.

An Oracle object type is a user-defined type with a name, attributes, and methods.
Object types make it possible to model real-world entities such as customers and
purchase orders as objects in the database.

4-64

ORACLE

Chapter 4
Overview of Object Tables

An object type defines a logical structure, but does not create storage. The following example
creates an object type named department typ:

CREATE TYPE department typ AS OBJECT
(d _name VARCHAR2 (100),
d address VARCHARZ2(200));

The following example creates an object table named departments _obj_t of the object type
department typ, and then inserts a row into the table. The attributes (columns) of the
departments_obj t table are derived from the definition of the object type.

CREATE TABLE departments obj t OF department typ;
INSERT INTO departments obj t VALUES ('hr', 'l0 Main St, Sometown, CA'");

Like a relational column, an object table can contain rows of just one kind of thing, namely,
object instances of the same declared type as the table. By default, every row object in an
object table has an associated logical object identifier (OID) that uniquely identifies it in an
object table. The OID column of an object table is a hidden column.

¢ See Also:

e Oracle Database Object-Relational Developer's Guide to learn about object-
relational features in Oracle Database

e Oracle Database SQL Language Reference for CREATE TYPE syntax and
semantics

4-65

Indexes and Index-Organized Tables

Indexes are schema objects that can speed access to table rows. Index-organized tables are
tables stored in an index structure.

e Introduction to Indexes
An index is an optional structure, associated with a table or table cluster, that can
sometimes speed data access.

e Overview of B-Tree Indexes
B-trees, short for balanced trees, are the most common type of database index. A B-tree
index is an ordered list of values divided into ranges. By associating a key with a row or
range of rows, B-trees provide excellent retrieval performance for a wide range of
queries, including exact match and range searches.

e Overview of Bitmap Indexes
In a bitmap index, the database stores a bitmap for each index key. In a conventional B-
tree index, one index entry points to a single row. In a bitmap index, each index key
stores pointers to multiple rows.

e Overview of Function-Based Indexes
A function-based index computes the value of a function or expression involving one or
more columns and stores it in an index. A function-based index can be either a B-tree or
a bitmap index.

* Overview of Application Domain Indexes
An application domain index is a customized index specific to an application.

e Overview of Index-Organized Tables
An index-organized table is a table stored in a variation of a B-tree index structure. In
contrast, a heap-organized table inserts rows where they fit.

Introduction to Indexes

An index is an optional structure, associated with a table or table cluster, that can
sometimes speed data access.

Indexes are schema objects that are logically and physically independent of the data in the
objects with which they are associated. Thus, you can drop or create an index without
physically affecting the indexed table.

¢ Note:

If you drop an index, then applications still work. However, access of previously
indexed data can be slower.

For an analogy, suppose an HR manager has a shelf of cardboard boxes. Folders containing
employee information are inserted randomly in the boxes. The folder for employee Whalen
(ID 200) is 10 folders up from the bottom of box 1, whereas the folder for King (ID 100) is at

ORACLE 5-1

ORACLE

Chapter 5
Introduction to Indexes

the bottom of box 3. To locate a folder, the manager looks at every folder in box 1 from
bottom to top, and then moves from box to box until the folder is found. To speed
access, the manager could create an index that sequentially lists every employee 1D
with its folder location:

ID 100: Box 3, position 1 (bottom)
ID 101: Box 7, position 8
ID 200: Box 1, position 10

Similarly, the manager could create separate indexes for employee last names,
department IDs, and so on.

This section contains the following topics:

* Advantages and Disadvantages of Indexes
* Index Usability and Visibility

* Keys and Columns

» Composite Indexes

* Unique and Nonunique Indexes

e Types of Indexes

* How the Database Maintains Indexes

* Index Storage

* Advantages and Disadvantages of Indexes
The absence or presence of an index does not require a change in the wording of
any SQL statement.

* Index Usability and Visibility
Indexes are usable (default) or unusable, visible (default) or invisible.

* Keys and Columns
A key is a set of columns or expressions on which you can build an index.

e Composite Indexes
A composite index, also called a concatenated index, is an index on multiple
columns in a table.

* Unique and Nonunigue Indexes
Indexes can be unique or nonunique. Unique indexes guarantee that no two rows
of a table have duplicate values in the key column or columns.

e Types of Indexes
Oracle Database provides several indexing schemes, which provide
complementary performance functionality.

* How the Database Maintains Indexes
The database automatically maintains and uses indexes after they are created.

* Index Storage
Oracle Database stores index data in an index segment.

5-2

Chapter 5
Introduction to Indexes

Advantages and Disadvantages of Indexes

The absence or presence of an index does not require a change in the wording of any SQL
statement.

An index is a fast access path to a single row of data. It affects only the speed of execution.
Given a data value that has been indexed, the index points directly to the location of the rows
containing that value.

When an index exists on one or more columns of a table, the database can in some cases
retrieve a small set of randomly distributed rows from the table. Indexes are one of many
means of reducing disk I/O. If a heap-organized table has no indexes, then the database
must perform a full table scan to find a value. For example, a query of location 2700 in the
unindexed hr.departments table requires the database to search every row in every block.
This approach does not scale well as data volumes increase.

Disadvantages of indexes include the following:

e Creating indexes manually often requires deep knowledge of the data model, application,
and data distribution.

e As the data changes, you must revisit previous decisions about indexes. An index might
stop being useful, or new indexes might be required.

e Indexes occupy disk space.

e The database must update the index when DML occurs on the indexed data, which
creates performance overhead.

Note:

Starting in Oracle Database 19c, Oracle Database can constantly monitor the
application workload, creating and managing indexes automatically. Automated
indexing is implemented as a database task that runs at a fixed interval.

Consider creating an index in the following situations:

* The indexed columns are queried frequently and return a small percentage of the total
number of rows in the table.

* Areferential integrity constraint exists on the indexed column or columns. The index is a
means to avoid a full table lock that would otherwise be required if you update the parent
table primary key, merge into the parent table, or delete from the parent table.

* Aunique key constraint will be placed on the table and you want to manually specify the
index and all index options.

ORACLE 5-3

Chapter 5
Introduction to Indexes

¢ See Also:

e Oracle Database Administrator’s Guide to learn more about automated
indexing

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Index Usability and Visibility

Indexes are usable (default) or unusable, visible (default) or invisible.
These properties are defined as follows:
e Usability

An unusable index, which is ignored by the optimizer, is not maintained by DML
operations. An unusable index can improve the performance of bulk loads. Instead
of dropping an index and later re-creating it, you can make the index unusable and
then rebuild it. Unusable indexes and index partitions do not consume space.
When you make a usable index unusable, the database drops its index segment.

e Visibility
An invisible index is maintained by DML operations, but is not used by default by
the optimizer. Making an index invisible is an alternative to making it unusable or
dropping it. Invisible indexes are especially useful for testing the removal of an

index before dropping it or using indexes temporarily without affecting the overall
application.

¢ See Also:

"Overview of the Optimizer" to learn about how the optimizer select
execution plans

Keys and Columns

ORACLE

A key is a set of columns or expressions on which you can build an index.

Although the terms are often used interchangeably, indexes and keys are different.
Indexes are structures stored in the database that users manage using SQL
statements. Keys are strictly a logical concept.

The following statement creates an index on the customer id column of the sample
table oe.orders:

CREATE INDEX ord customer ix ON orders (customer id);

In the preceding statement, the customer id column is the index key. The index itself
is named ord_customer ix.

5-4

Chapter 5
Introduction to Indexes

< Note:

Primary and unique keys automatically have indexes, but you might want to create
an index on a foreign key.

" See Also:

e "Data Integrity"

e Oracle Database SQL Language Reference CREATE INDEX syntax and
semantics

Composite Indexes

A composite index, also called a concatenated index, is an index on multiple columns in a
table.

Place columns in a composite index in the order that makes the most sense for the queries
that will retrieve data. The columns need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the WHERE
clause references all or the leading portion of the columns in the composite index. Therefore,
the order of the columns used in the definition is important. In general, the most commonly
accessed columns go first.

For example, suppose an application frequently queries the last name, job id, and salary
columns in the employees table. Also assume that last name has high cardinality, which
means that the number of distinct values is large compared to the number of table rows. You
create an index with the following column order:

CREATE INDEX employees ix
ON employees (last name, job id, salary);

Queries that access all three columns, only the last name column, or only the l1ast name and
job_id columns use this index. In this example, queries that do not access the last name
column do not use the index.

Note:

In some cases, such as when the leading column has very low cardinality, the
database may use a skip scan of this index (see "Index Skip Scan").

Multiple indexes can exist on the same table with the same column order when they meet
any of the following conditions:

» The indexes are of different types.

ORACLE 5-5

Chapter 5
Introduction to Indexes

For example, you can create bitmap and B-tree indexes on the same columns.
» The indexes use different partitioning schemes.

For example, you can create indexes that are locally partitioned and indexes that
are globally partitioned.

* The indexes have different uniqueness properties.

For example, you can create both a unique and a non-unique index on the same
set of columns.

For example, a nonpartitioned index, global partitioned index, and locally partitioned
index can exist for the same table columns in the same order. Only one index with the
same number of columns in the same order can be visible at any one time.

This capability enables you to migrate applications without the need to drop an existing
index and re-create it with different attributes. Also, this capability is useful in an OLTP
database when an index key keeps increasing, causing the database to insert new
entries into the same set of index blocks. To alleviate such "hot spots," you could
evolve the index from a nonpartitioned index into a global partitioned index.

If indexes on the same set of columns do not differ in type or partitioning scheme, then
these indexes must use different column permutations. For example, the following
SQL statements specify valid column permutations:

CREATE INDEX employee idxl ON employees (last name, job id);
CREATE INDEX employee idx2 ON employees (job id, last name);

See Also:

Oracle Database SQL Tuning Guide to learn more about creating multiple
indexes on the same set of columns

Unique and Nonunigue Indexes

Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of a
table have duplicate values in the key column or columns.

For example, your application may require that no two employees have the same
employee ID. In a unique index, one rowid exists for each data value. The data in the
leaf blocks is sorted only by key.

Nonunique indexes permit duplicates values in the indexed column or columns. For
example, the first name column of the employees table may contain multiple Mike
values. For a nonunique index, the rowid is included in the key in sorted order, so
nonunique indexes are sorted by the index key and rowid (ascending).

Oracle Database does not index table rows in which all key columns are null, except
for bitmap indexes or when the cluster key column value is null.

ORACLE 5-6

Chapter 5
Introduction to Indexes

Types of Indexes

Oracle Database provides several indexing schemes, which provide complementary
performance functionality.

B-tree indexes are the standard index type. They are excellent for highly selective indexes
(few rows correspond to each index entry) and primary key indexes. Used as concatenated
indexes, a B-tree index can retrieve data sorted by the indexed columns. B-tree indexes have
the subtypes shown in the following table.

Table 5-1 B-Tree Index Subtypes

. __|
B-Tree Index Subtype Description To Learn More

Index-organized tables An index-organized table differs "Overview of Index-Organized
from a heap-organized because the Tables"
data is itself the index.

Reverse key indexes In this type of index, the bytes of "Reverse Key Indexes"
the index key are reversed, for
example, 103 is stored as 301. The
reversal of bytes spreads out
inserts into the index over many

blocks.

Descending indexes This type of index stores data ona "Ascending and Descending
particular column or columns in Indexes"
descending order.

B-tree cluster indexes This type of index stores dataona "Ascending and Descending
particular column or columns in Indexes"

descending order.

The following table shows types of indexes that do not use a B-tree structure.

Table 5-2 Indexes Not Using a B-Tree Structure

. ___|]
Type Description To Learn More

Bitmap and bitmap join indexes In a bitmap index, an index entry "Overview of Bitmap Indexes"
uses a bitmap to point to multiple
rows. In contrast, a B-tree index
entry points to a single row. A
bitmap join index is a bitmap
index for the join of two or more

tables.
Function-based indexes This type of index includes "Overview of Function-Based
columns that are either Indexes"”

transformed by a function, such
as the UPPER function, or
included in an expression. B-tree
or bitmap indexes can be
function-based.

ORACLE .

Chapter 5
Introduction to Indexes

Table 5-2 (Cont.) Indexes Not Using a B-Tree Structure

___|
Type Description To Learn More

Application domain indexes A user creates this type of index "Overview of Application Domain
for data in an application-specific Indexes"
domain. The physical index need
not use a traditional index
structure and can be stored
either in the Oracle database as
tables or externally as a file.

¢ See Also:

e Oracle Database Administrator’s Guide to learn how to manage indexes

e Oracle Database SQL Tuning Guide to learn about different index access
paths

How the Database Maintains Indexes

The database automatically maintains and uses indexes after they are created.

Indexes automatically reflect data changes to their underlying tables. Examples of
changes include adding, updating, and deleting rows. No user actions are required.

Retrieval performance of indexed data remains almost constant, even as rows are
inserted. However, the presence of many indexes on a table degrades DML
performance because the database must also update the indexes.

¢ See Also:

e Oracle Database Administrator’s Guide to learn more about automated
indexing

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Index Storage

Oracle Database stores index data in an index segment.

Space available for index data in a data block is the data block size minus block
overhead, entry overhead, rowid, and one length byte for each value indexed.

The tablespace of an index segment is either the default tablespace of the owner or a
tablespace specifically named in the CREATE INDEX statement. For ease of
administration you can store an index in a separate tablespace from its table. For

ORACLE 5-8

Chapter 5
Overview of B-Tree Indexes

example, you may choose not to back up tablespaces containing only indexes, which can be
rebuilt, and so decrease the time and storage required for backups.

¢ See Also:

"Overview of Index Blocks" to learn about types of index block (root, branch, and
leaf), and how index entries are stored within a block

Overview of B-Tree Indexes

B-trees, short for balanced trees, are the most common type of database index. A B-tree
index is an ordered list of values divided into ranges. By associating a key with a row or
range of rows, B-trees provide excellent retrieval performance for a wide range of queries,
including exact match and range searches.

The following figure illustrates the structure of a B-tree index. The example shows an index
on the department id column, which is a foreign key column in the employees table.

Figure 5-1 Internal Structure of a B-tree Index

246,rowid
248,rowid
248,rowid
250,rowid

U AU U

246..250 1

200..209
210..220
(221..228

88T T
Q 233 3

o ©
58 & §85 3
= & ~a® o
Yo .8 IR]
ox o N NANA N

v

41..48
49..58
54..65
78..80

I—’ TTT T
233 3
Qe ¢
~-a o
.
L
ow o
e-N =
T <o :a
S~d im

0,rowid
0,rowid
10,rowid

Leaf Blocks |

Branch Blocks

This section contains the following topics:

ORACLE 5-9

Chapter 5
Overview of B-Tree Indexes

e Branch Blocks and Leaf Blocks

* Index Scans

* Reverse Key Indexes

» Ascending and Descending Indexes

* Index Compression

* Branch Blocks and Leaf Blocks
A B-tree index has two types of blocks: the branch block for searching, and the
leaf block for storing key values. The upper-level branch blocks of a B-tree index
contain index data that points to lower-level index blocks.

* Index Scans
In an index scan, the database retrieves a row by traversing the index, using the
indexed column values specified by the statement. If the database scans the index
for a value, then it will find this value in n 1/0Os where n is the height of the B-tree
index. This is the basic principle behind Oracle Database indexes.

* Reverse Key Indexes
A reverse key index is a type of B-tree index that physically reverses the bytes of
each index key while keeping the column order.

e Ascending and Descending Indexes
In an ascending index, Oracle Database stores data in ascending order. By
default, character data is ordered by the binary values contained in each byte of
the value, numeric data from smallest to largest number, and date from earliest to
latest value.

* Index Compression
To reduce space in indexes, Oracle Database can employ different compression
algorithms.

Branch Blocks and Leaf Blocks

ORACLE

A B-tree index has two types of blocks: the branch block for searching, and the leaf
block for storing key values. The upper-level branch blocks of a B-tree index contain
index data that points to lower-level index blocks.

In Figure 5-1, the root branch block has an entry 0-40, which points to the leftmost
block in the next branch level. This branch block contains entries such as 0-10 and
11-19. Each of these entries points to a leaf block that contains key values that fall in
the range.

A B-tree index is balanced because all leaf blocks automatically stay at the same
depth. Thus, retrieval of any record from anywhere in the index takes approximately
the same amount of time. The height of the index is the number of blocks required to
go from the root block to a leaf block. The branch level is the height minus 1. In
Figure 5-1, the index has a height of 3 and a branch level of 2.

Branch blocks store the minimum key prefix needed to make a branching decision
between two keys. This technique enables the database to fit as much data as
possible on each branch block. The branch blocks contain a pointer to the child block
containing the key. The number of keys and pointers is limited by the block size.

The leaf blocks contain every indexed data value and a corresponding rowid used to
locate the actual row. Each entry is sorted by (key, rowid). Within a leaf block, a key
and rowid is linked to its left and right sibling entries. The leaf blocks themselves are

5-10

Chapter 5
Overview of B-Tree Indexes

also doubly linked. In Figure 5-1 the leftmost leaf block (0-10) is linked to the second leaf
block (11-19).

" Note:

Indexes in columns with character data are based on the binary values of the
characters in the database character set.

Index Scans

ORACLE

In an index scan, the database retrieves a row by traversing the index, using the indexed
column values specified by the statement. If the database scans the index for a value, then it
will find this value in n I/Os where n is the height of the B-tree index. This is the basic
principle behind Oracle Database indexes.

If a SQL statement accesses only indexed columns, then the database reads values directly
from the index rather than from the table. If the statement accesses nonindexed columns in

addition to the indexed columns, then the database uses rowids to find the rows in the table.
Typically, the database retrieves table data by alternately reading an index block and then a
table block.

e Full Index Scan
In a full index scan, the database reads the entire index in order. A full index scan is
available if a predicate (WHERE clause) in the SQL statement references a column in the
index, and in some circumstances when no predicate is specified. A full scan can
eliminate sorting because the data is ordered by index key.

e Fast Full Index Scan
A fast full index scan is a full index scan in which the database accesses the data in the
index itself without accessing the table, and the database reads the index blocks in no
particular order.

* Index Range Scan
An index range scan is an ordered scan of an index in which one or more leading
columns of an index are specified in conditions, and 0, 1, or more values are possible for
an index key.

* Index Unique Scan
In contrast to an index range scan, an index unique scan must have either O or 1 rowid
associated with an index key.

e Index Skip Scan
An index skip scan uses logical subindexes of a composite index. The database "skips"
through a single index as if it were searching separate indexes.

e Index Clustering Factor
The index clustering factor measures row order in relation to an indexed value such as
employee last name. As the degree of order increases, the clustering factor decreases.

" See Also:

Oracle Database SQL Tuning Guide for detailed information about index scans

5-11

Chapter 5
Overview of B-Tree Indexes

Full Index Scan

In a full index scan, the database reads the entire index in order. A full index scan is
available if a predicate (WHERE clause) in the SQL statement references a column in
the index, and in some circumstances when no predicate is specified. A full scan can
eliminate sorting because the data is ordered by index key.

Example 5-1 Full Index Scan

Suppose that an application runs the following query:

SELECT department id, last name, salary
FROM employees

WHERE salary > 5000

ORDER BY department id, last name;

In this example, the department id, last name, and salary are a composite key in an
index. Oracle Database performs a full scan of the index, reading it in sorted order
(ordered by department ID and last name) and filtering on the salary attribute. In this
way, the database scans a set of data smaller than the employees table, which
contains more columns than are included in the query, and avoids sorting the data.

The full scan could read the index entries as follows:

50,Atkinson, 2800, rowid
60,Austin, 4800, rowid
70,Baer, 10000, rowid
80,Abel, 11000, rowid
80,Ande, 6400, rowid
110,Austin, 7200, rowid

Fast Full Index Scan

ORACLE

A fast full index scan is a full index scan in which the database accesses the data in
the index itself without accessing the table, and the database reads the index blocks in
no particular order.

Fast full index scans are an alternative to a full table scan when both of the following
conditions are met:

e The index must contain all columns needed for the query.

e Arow containing all nulls must not appear in the query result set. For this result to
be guaranteed, at least one column in the index must have either;

— ANOT NULL constraint

— A predicate applied to the column that prevents nulls from being considered in
the query result set

Example 5-2 Fast Full Index Scan

Assume that an application issues the following query, which does not include an
ORDER BY clause:

SELECT last name, salary
FROM employees;

5-12

Chapter 5
Overview of B-Tree Indexes

The last name column has a not null constraint. If the last name and salary are a composite
key in an index, then a fast full index scan can read the index entries to obtain the requested
information:

Baida, 2900, rowid
Atkinson, 2800, rowid
Zlotkey, 10500, rowid
Austin, 7200, rowid
Baer, 10000, rowid
Austin, 4800, rowid

Index Range Scan

An index range scan is an ordered scan of an index in which one or more leading columns
of an index are specified in conditions, and 0, 1, or more values are possible for an index key.

A condition specifies a combination of one or more expressions and logical (Boolean)
operators. It returns a value of TRUE, FALSE, Or UNKNOWN.

The database commonly uses an index range scan to access selective data. The selectivity
is the percentage of rows in the table that the query selects, with 0 meaning no rows and 1
meaning all rows. Selectivity is tied to a query predicate, such as WHERE last name LIKE
'A%', or a combination of predicates. A predicate becomes more selective as the value
approaches 0 and less selective (or more unselective) as the value approaches 1.

For example, a user queries employees whose last names begin with A. Assume that the
last_name column is indexed, with entries as follows:

Abel, rowid
Ande, rowid
Atkinson, rowid
Austin, rowid
Austin, rowid
Baer, rowid

The database could use a range scan because the last name column is specified in the
predicate and multiples rowids are possible for each index key. For example, two employees
are named Austin, so two rowids are associated with the key Austin.

An index range scan can be bounded on both sides, as in a query for departments with IDs
between 10 and 40, or bounded on only one side, as in a query for IDs over 40. To scan the
index, the database moves backward or forward through the leaf blocks. For example, a scan
for IDs between 10 and 40 locates the first index leaf block that contains the lowest key value
that is 10 or greater. The scan then proceeds horizontally through the linked list of leaf nodes
until it locates a value greater than 40.

Index Unique Scan

In contrast to an index range scan, an index unique scan must have either 0 or 1 rowid
associated with an index key.

ORACLE 5-13

Chapter 5
Overview of B-Tree Indexes

The database performs a unique scan when a predicate references all of the columns
in the key of a UNIQUE index using an equality operator. An index unique scan stops
processing as soon as it finds the first record because no second record is possible.

As an illustration, suppose that a user runs the following query:

SELECT *
FROM employees
WHERE employee id = 5;

Assume that the employee id column is the primary key and is indexed with entries as
follows:

1, rowid
2,rowid
4, rowid
5, rowid
6, rowid

In this case, the database can use an index unique scan to locate the rowid for the
employee whose ID is 5.

Index Skip Scan

ORACLE

An index skip scan uses logical subindexes of a composite index. The database
"skips" through a single index as if it were searching separate indexes.

Skip scanning is beneficial if there are few distinct values in the leading column of a
composite index and many distinct values in the nonleading key of the index. The
database may choose an index skip scan when the leading column of the composite
index is not specified in a query predicate.

Example 5-3 Skip Scan of a Composite Index

Assume that you run the following query for a customer in the sh.customers table:

SELECT * FROM sh.customers WHERE cust email =
'Abbeyl@company.example.com';

The customers table has a column cust gender whose values are either M or F.
Assume that a composite index exists on the columns (cust_gender, cust email).
The following example shows a portion of the index entries:

F,Wolf@company.example.com, rowid
F,Wolsey@company.example.com, rowid
F,Wood@company.example.com, rowid
F,Woodman@company.example.com, rowid
F,Yang@company.example.com, rowid

F, Zimmerman@company.example.com, rowid

5-14

Chapter 5
Overview of B-Tree Indexes

M, Abbassi@company.example.com, rowid
M, Abbey@company.example.com, rowid

The database can use a skip scan of this index even though cust gender is not specified in
the WHERE clause.

In a skip scan, the number of logical subindexes is determined by the number of distinct
values in the leading column. In the preceding example, the leading column has two possible
values. The database logically splits the index into one subindex with the key F and a second
subindex with the key M.

When searching for the record for the customer whose email is Abbey@company.example. com,
the database searches the subindex with the value F first and then searches the subindex
with the value M. Conceptually, the database processes the query as follows:

SELECT * FROM sh.customers WHERE cust gender = 'F'

AND cust email = 'Abbey@company.example.com'
UNION ALL
SELECT * FROM sh.customers WHERE cust gender = 'M'
AND cust email = 'Abbey@company.example.com';
See Also:

Oracle Database SQL Tuning Guide to learn more about skip scans

Index Clustering Factor

ORACLE

The index clustering factor measures row order in relation to an indexed value such as
employee last name. As the degree of order increases, the clustering factor decreases.

The clustering factor is useful as a rough measure of the number of I/Os required to read an
entire table using an index:

» If the clustering factor is high, then Oracle Database performs a relatively high number of
I/Os during a large index range scan. The index entries point to random table blocks, so
the database may have to read and reread the same blocks over and over again to
retrieve the data pointed to by the index.

» If the clustering factor is low, then Oracle Database performs a relatively low number of
I/Os during a large index range scan. The index keys in a range tend to point to the same
data block, so the database does not have to read and reread the same blocks over and
over.

The clustering factor is relevant for index scans because it can show:
* Whether the database will use an index for large range scans
* The degree of table organization in relation to the index key

* Whether you should consider using an index-organized table, partitioning, or table cluster
if rows must be ordered by the index key

5-15

ORACLE

Chapter 5
Overview of B-Tree Indexes

Example 5-4 Clustering Factor

Assume that the employees table fits into two data blocks. Table 5-3 depicts the rows
in the two data blocks (the ellipses indicate data that is not shown).

Table 5-3 Contents of Two Data Blocks in the Employees Table

|
Data Block 1 Data Block 2

100 Steven King SKING
156 Janette King JKING
115 Alexander Khoo AKHOO

149 Eleni Zlotkey EZLOTKEY ...
. 200 Jennifer Whalen JWHALEN
116 Shelli Baida SBAIDA

204 Hermann Baer HBAER

105 David Austin DAUSTIN .

130 Mozhe Atkinson MATKINSO ... 137 Renske Ladwig RLADWIG

166 Sundar Ande SANDE ... 173 Sundita Kumar SKUMAR

174 Ellen Abel EABEL ... 101 Neena Kochar NKOCHHAR ...

Rows are stored in the blocks in order of last name (shown in bold). For example, the
bottom row in data block 1 describes Abel, the next row up describes Ande, and so on
alphabetically until the top row in block 1 for Steven King. The bottom row in block 2
describes Kochar, the next row up describes Kumar, and so on alphabetically until the
last row in the block for Zlotkey.

Assume that an index exists on the last name column. Each name entry corresponds
to a rowid. Conceptually, the index entries would look as follows:

Abel,blocklrowl
Ande,blocklrow?2
Atkinson,blocklrow3
Austin,blocklrowid
Baer,blocklrowb

Assume that a separate index exists on the employee ID column. Conceptually, the
index entries might look as follows, with employee IDs distributed in almost random
locations throughout the two blocks:

100,blocklrow50
101,block2rowl
102,blocklrow9
103,block2rowl9
104,block2row39
105,blocklrowd

5-16

Chapter 5
Overview of B-Tree Indexes

The following statement queries the ALL INDEXES view for the clustering factor for these two
indexes:

SQL> SELECT INDEX NAME, CLUSTERING FACTOR
2 FROM ALL_INDEXES
3 WHERE INDEX NAME IN ('EMP_NAME IX',6 'EMP EMP ID PK');

INDEX_NAME CLUSTERING_FACTOR
EMP EMP ID PK 19
EMP NAME IX 2

The clustering factor for EMP_NAME IX is low, which means that adjacent index entries in a
single leaf block tend to point to rows in the same data blocks. The clustering factor for
EMP EMP ID PK is high, which means that adjacent index entries in the same leaf block are
much less likely to point to rows in the same data blocks.

