Pro*C/C++
Developer's Guide

23ai
F47578-03
May 2024

ORACLE"

Pro*C/C++ Developer's Guide, 23ai

F47578-03

Copyright © 1999, 2024, Oracle and/or its affiliates.

Primary Author: Jiji Thomas

Contributing Authors: Jack Melnick, Neelam Singh, Tim Smith, Paul Lane

Contributors: Bill Bailey, Subhranshu Banerjee, Julie Basu, Beethoven Chang, Michael Chiocca, Nancy
Ikeda, Alex Keh, Thomas Kurian, Shiao-Yen Lin, Valarie Moore, Vidya Nagaraj, Ajay Popat, Ekkehard
Rohwedder, Pamela Rothman, Gael Stevens

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Intended Audience XXXV
Documentation Accessibility XXXV
Related Documents XXXV
Conventions XXXVi
Changes in Pro*C/C++
New Features in Pro*C/C++ Release 23ai XXXVii
New Features in Pro*C/C++ Release 21c XXXVii
New Features in Pro*C/C++ Release 19c XXXVIi
Part | Introduction and Concepts
1 Introduction
1.1 What is an Oracle Precompiler? 1-1
1.2 Why Use the Oracle Pro*C/C++ Precompiler 1-2
1.3 Why Use SQL 1-3
1.4 Why Use PL/SQL 1-3
1.5 Pro*C/C++ Precompiler Benefits 1-3
1.6 Directory Structure 1-5
1.6.1 Known Problems, Restrictions, and Workarounds 1-6
1.7 Library Files 1-6
1.8 Frequently Asked Questions 1-6
1.8.1 Whatis a VARCHAR? 1-7
1.8.2 Does Pro*C/C++ Generate Calls to the Oracle Call Interface? 1-7
1.8.3 Why Not Code Using SQLLIB Calls and Not Use Pro*C/C++? 1-7
1.8.4 Can | Call A PL/SQL Stored Procedure From a Pro*C/C++ Program? 1-7
1.8.5 Can | Write C++ Code, and Precompile It Using Pro*C/C++? 1-7
1.8.6 Can | Use Bind Variables Anywhere in a SQL Statement? 1-8
1.8.7 | Am Confused By Character Handling in Pro*C/C++. 1-8

ORACLE

1.8.8 Is There Anything Special About Character Pointers? 1-8
1.8.9 Why Does SPOOL Not Work in Pro*C/C++? 1-9
1.8.10 Where Can | Find The On-line Versions of the Example Programs? 1-9
1.8.11 How Can | Compile and Link My Application? 1-9
1.8.12 Does Pro*C/C++ Now Support Using Structures As Host Variables? 1-9

1.8.13 Is It Possible to Have Recursive Functions In Pro*C/C++ If | Use Embedded
SQL In the Function? 1-9
1.8.14 Can | Use Any Release of Pro*C/C++ with Any Version of the Oracle Server? 1-10

1.8.15 When My Application Runs, | Keep Getting an Ora-1405 Error (Fetched
Column Value Is NULL). 1-10
1.8.16 Are All SQLLIB Functions Private? 1-10
1.8.17 How Does Oracle Support The New Object Types? 1-11
1.8.18 Compatibility, Upgrading, and Migration 1-11
2 Precompiler Concepts

2.1 Key Concepts of Embedded SQL Programming 2-1
2.1.1 Embedded SQL Statements 2-1
2.1.1.1 Executable Statements and Directives 2-2
2.1.2 Embedded SQL Syntax 2-3
2.1.3 Static Versus Dynamic SQL Statements 2-3
2.1.4 Embedded PL/SQL Blocks 2-4
2.1.5 Host and Indicator Variables 2-4
2.1.6 Oracle Datatypes 2-4
2.1.7 Arrays 2-5
2.1.8 Datatype Equivalencing 2-5
2.1.9 Private SQL Areas, Cursors, and Active Sets 2-5
2.1.10 Transactions 2-5
2.1.11 Errors and Warnings 2-6
2.1.12 SQL99 Syntax Support 2-6
2.2 Steps in Developing an Embedded SQL Application 2-6
2.3 Guidelines for Programming 2-7
2.3.1 Comments 2-7
2.3.2 Constants 2-8
2.3.3 C99 Support 2-8
2.3.4 Declare Section 2-8
2.3.5 Delimiters 2-9
2.3.6 File Length 2-9
2.3.7 Function Prototyping 2-10
23.71 ANSIL_C 2-10
2372 KR_C 2-10
23.7.3 CPP 2-10

ORACLE

2.3.8 Hint Length 2-10

2.3.9 Host Variable Names 2-10
2.3.10 Line Continuation 2-11
2.3.11 Line Length 2-11
2.3.12 MAXLITERAL Default Value 2-11
2.3.13 Operators 2-11
2.3.14 Statement Terminator 2-12

2.4 Conditional Precompilation 2-12
2.4.1 Symbol Definition 2-12
2.4.2 Example SELECT Statement 2-13

2.5 Precompile Separately 2-13
251 Guidelines 2-13
2.5.1.1 Referencing Cursors 2-13

2.5.1.2 Specifying MAXOPENCURSORS 2-13

2.5.1.3 Use a Single SQLCA 2-13

2.6 Compile and Link 2-14
2.7 Example Tables 2-14
2.7.1 Example Data 2-14

2.8 Example Program: A Simple Query 2-15
2.9 Example Program: A Simple Query using SQL99 Syntax 2-18

3 Database Concepts

3.1 Connect to the Database 3-1
3.1.1 Using the ALTER AUTHORIZATION Clause to Change Passwords 3-2
3.1.1.1 Standard CONNECT 3-2

3.1.1.2 Change Password on CONNECT 3-3

3.1.2 Connecting Using Oracle Net Services 3-3
3.1.3 Automatic Connects 3-3
3.1.3.1 The AUTO_CONNECT Precompiler Option 3-4

3.1.3.2 SYSDBA, SYSOPER, or SYSBACKUP System Privileges 3-4

3.2 Advanced Connection Options 3-4
3.2.1 Some Preliminaries 3-4
3.2.2 Concurrent Logons 3-5
3.2.3 Default Databases and Connections 3-5
3.2.4 Explicit Connections 3-6
3.2.4.1 Single Explicit Connection 3-6

3.2.4.2 Multiple Explicit Connections 3-9

3.2.4.3 Ensuring Data Integrity 3-10

3.2.5 Implicit Connections 3-10
3.2.5.1 Single Implicit Connections 3-10

ORACLE Y

3.2.5.2 Multiple Implicit Connections

3-11

3.3 Definitions of Transactions Terms 3-11

3.4 How Data Integrity Is Ensured 3-12

3.5 How to Begin and End Transactions 3-13

3.6 Using the COMMIT Statement 3-13

3.6.1 WITH HOLD Clause in DECLARE CURSOR Statements 3-14

3.6.2 CLOSE_ON_COMMIT Precompiler Option 3-14

3.7 Using the SAVEPOINT Statement 3-15

3.8 The ROLLBACK Statement 3-16

3.8.1 Statement-Level Rollbacks 3-18

3.9 The RELEASE Option 3-18

3.10 The SET TRANSACTION Statement 3-18

3.11 Override Default Locking 3-19

3.11.1 Using FOR UPDATE OF 3-19

3.11.1.1 Restrictions 3-20

3.11.2 Using LOCK TABLE 3-20

3.12 Fetch Across COMMITs 3-21

3.13 Distributed Transactions Handling 3-21

3.14 Guidelines 3-22

3.14.1 Designing Applications 3-22

3.14.2 Obtaining Locks 3-22

3.14.3 Using PL/SQL 3-22
Datatypes and Host Variables

4.1 Oracle Datatypes 4-1

4.1.1 Internal Data types 4-1

4.1.2 External Datatypes 4-3

4.1.2.1 VARCHAR2 4-4

4.1.2.2 NUMBER 4-5

4.1.2.3 INTEGER 4-5

4124 FLOAT 4-5

4125 STRING 4-6

4.1.2.6 VARNUM 4-6

4.1.2.7 LONG 4-6

4.1.2.8 VARCHAR 4-6

4129 ROWID 4-7

4.1.2.10 DATE 4-7

4.1.2.11 RAW 4-8

4.1.2.12 VARRAW 4-8

4.1.2.13 LONG RAW 4-8

ORACLE

Vi

4.1.2.14 UNSIGNED
4.1.2.15 LONG VARCHAR
41.2.16 LONG VARRAW
41.2.17 CHAR

41.2.18 CHARZ

41.2.19 CHARF

4.1.2.20 BOOLEAN

41.3

Additional External Datatypes

4.1.3.1 Datetime and Interval Datatypes

4.1.3.2 ANSIDATE

4.1.3.3 TIMESTAMP

4.1.3.4 TIMESTAMP WITH TIME ZONE

4.1.3.5 TIMESTAMP WITH LOCAL TIME ZONE

4.1.3.6 INTERVAL YEAR TO MONTH

4.1.3.7 INTERVAL DAY TO SECOND

4.1.3.8 Avoiding Unexpected Results Using Datetime
4.2 Host Variables

421

Host Variable Declaration

4.2.1.1 Storage-Class Specifiers
4.2.1.2 Type Qualifiers

422

Host Variable Referencing

4.2.2.1 Restrictions
4.3 Indicator Variables

43.1
4.3.2
4.3.3
434

The INDICATOR Keyword

Example of INDICATOR Variable Usage
INDICATOR Variable Guidelines

Oracle Restrictions

4.4 VARCHAR Variables

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

VARCHAR Variable Declaration

VARCHAR Variable Referencing

Return NULLs to a VARCHAR Variable

Insert NULLs Using VARCHAR Variables

Pass VARCHAR Variables to a Function

Find the Length of the VARCHAR Array Component
Example Program: Using sqlvcp()

45 Cursor Variables

45.1
45.2
453

Declare a Cursor Variable
Allocate a Cursor Variable
Open a Cursor Variable

4.5.3.1 Opening in a Standalone Stored Procedure
4.5.3.2 Return Types

ORACLE

4-8

4-9
4-9
4-9

4-10

4-10

4-10

4-10

4-10

4-11

4-11

4-11

4-12

4-12

4-12

4-12

4-13

4-15

4-15

4-15

4-16

4-16

4-16

4-17

4-17

4-18

4-18

4-18

4-19

4-20

4-20

4-20

4-20

4-21

4-24

4-24

4-25

4-25

4-27

4-27

Vii

4.5.4 Closing and Freeing a Cursor Variable 4-27
45,5 Cursor Variables with the OCI (Release 7 Only) 4-27
4.5.6 Restrictions (Cursor Variables) 4-29
4.5.7 Example: cv_demo.sql and samplell.pc 4-29
45.7.1 cv_demo.sql 4-29

45.7.2 samplell.pc 4-30

4.6 CONTEXT Variables 4-32
4.7 Universal ROWIDs 4-33
4.7.1 SQLRowidGet() 4-34

4.8 Host Structures 4-35
4.8.1 Host Structures and Arrays 4-36
4.8.2 PL/SQL Records 4-36
4.8.3 Nested Structures and Unions 4-36
4.8.4 Host Indicator Structures 4-37
4.8.,5 Example Program: Cursor and a Host Structure 4-38

4.9 Pointer Variables 4-40
4.9.1 Pointer Variable Declaration 4-40
4.9.2 Pointer Variable Referencing 4-40
4.9.3 Structure Pointers 4-41
4,10 Globalization Support 4-41
411 NCHAR Variables 4-43
4.11.1 CHARACTER SET [IS] NCHAR_CS 4-43
4.11.2 Environment Variable NLS_NCHAR 4-43
4.11.3 CONVBUFSZ Clause in VAR 4-44
4.11.4 Character Strings in Embedded SQL 4-44
4,115 Strings Restrictions 4-44
4.11.6 Indicator Variables 4-45
4.12 Handling Boolean Data 4-45

5 Advanced Topics

5.1 Character Data 5-1
5.1.1 Precompiler Option CHAR_MAP 5-1
5.1.2 Inline Usage of the CHAR_MAP Option 5-2
5.1.3 Effect of the DBMS and CHAR_MAP Options 5-2
5.1.3.1 On Input 5-3

5.1.3.2 On Input 5-4

5.1.3.3 On Output 5-4

5.1.4 VARCHAR Variables and Pointers 5-6
5.1.4.1 On Input 5-6

5.1.4.2 On Output 5-7

ORACLE

viii

5.1.5 Unicode Variables
5.1.5.1 Restrictions on Unicode Variable Usage
5.2 Datatype Conversion
5.3 Datatype Equivalencing
5.3.1 Host Variable Equivalencing
5.3.2 User-Defined Type Equivalencing
5.3.2.1 REFERENCE Clause
5.3.3 CHARF External Datatype
5.3.4 The EXEC SQL VAR and TYPE Directives

5.3.5 Example: Datatype Equivalencing (sample4.pc):

5.4 The C Preprocessor
5.4.1 How the Pro*C/C++ Preprocessor Works
5.4.2 Preprocessor Directives
5.4.2.1 Directives Ignored
5.4.3 ORA_PROC Macro
5.4.4 Location of Header File Specification
5.4.5 Some Preprocessor Examples
5.4.5.1 About Using #define
5.4.5.2 Other Preprocessor Restrictions
5.4.6 SQL Statements Not Allowed in #include
5.4.7 Include the SQLCA, ORACA, and SQLDA
5.4.8 EXEC SQL INCLUDE and #include Summary
5.4.9 Defined Macros
5.4.10 Include Files
5.5 Precompiled Header Files
5.5.1 Precompiled Header File Creation
5.5.2 Use of the Precompiled Header Files
5.5.3 Examples
5.5.3.1 Redundant File Inclusion
5.5.3.2 Multiple Precompiled Header Files
5.5.4 List of Header Files
5.5.5 Effects of Options
5.5.5.1 DEFINE and INCLUDE Options
5.5.5.2 CODE and PARSE Options
5.5.6 Usage Notes
5.6 The Oracle Preprocessor
5.6.1 Symbol Definition
5.6.2 An Oracle Preprocessor Example
5.7 Evaluation of Numeric Constants
5.7.1 Numeric Constants in Pro*C/C++
5.7.2 Numeric Constant Rules and Examples

ORACLE

5-7

5-8

5-9

5-9

5-9
5-10
5-11
5-11
5-12
5-12
5-22
5-22
5-22
5-23
5-23
5-24
5-24
5-25
5-25
5-26
5-26
5-27
5-27
5-27
5-28
5-28
5-29
5-29
5-29
5-30
5-31
5-31
5-31
5-32
5-33
5-34
5-34
5-34
5-35
5-35
5-36

5.8 SQLLIB Extensions for OCI Release 8 Interoperability 5-36

5.8.1 Runtime Context in the OCI Release 8 Environment 5-37
5.8.2 Parameters in the OCI Release 8 Environment Handle 5-37

5.9 Interface to OCI Release 8 5-37
5.9.1 SQLEnvGet() 5-38
5.9.2 SQLSvcCtxGet() 5-38
5.9.3 Embedded OCI Release 8 Calls 5-39
5.10 Embedded OCI Release 7 Calls 5-40
5.10.1 Set Up the LDA 5-41
5.10.2 Remote and Multiple Connections 5-41
5.11 New Names for SQLLIB Public Functions 5-41
5.12 X/Open Application Development 5-44
5.12.1 Oracle-Specific Issues 5-45
5.12.1.1 Connecting to Oracle 5-45
5.12.1.2 Transaction Control 5-46
5.12.1.3 OCI Calls (Release 7 Only) 5-46
5.12.1.4 Linking 5-46

6 Embedded SQL

6.1 Host Variables 6-1
6.1.1 Output versus Input Host Variables 6-1

6.2 Indicator Variables 6-2
6.2.1 Insert NULLs 6-3
6.2.2 Returned NULLs 6-4
6.2.3 Fetch NULLs 6-4
6.2.4 Test for NULLs 6-4
6.2.5 Truncated Values 6-5

6.3 The Basic SQL Statements 6-5
6.3.1 The SELECT Statement 6-6
6.3.1.1 Available Clauses 6-7

6.3.2 The INSERT Statement 6-7
6.3.2.1 About Using Subqueries 6-7

6.3.3 The UPDATE Statement 6-8
6.3.4 The DELETE Statement 6-8
6.3.5 The WHERE Clause 6-9

6.4 Using Boolean Data Type 6-9
6.5 The DML Returning Clause 6-10
6.6 Cursors 6-10
6.6.1 The DECLARE CURSOR Statement 6-11
6.6.2 The OPEN Statement 6-12

ORACLE X

6.6.3 The FETCH Statement 6-13

6.6.4 The CLOSE Statement 6-13

6.7 Scrollable Cursors 6-14
6.7.1 About Using Scrollable Cursors 6-14
6.7.1.1 DECLARE SCROLL CURSOR 6-14

6.7.1.2 OPEN for Scrollable Cursors 6-14

6.7.1.3 FETCH for Scrollable Cursors 6-14

6.7.1.4 CLOSE for Scrollable Cursors 6-15

6.7.2 The CLOSE_ON_COMMIT Precompiler Option 6-15
6.7.3 The PREFETCH Precompiler Option 6-15

6.8 Optimizer Hints 6-16
6.8.1 Issuing Hints 6-17

6.9 Fix Execution Plan 6-17
6.9.1 SQL File 6-19
6.9.1.1 Examples 6-20

6.9.2 LOG File 6-21
6.10 The CURRENT OF Clause 6-21
6.10.1 Restrictions (FOR UPDATE OF) 6-22
6.11 The Cursor Statements 6-22
6.12 A Complete Example Using Non-Scrollable Cursor 6-23
6.13 A Complete Example Using Scrollable Cursor 6-24
6.14 Positioned Update 6-25

7 Embedded PL/SQL

7.1 Advantages of PL/SQL 7-1
7.1.1 Better Performance 7-1
7.1.2 Integration with Oracle 7-2
7.1.3 Cursor FOR Loops 7-2
7.1.4 Procedures and Functions 7-2
7.1.5 Packages 7-3
7.1.6 PL/SQL Tables 7-3
7.1.7 User-Defined Records 7-4

7.2 Embedded PL/SQL Blocks 7-5

7.3 Host Variables 7-5
7.3.1 Example: Using Host Variables with PL/SQL 7-6
7.3.2 Complex Example 7-7
7.3.3 VARCHAR Pseudotype 7-8
7.3.4 Restriction 7-9

7.4 Indicator Variables 7-9
7.4.1 NULLs Handling 7-10

ORACLE Xi

7.4.2 Truncated Values 7-10

7.5 Host Arrays 7-11
7.5.1 ARRAYLEN Statement 7-13
7.5.2 Optional Keyword EXECUTE 7-13

7.6 Cursor Usage in Embedded PL/SQL 7-15
7.7 Stored PL/SQL and Java Subprograms 7-15
7.7.1 About Creating Stored Subprograms 7-16
7.7.2 About Calling a Stored PL/SQL or Java Subprogram 7-17
7.7.2.1 Anonymous PL/SQL Block 7-17

7.7.2.2 Remote Access 7-20

7.7.2.3 The CALL Statement 7-21

7.7.2.4 CALL Example 7-21

7.7.3 About Getting Information about Stored Subprograms 7-22

7.8 External Procedures 7-22
7.8.1 Restrictions on External Procedures 7-23
7.8.2 About Creating the External Procedure 7-23
7.8.3 SQLExtProcError() 7-24

7.9 About Using Dynamic SQL 7-25

8 Host Arrays

8.1 Why Use Arrays? 8-1
8.2 About Declaring Host Arrays 8-1
8.2.1 Restrictions (Declaring Host Arrays) 8-2
8.2.2 Maximum Size of Arrays 8-2

8.3 About Using Arrays in SQL Statements 8-2
8.3.1 About Referencing Host Arrays 8-2
8.3.2 About Using Indicator Arrays 8-3
8.3.3 Oracle Restrictions (for Host Arrays) 8-3
8.3.4 ANSI Restriction and Requirements 8-3

8.4 About Selecting into Arrays 8-4
8.4.1 Cursor Fetches 8-4
8.4.2 About Using sqlca.sglerrd[2] 8-5
8.4.3 Number of Rows Fetched 8-6
8.4.4 Scrollable Cursor Fetches 8-6
8.4.5 Sample Program 3: Host Arrays 8-6
8.4.6 Sample Program: Host Arrays Using Scrollable Cursor 8-8
8.4.6.1 scdemo2.pc 8-9

8.4.7 Host Array Restrictions 8-11
8.4.8 About Fetching NULLs 8-11
8.4.9 About Fetching Truncated Values 8-11

ORACLE

Xii

8.5 About Inserting with Arrays 8-12
8.5.1 About Inserting with Arrays Restrictions 8-12
8.6 About Updating with Arrays 8-12
8.6.1 About Updating with Arrays Restrictions 8-13
8.7 About Deleting with Arrays 8-13
8.7.1 About Deleting with Arrays Restrictions 8-14
8.8 About Using the FOR Clause 8-14
8.8.1 FOR Clause Restrictions 8-15
8.8.1.1 Ina SELECT Statement 8-15
8.8.1.2 With the CURRENT OF Clause 8-15
8.9 About Using the WHERE Clause 8-16
8.10 Arrays of Structs 8-16
8.10.1 Arrays of Structs Usage 8-17
8.10.2 Restrictions on Arrays of Structs 8-17
8.10.3 About Declaring an Array of Structs 8-18
8.10.4 Variables Guidelines 8-19
8.10.5 About Declaring a Pointer to an Array of Structs 8-20
8.10.6 Examples 8-20
8.10.6.1 Example 1: A Simple Array of Structs of Scalars 8-20
8.10.6.2 Example 2: Using Mixed Scalar Arrays with An Array of Structs 8-21
8.10.6.3 Example 3: Using Multiple Arrays of Structs with a Cursor 8-21
8.10.6.4 Example 4: Individual Array and Struct Member Referencing 8-22
8.10.6.5 Example 5: Using Indicator Variables, a Special Case 8-23
8.10.6.6 Example 6: Using a Pointer to an Array of Structs 8-24
8.11 About Mimicking CURRENT OF 8-25
8.12 About Using Additional Array Insert/Select Syntax 8-25
8.13 About Using Implicit Buffered Insert 8-30
8.14 Scrollable Cursors 8-34
Handling Runtime Errors
9.1 The Need for Error Handling 9-1
9.2 Error Handling Alternatives 9-1
9.2.1 Status Variables 9-2
9.2.2 The SQL Communications Area 9-2
9.3 The SQLSTATE Status Variable 9-3
9.3.1 About Declaring SQLSTATE 9-3
9.3.2 SQLSTATE Values 9-4
9.3.3 About Using SQLSTATE 9-11
9.3.3.1 If You Declare SQLSTATE 9-11
9.3.3.2 If You Do not Declare SQLSTATE 9-11

ORACLE

Xiii

9.4 About Declaring SQLCODE

9.5

951
9.5.2
9.5.3
9.54
9.5.5

9.6

9.6.1
9.6.2

Key Components of Error Reporting Using the SQLCA
Status Codes
Warning Flags

Rows-Processed Count
Parse Error Offsets
Error Message Text
Using the SQL Communications Area (SQLCA)
About Declaring the SQLCA
SQLCA Contents

9.6.3 SQLCA Structure

9.6.3.1
9.6.3.2
9.6.3.3
9.6.3.4
9.6.3.5
9.6.3.6
9.6.3.7
9.6.3.8

sqlcaid
sqlcabc
sqglcode
sqlerrm
sqlerrp
sqlerrd
sqlwarn
sqlext

9.6.4 PL/SQL Considerations
9.7 About Getting the Full Text of Error Messages
9.8 About Using the WHENEVER Directive

9.8.1 WHENEVER Conditions

9.8.1.1 SQLWARNING
9.8.1.2 SQLERROR
9.8.1.3 NOT FOUND
9.8.2 WHENEVER Actions
9.8.2.1 CONTINUE
9.8.22 DO
9.8.2.3 DO BREAK
9.8.2.4 DO CONTINUE
9.8.2.5 GOTO label_name
9.8.2.6 STOP
9.8.3 WHENEVER Examples
9.8.4 Use of DO BREAK and DO CONTINUE
9.8.5 Scope of WHENEVER
9.8.6 Guidelines for WHENEVER
9.8.6.1 Placing the Statements
9.8.6.2 Handling End-of-Data Conditions
9.8.6.3 About Avoiding Infinite Loops
9.8.6.4 About Maintaining Addressability
ORACLE

Xiv

9-11
9-12
9-12
9-12
9-12
9-12
9-13
9-13
9-13
9-14
9-16
9-16
9-16
9-16
9-16
9-17
9-17
9-17
9-18
9-18
9-18
9-20
9-20
9-20
9-20
9-20
9-21
9-21
9-21
9-21
9-21
9-21
9-21
9-21
9-22
9-23
9-24
9-24
9-24
9-24
9-25

9.8.6.5 About Returning After an Error 9-26
9.9 About Obtaining the Text of SQL Statements 9-26
9.9.1 Restrictions (using SQLStmtGetText()) 9-28
9.9.2 Example Program 9-28
9.10 About Using the Oracle Communications Area (ORACA) 9-28
9.10.1 About Declaring the ORACA 9-28
9.10.2 About Enabling the ORACA 9-29
9.10.3 ORACA Contents 9-29
9.10.4 About Choosing Runtime Options 9-31
9.10.5 Structure of the ORACA 9-31
9.10.5.1 oracaid 9-31
9.10.5.2 oracabc 9-31
9.10.5.3 oracchf 9-31
9.10.5.4 oradbgf 9-31
9.10.5.5 orahchf 9-32
9.10.5.6 orastxtf 9-32
9.10.5.7 Diagnostics 9-32
9.10.5.8 orastxt 9-32
9.10.5.9 orasfnm 9-32
9.10.5.10 oraslinr 9-33
9.10.5.11 Cursor Cache Statistics 9-33
9.10.5.12 orahoc 9-33
9.10.5.13 oramoc 9-33
9.10.5.14 oracoc 9-33
9.10.5.15 oranor 9-33
9.10.5.16 oranpr 9-33
9.10.5.17 oranex 9-34
9.10.6 ORACA Example 9-34
10 Precompiler Options
10.1 The Precompiler Command 10-1
10.1.1 Case Sensitivity 10-2
10.2 Precompiler Options 10-2
10.2.1 Environment Variables 10-3
10.2.2 Configuration Files 10-3
10.2.3 Precedence of Option Values 10-4
10.2.4 Macro and Micro Options 10-6
10.2.5 What Occurs During Precompilation? 10-6
10.2.6 Scope of Options 10-7
10.2.7 Pro*C/C++ Precompiler Issues for Windows Platforms 10-7
ORACLE XV

10.2.7.1
10.2.7.2
10.2.7.3
10.2.7.4
10.2.7.5

Configuration File
CODE

DBMS

INCLUDE
PARSE

10.3 Quick Reference
10.4 Entering Options
10.4.1 Onthe Command Line

10.4.2 Inline

10.4.2.1
10.4.2.2

10.5 About Data Use Case Domain Metadata Support
10.6 About Using the Precompiler Options

Uses for EXEC ORACLE
Scope of EXEC ORACLE
10.4.3 Column Properties Support

10.6.1 AUTO_CONNECT
10.6.2 CHAR_MAP

10.6.3 CINCR
10.6.4 CLOSE_ON_COMMIT
10.6.5 CMAX

10.6.6 CMIN

10.6.7 CNOWAIT

10.6.8 CODE

10.6.9 COMMON_PARSER
10.6.10 COMP_CHARSET
10.6.11 CONFIG

10.6.12 CPOOL

10.6.13 CPP_SUFFIX
10.6.14 CTIMEOUT
10.6.15 DB2_ARRAY
10.6.16 DBMS

10.6.17 DEF_SQLCODE
10.6.18 DEFINE

10.6.19 DURATION
10.6.20 DYNAMIC

10.6.21 ERRORS

10.6.22 ERRTYPE

10.6.23
10.6.24
10.6.25
10.6.26
10.6.27

ORACLE

EVENTS

FIPS

HEADER
HOLD_CURSOR
IMPLICIT_SVPT

XVi

10-7

10-7

10-7

10-7

10-7

10-7
10-10
10-10
10-10
10-11
10-11
10-12
10-13
10-14
10-14
10-14
10-15
10-15
10-16
10-17
10-17
10-17
10-18
10-19
10-19
10-20
10-20
10-21
10-21
10-21
10-22
10-23
10-24
10-24
10-25
10-25
10-26
10-26
10-27
10-28
10-28

10.6.28
10.6.29
10.6.30
10.6.31
10.6.32
10.6.33
10.6.34
10.6.35
10.6.36
10.6.37
10.6.38
10.6.39
10.6.40
10.6.41
10.6.42
10.6.43
10.6.44
10.6.45
10.6.46
10.6.47
10.6.48
10.6.49
10.6.50
10.6.51
10.6.52
10.6.53
10.6.54
10.6.55
10.6.56
10.6.57
10.6.58
10.6.59
10.6.60
10.6.61
10.6.62
10.6.63
10.6.64
10.6.65
10.6.66

ORACLE

INAME
INCLUDE

INTYPE

LINES

LNAME

LTYPE
MAX_ROW_INSERT
MAXLITERAL
MAXOPENCURSORS
MODE
NATIVE_TYPES
NLS_CHAR
NLS_LOCAL
OBJECTS

ONAME

ORACA

OUTLINE
OUTLNPREFIX
PAGELEN

PARSE
PLAN_BASELINE
PLAN_PREFIX
PLAN_RUN
PLAN_FIXED
PLAN_ENABLED
MEMFORPREFETCH
PREFETCH
RELEASE_CURSOR
RUNOUTLINE
SELECT_ERROR
STMT_CACHE
SYS_INCLUDE
THREADS
TYPE_CODE
UNSAFE_NULL
USERID
UTF16_CHARSET
VARCHAR
VERSION

10-29
10-30
10-31
10-31
10-32
10-33
10-33
10-34
10-34
10-35
10-36
10-36
10-37
10-37
10-37
10-38
10-38
10-39
10-40
10-40
10-41
10-41
10-42
10-42
10-42
10-43
10-43
10-44
10-45
10-45
10-46
10-46
10-47
10-48
10-48
10-48
10-49
10-49
10-50

XVii

11 Multithreaded Applications

11.1 What are Threads? 11-1
11.2 Runtime Contexts in Pro*C/C++ 11-2
11.3 Runtime Context Usage Models 11-3
11.3.1 Multiple Threads Sharing a Single Runtime Context 11-3
11.3.2 Multiple Threads Sharing Multiple Runtime Contexts 11-4
11.4 User Interface Features for Multithreaded Applications 11-5
11.4.1 THREADS Option 11-5
11.4.2 Embedded SQL Statements and Directives 11-6
11.4.2.1 EXEC SQL ENABLE THREADS 11-6
11.4.2.2 EXEC SQL CONTEXT ALLOCATE 11-6
11.4.2.3 EXEC SQL CONTEXT USE 11-6
11.4.2.4 EXEC SQL CONTEXT FREE 11-7

11.4.3 CONTEXT USE Examples 11-8
11.4.4 Programming Considerations 11-9
11.5 Multithreaded Example 11-9
11.6 Connection Pooling 11-15
11.6.1 About Using the Connection Pooling Feature 11-16
11.6.1.1 How to Enable Connection Pooling 11-16
11.6.1.2 Command Line Options for Connection Pooling 11-17
11.6.1.3 Example 11-18
11.6.1.4 Performance Tuning 11-18

11.6.2 Demo Program:1 11-19
11.6.2.1 Example 11-20

11.6.3 Demo Program:2 11-23
11.6.3.1 Case 1: By varying CMIN 11-24
11.6.3.2 Case 2: By varying CMAX 11-25
11.6.3.3 Example 11-25

Part Il Applications
12 C++ Applications

12.1 Understanding C++ Support 12-1
12.1.1 No Special Macro Processing 12-1
12.2 Precompiling for C++ 12-2
12.2.1 Code Generation 12-2
12.2.2 About Parsing Code 12-3
12.2.3 Output Filename Extension 12-4
12.2.4 System Header Files 12-4

ORACLE

XViii

12.3 Example Programs 12-4
12.3.1 cppdemol.pc 12-4
12.3.2 cppdemo2.pc 12-7
12.3.3 cppdemo3.pc 12-10

13 Oracle Dynamic SQL

13.1 What is Dynamic SQL? 13-1

13.2 Advantages and Disadvantages of Dynamic SQL 13-2

13.3 When to Use Dynamic SQL 13-2

13.4 Requirements for Dynamic SQL Statements 13-2

13.5 How Dynamic SQL Statements are Processed 13-3

13.6 Methods for Using Dynamic SQL 13-3
13.6.1 Method 1 13-4
13.6.2 Method 2 13-4
13.6.3 Method 3 13-4
13.6.4 Method 4 13-4
13.6.5 Guidelines 13-5

13.6.5.1 About Avoiding Common Errors 13-5

13.7 Using Method 1 13-6
13.7.1 Example Program: Dynamic SQL Method 1 13-7

13.8 Using Method 2 13-10
13.8.1 The USING Clause 13-11
13.8.2 Example Program: Dynamic SQL Method 2 13-11

13.9 Using Method 3 13-14
13.9.1 PREPARE (Dynamic SQL) 13-15
13.9.2 DECLARE (Dynamic SQL) 13-15
13.9.3 OPEN (Dynamic SQL) 13-15
13.9.4 FETCH (Dynamic SQL) 13-16
13.9.5 CLOSE (Dynamic SQL) 13-16
13.9.6 Example Program: Dynamic SQL Method 3 13-16

13.10 Using Method 4 13-19
13.10.1 Need for the SQLDA 13-20
13.10.2 The DESCRIBE Statement 13-20
13.10.3 What is a SQLDA? 13-20
13.10.4 About Implementing Oracle Method 4 13-21
13.10.5 Restriction 13-22

13.11 About Using the DECLARE STATEMENT Statement 13-22
13.11.1 About Using Host Arrays 13-22

13.12 About Using PL/SQL 13-23
13.12.1 With Method 1 13-23

ORACLE XiX

13.12.2 With Method 2 13-23
13.12.3 With Method 3 13-23
13.12.4 With Oracle Method 4 13-24
13.13 Dynamic SQL Statement Caching 13-24
13.14 About Boolean Data Type Support 13-27
14 ANSI Dynamic SQL
14.1 Basics of ANSI Dynamic SQL 14-1
14.1.1 Precompiler Options 14-2
14.2 Overview of ANSI SQL Statements 14-2
14.2.1 Example Code 14-5
14.3 Oracle Extensions 14-5
14.3.1 Reference Semantics 14-6
14.3.2 About Using Arrays for Bulk Operations 14-7
14.3.3 Support for Arrays of Structs 14-8
14.3.4 Support for Object Types 14-8
14.4 ANSI Dynamic SQL Precompiler Options 14-9
14.5 Full Syntax of the Dynamic SQL Statements 14-10
14.5.1 ALLOCATE DESCRIPTOR 14-10
14.5.2 DEALLOCATE DESCRIPTOR 14-10
14.5.3 GET DESCRIPTOR 14-11
14.5.4 SET DESCRIPTOR 14-14
14.5.5 Use of PREPARE 14-17
14.5.6 DESCRIBE INPUT 14-17
14.5.7 DESCRIBE OUTPUT 14-18
14.5.8 EXECUTE 14-19
14.5.9 Use of EXECUTE IMMEDIATE 14-19
14.5.10 Use of DYNAMIC DECLARE CURSOR 14-20
14.5.11 OPEN Cursor 14-20
14.5.12 FETCH 14-21
14.5.13 CLOSE a Dynamic Cursor 14-22
14.5.14 Differences From Oracle Dynamic Method 4 14-22
14.5.15 Restrictions (ANSI Dynamic SQL) 14-23
14.6 Example Programs 14-23
14.6.1 ansidynl.pc 14-23
14.6.2 ansidyn2.pc 14-29
15 Oracle Dynamic SQL: Method 4
15.1 Meeting the Special Requirements of Method 4 15-1

ORACLE

XX

15.11
15.1.2
15.1.3
15.1.4
15.15

What Makes Method 4 Special?
What Information Does Oracle Need?
Where Is the Information Stored?
How is the SQLDA Referenced?

How is the Information Obtained?

15.2 Understanding the SQLDA

1521
15.2.2
15.2.3
15.2.4

Purpose of the SQLDA
Multiple SQLDAs
Declaring a SQLDA
Allocating a SQLDA

15.3 About Using the SQLDA Variables

15.3.1
15.3.2
15.3.3
15.3.4
15.35
15.3.6
15.3.7
15.3.8
15.3.9

The N Variable
The V Variable
The L Variable
The T Variable
The | Variable

The F Variable
The S Variable
The M Variable
The C Variable

15.3.10 The X Variable

15.3.11

The Y Variable

15.3.12 The Z Variable
15.4 Some Preliminaries

154.1

Converting Data

15.4.1.1 Internal Datatypes
15.4.1.2 External Datatypes

15.4.2

Coercing Datatypes

15.4.2.1 Extracting Precision and Scale

15.4.3

Handling NULL/Not NULL Datatypes

15.5 The Basic Steps
15.6 A Closer Look at Each Step

15.6.1
15.6.2
15.6.3
15.6.4
15.6.5
15.6.6
15.6.7
15.6.8
15.6.9

ORACLE

Declare a Host String

Declare the SQLDAs

Allocate Storage Space for the Descriptors
Set the Maximum Number to DESCRIBE
Put the Query Text in the Host String
PREPARE the Query from the Host String
DECLARE a Cursor

DESCRIBE the Bind Variables

Reset Number of Placeholders

15-2
15-2
15-2
15-3
15-3
15-3
15-4
15-4
15-4
15-5
15-6
15-6
15-6
15-6
15-7
15-8
15-8
15-8
15-8
15-9
15-9
15-9
15-9
15-9
15-9
15-10
15-10
15-11
15-12
15-14
15-15
15-15
15-16
15-17
15-17
15-17
15-19
15-20
15-20
15-20
15-21

XXi

15.6.10 Get Values and Allocate Storage for Bind Variables 15-21
15.6.11 OPEN the Cursor 15-23
15.6.12 DESCRIBE the Select List 15-24
15.6.13 Reset Number of Select-List Items 15-25
15.6.14 Reset Length/Datatype of Each Select-list Item 15-26
15.6.15 FETCH Rows from the Active Set 15-27
15.6.16 Get and Process Select-List Values 15-28
15.6.17 Deallocate Storage 15-29
15.6.18 CLOSE the Cursor 15-30
15.6.19 About Using Host Arrays 15-30
15.6.20 samplel2.pc 15-32
15.7 About Using Domain Metadata 15-32
15.8 Example Program: Dynamic SQL Method 4 15-33
15.9 Sample Program : Dynamic SQL Method 4 using Scrollable Cursors 15-44
16 LOBs

16.1 What are LOBs? 16-1
16.1.1 Internal LOBs 16-1
16.1.2 External LOBs 16-1
16.1.3 Security for BFILEs 16-2
16.1.4 LOBs versus LONG and LONG RAW 16-2
16.1.5 LOB Locators 16-2
16.1.6 Temporary LOBs 16-3
16.1.7 LOB Buffering Subsystem 16-3
16.2 How to Use LOBs in Your Program 16-3
16.2.1 Three Ways to Access LOBs 16-4
16.2.2 LOB Locators in Your Application 16-5
16.2.3 Initializing a LOB 16-6
16.2.3.1 Internal LOBs 16-6
16.2.3.2 External LOBs 16-6
16.2.3.3 Temporary LOBs 16-7
16.2.3.4 Freeing LOBs 16-7

16.3 Rules for LOB Statements 16-7
16.3.1 For All LOB Statements 16-7
16.3.2 For the LOB Buffering Subsystem 16-8
16.3.3 For Host Variables 16-9
16.4 LOB Statements 16-9
16.4.1 APPEND 16-9
16.4.2 ASSIGN 16-10
16.4.3 CLOSE (for LOBS) 16-11

ORACLE XXii

16.4.4 COPY 16-11

16.4.5 CREATE TEMPORARY 16-12
16.4.6 DISABLE BUFFERING 16-12
16.4.7 ENABLE BUFFERING 16-13
16.4.8 ERASE 16-13
16.4.9 FILE CLOSE ALL 16-14
16.4.10 FILE SET 16-14
16.4.11 FLUSH BUFFER 16-15
16.4.12 FREE TEMPORARY 16-15
16.4.13 LOAD FROM FILE 16-16
16.4.14 OPEN (for LOBSs) 16-17
16.4.15 READ 16-17
16.4.16 TRIM 16-19
16.4.17 WRITE 16-19
16.4.18 DESCRIBE 16-21
16.5 LOBs and the Navigational Interface 16-23
16.5.1 Transient Objects 16-23
16.5.2 Persistent Objects 16-23
16.5.3 Navigational Interface Example 16-23
16.6 LOB Program Examples 16-24
16.6.1 READ a BLOB, Write a File Example 16-25
16.6.2 Read a File, WRITE a BLOB Example 16-26
16.6.3 lobdemol.pc 16-28
17 Objects
17.1 Introduction to Objects 17-1
17.1.1 Object Types 17-1
17.1.2 REFs to Object Types 17-2
17.1.3 Type Inheritance 17-2
17.2 About Using Object Types in Pro*C/C++ 17-3
17.2.1 NULL Indicators 17-3
17.3 The Object Cache 17-4
17.3.1 Persistent Versus Transient Copies of Objects 17-4
17.4 Associative Interface 17-4
17.4.1 When to Use the Associative Interface 17-4
17.4.2 ALLOCATE 17-5
17.43 FREE 17-5
17.4.4 CACHE FREE ALL 17-5
17.4.5 Accessing Objects Using the Associative Interface 17-6
17.5 Navigational Interface 17-7

ORACLE XXiii

17.5.1 When to Use the Navigational Interface
17.5.2 Rules Used in the Navigational Statements
17.5.3 OBJECT CREATE
17.5.4 OBJECT DEREF
17.5.5 OBJECT RELEASE
17.5.6 OBJECT DELETE
17.5.7 OBJECT UPDATE
17.5.8 OBJECT FLUSH
17.5.9 Navigational Access to Objects
17.6 Converting Object Attributes and C Types
17.6.1 OBJECT SET
17.6.2 OBJECT GET
17.7 Object Options Set/Get
17.7.1 CONTEXT OBJECT OPTION SET
17.7.2 CONTEXT OBJECT OPTION GET
17.8 New Precompiler Options for Objects
17.8.1 VERSION
17.8.2 DURATION
17.8.3 OBJECTS
17.8.4 INTYPE
17.8.5 ERRTYPE
17.8.6 SQLCHECK Support for Objects
17.8.7 Type Checking at Runtime
17.9 An Object Example in Pro*C/C++
17.9.1 Associative Access
17.9.2 Navigational Access
17.10 Example Code for Type Inheritance
17.11 Example Code for Navigational Access
17.12 About Using C Structures
17.13 About Using REFs
17.13.1 Generating a C Structure for a REF
17.13.2 Declaring REFs
17.13.3 Using REFs in Embedded SQL
17.14 About Using OClIDate, OCIString, OCINumber, and OCIRaw
17.14.1 Declaring OClDate, OCIString, OCINumber, OCIRaw
17.14.2 Use of the OCI Types in Embedded SQL
17.14.3 Manipulating the OCI Types
17.15 Summarizing the New Database Types in Pro*C/C++
17.16 Restrictions on Using Oracle Datatypes in Dynamic SQL

ORACLE

XXIV

17-8

17-8

17-9
17-10
17-10
17-10
17-11
17-11
17-11
17-13
17-13
17-14
17-16
17-16
17-17
17-17
17-17
17-17
17-18
17-18
17-19
17-19
17-19
17-19
17-20
17-20
17-21
17-29
17-35
17-35
17-35
17-36
17-36
17-36
17-36
17-37
17-37
17-37
17-39

18 Collections

18.1 Collections 18-1
18.1.1 Nested Tables 18-1
18.1.2 Varrays 18-2
18.1.3 C and Collections 18-2

18.2 Descriptors for Collections 18-2
18.2.1 Declarations for Host and Indicator Variables 18-3
18.2.2 About Manipulating Collections 18-3

18.2.2.1 Autonomous Collection Access 18-3
18.2.2.2 Collection Element Access 18-3
18.2.3 Rules for Access 18-4
18.2.3.1 Autonomous Access 18-4
18.2.3.2 Element Access 18-4
18.2.4 Indicator Variables 18-4
18.2.4.1 Autonomous Bindings 18-4
18.2.4.2 Element Bindings 18-4

18.3 OBJECT GET and SET 18-5

18.4 Collection Statements 18-6
18.4.1 COLLECTION GET 18-6
18.4.2 COLLECTION SET 18-8
18.4.3 COLLECTION RESET 18-9
18.4.4 COLLECTION APPEND 18-9
18.4.5 COLLECTION TRIM 18-10
18.4.6 COLLECTION DESCRIBE 18-11

18.4.6.1 Notes on the Table 18-12
18.4.7 Rules for the Use of Collections 18-13

18.5 Collection Example Code 18-13
18.5.1 Type and Table Creation 18-13
18.5.2 GET and SET Example 18-15
18.5.3 DESCRIBE Example 18-16
18.5.4 RESET Example 18-17
18.5.5 Example Program:coldemol.pc 18-18

19 The Object Type Translator

19.1 OTT Overview 19-1

19.2 What is the Object Type Translator 19-1
19.2.1 About Creating Types in the Database 19-3
19.2.2 About Invoking OTT 19-3

19.2.2.1 Command Line 19-4
19.2.2.2 Configuration File 19-4

ORACLE

XXV

19.2.2.3 INTYPE File 19-4

19.2.3 The OTT Command Line 19-4
19.2.3.1 OTT 19-5
19.2.3.2 Userid 19-5
19.2.3.3 INTYPE 19-5
19.2.3.4 OUTTYPE 19-5
19.2.3.5 CODE 19-5
19.2.3.6 HFILE 19-6
19.2.3.7 INITFILE 19-6
19.2.3.8 INITFUNC 19-6

19.2.4 The INTYPE File 19-7

19.2.5 OTT Datatype Mappings 19-8
19.2.5.1 Mapping Object Datatypes to C 19-9
19.2.5.2 OTT Type Mapping Example 19-10

19.2.6 NULL Indicator Structs 19-13

19.2.7 OTT Support for Type Inheritance 19-13
19.2.7.1 Substitutable Object Attributes 19-15

19.2.8 The OUTTYPE File 19-16

19.3 Using OTT with OCI Applications 19-17

19.3.1 About Accessing and Manipulating Objects with OCI 19-18

19.3.2 About Calling the Initialization Function 19-19

19.3.3 Tasks of the Initialization Function 19-20

19.4 About Using OTT with Pro*C/C++ Applications 19-20
19.5 OTT Reference 19-23

19.5.1 OTT Command Line Syntax 19-24

19.5.2 OTT Parameters 19-24
19.5.2.1 USERID 19-25
19.5.2.2 INTYPE 19-25
19.5.2.3 OUTTYPE 19-25
19.5.24 CODE 19-26
19.5.2.5 INITFILE 19-26
19.5.2.6 INITFUNC 19-26
19.5.2.7 HFILE 19-26
19.5.2.8 CONFIG 19-27
19.5.29 ERRTYPE 19-27
19.5.2.10 CASE 19-27
19.5.2.11 SCHEMA_NAMES 19-28
19.5.2.12 TRANSITIVE 19-28

19.5.3 Where OTT Parameters Can Appear 19-28

19.5.4 Structure of the INTYPE File 19-29
19.5.4.1 INTYPE File Type Specifications 19-29

ORACLE XXVi

19.5.5 Nested #include File Generation 19-30

19.5.6 SCHEMA_NAMES Usage 19-32
19.5.7 Default Name Mapping 19-34
19.5.8 Restriction 19-35

19.5.8.1 File Name Comparison 19-35

20 User Exits

20.1 What Is a User Exit? 20-1
20.2 Why Write a User Exit? 20-1
20.3 About Developing a User Exit 20-2
20.4 About Writing a User Exit 20-2
20.4.1 Requirements for Variables 20-3
20.5 EXEC TOOLS Statements 20-3
20.5.1 About Writing a Toolset User Exit 20-3
20.5.2 EXEC TOOLS SET 20-3
20.5.3 EXEC TOOLS GET 20-4
20.5.4 EXEC TOOLS SET CONTEXT 20-4
20.5.5 EXEC TOOLS GET CONTEXT 20-4
20.5.6 EXEC TOOLS MESSAGE 20-5
20.6 About Calling a User Exit 20-5
20.7 About Passing Parameters to a User Exit 20-5
20.8 About Returning Values to a Form 20-6
20.8.1 The IAP Constants 20-6
20.8.2 About Using WHENEVER 20-6
20.9 An Example of Using User Exits 20-6
20.10 About Precompiling and Compiling a User Exit 20-7
20.11 Example Program: A User Exit 20-7
20.12 About Using the GENXTB Utility 20-9
20.13 About Linking a User Exit into SQL*Forms 20-9
20.14 Guidelines 20-10
20.14.1 About Naming the Exit 20-10
20.14.2 About Connecting to Oracle 20-10
20.14.3 About Issuing I/O Calls 20-10
20.14.4 About Using Host Variables 20-10
20.14.5 About Updating Tables 20-10
20.14.6 About Issuing Commands 20-11

Part Il Appendixes

ORACLE XXVii

A Reserved Words, Keywords, and Namespaces

A.1 Reserved Words and Keywords A-1
A.2 Oracle Reserved Namespaces A-4

B Performance Tuning

B.1 What Causes Poor Performance? B-1
B.2 How Can Performance Be Improved? B-2
B.3 About Using Host Arrays B-2
B.4 About Using Embedded PL/SQL B-3
B.5 About Optimizing SQL Statements B-4
B.5.1 Optimizer Hints B-4
B.5.2 Trace Facility B-4

B.6 About Statement Caching B-5
B.7 About Using Indexes B-5
B.8 About Taking Advantage of Row-Level Locking B-5
B.9 About Eliminating Unnecessary Parsing B-5
B.9.1 About Handling Explicit Cursors B-6
B.9.1.1 Cursor Control B-6

B.9.2 About Using the Cursor Management Options B-7
B.9.2.1 SQL Areas and Cursor Cache B-7

B.9.2.2 Resource Use B-8

B.9.2.3 Infrequent Execution B-8

B.9.2.4 Frequent Execution B-9

B.9.2.5 Embedded PL/SQL Considerations B-10

B.9.2.6 Parameter Interactions B-10

B.10 About Avoiding Unnecessary Reparsing B-10
B.11 About Using Connection Pooling B-11
B.12 About Using Oracle Connection Manager in Traffic Director Mode B-11

C Syntactic and Semantic Checking

C.1 What Is Syntactic and Semantic Checking? C-1
C.2 About Controlling the Type and Extent of Checking C-1
C.3 About Specifying SQLCHECK=SEMANTICS C-2
C.3.1 About Enabling a Semantic Check C-2
C.3.1.1 About Connecting to the Oracle server C-3

C.3.1.2 About Using DECLARE TABLE C-3

C.3.1.3 About Using DECLARE TYPE C-4

C.4 About Specifying SQLCHECK=SYNTAX C-4

ORACLE XXViii

C.5 About Entering the SQLCHECK Option C-4
D System-Specific References
D.1 System-Specific Information D-1
D.1.1 Location of Standard Header Files D-1
D.1.2 About Specifying Location of Included Files for the C Compiler D-1
D.1.3 ANSI C Support D-1
D.1.4 Struct Component Alignment D-1
D.1.5 Size of an Integer and ROWID D-1
D.1.6 Byte Ordering D-1
D.1.7 About Connecting to the Oracle Server D-2
D.1.8 About Linking in an XA Library D-2
D.1.9 Location of the Pro*C/C++ Executable D-2
D.1.10 System Configuration File D-2
D.1.11 INCLUDE Option Syntax D-2
D.1.12 About Compiling and Linking D-2
D.1.13 User Exits D-2
E Embedded SQL Statements and Directives
E.1 Summary of Precompiler Directives and Embedded SQL Statements E-3
E.2 About The Statement Descriptions E-6
E.3 How to Read Syntax Diagrams E-6
E.3.1 Required Keywords and Parameters E-7
E.3.2 Optional Keywords and Parameters E-7
E.3.3 Syntax Loops E-8
E.3.4 Multipart Diagrams E-8
E.3.5 Oracle Names E-8
E.3.6 Statement Terminator E-9
E.4 ALLOCATE (Executable Embedded SQL Extension) E-9
E.5 ALLOCATE DESCRIPTOR (Executable Embedded SQL) E-10
E.6 CACHE FREE ALL (Executable Embedded SQL Extension) E-11
E.7 CALL (Executable Embedded SQL) E-12
E.8 CLOSE (Executable Embedded SQL) E-13
E.9 COLLECTION APPEND (Executable Embedded SQL Extension) E-14
E.10 COLLECTION DESCRIBE (Executable Embedded SQL Extension) E-15
E.11 COLLECTION GET (Executable Embedded SQL Extension) E-17
E.12 COLLECTION RESET (Executable Embedded SQL Extension) E-17
E.13 COLLECTION SET (Executable Embedded SQL Extension) E-18
E.14 COLLECTION TRIM (Executable Embedded SQL Extension) E-18
ORACLE XXIX

E.15
E.16
E.17
E.18
E.19
E.20
E.21
E.22
E.23
E.24
E.25
E.26
E.27
E.28
E.29
E.30
E.31
E.32
E.33
E.34
E.35
E.36
E.37
E.38
E.39
E.40
E.41
E.42
E.43
E.44
E.45
E.46
E.47
E.48
E.49
E.50
E.51
E.52
E.53
E.54
E.55

ORACLE

COMMIT (Executable Embedded SQL)

CONNECT (Executable Embedded SQL Extension)

CONTEXT ALLOCATE (Executable Embedded SQL Extension)
CONTEXT FREE (Executable Embedded SQL Extension)

CONTEXT OBJECT OPTION GET (Executable Embedded SQL Extension)

CONTEXT OBJECT OPTION SET (Executable Embedded SQL Ext)
CONTEXT USE (Oracle Embedded SQL Directive)

DEALLOCATE DESCRIPTOR (Embedded SQL Statement)
DECLARE CURSOR (Embedded SQL Directive)

DECLARE DATABASE (Oracle Embedded SQL Directive)
DECLARE STATEMENT (Embedded SQL Directive)

DECLARE TABLE (Oracle Embedded SQL Directive)

DECLARE TYPE (Oracle Embedded SQL Directive)

DELETE (Executable Embedded SQL)

DESCRIBE (Executable Embedded SQL Extension)

DESCRIBE DESCRIPTOR (Executable Embedded SQL)

ENABLE THREADS (Executable Embedded SQL Extension)
EXECUTE ... END-EXEC (Executable Embedded SQL Extension)
EXECUTE (Executable Embedded SQL)

EXECUTE DESCRIPTOR (Executable Embedded SQL)

EXECUTE IMMEDIATE (Executable Embedded SQL)

FETCH (Executable Embedded SQL)

FETCH DESCRIPTOR (Executable Embedded SQL)

FREE (Executable Embedded SQL Extension)

GET DESCRIPTOR (Executable Embedded SQL)

INSERT (Executable Embedded SQL)

LOB APPEND (Executable Embedded SQL Extension)

LOB ASSIGN (Executable Embedded SQL Extension)

LOB CLOSE (Executable Embedded SQL Extension)

LOB COPY (Executable Embedded SQL Extension)

LOB CREATE TEMPORARY (Executable Embedded SQL Extension)
LOB DESCRIBE (Executable Embedded SQL Extension)

LOB DISABLE BUFFERING (Executable Embedded SQL Extension)
LOB ENABLE BUFFERING (Executable Embedded SQL Extension)
LOB ERASE (Executable Embedded SQL Extension)

LOB FILE CLOSE ALL (Executable Embedded SQL Extension)
LOB FILE SET (Executable Embedded SQL Extension)

LOB FLUSH BUFFER (Executable Embedded SQL Extension)

LOB FREE TEMPORARY (Executable Embedded SQL Extension)
LOB LOAD (Executable Embedded SQL Extension)

LOB OPEN (Executable Embedded SQL Extension)

XXX

E-19
E-20
E-22
E-23
E-23
E-24
E-25
E-26
E-27
E-29
E-30
E-32
E-33
E-34
E-36
E-38
E-39
E-40
E-41
E-43
E-44
E-45
E-47
E-49
E-50
E-52
E-55
E-55
E-56
E-56
E-57
E-57
E-58
E-58
E-59
E-59
E-60
E-60
E-61
E-61
E-62

E.56 LOB READ (Executable Embedded SQL Extension) E-62

E.57 LOB TRIM (Executable Embedded SQL Extension) E-63
E.58 LOB WRITE (Executable Embedded SQL Extension) E-63
E.59 OBJECT CREATE (Executable Embedded SQL Extension) E-64
E.60 OBJECT DELETE (Executable Embedded SQL Extension) E-65
E.61 OBJECT DEREF (Executable Embedded SQL Extension) E-66
E.62 OBJECT FLUSH (Executable Embedded SQL Extension) E-67
E.63 OBJECT GET (Executable Embedded SQL Extension) E-67
E.64 OBJECT RELEASE (Executable Embedded SQL Extension) E-68
E.65 OBJECT SET (Executable Embedded SQL Extension) E-69
E.66 OBJECT UPDATE (Executable Embedded SQL Extension) E-70
E.67 OPEN (Executable Embedded SQL) E-71
E.68 OPEN DESCRIPTOR (Executable Embedded SQL) E-73
E.69 PREPARE (Executable Embedded SQL) E-75
E.70 REGISTER CONNECT (Executable Embedded SQL Extension) E-76
E.71 ROLLBACK (Executable Embedded SQL) E-77
E.72 SAVEPOINT (Executable Embedded SQL) E-79
E.73 SELECT (Executable Embedded SQL) E-80
E.74 SET DESCRIPTOR (Executable Embedded SQL) E-83
E.75 TYPE (Oracle Embedded SQL Directive) E-85
E.76 UPDATE (Executable Embedded SQL) E-86
E.77 VAR (Oracle Embedded SQL Directive) E-89
E.78 WHENEVER (Embedded SQL Directive) E-92

F Sample Programs

F.1 Sample Program Descriptions F-1
F.2 Building the Demonstration Tables F-6
F.3 About Building the Sample Programs F-6

F.3.1 Using pcmake.bat F-7
F.4 Using Microsoft Visual Studio F-7
F.5 Setting the Path for the Sample .pre Files F-8

G Integrating Pro*C/C++ into Microsoft Visual Studio .NET

G.1 Integrating Pro*C/C++ within Microsoft Visual Studio .NET Projects G-1
G.1.1 Specifying the Location of the Pro*C/C++ Executable G-1
G.1.2 Specifying the Location of the Pro*C/C++ Header Files G-2

G.2 Adding .pc Files to a Project G-2
G.2.1 Adding References to .c Files to a Project G-3
G.2.2 Adding the Pro*C/C++ Library to a Project G-3

ORACLE XXXi

G.2.3 Specifying Custom Build Options G-4
G.3 Adding Pro*C/C++ to the Tools Menu G-5
Index
ORACLE XXXii

List of Tables

1-1 precomp Directory Structure

2-1 Embedded SQL Statements

2-2 Embedded SQL Statements

4-1 Oracle Internal Data types

4-2 Oracle External Datatypes

4-3 DATE Format

4-4 C Datatypes for Host Variables

4-5 C to Oracle Datatype Compatibility

4-6 Globalization Support Parameters

5-1 CHAR_MAP Settings

5-2 Default Type Assignments

5-3 Header Files

5-4 SQLLIB Public Functions -- New Names

7-1 Legal Datatype Conversions

8-1 Valid Host Arrays for SELECT INTO

8-2 Host Arrays Valid in an UPDATE

8-3 DB2 Array Syntax vs. Oracle Precompiler Syntax
9-1 Predefined Class Codes

9-2 SQLSTATE Status Codes

9-3 SQL Function Codes

10-1 How Macro Option Values Set Micro Option Values
10-2 Precompiler Options

10-3 DBMS and MODE Interaction

11-1 Command Line Options for Connection Pooling
12-1 Values and Effects of the PARSE Option

13-1 Methods for Using Dynamic SQL

14-1 ANSI SQL Datatypes

14-2 DYNAMIC Option Settings

14-3 TYPE_CODE Option Settings

14-4 Definitions of Descriptor Item Names for GET DESCRIPTOR
14-5 Oracle Extensions to Definitions of Descriptor Item Names for GET DESCRIPTOR
14-6 Descriptor Item Names for SET DESCRIPTOR
14-7 Oracle Extensions to Descriptor ltem Names for SET DESCRIPTOR
15-1 Oracle Internal Datatypes

15-2 Oracle External Datatypes and Datatype Codes
ORACLE

1-5
2-2
2-2
4-1
4-3
4-7

4-13
4-13
4-41
5-2
5-10
5-31
5-42
7-12
8-11
8-13
8-27
9-4
9-6
9-27
10-6
10-8
10-22
11-17
12-3
13-3
14-3
14-9
14-9

14-12

14-12

14-15

14-15

15-10

15-10

XXXiii

15-3
16-1
16-2
16-3
17-1
17-2
17-3
18-1
18-2
18-3
19-1
19-2
A-1

B-1

E-1

E-2

Precision and Scale Values for SQL Datatypes

LOB Access Methods

Source LOB and Precompiler Datatypes

LOB Attributes

Valid Choices for CONTEXT OBJECT OPTION Values

Using New Database Types in Pro*C/C++

Using New C Datatypes in Pro*C/C++

Object and Collection Attributes

Collection and Host Array Allowable Type Conversions

Attributes of a COLLECTION DESCRIBE

Object Datatype Mappings for Object Type Attributes

Object Datatype Mappings for Collection Types

Oracle Reserved Namespaces

HOLD_CURSOR and RELEASE _CURSOR Interactions

Functional Summary of the Embedded SQL Statements and Directives
Precompiler Directives and Embedded SQL Statements and Clauses

Sample Programs

ORACLE

15-13
16-4
16-18
16-21
17-16
17-37
17-38
18-5
18-5
18-12
19-9
19-10
A-4
B-10
E-3
E-3
F-1

XXXIV

Preface

This document is a comprehensive user's guide and reference to the Pro*C/C++. It shows
you how to use the database language SQL and Oracle's procedural extension, PL/SQL, in
conjunction with Pro*C/C++ to manipulate data in an Oracle database. It explores a full range
of topics, from underlying concepts to advanced programming techniques, and provides code
examples.

This Preface contains these topics:
* Intended Audience

e Documentation Accessibility

* Related Documents

e Conventions

Intended Audience

The Pro*C/C++ Developer's Guide is intended for developers, systems analysts, project
managers, and other Oracle users who perform, or are interested in learning about, the
following tasks:

» Design and develop software applications in the Oracle environment.
e Convert existing software applications to run in an Oracle environment.
* Manage the development of software applications.

To use this document, you need a working knowledge of applications programming in C and
C++, and familiarity with the use of the Structured Query Language (SQL).