¢ See Also:

Oracle Database Reference to learn about ALL INDEXES

Reverse Key Indexes

ORACLE

A reverse key index is a type of B-tree index that physically reverses the bytes of each index
key while keeping the column order.

For example, if the index key is 20, and if the two bytes stored for this key in hexadecimal are
C1,15 in a standard B-tree index, then a reverse key index stores the bytes as 15, C1.

Reversing the key solves the problem of contention for leaf blocks in the right side of a B-tree
index. This problem can be especially acute in an Oracle Real Application Clusters (Oracle
RAC) database in which multiple instances repeatedly modify the same block. For example,
in an orders table the primary keys for orders are sequential. One instance in the cluster
adds order 20, while another adds 21, with each instance writing its key to the same leaf
block on the right-hand side of the index.

In a reverse key index, the reversal of the byte order distributes inserts across all leaf keys in
the index. For example, keys such as 20 and 21 that would have been adjacent in a standard
key index are now stored far apart in separate blocks. Thus, I/O for insertions of sequential
keys is more evenly distributed.

Because the data in the index is not sorted by column key when it is stored, the reverse key
arrangement eliminates the ability to run an index range scanning query in some cases. For
example, if a user issues a query for order IDs greater than 20, then the database cannot
start with the block containing this ID and proceed horizontally through the leaf blocks.

5-17

Chapter 5
Overview of B-Tree Indexes

Ascending and Descending Indexes

In an ascending index, Oracle Database stores data in ascending order. By default,
character data is ordered by the binary values contained in each byte of the value,
numeric data from smallest to largest number, and date from earliest to latest value.

For an example of an ascending index, consider the following SQL statement:

CREATE INDEX emp deptid ix ON hr.employees (department id);

Oracle Database sorts the hr.employees table on the department id column. It loads
the ascending index with the department id and corresponding rowid values in
ascending order, starting with 0. When it uses the index, Oracle Database searches
the sorted department id values and uses the associated rowids to locate rows
having the requested department id value.

By specifying the DESC keyword in the CREATE INDEX Sstatement, you can create a
descending index. In this case, the index stores data on a specified column or columns
in descending order. If the index in Table 5-3 on the employees.department id column
were descending, then the leaf blocking containing 250 would be on the left side of the
tree and block with 0 on the right. The default search through a descending index is
from highest to lowest value.

Descending indexes are useful when a query sorts some columns ascending and
others descending. For an example, assume that you create a composite index on the
last name and department id columns as follows:

CREATE INDEX emp name dpt ix ON hr.employees (last name ASC,
department id DESC);

If a user queries hr.employees for last names in ascending order (A to Z) and
department IDs in descending order (high to low), then the database can use this
index to retrieve the data and avoid the extra step of sorting it.

" See Also:

e Oracle Database SQL Tuning Guide to learn more about ascending and
descending index searches

e Oracle Database SQL Language Reference for descriptions of the AsC
and DESC options of CREATE INDEX

Index Compression

To reduce space in indexes, Oracle Database can employ different compression
algorithms.

ORACLE 5-18

Chapter 5
Overview of B-Tree Indexes

* Prefix Compression
Oracle Database can use prefix compression, also known as key compression, to
compress portions of the primary key column values in a B-tree index or an index-
organized table. Prefix compression can greatly reduce the space consumed by the
index.

* Advanced Index Compression
Starting with Oracle Database 12c¢ Release 1 (12.1.0.2), advanced index compression
improves on traditional prefix compression for supported indexes on heap-organized
tables.

Prefix Compression

ORACLE

Oracle Database can use prefix compression, also known as key compression, to
compress portions of the primary key column values in a B-tree index or an index-organized
table. Prefix compression can greatly reduce the space consumed by the index.

An uncompressed index entry has one piece. An index entry using prefix compression has
two pieces: a prefix entry, which is the grouping piece, and a suffix entry, which is the unique
or nearly unique piece. The database achieves compression by sharing the prefix entries
among the suffix entries in an index block.

" Note:

If a key is not defined to have a unique piece, then the database provides one by
appending a rowid to the grouping piece.

By default, the prefix of a unique index consists of all key columns excluding the last one,
whereas the prefix of a nonunique index consists of all key columns. Suppose you create a
composite, unique index on two columns of the oe.orders table as follows:

CREATE UNIQUE INDEX orders mod stat ix ON orders (order mode, order status);

In the preceding example, an index key might be online, 0. The rowid is stored in the key
data portion of the entry, and is not part of the key itself.

¢ Note:

If you create a unique index on a single column, then Oracle Database cannot use
prefix key compression because no common prefixes exist.

Alternatively, suppose you create a nonunigue index on the same columns:

CREATE INDEX orders mod stat ix ON orders (order mode, order status);

Also assume that repeated values occur in the order mode and order status columns. An
index block could have entries as shown in the follow example:

online, 0, AAAPVCAAFAAAAFaAAa
online, 0, AAAPVCAAFAAAAFaAAg
online, 0, AAAPVCAAFAAAAFaAAlL
online, 2, AAAPVCAAFAAAAFaAAm

5-19

ORACLE

Chapter 5
Overview of B-Tree Indexes

online, 3, AAAPVCAAFAAAAFaAAqQ
online, 3, AAAPVCAAFAAAAFaAAtL

In the preceding example, the key prefix would consist of a concatenation of the

order mode and order status values, as in online, 0. The suffix consists in the rowid,
as in AAAPVCAAFAAAAFaAAa. The rowid makes the whole index entry unique because a
rowid is itself unique in the database.

If the index in the preceding example were created with default prefix compression
(specified by the coMPRESS keyword), then duplicate key prefixes such as online,0 and
online,3 would be compressed. Conceptually, the database achieves compression as
follows:

online, 0
AAAPVCAAFAAAAFaAAa
AAAPvCAAFAAAAFaAAg
AAAPVCAAFAAAAFaAAlL
online, 2
AAAPVCAAFAAAAFaAAm
online, 3
AAAPvCAAFAAAAFaAAq
AAAPVCAAFAAAAFaAAt

Suffix entries (the rowids) form the compressed version of index rows. Each suffix
entry references a prefix entry, which is stored in the same index block as the suffix.

Alternatively, you could specify a prefix length when creating an index that uses prefix
compression. For example, if you specified COMPRESS 1, then the prefix would be
order mode and the suffix would be order status, rowid. For the values in the index
block example, the index would factor out duplicate occurrences of the prefix online,
which can be represented conceptually as follows:

online

0, AAAPVCAAFAAAAFaAAa
0, AAAPVCAAFAAAAFaAAg
0, AAAPVCAAFAAAAFaAAL
2,AAAPVCAAFAAAAFaAAM
3, AAAPVCAAFAAAAFaAAqQ
3, AAAPVCAAFAAAAFaAAL

The index stores a specific prefix once per leaf block at most. Only keys in the leaf
blocks of a B-tree index are compressed. In the branch blocks the key suffix can be
truncated, but the key is not compressed.

¢ See Also:

e Oracle Database Administrator's Guide to learn how to use compressed
indexes

e Oracle Database VLDB and Partitioning Guide to learn how to use prefix
compression for partitioned indexes

e Oracle Database SQL Language Reference for descriptions of the
key compression clause of CREATE INDEX

5-20

Chapter 5
Overview of B-Tree Indexes

Advanced Index Compression

Starting with Oracle Database 12c Release 1 (12.1.0.2), advanced index compression
improves on traditional prefix compression for supported indexes on heap-organized tables.

Benefits of Advanced Index Compression

Prefix compression has limitations for types of indexes supported, compression ratio, and
ease of use. Unlike prefix compression, which uses fixed duplicate key elimination for every
block, advanced index compression uses adaptive duplicate key elimination on a per-block
basis. The main advantages of advanced index compression are:

* The database automatically chooses the best compression for each block, using a
number of internal algorithms such as intra-column level prefixes, duplicate key
elimination, and rowid compression. Unlike in prefix compression, advanced index
compression does not require the user to know data characteristics.

* Advanced compression works on both non-unique and unique indexes. Prefix
compression works well on some non-unique indexes, but the ratios are lower on indexes
whose leading columns do not have many repeats.

* The compressed index is usable in the same way as an uncompressed index. The index
supports the same access paths: unique key lookups, range scans, and fast full scans.

* Indexes can inherit advanced compression from a parent table or containing tablespace.

How Advanced Index Compression Works

Advanced index compression works at the block level to provide the best compression for
each block. The database uses the following technique:

e During index creation, as a leaf block becomes full, the database automatically
compresses the block to the optimal level.

e When reorganizing an index block as a result of DML, if the database can create
sufficient space for the incoming index entry, then a block split does not occur. During
DML without advanced index compression, however, an index block split always occurs
when the block becomes full.

Advanced Index Compression HIGH

In releases previous to Oracle Database 12c Release 2 (12.2), the only form of advanced
index compression was low compression (COMPRESS ADVANCED LOW). Now you can also
specify high compression (COMPRESS ADVANCED HIGH), which is the default. Advanced index
compression with the HIGH option offers the following advantages:

e Gives higher compression ratios in most cases, while also improving performance for
gueries that access the index

e Employs more complex compression algorithms than advanced low

e Stores data in a compression unit, which is a special on-disk format

ORACLE 5-21

Overview

ORACLE

Chapter 5
Overview of Bitmap Indexes

< Note:

When you apply HIGH compression, all blocks have compression. When you
apply Low compression, the database may leave some blocks
uncompressed. You can use statistics to determine how many blocks were
left uncompressed.

Example 5-5 Creating an Index with Advanced High Compression
This example enables advanced index compression for an index on the hr.employees
table:

CREATE INDEX hr.emp mndp ix
ON hr.employees (manager id, department id)
COMPRESS ADVANCED;

The following query shows the type of compression:
SELECT COMPRESSION FROM DBA INDEXES WHERE INDEX NAME ='EMP MNDP IX';

COMPRESSION

ADVANCED HIGH

¢ See Also:

* Oracle Database Administrator’s Guide to learn how to enable advanced
index compression

e Oracle Database SQL Language Referencefor descriptions of the
key compression clause of CREATE INDEX

* Oracle Database Reference to learn about ALL INDEXES

of Bitmap Indexes

In a bitmap index, the database stores a bitmap for each index key. In a conventional
B-tree index, one index entry points to a single row. In a bitmap index, each index key
stores pointers to multiple rows.

Bitmap indexes are primarily designed for data warehousing or environments in which
gueries reference many columns in an ad hoc fashion. Situations that may call for a
bitmap index include:

* The indexed columns have low cardinality, that is, the number of distinct values is
small compared to the number of table rows.

* The indexed table is either read-only or not subject to significant modification by
DML statements.

5-22

Chapter 5
Overview of Bitmap Indexes

For a data warehouse example, the sh.customers table has a cust gender column with only
two possible values: M and F. Suppose that queries for the number of customers of a
particular gender are common. In this case, the customers.cust gender column would be a
candidate for a bitmap index.

Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then the row with the
corresponding rowid contains the key value. A mapping function converts the bit position to
an actual rowid, so the bitmap index provides the same functionality as a B-tree index
although it uses a different internal representation.

If the indexed column in a single row is updated, then the database locks the index key entry
(for example, M or F) and not the individual bit mapped to the updated row. Because a key
points to many rows, DML on indexed data typically locks all of these rows. For this reason,
bitmap indexes are not appropriate for many OLTP applications.

» Example: Bitmap Indexes on a Single Table
In this example, some columns of sh.customers table are candidates for a bitmap index.

e Bitmap Join Indexes
A bitmap join index is a bitmap index for the join of two or more tables.

* Bitmap Storage Structure
Oracle Database uses a B-tree index structure to store bitmaps for each indexed key.

See Also:

e Oracle Database SQL Tuning Guide to learn more about bitmap indexes

e Oracle Database Data Warehousing Guide to learn how to use bitmap indexes
in a data warehouse

Example: Bitmap Indexes on a Single Table

In this example, some columns of sh.customers table are candidates for a bitmap index.

Consider the following query:

SQL> SELECT cust id, cust last name, cust marital status, cust gender
2 FROM sh.customers
3 WHERE ROWNUM < 8 ORDER BY cust id;

CUST_ID CUST LAST CUST MAR C

1

2

3 Emmerson

4 Hardy

5 Gowen

6 Charles single
7 Ingram single

L I L S

7 rows selected.

ORACLE 5-23

Chapter 5
Overview of Bitmap Indexes

The cust marital status and cust gender columns have low cardinality, whereas
cust_idand cust last name do not. Thus, bitmap indexes may be appropriate on
cust marital status and cust gender. A bitmap index is probably not useful for the
other columns. Instead, a unique B-tree index on these columns would likely provide
the most efficient representation and retrieval.

Table 5-4 illustrates the bitmap index for the cust gender column output shown in the
preceding example. It consists of two separate bitmaps, one for each gender.

Table 5-4 Sample Bitmap for One Column
|

Value Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7
M 1 0 1 1 1 0 0
F 0 1 0 0 0 1 1

A mapping function converts each bit in the bitmap to a rowid of the customers table.
Each bit value depends on the values of the corresponding row in the table. For
example, the bitmap for the M value contains a 1 as its first bit because the gender is M
in the first row of the customers table. The bitmap cust gender='M' has a 0 for the
bits in rows 2, 6, and 7 because these rows do not contain M as their value.

Note:

Bitmap indexes can include keys that consist entirely of null values, unlike B-
tree indexes. Indexing nulls can be useful for some SQL statements, such as
queries with the aggregate function COUNT.

An analyst investigating demographic trends of the customers may ask, "How many of
our female customers are single or divorced?" This question corresponds to the
following SQL query:

SELECT COUNT (*)

FROM customers

WHERE cust gender = 'F'

AND cust marital status IN ('single', 'divorced');

Bitmap indexes can process this query efficiently by counting the number of 1 values
in the resulting bitmap, as illustrated in Table 5-5. To identify the customers who satisfy
the criteria, Oracle Database can use the resulting bitmap to access the table.

Table 5-5 Sample Bitmap for Two Columns
|

Value Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7
M 1 0 1 1 1 0 0
F 0 1 0 0 0 1 1
single 0 0 0 0 0 1 1
divorced O 0 0 0 0 0 0

ORACLE 5-24

Chapter 5
Overview of Bitmap Indexes

Table 5-5 (Cont.) Sample Bitmap for Two Columns
|

Value Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7
singleor O 0 0 0 0 1 1
divorced

and F

Bitmap indexing efficiently merges indexes that correspond to several conditions in a WHERE
clause. Rows that satisfy some, but not all, conditions are filtered out before the table itself is
accessed. This technique improves response time, often dramatically.

Bitmap Join Indexes

A bitmap join index is a bitmap index for the join of two or more tables.

For each value in a table column, the index stores the rowid of the corresponding row in the
indexed table. In contrast, a standard bitmap index is created on a single table.

A bitmap join index is an efficient means of reducing the volume of data that must be joined
by performing restrictions in advance. For an example of when a bitmap join index would be
useful, assume that users often query the number of employees with a particular job type. A
typical query might look as follows:

SELECT COUNT (*)

FROM employees, jobs

WHERE employees.job id = jobs.job id
AND jobs.job title = 'Accountant';

The preceding query would typically use an index on jobs.job_title to retrieve the rows for
Accountant and then the job ID, and an index on employees.job id to find the matching
rows. To retrieve the data from the index itself rather than from a scan of the tables, you could
create a bitmap join index as follows:

CREATE BITMAP INDEX employees bm idx
ON employees (jobs.job title)

FROM employees, jobs

WHERE employees.job id = jobs.job id;

As illustrated in the following figure, the index key is jobs.job title and the indexed table is
employees.

ORACLE 5-25

Figure 5-2 Bitmap Join Index

| department_id
40
70
110
110

| salary
6500
10000
12000
8300

Chapter 5

Overview of Bitmap Indexes

—
> [}
5 p
[
o o w® - E
|oooco *’| 3 |
EEE=E=2ck<] a 1 q
ocooonN
E|lod-+ o |- O
- Em Eal
I ; Y
el K nd Q9
] 0 on 0
= m 84
Jlgsggg . | 2|35 !
£(8838 3 & - O
E|SI<O© X Ewnuw-d
—1 x g9 |
$ | «994
e |2 |gT8
E.Z gmmm
=3 Hooo
o8 000
ac R
200 %ooo
=289 o
588, EERE
gﬁmg m [}
» PL T m —
Loat 31
S5§090 SE
208 @ é CH
rogd Z & @
of s § U0
olscCa
E|2c8Law
| SESQ |
Q| 855 T .
S|l=Taw !
Qoo
W W g
.‘QI ﬂf‘n:ln:‘n:‘
1]
o|lXoro<
S o|3Tam

Indexed table is employees —l

TYYY
o|lod
=| L 1L 11
S|lcccc
)
Elmms~
£|locococo
=
U
@
=)

g
— =10
Sloooco
Elv--+&
€
=3
3
oo Q
2leels
al J006
Jiloo
Llcaodm
®
&
Ele 2
Jlsson
HERE
SlEoED
kel

»

2 o

o 9

> >

o Qo

a2 Slotwo .

£ Elooco

§ o|ldxqx 1

Conceptually, employees bm idx is an index of the jobs.title column in the SQL
query shown in the following query (sample output included). The job title key in the
index points to rows in the employees table. A query of the number of accountants can
use the index to avoid accessing the employees and jobs tables because the index

itself contains the requested information.

SELECT jobs.job title AS "jobs.job title", employees.rowid AS

"employees.rowid"
FROM employees, jobs

WHERE employees.job id = jobs.job_ id

ORDER BY job title;

jobs.job title

Accountant

Accountant

Accountant

Accountant

Accountant

Accounting Manager
Administration Assistant
Administration Vice President
Administration Vice President

ORACLE

employees.rowid

AAAQNKAAFAAAABSAAL
AAAQNKAAFAAAABSAAN
AAAQNKAAFAAAABSAAM
AAAQNKAAFAAAABSAAJ
AAAQNKAAFAAAABSAAK
AAAQNKAAFAAAABTAAH
AAAQNKAAFAAAABTAAC
AAAQNKAAFAAAABSAAC
AAAQNKAAFAAAABSAAB

5-26

Chapter 5
Overview of Bitmap Indexes

In a data warehouse, the join condition is an equijoin (it uses the equality operator) between
the primary key columns of the dimension tables and the foreign key columns in the fact
table. Bitmap join indexes are sometimes much more efficient in storage than materialized
join views, an alternative for materializing joins in advance.

¢ See Also:

Oracle Database Data Warehousing Guide for more information on bitmap join
indexes

Bitmap Storage Structure

Oracle Database uses a B-tree index structure to store bitmaps for each indexed key.

For example, if jobs.job title is the key column of a bitmap index, then one B-tree stores
the index data. The leaf blocks store the individual bitmaps.

Example 5-6 Bitmap Storage Example

Assume that the jobs.job title column has unique values Shipping Clerk, Stock Clerk,
and several others. A bitmap index entry for this index has the following components:

e The job title as the index key
* Alow rowid and high rowid for a range of rowids
* A bitmap for specific rowids in the range

Conceptually, an index leaf block in this index could contain entries as follows:

Shipping Clerk, AAAPZRAAFAAAABSABQ, AAAPZRAAFAAAABSABZ, 0010000100
Shipping Clerk, AAAPZRAAFAAAABSABa, AAAPZRAAFAAAABSABhL, 010010
Stock Clerk,AAAPzRAAFAAAABSAAa, AAAPzRAAFAAAABSAAC,1001001100
Stock Clerk,AAAPzRAAFAAAABSAAd, AAAPzZRAAFAAAABSAAL, 0101001001
Stock Clerk,AAAPzRAAFAAAABSAAuU, AAAPzZRAAFAAAABSABz, 100001

The same job title appears in multiple entries because the rowid range differs.

A session updates the job ID of one employee from Shipping Clerk to Stock Clerk. In this
case, the session requires exclusive access to the index key entry for the old value (Shipping
Clerk) and the new value (Stock Clerk). Oracle Database locks the rows pointed to by these
two entries—but not the rows pointed to by Accountant or any other key—until the UPDATE
commits.

The data for a bitmap index is stored in one segment. Oracle Database stores each bitmap in
one or more pieces. Each piece occupies part of a single data block.

ORACLE 5-27

Chapter 5
Overview of Function-Based Indexes

¢ See Also:

"User Segments" explains the different types of segments, and how
segments are created

Overview of Function-Based Indexes

A function-based index computes the value of a function or expression involving one
or more columns and stores it in an index. A function-based index can be either a B-
tree or a bitmap index.

The indexed function can be an arithmetic expression or an expression that contains a
SQL function, user-defined PL/SQL function, package function, or C callout. For
example, a function could add the values in two columns.

» Uses of Function-Based Indexes
Function-based indexes are efficient for evaluating statements that contain
functions in their WHERE clauses. The database only uses the function-based index
when the function is included in a query. When the database processes INSERT
and UPDATE statements, however, it must still evaluate the function to process the
statement.

e Optimization with Function-Based Indexes
For queries with expressions in a WHERE clause, the optimizer can use an index
range scan on a function-based index.

See Also:

e Oracle Database Administrator’s Guide to learn how to create function-
based indexes

e Oracle Database Development Guide for more information about using
function-based indexes

e Oracle Database SQL Language Referencefor restrictions and usage
notes for function-based indexes

Uses of Function-Based Indexes

ORACLE

Function-based indexes are efficient for evaluating statements that contain functions in
their WHERE clauses. The database only uses the function-based index when the
function is included in a query. When the database processes INSERT and UPDATE
statements, however, it must still evaluate the function to process the statement.

Example 5-7 Index Based on Arithmetic Expression

For example, suppose you create the following function-based index:

CREATE INDEX emp total sal idx
ON employees (12 * salary * commission pct, salary, commission pct);

5-28

Chapter 5
Overview of Function-Based Indexes

The database can use the preceding index when processing queries such as the following
(partial sample output included):

SELECT employee id, last name, first name,
12*salary*commission pct AS "ANNUAL SAL"

FROM employees

WHERE (12 * salary * commission pct) < 30000

ORDER BY "ANNUAL SAL" DESC;

EMPLOYEE ID LAST NAME FIRST NAME ANNUAL SAL
159 Smith Lindsey 28800
151 Bernstein David 28500
152 Hall Peter 27000
160 Doran Louise 27000
175 Hutton Alyssa 26400
149 Zlotkey Eleni 25200
169 Bloom Harrison 24000

Example 5-8 Index Based on an UPPER Function

Function-based indexes defined on the SQL functions UPPER (column name) Of

LOWER (column name) facilitate case-insensitive searches. For example, suppose that the
first name column in employees contains mixed-case characters. You create the following
function-based index on the hr.employees table:

CREATE INDEX emp fname uppercase idx
ON employees (UPPER(first name));

The emp fname uppercase idx index can facilitate queries such as the following:

SELECT *
FROM employees
WHERE UPPER(first name) = 'AUDREY';

Example 5-9 Indexing Specific Rows in a Table

A function-based index is also useful for indexing only specific rows in a table. For example,
the cust valid column in the sh.customers table has either I or A as a value. To index only
the A rows, you could write a function that returns a null value for any rows other than the A
rows. You could create the index as follows:

CREATE INDEX cust valid idx
ON customers (CASE cust_valid WHEN 'A' THEN 'A' END);

See Also:

e Oracle Database Globalization Support Guide for information about linguistic
indexes

e Oracle Database SQL Language Reference to learn more about SQL functions

ORACLE 5-29

Chapter 5
Overview of Application Domain Indexes

Optimization with Function-Based Indexes

For queries with expressions in a WHERE clause, the optimizer can use an index range
scan on a function-based index.

The range scan access path is especially beneficial when the predicate is highly
selective, that is, when it chooses relatively few rows. In Example 5-7, if an index is
built on the expression 12*salary*commission pct, then the optimizer can use an
index range scan.

A virtual column is also useful for speeding access to data derived from expressions.
For example, you could define virtual column annual sal as
12*salary*commission pct and create a function-based index on annual sal.

The optimizer performs expression matching by parsing the expression in a SQL
statement and then comparing the expression trees of the statement and the function-
based index. This comparison is case-insensitive and ignores blank spaces.

See Also:

e "Overview of the Optimizer"

e Oracle Database SQL Tuning Guide to learn more about gathering
statistics

e Oracle Database Administrator’s Guide to learn how to add virtual
columns to a table

Overview of Application Domain Indexes

An application domain index is a customized index specific to an application.
Extensive indexing can:

e Accommodate indexes on customized, complex data types such as documents,
spatial data, images, and video clips (see)

* Make use of specialized indexing techniques

You can encapsulate application-specific index management routines as an indextype
schema object, and then define a domain index on table columns or attributes of an
object type. Extensible indexing can efficiently process application-specific operators.

The application software, called the cartridge, controls the structure and content of a
domain index. The database interacts with the application to build, maintain, and
search the domain index. The index structure itself can be stored in the database as
an index-organized table or externally as a file.

ORACLE 5-30

Chapter 5
Overview of Index-Organized Tables

¢ See Also:

e Oracle Database Development Guide to learn more about complex data types

e Oracle Database Data Cartridge Developer's Guide for information about using
data cartridges within the Oracle Database extensibility architecture

Overview of Index-Organized Tables

ORACLE

An index-organized table is a table stored in a variation of a B-tree index structure. In
contrast, a heap-organized table inserts rows where they fit.

In an index-organized table, rows are stored in an index defined on the primary key for the
table. Each index entry in the B-tree also stores the non-key column values. Thus, the index
is the data, and the data is the index. Applications manipulate index-organized tables just like
heap-organized tables, using SQL statements.

For an analogy of an index-organized table, suppose a human resources manager has a
book case of cardboard boxes. Each box is labeled with a number—1, 2, 3, 4, and so on—
but the boxes do not sit on the shelves in sequential order. Instead, each box contains a
pointer to the shelf location of the next box in the sequence.

Folders containing employee records are stored in each box. The folders are sorted by
employee ID. Employee King has ID 100, which is the lowest ID, so his folder is at the bottom
of box 1. The folder for employee 101 is on top of 100, 102 is on top of 101, and so on until
box 1 is full. The next folder in the sequence is at the bottom of box 2.

In this analogy, ordering folders by employee ID makes it possible to search efficiently for
folders without having to maintain a separate index. Suppose a user requests the records for
employees 107, 120, and 122. Instead of searching an index in one step and retrieving the
folders in a separate step, the manager can search the folders in sequential order and
retrieve each folder as found.

Index-organized tables provide faster access to table rows by primary key or a valid prefix of
the key. The presence of non-key columns of a row in the leaf block avoids an additional data
block 1/0. For example, the salary of employee 100 is stored in the index row itself. Also,
because rows are stored in primary key order, range access by the primary key or prefix
involves minimal block I/Os. Another benefit is the avoidance of the space overhead of a
separate primary key index.

Index-organized tables are useful when related pieces of data must be stored together or
data must be physically stored in a specific order. A typical use of this type of table is for
information retrieval, spatial data, and OLAP applications.

* Index-Organized Table Characteristics
The database system performs all operations on index-organized tables by manipulating
the B-tree index structure.

* Index-Organized Tables with Row Overflow Area
When creating an index-organized table, you can specify a separate segment as a row
overflow area.

e Secondary Indexes on Index-Organized Tables
A secondary index is an index on an index-organized table.

5-31

¢ See Also:

Spatial and Graph

organized tables

Index-Organized Table Characteristics

The database system performs all operations on index-organized tables by

ORACLE

manipulating the B-tree index structure.

Chapter 5
Overview of Index-Organized Tables

e Oracle Spatial and Graph Developer's Guide for an overview of Oracle
e Oracle Database Administrator’s Guide to learn how to manage index-

e Oracle Database SQL Language Reference for CREATE TABLE ...
ORGANIZATION INDEX syntax and semantics

The following table summarizes the differences between index-organized tables and

heap-organized tables.

Table 5-6 Comparison of Heap-Organized Tables with Index-Organized Tables
|

Heap-Organized Table

Index-Organized Table

The rowid uniquely identifies a row. Primary
key constraint may optionally be defined.

Physical rowid in ROWID pseudocolumn allows
building secondary indexes.

Individual rows may be accessed directly by
rowid.

Sequential full table scan returns all rows in
some order.

Can be stored in a table cluster with other
tables.

Can contain a column of the LONG data type
and columns of LOB data types.

Can contain virtual columns (only relational
heap tables are supported).

Primary key uniquely identifies a row. Primary
key constraint must be defined.

Logical rowid in ROWID pseudocolumn allows
building secondary indexes.

Access to individual rows may be achieved
indirectly by primary key.

A full index scan or fast full index scan returns
all rows in some order.

Cannot be stored in a table cluster.

Can contain LOB columns but not LONG
columns.

Cannot contain virtual columns.

Index-Organized Tables can be compressed using Advanced Low compression by
adding the COMPRESS ADVANCED LOW clause to the CREATE TABLE statement. Advanced
Low compression is an adaptive form of prefix compression that autonomously
calculates the optimal number of prefix columns for every leaf block, leading to optimal
compression at the block level without any user intervention. This includes the
possibility of not compressing at all, if appropriate. This guarantees that negative
compression is not possible. Greater compression ratios are observed with negligible

overall overhead.

Scans on index-organized tables may be offloaded to Exadata Smart Scan where the
optimizer has deemed the query can be executed as a fast full scan. This does not
require any user intervention. Full cell side processing will be supported on index-
organized table leaf blocks where all columns of interest reside in the leaf block. For

5-32

Chapter 5
Overview of Index-Organized Tables

cases where some columns reside in the overflow segment, smart scan will not process such
columns and the database will complete the scan.

Figure 5-3 illustrates the structure of an index-organized departments table. The leaf blocks
contain the rows of the table, ordered sequentially by primary key. For example, the first value
in the first leaf block shows a department ID of 20, department name of Marketing, manager
ID of 201, and location ID of 1800.

Figure 5-3 Index-Organized Table

ORACLE

260,Rectuiting,, 1700
270,Payroll,, 1700

200..220

221..230

e 260..270
200,0perations,,1700
210,IT Support,,1700

220,NOC,,1700

0..60
61..100

107..160
200..270

v

61..68
69..73
74..85

50,Shipping,121,1500
60,IT,103,1400

98..100

U U U

v

0..30
31..60

Leaf Blocks |
20,Marketing,201,1800
30,Purchasing,114,1700

Branch Blocks

Example 5-10 Scan of Index-Organized Table

An index-organized table stores all data in the same structure and does not need to store the
rowid. As shown in Figure 5-3, leaf block 1 in an index-organized table might contain entries
as follows, ordered by primary key:

20,Marketing,201,1800
30, Purchasing,114,1700

Leaf block 2 in an index-organized table might contain entries as follows:

50, Shipping, 121, 1500
60,1T,103,1400

5-33

Chapter 5
Overview of Index-Organized Tables

A scan of the index-organized table rows in primary key order reads the blocks in the
following sequence:

1. Block1
2. Block 2
Example 5-11 Scan of Heap-Organized Table

To contrast data access in a heap-organized table to an index-organized table,
suppose block 1 of a heap-organized departments table segment contains rows as
follows:

50, Shipping,121,1500
20,Marketing,201,1800

Block 2 contains rows for the same table as follows:

30, Purchasing,114,1700
60,IT,103,1400

A B-tree index leaf block for this heap-organized table contains the following entries,
where the first value is the primary key and the second is the rowid:

20, AAAPeXAAFAAAAAYAAD
30, AAAPeXAAFARARAYAAA
50, AAAPeXAAFAAAAAYAAC
60, AAAPeXAAFAAAAAYAAB

A scan of the table rows in primary key order reads the table segment blocks in the
following sequence:

1. Block1
2. Block 2
3. Block1
4. Block 2

Thus, the number of block I/Os in this example is double the number in the index-
organized example.

¢ See Also:

e "Table Organization”
to learn more about heap-organized tables
e "Introduction to Logical Storage Structures"

to learn more about the relationship between segments and data blocks

ORACLE 5-34

Chapter 5
Overview of Index-Organized Tables

Index-Organized Tables with Row Overflow Area

When creating an index-organized table, you can specify a separate segment as a row
overflow area.

In index-organized tables, B-tree index entries can be large because they contain an entire
row, so a separate segment to contain the entries is useful. In contrast, B-tree entries are
usually small because they consist of the key and rowid.

If a row overflow area is specified, then the database can divide a row in an index-organized
table into the following parts:

* The index entry

This part contains column values for all the primary key columns, a physical rowid that
points to the overflow part of the row, and optionally a few of the non-key columns. This
part is stored in the index segment.

e The overflow part

This part contains column values for the remaining non-key columns. This part is stored
in the overflow storage area segment.

See Also:
* Oracle Database Administrator’s Guide to learn how to use the OVERFLOW clause
of CREATE TABLE to set a row overflow area

e Oracle Database SQL Language Referencefor CREATE TABLE ... OVERFLOW
syntax and semantics

Secondary Indexes on Index-Organized Tables

A secondary index is an index on an index-organized table.

In a sense, a secondary index is an index on an index. It is an independent schema object
and is stored separately from the index-organized table.

Oracle Database uses row identifiers called logical rowids for index-organized tables. A
logical rowid is a base64-encoded representation of the table primary key. The logical rowid
length depends on the primary key length.

Rows in index leaf blocks can move within or between blocks because of insertions. Rows in
index-organized tables do not migrate as heap-organized rows do. Because rows in index-
organized tables do not have permanent physical addresses, the database uses logical
rowids based on primary key.

For example, assume that the departments table is index-organized. The location id
column stores the ID of each department. The table stores rows as follows, with the last value
as the location ID:

10,Administration,200,1700
20,Marketing,201,1800

ORACLE 5-35

Chapter 5
Overview of Index-Organized Tables

30, Purchasing,114,1700
40, Human Resources,203,2400

A secondary index on the location id column might have index entries as follows,
where the value following the comma is the logical rowid:

1700, *BAFAJqoCWR/+
1700, *BAFAJqoCWQV+
1800, *BAFAJqOCWRX+
2400, *BAFAJGoCwSn+

Secondary indexes provide fast and efficient access to index-organized tables using
columns that are neither the primary key nor a prefix of the primary key. For example,
a query of the names of departments whose ID is greater than 1700 could use the
secondary index to speed data access.

* Logical Rowids and Physical Guesses
Secondary indexes use logical rowids to locate table rows.

» Bitmap Indexes on Index-Organized Tables
A secondary index on an index-organized table can be a bitmap index. A bitmap
index stores a bitmap for each index key.

¢ See Also:

e "Rowid Data Types" to learn more about the use of rowids, and the
ROWID pseudocolumn

e "Chained and Migrated Rows "

to learn why rows migrate, and why migration increases the number of
I/Os

e Oracle Database Administrator’s Guide to learn how to create secondary
indexes on an index-organized table

e Oracle Database VLDB and Partitioning Guide to learn about creating
secondary indexes on indexed-organized table partitions

Logical Rowids and Physical Guesses

ORACLE

Secondary indexes use logical rowids to locate table rows.

A logical rowid includes a physical guess, which is the physical rowid of the index
entry when it was first made. Oracle Database can use physical guesses to probe
directly into the leaf block of the index-organized table, bypassing the primary key
search. When the physical location of a row changes, the logical rowid remains valid
even if it contains a physical guess that is stale.

For a heap-organized table, access by a secondary index involves a scan of the
secondary index and an additional 1/O to fetch the data block containing the row. For
index-organized tables, access by a secondary index varies, depending on the use
and accuracy of physical guesses:

5-36

Chapter 5
Overview of Index-Organized Tables

* Without physical guesses, access involves two index scans: a scan of the secondary
index followed by a scan of the primary key index.

* With physical guesses, access depends on their accuracy:

— With accurate physical guesses, access involves a secondary index scan and an
additional I/O to fetch the data block containing the row.

— With inaccurate physical guesses, access involves a secondary index scan and an
I/O to fetch the wrong data block (as indicated by the guess), followed by an index
unique scan of the index-organized table by primary key value.

Bitmap Indexes on Index-Organized Tables

A secondary index on an index-organized table can be a bitmap index. A bitmap index
stores a bitmap for each index key.

When bitmap indexes exist on an index-organized table, all the bitmap indexes use a heap-
organized mapping table. The mapping table stores the logical rowids of the index-organized
table. Each mapping table row stores one logical rowid for the corresponding index-organized
table row.

The database accesses a bitmap index using a search key. If the database finds the key, then
the bitmap entry is converted to a physical rowid. With heap-organized tables, the database
uses the physical rowid to access the base table. With index-organized tables, the database
uses the physical rowid to access the mapping table, which in turn yields a logical rowid that
the database uses to access the index-organized table. The following figure illustrates index
access for a query of the departments_iot table.

Figure 5-4 Bitmap Index on Index-Organized Table

logical rowid in IOT
BAFAJgoCwRX+
*BAGAJqoCwRX+

Mapping Table

e

Index-Organized Table
I%I?I'EIUE'

20, Marketing, 201, 1800

_id = 1800

Select * from departments_iot

location id, physical rowid in mapping table
1800, AAAPeXAAFAAAAAYAAD

1900, AABPeXAAFAAAAAYAAE

where location_id

Index of Mapping Table

¢ Note:

Movement of rows in an index-organized table does not leave the bitmap indexes
built on that index-organized table unusable.

ORACLE 5-37

Chapter 5
Overview of Index-Organized Tables

¢ See Also:

"Rowids of Row Pieces" to learn about the differences between physical and
logical rowids

ORACLE 5-38

Partitions, Views, and Other Schema Obijects

Although tables and indexes are the most important and commonly used schema objects, the
database supports many other types of schema objects, the most common of which are
discussed in this chapter.

e Overview of Partitions
In an Oracle database, partitioning enables you to decompose very large tables and
indexes into smaller and more manageable pieces called partitions. Each partition is an
independent object with its own name and optionally its own storage characteristics.

e Overview of Sharded Tables
In an Oracle database, sharding enables you to break up a large table into more
manageable pieces called shards that can be stored in multiple databases.

e Overview of Views
A view is a logical representation of one or more tables. In essence, a view is a stored

query.

e Overview of Materialized Views
A materialized view is a query result that has been stored or "materialized" in advance
as a schema object. The FrOM clause of the query can name tables, views, or
materialized views.

e Overview of Sequences
A sequence is a schema object from which multiple users can generate unique integers.
A sequence generator provides a highly scalable and well-performing method to generate
surrogate keys for a number data type.

* Overview of Dimensions
A typical data warehouse has two important components: dimensions and facts.

e Overview of Synonyms
A synonym is an alias for a schema object. For example, you can create a synonym for
a table or view, sequence, PL/SQL program unit, user-defined object type, or another
synonym. Because a synonym is simply an alias, it requires no storage other than its
definition in the data dictionary.

Overview of Partitions

ORACLE

In an Oracle database, partitioning enables you to decompose very large tables and
indexes into smaller and more manageable pieces called partitions. Each partition is an
independent object with its own name and optionally its own storage characteristics.

For an analogy that illustrates partitioning, suppose an HR manager has one big box that
contains employee folders. Each folder lists the employee hire date. Queries are often made
for employees hired in a particular month. One approach to satisfying such requests is to
create an index on employee hire date that specifies the locations of the folders scattered
throughout the box. In contrast, a partitioning strategy uses many smaller boxes, with each
box containing folders for employees hired in a given month.

Using smaller boxes has several advantages. When asked to retrieve the folders for
employees hired in June, the HR manager can retrieve the June box. Furthermore, if any

6-1

Chapter 6
Overview of Partitions

small box is temporarily damaged, the other small boxes remain available. Moving
offices also becomes easier because instead of moving a single heavy box, the
manager can move several small boxes.

From the perspective of an application, only one schema object exists. SQL
statements require no modification to access partitioned tables. Partitioning is useful
for many different types of database applications, particularly those that manage large
volumes of data. Benefits include:

ORACLE

Increased availability

The unavailability of a partition does not entail the unavailability of the object. The
guery optimizer automatically removes unreferenced partitions from the query plan
so queries are not affected when the partitions are unavailable.

Easier administration of schema objects

A partitioned object has pieces that can be managed either collectively or
individually. DDL statements can manipulate partitions rather than entire tables or
indexes. Thus, you can break up resource-intensive tasks such as rebuilding an
index or table. For example, you can move one table partition at a time. If a
problem occurs, then only the partition move must be redone, not the table move.
Also, dropping a partition avoids executing numerous DELETE Statements.

Reduced contention for shared resources in OLTP systems

In some OLTP systems, partitions can decrease contention for a shared resource.
For example, DML is distributed over many segments rather than one segment.

Enhanced query performance in data warehouses

In a data warehouse, partitioning can speed processing of ad hoc queries. For
example, a sales table containing a million rows can be partitioned by quarter.

Partition Characteristics
Each partition of a table or index must have the same logical attributes, such as
column names, data types, and constraints.

Partitioned Tables
A partitioned table consists of one or more partitions, which are managed
individually and can operate independently of the other partitions.

Partitioned Indexes
A partitioned index is an index that, like a partitioned table, has been divided into
smaller and more manageable pieces.

Partial Indexes for Partitioned Tables
A partial index is an index that is correlated with the indexing properties of an
associated partitioned table.

Using Object Store for Older Partitions
For read-only partitions, you can use low-cost storage such as object storage in
the cloud.

¢ See Also:

Oracle Database VLDB and Partitioning Guide for an introduction to
partitioning

6-2

Chapter 6
Overview of Partitions

Partition Characteristics

Partition Key

Each partition of a table or index must have the same logical attributes, such as column
names, data types, and constraints.

For example, all partitions in a table share the same column and constraint definitions.
However, each partition can have separate physical attributes, such as the tablespace to
which it belongs.

e Partition Key
The partition key is a set of one or more columns that determines the partition in which
each row in a partitioned table should go. Each row is unambiguously assigned to a
single partition.

» Partitioning Strategies
Oracle Partitioning offers several partitioning strategies that control how the database
places data into partitions. The basic strategies are range, list, and hash partitioning.

The partition key is a set of one or more columns that determines the partition in which each
row in a partitioned table should go. Each row is unambiguously assigned to a single
partition.

In the sales table, you could specify the time id column as the key of a range partition. The
database assigns rows to partitions based on whether the date in this column falls in a
specified range. Oracle Database automatically directs insert, update, and delete operations
to the appropriate partition by using the partition key.

Partitioning Strategies

ORACLE

Oracle Partitioning offers several partitioning strategies that control how the database places
data into partitions. The basic strategies are range, list, and hash partitioning.

A single-level partitioning uses only one method of data distribution, for example, only list
partitioning or only range partitioning. In composite partitioning, a table is partitioned by one
data distribution method and then each patrtition is further divided into subpartitions using a
second data distribution method. For example, you could use a list partition for channel id
and a range subpartition for time id.

Example 6-1 Sample Row Set for Partitioned Table

This partitioning example assumes that you want to populate a partitioned table sales with
the following rows:

PROD ID CUST _ID TIME ID CHANNEL ID PROMO_ID QUANTITY SOLD
AMOUNT SOLD

116 11393 05-JUN-99 2 999 1
12.18

40 100530 30-NOV-98 9 33 1
44.99

118 133 06-JUN-01 2 999 1
17.12

6-3

Chapter 6
Overview of Partitions

133 9450 01-DEC-00 2 999
31.28
36 4523 27-JAN-99 3 999
53.89
125 9417 04-FEB-98 3 999
16.86
30 170 23-FEB-01 2 999
8.8
24 11899 26-JUN-99 4 999
43.04
35 2606 17-FEB-00 3 999
54.94
45 9491 28-AUG-98 4 350
47.45

Range Partitioning

In range partitioning, the database maps rows to partitions based on ranges of
values of the partitioning key. Range patrtitioning is the most common type of
partitioning and is often used with dates.

Interval Partitioning
Interval partitioning is an extension of range patrtitioning.

List Partitioning
In list partitioning, the database uses a list of discrete values as the partition key
for each partition. The partitioning key consists of one or more columns.

Hash Partitioning
In hash partitioning, the database maps rows to partitions based on a hashing
algorithm that the database applies to the user-specified partitioning key.

Reference Partitioning

In reference partitioning, the partitioning strategy of a child table is solely defined
through the foreign key relationship with a parent table. For every partition in the
parent table, exactly one corresponding partition exists in the child table. The
parent table stores the parent records in a specific partition, and the child table
stores the child records in the corresponding partition.

Composite Partitioning

In composite partitioning, a table is partitioned by one data distribution method
and then each partition is further subdivided into subpartitions using a second data
distribution method. Thus, composite partitioning combines the basic data
distribution methods. All subpartitions for a given partition represent a logical
subset of the data.

Range Partitioning

ORACLE

In range partitioning, the database maps rows to partitions based on ranges of
values of the partitioning key. Range partitioning is the most common type of
partitioning and is often used with dates.

Suppose that you create time range sales as a partitioned table using the following
SQL statement, with the time id column as the partition key:

CREATE TABLE time range sales

(prod_id NUMBER (6)
, cust_id NUMBER
, time id DATE

6-4

Chapter 6
Overview of Partitions

, channel id CHAR (1)
, promo_id NUMBER (6)
, quantity sold NUMBER(3)
, amount sold NUMBER (10, 2)
)
PARTITION BY RANGE (time_id)

(PARTITION SALES 1998 VALUES LESS THAN (TO DATE('01-JAN-1999','DD-MON-YYYY')),

PARTITION SALES 1999 VALUES LESS THAN (TO DATE('01-JAN-2000', 'DD-MON-YYYY')),

PARTITION SALES 2000 VALUES LESS THAN (TO DATE('01-JAN-2001', 'DD-MON-YYYY')),
(MAXVALUE)

PARTITION SALES 2001 VALUES LESS THAN
)

Afterward, you load time range sales with the rows from Example 6-1. The code shows the
row distributions in the four partitions. The database chooses the partition for each row based
on the time id value according to the rules specified in the PARTITION BY RANGE clause. The
range partition key value determines the non-inclusive high bound for a specified partition.

Interval Partitioning

ORACLE

Interval partitioning is an extension of range partitioning.

If you insert data that exceeds existing range patrtitions, then Oracle Database automatically
creates partitions of a specified interval. For example, you could create a sales history table
that stores data for each month in a separate partition.

Interval partitions enable you to avoid creating range partitions explicitly. You can use interval
partitioning for almost every table that is range partitioned and uses fixed intervals for new
partitions. Unless you create range partitions with different intervals, or unless you always set
specific partition attributes, consider using interval partitions.

When partitioning by interval, you must specify at least one range partition. The range
partitioning key value determines the high value of the range partitions, which is called the
transition point. The database automatically creates interval partitions for data with values
that are beyond the transition point. The lower boundary of every interval partition is the
inclusive upper boundary of the previous range or interval partition. Thus, in Example 6-2,
value 01-JAN-2011 is in partition p2.

The database creates interval partitions for data beyond the transition point. An interval
partition extends range partitioning by instructing the database to create partitions of the
specified range or interval. The database automatically creates the partitions when data
inserted into the table exceeds all existing range partitions. In Example 6-2, the p3 partition
contains rows with partitioning key time id values greater than or equal to 01-JAN-2013.

Example 6-2 Interval Partitioning

Assume that you create a sales table with four partitions of varying widths. You specify that
above the transition point of January 1, 2013, the database should create partitions in one
month intervals. The high bound of partition p3 represents the transition point. Partition p3
and all partitions below it are in the range section, whereas all partitions above it fall into the
interval section.

CREATE TABLE interval sales

(prod id NUMBER (6)
, cust id NUMBER

, time id DATE

, Channel id CHAR (1)

, promo_id NUMBER (6)

, quantity sold NUMBER(3)

6-5

Chapter 6
Overview of Partitions

, amount sold NUMBER (10, 2)
)

PARTITION BY RANGE (time_id)

INTERVAL (NUMTOYMINTERVAL (1, 'MONTH'))
(PARTITION pO VALUES LESS THAN (TO_DATE('l—l—ZOlO', 'DD-MM-YYYY'))
, PARTITION pl VALUES LESS THAN (TO_DATE('l—l—ZOll', 'DD-MM-YYYY'))
, PARTITION p2 VALUES LESS THAN (TO_DATE('1—7—2012', 'DD-MM-YYYY'))
, PARTITION p3 VALUES LESS THAN (TO_DATE('1—1—2013', ' DD-MM-

YYyvy')));

You insert a sale made on date October 10, 2014:

SQL> INSERT INTO interval sales VALUES (39,7602,'10-
0oCT-14',9,null,1,11.79);

1 row created.

A query of USER_TAB PARTITIONS shows that the database created a new partition for
the October 10 sale because the sale date was later than the transition point:

SQL> COL PNAME FORMAT a9
SQL> COL HIGH VALUE FORMAT a40
SQL> SELECT PARTITION NAME AS PNAME, HIGH VALUE
2 FROM USER TAB PARTITIONS WHERE TABLE NAME = 'INTERVAL SALES';

PNAME HIGH VALUE

PO TO_DATE (' 2007-01-01 00:00:00', 'SYYYY-M
M-DD HH24:MI:SS', 'NLS CALENDAR=GREGORIA

Pl TO_DATE (' 2008-01-01 00:00:00', 'SYYYY-M
M-DD HH24:MI:SS', 'NLS CALENDAR=GREGORIA

P2 TO_DATE (' 2009-07-01 00:00:00', 'SYYYY-M
M-DD HH24:MI:SS', 'NLS CALENDAR=GREGORIA

P3 TO_DATE (' 2010-01-01 00:00:00', 'SYYYY-M

M-DD HH24:MI:SS', 'NLS CALENDAR=GREGORIA
SYS_P1598 TO DATE (' 2014-11-01 00:00:00', 'SYYYY-M
M-DD HH24:MI:SS', 'NLS CALENDAR=GREGORIA

See Also:

Oracle Database VLDB and Partitioning Guide to learn more about interval
partitions

List Partitioning

In list partitioning, the database uses a list of discrete values as the partition key for
each partition. The partitioning key consists of one or more columns.

ORACLE 6-6

Chapter 6
Overview of Partitions

You can use list partitioning to control how individual rows map to specific partitions. By using
lists, you can group and organize related sets of data when the key used to identify them is
not conveniently ordered.

Example 6-3 List Partitioning

Assume that you create list sales as a list-partitioned table using the following statement,
where the channel id column is the partition key:

CREATE TABLE list sales

(prod id NUMBER (6)
, cust id NUMBER

, time id DATE

, channel id CHAR (1)

, promo id NUMBER (6)

, quantity sold NUMBER(3)
, amount sold NUMBER (10, 2)

PARTITION BY LIST (channel_id)
(PARTITION even channels VALUES ('2','4"),
PARTITION odd channels VALUES ('3','9")
)i

Afterward, you load the table with the rows from Example 6-1. The code shows the row
distribution in the two partitions. The database chooses the partition for each row based on
the channel id value according to the rules specified in the PARTITION BY LIST clause.
Rows with a channel id value of 2 or 4 are stored in the EVEN_CHANNELS partitions, while
rows with a channel id value of 3 or 9 are stored in the ODD CHANNELS partition.

Hash Partitioning

ORACLE

In hash partitioning, the database maps rows to partitions based on a hashing algorithm
that the database applies to the user-specified partitioning key.

The destination of a row is determined by the internal hash function applied to the row by the
database. When the number of partitions is a power of 2, the hashing algorithm creates a
roughly even distribution of rows across all partitions.

Hash partitioning is useful for dividing large tables to increase manageability. Instead of one
large table to manage, you have several smaller pieces. The loss of a single hash partition
does not affect the remaining partitions and can be recovered independently. Hash
partitioning is also useful in OLTP systems with high update contention. For example, a
segment is divided into several pieces, each of which is updated, instead of a single segment
that experiences contention.

Assume that you create the partitioned hash sales table using the following statement, with
the prod id column as the partition key:

CREATE TABLE hash sales

(prod_id NUMBER (6)
, cust_id NUMBER

, time id DATE

, channel id CHAR (1)

, promo_id NUMBER (6)

, quantity sold NUMBER (3)

6-7

Chapter 6
Overview of Partitions

, amount sold NUMBER (10, 2)
)
PARTITION BY HASH (prod_id)
PARTITIONS 2;

Afterward, you load the table with the rows from Example 6-1. The code shows a
possible row distribution in the two partitions. The names of these partitions are
system-generated.

As you insert rows, the database attempts to randomly and evenly distribute them
across partitions. You cannot specify the partition into which a row is placed. The
database applies the hash function, whose outcome determines which partition
contains the row.

¢ See Also:

e Oracle Database VLDB and Partitioning Guide to learn how to create
partitions

* Oracle Database SQL Language Reference for CREATE TABLE ...
PARTITION BY examples

Reference Partitioning

ORACLE

In reference partitioning, the partitioning strategy of a child table is solely defined
through the foreign key relationship with a parent table. For every partition in the
parent table, exactly one corresponding partition exists in the child table. The parent
table stores the parent records in a specific partition, and the child table stores the
child records in the corresponding partition.

For example, an orders table is the parent of the 1ine items table, with a primary key
and foreign key defined on order id. The tables are partitioned by reference. For
example, if the database stores order 233 in partition 03 2015 of orders, then the
database stores all line items for order 233 in partition 03 2015 of line items. If
partition 04 2015 is added to orders, then the database automatically adds 04 2015 to
line items.

The advantages of reference partitioning are:

* By using the same partitioning strategy for both the parent and child tables, you
avoid duplicating all partitioning key columns. This strategy reduces the manual
overhead of denormalization, and saves space.

* Maintenance operations on a parent table occur on the child table automatically.
For example, when you add a partition to the primary table, the database
automatically propagates this addition to its descendents.

* The database automatically uses partition-wise joins of the partitions in the parent
and child table, improving performance.

You can use reference partitioning with all basic partitioning strategies, including
interval partitioning. You can also create reference partitioned tables as composite
partitioned tables.

6-8

Chapter 6
Overview of Partitions

Example 6-4 Creating Reference-Partitioned Tables

This example creates a parent table orders which is range-partitioned on order date. The
reference-partitioned child table order items is created with four partitions, Q1 2015,

Q2 2015, 03 2015, and Q4 2015, where each partition contains the order items rows
corresponding to orders in the respective parent partition.

CREATE TABLE orders
(order id

order date
order mode
customer id
order status
order total
sales rep id
promotion id

NUMBER (12) ,
DATE,
VARCHAR? (8),
NUMBER (6) ,
NUMBER (2) ,
NUMBER (8, 2),
NUMBER (6) ,
NUMBER (6) ,

CONSTRAINT orders pk PRIMARY KEY (order id)
)
PARTITION BY RANGE (order date)
(PARTITION Q1 2015 VALUES LESS THAN (TO DATE('0l1-APR-2015', 'DD-MON-

YYyYy'y),

PARTITION Q2 2015 VALUES LESS THAN (TO DATE('01-JUL-2015', 'DD-MON-
YYyYy'y),

PARTITION Q3 2015 VALUES LESS THAN (TO DATE('01-0CT-2015', 'DD-MON-
YYyYy'y),

PARTITION Q4 2015 VALUES LESS THAN (TO DATE ('01-JAN-2006"', 'DD-MON-
YYYY'))
)

CREATE TABLE order items

(Orderiid NUMBER (12) NOT NULL,
lineiitemiid NUMBER (3) NOT NULL,
productiid NUMBER (6) NOT NULL,
unit price NUMBER (8, 2),
quantity NUMBER (8),

CONSTRAINT order items fk
FOREIGN KEY(orderiid) REFERENCES orders(orderiid)

)
PARTITION BY REFERENCE (order items fk);

¢ See Also:

Oracle Database VLDB and Partitioning Guide for an overview of reference
partitioning

Composite Partitioning

ORACLE

In composite partitioning, a table is partitioned by one data distribution method and then
each partition is further subdivided into subpartitions using a second data distribution method.
Thus, composite partitioning combines the basic data distribution methods. All subpartitions
for a given patrtition represent a logical subset of the data.

6-9

Chapter 6
Overview of Partitions

Composite partitioning provides several advantages:

Depending on the SQL statement, partition pruning on one or two dimensions may
improve performance.

Queries may be able to use full or partial partition-wise joins on either dimension.
You can perform parallel backup and recovery of a single table.