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

ORACLE

For more information, see these Oracle resources:

e Oracle Database SQL Language Reference

XXXV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

* Oracle C++ Call Interface Developer's Guide
* Oracle Call Interface Developer's Guide

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XXXVi

Changes in Pro*C/C++

This section lists out the changes in Oracle Pro*C/C++ starting from Release 19c.
* New Features in Pro*C/C++ Release 23ai
* New Features in Pro*C/C++ Release 21c

 New Features in Pro*C/C++ Release 19c

New Features in Pro*C/C++ Release 23al

The following feature is new in this release:

* Support for boolean data type

The Pro*C Precompiler now supports the querying and binding of the SQL BOOLEAN data
type. Using the boolean data type makes it easier to represent a boolean state in
applications with a true or false value instead of using a character column (with Y or N).

New Features in Pro*C/C++ Release 21c

The following feature is new in this release:

e Support for C99

The Pro*C/C++ Precompiler supports the C99 standard, the ISO/IEC 9899:1999
standards specification for C programming. C99 syntax and semantics enable application
developers to use richer functionality.

New Features in Pro*C/C++ Release 19c¢

The following feature is new in this release:

» Support for native compilation with Visual Studio 2017 (VS2017)

Releases starting from version 19.19 and onward now support native compilation of
Pro*C with VS2017 or above. This support removes the earlier restriction in Pro*C
Precompiler of having to use VS2013 for Pro*C to C conversion, and subsequently
VS2017 or later to build the converted C code.

ORACLE XXXVii

Introduction and Concepts

Part | contains the following chapters:

e Introduction

e Precompiler Concepts

e Database Concepts

e Datatypes and Host Variables
e Advanced Topics

Embedded SQL

e Embedded PL/SQL

* Host Arrays

e Handling Runtime Errors

e Precompiler Options

e Multithreaded Applications

ORACLE

Introduction

This chapter introduces you to the Oracle Pro*C/C++ Precompiler. You look at its role in
developing application programs that manipulate Oracle data and find out what it enables
your applications to do. This chapter contains the following topics:

What is an Oracle Precompiler?

Why Use the Oracle Pro*C/C++ Precompiler
Why Use SQL

Why Use PL/SQL

Pro*C/C++ Precompiler Benefits

Frequently Asked Questions

1.1 What is an Oracle Precompiler?

An Oracle Precompiler is a programming tool that enables the user to embed SQL
statements in a high-level source program. As Figure 1-1 shows, the precompiler accepts the
source program as input, translates the embedded SQL statements into standard Oracle
runtime library calls, and generates a modified source program that you can compile, link,
and execute in the usual way.

ORACLE

1-1

Chapter 1
Why Use the Oracle Pro*C/C++ Precompiler

Figure 1-1 Embedded SQL Program Development

System Editor

Source
Program With embedded SQL statements

Pro*C/C++
Precompiler

Modified
Source With all SQL statements replaced by library calls
Program

Object
Program
Oracle
Runtime
To resolve calls Library
(SQLLIB)

Source
Program

1.2 Why Use the Oracle Pro*C/C++ Precompiler

ORACLE

The Oracle Pro*C/C++ Precompiler lets you use the power and flexibility of SQL in
your application programs. A convenient, easy to use interface lets your application
access Oracle directly.

Unlike many application development tools, Pro*C/C++ lets you create highly
customized applications. For example, you can create user interfaces that incorporate
the latest windowing and mouse technology. You can also create applications that run
in the background without the need for user interaction.

Furthermore, Pro*C/C++ helps you fine-tune your applications. It allows close
monitoring of resource use, SQL statement execution, and various runtime indicators.
With this information, you can change program parameters for maximum performance.

Although precompiling adds a step to the application development process, it saves
time. The precompiler, not you, translates each embedded SQL statement into calls to
the Oracle runtime library (SQLLIB). The Pro*C/C++ precompiler also analyzes host
variables, defines mappings of structures into columns, and, with SQLCHECK=FULL,
performs semantic analysis of the embedded SQL statements.

1-2

Chapter 1
Why Use SQL

1.3 Why Use SQL

If you want to access and manipulate Oracle data, you need SQL. Whether you use SQL
interactively through SQL*Plus or embedded in an application program depends on the job at
hand. If the job requires the procedural processing power of C or C++, or must be done on a
regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful, and easy
to learn. Being non-procedural, it lets you specify what you want done without specifying how
to do it. A few English-like statements make it easy to manipulate Oracle data one row or
many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program. For
example, you can

* CREATE, ALTER, and DROP database tables dynamically
* SELECT, INSERT, UPDATE, and DELETE rows of data
« COMMIT or ROLLBACK transactions

Before embedding SQL statements in an application program, you can test them interactively
using SQL*Plus. Usually, only minor changes are required to switch from interactive to
embedded SQL.

1.4 Why Use PL/SQL

An extension to SQL, PL/SQL is a transaction processing language that supports procedural
constructs, variable declarations, and robust error handling. Within the same PL/SQL block,
you can use SQL and all the PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance. Unlike SQL, PL/SQL
provides the ability to group SQL statements logically and send them to Oracle in a block
rather than one by one. This reduces network traffic and processing overhead.

Related Topics
e Embedded PL/SQL

1.5 Pro*C/C++ Precompiler Benefits

As Figure 1-2 shows, Pro*C/C++ offers many features and benefits, which help you to
develop effective, reliable applications.

ORACLE 1-3

ORACLE

Chapter 1
Pro*C/C++ Precompiler Benefits

Figure 1-2 Features and Benefits

Event Runtime Object Types ANSI/ISO SQL

Handling Diagnostics Compliance
National Dynamic
Character Sets SQL
Conditional Threads
Precompilation Support

Pro*C/C++
Precompiler Automatic

Array Datatype
Operations Conversion

Concurrent Support for
Connects PL/SQL
Syntax and
Semantic Separate Datatype Runtime
Checking Precompilation | Equivalencing Options

Pro*C/C++ enables:

Writing applications in C or C++.

Following the ANSI/ISO standards for embedding SQL statements in a high-level
language.

Taking advantage of dynamic SQL, an advanced programming technique that lets
your Program accept or build any valid SQL statement at runtime.

Designing and developing highly customized applications.
Writing shared server process applications.

Automatically converting between Oracle internal datatypes and high-level
language datatypes.

Improved performance by embedding PL/SQL transaction processing blocks in
your application program.

Specifying useful precompiler options inline and on the command line and change
their values during precompilation.

The use of datatype equivalencing to control the way Oracle interprets input data
and formats output data.

Separately precompiling several program modules, then link them into one
executable Program.

1-4

Chapter 1
Directory Structure

Complete checking of the syntax and semantics of embedded SQL data manipulation
statements and PL/SQL blocks.

Concurrent access to Oracle databases on multiple nodes using Oracle Net.
The use of arrays as input and output program variables.

Conditionally precompiling sections of code in your host program so that it can run in
different environments.

Direct interface with SQL*Forms through the use of user exits written in a high-level
language.

Handling errors and warnings with the SQL Communications Area (SQLCA) and the
WHENEVER or DO statement.

The use of an enhanced set of diagnostics provided by the Oracle Communications Area
(ORACA).

Working with user-defined object types in the database.

The use of collections (varrays and nested tables) in the database.
The use of LOBs (Large Objects) in the database.

The use of National Character Set data stored in the database.
The use of OCI (Oracle Call Interface) functions in your program.
The use of multi-threaded applications.

Microsoft Visual Studio .NET 2002/2003 support.

Pro*C/C++ is a full-featured tool that supports a professional approach to embedded SQL
programming.

¢ Note:

Pro*C/C++ does not support 16-bit code generation.

1.6 Directory Structure

When you install Oracle software, a directory structure is created on your hard drive for the
Oracle products. A main Oracle directory contains the Oracle subdirectories and files that are
necessary to run Pro*C/C++.

ORACLE

When you install Pro*C/C++, Oracle Universal Installer creates a directory called \precomp in
the ORACLE BASE\ORACLE HOME directory. This subdirectory contains the Pro*C/C++
executable files, library files, and sample programs listed in Table 1-1.

Table 1-1 precomp Directory Structure

Directory Name Contents

\admin Configuration files

\demo\proc Sample programs for Pro*C/C++
\demo\sqgl SQL scripts for sample programs

1-5

Chapter 1
Library Files

Table 1-1 (Cont.) precomp Directory Structure

Directory Name Contents
\doc\proc Readme files for Pro*C/C++
\lib\msvc Library files for Pro*C/C++
\mesg Message files
\public Header files

¢ Note:

The \precomp directory can contain files for other products, such as
Pro*COBOL.

1.6.1 Known Problems, Restrictions, and Workarounds

Although all Windows operating systems allow spaces in file names and directory
names, the Oracle Pro*C/C++ and Oracle Pro*COBOL precompilers will not
precompile files that include spaces in the filename or directory name. For example,
do not use the following formats:

. proc iname=test one.pc

°* proc iname=d:\dirl\second dir\samplel.pc

1.7 Library Files

When linking Pro*C/C++ applications, you use library files. The Pro*C/C++ library files
are installed as follows:

ORACLE HOME\precomp\LIB\orasqgll2.lib
ORACLE HOME\precomp\LIB\ottclasses.zip

ORACLE HOME\precomp\LIB\msvc\orasgxl2.1lib

Pro*C/C++ application program interface (API) calls are implemented in DLL files
provided with your Pro*C/C++ software. To use the DLLs, you must link your
application with the import libraries (.lib files) that correspond to the Pro*C/C++ DLLs.
Also, you must ensure that the DLL files are installed on the computer that is running
your Pro*C/C++ application.

Microsoft provides you with three libraries: 1ibc.1ib, libcmt.lib, and msvert.lib.
The Oracle DLLs use the msvert.1ib runtime library. You must link the applications
with msvert.1ib instead of the other two Microsoft libraries.

1.8 Frequently Asked Questions

This section presents some questions that are frequently asked about Pro*C/C++, and
about Oracle in relation to Pro*C/C++. The answers are more informal than the

ORACLE 1-6

Chapter 1
Frequently Asked Questions

documentation in the rest of this Guide, but do provide references to places where you can
find the reference material.

1.8.1 What is a VARCHAR?

Here is a short description of VARCHARS:

VARCHAR Description

VARCHAR2 A kind of column in the database that contains variable-length character
data. This is what Oracle calls an "internal datatype”, because it is a
possible column type.

VARCHAR An Oracle "external datatype" (datatype code 9). You use this only if you
are doing dynamic SQL Method 4, or datatype equivalencing.

VARCHAR[N] This is a Pro*C/C++ "pseudotype" that you can declare as a host

varchar[n] variable in your Pro*C/C++ program. It is actually generated by

Pro*C/C++ as a struct, with a 2-byte length element, and a [n]-byte
character array.

Related Topics

» Datatypes and Host Variables

* ANSI Dynamic SQL

e Oracle Dynamic SQL: Method 4

1.8.2 Does Pro*C/C++ Generate Calls to the Oracle Call Interface?

No. Pro*C/C++ generates data structures and calls to its runtime library: SQLLIB.

1.8.3 Why Not Code Using SQLLIB Calls and Not Use Pro*C/C++?

SQLLIB is not externally documented, is unsupported, and might change from release to
release. Also, Pro*C/C++ is an ANSI/ISO compliant product, that follows the standard
requirements for embedded SQL.

SQLLIB is not an API. While it has user-callable functions, it is primarily a runtime library for
the precompiler suite of languages.

If you need to do API coding for the database, either use the Oracle Call Interface, the client
side API for the Oracle RDBMS, or mix OCI and Pro*C/C++.

Related Topics
* SQLLIB Extensions for OCI Release 8 Interoperability

1.8.4 Can | Call A PL/SQL Stored Procedure From a Pro*C/C++ Program?

Certainly. See Embedded PL/SQL. There is a demo program, "About Calling a Stored
PL/SQL or Java Subprogram".

1.8.5 Can | Write C++ Code, and Precompile It Using Pro*C/C++?

ORACLE

Yes. See C++ Applications.

1-7

Chapter 1
Frequently Asked Questions

1.8.6 Can | Use Bind Variables Anywhere in a SQL Statement?

For example, | would d like to be able to input the name of a table in my SQL
statements at runtime. But when | use host variables, | get precompiler errors.

In general, you can use host variables at anywhere in a SQL or PL/SQL, statement
where expressions are allowed.

However, the following SQL statement, where table_name is a host variable, is illegal-

EXEC SQL SELECT ename,sal INTO :name, :salary FROM :table name;

To solve your problem, you need to use dynamic SQL. There is a demo program that
you can adapt to do this, "Example Program: Dynamic SQL Method 1".

Related Topics
* Host Variable Referencing

e Oracle Dynamic SQL

1.8.7 1 Am Confused By Character Handling in Pro*C/C++.

There are many options, but we can simplify. First of all, if you need compatibility with
previous precompiler releases, and Oracle7, the safest thing to do is use VARCHAR[N]
host variables.

The default datatype for all other character variables in Pro*C/C++ is CHARZ. Briefly,
this means that you must null-terminate the string on input, and it is both blank-padded
and null-terminated on output.

In release 8.0, the CHAR_MAP precompiler option was introduced to specify the
default mapping of char variables.

If neither VARCHAR nor CHARZ works for your application, and you need total C-like
behavior (null termination, absolutely no blank-padding), use the TYPE command and
the C typedef statement, and use datatype equivalencing to convert your character
host variables to STRING. There is an example program that shows how to use the
TYPE command starting on "Example Program: Using sqlvcp()".

Related Topics

* VARCHAR Variable Declaration

« CHARZ

e Precompiler Option CHAR_MAP
e User-Defined Type Equivalencing

1.8.8 Is There Anything Special About Character Pointers?

ORACLE

Yes. When Pro*C/C++ binds an input or output host variable, it must know the length.
When you use VARCHARI[N], or declare a host variable of type char[n], Pro*C/C++
knows the length from your declaration. But when you use a character pointer as a
host variable, and use malloc () to define the buffer in your program, Pro*C/C++ has
no way of knowing the length.

1-8

Chapter 1
Frequently Asked Questions

On output you must not only allocate the buffer, but pad it out with some non-null characters,
then null-terminate it. On input or output, Pro*C/C++ calls strlen () for the buffer to get the
length.

Related Topics

e Pointer Variables

1.8.9 Why Does SPOOL Not Work in Pro*C/C++?

SPOOL is a special command used in SQL*Plus. It is not an embedded SQL command.

Related Topics
* Key Concepts of Embedded SQL Programming

1.8.10 Where Can | Find The On-line Versions of the Example Programs?

Each Oracle installation should have a demo directory. If the directory is not there, or it does
not contain the example programs, see your system or database administrator.

1.8.11 How Can | Compile and Link My Application?

Compiling and linking are very platform specific. Your system-specific Oracle documentation
has instructions on how to link a Pro*C/C++ application. On UNIX systems, there is a
makefile called demo_proc.mk in the demo directory. To link, say, the demo program
samplel.pc, you would enter the command line

make -f demo proc.mk samplel

If you need to use special precompiler options, you can run Pro*C/C++ separately, then do
the make. Or, you can create your own custom makefile. For example, if your program
contains embedded PL/SQL code, you can enter

proc cv_demo userid=username/password sqlcheck=semantics
make -f demo proc.mk build OBJS=samplel.o EXE=samplel

On VMS systems, there is a script called LNPROC that you use to link your Pro*C/C++
applications.

1.8.12 Does Pro*C/C++ Now Support Using Structures As Host Variables?

How does this work with the array interface?
You can use arrays inside a single structure, or an array of structures with the array interface.

Related Topics
e Host Structures

e Pointer Variables

1.8.13 Is It Possible to Have Recursive Functions In Pro*C/C++ If | Use
Embedded SQL In the Function?

Yes. However, for embedded SQL, you must use cursor variables.

ORACLE 1-9

Chapter 1
Frequently Asked Questions

1.8.14 Can | Use Any Release of Pro*C/C++ with Any Version of the
Oracle Server?

When you run a precompiler or OCI application against a database server, Oracle
recommends that the release of the database server software be equal to or higher
than the client software release, but this configuration is not strictly required. For
example, if your Oracle Database client software is release 8.1.7, then it is
recommended that your Oracle Database server software be release 8.1.7 or higher to
run a precompiler application on the client against the server.

More information about upgrading your applications can be found in the Oracle
Database Upgrade Guide.

1.8.15 When My Application Runs, | Keep Getting an Ora-1405 Error
(Fetched Column Value Is NULL).

You are selecting a NULL into a host variable that does not have an associated
indicator variable. This is not in compliance with the ANSI/ISO standards, and was
changed beginning with Oracle?.

If possible, rewrite your program using indicator variables, and use indicators in future
development.

Alternatively, if precompiling with MODE=ORACLE and DBMS=V7 or V8, specify
UNSAFE_NULL=YES on the command line to disable the ORA-01405 message.

Related Topics
e Indicator Variables
e UNSAFE_NULL

1.8.16 Are All SQLLIB Functions Private?

ORACLE

No. There are some SQLLIB functions that you can call to get information about your
program, or its data. The SQLLIB public functions are shown here:

SQLLIB Public Description
Functions
SQLSQLDAAIloc() Used to allocate a SQL descriptor array (SQLDA) for dynamic SQL

Method 4. See "How is the SQLDA Referenced? ".

SQLCDAFromResultSetC Used to convert a Pro*C/C++ cursor variable to an OCI cursor data
ursor() area. See "New Names for SQLLIB Public Functions".

SQLSQLDAFree() Used to free a SQLDA allocated using SQLSQLDAAIloc(). See
"New Names for SQLLIB Public Functions".

SQLCDAToResultSetCurs Used to convert an OCI cursor data area to a Pro*C/C++ cursor

or() variable. See "New Names for SQLLIB Public Functions".
SQLErrorGetText() Returns a long error message. See "sqlerrm ".
SQLStmtGetText() Used to return the text of the most recently executed SQL

statement. See "About Obtaining the Text of SQL Statements ".

1-10

Chapter 1
Frequently Asked Questions

SQLLIB Public Description

Functions

SQLLDAGetNamed() Used to obtain a valid Logon Data Area for a named connection,
when OCI calls are used in a Pro*C/C++ program. See "New
Names for SQLLIB Public Functions".

SQLLDAGetCurrent() Used to obtain a valid Logon Data Area for the most recent

SQLColumnNullCheck()

connection, when OCI calls are used in a Pro*C/C++ program. See
"New Names for SQLLIB Public Functions".

Returns an indication of NULL status for dynamic SQL Method 4.
See "Handling NULL/Not NULL Datatypes ".

SQLNumberPrecV6() Returns precision and scale of numbers. See "Extracting Precision
and Scale ".
SQLNumberPrecV7() A variant of SQLNumberPrecV6(). See "Extracting Precision and

SQLVarcharGetLength()

Scale ".

Used for obtaining the padded size of a VARCHARI[n]. See "Find
the Length of the VARCHAR Array Component ".

SQLEnvGet() Returns the OCI environment handle for a given SQLLIB runtime
context. See "SQLEnvGet()".

SQLSvcCixGet() Returns the OCI service context for the database connection. See
SQLSvcCtxGet().

SQLRowidGet() Returns the universal ROWID of the last row inserted. See
"SQLRowidGet()".

SQLExtProcError() Returns control to PL/SQL when an error occurs in an external C

procedure. See "SQLExtProcError()".

In the preceding list, the functions are thread-safe SQLLIB public functions. Use these
functions in all new applications. For more information about these thread-safe public
functions (including their old names), see the table "New Names for SQLLIB Public

Functions".

1.8.17 How Does Oracle Support The New Object Types?

See the chapters Objects and The Object Type Translator for how to use Object types in
Pro*C/C++ applications.

1.8.18 Compatibility, Upgrading, and Migration

Pro*C/C++ adopts a similar compatibility rule to OCI-based applications. This compatibility is
subject to the same limitations that OCI imposes on backward compatibility.

The additional "array insert" and "array select" syntax will help migrating DB2 precompiler
applications to the Pro*C/C++ application. This is because you will not need to change DB2
array INSERT and SELECT syntax to that of Oracle Pro*C/C++.

The "Implicit Buffered Insert" feature supported by Pro*C/C++ helps you to migrate DB2
precompiler applications to Pro*C/C++ applications without using the array syntax of
Pro*C/C++ for better performance.

ORACLE 1-11

Precompiler Concepts

This chapter explains how embedded SQL programs do their work. You examine the special
environment in which they operate and the impact of this environment on the design of your
applications. After covering the key concepts of embedded SQL programming and the steps
you take in developing an application, this chapter uses a simple program to illustrate the
main points.

This chapter contains the following topics:

* Key Concepts of Embedded SQL Programming

e Steps in Developing an Embedded SQL Application
e Guidelines for Programming

* Example Tables

e Example Program: A Simple Query

e Example Program: A Simple Query using SQL99 Syntax

2.1 Key Concepts of Embedded SQL Programming

This section lays the conceptual foundation on which later chapters build. This section
contains these topics:

Embedded SQL Statements
 Embedded SQL Syntax

e Static Versus Dynamic SQL Statements
Embedded PL/SQL Blocks

e Host and Indicator Variables

* Oracle Datatypes

* Arrays

» Datatype Equivalencing

» Private SQL Areas_ Cursors_ and Active Sets
e Transactions

e Errors and Warnings

* SQL99 Syntax Support

2.1.1 Embedded SQL Statements

ORACLE

The term embedded SQL refers to SQL statements placed within an application program.
Because it houses the SQL statements, the application program is called a host program,
and the language in which it is written is called the host language. For example, Pro*C/C++
provides the ability to embed certain SQL statements in a C or C++ host program.

2-1

Chapter 2
Key Concepts of Embedded SQL Programming

To manipulate and query Oracle data, you use the INSERT, UPDATE, DELETE, and
SELECT statements. INSERT adds rows of data to database tables, UPDATE
modifies rows, DELETE removes unwanted rows, and SELECT retrieves rows that
meet your search condition.

The powerful SET ROLE statement lets you dynamically manage database privileges.
A role is a named group of related system and object privileges, or a named group of
related system or object privileges granted to users or other roles. Role definitions are
stored in the Oracle data dictionary. Your applications can use the SET ROLE
statement to enable and disable roles as needed.

Only SQL statements—not SQL*Plus statements—are valid in an application program.
(SQL*Plus has additional statements for setting environment parameters, editing, and
report formatting.)

2.1.1.1 Executable Statements and Directives

ORACLE

Embedded SQL includes all the interactive SQL statements plus others that allow you
to transfer data between Oracle and a host program. There are two types of
embedded SQL statements: executable statements and directives. Executable
statements result in calls to the runtime library SQLLIB. You use them to connect to
Oracle, to define, query, and manipulate Oracle data, to control access to Oracle data,
and to process transactions. They can be placed wherever C or C++ language
executable statements can be placed.

Directives, on the other hand, do not result in calls to SQLLIB and do not operate on
Oracle data. You use them to declare Oracle objects, communications areas, and SQL
variables. They can be placed wherever C or C++ variable declarations can be placed.

Table 2-1 groups the various embedded SQL statements (not a complete list):

Table 2-1 Embedded SQL Statements
|

DIRECTIVE PURPOSE

ARRAYLEN* To use host arrays with PL/SQL
BEGIN DECLARE To declare host variables (optional)
SECTION*

END DECLARE SECTION*

DECLARE* To name Oracle schema objects
INCLUDE* To copy in files

TYPE* To equivalence datatypes

VAR* To equivalence variables
WHENEVER* To handle runtime errors

Table 2-2 Embedded SQL Statements
|

EXECUTABLE PURPOSE

STATEMENT

ALLOCATE* To define and control Oracle data
ALTER -

ANALYZE -

2-2

Table 2-2 (Cont.) Embedded SQL Statements

Chapter 2
Key Concepts of Embedded SQL Programming

EXECUTABLE
STATEMENT

PURPOSE

DELETE

INSERT
SELECT
UPDATE
COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION
DESCRIBE*
EXECUTE*
PREPARE*
ALTER SESSION
SET ROLE

DML

To process transactions
To use dynamic SQL

To control sessions

*Has no interactive
counterpart

2.1.2 Embedded SQL Syntax

In your application program, you can freely mix complete SQL statements with complete C
statements and use C variables or structures in SQL statements. The only special
requirement for building SQL statements into your host program is that you begin them with
the keywords EXEC SQL and end them with a semicolon. Pro*C/C++ translates all EXEC
SQL statements into calls to the runtime library SQLLIB.

Many embedded SQL statements differ from their interactive counterparts only through the
addition of a new clause or the use of program variables. The following example compares
interactive and embedded ROLLBACK statements:

-- interactive
-- embedded

ROLLBACK WORK:
EXEC SQL ROLLBACK WORK;

These statements have the same effect, but you would use the first in an interactive SQL
environment (such as when running SQL*Plus), and the second in a Pro*C/C++ program.

2.1.3 Static Versus Dynamic SQL Statements

ORACLE

Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and transaction
before runtime; that is, you know which SQL commands will be issued, which database
tables might be changed, which columns will be updated, and so on.

However, some applications might be required to accept and process any valid SQL
statement at runtime. So, you might not know until runtime all the SQL commands, database
tables, and columns involved.

2-3

Chapter 2
Key Concepts of Embedded SQL Programming

Dynamic SQL is an advanced programming technique that lets your program accept or
build SQL statements at run time and take explicit control over datatype conversion.

2.1.4 Embedded PL/SQL Blocks

Pro*C/C++ treats a PL/SQL block like a single embedded SQL statement. You can
place a PL/SQL block anywhere in an application program that you can place a SQL
statement. To embed PL/SQL in your host program, you simply declare the variables
to be shared with PL/SQL and bracket the PL/SQL block with the keywords EXEC
SQL EXECUTE and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and safely
because PL/SQL supports all SQL data manipulation and transaction processing
commands.

2.1.5 Host and Indicator Variables

Host variables are the key to communication between Oracle and your program. A
host variable is a scalar or aggregate variable declared in C and shared with Oracle,
meaning that both your program and Oracle can reference its value.

Your program uses input host variables to pass data to Oracle. Oracle uses output
host variables to pass data and status information to your program. The program
assigns values to input host variables; Oracle assigns values to output host variables.

Host variables can be used anywhere a SQL expression can be used. In SQL
statements, host variables must be prefixed with a colon (:) to set them apart from the
SQL keywords.

You can also use a C struct to contain a number of host variables. When you name the
structure in an embedded SQL statement, prefixed with a colon, Oracle uses each of
the components of the struct as a host variable.

You can associate any host variable with an optional indicator variable. An indicator
variable is a short integer variable that "indicates" the value or condition of its host
variable. You use indicator variables to assign NULLSs to input host variables and to
detect NULLs or truncated values in output host variables. A NULL is a missing,
unknown, or inapplicable value.

In SQL statements, an indicator variable must be prefixed with a colon and
immediately follow its associated host variable. The keyword INDICATOR can be
placed between the host variable and its indicator for additional clarity.

If the host variables are packaged in a struct, and you want to use indicator variables,
you simply create a struct that has an indicator variable for each host variable in the
host structure, and name the indicator struct in the SQL statement, immediately
following the host variable struct, and prefixed with a colon. You can also use the
INDICATOR keyword to separate a host structure and its associated indicator
structure.

2.1.6 Oracle Datatypes

Typically, a host program inputs data to Oracle, and Oracle outputs data to the
program. Oracle stores input data in database tables and stores output data in
program host variables. To store a data item, Oracle must know its datatype, which
specifies a storage format and valid range of values.

ORACLE 2.4

Chapter 2
Key Concepts of Embedded SQL Programming

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes specify
how Oracle stores data in database columns. Oracle also uses internal datatypes to
represent database pseudocolumns, which return specific data items but are not actual
columns in a table.

External datatypes specify how data is stored in host variables. When your host program
inputs data to Oracle, if necessary, Oracle converts between the external datatype of the
input host variable and the internal datatype of the target database column. When Oracle
outputs data to your host program, if necessary, Oracle converts between the internal
datatype of the source database column and the external datatype of the output host
variable.

2.1.7 Arrays

Pro*C/C++ lets you define array host variables (called host arrays) and arrays of structures
and operate on them with a single SQL statement. Using the array SELECT, FETCH,
DELETE, INSERT, and UPDATE statements, you can query and manipulate large volumes of
data with ease. You can also use host arrays inside a host variable struct.

2.1.8 Datatype Equivalencing

Pro*C/C++ adds flexibility to your applications by letting you equivalence datatypes. That
means you can customize the way Oracle interprets input data and formats output data.

On a variable-by-variable basis, you can equivalence supported C datatypes to the Oracle
external datatypes. You can also equivalence user-defined datatypes to Oracle external
datatypes.

2.1.9 Private SQL Areas, Cursors, and Active Sets

To process a SQL statement, Oracle opens a work area called a private SQL area. The
private SQL area stores information needed to execute the SQL statement. An identifier
called a cursor lets you name a SQL statement, access the information in its private SQL
area, and, to some extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and explicit. Oracle
implicitly declares a cursor for all data definition and data manipulation statements, including
SELECT statements (queries) that return only one row. However, for queries that return more
than one row, to process beyond the first row, you must explicitly declare a cursor (or use
host arrays).

The set of rows returned is called the active set; its size depends on how many rows meet
the query search condition. You use an explicit cursor to identify the row currently being
processed, called the current row.

Imagine the set of rows being returned to a terminal screen. A screen cursor can point to the
first row to be processed, then the next row, and so on. In the same way, an explicit cursor
"points" to the current row in the active set. This allows your program to process the rows one
at a time.

2.1.10 Transactions

A transaction is a series of logically related SQL statements (two UPDATESs that credit one
bank account and debit another, for example) that Oracle treats as a unit, so that all changes
brought about by the statements are made permanent or undone at the same time.

ORACLE 2-5

Chapter 2
Steps in Developing an Embedded SQL Application

All the data manipulation statements executed since the last data definition, COMMIT,
or ROLLBACK statement was executed make up the current transaction.

To help ensure the consistency of your database, Pro*C/C++ lets you define
transactions using the COMMIT, ROLLBACK, and SAVEPOINT statements.

COMMIT makes permanent any changes made during the current transaction.
ROLLBACK ends the current transaction and undoes any changes made since the
transaction began. SAVEPOINT marks the current point in the processing of a
transaction; used with ROLLBACK, it undoes part of a transaction.

2.1.11 Errors and Warnings

When you execute an embedded SQL statement, it either succeeds or fails, and might
result in an error or warning. You need a way to handle these results. Pro*C/C++
provides two error handling mechanisms: the SQL Communications Area (SQLCA)
and the WHENEVER statement.

The SQLCA is a data structure that you include (or hard-code) in your host program. It
defines program variables used by Oracle to pass runtime status information to the
program. With the SQLCA, you can take different actions based on feedback from
Oracle about work just attempted. For example, you can check to see if a DELETE
statement succeeded and, if so, how many rows were deleted.

With the WHENEVER statement, you can specify actions to be taken automatically
when Oracle detects an error or warning condition. These actions are: continuing with
the next statement, calling a function, branching to a labeled statement, or stopping.

2.1.12 SQL99 Syntax Support

2.2 Steps

ORACLE

The SQL standard enables the portability of SQL applications across all conforming
software products. Oracle features are compliant with the ANSI/ISO SQL99 standard,
including ANSI compliant joins. Pro*C/C++ supports all SQL99 features that are
supported by Oracle database, which means that the SQL99 syntax for the SELECT,
INSERT, DELETE, and UPDATE statements and the body of the cursor in a
DECLARE CURSOR statement are supported.

In Developing an Embedded SQL Application

Figure 2-1 shows the embedded SQL application development process.

2-6

Chapter 2
Guidelines for Programming

Figure 2-1 Embedded SQL Application Development Process

Steps Results
Design »| Specs
N Code > Source
Program
T —
Precompile »(Source

Program

»(Object

C il >
ompre Program

o Executable
i Program

LA

Execute

no
Ship to Customer

As you can see, precompiling results in a modified source file that can be compiled normally.
Though precompiling adds a step to the traditional development process, that step lets you
write very flexible applications.

2.3 Guidelines for Programming

This section deals with embedded SQL syntax, coding conventions, and C-specific features
and restrictions. Topics are arranged alphabetically for quick reference.

2.3.1 Comments

You can place C-style Comments (/* ... */) in a SQL statement wherever blanks can be placed
(except between the keywords EXEC SQL). Also, you can place ANSI-style Comments (-- ...)
within SQL statements at the end of a line, as the following example shows:

ORACLE .

Chapter 2
Guidelines for Programming

EXEC SQL SELECT ENAME, SAL
INTO :emp name, :salary -- output host variables
FROM EMP
WHERE DEPTNO = :dept number;

You can use C++ style Comments (//) in your Pro*C/C++ source if you precompile
using the CODE=CPP precompiler option.

2.3.2 Constants

An L or | suffix specifies a long integer constant, a U or u suffix specifies an unsigned
integer constant, a 0X or Ox prefix specifies a hexadecimal integer constant, and an F
or f suffix specifies a float floating-point constant. These forms are not allowed in SQL
statements.

2.3.3 C99 Support

Starting with release 21c, the Pro*C/C++ Precompiler supports the C99 standard, the
ISO/IEC 9899:1999 standards specification for C programming.

C99 introduced the following new features:

e Inline functions
* Intermingled declarations and code

» Several new data types including long long int, optional extended integer types, an
explicit boolean data type, and a complex type to represent complex humbers

e Variable length arrays
* Flexible array members
e Support for one-line comments beginning with //

» Designated initializers (for example, initializing a structure by field names: struct
point p = { .x =1, .y =2 };)

e Compound literals (for instance, it is possible to construct structures in function
calls: function ((struct x) {1, 2}))

e Support for variadic (macros with a variable number of arguments)
e Restrict qualification

e Keyword static in array indices in parameter declarations

2.3.4 Declare Section

ORACLE

A Declare Section contains the host variable declarations and is of the form:

EXEC SQL BEGIN DECLARE SECTION;

/* Declare all host variables inside this section: */
char *uid = "username/password";

EXEC SQL END DECLARE SECTION;

A Declare Section begins with the statement:

EXEC SQL BEGIN DECLARE SECTION;

2-8

Chapter 2
Guidelines for Programming

and ends with the statement:

EXEC SQL END DECLARE SECTION;

Between these two statements only the following are allowed:

* Host-variable and indicator-variable declarations
* Non-host C/C++ variables

« EXEC SQL DECLARE statements

« EXEC SQL INCLUDE statements

« EXEC SQL VAR statements

« EXEC SQL TYPE statements

* EXEC ORACLE statements

¢ C/C++ comments

A Declare Section is required when MODE=ANSI or CODE=CPP (in a C++ application) or
PARSE=NONE or PARTIAL.

More than one Declare Section is allowed. They can be in different code modules.

Related Topics
e About Parsing Code

2.3.5 Delimiters

While C uses single quotes to delimit single characters, as in

ch = getchar();

switch (ch)

{

case 'U': update(); Dbreak;
case 'I': insert(); break;

SQL uses single quotes to delimit character strings, as in

EXEC SQL SELECT ENAME, SAL FROM EMP WHERE JOB = 'MANAGER';

While C uses double quotes to delimit character strings, as in

printf ("\nG'Day, mate!");

SQL uses double quotes to delimit identifiers containing special or lowercase characters, as
in

EXEC SQL CREATE TABLE "Emp2" (empno number(4), ...);

2.3.6 File Length

ORACLE

Pro*C/C++ cannot process arbitrarily long source files. There is a limit to the number of lines
allowed. The following aspects of the source file are contributing factors to the file-size
constraint:

* Complexity of the embedded SQL statements (for example, the number of bind and
define variables).

2-9

Chapter 2
Guidelines for Programming

* Whether a database name is used (for example, connecting to a database with an
AT clause).

* Number of embedded SQL statements.

To prevent problems related to this limitation, use multiple program units to sufficiently
reduce the size of the source files.

2.3.7 Function Prototyping

The ANSI C standard (X3.159-1989) provides for function prototyping. A function
prototype declares a function and the data types of its arguments, so that the C
compiler can detect missing or mismatched arguments.

The CODE option, which you can enter on the command line or in a configuration file,
determines the way that the precompiler generates C or C++ code.

2.3.7.1ANSI C

When you precompile your program with CODE=ANSI_C, the precompiler generates
fully prototyped function declarations. For example:

extern void sqglora(long *, void *);

2372KR C

When you precompile with the option CODE=KR_C (KR for "Kernighan and Ritchie"),
the precompiler generates function prototypes in the same way that it does for
ANSI_C, except that function parameter lists are commented out. For example:

extern void sqlora(/*_ long *, void * */);

So, make sure to set the precompiler option CODE to KR_C if you use a C compiler
that does not support ANSI C. When the CODE option is set to ANSI_C, the
precompiler can also generate other ANSI-specific constructs; for example, the const
type qualifier.

2.3.7.3 CPP

When you compile with CODE=CPP you will generate C++ compatible function
prototypes. Use this option setting with C++ compilers.

Related Topics

e C++ Applications

2.3.8 Hint Length

Maximum length of a sql hint in an embedded sql statement is limited to 256
characters. Any hint exceeding this limit will be truncated.

2.3.9 Host Variable Names

Host variable names can consist of upper or lowercase letters, digits, and
underscores, but must begin with a letter. They can be any length, but only the first 31

ORACLE 2-10

Chapter 2
Guidelines for Programming

characters are significant to Pro*C/C++. Your C compiler or linker might require a shorter
maximum length, so check your C compiler user's guide.

For portability, you may wish to restrict the length of host variable names to 18 or fewer
characters (the length mandated by the SQL standard).

Related Topics

e Reserved Words, Keywords, and Namespaces

2.3.10 Line Continuation

You can continue SQL statements from one line to the next. You must use a backslash (\) to
continue a string literal from one line to the next, as the following example shows:

EXEC SQL INSERT INTO dept (deptno, dname) VALUES (50, 'PURCHAS\
ING');

In this context, the precompiler treats the backslash as a continuation character.

2.3.11 Line Length

The maximum line length is 4096 for lines consisting of only ASCII characters, or 1024 for
multibyte characters.

2.3.12 MAXLITERAL Default Value

The precompiler option MAXLITERAL lets you specify the maximum length of string literals
generated by the precompiler. The MAXLITERAL default value is 1024. Specify a smaller
value if required. For example, if your C compiler cannot handle string literals longer than 512
characters, you then specify MAXLITERAL=512. Check your C compiler user's guide.

2.3.13 Operators

ORACLE

The logical operators and the "equal to" relational operator are different in C and SQL, as the
following list shows. These C operators are not allowed in SQL statements:

SQL Operator C Operator
NOT !

AND &&

OR |

The following C operators also not allowed in SQL statements:

Type C Operator

address &

bitwise & |, "N~

compound assignment +=, -=, *=, and so on.
conditional ?:

decrement --

2-11

Chapter 2
Conditional Precompilation

Type C Operator
increment ++
indirection *

modulus %

shift >> <<

2.3.14 Statement Terminator

Embedded SQL statements are always terminated by a semicolon, as the following
example shows:

EXEC SQL DELETE FROM emp WHERE deptno = :dept number;

2.4 Conditional Precompilation

Conditional precompilation includes (or excludes) sections of code in your host
program based on certain conditions. For example, you might want to include one
section of code when precompiling under UNIX and another section when
precompiling under VMS. Conditional precompilation lets you write programs that can
run in different environments.

Conditional sections of code are marked by statements that define the environment
and actions to take. You can code C or C++ statements as well as EXEC SQL
statements in these sections. The following statements let you exercise conditional
control over precompilation:

EXEC ORACLE DEFINE symbol; -- define a symbol

EXEC ORACLE IFDEF symbol; -- if symbol is defined
EXEC ORACLE IFNDEF symbol; -- if symbol is not defined
EXEC ORACLE ELSE; -- otherwise

EXEC ORACLE ENDIF; -- end this control block

All EXEC ORACLE statements must be terminated with a semi-colon.

2.4.1 Symbol Definition

You can define a symbol in two ways. Either include the statement:

EXEC ORACLE DEFINE symbol;

in your host program or define the symbol on the command line using the syntax:

. DEFINE=symbol ...

where symbol iS not case-sensitive.

" Note:

The #define preprocessor directive is not the same as the EXEC ORACLE
DEFINE statement.

ORACLE 2-12

Chapter 2
Precompile Separately

Some port-specific symbols are predefined for you when Pro*C/C++ is installed on your
system. For example, predefined operating symbols include CMS, MVS, MS-DOS, UNIX, and
VMS.

2.4.2 Example SELECT Statement

In the following example, the SELECT statement is precompiled only when the symbol site2
is defined:

EXEC ORACLE IFDEF site2;
EXEC SQL SELECT DNAME
INTO :dept name
FROM DEPT
WHERE DEPTNO= :dept number;
EXEC ORACLE ENDIF;

You can "comment out" C, C++, or embedded SQL code by placing it between IFDEF and
ENDIF and not defining the symbol.

2.5 Precompile Separately

You can precompile several C or C++ program modules separately, then link them into one
executable program. This supports modular programming, which is required when the
functional components of a program are written and debugged by different developers. The
individual program modules need not be written in the same language.

2.5.1 Guidelines

The following guidelines will help you avoid some common problems.

2.5.1.1 Referencing Cursors

Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence, cursor
operations cannot span precompilation units (files). That is, you cannot DECLARE a cursor in
one file, and OPEN or FETCH from it in another file. So, when doing a separate
precompilation, make sure all definitions and references to a given cursor are in one file.

2.5.1.2 Specifying MAXOPENCURSORS

When you precompile the program module that CONNECTSs to Oracle, specify a value for
MAXOPENCURSORS that is high enough for any of the program modules. If you use
MAXOPENCURSORS for another program module, one that does not do a CONNECT, then
that value for MAXOPENCURSORS is ignored. Only the value in effect for the CONNECT is
used at runtime.

2.5.1.3 Use a Single SQLCA

ORACLE

If you want to use just one SQLCA, you must declare it as global in one of the program
modules and as external in the other modules. Use the extern storage class, and the
following define in your code:

#define SQLCA STORAGE CLASS extern

2-13

Chapter 2
Compile and Link

which tells the precompiler to look for the SQLCA in another program module. Unless
you declare the SQLCA as external, each program module uses its own local SQLCA.

Note:

be generated.

2.6 Compile and Link

To get an executable program, you must compile the output . c source files produced
by the precompiler, then link the resulting object modules with modules needed from
SQLLIB and system-specific Oracle libraries. If you are mixing precompiler code and
OCIl calls, be sure to also link in the OCI runtime library (1iboci.a on UNIX systems).

All source files in an application must be uniquely named, or else an error will

The linker resolves symbolic references in the object modules. If these references
conflict, the link fails. This can happen when you try to link third-party software into a
precompiled program. Not all third-party software is compatible with Oracle. So, linking
your program shared might cause an obscure problem. In some cases, linking

standalone or two-task might solve the problem.

Compiling and linking are system dependent. On most platforms, example makefiles
or batch files are supplied that you can use to precompile, compile, and link a

Pro*C/C++ application. See your system-specific documentation.

2.1 Example Tables

Most programming examples in this guide use two example database tables: DEPT

and EMP. Their definitions follow:

CREATE TABLE DEPT
(DEPTNO NUMBER (2) NOT NULL,
DNAME VARCHAR? (14),
L.0C VARCHAR? (13))

CREATE TABLE EMP

(EMPNO NUMBER (4) NOT NULL,
ENAME VARCHAR? (10),

JOB VARCHAR? (9) ,

MGR NUMBER (4) ,

HIREDATE DATE,

SAL NUMBER (7, 2),

COMM NUMBER (7, 2),

DEPTNO NUMBER (2))

2.7.1 Example Data

ORACLE

Respectively, the DEPT and EMP tables contain the following rows

of data:
DEPTNO DNAME LOC
10 ACCOUNTING NEW YORK

2-14

Chapter 2
Example Program: A Simple Query

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900 JAMES CLERK 7698 03-DEC-81 950 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

2.8 Example Program: A Simple Query

One way to get acquainted with Pro*C/C++ and embedded SQL is to study a program
example. The following program is also available on-line in the file samplel.pc in your
Pro*C/C++ demo directory.

The program connects to Oracle, then loops, prompting the user for an employee number. It
gueries the database for the employee's name, salary, and commission, displays the
information, and then continues the loop. The information is returned to a host structure.
There is also a parallel indicator structure to signal whether any of the output values
SELECTed might be NULL.

Precompile example programs using the precompiler option MODE=ORACLE.

¢ Note:

For simplicity in demonstrating this feature, this example does not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide
for password management guidelines and other security recommendations.

samplel.pc

Prompts the user for an employee number,

then queries the emp table for the employee's
name, salary and commission. Uses indicator
variables (in an indicator struct) to determine
if the commission is NULL.

P

#include <stdio.h>

ORACLE 2-15

ORACLE

Chapter 2
Example Program: A Simple Query

#include <string.h>

/* Define constants for VARCHAR lengths. */
#define UNAME LEN 20
#define PWD_LEN 40

/* Declare variables. No declare section is needed if MODE=ORACLE.*/
VARCHAR username [UNAME LEN];
/* VARCHAR is an Oracle-supplied struct */

varchar password[PWD LEN];
/* varchar can be in lower case also. */
/*

Define a host structure for the output values of a SELECT statement.

*/

struct {
VARCHAR emp name [UNAME LEN];
float salary;
float commission;

} emprec;

/*

Define an indicator struct to correspond to the host output struct. */
struct

{

short emp name_ ind;
short sal ind;
short comm_ind;

} emprec ind;

/* Input host variable. */
int emp number;
int total queried;
/* Include the SQL Communications Area.
You can use #include or EXEC SQL INCLUDE. */
#include <sglca.h>

/* Declare error handling function. */
void sql error();

main ()

{
char temp char([32];

/* Connect to ORACLE--
* Copy the username into the VARCHAR.
*/
strncpy ((char *) username.arr, "SCOTT", UNAME LEN);
/* Set the length component of the VARCHAR. */
username.len = strlen((char *) username.arr);
/* Copy the password. */
strncpy ((char *) password.arr, "TIGER", PWD LEN);
password.len = strlen((char *) password.arr);
/* Register sql error() as the error handler. */
EXEC SQL WHENEVER SQLERROR DO sql_error("ORACLE error--\n");

/* Connect to ORACLE. Program will call sql error()
* if an error occurs when connecting to the default database.
*/

EXEC SQL CONNECT :username IDENTIFIED BY :password;

printf ("\nConnected to ORACLE as user: %s\n", username.arr);
/* Loop, selecting individual employee's results */

2-16

Chapter 2
Example Program: A Simple Query

total queried = 0;
for (;7)
{
/* Break out of the inner loop when a
* 1403 ("No data found") condition occurs.
*/
EXEC SQL WHENEVER NOT FOUND DO break;
for (;7)
{
emp number = 0;
printf ("\nEnter employee number (0 to quit): ");
gets (temp char);
emp number = atoi(temp char);
if (emp number == 0)
break;
EXEC SQL SELECT ename, sal, NVL(comm, 0)
INTO :emprec INDICATOR :emprec ind
FROM EMP
WHERE EMPNO = :emp number;
/* Print data. */
printf ("\n\nEmployee\tSalary\t\tCommission\n");

printf("-------- \t-—----- \t\t——-—m - \n");
/* Null-terminate the output string data. */
emprec.emp name.arr[emprec.emp name.len] = '\0';

printf ("%-8s\t%6.2f\t\t",

emprec.emp name.arr, emprec.salary);
if (emprec ind.comm ind == -1)

printf ("NULL\n");
else

printf ("%6.2f\n", emprec.commission);

total queried++;
} /* end inner for (;;) */
if (emp number == 0) break;
printf ("\nNot a valid employee number - try again.\n");
} /* end outer for(;;) */

printf ("\n\nTotal rows returned was %d.\n", total queried);
printf ("\nG'day.\n\n\n") ;

/* Disconnect from ORACLE. */
EXEC SQL COMMIT WORK RELEASE;
exit (0);

}

void sql error (msg)

char *msg;

{
char err msg[128];
int buf len, msg len;

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf ("\n%s\n", msq);

buf len = sizeof (err msg);
sqlglm(err msg, &buf len, &msg len);
if (msg len > buf len)

msg len = buf len;

printf("%$.*s\n", msg len, err msgq);
EXEC SQL ROLLBACK RELEASE;

exit (1);

ORACLE 217

Chapter 2
Example Program: A Simple Query using SQL99 Syntax

2.9 Example Program: A Simple Query using SQL99 Syntax

This program is similar to the previous example, but uses SQL99 syntax for SELECT,
INSERT, DELETE and UPDATE statements and the body of the cursor in a DECLARE

ORACLE

CURSOR statement is supported.
Precompile example programs using the precompiler option MODE=ORACLE.

/
5ql99.pc

Prompts the user for an employee number,
then queries the emp table for the employee's
name, salary and department.

T

/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqglda.h>
#include <sglcpr.h>

/* Define constants for VARCHAR lengths. */

#define UNAME LEN 30

#define PWD LEN 40

/* Declare variables. No declare section is needed if MODE=ORACLE. */

VARCHAR username [UNAME LEN];
/* VARCHAR is an Oracle-supplied struct */
varchar password[PWD LEN];

/* varchar can be in lower case also. */
/* Define a host structure for the output values of a SELECT statement. */

struct{
VARCHAR emp name [UNAME LEN];
float salary;
VARCHAR dept name[UNAME LEN] ;
} emprec;

/* Define an indicator struct to correspond to the host output struct. */
struct{

short emp name ind;
short sal ind;
short dept name;

} emprec_ind;

/* Input host variable. */

int emp number;

int total queried;

/* Include the SQL Communications Area. You can use #include or EXEC SQL
INCLUDE. */

#include <sqlca.h>
/* Declare error handling function. */
void sql error (msg)

char *msg;

{

char err msg[128];

size t buf len, msg len;

EXEC SQL WHENEVER SQLERROR CONTINUE;

2-18

Chapter 2
Example Program: A Simple Query using SQL99 Syntax

printf ("\n%s\n", msq);
buf len = sizeof (err msg);
sqlglm(err msg, &buf len, &msg len);
printf("%$.*s\n", msg len, err msq);
EXEC SQL ROLLBACK RELEASE;

ex1t (EXIT FAILURE);

}

void main () {
char temp char[32];
/* Connect to ORACLE-- * Copy the username into the VARCHAR. */
strncpy ((char *) username.arr, "scott", UNAME LEN);
/* Set the length component of the VARCHAR. */
username.len = (unsigned short) strlen((char *) username.arr);
/* Copy the password. */
strncpy ((char *) password.arr, "tiger", PWD LEN);
password.len = (unsigned short) strlen((char *) password.arr);
/* Register sql error() as the error handler. */
EXEC SQL WHENEVER SQLERROR DO sql_error("ORACLE error--\n");
/* Connect to ORACLE. Program will call sql error() * if an error occurs
when connecting to the default database. */
EXEC SQL CONNECT :username IDENTIFIED BY :password;
printf ("\nConnected to ORACLE as user: %s\n", username.arr);
/* Loop, selecting individual employee's results */
total queried = 0;
for (;7) {
emp number = 0;
printf ("\nEnter employee number (0 to quit): ");
gets (temp char);
emp number = atoi(temp char);
if (emp number == 0)
break;
/* Branch to the notfound label when the * 1403 ("No data found") condition
occurs. */
EXEC SQL WHENEVER NOT FOUND GOTO notfound;

/* The following query uses SQL99 syntax - RIGHT OUTER JOIN */
EXEC SQL SELECT e.ename, e.sal, d.dname
INTO :emprec INDICATOR :emprec_ind
FROM EMP e RIGHT OUTER JOIN dept d
ON e.deptno = d.deptno
WHERE e.EMPNO = :emp number;
/* Print data. */
printf ("\n\nEmployee Salary Department Name\n");

printf("-------- —------ oo \n") ;
/* Null-terminate the output string data. */
emprec.emp name.arr[emprec.emp name.len] = '\0';
emprec.dept name.arr[emprec.dept name.len]='\0';
printf ("%s $7.2f ss ", emprec.emp name.arr,

emprec.salary, emprec.dept name.arr);
total queried++;
continue;

notfound:
printf ("\nNot a valid employee number - try again.\n");

printf("\n\nTotal rows returned was %d.\n", total queried);
printf ("\nG'day.\n\n\n");
/* Disconnect from ORACLE. */

EXEC SQL ROLLBACK WORK RELEASE;

ORACLE 2-19

Chapter 2
Example Program: A Simple Query using SQL99 Syntax

exit (EXIT SUCCESS);
}

ORACLE" 2-20

Database Concepts

This chapter explains some basic database concepts and how to perform transaction
processing. You learn the basic techniques that safeguard the consistency of your database,
including how to control if changes to Oracle data are made permanent or undone.

This chapter contains the following topics:

* Connect to the Database

e Advanced Connection Options

» Definitions of Transactions Terms

* How Transactions Guard Your Database
* How to Begin and End Transactions
e Using the COMMIT Statement

e Using the SAVEPOINT Statement

* The ROLLBACK Statement

e The RELEASE Option

 The SET TRANSACTION Statement
e Override Default Locking

* Fetch Across COMMITs

e Distributed Transactions Handling

e Guidelines

3.1 Connect to the Database

ORACLE

The complete syntax of the CONNECT statement will be discussed in the next few sections.
Here it is:

EXEC SQL CONNECT { :user IDENTIFIED BY :oldpswd | :usr psw }
[[AT { dbname | :host variable }] USING :connect string]
[{ALTER AUTHORIZATION :newpswd | 1IN { SYSDBA | SYSOPER | SYSBACKUP } MODE}] ;

Your Pro*C/C++ program must connect to the database before querying or manipulating data.
To log on, simply use the CONNECT statement

EXEC SQL CONNECT :username IDENTIFIED BY :password ;

where username and password are char or VARCHAR host variables.

Or, you can use the statement

EXEC SQL CONNECT :usr pwd;

where the host variable usr_pwd contains your username and password separated by a slash
character (/).

3-1

Chapter 3
Connect to the Database

These are simplified subsets of the CONNECT statement.

The CONNECT statement must be the first SQL statement executed by the program.
That is, other SQL statements can physically but not logically precede the CONNECT
statement in the precompilation unit.

To supply the Oracle username and password separately, you define two host
variables as character strings or VARCHARS. (If you supply a username containing
both username and password, only one host variable is needed.)

Make sure to set the username and password variables before the CONNECT is
executed, or it will fail. Your program can prompt for the values, or you can hard-code
them as follows:

char *username = "SCOTT";
char *password = "TIGER";

EXEC SQL WHENEVER SQLERROR ...
EXEC SQL CONNECT :username IDENTIFIED BY :password;

However, you cannot hard-code a username and password into the CONNECT
statement. You also cannot use quoted literals. For example, both of the following
statements are invalid:

EXEC SQL CONNECT SCOTT IDENTIFIED BY TIGER;
EXEC SQL CONNECT 'SCOTT' IDENTIFIED BY 'TIGER';

Hard coding usernames and passwords is not recommended practise.

Related Topics
* CONNECT (Executable Embedded SQL Extension)

3.1.1 Using the ALTER AUTHORIZATION Clause to Change

Passwords

Pro*C/C++ provides client applications with a convenient way to change a user
password at runtime through a simple extension to the EXEC SQL CONNECT
statement.

This section describes the possible outcomes of different variations of the ALTER
AUTHORIZATION clause.

3.1.1.1 Standard CONNECT

ORACLE

If an application issues the following statement

EXEC SQL CONNECT ..; /* No ALTER AUTHORIZATION clause */

it performs a normal connection attempt. The possible results include the following:

* The application will connect without issue.

» The application will connect, but will receive a password warning. The warning
indicates that the password has expired but is in a grace period which will allow
Logons. At this point, the user is encouraged to change the password before the
account becomes locked.

* The application will fail to connect. Possible causes include the following:

3-2

Chapter 3
Connect to the Database

— The password is incorrect.

— The account has expired, and is possibly in a locked state.

3.1.1.2 Change Password on CONNECT

The following CONNECT statement
EXEC SQL CONNECT .. ALTER AUTHORIZATION :newpswd;
indicates that the application wants to change the account password to the value indicated by

newpswd. After the change is made, an attempt is made to connect as user/newpswd. This can
have the following results:

* The application will connect without issue
* The application will fail to connect. This could be due to either of the following:

— Password verification failed for some reason. In this case the password remains
unchanged.

— The account is locked. Changes to the password are not permitted.

3.1.2 Connecting Using Oracle Net Services

To connect using an Oracle Net Services driver, substitute a service name, as defined in your
tnsnames.ora configuration file or in Oracle Names.

If you are using Oracle Names, the name server obtains the service name from the network
definition database.

See Oracle Net Services Administrator's Guide for more information about Oracle Net
Services.

3.1.3 Automatic Connects

ORACLE

You can automatically connect to Oracle with the username

CLUSTERSusername

where username is the current operating system username, and CLUSTERS$username is a
valid Oracle database username. (The actual value for CLUSTERS is defined in the INIT.ORA
parameter file.) You simply pass to the Pro*C/C++ Precompiler a slash character, as follows:
éﬂér *oracleid = "/";

EXEC SQL CONNECT :oracleid;

This automatically connects you as user CLUSTERS$username. For example, if your
operating system username is RHILL, and CLUSTERS$RHILL is a valid Oracle username,
connecting with '/* automatically logs you on to Oracle as user CLUSTER$RHILL.

You can also pass a /' in a string to the precompiler. However, the string cannot contain
trailing blanks. For example, the following CONNECT statement will fail:

char oracleid[10] = "/ ";

EXEC SQL CONNECT :oracleid;

3-3

Chapter 3
Advanced Connection Options

3.1.3.1 The AUTO_CONNECT Precompiler Option

If AUTO_CONNECT=YES, and the application is not already connected to a database
when it processes the first executable SQL statement, it attempts to connect using the
userid

CLUSTERS<username>

where username is your current operating system user or task name and
CLUSTERS$username is a valid Oracle userid. The default value of AUTO_CONNECT
is NO.

When AUTO_CONNECT=NO, you must use the CONNECT statement in your
program to connect to Oracle.

3.1.3.2 SYSDBA, SYSOPER, or SYSBACKUP System Privileges

Append the following optional string after all other clauses to log on with either
SYSDBA, SYSOPER, or SYSBACKUP system privileges:

[IN { SYSDBA | SYSOPER | SYSBACKUP } MODE]

For example:

EXEC SQL CONNECT ... IN SYSDBA MODE ;

Here are the restrictions that apply to this option:

e This option is not permitted when using the AUTO_CONNECT=YES precompiler
option setting.

e This option is not permitted when using the ALTER AUTHORIZATION keywords in
the CONNECT statement.

Related Topics
* Using the ALTER AUTHORIZATION Clause to Change Passwords

3.2 Advanced Connection Options

This section describes the available options for advanced connections.

3.2.1 Some Preliminaries

ORACLE

The communicating points in a network are called nodes. Oracle Net lets you transmit
information (SQL statements, data, and status codes) over the network from one node
to another.

A protocol is a set of rules for accessing a network. The rules establish such things as
procedures for recovering after a failure and formats for transmitting data and checking
errors.

The Oracle Net syntax for connecting to the default database in the local domain is
simply to use the service name for the database.

If the service name is not in the default (local) domain, you must use a global
specification (all domains specified). For example:

3-4

Chapter 3
Advanced Connection Options

HR.XX.ORACLE.COM

3.2.2 Concurrent Logons

Pro*C/C++ supports distributed processing through Oracle Net. Your application can
concurrently access any combination of local and remote databases or make multiple
connections to the same database. In Figure 3-1, an application program communicates with
one local and three remote Oracle databases. ORA2, ORA3, and ORA4 are simply logical
names used in CONNECT statements.

Figure 3-1 Connecting through Oracle Net

Application Local
Program Oracle
Database

A

v

Oracle Net

\

Remote
Oracle
Database

Remote

Oracle
Database Remote
Oracle

Database

By eliminating the boundaries in a network between different machines and operating
systems, Oracle Net provides a distributed processing environment for Oracle tools. This
section shows you how Pro*C/C++ supports distributed processing through Oracle Net. You
learn how your application can

e Directly or indirectly access other databases
e Concurrently access any combination of local and remote databases
e Make multiple connections to the same database

For details on installing Oracle Net and identifying available databases, see Identifying and
Accessing the Database and your system-specific Oracle documentation.

3.2.3 Default Databases and Connections

ORACLE

Each node has a default database. If you specify a database name, but no domain in your
CONNECT statement, you connect to the default database on the named local or remote
node.

A default connection is made by a CONNECT statement that has no AT clause. The
connection can be to any default or nondefault database at any local or remote node. SQL

3-5

Chapter 3
Advanced Connection Options

statements without an AT clause are executed against the default connection.
Conversely, a nondefault connection is made by a CONNECT statement that has an
AT clause. SQL statements with an AT clause are executed against the nondefault
connection.

All database names must be unique, but two or more database names can specify the
same connection. That is, you can have multiple connections to any database on any
node.

3.2.4 Explicit Connections

Usually, you establish a connection to Oracle as follows:

EXEC SQL CONNECT :username IDENTIFIED BY :password;

You can also use

EXEC SQL CONNECT :usr pwd;

where usr_pwd contains usernamel/password.

You can automatically connect to Oracle with the userid

CLUSTERSusername

where username is your current operating system user or task name and
CLUSTERS$username is a valid Oracle userid. You simply pass to the precompiler a
slash (/) character, as follows:

char oracleid = '/';

EXEC SQL CONNECT :oracleid;

This automatically connects you as user CLUSTERS$username.

If you do not specify a database and node, you are connected to the default database
at the current node. If you want to connect to a different database, you must explicitly
identify that database.

With explicit connections, you connect to another database directly, giving the
connection a name that will be referenced in SQL statements. You can connect to
several databases at the same time and to the same database multiple times.

3.2.4.1 Single Explicit Connection

ORACLE

In the following example, you connect to a single nondefault database at a remote
node:

/* declare needed host variables */
char username[10] = "scott";
char password[10] "tiger";
char db string[20] "NYNON";

/* give the database connection a unique name */
EXEC SQL DECLARE DB NAME DATABASE;

/* connect to the nondefault database */

EXEC SQL CONNECT :username IDENTIFIED BY :password
AT DB NAME USING :db_string;

3-6

Chapter 3
Advanced Connection Options

The identifiers in this example serve the following purposes:

* The host variables username and password identify a valid user.

* The host variable db_string contains the Oracle Net syntax for connecting to a nondefault
database at a remote node.

* The undeclared identifier DB_NAME names a nondefault connection; it is an identifier
used by Oracle, not a host or program variable.

The USING clause specifies the network, machine, and database associated with
DB_NAME. Later, SQL statements using the AT clause (with DB_NAME) are executed at the
database specified by db_string.

Alternatively, you can use a character host variable in the AT clause, as the following
example shows:

/* declare needed host variables */

char username[10] = "scott";
char password[10] = "tiger";
char db name[10] = "oraclel";
char db string[20] = "NYNON";

/* connect to the nondefault database using db_name */
EXEC SQL CONNECT :username IDENTIFIED BY :password
AT :db name USING :db string;

If db_name is a host variable, the DECLARE DATABASE statement is not needed. Only if
DB_NAME is an undeclared identifier must you execute a DECLARE DB_NAME DATABASE
statement before executing a CONNECT ... AT DB_NAME statement.

3.2.4.1.1 SQL Operations

If granted the privilege, you can execute any SQL data manipulation statement at the
nondefault connection. For example, you might execute the following sequence of
statements:

EXEC SQL AT DB NAME SELECT ...
EXEC SQL AT DB NAME INSERT ...
EXEC SQL AT DB NAME UPDATE ...