The number of partitions is greater than in single-level partitioning, which may be
beneficial for parallel execution.

You can implement a rolling window to support historical data and still partition on
another dimension if many statements can benefit from partition pruning or
partition-wise joins.

You can store data differently based on identification by a partitioning key. For
example, you may decide to store data for a specific product type in a read-only,
compressed format, and keep other product type data uncompressed.

Range, list, and hash partitioning are eligible as subpartitioning strategies for
composite partitioned tables. The following figure offers a graphical view of range-hash
and range-list composite partitioning.

Figure 6-1 Composite Range-List Partitioning

Composite Partitioning Composite Partitioning
Range-Hash Range - List
January and March and May and
February April June

East Sales i
Virginia I_ > >
Fll:?ridﬂ ,.—--".-‘_--‘ '—-________-—-"-‘ -_-.-_____,..-
West Sales Regi
W Sﬁornuaea egion __—] r_.____.--" T
Oregon || —b —
Hawaii _____.--"'_- ,--"".'--_. '_____.--'"-
c .
IIIﬁ-nrul::.iil:“ Sales Region _______._—-* T
Texas L — —p

Missouri /__..-v'"" - (=

The database stores every subpartition in a composite partitioned table as a separate
segment. Thus, subpartition properties may differ from the properties of the table or
from the partition to which the subpartitions belong.

ORACLE

¢ See Also:

Oracle Database VLDB and Partitioning Guide to learn more about
composite partitioning

6-10

Chapter 6
Overview of Partitions

Partitioned Tables

A partitioned table consists of one or more partitions, which are managed individually and
can operate independently of the other partitions.

A table is either partitioned or nonpartitioned. Even if a partitioned table consists of only one
partition, this table is different from a nonpartitioned table, which cannot have partitions added
to it.

* Segments for Partitioned Tables
A partitioned table is made up of one or more table partition segments.

» Compression for Partitioned Tables
Some or all partitions of a heap-organized table can be stored in a compressed format.

See Also:
"Partition Characteristics" for examples of partitioned tables

"Overview of Index-Organized Tables" to learn about the purpose and
characteristics of Index-Organized Tables, which can also benefit from partitioning
that provides improved manageability, availability, and performance.

Segments for Partitioned Tables

A partitioned table is made up of one or more table partition segments.

If you create a partitioned table named hash products, then no table segment is allocated for
this table. Instead, the database stores data for each table partition in its own partition
segment. Each table partition segment contains a portion of the table data.

When an external table is partitioned, all partitions reside outside the database. In a hybrid
partitioned table, some partitions are stored in segments, whereas others are stored
externally. For example, some partitions of the sales table might be stored in data files and
others in spreadsheets.

" See Also:

¢ "Overview of External Tables"
e "Overview of Segments"

to learn about the relationship between objects and segments

Compression for Partitioned Tables

Some or all partitions of a heap-organized table can be stored in a compressed format.

ORACLE 6-11

Chapter 6
Overview of Partitions

Compression saves space and can speed query execution. For this reason,
compression can be useful in environments such as data warehouses, where the
amount of insert and update operations is small, and in OLTP environments.

You can declare the attributes for table compression for a tablespace, table, or table
partition. If declared at the tablespace level, then tables created in the tablespace are
compressed by default. You can alter the compression attribute for a table, in which
case the change only applies to new data going into that table. Consequently, a single
table or partition may contain compressed and uncompressed blocks, which
guarantees that data size will not increase because of compression. If compression
could increase the size of a block, then the database does not apply it to the block.

¢ See Also:

e "Table Compression" to learn about types of table compression, including
basic, advanced row, and Hybrid Columnar Compression

e Oracle Database Data Warehousing Guide to learn about table
compression in a data warehouse

Partitioned Indexes

A partitioned index is an index that, like a partitioned table, has been divided into
smaller and more manageable pieces.

Global indexes are partitioned independently of the table on which they are created,
whereas local indexes are automatically linked to the partitioning method for a table.
Like partitioned tables, partitioned indexes improve manageability, availability,
performance, and scalability.

The following graphic shows index partitioning options.

Figure 6-2 Index Partitioning Options

Local Prefixed Index

Local Partitioned Index
Global Partitioned Index

Partitioned Index

* Local Partitioned Indexes
In a local partitioned index, the index is partitioned on the same columns, with
the same number of partitions and the same partition bounds as its table.

ORACLE 6-12

Chapter 6
Overview of Partitions

* Global Partitioned Indexes
A global partitioned index is a B-tree index that is partitioned independently of the
underlying table on which it is created. A single index partition can point to any or all table
partitions, whereas in a locally partitioned index, a one-to-one parity exists between index
partitions and table partitions.

¢ See Also:

e "Introduction to Indexes" to learn about the difference between unique and
nonunique indexes, and the different index types

e Oracle Database VLDB and Partitioning Guide for more information about
partitioned indexes and how to decide which type to use

Local Partitioned Indexes

In a local partitioned index, the index is partitioned on the same columns, with the same
number of partitions and the same partition bounds as its table.

Each index partition is associated with exactly one partition of the underlying table, so that all
keys in an index partition refer only to rows stored in a single table partition. In this way, the
database automatically synchronizes index partitions with their associated table partitions,
making each table-index pair independent.

Local partitioned indexes are common in data warehousing environments. Local indexes offer
the following advantages:

* Availability is increased because actions that make data invalid or unavailable in a
partition affect this partition only.

» Partition maintenance is simplified. When moving a table partition, or when data ages out
of a partition, only the associated local index partition must be rebuilt or maintained. In a
global index, all index partitions must be rebuilt or maintained.

» If point-in-time recovery of a partition occurs, then the indexes can be recovered to the
recovery time (see Oracle Database Backup and Recovery User’s Guide). The entire
index does not need to be rebuilt.

The example in Hash Partitioning shows the creation statement for the partitioned
hash sales table, using the prod id column as partition key. The following example creates
a local partitioned index on the time id column of the hash sales table:

CREATE INDEX hash sales idx ON hash sales(time id) LOCAL;

In Figure 6-3, the hash products table has two partitions, so hash sales idx has two
partitions. Each index partition is associated with a different table partition. Index partition
SYS P38 indexes rows in table partition SYS P33, whereas index partition SYS P39 indexes
rows in table partition Sys p34.

ORACLE 6-13

Figure 6-3 Local Index Partitions

ORACLE

Index hash_sales_idx

Local Index Partition SYS_P39

Local Index Partition SYS_P38

Chapter 6

Overview of Partitions

o

i

(&)

DN DT
A
IN®
-1 O

-_—— - -

' [i%
35
E

O

D

> D
3
£

Table Partition SYS_P33

T_ID

PROD_ID

| CHANNEL_ID | PROMO_ID | JQUANTITY_SOLD | AMOUNT_SOLD

| TIME_ID

| cus

OANMOAN™

30-NOV-98
06-JUN-01
27-JAN-99
23-FEB-01
17-FEB-00

100530
133
4523
170
2606

40
118
36
30
35

Table Partition SYS_P34

| CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

| TIME_ID

T_ID

| cus

PROD_ID

—_——— -

ANANM» T <

05-JUN-99
01-DEC-00
04-FEB-98
26-JUN-99
28-AUG-98

11393
9450
9417

11899
9491

You cannot explicitly add a partition to a local index. Instead, new partitions are added
to local indexes only when you add a partition to the underlying table. Likewise, you
cannot explicitly drop a partition from a local index. Instead, local index partitions are
dropped only when you drop a partition from the underlying table.

Like other indexes, you can create a bitmap index on partitioned tables. The only
restriction is that bitmap indexes must be local to the partitioned table—they cannot be
global indexes. Global bitmap indexes are supported only on nonpatrtitioned tables.

Local Prefixed and Nonprefixed Indexes
Local partitioned indexes are either prefixed or nonprefixed.

Local Partitioned Index Storage

Like a table partition, a local index patrtition is stored in its own segment. Each
segment contains a portion of the total index data. Thus, a local index made up of

four partitions is not stored in a single index segment, but in four separate

segments.

6-14

Chapter 6
Overview of Partitions

Local Prefixed and Nonprefixed Indexes

Local partitioned indexes are either prefixed or nonprefixed.
The index subtypes are defined as follows:

e Local prefixed indexes

In this case, the partition keys are on the leading edge of the index definition. In the

time range sales example in Range Partitioning, the table is partitioned by range on
time id. A local prefixed index on this table would have time id as the first column in its
list.

* Local nonprefixed indexes

In this case, the partition keys are not on the leading edge of the indexed column list and
need not be in the list at all. In the hash _sales idx example in Local Partitioned Indexes,
the index is local nonprefixed because the partition key product_id is not on the leading
edge.

Both types of indexes can take advantage of partition elimination (also called partition
pruning), which occurs when the optimizer speeds data access by excluding partitions from
consideration. Whether a query can eliminate partitions depends on the query predicate. A
guery that uses a local prefixed index always allows for index partition elimination, whereas a
query that uses a local nonprefixed index might not.

¢ See Also:

Oracle Database VLDB and Partitioning Guide to learn how to use prefixed and
nonprefixed indexes

Local Partitioned Index Storage

Like a table partition, a local index partition is stored in its own segment. Each segment
contains a portion of the total index data. Thus, a local index made up of four partitions is not
stored in a single index segment, but in four separate segments.

¢ See Also:

Oracle Database SQL Language Reference for CREATE INDEX ... LOCAL examples

Global Partitioned Indexes

ORACLE

A global partitioned index is a B-tree index that is partitioned independently of the
underlying table on which it is created. A single index partition can point to any or all table
partitions, whereas in a locally partitioned index, a one-to-one parity exists between index
partitions and table partitions.

In general, global indexes are useful for OLTP applications, where rapid access, data
integrity, and availability are important. In an OLTP system, a table may be partitioned by one

6-15

ORACLE

Chapter 6
Overview of Partitions

key, for example, the employees.department id column, but an application may need
to access the data with many different keys, for example, by employee id or job id.
Global indexes can be useful in this scenario.

As an illustration, suppose that you create a global partitioned index on the

time range sales table from "Range Partitioning". In this table, rows for sales from
1998 are stored in one partition, rows for sales from 1999 are in another, and so on.
The following example creates a global index partitioned by range on the channel id
column:

CREATE INDEX time channel sales idx ON time range sales (channel id)
GLOBAL PARTITION BY RANGE (channel_id)

(PARTITION pl VALUES LESS THAN (3),
PARTITION p2 VALUES LESS THAN (4),
PARTITION p3 VALUES LESS THAN (MAXVALUE));

As shown in Figure 6-4, a global index partition can contain entries that point to
multiple table partitions. Index partition p1 points to the rows with a channel id of 2,
index partition p2 points to the rows with a channel id of 3, and index partition p3
points to the rows with a channel id of 4 or 9.

6-16

Figure 6-4 Global Partitioned Index

Chapter 6
Overview of Partitions

Index Global Index
@ Partition p3
|m]m]

Slobal Indgx [
artition p
&0

Table Partition SALES_1998

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

» 40

100530 | 30-NOV-98 9 33 1 44.99
125 9417 | 04-FEB-98 3 999 1 16.86 =
» 45 9491 | 28-AUG-98 4 350 1 47.45

/_\/\

Table Partition SALES_1999

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»116 11393 | 05-JUN-99 2 999 1 12.18
36 4523 | 27-JAN-99 3 999 1 53.89 =
> 24 11899 | 26-JUN-99 4 999 1 43.04

/_/\

Table Partition SALES_2000

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»133 9450
35 2606

01-DEC-00 2 999 1
17-FEB-00 3 999 1

31.28

54.94 <

/_/\

Table Partition SALES 2001

PROD_ID | CUST_ID | TIME_ID
118 133

| CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

06-JUN-01 2 999 1

Yy

17.12

Index.

1
30 170 | 23-FEB-01 2 999 1 8.8

/_/\

Global Index
Partition p1

ORACLE

6-17

Chapter 6
Overview of Partitions

¢ See Also:

e Oracle Database VLDB and Partitioning Guide to learn how to manage
global partitioned indexes

e Oracle Database SQL Language Reference to learn about the GLOBAL
PARTITION clause of CREATE INDEX

Partial Indexes for Partitioned Tables

ORACLE

A partial index is an index that is correlated with the indexing properties of an
associated partitioned table.

The correlation enables you to specify which table partitions are indexed. Partial
indexes provide the following advantages:

e Table partitions that are not indexed avoid consuming unnecessary index storage
space.

e Performance of loads and queries can improve.

Before Oracle Database 12c, an exchange partition operation required a physical
update of an associated global index to retain it as usable. Starting with Oracle
Database 12c, if the partitions involved in a partition maintenance operation are
not part of a partial global index, then the index remains usable without requiring
any global index maintenance.

e If you index only some table partitions at index creation, and if you later index
other partitions, then you can reduce the sort space required by index creation.

You can turn indexing on or off for the individual partitions of a table. A partial local
index does not have usable index partitions for all table partitions that have indexing
turned off. A global index, whether partitioned or not, excludes the data from all
partitions that have indexing turned off. The database does not support partial indexes
for indexes that enforce unique constraints.

Figure 6-5 shows the same global index as in Figure 6-4, except that the global index
is partial. Table partitions SALES 1998 and SALES 2000 have the indexing property set
to OFF, so the partial global index does not index them.

6-18

Figure 6-5 Partial Global Partitioned Index

Index.

55

Global Index
Partition p3

Chapter 6
Overview of Partitions

Index

Global Index
Partition p2

55

Table Partition SALES_1998

PROD_ID | CUST_ID | TIME_ID

INDEXING OFF

| CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

40 100530 | 30-NOV-98 9
125 9417 | 04-FEB-98 3
45 9491 | 28-AUG-98 4

33 1
999 1
350 1

/\/\

44.99
16.86
47.45

Table Partition SALES_1999

PROD_ID | CUST_ID | TIME_ID

INDEXING ON

| CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»116 11393 | 05-JUN-99 2
36 4523 | 27-JAN-99 3
> 24 11899 | 26-JUN-99 4

999 1
999 1
999 1

/__/\

12.18

53.89 =
43.04

Table Partition SALES_2000

PROD_ID | CUST_ID | TIME_ID

INDEXING OFF

| CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

133
35

9450
2606

01-DEC-00 2
17-FEB-00 3

999 1
999 1

/__/\

31.28
54.94

Table Partition SALES 2001

PROD_ID | CUST_ID | TIME_ID

INDEXING ON

| CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

118 133
30 170

Yy

Index.

S

Global Index
Partition p1

Using Object Store for Older Partitions

06-JUN-01 2
23-FEB-01 2

999 1
999 1

/__/\

17.12
8.8

For read-only partitions, you can use low-cost storage such as object storage in the cloud.

Data volumes have grown enormously over the past decade. Additionally, government
regulations and policies have mandated data retention for very large periods of time in many
cases. Oracle database customers use various data management strategies for very large
databases. Customers have the following major objectives that they are trying to satisfy.

ORACLE

6-19

Chapter 6
Overview of Partitions

To store vast quantities of data at the lowest possible cost To meet the new regulatory
requirements for data retention and protection To improve business opportunities by
better analysis based on an increased amount of data.

On-premise customers have various solutions to achieve the above objectives. Oracle
Database now provides you with this feature that allows you to develop similar data
management strategies for your cloud databases by leveraging low cost storage tiers
such as object storage in the cloud.

Oracle database customers have come up with various data management strategies
as their datasets have evolved and grown. All these strategies fall under Information
Lifecycle Management (ILM). Some of the database features that help with
implementing an ILM solution include Data Partitioning, Advanced Row Compression,
Hybrid Columnar Compression, Automatic Data Optimization, and others.

One of the aspects of an ILM solution is defining a low cost storage tier. This allows
you to retain large amounts of data for the lowest possible cost. Oracle ILM strategy
allows for automatic data compression and data movement to a lower cost storage tier.
On-premise Oracle database customers use Oracle storage solutions such as Oracle
ZFS Storage Appliance or Oracle Exadata Extended (XT) Storage Server as a low
cost storage option for infrequently accessed, older or regulatory data. You can also
choose similar low cost storage options from third party vendors.

Using object store allows you to:
» Store older partitions and read-only tablespaces in object storage.
* Query the data from object storage files in an online fashion.

* Prevent unauthorized access to object storage files owned by a PDB from another
PDB.

* Move data back from object store into regular storage in the rare event you want to
make changes to read-only data.

» Delete tablespaces with data files in object store.

e Moving Older Partitions and Read-Only Tablespaces to Object Store
You can create a time-based partitioning strategy and move the data files for a
read-only tablespace to a lower cost storage tier like object storage.

e Accessing Objects in Object Storage
Accessing data from tables and partitions in object storage will be completely
transparent to users and SQL clients.

e Credential Management For Object Store Files
Accessing files in object storage requires a credential.

* Moving Datafiles Back From Object Storage Into Traditional Storage
If object store data must be updated, the data must first be moved back to
traditional storage.

* Deleting Object Store Data Files
You are able to delete tablespaces with data files using the standard DROP
TABLESPACE command.

Moving Older Partitions and Read-Only Tablespaces to Object Store

You can create a time-based partitioning strategy and move the data files for a read-
only tablespace to a lower cost storage tier like object storage.

ORACLE 6-20

Chapter 6
Overview of Partitions

Assume you have a table called 'orders' that is range partitioned on the DATE column. Each
partition contains rows for a particular year and there are existing partitions for 2022 and
2023. As a new year approaches, the database administrator decides to add a new partition
for year 2024. At the same time, the database administrator decides that they want to move
the oldest partition to a low cost storage tier.

The workflow example below represents a scenario where the table space has a single
partition for a single table. This is not a restriction. The read-only tablespace can have
partitions for one or more tables. You also have the option of making the partition read-only in
addition to making the tablespace read-only. As a best practice, you can make the tablespace
read-only and wait for some well defined period of time before moving the files into object
store. This will ensure that any attempts to update the read-only data would be caught and an
error would be returned. It is much faster to move mutating data into another tablespace
while the data is still in Exadata or other traditional storage. It will be much slower if this data
needs to be copied from object storage.

create tablespace orders 2022 DATAFILE '+DATA DG/orders 2022.dbf' size 100g;
create tablespace orders 2023 DATAFILE '+DATA DG/orders 2023.dbf' size 100g;

create table orders

(prod_id NUMBER NOT NULL,
time_id DATE NOT NULL,
quantity_sold NUMBER (10,2) NOT NULL,
amount _sold NUMBER (10,2) NOT NULL)

partition by range (time id)
(partition orders 2022 VALUES LESS THAN (TO DATE('2023-01-01 00:00:00'",
'SYYYY-MM-DD HH24:MI:SS', 'NLS CALENDAR=GREGORIAN'))
TABLESPACE orders_ 2022,
partition orders 2023 VALUES LESS THAN (TO DATE('2024-01-01 00:00:00",
'SYYYY-MM-DD HH24:MI:SS', 'NLS CALENDAR=GREGORIAN'))
TABLESPACE orders 2023)
ENABLE ROW MOVEMENT;

create tablespace orders 2024 DATAFILE '+DATA DG/orders 2024.dbf' size 100g;

alter table orders

ADD partition orders 2024

values less than (TO_DATE('2024-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
'"NLS CALENDAR=GREGORIAN'))

TABLESPACE orders_2024;

alter tablespace orders 2022 read only;
alter database

move datafile '+DATA DG/orders 2022.dbf' to
'https://objectstorage.example.com/oracle/orders 2022.dbf’;

Accessing Objects in Object Storage

Accessing data from tables and patrtitions in object storage will be completely transparent to
users and SQL clients.

ORACLE 6-21

Chapter 6
Overview of Partitions

The database input/output sub-system will internally query and serve blocks from files
stored in object storage. The following SQL will query the rows from the read-only
partition orders 2022 which was moved to object storage in the previous example.

select prod id

from orders

where time id < TO DATE('2020-01-01 00:00:00', 'SYYYY-MM-DD
HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN') ;

Existing indexes, both global and local, work transparently. Querying hybrid columnar
compression data and TDE encrypted data work transparently as well from a client
perspective.

Credential Management For Object Store Files

Accessing files in object storage requires a credential.

Credentials are database objects that store a username and password. The data is
encrypted and stored securely in the PDB schema where the credential is created.
Standard database authentication is used to determine if a user can query the
credential object or not. It is strongly recommended for each PDB to use separate
credentials to provide isolation between PDBs in a multi-tenant environment.

You can specify which credential object should be used when moving the files to object
storage. This credential object should be present in the same PDB where the datafile
is being moved and you should have access to that PDB schema. For ease of use, a
per-PDB database property called default_credential is supported. The
default_credential will automatically be used if you does not explicitly specify a
credential name.

alter database property set default credential = 'ADM.DEF CRED NAME';

alter database move datafile '+DATA DG/orders 2022.dbf' to
'https://objectstorage.example.com/oracle/orders 2022.dbf"
credential = 'ORD.ORD CRED NAME';

There is a database property called default bucket. This is the bucket in which object
store files will be created. Oracle Database supports default bucket along with
Oracle managed file names so you don't need to specify the URI for each file move.

Moving Datafiles Back From Object Storage Into Traditional Storage

ORACLE

If object store data must be updated, the data must first be moved back to traditional
storage.

In the rare case that you need to modify the read-only data which is already in object
storage, the only option is to move the data back from object storage into traditional
storage. The following workflow shows how the datafile can be moved from object
store back into ASM file system. Copying a file back from object storage will have
performance implications.

alter database move datafile
'https://objectstorage.example.com/oracle/orders 2022.dbf"' to
"+DATA DG/orders 2022.dbf';

6-22

Chapter 6
Overview of Sharded Tables

alter tablespace orders 2022 read write;

Deleting Object Store Data Files

You are able to delete tablespaces with data files using the standard DROP TABLESPACE
command.

The clause AND DATAFILES is used to delete the datafiles from the backend storage. This will
delete the files from the object store. If the object store file has multiple chunks in object
store, all the chunks will get deleted as well as the manifest.

drop tablespace orders 2022 including contents and datafiles;

Overview of Sharded Tables

ORACLE

In an Oracle database, sharding enables you to break up a large table into more manageable
pieces called shards that can be stored in multiple databases.

Each database is hosted on a dedicated server with its own local resources - CPU, memory,
flash, or disk. Each database in such configuration is called a shard. All of the shards
together make up a single logical database, which is referred to as a sharded database.

Horizontal partitioning involves splitting a database table across shards so that each shard
contains the table with the same columns but a different subset of rows. A table split up in this
manner is also known as a sharded table.

The following figure shows a table horizontally partitioned across three shards.

Figure 6-6 Horizontal Partitioning of a Table Across Shards

Unsharded Table in Sharded Table in Three Databases
One Database

Server

Server A Server B Server C

Sharding is based on shared-nothing hardware infrastructure and it eliminates single points of
failure because shards do not share physical resources such as CPU, memory, or storage
devices. Shards are also loosely coupled in terms of software; they do not run clusterware.

Shards are typically hosted on dedicated servers. These servers can be commodity hardware
or engineered systems. The shards can run on single instance or Oracle RAC databases.
They can be placed on-premises, in a cloud, or in a hybrid on-premises and cloud
configuration.

From the perspective of a database administrator, an SDB consists of multiple databases that
can be managed either collectively or individually. However, from the perspective of the

6-23

Chapter 6
Overview of Sharded Tables

application, an SDB looks like a single database: the number of shards and distribution
of data across those shards are completely transparent to database applications.

Sharding is intended for custom OLTP applications that are suitable for a sharded
database architecture. Applications that use sharding must have a well-defined data
model and data distribution strategy (consistent hash, range, list, or composite) that
primarily accesses data using a sharding key. Examples of a sharding key include
customer id, account no, OF country id.

e Sharded Tables
A sharded table is a table that is partitioned into smaller and more manageable
pieces among multiple databases, called shards.

See Also:

Using Oracle Sharding

Sharded Tables

A sharded table is a table that is partitioned into smaller and more manageable pieces
among multiple databases, called shards.

Partitions are distributed across shards at the tablespace level, based on a sharding
key. Examples of keys include customer ID, account number, and country ID. The
following data types are supported for the sharding key.

e NUMBER

° INTEGER

e SMALLINT

° RAW

° (N) VARCHAR
° (N) VARCHAR2
° (N) CHAR

e DATE

e TIMESTAMP

Each partition of a sharded table resides in a separate tablespace, and each
tablespace is associated with a specific shard. Depending on the sharding method, the
association can be established automatically or defined by the administrator.

Even though the partitions of a sharded table reside in multiple shards, to the
application, the table looks and behaves exactly the same as a partitioned table in a
single database. SQL statements issued by an application never have to refer to
shards or depend on the number of shards and their configuration.

ORACLE 6-24

Chapter 6
Overview of Views

The familiar SQL syntax for table partitioning specifies how rows should be partitioned across
shards. For example, the following SQL statement creates a sharded table, horizontally
partitioning the table across shards based on the sharding key cust id.

CREATE SHARDED TABLE customers

(cust_id NUMBER NOT NULL
, hame VARCHAR2 (50)

, address VARCHAR2 (250)

, region VARCHAR? (20)

, class VARCHAR?2 (3)

, signup DATE

CONSTRAINT cust pk PRIMARY KEY (cust id)
)

PARTITION BY CONSISTENT HASH (cust id)
PARTITIONS AUTO

TABLESPACE SET tsl

’

The sharded table is partitioned by consistent hash, a special type of hash partitioning
commonly used in scalable distributed systems. This technique automatically spreads
tablespaces across shards to provide an even distribution of data and workload.

Note:

Global indexes on sharded tables are not supported, but local indexes are
supported.

Related Topics

* Sharding Architecture
Oracle Sharding is a database scaling technique based on horizontal partitioning of data
across multiple PDBs. Applications perceive the pool of PDBs as a single logical
database.

* Using Oracle Sharding

Overview of Views

ORACLE

A view is a logical representation of one or more tables. In essence, a view is a stored query.

A view derives its data from the tables on which it is based, called base tables. Base tables
can be tables or other views. All operations performed on a view actually affect the base
tables. You can use views in most places where tables are used.

Note:

Materialized views use a different data structure from standard views.

Views enable you to tailor the presentation of data to different types of users. Views are often
used to:

6-25

Chapter 6
Overview of Views

* Provide an additional level of table security by restricting access to a
predetermined set of rows or columns of a table

For example, Figure 6-7 shows how the staff view does not show the salary or
commission pct columns of the base table employees.

* Hide data complexity

For example, a single view can be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact that
this information actually originates from several tables. A query might also perform
extensive calculations with table information. Thus, users can query a view without
knowing how to perform a join or calculations.

» Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables
on which the view is based.

* Isolate applications from changes in definitions of base tables

For example, if the defining query of a view references three columns of a four
column table, and a fifth column is added to the table, then the definition of the
view is not affected, and all applications using the view are not affected.

For an example of the use of views, consider the hr.employees table, which has
several columns and numerous rows. To allow users to see only five of these columns
or only specific rows, you could create a view as follows:

CREATE VIEW staff AS
SELECT employee id, last name, job id, manager id, department id
FROM employees;

As with all subqueries, the query that defines a view cannot contain the FOR UPDATE
clause. The following graphic illustrates the view named staff. Notice that the view
shows only five of the columns in the base table.

Figure 6-7 View

70
110
110

| department_id
40

| salary
6500
10000
12000
8300

07-Jun-94
07-Jun-94
07-Jun-94
07-Jun-94

manager_id | department_id

manager_id | hire_date

101
101
101

P
ac_account | 205

P
pr_rep

ac_rey
P
ac_account | 205

job_id
hr_re
job_id
hr_rep
pr_rep
ac_re

last_name
marvis
baer
higgins
gietz
last_name
marvis
baer
higgins
gietz

employees
employee_id
employee_id

Base
Table

ORACLE 6-26

Chapter 6
Overview of Views

* Characteristics of Views
Unlike a table, a view is not allocated storage space, nor does a view contain data.
Rather, a view is defined by a query that extracts or derives data from the base tables
referenced by the view. Because a view is based on other objects, it requires no storage
other than storage for the query that defines the view in the data dictionary.

* Updatable Join Views
A join view has multiple tables or views in its FROM clause.

e Object Views
Just as a view is a virtual table, an object view is a virtual object table. Each row in the
view is an object, which is an instance of an object type. An object type is a user-defined
data type.

¢ See Also:

e "Overview of Materialized Views"
e Oracle Database Administrator’s Guide to learn how to manage views

e Oracle Database SQL Language Reference for CREATE VIEW Syntax and
semantics

Characteristics of Views

Unlike a table, a view is not allocated storage space, nor does a view contain data. Rather, a
view is defined by a query that extracts or derives data from the base tables referenced by
the view. Because a view is based on other objects, it requires no storage other than storage
for the query that defines the view in the data dictionary.

A view has dependencies on its referenced objects, which are automatically handled by the
database. For example, if you drop and re-create a base table of a view, then the database
determines whether the new base table is acceptable to the view definition.

« Data Manipulation in Views
Because views are derived from tables, they have many similarities. Users can query
views, and with some restrictions they can perform DML on views. Operations performed
on a view affect data in some base table of the view and are subject to the integrity
constraints and triggers of the base tables.

* How Data Is Accessed in Views
Oracle Database stores a view definition in the data dictionary as the text of the query
that defines the view.

Data Manipulation in Views

ORACLE

Because views are derived from tables, they have many similarities. Users can query views,
and with some restrictions they can perform DML on views. Operations performed on a view
affect data in some base table of the view and are subject to the integrity constraints and
triggers of the base tables.

The following example creates a view of the hr.employees table:

6-27

Chapter 6
Overview of Views

CREATE VIEW staff dept 10 AS

SELECT employee id, last name, job id,
manager id, department id

FROM employees

WHERE department id = 10

WITH CHECK OPTION CONSTRAINT staff dept 10 cnst;

The defining query references only rows for department 10. The CHECK OPTION creates
the view with a constraint so that INSERT and UPDATE statements issued against the
view cannot result in rows that the view cannot select. Thus, rows for employees in
department 10 can be inserted, but not rows for department 30.

¢ See Also:

Oracle Database SQL Language Reference to learn about subquery
restrictions in CREATE VIEW Statements

How Data Is Accessed in Views

Oracle Database stores a view definition in the data dictionary as the text of the query
that defines the view.

When you reference a view in a SQL statement, Oracle Database performs the
following tasks:

1. Merges a query (whenever possible) against a view with the queries that define
the view and any underlying views

Oracle Database optimizes the merged query as if you issued the query without
referencing the views. Therefore, Oracle Database can use indexes on any
referenced base table columns, whether the columns are referenced in the view
definition or in the user query against the view.

Sometimes Oracle Database cannot merge the view definition with the user query.
In such cases, Oracle Database may not use all indexes on referenced columns.

2. Parses the merged statement in a shared SQL area

Oracle Database parses a statement that references a view in a new shared SQL
area only if no existing shared SQL area contains a similar statement. Thus, views
provide the benefit of reduced memory use associated with shared SQL.

3. Executes the SQL statement

The following example illustrates data access when a view is queried. Assume that
you create employees view based on the employees and departments tables:

CREATE VIEW employees view AS
SELECT employee id, last name, salary, location id
FROM employees JOIN departments USING (department id)
WHERE department id = 10;

ORACLE 6-28

Chapter 6
Overview of Views

A user executes the following query of employees view:

SELECT last name
FROM employees view
WHERE employee id = 200;

Oracle Database merges the view and the user query to construct the following query, which
it then executes to retrieve the data:

SELECT last name

FROM employees, departments

WHERE employees.department id = departments.department id
AND departments.department id = 10

AND employees.employee id = 200;

" See Also:

e "Shared SQL Areas"
e "Overview of the Optimizer"

e Oracle Database SQL Tuning Guide to learn about query optimization

Updatable Join Views

ORACLE

A join view has multiple tables or views in its FROM clause.

In the following example, the staff dept 10 30 view joins the employees and departments
tables, including only employees in departments 10 or 30:

CREATE VIEW staff dept 10 30 AS

SELECT employee id, last name, job id, e.department id
FROM employees e, departments d

WHERE e.department id IN (10, 30)

AND e.department id = d.department id;

An updatable join view, also called a modifiable join view, involves two or more base tables or
views and permits DML operations. An updatable view contains multiple tables in the top-
level FROM clause of the SELECT statement and is not restricted by the WITH READ ONLY clause.

To be inherently updatable, a view must meet several criteria. For example, a general rule is
that an INSERT, UPDATE, or DELETE operation on a join view can modify only one base table at
a time. The following query of the USER_UPDATABLE COLUMNS data dictionary view shows that

the staff dept 10 30 view is updatable:

SQL> SELECT TABLE NAME, COLUMN NAME, UPDATABLE
2 FROM USER UPDATABLE COLUMNS
3 WHERE TABLE NAME = 'STAFF DEPT 10 30';

TABLE NAME COLUMN NAME UPD

6-29

Chapter 6

Overview of Views
STAFF DEPT 10 30 EMPLOYEE ID YES
STAFF DEPT 10 30 LAST NAME YES
STAFF DEPT 10 30 JOB_ID YES
STAFF DEPT 10 30 DEPARTMENT ID YES

All updatable columns of a join view must map to columns of a key-preserved table,
which is a table in which each row of the underlying table appears at most one time in
the query output. In the staff dept 10 30 view, department id is the primary key of
the departments table, so each row from the employees table appears at most once in
the result set, making the employees table key-preserved. The departments table is
not key-preserved because each of its rows may appear many times in the result set.

" See Also:

Oracle Database Administrator’s Guide to learn how to update join views

Object Views

ORACLE

Just as a view is a virtual table, an object view is a virtual object table. Each row in
the view is an object, which is an instance of an object type. An object type is a user-
defined data type.

You can retrieve, update, insert, and delete relational data as if it were stored as an
object type. You can also define views with columns that are object data types, such
as objects, REFs, and collections (nested tables and VARRAYS).

Like relational views, object views can present only the data that database
administrators want users to see. For example, an object view could present data
about IT programmers but omit sensitive data about salaries. The following example
creates an employee type object and then the view it prog view based on this
object:

CREATE TYPE employee type AS OBJECT
(

employee id NUMBER (6),

last name VARCHAR2 (25),
job_id VARCHAR2 (10)

)i
/

CREATE VIEW it prog view OF employee type
WITH OBJECT IDENTIFIER (employee id) AS
SELECT e.employee id, e.last name, e.job id

FROM employees e
WHERE job id = 'IT PROG';

Object views are useful in prototyping or transitioning to object-oriented applications
because the data in the view can be taken from relational tables and accessed as if
the table were defined as an object table. You can run object-oriented applications
without converting existing tables to a different physical structure.

6-30

Chapter 6
Overview of Materialized Views

¢ See Also:

e Oracle Database Object-Relational Developer's Guide to learn about object
types and object views

e Oracle Database SQL Language Reference to learn about the CREATE TYPE
statement

Overview of Materialized Views

A materialized view is a query result that has been stored or "materialized" in advance as a
schema object. The FROM clause of the query can name tables, views, or materialized views.

ORACLE

A materialized view often serves as a master table in replication and a fact table in data
warehousing. Materialized views summarize, compute, replicate, and distribute data. They
are suitable in various computing environments, such as the following:

In data warehouses, materialized views can compute and store data generated from
aggregate functions such as sums and averages.

A summary is an aggregate view that reduces query time by precalculating joins and
aggregation operations and storing the results in a table. Materialized views are
equivalent to summaries. You can also use materialized views to compute joins with or
without aggregations.

In materialized view replication, which is achieved using XStream and Oracle
GoldenGate, the view contains a complete or partial copy of a table from a single point in
time. Materialized views replicate data at distributed sites and synchronize updates
performed at several sites. This form of replication is suitable for environments such as
field sales when databases are not always connected to the network.

In mobile computing environments, materialized views can download a data subset from
central servers to mobile clients, with periodic refreshes from the central servers and
propagation of updates by clients to the central servers.

In a replication environment, a materialized view shares data with a table in a different
database, called a master database. The table associated with the materialized view at the
master site is the master table. Figure 6-8 illustrates a materialized view in one database
based on a master table in another database. Updates to the master table replicate to the
materialized view database.

6-31

ORACLE

Chapter 6
Overview of Materialized Views

Figure 6-8 Materialized View

= &
Qw®
"
o8
=0

(=]

Master Table

Remote Update
Refresh

Replicate Table Data

<

H
=
>

Database

°
o
i
K
B
7]
2
©
=

Client Applications
Local
Query
Materialized View

Characteristics of Materialized Views
Materialized views share some characteristics of indexes and nonmaterialized
views.

Refresh Methods for Materialized Views

The database maintains data in materialized views by refreshing them after
changes to the base tables. The refresh method can be incremental or a complete
refresh.

Automatic Materialized Views
Starting with Oracle Database Release 21c, materialized views can be created
and maintained automatically.

Query Rewrite
Query rewrite transforms a user request written in terms of master tables into a
semantically equivalent request that includes materialized views.

¢ See Also:

e Oracle Database Data Warehousing Guide to learn more about
summaries

* Oracle Database XStream Guide for an introduction to XStream

e http://www.oracle.com/technetwork/middleware/goldengate/
documentation/index.html to learn more about Oracle GoldenGate

e Oracle Database SQL Language Reference to learn about the CREATE
MATERIALIZED VIEW Sstatement

6-32

http://www.oracle.com/technetwork/middleware/goldengate/documentation/index.html
http://www.oracle.com/technetwork/middleware/goldengate/documentation/index.html

Chapter 6
Overview of Materialized Views

Characteristics of Materialized Views

Materialized views share some characteristics of indexes and nonmaterialized views.
Materialized views are similar to indexes in the following ways:

e They contain actual data and consume storage space.
e They can be refreshed when the data in their master tables changes.

e They can improve performance of SQL execution when used for query rewrite
operations.

e Their existence is transparent to SQL applications and users.

A materialized view is similar to a nonmaterialized view because it represents data in other
tables and views. Unlike indexes, users can query materialized views directly using SELECT
statements. Depending on the types of refresh that are required, the views can also be
updated with DML statements.

The following example creates and populates a materialized aggregate view based on three
master tables in the sh sample schema:

CREATE MATERIALIZED VIEW sales mv AS
SELECT t.calendar year, p.prod id, SUM(s.amount sold) AS sum sales
FROM times t, products p, sales s
WHERE t.time id = s.time id
AND p.prod id = s.prod id
GROUP BY t.calendar year, p.prod id;

The following example drops table sales, which is a master table for sales mv, and then
gueries sales mv. The query selects data because the rows are stored (materialized)
separately from the data in the master tables.

SQL> DROP TABLE sales;
Table dropped.
SQL> SELECT * FROM sales mv WHERE ROWNUM < 4;

CALENDAR YEAR PROD ID SUM SALES

1998 13 936197.53
1998 26 567533.83
1998 27 107968.24

A materialized view can be partitioned. You can define a materialized view on a partitioned
table and one or more indexes on the materialized view.

ORACLE 6-33

Chapter 6
Overview of Materialized Views

¢ See Also:

Oracle Database Data Warehousing Guide to learn how to use materialized
views in a data warehouse

Refresh Methods for Materialized Views

The database maintains data in materialized views by refreshing them after changes
to the base tables. The refresh method can be incremental or a complete refresh.

e Complete Refresh
A complete refresh executes the query that defines the materialized view. A
complete refresh occurs when you initially create the materialized view, unless the
materialized view references a prebuilt table, or you define the table as BUILD
DEFERRED.

* Incremental Refresh
An incremental refresh, also called a fast refresh, processes only the changes to
the existing data. This method eliminates the need to rebuild materialized views
from the beginning. Processing only the changes can result in a very fast refresh
time.

* In-Place and Out-of-Place Refresh
For the complete and incremental methods, the database can refresh the
materialized view in place, which refreshes statements directly on the view, or out
of place.

Complete Refresh

A complete refresh executes the query that defines the materialized view. A complete
refresh occurs when you initially create the materialized view, unless the materialized
view references a prebuilt table, or you define the table as BUILD DEFERRED.

A complete refresh can be slow, especially if the database must read and process
huge amounts of data. You can perform a complete refresh at any time after creation
of the materialized view.

Incremental Refresh

ORACLE

An incremental refresh, also called a fast refresh, processes only the changes to the
existing data. This method eliminates the need to rebuild materialized views from the
beginning. Processing only the changes can result in a very fast refresh time.

You can refresh materialized views either on demand or at regular time intervals.
Alternatively, you can configure materialized views in the same database as their base
tables to refresh whenever a transaction commits changes to the base tables.

Fast refresh comes in either of the following forms:

e Log-Based refresh

In this type of refresh, a materialized view log or a direct loader log keeps a record
of changes to the base tables. A materialized view log is a schema object that
records changes to a base table so that a materialized view defined on the base

6-34

Chapter 6
Overview of Materialized Views

table can be refreshed incrementally. Each materialized view log is associated with a
single base table.

» Partition change tracking (PCT) refresh

PCT refresh is valid only when the base tables are partitioned. PCT refresh removes all
data in the affected materialized view partitions or affected portions of data, and then
recomputes them. The database uses the modified base table partitions to identify the
affected partitions or portions of data in the view. When partition maintenance operations
have occurred on the base tables, PCT refresh is the only usable incremental refresh
method.

In-Place and Out-of-Place Refresh

For the complete and incremental methods, the database can refresh the materialized view in
place, which refreshes statements directly on the view, or out of place.

An out-of-place refresh creates one or more outside tables, executes the refresh statements
on them, and then switches the materialized view or affected partitions with the outside
tables. This technique achieves high availability during refresh, especially when refresh
statements take a long time to finish.

Synchronous refresh is a type of out-of-place refresh. A synchronous refresh does not modify
the contents of the base tables, but instead uses the APIs in the synchronous refresh
package, which ensures consistency by applying these changes to the base tables and
materialized views at the same time. This approach enables a set of tables and the
materialized views defined on them to be always synchronized. In a data warehouse,
synchronous refresh method is well-suited for the following reasons:

* The loading of incremental data is tightly controlled and occurs at periodic intervals.

* Tables and their materialized views are often partitioned in the same way, or their
partitions are related by a functional dependency.

See Also:

Oracle Database Data Warehousing Guide to learn how to refresh materialized
views

Automatic Materialized Views

ORACLE

Starting with Oracle Database Release 21c, materialized views can be created and
maintained automatically.

Oracle Database can automatically create and manage materialized views in order to
optimize query performance. With very little or no interaction with the DBA, background tasks
monitor and analyze workload characteristics and identifies where materialized views will
improve SQL performance. The performance benefit of candidate materialized views is
measured in the background (using workload queries) before they are made visible to the
workload.

6-35

Chapter 6
Overview of Materialized Views

¢ See Also:

e Oracle Database Data Warehousing Guide for additional information

e Oracle Database PL/SQL Packages and Types Reference to learn how
to use the DBMS_AUTO MV package to implement automatic materialized
views

Query Rewrite

Query rewrite transforms a user request written in terms of master tables into a
semantically equivalent request that includes materialized views.

When base tables contain large amounts of data, computing an aggregate or join is
expensive and time-consuming. Because materialized views contain precomputed
aggregates and joins, query rewrite can quickly answer queries using materialized
views.

The query transformer transparently rewrites the request to use the materialized view,
requiring no user intervention and no reference to the materialized view in the SQL
statement. Because query rewrite is transparent, materialized views can be added or
dropped without invalidating the SQL in the application code.

In general, rewriting queries to use materialized views rather than detail tables
improves response time. The following figure shows the database generating an
execution plan for the original and rewritten query and choosing the lowest-cost plan.

Figure 6-9 Query Rewrite

—p | Query Results

and pick the best

‘l
[

Compare plan cost

Generate Plan

Oracle Database
Query is
rewritten

Generate Plan

e B
\ q-s
User enters

query

ORACLE 6-36

Chapter 6
Overview of Sequences

¢ See Also:

e "Overview of the Optimizer" to learn more about query transformation

e Oracle Database Data Warehousing Guide to learn how to use query rewrite

Overview of Sequences

A sequence is a schema object from which multiple users can generate unique integers. A
sequence generator provides a highly scalable and well-performing method to generate
surrogate keys for a number data type.

* Sequence Characteristics
A sequence definition indicates general information about the sequence, including its
name and whether the sequence ascends or descends.

» Concurrent Access to Sequences
The same sequence generator can generate numbers for multiple tables.

Sequence Characteristics

A sequence definition indicates general information about the sequence, including its name
and whether the sequence ascends or descends.

A sequence definition also indicates:

e The interval between numbers

e Whether the database should cache sets of generated sequence numbers in memory
e Whether the sequence should cycle when a limit is reached

The following example creates the sequence customers_seq in the sample schema oe. An
application could use this sequence to provide customer ID numbers when rows are added to
the customers table.

CREATE SEQUENCE customers seq

START WITH 1000
INCREMENT BY 1
NOCACHE

NOCYCLE;

The first reference to customers seq.nextval returns 1000. The second returns 1001. Each
subsequent reference returns a value 1 greater than the previous reference.

ORACLE 6-37

Chapter 6
Overview of Sequences

¢ See Also:

e Oracle Database 2 Day Developer's Guide for a tutorial that shows you
how to create a sequence

e Oracle Database Administrator’s Guide to learn how to reference a
sequence in a SQL statement

e Oracle Database SQL Language Reference for CREATE SEQUENCE syntax
and semantics

Concurrent Access to Sequences

The same sequence generator can generate numbers for multiple tables.

The generator can create primary keys automatically and coordinate keys across
multiple rows or tables. For example, a sequence can generate primary keys for an
orders table and a customers table.

The sequence generator is useful in multiuser environments for generating unique
numbers without the overhead of disk I/O or transaction locking. For example, two
users simultaneously insert new rows into the orders table. By using a sequence to
generate unique numbers for the order id column, neither user has to wait for the
other to enter the next available order number. The sequence automatically generates
the correct values for each user.

Each user that references a sequence has access to their current sequence number,
which is the last sequence generated in the session. A user can issue a statement to
generate a new sequence number or use the current number last generated by the
session. After a statement in a session generates a sequence number, it is available
only to this session. Individual sequence numbers can be skipped if they were
generated and used in a transaction that was ultimately rolled back.

WARNING:

If your application requires a gap-free set of numbers, then you cannot use
Oracle sequences. You must serialize activities in the database using your
own developed code.

¢ See Also:

"Data Concurrency and Consistency " to learn how sessions access data at
the same time

ORACLE 6-38

Chapter 6
Overview of Dimensions

Overview of Dimensions

A typical data warehouse has two important components: dimensions and facts.

A dimension is any category used in specifying business questions, for example, time,
geography, product, department, and distribution channel. A fact is an event or entity
associated with a particular set of dimension values, for example, units sold or profits.

Examples of multidimensional requests include the following:

* Show total sales across all products at increasing aggregation levels for a geography
dimension, from state to country to region, for 2013 and 2014.

» Create a cross-tabular analysis of our operations showing expenses by territory in South
America for 2013 and 2014. Include all possible subtotals.

» List the top 10 sales representatives in Asia according to 2014 sales revenue for
automotive products, and rank their commissions.

Many multidimensional questions require aggregated data and comparisons of data sets,
often across time, geography or budgets.

Creating a dimension permits the broader use of the query rewrite feature. By transparently
rewriting queries to use materialized views, the database can improve query performance.

» Hierarchical Structure of a Dimension
A dimension table is a logical structure that defines hierarchical (parent/child)
relationships between pairs of columns or column sets.

e Creation of Dimensions
You create dimensions with the CREATE DIMENSION SQL statement.

¢ See Also:

Oracle Database Data Warehousing Guide to learn more about dimensions

Hierarchical Structure of a Dimension

ORACLE

A dimension table is a logical structure that defines hierarchical (parent/child) relationships
between pairs of columns or column sets.

For example, a dimension can indicate that within a row the city column implies the value of
the state column, and the state column implies the value of the country column.

Within a customer dimension, customers could roll up to city, state, country, subregion, and
region. Data analysis typically starts at higher levels in the dimensional hierarchy and
gradually drills down if the situation warrants such analysis.

Each value at the child level is associated with one and only one value at the parent level. A
hierarchical relationship is a functional dependency from one level of a hierarchy to the next
level in the hierarchy.

A dimension has no data storage assigned to it. Dimensional information is stored in
dimension tables, whereas fact information is stored in a fact table.

6-39

Chapter 6
Overview of Dimensions

¢ See Also:

e Oracle Database Data Warehousing Guide to learn about dimensions

Creation of Dimensions

ORACLE

You create dimensions with the CREATE DIMENSION SQL statement.
This statement specifies:

e Multiple LEVEL clauses, each of which identifies a column or column set in the
dimension

e One or more HIERARCHY clauses that specify the parent/child relationships
between adjacent levels

e Optional ATTRIBUTE clauses, each of which identifies an additional column or
column set associated with an individual level

The following statement was used to create the customers_dim dimension in the
sample schema sh:

CREATE DIMENSION customers dim
LEVEL customer IS (customers.cust id)
LEVEL city IS (customers.cust city)
LEVEL state IS (customers.cust state province)
LEVEL country IS (countries.country id)
LEVEL subregion IS (countries.country subregion)

(
(
(
(
(
(

LEVEL region IS (countries.country region)
HIERARCHY geog rollup (

customer CHILD OF

city CHILD OF

state CHILD OF

country CHILD OF

subregion CHILD OF

region

JOIN KEY (customers.country id) REFERENCES country)
ATTRIBUTE customer DETERMINES
(cust _first name, cust last name, cust gender,
cust marital status, cust year of birth,
cust _income level, cust credit limit)
ATTRIBUTE country DETERMINES (countries.country name);

The columns in a dimension can come either from the same table (denormalized) or
from multiple tables (fully or partially normalized). For example, a normalized time
dimension can include a date table, a month table, and a year table, with join
conditions that connect each date row to a month row, and each month row to a year
row. In a fully denormalized time dimension, the date, month, and year columns are in
the same table. Whether normalized or denormalized, the hierarchical relationships
among the columns must be specified in the CREATE DIMENSION statement.

6-40

Chapter 6
Overview of Synonyms

¢ See Also:

Oracle Database SQL Language Reference for CREATE DIMENSION syntax and
semantics

Overview of Synonyms

ORACLE

A synonym is an alias for a schema object. For example, you can create a synonym for a
table or view, sequence, PL/SQL program unit, user-defined object type, or another synonym.
Because a synonym is simply an alias, it requires no storage other than its definition in the
data dictionary.

Synonyms can simplify SQL statements for database users. Synonyms are also useful for
hiding the identity and location of an underlying schema object. If the underlying object must
be renamed or moved, then only the synonym must be redefined. Applications based on the
synonym continue to work without modification.

You can create both private and public synonyms. A private synonym is in the schema of a
specific user who has control over its availability to others. A public synonym is owned by the
user group named PUBLIC and is accessible by every database user.

Example 6-5 Public Synonym

Suppose that a database administrator creates a public synonym named people for the
hr.employees table. The user then connects to the oe schema and counts the number of
rows in the table referenced by the synonym.

SQL> CREATE PUBLIC SYNONYM people FOR hr.employees;
Synonym created.

SQL> CONNECT oe
Enter password: password
Connected.

SQL> SELECT COUNT (*) FROM people;

Use public synonyms sparingly because they make database consolidation more difficult. As
shown in the following example, if another administrator attempts to create the public
synonym people, then the creation fails because only one public synonym people can exist in
the database. Overuse of public synonyms causes namespace conflicts between
applications.

SQL> CREATE PUBLIC SYNONYM people FOR oe.customers;
CREATE PUBLIC SYNONYM people FOR oe.customers
*
ERROR at line 1:
ORA-00955: name is already used by an existing object

SQL> SELECT OWNER, SYNONYM NAME, TABLE OWNER, TABLE NAME

2 FROM DBA SYNONYMS
3 WHERE SYNONYM NAME = 'PEOPLE';

6-41

ORACLE

Chapter 6
Overview of Synonyms

OWNER SYNONYM NAME TABLE OWNER TABLE NAME

PUBLIC PEOPLE HR EMPLOYEES

Synonyms themselves are not securable. When you grant object privileges on a
synonym, you are really granting privileges on the underlying object. The synonym is
acting only as an alias for the object in the GRANT statement.

¢ See Also:

e Oracle Database Administrator's Guide to learn how to manage
synonyms

e Oracle Database SQL Language Reference for CREATE SYNONYM syntax
and semantics

6-42

Data Integrity

This chapter explains how integrity constraints enforce the business rules associated with a
database and prevent the entry of invalid information into tables.

e Introduction to Data Integrity
It is important that data maintain data integrity, which is adherence to business rules
determined by the database administrator or application developer.

* Types of Integrity Constraints
Oracle Database enables you to apply constraints both at the table and column level.

e States of Integrity Constraints
As part of constraint definition, you can specify how and when Oracle Database should
enforce the constraint, thereby determining the constraint state.

See Also:

Overview of Tables for background on columns and the need for integrity
constraints.

Introduction to Data Integrity

It is important that data maintain data integrity, which is adherence to business rules
determined by the database administrator or application developer.

Business rules specify conditions and relationships that must always be true or must always
be false. For example, each company defines its own policies about salaries, employee
numbers, inventory tracking, and so on.

» Techniques for Guaranteeing Data Integrity
When designing a database application, developers have several options for
guaranteeing the integrity of data stored in the database.

* Advantages of Integrity Constraints
An integrity constraint is a schema object that is created and dropped using SQL. To
enforce data integrity, use integrity constraints whenever possible.

Techniques for Guaranteeing Data Integrity

ORACLE

When designing a database application, developers have several options for guaranteeing
the integrity of data stored in the database.

These options include:

« Enforcing business rules with triggered stored database procedures

» Using stored procedures to completely control access to data

7-1

Chapter 7
Introduction to Data Integrity

» Enforcing business rules in the code of a database application

* Using Oracle Database integrity constraints, which are rules defined at the column
or object level that restrict values in the database

¢ See Also:

e "Overview of Triggers" explains the purpose and types of triggers

e "Introduction to Server-Side Programming" explains the purpose and
characteristics of stored procedures

Advantages of Integrity Constraints

An integrity constraint is a schema object that is created and dropped using SQL. To
enforce data integrity, use integrity constraints whenever possible.

Advantages of integrity constraints over alternatives for enforcing data integrity
include:

e Declarative ease

Because you define integrity constraints using SQL statements, no additional
programming is required when you define or alter a table. The SQL statements are
easy to write and eliminate programming errors.

* Centralized rules

Integrity constraints are defined for tables and are stored in the data dictionary.
Thus, data entered by all applications must adhere to the same integrity
constraints. If the rules change at the table level, then applications need not
change. Also, applications can use metadata in the data dictionary to immediately
inform users of violations, even before the database checks the SQL statement.

e Flexibility when loading data

You can disable integrity constraints temporarily to avoid performance overhead
when loading large amounts of data. When the data load is complete, you can re-
enable the integrity constraints.

¢ See Also:

e "Overview of the Data Dictionary"

e Oracle Database 2 Day Developer's Guide and Oracle Database
Development Guide to learn how to maintain data integrity

e Oracle Database Administrator’s Guide to learn how to manage integrity
constraints

ORACLE 7-2

Chapter 7
Types of Integrity Constraints

Types of Integrity Constraints

ORACLE

Oracle Database enables you to apply constraints both at the table and column level.

A constraint specified as part of the definition of a column or attribute is an inline
specification. A constraint specified as part of the table definition is an out-of-line
specification.

A key is the column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the tables and columns of a relational
database. Individual values in a key are called key values.

The following table describes the types of constraints. Each can be specified either inline or
out-of-line, except for NOT NULL, which must be inline.

Table 7-1 Types of Integrity Constraints

___|
Constraint Type Description See Also

NOT NULL Allows or disallows inserts or updates of "NOT NULL Integrity Constraints"
rows containing a null in a specified column.

Unique key Prohibits multiple rows from having the "Unique Constraints"
same value in the same column or
combination of columns but allows some
values to be null.

Primary key Combines a NOT NULL constraint and a "Primary Key Constraints"
unique constraint. It prohibits multiple rows
from having the same value in the same
column or combination of columns and
prohibits values from being null.