In the next example, db_name is a host variable:

EXEC SQL AT :db name DELETE ...

If db_name is a host variable, all database tables referenced by the SQL statement must be
defined in DECLARE TABLE statements. Otherwise, the precompiler issues a warning.

Related Topics
* About Using DECLARE TABLE
 DECLARE TABLE (Oracle Embedded SQL Directive)

3.2.4.1.2 PL/SQL Blocks

You can execute a PL/SQL block using the AT clause. The following example shows the
syntax:

EXEC SQL AT :db _name EXECUTE
begin

ORACLE .

Chapter 3
Advanced Connection Options

/* PL/SQL block here */
end;
END-EXEC;

3.2.4.1.3 Cursor Control

Cursor control statements such as OPEN, FETCH, and CLOSE are exceptions—they
never use an AT clause. If you want to associate a cursor with an explicitly identified
database, use the AT clause in the DECLARE CURSOR statement, as follows:

EXEC SQL AT :db name DECLARE emp cursor CURSOR FOR ...
EXEC SQL OPEN emp cursor ...

EXEC SQL FETCH emp cursor ...

EXEC SQL CLOSE emp cursor;

If db_name is a host variable, its declaration must be within the scope of all SQL
statements that refer to the DECLAREd cursor. For example, if you OPEN the cursor
in one subprogram, then FETCH from it in another subprogram, you must declare
db_name globally.

When OPENing, CLOSing, or FETCHing from the cursor, you do not use the AT
clause. The SQL statements are executed at the database named in the AT clause of
the DECLARE CURSOR statement or at the default database if no AT clause is used
in the cursor declaration.

The AT :host_variable clause provides the ability to change the connection associated
with a cursor. However, you cannot change the association while the cursor is open.
Consider the following example:

EXEC SQL AT :db _name DECLARE emp cursor CURSOR FOR ...

strcpy (db_name, "oraclel");

EXEC SQL OPEN emp cursor;

EXEC SQL FETCH emp cursor INTO ...

strcpy (db_name, "oracle2");

EXEC SQL OPEN emp cursor; /* illegal, cursor still open */
EXEC SQL FETCH emp cursor INTO ...

This is illegal because emp_cursor is still open when you try to execute the second
OPEN statement. Separate cursors are not maintained for different connections; there
is only one emp_cursor, which must be closed before it can be reopened for another
connection. To debug the last example, simply close the cursor before reopening it, as
follows:

EXEC SQL CLOSE emp cursor; -- close cursor first
strcpy (db_name, "oracle2");

EXEC SQL OPEN emp _cursor;

EXEC SQL FETCH emp cursor INTO ...

3.2.4.1.4 Dynamic SQL

ORACLE

Dynamic SQL statements are similar to cursor control statements in that some never
use the AT clause.

For dynamic SQL Method 1, you must use the AT clause if you want to execute the
statement at a nondefault connection. An example follows:

EXEC SQL AT :db name EXECUTE IMMEDIATE :sql stmt;

3-8

Chapter 3
Advanced Connection Options

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT
statement if you want to execute the statement at a nondefault connection. All other dynamic
SQL statements such as PREPARE, DESCRIBE, OPEN, FETCH, and CLOSE never use the
AT clause. The next example shows Method 2:

EXEC SQL AT :db name DECLARE sql stmt STATEMENT;
EXEC SQL PREPARE sql stmt FROM :sgl string;
EXEC SQL EXECUTE sql stmt;

The following example shows Method 3:

EXEC SQL AT :db name DECLARE sgl stmt STATEMENT;
EXEC SQL PREPARE sgl stmt FROM :sql string;

EXEC SQL DECLARE emp cursor CURSOR FOR sql stmt;
EXEC SQL OPEN emp cursor ...

EXEC SQL FETCH emp cursor INTO ...

EXEC SQL CLOSE emp cursor;

3.2.4.2 Multiple Explicit Connections

ORACLE

You can use the AT db_name clause for multiple explicit connections, just as you can for a
single explicit connection. In the following example, you connect to two nondefault databases
concurrently:

/* declare needed host variables */

char username[10] = "scott";
char password[10] = "tiger";
char db stringl[20] = "NYNON1";
char db string2[20] = "CHINON";

/* give each database connection a unique name */

EXEC SQL DECLARE DB NAME1 DATABASE;

EXEC SQL DECLARE DB NAME2 DATABASE;

/* connect to the two nondefault databases */

EXEC SQL CONNECT :username IDENTIFIED BY :password
AT DB NAME1l USING :db stringl;

EXEC SQL CONNECT :username IDENTIFIED BY :password
AT DB NAME2 USING :db string2;

The identifiers DB_NAME1 and DB_NAME?2 are declared and then used to name the default
databases at the two nondefault nodes so that later SQL statements can refer to the
databases by name.

Alternatively, you can use a host variable in the AT clause, as the following example shows:

/* declare needed host variables */

char username[10] = "scott";

char password([10] = "tiger";

char db name([20];

char db_string[20];

int n_defs = 3; /* number of connections to make */

for (1 = 0; 1 < n defs; i++)
{
/* get next database name and OracleNet string */
printf ("Database name: ");
gets(db_name) ;
printf ("OracleNet) string: ");
gets(db_string);
/* do the connect */
EXEC SQL CONNECT :username IDENTIFIED BY :password

3-9

Chapter 3
Advanced Connection Options

AT :db name USING :db string;
}

You can also use this method to make multiple connections to the same database, as
the following example shows:

strcpy (db_string, "NYNON");
for (1 = 0; 1 < ndefs; 1i++)
{
/* connect to the nondefault database */
printf ("Database name: ");
gets(db_name) ;
EXEC SQL CONNECT :username IDENTIFIED BY :password
AT :db name USING :db_string;

You must use different database names for the connections, even though they use the
same OracleNet string. However, you can connect twice to the same database using
just one database name because that name identifies both the default and nondefault
databases.

3.2.4.3 Ensuring Data Integrity

Your application program must ensure the integrity of transactions that manipulate
data at two or more remote databases. That is, the program must commit or roll back
all SQL statements in the transactions. This might be impossible if the network fails or
one of the systems crashes.

For example, suppose you are working with two accounting databases. You debit an
account on one database and credit an account on the other database, then issue a
COMMIT at each database. It is up to your program to ensure that both transactions
are committed or rolled back.

3.2.5 Implicit Connections

Implicit connections are supported through the Oracle distributed query facility, which
does not require explicit connections, but only supports the SELECT statement. A
distributed query allows a single SELECT statement to access data on one or more
nondefault databases.

The distributed query facility depends on database links, which assign a name to a
CONNECT statement rather than to the connection itself. At run time, the embedded
SELECT statement is executed by the specified Oracle Server, which implicitly
connects to the nondefault database(s) to get the required data.

3.2.5.1 Single Implicit Connections

ORACLE

In the next example, you connect to a single nondefault database. First, your program
executes the following statement to define a database link (database links are usually
established interactively by the DBA or user):

EXEC SQL CREATE DATABASE LINK db link
CONNECT TO username IDENTIFIED BY password
USING 'NYNON';

3-10

Chapter 3
Definitions of Transactions Terms

Then, the program can query the nondefault EMP table using the database link, as follows:

EXEC SQL SELECT ENAME, JOB INTO :emp name, :job title
FROM emp@db_link
WHERE DEPTNO = :dept number;

The database link is not related to the database name used in the AT clause of an embedded
SQL statement. It simply tells Oracle where the nondefault database is located, the path to it,
and what Oracle username and password to use. The database link is stored in the data
dictionary until it is explicitly dropped.

In our example, the default Oracle Server logs on to the nondefault database through Oracle
Net using the database link db_link. The query is submitted to the default Server, but is
"forwarded" to the nondefault database for execution.

To make referencing the database link easier, you can interactively create a synonym as
follows:

EXEC SQL CREATE SYNONYM emp FOR emp@db link;

Then, your program can query the nondefault EMP table, as follows:

EXEC SQL SELECT ENAME, JOB INTO :emp name, :job title
FROM emp
WHERE DEPTNO = :dept number;

This provides location transparency for emp.

3.2.5.2 Multiple Implicit Connections

In the following example, you connect to two nondefault databases concurrently. First, you
execute the following sequence of statements to define two database links and create two
synonyms:

EXEC SQL CREATE DATABASE LINK db_linkl
CONNECT TO usernamel IDENTIFIED BY passwordl
USING 'NYNON';
EXEC SQL CREATE DATABASE LINK db_linkZ
CONNECT TO username? IDENTIFIED BY password2
USING 'CHINON';
EXEC SQL CREATE SYNONYM emp FOR emp@db linkl;
EXEC SQL CREATE SYNONYM dept FOR dept@db_linkZ;

Then, your program can query the nondefault EMP and DEPT tables, as follows:

EXEC SQL SELECT ENAME, JOB, SAL, LOC
FROM emp, dept
WHERE emp.DEPTNO = dept.DEPTNO AND DEPTNO = :dept number;

Oracle executes the query by performing a join between the nondefault EMP table at
db_link1 and the nondefault DEPT table at db_link2.

3.3 Definitions of Transactions Terms

ORACLE

Before delving into the subject of transactions, you should know the terms defined in this
section.

The jobs or tasks that Oracle manages are called sessions. A user session is invoked when
you run an application program or a tool such as SQL*Forms, and connect to the database.

3-11

Chapter 3
How Data Integrity Is Ensured

Oracle allows user sessions to work simultaneously and share computer resources. To
do this, Oracle must control concurrency, the accessing of the same data by many
users. Without adequate concurrency controls, there might be a loss of data integrity.
That is, changes to data or structures might be made in the wrong order.

Oracle uses locks (sometimes called enqueues) to control concurrent access to data.
A lock gives you temporary ownership of a database resource such as a table or row
of data. Thus, data cannot be changed by other users until you finish with it.

You need never explicitly lock a resource, because default locking mechanisms protect
Oracle data and structures. However, you can request data locks on tables or rows
when it is to your advantage to override default locking. You can choose from several
modes of locking such as row share and exclusive.

A deadlock can occur when two or more users try to access the same database
object. For example, two users updating the same table might wait if each tries to
update a row currently locked by the other. Because each user is waiting for resources
held by another user, neither can continue until Oracle breaks the deadlock. Oracle
signals an error to the participating transaction that had completed the least amount of
work, and the "deadlock detected while waiting for resource” Oracle error code is
returned to sqlcode in the SQLCA.

When a table is being queried by one user and updated by another at the same time,
Oracle generates a read-consistent view of the table's data for the query. That is, once
a query begins and as it proceeds, the data read by the query does not change. As
update activity continues, Oracle takes snapshots of the table's data and records
changes in a rollback segment. Oracle uses information in the rollback segment to
build read-consistent query results and to undo changes if necessary.

3.4 How Data Integrity Is Ensured

ORACLE

Oracle is transaction oriented. That is, Oracle uses transactions to ensure data
integrity. A transaction is a series of one or more logically related SQL statements you
define to accomplish some task. Oracle treats the series of SQL statements as a unit
so that all the changes brought about by the statements are either committed (made
permanent) or rolled back (undone) at the same time. If your application program fails
in the middle of a transaction, the database is automatically restored to its former (pre-
transaction) state.

The coming sections show you how to define and control transactions. Specifically,
you learn how to:

» Connect to the database.

e Make concurrent connections.

* Begin and end transactions.

* Use the COMMIT statement to make transactions permanent.

* Use the SAVEPOINT statement with the ROLLBACK TO statement to undo parts
of transactions.

* Use the ROLLBACK statement to undo whole transactions.
» Specify the RELEASE option to free resources and log off the database.
* Use the SET TRANSACTION statement to set read-only transactions.

3-12

Chapter 3
How to Begin and End Transactions

* Use the FOR UPDATE clause or LOCK TABLE statement to override default locking.

For details about the SQL statements discussed in this chapter, see Oracle Database SQL
Language Reference.

3.5 How to Begin and End Transactions

3.6 Using

ORACLE

You begin a transaction with the first executable SQL statement (other than CONNECT) in
your program. When one transaction ends, the next executable SQL statement automatically
begins another transaction. Thus, every executable statement is part of a transaction.
Because they cannot be rolled back and need not be committed, declarative SQL statements
are not considered part of a transaction.

You end a transaction in one of the following ways:

e Code a COMMIT or ROLLBACK statement, with or without the RELEASE option. This
explicitly makes permanent or undoes changes to the database.

e Code a data definition statement (ALTER, CREATE, or GRANT, for example), which
issues an automatic COMMIT before and after executing. This implicitly makes
permanent changes to the database.

A transaction also ends when there is a system failure or your user session stops
unexpectedly because of software problems, hardware problems, or a forced interrupt.
Oracle rolls back the transaction.

If your program fails in the middle of a transaction, Oracle detects the error and rolls back the
transaction. If your operating system fails, Oracle restores the database to its former (pre-
transaction) state.

the COMMIT Statement

If you do not subdivide your program with the COMMIT or ROLLBACK statement, Oracle
treats the whole program as a single transaction (unless the program contains data definition
statements, which issue automatic COMMITS).

You use the COMMIT statement to make changes to the database permanent. Until changes
are COMMITted, other users cannot access the changed data; they see it as it was before
your transaction began. Specifically, the COMMIT statement

e Makes permanent all changes made to the database during the current transaction
» Makes these changes visible to other users

e Erases all savepoints (see the next section)

* Releases all row and table locks, but not parse locks

» Closes cursors referenced in a CURRENT OF clause or, when MODE=ANSI, closes all
explicit cursors for the connection specified in the COMMIT statement

* Ends the transaction

The COMMIT statement has no effect on the values of host variables or on the flow of control
in your program.

When MODE=0ORACLE, explicit cursors that are not referenced in a CURRENT OF clause
remain open across COMMITs. This can boost performance.

3-13

Chapter 3
Using the COMMIT Statement

Because they are part of normal processing, COMMIT statements should be placed
inline, on the main path through your program. Before your program terminates, it
must explicity COMMIT pending changes. Otherwise, Oracle rolls them back. In the
following example, you commit your transaction and disconnect from Oracle:

EXEC SQL COMMIT WORK RELEASE;

The optional keyword WORK provides ANSI compatibility. The RELEASE option frees
all Oracle resources (locks and cursors) held by your program and logs off the
database.

You need not follow a data definition statement with a COMMIT statement because
data definition statements issue an automatic COMMIT before and after executing. So,
whether they succeed or falil, the prior transaction is committed.

Related Topics
* Fetch Across COMMITs

3.6.1 WITH HOLD Clause in DECLARE CURSOR Statements

Any cursor that has been declared with the clause WITH HOLD after the word
CURSOR remains open after a COMMIT. The following example shows how to use
this clause:

EXEC SQL

DECLARE Cl1 CURSOR WITH HOLD

FOR SELECT ENAME FROM EMP

WHERE EMPNO BETWEEN 7600 AND 7700
END-EXEC.

The cursor must not be declared for UPDATE. The WITH HOLD clause is used in DB2
to override the default, which is to close all cursors on commit. Pro*COBOL provides
this clause in order to ease migrations of applications from DB2 to Oracle. When
MODE=ANSI, Oracle uses the DB2 default, but all host variables must be declared in
a Declare Section. To avoid having a Declare Section, use the precompiler option
CLOSE_ON_COMMIT described next.

Related Topics
¢ DECLARE CURSOR (Embedded SQL Directive)

3.6.2 CLOSE_ON_COMMIT Precompiler Option

The precompiler option CLOSE_ON_COMMIT is available to override the default
behavior of MODE=ANSI (if you specify MODE=ANSI on the command line, any
cursors not declared with the WITH HOLD clause are closed on commit):

CLOSE_ON COMMIT = {YES | NO}

The default is NO. This option must be entered only on the command line or in a
configuration file.

ORACLE 3-14

Chapter 3
Using the SAVEPOINT Statement

< Note:

Use this option carefully; applications may be slowed if cursors are opened and
closed many times because of the need to re-parse for each OPEN statement.

Related Topics

e CLOSE_ON_COMMIT
Related Topics

e Macro and Micro Options
e CLOSE_ON_COMMIT

3.7 Using the SAVEPOQINT Statement

ORACLE

You use the SAVEPOINT statement to mark and name the current point in the processing of
a transaction. Each marked point is called a savepoint. For example, the following statement
marks a savepoint named start_delete:

EXEC SQL SAVEPOINT start delete;

Savepoints let you divide long transactions, giving you more control over complex
procedures. For example, if a transaction performs several functions, you can mark a
savepoint before each function. Then, if a function fails, you can easily restore the Oracle
data to its former state, recover, then reexecute the function.

To undo part of a transaction, you use savepoints with the ROLLBACK statement and its TO
SAVEPOINT clause. In the following example, you access the table MAIL_LIST to insert new
listings, update old listings, and delete (a few) inactive listings. After the delete, you check the
third element of sqglerrd in the SQLCA for the number of rows deleted. If the number is
unexpectedly large, you roll back to the savepoint start_delete, undoing just the delete.

for (;;)
{
printf ("Customer number? ");
gets (temp) ;
cust number = atoi (temp);
printf ("Customer name? ");
gets (cust name);
EXEC SQL INSERT INTO mail list (custno, cname, stat)
VALUES (:cust number, :cust name, 'ACTIVE');

}

for (;;)

{
printf ("Customer number? ");
gets (temp) ;
cust number = atoi (temp);
printf ("New status? ");
gets(new_status);
EXEC SQL UPDATE maililist

SET stat = :new status
WHERE custno = :cust number;

3-15

Chapter 3
The ROLLBACK Statement

}

/* mark savepoint */
EXEC SQL SAVEPOINT start delete;

EXEC SQL DELETE FROM mail_list
WHERE stat = 'INACTIVE';
if (sqlca.sqlerrd[2] < 25) /* check number of rows deleted */
printf ("Number of rows deleted is %d\n", sqlca.sqlerrd[2]);
else
{
printf ("Undoing deletion of %d rows\n", sqglca.sqglerrd[2]);
EXEC SQL WHENEVER SQLERROR GOTO sql_error;
EXEC SQL ROLLBACK TO SAVEPOINT Start_delete;
}

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL COMMIT WORK RELEASE;

exit (0);

sql error:

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf ("Processing error\n");

exit (1);

Rolling back to a savepoint erases any savepoints marked after that savepoint. The
savepoint to which you roll back, however, is not erased. For example, if you mark five
savepoints, then roll back to the third, only the fourth and fifth are erased.

If you give two savepoints the same name, the earlier savepoint is erased. A COMMIT
or ROLLBACK statement erases all savepoints.

Related Topics
e About Using the WHENEVER Directive

3.8 The ROLLBACK Statement

ORACLE

You use the ROLLBACK statement to undo pending changes made to the database.
For example, if you make a mistake, such as deleting the wrong row from a table, you
can use ROLLBACK to restore the original data. The TO SAVEPOINT clause lets you
roll back to an intermediate statement in the current transaction, so you do not have to
undo all your changes.

If you start a transaction that does not complete (a SQL statement might not execute
successfully, for example), ROLLBACK lets you return to the starting point, so that the
database is not left in an inconsistent state. Specifically, the ROLLBACK statement

* Undoes all changes made to the database during the current transaction
» Erases all savepoints

* Ends the transaction

» Releases all row and table locks, but not parse locks

* Closes cursors referenced in a CURRENT OF clause or, when MODE=ANSI,
closes all explicit cursors

The ROLLBACK statement has no effect on the values of host variables or on the flow
of control in your program.

3-16

ORACLE

Chapter 3
The ROLLBACK Statement

When MODE=ORACLE, explicit cursors not referenced in a CURRENT OF clause remain
open across ROLLBACKS.

Specifically, the ROLLBACK TO SAVEPOINT statement

e Undoes changes made to the database since the specified savepoint was marked
e Erases all savepoints marked after the specified savepoint

* Releases all row and table locks acquired since the specified savepoint was marked

Note:

You cannot specify the RELEASE option in a ROLLBACK TO SAVEPOINT
statement.

Because they are part of exception processing, ROLLBACK statements should be placed in
error handling routines, off the main path through your program. In the following example, you
roll back your transaction and disconnect from Oracle:

EXEC SQL ROLLBACK WORK RELEASE;

The optional keyword WORK provides ANSI compatibility. The RELEASE option frees alll
resources held by your program and disconnects from the database.

If a WHENEVER SQLERROR GOTO statement branches to an error handling routine that
includes a ROLLBACK statement, your program might enter an infinite loop if the ROLLBACK
fails with an error. You can avoid this by coding WHENEVER SQLERROR CONTINUE before
the ROLLBACK statement, as shown in the following example:

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

for (;;)
{
printf ("Employee number? ");
gets (temp) ;
emp number = atoi (temp);
printf ("Employee name? ");
gets (emp name) ;
EXEC SQL INSERT INTO emp (empno, ename)
VALUES (:emp number, :emp name);

}

sql error:

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;

printf ("Processing error\n");
exit (1),

Oracle automatically rolls back transactions if your program terminates abnormally.

Related Topics
* The RELEASE Option

3-17

Chapter 3
The RELEASE Option

3.8.1 Statement-Level Rollbacks

Before executing any SQL statement, Oracle marks an implicit savepoint (not available
to you). Then, if the statement fails, Oracle automatically rolls it back and returns the
applicable error code to sqlcode in the SQLCA. For example, if an INSERT statement
causes an error by trying to insert a duplicate value in a unique index, the statement is
rolled back.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals an
error to one of the participating transactions and rolls back the current statement in
that transaction.

Only work started by the failed SQL statement is lost; work done before that statement
in the current transaction is saved. Thus, if a data definition statement fails, the
automatic commit that precedes it is not undone.

Before executing a SQL statement, Oracle must parse it, that is, examine it to make
sure it follows syntax rules and refers to valid database objects. Errors detected while
executing a SQL statement cause a rollback, but errors detected while parsing the
statement do not.

3.9 The RELEASE Option

Oracle automatically rolls back changes if your program terminates abnormally.
Abnormal termination occurs when your program does not explicitly commit or roll
back work and disconnect from Oracle using the RELEASE option. Normal termination
occurs when your program runs its course, closes open cursors, explicitly commits or
rolls back work, disconnects from Oracle, and returns control to the user.

Your program will exit gracefully if the last SQL statement it executes is either

EXEC SQL COMMIT WORK RELEASE;

or

EXEC SQL ROLLBACK WORK RELEASE;

where the token WORK is optional. Otherwise, locks and cursors acquired by your
user session are held after program termination until Oracle recognizes that the user
session is no longer active. This might cause other users in a multiuser environment to
wait longer than necessary for the locked resources.

3.10 The SET TRANSACTION Statement

ORACLE

You use the SET TRANSACTION statement to begin a read-only transaction. Because
they allow "repeatable reads," read-only transactions are useful for running multiple
gueries against one or more tables while other users update the same tables. An
example of the SET TRANSACTION statement follows:

EXEC SQL SET TRANSACTION READ ONLY;

3-18

Chapter 3
Override Default Locking

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can appear only once in a transaction. The READ ONLY parameter is
required. Its use does not affect other transactions.

Only the SELECT, COMMIT, and ROLLBACK statements are allowed in a read-only
transaction. For example, including an INSERT, DELETE, or SELECT FOR UPDATE OF
statement causes an error.

During a read-only transaction, all queries refer to the same snapshot of the database,
providing a multitable, multiquery, read-consistent view. Other users can continue to query or
update data as usual.

A COMMIT, ROLLBACK, or data definition statement ends a read-only transaction. (Recall
that data definition statements issue an implicit COMMIT.)

In the following example, as a store manager, you check sales activity for the day, the past
week, and the past month by using a read-only transaction to generate a summary report.
The report is unaffected by other users updating the database during the transaction.

EXEC SQL SET TRANSACTION READ ONLY;

EXEC SQL SELECT sum(saleamt) INTO :daily FROM sales
WHERE saledate = SYSDATE;

EXEC SQL SELECT sum(saleamt) INTO :weekly FROM sales
WHERE saledate > SYSDATE - 7;

EXEC SQL SELECT sum(saleamt) INTO :monthly FROM sales
WHERE saledate > SYSDATE - 30;

EXEC SQL COMMIT WORK;
/* simply ends the transaction since there are no changes

to make permanent */
/* format and print report */

3.11 Override Default Locking

By default, Oracle automatically locks many data structures for you. However, you can
request specific data locks on rows or tables when it is to your advantage to override default
locking. Explicit locking lets you share or deny access to a table for the duration of a
transaction or ensure multitable and multiquery read consistency.

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows of a table
to make sure they do not change before an UPDATE or DELETE is executed. However,
Oracle automatically obtains row-level locks at UPDATE or DELETE time. So, use the FOR
UPDATE OF clause only if you want to lock the rows before the UPDATE or DELETE.

You can explicitly lock entire tables using the LOCK TABLE statement.

3.11.1 Using FOR UPDATE OF

ORACLE

When you DECLARE a cursor that is referenced in the CURRENT OF clause of an UPDATE
or DELETE statement, you use the FOR UPDATE OF clause to acquire exclusive row locks.
SELECT FOR UPDATE OF identifies the rows that will be updated or deleted, then locks
each row in the active set. This is useful, for example, when you want to base an update on
the existing values in a row. You must make sure the row is not changed by another user
before your update.

The FOR UPDATE OF clause is optional. For example, instead of coding

3-19

Chapter 3
Override Default Locking

EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, job, sal FROM emp WHERE deptno = 20
FOR UPDATE OF sal;
you can drop the FOR UPDATE OF clause and simply code
EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, job, sal FROM emp WHERE deptno = 20;

The CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if
necessary. You use the CURRENT OF clause to refer to the latest row FETCHed from
a cursor.

Related Topics
¢ The CURRENT OF Clause

3.11.1.1 Restrictions

If you use the FOR UPDATE OF clause, you cannot reference multiple tables.

An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row
locks. All rows are locked at the OPEN, not as they are FETCHed. Row locks are
released when you COMMIT or ROLLBACK (except when you ROLLBACK to a
savepoint). Therefore, you cannot FETCH from a FOR UPDATE cursor after a
COMMIT.

3.11.2 Using LOCK TABLE

ORACLE

You use the LOCK TABLE statement to lock one or more tables in a specified lock
mode. For example, the statement in the following section, locks the EMP table in row
share mode. Row share locks allow concurrent access to a table; they prevent other
users from locking the entire table for exclusive use.

EXEC SQL LOCK TABLE EMP IN ROW SHARE MODE NOWAIT;

The lock mode determines what other locks can be placed on the table. For example,
many users can acquire row share locks on a table at the same time, but only one
user at a time can acquire an exclusive lock. While one user has an exclusive lock on
a table, no other users can INSERT, UPDATE, or DELETE rows in that table.

The optional keyword NOWAIT tells Oracle not to wait for a table if it has been locked
by another user. Control is immediately returned to your program, so it can do other
work before trying again to acquire the lock. (You can check sqglcode in the SQLCA to
see if the LOCK TABLE failed.) If you omit NOWAIT, Oracle waits until the table is
available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never
acquires a table lock. So, a query never blocks another query or an update, and an
update never blocks a query. Only if two different transactions try to update the same
row will one transaction wait for the other to complete.

Any LOCK TABLE statement implicitly closes all cursors.
Table locks are released when your transaction issues a COMMIT or ROLLBACK.

Related Topics
* Lock Modes

3-20

Chapter 3
Fetch Across COMMITs

3.12 Fetch Across COMMITs

If you want to intermix COMMITs and FETCHes, do not use the CURRENT OF clause.
Instead, SELECT the ROWID of each row, then use that value to identify the current row
during the update or delete. An example follows:

EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, sal, ROWID FROM emp WHERE job = 'CLERK';

EXEC SQL OPEN emp cursor;
EXEC SQL WHENEVER NOT FOUND GOTO ...
for (i7)
{
EXEC SQL FETCH emp cursor INTO :emp name, :salary, :row id;

EXEC SQL UPDATE emp SET sal = :new salary

WHERE ROWID = :row id;
EXEC SQL COMMIT;

}

Note, however, that the FETCHed rows are not locked. So, you might get inconsistent results
if another user modifies a row after you read it but before you update or delete it.

3.13 Distributed Transactions Handling

ORACLE

A distributed database is a single logical database comprising multiple physical databases at
different nodes. A distributed statement is any SQL statement that accesses a remote node
using a database link. A distributed transaction includes at least one distributed statement
that updates data at multiple nodes of a distributed database. If the update affects only one
node, the transaction is non-distributed.

When you issue a COMMIT, changes to each database affected by the distributed transaction
are made permanent. If instead you issue a ROLLBACK, all the changes are undone. However,
if a network or machine fails during the commit or rollback, the state of the distributed
transaction might be unknown or in doubt. In such cases, if you have FORCE TRANSACTION
system privileges, you can manually commit or roll back the transaction at your local
database by using the FORCE clause. The transaction must be identified by a quoted literal
containing the transaction ID, which can be found in the data dictionary view

DBA 2PC_PENDING. Some examples follow:

EXEC SQL COMMIT FORCE '22.31.83';

EXEC SQL ROLLBACK FORCE '25.33.86';

FORCE commits or rolls back only the specified transaction and does not affect your current
transaction. You cannot manually roll back in-doubt transactions to a savepoint.

The COMMENT clause in the COMMIT statement lets you specify a Comment to be associated
with a distributed transaction. If ever the transaction is in doubt, Oracle stores the text
specified by COMMENT in the data dictionary view DBA 2PC_PENDING along with the transaction
ID. The text must be a quoted literal not exceeding 50 characters in length, which means that
the maximum length for a COMMIT clause in a COMMIT statement used in embedded SQL is 50
characters. An example follows:

3-21

Chapter 3
Guidelines

EXEC SQL COMMIT COMMENT 'In-doubt trans; notify Order Entry';

Note:

The COMMENT clause will be deprecated in a future release. Oracle
recommends that you use transaction haming instead.

Related Topics

e Transactions

3.14 Guidelines

The following guidelines will help you avoid some common problems.

3.14.1 Designing Applications

When designing your application, group logically related actions together in one
transaction. A well-designed transaction includes all the steps necessary to
accomplish a given task—no more and no less.

Data in the tables you reference must be left in a consistent state. So, the SQL
statements in a transaction should change the data in a consistent way. For example,
a transfer of funds between two bank accounts should include a debit to one account
and a credit to another. Both updates should either succeed or fail together. An
unrelated update, such as a new deposit to one account, should not be included in the
transaction.

3.14.2 Obtaining Locks

If your application programs include SQL locking statements, make sure the Oracle
users requesting locks have the privileges needed to obtain the locks. Your DBA can
lock any table. Other users can lock tables they own or tables for which they have a
privilege, such as ALTER, SELECT, INSERT, UPDATE, or DELETE.

3.14.3 Using PL/SQL

ORACLE

If a PL/SQL block is part of a transaction, COMMITs and ROLLBACKS inside the block
affect the whole transaction. In the following example, the ROLLBACK undoes
changes made by the UPDATE and the INSERT:

EXEC SQL INSERT INTO EMP ...
EXEC SQL EXECUTE
BEGIN
UPDATE emp ...
EXCEPTION
WHEN DUP_VAL ON INDEX THEN
ROLLBACK;

END;
END-EXEC;

3-22

Datatypes and Host Variables

This chapter provides the basic information you need to write a Pro*C/C++ program. This
chapter contains the following topics:

e Oracle Datatypes

e Host Variables

e Indicator Variables

* VARCHAR Variables
e Cursor Variables

e CONTEXT Variables
e Universal ROWIDs

* Host Structures

e Pointer Variables

e Globalization Support
* NCHAR Variables

* Handling Boolean Data

This chapter also includes several complete demonstration programs that you can study.
These programs illustrate the techniques described. They are available on-line in your demo
directory, so you can compile and run them, and modify them for your own uses.

4.1 Oracle Datatypes

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes specify
how Oracle stores column values in database tables, as well as the formats used to
represent pseudocolumn values such as NULL, SYSDATE, USER, and so on. External
datatypes specify the formats used to store values in input and output host variables.

Related Topics
* Oracle Built-in Data Types

4.1.1 Internal Data types

ORACLE

For values stored in database columns, Oracle uses the internal data types shown in
Table 4-1

Table 4-1 Oracle Internal Data types

L __|
Name Description

VARCHAR2 Variable-length character string, <= 4000 bytes.

4-1

Chapter 4
Oracle Datatypes

Table 4-1 (Cont.) Oracle Internal Data types

Name Description

NVARCHAR?2 or Variable-length single-byte or National Character string,<= 4000 bytes.

NCHAR VARYING

NUMBER Numeric value having precision and scale, represented in a base-100 format.

LONG Variable-length character string <=2**31-1 bytes.

BINARY_FLOAT 32-bit floating point number, 4 bytes.

BINARY_DOUBLE 64-bit floating point number, 8 bytes.

TIMESTAMP Year, month, and day values of date, as well as hour, minute, and second
values of time, 7 or 11 bytes.

DATE Fixed-length date + time value, 7 bytes.

INTERVAL YEAR Stores a period of time in years and months, 5 bytes.

INTERVAL DAY Stores a period of time in days, hours, minutes, and seconds, 11 bytes.

RAW Variable-length binary data, <=2000 bytes.

LONG RAW Variable-length binary data, <=2**31-1 bytes.

ROWID Binary value.

UROWID Binary value, <=4000 bytes.

CHAR Fixed-length character string, <=2000 bytes.

NCHAR Fixed-length single-byte or National Character string, <= 2000 bytes.

CLOB Character data, <= 4 Gbytes.

NCLOB National Character Set data, <= 4 Ghytes.

BLOB Binary data, <= 4 Gbytes.

BFILE External file binary data, <= 4 Gbytes.

BOOLEAN The BOOLEAN data type comprises the distinct truth values: True and False.

These internal data types can be quite different from C data types. For example, C has
no data type that is equivalent to the Oracle NUMBER data type. However, NUMBERS
can be converted between C data types such as float and double, with some
restrictions. For example, the Oracle NUMBER data type allows up to 38 decimal
digits of precision, while no current C implementations can represent double with that
degree of precision.

The Oracle NUMBER data type represents values exactly (within the precision limits),
while floating-point formats cannot represent values such as 10.0 exactly.

Use the LOB data types to store unstructured data (text, graphic images, video clips,
or sound waveforms). BFILE data is stored in an operating system file outside the
database. LOB types store locators that specify the location of the data.

ORACLE 4-2

4.1.2 External Datatypes

ORACLE

< Note:

Chapter 4
Oracle Datatypes

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new
applications developed with later releases, Oracle strongly recommends that you
use CLOB and NCLOB data types for large amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

NCHAR and NVARCHAR? are used to store multibyte character data.

You can use BOOLEAN data type to store logical values: TRUE or FALSE, in database columns.

Related Topics
e LOBs

As shown in Table 4-2, the external datatypes include all the internal datatypes plus several
datatypes that closely match C constructs. For example, the STRING external datatype refers
to a C null-terminated string.

Table 4-2 Oracle External Datatypes

Name Description

VARCHAR2 Variable-length character string, <= 65535 bytes.

NUMBER Decimal number, represented using a base-100 format.

INTEGER Signed integer.

FLOAT Real number.

STRING Null-terminated variable length character string.

VARNUM Decimal number, like NUMBER, but includes representation length
component.

LONG Fixed-length character string, up to 2**31-1 bytes.

VARCHAR Variable-length character string, <= 65533 bytes.

ROWID Binary value, external length is system dependent.

DATE Fixed-length date/time value, 7 bytes.

VARRAW Variable-length binary data, <= 65533 bytes.

RAW Fixed-length binary data, <= 65535 bytes.

LONG RAW Fixed-length binary data, <= 2**31-1 bytes.

UNSIGNED Unsigned integer.

LONG VARCHAR Variable-length character string, <= 2**31-5 bytes.

LONG VARRAW Variable-length binary data, <= 2**31-5 bytes.

CHAR Fixed-length character string, <= 65535 bytes.

4-3

Chapter 4
Oracle Datatypes

Table 4-2 (Cont.) Oracle External Datatypes

Name Description
CHARZ Fixed-length, null-terminated character string, <= 65534 bytes.
CHARF Used in TYPE or VAR statements to force CHAR to default to CHAR, instead
of VARCHAR2 or CHARZ.
BOOLEAN Boolean value (True, False, or Unknown)
¢ Note:

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW)
were deprecated in Oracle8i Release 8.1.6. For succeeding releases, the
LONG data type was provided for backward compatibility with existing
applications. In new applications developed with later releases, Oracle
strongly recommends that you use CLOB and NCLOB data types for large
amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

Brief descriptions of the Oracle datatypes follow.

4.1.2.1 VARCHAR?2

You use the VARCHAR?2 datatype to store variable-length character strings. The
maximum length of a VARCHAR?Z value is 64K bytes.

You specify the maximum length of a VARCHAR2(n) value in bytes, not characters.
So, if a VARCHAR2(n) variable stores multibyte characters, its maximum length can
be less than n characters.

When you precompile using the option CHAR_MAP=VARCHAR2, Oracle assigns the
VARCHAR?2 datatype to all host variables that you declare as char[n] or char.

4.1.2.1.1 On Input

Oracle reads the number of bytes specified for the input host variable, strips any
trailing blanks, then stores the input value in the target database column. Be careful.
An uninitialized host variable can contain NULLs. So, always blank-pad a character
input host variable to its declared length, and do not null-terminate it.

If the input value is longer than the defined width of the database column, Oracle
generates an error. If the input value contains nothing but blanks, Oracle treats it like a
NULL.

Oracle can convert a character value to a NUMBER column value if the character
value represents a valid number. Otherwise, Oracle generates an error.

ORACLE 4-4

Chapter 4
Oracle Datatypes

4.1.2.1.2 On Output

Oracle returns the number of bytes specified for the output host variable, blank-padding if
necessary. It then assigns the output value to the target host variable. If a NULL is returned,
Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle truncates the
value before assigning it to the host variable. If there is an indicator variable associated with
the host variable, Oracle sets it to the original length of the output value.

Oracle can convert NUMBER column values to character values. The length of the character
host variable determines precision. If the host variable is too short for the number, scientific
notation is used. For example, if you SELECT the column value 123456789 into a character
host variable of length 6, Oracle returns the value '1.2E08'. If a NULL is selected explicitly, the
value in the host variable is indeterminate. The value of the indicator variable needs to be
checked for NULL-ness.

4.1.2.2 NUMBER

You use the NUMBER datatype to store fixed or floating-point numbers. You can specify
precision and scale. The maximum precision of a NUMBER value is 38. The magnitude
range is 1.0E-130 to 9.99...9E125 (38 nines followed by 88 zeroes). Scale can range from
-84 to 127.

NUMBER values are stored in a variable-length format, starting with an exponent byte and
followed by 19 mantissa bytes. The high-order bit of the exponent byte is a sign bit, which is
set for positive numbers. The low-order 7 bits represent the magnitude.

The mantissa forms a 38-digit number with each byte representing 2 of the digits in a
base-100 format. The sign of the mantissa is specified by the value of the first (left-most)
byte. If greater than 101 then the mantissa is negative and the first digit of the mantissa is
equal to the left-most byte minus 101.

On output, the host variable contains the number as represented internally by Oracle. To
accommodate the largest possible number, the output host variable must be 22 bytes long.
Only the bytes used to represent the number are returned. Oracle does not blank-pad or null-
terminate the output value. If you need to know the length of the returned value, use the
VARNUM datatype instead.

There is seldom a need to use this external datatype.

4.1.2.3 INTEGER

You use the INTEGER datatype to store numbers that have no fractional part. An integer is a
signed, 2-byte, 4-byte or 8-byte binary number. The order of the bytes in a word is system
dependent. You must specify a length for input and output host variables. On output, if the
column value is a real number, Oracle truncates any fractional part.

4.1.2.4 FLOAT

ORACLE

You use the FLOAT datatype to store numbers that have a fractional part or that exceed the
capacity of the INTEGER datatype. The number is represented using the floating-point format
of your computer and typically requires 4 or 8 bytes of storage. You must specify a length for
input and output host variables.

4-5

Chapter 4
Oracle Datatypes

Oracle can represent numbers with greater precision than most floating-point
implementations because the internal format of Oracle numbers is decimal. This can
cause a loss of precision when fetching into a FLOAT variable.

4.1.2.5 STRING

The STRING datatype is like the VARCHAR2 datatype, except that a STRING value is
always null-terminated. When you precompile using the option CHAR_MAP=STRING,
Oracle assigns the STRING datatype to all host variables that you declare as char[n]
or char.

4.1.2.5.1 On Input

Oracle uses the specified length to limit the scan for the null terminator. If a null
terminator is not found, Oracle generates an error. If you do not specify a length,
Oracle assumes the maximum length of 2000 bytes. The minimum length of a
STRING value is 2 bytes. If the first character is a null terminator and the specified
length is 2, Oracle inserts a null unless the column is defined as NOT NULL. If the
column is defined as NOT NULL, an error occurs. An all-blank value is stored intact.

4.1.2.5.2 On Output

Oracle appends a null byte to the last character returned. If the string length exceeds
the specified length, Oracle truncates the output value and appends a null byte. If a
NULL is SELECTed, Oracle returns a null byte in the first character position. If a NULL
is selected explicitly, the value in the host variable is indeterminate. The value of the
indicator variable needs to be checked for NULL-ness.

4.1.2.6 VARNUM

The VARNUM datatype is like the NUMBER datatype, except that the first byte of a
VARNUM variable stores the length of the representation.

On input, you must set the first byte of the host variable to the length of the value. On
output, the host variable contains the length followed by the number as represented
internally by Oracle. To accommodate the largest possible number, the host variable
must be 22 bytes long. After SELECTing a column value into a VARNUM host
variable, you can check the first byte to get the length of the value.

Normally, there is little reason to use this datatype.

4.1.2.7 LONG

You use the LONG datatype to store fixed-length character strings.

The LONG datatype is like the VARCHAR?2 datatype, except that the maximum length
of a LONG value is 2147483647 bytes or two gigabytes.

4.1.2.8 VARCHAR

ORACLE

You use the VARCHAR datatype to store variable-length character strings. VARCHAR
variables have a 2-byte length field followed by a <=65533-byte string field. However,
for VARCHAR array elements, the maximum length of the string field is 65530 bytes.
When you specify the length of a VARCHAR variable, be sure to include 2 bytes for
the length field. For longer strings, use the LONG VARCHAR datatype. If a NULL is

4-6

Chapter 4
Oracle Datatypes

selected explicitly, the value in the host variable is indeterminate. The value of the indicator
variable needs to be checked for NULL-ness.

4.1.2.9 ROWID

Rows in Index-Organized tables do not have permanent physical addresses. The logical
ROWID is accessed using the same syntax as the physical ROWID. For this reason, the
physical ROWID includes a data object number (schema objects in the same segment).

To support both logical and physical ROWIDs (as well as ROWIDs of non-Oracle tables) the
universal ROWID was defined.

You can use character host variables to store rowids in a readable format. When you
SELECT or FETCH a rowid into a character host variable, Oracle converts the binary value to
an 18-byte character string and returns it in the format

BBBBBBBB.RRRR. FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the first
row is 0), and FFFF is the database file. These numbers are hexadecimal. For example, the
rowid

0000000E.000A.0007
points to the 1lth row in the 15th block in the 7th database file.

Typically, you FETCH a rowid into a character host variable, then compare the host variable
to the ROWID pseudocolumn in the WHERE clause of an UPDATE or DELETE statement.
That way, you can identify the latest row fetched by a cursor.

" Note:

If you need full portability or your application communicates with a non-Oracle
database using Oracle Open Gateway technology, specify a maximum length of
256 (not 18) bytes when declaring the host variable. Though you can assume
nothing about the host variable's contents, the host variable will behave normally in
SQL statements.

Related Topics
* Universal ROWIDs
* About Mimicking CURRENT OF

4.1.2.10 DATE

ORACLE

You use the DATE datatype to store dates and times in 7-byte, fixed-length fields. As
Table 4-3 shows, the century, year, month, day, hour (in 24-hour format), minute, and second
are stored in that order from left to right.

Table 4-3 DATE Format

. ___|
Date Datatype Century Year Month Day Hour Minutes Second

Byte 1 2 3 4 5 6 7

4-7

Chapter 4
Oracle Datatypes

Table 4-3 (Cont.) DATE Format

Date Datatype Century Year Month Day Hour Minutes Second
Meaning Century Year Month Day Hour Minute Second
Example 119 194 10 17 14 24 13
17-OCT-1994 at 1:23:12

PM

The century and year bytes are in excess-100 notation. The hour, minute, and second
are in excess-1 notation. Dates before the Common Era (B.C.E.) are less than 100.
The epoch is January 1, 4712 B.C.E. For this date, the century byte is 53 and the year
byte is 88. The hour byte ranges from 1 to 24. The minute and second bytes range
from 1 to 60. The time defaults to midnight (1, 1, 1).

Normally, there is little reason to use the DATE datatype.

4.1.2.11 RAW

You use the RAW datatype to store binary data or byte strings. The maximum length of
a RAW value is 65535 bytes.

RAW data is like CHARACTER data, except that Oracle assumes nothing about the
meaning of RAW data and does no character set conversions when you transmit RAW
data from one system to another.

4.1.2.12 VARRAW

You use the VARRAW datatype to store variable-length binary data or byte strings.
The VARRAW datatype is like the RAW datatype, except that VARRAW variables have
a 2-byte length field followed by a data field <= 65533 bytes in length. For longer
strings, use the LONG VARRAW datatype.

When you specify the length of a VARRAW variable, be sure to include 2 bytes for the
length field. The first two bytes of the variable must be interpretable as an integer.

To get the length of a VARRAW variable, simply refer to its length field.

4.1.2.13 LONG RAW

You use the LONG RAW datatype to store binary data or byte strings. The maximum
length of a LONG RAW value is 2147483647 bytes or two gigabytes.

LONG RAW data is like LONG data, except that Oracle assumes nothing about the
meaning of LONG RAW data and does no character set conversions when you
transmit LONG RAW data from one system to another.

4.1.2.14 UNSIGNED

You use the UNSIGNED datatype to store unsigned integers. An unsigned integer is a
binary number of 2 or 4 bytes. The order of the bytes in a word is system dependent.
You must specify a length for input and output host variables. On output, if the column
value is a floating-point number, Oracle truncates the fractional part.

ORACLE 4-8

Chapter 4
Oracle Datatypes

4.1.2.15 LONG VARCHAR

You use the LONG VARCHAR datatype to store variable-length character strings. LONG
VARCHAR variables have a 4-byte length field followed by a string field. The maximum length
of the string field is 2147483643 (2**31 - 5) bytes. When you specify the length of a LONG
VARCHAR for use in a VAR or TYPE statement, do not include the 4 length bytes.

4.1.2.16 LONG VARRAW

You use the LONG VARRAW datatype to store variable-length binary data or byte strings.
LONG VARRAW variables have a 4-byte length field followed by a data field. The maximum
length of the data field is 2147483643 bytes. When you specify the length of a LONG
VARRAW for use in a VAR or TYPE statement, do not include the 4 length bytes.

4.1.2.17 CHAR

You use the CHAR datatype to store fixed-length character strings. The maximum length of a
CHAR value is 65535 bytes.

4.1.2.17.1 On Input

Oracle reads the number of bytes specified for the input host variable, does not strip trailing
blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle generates
an error. If the input value is all-blank, Oracle treats it like a character value.

4.1.2.17.2 On Output

Oracle returns the number of bytes specified for the output host variable, doing blank-padding
if necessary, then assigns the output value to the target host variable. If a NULL is returned,
Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle truncates the
value before assigning it to the host variable. If an indicator variable is available, Oracle sets
it to the original length of the output value. If a NULL is selected explicitly, the value in the
host variable is indeterminate. The value of the indicator variable needs to be checked for
NULL-ness.

4.1.2.18 CHARZ

When DBMS=V7 or V8, Oracle, by default, assigns the CHARZ datatype to all character host
variables in a Pro*C/C++ program. The CHARZ datatype indicates fixed-length, null-
terminated character strings. The maximum length of a CHARZ value is 65534 bytes.

4.1.2.18.1 On Input

The CHARZ and STRING datatypes work the same way. You must null-terminate the input
value. The null terminator serves only to delimit the string; it does not become part of the
stored data.

ORACLE 4-9

Chapter 4
Oracle Datatypes

4.1.2.18.2 On Output

CHARZ host variables are blank-padded if necessary, then null-terminated. The output
value is always null-terminated, even if data must be truncated. If a NULL is selected
explicitly, the value in the host variable is indeterminate. The value of the indicator
variable needs to be checked for NULL-ness.

4.1.2.19 CHARF

The CHARF datatype is used in EXEC SQL TYPE and EXEC SQL VAR statements.
When you precompile with the DBMS option set to V7 or V8, specifying the external
datatype CHAR in a TYPE or VAR statement equivalences the C type or variable to
the fixed-length, null-terminated datatype CHARZ.

However, you might not want either of these type equivalences, but rather an
equivalence to the fixed-length external type CHAR. If you use the external type
CHAREF, the C type or variable is always equivalenced to the fixed-length ANSI
datatype CHAR, regardless of the DBMS value. CHARF never allows the C type to be
equivalenced to VARCHAR2 or CHARZ. Alternatively, when you set the option
CHAR_MAP=CHAREF, all host variables declared as char[n] or char are equivalenced
to a CHAR string. If a NULL is selected explicitly, the value in the host variable is
indeterminate. The value of the indicator variable needs to be checked for NULL-ness.

4.1.2.20 BOOLEAN

Applications can insert TRUE or FALSE values in BOOLEAN type column while inserting
data in the database. The values can be:

* "TRUE" or "true"
* "FALSE" or "false"

Any non-zero integer represents TRUE and the integer zero (0) represents FALSE.

Unless prohibited by a NOT NULL constraint, the boolean data type also supports the
truth value UNKNOWN as the null value.

4.1.3 Additional External Datatypes

This section describes additional external datatypes.

4.1.3.1 Datetime and Interval Datatypes

The datetime and interval datatypes are briefly summarized here.
Related Topics

e Oracle Database SQL Language Reference

4.1.3.2 ANSI DATE

The ANST DATE is based on the DATE, but contains no time portion. (Therefore, it also
has no time zone.) ANST DATE follows the ANSI specification for the DATE datatype.
When assigning an ANST DATE to a DATE or a timestamp datatype, the time portion of

ORACLE 4-10

Chapter 4
Oracle Datatypes

the Oracle DATE and the timestamp are set to zero. When assigning a DATE or a timestamp to
an ANSI DATE, the time portion is ignored.

You are encouraged to instead use the TIMESTAMP datatype which contains both date and
time.

4.1.3.3 TIMESTAMP

The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year, month, and
day of the DATE datatype, plus the hour, minute, and second values. It has no time zone. The
TIMESTAMP datatype has the form:

TIMESTAMP (fractional seconds precision)

where fractional seconds precision (which is optional) specifies the number of digits in
the fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The
default is 6.

4.1.3.4 TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an explicit time zone
displacement in its value. The time zone displacement is the difference (in hours and
minutes) between local time and UTC (Coordinated Universal Time—formerly Greenwich
Mean Time). The TIMESTAMP WITH TIME ZONE datatype has the form:

TIMESTAMP (fractional seconds precision) WITH TIME ZONE

where fractional seconds precision optionally specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range O to 9. The
default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data.

4.1.3.5 TIMESTAMP WITH LOCAL TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP that includes a time
zone displacement in its value. Storage is in the same format as for TIMESTAMP. This type
differs from TIMESTAMP WITH TIME ZONE in that data stored in the database is normalized to the
database time zone, and the time zone displacement is not stored as part of the column data.
When users retrieve the data, Oracle returns it in the users' local session time zone.

The time zone displacement is the difference (in hours and minutes) between local time and
UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The TIMESTAMP WITH
LOCAL TIME ZONE datatype has the form:

TIMESTAMP (fractional seconds precision) WITH LOCAL TIME ZONE

where fractional seconds_precision optionally specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The
default is 6.

ORACLE 4-11

Chapter 4
Host Variables

4.1.3.6 INTERVAL YEAR TO MONTH

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime
fields. The INTERVAL YEAR TO MONTH datatype has the form:

INTERVAL YEAR(year precision) TO MONTH

where the optional year precision isthe number of digits in the YEAR datetime field.
The default value of year precisionis 2.

4.1.3.7 INTERVAL DAY TO SECOND

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. The INTERVAL DAY TO SECOND datatype has the form:

INTERVAL DAY (day precision) TO SECOND(fractional seconds precision)

where:

* day precisionis the number of digits in the DAY datetime field. It is optional.
Accepted values are 0 to 9. The default is 2.

fractional seconds precision is the number of digits in the fractional part of the
SECOND datetime field. It is optional. Accepted values are 0 to 9. The default is 6.

4.1.3.8 Avoiding Unexpected Results Using Datetime

" Note:

To avoid unexpected results in your DML operations on datetime data, you
can verify the database and session time zones by querying the built-in SQL
functions DBTIMEZONE and SESSIONTIMEZONE. If the time zones have not been
set manually, Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle uses UTC
as the default value.

4.2 Host Variables

Host variables are the key to communication between your host program and Oracle.
Typically, a precompiler program inputs data from a host variable to Oracle, and Oracle
outputs data to a host variable in the program. Oracle stores input data in database
columns, and stores output data in program host variables.

A host variable can be any arbitrary C expression that resolves to a scalar type. But, a
host variable must also be an Ivalue. Host arrays of most host variables are also
supported.

ORACLE 4-12

Chapter 4
Host Variables

4.2.1 Host Variable Declaration

ORACLE

You declare a host variable according to the rules of the C programming language, specifying
a C datatype supported by the Oracle program interface. The C datatype must be compatible
with that of the source or target database column.

If MODE=ORACLE, you do not have to declare host variables in a special Declare Section.
However, if you do not use a Declare Section, the FIPS flagger warns you about this, as the
Declare Section is part of the ANSI SQL Standard. If CODE=CPP (you are compiling C++
code) or PARSE=NONE or PARSE=PARTIAL, then you must have a Declare Section.

Table 4-4 shows the C datatypes and the pseudotypes that you can use when declaring host
variables. Only these datatypes can be used for host variables.

Table 4-4 C Datatypes for Host Variables
]

C Datatype or Pseudotype Description

char single character

char[n] n-character array (string)

int integer

short small integer

long large integer

long long very large (8-byte) integer

float floating-point number (usually single precision)
double floating-point number (always double precision)
VARCHAR[N] variable-length string

bool Boolean data

Table 4-5 shows the compatible Oracle internal datatypes.

Table 4-5 C to Oracle Datatype Compatibility
]

Internal Type C Type Description

VARCHAR2(Y) char single character

(Note 1)

CHAR(X) char[n] n-byte character array

(Note 1) VARCHAR[N] n-byte variable-length character array
int integer
short small integer
long large integer
long long very large (8-byte) integer
float floating-point number
double double-precision floating-point

number
NUMBER int integer

4-13

ORACLE

Chapter 4
Host Variables

Table 4-5 (Cont.) C to Oracle Datatype Compatibility

Internal Type C Type Description
NUMBER(P,S) short small integer
(Note 2) int integer

long large integer

float floating-point number

double double-precision floating-point

char number

char[n] single character

VARCHAR]IN] n-byte character array

n-byte variable-length character array

DATE char[n] n-byte character array

VARCHAR[N] n-byte variable-length character array
LONG char[n] n-byte character array

VARCHAR[N] n-byte variable-length character array
RAW(X) unsigned char[n] n-byte character array
(Note 1) VARCHAR[N] n-byte variable-length character array
LONG RAW unsigned char[n] n-byte character array

VARCHAR[N] n-byte variable-length character array
ROWID unsigned char[n] n-byte character array

VARCHAR[N] n-byte variable-length character array
BOOLEAN bool boolean data

short small integer

int integer

long large integer

float floating-point number

double double-precision floating-point

char number

char[n] single character
Notes:

1. X ranges from 1 to
2000. 1 is the default
value. Y ranges from 1
to 4000.

2. P ranges from 1 to
38. S ranges from -84
to 127.

One-dimensional arrays of simple C types can also serve as host variables. For
char[n] and VARCHARIn], n specifies the maximum string length, not the number of
strings in the array. Two-dimensional arrays are allowed only for char[m][n] and
VARCHAR[m][n], where m specifies the number of strings in the array and n specifies
the maximum string length.

Pointers to simple C types are supported. Pointers to char[n] and VARCHAR]N]
variables should be declared as pointer to char or VARCHAR (with no length
specification). Arrays of pointers, however, are not supported.

4-14

Chapter 4
Host Variables

4.2.1.1 Storage-Class Specifiers

Pro*C/C++ lets you use the auto, extern, and static storage-class specifiers when you
declare host variables. However, you cannot use the register storage-class specifier to store
host variables, since the precompiler takes the address of host variables by placing an
ampersand (&) before them. Following the rules of C, you can use the auto storage class
specifier only within a block.

To comply with the ANSI C standard, the Pro*C/C++ Precompiler provides the ability to
declare an extern char[n] host variable with or without a maximum length, as the following
examples shows:

extern char protocol[15];
extern char msgl[];

However, you should always specify the maximum length. In the last example, if msg is an
output host variable declared in one precompilation unit but defined in another, the
precompiler has no way of knowing its maximum length. If you have not allocated enough
storage for msg in the second precompilation unit, you might corrupt memory. (Usually,
"enough" is the number of bytes in the longest column value that might be SELECTed or
FETCHed into the host variable, plus one byte for a possible null terminator.)

If you neglect to specify the maximum length for an extern char[] host variable, the
precompiler issues a warning message. The precompiler also assumes that the host variable
will store a CHARACTER column value, which cannot exceed 255 characters in length. So, if
you want to SELECT or FETCH a VARCHAR?2 or a LONG column value of length greater
than 255 characters into the host variable, you must specify a maximum length.

4.2.1.2 Type Qualifiers

You can also use the const and volatile type qualifiers when you declare host variables.

A const host variable must have a constant value, that is, your program cannot change its
initial value. A volatile host variable can have its value changed in ways unknown to your
program (for example, by a device attached to the system).

4.2.2 Host Variable Referencing

ORACLE

You use host variables in SQL data manipulation statements. A host variable must be
prefixed with a colon () in SQL statements but must not be prefixed with a colon in C
statements, as the following example shows:

char buf[15];
int emp number;
float salary;

gets (buf) ;
emp number = atoi (buf);

EXEC SQL SELECT sal INTO :salary FROM emp
WHERE empno = :emp number;

Though it might be confusing, you can give a host variable the same name as an Oracle table
or column, as this example shows:

int empno;
char ename[10];

4-15

Chapter 4
Indicator Variables

float sal;

EXEC SQL SELECT ename, sal INTO :ename, :sal FROM emp
WHERE empno = :empno;

4.2.2.1 Restrictions

A host variable name is a C identifier, hence it must be declared and referenced in the
same upper/lower case format. It cannot substitute for a column, table, or other Oracle
object in a SQL statement, and must not be an Oracle reserved word.

A host variable must resolve to an address in the program. For this reason, function
calls and numeric expressions cannot serve as host variables. The following code is
invalid:

#define MAX EMP NUM 9000
int get dept();

EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES
(:MAX EMP NUM + 10, 'CHEN', :get dept());

Related Topics

e Reserved Words, Keywords, and Namespaces

4.3 Indicator Variables

You can associate every host variable with an optional indicator variable. An indicator
variable must be defined as a 2-byte integer and, in SQL statements, must be prefixed
with a colon and immediately follow its host variable (unless you use the keyword
INDICATOR). If you are using Declare Sections, you must also declare indicator
variables inside the Declare Sections.

This applies to relational columns, not object types.

Related Topics
* Objects

4.3.1 The INDICATOR Keyword

ORACLE

To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is:

:host variable INDICATOR :indicator variable

which is equivalent to

:host variable:indicator variable

You can use both forms of expression in your host program.

Possible indicator values, and their meanings, are:

4-16

Chapter 4

Indicator Variables
Indicator Values Meanings
0 The operation was successful
-1 A NULL was returned, inserted, or updated.
-2 Output to a character host variable from a "long" type was truncated, but
the original column length cannot be determined.
>0 The result of a SELECT or FETCH into a character host variable was

truncated. In this case, if the host variable is a multibyte character
variable, the indicator value is the original column length in characters. If
the host variable is not a multibye character variable, then the indicator
length is the original column length in bytes.

4.3.2 Example of INDICATOR Variable Usage

Typically, you use indicator variables to assign NULLSs to input host variables and detect
NULLs or truncated values in output host variables. In the example later, you declare three
host variables and one indicator variable, then use a SELECT statement to search the
database for an employee number matching the value of host variable emp_number. When a
matching row is found, Oracle sets output host variables salary and commission to the values
of columns SAL and COMM in that row and stores a return code in indicator variable
ind_comm. The next statements use ind_comm to select a course of action.

EXEC SQL BEGIN DECLARE SECTION;
int emp number;
float salary, commission;
short comm ind; /* indicator variable */
EXEC SQL END DECLARE SECTION;
char temp[l6];
float pay; /* not used in a SQL statement */

printf ("Employee number? ");
gets (temp) ;
emp number = atof (temp);
EXEC SQL SELECT SAL, COMM
INTO :salary, :commission:ind comm

FROM EMP
WHERE EMPNO = :emp number;

if (ind comm == -1) /* commission is null */
pay = salary;

else

pay = salary + commission;

Related Topics

e Indicator Variables

4.3.3 INDICATOR Variable Guidelines

ORACLE

The following guidelines apply to declaring and referencing indicator variables. An indicator
variable must

* Be declared explicitly (in the Declare Section if present) as a 2-byte integer.
* Be prefixed with a colon (:) in SQL statements.

* Immediately follow its host variable in SQL statements and PL/SQL blocks (unless
preceded by the keyword INDICATOR).

4-17

Chapter 4
VARCHAR Variables

An indicator variable must not:
» Be prefixed with a colon in host language statements.
* Follow its host variable in host language statements.

» Be an Oracle reserved word.

4.3.4 Oracle Restrictions

When DBMS=V7 or V8, if you SELECT or FETCH a NULL into a host variable that has
no indicator, Oracle issues the following error message:

ORA-01405: fetched column value is NULL

When precompiling with MODE=ORACLE and DBMS=V7 or V8 specified, you can
specify UNSAFE_NULL=YES to disable the ORA-01405 message.

Related Topics
* UNSAFE_NULL

4.4 VARCHAR Variables

You can use the VARCHAR pseudotype to declare variable-length character strings.
When your program deals with strings that are output from, or input to, VARCHAR2 or
LONG columns, you might find it more convenient to use VARCHAR host variables
instead of standard C strings. The datatype name VARCHAR can be uppercase or
lowercase, but it cannot be mixed case. In this Guide, uppercase is used to emphasize
that VARCHAR is not a native C datatype.

4.4.1 VARCHAR Variable Declaration

ORACLE

Think of a VARCHAR as an extended C type or pre-declared struct. For example, the
precompiler expands the VARCHAR declaration

VARCHAR username[20];

into the following struct with array and length members:

struct
{
unsigned short len;
unsigned char arr[20];
} username;

The advantage of using VARCHAR variables is that you can explicitly reference the
length member of the VARCHAR structure after a SELECT or FETCH. Oracle puts the
length of the selected character string in the length member. You can then use this
member to do things such as adding the null (\0") terminator.

username.arr [username.len] = '\0';

or using the length in a strncpy or printf statement; for example:

printf ("Username is %.*s\n", username.len, username.arr);

4-18

Chapter 4
VARCHAR Variables

You specify the maximum length of a VARCHAR variable in its declaration. The length must
lie in the range 1.65533. For example, the following declaration is invalid because no length
is specified:

VARCHAR null stringl[]; /* invalid */
The length specification holds the current length of the value stored in the array member.
You can declare multiple VARCHARS on a single line; for example:

VARCHAR emp name [ENAME LEN], dept loc[DEPT NAME LEN];

The length specifier for a VARCHAR can be a #defined macro, or any complex expression
that can be resolved to an integer at precompile time.

You can also declare pointers to VARCHAR datatypes.

" Note:

Do not attempt to use a typedef statement such as:

typedef VARCHAR buf[64];

This causes errors during C compilation.

Related Topics
e VARCHAR Variables and Pointers

4.4,2 VARCHAR Variable Referencing

ORACLE

In SQL statements, you reference VARCHAR variables using the struct name prefixed with a
colon, as the following example shows:

int part number;
VARCHAR part desc[40];

main ()

{

EXEC SQL SELECT pdesc INTO :part desc
FROM parts
WHERE pnum = :part number;

After the query is executed, part_desc.len holds the actual length of the character string
retrieved from the database and stored in part_desc.arr.

In C statements, you reference VARCHAR variables using the component names, as the next
example shows:

printf ("\n\nEnter part description: ");
gets (part desc.arr);
/* You must set the length of the string
before using the VARCHAR in an INSERT or UPDATE */
part desc.len = strlen(part desc.arr);

4-19

Chapter 4
VARCHAR Variables

4.4.3 Return NULLSs to a VARCHAR Variable

Oracle automatically sets the length component of a VARCHAR output host variable. If
you SELECT or FETCH a NULL into a VARCHAR, the server does not change the
length or array members.

Note:

If you select a NULL into a VARCHAR host variable, and there is no
associated indicator variable, an ORA-01405 error occurs at run time. Avoid
this by coding indicator variables with all host variables. (As a temporary fix,
use the UNSAFE_NULL=YES precompiler option.

Related Topics
- DBMS

4.4.4 Insert NULLs Using VARCHAR Variables

If you set the length of a VARCHAR variable to zero before performing an UPDATE or
INSERT statement, the column value is set to NULL. If the column has a NOT NULL
constraint, Oracle returns an error.

4.4.5 Pass VARCHAR Variables to a Function

VARCHARSs are structures, and most C compilers permit passing of structures to a
function by value, and returning structures by copy out from functions. However, in
Pro*C/C++ you must pass VARCHARSs to functions by reference. The following
example shows the correct way to pass a VARCHAR variable to a function:

VARCHAR emp name[20];

emp name.len = 20;

SELECT ename INTO :emp name FROM emp

WHERE empno = 7499;

print employee name (&emp name); /* pass by pointer */
print employee name (name)

VARCHAR *name;
{

)

printf ("name is %.*s\n", name->len, name->arr);

}

4.4.6 Find the Length of the VARCHAR Array Component

When the precompiler processes a VARCHAR declaration, the actual length of the
array element in the generated structure can be longer than that declared. For
example, on a Sun Solaris system, the Pro*C/C++ declaration

ORACLE 4-20

Chapter 4
VARCHAR Variables

VARCHAR my varchar[12];

is expanded by the precompiler to

struct my varchar

{
unsigned short len;
unsigned char arr[l12];

}i

However, the precompiler or the C compiler on this system pads the length of the array
component to 14 bytes. This alignment requirement pads the total length of the structure to
16 bytes: 14 for the padded array and 2 bytes for the length.

The sQLVarcharGetLength () (replaces the non-threaded sqlvcp ()) function—part of the
SQLLIB runtime library—returns the actual (possibly padded) length of the array member.

You pass the sQLVarcharGetLength () function the length of the data for a VARCHAR host
variable or a VARCHAR pointer host variable, and SQLvarcharGetLength () returns the total
length of the array component of the VARCHAR. The total length includes any padding that
might be added by your C compiler.

The syntax of sQLVarcharGetLength () is

SQLVarcharGetLength (dvoid *context, unsigned long *datlen, unsigned long *totlen);

For single-threaded applications, use sglvcp (). Put the length of the VARCHAR in the
datlen parameter before calling sqlvcp (). When the function returns, the totlen parameter
contains the total length of the array element. Both parameters are pointers to unsigned long
integers, so must be passed by reference.

Related Topics
* New Names for SQLLIB Public Functions

4.4.7 Example Program: Using sqlvcp()

ORACLE

The following example program shows how you can use the function in a Pro*C/C++
application. The example also uses the sqlgls () function. The example declares a
VARCHAR pointer, then uses the sqlvcp () function to determine the size required for the
VARCHAR buffer. The program FETCHes employee names from the EMP table and prints
them. Finally, the example uses the sqlgls () function to print out the SQL statement and its
function code and length attributes. This program is available on-line as sqlvcp.pc in your
demo directory.

~
*

The sglvcp.pc program demonstrates how you can use the
sqlvcp () function to determine the actual size of a
VARCHAR struct. The size is then used as an offset to
increment a pointer that steps through an array of
VARCHARSs.

This program also demonstrates the use of the sqglgls()
function, to get the text of the last SQL statement executed.
sglgls() is described in the "Error Handling" chapter of

The Developer's Guide to the Oracle Pro*C/C++ Precompiler.

S S

*
~

4-21

ORACLE

#include
#include
#include

/* Fake

<stdio.h>
<sglca.h>
<sglcpr.h>

a VARCHAR pointer type. */

struct my vc ptr

{
unsi
unsi

}s

/* Defin
typedef
my vc pt

EXEC SQL
VARCHAR
int
char
EXEC SQL
void sqgl

gned short len;
gned char arr[32767];

e a type for the VARCHAR pointer */
struct my vc ptr my vc ptr;
r *vc ptr;

BEGIN DECLARE SECTION;

*names;

limit; /* for use in FETCH FOR clause
*username = "scott/tiger";

END DECLARE SECTION;
_error();

extern void sqglvecp(), sqlgls();

main ()

{

unsigned int vcplen, function code, padlen, buflen;

int
char

EXEC SQL WHENEVER SQLERROR DO sgl error();

EXEC
prin

/* Find
EXEC

/* Decl

i;
stmt_buf[120];

SQL CONNECT :username;
tf ("\nConnected.\n");

number of rows in table. */

SQL SELECT COUNT (*) INTO :limit FROM emp;

are a cursor for the FETCH statement.

*/

EXEC SQL DECLARE emp name cursor CURSOR FOR

SELE
EXEC

/* Set the desired DATA length for the VARCHAR. */

vepl

/* Use SQLVCP to help find the length to malloc. */

sqlv

printf ("Actual array length of VARCHAR is %$1d\n", padlen);

/* Allo

name
(int
if |
{

cate the names buffer for names.

Set the limit variable for the FOR clause.
s = (VARCHAR *) malloc((sizeof (short)
) padlen) * limit);
names == ()

CT ename FROM emp;
SQL FOR :limit OPEN emp name cursor;

en = 10;

cp(&vcplen, é&padlen);

printf ("Memory allocation error.\n");
exit (1),

*/
+

Chapter 4
VARCHAR Variables

4-22

Chapter 4
VARCHAR Variables

/* Set the maximum lengths before the FETCH.
* Note the "trick" to get an effective VARCHAR *.

*/
for (vc ptr = (my vc ptr *) names, 1 = 0; i < limit; i++)
{
vc_ptr->len = (short) padlen;
vc ptr = (my vc ptr *) ((char *) vc ptr +

padlen + sizeof (short));

}
/* Execute the FETCH. */
EXEC SQL FOR :limit FETCH emp name cursor INTO :names;

/* Print the results. */
printf ("Employee names--\n");

for (vc ptr = (my vc ptr *) names, 1 = 0; i < limit; i++)
{
printf
("%.*s\t (%d)\n", vc_ptr->len, vc_ptr->arr, vc_ptr->len);
vc ptr = (my vc ptr *) ((char *) vc ptr +

padlen + sizeof (short));

/* Get statistics about the most recent

* SQL statement using SQLGLS. Note that

* the most recent statement in this example

* 1is not a FETCH, but rather "SELECT ENAME FROM EMP"
* (the cursor).

buflen = (long) sizeof (stmt buf);

/* The returned value should be 1, indicating no error. */
sqlgls (stmt buf, &buflen, &function code);
if (buflen != 0)
{
/* Print out the SQL statement. */
printf("The SQL statement was--\n%.*s\n", buflen, stmt buf);

/* Print the returned length. */
printf ("The statement length is %$1d\n", buflen);

/* Print the attributes. */
printf ("The function code is %1d\n", function code);

EXEC SQL COMMIT RELEASE;
exit (0);
}
else
{
printf ("The SQLGLS function returned an error.\n");
EXEC SQL ROLLBACK RELEASE;
exit (1),

void

sql error()

{
char err msg[512];
int buf len, msg len;

ORACLE 4-23

Chapter 4
Cursor Variables

EXEC SQL WHENEVER SQLERROR CONTINUE;

buf len = sizeof (err msq);
sqlglm(err msg, &buf len, &msg len);
printf("%$.*s\n", msg len, err msgq);

EXEC SQL ROLLBACK RELEASE;
exit (1);

}

Related Topics

* Handling Runtime Errors

4.5 Cursor Variables

You can use cursor variables in your Pro*C/C++ program for queries. A cursor variable
is a handle for a cursor that must be defined and opened on the Oracle server using
PL/SQL. See Cursor Variables for complete information about cursor variables.

The advantages of cursor variables are:

» Ease of maintenance

Queries are centralized, in the stored procedure that opens the cursor variable. If
you need to change the cursor, you only need to make the change in one place:
the stored procedure. There is no need to change each application.

e Convenient security

The user of the application is the username used when the Pro*C/C++ application
connects to the server. The user must have execute permission on the stored
procedure that opens the cursor but not read permission on the tables used in the
query. This capability can be used to limit access to the columns in the table, and
access to other stored procedures.

4.5.1 Declare a Cursor Variable

You declare a cursor variable in your Pro*C/C++ program using the Pro*C/C++
pseudotype SQL_CURSOR. For example:

EXEC SQL BEGIN DECLARE SECTION;

sqgl _cursor emp _Ccursor; /* a cursor variable */
SQL CURSOR dept cursor; /* another cursor variable */
sql cursor *ecp; /* a pointer to a cursor variable */

EXEC SQL END DECLARE SECTION;
ecp = &emp_cursor; /* assign a value to the pointer */

You can declare a cursor variable using the type specification SQL_CURSOR, in all
upper case, or sgl_cursor, in all lower case; you cannot use mixed case.

A cursor variable is just like any other host variable in the Pro*C/C++ program. It has
scope, following the scope rules of C. You can pass it as a parameter to other
functions, even functions external to the source file in which you declared it. You can
also define functions that return cursor variables, or pointers to cursor variables.

ORACLE 4-24

Chapter 4
Cursor Variables

< Note:

A SQL_CURSOR is implemented as a C struct in the code that Pro*C/C++
generates. So you can always pass it by pointer to another function, or return a
pointer to a cursor variable from a function. But you can only pass it or return it by
value if your C compiler supports these operations.

4.5.2 Allocate a Cursor Variable

4.5.3 Open

ORACLE

Before you can use a cursor variable, either to open it or to FETCH it, you must allocate the
cursor. You do this using the new precompiler command ALLOCATE. For example, to
allocate the SQL_CURSOR emp_cursor that was declared in the example earlier, you write
the statement:

EXEC SQL ALLOCATE :emp cursor;

Allocating a cursor does not require a call to the server, either at precompile time or at
runtime. If the ALLOCATE statement contains an error (for example, an undeclared host
variable), Pro*C/C++ issues a precompile-time error. Allocating a cursor variable does cause
heap memory to be used. For this reason, you can free a cursor variable in a program loop.
Memory allocated for cursor variables is not freed when the cursor is closed, but only when
an explicit CLOSE is executed, or the connection is closed:

EXEC SQL CLOSE :emp cursor;

Related Topics

e Closing and Freeing a Cursor Variable

a Cursor Variable

You must open a cursor variable on the Oracle database server. You cannot use the
embedded SQL OPEN command to open a cursor variable. You can open a cursor variable
either by calling a PL/SQL stored procedure that opens the cursor (and defines it in the same
statement). Or, you can open and define a cursor variable using an anonymous PL/SQL
block in your Pro*C/C++ program.

For example, consider the following PL/SQL package, stored in the database:

CREATE PACKAGE demo cur pkg AS
TYPE EmpName IS RECORD (name VARCHAR2 (10));
TYPE cur type IS REF CURSOR RETURN EmpName;
PROCEDURE open emp cur (
curs IN OUT cur type,
dept num IN NUMBER) ;
END;

CREATE PACKAGE BODY demo cur pkg AS
CREATE PROCEDURE open emp cur (
curs IN OUT cur type,
dept num IN NUMBER) IS
BEGIN
OPEN curs FOR
SELECT ename FROM emp
WHERE deptno = dept num
ORDER BY ename ASC;

4-25

ORACLE

Chapter 4
Cursor Variables

END;
END;

After this package has been stored, you can open the cursor curs by calling the
open_emp_cur stored procedure from your Pro*C/C++ program, and FETCH from the
cursor in the program. For example:

sql cursor emp_cursor;
char emp name[11];

EXEC SQL ALLOCATE :emp cursor; /* allocate the cursor variable */

/* Open the cursor on the server side. */
EXEC SQL EXECUTE
begin
demo cur pkg.open emp cur (:emp cursor, :dept num);
end;
EXEC SQL WHENEVER NOT FOUND DO break;
for (i)
{
EXEC SQL FETCH :emp cursor INTO :emp name;
printf ("$s\n", emp name);

To open a cursor using a PL/SQL anonymous block in your Pro*C/C++ program, you
define the cursor in the anonymous block. For example:

sgl_cursor emp cursor;
int dept num = 10;

EXEC SQL EXECUTE
BEGIN
OPEN :emp cursor FOR SELECT ename FROM emp
WHERE deptno = :dept num;
END;
END-EXEC;

The earlier examples show how to use PL/SQL to open a cursor variable. You can also
open a cursor variable using embedded SQL with the CURSOR clause:

sgl_cursor emp cursor;

EXEC ORACLE OPTION (select error=no);

EXEC SQL
SELECT CURSOR (SELECT ename FROM emp WHERE deptno = :dept num)
INTO :emp cursor FROM DUAL;

EXEC ORACLE OPTION (select error=yes);

In the statement earlier, the emp_cursor cursor variable is bound to the first column of
the outermost select. The first column is itself a query, but it is represented in the form
compatible with a sql_cursor host variable since the CURSOR(...) conversion clause is
used.

Before using queries which involve the CURSOR clause, you must set the
SELECT_ERROR option to NO. This will prevent the cancellation of the parent cursor
and allow the program to run without errors.

4-26

Chapter 4
Cursor Variables

4.5.3.1 Opening in a Standalone Stored Procedure

In the example earlier, a reference cursor was defined inside a package, and the cursor was
opened in a procedure in that package. But it is not always necessary to define a reference
cursor inside the package that contains the procedures that open the cursor.

If you need to open a cursor inside a standalone stored procedure, you can define the cursor
in a separate package, and then reference that package in the standalone stored procedure
that opens the cursor. Here is an example:

PACKAGE dummy IS
TYPE EmpName IS RECORD (name VARCHAR2? (10));
TYPE emp cursor type IS REF CURSOR RETURN EmpName;
END;
-- and then define a standalone procedure:
PROCEDURE open_emp curs (
emp _cursor IN OUT dummy.emp cursor type;
dept num IN NUMBER) IS
BEGIN
OPEN emp cursor FOR
SELECT ename FROM emp WHERE deptno = dept num;
END;
END;

4.5.3.2 Return Types

When you define a reference cursor in a PL/SQL stored procedure, you must declare the
type that the cursor returns.

Related Topics

e Cursor Variable Declaration

4.5.4 Closing and Freeing a Cursor Variable

Use the CLOSE command to close a cursor variable. For example, to close the emp_cursor
cursor variable that was OPENed in the examples earlier, use the embedded SQL statement:

EXEC SQL CLOSE :emp cursor;
The cursor variable is a host variable, and so you must precede it with a colon.

You can reuse ALLOCATEd cursor variables. You can open, FETCH, and CLOSE as many
times as needed for your application. However, if you disconnect from the server, then
reconnect, you must re-ALLOCATE cursor variables.

Cursors are deallocated by the FREE embedded SQL statement. For example:

EXEC SQL FREE :emp cursor;

If the cursor is still open, it is closed and the memory allocated for it is released.

4.5.5 Cursor Variables with the OCI (Release 7 Only)

You can share a Pro*C/C++ cursor variable with an OCI function. To do so, you must use the
SQLLIB conversion functions, SQLCDAFromResultSetCursor () (formerly known as

ORACLE 4-27

ORACLE

Chapter 4
Cursor Variables

sqlcdat ()) and SQLCDAToResultSetCursor (formerly known as sglcurt()). These
functions convert between OCI cursor data areas and Pro*C/C++ cursor variables.

The SQLCDAFromResultSetCursor () function translates an allocated cursor variable to
an OCI cursor data area. The syntax is:

void SQLCDAFromResultSetCursor (dvoid *context, Cda Def *cda, void *cur,
sword *retval);

where the parameters are:

Parameters Description

context A pointer to the SQLLIB runtime context.

cda A pointer to the destination OCI cursor data area.

cur A pointer to the source Pro*C/C++ cursor variable.

retval 0 if no error, otherwise a SQLLIB (SQL) error number.
" Note:

In the case of an error, the V2 and rc return code fields in the CDA also
receive the error codes. The rows processed count field in the CDA is not
set.

For non-threaded or default context applications, pass the defined constant
SQL_SINGLE_RCTX as the context.

The SQLCDAToResultSetCursor () function translates an OCI cursor data area to a
Pro*C/C++ cursor variable. The syntax is:

void SQLCDAToResultSetCursor (dvoid *context, void *cur, Cda Def *cda,
int *retval);

where the parameters are:

Parameters Description
context A pointer to the SQLLIB runtime context.
cur A pointer to the destination Pro*C/C++ cursor variable.
cda A pointer to the source OCI cursor data area.
retval 0 if no error, otherwise an error code.
" Note:

The SQLCA structure is not updated by this routine. The SQLCA
components are only set after a database operation is performed using the
translated cursor.

For non-threaded applications, pass the defined constant
SQL_SINGLE_RCTX as the context.

4-28

Chapter 4
Cursor Variables

ANSI and K&R prototypes for these functions are provided in the sql2oci.h header file.
Memory for both cda and cur must be allocated prior to calling these functions.

Related Topics
e New Names for SQLLIB Public Functions

4.5.6 Restrictions (Cursor Variables)

The following restrictions apply to the use of cursor variables:

* If you use the same cursor variable in Pro*C/C++ and OCI V7, then you must use either
SQLLDAGetCurrent() or SQLLDAGetName() immediately after connecting.

* You cannot translate a cursor variable to an OCI release 8 equivalent.
* You cannot use cursor variables with dynamic SQL.

* You can only use cursor variables with the ALLOCATE, FETCH, FREE, and CLOSE
commands

 The DECLARE CURSOR command does not apply to cursor variables.
¢ You cannot FETCH from a CLOSEd cursor variable.
* You cannot FETCH from a non-ALLOCATEd cursor variable.

» If you precompile with MODE=ANSI, it is an error to close a cursor variable that is already
closed.

e You cannot use the AT clause with the ALLOCATE command, nor with the FETCH and
CLOSE commands if they reference a cursor variable.

e Cursor variables cannot be stored in columns in the database.

* A cursor variable itself cannot be declared in a package specification. Only the type of the
cursor variable can be declared in the package specification.

e A cursor variable cannot be a component of a PL/SQL record.

4.5.7 Example: cv_demo.sgl and samplell.pc

The following example programs—a PL/SQL script and a Pro*C/C++ program—demonstrate
how you can use cursor variables. These sources are available on-line in your demo directory.
Also see another version of the same application, cv_demo.pc, in the demo directory.

4.5.7.1 cv_demo.sql

ORACLE

-- PL/SQL source for a package that declares and
-- opens a ref cursor
CONNECT SCOTT/TIGER;
CREATE OR REPLACE PACKAGE emp demo pkg as
TYPE emp cur type IS REF CURSOR RETURN emp%ROWTYPE;
PROCEDURE open cur (curs IN OUT emp cur type, dno IN NUMBER);
END emp demo pkg;

CREATE OR REPLACE PACKAGE BODY emp demo pkg AS
PROCEDURE open cur (curs IN OUT emp cur type, dno IN NUMBER) IS
BEGIN
OPEN curs FOR SELECT *
FROM emp WHERE deptno = dno

4-29

Chapter 4
Cursor Variables

ORDER BY ename ASC;
END;
END emp demo pkg;

4.5.7.2 samplell.pc

/
Fetch from the EMP table, using a cursor variable.
The cursor is opened in the stored PL/SQL procedure
open cur, in the EMP DEMO PKG package.

This package is available on-line in the file
samplell.sqgl, in the demo directory.

EE S T A S

#include <stdio.h>
#include <sglca.h>
#include <stdlib.h>
#include <sglda.h>
#include <sglcpr.h>

/* Error handling function. */
void sql error (msg)

char *msg;
{

size t clen, fc;

char cbuf[128];

clen = sizeof (cbuf);
sqlgls((char *)cbuf, (size t *)&clen, (size t *)&fc);

printf ("\n%s\n", msq);
printf ("Statement is--\n%s\n", cbuf);
printf ("Function code is %$1d\n\n", fc);

sqlglm((char *)cbuf, (size t *) &clen, (size t *) &clen);
printf ("\n%.*s\n", clen, cbuf);

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;
exit (EXIT FAILURE);

void main ()

{
char temp[32];

EXEC SQL BEGIN DECLARE SECTION;
char *uid = "scott/tiger";
SQL CURSOR emp cursor;
int dept num;
struct
{

int emp num;

char emp name[11];
char job[10];

int manager;

char hire date[10];
float salary;

float commission;

ORACLE 4-30

Chapter 4
Cursor Variables

int dept num;
} emp info;

struct

{
short emp num ind;
short emp name ind;
short job_ ind;
short manager ind;
short hire date ind;
short salary ind;
short commission ind;
short dept num ind;

} emp info ind;

EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR do sql error ("Oracle error");

/* Connect to Oracle. */
EXEC SQL CONNECT :uid;

/* Allocate the cursor variable. */
EXEC SQL ALLOCATE :emp cursor;

/* Exit the inner for (;;) loop when NO DATA FOUND. */
EXEC SQL WHENEVER NOT FOUND DO break;

for (;7)
{
printf ("\nEnter department number (0 to exit): ");
gets (temp) ;
dept num = atoi (temp);
if (dept num <= 0)
break;

EXEC SQL EXECUTE
begin
emp demo pkg.open cur(:emp cursor, :dept num);
end;
END-EXEC;

printf("\nFor department %d--\n", dept num);
printf ("ENAME SAL COMM\n") ;
printf("----- -—- ----\n");

/* Fetch each row in the EMP table into the data struct.
Note the use of a parallel indicator struct. */
for (i;)
{
EXEC SQL FETCH :emp cursor
INTO :emp info INDICATOR :emp info ind;

printf("%s ", emp info.emp name);

printf ("%8.2f ", emp info.salary);

if (emp info ind.commission ind != 0)
printf (" NULLA\n") ;

else
printf ("%$8.2f\n", emp info.commission);

ORACLE 4-31

Chapter 4
CONTEXT Variables

/* Close the cursor. */
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL CLOSE :emp cursor;

/* Disconnect from Oracle. */
EXEC SQL ROLLBACK WORK RELEASE;
exit(EXIT_SUCCESS);

4.6 CONTEXT Variables

ORACLE

A runtime context, usually simply called a context, is a handle to a an area in client
memory which contains zero or more connections, zero or more cursors, their inline
options (such as MODE, HOLD_CURSOR, RELEASE_CURSOR, SELECT_ERROR,
and so on.) and other additional state information.

To define a context host variable use pseudo-type sql_context. For example:

sql context my context ;

Use the CONTEXT ALLOCATE precompiler directive to allocate and initialize memory
for a context:

EXEC SQL CONTEXT ALLOCATE :context ;

where context is a host variable that is a handle to the context. For example:

EXEC SQL CONTEXT ALLOCATE :my context ;

Use the CONTEXT USE precompiler directive to define which context is to be used by
the embedded SQL statements (such as CONNECT, INSERT, DECLARE CURSOR,
and so on.) from that point on in the source file, not in the flow of program logic. That
context is used until another CONTEXT USE statement is encountered. The syntax is:

EXEC SQL CONTEXT USE {:context | DEFAULT} ;

The keyword DEFAULT specifies that the default (also known as global) context is to
be used in all the embedded SQL statements that are executed subsequently, until
another CONTEXT USE directive is encountered. A simple example is:

EXEC SQL CONTEXT USE :my context ;

If the context variable my context has not been defined and allocated already, an error
is returned.

The CONTEXT FREE statement frees the memory used by the context after it is no
longer needed:

EXEC SQL CONTEXT FREE :context ;

An example is:

EXEC SQL CONTEXT FREE :my context ;

The following example demonstrates the use of a default context in the same
application as a user-defined context:

4-32

Chapter 4
Universal ROWIDs

CONTEXT USE Example

#include <sglca.h>

#include <ociextp.h>

main ()

{
sql context ctxl;
char *usrl = "scott/tiger";
char *usr2 = "system/manager";

/* Establish connection to SCOTT in global runtime context */
EXEC SQL CONNECT :usrl;

/* Establish connection to SYSTEM in runtime context ctxl */
EXEC SQL CONTEXT ALLOCATE :ctxl;

EXEC SQL CONTEXT USE :ctxl;

EXEC SQL CONNECT :usr2;

/* Insert into the emp table from schema SCOTT */
EXEC SQL CONTEXT USE DEFAULT;
EXEC SQL INSERT INTO emp (empno, ename) VALUES (1234, 'WALKER');

4.7 Universal ROWIDs

ORACLE

There are two kinds of table organization used in the database server: heap tables and index-
organized tables.

Heap tables are the default. The physical row address (ROWID) is a permanent property that
is used to identify a row in a heap table. The external character format of the physical ROWID
is an 18-byte character string in base-64 encoding.

An index-organized table does not have physical row addresses as permanent identifiers. A
logical ROWID is defined for these tables. When you use a SELECT ROWID ... statement
from an index-organized table the ROWID is an opaque structure that contains the primary
key of the table, control information, and an optional physical "guess”. You can use this
ROWID in a SQL statement containing a clause such as "WHERE ROWID = ..." to retrieve
values from the table.

Universal ROWID can be used for both physical ROWID and logical ROWID. You can use
universal ROWIDs to access data in heap tables, or index-organized tables, since the table
organization can change with no effect on applications. The column datatype used for
ROWID is UROWID(length), where length is optional.

Use the universal ROWID in all new applications.
Use a universal ROWID variable this way:

* Declare it as type pointer to OCIRowid.

* Allocate memory for the universal ROWID variable.
* Use the universal ROWID as a host bind variable.
* Free the memory when finished.

For example:

4-33

Chapter 4
Universal ROWIDs

OCIRowid *my urowid ;

EXEC SQL ALLOCATE :my urowid ;
/* Bind my urowid as type SQLT RDD -- no implicit conversion */
EXEC SQL SELECT rowid INTO :my urowid FROM my table WHERE ... ;

EXEC SQL UPDATE my table SET ... WHERE rowid = :my urowid ;
EXEC SQL FREE my urpwid ;

You also have the option of using a character host variable of width between 19 (18
bytes plus the null-terminator) and 4001 as the host bind variable for universal
ROWID. Character-based universal ROWIDs are supported for heap tables only for
backward compatibility. Because universal ROWID can be variable length, there can
be truncation.

Use the character variable this way:

/* n is based on table characteristics */
int n=4001 ;
char my urowid char[n] ;

EXEC SQL ALLOCATE :my urowid char ;

/* Bind my urowid char as SQLT STR */

EXEC SQL SELECT rowid INTO :my urowid char FROM my table WHERE ... ;
EXEC ORACLE OPTION(CHARﬁMAP:STRING);

EXEC SQL UPDATE my table SET ... WHERE rowid = :my urowid char ;
EXEC SQL FREE :my urowid char ;

Related Topics
e Positioned Update

e Logical Storage Structures

4.7.1 SQLRowidGet()

A SQLLIB function, SQLRowidGet(), provides the ability to retrieve a pointer to the
universal ROWID of the last row inserted, updated, or selected. The function prototype
and its arguments are:

void SQLRowidGet (dvoid *rctx, OCIRowid **urid) ;
rctx (IN)

is a pointer to a runtime context. For the default context or a non-threaded case, pass
SQL_SINGLE_RCTX.

urid (OUT)

is a pointer to a universal ROWID pointer. When a normal execution finishes, this will
point to a valid ROWID. In case of an error, NULL is returned.

ORACLE 4-34

Chapter 4
Host Structures

< Note:

The universal ROWID pointer must have been previously allocated to call
SQLRowidGet(). Use FREE afterward on the universal ROWID.

4.8 Host Structures

ORACLE

You can use a C structure to contain host variables. You reference a structure containing host
variables in the INTO clause of a SELECT or a FETCH statement, and in the VALUES list of
an INSERT statement. Every component of the host structure must be a legal Pro*C/C++
host variable, as defined in Table 4-4.

When a structure is used as a host variable, only the name of the structure is used in the
SQL statement. However, each of the members of the structure sends data to Oracle, or
receives data from Oracle on a query. The following example shows a host structure that is
used to add an employee to the EMP table:

typedef struct
{
char emp name[ll]; /* one greater than column length */
int emp number;
int dept number;
float salary;
} emp record;

/* define a new structure of type "emp record" */
emp record new_employee;

strcpy (new_employee.emp name, "CHEN");
new employee.emp number = 9876;
new employee.dept number = 20;
new employee.salary = 4250.00;

EXEC SQL INSERT INTO emp (ename, empno, deptno, sal)
VALUES (:new_employee);

The order that the members are declared in the structure must match the order that the
associated columns occur in the SQL statement, or in the database table if the column list in
the INSERT statement is omitted.

For example, the following use of a host structure is invalid, and causes a runtime error:

struct

{
int empno;
float salary; /* struct components in wrong order */
char emp name[10];

} emp record;

SELECT empno, ename, sal
INTO :emp record FROM emp;
The example is wrong because the components of the structure are not declared in the same

order as the associated columns in the select list. The correct form of the SELECT statement
is:

4-35

Chapter 4
Host Structures

SELECT empno, sal, ename /* reverse order of sal and ename */
INTO :emp record FROM emp;

4.8.1 Host Structures and Arrays

An array is a collection of related data items, called elements, associated with a single
variable name. When declared as a host variable, the array is called a host array.
Likewise, an indicator variable declared as an array is called an indicator array. An
indicator array can be associated with any host array.

Host arrays can increase performance by letting you manipulate an entire collection of
data items with a single SQL statement. With few exceptions, you can use host arrays
wherever scalar host variables are allowed. Also, you can associate an indicator array
with any host array.

You can use host arrays as components of host structures. In the following example, a
structure containing arrays is used to INSERT three new entries into the EMP table:

struct

{
char emp name[3][10];
int emp number([3];
int dept number([3];

} emp_rec;

strcpy (emp rec.emp name[0], "ANQUETIL");
strcpy (emp rec.emp name[l], "MERCKX");
strcpy (emp rec.emp name[2], "HINAULT");

emp_rec.emp_numberTO} = 1964; emp rec.dept number[0] = 5;
emp rec.emp number[1l] = 1974; emp rec.dept number[1l] = 5;
emp rec.emp number[2] = 1985; emp rec.dept number[2] = 5;

EXEC SQL INSERT INTO emp (ename, empno, deptno)
VALUES (:emp rec);

Related Topics
* Host Arrays

4.8.2 PL/SQL Records

You cannot bind a C struct to a PL/SQL record.

4.8.3 Nested Structures and Unions

ORACLE

You cannot nest host structures. The following example is invalid:

struct
{
int emp number;
struct
{
float salary;
float commission;
} sal _info; /* INVALID */
int dept number;
} emp record;

4-36

Chapter 4
Host Structures

EXEC SQL SELECT empno, sal, comm, deptno
INTO :emp record
FROM emp;

Also, you cannot use a C union as a host structure, nor can you nest a union in a structure
that is to be used as a host structure.

4.8.4 Host Indicator Structures

When you need to use indicator variables, but your host variables are contained in a host
structure, you set up a second structure that contains an indicator variable for each host
variable in the host structure.

For example, suppose you declare a host structure student_record as follows:

struct
{
char s name[32];
int s _1id;
char grad date[9];
} student record;

If you want to use the host structure in a query such as

EXEC SQL SELECT student name, student idno, graduation date
INTO :student record
FROM college enrollment
WHERE student idno = 7200;

and you need to know if the graduation date can be NULL, then you must declare a separate
host indicator structure. You declare this as

struct

{
short s name ind; /* indicator variables must be shorts */
short s_id ind;
short grad date ind;

} student record ind;

Reference the indicator structure in the SQL statement in the same way that you reference a
host indicator variable:

EXEC SQL SELECT student name, student idno, graduation date
INTO :student record INDICATOR :student record ind
FROM college enrollment
WHERE student idno = 7200;

When the query completes, the NULL/NOT NULL status of each selected component is
available in the host indicator structure.

Note:

This Guide conventionally names indicator variables and indicator structures by
appending _ind to the host variable or structure name. However, the names of
indicator variables are completely arbitrary. You can adopt a different convention, or
use no convention at all.

ORACLE 4-37

Chapter 4
Host Structures

4.8.5 Example Program: Cursor and a Host Structure

ORACLE

The demonstration program in this section shows a query that uses an explicit cursor,
selecting data into a host structure. This program is available in the file sample2.pc in
your demo directory.

/
sample2.pc

This program connects to ORACLE, declares and opens a cursor,
fetches the names, salaries, and commissions of all
salespeople, displays the results, then closes the cursor.

T

#include <stdio.h>
#include <sglca.h>

#define UNAME LEN 20
#define PWD LEN 40
/*

* Use the precompiler typedef'ing capability to create
* null-terminated strings for the authentication host
* variables. (This isn't really necessary--plain char *'s
* does work as well. This is just for illustration.)
*/
typedef char asciiz[PWD LEN];

EXEC SQL TYPE asciiz IS STRING(PWDfLEN) REFERENCE;
asciiz username;
asciiz password;

struct emp info

{

asciiz emp name;
float salary;
float commission;

}i

/* Declare function to handle unrecoverable errors. */
void sql error();

main ()

{

struct emp info *emp rec ptr;

/* Allocate memory for emp info struct. */
if ((emp rec ptr =
(struct emp info *) malloc(sizeof (struct emp info))) == 0)
{
fprintf (stderr, "Memory allocation error.\n");
exit (1) ;

/* Connect to ORACLE. */
strcpy (username, "SCOTT");
strcpy (password, "TIGER");

4-38

Chapter 4
Host Structures

EXEC SQL WHENEVER SQLERROR DO sql_error("ORACLE error--");

EXEC SQL CONNECT :username IDENTIFIED BY :password;
printf ("\nConnected to ORACLE as user: %s\n", username);

/* Declare the cursor. All static SQL explicit cursors
* contain SELECT commands. 'salespeople' is a SQL identifier,
* not a (C) host variable.
*/
EXEC SQL DECLARE salespeople CURSOR FOR
SELECT ENAME, SAL, COMM
FROM EMP
WHERE JOB LIKE 'SALESS';

/* Open the cursor. */
EXEC SQL OPEN salespeople;

/* Get ready to print results. */
printf ("\n\nThe company's salespeople are--\n\n");
printf ("Salesperson Salary Commission\n");
printf("----------- —---- oo \n");

/* Loop, fetching all salesperson's statistics.
* Cause the program to break the loop when no more
* data can be retrieved on the cursor.
*/
EXEC SQL WHENEVER NOT FOUND DO break;

for (;7)
{
EXEC SQL FETCH salespeople INTO :emp rec ptr;
printf("%$-11s%9.2£%13.2f\n", emp rec ptr->emp name,
emp rec ptr->salary, emp rec ptr->commission);

/* Close the cursor. */
EXEC SQL CLOSE salespeople;

printf ("\nArrivederci.\n\n");

EXEC SQL COMMIT WORK RELEASE;
exit (0);

void

sql error (msq)

char *msg;

{
char err msg[512];
int buf len, msg len;

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf ("\n%s\n", msq);
/* Call sglglm() to get the complete text of the

* error message.

*/

ORACLE 4-39

Chapter 4
Pointer Variables

buf len = sizeof (err msq);
sqlglm(err msg, &buf len, &msg len);
printf("%$.*s\n", msg len, err msgq);

EXEC SQL ROLLBACK RELEASE;
exit (1) ;

4.9 Pointer Variables

C supports pointers, which "point" to other variables. A pointer holds the address
(storage location) of a variable, not its value.

4.9.1 Pointer Variable Declaration

You define pointers as host variables following the normal C practice, as the next
example shows:

int *int ptr;
char *char ptr;

4.9.2 Pointer Variable Referencing

ORACLE

In SQL statements, prefix pointers with a colon, as shown in the following example:

EXEC SQL SELECT intcol INTO :int ptr FROM ...

Except for pointers to character strings, the size of the referenced value is given by the
size of the base type specified in the declaration. For pointers to character strings, the
referenced value is assumed to be a NULL-terminated string. Its size is determined at
run time by calling the strlen() function.

You can use pointers to reference the members of a struct. First, declare a pointer
host variable, then set the pointer to the address of the desired member, as shown in
the example later. The datatypes of the struct member and the pointer variable must
be the same. Most compilers will warn you of a mismatch.

struct
{
int 1i;
char c;
} structvar;
int *i ptr;
char *c ptr;

main ()
{
i ptr = &structvar.i;
c_ptr = &structvar.c;
/* Use i ptr and c ptr in SQL statements. */

Related Topics

e Globalization Support

4-40

Chapter 4
Globalization Support

4.9.3 Structure Pointers

You can use a pointer to a structure as a host variable. The following example

» Declares a structure

» Declares a pointer to the structure

» Allocates memory for the structure

» Uses the struct pointer as a host variable in a query

» Dereferences the struct components to print the results

struct EMP REC

{
int emp number;
float salary;

}i

char *name = "HINAULT";

struct EMP REC *sal rec;
sal rec = (struct EMP REC *) malloc (sizeof (struct EMP REC));

EXEC SQL SELECT empno, sal INTO :sal rec

FROM emp
WHERE ename = :name;
printf ("Employee number and salary for %$s: ", name);

printf ("%d, %g\n", sal rec->emp number, sal rec->salary);

In the SQL statement, pointers to host structures are referred to in exactly the same way as a
host structure. The "address of" notation (&) is not required; in fact, it is an error to use it.

4.10 Globalization Support

ORACLE

Although the widely-used 7- or 8-bit ASCII and EBCDIC character sets are adequate to
represent the Roman alphabet, some Asian languages, such as Japanese, contain
thousands of characters. These languages can require at least 16 bits (two bytes) to
represent each character. How does Oracle deal with such dissimilar languages?

Oracle provides Globalization Support, which lets you process single-byte and multibyte
character data and convert between character sets. It also lets your applications run in
different language environments. With Globalization Support, number and date formats adapt
automatically to the language conventions specified for a user session. Thus, Globalization
Support allows users around the world to interact with Oracle in their native languages.

You control the operation of language-dependent features by specifying various Globalization
Support or NLS parameters. Default values for these parameters can be set in the Oracle
initialization file. The following table shows what each Globalization Support parameter
specifies.

Table 4-6 Globalization Support Parameters

___|
Globalization Support Parameter Specifies

NLS_LANGUAGE language-dependent conventions

4-41

Chapter 4
Globalization Support

Table 4-6 (Cont.) Globalization Support Parameters

Globalization Support Parameter Specifies

NLS TERRITORY territory-dependent conventions
NLS_DATE_FORMAT date format

NLS_DATE_LANGUAGE language for day and month names
NLS_NUMERIC_CHARACTERS decimal character and group separator
NLS_CURRENCY local currency symbol
NLS_ISO_CURRENCY ISO currency symbol

NLS_SORT sort sequence

The main parameters are NLS_LANGUAGE and NLS_TERRITORY.
NLS_ LANGUAGE specifies the default values for language-dependent features, which
include:

* Language for server messages
* Language for day and month names
* Sort sequence

NLS_TERRITORY specifies the default values for territory-dependent features, which
include

e Date format

» Decimal character

e Group separator

* Local currency symbol
e ISO currency symbol

You can control the operation of language-dependent Globalization Support features
for a user session by specifying the parameter NLS_LANG as follows:

NLS LANG = <language> <territory>.<character set>

where language specifies the value of NLS _LANGUAGE for the user session, territory
specifies the value of NLS_TERRITORY, and character set specifies the encoding
scheme used for the terminal. An encoding scheme (usually called a character set or
code page) is a range of numeric codes that corresponds to the set of characters a
terminal can display. It also includes codes that control communication with the
terminal.

You define NLS_LANG as an environment variable (or the equivalent on your system).
For example, on UNIX using the C shell, you might define NLS_LANG as follows:

setenv NLS LANG French France.WE8IS08859P1

During an Oracle database session you can change the values of Globalization
Support parameters. Use the ALTER SESSION statement as follows:

ALTER SESSION SET <globalization support parameter> = <value>

Pro*C/C++ fully supports all the Globalization Support features that allow your
applications to process foreign language data stored in an Oracle database. For

ORACLE 4-42

Chapter 4
NCHAR Variables

example, you can declare foreign language character variables and pass them to string
functions such as INSTRB, LENGTHB, and SUBSTRB. These functions have the same
syntax as the INSTR, LENGTH, and SUBSTR functions, respectively, but operate on a byte-
by-byte basis rather than a character-by-character basis.

You can use the functions NLS_INITCAP, NLS_LOWER, and NLS_UPPER to handle special
instances of case conversion. And, you can use the function NLSSORT to specify WHERE-
clause comparisons based on linguistic rather than binary ordering. You can even pass
globalization support parameters to the TO_CHAR, TO_DATE, and TO_NUMBER functions.

4.11 NCHAR Variables

Three internal database datatypes can store National Character Set data. They are NCHAR,
NCLOB, and NVARCHAR?Z (also known as NCHAR VARYING). You use these datatypes
only in relational columns.

4.11.1 CHARACTER SET [IS] NCHAR_CS

To specify which host variables hold National Character Set data, insert the clause
"CHARACTER SET [IS] NCHAR_CS" in character variable declarations. Then you are able to
store National Character Set data in those variables. You can omit the token IS. NCHAR_CS
is the name of the National Character Set.

For example:

char character set is nchar cs *str = "<Japanese string>";

In this example, <Japanese_string> consists of Unicode characters that are in the National
Character Set AL16UTF16, as defined by the variable NLS_NCHAR.

You can accomplish the same thing by entering NLS _CHAR=str on the command line, and
coding in your application:

char *str = "<Japanese string>"

Pro*C/C++ treats variables declared this way as of the character set specified by the
environment variable NLS_NCHAR. The variable size of an NCHAR variable is specified as a
byte count, the same way that ordinary C variables are.

To select data into str, use the following simple query:

EXEC SQL
SELECT ENAME INTO :str FROM EMP WHERE DEPT = n'<Japanese stringl>';

Or, you can use str in the following SELECT:

EXEC SQL
SELECT DEPT INTO :dept FROM DEPT TAB WHERE ENAME = :str;

4.11.2 Environment Variable NLS _NCHAR

Pro*C/C++ supports National Character Sets with database support when NLS_LOCAL=NO.
When NLS_LOCAL=NO, and the new environmental variable NLS_NCHAR is set to a valid
National Character Set, the database server supports NCHAR.

ORACLE 4-43

Chapter 4
NCHAR Variables

NLS_NCHAR specifies the character set used for National Character Set data
(NCHAR, NVARCHARZ2, NCLOB). If it is not specified, the character set defined or
indirectly defined by NLS_LANG will be used.

NLS_NCHAR must have a valid National Character Set specification (not a language
name, that is set by NLS_LANG) at both precompile-time and runtime. SQLLIB
performs a runtime check when the first SQL statement is executed. If the precompile-
time and runtime character sets are different, SQLLIB will return an error code.

4.11.3 CONVBUFSZ Clause in VAR

You can override the default assignments by equivalencing host variables to Oracle
external datatypes, using the EXEC SQL VAR statement, This is called host variable
equivalencing.

The EXEC SQL VAR statement can have an optional clause: CONVBUFSZ (<size>).
You specify the size, <size>, in bytes, of the buffer in the Oracle runtime library used
to perform conversion of the specified host variable between character sets.

The new syntax is:

EXEC SQL VAR host variable IS datatype [CONVBUFSZ [IS] (size)] ;

or

EXEC SQL VAR host variable [CONVBUFSZ [IS] (size)];

where datatype is:

type name [({ length | precision, scale })]

Related Topics
* VAR (Oracle Embedded SQL Directive)

4.11.4 Character Strings in Embedded SQL

A multibyte character string in an embedded SQL statement consists of a character
literal that identifies the string as multibyte, immediately followed by the string. The
string is enclosed in the usual single quotes.

For example, an embedded SQL statement such as

EXEC SQL SELECT empno INTO :emp num FROM emp
WHERE ename = N'<Japanese string>';

contains a multibyte character string (<Japanese_string> could actually be Kaniji),
since the N character literal preceding the string identifies it as a multibyte string.

Since Oracle is case-insensitive, you can use "n" or "N" in the example.

4.11.5 Strings Restrictions

ORACLE

You cannot use datatype equivalencing (the TYPE or VAR commands) with multibyte
character strings.

Dynamic SQL method 4 is not available for multibyte character string host variables in
Pro*C/C++.

4-44

Chapter 4
Handling Boolean Data

4.11.6 Indicator Variables

You can use indicator variables with host character variables that are multibyte characters (as
specified using the NLS_CHAR option).

4.12 Handling Boolean Data

With the Boolean data type support, applications can:

e Bind boolean, integer, and char types of data in BOOLEAN columns.

* Fetch BOOLEAN column data in boolean, integer, and char data type variables.
* Fetch metadata about a BOOLEAN column.

Fetching data from BOOLEAN type column returns true or false if data is fetched in ‘boolean’
type variable. If output variable type is INTEGER then 1 or O integer value is returned. If the
column value is NULL, then the declared variable is untouched.

¢ See Also:

e About Boolean Data Type Support
e Using Boolean Data Type

ORACLE 4-45

Advanced Topics

This chapter discusses advanced techniques in Pro*C/C++ and contains the following topics:

Character Data

Datatype Conversion

Datatype Equivalencing

The C Preprocessor

Precompiled Header Files

The Oracle Preprocessor

Evaluation of Numeric Constants
SQLLIB Extensions for OCI Release 8 Interoperability
Interface to OCI Release 8

Embedded OCI Release 7 Calls

New Names for SQLLIB Public Functions
X/Open Application Development

5.1 Character Data

This section explains how the Pro*C/C++ Precompiler handles character host variables.

There are four host variable character types:

Character arrays
Pointers to strings
VARCHAR variables
Pointers to VARCHARs

Do not confuse VARCHAR (a host variable data structure supplied by the precompiler) with

VARCHAR?2 (an Oracle internal datatype for variable-length character strings).

5.1.1 Precompiler Option CHAR_MAP

The CHAR_MAP precompiler option is available to specify the default mapping of char[n] and

char host variables. Oracle maps them to CHARZ. CHARZ implements the ANSI Fixed
Character format. Strings are fixed-length, blank-padded and null-terminated. VARCHAR2
values (including nulls) are always fixed-length and blank-padded. Table 5-1 shows the

possible settings of CHAR_MAP:

ORACLE

5-1

Chapter 5
Character Data

Table 5-1 CHAR_MAP Settings

CHAR_MAP Setting Is Default for Description
VARCHAR?2 - All values (including null) are fixed-length
blank-padded.
CHARZ DBMS=V7, Fixed-length blank-padded, then null-
DBMS=V8 terminated. Conforms to the ANSI Fixed
Character type.
STRING New format null-terminated. Conforms to ASCII format
used in C programs.
CHARF Previously, only Fixed-length blank-padded. null is left
through VAR or unpadded.

TYPE declarations.

The default mapping is CHAR_MAP=CHARZ, which was the case in previous versions
of Pro*C/C++.

Use CHAR_MAP=VARCHAR?2 instead of the old DBMS=V6_CHAR, which is obsolete.

5.1.2 Inline Usage of the CHAR_MAP Option

Unless you declared a char or char[n] variable otherwise, the inline CHAR_MAP option
determines its mapping. The following code fragment illustrates the results of setting
this option inline in Pro*C/C++:

char ch array[5];

strncpy (ch array, "12345", 5);

/* char map=charz is the default in Oracle7 and Oracle8 */
EXEC ORACLE OPTION (char map=charz);

/* Select retrieves a string "AB" from the database */

SQL SELECT ... INTO :ch array FROM ... WHERE ... ;

/* ch array == { 'A', 'B', " ', "', "\O' } ¥/

strncpy (ch array, "12345", 5);

EXEC ORACLE OPTION (char map=string) ;

/* Select retrieves a string "AB" from the database */
EXEC SQL SELECT ... INTO :ch array FROM ... WHERE ... ;
/* ch _array == { 'A', 'B', '\0', '4', '5' } ¥/

strncpy(ch array, "12345", 5);

EXEC ORACLE OPTION (char map=charf);

/* Select retrieves a string "AB" from the database */
EXEC SQL SELECT ... INTO :ch array FROM ... WHERE ... ;
/* ch_array =={ IAI, 'B', 1 l, 1 l’ L } */

5.1.3 Effect of the DBMS and CHAR_MAP Options

ORACLE

The DBMS and CHAR_MAP options determine how Pro*C/C++ treats data in
character arrays and strings. These options allow your program to observe
compatibility with ANSI fixed-length strings, or to maintain compatibility with previous
releases of Oracle and Pro*C/C++ that use variable-length strings.

The DBMS option affects character data both on input (from your host variables to the
Oracle table) and on output (from an Oracle table to your host variables).

5-2

Chapter 5
Character Data

Character Array and the CHAR_MAP Option

The mapping of character arrays can also be set by the CHAR_MAP option independent of
the DBMS option. DBMS=V7 or DBMS=V8 both use CHAR_MAP=CHARZ, which can be
overridden by specifying either CHAR_MAP=VARCHAR?2 or STRING or CHARF.

Related Topics

e Precompiler Options

5.1.3.1 On Input

ORACLE

Character Array

On input, the DBMS option determines the format that a host variable character array must
have in your program. When the CHAR_MAP=VARCHAR?2, host variable character arrays
must be blank padded, and should not be null-terminated. When the DBMS=V7 or V8,
character arrays must be null-terminated (\0").

When the CHAR_MAP option is set to VARCHAR?2 trailing blanks are removed up to the first
non-blank character before the value is sent to the database. An un-initialized character array
can contain null characters. To make sure that the nulls are not inserted into the table, you
must blank-pad the character array to its length. For example, if you execute the statements:

char emp name([10];

strcpy (emp _name, "MILLER"); /* WRONG! Note no blank-padding */
EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES
(1234, :emp name, 20);

you will find that the string "MILLER" was inserted as "MILLER\O\0O\0\0" (with four null bytes
appended to it). This value does not meet the following search condition:

. WHERE ename = 'MILLER';

To INSERT the character array when CHAR_MAP is set to VARCHARZ2, you should execute
the statements

strncpy (emp name, "MILLER ", 10); /* 4 trailing blanks */
EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES
(1234, :emp name, 20);

When DBMS=V7 or V8, input data in a character array must be null-terminated. So, make
sure that your data ends with a null.

char emp name[11]; /* Note: one greater than column size of 10 */
strcpy (emp name, "MILLER"); /* No blank-padding required */

EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES
(1234, :emp name, 20);

Note:

During the execution of insert statements, when CHAR_MAP=CHARZ or CHARF,
any bind variables with right spaces are trimmed.

5-3

Chapter 5
Character Data

Character Pointer

The pointer must address a null-terminated buffer that is large enough to hold the input
data. Your program must allocate enough memory to do this.

5.1.3.2 On Input

The following example illustrates all possible combinations of the effects of the
CHAR_MAP option settings on the value retrieved from a database into a character
array.

Assume a database

TABLE strdbase (..., strval VARCHARZ2 (6));

which contains the following strings in the column strval:

nn -- string of length 0

"AB" -- string of length 2
"KING" -- string of length 4
"QUEEN" -- string of length 5
"MILLER" -- string of length 6

In a Pro*C/C++ program, initialize the 5-character host array str with 'X' characters and
use for the retrieval of all the values in column strval:

char str[5] = {'X', 'X', 'X','X', 'X'} ;
short str_ind;

EXEC SQL SELECT strval INTO :str:str ind WHERE ... ;

with the following results for the array, str, and the indicator variable, str_ind, as
CHAR_MAP is set to VARCHAR2, CHARF, CHARZ and STRING:

strval = "" "AB" "KING" "QUEEN" "MILLER"

VARCHAR2 " " -1 "AB "0 "KING " O "QUEEN" 0 "MILLE" 6
CHARF "XXXXX" -1 "AB "0 "KING " O "QUEEN" 0 "MILLE" 6
CHARZ " 0" -1 "AB 0" 0 "KINGO" O "QUEEQ" 5 "MILLO" 6
STRING "0XXXX" -1 "ABOXX" 0 "KINGO" 0 "QUEEO" 5 "MILLO" 6

where 0 stands for the null character, \O'.

5.1.3.3 On Output

ORACLE

Character Array

On output, the DBMS and CHAR_MAP options determines the format that a host
variable character array will have in your program. When CHAR_MAP=VARCHAR?2,
host variable character arrays are blank padded up to the length of the array, but never
null-terminated. When DBMS=V7 or V8 (or CHAR_MAP=CHARZ), character arrays
are blank padded, then null-terminated in the final position in the array.

Consider the following example of character output:

CREATE TABLE test char (C _col CHAR(10), V _col VARCHARZ(10));

INSERT INTO test char VALUES ('MILLER', 'KING');

5-4

Chapter 5
Character Data

A precompiler program to select from this table contains the following embedded SQL:

char namel[10]
char name2[10]

’
’

EXEC SQL SELECT C _col, V_col INTO :namel, :name2
FROM test char;

If you precompile the program with CHAR_MAP=VARCHAR2, name1 will contain:

"MILLER###4"

that is, the name "MILLER" followed by 4 blanks, with no null-termination. (If namel had been
declared with a size of 15, there are 9 blanks following the name.)

name?2 will contain:

"KINGH#####" /* 6 trailing blanks */

If you precompile the program with DBMS=V7 or V8, namel will contain:

"MILLER###\0" /* 3 trailing blanks, then a null-terminator */

that is, a string containing the name, blank-padded to the length of the column, followed by a
null terminator. name2 will contain:

"KINGH####\0"

In summary, if CHAR_MAP=VARCHARZ2, the output from either a CHARACTER column or a
VARCHAR2 column is blank-padded to the length of the host variable array. If DBMS=V7 or
V8, the output string is always null-terminated.

Character Pointer

The DBMS and CHAR_MAP options do not affect the way character data are output to a
pointer host variable.

When you output data to a character pointer host variable, the pointer must point to a buffer
large enough to hold the output from the table, plus one extra byte to hold a null terminator.

The precompiler runtime environment calls strlen () to determine the size of the output
buffer, so make sure that the buffer does not contain any embedded nulls (\0"). Fill allocated
buffers with some value other than "\0', then null-terminate the buffer, before fetching the data.

Note:

C pointers can be used in a Pro*C/C++ program that is precompiled with DBMS=V7
or V8 and MODE=ANSI. However, pointers are not legal host variable types in a
SQL standard compliant program. The FIPS flagger warns you if you use pointers
as host variables.

The following code fragment uses the columns and table defined in the previous section, and
shows how to declare and SELECT into character pointer host variables:

char *p namel;

ORACLE 5-5

Chapter 5
Character Data

char *p name2;

p namel = (char *) malloc(

11);

p name2 = (char *) malloc(11);

strcpy (p_namel, " ")
)

’

strcpy (p_name2, "0123456789"

EXEC SQL SELECT C col, V col INTO :p namel, :p name2
FROM test char;

When the SELECT statement mentioned earlier is executed with any DBMS or
CHAR_MAP setting, the value fetched is:

"MILLER####\0" /* 4 trailing blanks and a null terminator */

"KINGH#####\0" /* 6 blanks and null */

5.1.4 VARCHAR Variables and Pointers

The following example shows how VARCHAR host variables are declared:

VARCHAR emp namel([10]; /* VARCHAR variable */
VARCHAR *emp name2; /* pointer to VARCHAR */

5.1.4.1 On Input

ORACLE

VARCHAR Variables

When you use a VARCHAR variable as an input host variable, your program need only
place the desired string in the array member of the expanded VARCHAR declaration
(emp_namel.arr in our example) and set the length member (emp_namel.len). There
is no need to blank-pad the array. Exactly emp_namel.len characters are sent to
Oracle, counting any blanks and nulls. In the following example, you set
emp_namel.len to 8:

strcpy ((char *)emp namel.arr, "VAN HORN");
emp_namel.len = strlen((char *)emp_namel.arr);

Pointer to a VARCHAR

When you use a pointer to a VARCHAR as an input host variable, you must allocate
enough memory for the expanded VARCHAR declaration. Then, you must place the
desired string in the array member and set the length member, as shown in the
following example:

emp name2 = malloc(sizeof (short) + 10) /* len + arr */
strcpy ((char *)emp_nam62—>arr, "MILLER");
emp_name2—>len = strlen((char *)emp_name2—>arr);

Or, to make emp_name2 point to an existing VARCHAR (emp_namel in this case),
you could code the assignment

emp name2 = &emp namel;

then use the VARCHAR pointer in the usual way, as in

EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (:emp number, :emp nameZ2, :dept number);

5-6

Chapter 5
Character Data

5.1.4.2 On Output

VARCHAR Variables

When you use a VARCHAR variable as an output host variable, the program interface sets
the length member but does not null-terminate the array member. As with character arrays,
your program can null-terminate the arr member of a VARCHAR variable before passing it to
a function such as printf () or strlen(). An example follows:

emp namel.arr[emp namel.len] = '\0';
printf ("%s", emp namel.arr);

Or, you can use the length member to limit the printing of the string, as in:

printf ("%.*s", emp namel.len, emp namel.arr);

An advantage of VARCHAR variables over character arrays is that the length of the value
returned by Oracle is available immediately. With character arrays, you might need to strip
the trailing blanks yourself to get the actual length of the character string.

VARCHAR Pointers

When you use a pointer to a VARCHAR as an output host variable, the program interface
determines the variable's maximum length by checking the length member (emp_name2->len
in our example). So, your program must set this member before every fetch. The fetch then
sets the length member to the actual number of characters returned, as the following
example shows:

emp name2->len = 10; /* Set maximum length of buffer. */
EXEC SQL SELECT ENAME INTO :emp_nameZ WHERE EMPNO = 7934;
printf ("%d characters returned to emp name2", emp name2->len);

5.1.5 Unicode Variables

ORACLE

Pro*C/C++ allows fixed-width Unicode data (character set Unicode Standard Version 3.0,
known simply as UCS-16) in host char variables. UCS-16 uses 2 bytes for each character, so
it is an unsigned 2-byte datatype. SQL statement text in UCS-16 is not supported yet.

In the following example code a host variable, employee, of the Unicode type utext is declared
to be 20 Unicode characters long. A table emp is created containing the column ename, which
is 60 bytes long, so that database character sets in Asian languages, where multibyte
characters are up to three bytes long, will be supported.

utext employee[20] ; /* Unicode host variable */
EXEC SQL CREATE TABLE emp (ename CHAR(60));

/* ename is in the current database character set

*/

EXEC SQL INSERT INTO emp (ename) VALUES ('test') ;

/* 'test' in NLS LANG encoding converted to database character set */

EXEC SQL SELECT * INTO :employee FROM emp ;

/* Database character set converted to Unicode */

A public header file, sglucs2.h, must be included in your application code. It does the
following:

e Contains the statement:

#include <oratypes.h>

5-7

Chapter 5
Character Data

* Defines a "Unicode varchar", uvarchar, as:

struct uvarchar
{

ub2 len;

utext arr[l] ;
}s

typedef struct uvarchar uvarchar ;

» Defines a "Unicode long varchar”, ulong_varchar, as:

struct ulong varchar
{

ub4 len ;

utext arr([1l] ;

}

typedef struct ulong varchar ulong varchar ;

The default datatype of utext is the same as the default for any character variables,
CHARZ, which is blank-padded and null-terminated.

Use the CHAR_MAP precompiler option to change the default datatype, as follows:

#include <sqlca.h>
#include <sqlucs2.h>

main ()

{
utext employeel[20] ;

/* Change to STRING datatype: */
EXEC ORACLE OPTION (CHARiMAPZSTRING) ;
utext employee2[20] ;

EXEC SQL CREATE TABLE emp (ename CHAR(60)) ;

/***

Initializing employeel or employee2 is compiler-dependent.
*‘k***************‘k***************‘k************************/

EXEC SQL INSERT INTO emp (ename) VALUES (:employeel) ;

EXEC SQL SELECT ename INTO :employee2 FROM emp;
/* employee2 is now not blank-padded and is null-terminated */

5.1.5.1 Restrictions on Unicode Variable Usage

ORACLE

e Static and dynamic SQL cannot contain Unicode in the SQL statement text. The
following is not permitted:

#include oratypes.h
utext sglstmt[100] ;

/* If sqglstmt contains a SQL statement: */
EXEC SQL PREPARE sl FROM :sqglstmt ;
EXEC SQL EXECUTE IMMEDIATE :sqglstmt ;

* You cannot use type equivalencing for utext variables. The following code is not
permitted:

5-8

Chapter 5
Datatype Conversion

typedef utext utext 5 ;
EXEC SQL TYPE utext 5 IS STRING ;

 CONVBUFSZ cannot be used as a conversion buffer size. Use the CHAR_MAP option
instead.
e Oracle dynamic SQL method 4 does not support Unicode.

» Object types do not support Unicode.

Related Topics

¢ CONVBUFSZ Clause in VAR
* ANSI Dynamic SQL

* Objects

5.2 Datatype Conversion

At precompile time, a default external datatype is assigned to each host variable. For
example, the precompiler assigns the INTEGER external datatype to host variables of type
short int and int.

At run time, the datatype code of every host variable used in a SQL statement is passed to
Oracle. Oracle uses the codes to convert between internal and external datatypes.

Before assigning a SELECTed column (or pseudocolumn) value to an output host variable,
Oracle must convert the internal datatype of the source column to the datatype of the host
variable. Likewise, before assigning or comparing the value of an input host variable to a
column, Oracle must convert the external datatype of the host variable to the internal
datatype of the target column.

Conversions between internal and external datatypes follow the usual data conversion rules.
For example, you can convert a CHAR value of "1234" to a C short value. You cannot convert
a CHAR value of "65543" (number too large) or "10F" (hnumber not decimal) to a C short
value. Likewise, you cannot convert a char [n] value that contains any alphabetic characters
to a NUMBER value.