Foreign key Designates a column as the foreign key and "Foreign Key Constraints"
establishes a relationship between the
foreign key and a primary or unique key,
called the referenced key.

Check Requires a database value to obey a "Check Constraints”
specified condition.

REF Dictates types of data manipulation allowed Oracle Database Object-Relational
on values in a REF column and how these Developer's Guide to learn about
actions affect dependent values. In an REF constraints

object-relational database, a built-in data
type called a REF encapsulates a reference
to a row object of a specified object type.
Referential integrity constraints on REF
columns ensure that there is a row object
for the REF.

* NOT NULL Integrity Constraints
A NOT NULL constraint requires that a column of a table contain no null values. A null is
the absence of a value. By default, all columns in a table allow nulls.

* Unigue Constraints
A unique key constraint requires that every value in a column or set of columns be
unique. No rows of a table may have duplicate values in a single column (the unique
key) or set of columns (the composite unique key) with a unique key constraint.

7-3

Chapter 7
Types of Integrity Constraints

* Primary Key Constraints
In a primary key constraint, the values in the group of one or more columns
subject to the constraint uniquely identify the row. Each table can have one
primary key, which in effect names the row and ensures that no duplicate rows
exist.

* Foreign Key Constraints
Whenever two tables contain one or more common columns, Oracle Database can
enforce the relationship between the two tables through a foreign key constraint,
also called a referential integrity constraint.

* Check Constraints
A check constraint on a column or set of columns requires that a specified
condition be true or unknown for every row.

e Precheckable JSON Constraints
A check constraint that is marked as PRECHECK can be checked outside the
database.

¢ See Also:

e "Overview of Tables"

e Oracle Database SQL Language Reference to learn more about the
types of constraints

NOT NULL Integrity Constraints

A NOT NULL constraint requires that a column of a table contain no null values. A null
is the absence of a value. By default, all columns in a table allow nulls.

NOT NULL constraints are intended for columns that must not lack values. For example,
the hr.employees table requires a value in the email column. An attempt to insert an
employee row without an email address generates an error:

SQL> INSERT INTO hr.employees (employee id, last name) values (999,
'Smith');

ERROR at line 1:
ORA-01400: cannot insert NULL into ("HR"."EMPLOYEES"."EMAIL")

You can only add a column with a NOT NULL constraint if the table does not contain any
rows or if you specify a default value.

ORACLE 7-4

Chapter 7
Types of Integrity Constraints

¢ See Also:

e Oracle Database 2 Day Developer's Guide for examples of adding NOT NULL
constraints to a table

e Oracle Database SQL Language Reference for restrictions on using NOT NULL
constraints

e Oracle Database Development Guide to learn when to use the NOT NULL
constraint

Unique Constraints

ORACLE

A unique key constraint requires that every value in a column or set of columns be unique.
No rows of a table may have duplicate values in a single column (the unique key) or set of
columns (the composite unique key) with a unique key constraint.

Note:

The term key refers only to the columns defined in the integrity constraint. Because
the database enforces a unique constraint by implicitly creating or reusing an index
on the key columns, the term unique key is sometimes incorrectly used as a
synonym for unique key constraint or unique index.

Unique key constraints are appropriate for any column where duplicate values are not
allowed. Unique constraints differ from primary key constraints, whose purpose is to identify
each table row uniquely, and typically contain values that have no significance other than
being unique. Examples of unique keys include:

e A customer phone number, where the primary key is the customer number
e A department name, where the primary key is the department number

As shown in Example 4-1, a unique key constraint exists on the email column of the
hr.employees table. The relevant part of the statement is as follows:

CREATE TABLE employees (..
, email VARCHAR?Z2 (25)

CONSTRAINT emp email nn NOT NULL ...
, CONSTRAINT emp email uk UNIQUE (email) ...);

The emp_email uk constraint ensures that no two employees have the same email address,
as shown in the following example:

SQL> SELECT employee id, last name, email FROM employees WHERE email = 'PFAY';
EMPLOYEE ID LAST NAME EMAIL
202 Fay PFAY

SQL> INSERT INTO employees (employee id, last name, email, hire date, job id)
1 VALUES (999,'Fay',’PFAY',SYSDATE,'ST7CLERK');

7-5

Chapter 7
Types of Integrity Constraints

ERROR at line 1:
ORA-00001: unique constraint (HR.EMP EMAIL UK) violated

Unless a NOT NULL constraint is also defined, a null always satisfies a unique key
constraint. Thus, columns with both unique key constraints and NOT NULL constraints
are typical. This combination forces the user to enter values in the unique key and
eliminates the possibility that new row data conflicts with existing row data.

Note:

Because of the search mechanism for unique key constraints on multiple
columns, you cannot have identical values in the non-null columns of a
partially null composite unique key constraint.

Example 7-1 Unique Constraint

SQL> SELECT employee id, last name, email FROM employees WHERE email = 'PFAY';
EMPLOYEE ID LAST NAME EMAIL

SQL> INSERT INTO employees (employee id, last name, email, hire date, job id)
1 VALUES (999, 'Fay', 'PFAY',SYSDATE, 'ST CLERK');

ERROR at line 1:
ORA-00001: unique constraint (HR.EMP EMAIL UK) violated

" See Also:

e "Unigue and Nonunique Indexes"

* Oracle Database 2 Day Developer's Guide for examples of adding
UNIQUE constraints to a table

Primary Key Constraints

ORACLE

In a primary key constraint, the values in the group of one or more columns subject
to the constraint uniquely identify the row. Each table can have one primary key,
which in effect names the row and ensures that no duplicate rows exist.

A primary key can be natural or a surrogate. A natural key is a meaningful identifier
made of existing attributes in a table. For example, a natural key could be a postal
code in a lookup table. In contrast, a surrogate key is a system-generated
incrementing identifier that ensures uniqueness within a table. Typically, a sequence
generates surrogate keys.

7-6

Chapter 7
Types of Integrity Constraints

The Oracle Database implementation of the primary key constraint guarantees that the
following statements are true:

* No two rows have duplicate values in the specified column or set of columns.
e The primary key columns do not allow nulls.

A typical situation calling for a primary key is the numeric identifier for an employee. Each
employee must have a unique ID. An employee must be described by one and only one row
in the employees table.

The example in Unigque Constraints indicates that an existing employee has the employee ID
of 202, where the employee ID is the primary key. The following example shows an attempt to
add an employee with the same employee ID and an employee with no ID:

SQL> INSERT INTO employees (employee id, last name, email, hire date,
job_id)
1 VALUES (202,’Chan','JCHAN',SYSDATE,'ST7CLERK’);

ERROR at line 1:
ORA-00001: unique constraint (HR.EMP EMP ID PK) violated

SQL> INSERT INTO employees (last name) VALUES ('Chan');

ERROR at line 1:
ORA-01400: cannot insert NULL into ("HR"."EMPLOYEES"."EMPLOYEEilD")

The database enforces primary key constraints with an index. Usually, a primary key
constraint created for a column implicitly creates a unique index and a NOT NULL constraint.
Note the following exceptions to this rule:

* In some cases, as when you create a primary key with a deferrable constraint, the
generated index is not unique.

Note:

You can explicitly create a unique index with the CREATE UNIQUE INDEX
statement.

» If ausable index exists when a primary key constraint is created, then the constraint
reuses this index and does not implicitly create one.

By default the name of the implicitly created index is the name of the primary key constraint.
You can also specify a user-defined name for an index. You can specify storage options for
the index by including the ENABLE clause in the CREATE TABLE or ALTER TABLE statement used
to create the constraint.

ORACLE .

Chapter 7
Types of Integrity Constraints

¢ See Also:

Oracle Database 2 Day Developer's Guide and Oracle Database
Development Guide to learn how to add primary key constraints to a table

Foreign Key Constraints

ORACLE

Whenever two tables contain one or more common columns, Oracle Database can
enforce the relationship between the two tables through a foreign key constraint,
also called a referential integrity constraint.

A foreign key constraint requires that for each value in the column on which the
constraint is defined, the value in the other specified other table and column must
match. An example of a referential integrity rule is an employee can work for only an
existing department.

The following table lists terms associated with referential integrity constraints.

Table 7-2 Referential Integrity Constraint Terms

|
Term Definition

Foreign key The column or set of columns included in the definition of the
constraint that reference a referenced key. For example, the
department id columnin employees is a foreign key that
references the department id columnin departments.

Foreign keys may be defined as multiple columns. However,
a composite foreign key must reference a composite primary
or unique key with the same number of columns and the
same data types.

The value of foreign keys can match either the referenced
primary or unique key value, or be null. If any column of a
composite foreign key is null, then the non-null portions of the
key do not have to match any corresponding portion of a
parent key.

Referenced key The unique key or primary key of the table referenced by a
foreign key. For example, the department id columnin
departments is the referenced key for the department id
column in employees.

Dependent or child table The table that includes the foreign key. This table depends on
the values present in the referenced unique or primary key.
For example, the employees table is a child of
departments.

Referenced or parent table The table that is referenced by the foreign key of the child
table. It is this table's referenced key that determines whether
specific inserts or updates are allowed in the child table. For
example, the departments table is a parent of employees.

Figure 7-1 shows a foreign key on the employees.department id column. It
guarantees that every value in this column must match a value in the
departments.department id column. Thus, no erroneous department numbers can
exist in the employees.department id column.

7-8

Chapter 7

Types of Integrity Constraints

Figure 7-1 Referential Integrity Constraints

"POMOJ[E 10U SI MOJ Sy}
‘UwiN|od SIy} Joj paulap osfe sl
JUIBJISUOD [INU JOU B §I ‘JoaABmoy
‘uwnjod @I LNIWLHYJIA auj ul
paJslus SI 8Nn[eA ||nu e asnedaq
9|qel Y} Ul PAMO|[e S| MOJ SIU |

(X0] HOW OV £0-030-L} NEEISIolE] usein 80¢
_ 66 00} NYIN MIN £0-03A-L1 NMOQHSYY umopysy 10¢
. OLNI
8|qe] 8Y} Ul paMmoj[e Jou Si
Mol ay} ‘alojalay) ‘Aey Arewud Ld3SNI
s,9|ge) paduaIsel 8y} ul Juasald
10U SI 66, 9SNBOS(JUIRIISUOD
[enuaIaal 8yl SeIB[OIA MO SIY |
09 20l | oo4dd LI 06-NVIr-€0 A1ONNHY pjounH €0}
06 00} dA_av €6-NVI-€} NNVYH3A1 uueH g 41"
06 001t dA_av 68-d3S-12 | HYHHOOMN Jeyyooy L0t
06 S3dd av L8-NNr-L1L DONIMS Bury 00}
al LN3nldvd3aa _ alr 43OYNYIN _ ar gor _ 31vd 34IH _ TIVINT _ JNVYN LSV _ ar33Ao1dng

S33A0TdINT dl9el

(ajge1 paousisjal

0 Aoy Arewud Jo
A8y anbiun uy anjea
B ydjew }snw d|qe}
1uapuadap ul sanjeA)
Aa)| ubiaio4

a|qeL plyd 4o juspuadaq

oot oor
00wl €0}

aAlnoax3 | 06

ar NOILYDO1 _n__lw_m_0<z<_>_ _ JNYN LNINLHYL3AA _ ar ININLHYd3d

11| 09 *

S1IN3IN1HVd3A slgel

a|qe] judied 10 PaoUdIBRY

a|qe) paouaIsyel
j0 Aoy Arewnd
A3y uaied

Self-Referential Integrity Constraints

A self-referential integrity constraint is a foreign key that references a parent key in

the same table.

Nulls and Foreign Keys

The relational model permits the value of foreign keys to match either the referenced

primary or unique key value, or be null. For example, a row in hr.employees might not

specify a department ID.

Parent Key Modifications and Foreign Keys

The relationship between foreign key and parent key has implications for deletion of

parent keys. For example, if a user attempts to delete the record for this department, then

what happens to the records for employees in this department?

7-9

ORACLE

Chapter 7
Types of Integrity Constraints

* Indexes and Foreign Keys
As a rule, foreign keys should be indexed. The only exception is when the
matching unique or primary key is never updated or deleted.

¢ See Also:

Oracle Database 2 Day Developer's Guide and Oracle Database
Development Guide to learn how to add foreign key constraints to a table

Self-Referential Integrity Constraints

A self-referential integrity constraint is a foreign key that references a parent key in
the same table.

In the following figure, a self-referential constraint ensures that every value in the
employees.manager id column corresponds to an existing value in the
employees.employee id column. For example, the manager for employee 102 must
exist in the employees table. This constraint eliminates the possibility of erroneous
employee numbers in the manager id column.

Figure 7-2 Single Table Referential Constraints

primary key; therefore,

60

This row violates the referential

constraint, because "400" is
not present in the referenced

it is not allowed in the table.

tabl

avalue in unique key or primary key of

(values in dependent table must match
referenced table)

Foreign Key

100
100
102

| WANAGER_ID | DEPARTMENT_ID

IT_PROG

AD_PRES
VP
IT_PROG

Dependent or Child Table

21-SEP-89
13-JAN-93
03-JAN-90

| HIRE_DATE | JOB_ID
17-JUN-87

-

AASHDOWN 01-DEC-07

| EMAIL
SKING
NKOCHHAR
LDEHANN
AHUNOLD

LAST_NAME

Kin
Hunold
Ashdown

Kog'\har
De Hann

Table EMPLOYEES

207

Referenced or Parent Table

of referenced table

Primary Key

Nulls and Foreign Keys

ORACLE

The relational model permits the value of foreign keys to match either the referenced
primary or unique key value, or be null. For example, a row in hr.employees might not
specify a department ID.

7-10

Chapter 7
Types of Integrity Constraints

If any column of a composite foreign key is null, then the non-null portions of the key do not
have to match any corresponding portion of a parent key. For example, a reservations table
might contain a composite foreign key on the table id and date columns, but table idis
null.

Parent Key Modifications and Foreign Keys

ORACLE

The relationship between foreign key and parent key has implications for deletion of parent
keys. For example, if a user attempts to delete the record for this department, then what
happens to the records for employees in this department?

When a parent key is modified, referential integrity constraints can specify the following
actions to be performed on dependent rows in a child table:

* No action on deletion or update

In the normal case, users cannot modify referenced key values if the results would violate
referential integrity. For example, if employees.department id is a foreign key to
departments, and if employees belong to a particular department, then an attempt to
delete the row for this department violates the constraint.

e Cascading deletions

A deletion cascades (DELETE CASCADE) when rows containing referenced key values are
deleted, causing all rows in child tables with dependent foreign key values to also be
deleted. For example, the deletion of a row in departments causes rows for all
employees in this department to be deleted.

» Deletions that set null

A deletion sets null (DELETE SET NULL) when rows containing referenced key values are
deleted, causing all rows in child tables with dependent foreign key values to set those
values to null. For example, the deletion of a department row sets the department id
column value to null for employees in this department.

Table 7-3 outlines the DML statements allowed by the different referential actions on the key
values in the parent table, and the foreign key values in the child table.

Table 7-3 DML Statements Allowed by Update and Delete No Action
]

DML Statement Issued Against Parent Table Issued Against Child Table

INSERT Always OK if the parent key value is OK only if the foreign key value
unique exists in the parent key or is partially

or all null

UPDATE NO ACTION Allowed if the statement does not Allowed if the new foreign key value
leave any rows in the child table still references a referenced key
without a referenced parent key value
value

DELETE NO ACTION Allowed if no rows in the child table Always OK
reference the parent key value

DELETE CASCADE Always OK Always OK

DELETE SET NULL Always OK Always OK

7-11

Chapter 7
Types of Integrity Constraints

< Note:

Other referential actions not supported by FOREIGN KEY integrity constraints
of Oracle Database can be enforced using database triggers. See "Overview
of Triggers".

See Also:

Oracle Database SQL Language Reference to learn about the ON DELETE
clause

Indexes and Foreign Keys

As a rule, foreign keys should be indexed. The only exception is when the matching
unique or primary key is never updated or deleted.

Indexing the foreign keys in child tables provides the following benefits:

* Prevents a full table lock on the child table. Instead, the database acquires a row
lock on the index.

* Removes the need for a full table scan of the child table. As an illustration, assume
that a user removes the record for department 10 from the departments table. If
employees.department id is not indexed, then the database must scan
employees to see if any employees exist in department 10.

¢ See Also:

* "Locks and Foreign Keys" explains the locking behavior for indexed and
unindexed foreign key columns

e "Introduction to Indexes" explains the purpose and characteristics of
indexes

Check Constraints

ORACLE

A check constraint on a column or set of columns requires that a specified condition
be true or unknown for every row.

If DML results in the condition of the constraint evaluating to false, then the SQL
statement is rolled back. The chief benefit of check constraints is the ability to enforce
very specific integrity rules. For example, you could use check constraints to enforce
the following rules in the hr.employees table:

* The salary column must not have a value greater than 10000.

e The commission column must have a value that is not greater than the salary.

7-12

Chapter 7
Types of Integrity Constraints

The following example creates a maximum salary constraint on employees and demonstrates
what happens when a statement attempts to insert a row containing a salary that exceeds the
maximum:

SQL> ALTER TABLE employees ADD CONSTRAINT max emp sal CHECK (salary < 10001);
SQL> INSERT INTO employees
(employee id,last name,email,hire date,job_id,salary)

1 VALUES (999, 'Green', 'BGREEN', SYSDATE, 'ST CLERK' ,20000) ;

ERROR at line 1:
ORA-02290: check constraint (HR.MAX EMP SAL) violated

A single column can have multiple check constraints that reference the column in its
definition. For example, the salary column could have one constraint that prevents values
over 10000 and a separate constraint that prevents values less than 500.

If multiple check constraints exist for a column, then they must be designed so their purposes
do not conflict. No order of evaluation of the conditions can be assumed. The database does
not verify that check conditions are not mutually exclusive.

¢ See Also:

Oracle Database SQL Language Reference to learn about restrictions for check
constraints

Precheckable JSON Constraints

A check constraint that is marked as PRECHECK can be checked outside the database.

Setting a check constraint to the PRECHECK state is done while creating or altering the table.
Oracle Database enables you to export a JSON schema and validate JSON data against a
JSON schema validator within the application client.

When a constraint is set to the PRECHECK state, it indicates that the constraint has an
equivalent JSON schema that preserves the semantics of the constraint. The client
application developers can pre-validate the constraint within the client application. The
database checks the constraint and an error is generated if the constraint cannot be
expressed in JSON schema.

The PRECHECK state complements the ENABLE and VALIDATE states of a constraint and a
constraint you can have all the three states active at the same time.

Related Topics
e Using PRECHECK with CHECK Constraint to prevalidate JSON Data
e ALL_CONSTRAINTS

ORACLE 7-13

Chapter 7
States of Integrity Constraints

States of Integrity Constraints

As part of constraint definition, you can specify how and when Oracle Database should
enforce the constraint, thereby determining the constraint state.

e Checks for Modified and Existing Data
The database enables you to specify whether a constraint applies to existing data
or future data. If a constraint is enabled, then the database checks new data as it
is entered or updated. Data that does not conform to the constraint cannot enter
the database.

* When the Database Checks Constraints for Validity
Every constraint is either in a not deferrable (default) or deferrable state. This state
determines when Oracle Database checks the constraint for validity.

» Examples of Constraint Checking
The following examples help illustrate when Oracle Database performs the
checking of constraints.

Checks for Modified and Existing Data

The database enables you to specify whether a constraint applies to existing data or
future data. If a constraint is enabled, then the database checks new data as it is
entered or updated. Data that does not conform to the constraint cannot enter the
database.

For example, enabling a NOT NULL constraint on employees.department id
guarantees that every future row has a department ID. If a constraint is disabled, then
the table can contain rows that violate the constraint.

You can set constraints to either of the following validation modes:

e VALIDATE

Existing data must conform to the constraint. For example, enabling a NOT NULL
constraint on employees.department id and setting it to VALIDATE checks that
every existing row has a department ID.

e NOVALIDATE

Existing data need not conform to the constraint. In effect, this is a “trust me”
mode. For example, if you are certain that every sale that you loaded into a table
has a date, then you can create a NOT NULL constraint on the date column and set
the constraint to NOVALIDATE. Unenforced constraints are typically useful only with
materialized views and query rewrite.

For a constraint in NOVALIDATE mode, the RELY parameter indicates that the
optimizer can use the constraint to determine join information. Even though the
constraint is not used for validating data, it enables more sophisticated query
rewrites for materialized views, and enables data warehousing tools to retrieve
constraint information from the data dictionary. The default is NORELY, which means
that the optimizer is effectively unaware of the constraint.

The behavior of VALIDATE and NOVALIDATE always depends on whether the constraint
is enabled or disabled. The following table summarizes the relationships.

ORACLE 7-14

Chapter 7
States of Integrity Constraints

Table 7-4 Checks on Modified and Existing Data
]

Modified Data

Existing Data

Summary

ENABLE

ENABLE

DISABLE

DISABLE

VALIDATE

NOVALIDATE

VALIDATE

NOVALIDATE

Existing and future data must obey the constraint. An
attempt to apply a new constraint to a populated table results
in an error if existing rows violate the constraint.

The database checks the constraint, but it need not be true
for all rows. Therefore, existing rows can violate the
constraint, but new or modified rows must conform to the
rules. This mode is often used in data warehouses that
contain existing data whose integrity has already been
verified.

The database disables the constraint, drops its index, and
prevents modification of the constrained columns.

The constraint is not checked and is not necessarily true.

¢ See Also:

Oracle Database SQL Language Reference to learn about constraint states

When the Database Checks Constraints for Validity

Every constraint is either in a not deferrable (default) or deferrable state. This state
determines when Oracle Database checks the constraint for validity.

ORACLE

The following graphic shows the options for deferrable constraints.

Figure 7-3 Options for Deferrable Constraints

¢ Nondeferrable Constraints
In a nondeferrable constraint, Oracle Database never defers the validity check of the
constraint to the end of the transaction. Instead, the database checks the constraint at
the end of each statement. If the constraint is violated, then the statement rolls back.

» Deferrable Constraints
A deferrable constraint permits a transaction to use the SET CONSTRAINT clause to defer

checking of this constraint until a coMMIT statement is issued. If you make changes to the

Initally Immediate
Initially Deferred

Nondeferrable and Initially Immediate

Deferrable

7-15

Chapter 7
States of Integrity Constraints

database that might violate the constraint, then this setting effectively enables you
to disable the constraint until all changes are complete.

Nondeferrable Constraints

In a nondeferrable constraint, Oracle Database never defers the validity check of the
constraint to the end of the transaction. Instead, the database checks the constraint at
the end of each statement. If the constraint is violated, then the statement rolls back.

For example, a nondeferrable NOT NULL constraint exists for the employees.last name
column. If a session attempts to insert a row with no last name, then the database
immediately rolls back the statement because the NOT NULL constraint is violated. No
row is inserted.

Deferrable Constraints

A deferrable constraint permits a transaction to use the SET CONSTRAINT clause to
defer checking of this constraint until a COMMIT statement is issued. If you make
changes to the database that might violate the constraint, then this setting effectively
enables you to disable the constraint until all changes are complete.

You can set the default behavior for when the database checks the deferrable
constraint. You can specify either of the following attributes:

° INITIALLY IMMEDIATE

The database checks the constraint immediately after each statement executes. If
the constraint is violated, then the database rolls back the statement.

° INITIALLY DEFERRED

The database checks the constraint when a COMMIT is issued. If the constraint is
violated, then the database rolls back the transaction.

Assume that a deferrable NOT NULL constraint on employees.last name is set to
INITIALLY DEFERRED. A user creates a transaction with 100 INSERT statements, some
of which have null values for 1ast name. When the user attempts to commit, the
database rolls back all 100 statements. However, if this constraint were set to
INITIALLY IMMEDIATE, then the database would not roll back the transaction.

If a constraint causes an action, then the database considers this action as part of the
statement that caused it, whether the constraint is deferred or immediate. For
example, deleting a row in departments causes the deletion of all rows in employees
that reference the deleted department row. In this case, the deletion from employees is
considered part of the DELETE statement executed against departments.

¢ See Also:

Oracle Database SQL Language Reference for information about constraint
attributes and their default values

ORACLE 7-16

Chapter 7
States of Integrity Constraints

Examples of Constraint Checking

The following examples help illustrate when Oracle Database performs the checking of
constraints.

Assume the following:

The employees table has the structure shown in "Self-Referential Integrity Constraints".

The self-referential constraint makes entries in the manager id column dependent on the
values of the employee id column.

Example: Insertion of a Value in a Foreign Key Column When No Parent Key Value
Exists

This example concerns the insertion of the first row into the employees table. No rows
currently exist, so how can a row be entered if the value in the manager id column
cannot reference an existing value in the employee id column?

Example: Update of All Foreign Key and Parent Key Values
In this example, a self-referential constraint makes entries in the manager id column of
employees dependent on the values of the employee id column.

Example: Insertion of a Value in a Foreign Key Column When No Parent Key Value

Exists

ORACLE

This example concerns the insertion of the first row into the employees table. No rows
currently exist, so how can a row be entered if the value in the manager id column cannot
reference an existing value in the employee id column?

Some possibilities are:

If the manager id column does not have a NOT NULL constraint defined on it, then you can
enter a null for the manager id column of the first row.

Because nulls are allowed in foreign keys, Oracle Database inserts this row into the
table.

You can enter the same value in the employee id and manager id columns, specifying
that the employee is their own manager.

This case reveals that Oracle Database performs its constraint checking after the
statement executes. To allow a row to be entered with the same values in the parent key
and the foreign key, the database must first insert the new row, and then determine
whether any row in the table has an employee id that corresponds to the manager id of
the new row.

A multiple row INSERT statement, such as an INSERT statement with nested SELECT
statements, can insert rows that reference one another.

For example, the first row might have 200 for employee ID and 300 for manager ID, while
the second row has 300 for employee ID and 200 for manager. Constraint checking is
deferred until the complete execution of the INSERT statement. The database inserts all
rows, and then checks all rows for constraint violations.

Default values are included as part of an INSERT statement before the statement is parsed.
Thus, default column values are subject to all integrity constraint checking.

7-17

Chapter 7
States of Integrity Constraints

Example: Update of All Foreign Key and Parent Key Values

In this example, a self-referential constraint makes entries in the manager id column of
employees dependent on the values of the employee id column.

The company has been sold. Because of this sale, all employee numbers must be
updated to be the current value plus 5000 to coordinate with the employee numbers of
the new company. As shown in the following graphic, some employees are also
managers:

Figure 7-4 The employees Table Before Updates

EMPLOYEE_ID | MANAGER_ID

Because manager numbers are also employee numbers, the manager numbers must
also increase by 5000. You could execute the following SQL statement to update the
values:

UPDATE employees SET employee id = employee id + 5000,
manager id = manager id + 5000;

Although a constraint is defined to verify that each manager id value matches an
employee id value, the preceding statement is valid because the database effectively
checks constraints after the statement completes. Figure 7-5 shows that the database
performs the actions of the entire SQL statement before checking constraints.

Figure 7-5 Constraint Checking

ORACLE

The examples in this section illustrate the constraint checking mechanism during
INSERT and UPDATE statements, but the database uses the same mechanism for all
types of DML statements. The database uses the same mechanism for all types of
constraints, not just self-referential constraints.

7-18

Chapter 7
States of Integrity Constraints

¢ Note:

Operations on a view or synonym are subject to the integrity constraints defined on
the base tables.

ORACLE 7.19

Application Data Usage

This chapter explains what application usage domains and application usage annotations
are.

* Application Usage Domains
An application usage domain is a high-level dictionary object that belongs to a schema
and encapsulates a set of optional properties and constraints.

* Application Usage Annotations
For many applications, it is important to maintain additional property metadata for
database objects such as tables, views, table columns, indexes, and domains.

Application Usage Domains

ORACLE

An application usage domain is a high-level dictionary object that belongs to a schema and
encapsulates a set of optional properties and constraints.

Databases typically have had limited understanding of how data is actually used by
applications. Databases store data using primitive types such as VARCHAR2, NUMBER Or DATE,
while the knowledge that a stored value represents, for example, a credit card number or
date of birth, exists only within application-level meta data or context. This approach
increases individual application complexity, fragments usage awareness across tools and
applications, and introduces the possibility of divergent semantics.