5.3 Datatype Equivalencing

Datatype equivalencing lets you control the way Oracle interprets input data, and the way
Oracle formats output data. It provides the ability to override the default external datatypes
that the precompiler assigns. On a variable-by-variable basis, you can map (or make
equivalent) supported C host variable datatypes to Oracle external datatypes. You can also
map user-defined datatypes to Oracle external datatypes.

5.3.1 Host Variable Equivalencing

By default, the Pro*C/C++ Precompiler assigns a specific external datatype to every host
variable.

Table 5-2 lists the default assignments:

ORACLE 5-9

Chapter 5
Datatype Equivalencing

Table 5-2 Default Type Assignments

C Type, or Pseudotype Oracle External Type Notes

char VARCHAR2 (CHAR_MAP=VARCHAR?2)

char[n] CHARZ (DBMS=V7, V8 default)

char* STRING (CHAR_MAP=STRING)
CHARF (CHAR_MAP=CHARF)

int, int* INTEGER -

short, short* INTEGER -

long, long* INTEGER -

long long, long long* INTEGER -

float, float* FLOAT -

double, double* FLOAT -

VARCHAR*, VARCHAR[N] VARCHAR -

bool BOOLEAN -

With the VAR statement, you can override the default assignments by equivalencing
host variables to Oracle external datatypes. The syntax you use is

EXEC SQL VAR host_variable IS type name [(length)];

where host_variable is an input or output host variable (or host array) declared earlier,
type_name is the name of a valid external datatype, and length is an integer literal
specifying a valid length in bytes.

Host variable equivalencing is useful in several ways. For example, suppose you want
to SELECT employee names from the EMP table, then pass them to a routine that
expects null-terminated strings. You need not explicitly null-terminate the names.
Simply equivalence a host variable to the STRING external datatype, as follows:

char emp name[11];
EXEC SQL VAR emp name IS STRING(11);

The length of the ENAME column in the EMP table is 10 characters, so you allot the
new emp_name 11 characters to accommodate the null terminator. When you
SELECT a value from the ENAME column into emp_name, the program interface null-
terminates the value for you.

You can use any external datatypes except NUMBER (for example, VARNUM).
Related Topics

» External Datatypes

5.3.2 User-Defined Type Equivalencing

ORACLE

You can also map (or make equivalent) user-defined datatypes to Oracle external
datatypes. First, define a new datatype structured like the external datatype that suits
your needs. Then, map your new datatype to the external datatype using the TYPE
statement.

5-10

Chapter 5
Datatype Equivalencing

With the TYPE statement, you can assign an Oracle external datatype to a whole class of
host variables. The syntax you use is:

EXEC SQL TYPE user type IS type name [(length)] [REFERENCE];

Suppose you need a variable-length string datatype to hold graphics characters. First,
declare a struct with a short length component followed by a 65533-byte data component.
Second, use typedef to define a new datatype based on the struct. Then, equivalence your
new user-defined datatype to the VARRAW external datatype, as shown in the following
example:

struct screen

{
short len;
char buff[4000];
i
typedef struct screen graphics;

EXEC SQL TYPE graphics IS VARRAW(4000);
graphics crt; — host variable of type graphics

You specify a length of 4000 bytes for the new graphics type because that is the maximum
length of the data component in your struct. The precompiler allows for the len component
(and any padding) when it sends the length to the Oracle server.

5.3.2.1 REFERENCE Clause

You can declare a user-defined type to be a pointer, either explicitly, as a pointer to a scalar
or struct type, or implicitly, as an array, and use this type in an EXEC SQL TYPE statement.
In this case, you must use the REFERENCE clause at the end of the statement, as shown in
the following example:

typedef unsigned char *my raw;

EXEC SQL TYPE my raw IS VARRAW(4000) REFERENCE;
my raw graphics buffer;

graphics_buffer = (my raw) malloc(4004);

In this example, you allocated additional memory over the type length (4000). This is
necessary because the precompiler also returns the length (the size of a short), and can add
padding after the length due to word alignment restrictions on your system. If you do not
know the alignment practices on your system, make sure to allocate sufficient extra bytes for
the length and padding (9 should usually be sufficient).

Related Topics

e Example Program: Using sqlvcp()

5.3.3 CHARF External Datatype

ORACLE

CHAREF is a fixed-length character string. You can use this datatype in VAR and TYPE
statements to equivalence C datatypes to the fixed-length SQL standard datatype CHAR,
regardless of the setting of the DBMS or CHAR_MAP option.

When DBMS=V7 or V8, specifying the external datatype CHARACTER in a VAR or TYPE
statement equivalences the C datatype to the fixed-length datatype CHAR (datatype code

5-11

Chapter 5
Datatype Equivalencing

96). However, when CHAR_MAP=VARCHAR?Z2, the C datatype is equivalenced to the
variable-length datatype VARCHAR?2 (code 1).

Now, you can always equivalence C datatypes to the fixed-length SQL standard type
CHARACTER by using the CHARF datatype in the VAR or TYPE statement. When
you use CHARF, the equivalence is always made to the fixed-length character type,
regardless of the setting of the DBMS or CHAR_MAP option.

5.3.4 The EXEC SQL VAR and TYPE Directives

You can code an EXEC SQL VAR ... or EXEC SQL TYPE ... statement anywhere in
your program. These statements are treated as executable statements that change the
datatype of any variable affected by them from the point that the TYPE or VAR
statement was made to the end of the scope of the variable. If you precompile with
MODE=ANSI, you must use Declare Sections. In this case, the TYPE or VAR
statement must be in a Declare Section.

Related Topics
e TYPE (Oracle Embedded SQL Directive)
VAR (Oracle Embedded SQL Directive)

5.3.5 Example: Datatype Equivalencing (sample4.pc):

ORACLE

The demonstration program in this section shows you how you can use datatype
equivalencing in your Pro*C/C++ programs. This program is available as sample4.pc
in the demo directory.lt demonstrates the use of type equivalencing using the LONG
VARRAW external datatype. In order to provide a useful example that is portable
across different systems, the program inserts binary files into and retrieves them from
the database.

This program uses LOB embedded SQL statements.

Please read the introductory comments for an explanation of the program's purpose.

/******‘k**
sample4d.pc

This program demonstrates the use of type equivalencing using the
LONG VARRAW external datatype. In order to provide a useful example
that is portable across different systems, the program inserts
binary files into and retrieves them from the database. For
example, suppose you have a file called 'hello' in the current
directory. You can create this file by compiling the following
source code:

#include <stdio.h>
int main ()
{
printf ("Hello World!\n");
}

When this program is run, we get:

Shello
Hello World!

Here is some sample output from a run of sampled:

5-12

ORACLE

$sampled
Connected.

Do you want to create (or re-create) the EXECUTABLES table (y/n)? y
EXECUTABLES table successfully dropped. Now creating new table...

EXECUTABLES table created.

Sample 4 Menu. Would you like to:

I)nsert a new executable into the database
R)etrieve an executable from the database
ist the executables stored in the database
elete an executable from the database

(
(
(
(
(Q)uit the program

)
L)
D)

)

Enter i, r, 1, or q: 1

Executables Length (bytes)

Total Executables: 0

Sample 4 Menu. Would you like to:

I)nsert a new executable into the database
R)etrieve an executable from the database
ist the executables stored in the database
elete an executable from the database

(
(
(
(
(Q)uit the program

)
L)
D)

)

Enter i, r, 1, or gq: i

Enter the key under which you will insert this executable: hello
Enter the filename to insert under key 'hello'.

If the file is not in the current directory, enter the full
path: hello

Inserting file 'hello' under key 'hello'...

Inserted.

Sample 4 Menu. Would you like to:

I)nsert a new executable into the database
R)etrieve an executable from the database
ist the executables stored in the database
elete an executable from the database

(
(
(
(
(Q)uit the program

)
L)
D)

)

Enter i, r, 1, or q: 1

Executables Length (bytes)

Total Executables: 1

Sample 4 Menu. Would you like to:

I)nsert a new executable into the database
R)etrieve an executable from the database
ist the executables stored in the database
elete an executable from the database

(
(
(
(
(Q)uit the program

)
L)
D)

)

Enter i, r, 1, or q: r
Enter the key for the executable you wish to retrieve: hello

Enter the file to write the executable stored under key hello into.

Chapter 5

Datatype Equivalencing

If you

5-13

ORACLE

Chapter 5
Datatype Equivalencing

don't want the file in the current directory, enter the

full path: hl

Retrieving executable stored under key 'hello' to file 'hl'...
Retrieved.

Sample 4 Menu. Would you like to:

I)nsert a new executable into the database
R)etrieve an executable from the database
ist the executables stored in the database
elete an executable from the database

(
(
(
(
(Q)uit the program

)
L)
D)

)

Enter i, r, 1, or q: g
We now have the binary file 'hl' created, and we can run it:

$hl
Hello World!

*******‘k***************‘k***************‘k***************‘k*******/

#include <oci.h>

#include <string.h>
#include <stdio.h>
#include <sglca.h>
#include <stdlib.h>
#include <sglcpr.h>

/* Oracle error code for 'table or view does not exist'. */
#define NON EXISTENT -942
#define NOT_FOUND 1403

/* This is the definition of the long varraw structure.
* Note that the first field, len, is a long instead
* of a short. This is becuase the first 4
* bytes contain the length, not the first 2 bytes.
*/
typedef struct long varraw {
ub4 len;
text buf[l];
} long varraw;

/* Type Equivalence long varraw to LONG VARRAW.
* All variables of type long varraw from this point
* on in the file will have external type 95 (LONG VARRAW)
* associated with them.
*/
EXEC SQL TYPE long varraw IS LONG VARRAW REFERENCE;

/* This program's functions declared. */
#if defined(_ STDC_)
void do_connect (void);
void create table(void);
void sql error(char *);
void list executables(void);
void print menu(void);
void do insert (varchar *, char *);
void do retrieve(varchar *, char *);
void do delete(varchar *);
ub4 read file(char *, OCIBlobLocator *);

5-14

Chapter 5
Datatype Equivalencing

void write file(char *, OCIBlobLocator *);
#else

void do_connect (/*_ wvoid */);

void create table(/*_ void */);

void sql error(/* char * */);

void list executables(/* void */);

void print menu(/* void */);

void do_insert(/* wvarchar *, char * */);

void do retrieve(/* wvarchar *, char * */);

void do _delete(/* varchar * */);

ub4 read file(/* char *, OCIBlobLocator * */);

void write file(/* char *, OCIBlobLocator * */);
#endif

void main ()

{
char reply[20], filename[100];
varchar key[20];
short ok = 1;

/* Connect to the database. */
do_connect () ;

printf ("Do you want to create (or re-create) the EXECUTABLES table (y/n)? ");
gets (reply);

if ((reply[0] == '"y") || (replyl0] == 'Y"))
create table();

/* Print the menu, and read in the user's selection. */
print menu();
gets (reply);

while (ok)
{

switch (reply[0]) {

case 'I': case 'i':
/* User selected insert - get the key and file name. */
printf ("Enter the key under which you will insert this executable: ");
key.len = strlen(gets((char *)key.arr));
printf ("Enter the filename to insert under key '%$.*s'.\n",

key.len, key.arr);

printf ("If the file is not in the current directory, enter the full\n");
printf ("path: ");
gets(filename);
do_insert ((varchar *)&key, filename);
break;

case 'R': case 'r':
/* User selected retrieve - get the key and file name. */
printf ("Enter the key for the executable you wish to retrieve: ");
key.len = strlen(gets((char *)key.arr));
printf ("Enter the file to write the executable stored under key ");
printf ("%$.*s into. If you\n", key.len, key.arr);
printf("don't want the file in the current directory, enter the\n");
printf ("full path: ");
gets(filename);
do retrieve ((varchar *)s&key, filename);
break;

case 'L': case 'l':
/* User selected list - just call the list routine. */
list executables();

ORACLE 5-15

ORACLE

Chapter 5

Datatype Equivalencing

break;
case 'D': case 'd':

/* User selected delete - get the key for the executable to delete. */

printf ("Enter the key for the executable you wish to delete: ");

key.len = strlen(gets((char *)key.arr));
do delete((varchar *)s&key);
break;
case 'Q': case 'q':
/* User selected quit - just end the loop. */
ok = 0;
break;
default:
/* Invalid selection. */
printf ("Invalid selection.\n");
break;

if (ok)

{
/* Print the menu again. */
print menu();
gets (reply);

}

EXEC SQL COMMIT WORK RELEASE;

/* Connect to the database. */
void do connect ()
{
/* Note this declaration: uid is a char * pointer, so Oracle
will do a strlen() on it at runtime to determine the length.
*/

char *uid = "scott/tiger";

EXEC SQL WHENEVER SQLERROR DO sgl error ("do connect () :CONNECT");
EXEC SQL CONNECT :uid;

printf ("Connected.\n");

/* Creates the executables table. */
void create table ()

{

/* We are going to check for errors ourselves for this statement.

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL DROP TABLE EXECUTABLES;
if (sglca.sglcode == 0)
{
printf ("EXECUTABLES table successfully dropped. ");
printf ("Now creating new table...\n");
}
else if (sglca.sqlcode == NON EXISTENT)
{
printf ("EXECUTABLES table does not exist. ");
printf ("Now creating new table...\n");

}

*/

5-16

ORACLE

Chapter 5
Datatype Equivalencing

else
sql _error("create table()");

/* Reset error handler. */
EXEC SQL WHENEVER SQLERROR DO sqgl error("create table():CREATE TABLE");

EXEC SQL CREATE TABLE EXECUTABLES
(name VARCHARZ2 (30), length NUMBER(10), binary BLOB) ;

printf ("EXECUTABLES table created.\n");
}

/* Opens the binary file identified by 'filename' for reading, and writes
it into into a Binary LOB. Returns the actual length of the file read.
*/
ub4 read file(filename, blob)
char *filename;
OCIBlobLocator *blob;

long varraw *lvr;

ub4 bufsize;

ub4 amt;

ub4 filelen, remainder, nbytes;
ub4 offset = 1;

boolean last = FALSE;
FILE *in fd;

/* Open the file for reading. */
in fd = fopen(filename, "r");
if (in_fd == (FILE *)0)

return (ub4)0;

/* Determine Total File Length - Total Amount to Write to BLOB */
(void) fseek(in fd, 0L, SEEK END);
amt = filelen = (ubd4)ftell(in fd);

/* Determine the Buffer Size and Allocate the LONG VARRAW Object */
bufsize = 2048;
lvr = (long varraw *)malloc(sizeof (ub4) + bufsize);

nbytes = (filelen > bufsize) ? bufsize : filelen;

/* Reset the File Pointer and Perform the Initial Read */

(void) fseek(in fd, 0L, SEEK SET);

lvr->len = fread((void *)lvr->buf, (size t)l, (size t)nbytes, in fd);
remainder = filelen - nbytes;

EXEC SQL WHENEVER SQLERROR DO sgl error("read file() :WRITE");

if (remainder == 0)
{
/* Write the BLOB in a Single Piece */
EXEC SQL LOB WRITE ONE :amt
FROM :lvr WITH LENGTH :nbytes INTO :blob AT :offset;

else
{
/* Write the BLOB in Multiple Pieces using Standard Polling */
EXEC SQL LOB WRITE FIRST :amt
FROM :lvr WITH LENGTH :nbytes INTO :blob AT :offset;

5-17

ORACLE

/* Generic error handler.

{

Chapter 5
Datatype Equivalencing

if (remainder > bufsize)
nbytes = bufsize;

else
{
nbytes = remainder;
last = TRUE;
}
if ((lvr->len = fread(

(void *)1lvr->buf, (size t)l1, (size t)nbytes, in fd)) != nbytes)
last = TRUE;
if (last)
{
/* Write the Final Piece */
EXEC SQL LOB WRITE LAST :amt
FROM :lvr WITH LENGTH :nbytes INTO :blob;
}
else
{
/* Write an Interim Piece - Still More to Write */
EXEC SQL LOB WRITE NEXT :amt
FROM :lvr WITH LENGTH :nbytes INTO :blob;
}
remainder -= nbytes;
} while (!last && !feof(in fd));

}
/* Close the file, and return the total file size. */
fclose (in_fd);
free(lvr);
return filelen;

The 'routine' parameter should contain the name
of the routine executing when the error occured. This would be specified
in the 'EXEC SQL WHENEVER SQLERROR DO sql error()' statement.

*/

void sql error(routine)

{

char *routine;
char message buffer[512];
size t buffer size;

size t message length;

/* Turn off the call to sql error() to avoid a possible infinite loop */
EXEC SQL WHENEVER SQLERROR CONTINUE;

printf ("\nOracle error while executing %s!\n", routine);

/* Use sqglglm() to get the full text of the error message. */
buffer size = sizeof (message buffer);

sqlglm(message buffer, &buffer size, s&message length);

printf("%.*s\n", message length, message buffer);

EXEC SQL ROLLBACK WORK RELEASE;

5-18

Chapter 5
Datatype Equivalencing

exit (1),

/* Opens the binary file identified by 'filename' for writing, and copies
the contents of the Binary LOB into it.
*/
void write file(filename, blob)
char *filename;
OCIBlobLocator *blob;

FILE *out fd; /* File descriptor for the output file */
ub4 amt;
ub4 bufsize;

long varraw *lvr;

/* Determine the Buffer Size and Allocate the LONG VARRAW Object */
bufsize = 2048;
lvr = (long varraw *)malloc(sizeof (ub4) + bufsize);

/* Open the output file for Writing */
out fd = fopen(filename, "w");

if (out_fd == (FILE *)0)

return;
amt = 0; /* Initialize for Standard Polling (Possibly) */
lvr->len = bufsize; /* Set the Buffer Length */

EXEC SQL WHENEVER SQLERROR DO sgl error ("write file() :READ");

/* READ the BLOB using a Standard Polling Loop */
EXEC SQL WHENEVER NOT FOUND DO break;
while (TRUE)
{
EXEC SQL LOB READ :amt FROM :blob INTO :lvr WITH LENGTH :bufsize;
(void) fwrite((void *)lvr->buf, (size t)1l, (size t)lvr->len, out fd);

EXEC SQL WHENEVER NOT FOUND CONTINUE;

/* Write the Final Piece (or First and Only Piece if not Polling) */
(void) fwrite((void *)lvr->buf, (size t)lvr->len, (size t)1, out fd);

/* Close the Output File and Return */
fclose (out fd);

free(lvr);

return;

/* Inserts the binary file identified by file into the
* executables table identified by key.
*/
void do insert (key, file)
varchar *key;
char *file;

OCIBlobLocator *blob;
ub4 loblen, fillen;

ORACLE 5-19

ORACLE

Chapter 5
Datatype Equivalencing

EXEC SQL ALLOCATE :blob;
EXEC SQL WHENEVER SQLERROR DO sql_error("do_insert():INSERT/SELECT");

EXEC SQL SAVEPOINT PREINSERT;
EXEC SQL INSERT
INTO executables (name, length, binary) VALUES (:key, 0, empty blob());

EXEC SQL SELECT binary INTO :blob
FROM executables WHERE name = :key FOR UPDATE;

printf(
"Inserting file '%s' under key '$.*s'...\n", file, key->len, key->arr);

fillen = read file(file, blob);
EXEC SQL LOB DESCRIBE :blob GET LENGTH INTO :loblen;

if ((fillen == 0) || (fillen != loblen))
{
printf ("Problem reading file '%s'\n", file);
EXEC SQL ROLLBACK TO SAVEPOINT PREINSERT;
EXEC SQL FREE :blob;
return;

EXEC SQL WHENEVER SQLERROR DO sgl error("do insert():UPDATE");
EXEC SQL UPDATE executables
SET length = :loblen, binary = :blob WHERE name = :key;

EXEC SQL COMMIT WORK;
EXEC SQL FREE :blob;

EXEC SQL COMMIT;
printf ("Inserted.\n");

/* Retrieves the executable identified by key into file */
void do retrieve (key, file)

varchar *key;
char *file;

OCIBlobLocator *blob;

printf ("Retrieving executable stored under key '%$.*s' to file '%s'...\n",
key->len, key->arr, file);

EXEC SQL ALLOCATE :blob;

EXEC SQL WHENEVER NOT FOUND continue;
EXEC SQL SELECT binary INTO :blob FROM executables WHERE name = :key;

if (sqglca.sglcode == NOT FOUND)
printf ("Key '$.*s' not found!\n", key->len, key->arr);
else
{
write file(file, blob);
printf ("Retrieved.\n");
}

EXEC SQL FREE :blob;

5-20

Chapter 5
Datatype Equivalencing

/* Delete an executable from the database */

void do delete (key)
varchar *key;

{
EXEC SQL WHENEVER SQLERROR DO sgl error("do delete() :DELETE");
EXEC SQL DELETE FROM executables WHERE name = :key;

if (sqglca.sglcode == NOT FOUND)

printf("Key '$.*s' not found!\n", key->len, key->arr);
else

printf ("Deleted.\n");

/* List all executables currently stored in the database */
void list executables()
{

char key([21];

ub4 length;

EXEC SQL WHENEVER SQLERROR DO sgl error("list executables");

EXEC SQL DECLARE key_cursor CURSOR FOR
SELECT name, length FROM executables;

EXEC SQL OPEN key cursor;

printf ("\nExecutables Length (bytes)\n");
printf("-------mmmmmmmm s oo \n") ;

EXEC SQL WHENEVER NOT FOUND DO break;

while (1)

{
EXEC SQL FETCH key cursor INTO :key, :length;
printf ("%s $10d\n", key, length);

}

EXEC SQL WHENEVER NOT FOUND CONTINUE;
EXEC SQL CLOSE key cursor;

printf ("\nTotal Executables: %d\n", sqglca.sqlerrd[2]);

/* Prints the menu selections. */
void print menu()

{

printf ("\nSample 4 Menu. Would you like to:\n");
printf (" (I)nsert a new executable into the database\n");
printf (" (R)etrieve an executable from the database\n");
printf (" (L)ist the executables stored in the database\n");
printf (" (D)elete an executable from the database\n");
printf (" (Q)uit the program\n\n");

printf ("Enter i, r, 1, or gq: ");

ORACLE 5-21

Chapter 5
The C Preprocessor

Related Topics
« LOBs

5.4 The C Preprocessor

Pro*C/C++ supports most C preprocessor directives. Some of the things that you can
do using the Pro*C/C++ preprocessor are:

» Define constants and macros using the #define directive, and use the defined
entities to parameterize Pro*C/C++ datatype declarations, such as VARCHAR

» Read files required by the precompiler, such as sqlca.h, using the #include
directive

» Define constants and macros in a separate file, and have the precompiler read this
file using the #include directive

5.4.1 How the Pro*C/C++ Preprocessor Works

The Pro*C/C++ preprocessor recognizes most C preprocessor commands, and
effectively performs the required macro substitutions, file inclusions, and conditional
source text inclusions or exclusions. The Pro*C/C++ preprocessor uses the values
obtained from preprocessing, and alters the source output text (the generated .c
output file).

An example should clarify this point. Consider the following program fragment:

#include "my header.h"

VARCHAR name [VC_LEN]; /* a Pro*C-supplied datatype */
char another name[VC LEN]; /* a pure C datatype */

Suppose the file my header.h in the current directory contains, among other things,
the line

#define VC_LEN 20

The precompiler reads the file my header.h, and uses the defined value of VC_LEN
(20), declares the structure of name as VARCHAR[20].

char is a native type. The precompiler does not substitute 20 in the declaration of
another_name[VC_LEN].

This does not matter, since the precompiler does not need to process declarations of
C datatypes, even when they are used as host variables. It is left up to the C
compiler's preprocessor to actually include the file my header.h, and perform the
substitution of 20 for VC_LEN in the declaration of another_name.

5.4.2 Preprocessor Directives

The preprocessor directives that Pro*C/C++ supports are:

* #define, to create macros for use by the precompiler and the C or C++ compiler

» #include, to read other source files for use by the precompiler

ORACLE 5-22

Chapter 5
The C Preprocessor

» #if, to precompile and compile source text based on evaluation of a constant expression
to 0

» #ifdef, to precompile and compile source text conditionally, depending on the existence
of a defined constant

» #ifndef, to exclude source text conditionally
» #endif, to end an #if or #ifdef or #ifndef command

* #else, to select an alternative body of source text to be precompiled and compiled, in
case an #if or #ifdef or #ifndef condition is not satisfied

» #elif, to select an alternative body of source text to be precompiled and compiled,
depending on the value of a constant or a macro argument

5.4.2.1 Directives Ignored

Some C preprocessor directives are not used by the Pro*C/C++ preprocessor. Most of these
directives are not relevant for the precompiler. For example, #pragma is a directive for the C
compiler—the precompiler does not process it. The C preprocessor directives not processed
by the precompiler are:

e #,to convert a preprocessor macro parameter to a string constant

* ##, to merge two preprocessor tokens in a macro definition

e #error, to produce a compile-time error message

° #pragma, to pass implementation-dependent information to the C compiler
* #line, to supply a line number for C compiler messages

While your C compiler preprocessor may support these directives, Pro*C/C++ does not use
them. Most of these directives are not used by the precompiler. You can use these directives
in your Pro*C/C++ program if your compiler supports them, but only in C or C++ code, not in
embedded SQL statements or declarations of variables using datatypes supplied by the
precompiler, such as VARCHAR.

5.4.3 ORA_PROC Macro

ORACLE

Pro*C/C++ predefines a C preprocessor macro called ORA_PROC that you can use to avoid
having the precompiler process unnecessary or irrelevant sections of code. Some
applications include large header files, which provide information that is unnecessary when
precompiling. By conditionally excluding such header files based on the ORA_PROC macro,
the precompiler never reads the file.

The following example uses the ORA_PROC macro to exclude the irrelevant.h file:

#ifndef ORA_PROC
#include <irrelevant.h>
#endif

Because ORA_PROC is defined during precompilation, the irrelevant.h file is never
included.

The ORA_PROC macro is available only for C preprocessor directives, such as #ifdef or
#ifndef. The EXEC ORACLE conditional statements do not share the same namespaces as
the C preprocessor macros. Therefore, the condition in the following example does not use
the predefined ORA_PROC macro:

5-23

Chapter 5
The C Preprocessor

EXEC ORACLE IFNDEF ORA PROC;
<section of code to be ignored>
EXEC ORACLE ENDIF;

ORA_PROC, in this case, must be set using either the DEFINE option or an EXEC
ORACLE DEFINE statement for this conditional code fragment to work properly.

5.4.4 Location of Header File Specification

The Pro*C/C++ Precompiler for each system assumes a standard location for header
files to be read by the preprocessor, such as sqlca.h, oraca.h, and sqlda.h. For
example, on most UNIX systems, the standard location is SORACLE HOME/precomp/
public. For the default location on your system, see your system-specific Oracle
documentation. If header files that you need to include are not in the default location,
you must use the INCLUDE= option, on the command line or as an EXEC ORACLE
option.

To specify the location of system header files, such as stdio.h or iostream.h, where
the location might be different from that hard-coded into Pro*C/C++ use the
SYS_INCLUDE precompiler option.

Related Topics

* Precompiler Options

5.4.5 Some Preprocessor Examples

ORACLE

You can use the #define command to create named constants, and use them in place
of "magic numbers" in your source code. You can use #defined constants for
declarations that the precompiler requires, such as VARCHAR[const]. For example,
instead of code with bugs, such as:

VARCHAR emp name[10];
VARCHAR dept loc[14];

/* much later in the code ... */
£42 ()
{

/* did you remember the correct size? */
VARCHAR new _dept loc[10];

}

you can code:

#define ENAME LEN 10
#define LOCATION LEN 14
VARCHAR new emp name [ENAME LEN];

/* much later in the code ... */
£42 ()
{
VARCHAR new dept loc[LOCATION LEN];

5-24

Chapter 5
The C Preprocessor

You can use preprocessor macros with arguments for objects that the precompiler must
process, just as you can for C objects. For example:

#define ENAME LEN 10
#define LOCATION LEN 14
#define MAX(A,B) ((A) > (B) 2?2 (A) : (B))

£43()
{

/* need to declare a temporary variable to hold either an
employee name or a department location */
VARCHAR name loc temp[MAX (ENAME LEN, LOCATION LEN)];

}

You can use the #include, #ifdef and #endif preprocessor directives to conditionally include
a file that the precompiler requires. For example:

#ifdef ORACLE_MODE
#include <sqlca.h>
#else

long SQLCODE;
#endif

5.4.5.1 About Using #define

There are restrictions on the use of the #define preprocessor directive in Pro*C/C++ You
cannot use the #define directive to create symbolic constants for use in executable SQL
statements. The following invalid example demonstrates this:

#define RESEARCH DEPT 40
EXEC SQL SELECT empno, sal
INTO :emp number, :salary /* host arrays */

FROM emp
WHERE deptno = RESEARCH DEPT; /* INVALID! */

The only declarative SQL statements where you can legally use a #defined macro are TYPE
and VAR statements. So, for example, the following uses of a macro are legal in Pro*C/C++

#define STR_LEN 40
typedef char asciiz[STR _LEN];
EXEC SQL TYPE asciiz IS STRING(STR_LEN) REFERENCE;

EXEC SQL VAR password IS STRING(STR LEN);

5.4.5.2 Other Preprocessor Restrictions

ORACLE

The preprocessor ignores directives # and ## to create tokens that the precompiler must
recognize. You can use these commands (if your compiler supports them) in pure C code that
the precompiler does not have to process. Using the preprocessor command ## is not valid in
this example:

#define MAKE COL_NAME (A) col ## A

EXEC SQL SELECT MAKE COL NAME (1), MAKE COL NAME (2)

5-25

Chapter 5
The C Preprocessor

INTO :x, :y
FROM tablel;

The example is incorrect because the precompiler ignores ##.

5.4.6 SQL Statements Not Allowed in #include

Because of the way the Pro*C/C++ preprocessor handles the #include directive, as
described in the previous section, you cannot use the #include directive to include
files that contain embedded SQL statements. You use #include to include files that
contain purely declarative statements and directives; for example, #defines, and
declarations of variables and structures required by the precompiler, such as in
sqlca.h.

5.4.7 Include the SQLCA, ORACA, and SQLDA

You can include the sqglca.h, oraca.h, and sqlda.h declaration header files in your
Pro*C/C++ program using either the C/C++ preprocessor #include command, or the
precompiler EXEC SQL INCLUDE command. For example, you use the following
statement to include the SQL Communications Area structure (SQLCA) in your
program with the EXEC SQL option:

EXEC SQL INCLUDE sglca;

To include the SQLCA using the C/C++ preprocessor directive, add the following code:

#include <sglca.h>

When you use the preprocessor #include directive, you must specify the file extension
(such as .h).

" Note:

If you need to include the SQLCA in multiple places, using the #include
directive, you should precede the #include with the directive #undef
SQLCA. This is because sqglca.h starts with the lines

#ifnpef SQLCA
#deffine SQLCA 1

and then declares the SQLCA struct only in the case that SQLCA is not
defined.

When you precompile a file that contains a #include directive or an EXEC SQL
INCLUDE statement, you have to tell the precompiler the location of all files to be
included. You can use the INCLUDE= option, either in the command line, or in the
system configuration file, or in the user configuration file.

The default location for standard preprocessor header files, such as sglca.h, oraca.h,
and sqglda.h, is preset in the precompiler. The location varies from system to system.
See your system-specific Oracle documentation for the default location on your
system.

ORACLE 5-26

Chapter 5
The C Preprocessor

When you compile the . c output file that Pro*C/C++ generates, you must use the option
provided by your compiler and operating system to identify the location of included files.

For example, on most UNIX systems, you can compile the generated C source file using the
command

cc -o progname -ISORACLE HOME/sqllib/public ... filename.c ...

On VAX/OPENVMS systems, you pre-pend the include directory path to the value in the
logical VAXC$INCLUDE.

Related Topics
* Handling Runtime Errors

* Precompiler Options

5.4.8 EXEC SQL INCLUDE and #include Summary

When you use an EXEC SQL INCLUDE statement in your program, the precompiler includes
the source text in the output (. c) file. Therefore, you can have declarative and executable
embedded SQL statements in a file that is included using EXEC SQL INCLUDE.

When you include a file using #include, the precompiler merely reads the file, and keeps
track of #defined macros.

Note:

VARCHAR declarations and SQL statements are not allowed in included (#include)
files. For this reason, you cannot use SQL statements in files included using the
Pro*C/C++ preprocessor #include directive.

5.4.9 Defined Macros

If you define macros on the C compiler's command line, you might also have to define these
macros on the precompiler command line, depending on the requirements of your
application. For example, if you compile with a UNIX command line such as

cc -DDEBUG ...

you should precompile using the DEFINE= option, namely

proc DEFINE=DEBUG ...

5.4.10 Include Files

ORACLE

The location of all included files that need to be precompiled must be specified on the
command line, or in a configuration file.

For example, if you are developing under UNIX, and your application includes files in the
directory /home/project42/include, you must specify this directory both on the Pro*C/C++
command line and on the cc command line. You use commands like these:

proc iname=my app.pc include=/home/project42/include ...
cc -I/home/projectd42/include ... my app.c

5-27

Chapter 5
Precompiled Header Files

or you include the appropriate macros in a makefile. For complete information about
compiling and linking your Pro*C/C++ application, see your system-specific Oracle
documentation.

Related Topics
e INCLUDE

5.5 Precompiled Header Files

Precompiled header files save time and resources by precompiling header files that
contain many #include statements. The two steps in using this feature are:

* The precompiled header file is created first,

* The precompiled header is then automatically used in subsequent precompilation
of your application.

Use this capability with large applications that have many modules.
The precompiler option, HEADER=hdr, specifies

e That precompiled headers are to be used,

e That the file extension for the output file to be generated is hdr.

This option can only be entered in a configuration file or on the command line. There is
no default value for HEADER, but the input header must have a .h extension.

5.5.1 Precompiled Header File Creation

ORACLE

Assume that you have a header file called top.h.Then you can precompile it,
specifying that HEADER=hdr:

proc HEADER=hdr INAME=top.h

< Note:
You must provide the '.h' extension. You cannot use an absolute path
element or relative path elements such as '/, "..", and so on., in the INAME
value.

Pro*C/C++ precompiles the given input file, top.h, and generates a nhew precompiled
header file, top.hdr, in the same directory. The output file, top.hdr, can be moved to
a directory that the #include statement will cause to be searched.

" Note:

Do not use the ONAME option to name the output file; it is ignored when
used with HEADER.

5-28

Chapter 5
Precompiled Header Files

5.5.2 Use of the Precompiled Header Files

Use the same value of the HEADER option with an application file that is to be precompiled.
If simple.pc contains:

#include <top.h>

and top.h contains:

#include <a.h>
#include <b.h>
#include <c.h>

then precompile this way:

proc HEADER=hdr INAME=simple.pc

When Pro*C/C++ reads the #include top.h statement, it will search for a corresponding
'top.hdr' file and instantiate the data from that file instead of precompiling 'top.h' again.

Note:

A precompiled header file will always be used instead of its input header file even if
the input (.h) file appears first in the standard search hierarchy of the include
directories.

5.5.3 Examples

This section includes examples demonstrating several different cases.

5.5.3.1 Redundant File Inclusion

The following two cases illustrate two possibilities for redundant file inclusion.

5.5.3.1.1 Case 1. Top-Level Header File Inclusion

ORACLE

A precompiled header file will only be instantiated once regardless of how many times the file
is included using a #include directive.

Suppose we precompile a top-level header file, top.h, with the value of HEADER set to 'hdr'
as before. Next, we code multiple #include directives for that header file in a program:

#include <top.h>
#include <top.h>
main () {}

When the first #include for top.h is encountered, the precompiled header file, top.hdr, will be
instantiated. The second inclusion of that same header file will be redundant and thus, will be
ignored.

5-29

Chapter 5
Precompiled Header Files

5.5.3.1.2 Case 2: Nested Header File Inclusion

Suppose the file a.h contains the following statement:

#include <b.h>

and that we precompile that header file specifying HEADER as before. Pro*C/C++ will
precompile both a.h and b.h generating a.hdr as a result.

Now suppose we precompile this Pro*C/C++ program:

#include <a.h>
#include <b.h>
main () {}

When the #include for a.h is encountered, the a.hdr precompiled header file will be
instantiated instead of precompiling a.h again. This instantiation will also contain the
entire contents of b.h.

Now, because b.h was included in the precompilation of a.h, and a.hdr was
instantiated, the subsequent #include of b.h in our program is redundant and thus, will
be ignored.

5.5.3.2 Multiple Precompiled Header Files

ORACLE

Pro*C/C++ is capable of instantiating more than one different precompiled header file
in a single precompilation. However, one pitfall to avoid occurs when two or more
precompiled header files share common header files.

For example, suppose topA.h contains the following lines:

#include <a.h>
#include <c.h>

and that topB.h contains the following lines:

#include <b.h>
#include <c.h>

Notice how topA.h and topB.h both include the same common header file, c.h.
Precompiling topA.h and topB.h with the same HEADER value will yield topA.hdr and
topB.hdr. Both, however, will contain the entire contents of c.h.

Now suppose we have a Pro*C/C++ program:

#include <topA.h>
#include <topB.h>
main () {}

Both precompiled header files, topA.hdr and topB.hdr will be instantiated as before.
However, because each shares the common header file, c.h, the contents of that file
will be instantiated twice.

Pro*C/C++ cannot determine when such commonality is occurring among precompiled
header files. Try to have each precompiled header file contain a unique set of included
headers. Sharing headers should be avoided as much as possible because it will
ultimately slow down precompilation and utilize more memory, thus undermining the
basic intent of using precompiled header files.

5-30

Chapter 5
Precompiled Header Files

5.5.4 List of Header Files

Table 5-3 Header Files

The ORACLE BASE\ORACLE HOME\precomp\public directory contains the Pro*C/C++ header
files. Table 5-3 lists and describes the header files.

Header Files

Description

oraca.h

sql2oci.h

sglapr.h

sglca.h

sqglcpr.h

oraca.h

sql2oci.h

sqglapr.h

Contains the Oracle Communications Area (ORACA), which helps you to diagnose
runtime errors and to monitor your program's use of various Oracle Database 10g
resources.

Contains SQLLIB functions that enable the Oracle Call Interface (OCI) environment
handle and OCI service context to be obtained in a Pro*C/C++ application.

Contains ANSI prototypes for externalized functions that can be used in conjunction
with OCI.

Contains the SQL Communications Area (SQLCA), which helps you to diagnose
runtime errors. The SQLCA is updated after every executable SQL statement.

Contains platform-specific ANSI prototypes for SQLLIB functions that are generated
by Pro*C/C++. By default, Pro*C/C++ does not support full-function prototyping of
SQL programming calls. If you need this feature, include sqglcpr.h before any EXEC
SQL statements in your application source file.

Contains the Oracle Communications Area (ORACA), which helps you to diagnose
runtime errors and to monitor your program's use of various Oracle Database 10g
resources.

Contains SQLLIB functions that enable the Oracle Call Interface (OCI) environment
handle and OCI service context to be obtained in a Pro*C/C++ application.

Contains ANSI prototypes for externalized functions that can be used in conjunction
with OCI.

5.5.5 Effects of Options

The following precompiler options are used with the precompilation of the application.

5.5.5.1 DEFINE and INCLUDE Options

During any precompilation using precompiled headers, you must use the same values for
DEFINE and INCLUDE as when you created the precompiled header files. If the values of
DEFINE or INCLUDE change, you must re-create the precompiled header files.

If development environments change, you must also re-create the precompiled header files.

5.5.5.1.1 Single User Scenario

ORACLE

Consider a single user. If the values of either the DEFINE or the INCLUDE options were to
change, then the contents of the precompiled header files may no longer be suitable for use
in subsequent Pro*C/C++ precompilations.

Because the values of the DEFINE and INCLUDE; DEFINE or INCLUDE options have
changed, the contents of the precompiled header file may no longer be consistent with what a

5-31

Chapter 5
Precompiled Header Files

standard precompilation would result in had the corresponding .h file in the #include
directive been processed normally.

In short, if the values of the DEFINE and INCLUDE; DEFINE or INCLUDE options
change, any precompiled header files must be re-created and Pro*C/C++ programs
which use them re-precompiled.

Related Topics
- DEFINE
« INCLUDE

5.5.5.1.2 Multiple User Scenario

Consider two users, A and B, who develop in totally separate environments, thus
having completely different values for their DEFINE and INCLUDE options.

User A precompiles a common header file, common.h, creating a precompiled header
file common.hdrA. User B also precompiles the same header file creating
common.hdrB. However, given that the two environments are different, specifically with
respect to the values of the DEFINE and INCLUDE options used by both users, it is
not guaranteed that both user A's and B's versions of common.hdr will be the same.

To summarize

A> proc HEADER=hdrA DEFINE=<A macros> INCLUDE=<A dirs> common.h

B> proc HEADER=hdrB DEFINE=<B macros> INCLUDE=<B dirs> common.h

The generated precompiled header files common.hdrA may not equal common.hdrB
because of the different environments in which they where created. This means that
neither user A nor user B would be guaranteed that using the common.hdr created by
the other user would result in correct precompilation of the Pro*C/C++ programs in
their respective development environments.

Therefore, care should be taken when sharing or exchanging precompiled header files
between different users and different users' development environments.

5.5.5.2 CODE and PARSE Options

Pro*C/C++ does not search for C++ header files with extensions such as hpp or h++.
So do not use CODE=CPP when precompiling header files. You may use the CPP
value when precompiling the application, as long as the source code only includes .h
header files.

You can only use the values FULL or PARTIAL for the option PARSE when creating
the precompiled header files, or when precompiling the modules. The value FULL is
considered to be of higher value than PARTIAL. The value of PARSE used should be
the same or lower when precompiling modules as when you created the precompiled
header files.

ORACLE 5-32

Chapter 5
Precompiled Header Files

< Note:

Precompiling the precompiled header file with PARSE=FULL and then precompiling
modules with PARSE=PARTIAL requires that the host variables be declared inside
a Declare Section. C++ code will only be understood when PARSE=PARTIAL.

Suppose we precompile a header file with PARSE set to PARTIAL as follows:

proc HEADER=hdr PARSE=PARTIAL file.h

and then try to precompile a program that includes that header file using PARSE set to FULL:

proc HEADER=hdr PARSE=FULL program.pcC

Because file.h was precompiled using a PARTIAL setting for the PARSE option, not all of the
header file would have been processed. It would therefore be possible for an error to occur
during the precompilation of the Pro*C/C++ program if a reference was made to something in
the unprocessed portion.

To illustrate, suppose that file.h contained the following code:

#define LENGTH 10
typedef int myint;

and that our program.pc contained the following short program:

#include <file.h>
main ()
{
VARCHAR ename [LENGTH] ;
myint empno = ...;
EXEC SQL SELECT ename INTO :ename WHERE JOB = :empno;
}

Because PARSE was set to PARTIAL when precompiling file.h, only the LENGTH macro
would have been processed leaving the typedef unseen.

The VARCHAR declaration and subsequent use as a host variable would succeed. However,
the use of the empno host variable would not because the myint type declaration would
never have been processed by Pro*C/C++.

Precompiling the header file with the PARSE option set to FULL and then precompiling the
program with PARSE set to PARTIAL would work. However, the host variables would have to
be declared inside an explicit DECLARE SECTION.

Related Topics

e About Parsing Code
« CODE

* PARSE

5.5.6 Usage Notes

The file format of the generated output file of a precompiled header is not guaranteed to
remain fixed from one release to the next. Pro*C/C++ has no way of determining which
version of the precompiler was used to generate the precompiled header file output.

ORACLE 5-33

Chapter 5
The Oracle Preprocessor

Because of this, it is strongly recommended that, in order to avoid the possibility of
errors or other strange behavior during a precompilation that uses precompiled header
files, those files be regenerated by re-precompiling the corresponding header files
when upgrading to newer releases of Pro*C/C++.

The generated output from the precompilation of a header file is completely non-
portable. This means that you cannot transfer the output file from the precompilation of
a header file from one platform to another and use that file during the subsequent
precompilation of another header file or Pro*C/C++ program.

5.6 The Oracle Preprocessor

Conditional sections of code are marked by EXEC ORACLE directives that define the
environment and actions to take. You can code C statements as well as embedded
SQL statements and directives in these sections. The following EXEC ORACLE
directives let you exercise conditional control over precompilation:

EXEC ORACLE DEFINE symbol; -- define a symbol

EXEC ORACLE IFDEF symbol; -- 1if symbol is defined
EXEC ORACLE IFNDEF symbol; -- 1if symbol is not defined
EXEC ORACLE ELSE; -- otherwise

EXEC ORACLE ENDIF; -- end this block

All EXEC ORACLE statements must be terminated with a semi-colon.

5.6.1 Symbol Definition

You can define a symbol in two ways. Either include the statement:

EXEC ORACLE DEFINE symbol;

in your host program or define the symbol on the command line using the syntax

. INAME=filename ... DEFINE=symbol

where symbol is not case-sensitive.

" Note:

The #define preprocessor directive is not the same as the EXEC ORACLE
DEFINE command.

Some port-specific symbols are predefined for you when the Pro*C/C++ precompiler is
installed on your system.

5.6.2 An Oracle Preprocessor Example

ORACLE

In the following example, the SELECT statement is precompiled only when the symbol
site2 is defined:

EXEC ORACLE IFDEF site2;
EXEC SQL SELECT DNAME
INTO :dept name
FROM DEPT

5-34

Chapter 5
Evaluation of Numeric Constants

WHERE DEPTNO = :dept number;
EXEC ORACLE ENDIF;

Blocks of conditions can be nested as shown in the following example:

EXEC ORACLE IFDEF outer;
EXEC ORACLE IFDEF inner;

EXEC ORACLE ENDIF;
EXEC ORACLE ENDIF;

You can "Comment out" C or embedded SQL code by placing it between IFDEF and ENDIF
and not defining the symbol.

5.7 Evaluation of Numeric Constants

Previously, Pro*C/C++ allowed only numeric literals and simple constant expressions
involving numeric literals to be used when declaring the sizes of host variables (such as char
or VARCHAR), as in the following examples:

#define LENGTH 10
VARCHAR v [LENGTH];
char c[LENGTH + 17;

You can now also use numeric constant declarations such as:

const int length = 10;
VARCHAR v[length];
char c[length + 1];

This is highly desirable, especially for developers who use ANSI or C++ compilers that
support such constant declarations.

Pro*C/C++ has always determined the values of constant expressions that can be evaluated,
but it has never allowed the use of a numeric constant declaration in any constant
expression.

Pro*C/C++ supports the use of numeric constant declarations anywhere that an ordinary
numeric literal or macro is used, given the macro expands to some numeric literal.

This is used primarily for declaring the sizes of arrays for bind variables to be used in a SQL
statement.

5.7.1 Numeric Constants in Pro*C/C++

In Pro*C/C++, normal C scoping rules are used to find and locate the declaration of a
numeric constant declaration.

const int g = 30; /* Global declaration to both function 1()
and function 2() */
void function 1()
{
const int a = 10; /* Local declaration only to function 1() */
char x[al;
exec sql select ename into :x from emp where job = 'PRESIDENT';

}

void function 2()

{

ORACLE 5-35

Chapter 5
SQLLIB Extensions for OCI Release 8 Interoperability

const int a = 20; /* Local declaration only to function 2() */
VARCHAR vla]l;
exec sql select ename into :v from emp where job = 'PRESIDENT';

}

void main ()

{
char m[g]; /* The global g */
exec sql select ename into :m from emp where job = 'PRESIDENT';

}

5.7.2 Numeric Constant Rules and Examples

Variables which are of specific static types need to be defined with static and
initialized. The following rules must be kept in mind when declaring numeric constants
in Pro*C/C++:

e The const qualifier must be used when declaring the constant

e Aninitializer must be used to initialize the value of the constant. This initializer
must be precompile-time evaluable.

Any attempt to use an identifier that does not resolve to a constant declaration with a
valid initializer is considered an error.

The following shows examples of what is not permitted and why:

int a;

int b = 10;
volatile c;
volatile d = 10;

const e;

const £ = Db;

VARCHAR vl[a]; /* No const qualifier, missing initializer */
VARCHAR v2[b]; /* No const qualifier */
VARCHAR v3[c]; /* Not a constant, missing initializer */
VARCHAR v4[d]; /* Not a constant */
VARCHAR v5[e]; /* Missing initializer */
VARCHAR vo6[f]; /* Bad initializer.. b is not a constant */

5.8 SQLLIB Extensions for OCI Release 8 Interoperability

ORACLE

An OCI environment handle will be tied to the Pro*C/C++ runtime context, which is of
the sql_context type. That is, one Pro*C/C++ runtime context maintained by SQLLIB
during application execution will be associated with at most one OCI environment
handle. Multiple database connections are allowed for each Pro*C/C++ runtime
context, which will be associated to the OCI environment handle for the runtime
context.

Note:

Precompiler applications can extract OCI handles and call OCI functions
directly. However, non-blocking mode is not supported because the
precompilers are unable to handle the "still executing" error that might be
returned.

5-36

Chapter 5
Interface to OCI Release 8

5.8.1 Runtime Context in the OCI Release 8 Environment

An EXEC SQL CONTEXT USE statement specifies a runtime context to be used in a
Pro*C/C++ program. This context applies to all executable SQL statements that positionally
follow it in a given Pro*C/C++ file until another EXEC SQL CONTEXT USE statement occurs.
If no EXEC SQL CONTEXT USE appears in a source file, the default "global” context is
assumed. Thus, the current runtime context, and therefore the current OCI environment
handle, is known at any point in the program.

The runtime context and its associated OCI environment handle are initialized when a
database logon is performed using EXEC SQL CONNECT in Pro*C/C++.

When a Pro*C/C++ runtime context is freed using the EXEC SQL CONTEXT FREE
statement, the associated OCI environment handle is terminated and all of its resources,
such as space allocated for the various OCI handles and LOB locators, are de-allocated. This
command releases all other memory associated with the Pro*C/C++ runtime context. An OCI
environment handle that is established for the default "global" runtime remains allocated until
the Pro*C/C++ program terminates.

5.8.2 Parameters in the OCI Release 8 Environment Handle

An OCI environment established through Pro*C/C++ will use the following parameters:

* The callback functions used by the environment for allocating memory, freeing memory,
writing to a text file, and flushing the output buffer will be trivial functions that call malloc(),
free(), fprintf(stderr, ...), and fflush(stderr) respectively.

* The language will be obtained from the Globalization Support variable NLS_LANG.

* The error message buffer will be allocated in thread-specific storage.

5.9 Interface to OCI Release 8

ORACLE

SQLLIB library provides routines to obtain the OCI environment and service context handles
for database connections established through a Pro*C/C++ program. Once the OCI handles
are obtained, the user can call various OCI routines, for example, to perform client-side DATE
arithmetic, execute navigational operations on objects and so on. These SQLLIB functions
are described later, and their prototypes are available in the public header file sq120ci.h.

A Pro*C/C++ user who mixes embedded SQL and calls in the other Oracle programmatic
interfaces must exercise reasonable care. For example, if a user terminates a connection
directly using the OClI interface, SQLLIB state is out-of-sync; the behavior for subsequent
SQL statements in the Pro*C/C++ program is undefined in such cases.

Note:

Pro*C/C++, the Oracle Call Interface (OCI) release 8, and XA are not compatible.

The new SQLLIB functions that provide interoperability with the Oracle OCI are declared in
header file sql2oci.h:

5-37

Chapter 5
Interface to OCI Release 8

* SQLEnvGet (), to return a pointer to an OCI environment handle associated with a
given SQLLIB runtime context. Used for both single and shared server
environments.

° SQLSvcCtxGet (), to return an OCI service context handle for a Pro*C/C++
database connection. Used for both single and shared server environments.

» Pass the constant SQL_SINGLE RCTX, defined as (dvoid *)0, when you include
sgl2oci.h, as the first parameter in either function, when using single threaded
runtime contexts.

Related Topics
e Objects

5.9.1 SQLEnvGet()

The SQLLIB library function SQLEnvGet () (SQLLIB OCI Environment Get) returns the
pointer to the OCI environment handle associated with a given SQLLIB runtime
context. The prototype for this function is:

sword SQLEnvGet (dvoid *rctx, OCIEnv **oeh);

where:
Terms Description
Description Sets oeh to the OCIEnv corresponding to the runtime context
Parameters rctx (IN) pointer to a SQLLIB runtime context
oeh (OUT) pointer to OCIEnv
Returns SQL_SUCCESS on success
SQL_ERROR on failure
Notes The usual error status variables in Pro*C/C++ such as SQLCA and

SQLSTATE will not be affected by a call to this function

5.9.2 SQLSVCCixGet()

The SQLLIB library function SQLSvcCtxGet () (SQLLIB OCI Service Context Get)
returns the OCI service context for the Pro*C/C++ database connection. The OCI
service context can then be used in direct calls to OCI functions. The prototype for this
function is:

sword SQLSvcCtxGet (dvoid *rctx, text *dbname,
sb4 dbnamelen, OCISvcCtx **svc);

where:
Terms Description
Description Sets svc to the OCI Service Context corresponding to the runtime

context

ORACLE 5-38

Chapter 5
Interface to OCI Release 8

Terms Description

Parameters rctx (IN) = pointer to a SQLLIB runtime context

dbname (IN) = buffer containing the "logical" name for this
connection

dbnamelen (IN) = length of the dbname buffer
svc (OUT) = address of an OCISvcCtx pointer

Returns SQL_SUCCESS on success
SQL_ERROR on failure
Notes 1. The usual error status variables in Pro*C/C++ such as SQLCA

and SQLSTATE will not be affected by a call to this function
2. dbname is the same identifier used in an AT clause in an
embedded SQL statement.

3. If dbname is a null pointer or dbnamelen is 0, then the default
database connection is assumed, as in a SQL statement with no
AT clause.

4. A value of -1 for dbnamelen is used to indicate that dbname is a
zero-terminated string.

5.9.3 Embedded OCI Release 8 Calls

ORACLE

To embed OCI release 8 calls in your Pro*C/C++ program:
1. Include the public header sqgl2oci.h
2. Declare an environment handle (type OCIEnv *) in your Pro*C/C++ program:

OCIEnv *oeh;

3. Optionally, declare a service context handle (type OCISvcCtx *) in your Pro*C/C++
program if the OCI function you wish to call requires the Service Context handle.

OCISvcCtx *svc;

4. Declare an error handle (type OCIError *) in your Pro*C/C++ program:

OCIError *err;

5. Connect to Oracle using the embedded SQL statement CONNECT. Do not connect using
OCI.

EXEC SQL CONNECT ...

6. Obtain the OCI Environment handle that is associated with the desired runtime context
using the SQLEnvGet function.

For single threaded applications:

retcode = SQLEnvGet (SQL SINGLE RCTX, &oeh);

or for shared server applications:

sql context ctxl;

EXEC SQL CONTEXT ALLOCATE :ctxl;
EXEC SQL CONTEXT USE :ctxl;

5-39

Chapter 5
Embedded OCI Release 7 Calls

EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;
retcode = SQLEnvGet (ctxl, &oeh);

7. Allocate an OCI error handle using the retrieved environment handle:

retcode = OCIHandleAlloc((dvoid *)oeh, (dvoid **)s&err,
(ub4) OCI_HTYPE ERROR, (ub4)0, (dvoid **)0);

8. Optionally, if needed by the OCI call you use, obtain the OCIServiceContext handle
using the SQLSvcCtxGet call:

For single threaded applications:
retcode = SQLSvcCtxGet (SQL SINGLE RCTX, (text *)dbname, (ub4)dbnlen, é&svc);
or, for shared server environment applications:

sql context ctxl;

EXEC SQL ALLOCATE :ctxl;
EXEC SQL CONTEXT USE :ctxl;

EXEC SQL CONNECT :uid IDENTIFIED BY :pwd AT :dbname
USING :hst;

retcode = SQLSvcCtxGet (ctxl, (text *)dbname, (ub4)strlen(dbname), &svc);

" Note:

A null pointer may be passed as the dbname if the Pro*C/C++ connection is
not named with an AT clause.

5.10 Embedded OCI Release 7 Calls

ORACLE

" Note:

The Logon Data Area (LDA) is no longer supported. The ability to embed
OCI Release 7 calls in your Pro*C/C++ program is not supported.

To embed OCI release 7 calls in your Pro*C/C++ program, take the following steps:

e Declare an OCI Logon Data Area (LDA) in your Pro*C/C++ program (outside the
Declare Section if you precompile with MODE=ANSI). The LDA is a structure
defined in the OCI header file oci.h. For details, see the Oracle Call Interface
Developer's Guide for Release 7.

* Connect to Oracle using the embedded SQL statement CONNECT, not the OCI
orlon() or onblon () calls.

e Call the SQLLIB runtime library function sqllda () to set up the LDA.SQLLIB
function

5-40

Chapter 5
New Names for SQLLIB Public Functions

That way, the Pro*C/C++ Precompiler and the OCI "know" that they are working together.
However, there is no sharing of Oracle cursors.

You need not worry about declaring the OCI Host Data Area (HDA) because the Oracle
runtime library manages connections and maintains the HDA for you.

5.10.1 Set Up the LDA

You set up the LDA by issuing the OCI call

sgllda(&lda);

where Ida identifies the LDA data structure.

If the setup fails, the /da_rc field in the Ida is set to 1012 to indicate the error.

5.10.2 Remote and Multiple Connections

A call to sgl1lda () sets up an LDA for the connection used by the most recently executed
SQL statement. To set up the different LDAs needed for additional connections, you must call
sqllda () with a different LDA immediately after each CONNECT. In the following example,
you connect to two nondefault databases concurrently:

#include <ocidfn.h>
Lda Def ldal;
Lda Def 1da2;

char username([10], password[10], db stringl[20], dbstring2([20];

strcpy (username, "scott");

strcpy (password, "tiger");

strcpy (db_stringl, "NYNON");

strcpy (db_string2, "CHINON");

/* give each database connection a unique name */

EXEC SQL DECLARE DBiNAMEl DATABASE;

EXEC SQL DECLARE DBiNAME2 DATABASE;

/* connect to first nondefault database */

EXEC SQL CONNECT :username IDENTIFIED BY :password;
AT DB NAMEl USING :db stringl;

/* set up first LDA */

sgllda(&ldal);

/* connect to second nondefault database */

EXEC SQL CONNECT :username IDENTIFIED BY :password;
AT DB NAME2 USING :db string2;

/* set up second LDA */

sgllda(&ldaz);

DB_NAME1 and DB_NAME?2 are not C variables; they are SQL identifiers. You use them
only to name the default databases at the two nondefault nodes, so that later SQL statements
can refer to the databases by name.

5.11 New Names for SQLLIB Public Functions

ORACLE

The names of SQLLIB functions are listed in Table 5-4. You can use these SQLLIB functions
for both threaded and nonthreaded applications. Previously, for example, sqlglm() was
documented as the nonthreaded or default context version of this function, while sqlglmt ()
was the threaded or nondefault context version, with context as the first argument. The

5-41

Chapter 5
New Names for SQLLIB Public Functions

names sqlglm() and sqlglmt () are still available. The new function
SQLErrorGetText () requires the same arguments as sqlglmt (). For nonthreaded or
default context applications, pass the defined constant SQL_SINGLE_RCTX as the
context.

Each standard SQLLIB public function is thread-safe and accepts the runtime context
as the first argument. For example, the syntax for SQLErrorGetText () is:

void SQLErrorGetText (dvoid *context, char *message buffer,
size t *buffer size,
size t *message length);

In summary, the old function names will continue to work in your existing applications.
You can use the new function names in the new applications that you will write.

Table 5-4 lists all the SQLLIB public functions and their corresponding syntax. Cross-
references to the nonthreaded or default-context usages are provided to help you find
more complete descriptions.

Table 5-4 SQLLIB Public Functions -- New Names
]

Old Name

New Function Prototype Cross-reference

sqlaldt ()

sqglcdat ()

sqlclut ()

sqlcurt ()

sqlglmt ()

ORACLE

struct SOLDA *SOLSOLDAAlloc (dvoid €€ also "Allocating a SQLDA ™.

*context,

unsigned int maximum variables,
unsigned int

maximum name length,

unsigned int
maximum ind name length);

See also "Cursor Variables with the OCI

id
Vo (Release 7 Only)".

SQLCDAFromResultSetCursor (dvoid
*context,

Cda_Def *cda,

void *cursor,

sword *return value);

void SQLSQLDAFree (dvoid *context, —ce aiso’Deallocate Storage ”.

struct SQLDA
*descriptor name);

See also "Cursor Variables with the OCI

id
Vo (Release 7 Only)" .

SQLCDAToResultSetCursor (dvoid
*context,

void *cursor,

Cda_Def *cda,

sword *return value)

See also "About Getting the Full Text of

void SQLErrorGetText (dvoid "
Error Messages ".

*context,

unsigned char *message buffer,
size t *buffer size,

size t *message length);

5-42

Table 5-4 (Cont.) SQLLIB Public Functions -- New Names
]

Chapter 5
New Names for SQLLIB Public Functions

Old Name New Function Prototype Cross-reference
sqlglst () void SQLStmtGetText (dvoid See also "About Obtaining the Text of
N SQL Statements ".
context,
char *statement buffer,
size t *statement length,
size t *sqlfc);
sqlld2t () void SQLLDAGetName (dvoid See also "OCI Calls (Release 7 Only)"
*context,
Lda Def *lda,
text *cname,
int *cname length);
sqlldat () void SQLLDAGetCurrent (dvoid See alsq "Re'rlnote and Multiple
*context, Connections ".
Lda Def *1da) ;
sqlnult () void SQLColumnNullCheck (dvoid See also "Handling NULL/Not NULL
N Datatypes ".
context,
unsigned short *value type,
unsigned short *type code,
int *null status);
sqlprct () void SQLNumberPrecyé (dvoid ?ee also "Extracting Precision and Scale
*context,
unsigned long *length,
int *precision,
int *scale);
sqlpr2t () void SQLNumberPrecy? (dvoid ?ee also "Extracting Precision and Scale
*context,
unsigned long *length,
int *precision,
int *scale);
sqlvept () void SQLVarcharGetLength (dvoid See also "Find the Length of the
N VARCHAR Array Component ".
context,
unsigned long *data length,
unsigned long *total length);
N/A sword SQLEnvGet (dvoid *context, See "SQLEnvGet()".
OCIEnv **oeh) ;
N/A sword SQLSvcCtxGet (dvoid *context, See "SQLSveCixGet()".
text *dbname,
int dbnamelen,
OCISvcCtx **svc) ;
ORACLE

5-43

Chapter 5
X/Open Application Development

Table 5-4 (Cont.) SQLLIB Public Functions -- New Names

Old Name New Function Prototype Cross-reference
N/A void SQLRowidGet (dvoid *context, See "SQLRowidGet()".
OCIRowid **yurid) ;
N/A void SQLExtProcError (dvoid Se.e SQL.ExtProcError() for a discussion
N of its use in external procedures.
context,
char *msg,
size t msglen);
Note:

For the specific datatypes used in the argument lists for these functions, refer
to your platform-specific version of the sqlcpr.h header file.

Related Topics

e Interface to OCI Release 8

5.12 X/Open Application Development

X/Open applications run in a distributed transaction processing (DTP) environment. In
an abstract model, an X/Open application calls on resource managers (RMs) to
provide a variety of services. For example, a database resource manager provides
access to data in a database. Resource managers interact with a transaction manager
(TM), which controls all transactions for the application.

ORACLE 5-44

Chapter 5
X/Open Application Development

Figure 5-1 Hypothetical DTP Model

A
v
Resource
Manager
Other
Resources

>
>

Application Program

Resource
Manager
v
Oracle Server

TX Interface
XA Interface
XA Interface

&
<

Transaction
Manager

Figure 5-1 shows one way that components of the DTP model can interact to provide efficient
access to data in an Oracle database. The DTP model specifies the XA interface between
resource managers and the transaction manager. Oracle supplies an XA-compliant library,
which you must link to your X/Open application. Also, you must specify the native interface
between your application program and the resource managers.

The DTP model that specifies how a transaction manager and resource managers interact
with an application program is described in the X/Open guide Distributed Transaction
Processing Reference Model and related publications, which you can obtain by writing to

The Open Group
1010 El Camino Real, Suite 380,
Menlo Park, CA 94025-4345 USA

http://www.opengroup.org/

For instructions on using the XA interface, see your Transaction Processing (TP) Monitor
user's guide.

5.12.1 Oracle-Specific Issues

You can use the precompiler to develop applications that comply with the X/Open standards.
However, you must meet the following requirements.

5.12.1.1 Connecting to Oracle

The X/Open application does not establish and maintain connections to a database. Instead,
the transaction manager and the XA interface, which is supplied by Oracle, handle database

ORACLE 5-45

http://www.opengroup.org/

Chapter 5
XI/Open Application Development

connections and disconnections transparently. So, normally an X/Open-compliant
application does not execute CONNECT statements.

5.12.1.2 Transaction Control

The X/Open application must not execute statements such as COMMIT, ROLLBACK,
SAVEPOINT, and SET TRANSACTION that affect the state of global transactions. For
example, the application must not execute the COMMIT statement because the
transaction manager handles commits. Also, the application must not execute SQL
data definition statements such as CREATE, ALTER, and RENAME because they
issue an implicit COMMIT.

The application can execute an internal ROLLBACK statement if it detects an error
that prevents further SQL operations. However, this might change in later releases of
the XA interface.

5.12.1.3 OCI Calls (Release 7 Only)

OCI Calls Release 7 are no longer supported.

Note:

The Logon Data Area (LDA) is no longer supported in Oracle9i. The ability to
embed OCI Release 7 calls in your Pro*C/C++ program will be phased out
by the next major Oracle release.

If you want your X/Open application to issue OCI calls, you must use the runtime
library routine sq11d2 (), which sets up an LDA for a specified connection established
through the XA interface. For a description of the sq11d2 () call, see the Oracle Call
Interface Programmer's Guide for Release 7.

The following OCI calls cannot be issued by an X/Open application: OCOM, OCON,
OCOF, ONBLON, ORLON, OLON, OLOGOF.

Related Topics

e Interface to OCI Release 8

5.12.1.4 Linking

To get XA functionality, you must link the XA library to your X/Open application object
modules. For instructions, see your system-specific Oracle documentation.

ORACLE 5-46

Embedded SQL

This chapter helps you to understand and apply the basic techniques of embedded SQL
programming. This chapter contains the following topics:

* Host Variables

* Indicator Variables

e The Basic SQL Statements
» Using Boolean Data Type

e The DML Returning Clause
* Cursors

* Scrollable Cursors

e Optimizer Hints

* Fix Execution Plan

e The CURRENT OF Clause
* The Cursor Statements

e A Complete Example Using Non-Scrollable Cursor

A Complete Example Using Scrollable Cursor

6.1 Host Variables

Oracle uses host variables to pass data and status information to your program; your
program uses host variables to pass data to Oracle.

6.1.1 Output versus Input Host Variables

Depending on how they are used, host variables are called output or input host variables.

Host variables in the INTO clause of a SELECT or FETCH statement are called output host
variables because they hold column values output by Oracle. Oracle assigns the column
values to corresponding output host variables in the INTO clause.

All other host variables in a SQL statement are called input host variables because your
program inputs their values to Oracle. For example, you use input host variables in the
VALUES clause of an INSERT statement and in the SET clause of an UPDATE statement.
They are also used in the WHERE, HAVING, and FOR clauses. Input host variables can
appear in a SQL statement wherever a value or expression is allowed.

ORACLE 6-1

Chapter 6
Indicator Variables

< Note:

In an ORDER BY clause, you can use a host variable, but it is treated as a
constant or literal, and hence the contents of the host variable have no effect.
For example, the SQL statement

EXEC SQL SELECT ename, empno INTO :name, :number FROM emp ORDER BY :ord;
appears to contain an input host variable :ord. However, the host variable in

this case is treated as a constant, and regardless of the value of :ord, no
ordering is done.

You cannot use input host variables to supply SQL keywords or the names of
database objects. Thus, you cannot use input host variables in data definition
statements such as ALTER, CREATE, and DROP. In the following example, the DROP
TABLE statement is invalid:

char table name([30];

printf ("Table name? ");
gets(table name);

EXEC SQL DROP TABLE :table name; -- host variable not allowed

If you need to change database object names at runtime, use dynamic SQL.

Before Oracle executes a SQL statement containing input host variables, your
program must assign values to them. An example follows:

int emp number;
char temp[20];
VARCHAR emp name[20];

/* get values for input host variables */
printf ("Employee number? ");

gets (temp);

emp number = atoi (temp);

printf ("Employee name? ");

gets (emp name.arr);

emp_name.len = strlen(emp_name.arr);

EXEC SQL INSERT INTO EMP (EMPNO, ENAME)
VALUES (:emp_number, :emp_name);

Notice that the input host variables in the VALUES clause of the INSERT statement
are prefixed with colons.

Related Topics
e Oracle Dynamic SQL

6.2 Indicator Variables

You can associate any host variable with an optional indicator variable. Each time the
host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

ORACLE 6-2

Chapter 6
Indicator Variables

< Note:

You cannot use multiple indicator variables with a single host variable within
PL/SQL blocks. Doing so results in a "not all variables bound" error.

You use indicator variables in the VALUES or SET clauses to assign NULLSs to input host
variables. Use indicator variables in the INTO clause to detect NULLs or truncated values in
output host variables.

On Input

The values your program can assign to an indicator variable have the following meanings:

Variable Description

-1 Oracle will assign a NULL to the column, ignoring the value of the host
variable.

>=0 Oracle will assign the value of the host variable to the column.

On Output

The values Oracle can assign to an indicator variable have the following meanings:

Variable Description

-1 The column value is NULL, so the value of the host variable is
indeterminate.

0 Oracle assigned an intact column value to the host variable.

>0 Oracle assigned a truncated column value to the host variable. The

integer returned by the indicator variable is the original length of the
column value, and SQLCODE in SQLCA is set to zero.

-2 Oracle assigned a truncated column variable to the host variable, but the
original column value could not be determined (a LONG column, for
example).

Remember, an indicator variable must be defined as a 2-byte integer and, in SQL statements,
must be prefixed with a colon and must immediately follow its host variable.

6.2.1 Insert NULLs

ORACLE

You can use indicator variables to INSERT NULLs. Before the INSERT, for each column you
want to be NULL, set the appropriate indicator variable to -1, as shown in the following
example:

set ind comm = -1;

EXEC SQL INSERT INTO emp (empno, comm)
VALUES (:emp number, :commission:ind comm);

The indicator variable ind_comm specifies that a NULL is to be stored in the COMM column.

You can hard code the NULL instead, as follows:

6-3

Chapter 6
Indicator Variables

EXEC SQL INSERT INTO emp (empno, comm)
VALUES (:emp number, NULL);

While this is less flexible, it might be more readable. Typically, you insert NULLs
conditionally, as the next example shows:

printf ("Enter employee number or 0 if not available: ");
scanf ("%d", &emp number);

if (emp number ==
ind empnum = -1;
else
ind empnum = 0;

EXEC SQL INSERT INTO emp (empno, sal)
VALUES (:emp_number:ind_empnum, :salary);

6.2.2 Returned NULLSs

6.2.3 Fetch

You can also use indicator variables to manipulate returned NULLS, as the following
example shows:

EXEC SQL SELECT ename, sal, comm
INTO :emp name, :salary, :commission:ind comm

FROM emp
WHERE empno = :emp number;
if (ind comm == -1)
pay = salary; /* commission is NULL; ignore it */

else
pay = salary + commission;

NULLS

When DBMS=V7 or DBMS=VS, if you SELECT or FETCH NULLSs into a host variable
not associated with an indicator variable, Oracle issues the following error message:

ORA-01405: fetched column value is NULL

Related Topics
« DBMS

6.2.4 Test for NULLs

ORACLE

You can use indicator variables in the WHERE clause to test for NULLSs, as the
following example shows:

EXEC SQL SELECT ename, sal

INTO :emp name, :salary

FROM emp

WHERE :commission INDICATOR :ind comm IS NULL ...

However, you cannot use a relational operator to compare NULLs with each other or
with other values. For example, the following SELECT statement fails if the COMM
column contains one or more NULLS:

EXEC SQL SELECT ename, sal
INTO :emp name, :salary

6-4

Chapter 6
The Basic SQL Statements

FROM emp
WHERE comm = :commission;

The next example shows how to compare values for equality when some of them might be
NULLSs:

EXEC SQL SELECT ename, sal
INTO :emp name, :salary
FROM emp
WHERE (comm = :commission) OR ((comm IS NULL) AND
(:commission INDICATOR :ind comm IS NULL));

6.2.5 Truncated Values

When DBMS=V7 or V8, if you SELECT or FETCH a truncated column value into a host
variable not associated with an indicator variable, a warning is generated instead of an error.

6.3 The Basic SQL Statements

Executable SQL statements let you query, manipulate, and control Oracle data and create,
define, and maintain Oracle objects such as tables, views, and indexes. This chapter focuses
on the statements that query and manipulate data.

When executing a data manipulation statement such as INSERT, UPDATE, or DELETE, your
only concern, besides setting the values of any input host variables, is whether the statement
succeeds or fails. To find out, you simply check the SQLCA. (Executing any SQL statement
sets the SQLCA variables.) You can check in the following two ways:

* Implicit checking with the WHENEVER statement
» Explicit checking of SQLCA variables

When executing a SELECT statement (query), however, you must also deal with the rows of
data it returns. Queries can be classified as follows:

* Queries that return no rows (that is, merely check for existence)
* Queries that return only one row
e Queries that return more than one row

Queries that return more than one row require explicitly declared cursors or the use of host
arrays (host variables declared as arrays).

" Note:

Host arrays let you process "batches" of rows.

This chapter assumes the use of scalar host variables.

The following embedded SQL statements let you query and manipulate Oracle data:

Embedded SQL Description
Statements
SELECT Returns rows from one or more tables.

ORACLE 6-5

Chapter 6
The Basic SQL Statements

Embedded SQL Description

Statements

INSERT Adds new rows to a table.

UPDATE Modifies rows in a table.

DELETE Removes unwanted rows from a table.

The following embedded SQL statements let you define and manipulate an explicit
cursor:

Embedded SQL Description

Statements

DECLARE Names the cursor and associates it with a query.

OPEN Executes the query and identifies the active set.

FETCH Advances the cursor and retrieves each row in the active set, one
by one.

CLOSE Disables the cursor (the active set becomes undefined).

The following sections, you first learn how to code INSERT, UPDATE, DELETE, and
single-row SELECT statements. Then, you progress to multirow SELECT statements.

Related Topics

e Handling Runtime Errors

* Host Arrays

 Embedded SQL Statements and Directives

e Oracle Database SQL Language Reference

6.3.1 The SELECT Statement

ORACLE

Querying the database is a common SQL operation. To issue a query you use the
SELECT statement. In the following example, you query the EMP table:

EXEC SQL SELECT ename, job, sal + 2000
INTO :emp name, :job title, :salary
FROM emp

WHERE empno = :emp number;

The column names and expressions following the keyword SELECT make up the
select list. The select list in our example contains three items. Under the conditions
specified in the WHERE clause (and following clauses, if present), Oracle returns
column values to the host variables in the INTO clause.

The number of items in the select list should equal the number of host variables in the
INTO clause, so there is a place to store every returned value.

In the simplest case, when a query returns one row, its form is that shown in the last
example. However, if a query can return more than one row, you must FETCH the
rows using a cursor or SELECT them into a host-variable array. Cursors and the
FETCH statement are discussed later in this chapter.

6-6

Chapter 6
The Basic SQL Statements

If a query is written to return only one row but might actually return several rows, the result of
the SELECT is indeterminate. Whether this causes an error depends on how you specify the
SELECT_ERROR option. The default value, YES, generates an error if more than one row is
returned.

Related Topics

* Host Arrays

6.3.1.1 Available Clauses

You can use all of the following standard SQL clauses in your

SELECT statements:

* INTO
* FROM
* WHERE

« CONNECT BY

« START WITH

* GROUP BY

* HAVING

« ORDER BY

» FOR UPDATE OF

Except for the INTO clause, the text of embedded SELECT statements can be executed and
tested interactively using SQL*Plus. In SQL*Plus, you use substitution variables or constants
instead of input host variables.

6.3.2 The INSERT Statement

Use the INSERT statement to add rows to a table or view. In the following example, you add
a row to the EMP table:

EXEC SQL INSERT INTO emp (empno, ename, sal, deptno)
VALUES (:emp number, :emp name, :salary, :dept number);

Each column you specify in the column list must belong to the table named in the INTO
clause. The VALUES clause specifies the row of values to be inserted. The values can be
those of constants, host variables, SQL expressions, SQL functions such as USER and
SYSDATE, or user-defined PL/SQL functions.

The number of values in the VALUES clause must equal the number of names in the column
list. However, you can omit the column list if the VALUES clause contains a value for each
column in the table, in the order that they are defined in the table.

Related Topics
* INSERT (Executable Embedded SQL)

6.3.2.1 About Using Subqueries

A subquery is a nested SELECT statement. Subqueries let you conduct multipart searches.
They can be used to

ORACLE .

Chapter 6
The Basic SQL Statements

e Supply values for comparison in the WHERE, HAVING, and START WITH clauses
of SELECT, UPDATE, and DELETE statements

» Define the set of rows to be inserted by a CREATE TABLE or INSERT statement
» Define values for the SET clause of an UPDATE statement

The following example uses a subquery in an INSERT statement to copy rows from
one table to another:

EXEC SQL INSERT INTO emp2 (empno, ename, sal, deptno)
SELECT empno, ename, sal, deptno FROM emp
WHERE job= :job title ;

This INSERT statement uses the subquery to obtain intermediate results.

6.3.3 The UPDATE Statement

Use the UPDATE statement to change the values of specified columns in a table or
view. In the following example, we update the sAL and coMM columns in the EMP table:

EXEC SQL UPDATE emp
SET sal = :salary, comm = :commission
WHERE empno = :emp number;

Use the optional WHERE clause to specify the conditions under which rows are
updated.

The SET clause lists the names of one or more columns for which you must provide
values. You can use a subquery to provide the values, as the following example
shows:

EXEC SQL UPDATE emp
SET sal = (SELECT AVG(sal)*1.1 FROM emp WHERE deptno = 20)
WHERE empno = :emp number;

The UPDATE statement has an optional returning clause, like the INSERT and
DELETE statements. It is only allowed after the optional WHERE condition.

Related Topics
* The WHERE Clause
 UPDATE (Executable Embedded SQL)

6.3.4 The DELETE Statement

ORACLE

Use the DELETE statement to remove rows from a table or view. In the following
example, you delete all employees in a given department from the EMP table:

EXEC SQL DELETE FROM emp
WHERE deptno = :dept number ;

We have used the optional WHERE clause to specify the condition under which rows
are deleted.

The returning clause option can be used in DELETE statements also. It is allowed
after the optional WHERE condition. In the earlier example, it is good practice to
record the field values of each employee that is deleted.

6-8

Chapter 6
Using Boolean Data Type

Related Topics
 DELETE (Executable Embedded SQL)

6.3.5 The WHERE Clause

6.4 Using

ORACLE

Use the WHERE clause to SELECT, UPDATE, or DELETE only those rows in a table or view
that meet your search condition. The WHERE-clause search condition is a Boolean
expression, which can include scalar host variables, host arrays (not in SELECT statements),
subqueries, and user-defined stored functions.

If you omit the WHERE clause, all rows in the table or view are processed. If you omit the
WHERE clause in an UPDATE or DELETE statement, Oracle sets sqlwarn[4] in the SQLCA
to 'W' to warn that all rows were processed.

Boolean Data Type

Oracle Database supports storing of native boolean data type values. Pro*C applications can
perform bind and fetch operations on boolean data in the database. Using the boolean data
type makes it easier to represent boolean state in applications instead of using a character
type column to indicate "Y" or "N."

An application can include the boolean data type with the EXEC SQL statements in the
following ways:

» Declare a variable of boolean data type in the EXEC SQL variable declaration statement.

EXEC SQL BEGIN DECLARE SECTION;
EXEC SQL var variable name IS boolean;
EXEC SQL END DECLARE SECTION;

» Define an existing table with boolean data type columns.
EXEC SQL DECLARE table name TABLE (column name boolean);

» Use boolean data type to define user-defined data type (equivalent of C typedef).
EXEC SQL TYPE myBoolType IS boolean;

* Create a table.
EXEC SQL CREATE TABLE booleanTable (bl boolean);

* Insert a boolean value into a table.

myBoolType bl = TRUE;
EXEC SQL INSERT INTO table name values(:bl);

* Fetch data from a boolean data type column.

If data is fetched in a boolean data type variable, the data from boolean data type column
returns a true or false value. If the output variable type is INTEGER then a 1 or O integer
value is returned. If the database column value is NULL then the declared variable is
untouched.

The following example gives the output as a boolean type, true or false:

bool bl;
EXEC SQL SELECT col name INTO :bl
FROM table name;

The following example gives the output as an integer type, 1 or O:

6-9

Chapter 6
The DML Returning Clause

int cl;
EXEC SQL SELECT col name INTO :cl
FROM table name;

The following example gives the output as a char type, "true" or "false":

char[5] varl;
EXEC SQL SELECT col name INTO :varl
FROM table name;

6.5 The DML Returning Clause

The INSERT, UPDATE, and DELETE statements can have an optional DML returning
clause which returns column value expressions expr, into host variables hv, with host
indicator variables iv. The DML returning clause looks like this:

{RETURNING | RETURN} {expr [,expr]}
INTO {:hv [[INDICATOR]:iv] [, :hv [[INDICATOR]:iv]]}

The number of expressions must equal the number of host variables. This clause
eliminates the need for selecting the rows after an INSERT or UPDATE, and before a
DELETE when you need to record that information for your application. The returning
clause eliminates inefficient network round trips, extra processing, and server
memory.

Oracle Dynamic SQL Method 4 does not support the DML returning clause; but ANSI
Dynamic SQL Method 4 does. Support for DML statements with a DML returning
clause that affects more than a single row is not supported by ANSI DYNAMIC SQL.

Related Topics
* ANSI Dynamic SQL

6.6 Cursors

ORACLE

When a query returns multiple rows, you can explicitly define a cursor to
e Process beyond the first row returned by the query

e Keep track of which row is currently being processed

Or, you can use host arrays.

A cursor identifies the current row in the set of rows returned by the query. This allows
your program to process the rows one at a time. The following statements let you
define and manipulate a cursor:

» DECLARE CURSOR

- OPEN
- FETCH
- CLOSE

First you use the DECLARE CURSOR statement to name the cursor and associate it
with a query.

The OPEN statement executes the query and identifies all the rows that meet the
guery search condition. These rows form a set called the active set of the cursor. After

6-10

Chapter 6
Cursors

OPENIng the cursor, you can use it to retrieve the rows returned by its associated query.

Rows of the active set are retrieved one by one (unless you use host arrays). You use a
FETCH statement to retrieve the current row in the active set. You can execute FETCH
repeatedly until all rows have been retrieved.

When done FETCHing rows from the active set, you disable the cursor with a CLOSE
statement, and the active set becomes undefined.

The following sections show you how to use these cursor control statements in your
application program.

Related Topics
* Host Arrays

6.6.1 The DECLARE CURSOR Statement

ORACLE

You use the DECLARE CURSOR statement to define a cursor by giving it a name and
associating it with a query, as the following example shows:

EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, empno, sal
FROM emp
WHERE deptno = :dept number;

The cursor name is an identifier used by the precompiler, not a host or program variable, and
should not be defined in the Declare Section. Therefore, cursor names cannot be passed
from one precompilation unit to another. Cursor names cannot be hyphenated. They can be
any length, but only the first 31 characters are significant. For ANSI compatibility, use cursor
names no longer than 18 characters.

The precompiler option CLOSE_ON_COMMIT is provided for use in the command line or in a
configuration file. Any cursor not declared with the WITH HOLD clause is closed after a
COMMIT or ROLLBACK when CLOSE_ON_COMMIT=YES.

If MODE is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. The defaults are MODE=ORACLE and CLOSE_ON_COMMIT=NO. If you
specify MODE=ANSI then any cursors not using the WITH HOLD clause will be closed on
COMMIT. The application will run more slowly because cursors are closed and re-opened
many times. Setting CLOSE_ON_COMMIT=NO when MODE=ANSI results in performance
improvement. To see how macro options such as MODE affect micro options such as
CLOSE_ON_COMMIT, see "Precedence of Option Values".

The SELECT statement associated with the cursor cannot include an INTO clause. Rather,
the INTO clause and list of output host variables are part of the FETCH statement.

Because it is declarative, the DECLARE CURSOR statement must physically (not just
logically) precede all other SQL statements referencing the cursor. That is, forward
references to the cursor are not allowed. In the following example, the OPEN statement is
misplaced:

EXEC SQL OPEN emp cursor;
* -- MISPLACED OPEN STATEMENT
EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, empno, sal
FROM emp
WHERE ename = :emp name;

6-11

Chapter 6
Cursors

The cursor control statements (DECLARE, OPEN, FETCH, CLOSE) must all occur
within the same precompiled unit. For example, you cannot DECLARE a cursor in file
A, then OPEN it in file B.

Your host program can DECLARE as many cursors as it needs. However, in a given
file, every DECLARE statement must be unique. That is, you cannot DECLARE two
cursors with the same name in one precompilation unit, even across blocks or
procedures, because the scope of a cursor is global within a file.

For users of MODE=ANSI or CLOSE_ON_COMMIT=YES, the WITH HOLD clause
can be used in a DECLARE section to override the behavior defined by the two
options. With these options set, the behavior will be for all cursors to be closed when a
COMMIT is issued. This can have performance implications due to the overhead of re-
opening the cursor to continue processing. The careful use of WITH HOLD can speed
up programs that need to conform to the ANSI standard for precompilers in most
respects.

If you will be using many cursors, you might want to specify the MAXOPENCURSORS
option.

Related Topics

* WITH HOLD Clause in DECLARE CURSOR Statements
« CLOSE_ON_COMMIT

* Precompiler Options

e Performance Tuning

6.6.2 The OPEN Statement

ORACLE

You use the OPEN statement to execute the query and identify the active set. In the
following example, you OPEN a cursor named emp_cursor:

EXEC SQL OPEN emp cursor;

OPEN zeroes the rows-processed count kept by the third element of SQLERRD in the
SQLCA. However, none of the rows are visible to the application at this point. That is
handled by the FETCH statement.

OPEN positions the cursor just before the first row of the active set. It also zeroes the
rows-processed count kept by the third element of SQLERRD in the SQLCA. However,
none of the rows is actually retrieved at this point. That will be done by the FETCH
statement.

Once you OPEN a cursor, the query's input host variables are not re-examined until
you reOPEN the cursor. Thus, the active set does not change. To change the active
set, you must reOPEN the cursor.

Generally, you should CLOSE a cursor before reOPENIing it. However, if you specify
MODE=0ORACLE (the default), you need not CLOSE a cursor before reOPENIng it.
This can increase performance.

The amount of work done by OPEN depends on the values of three precompiler
options: HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS.

Related Topics
e About Using the Precompiler Options

6-12

Chapter 6
Cursors

6.6.3 The FETCH Statement

You use the FETCH statement to retrieve rows from the active set and specify the output host
variables that will contain the results. Recall that the SELECT statement associated with the
cursor cannot include an INTO clause. Rather, the INTO clause and list of output host
variables are part of the FETCH statement. In the following example, you FETCH INTO three
host variables:

EXEC SQL FETCH emp cursor
INTO :emp name, :emp number, :salary;

The cursor must have been previously DECLAREd and OPENed. The first time you execute
FETCH, the cursor moves from before the first row in the active set to the first row. This row

becomes the current row. Each subsequent execution of FETCH advances the cursor to the

next row in the active set, changing the current row. The cursor can only move forward in the
active set. To return to a row that has already been FETCHed, you must reOPEN the cursor,
then begin again at the first row of the active set.

If you want to change the active set, you must assign new values to the input host variables
in the query associated with the cursor, then reOPEN the cursor. When MODE=ANSI, you
must CLOSE the cursor before reOPENiIng it.

As the next example shows, you can FETCH from the same cursor using different sets of
output host variables. However, corresponding host variables in the INTO clause of each
FETCH statement must have the same datatype.

EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, sal FROM emp WHERE deptno = 20;

EXEC SQL OPEN emp cursor;

EXEC SQL WHENEVER NOT FOUND GOTO ...

for (i)

{
EXEC SQL FETCH emp cursor INTO :emp namel, :salaryl;
EXEC SQL FETCH emp cursor INTO :emp name2, :salary2;
EXEC SQL FETCH emp cursor INTO :emp name3, :salary3;

}

If the active set is empty or contains no more rows, FETCH returns the "no data found" error
code to sglcode in the SQLCA, or to the SQLCODE or SQLSTATE status variables. The
status of the output host variables is indeterminate. (In a typical program, the WHENEVER
NOT FOUND statement detects this error.) To reuse the cursor, you must reOPEN it.

Itis an error to FETCH on a cursor under the following conditions:

» Before OPENiIng the cursor
* After a "no data found" condition
* After CLOSEing it

6.6.4 The CLOSE Statement

When done FETCHing rows from the active set, you CLOSE the cursor to free the resources,
such as storage, acquired by OPENing the cursor. When a cursor is closed, parse locks are

ORACLE 6-13

Chapter 6
Scrollable Cursors

released. What resources are freed depends on how you specify the HOLD _CURSOR
and RELEASE_CURSOR options. In the following example, you CLOSE the cursor
named emp_cursor:

EXEC SQL CLOSE emp cursor;

You cannot FETCH from a closed cursor because its active set becomes undefined. If
necessary, you can reOPEN a cursor (with new values for the input host variables, for
example).

When MODE=ORACLE, issuing a COMMIT or ROLLBACK closes cursors referenced
in a CURRENT OF clause. Other cursors are unaffected by COMMIT or ROLLBACK
and if open, remain open. However, when MODE=ANSI, issuing a COMMIT or
ROLLBACK closes all explicit cursors.

Related Topics

* Database Concepts

6.7 Scrollable Cursors

A scrollable cursor is a work area where Oracle executes SQL statements and stores
information that is processed during execution.

When a cursor is executed, the results of the query are placed into a a set of rows
called the result set. The result set can be fetched either sequentially or non-
sequentially. Non-sequential result sets are called scrollable cursors.

A scrollable cursor enables users to access the rows of a database result set in a
forward, backward, and random manner. This enables the program to fetch any row in
the result set. See Oracle Call Interface Programmer's Guide, Release 9.2.0.

6.7.1 About Using Scrollable Cursors

The following statements let you define and manipulate a scrollable cursor.

6.7.1.1 DECLARE SCROLL CURSOR

You can use the DECLARE <cursor name> SCROLL CURSOR statement to name the
scrollable cursor and associate it with a query.

6.7.1.2 OPEN for Scrollable Cursors

You can use the OPEN statement in the same way as in the case of a non-scrollable
cursor.

6.7.1.3 FETCH for Scrollable Cursors

You can use the FETCH statement to fetch required rows in a random manner. An
application can fetch rows up or down, first or last row directly, or fetch any single row
in a random manner.

The following options are available with the FETCH statement.

1. FETCH FIRST

Fetches the first row from the result set.

ORACLE 6-14

Chapter 6
Scrollable Cursors

2. FETCH PRIOR
Fetches the row prior to the current row.
3. FETCH NEXT

Fetches the next row from the current position. This is same as the non-scrollable cursor
FETCH.

4. FETCH LAST
Fetches the last row from the result set.
5. FETCH CURRENT
Fetches the current row.
6. FETCH RELATIVE n
Fetches the nth row relative to the current row, where n is the offset.
7. FETCH ABSOLUTE n
Fetches the nth row, where n is the offset from the start of the result set.
The following example describes how to FETCH the last record from a result set.

EXEC SQL DECLARE emp cursor SCROLL CURSOR FOR
SELECT ename, sal FROM emp WHERE deptno=20;

EXEC SQL OPEN emp cursor;
EXEC SQL FETCH LAST emp cursor INTO :emp name, :sal;
EXEC SQL CLOSE emp cursor;

6.7.1.4 CLOSE for Scrollable Cursors

You can use the CLOSE statement in the same way as in the case of a non-scrollable cursor.

" Note:

You cannot use scrollable cursors for REF cursors.

6.7.2 The CLOSE_ON_COMMIT Precompiler Option

The CLOSE_ON_COMMIT micro precompiler option provides the ability to choose whether
or not to close all cursors when a COMMIT is executed and the macro option MODE=ANSI.
When MODE=ANSI, CLOSE_ON_COMMIT has the default value YES. Explicitly setting
CLOSE_ON_COMMIT=NO results in better performance because cursors will not be closed
when a COMMIT is executed, removing the need to re-open the cursors and incur extra
parsing.

6.7.3 The PREFETCH Precompiler Option

ORACLE

The precompiler option PREFETCH allows for more efficient queries by pre-fetching a given
number of rows. This decreases the number of server round trips needed and reduces overall
memory usage. The number of rows set by the PREFETCH option value is used for all
gueries involving explicit cursors, subject to the standard precedence rules. When used
inline, the PREFETCH option must precede any of these cursor statements:

6-15

Chapter 6
Optimizer Hints

e EXEC SQL OPEN cursor
« EXEC SQL OPEN cursor USING host_var_list
« EXEC SQL OPEN cursor USING DESCRIPTOR desc_name

When an OPEN is executed, the value of PREFETCH gives the number of rows to be
pre-fetched when the query is executed. You can set the value from 0 (no pre-fetching)
to 65535. The default value is 1.

4

4

4

6.8 Optimizer

Note:

The default value of the PREFETCH option is 1 - return a single row for each
round-trip. If you choose not to use the PREFETCH option, using the
command line, you must explicitly disable it by setting the PREFETCH option
to 0.

PREFETCH is automatically disabled when LONG or LOB columns are
being retrieved.

Note:

PREFETCH is used primarily to enhance the performance of single row
fetches. PREFETCH has no effect when array fetches are used.

Note:

The PREFETCH option should be used wisely, and on a case-by-case basis.
Select an appropriate PREFETCH value that will optimize performance of a
specific FETCH statement. To accomplish this, use the inline prefetch option
instead of the command line prefetch option.

Note:

The performance of many large applications can be improved simply by
using indicator variables with host variables in FETCH statements.

To enable precompiler applications to obtain the maximum advantage from
the use of the PREFETCH option on single row fetches, it is strongly
recommended that you use indicator variables.

Hints

The Pro*C/C++ Precompiler supports optimizer hints in SQL statements. An optimizer
hint is a suggestion to the Oracle SQL optimizer that can override the optimization
approach that would normally be taken. You can use hints to specify the

ORACLE

6-16

Chapter 6
Fix Execution Plan

* Optimization approach for a SQL statement
» Access path for each referenced table

» Join order for a join

* Method used to join tables

Hints allow you to choose between rule-based and cost-based optimization. With cost-based
optimization, you can use further hints to maximize throughput or response time.

6.8.1 Issuing Hints

You can issue an optimizer hint inside a C or C++ style comment, immediately after a
SELECT, DELETE, or UPDATE command. You indicate that the comment contains one or
more hints by following the comment opener with a plus sign, leaving no space between the
opener and the '+'. For example, the following statement uses the ALL_ROWS hint to let the
cost-based approach optimize the statement for the goal of best throughput:

EXEC SQL SELECT /*+ ALL ROWS (cost-based) */ empno, ename, sal, job
INTO :emp rec FROM emp
WHERE deptno = :dept number;

As shown in this statement, the comment can contain optimizer hints as well as other
comments.

6.9 Fix Execution Plan

ORACLE

In application development environments where modules are developed in one environment,
and then integrated and deployed into another, the performance of the applications are
affected. At times, the performance of the precompiler applications are affected by changes in
the database environment. These may include changes in the optimizer statistics, changes to
the optimizer settings, or changes to parameters affecting the sizes of memory structures.

To fix execution plans for SQL's used in Pro*C/C++ in the development environment, you
need to use the outline feature of Oracle at the time of precompiling. An outline is
implemented as a set of optimizer hints that are associated with the SQL statement. If you
enable the use of the outline for the statement, Oracle automatically considers the stored
hints and tries to generate an execution plan in accordance with those hints. In this way, you
can ensure that the performance is not affected when the modules are integrated or deployed
into different environments.

You can use the following SQL statements to create outlines in Pro*C/C++:

e SELECT

°* DELETE

e UPDATE

° INSERT ... SELECT

e CREATE TABLE ... AS SELECT

If the outline option is set, then the precompiler generates two files, a SQL file and a LOG file
at the end of successful precompilation. Command line options outline and outlnprefix
control the generation of the outlines.

6-17

ORACLE

Chapter 6
Fix Execution Plan

Each generated outline name is unique. Because the file names used in the
application are unique, this information is used in generating the outline name. In
addition, the category name is also prefixed.

Caution:

Oracle allows only 128 bytes for the outline name. If you exceed the limit, the
precompiler will flag an error. You can restrict the length of the outline name

by using the outlnprefix option.

Example 6-1 Generating a SQL File Containing Outlines

You need to precompile the following program by using the outline option to generate
SQL files containing the outlines for all the outline-supported SQL statements in this
program.

~
*

2

outlndemo.pc

Outlines will be created for the following SQL operations,

. CREATE ... SELECT
INSERT ... SELECT
UPDATE
DELETE
SELECT

O W N

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sglda.h>
#include <sglcpr.h>
#include <sglca.h>

/* Error handling function. */
void sql_error(char *msqg)

{

exec sql whenever sglerror continue;
printf ("\n%s\n", msqg);
printf ("%$.70s\n", sqglca.sqlerrm.sglerrmc);

exec sgl rollback release;

exit (EXIT FAILURE) ;

int main()

{

varchar ename[10];
varchar job[9];
float sal, comm;

exec sql begin declare section;
char *uid = "scott/tiger";
exec sql end declare section;

exec sql whenever sqlerror do sql error ("ORACLE

error--\n");

6-18

Chapter 6
Fix Execution Plan

exec sgl connect :uid;

exec sql insert into bonus
select ename, job, sal, comm from emp where job like 'SALESMAN';

exec sqgl update bonus set sal = sal * 1.1 where sal < 1500;

exec sqgl declare cl cursor for

select ename, job, sal, comm from bonus order by sal;
exec sql open cl;
printf ("Contents of updated BONUS table\n\n");

printf ("ENAME JOB SALARY COMMISSION\n\n");
exec sqgl whenever not found do break;
while (1)

{
exec sql fetch cl into :ename, :job, :sal, :comm;
ename.arr [ename.len]="\0";
job.arr[job.len]="\0";

o)

printf ("%-9s %-9s %8.2f %8.2f\n", ename.arr,
job.arr, sal, comm);

exec sqgl close cl;
exec sql whenever not found do sql error ("ORACLE error--\n");

exec sql delete from bonus;

exec sql create table outlndemo tab as
select empno, ename, sal from emp where deptno = 10;

/* Outline will not be created for this DDL statement */
exec sql drop table outlndemo tab;

exec sql rollback work release;
ex1t (EXIT SUCCESS);

6.9.1 SQL File

The generated file name has the following format:

<filename> <filetype>.sql
In Pro*C, for the file "abc.pc”, the generated SQL file will be abc_pc.sql.

Generated file format

If the outlnprefix option is not used, then the format of the unique identifier used as outline
name and comment is:

<category name> <filename> <filetype> <sequence no.>

If the outinprefix option is used (outlnprefix=<prefix_name>), then the format of the unique
identifier used as outline name and comment is:

<prefix name> <sequence no.>

If outline=yes, which is the default category, then <category _name> will be DEFAULT and
outline name will be:

DEFAULT <filename> <filetype> <sequence no.>

ORACLE 6-19

Chapter 6
Fix Execution Plan

or
<prefix name> <sequence no.>
The allowed range for <sequence no.>is 0000 to 9999.

SQL in the generated precompiled file will have the comment appended to it as it
appears in the outline for that SQL.

6.9.1.1 Examples

ORACLE

Consider the following examples.

Example 1

If abc.pc has the statements

EXEC SQL select * from emp where empno=:var;
EXEC SQL select * from dept;

and if outline=mycatl and outlnprefix is not used, then:

Contents of abc_pc.sql

create or replace outline mycatl _abc_pc_0000 for category mycatl on select * from
emp where empno=:bl /* mycatl abc pc 0000 */;

create or replace outline mycatl abc_pc_0001 for category mycatl on select * from
dept /* mycatl abc pc 0001 */;

Contents of abc.c
sglstm.stmt = select * from emp where empno=:bl /* mycatl abc pc 0000 */;
sglstm.stmt = select * from dept /* mycatl abc pc 0001 */;

Example 2

If abc.pc has the statements

EXEC SQL select * from emp where empno=:var;
EXEC SQL select * from dept;

and if outline=mycatl and outlnprefix=myprefix, then:

Contents of abc_pc.sql

create or replace outline myprefix_0000 for category mycatl on select * from emp
where empno=:bl /* myprefix 0000 */;

create or replace outline myprefix_0001 for category mycatl on select * from
dept /* myprefix 0001 */;

Contents of abc.c

sglstm.stmt = select * from emp where empno=:bl /* myprefix 0000 */;

sglstm.stmt = select * from dept /* myprefix 0001 */;

6-20

Chapter 6
The CURRENT OF Clause

Example 3

If abc.pc has the statements

EXEC SQL select * from emp where empno=:var;
EXEC SQL select * from dept;

and if outline=yes and outlnprefix=myprefix, then:

Contents of abc_pc.sql

create or replace outline myprefix_0000 on select * from emp where empno=:bl /*
myprefix 0000 */;

create or replace outline myprefix_0001 on select * from dept /* myprefix 0001 */;
Contents of abc.c
sglstm.stmt = "select * from emp where empno=:bl /* myprefix 0000 */;

sglstm.stmt = "select * from dept /* myprefix 0001 */";

6.9.2 LOG File

The generated file name has the following format:

<filename> <filetype>.log

In Pro*C, for the file "abc.pc”, the generated LOG file will be abc_pc.log.

Consider the following example.

Example 1

If abc.pc has the statements

EXEC SQL select * from emp;

Contents of abc_pc.log

CATEGORY <Category name>
Source SQL 0
SELECT * FROM emp
OUTLINE NAME
abc_pc 0000
OUTLINE SQL 0
Select * from emp /* abc_pc 0000 */

6.10 The CURRENT OF Clause

ORACLE

You use the CURRENT OF cursor_name clause in a DELETE or UPDATE statement to refer
to the latest row FETCHed from the named cursor. The cursor must be open and positioned
on a row. If no FETCH has been done or if the cursor is not open, the CURRENT OF clause
results in an error and processes no rows.

The FOR UPDATE OF clause is optional when you DECLARE a cursor that is referenced in
the CURRENT OF clause of an UPDATE or DELETE statement. The CURRENT OF clause
signals the precompiler to add a FOR UPDATE clause if necessary.

6-21

Chapter 6
The Cursor Statements

In the following example, you use the CURRENT OF clause to refer to the latest row
FETCHed from a cursor named emp_cursor:

EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, sal FROM emp WHERE job = 'CLERK'
FOR UPDATE OF sal;

EXEC SQL OPEN emp cursor;
EXEC SQL WHENEVER NOT FOUND GOTO ...
for (;7) {
EXEC SQL FETCH emp cursor INTO :emp name, :salary;

EXEC SQL UPDATE emp SET sal = :new salary
WHERE CURRENT OF emp cursor;
}
Related Topics

* Using FOR UPDATE OF

6.10.1 Restrictions (FOR UPDATE OF)

You cannot use CURRENT OF clause on an index-organized table.

Explicit FOR UPDATE OF clauses or implicit FOR UPDATE clauses acquire exclusive
row locks. All rows are locked at the OPEN, not as they are FETCHed, and are
released when you COMMIT or ROLLBACK. Therefore, you cannot FETCH from a
FOR UPDATE cursor after a COMMIT. If you try to do this, Oracle returns a 1002 error
code.

Also, you cannot use host arrays with the CURRENT OF clause. For an alternative,
see also "About Mimicking CURRENT OF ™.

Furthermore, you cannot reference multiple tables in an associated FOR UPDATE OF
clause, which means that you cannot do joins with the CURRENT OF clause.

Finally, you cannot use dynamic SQL with the CURRENT OF clause.

6.11 The Cursor Statements

ORACLE

The following example shows the typical sequence of cursor control statements in an
application program:

/* define a cursor */
EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, job
FROM emp
WHERE empno = :emp number
FOR UPDATE OF job;

/* open the cursor and identify the active set */
EXEC SQL OPEN emp cursor;

/* break if the last row was already fetched */
EXEC SQL WHENEVER NOT FOUND DO break;

/* fetch and process data in a loop */
for (;7)

6-22

Chapter 6
A Complete Example Using Non-Scrollable Cursor

EXEC SQL FETCH emp cursor INTO :emp name, :job title;

/* optional host-language statements that operate on
the FETCHed data */

EXEC SQL UPDATE emp
SET job = :new job title
WHERE CURRENT OF emp cursor;
}

/* disable the cursor */
EXEC SQL CLOSE emp cursor;
EXEC SQL COMMIT WORK RELEASE;

6.12 A Complete Example Using Non-Scrollable Cursor

ORACLE

The following complete program illustrates the use of a cursor and the FETCH statement.
The program prompts for a department number, then displays the names of all employees in
that department.

All FETCHes except the final one return a row and, if no errors were detected during the
FETCH, a success status code. The final FETCH fails and returns the "no data found" Oracle
error code to sqlca.sqlcode. The cumulative number of rows actually FETCHed is found in
sqlerrd[2] in the SQLCA.

#include <stdio.h>

/* declare host variables */
char userid[12] = "SCOTT/TIGER";
char emp name[10];

int emp number;

int dept number;

char temp([32];

void sql error();

/* include the SQL Communications Area */
#include <sglca.h>

main ()
{ emp number = 7499;
/* handle errors */
EXEC SQL WHENEVER SQLERROR do sql error ("Oracle error");

/* connect to Oracle */
EXEC SQL CONNECT :userid;
printf ("Connected.\n");

/* declare a cursor */
EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename
FROM emp
WHERE deptno = :dept number;

printf ("Department number? ");
gets (temp) ;

dept number = atoi (temp);

/* open the cursor and identify the active set */

6-23

Chapter 6
A Complete Example Using Scrollable Cursor

EXEC SQL OPEN emp cursor;

printf ("Employee Name\n");
printf("------------- \n");
/* fetch and process data in a loop
exit when no more data */
EXEC SQL WHENEVER NOT FOUND DO break;
while (1)
{
EXEC SQL FETCH emp cursor INTO :emp name;
printf("%$s\n", emp name);
}
EXEC SQL CLOSE emp cursor;
EXEC SQL COMMIT WORK RELEASE;
exit (0);

void
sql error (msq)
char *msg;
{
char buf[500];
int buflen, msglen;

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;
buflen = sizeof (buf);

sglglm(buf, &buflen, &msglen);
printf ("$s\n", msgqg);

printf ("$*.s\n", msglen, buf);

exit (1),

6.13 A Complete Example Using Scrollable Cursor

ORACLE

The following program illustrates the use of scrollable cursor and the various options
used by the FETCH statement.

#include <stdio.h>

/* declare host variables */
char userid[12]="SCOTT/TIGER";
char emp name[10];

void sql _error();

/* include the SQL Communications Area */
#include<sqglca.h>

main ()
{
/* handle errors */
EXEC SQL WHENEVER SQLERROR do sql error("Oracle error");

/* connect to Oracle */
EXEC SQL CONNECT :userid;
printf ("Connected.\n");

/* declare a scrollable cursor */

EXEC SQL DECLARE emp cursor SCROLL CURSOR FOR
SELECT ename FROM emp;

6-24

Chapter 6
Positioned Update

/* open the cursor and identify the active set */

EXEC SQL OPEN emp cursor;

/* Fetch the last row */

/*

/*

/*

/*

/*

/*

/*

/*

EXEC SQL FETCH LAST emp cursor INTO :emp name;

Fetch row number 5 */
EXEC SQL FETCH ABSOLUTE 5 emp cursor INTO :emp name;

Fetch row number 10 */
EXEC SQL FETCH RELATIVE 5 emp cursor INTO :emp name;

Fetch row number 7 */
EXEC SQ1 FETCH RELATIVE -3 emp cursor INTO :emp name;

Fetch the first row */
EXEC SQL FETCH FIRST emp cursor INTO :emp name;

Fetch row number 2%/
EXEC SQL FETCH my cursor INTO :emp name;

Fetch row number 3 */
EXEC SQL FETCH NEXT my cursor INTO :emp name;

Fetch row number 3 */
EXEC SQL FETCH CURRENT my cursor INTO :emp name;

Fetch row number 2 */
EXEC SQL FETCH PRIOR my cursor INTO :emp name;

void
sql error (msq)
char *msg;

{

char buf[500];
int buflen , msglen;

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK TRANSACTION;

buflen = sizeof (buf);

sglglm(buf, &buflen, &mesglen);
printf ("$s\n",msqg);

printf ("$*.s\n",msglen,buf);

exit (1),

6.14 Positioned Update

The following skeletal example demonstrates positioned update using the universal ROWID.

ORACLE

#include <oci.h>

OCIRowid *urowid;

EXEC SQL ALLOCATE :urowid;
EXEC SQL DECLARE cur CURSOR FOR

SELECT rowid, ... FROM my table FOR UPDATE OF ...;

EXEC SQL OPEN cur;

6-25

Chapter 6
Positioned Update

EXEC SQL FETCH cur INTO :urowid, ...;
/* Process data */

EXEC SQL UPDATE my table SET ... WHERE CURRENT OF cur;

EXEC SQL CLOSE cur;
EXEC SQL FREE :urowid;

Related Topics
e Universal ROWIDs

ORACLE 6-26

Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL transaction
processing blocks in your program. This chapter contains the following topics:

Advantages of PL/SQL

Embedded PL/SQL Blocks

Host Variables

Indicator Variables

Host Arrays

Cursor Usage in Embedded PL/SQL
Stored PL/SQL and Java Subprograms
External Procedures

About Using Dynamic SQL

Related Topics

Embedded PL/SQL

7.1 Advantages of PL/SQL

This section looks at some of the features and benefits offered by PL/SQL, such as:

Better Performance
Integration with Oracle
Cursor FOR Loops
Procedures and Functions
Packages

PL/SQL Tables

User-Defined Records

Related Topics

Oracle Database PL/SQL Language Reference

7.1.1 Better Performance

PL/SQL can help you reduce overhead, improve performance, and increase productivity. For
example, without PL/SQL, Oracle must process SQL statements one at a time. Each SQL
statement results in another call to the Server and higher overhead. However, with PL/SQL,
you can send an entire block of SQL statements to the Server. This minimizes
communication between your application and Oracle.

ORACLE

7-1

Chapter 7
Advantages of PL/SQL

7.1.2 Integration with Oracle

PL/SQL is tightly integrated with the Oracle Server. For example, most PL/SQL
datatypes are native to the Oracle data dictionary. Furthermore, you can use the
%TYPE attribute to base variable declarations on column definitions stored in the data
dictionary, as the following example shows:

job _title emp.job%TYPE;

That way, you need not know the exact datatype of the column. Furthermore, if a
column definition changes, the variable declaration changes accordingly and
automatically. This provides data independence, reduces maintenance costs, and
allows programs to adapt as the database changes.

7.1.3 Cursor FOR Loops

With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE
statements to define and manipulate a cursor. Instead, you can use a cursor FOR
loop, which implicitly declares its loop index as a record, opens the cursor associated
with a given query, repeatedly fetches data from the cursor into the record, then closes
the cursor. An example follows:

DECLARE

BEGIN
FOR emprec IN (SELECT empno, sal, comm FROM emp) LOOP
IF emprec.comm / emprec.sal > 0.25 THEN ...

END LOOP;
END;

Notice that you use dot notation to reference components in the record.

7.1.4 Procedures and Functions

ORACLE

PL/SQL has two types of subprograms called procedures and functions, which aid
application development by letting you isolate operations. Generally, you use a
procedure to perform an action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the PL/SQL
language to suit your needs. For example, if you need a procedure that creates a new
department, just write your own as follows:

PROCEDURE create dept
(new_dname IN CHAR(14),
new_loc IN CHAR(13),
new deptno OUT NUMBER(2)) IS
BEGIN
SELECT deptno_seq.NEXTVAL INTO new deptno FROM dual;
INSERT INTO dept VALUES (new deptno, new dname, new loc);
END create dept;

When called, this procedure accepts a new department name and location, selects the

next value in a department-number database sequence, inserts the new number,
name, and location into the dept table, then returns the new number to the caller.

7-2

Chapter 7
Advantages of PL/SQL

You use parameter modes to define the behavior of formal parameters. There are three
parameter modes: IN (the default), OUT, and IN OUT. An IN parameter lets you pass values
to the subprogram being called. An OUT parameter lets you return values to the caller of a
subprogram. An IN OUT parameter lets you pass initial values to the subprogram being
called and return updated values to the caller.

The datatype of each actual parameter must be convertible to the datatype of its
corresponding formal parameter. Table 7-1 shows the legal conversions between datatypes.

7.1.5 Packages

PL/SQL lets you bundle logically related types, program objects, and subprograms into a
package. With the Procedural Database Extension, packages can be compiled and stored in
an Oracle database, where their contents can be shared by many applications.

Packages usually have two parts: a specification and a body. The specification is the
interface to your applications; it declares the types, constants, variables, exceptions, cursors,
and subprograms available for use. The body defines cursors and subprograms; it
implements the specification. In the following example, you "package” two employment
procedures:

PACKAGE emp actions IS -- package specification
PROCEDURE hire employee (empno NUMBER, ename CHAR, ...);

PROCEDURE fire employee (emp id NUMBER);
END emp actions;

PACKAGE BODY emp actions IS -- package body
PROCEDURE hire employee (empno NUMBER, ename CHAR, ...) IS
BEGIN

INSERT INTO emp VALUES (empno, ename, ...);
END hire employee;

PROCEDURE fire employee (emp id NUMBER) IS
BEGIN
DELETE FROM emp WHERE empno = emp id;
END fire employee;
END emp actions;

Only the declarations in the package specification are visible and accessible to applications.
Implementation details in the package body are hidden and inaccessible.

7.1.6 PL/SQL Tables

ORACLE

PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are called
PL/SQL tables, which are modeled as (but not the same as) database tables. PL/SQL tables
have only one column and use a primary key to give you array-like access to rows. The
column can belong to any scalar type (such as CHAR, DATE, or NUMBER), but the primary
key must belong to type BINARY_INTEGER, PLS_INTEGER or VARCHAR?2.

You can declare PL/SQL table types in the declarative part of any block, procedure, function,
or package. In the following example, you declare a TABLE type called NumTabTyp:
DECLARE
TYPE NumTabTyp IS TABLE OF NUMBER
INDEX BY BINARY INTEGER;

7-3

Chapter 7
Advantages of PL/SQL

BEGIN

END;

Once you define type NumTabTyp, you can declare PL/SQL tables of that type, as the
next example shows:

num tab NumTabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the primary
key value. For example, you reference the ninth row in the PL/SQL table named
num_tab as follows:

num_tab (9)

7.1.7 User-Defined Records

ORACLE

You can use the %ROWTYPE attribute to declare a record that represents a row in a
table or a row fetched by a cursor. However, you cannot specify the datatypes of
components in the record or define components of your own. The composite datatype
RECORD lifts those restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables, records have
uniquely named components, which can belong to different datatypes. For example,
suppose you have different kinds of data about an employee such as name, salary,
hire date, and so on. This data is dissimilar in type but logically related. A record that
contains such components as the name, salary, and hire date of an employee would
let you treat the data as a logical unit.

You can declare record types and objects in the declarative part of any block,
procedure, function, or package. In the following example, you declare a RECORD
type called DeptRecTyp:

DECLARE

TYPE DeptRecTyp IS RECORD
(deptno NUMBER (4) NOT NULL, -- default is NULL allowed
dname CHAR(9),
loc CHAR(14));

Notice that the component declarations are like variable declarations. Each component
has a unigue name and specific datatype. You can add the NOT NULL option to any
component declaration and so prevent the assigning of NULLSs to that component.

Once you define type DeptRecTyp, you can declare records of that type, as the next
example shows:

dept rec DeptRecTyp;
The identifier dept_rec represents an entire record.

You use dot notation to reference individual components in a record. For example, you
reference the dname component in the dept_rec record as follows:

dept rec.dname ...

7-4

Chapter 7
Embedded PL/SQL Blocks

7.2 Embedded PL/SQL Blocks

The Pro*C/C++ Precompiler treats a PL/SQL block like a single embedded SQL statement.
So, you can place a PL/SQL block anywhere in a program that you can place a SQL
statement.

To embed a PL/SQL block in your Pro*C/C++ program, simply bracket the PL/SQL block with
the keywords EXEC SQL EXECUTE and END-EXEC as follows:

EXEC SQL EXECUTE
DECLARE

BEGIN

END;

END-EXEC;

The keyword END-EXEC must be followed by a semicolon.
After writing your program, you precompile the source file in the usual way.

When the program contains embedded PL/SQL, you must use the
SQLCHECK=SEMANTICS command-line option, since the PL/SQL must be parsed by the
Oracle Server. SQLCHECK=SEMANTICS requires the USERID option also, to connect to a
server.

Related Topics
e About Using the Precompiler Options

7.3 Host Variables

Host variables are the key to communication between a host language and a PL/SQL block.
Host variables can be shared with PL/SQL, meaning that PL/SQL can set and reference host
variables.

For example, you can prompt a user for information and use host variables to pass that
information to a PL/SQL block. Then, PL/SQL can access the database and use host
variables to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and can be
used anywhere a PL/SQL variable is allowed. Like host variables in a SQL statement, host
variables in a PL/SQL block must be prefixed with a colon. The colon sets host variables
apart from PL/SQL variables and database objects.

" Note:

To use VARCHAR, CHARZ, or STRING types as output host variables in PL/SQL
blocks, you must initialize the length before entering the block. Set the length to the
declared (maximum) length of the VARCHAR, CHARZ, or STRING.

Related Topics

» Pointer Variables

ORACLE e

Chapter 7
Host Variables

7.3.1 Example: Using Host Variables with PL/SQL

The following example illustrates the use of host variables with PL/SQL. The program

ORACLE

prompts the user for an employee number, then displays the job title, hire date, and
salary of that employee.

char username[100], password[20];

char job title[20], hire date[9], temp[32];
int emp number;

float salary;

#include <sglca.h>

printf ("Username? \n");
gets (username) ;
printf ("Password? \n");
gets (password) ;

EXEC SQL WHENEVER SQLERROR GOTO sgl error;

EXEC SQL CONNECT :username IDENTIFIED BY :password;
printf ("Connected to Oracle\n");
for (;7)
{
printf ("Employee Number (0 to end)? ");
gets (temp) ;
emp number = atoi (temp);

if (emp number ==

{
EXEC SQL COMMIT WORK RELEASE;
printf ("Exiting program\n");

break;
}
[Hmm e begin PL/SQL block -—=-====-====----- */
EXEC SQL EXECUTE
BEGIN

SELECT job, hiredate, sal
INTO :job title, :hire date, :salary

FROM emp
WHERE empno = :emp number;
END;
END-EXEC;
[Hmm e end PL/SQL block ----=----=-----—- */

printf ("Number Job Title Hire Date Salary\n");
printf ("------------mmmm oo \n") ;
printf ("$6d %8.8s %9.9s %6.2f\n",

emp number, job title, hire date, salary);

exit (0);

sql _error:

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf ("Processing error\n");

exit (1);

7-6

Chapter 7
Host Variables

Notice that the host variable emp_number is set before the PL/SQL block is entered, and the

host variables job_title, hire_date, and salary are set inside the block.

7.3.2 Complex Example

In the example later, you prompt the user for a bank account number, transaction type, and
transaction amount, then debit or credit the account. If the account does not exist, you raise

ORACLE

an exception. When the transaction is complete, you display its status.

#include <stdio.h>
#include <sglca.h>

char username[20];
char password[20];
char status[80];
char temp[32];

int acct _num;
double trans_ amt;
void sql error();

main ()

{

char trans type;

strcpy (password, "TIGER");
strcpy (username, "SCOTT");

EXEC SQL WHENEVER SQLERROR DO sql error();
EXEC SQL CONNECT :username IDENTIFIED BY :password;
printf ("Connected to Oracle\n");

for (;7)

{
printf ("Account Number (0 to end)? ");
gets (temp) ;
acct num = atoi(temp);

if (acct num ==

{
EXEC SQL COMMIT WORK RELEASE;
printf ("Exiting program\n");
break;

printf ("Transaction Type - D)ebit or C)redit? ");

gets (temp) ;
trans_type = temp[0];

printf ("Transaction Amount? ");
gets (temp) ;
trans amt = atof (temp);

JHmm e begin PL/SQL block =—=-==-=-==-=-----
EXEC SQL EXECUTE
DECLARE
old bal NUMBER (9, 2) ;
err msg CHAR (70) ;

nonexistent EXCEPTION;

7-7

Chapter 7
Host Variables

BEGIN
:trans type := UPPER(:trans type);
IF :trans type = 'C' THEN -- credit the account

UPDATE accts SET bal = bal + :trans_amt
WHERE acctid = :acct num;

IF SQL%ROWCOUNT = 0 THEN -- no rows affected
RAISE nonexistent;
ELSE
:status := 'Credit applied';
END IF;
ELSIF :trans type = 'D' THEN -- debit the account

SELECT bal INTO old bal FROM accts
WHERE acctid = :acct num;
IF old bal >= :trans amt THEN -- enough funds
UPDATE accts SET bal = bal - :trans amt
WHERE acctid = :acct num;

:status := 'Debit applied';
ELSE
:status := 'Insufficient funds';
END IF;
ELSE
:status := 'Invalid type: ' || :trans type;
END IF;
COMMIT;
EXCEPTION
WHEN NO DATA FOUND OR nonexistent THEN
:status := 'Nonexistent account';

WHEN OTHERS THEN
err msg := SUBSTR(SQLERRM, 1, 70);
:status := 'Error: ' || err msg;
END;
END-EXEC;

printf ("\nStatus: %s\n", status);
}
exit (0);

void

sql error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf ("Processing error\n");
exit(1);

7.3.3 VARCHAR Pseudotype

You can use the VARCHAR datatype to declare variable-length character strings. If the
VARCHAR is an input host variable, you must tell Oracle what length to expect.
Therefore, set the length component to the actual length of the value stored in the
string component.

If the VARCHAR is an output host variable, Oracle automatically sets the length
component. However, to use a VARCHAR (as well as CHARZ and STRING) output
host variable in your PL/SQL block, you must initialize the length component before

ORACLE 7-8

Chapter 7
Indicator Variables

entering the block. So, set the length component to the declared (maximum) length of the
VARCHAR, as shown here:

int emp number;
varchar emp name[10];
float salary;

emp name.len = 10; /* initialize length component */

EXEC SQL EXECUTE
BEGIN
SELECT ename, sal INTO :emp name, :salary
FROM emp
WHERE empno = :emp number;

END;
END-EXEC;

7.3.4 Restriction

Do not use C pointer or array syntax in PL/SQL blocks. The PL/SQL compiler does not
understand C host-variable expressions and is, therefore, unable to parse them. For
example, the following is invalid-

EXEC SQL EXECUTE
BEGIN
:x[5] .name := 'SCOTT';

END;
END-EXEC;

To avoid syntax errors, use a place-holder (a temporary variable), to hold the address of the
structure field to populate structures as shown in the following valid example:

name = x[5].name ;
EXEC SQL EXECUTE
BEGIN
iname = ...;

END;
END-EXEC;

7.4 Indicator Variables

ORACLE

PL/SQL does not need indicator variables because it can manipulate NULLs. For example,
within PL/SQL, you can use the IS NULL operator to test for NULLs, as follows:

IF variable IS NULL THEN ...

And, you can use the assignment operator (:=) to assign NULLSs, as follows:

variable := NULL;

However, a host language such as C needs indicator variables because it cannot manipulate
NULLs. Embedded PL/SQL meets this need by letting you use indicator variables to

* Accept NULLs input from a host program

e Output NULLSs or truncated values to a host program

7-9

Chapter 7
Indicator Variables

When used in a PL/SQL block, indicator variables are subject to the following rules:

* You cannot refer to an indicator variable by itself; it must be appended to its
associated host variable.

» If you refer to a host variable with its indicator variable, you must always refer to it
that way in the same block.

In the following example, the indicator variable ind_comm appears with its host
variable commission in the SELECT statement, so it must appear that way in the IF
statement:

EXEC SQL EXECUTE
BEGIN
SELECT ename, comm
INTO :emp name, :commission :ind comm
FROM emp
WHERE empno = :emp number;
IF :commission :ind comm IS NULL THEN ...

END;
END-EXEC;

Notice that PL/SQL treats :commission :ind_comm like any other simple variable.
Though you cannot refer directly to an indicator variable inside a PL/SQL block,
PL/SQL checks the value of the indicator variable when entering the block and sets
the value correctly when exiting the block.

7.4.1 NULLs Handling

When entering a block, if an indicator variable has a value of -1, PL/SQL automatically
assigns a NULL to the host variable. When exiting the block, if a host variable is NULL,
PL/SQL automatically assigns a value of -1 to the indicator variable. In the next
example, if ind_sal had a value of -1 before the PL/SQL block was entered, the
salary_missing exception is raised. An exception is a named error condition.

EXEC SQL EXECUTE

BEGIN
IF :salary :ind sal IS NULL THEN
RAISE salary missing;

END IF;

END;

END-EXEC;

7.4.2 Truncated Values

ORACLE

PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the original
length of the string. In the following example, the host program will be able to tell, by
checking the value of ind_name, if a truncated value was assigned to emp_name:

EXEC SQL EXECUTE
DECLARE

7-10

Chapter 7
Host Arrays

new name CHAR(10);
BEGIN

:emp name:ind name := new name;

END;
END-EXEC;

7.5 Host Arrays

ORACLE

You can pass input host arrays and indicator arrays to a PL/SQL block. They can be indexed
by a PL/SQL variable of type BINARY_INTEGER or PLS_INTEGER; VARCHAR2 key types
are not permitted. Normally, the entire host array is passed to PL/SQL, but you can use the
ARRAYLEN statement (discussed later) to specify a smaller array dimension.

Furthermore, you can use a procedure call to assign all the values in a host array to rows in a
PL/SQL table. Given that the array subscript range is m .. n, the corresponding PL/SQL table
index range is always 1 .. n - m + 1. For example, if the array subscript range is 5 .. 10, the
corresponding PL/SQL table index rangeis1.. (10-5+ 1) or1 .. 6.