Past attempts to counter this divergence have been to add more usage-specific built-in data
types to databases and provide support for user-defined types for extensibility. More
elaborate database type systems have received limited adoption since they increase the
mismatch with application language types, create non-portable application code, and
increase development complexity since operations spanning different types are restricted.

Such restrictions on representing data usage can be avoided by using Oracle Database's
extended domain concept as defined by the SQL Standard. Using this approach, a column
can be declared both with a primitive data type such as NUMBER, as well as with a domain for
data usage, such as "Temperature" or "Credit Score". Such a usage domain can optionally be
associated with different usage properties such as check constraints, display properties,
ordering rules, and others. Most importantly, centralized domain information can be used by
applications in order to standardize operations without requiring application-level meta data;
for example, to mask credit card numbers, to format phone numbers and currency values, to
display percent values in a column as a pie-chart, and more.

Usage domains do not modify the underlying data type and can, therefore, also be added to
existing data without breaking applications or creating portability issues. A usage domain can
be declared for one or more columns in a table, and can also be used to represent variable
usage scenarios in which the actual usage of data depends on data in other columns. Usage
domains can be thought of as lightweight type modifiers that centrally document intended
data usage for applications. Also, usage domains can be used to share annotations.

Dropping a table with an associated usage domain can produce different results than
dropping a table with an associated PL/SQL type. The following rules apply when you drop a
table that has an associated usage domain or PL/SQL type:

8-1

Chapter 8
Application Usage Annotations

* If atable has been dropped without the PURGE clause, then it will still be available
in the recycle bin (if the recycle bin is enabled) for potential future restoration.

» If the table has a column using a PL/SQL type or abstract data type, and another
column associated to a usage domain, then:

— Dropping the usage domain with the FORCE clause will still allow the table to be
restored. The usage domain is simply disassociated from the column.

— Dropping the PL/SQL type, with or without the FORCE clause, will purge the
table from the recycle bin because it cannot be completely restored.

Characteristics of Domains:

* Constraints - domains can be used to share constraints across multiple tables
and columns. These constraints may be disabled for deferrable. Primary key and
foreign key constraints are not permitted in domains.

» Data types - all built-in Oracle data types are permitted, except for long, long raw,
and object types.

» Default expression - default expressions are allowed, which are the same as
column defaults.

» Case and accent insensitive searching - domains allow for case insensitive
searches which can be used in the WHERE and ORDER BY clauses.

» Display expression - display expressions allow for custom display rules. For
example, displaying currencies in the local format.

* Order expression - an order expression allows for complex ordering. For
example, ordering by normalized standard business currency such as US dollar
amounts.

Domain Types:
» Single column - applies to a single data column.
e Multi-column - applies to multiple columns, such as currency.

* Flexible domains - based on other domains and must be compatible datatypes
with the sub-domains. An example is address formats for different countries.

Strict versus Non-Strict:

e Non-strict - a non-strict domain must match the given data type, but not
necessarily the length or scale for numeric data.

e Strict - requires the data type, length, and scale to be an exact match. For
example, currency codes which must be exactly two or three characters.

Related Topics

» Using Application Usage Domains

Application Usage Annotations

ORACLE

For many applications, it is important to maintain additional property metadata for
database objects such as tables, views, table columns, indexes, and domains.

While Domains include built-in usage properties such as check constraints, collations,
custom sort order, and others, for extensibility the Oracle database also provide the
ability to add custom properties via a new ANNOTATIONS mechanism for database

8-2

ORACLE

Chapter 8
Application Usage Annotations

metadata - including table columns, tables, indexes, and more. Applications often need to
maintain additional property metadata especially for rendering user interfaces or customizing
application logic.

Some examples of column level usage properties can include:

» Display Label: This may be different from the column name (for example, display the title
"Salary" from a column named Employee_Salary)

e Column Group : In many cases, a column "group" is interesting for a User Interface (for
example, to group Street Number, Street Name, City, and Zip columns into an Address

group)

* Format Mask: For example, a display mask of $99, 999. 99 can be used by a Ul tool to
render 56434 as $56,434.00

e Hide: Whether to show the column in the Ul to an end user (for example, don’t show
columns with sensitive information or system-added columns to a certain class of end
users)

e Highlight: Whether the column should be displayed with a special highlight

e Allowed Operations: Allows the interface to determine whether to allow a column to
support sorting, grouping, displaying a list of values, and others.

Table level usage properties can similarly be used to help applications record whether a table
contains sensitive information, what its display hame should be, which modules in the
application it is owned or managed by, and more.

Most applications create their own repositories for this type of usage metadata, resulting in
developer complexity and the possibility of divergence across applications, modules, and
microservices.

Oracle Database Annotations are a lightweight declarative facility for developers to centrally
register usage properties for database schema objects. Annotations are stored directly in side
the database in dictionary tables alongside the data model definition and the data itself, and
available to any applications in order to standardize behavior across common data, but are
not interpreted by the database in any way. They should be thought of as lightweight
standardized markup for database metadata, for use by applications to register and process
extended and custom usage properties.

Related Topics

» Using Application Usage Annotations

8-3

Data Dictionary and Dynamic Performance

Views

The central set of read-only reference tables and views of each Oracle database is known
collectively as the data dictionary. The dynamic performance views are special views that
are continuously updated while a database is open and in use.

Overview of the Data Dictionary
An important part of an Oracle database is its data dictionary, which is a read-only set of
tables that provides administrative metadata about the database.

Overview of the Dynamic Performance Views
Throughout its operation, Oracle Database maintains a set of virtual tables that record
current database activity.

Database Object Metadata
The DBMS METADATA package provides interfaces for extracting complete definitions of
database objects.

Overview of the Data Dictionary

An important part of an Oracle database is its data dictionary, which is a read-only set of
tables that provides administrative metadata about the database.

Purpose of the Data Dictionary
The data dictionary contains metadata describing the contents of the database.

Data Dictionary Components
The data dictionary consists of base tables and views.

How the Data Dictionary Works
The Oracle Database user account SYS owns all base tables and user-accessible views
of the data dictionary.

Data Dictionary Storage
The data dictionary that stores the metadata for the CDB as a whole is stored only in the
system tablespaces.

Purpose of the Data Dictionary

The data dictionary contains metadata describing the contents of the database.

ORACLE

For example, the data dictionary contains information such as the following:

The definitions of every schema object in the database, including default values for
columns and integrity constraint information

The amount of space allocated for and currently used by the schema objects

The names of Oracle Database users, privileges and roles granted to users, and auditing
information related to users

9-1

Chapter 9
Overview of the Data Dictionary

» Data Management
The data dictionary is a central part of data management for every Oracle
database.

» Data Dictionary Separation in a CDB
In a CDB, the data dictionary metadata is split between the CDB root and the
PDBs. From the user and application perspective, the data dictionary in each
container in a CDB is separate.

Data Management

The data dictionary is a central part of data management for every Oracle database.
For example, the database performs the following actions:

e Accesses the data dictionary to find information about users, schema objects, and
storage structures

e Modifies the data dictionary every time that a DDL statement is issued

Because Oracle Database stores data dictionary data in tables, just like other data,
users can query the data with SQL. For example, users can run SELECT statements to
determine their privileges, which tables exist in their schema, which columns are in
these tables, whether indexes are built on these columns, and so on.

¢ See Also:

e "Introduction to Schema Objects"
e Oracle Database Security Guide to learn about user accounts

e "Data Definition Language (DDL) Statements"

Data Dictionary Separation in a CDB

In a CDB, the data dictionary metadata is split between the CDB root and the PDBs.
From the user and application perspective, the data dictionary in each container in a
CDB is separate.

In a newly created CDB that does not yet contain user data, the data dictionary in the
CDB root contains only system metadata. For example, the TABS table contains rows
that describe only Oracle-supplied tables, for example, TRIGGERS and SERVICES. The
following graphic depicts three underlying data dictionary tables, with the red bars
indicating rows describing the system.

Figure 9-1 Data Dictionary Metadata in the CDB Root

OBJ$ TAB$ SOURCES$

ORACLE 9-2

Chapter 9
Overview of the Data Dictionary

Assume that you create a PDB, and then create an hr schema containing the employees and
departments tables in this PDB. The data dictionary in the PDB contains some rows that
describe Oracle-supplied entities, and other rows that describe user-created entities. For
example, the TABS table in the PDB dictionary has a row of metadata for the employees table
and a row for the departments table.

Figure 9-2 Data Dictionary Architecture in a CDB

root
Database Metadata Only
OBJ$ TAB$ SOURCES$
PDB
User Metadata Only User Data
OBJ$ TAB$ SOURCE$ employees

a
®
el
o
=)
=
@
3
=)
7

The preceding graphic shows that the data dictionary in the PDB contains pointers to the data
dictionary in the CDB root. Internally, Oracle-supplied objects such as data dictionary table
definitions and PL/SQL packages are represented only once in the CDB root. This
architecture achieves two main goals within the CDB:

e Reduction of duplication

For example, instead of storing the source code for the DBMS ADVISOR PL/SQL package
in every PDB, the CDB stores the code only once in CDBSROOT, which saves disk space.

» Ease of database upgrade

If the definition of a data dictionary table existed in every PDB, and if the definition were
to change in a new release, then each PDB would need to be upgraded separately to
capture the change. Storing the table definition only once in the CDB root eliminates this
problem.

Data Dictionary Components

The data dictionary consists of base tables and views.
These objects are defined as follows:

* Base tables

ORACLE' 9-3

Chapter 9
Overview of the Data Dictionary

These store information about the database. Only Oracle Database should write to
and read these tables. Users rarely access the base tables directly because they
are normalized and most data is stored in a cryptic format.

 Views

These decode the base table data into useful information, such as user or table
names, using joins and WHERE clauses to simplify the information. The views
contain the names and description of all objects in the data dictionary. Some views
are accessible to all database users, whereas others are intended for
administrators only.

Typically, data dictionary views are grouped in sets. In many cases, a set consists of
three views containing similar information and distinguished from each other by their
prefixes, as shown in the following table. By querying the appropriate views, you can
access only the information relevant for you.

Table 9-1 Data Dictionary View Sets
|

Prefix User Access Contents Notes
DBA Database All objects Some DBA _ views have additional
administrators columns containing information
useful to the administrator.
ALL All users Objects to which user Includes objects owned by user.
has privileges These views obey the current set of
enabled roles.
USER_ Allusers Objects owned by Views with the prefix USER _ usually
user exclude the column OWNER. This

column is implied in the USER _ views
to be the user issuing the query.

Not all views sets have three members. For example, the data dictionary contains a
DBA LOCK view but no ALL_LOCK view.

The system-supplied DICTIONARY view contains the names and abbreviated
descriptions of all data dictionary views. The following query of this view includes
partial sample output:

SQL> SELECT * FROM DICTIONARY
2 ORDER BY TABLE NAME;

TABLE NAME COMMENTS

ALL ALL TABLES Description of all object and relational
tables accessible to the user

ALL APPLY Details about each apply process that

dequeues from the queue visible to the
current user

ORACLE 9-4

Chapter 9
Overview of the Data Dictionary

» Container Data Objects in a CDB
A container data object is a table or view containing data pertaining to multiple
containers or the whole CDB.

* Views with the Prefix DBA _
Views with the prefix DBA show all relevant information in the entire database. DBA
views are intended only for administrators.

* Views with the Prefix ALL_
Views with the prefix ALL_refer to the user's overall perspective of the database.

* Views with the Prefix USER_
The views most likely to be of interest to typical database users are those with the prefix
USER .

* The DUAL Table
DUAL is a small table in the data dictionary that Oracle Database and user-written
programs can reference to guarantee a known result.

¢ See Also:

* "Overview of Views"

* Oracle Database Reference for a complete list of data dictionary views and
their columns

Container Data Objects in a CDB

ORACLE

A container data object is a table or view containing data pertaining to multiple containers or
the whole CDB.

Container data privileges support a general requirement in which multiple PDBs reside in a
single CDB, but with different local administration requirements. For example, if application
DBAs do not want to administer locally, then they can grant container data privileges on
appropriate views to the common users. In this case, the CDB administrator can access the
data for these PDBs. In contrast, PDB administrators who do not want the CDB administrator
accessing their data do not grant container data privileges.

Examples of container data objects are Oracle-supplied views whose names begin with v$
and cDB_. All container data objects have a CON_ID column. The following table shows the
meaning of the values for this column.

Table 9-2 Container ID Values

Container ID Rows pertain to

0 Whole CDB

1 CDBSROOT

2 PDBSSEED

All Other IDs User-created PDBs, application roots, or application seeds

9-5

Chapter 9
Overview of the Data Dictionary

In a CDB, for every DBA_view, a corresponding CDB_ view exists. The owner of a CDB_
view is the owner of the corresponding DBA_ view. The following graphic shows the
relationship among the different categories of dictionary views:

Figure 9-3 Dictionary Views in a CDB

CDB__ All of the objects in the CDB across all PDBs
DBA__ All of the objects in a container or PDB
ALL__ Objects accessible by the current user

USER__Objects owned by the current user

When the current container is a PDB, a user can view data dictionary information for
the current PDB only. When the current container is the CDB root, however, a common
user can query CDB_ views to see metadata for the CDB root and for PDBs for which

this user is privileged.

" Note:

When queried from the CDB root, CDB_and v$ views implicitly convert data
to the AL32UTF8 character set. If a character set needs more bytes to
represent a character when converted to AL32UTF8, and if the view column
width cannot accommodate data from a specific PDB, then data truncation is
possible.

The following table describes queries of CDB_ views. Each row describes an action that
occurs after the action in the preceding row.

Table 9-3 Querying CDB_ Views
|

Operation Description

The SYSTEM user, which is common to all containers in the
SQL> CONNECT SYSTEM CDB, connects to the CDB root (see "Common User
Enter password: *****xxx Accounts”).
Connected.

ORACLE 9-6

Table 9-3 (Cont.) Querying CDB_ Views

Chapter 9
Overview of the Data Dictionary

Operation

Description

SQL> SELECT COUNT (*) FROM CDB_USERS
WHERE CON_ID=1;

SQL> SELECT COUNT (DISTINCT (CON_ID))
FROM CDB_USERS;

COUNT (DISTINCT (CON_ID))

SQL> CONNECT SYSTEM@hrdb
Enter password: **x**xxx#*x%
Connected.

SQL> SELECT COUNT (*) FROM CDB_USERS;

SYSTEM queries CDB_USERS to obtain the number of
common users in the CDB root. The output indicates that 38
common users exist in CDB root.

SYSTEM queries CDB_USERS to determine the number of
distinct containers in the CDB.

The SYSTEM user now connects to the PDB named hrpdb.

SYSTEM queries CDB_USERS. The output indicates that 48
common and local users exist in the current container,
which is hrpdb.

SYSTEM queries DBA USERS. The output is the same as the
previous query. Because SYSTEM is not connected to the
CDB root, the DBA_USERS view shows the same output as

COUNT (*) CDB_USERS. Because DBA USERS only shows the users in
__________ the current container, it shows 48.
48

Views with the Prefix DBA
Views with the prefix DBA show all relevant information in the entire database. DBA views
are intended only for administrators.
The following sample query shows information about all objects in the database:
SELECT OWNER, OBJECT NAME, OBJECT TYPE
FROM DBA OBJECTS
ORDER BY OWNER, OBJECT NAME;

ORACLE

9-7

Chapter 9
Overview of the Data Dictionary

See Also:

Oracle Database Administrator’s Guide for detailed information on
administrative privileges

Views with the Prefix ALL

Views with the prefix ALL_refer to the user's overall perspective of the database.

These views return information about schema objects to which the user has access
through public or explicit grants of privileges and roles, in addition to schema objects
that the user owns.

For example, the following query returns information about all the objects to which you
have access:

SELECT OWNER, OBJECT NAME, OBJECT TYPE

FROM ALL OBJECTS
ORDER BY OWNER, OBJECT NAME;

Because the ALL_ views obey the current set of enabled roles, query results depend
on which roles are enabled, as shown in the following example:

SQL> SET ROLE ALL;
Role set.

SQL> SELECT COUNT (*) FROM ALL OBJECTS;

SQL> SET ROLE NONE;
Role set.

SQL> SELECT COUNT (*) FROM ALL OBJECTS;

Application developers should be cognizant of the effect of roles when using ALL
views in a stored procedure, where roles are not enabled by default.

Views with the Prefix USER _

ORACLE

The views most likely to be of interest to typical database users are those with the
prefix USER .

9-8

Chapter 9
Overview of the Data Dictionary

These views:

* Refer to the user's private environment in the database, including metadata about
schema objects created by the user, grants made by the user, and so on

» Display only rows pertinent to the user, returning a subset of the information in the ALL
views

e Has columns identical to the other views, except that the column OWNER is implied
e Can have abbreviated PUBLIC synonyms for convenience

For example, the following query returns all the objects contained in your schema:
SELECT OBJECT NAME, OBJECT TYPE

FROM USER OBJECTS
ORDER BY OBJECT NAME;

The DUAL Table

DUAL is a small table in the data dictionary that Oracle Database and user-written programs
can reference to guarantee a known result.

The dual table is useful when a value must be returned only once, for example, the current
date and time. All database users have access to DUAL.

The DUAL table has one column called DuMMY and one row containing the value x. The
following example queries DUAL to perform an arithmetical operation:

SQL> SELECT ((3*4)+5)/3 FROM DUAL;

5.66666667

¢ See Also:

Oracle Database SQL Language Reference for more information about the DUAL
table

How the Data Dictionary Works

ORACLE

The Oracle Database user account SYs owns all base tables and user-accessible views of the
data dictionary.

During database operation, Oracle Database reads the data dictionary to ascertain that
schema objects exist and that users have proper access to them. Oracle Database updates
the data dictionary continuously to reflect changes in database structures, auditing, grants,
and data.

For example, if user hr creates a table named interns, then the database adds new rows to
the data dictionary that reflect the new table, columns, segment, extents, and the privileges

9-9

Chapter 9
Overview of the Data Dictionary

that hr has on the table. This new information is visible the next time the dictionary
views are queried.

Data in the base tables of the data dictionary is necessary for Oracle Database to
function. Only Oracle Database should write or change data dictionary information. No
Oracle Database user should ever alter rows or schema objects contained in the Sys
schema because such activity can compromise data integrity. The security
administrator must keep strict control of this central account.

WARNING:

Altering or manipulating the data in data dictionary tables can permanently
and detrimentally affect database operation.

Metadata and Data Links
The CDB uses an internal linking mechanism to separate data dictionary
information.

Public Synonyms for Data Dictionary Views
Oracle Database creates public synonyms for many data dictionary views so
users can access them conveniently.

Data Dictionary Cache

Much of the data dictionary information is in the data dictionary cache because
the database constantly requires the information to validate user access and verify
the state of schema objects.

Other Programs and the Data Dictionary
Other Oracle Database products can reference existing views and create
additional data dictionary tables or views of their own.

See Also:

"SYS and SYSTEM Accounts”

Metadata and Data Links

ORACLE

The CDB uses an internal linking mechanism to separate data dictionary information.

Specifically, Oracle Database uses the following automatically managed pointers:

Metadata links

Oracle Database stores metadata about dictionary objects only in the CDB root.
For example, the column definitions for the 0BJ$ dictionary table, which underlies
the DBA OBJECTS data dictionary view, exist only in the CDB root. As depicted in
Figure 9-2, the 0BJS table in each PDB uses an internal mechanism called a
metadata link to point to the definition of 0BJS stored in the CDB root.

The data corresponding to a metadata link resides in its PDB, not in the CDB root.
For example, if you create table mytable in hrpdb and add rows to it, then the rows
are stored in the PDB data files, not in the CDB root data files.

9-10

Chapter 9
Overview of the Data Dictionary

The data dictionary views in the PDB and in the CDB root contain different rows. For
example, a new row describing mytable exists in the 0BJS table in hrpdb, but not in the
OBJS table in the CDB root. Thus, a query of DBA OBJECTS in the CDB root and
DBA_OBJECTS in hrdpb shows different results.

Data links

Note:

Data links were called object links in Oracle Database 12c Release 1 (12.1.0.2).

In some cases, Oracle Database stores the data (not only metadata) for an object only
once in the application root of an application container. Consider an e-commerce
company that has different PDBs for different regions. The application root might store a
table named postal codes, which lists all U.S. zip codes. Every application PDB in this
container requires access to the common postal codes table.

An application PDB uses an internal mechanism called a data link to refer to the object in
the application root. The application PDB in which the data link was created also stores
the data link description. A data link inherits the data type of the object to which it refers.

Extended data link

An extended data link is a hybrid of a data link and a metadata link. Like a data link, an
extended data link refers to an object in an application root. However, the extended data
link also refers to a corresponding object in the application PDB. For example, an
application PDB might have an extended data link table that stores both U.S. zip codes
and Canadian postal codes. Like a metadata link, the object in the application PDB
inherits metadata from the corresponding object in the application root.

When queried in the application root, an extended data-linked table fetches rows only
from the application root, for example, just U.S. zip codes. However, when queried in an
application PDB, an extended data-linked table fetches rows from both the application
root and application PDB, for example, U.S. zip codes and Canadian postal codes.

Oracle Database automatically creates and manages metadata and data links to CDBSROOT.
Users cannot add, modify, or remove these links.

See Also:

e "Application Common Objects"

e Oracle Database Concepts for an overview of the data dictionary

Public Synonyms for Data Dictionary Views

ORACLE

Oracle Database creates public synonyms for many data dictionary views so users can
access them conveniently.

The security administrator can also create additional public synonyms for schema objects
that are used systemwide. Oracle recommends against using the same name for a private
schema object and a public synonym.

9-11

Chapter 9
Overview of the Data Dictionary

See Also:

"Overview of Synonyms"

Data Dictionary Cache

Much of the data dictionary information is in the data dictionary cache because the
database constantly requires the information to validate user access and verify the
state of schema objects.

The caches typically contain the parsing information. The COMMENTS columns
describing the tables and their columns are not cached in the dictionary cache, but
may be cached in the database buffer cache.

¢ See Also:

"Data Dictionary Cache"

Other Programs and the Data Dictionary

Other Oracle Database products can reference existing views and create additional
data dictionary tables or views of their own.

Oracle recommends that application developers who write programs referring to the
data dictionary use the public synonyms rather than the underlying tables. Synonyms
are less likely to change between releases.

Data Dictionary Storage

The data dictionary that stores the metadata for the CDB as a whole is stored only in
the system tablespaces.

The data dictionary that stores the metadata for a specific PDB is stored in the self-
contained tablespaces dedicated to this PDB. The PDB tablespaces contain both the
data and metadata for an application back end. Thus, each set of data dictionary
tables is stored in its own dedicated set of tablespaces.

¢ See Also:

"The SYSTEM Tablespace" for more information about the SYSTEM
tablespace

ORACLE 9-12

Chapter 9
Overview of the Dynamic Performance Views

Overview of the Dynamic Performance Views

Throughout its operation, Oracle Database maintains a set of virtual tables that record current
database activity.

These views are dynamic because they are continuously updated while a database is open
and in use. The views are sometimes called V$ views because their names begin with vs.

Dynamic performance views contain information such as the following:

e System and session parameters
* Memory usage and allocation
* File states (including RMAN backup files)
* Progress of jobs and tasks
¢ SQL execution
e Statistics and metrics
The dynamic performance views have the following primary uses:
* Oracle Enterprise Manager uses the views to obtain information about the database.
* Administrators can use the views for performance monitoring and debugging.
e Contents of the Dynamic Performance Views
Dynamic performance views are called fixed views because they cannot be altered or

removed by a database administrator. However, database administrators can query and
create views on the tables and grant access to these views to other users.

e Storage of the Dynamic Performance Views
Dynamic performance views are based on virtual tables built from database memory
structures.

¢ See Also:

Oracle Database Reference for a complete list of the dynamic performance views

Contents of the Dynamic Performance Views

ORACLE

Dynamic performance views are called fixed views because they cannot be altered or
removed by a database administrator. However, database administrators can query and
create views on the tables and grant access to these views to other users.

SYS owns the dynamic performance tables, whose names begin with V_s. Views are created
on these tables, and then public synonyms prefixed with vs. For example, the VSDATAFILE
view contains information about data files. The VSFIXED TABLE view contains information
about all of the dynamic performance tables and views.

For almost every vs$ view, a corresponding Gv$ view exists. In Oracle Real Application
Clusters (Oracle RAC), querying a Gvs view retrieves the v$ view information from all
qualified database instances.

9-13

Chapter 9
Database Object Metadata

When you use the Database Configuration Assistant (DBCA) to create a database,
Oracle automatically creates the data dictionary. Oracle Database automatically runs
the catalog.sql script, which contains definitions of the views and public synonyms
for the dynamic performance views. You must run catalog.sql to create these views
and synonyms.

" See Also:

e Oracle Database Administrator’s Guide to learn how to run catalog.sql
manually

e Oracle Real Application Clusters Administration and Deployment Guide
to learn about using performance views in Oracle RAC

Storage of the Dynamic Performance Views

Dynamic performance views are based on virtual tables built from database memory
structures.

The views are not conventional tables stored in the database. Read consistency is not
guaranteed for the views because the data is updated dynamically.

Because the dynamic performance views are not true tables, the data depends on the
state of the database and database instance. For example, you can query VSINSTANCE
and V$BGPROCESS when the database is started but not mounted. However, you cannot
guery VSDATAFILE until the database has been mounted.

¢ See Also:

"Data Concurrency and Consistency "

Database Object Metadata

The DBMS METADATA package provides interfaces for extracting complete definitions of
database objects.

The definitions can be expressed either as XML or as SQL DDL. Oracle Database
provides two styles of interface: a flexible, sophisticated interface for programmatic
control, and a simplified interface for ad hoc querying.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS METADATA

ORACLE 9-14

Oracle Data Access

ORACLE

Structured Query Language (SQL) is the high-level declarative computer language with
which all programs and users access data in an Oracle database. PLISQL and Java, which
are server-side procedural languages, enable you to store data logic in the database itself.

« SQL
This chapter provides an overview of the Structured Query Language (SQL) and how
Oracle Database processes SQL statements.

e Server-Side Programming: PL/SQL, Java, and JavaScript
SQL explains the Structured Query Language (SQL) language and how the database
processes SQL statements. This chapter explains how Procedural Language/SQL (PL/
SQL) or Java programs stored in the database can use SQL.

SQL

This chapter provides an overview of the Structured Query Language (SQL) and how
Oracle Database processes SQL statements.

Introduction to SQL
SQL (pronounced sequel) is the set-based, high-level declarative computer language
with which all programs and users access data in an Oracle database.

Overview of SQL Statements

All operations performed on the information in an Oracle database are run using SQL
statements. A SQL statement is a computer program or instruction that consists of
identifiers, parameters, variables, names, data types, and SQL reserved words.

Overview of the Optimizer

To understand how Oracle Database processes SQL statements, it is necessary to
understand the part of the database called the optimizer (also known as the query
optimizer or cost-based optimizer). All SQL statements use the optimizer to determine the
most efficient means of accessing the specified data.

Overview of SQL Processing

This section explains how Oracle Database processes SQL statements. Specifically, the
section explains the way in which the database processes DDL statements to create
objects, DML to modify data, and queries to retrieve data.

Introduction to SQL

SQL (pronounced sequel) is the set-based, high-level declarative computer language with
which all programs and users access data in an Oracle database.

ORACLE

Although some Oracle tools and applications mask SQL use, all database tasks are
performed using SQL. Any other data access method circumvents the security built into
Oracle Database and potentially compromises data security and integrity.

SQL provides an interface to a relational database such as Oracle Database. SQL unifies
tasks such as the following in one consistent language:

Creating, replacing, altering, and dropping objects
Inserting, updating, and deleting table rows
Querying data

Controlling access to the database and its objects

Guaranteeing database consistency and integrity

SQL can be used interactively, which means that statements are entered manually into a
program. SQL statements can also be embedded within a program written in a different
language such as C or Java.