In the following example, you pass an array named salary to a PL/SQL block, which uses the
array in a function call. The function is named median because it finds the middle value in a
series of numbers. Its formal parameters include a PL/SQL table named num_tab. The
function call assigns all the values in the actual parameter salary to rows in the formal
parameter num_tab.

float salary[100];
/* populate the host array */

EXEC SQL EXECUTE
DECLARE
TYPE NumTabTyp IS TABLE OF REAL
INDEX BY BINARY_INTEGER;
median salary REAL;
n BINARY_INTEGER;

FUNCTION median (num tab NumTabTyp, n INTEGER)
RETURN REAL IS
BEGIN
-- compute median
END;
BEGIN
n := 100;
median salary := median(:salary, n);

END;
END-EXEC;

Note:

In dynamic SQL Method 4, you cannot bind a host array to a PL/SQL procedure
with a parameter of type "table."

7-11

Chapter 7
Host Arrays

You can also use a procedure call to assign all row values in a PL/SQL table to
corresponding elements in a host array.

Table 7-1 shows the legal conversions between row values in a PL/SQL table and
elements in a host array. For example, a host array of type LONG is compatible with a
PL/SQL table of type VARCHAR2, LONG, RAW, or LONG RAW. Notably, it is not
compatible with a PL/SQL table of type CHAR.

Table 7-1 Legal Datatype Conversions

PL/SQL CHAR DATE LONG LONG NUMBE RAW ROWID VARCHAR
Table-> RAW R 2
Host Array

CHARF X - - - - - - -
CHARZ X - - - - - - -
DATE - X - - - - - -
DECIMAL - - - -
DISPLAY - - - -
FLOAT - - - -
INTEGER - - - -
LONG

LONG - - X X - X - X
VARCHAR

LONG - - - X - X - -
VARRAW

NUMBER
RAW - - - X - X - -
ROWID - - - - - - X -
STRING
UNSIGNED
VARCHAR
VARCHAR2 - -
VARNUM - -
VARRAW - - - X - X - -

X X X X

X
X

x

toX
'oX
x 1
toX
toX

X X
X X
>< 1
X X
X X

" Note:

The Pro*C/C++ Precompiler does not check your usage of host arrays. For
instance, no index range-checking is done.

Related Topics
e Using Method 4
e Stored PL/SQL and Java Subprograms

ORACLE 7-12

Chapter 7
Host Arrays

7.5.1 ARRAYLEN Statement

Suppose you must pass an input host array to a PL/SQL block for processing. By default,
when binding such a host array, the Pro*C/C++ Precompiler uses its declared dimension.
However, you might not want to process the entire array. In that case, you can use the
ARRAYLEN statement to specify a smaller array dimension. ARRAYLEN associates the host
array with a host variable, which stores the smaller dimension. The statement syntax is

EXEC SQL ARRAYLEN host array (dimension) [EXECUTE];

where dimension is a 4-byte integer host variable, not a literal or expression.
EXECUTE is an optional keyword.

The ARRAYLEN statement must appear along with, but somewhere after, the declarations of
host_array and dimension. You cannot specify an offset into the host array. However, you
might be able to use C features for that purpose. The following example uses ARRAYLEN to
override the default dimension of a C host array named bonus:

float bonus[100];

int dimension;

EXEC SQL ARRAYLEN bonus (dimension);
/* populate the host array */

dimension = 25; /* set smaller array dimension */
EXEC SQL EXECUTE
DECLARE
TYPE NumTabTyp IS TABLE OF REAL
INDEX BY BINARY INTEGER;
median bonus REAL;
FUNCTION median (num_tab NumTabTyp, n INTEGER)
RETURN REAL IS
BEGIN
-- compute median
END;
BEGIN
median bonus := median(:bonus, :dimension);

END;
END-EXEC;

Only 25 array elements are passed to the PL/SQL block because ARRAYLEN reduces the
array from 100 to 25 elements. As a result, when the PL/SQL block is sent to Oracle for
execution, a much smaller host array is sent along. This saves time and, in a networked
environment, reduces network traffic.

7.5.2 Optional Keyword EXECUTE

ORACLE

Host arrays used in a dynamic SQL method 2 EXEC SQL EXECUTE statement may have
two different interpretations based on the presence or absence of the optional keyword
EXECUTE.

By default (if the EXECUTE keyword is absent on an ARRAYLEN statement):

* The host array is considered when determining the number of times a PL/SQL block will
be executed. (The minimum array dimension is used.)

* The host array must not be bound to a PL/SQL index table.

7-13

ORACLE

Chapter 7
Host Arrays

If the keyword EXECUTE is present:

e The host array must be bound to an index table.

e The PL/SQL block will be executed one time.

* All host variables specified in the EXEC SQL EXECUTE statement must either
— Be specified in an ARRAYLEN ... EXECUTE statement
— Bescalar.

For example, given the following PL/SQL procedure:

CREATE OR REPLACE PACKAGE pkg AS
TYPE tab IS TABLE OF NUMBER(5) INDEX BY BINARY INTEGER;
PROCEDURE procl (parml tab, parm2 NUMBER, parm3 tab);
END;

The following Pro*C/C++ function demonstrates how host arrays can be used to
determine how many times a given PL/SQL block is executed. In this case, the
PL/SQL block will be executed 3 times resulting in 3 new rows in the emp table.

funcl ()
{
int empno_arr[5] = {1111, 2222, 3333, 4444, 5555};
char *ename arr[3] = {"MICKEY", "MINNIE", "GOOFY"};
char *stmtl = "BEGIN INSERT INTO emp (empno, ename) VALUES :bl, :b2; END;";

EXEC SQL PREPARE sl FROM :stmtl;
EXEC SQL EXECUTE sl USING :empno arr, :ename arr;

The following Pro*C/C++ function demonstrates how to bind a host array to a PL/SQL
index table through dynamic method 2. Note the presence of the
ARRAYLEN...EXECUTE statement for all host arrays specified in the EXEC SQL
EXECUTE statement.

func2 ()
{
int i1 = 2;
int int tab[3] = {1,2,3};
int dim = 3;
EXEC SQL ARRAYLEN int_tab (dim) EXECUTE;

char *stmt2 = "begin pkg.procl(:vl, :v2, :v3); end; ";

EXEC SQL PREPARE s2 FROM :stmt2;
EXEC SQL EXECUTE s2 USING :int tab, :ii, :int tab;

However the following Pro*C/C++ function will result in a precompile-time warning
because there is no ARRAYLEN...EXECUTE statement for int_arr.

func3 ()
{
int int arr[3];
int int tab[3] = {1,2,3};
int dim = 3;
EXEC SQL ARRAYLEN int_tab (dim) EXECUTE;

7-14

Chapter 7
Cursor Usage in Embedded PL/SQL

char *stmt3 = "begin pkg.procl(:vl, :v2, :v3); end; ";

EXEC SQL PREPARE s3 FROM :stmt3;
EXEC SQL EXECUTE s3 USING :int tab, :int arr, :int tab;

}

Related Topics
* Using Method 2
* Host Arrays

7.6 Cursor Usage in Embedded PL/SQL

The maximum number of cursors your program can use simultaneously is determined by the
database initialization parameter OPEN_CURSORS. While executing an embedded PL/SQL
block, one cursor. the parent cursor, is associated with the entire block and one cursor, the
child cursor, is associated with each SQL statement in the embedded PL/SQL block. Both
parent and child cursors count toward the OPEN CURSORS limit.

The following calculation shows how to determine the maximum number of cursors used. The
sum of the cursors used must not exceed OPEN_CURSORS.

SQL statement cursors
PL/SQL parent cursors
PL/SQL child cursors

+ 6 cursors for overhead

Sum of cursors in use

If your program exceeds the limit imposed by OPEN CURSORS, Oracle gives you an error.

Related Topics
Embedded PL/SQL Considerations

7.7 Stored PL/SQL and Java Subprograms

ORACLE

Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) and Java
methods can be compiled separately, stored in an Oracle database, and invoked.

A subprogram explicitly created using an Oracle tool such as SQL*Plus is called a stored
subprogram. Once compiled and stored in the data dictionary, it is a database object, which
can be re-executed without being recompiled.

When a subprogram within a PL/SQL block or stored procedure is sent to Oracle by your
application, it is called an inline subprogram. Oracle compiles the inline subprogram and
caches it in the System Global Area (SGA) but does not store the source or object code in
the data dictionary.

Subprograms defined within a package are considered part of the package, and thus are
called packaged subprograms. Stored subprograms not defined within a package are called
standalone subprograms.

Related Topics

e Java Applications on Oracle Database

7-15

Chapter 7
Stored PL/SQL and Java Subprograms

7.7.1 About Creating Stored Subprograms

You can embed the SQL statements CREATE FUNCTION, CREATE PROCEDURE,
and CREATE PACKAGE in a host program, as the following example shows:

EXEC SQL CREATE
FUNCTION sal ok (salary REAL, title CHAR)
RETURN BOOLEAN AS
min sal REAL;
max sal REAL;
BEGIN
SELECT losal, hisal INTO min sal, max_sal
FROM sals
WHERE job = title;
RETURN (salary >= min sal) AND
(salary <= max sal);
END sal ok;
END-EXEC;

Notice that the embedded CREATE {FUNCTION | PROCEDURE | PACKAGE}
statement is a hybrid. Like all other embedded CREATE statements, it begins with the
keywords EXEC SQL (not EXEC SQL EXECUTE). But, unlike other embedded
CREATE statements, it ends with the PL/SQL terminator END-EXEC.

In the example later, you create a package that contains a procedure named
get_employees, which fetches a batch of rows from the EMP table. The batch size is
determined by the caller of the procedure, which might be another stored subprogram
or a client application.

The procedure declares three PL/SQL tables as OUT formal parameters, then fetches
a batch of employee data into the PL/SQL tables. The matching actual parameters are
host arrays. When the procedure finishes, it automatically assigns all row values in the
PL/SQL tables to corresponding elements in the host arrays.

EXEC SQL CREATE OR REPLACE PACKAGE emp actions AS
TYPE CharArrayTyp IS TABLE OF VARCHARZ2 (10)
INDEX BY BINARY INTEGER;
TYPE NumArrayTyp IS TABLE OF FLOAT
INDEX BY BINARY INTEGER;
PROCEDURE get employees (

dept number IN INTEGER,
batch size 1IN INTEGER,
found IN OUT INTEGER,

done fetch OUT INTEGER,
emp_name ouT CharArrayTyp,
job _title ouT CharArrayTyp,

salary ouT NumArrayTyp) ;
END emp actions;
END-EXEC;

EXEC SQL CREATE OR REPLACE PACKAGE BODY emp actions AS
CURSOR get emp (dept number IN INTEGER) IS
SELECT ename, job, sal FROM emp
WHERE deptno = dept number;

PROCEDURE get employees (

dept number IN INTEGER,
batch size IN INTEGER,
found IN OUT INTEGER,

ORACLE 7-16

Chapter 7
Stored PL/SQL and Java Subprograms

done fetch OUT INTEGER,
emp_name ouT CharArrayTyp,
job title ouT CharArrayTyp,
salary ouT NumArrayTyp) IS

BEGIN
IF NOT get emp%ISOPEN THEN
OPEN get emp (dept number);

END IF;
done fetch := 0;
found := 0;

FOR 1 IN 1..batch size LOOP
FETCH get emp INTO emp name (i),
job title(i), salary(i);
IF get emp%NOTFOUND THEN

CLOSE get emp;
done fetch := 1;
EXIT;
ELSE
found := found + 1;
END IF;
END LOOP;
END get employees;
END emp actions;
END-EXEC;

You specify the REPLACE clause in the CREATE statement to redefine an existing package
without having to drop the package, re-create it, and re-grant privileges on it. For the full
syntax of the CREATE statement see SQL Statements: COMMIT to CREATE JAVA.

If an embedded CREATE {FUNCTION | PROCEDURE | PACKAGE} statement fails, Oracle
generates a warning, not an error.

7.7.2 About Calling a Stored PL/SQL or Java Subprogram

To call a stored subprogram from your host program, you can use either an anonymous
PL/SQL block, or the CALL embedded SQL statement.

7.7.2.1 Anonymous PL/SQL Block

ORACLE

In the following example, you call a standalone procedure named raise_salary:

EXEC SQL EXECUTE
BEGIN
raise salary(:emp id, :increase);
END;
END-EXEC;

Notice that stored subprograms can take parameters. In this example, the actual parameters
emp_id and increase are C host variables.

In the next example, the procedure raise_salary is stored in a package hamed emp_actions,
S0 you must use dot notation to fully qualify the procedure call:

EXEC SQL EXECUTE
BEGIN
emp actions.raise salary(:emp id, :increase);
END;
END-EXEC;

7-17

ORACLE

Chapter 7

Stored PL/SQL and Java Subprograms

An actual IN parameter can be a literal, scalar host variable, host array, PL/SQL
constant or variable, PL/SQL table, PL/SQL user-defined record, procedure call, or
expression. However, an actual OUT parameter cannot be a literal, procedure call, or

expression.

You must use precompiler option SQLCHECK=SEMANTICS with an embedded

PL/SQL block.

In the following example, three of the formal parameters are PL/SQL tables, and the

corresponding actual parameters are host arrays. The program calls the stored

procedure get_employees repeatedly, displaying each batch of employee data, until no
more data is found. This program is available on-line in the demo directory, in the file
sample9.pc. A SQL script to create the CALLDEMO stored package is available in the

file calldemo.sql.

/***

Sample Program 9: Calling a stored procedure

This program connects to ORACLE using the SCOTT/TIGER
account. The program declares several host arrays, then
calls a PL/SQL stored procedure (GET EMPLOYEES in the
CALLDEMO package) that fills the table OUT parameters. The
PL/SQL procedure returns up to ASIZE values.

Sample9 keeps calling GET EMPLOYEES, getting ASIZE arrays
each time, and printing the values, until all rows have been
retrieved. GET EMPLOYEES sets the done flag to indicate "no

more data."
***/

#include <stdio.h>
#include <string.h>

EXEC SQL INCLUDE sqglca.h;

typedef char asciz[20];
typedef char vc2 arr[11];

EXEC SQL BEGIN DECLARE SECTION;
/* User-defined type for null-terminated strings */
EXEC SQL TYPE asciz IS STRING(20) REFERENCE;

/* User-defined type for a VARCHAR array element. */
EXEC SQL TYPE vc2 arr IS VARCHAR2 (11) REFERENCE;

asciz username;

asciz password;

int dept_no; /* which department to query? */
vc2_arr emp name([10]; /* array of returned names */
vc2_arr job[10];

float salary[10];

int done flag;

int array size;

int num_ret; /* number of rows returned */

EXEC SQL END DECLARE SECTION;

long SQLCODE;

7-18

Chapter 7
Stored PL/SQL and Java Subprograms

void print rows(); /* produces program output */
void sql error(); /* handles unrecoverable errors */
main ()
{

int i;

char temp buf[32];

/* Connect to ORACLE. */
EXEC SQL WHENEVER SQLERROR DO sql_error();
strcpy (username, "scott");
strcpy (password, "tiger");
EXEC SQL CONNECT :username IDENTIFIED BY :password;
printf ("\nConnected to ORACLE as user: %s\n\n", username);
printf ("Enter department number: ");
gets (temp buf);
dept no = atoi(temp buf);/* Print column headers. */
printf ("\n\n");
printf("%-10.10s%-10.10s%s\n", "Employee", "Job", "Salary");
printf("%-10.10s%-10.10s%s\n", "-------- "M, e "),

/* Set the array size. */
array size = 10;
done flag = 0;
num ret = 0;
/* Array fetch loop.
* The loop continues until the OUT parameter done flag is set.
* Pass in the department number, and the array size--
* get names, jobs, and salaries back.

for (;7)
{
EXEC SQL EXECUTE
BEGIN calldemo.get employees
(:dept no, :array size, :num ret, :done flag,
:emp name, :job, :salary);
END;
END-EXEC;

print rows(num ret);

if (done flagq)
break;

}

/* Disconnect from the database. */
EXEC SQL COMMIT WORK RELEASE;
exit (0);

}

void

print rows(n)

int n;

{

int i;

ORACLE 7-19

Chapter 7
Stored PL/SQL and Java Subprograms

printf ("No rows retrieved.\n");
return;

}

for (1 = 0; 1 < n; 1i++)
printf ("$10.10s%10.10s%6.2f\n",
emp name[i], job[i], salary[i]);

}

/* Handle errors. Exit on any error. */
void
sql error()

{
char msg[512];
int buf len, msg len;

EXEC SQL WHENEVER SQLERROR CONTINUE;

buf len = sizeof (msq);
sqlglm(msg, &buf len, &msg len);

printf ("\nORACLE error detected:");
printf("\n%.*s \n", msg len, msg);

EXEC SQL ROLLBACK WORK RELEASE;
exit (1),
}

Remember, the datatype of each actual parameter must be convertible to the datatype
of its corresponding formal parameter. Also, before a stored procedure is exited, all
OUT formal parameters must be assigned values. Otherwise, the values of
corresponding actual parameters are indeterminate.

SQLCHECK=SEMANTICS is required when using an anonymous PL/SQL block.

Related Topics
e About Creating Stored Subprograms

7.7.2.2 Remote Access

ORACLE

PL/SQL lets you access remote databases using database links. Typically, database
links are established by your DBA and stored in the Oracle data dictionary. A database
link tells Oracle where the remote database is located, the path to it, and what Oracle
username and password to use. In the following example, you use the database link
dallas to call the raise_salary procedure:

EXEC SQL EXECUTE
BEGIN
raise salary@dallas(:emp id, :increase);
END;
END-EXEC;

You can create synonyms to provide location transparency for remote subprograms,
as the following example shows:

CREATE PUBLIC SYNONYM raise salary
FOR raise salary@dallas;

7-20

Chapter 7
Stored PL/SQL and Java Subprograms

7.7.2.3 The CALL Statement

The concepts presented earlier for the embedded PL/SQL block also hold true for the CALL
statement. The CALL embedded SQL statement has the form:

EXEC SQL
CALL [schema.] [package.]stored proc[@db link] (argl, ...)
[INTO :ret var [[INDICATOR]:ret ind]] ;

where

schema

the schema containing the procedure

package

the package containing the procedure

stored_proc

is the Java or PL/SQL stored procedure to be called
db_link

is the optional remote database link

argl...

is the list of arguments (variables, literals, or expressions) passed,
ret_var

is the optional host variable which receives the result
ind_var

the optional indicator variable for ret_var.

You can use either SQLCHECK=SYNTAX, or SEMANTICS with the CALL statement.

7.7.2.4 CALL Example

ORACLE

If you have created a PL/SQL function fact (stored in the package mathpkg) that takes an
integer as input and returns its factorial in an integer:

EXEC SQL CREATE OR REPLACE PACKAGE BODY mathpkg as
function fact(n IN INTEGER) RETURN INTEGER AS
BEGIN
IF (n <= 0) then return 1;
ELSE return n * fact(n - 1);
END IF;
END fact;
END mathpkge;
END-EXEC.

then to use fact in a Pro*C/C++ application using the CALL statement:

int num, fact;

7-21

Chapter 7
External Procedures

EXEC SQL CALL mathpkge.fact (:num) INTO :fact ;

¢ See Also:

e "CALL (Executable Embedded SQL)" for more information about the
CALL statement.

e Oracle Database Advanced Application Developer's Guide, for a
complete explanation of passing arguments and other issues.

7.7.3 About Getting Information about Stored Subprograms

Note:

The Logon Data Area (LDA) is no longer supported in Oracle. The ability to
embed OCI Release 7 calls in your Pro*C/C++ program will be phased out
by the next major Oracle release.

Datatypes and Host Variables described how to embed OCI calls in your host program.
After calling the library routine SQLLDA to set up the LDA, use the OCI call odessp to
get useful information about a stored subprogram. When you call odessp, you must
pass it a valid LDA and the name of the subprogram. For packaged subprograms, you
must also pass the name of the package. odessp returns information about each
subprogram parameter such as its datatype, size, position, and so on.

You can also use the DESCRIBE_PROCEDURE stored procedure, in the
DBMS_DESCRIBE package.

7.8 External Procedures

ORACLE

PL/SQL can call C functions which are external procedures. External procedures (also
known as external procedures) are stored in dynamic link libraries (DLL) or, for
example, in .so libraries under Solaris.

If the external procedure executes on the server-side, it can call back into the server to
execute SQL and PL/SQL in the same transaction. External procedures on the server
execute faster than on the client and can interface the database server with external
systems and data sources.

In order to execute a server-side external C function, the REGISTER CONNECT
embedded SQL statement must be used inside that function. The syntax of the
statement is:

EXEC SQL REGISTER CONNECT USING :epctx [RETURNING :host context] ;

where epctx is the external procedure context (of type pointer to OCIExtProcContext).
epctx is passed to the procedure by PL/SQL.

7-22

Chapter 7
External Procedures

host context is a runtime context returned by the external procedure. Currently, it is the
default (global) context.

The REGISTER CONNECT statement will return the set of OCI handles (OCIEnv,
OCISvcCtx, and OCIError) that are associated with the current Oracle connection and
transaction. These handles are then used to define the Pro*C/C++ default unnamed
connection for the global SQLLIB runtime context. The REGISTER CONNECT statement is
therefore used instead of a CONNECT statement.

Subsequent embedded SQL statements will use this set of OCI handles. They execute
against the global SQLLIB runtime context and the unnamed connection, even those that are
in separately precompiled units. Uncommitted changes are not seen. In the future, a
(nondefault) runtime context can be returned in the optional RETURNING clause.

There cannot already be any active default connection for the global runtime context. A
runtime error is returned if you try to use REGISTER CONNECT when a connection already
exists.

In real-world cases, the external procedure should be one that you can reuse from many
different applications.

Related Topics

e Oracle Call Interface Programmer's Guide

7.8.1 Restrictions on External Procedures

Follow these rules for external procedures:

* External procedures can only be in C. C++ external procedures are not supported.

* When you are connected to the external procedure context, any additional connection is
not permitted and results in a runtime error.

* Multithreaded external procedures are not supported. Executing an EXEC SQL ENABLE
THREADS statement is not permitted and will return a runtime error. Pro*C/C++ does
support multithreading in an application not using the external procedure method we are
describing.

* You cannot use DDL statements. They result in runtime errors.

* You cannot use transaction control statements, such as EXEC SQL COMMIT, and EXEC
SQL ROLLBACK.

* You cannot use object navigation statements such as EXEC SQL OBJECT
* You cannot use polling EXEC SQL LOB statements.

* You cannot use EXEC TOOLS statements. They will result in runtime errors.

7.8.2 About Creating the External Procedure

ORACLE

Here is a simple example to create the external procedure extpl.
To store an external C procedure, compile and link the code to a library such as a DLL.
Reference to NT removed user comment 9561

Then use the following SQL command once to register the external procedure extpl:

7-23

Chapter 7
External Procedures

CREATE OR REPLACE PROCEDURE extpl
AS EXTERNAL NAME "extpl"

LIBRARY mylib

WITH CONTEXT

PARAMETERS (CONTEXT) ;

Where mylib is the name of the library storing procedure extpl. WITH CONTEXT
means to implicitly call this procedure with argument of type OCIExtProcContext*.
The context is omitted in your call, but is passed to the procedure anyway. The
keyword CONTEXT appears in the CREATE statement, however, as a place marker.

This context parameter is the one referenced in the EXEC SQL REGISTER
CONNECT statement inside extpl.

The external procedure is called from SQL*Plus this way:

SQL>

BEGIN
INSERT INTO emp VALUES (9999, 'JOHNSON', 'SALESMAN', 7782, sysdate, 1200,150,10);
extpl;

END;

Here is the listing of extpl.pc:

void extpl (epctx)

OCIExtProcContext *epctx;

{

char name[15];
EXEC SQL REGISTER CONNECT USING :epctx;
EXEC SQL WHENEVER SQLERROR goto err;
EXEC SQL SELECT ename INTO :name FROM emp WHERE empno = 9999;
return;

err:

SQLExtProcError (SQL SINGLE RCTX,sqlca.sglerrm.sqlerrmc,sglca.sqlerrm.sqlerrml);
return;

}

Related Topics

e External Subprograms

7.8.3 SQLEXtProcError()

ORACLE

The SQLLIB function SQLExtProcError () provides the ability to return control to
PL/SQL when an error occurs in an external C procedure. The function and its
arguments are:

SQLEXxtProcError (ctx, msg, msglen)
where:
ctx (IN) sql_context *

This is the target SQLLIB runtime context of the REGISTER CONNECT statement,
which has to be executed before this function is invoked. Only the global runtime
context is supported now.

msg (OUT) char *

The text of the error message.

7-24

Chapter 7
About Using Dynamic SQL

msglen (OUT) size_t
The length in bytes of the message.

SQLLIB calls the OCI service function OCIExtProcRaiseExcpWithMsg when this function is
executed.

The message is from the structure sglerrm in the SQLCA.
Here is an example showing use of SQLExtProcError ():

void extpl (epctx)

OCIExtProcContext *epctx;

{
char name[15];
EXEC SQL REGISTER CONNECT USING :epctx;
EXEC SQL WHENEVER SQLERROR goto err;
EXEC SQL SELECT ename INTO :name FROM emp WHERE smpno = 9999;
return;

err:
SQLExtProcError (SQL SINGLE RCTX, sglca.sqglerrm.sqlerrmc,

sqglca.sglerrm.sglerrml) ;

printf ("\n%*s\n", sqglca.sqlerrm.sglerrml, sqglca.sqlerrm.sqlerrmc);
return;

}

Related Topics
e SQLCA Structure

7.9 About Using Dynamic SQL

Recall that the precompiler treats an entire PL/SQL block like a single SQL statement.
Therefore, you can store a PL/SQL block in a string host variable. Then, if the block contains
no host variables, you can use dynamic SQL Method 1 to EXECUTE the PL/SQL string. Or, if
the block contains a known number of host variables, you can use dynamic SQL Method 2 to
PREPARE and EXECUTE the PL/SQL string. If the block contains an unknown number of
host variables, you must use dynamic SQL Method 4.

¢ Note:

In dynamic SQL Method 4, you cannot bind a host array to a PL/SQL procedure
with a parameter of type "table."

Related Topics

* ANSI Dynamic SQL

* Oracle Dynamic SQL

e Oracle Dynamic SQL: Method 4
* Using Method 4

ORACLE 7-25

Host Arrays

This chapter looks at using arrays to simplify coding and improve program performance. You
will learn how to manipulate Oracle data using arrays, how to operate on all the elements of
an array with a single SQL statement, and how to limit the number of array elements
processed. The chapter contains the following topics:

* Why Use Arrays?

e About Declaring Host Arrays

e About Using Arrays in SQL Statements
e About Selecting into Arrays

e About Inserting with Arrays

e About Updating with Arrays

e About Deleting with Arrays

e About Using the FOR Clause

e About Using the WHERE Clause

e Arrays of Structs

e About Mimicking CURRENT OF

e About Using sqlca.sqlerrd[2]

e About Using Additional Array Insert/Select Syntax
e About Using Implicit Buffered Insert

8.1 Why Use Arrays?

Arrays reduce programming time and result in improved performance.

With arrays, you manipulate an entire array with a single SQL statement. Thus, Oracle
communication overhead is reduced markedly, especially in a networked environment. A
major portion of runtime is spent on network round trips between the client program and the
server database. Arrays reduce the round trips.

For example, suppose you want to insert information about 300 employees into the EMP
table. Without arrays your program must do 300 individual INSERTs—one for each employee.
With arrays, only one INSERT needs to be done.

8.2 About Declaring Host Arrays

ORACLE

The following example declares three host arrays, each with a maximum of 50 elements:

char emp name[50][10];
int emp number[50];
float salary[50];

8-1

Chapter 8
About Using Arrays in SQL Statements

Arrays of VARCHARSs are also allowed. The following declaration is a valid host
language declaration:

VARCHAR v_array[10] [30];

8.2.1 Restrictions (Declaring Host Arrays)

You cannot declare host arrays of pointers, except for object types.

Except for character arrays (strings), host arrays that might be referenced in a SQL
statement are limited to one dimension. So, the two-dimensional array declared in the
following example is invalid:

int hi lo scores[25][25]; /* not allowed */

8.2.2 Maximum Size of Arrays

The maximum number of array elements in a SQL statement that is accessible in one
fetch is 4GB (or possibly greater, depending on the platform and the available
memory). If you try to access a number that exceeds the maximum, you get a
"parameter out of range" runtime error. If the statement is an anonymous PL/SQL
block, the number of array elements accessible is limited to 4GB divided by the size of
the datatype.

8.3 About Using Arrays in SQL Statements

You can use host arrays as input variables in the INSERT, UPDATE, and DELETE
statements and as output variables in the INTO clause of SELECT and FETCH
statements.

The embedded SQL syntax used for host arrays and simple host variables is nearly
the same. One difference is the optional FOR clause, which lets you control array
processing. Also, there are restrictions on mixing host arrays and simple host variables
in a SQL statement.

The following sections illustrate the use of host arrays in data manipulation
statements.

8.3.1 About Referencing Host Arrays

ORACLE

If you use multiple host arrays in a single SQL statement, their number of elements
should be the same. Otherwise, an "array size mismatch" warning message is issued
at precompile time. If you ignore this warning, the precompiler uses the smallest
number of elements for the SQL operation.

In this example, only 25 rows are Inserted

int emp number[50];

char emp name [50] [10];

int dept number[25];

/* Populate host arrays here. */

EXEC SQL INSERT INTO emp (empno, ename, deptno)
VALUES (:emp number, :emp name, :dept number);

8-2

Chapter 8
About Using Arrays in SQL Statements

It is possible to subscript host arrays in SQL statements, and use them in a loop to INSERT
or fetch data. For example, you could INSERT every fifth element in an array using a loop
such as:

for (1 = 0; 1 < 50; 1 +=5)
EXEC SQL INSERT INTO emp (empno, deptno)
VALUES (:emp number[i], :dept number([i]);

However, if the array elements that you need to process are contiguous, you should not
process host arrays in a loop. Simply use the non-scripted array names in your SQL
statement. Oracle treats a SQL statement containing host arrays of element number n like
the same statement executed n times with n different scalar variables.

8.3.2 About Using Indicator Arrays

You can use indicator arrays to assign NULLSs to input host arrays, and to detect NULL or
truncated values (character columns only) in output host arrays. The following example
shows how to INSERT with indicator arrays:

int emp number [50];
int dept number[50];
float commission[50];
short comm ind([50]; /* indicator array */

/* Populate the host and indicator arrays. To insert a null
into the comm column, assign -1 to the appropriate
element in the indicator array. */

EXEC SQL INSERT INTO emp (empno, deptno, comm)
VALUES (:emp number, :dept number,
:commission INDICATOR :comm_ind);

8.3.3 Oracle Restrictions (for Host Arrays)

Mixing scalar host variables with host arrays in the VALUES, SET, INTO, or WHERE clause is
not allowed. If any of the host variables is an array, all must be arrays.

You cannot use host arrays with the CURRENT OF clause in an UPDATE or DELETE
statement.

8.3.4 ANSI Restriction and Requirements

ORACLE

The array interface is an Oracle extension to the ANSI/ISO embedded SQL standard.
However, when you precompile with MODE=ANSI, array SELECTs and FETCHes are still
allowed. The use of arrays can be flagged using the FIPS flagger precompiler option, if
desired.

When doing array SELECTs and FETCHes, always use indicator arrays. That way, you can
test for NULLs in the associated output host array.

If DBMS=V7 or DBMS=v8 and you SELECT or FETCH a NULL column value into a host array that is
not associated with an indicator array, then Oracle stops processing, sets sqlerrd[2] to the
number of rows processed, and returns an error message. When DBMS=V7 or DBMS=v8, Oracle
does not consider truncation to be an error.

Also, if your SELECT or FETCH results in any warning such as 0RA-24347 due to usage of NULL,
and if any column does not have an indicator array, Oracle stops processing.

8-3

Chapter 8
About Selecting into Arrays

< Note:

Use indicator variables for all the columns in the SELECT or FETCH. If all
columns do not have indicators, then the precompiler option
unsafe null=yes can be used as an alternative.

8.4 About Selecting into Arrays

You can use host arrays as output variables in the SELECT statement. If you know the
maximum number of rows the SELECT will return, simply declare the host arrays with
that number of elements. In the following example, you select directly into three host
arrays. Knowing the SELECT will return no more than 50 rows, you declare the arrays
with 50 elements:

char emp name[50][20];
int emp number [50];
float salary[50];

EXEC SQL SELECT ENAME, EMPNO, SAL
INTO :emp name, :emp number, :salary
FROM EMP
WHERE SAL > 1000;

In the preceding example, the SELECT statement returns up to 50 rows. If there are
fewer than 50 eligible rows or you want to retrieve only 50 rows, this method will
suffice. However, if there are more than 50 eligible rows, you cannot retrieve all of
them this way. If you reexecute the SELECT statement, it just returns the first 50 rows
again, even if more are eligible. You must either declare a larger array or declare a
cursor for use with the FETCH statement.

If a SELECT INTO statement returns more rows than the number of elements you
declared, Oracle issues an error message unless you specify SELECT_ERROR=NO.

¢ See Also:

"Precompiler Options " for more information about the SELECT_ERROR
option.

8.4.1 Cursor Fetches

ORACLE

If you do not know the maximum number of rows a SELECT will return, you can
declare and open a cursor, then fetch from it in "batches."

Batch fetches within a loop let you retrieve a large number of rows with ease. Each
FETCH returns the next batch of rows from the current active set. In the following
example, you fetch in 20-row batches:

int emp number[20];
float salary[20];

8-4

Chapter 8
About Selecting into Arrays

EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT empno, sal FROM emp;

EXEC SQL OPEN emp cursor;

EXEC SQL WHENEVER NOT FOUND do break;
for (;;)
{
EXEC SQL FETCH emp cursor
INTO :emp number, :salary;
/* process batch of rows */

Do not forget to check how many rows were actually returned in the last fetch, and process
them.

Related Topics

* Number of Rows Fetched

8.4.2 About Using sglca.sglerrd[2]

For INSERT, UPDATE, DELETE, and SELECT INTO statements, sqlca.sqlerrd[2] records

the number of rows processed. For FETCH statements, it records the cumulative sum of rows
processed.

When using host arrays with FETCH, to find the number of rows returned by the most recent
iteration, subtract the current value of sqlca.sqglerrd(2] from its previous value (stored in

another variable). In the following example, you determine the number of rows returned by
the most recent fetch:

int emp number([100];
char emp name[100][20];

int rows to fetch, rows before, rows this time;
EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT empno, ename
FROM emp
WHERE deptno = 30;
EXEC SQL OPEN emp cursor;
EXEC SQL WHENEVER NOT FOUND CONTINUE;
/* initialize loop variables */
rows_to_fetch = 20; /* number of rows in each "batch" */
rows before = 0; /* previous value of sqglerrd[2] */
rows_this time = 20;

while (rows this time == rows to fetch)
{
EXEC SQL FOR :rows to fetch
FETCH emp cursor
INTO :emp number, :emp name;
rows_this time = sqlca.sqglerrd[2] - rows before;
rows_before = sqlca.sqlerrd[2];

ORACLE 8-5

Chapter 8
About Selecting into Arrays

sqlca.sqglerrd[2] is also useful when an error occurs during an array operation.
Processing stops at the row that caused the error, so sqlerrd[2] gives the number of
rows processed successfully.

8.4.3 Number of Rows Fetched

Each FETCH returns, at most, the total number of rows in the array. Fewer rows are
returned in the following cases:

* The end of the active set is reached. The "no data found" Oracle error code is
returned to SQLCODE in the SQLCA. For example, this happens if you fetch into
an array of number of elements 100 but only 20 rows are returned.

e Fewer than a full batch of rows remain to be fetched. For example, this happens if
you fetch 70 rows into an array of 20 number elements because after the third
FETCH, only 10 rows remain to be fetched.

e An error is detected while processing a row. The FETCH fails and the applicable
Oracle error code is returned to SQLCODE.

The cumulative number of rows returned can be found in the third element of sqlerrd in
the SQLCA, called sqlerrd[2] in this guide. This applies to each open cursor. In the
following example, notice how the status of each cursor is maintained separately:

EXEC SQL OPEN cursorl;

EXEC SQL OPEN cursor2;

EXEC SQL FETCH cursorl INTO :array of 20;

/* now running total in sqglerrd[2] is 20 */

EXEC SQL FETCH cursor2 INTO :array of 30;

/* now running total in sglerrd[2] is 30, not 50 */
EXEC SQL FETCH cursorl INTO :array of 20;

/* now running total in sqglerrd[2] is 40 (20 + 20) */
EXEC SQL FETCH cursor2 INTO :array of 30;

/* now running total in sglerrd[2] is 60 (30 + 30) */

8.4.4 Scrollable Cursor Fetches

You can also use host arrays with scrollable cursors. With scrollable cursors
sqlca.sqlerrd[2] represents the maximum (absolute) row number processed. Since
an application can arbitrarily position the fetches in scrollable mode, it need not be the
total number of rows processed.

While using host arrays with the FETCH statement in scrollable mode, you cannot
subtract the current value of sqlca.sglerrd[2] from its previous value to find the
number of rows returned by the most recent iteration. The application program
determines the total number of rows in the result set by executing a FETCH LAST. The
value of sqlca.sqlerrd[2] provides the total number of rows in the result set.

Related Topics

* Sample Program: Host Arrays Using Scrollable Cursor

8.4.5 Sample Program 3: Host Arrays

ORACLE

The demonstration program in this section shows how you can use host arrays when
writing a query in Pro*C/C++. Pay particular attention to the use of the "rows
processed count" in the SQLCA (sglca.sqglerrd[2]). This program is available on-line
in the file sample3.pc in your demo directory.

8-6

/*
* sample3.pc

* Host Arrays

*

* This program connects to ORACLE, declares and opens a cursor,
* fetches in batches using arrays, and prints the results using
* the function print rows().

*

#include <stdio.h>
#include <string.h>

#include <sglca.h>

#define NAME LENGTH 20
#define ARRAY LENGTH 5
/* Another way to connect. */
char *username = "SCOTT";
char *password = "TIGER";

/* Declare a host structure tag. */

struct

{
int emp number [ARRAY LENGTH];
char emp name [ARRAY LENGTH] [NAME LENGTH];
float salary[ARRAY LENGTH];

} emp rec;

/* Declare this program's functions. */
prog

void print rows(); /* produces program output */
void sql error(); /* handles unrecoverable errors */
main ()
{

int num ret; /* number of rows returned */

/* Connect to ORACLE. */
EXEC SQL WHENEVER SQLERROR DO sql_error("Connect error:");

EXEC SQL CONNECT :username IDENTIFIED BY :password;
printf ("\nConnected to ORACLE as user: %s\n", username);

EXEC SQL WHENEVER SQLERROR DO sql error ("Oracle error:");
/* Declare a cursor for the FETCH. */
EXEC SQL DECLARE cl CURSOR FOR
SELECT empno, ename, sal FROM emp;

EXEC SQL OPEN cl;

/* Initialize the number of rows. */
num ret = 0;

/* Array fetch loop - ends when NOT FOUND becomes true. */
EXEC SQL WHENEVER NOT FOUND DO break;

for (;7)

{
EXEC SQL FETCH cl INTO :emp rec;

ORACLE

Chapter 8
About Selecting into Arrays

8-7

Chapter 8
About Selecting into Arrays

/* Print however many rows were returned. */
print rows(sqlca.sqlerrd[2] - num ret);
num_ret = sqlca.sqlerrd[2]; /* Reset the number. */
}
/* Print remaining rows from last fetch, if any. */
if ((sglca.sqlerrd[2] - num ret) > 0)
print rows(sqlca.sqlerrd[2] - num ret);

EXEC SQL CLOSE cl;
printf ("\nAu revoir.\n\n\n");

/* Disconnect from the database. */
EXEC SQL COMMIT WORK RELEASE;
exit (0);

void

print rows(n)
int n;

{

int i;

printf ("\nNumber Employee Salary");
printf("\n------ -------- ——--—- \n") ;

for (1 = 0; 1 < n; 1i++)
printf("%$-9d%-15.155%9.2f\n", emp rec.emp number([i],
emp rec.emp name[i], emp rec.salaryl[i]);

void
sql error (msq)
char *msg;
{
EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL ROLLBACK WORK RELEASE;
exit (1);

See Also:

" Handling Runtime Errors" for more information about SQLCA

8.4.6 Sample Program: Host Arrays Using Scrollable Cursor

ORACLE

This program describes how to use host arrays with scrollable cursors. This program is
available on-line in the file scdemo2.pc in your demo directory.

8-8

Chapter 8
About Selecting into Arrays

< Note:

Note that we do a FETCH LAST to determine the number of rows in the result set.

8.4.6.1 scdemoz2.pc

ORACLE

/
A Sample program to demonstrate the use of scrollable
cursors with host arrays.

This program uses the hr/hr schema.Make sure
that this schema exists before executing this program

* ok ok ok k% %

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sglca.h>

#define ARRAY LENGTH 4

/* user and passwd */
char *username = "hr";
char *password = "hr";

/* Declare a host structure tag. */
struct emp rec array
{
int emp number;
char emp name [20];
float salary;
} emp rec[ARRAY LENGTH];

/* Print the result of the query */
void print rows()
{

int i;

for (i=0; i<ARRAY_LENGTH; i+4)

printf ("% %s %8.2f\n", emp rec[i].emp number,
emp rec[i].emp name, emp rec[i].salary);

}
/* Oracle error handler */
void sql error(char *msg)
{

EXEC SQL WHENEVER SQLERROR CONTINUE;

%$s", msqg);
% .70s \n", sqglca.sqlerrm.sqglerrmc);

EXEC SQL ROLLBACK WORK RELEASE;

8-9

ORACLE

Chapter 8
About Selecting into Arrays

exit (EXIT FAILURE);

void main ()

int noOfRows; /* Number of rows in the result set */

/* Error handler */
EXEC SQL WHENEVER SQLERROR DO sql_error("Connect error:");

/* Connect to the data base */
EXEC SQL CONNECT :username IDENTIFIED BY :password;

/* Error handle */
EXEC SQL WHENEVER SQLERROR DO sqgl error ("Oracle error:");

/* declare the cursor in scrollable mode */
EXEC SQL DECLARE cl SCROLL CURSOR FOR
SELECT employee id, first name, salary FROM employees;

EXEC SQL OPEN cl;
EXEC SQL WHENEVER SQLERROR DO sql error ("Fetch Error:");

/* This is a dummy fetch to find out the number of rows
in the result set */
EXEC SQL FETCH LAST cl INTO iemp_rec;

/* The number of rows in the result set is given by
the value of sqglca.sqglerrd[2] */

noOfRows = sqlca. sqlerrd([2];
printf ("Total number of rows in the result set %d:\n",
noOfRows) ;

/* Fetch the first ARRAY LENGTH number of rows */
EXEC SQL FETCH FIRST cl INTO :emp rec;
printf("******************** DEFAULT . \n");
print rows();

/* Fetch the next set of ARRAY LENGTH rows */
EXEC SQL FETCH NEXT cl INTO iemp_rec;
printf("***********‘k******** NEXT . \n");

print rows();

/* Fetch a set of ARRAY LENGTH rows from the 3rd row onwards */
EXEC SQL FETCH ABSOLUTE 3 cl INTO :emp rec;
printf("***********‘k******** ABSOLUTE 3 . \n");

print rows();

/* Fetch the current ARRAY LENGTH set of rows */
EXEC SQL FETCH CURRENT cl INTO iemp_rec;
printf("******************** CURRENT . \n");
print rows();

/* Fetch a set of ARRAY LENGTH rows from the 2nd offset
from the current cursor position */

EXEC SQL FETCH RELATIVE 2 cl INTO :emp rec;

printf("***********‘k******** RELATIVE 2 . \n");

print rows();

8-10

Chapter 8
About Selecting into Arrays

/* Again Fetch the first ARRAY LENGTH number of rows */
EXEC SQL FETCH ABSOLUTE 0 cl INTO :emp rec;
printf("******************** ABSOLUTE 0 . \n");

print rows();

/* close the cursor */
EXEC SQL CLOSE cl;

/* Disconnect from the database. */
EXEC SQL COMMIT WORK RELEASE;
exit(EXIT_SUCCESS);

}

8.4.7 Host Array Restrictions

Using host arrays in the WHERE clause of a SELECT statement is not allowed except in a
subquery. For an example, see "About Using the WHERE Clause ".

Also, you cannot mix simple host variables with host arrays in the INTO clause of a SELECT
or FETCH statement. If any of the host variables is an array, all must be arrays.

Table 8-1 shows which uses of host arrays are valid in a SELECT INTO statement:

Table 8-1 Valid Host Arrays for SELECT INTO

INTO Clause WHERE Clause Valid?
array array no
scalar scalar yes
array scalar yes
scalar array no

8.4.8 About Fetching NULLs

When doing array SELECTs and FETCHes, always use indicator arrays. That way, you can
test for NULLs in the associated output host array.

When DBMS = V7 or DBMS=v8, if you SELECT or FETCH a NULL column value into a host
array that is not associated with an indicator array, Oracle stops processing, sets sqlerrd[2]
to the number of rows processed, and issues an error message.

Also, if your SELECT or FETCH results in any warning such as ORA-24347 due to usage of
NULL, and if any column does not have an indicator array, Oracle stops processing. Use
indicator variables in all the columns in the SELECT or FETCH.If all columns do not have
indicators, the precompiler option unsafe null=yes could be used as an alternative.

8.4.9 About Fetching Truncated Values

ORACLE

When DBMS=V7, truncation results in a warning message, but Oracle continues processing.

Again, when doing array SELECTs and FETCHes, always use indicator arrays. That way, if
Oracle assigns one or more truncated column values to an output host array, you can find the
original lengths of the column values in the associated indicator array.

8-11

Chapter 8
About Inserting with Arrays

8.5 About Inserting with Arrays

You can use host arrays as input variables in an INSERT statement. Just make sure
your program populates the arrays with data before executing the INSERT statement.

If some elements in the arrays are irrelevant, you can use the FOR clause to control
the number of rows inserted.

An example of inserting with host arrays follows:

char emp name [50] [20];

int emp number [50];

float salary[50];

/* populate the host arrays */

EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
VALUES (:emp name, :emp number, :salary);

The cumulative number of rows inserted can be found in the rows-processed count,
sqglca.sqlerrd[2].

In the following example, the INSERT is done one row at a time. This is much less
efficient than the previous example, since a call to the server must be made for each
row inserted.

for (1 = 0; i < array size; i++)
EXEC SQL INSERT INTO emp (ename, empno, sal)
VALUES (:emp name([i], :emp number([i], :salary[i]);

Related Topics
e About Using the FOR Clause

8.5.1 About Inserting with Arrays Restrictions

You cannot use an array of pointers in the VALUES clause of an INSERT statement;
all array elements must be data items.

Mixing scalar host variables with host arrays in the VALUES clause of an INSERT
statement is not allowed. If any of the host variables is an array, all must be arrays.

8.6 About Updating with Arrays

ORACLE

You can also use host arrays as input variables in an UPDATE statement, as the
following example shows:

int emp number[50];

float salary[50];

/* populate the host arrays */

EXEC SQL UPDATE emp SET sal = :salary
WHERE EMPNO = :emp number;

The cumulative number of rows updated can be found in sqlerrd[2]. This number
does not include rows processed by an update cascade.

If some elements in the arrays are irrelevant, you can use the embedded SQL FOR
clause to limit the number of rows updated.

8-12

Chapter 8
About Deleting with Arrays

The last example showed a typical update using a unique key (EMP_NUMBER). Each array
element qualified just one row for updating. In the following example, each array element
qualifies multiple rows:

char Jjob title [10][20];
float commission([10];

EXEC SQL UPDATE emp SET comm = :commission
WHERE job = :job title;

8.6.1 About Updating with Arrays Restrictions

Mixing simple host variables with host arrays in the SET or WHERE clause of an UPDATE
statement is not recommended. If any of the host variables is an array, all should be arrays.
Furthermore, if you use a host array in the SET clause, use one of equal number of elements
in the WHERE clause.

You cannot use host arrays with the CURRENT OF clause in an UPDATE statement.

Table 8-2 shows which uses of host arrays are valid in an UPDATE statement:

Table 8-2 Host Arrays Valid in an UPDATE

SET Clause WHERE Clause Valid?
array array yes
scalar scalar yes
array scalar no
scalar array no

Related Topics
* About Mimicking CURRENT OF

8.7 About Deleting with Arrays

ORACLE

You can also use host arrays as input variables in a DELETE statement. It is like executing
the DELETE statement repeatedly using successive elements of the host array in the
WHERE clause. Thus, each execution might delete zero, one, or more rows from the table.

An example of deleting with host arrays follows:

int emp number[50];
/* populate the host array */

EXEC SQL DELETE FROM emp
WHERE empno = :emp number;

The cumulative number of rows deleted can be found in sqlerrd[2]. The number does not
include rows processed by a delete cascade.

8-13

Chapter 8
About Using the FOR Clause

The last example showed a typical delete using a unique key (EMP_NUMBER). Each
array element qualified just one row for deletion. In the following example, each array
element qualifies multiple rows:

char job title[10]([20];

/* populate the host array */

EXEC SQL DELETE FROM emp
WHERE job = :job title;

8.7.1 About Deleting with Arrays Restrictions

Mixing simple host variables with host arrays in the WHERE clause of a DELETE
statement is not allowed. If any of the host variables is an array, all must be arrays.

You cannot use host arrays with the CURRENT OF clause in a DELETE statement.

¢ See Also:
"About Mimicking CURRENT OF " for an alternative.

8.8 About Using the FOR Clause

ORACLE

You can use the optional embedded SQL FOR clause to set the number of array
elements processed by any of the following SQL statements:

« DELETE

« EXECUTE
» FETCH

* INSERT

« OPEN

* UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE statements.
With these statements you might not want to use the entire array. The FOR clause lets
you limit the elements used to just the number you need, as the following example
shows:

char emp name[100][20];
float salary[100];
int rows_to insert;

/* populate the host arrays */
rows_to insert = 25; /* set FOR-clause variable */
EXEC SQL FOR :rows_to insert /* will process only 25 rows */
INSERT INTO emp (ename, sal)
VALUES (:emp name, :salary);

8-14

Chapter 8
About Using the FOR Clause

The FOR clause can use an integer host variable to count array elements, or an integer
literal. A complex C expression that resolves to an integer cannot be used. For example, the
following statement that uses an integer expression is illegal:

EXEC SQL FOR :rows_to_insert + 5 /* illegal */
INSERT INTO emp (ename, empno, sal)
VALUES (:emp name, :emp number, :salary);

The FOR clause variable specifies the number of array elements to be processed. Make sure
the number does not exceed the smallest array dimension. Internally, the value is treated as
an unsigned quantity. An attempt to pass a negative value through the use of a signed host
variable will result in unpredictable behavior.

8.8.1 FOR Clause Restrictions

Two restrictions keep FOR clause semantics clear: you cannot use the FOR clause in a
SELECT statement or with the CURRENT OF clause.

8.8.1.1 In a SELECT Statement

If you use the FOR clause in a SELECT statement, you get an error message.

The FOR clause is not allowed in SELECT statements because its meaning is unclear. Does
it mean "execute this SELECT statement n times"? Or, does it mean "execute this SELECT
statement once, but return n rows"? The problem in the former case is that each execution
might return multiple rows. In the latter case, it is better to declare a cursor and use the FOR
clause in a FETCH statement, as follows:

EXEC SQL FOR :limit FETCH emp cursor INTO ...

8.8.1.2 With the CURRENT OF Clause

ORACLE

You can use the CURRENT OF clause in an UPDATE or DELETE statement to refer to the
latest row returned by a FETCH statement, as the following example shows:

EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, sal FROM emp WHERE empno = :emp number;

EXEC SQL OPEN emp cursor;
EXEC SQL FETCH emp cursor INTO :emp name, :salary;

EXEC SQL UPDATE emp SET sal = :new salary
WHERE CURRENT OF emp cursor;

However, you cannot use the FOR clause with the CURRENT OF clause. The following
statements are invalid because the only logical value of limitis 1 (you can only update or
delete the current row once):

EXEC SQL FOR :limit UPDATE emp SET sal = :new salary
WHERE CURRENT OF emp cursor;

EXEC SQL FOR :limit DELETE FROM emp
WHERE CURRENT OF emp cursor;

8-15

Chapter 8
About Using the WHERE Clause

8.9 About Using the WHERE Clause

Oracle treats a SQL statement containing host arrays of number of elements n like the
same SQL statement executed n times with n different scalar variables (the individual
array elements). The precompiler issues an error message only when such treatment
would be ambiguous.

For example, assuming the declarations

int mgr number([50];
char job title[50][20];

it would be ambiguous if the statement

EXEC SQL SELECT mgr INTO :mgr number FROM emp
WHERE job = :job title;

were treated like the imaginary statement

for (i = 0; 1 < 50; i++4)
SELECT mgr INTO :mgr number[i] FROM emp
WHERE job = :job title[i];

because multiple rows might meet the WHERE-clause search condition, but only one
output variable is available to receive data. Therefore, an error message is issued.

On the other hand, it would not be ambiguous if the statement

EXEC SQL UPDATE emp SET mgr = :mgr number
WHERE empno IN (SELECT empno FROM emp
WHERE job = :job title);

were treated like the imaginary statement

for (i = 0; 1 < 50; i++4)
UPDATE emp SET mgr = :mgr number[i]
WHERE empno IN (SELECT empno FROM emp
WHERE job = :job title[i]);

because there is a mgr_number in the SET clause for each row matching job_title in
the WHERE clause, even if each job_title matches multiple rows. All rows matching

each job_title can be SET to the same mgr_number. Therefore, no error message is
issued.

8.10 Arrays of Structs

ORACLE

Using arrays of scalars, you can perform multirow operations involving a single column
only. Using structs of scalars allows users to perform single row operations involving
multiple columns.

In order to perform multirow operations involving multiple columns, however, you
previously needed to allocate several parallel arrays of scalars either separately or
encapsulated within a single struct. In many cases, it is easier to reorganize this data
structure more conveniently as a single array of structs instead.

Pro*C/C++ supports the use of arrays of structs which enable an application developer
to perform multirow, multicolumn operations using an array of C structs. With this

8-16

Chapter 8
Arrays of Structs

enhancement, Pro*C/C++ can handle simple arrays of structs of scalars as bind variables in
embedded SQL statements for easier processing of user data. This makes programming
more intuitive, and allows users greater flexibility in organizing their data.

In addition to supporting arrays of structs as bind variables, Pro*C/C++ also supports arrays
of indicator structs when used in conjunction with an array of structs declaration.

" Note:

Binding structs to PL/SQL records and binding arrays of structs to PL/SQL tables of
records are not part of this new functionality. Arrays of structs may also not be used
within an embedded PL/SQL block.

Since arrays of structs are intended to be used when performing multirow operations
involving multiple columns, it is generally anticipated that they will be used in the following
ways.

e As output bind variables in SELECT statements or FETCH statements.
e As input bind variables in the VALUES clause of an INSERT statement.

Related Topics

* Restrictions on Arrays of Structs

8.10.1 Arrays of Structs Usage

The notion of an array of structs is not new to C developers. It does, however, present a
conceptual difference for data storage when it is compared to a struct of parallel arrays.

In a struct of parallel arrays, the data for the individual columns is stored contiguously. In an
array of structs, on the other hand, the column data is interleaved, whereby each occurrence
of a column in the array is separated by the space required by the other columns in the struct.
This space is known as a stride.

8.10.2 Restrictions on Arrays of Structs

ORACLE

The following restrictions apply to the use of arrays of structs in Pro*C/C++:

e Arrays of structs (just as with ordinary structs) are not permitted inside an embedded
PL/SQL block.

e Use of arrays of structs in WHERE or FROM clauses is prohibited.

e Arrays of structs are not permitted with Oracle Dynamic SQL Method 4. They are
permitted with ANSI Dynamic SQL.

e Arrays of structs are not permitted in the SET clause of an UPDATE statement.

The syntax for declaring an array of structs does not change. There are, however, a few
things to keep in mind when using an array of structs.

Related Topics
* ANSI Dynamic SQL

8-17

Chapter 8
Arrays of Structs

8.10.3 About Declaring an Array of Structs

ORACLE

When declaring an array of structs which will be used in a Pro*C/C++ application, a
developer must keep in mind the following important points:

e The struct must have a structure tag. For example, in the following code segment

struct person {
char name[15];
int age;

} people[l0];

the person variable is the structure tag. This is so the precompiler can use the name of
the struct to compute the size of the stride.

* The members of the struct must not be arrays. The only exception to this rule is for
character types such as char or VARCHAR since array syntax is used when
declaring variables of these types.

* char and VARCHAR members may not be two-dimensional.

* Nested structs are not permitted as members of an array of structs. This is not a
new restriction, since nested structs have not been supported by previous
releases of Pro*C/C++.

* The size of just the struct may not exceed the maximum value that a signed 4-byte
guantity may represent. This is typically two gigabytes.

Given these restrictions regarding the use of arrays of structs, the following declaration
is legal in Pro*C/C++

struct department {
int deptno;
char dname[15];
char loc[l4];

} dept[4];

while the following declaration is illegal.

struct { /* the struct is missing a structure tag */
int empno[15]; /* struct members may not be arrays */
char ename[15][10]; /* character types may not be 2-dimensional */
struct nested {
int salary; /* nested struct not permitted in array of structs */
} sal struct;
} bad[1l5];

It is also important to note that you cannot apply datatype equivalencing to either the
array of structs itself or to any of the individual fields within the struct. For example,
assuming empno is not declared as an array in the earlier illegal struct, the following is
illegal:

exec sql var bad[3].empno is integer (4);

The precompiler has no way to keep track of individual structure elements within the
array of structs. One could do the following, on the other hand, to achieve the desired
effect.

typedef int myint;
exec sql type myint is integer (4);

8-18

Chapter 8
Arrays of Structs

struct equiv {
myint empno; /* now legally considered an integer (4) datatype */

} ok[15];

This should come as no surprise since equivalencing individual array items has not been
supported by previous releases of Pro*C/C++. For example, the following scalar array
declarations illustrate what is legal and what is not.

int empno[l5];
exec sql var empno([3] is integer(4); /* illegal */

myint empno[15]; /* legal */

In summary, you may not equivalence any individual array item.

8.10.4 Variables Guidelines

ORACLE

Indicator variables for an array of structs declaration work in much the same way as a normal
struct declaration. An indicator array of structs declaration must abide by the rules for an
array of structs as follows:

e The number of fields in the indicator struct must be less than or equal to the number of
fields in the corresponding array of structs.

e The order of the fields must match the order of the corresponding members of the array
of structs.

e The datatype for all elements in the indicator struct must be short.

e The size of the indicator array must be at least the same size as the host variable
declaration. It may be larger, but it may not be smaller.

These rules generally reflect the rules for using structs as implemented in prior releases of
Pro*C/C++. The array restriction is also the same as that previously used for arrays of
scalars.

Given these rules, assume the following struct declaration:

struct department {
int deptno;
char dname[15];
char loc[1l4];

} dept[4];

The following is a legal indicator variable struct declaration:

struct department ind {
short deptno ind;
short dname ind;
short loc_ind;

} dept ind[4];

while the following is illegal as an indicator variable

struct{ /* missing indicator structure tag */
int deptno_ind; /* indicator variable not of type short */
short dname ind[15];/* array element forbidden in indicator struct */
short loc_ind[14]; /* array element forbidden in indicator struct */
} bad ind[2]; /* indicator array size is smaller than host array */

8-19

Chapter 8
Arrays of Structs

Related Topics
* ANSI Dynamic SQL

8.10.5 About Declaring a Pointer to an Array of Structs

In some cases, it may be desirable to declare a pointer to an array of structs. This
allows pointers to arrays of structs to be passed to other functions or used directly in
an embedded SQL statement.

Note:

The length of the array referenced by a pointer to an array of structs cannot
be known during precompilation. For this reason, an explicit FOR clause
must be used when a bind variable whose type is a pointer to an array of
structs is used in any embedded SQL statement.

Remember that FOR clauses may not be used in an embedded SQL SELECT
statement. Therefore, to retrieve data into a pointer to an array of structs, an explicit
cursor and FETCH statement must be used with the FOR clause.

8.10.6 Examples

The following examples demonstrate different uses of the array of structs functionality
in Pro*C/C++.

8.10.6.1 Example 1: A Simple Array of Structs of Scalars

Given the following structure declaration,

struct department {
int deptno;
char dname[15];
char loc[l4];

} my_dept[4];

a user could then select the dept data into my dept as follows:

exec sql select * into :my dept from dept;

or the user could populate my dept first and then bulk insert it into the dept table:
exec sql insert into dept values (:my dept);

To use an indicator variable, a parallel indicator array of structs could be declared.

struct deptartment ind {
short deptno ind;
short dname ind;
short loc ind;

} my dept ind[4];

Data is then be selected using the same query except for the addition of the indicator
variable:

ORACLE 8-20

Chapter 8
Arrays of Structs

exec sql select * into :my dept indicator :my dept ind from dept;

Similarly, the indicator could be used when inserting the data as well:

exec sql insert into dept values (:my dept indicator :my dept ind);

8.10.6.2 Example 2: Using Mixed Scalar Arrays with An Array of Structs

As in prior releases of Pro*C/C++, when using multiple arrays for bulk handling of user data,
the size of the arrays must be the same. If they are not, the smallest array size is chosen
leaving the remaining portions of the arrays unaffected.

Given the following declarations,

struct employee {
int empno;
char ename[11];
} emp[14];

float sal[l4];
float comm[14];

it is possible to select multiple rows for all columns in one simple query:

exec sql select empno, ename, sal, comm into :emp, :sal, :comm from emp;

We also want to know whether the column values for the commissions are NULL or not. A
single indicator array could be used given the following declaration:

short comm ind[14];

exec sql select empno, ename, sal, comm
into :emp, :sal, :comm indicator :comm ind from emp;

You cannot declare a single indicator array of structs that encapsulate all indicator information
from the query. Therefore:

struct employee ind { /* example of illegal usage */
short empno_ind;
short ename ind;
short sal ind;
short comm ind;
} illegal ind[15];

exec sql select empno, ename, sal, comm
into :emp, :sal, :comm indicator :illegal ind from emp;

is illegal (as well as undesirable). The earlier statement associates the indicator array with the
comm column only, not the entire SELECT...INTO list.

Assuming the array of structs and the sal, comm and comm_ind arrays were populated with the
desired data, insertion is straightforward:

exec sql insert into emp (empno, ename, sal, comm)
values (:emp, :sal, :comm indicator :comm ind);

8.10.6.3 Example 3: Using Multiple Arrays of Structs with a Cursor

For this example, we make the following declarations:

ORACLE 8-21

Chapter 8
Arrays of Structs

struct employee {
int empno;
char ename[11l];
char job[10];

} emp[l4];

struct compensation {
int sal;
int comm;

} wage[l4];

struct compensation ind {
short sal ind;
short comm ind;

} wage ind[14];

Our program could then make use of these arrays of structs as follows:

exec sql declare c cursor for
select empno, ename, job, sal, comm from emp;

exec sql open c;

exec sqgl whenever not found do break;
while (1)
{
exec sql fetch c into :emp, :wage indicator :wage ind;
. process batch rows returned by the fetch ...