10-1

Chapter 10
Introduction to SQL

e SQL Data Access
There are two broad families of computer languages: declarative languages that
are nonprocedural and describe what should be done, and procedural languages
such as C++ and Java that describe how things should be done.

¢ SQL Standards
Oracle strives to follow industry-accepted standards and participates actively in
SQL standards committees.

¢ See Also:

e Introduction to Server-Side Programming

e Oracle Database Development Guide to learn how to choose a
programming environment

e Oracle Database SQL Language Reference for an introduction to SQL

SQL Data Access

There are two broad families of computer languages: declarative languages that are
nonprocedural and describe what should be done, and procedural languages such
as C++ and Java that describe how things should be done.

SQL is declarative in the sense that users specify the result that they want, not how to
derive it. For example, the following statement queries records for employees whose
last name begins with X:

The database performs the work of generating a procedure to navigate the data and
retrieve the requested results. The declarative nature of SQL enables you to work with
data at the logical level. You need be concerned with implementation details only when
you manipulate the data.

SELECT last name, first name
FROM hr.employees

WHERE last name LIKE 'K%'
ORDER BY last name, first name;

The database retrieves all rows satisfying the WHERE condition, also called the
predicate, in a single step. The database can pass these rows as a unit to the user, to
another SQL statement, or to an application. The application does not need to process
the rows one by one, nor does the developer need to know how the rows are
physically stored or retrieved.

All SQL statements use the optimizer, a component of the database that determines
the most efficient means of accessing the requested data. Oracle Database also
supports techniques that you can use to make the optimizer perform its job better.

ORACLE 10-2

Chapter 10
Overview of SQL Statements

¢ See Also:

Oracle Database SQL Language Reference for detailed information about SQL
statements and other parts of SQL (such as operators, functions, and format
models)

SQL Standards

Oracle strives to follow industry-accepted standards and participates actively in SQL
standards committees.

Industry-accepted committees are the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO). Both ANSI and the ISO/IEC have
accepted SQL as the standard language for relational databases.

The SQL standard consists of ten parts. One part (SQL/RPR:2012) is new in 2102. Five other
parts were revised in 2011. For the other four parts, the 2008 version remains in place.

Oracle SQL includes many extensions to the ANSI/ISO standard SQL language, and Oracle
Database tools and applications provide additional statements. The tools SQL*Plus, SQL
Developer, and Oracle Enterprise Manager enable you to run any ANSI/ISO standard SQL
statement against an Oracle database and any additional statements or functions available
for those tools.

¢ See Also:

e Oracle Database 2 Day Developer's Guide

e Oracle Database SQL Language Reference for an explanation of the
differences between Oracle SQL and standard SQL

e SQL*Plus User's Guide and Reference for SQL*Plus commands, including their
distinction from SQL statements

Overview of SQL Statements

ORACLE

All operations performed on the information in an Oracle database are run using SQL
statements. A SQL statement is a computer program or instruction that consists of
identifiers, parameters, variables, names, data types, and SQL reserved words.

" Note:

SQL reserved words have special meaning in SQL and should not be used for any
other purpose. For example, SELECT and UPDATE are reserved words and should not
be used as table names.

A SQL statement must be the equivalent of a complete SQL sentence, such as:

10-3

Chapter 10
Overview of SQL Statements

SELECT last name, department id FROM employees
Oracle Database only runs complete SQL statements. A fragment such as the
following generates an error indicating that more text is required:

SELECT last name;

Oracle SQL statements are divided into the following categories:

e Data Definition Language (DDL) Statements

e Data Manipulation Language (DML) Statements
» Transaction Control Statements

* Session Control Statements

e System Control Statement

Embedded SQL Statements

» Data Definition Language (DDL) Statements
Data definition language (DLL) statements define, structurally change, and drop
schema objects.

» Data Manipulation Language (DML) Statements
Data manipulation language (DML) statements query or manipulate data in
existing schema objects.

* Transaction Control Statements
Transaction control statements manage the changes made by DML statements
and group DML statements into transactions.

* Session Control Statements
Session control statements dynamically manage the properties of a user session.

* System Control Statement
A system control statement changes the properties of the database instance.

Embedded SQL Statements
Embedded SQL statements incorporate DDL, DML, and transaction control
statements within a procedural language program.

Data Definition Language (DDL) Statements

ORACLE

Data definition language (DLL) statements define, structurally change, and drop
schema objects.

DDL enables you to alter attributes of an object without altering the applications that
access the object. For example, you can add a column to a table accessed by a
human resources application without rewriting the application. You can also use DDL
to alter the structure of objects while database users are performing work in the
database.

More specifically, DDL statements enable you to:

» Create, alter, and drop schema objects and other database structures, including
the database itself and database users. Most DDL statements start with the
keywords CREATE, ALTER, Or DROP.

* Delete all the data in schema objects without removing the structure of these
objects (TRUNCATE).

10-4

ORACLE

Chapter 10
Overview of SQL Statements

< Note:

Unlike DELETE, TRUNCATE generates no undo data, which makes it faster than
DELETE. Also, TRUNCATE does not invoke delete triggers

* Grant and revoke privileges and roles (GRANT, REVOKE).
e Turn auditing options on and off (AUDIT, NOAUDIT).

e Add a comment to the data dictionary (COMMENT).
Example 10-1 DDL Statements

The following example uses DDL statements to create the plants table and then uses DML
to insert two rows in the table. The example then uses DDL to alter the table structure, grant
and revoke read privileges on this table to a user, and then drop the table.

CREATE TABLE plants
(plantiid NUMBER PRIMARY KEY,
common name VARCHARZ (15));

INSERT INTO plants VALUES (1, 'African Violet'); # DML statement
INSERT INTO plants VALUES (2, 'Amaryllis'); # DML statement

ALTER TABLE plants ADD
(latin name VARCHAR2 (40));

GRANT READ ON plants TO scott;
REVOKE READ ON plants FROM scott;

DROP TABLE plants;

An implicit coMMIT occurs immediately before the database executes a DDL statement and a
COMMIT or ROLLBACK occurs immediately afterward. In the preceding example, two INSERT
statements are followed by an ALTER TABLE statement, so the database commits the two
INSERT statements. If the ALTER TABLE statement succeeds, then the database commits this
statement; otherwise, the database rolls back this statement. In either case, the two INSERT
statements have already been committed.

" See Also:

e Oracle Database Security Guide to learn about privileges and roles

e Oracle Database 2 Day Developer's Guide and Oracle Database
Administrator’s Guide to learn how to create schema objects

e Oracle Database Development Guide to learn about the difference between
blocking and nonblocking DDL

e Oracle Database SQL Language Reference for a list of DDL statements

10-5

Chapter 10
Overview of SQL Statements

Data Manipulation Language (DML) Statements

ORACLE

Data manipulation language (DML) statements query or manipulate data in existing
schema objects.

Whereas DDL statements change the structure of the database, DML statements
guery or change the contents. For example, ALTER TABLE changes the structure of a
table, whereas INSERT adds one or more rows to the table.

DML statements are the most frequently used SQL statements and enable you to:

* Retrieve or fetch data from one or more tables or views (SELECT).

« Add new rows of data into a table or view (INSERT) by specifying a list of column
values or using a subquery to select and manipulate existing data.

e Change column values in existing rows of a table or view (UPDATE).

* Update or insert rows conditionally into a table or view (MERGE).

* Remove rows from tables or views (DELETE).

* View the execution plan for a SQL statement (EXPLAIN PLAN).

* Lock a table or view, temporarily limiting access by other users (LOCK TABLE).

The following example uses DML to query the employees table. The example uses
DML to insert a row into employees, update this row, and then delete it:

SELECT * FROM employees;

INSERT INTO employees (employee id, last name, email, job id,
hire date, salary)
VALUES (1234, 'Mascis', 'JMASCIS', 'IT PROG', '1l4-FEB-2008', 9000);

UPDATE employees SET salary=9100 WHERE employee id=1234;

DELETE FROM employees WHERE employee id=1234;

A collection of DML statements that forms a logical unit of work is called a transaction.
For example, a transaction to transfer money could involve three discrete operations:
decreasing the savings account balance, increasing the checking account balance,
and recording the transfer in an account history table. Unlike DDL statements, DML
statements do not implicitly commit the current transaction.

 SELECT Statements
A query is an operation that retrieves data from a table or view.

* Joins
A join is a query that combines rows from two or more tables, views, or
materialized views.

e Subqueries
A subquery is a SELECT statement nested within another SQL statement.
Subqueries are useful when you must execute multiple queries to solve a single
problem.

10-6

Chapter 10
Overview of SQL Statements

¢ See Also:

» Differences Between DML and DDL Processing
* Introduction to Transactions

e Oracle Database 2 Day Developer's Guide to learn how to query and
manipulate data

e Oracle Database SQL Language Reference for a list of DML statements

SELECT Statements

Joins

ORACLE

A query is an operation that retrieves data from a table or view.

SELECT is the only SQL statement that you can use to query data. The set of data retrieved
from execution of a SELECT statement is known as a result set.

The following table shows two required keywords and two keywords that are commonly found
in a SELECT statement. The table also associates capabilities of a SELECT statement with the

keywords.

Table 10-1 Keywords in a SQL Statement

|
Keyword Required? Description Capability

SELECT Yes Specifies which columns should be shown in the result. Projection
Projection produces a subset of the columns in the table.

An expression is a combination of one or more values,
operators, and SQL functions that resolves to a value. The
list of expressions that appears after the SELECT keyword
and before the FROM clause is called the select list.

FROM No Specifies the tables or views from which the data should Joining
be retrieved.

WHERE No Specifies a condition to filter rows, producing a subset of Selection
the rows in the table. A condition specifies a combination
of one or more expressions and logical (Boolean)
operators and returns a value of TRUE, FALSE, or
UNKNOWN.

ORDER BY No Specifies the order in which the rows should be shown.

¢ See Also:

Oracle Database SQL Language Reference for SELECT syntax and semantics

A join is a query that combines rows from two or more tables, views, or materialized views.

10-7

Chapter 10
Overview of SQL Statements

The following example joins the employees and departments tables (FROM clause),
selects only rows that meet specified criteria (WHERE clause), and uses projection to
retrieve data from two columns (SELECT). Sample output follows the SQL statement.

SELECT email, department name

FROM employees

JOIN departments

ON employees.department id = departments.department id
WHERE employee id IN (100,103)

ORDER BY email;

EMAIL DEPARTMENT NAME
AHUNOLD IT
SKING Executive

The following graphic represents the operations of projection and selection in the join
shown in the preceding query.

Figure 10-1 Projection and Selection

Projection
Selection

SELECT email, department_name

FROM employees JOIN

departments
WHERE employee_id IN (100,103)

ON employees.department_id =
departments.department_id
ORDER BY email

|MANAGEH4ID | DEPARTMENT_ID
100
100
102

| ID

AD_VP
AD_VP

AD_PRES

IT_PROG

| HIRE_DATE | JOB_ID

21-SEP-89
13-JAN-93

| MANAGEH;ID' LOCATION

NKOCHHAR

IT_NAME

| EMAIL
SKING
LDEHANN
AHUNOLD

T_NAME

| LAS
King

| DEPARTMEN

T
Executive

Kochhar
De Hann
Hunold

60
90

Table DEPARTMENTS
DEPARTMENT_ID
Table EMPLOYEES
EMPLOYEE_ID

100
101
102
108

Most joins have at least one join condition, either in the FROM clause or in the WHERE
clause, that compares two columns, each from a different table. The database
combines pairs of rows, each containing one row from each table, for which the join
condition evaluates to TRUE. The optimizer determines the order in which the database
joins tables based on the join conditions, indexes, and any available statistics for the
tables.

Join types include the following:
e Inner joins

An inner join is a join of two or more tables that returns only rows that satisfy the
join condition. For example, if the join condition is

ORACLE 10-8

Chapter 10
Overview of SQL Statements

employees.department id=departments.department id, then rows that do not satisfy
this condition are not returned.

e OQuter joins

An outer join returns all rows that satisfy the join condition and also returns rows from one
table for which no rows from the other table satisfy the condition.

The result of a left outer join for table A and B always contains all records of the left table
A, even if the join condition does not match a record in the right table B. If no matching
row from B exists, then B columns contain nulls for rows that have no match in B. For
example, if not all employees are in departments, then a left outer join of employees (left
table) and departments (right table) retrieves all rows in employees even if no rows in
departments satisfy the join condition (employees.department id is null).

The result of a right outer join for table A and B contains all records of the right table B,
even if the join condition does not match a row in the left table A. If no matching row from
A exists, then A columns contain nulls for rows that have no match in A. For example, if
not all departments have employees, a right outer join of employees (left table) and
departments (right table) retrieves all rows in departments even if N0 rows in employees
satisfy the join condition.

A full outer join is the combination of a left outer join and a right outer join.
e Cartesian products

If two tables in a join query have no join condition, then the database performs a
Cartesian join. Each row of one table combines with each row of the other. For example,
if employees has 107 rows and departments has 27, then the Cartesian product contains
107*27 rows. A Cartesian product is rarely useful.

See Also:

e Oracle Database SQL Tuning Guide to learn about joins

e Oracle Database SQL Language Reference for detailed descriptions and
examples of joins

Subqueries

A subquery is a SELECT statement nested within another SQL statement. Subqueries are
useful when you must execute multiple queries to solve a single problem.

Each query portion of a statement is called a query block. In the following query, the subquery
in parentheses is the inner query block:

SELECT first name, last name
FROM employees
WHERE department id
IN (SELECT department id
FROM departments
WHERE location id = 1800);

ORACLE 10-9

Chapter 10
Overview of SQL Statements

The inner SELECT statement retrieves the IDs of departments with location ID 1800.
These department IDs are needed by the outer query block, which retrieves names of
employees in the departments whose IDs were supplied by the subquery.

The structure of the SQL statement does not force the database to execute the inner
query first. For example, the database could rewrite the entire query as a join of
employees and departments, S0 that the subquery never executes by itself. As another
example, the Virtual Private Database (VPD) feature could restrict the query of
employees using a WHERE clause, so that the database queries the employees first and
then obtains the department IDs. The optimizer determines the best sequence of steps
to retrieve the requested rows.

¢ See Also:

Oracle Database Security Guide to learn more about VPD

Transaction Control Statements

ORACLE

Transaction control statements manage the changes made by DML statements and
group DML statements into transactions.

These statements enable you to:
* Make changes to a transaction permanent (COMMIT).

* Undo the changes in a transaction, since the transaction started (ROLLBACK) or
since a savepoint (ROLLBACK TO SAVEPOINT). A savepoint is a user-declared
intermediate marker within the context of a transaction.

Note:

The ROLLBACK statement ends a transaction, but ROLLBACK TO SAVEPOINT
does not.

* Set a point to which you can roll back (SAVEPOINT).
» Establish properties for a transaction (SET TRANSACTION).

» Specify whether a deferrable integrity constraint is checked following each DML
statement or when the transaction is committed (SET CONSTRAINT).

The following example starts a transaction named Update salaries. The example
creates a savepoint, updates an employee salary, and then rolls back the transaction
to the savepoint. The example updates the salary to a different value and commits.
SET TRANSACTION NAME 'Update salaries';

SAVEPOINT before salary update;

UPDATE employees SET salary=9100 WHERE employee id=1234 # DML

ROLLBACK TO SAVEPOINT before salary update;

10-10

Chapter 10
Overview of SQL Statements

UPDATE employees SET salary=9200 WHERE employee id=1234 # DML

COMMIT COMMENT 'Updated salaries';

See Also:

e Introduction to Transactions
e When the Database Checks Constraints for Validity

e Oracle Database SQL Language Reference to learn about transaction control
statements

Session Control Statements

Session control statements dynamically manage the properties of a user session.

A session is a logical entity in the database instance memory that represents the state of a
current user login to a database. A session lasts from the time the user is authenticated by
the database until the user disconnects or exits the database application.

Session control statements enable you to:

» Alter the current session by performing a specialized function, such as setting the default
date format (ALTER SESSION).

» Enable and disable roles, which are groups of privileges, for the current session (SET
ROLE).

The following statement dynamically changes the default date format for your session to
'YYYY MM DD-HH24:MI:SS':

ALTER SESSION
SET NLS DATE FORMAT = 'YYYY MM DD HH24:MI:SS';

Session control statements do not implicitly commit the current transaction.

¢ See Also:

e Connections and Sessions

e Oracle Database SQL Language Reference for ALTER SESSION syntax and
semantics

System Control Statement

A system control statement changes the properties of the database instance.

ORACLE 10-11

Chapter 10
Overview of SQL Statements

The only system control statement is ALTER SYSTEM. It enables you to change settings
such as the minimum number of shared servers, terminate a session, and perform
other system-level tasks.

Examples of the system control statement include:

ALTER SYSTEM SWITCH LOGFILE;

ALTER SYSTEM KILL SESSION '39, 23';

The ALTER SYSTEM statement does not implicitly commit the current transaction.

¢ See Also:

Oracle Database SQL Language Reference for ALTER SYSTEM syntax and
semantics

Embedded SQL Statements

Embedded SQL statements incorporate DDL, DML, and transaction control statements
within a procedural language program.

Embedded statements are used with the Oracle precompilers. Embedded SQL is one
approach to incorporating SQL in your procedural language applications. Another
approach is to use a procedural APl such as Open Database Connectivity (ODBC) or
Java Database Connectivity (JDBC).

Embedded SQL statements enable you to:

e Define, allocate, and release a cursor (DECLARE CURSOR, OPEN, CLOSE).

* Specify a database and connect to it (DECLARE DATABASE, CONNECT).

* Assign variable names (DECLARE STATEMENT).

e Initialize descriptors (DESCRIBE).

* Specify how error and warning conditions are handled (WHENEVER).

e Parse and run SQL statements (PREPARE, EXECUTE, EXECUTE IMMEDIATE).

e Retrieve data from the database (FETCH).

See Also:

e Introduction to Server-Side Programming

e Oracle Database Development Guide

ORACLE 10-12

Chapter 10
Overview of the Optimizer

Overview of the Optimizer

To understand how Oracle Database processes SQL statements, it is necessary to
understand the part of the database called the optimizer (also known as the query optimizer
or cost-based optimizer). All SQL statements use the optimizer to determine the most efficient
means of accessing the specified data.

* Use of the Optimizer
The optimizer generates execution plans describing possible methods of execution.

e Optimizer Components
The optimizer contains three main components: the transformer, estimator, and plan
generator.

e Access Paths
An access path is the technique that a query uses to retrieve rows.

e Optimizer Statistics
The optimizer statistics are a collection of data that describe details about the database
and the objects in the database. The statistics provide a statistically correct picture of
data storage and distribution usable by the optimizer when evaluating access paths.

* Optimizer Hints
A hint is a comment in a SQL statement that acts as an instruction to the optimizer.

Use of the Optimizer

ORACLE

The optimizer generates execution plans describing possible methods of execution.

The optimizer determines which execution plan is most efficient by considering several
sources of information. For example, the optimizer considers query conditions, available
access paths, statistics gathered for the system, and hints.

To execute a DML statement, Oracle Database may have to perform many steps. Each step
either retrieves rows of data physically from the database or prepares them for the user
issuing the statement. The steps that the database uses to execute a statement greatly affect
how quickly the statement runs. Many different ways of processing a DML statement are
often possible. For example, the order in which tables or indexes are accessed can vary.

When determining the best execution plan for a SQL statement, the optimizer performs the
following operations:

e Evaluation of expressions and conditions

e Inspection of integrity constraints to learn more about the data and optimize based on this
metadata

» Statement transformation
e Choice of optimizer goals
e Choice of access paths

e Choice of join orders

The optimizer generates most of the possible ways of processing a query and assigns a cost
to each step in the generated execution plan. The plan with the lowest cost is chosen as the
query plan to be executed.

10-13

Chapter 10
Overview of the Optimizer

< Note:

You can obtain an execution plan for a SQL statement without executing the
plan. Only an execution plan that the database actually uses to execute a
query is correctly termed a query plan.

You can influence optimizer choices by setting the optimizer goal and by gathering
representative statistics for the optimizer. For example, you may set the optimizer goal
to either of the following:

* Total throughput

The ALL ROWS hint instructs the optimizer to get the last row of the result to the
client application as fast as possible.

e Initial response time

The FIRST ROWS hint instructs the optimizer to get the first row to the client as fast
as possible.

A typical end-user, interactive application would benefit from initial response time
optimization, whereas a batch-mode, non-interactive application would benefit from
total throughput optimization.

¢ See Also:
e Oracle Database PL/SQL Packages and Types Reference for
information about using DBMS_STATS

e Oracle Database SQL Tuning Guide for more information about the
optimizer and using hints

Optimizer Components

The optimizer contains three main components: the transformer, estimator, and plan
generator.

The following diagram depicts the components:

ORACLE 10-14

ORACLE

Chapter 10
Overview of the Optimizer

Figure 10-2 Optimizer Components

=
DU
Table

L]
Segments
(stored in tablespaces-
may span several data files)

Tah:le
|

Index [;]
mm[m
Index [;]
mjm[m
(physical structures associated
with only one tablespace)

Data Files

Ta?le
|

The input to the optimizer is a parsed query. The optimizer performs the following operations:

1.

The optimizer receives the parsed query and generates a set of potential plans for the
SQL statement based on available access paths and hints.

The optimizer estimates the cost of each plan based on statistics in the data dictionary.
The cost is an estimated value proportional to the expected resource use needed to
execute the statement with a particular plan.

The optimizer compares the costs of plans and chooses the lowest-cost plan, known as
the query plan, to pass to the row source generator.

Query Transformer

The query transformer determines whether it is helpful to change the form of the query
so that the optimizer can generate a better execution plan. The input to the query
transformer is a parsed query, which the optimizer represents as a set of query blocks.

Estimator
The estimator determines the overall cost of a given execution plan.

Plan Generator
The plan generator tries out different plans for a submitted query. The optimizer chooses
the plan with the lowest cost.

10-15

Chapter 10
Overview of the Optimizer

¢ See Also:

* SQL Parsing

e SQL Row Source Generation

Query Transformer

Estimator

The query transformer determines whether it is helpful to change the form of the
guery so that the optimizer can generate a better execution plan. The input to the
query transformer is a parsed query, which the optimizer represents as a set of query
blocks.

See Also:

Query Rewrite

The estimator determines the overall cost of a given execution plan.
The estimator generates three different types of measures to achieve this goal:

* Selectivity

This measure represents a fraction of rows from a row set. The selectivity is tied to
a query predicate, such as last name='Smith', or a combination of predicates.

e Cardinality
This measure represents the number of rows in a row set.
* Cost

This measure represents units of work or resource used. The query optimizer uses
disk 1/0, CPU usage, and memory usage as units of work.

If statistics are available, then the estimator uses them to compute the measures. The
statistics improve the degree of accuracy of the measures.

Plan Generator

ORACLE

The plan generator tries out different plans for a submitted query. The optimizer
chooses the plan with the lowest cost.

For each nested subquery and unmerged view, the optimizer generates a subplan.
The optimizer represents each subplan as a separate query block. The plan generator
explores various plans for a query block by trying out different access paths, join
methods, and join orders.

The adaptive query optimization capability changes plans based on statistics collected
during statement execution. All adaptive mechanisms can execute a final plan for a
statement that differs from the default plan. Adaptive optimization uses either dynamic

10-16

Chapter 10
Overview of the Optimizer

plans, which choose among subplans during statement execution, or reoptimization, which
changes a plan on executions after the current execution.

¢ See Also:

e Oracle Database 2 Day + Performance Tuning Guide for an introduction to SQL
tuning

e Oracle Database SQL Tuning Guide to learn about the optimizer components
and adaptive optimization

Access Paths

ORACLE

An access path is the technique that a query uses to retrieve rows.

For example, a query that uses an index has a different access path from a query that does
not. In general, index access paths are best for statements that retrieve a small subset of
table rows. Full scans are more efficient for accessing a large portion of a table.

The database can use several different access paths to retrieve data from a table. The
following is a representative list:

* Full table scans

This type of scan reads all rows from a table and filters out those that do not meet the
selection criteria. The database sequentially scans all data blocks in the segment,
including those under the high water mark (HWM) that separates used from unused
space (see "Segment Space and the High Water Mark").

* Rowid scans

The rowid of a row specifies the data file and data block containing the row and the
location of the row in that block. The database first obtains the rowids of the selected
rows, either from the statement WHERE clause or through an index scan, and then locates
each selected row based on its rowid.

* Index scans

This scan searches an index for the indexed column values accessed by the SQL
statement (see "Index Scans"). If the statement accesses only columns of the index, then
Oracle Database reads the indexed column values directly from the index.

e Cluster scans

A cluster scan retrieves data from a table stored in an indexed table cluster, where all
rows with the same cluster key value are stored in the same data block (see "Overview of
Indexed Clusters"). The database first obtains the rowid of a selected row by scanning
the cluster index. Oracle Database locates the rows based on this rowid.

 Hash scans

A hash scan locates rows in a hash cluster, where all rows with the same hash value are
stored in the same data block (see "Overview of Hash Clusters"). The database first
obtains the hash value by applying a hash function to a cluster key value specified by the
statement. Oracle Database then scans the data blocks containing rows with this hash
value.

10-17

Chapter 10
Overview of the Optimizer

The optimizer chooses an access path based on the available access paths for the
statement and the estimated cost of using each access path or combination of paths.

¢ See Also:

Oracle Database 2 Day + Performance Tuning Guide and Oracle Database
SQL Tuning Guide to learn about access paths

Optimizer Statistics

ORACLE

The optimizer statistics are a collection of data that describe details about the
database and the objects in the database. The statistics provide a statistically correct
picture of data storage and distribution usable by the optimizer when evaluating
access paths.

Optimizer statistics include the following:

* Table statistics
These include the number of rows, number of blocks, and average row length.
* Column statistics

These include the number of distinct values and nulls in a column and the
distribution of data.

* Index statistics

These include the number of leaf blocks and index levels.
e System statistics

These include CPU and I/O performance and utilization.

Oracle Database gathers optimizer statistics on all database objects automatically and
maintains these statistics as an automated maintenance task. You can also gather
statistics manually using the DBMS STATS package. This PL/SQL package can modify,
view, export, import, and delete statistics.

Note:

Optimizer statistics are created for the purposes of query optimization and
are stored in the data dictionary. Do not confuse these statistics with
performance statistics visible through dynamic performance views.

Optimizer Statistics Advisor is built-in diagnostic software that analyzes how you are
currently gathering statistics, the effectiveness of existing statistics gathering jobs, and
the quality of the gathered statistics. Optimizer Statistics Advisor maintains rules,
which embody Oracle best practices based on the current feature set. In this way, the
advisor always provides the most up-to-date recommendations for statistics gathering.

10-18

Chapter 10
Overview of the Optimizer

¢ See Also:

e Oracle Database 2 Day + Performance Tuning Guide and Oracle Database
SQL Tuning Guide to learn how to gather and manage statistics

e Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS STATS

Optimizer Hints

ORACLE

A hint is a comment in a SQL statement that acts as an instruction to the optimizer.

Sometimes the application designer, who has more information about a particular
application's data than is available to the optimizer, can choose a more effective way to run a
SQL statement. The application designer can use hints in SQL statements to specify how the
statement should be run. The following examples illustrate the use of hints.

Example 10-2 Execution Plan for SELECT with FIRST_ROWS Hint

Suppose that your interactive application runs a query that returns 50 rows. This application
initially fetches only the first 25 rows of the query to present to the end user. You want the
optimizer to generate a plan that gets the first 25 records as quickly as possible so that the
user is not forced to wait. You can use a hint to pass this instruction to the optimizer as shown
in the SELECT statement and AUTOTRACE output in the following example:

SELECT /*+ FIRST ROWS(25) */ employee id, department_id
FROM hr.employees
WHERE department id > 50;

| Id | Operation | Name | Rows | Bytes
| 0 | SELECT STATEMENT | | 26 | 182

| 1 | TABLE ACCESS BY INDEX ROWID | EMPLOYEES | 26 | 182
[* 2 INDEX RANGE SCAN | EMP DEPARTMENT IX | |

In this example, the execution plan shows that the optimizer chooses an index on the