}
printf ("%d rows selected.\n", sqlca.sqlerrd[2]);

exec sql close c;

8.10.6.3.1 About Using the FOR clause

Alternatively, we could have used the FOR clause to instruct the fetch on how many
rows to retrieve. Recall that the FOR clause is prohibited when using the SELECT
statement, but not the INSERT or FETCH statements.

We add the following to our original declarations

int limit = 10;

and code our example accordingly.

exec sql for :limit
fetch ¢ into :emp, :wage indicator :wage ind;

8.10.6.4 Example 4: Individual Array and Struct Member Referencing

Prior releases of Pro*C/C++ allowed array references to single structures in an array
of structs. The following is therefore legal since the bind expression resolves to a
simple struct of scalars.

exec sql select * into :dept[3] from emp;

Users can reference an individual scalar member of a specific struct in an array of
structs as the following example shows.

exec sql select dname into :dept[3].dname from dept where ...;

ORACLE 8-22

Chapter 8
Arrays of Structs

Naturally, this requires that the query be a single row query so only one row is selected into
the variable represented by this bind expression.

8.10.6.5 Example 5: Using Indicator Variables, a Special Case

ORACLE

Prior releases of Pro*C/C++ required that an indicator struct have the same number of fields
as its associated bind struct. This restriction has been relaxed when using structs in general.
By following the previously mentioned guidelines for indicator arrays of structs it is possible to
construct the following example.

struct employee {
float comm;
float sal;
int empno;
char ename[10];
} emp[14];

struct employee ind {
short comm;
} emp ind[14];

exec sgl select comm, sal, empno, ename
into :emp indicator :emp ind from emp;

The mapping of indicator variables to bind values is one-to-one. They map in associative
sequential order starting with the first field.

Be aware, however, that if any of the other fields has a fetched value of NULL and no
indicator is provided, the following error is raised:

ORA-1405: fetched column value is NULL

As an example, such is the case if sal was nullable because there is no indicator for sal.

Suppose we change the array of structs as follows,

struct employee {
int empno;
char ename[10];
float sal;
float comm;

} emp[15];

but still used the same indicator array of structs.

Because the indicators map in associative sequential order, the comm indicator maps to the
empno field leaving the comm bind variable without an indicator once again leading to the
ORA-1405 error.

To avoid the ORA-1405 when using indicator structs that have fewer fields than their
associative bind variable structs, the nullable attributes should appear first and in sequential
order.

We could easily change this into a single-row fetch involving multiple columns by using non-
array structs and expect it to work as though the indicator struct was declared as follows.

struct employee ind {
short comm;
short sal;
short empno;

8-23

Chapter 8
Arrays of Structs

short ename;
} emp ind;

Because Pro*C/C++ no longer requires that the indicator struct have the same number
of fields as its associated value struct, the earlier example is now legal in Pro*C/C++
whereas previously it was not.

Our indicator struct could now look like the following simple struct.

struct employee ind {
short comm;
} emp ind;

Using the non-array emp and emp_ind structs we are able to perform a single row fetch
as follows.

exec sql fetch comm, sal, empno, ename
into :emp indicator :emp ind from emp;

Note once again how the comm indicator maps to the comm bind variable in this case as
well.

8.10.6.6 Example 6: Using a Pointer to an Array of Structs

ORACLE

This example demonstrates how to use a pointer to an array of structs.

Given the following type declaration:

typedef struct dept {
int deptno;
char dname[15];
char loc[14];

} dept;

we can perform a variety of things, manipulating a pointer to an array of structs of that
type. For example, we can pass pointers to arrays of structs to other functions.

void insert data(d, n)
dept *d;
int n;

exec sql for :n insert into dept values (:d);

}

void fetch data(d, n)
dept *d;
int n;

exec sgl declare c cursor for select deptno, dname, loc from dept;
exec sqgl open c;

exec sql for :n fetch c into :d;

exec sql close c;

}

Such functions are invoked by passing the address of the array of structs as these
examples indicate.

dept d[4];
dept *dptr = &d[0];
const int n = 4

’

8-24

Chapter 8
About Mimicking CURRENT OF

fetch data(dptr, n);
insert data(d, n); /* We are treating '&d[0]' as being equal to 'd' */

Or we can simply use such pointers to arrays of structs directly in some embedded SQL
statement.

exec sql for :n insert into dept values (:dptr);

The most important thing to remember is the use of the FOR clause.

8.11 About Mimicking CURRENT OF

You use the CURRENT OF cursor clause in a DELETE or UPDATE statement to refer to the
latest row FETCHed from the cursor. However, you cannot use CURRENT OF with host
arrays. Instead, select the ROWID of each row, then use that value to identify the current row
during the update or delete.

For example:

char emp name[20] [
char job title[20]
char old title[20]
char row 1id[20][19

’

0]
101;
10]

’

1
[
[
]

EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, job, rowid FROM emp FOR UPDATE;

EXEC SQL OPEN emp cursor;
EXEC SQL WHENEVER NOT FOUND do break;
for (;7)
{
EXEC SQL FETCH emp cursor
INTO :emp name, :job title, :row id;

EXEC SQL DELETE FROM emp

WHERE job = :o0ld title AND rowid = :row id;
EXEC SQL COMMIT WORK;

Related Topics
e The CURRENT OF Clause

8.12 About Using Additional Array Insert/Select Syntax

The Oracle precompiler also supports the DB2 insert and fetch syntax for the host tables. The
supported additional array insert and fetch syntax are shown in the following figures,
respectively.

ORACLE' 8-25

Chapter 8

About Using Additional Array Insert/Select Syntax

Figure 8-1 Additional Insert Syntax

»—NN

SERT INTO —|:TABLE NAME
VIEW NAME

Y

(COL NAME)
P»———VALUES EXP >
———HOST VAR ARR——
L NULL/DEFAULT —— FOR ———— HOST VARS ——— ROWS
L INTEGER —

Figure 8-2 Additional Fetch Syntax

» FETCH

FETCH ORIENTATION L J CURSOR NAME ———————»
FROM

—FOR—

——HOS VARS T ROWS —
— INTEGER

INTO

INTO DESCRIPTOR NAME

\

HOST VAR ARR

The optional ROWSET and ROWSET STARTING AT clauses are used in the fetch-
orientation (FIRST, PRIOR, NEXT, LAST, CURRENT, RELATIVE and ABSOLUTE).
Consider the following examples:

FIRST ROW

SET

PRIOR ROWSET

NEXT ROWSET

LAST ROWSET

CURRENT ROWSET

ROWSET STARTING AT RELATIVEnN
ROWSET STARTING AT ABSOLUTEN

Examples of the DB2 array insert/fetch syntax and their comparison with the
corresponding Oracle precompiler syntax are shown in Table 8-3:

ORACLE

8-26

ORACLE

Chapter 8
About Using Additional Array Insert/Select Syntax

Table 8-3 DB2 Array Syntax vs. Oracle Precompiler Syntax

DB2 Array Syntax Oracle Precompiler Syntax

EXEC SQL EXEC SQL FOR :num rows
INSERT INTO dsn8810.act INSERT INTO dsn8810.act
(actno, actkwd, actdesc) (actno, actkwd, actdesc)
VALUES (:hval, :hva2, :hva3) VALUES (:hval, :hva2, :hva3);

FOR :NUM _ROWS ROWS;

EXEC SQL EXEC SQL
FETCH NEXT ROWSET FROM cl FOR :twenty
FOR 20 ROWS FETCH cl
INTO :hva empno, :hva lastname, INTO :hva empno, :hva lastname,
:hva_salary; :hva salary;

In DB2 syntax, a row-set positioned cursor should be first declared before retrieving row sets
of data. To enable a cursor to fetch row sets, the 'WITH ROWSET POSITIONING' clause has
to be used in the DECLARE CURSOR statement, which is not required and relevant in the
Oracle precompiler syntax, as shown in the following table.

DB2 Array Syntax Oracle Precompiler Syntax

EXEC SQL EXEC SQL

DECLARE cl CURSOR DECLARE cl CURSOR FOR
WITH ROWSET POSITIONING FOR SELECT empno, lastname, salary
SELECT empno, lastname, salary FROM dsn8810.emp;

FROM dsn8810.emp;

This DB2 array syntax support can be enabled with the precompiler option db2 array, whose
default option is no. The DB2 array syntax support cannot be used together with the Oracle
precompiler syntax; only one of the syntax, only on of the syntax, either Oracle precompiler or
DB2 syntax, is supported at a time.

Example 8-1 Inserting and Fetching Rows by Using the DB2 Array Syntax

This program inserts INSCNT rows into the EMP table by using the DB2 array insert syntax,
and then fetches the inserted rows by using the DB2 array fetch syntax.

/*
* db2arrdemo.pc

*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sglda.h>
#include <sqglcpr.h>
#include <sglca.h>

/* Number of rows to be inserted in one shot */
#define INSCNT 100
/* Number of rows to be fetched in one shot */
#define FETCHCNT 20

8-27

ORACLE

/*

Chapter 8
About Using Additional Array Insert/Select Syntax

Define a host structure
for inserting data into the table
and for fetching data from the table */

struct emprec

{

}s

int empno;
varchar ename[10];
varchar job[9];
int mgr;

char hiredate[10];
float sal;

float comm;

int deptno;

typedef struct emprec empdata;

/* Function prototypes */
void sql error(char *);

void insertdata();

void fetchdata();

void printempdata (empdata *);

void main ()

{

}

exec sql begin declare section;
char *uid = "scott/tiger";
exec sql end declare section;

exec sql whenever sqglerror do sql error ("ORACLE error--\n");
exec sgl connect :uid;

printf ("Inserting %d rows into EMP table using DB2 array insert syntax.\n",
INSCNT) ;

insertdata () ;

printf ("\nFetching data using DB2 array fetch syntax.\n");

fetchdata();

exec sql rollback work release;
ex1t (EXIT SUCCESS);

/* Inserting data into the table using DB2 array insert syntax*/
void insertdata()

{

int i, cnt;
char *str;
empdata emp in[INSCNT];

/* To store temporary strings */
str = (char *)malloc (25 * sizeof(char));

/* Fill the array elements to insert */
for (1 = 0; 1 < INSCNT; i++)
{
emp in[i].empno = i+1;
sprintf (str, "EMP %03d", i+l);
strcpy (emp in[i].ename.arr, str);
emp in[i].ename.len = strlen (emp in[i].ename.arr);
sprintf (str, "JOB %03d", i+l);
strcpy (emp in[i].job.arr, str);

8-28

ORACLE

}

Chapter 8
About Using Additional Array Insert/Select Syntax

emp in[i].job.len = strlen (emp in[i].job.arr);
emp in[i].mgr = i+1001;

sprintf (str, "%02d-MAY-06", (i%30)+1);

strcpy (emp in[i].hiredate, str);

emp in[i].sal = (i+1) * 10;

emp in[i].comm = (i+1) * 0.1;

emp in[i].deptno = 10;

free (str);

/* Inserting data using DB2 array insert syntax */
exec sql insert into emp values (:emp in) FOR :INSCNT rows;

exec sql select count(*) into :cnt from emp where ename like 'EMP %';
printf ("Number of rows successfully inserted into emp table: %d\n", cnt);

/* Fetches data from the table using DB2 array fetch syntax*/

void fetchdata()
{

empdata emp out [FETCHCNT];

/* Declares scrollable cursor to fetch data */

exec sql declare cl scroll cursor with rowset positioning for
select empno, ename, job, mgr, hiredate, sal, comm, deptno
from emp where ename like 'EMP %' order by empno;

exec sql open cl;

exec sgl whenever not found do break;

while (1)

{
/* Fetches data using DB2 array fetch syntax */
exec sql fetch next rowset from cl for :FETCHCNT rows into :emp out;
printempdata (emp out);

}
exec sql whenever not found do sql error ("ORACLE ERROR");

exec sqgl close cl;

}

/* Prints the fetched employee data */
void printempdata (empdata *emp out)
{
int i;
for (i=0; i<FETCHCNT; i++)
{
emp out[i].ename.arr[emp out[i].ename.len] = '\0';
emp out[i].job.arr[emp out[i].job.len] = "\0';
printf ("Empno=%d, Ename=%s, Job=%s, Mgr=%d, Hiredate=%s, Sal=%6.2f,\n"
"Comm=%5.2f, Deptno=%d\n", emp out[i].empno, emp out[i].ename.arr,
emp out[i].job.arr, emp out[i].mgr, emp out[i].hiredate,
emp out[i].sal, emp out[i].comm, emp out[i].deptno);
}
}

/* Error handling function. */
void sql error(char *msg)

{

exec sqgl whenever sqglerror continue;

8-29

Chapter 8
About Using Implicit Buffered Insert

printf ("\n%s\n", msqg);
printf ("%.70s\n", sqglca.sglerrm.sglerrmc);
exec sqgl rollback release;

ex1t (EXIT FAILURE);

8.13 About Using Implicit Buffered Insert

ORACLE

For improved performance, Pro*C/C++ application developers can reference host
arrays in their embedded SQL statements. This provides a means to execute an array
of SQL statements with a single round-trip to the database. Despite the significant
performance improvements afforded by array execution, some developers choose not
to use this capability because it is not ANSI standard. For example, an application
written to exploit array execution in Oracle cannot be precompiled using IBM's
precompiler.

One workaround is to use buffered INSERT statements, which enable you to gain
performance benefits while retaining ANSI standard embedded SQL syntax.

The command line option "max_row_insert" controls the number of rows to be buffered
before executing the INSERT statement. By default it is zero and the feature is
disabled. To enable this feature, specify any number greater than zero.

If insert bufering is enabled, precompiler runtime will flag the corresponding cursor
and:

» Allocate or re-allocate extra memory to hold bind values (first execute only).
e Copy bind values from program host variables to internal runtime bind structures.
* Increment the rows buffered count.

* Flush the buffered INSERT statements if MAX_INSERT_ROWS have been
buffered.

* If MAX_INSERT_ROWS has not been hit, then return after copying the values to
the internal bind buffers without flushing.

If a new embedded SQL statement is executed and results in a flush of the buffered
insert statements:

* Flush the buffers.
e Continue with the call that prompted the flush.

The application is informed of the error through the standard precompiler error
mechanisms such as the sglca in Pro*C.

The "implicit_svpt" option controls whether an implicit savepoint is taken prior to the
start of a new batched insert.

* If yes, a savepoint is taken prior to the start of a new batch of rows. If an error
occurs on the insert, an implicit "rollback to savepoint” is executed.

* If no, there is no implicit savepoint taken. If an error occurs on the buffered insert,
then it is reported back to the application, but no rollback is executed. Errors are
reported asynchronously for buffer inserts. Errors for inserted rows are not
reported when the INSERT statement is executed in the application.

8-30

ORACLE

Chapter 8
About Using Implicit Buffered Insert

— Some errors for inserted rows are reported later, when the first statement other than
the INSERT is executed. This may include DELETE, UPDATE, INSERT (into different
tables), COMMIT, and ROLLBACK. Any statement that closes the buffered insert
statement can report an error. In such cases, the statement that reports the error is
not executed. You need to first handle the error and also reexecute the statement on
which the buffered insert error is reported. Otherwise, you may rollback the
transaction and reexecute it.

For example, consider using a COMMIT statement to close a buffered insert loop.
COMMIT can report an error because of a duplicate key from an earlier insert. In this
scenario, the commit is not executed. You should first handle the error and then
reexecute COMMIT. Otherwise, you can rollback the transaction and reexecute it.

— Some errors are reported on the insert itself, and may reflect an error of a previously
inserted row. In such cases, no further inserts are executed. You need to handle the
errors of the previously inserted row and continue inserting the current insert, which
is a long process. Instead, you may rollback and reexecute the transaction.

For example, consider that the limit of internal buffer is 10 rows and the application is
inserting 15 rows in a loop. Suppose there is an error on the 8th row. The error is
reported when the 11th row insert happens and the insert is no more executed
further.

The following are some of the possible errors that you might face during buffered insert:

* ORA-00001: duplicate key in index

* ORA-01400: mandatory (not null) column is missing or Null during insert
* ORA-01401: inserted value too large for column

* ORA-01438: value larger than specified precision allows for this column

Example 8-2 Inserting Buffered Rows into a Table

This program inserts LOOPCNT number of rows into the EMP table. At loop counter=5, this
program attempts to insert an invalid empno. Without the max_row_insert option, the
program inserts all rows except the invalid row. When the max_row_insert option is set to
LOOPCNT, only the first four rows are inserted.

Using the max_row_insert option, when the erroneous statement is removed, the program
performs the same way an array insert program would.

/*
* bufinsdemo.pc
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sglda.h>
#include <sglcpr.h>
#include <sglca.h>

/* Number of rows to be inserted into the table */
#define LOOPCNT 100

/* Define a host structure

for inserting data into the table

and for fetching data from the table */
struct emprec
{

int empno;

8-31

Chapter 8
About Using Implicit Buffered Insert

varchar ename[10];
varchar job[9];
int mgr;
char hiredate[10];
float sal;
float comm;
int deptno;
}i
typedef struct emprec buffinstyp;

/* Function prototypes */
void sql error();

void insertdata();

void fetchdata();

void printempdata (buffinstyp);

void main ()

{

exec sql begin declare section;
char *uid = "scott/tiger";
exec sql end declare section;

exec sql whenever sqlerror do sql error();
exec sgl connect :uid;

printf ("\nInserting %d rows into EMP table.\n", LOOPCNT);
insertdata () ;

printf ("\nFetching inserted data from EMP table.\n");
fetchdata() ;

exec sql delete from emp where empno < 1000;

exec sql commit work release;
ex1t (EXIT SUCCESS);
}

/* Inserting data into the table */
void insertdata()
{

int i, cnt;

char *str;

buffinstyp emp in;

/* To store temporary strings */
str = (char *)malloc (25 * sizeof(char));

/*
* When max row insert option is set to LOOPCNT and when the errorneous
* statement is removed, all the rows will be inserted into the database in
* one stretch and hence maximum performance gain will be achieved.
*/
for (1 = 1; 1 <= LOOPCNT; 1i++)
{
if (1 !=9)
emp in.empno = i;
else
/* Errorneous statement. In emp table, empno is defined as number (4). */
emp in.empno = 10000;

sprintf (str, "EMP %03d", 1i);

ORACLE 8-32

ORACLE

}

Chapter 8

About Using Implicit Buffered Insert

strcpy (emp in.ename.arr, str);

emp in.ename.len = strlen (emp in.ename.arr);
sprintf (str, "JOB %03d", 1i);

strcpy (emp in.job.arr, str);

emp in.job.len = strlen (emp in.job.arr);

emp in.mgr = 1i+1001;

sprintf (str, "%02d-MAY-06", (i%30));

strcpy (emp in.hiredate, str);

emp in.sal = (i) * 10;
emp in.comm = (i) * 0.1;
emp in.deptno = 10;

exec sql insert into emp values (:emp in);

free (str);

exec sqgl commit;

o

exec sql select count(*) into :cnt from emp where ename like 'EMP %';
printf ("Number of rows successfully inserted into emp table: %d\n", cnt);

/* Fetches data from the table*/
void fetchdata()

{

}

buffinstyp emp out;

/* Declares cursor to fetch only the rows that are inserted */
exec sqgl declare cl cursor for
select empno, ename, job, mgr, hiredate, sal, comm, deptno
from emp where ename like 'EMP %' order by empno;

exec sql open cl;

exec sgl whenever not found do break;
while (1)
{

/* Fetches single row at each call */
exec sql fetch cl into :emp out;
printempdata (emp out);

}

exec sql whenever not found do sql error();

exec sqgl close cl;

/* Prints the fetched employee data */
void printempdata (buffinstyp emp out)

{

}

emp out.ename.arr[emp out.ename.len] = "\0';
emp out.job.arr[emp out.job.len] = '"\0';

printf ("Empno=%d, Ename=%s, Job=%s, Mgr=%d, Hiredate=%s, Sal=%6.2f,\n"

"Comm=%5.2f, Deptno=%d\n", emp out.empno, emp out.ename.arr,

emp out.job.arr, emp out.mgr, emp out.hiredate, emp out.sal,
emp out.comm, emp out.deptno);

/* Error handling function. */
void sql error ()

{

8-33

Chapter 8
Scrollable Cursors

printf ("Error %$s\n", sqlca.sglerrm.sqglerrmc);
printf (" Rows Processed: %d\n", sglca.sqlerrd[2]);
printf (" Rows Rolled Back: %d\n", sqlca.sqglerrd[0]);

8.14 Scrollable Cursors

ORACLE

A scrollable cursor is a work area where Oracle executes SQL statements and stores
information that is processed during execution.When a cursor is executed, the results
of the query are placed into a a set of rows called the result set. The result set can be
fetched either sequentially or non-sequentially. Non-sequential result sets are called
scrollable cursors. A scrollable cursor enables users to access the rows of a database
result set in a forward, backward, and random manner. This enables the program to
fetch any row in the result set.

8-34

Handling Runtime Errors

An application program must anticipate runtime errors and attempt to recover from them. This
chapter provides an in-depth discussion of error reporting and recovery. You learn how to
handle errors and status changes using the SQLSTATE status variable, as well as the SQL
Communications Area (SQLCA) and the WHENEVER directive. You also learn how to
diagnose problems using the Oracle Communications Area (ORACA). This chapter contains
the following topics:

e The Need for Error Handling

e Error Handling Alternatives

e The SQLSTATE Status Variable

e About Declaring SQLCODE

» Key Components of Error Reporting Using the SQLCA

e Using the SQL Communications Area (SQLCA)

e About Getting the Full Text of Error Messages

e About Using the WHENEVER Directive

e About Obtaining the Text of SQL Statements

e About Using the Oracle Communications Area (ORACA)

9.1 The Need for Error Handling

A significant part of every application program must be devoted to error handling. The main
reason for error handling is that it allows your program to continue operating in the presence
of errors. Errors arise from design faults, coding mistakes, hardware failures, invalid user
input, and many other sources.

You cannot anticipate all possible errors, but you can plan to handle certain kinds of errors
that are meaningful to your program. For the Pro*C/C++ Precompiler, error handling means
detecting and recovering from SQL statement execution errors. You can also prepare to
handle warnings such as "value truncated" and status changes such as "end of data.” It is
especially important to check for error and warning conditions after every SQL data
manipulation statement, because an INSERT, UPDATE, or DELETE statement might fail
before processing all eligible rows in a table.

9.2 Error Handling Alternatives

ORACLE

There are several alternatives that you can use to detect errors and status changes in the
application. This chapter describes these alternatives, however, no specific recommendations
are made about what method you should use. The method is, after all, dictated by the design
of the application program or tool that you are building.

9-1

Chapter 9
Error Handling Alternatives

0.2.1 Status Variables

You can declare a separate status variable, SQLSTATE or SQLCODE, examine its
value after each executable SQL statement, and take appropriate action. The action
might be calling an error-reporting function, then exiting the program if the error is
unrecoverable. Or, you might be able to adjust data or control variables and retry the
action.

Related Topics
e The SQLSTATE Status Variable
* About Declaring SQLCODE

9.2.2 The SQL Communications Area

Another alternative that you can use is to include the SQL Communications Area
structure (sqglca) in your program. This structure contains components that are filled in
at runtime after the SQL statement is processed by Oracle.

Note:

In this guide, the sqlca structure is commonly referred to using the acronym
for SQL Communications Area (SQLCA). When this guide refers to a specific
component in the C struct, the structure name (sqlca) is used.

The SQLCA is defined in the header file sqlca.h, which you include in your program
using either of the following statements:

* EXEC SQL INCLUDE SQLCA;
* #include <sglca.h>

Oracle updates the SQLCA after every executable SQL statement. (SQLCA values are
unchanged after a declarative statement.) By checking Oracle return codes stored in
the SQLCA, your program can determine the outcome of a SQL statement. This can
be done in the following two ways:

* Implicit checking with the WHENEVER directive
» Explicit checking of SQLCA components

You can use WHENEVER directives, code explicit checks on SQLCA components, or
do both.

The most frequently-used components in the SQLCA are the status variable
(sqlca.sqlcode), and the text associated with the error code (sqlca.sqlerrm.sqlerrmc).
Other components contain warning flags and miscellaneous information about the
processing of the SQL statement.

ORACLE 9-2

Chapter 9
The SQLSTATE Status Variable

< Note:

SQLCODE (upper case) always refers to a separate status variable, not a
component of the SQLCA. SQLCODE is declared as a integer. When referring to
the component of the SQLCA named sglcode, the fully-qualified name
sqlca.sqlcode is always used.

When more information is needed about runtime errors than the SQLCA provides, you can
use the ORACA. The ORACA is a C struct that handles Oracle communication. It contains
cursor statistics, information about the current SQL statement, option settings, and system
statistics.

Related Topics
e About Using the Oracle Communications Area (ORACA)
» Using the SQL Communications Area (SQLCA)

9.3 The SQLSTATE Status Variable

The precompiler command line option MODE governs ANSI/ISO compliance. When
MODE=ANSI, declaring the SQLCA data structure is optional. However, you must declare a
separate status variable named SQLCODE. The SQL standard specifies a similar status
variable named SQLSTATE, which you can use with or without SQLCODE.

After executing a SQL statement, the Oracle Server returns a status code to the SQLSTATE
variable currently in scope. The status code indicates whether the SQL statement executed
successfully or raised an exception (error or warning condition). To promote interoperability
(the ability of systems to exchange information easily), the SQL standard predefines all the
common SQL exceptions.

Unlike SQLCODE, which stores only error codes, SQLSTATE stores error and warning
codes. Furthermore, the SQLSTATE reporting mechanism uses a standardized coding
scheme. Thus, SQLSTATE is the preferred status variable. SQLCODE was a deprecated
feature of SQL-92 that was retained only for compatibility with SQL-89. SQLCODE has been
removed from all editions of the SQL standard subsequent to SQL-92.

9.3.1 About Declaring SQLSTATE

ORACLE

When MODE=ANSI, you must declare SQLSTATE or SQLCODE. Declaring the SQLCA is
optional. When MODE=0ORACLE, if you declare SQLSTATE, it is not used.

Unlike SQLCODE, which stores signed integers and can be declared outside the Declare
Section, SQLSTATE stores 5-character null-terminated strings and must be declared inside
the Declare Section. You declare SQLSTATE as

char SQLSTATE[6]; /* Upper case is required. */

" Note:

SQLSTATE must be declared with a dimension of exactly 6 characters.

9-3

Chapter 9
The SQLSTATE Status Variable

9.3.2 SQLSTATE Values

ORACLE

SQLSTATE status codes consist of a 2-character class code immediately followed by a
3-character subclass code. Aside from class code 00 ("successful completion”,) the
class code denotes a category of exceptions. And, aside from subclass code 000 ("not
applicable",) the subclass code denotes a specific exception within that category. For
example, the SQLSTATE value '22012' consists of class code 22 ("data exception™)
and subclass code 012 ("division by zero").

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase Latin
letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the range
A..H are reserved for predefined conditions (those defined in the SQL standard). All
other class codes are reserved for implementation-defined conditions. Within
predefined classes, subclass codes that begin with a digit in the range 0..4 or a letter
in the range A..H are reserved for predefined subconditions. All other subclass codes
are reserved for implementation-defined subconditions. Figure 9-1 shows the coding
scheme.

Figure 9-1 SQLSTATE Coding Scheme

First Char in Class Code

B..4 5..9 A..H 1..2
b..4
First Char °--°

in Subclass

Code A..H
1..Z

B predefined [| Implementation defined

Table 9-1 shows the classes predefined by SQL92.

Table 9-1 Predefined Class Codes

Class Condition

00 success completion
01 warning

02 no data

07 dynamic SQL error
08 connection exception

9-4

ORACLE

Chapter 9
The SQLSTATE Status Variable

Table 9-1 (Cont.) Predefined Class Codes

Class Condition

09 triggered action exception

0A feature not supported

0D invalid target type specification

OE invalid schema name list specification

OF locator exception

oL invalid grantor

oM invalid SQL-invoked procedure reference

oP invalid role specification

0s invalid transform group name specification

oT target table disagrees with cursor specification
ou attempt to assign to non-updatable column

ov attempt to assign to ordering column

ow prohibited statement encountered during trigger execution
0z diagnostics exception

21 cardinality violation

22 data exception

23 integrity constraint violation

24 invalid cursor state

25 invalid transaction state

26 invalid SQL statement name

27 triggered data change violation

28 invalid authorization specification

2A direct SQL syntax error or access rule violation
2B dependent privilege descriptors still exist

2C invalid character set name

2D invalid transaction termination

2E invalid connection name

2F SQL routine exception

2H invalid collation name

30 invalid SQL statement identifier

33 invalid SQL descriptor name

34 invalid cursor name

35 invalid condition number

36 cursor sensitivity exception

37 dynamic SQL syntax error or access rule violation
38 external routine exception

39 external routine invocation exception

3B savepoint exception

9-5

ORACLE

Table 9-1 (Cont.) Predefined Class Codes
|

Chapter 9
The SQLSTATE Status Variable

Class Condition
3C ambiguous cursor name
3D invalid catalog name
3F invalid schema name
40 transaction rollback
42 syntax error or access rule violation
44 with check option violation
HZ remote database access
¢ Note:

The class code HZ is reserved for conditions defined in International
Standard ISO/IEC DIS 9579-2, Remote Database Access.

Table 9-2 shows how SQLSTATE status codes and conditions are mapped to Oracle
errors. Status codes in the range 60000 to 99999 are implementation-defined.

Table 9-2 SQLSTATE Status Codes
|

Code Condition Oracle Error(s)

00000 successful completion ORA-00000

01000 warning -

01001 cursor operation conflict --

01002 disconnect error --

01003 NULL value eliminated in set function --

01004 string data-right truncation -

01005 insufficient item descriptor areas -

01006 privilege not revoked -

01007 privilege not granted -

01008 implicit zero-bit padding -

01009 search condition too long for info schema -

0100A query expression too long for info schema -

02000 no data ORA-01095
ORA-01403

07000 dynamic SQL error -

07001 using clause does not match parameter specs -

07002 using clause does not match target specs -

07003 cursor specification cannot be executed -

07004 using clause required for dynamic parameters -

9-6

ORACLE

Table 9-2 (Cont.) SQLSTATE Status Codes

Chapter 9
The SQLSTATE Status Variable

Code Condition Oracle Error(s)

07005 prepared statement not a cursor specification -

07006 restricted datatype attribute violation -

07007 using clause required for result components invalid --

descriptor count

07008 invalid descriptor count SQL-02126

07009 invalid descriptor index -

08000 connection exception -

08001 SQL-client unable to establish SQL-connection -

08002 connection name is use -

08003 connection does not exist SQL-02121

08004 SQL-server rejected SQL-connection --

08006 connection failure --

08007 transaction resolution unknown --

0A000 feature not supported ORA-03000..03099

0A001 multiple server transactions -

21000 cardinality violation ORA-01427
SQL-02112

22000 data exception -

22001 string data - right truncation ORA-01406

22002 NULL value-no indicator parameter SQL-02124

22003 numeric value out of range ORA-01426

22005 error in assignment -

22007 invalid datetime format --

22008 datetime field overflow ORA-01800..01899

22009 invalid time zone displacement value -

22011 substring error --

22012 division by zero ORA-01476

22015 interval field overflow --

22018 invalid character value for cast --

22019 invalid escape character ORA-00911

22021 character not in repertoire -

22022 indicator overflow ORA-01411

22023 invalid parameter value ORA-01025
ORA-04000..04019

22024 unterminated C string ORA-01479
ORA-01480

22025 invalid escape sequence ORA-01424
ORA-01425

22026 string data-length mismatch ORA-01401

9-7

ORACLE

Table 9-2 (Cont.) SQLSTATE Status Codes
|

Chapter 9
The SQLSTATE Status Variable

Code Condition Oracle Error(s)

22027 trim error -

23000 integrity constraint violation ORA-1400,
ORA-02290..02299

24000 invalid cursor state ORA-001002
ORA-001003
SQL-02114
SQL-02117

25000 invalid transaction state SQL-02118

26000 invalid SQL statement name -

27000 triggered data change violation -

28000 invalid authorization specification -

2A000 direct SQL syntax error or access rule violation -

2B000 dependent privilege descriptors still exist -

2C000 invalid character set name -

2D000 invalid transaction termination -

2E000 invalid connection name -

33000 invalid SQL descriptor name -

34000 invalid cursor name --

35000 invalid condition number --

37000 dynamic SQL syntax error or access rule violation --

3C000 ambiguous cursor name -

3D000 invalid catalog name --

3F000 invalid schema name --

40000 transaction rollback ORA-02091
ORA-02092

40001 serialization failure --

40002 integrity constraint violation -

40003 statement completion unknown -

9-8

ORACLE

Table 9-2 (Cont.) SQLSTATE Status Codes

__|
Oracle Error(s)

Code

Condition

Chapter 9

The SQLSTATE Status Variable

42000

44000
60000

61000

62000

63000

64000

65000
66000

67000
69000

syntax error or access rule violation

with check option violation

system error

shared server and detached process errors

shared server and detached process errors

Oracle*XA and two-task interface errors

control file, database file, and redo file errors;
archival and media recovery errors

PL/SQL errors

Oracle Net driver errors

licensing errors

SQL*Connect errors

ORA-00022
ORA-00251

ORA-00900..

ORA-01031

ORA-01490..
ORA-01700..
ORA-01900..
ORA-02140..
ORA-02420..
ORA-02450..
ORA-03276..
ORA-04040..
ORA-04070..

ORA-01402

ORA-00370..
ORA-00600..
ORA-06430..
ORA-07200..
ORA-09700..
ORA-00018..
ORA-00050..
ORA-02376..
ORA-04020..
ORA-00100..
ORA-00440..
ORA-00150..
ORA-02700..
ORA-03100..
ORA-06200..

SQL-02128

ORA-00200..
ORA-01100..
ORA-06500..
ORA-06000..
ORA-06250..
ORA-06600..
ORA-12100..
ORA-12500..
ORA-00430..
ORA-00570..
ORA-07000..

00999

01493
01799
02099
02289
02424
02499
03299
04059
04099

00429
00899
06449
07999
09999
00035
00068
02399
04039
00120
00569
00159
02899
03199
06249

00369
01250
06599
06149
06429
06999
12299
12599
00439
00599
07199

9-9

ORACLE

Table 9-2 (Cont.) SQLSTATE Status Codes
|

Chapter 9

The SQLSTATE Status Variable

Code Condition Oracle Error(s)

72000 SQL execute phase errors ORA-00001
ORA-01000..01099
ORA-01401..01489
ORA-01495..01499
ORA-01500..01699
ORA-02400..02419
ORA-02425..02449
ORA-04060..04069
ORA-08000..08190
ORA-12000..12019
ORA-12300..12499
ORA-12700..21999

82100 out of memory (could not allocate) SQL-02100

82101 inconsistent cursor cache (UCE/CUC mismatch) SQL-02101

82102 inconsistent cursor cache (no CUC entry for UCE) SQL-02102

82103 inconsistent cursor cache (out-or-range CUC ref) SQL-02103

82104 inconsistent cursor cache (no CUC available) SQL-02104

82105 inconsistent cursor cache (no CUC entry in cache) SQL-02105

82106 inconsistent cursor cache (invalid cursor number) SQL-02106

82107 program too old for runtime library; re-precompile ~ SQL-02107

82108 invalid descriptor passed to runtime library SQL-02108

82109 inconsistent host cache (out-or-range SIT ref) SQL-02109

82110 inconsistent host cache (invalid SQL type) SQL-02110

82111 heap consistency error SQL-02111

82113 code generation internal consistency failed SQL-02115

82114 reentrant code generator gave invalid context SQL-02116

82117 invalid OPEN or PREPARE for this connection SQL-02122

82118 application context not found SQL-02123

82119 unable to obtain error message text SQL-02125

82120 Precompiler/SQLLIB version mismatch SQL-02127

82121 NCHAR error; fetched number of bytes is odd SQL-02129

82122 EXEC TOOLS interface not available SQL-02130

82123 runtime context in use SQL-02131

82124 unable to allocate runtime context SQL-02132

82125 unable to initialize process for use with threads SQL-02133

82126 invalid runtime context SQL-02134

HZ000 remote database access --

9-10

Chapter 9
About Declaring SQLCODE

9.3.3 About Using SQLSTATE

The following rules apply to using SQLSTATE with SQLCODE or the SQLCA when you
precompile with the option setting MODE=ANSI. SQLSTATE must be declared inside a
Declare Section; otherwise, it is ignored.

9.3.3.1 If You Declare SQLSTATE

» Declaring SQLCODE is optional. If you declare SQLCODE inside the Declare Section,
the Oracle Server returns status codes to SQLSTATE and SQLCODE after every SQL
operation. However, if you declare SQLCODE outside of the Declare Section, Oracle
returns a status code only to SQLSTATE.

* Declaring the SQLCA is optional. If you declare the SQLCA, Oracle returns status codes
to SQLSTATE and the SQLCA. In this case, to avoid compilation errors, do not declare
SQLCODE.

9.3.3.2 If You Do not Declare SQLSTATE

* You must declare SQLCODE inside or outside the Declare Section. The Oracle Server
returns a status code to SQLCODE after every SQL operation.

* Declaring the SQLCA is optional. If you declare the SQLCA, Oracle returns status codes
to SQLCODE and the SQLCA.

You can learn the outcome of the most recent executable SQL statement by checking
SQLSTATE explicitly with your own code or implicitly with the WHENEVER SQLERROR
directive. Check SQLSTATE only after executable SQL statements and PL/SQL statements.

9.4 About Declaring SQLCODE

When MODE=ANSI, and you have not declared a SQLSTATE status variable, you must
declare a long integer variable named SQLCODE inside or outside the Declare Section. An
example follows:

/* declare host variables */
EXEC SQL BEGIN DECLARE SECTION;
int emp number, dept number;
char emp name[20];

EXEC SQL END DECLARE SECTION;

/* declare status variable--must be upper case */
long SQLCODE;

When MODE=ORACLE, if you declare SQLCODE, it is not used.

You can declare more than one SQLCODE. Access to a local SQLCODE is limited by its
scope within your program.

After every SQL operation, Oracle returns a status code to the SQLCODE currently in scope.
So, your program can learn the outcome of the most recent SQL operation by checking
SQLCODE explicitly, or implicitly with the WHENEVER directive.

When you declare SQLCODE instead of the SQLCA in a particular compilation unit, the
precompiler allocates an internal SQLCA for that unit. Your host program cannot access the

ORACLE 9-11

Chapter 9
Key Components of Error Reporting Using the SQLCA

internal SQLCA. If you declare the SQLCA and SQLCODE, Oracle returns the same
status code to both after every SQL operation.

9.5 Key Components of Error Reporting Using the SQLCA

Error reporting depends on variables in the SQLCA. This section highlights the key
components of error reporting. The next section takes a close look at the SQLCA.

9.5.1 Status Codes

Every executable SQL statement returns a status code to the SQLCA variable
sqlcode, which you can check implicitly with the WHENEVER directive or explicitly with
your own code.

A zero status code means that Oracle executed the statement without detecting an
error or exception. A positive status code means that Oracle executed the statement
but detected an exception. A negative status code means that Oracle did not execute
the SQL statement because of an error.

9.5.2 Warning Flags

Warning flags are returned in the SQLCA variables sqlwarn[0] through sqlwarn[7],
which you can check implicitly or explicitly. These warning flags are useful for runtime
conditions not considered errors by Oracle. If no indicator variable is available, Oracle
issues an error message.

9.5.3 Rows-Processed Count

The number of rows processed by the most recently executed SQL statement is
returned in the SQLCA variable sqlca.sqlerrd[2], which you can check explicitly.

Strictly speaking, this variable is not for error reporting, but it can help you avoid
mistakes. For example, suppose you expect to delete about ten rows from a table.
After the deletion, you check sqlca.sqlerrd[2] and find that 75 rows were processed.
To be safe, you might want to roll back the deletion and examine your WHERE-clause
search condition.

9.5.4 Parse Error Offsets

ORACLE

Before executing a SQL statement, Oracle must parse it to make sure it follows syntax
rules and refers to valid database objects. If Oracle finds an error, an offset is stored in
the SQLCA variable sqlca.sqlerrd[4], which you can check explicitly. The offset
specifies the character position in the SQL statement at which the parse error begins.
As in a normal C string, the first character occupies position zero. For example, if the
offset is 9, the parse error begins at the 10th character.

The parse error offset is used for situations where a separate prepare/parse is
performed. This is typical for dynamic SQL statements.

Parse errors may arise from missing, misplaced, or misspelled keywords, invalid
options, and the like. For example, the dynamic SQL statement:

"UPDATE emp SET jib = :job title WHERE empno = :emp number"

9-12

Chapter 9
Using the SQL Communications Area (SQLCA)

causes the parse error

ORA-00904: invalid column name

because the column name JOB is misspelled. The value of sqlca.sqlerrd[4] is 15 because
the erroneous column name JIB begins at the 16th character.

If your SQL statement does not cause a parse error, Oracle sets sqlca.sqlerrd[4] to zero.
Oracle also sets sqlca.sqglerrd[4] to zero if a parse error begins at the first character (which
occupies position zero). So, check sqlca.sglerrd[4] only if sqlca.sqglcode is negative, which
means that an error has occurred.

9.5.5 Error Message Text

The error code and message for Oracle errors are available in the SQLCA variable
SQLERRMC. At most, the first 70 characters of text are stored. To get the full text of
messages longer than 70 characters, you use the sqlglm() function.

Related Topics
* About Getting the Full Text of Error Messages

9.6 Using the SQL Communications Area (SQLCA)

The SQLCA is a data structure. Its components contain error, warning, and status information
updated by Oracle whenever a SQL statement is executed. Thus, the SQLCA always reflects
the outcome of the most recent SQL operation. To determine the outcome, you can check
variables in the SQLCA.

Your program can have more than one SQLCA. For example, it might have one global
SQLCA and several local ones. Access to a local SQLCA is limited by its scope within the
program. Oracle returns information only to the SQLCA that is in scope.

" Note:

When your application uses Oracle Net to access a combination of local and remote
databases concurrently, all the databases write to one SQLCA. There is not a
different SQLCA for each database.

Related Topics

* Advanced Connection Options

9.6.1 About Declaring the SQLCA

ORACLE

When MODE=ORACLE, declaring the SQLCA is required. To declare the SQLCA, you should
copy it into your program with the INCLUDE or #include statement, as follows:

EXEC SQL INCLUDE SQLCA;

or

#include <sglca.h>

9-13

Chapter 9
Using the SQL Communications Area (SQLCA)

If you use a Declare Section, the SQLCA must be declared outside the Declare
Section. Not declaring the SQLCA results in compile-time errors.

When you precompile your program, the INCLUDE SQLCA statement is replaced by
several variable declarations that allow Oracle to communicate with the program.

When MODE=ANSI, declaring the SQLCA is optional. But in this case you must
declare a SQLCODE or SQLSTATE status variable. The type of SQLCODE (upper
case is required) is int. If you declare SQLCODE or SQLSTATE instead of the SQLCA
in a particular compilation unit, the precompiler allocates an internal SQLCA for that
unit. Your Pro*C/C++ program cannot access the internal SQLCA. If you declare the
SQLCA and SQLCODE, Oracle returns the same status code to both after every SQL
operation.

Note:

Declaring the SQLCA is optional when MODE=ANSI, but you cannot use the
WHENEVER SQLWARNING directive without the SQLCA. So, if you want to
use the WHENEVER SQLWARNING directive, you must declare the SQLCA.

This Guide uses SQLCODE when referring to the SQLCODE status variable,
and sglca.sqlcode when explicitly referring to the component of the SQLCA
structure.

9.6.2 SQLCA Contents

The SQLCA contains the following runtime information about the outcome of SQL
statements:

* Oracle error codes

e Warning flags

* Event information

¢ Rows-processed count
e Diagnostics

The sqglca.h header file is:

/*
NAME
SQLCA : SQL Communications Area.
FUNCTION
Contains no code. Oracle fills in the SQLCA with status info
during the execution of a SQL stmt.
NOTES

khkkkkhkhkkhhkkhkhkhkhkhkhhkhhhhhhkhkhhkhhhhhhhhhkhhkkhhhkhhkhkhkhhkkhhkhkhkhkhkhhkhhkrxhkhkhhkkhx
* %k * k%
*** This file is SOSD. Porters must change the data types ***
*** gppropriately on their platform. See notes/pcport.doc ***

**% for more information. x KK
* % % * % %

Kk KA A KA KA I AR AR A A AR A A A A Ak Ak A Ak A A A A dAhkhk ko ko hk Ak Ak A A hkhkhkhkkhkhkhkhk A xhkkkkhkkkhx

If the symbol SQLCA STORAGE CLASS is defined, then the SQLCA
will be defined to have this storage class. For example:

ORACLE 9-14

ORACLE

Chapter 9
Using the SQL Communications Area (SQLCA)

#define SQLCA STORAGE CLASS extern
will define the SQLCA as an extern.

If the symbol SQLCA INIT is defined, then the SQLCA will be
statically initialized. Although this is not necessary in order

to use the SQLCA, it is a good programing practice not to have
unitialized variables. However, some C compilers/operating systems
don't allow automatic variables to be initialized in this manner.
Therefore, if you are INCLUDE'ing the SQLCA in a place where it
would be an automatic AND your C compiler/operating system doesn't
allow this style of initialization, then SQLCA INIT should be left
undefined -- all others can define SQLCA INIT if they wish.

If the symbol SQLCA NONE is defined, then the SQLCA
variable will not be defined at all. The symbol SQLCA NONE
should not be defined in source modules that have embedded SQL.
However, source modules that have no embedded SQL, but need to
manipulate a sglca struct passed in as a parameter, can set the
SQLCA NONE symbol to avoid creation of an extraneous sglca
variable.
*/
#ifndef SQLCA
#define SQLCA 1
struct sglca
{
/* ubl */ char sqlcaid[8];
/* b4 */ long sqglabc;
/* b4 */ long sqglcode;
struct
{
/* ub2 */ unsigned short sqglerrml;
/* ubl */ char sqlerrmc([70];
} sglerrm;
/* ubl */ char sqlerrpl
/* b4 */ long sqlerrd]
/* ubl */ char sqlwarn |
/* ubl */ char sqlext[8
i
#ifndef SQLCA NONE
#ifdef SQLCA STORAGE CLASS
SQLCA STORAGE CLASS struct sqlca sqlca
#else

1;
1;
1;

’

8
6
8
]

struct sglca sqglca
#endif
#ifdef SQLCA INIT

= {

{'s', 'Q', ', 'cv, 'A', vt o, vy,
sizeof (struct sqglca),
Or
{ 0, {0}},
{'~*, 'o', 'f', "', 's', 'e', 'T', ' '},
{0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0}
}
#endif
#endif
#endif

9-15

Chapter 9
Using the SQL Communications Area (SQLCA)

9.6.3 SQLCA Structure

This section describes the structure of the SQLCA, its components, and the values
they can store.

9.6.3.1 sqlcaid

This string component is initialized to "SQLCA" to identify the SQL Communications
Area.

9.6.3.2 sqlcabc

This integer component holds the length, in bytes, of the SQLCA structure.

9.6.3.3 sqglcode

This integer component holds the status code of the most recently executed SQL
statement. The status code, which indicates the outcome of the SQL operation, can be
any of the following numbers:

Status Codes Description

0 Means that Oracle executed the statement without detecting an
error or exception.

>0 Means that Oracle executed the statement but detected an
exception. This occurs when Oracle cannot find a row that meets
your WHERE-clause search condition or when a SELECT INTO or
FETCH returns no rows.

When MODE=ANSI, +100 is returned to sqlcode after an INSERT of no rows. This can
happen when a subquery returns no rows to process.

e <0 - Means that Oracle did not execute the statement because of a database,
system, network, or application error. Such errors can be fatal. When they occur,
the current transaction should, in most cases, be rolled back.

Negative return codes correspond to error codes listed in Oracle Database Error

Messages
9.6.3.4 sglerrm
This embedded struct contains the following two components:
Components Description
sqlerrml This integer component holds the length of the message text

stored in sqlerrmc.

sglerrmc This string component holds the message text corresponding to
the error code stored in sqglcode. The string is not null terminated.
Use the sglerrml component to determine the length.

This component can store up to 70 characters. To get the full text of messages longer
than 70 characters, you must use the sqlglm() function (discussed later).

ORACLE 9-16

Chapter 9
Using the SQL Communications Area (SQLCA)

Make sure sqlcode is negative before you reference sglerrmc. If you reference sqlerrmc when
sqlcode is zero, you get the message text associated with a prior SQL statement.

9.6.3.5 sqlerrp

This string component is reserved for future use.

9.6.3.6 sqlerrd

This array of binary integers has six elements. Descriptions of the components in sqlerrd

follow:

Components Description

sqlerrd[0] This component is reserved for future use.

sqlerrd[1] This component is reserved for future use.

sglerrd[2] This component holds the number of rows processed by the most

recently executed SQL statement. However, if the SQL statement failed,
the value of sqglca.sqlerrd[2] is undefined, with one exception. If the error
occurred during an array operation, processing stops at the row that
caused the error, so sqlca.sqlerrd[2] gives the number of rows
processed successfully.

The rows-processed count is zeroed after an OPEN statement and incremented after a
FETCH statement. For the EXECUTE, INSERT, UPDATE, DELETE, and SELECT INTO
statements, the count reflects the number of rows processed successfully. The count does
not include rows processed by an UPDATE or DELETE CASCADE. For example, if 20 rows
are deleted because they meet WHERE-clause criteria, and 5 more rows are deleted
because they now (after the primary delete) violate column constraints, the count is 20 not

25.

Components Description

sqglerrd[3] This component is reserved for future use.

sqglerrd[4] This component holds an offset that specifies the character position at
which a parse error begins in the most recently executed SQL
statement. The first character occupies position zero.

sqlerrd[5] This component is reserved for future use.

9.6.3.7 sglwarn

This array of single characters has eight elements. They are used as warning flags. Oracle
sets a flag by assigning it a "W" (for warning) character value.

The flags warn of exceptional conditions. For example, a warning flag is set when Oracle
assigns a truncated column value to an output host variable.

Descriptions of the components in sgliwarn follow:

Components Description

sqlwarn[0] This flag is set if another warning flag is set.

ORACLE 9-17

Chapter 9
About Getting the Full Text of Error Messages

Components Description

sqlwarn[1] This flag is set if a truncated column value was assigned to an output
host variable. This applies only to character data. Oracle truncates
certain numeric data without setting a warning or returning a negative
sqlcode.

To find out if a column value was truncated and by how much, check the indicator
variable associated with the output host variable. The (positive) integer returned by an
indicator variable is the original length of the column value. You can increase the
length of the host variable accordingly.

Components Description

sqlwarn[2] This flag is set if a NULL column is not used in the result of a SQL
group function, such as AVG() or SUM().

sqlwarn[3] This flag is set if the number of columns in a query select list does
not equal the number of host variables in the INTO clause of the
SELECT or FETCH statement. The number of items returned is
the lesser of the two.

sglwarn[4] This flag is no longer in use.

sqlwarn[5] This flag is set when an EXEC SQL CREATE {PROCEDURE |
FUNCTION | PACKAGE | PACKAGE BODY} statement fails
because of a PL/SQL compilation error.

sglwarn[6] This flag is no longer in use.

sglwarn[7] This flag is no longer in use.

9.6.3.8 sqglext

This string component is reserved for future use.

9.6.4 PL/SQL Considerations

When the precompiler application executes an embedded PL/SQL block, not all
components of the SQLCA are set. For example, if the block fetches several rows, the
rows-processed count (sqlerrd[2]) is set to only 1. You should depend only on the
sqlcode and sglerrm components of the SQLCA after execution of a PL/SQL block.

9.7 About Getting the Full Text of Error Messages

ORACLE

The SQLCA can accommodate error messages up to 70 characters long. To get the
full text of longer (or nested) error messages, you need to use the sqlglm() function.
The syntax is

void sglglm(unsigned char *message_buffer,
size t *buffer size,
size t *message length);

where:

9-18

Chapter 9
About Getting the Full Text of Error Messages

Syntax Description

message_buffer Is the text buffer in which you want Oracle to store the error message
(Oracle blank-pads to the end of this buffer).

buffer_size Is a scalar variable that specifies the maximum size of the buffer in
bytes.

message_length Is a scalar variable in which Oracle stores the actual length of the error

message, if not truncated.

Note:

The types of the last two arguments for the sqlglm () function are shown here
generically as size_t pointers. However on your platform they might have a
different type. For example, on many UNIX workstation ports, they are unsigned
AE *s

You should check the file sqlcpr.h, which is in the standard include directory on
your system, to determine the datatype of these parameters.

The maximum length of an Oracle error message is 512 characters including the error code,
nested messages, and message inserts such as table and column names. The maximum
length of an error message returned by sqlglm() depends on the value you specify for
buffer_size.

The following example calls sqlglm() to get an error message of up to 200 characters in
length:

EXEC SQL WHENEVER SQLERROR DO sql error();
/* other statements */

sql _error()
{
char msg[200];
size t buf len, msg len;

buf len = sizeof (msg);
sqlglm(msg, &buf len, &msg len); /* note use of pointers */
if (msg len > buf len)
msg len = buf len;
printf ("%.*s\n\n", msg len, msq);
exit (1) ;
}

Notice that sqlglm() is called only when a SQL error has occurred. Always make sure
SQLCODE (or sqlca.sqlcode) is nonzero before calling sqlgim. If you call sglglm() when
SQLCODE is zero, you get the message text associated with a prior SQL statement.

ORACLE 9-19

Chapter 9
About Using the WHENEVER Directive

< Note:

In cases where multiple runtime contexts are used, use the version of
sqglgimt() that takes a context to get the correct error message.

Related Topics
e Multithreaded Applications

9.8 About Using the WHENEVER Directive

By default, precompiled programs ignore Oracle error and warning conditions and
continue processing if possible. To do automatic condition checking and error
handling, you need the WHENEVER directive.

With the WHENEVER directive you can specify actions to be taken when Oracle
detects an error, warning condition, or "not found" condition. These actions include
continuing with the next statement, calling a routine, branching to a labeled statement,
or stopping.

You code the WHENEVER directive using the following syntax:

EXEC SQL WHENEVER <condition> <action>;

9.8.1 WHENEVER Conditions

You can have Oracle automatically check the SQLCA for any of the following
conditions.

9.8.1.1 SQLWARNING

sqlwarn[0] is set because Oracle returned a warning (one of the warning flags,
sqlwarn([1] through sqlwarn([7], is also set) or SQLCODE has a positive value other
than +1403. For example, sqlwarn[0] is set when Oracle assigns a truncated column
value to an output host variable.

Declaring the SQLCA is optional when MODE=ANSI. To use WHENEVER
SQLWARNING, however, you must declare the SQLCA.

9.8.1.2 SOLERROR

SQLCODE has a negative value because Oracle returned an error.

9.8.1.3 NOT FOUND

SQLCODE has a value of +1403 (+100 when MODE=ANSI) because Oracle could not
find a row that meets your WHERE-clause search condition, or a SELECT INTO or
FETCH returned no rows.

When MODE=ANSI, +100 is returned to SQLCODE after an INSERT of no rows.

ORACLE 9-20

Chapter 9
About Using the WHENEVER Directive

0.8.2 WHENEVER Actions

When Oracle detects one of the preceding conditions, you can have your program take any
of the following actions.

9.8.2.1 CONTINUE

Your program continues to run with the next statement if possible. This is the default action,
equivalent to not using the WHENEVER directive. You can use it to turn off condition
checking.

9.8.2.2D0

Your program transfers control to an error handling function in the program. When the end of
the routine is reached, control transfers to the statement that follows the failed SQL
statement.

The usual rules for entering and exiting a function apply. You can pass parameters to the
error handler invoked by an EXEC SQL WHENEVER ... DO ... directive, and the function can
return a value.

9.8.2.3 DO BREAK

An actual "break" statement is placed in your program. Use this action in loops. When the
WHENEVER condition is met, your program exits the loop it is inside.

9.8.2.4 DO CONTINUE

An actual "continue" statement is placed in your program. Use this action in loops. When the
WHENEVER condition is met, your program continues with the next iteration of the loop it is
inside.

9.8.2.5 GOTO label _name

Your program branches to a labeled statement. Label names can be any length, but only the
first 31 characters are significant. Your C compiler might require a different maximum length.
Check your C compiler user's guide.

9.8.2.6 STOP

Your program stops running and uncommitted work is rolled back.

STOP in effect just generates an exit () call whenever the condition occurs. Be careful. The
STOP action displays no messages before disconnecting from Oracle.

9.8.3 WHENEVER Examples

If you want your program to

e Go to close_cursor if a "no data found" condition occurs
e Continue with the next statement if a warning occurs

e Go to error_handler if an error occurs

ORACLE 9-21

Chapter 9
About Using the WHENEVER Directive

you must code the following WHENEVER directives before the first executable SQL
statement:

EXEC SQL WHENEVER NOT FOUND GOTO close cursor;
EXEC SQL WHENEVER SQLWARNING CONTINUE;
EXEC SQL WHENEVER SQLERROR GOTO error handler;

In the following example, you use WHENEVER...DO directives to handle specific
errors:

EXEC SQL WHENEVER SQLERROR DO handle insert error ("INSERT error");
EXEC SQL INSERT INTO emp (empno, ename, deptno)

VALUES (:emp number, :emp name, :dept number);
EXEC SQL WHENEVER SQLERROR DO handle delete error ("DELETE error");
EXEC SQL DELETE FROM dept WHERE deptno = :dept number;

handle insert error(char *stmt)
{ switch(sglca.sqglcode)
{

case -1:

/* duplicate key value */
break;

case -1401:

/* value too large */
break;

default:

/* do something here too */

break;

handle delete error(char *stmt)
{
printf ("$s\n\n", stmt);
if (sqlca.sqlerrd[2] == 0)
{

/* no rows deleted */

Notice how the procedures check variables in the SQLCA to determine a course of
action.

9.8.4 Use of DO BREAK and DO CONTINUE

ORACLE

This example illustrates how to display employee name, salary, and commission for
only those employees who receive commissions:

#include <sglca.h>
#include <stdio.h>

9-22

Chapter 9
About Using the WHENEVER Directive

main ()
{
char *uid = "scott/tiger";
struct { char ename([12]; float sal; float comm; } emp;

/* Trap any connection error that might occur. */
EXEC SQL WHENEVER SQLERROR GOTO whoops;
EXEC SQL CONNECT :uid;

EXEC SQL DECLARE c CURSOR FOR
SELECT ename, sal, comm FROM EMP ORDER BY ENAME ASC;

EXEC SQL OPEN c;

/* Set up 'BREAK' condition to exit the loop. */

EXEC SQL WHENEVER NOT FOUND DO BREAK;

/* The DO CONTINUE makes the loop start at the next iteration when an error
occurs. */

EXEC SQL WHENEVER SQLERROR DO CONTINUE;

while (1)
{
EXEC SQL FETCH c INTO :emp;
/* An ORA-1405 would cause the 'continue' to occur. So only employees with */
/* non-NULL commissions will be displayed. */
printf("%s %7.2f %9.2f\n", emp.ename, emp.sal, emp.comm);

}
/* This 'CONTINUE' shuts off the 'DO CONTINUE' allowing the program to
proceed if any further errors do occur, specifically, with the CLOSE */
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL CLOSE c;
exit (EXIT_ SUCCESS) ;
whoops:

printf ("%.*s\n", sqglca.sqlerrm.sqlerrml, sglca.sglerrm.sglerrmc);
ex1t (EXIT FAILURE);

9.8.5 Scope of WHENEVER

ORACLE

Because WHENEVER is a declarative statement, its scope is positional, not logical. That is, it
tests all executable SQL statements that physically follow it in the source file, not in the flow
of program logic. So, code the WHENEVER directive before the first executable SQL
statement you want to test.

A WHENEVER directive stays in effect until superseded by another WHENEVER directive
checking for the same condition.

In the following example, the first WHENEVER SQLERROR directive is superseded by a
second, and so applies only to the CONNECT statement. The second WHENEVER
SQLERROR directive applies to both the UPDATE and DROP statements, despite the flow of
control from step1 to step3.

stepl:

EXEC SQL WHENEVER SQLERROR STOP;
EXEC SQL CONNECT :username IDENTIFIED BY :password;

9-23

Chapter 9
About Using the WHENEVER Directive

goto step3;
step2:
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL UPDATE emp SET sal = sal * 1.10;

step3:
EXEC SQL DROP INDEX emp index;

9.8.6 Guidelines for WHENEVER

The following guidelines will help you avoid some common pitfalls.

9.8.6.1 Placing the Statements

In general, code a WHENEVER directive before the first executable SQL statement in
your program. This ensures that all ensuing errors are trapped because WHENEVER
directives stay in effect to the end of a file.

9.8.6.2 Handling End-of-Data Conditions

Your program should be prepared to handle an end-of-data condition when using a
cursor to fetch rows. If a FETCH returns no data, the program should exit the fetch
loop, as follows:

EXEC SQL WHENEVER NOT FOUND DO break;
for (;7)
{

EXEC SQL FETCH...

}
EXEC SQL CLOSE my cursor;

An INSERT can return NOT FOUND if no rows have been inserted. If you do not want
to catch that condition, use the EXEC SQL WHENEVER NOT FOUND CONTINUE
statement before the INSERT:

EXEC SQL WHENEVER NOT FOUND DO break;
for(;;)
{
EXEC SQL FETCH ...
EXEC SQL WHENEVER NOT FOUND CONTINUE;
EXEC SQL INSERT INTO ...
}
EXEC SQL CLOSE my cursor;

9.8.6.3 About Avoiding Infinite Loops

ORACLE

If a WHENEVER SQLERROR GOTO directive branches to an error handling routine
that includes an executable SQL statement, your program might enter an infinite loop if
the SQL statement fails with an error. You can avoid this by coding WHENEVER
SQLERROR CONTINUE before the SQL statement, as shown in the following
example:

EXEC SQL WHENEVER SQLERROR GOTO sql error;

sql_error:

9-24

Chapter 9
About Using the WHENEVER Directive

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;

Without the WHENEVER SQLERROR CONTINUE statement, a ROLLBACK error would
invoke the routine again, starting an infinite loop.

Careless use of WHENEVER can cause problems. For example, the following code enters an
infinite loop if the DELETE statement sets NOT FOUND because no rows meet the search
condition:

/* improper use of WHENEVER */

EXEC SQL WHENEVER NOT FOUND GOTO no more;
for (;;)
{
EXEC SQL FETCH emp cursor INTO :emp name, :salary;

no_more:
EXEC SQL DELETE FROM emp WHERE empno = :emp number;

The next example handles the NOT FOUND condition properly by resetting the GOTO target:

/* proper use of WHENEVER */

EXEC SQL WHENEVER NOT FOUND GOTO no more;
for (;7)
{
EXEC SQL FETCH emp cursor INTO :emp name, :salary;

}

no more:
EXEC SQL WHENEVER NOT FOUND GOTO no match;
EXEC SQL DELETE FROM emp WHERE empno = :emp number;

no match:

9.8.6.4 About Maintaining Addressability

ORACLE

Make sure all SQL statements governed by a WHENEVER GOTO directive can branch to the
GOTO label. The following code results in a compile-time error because labelA in funcl is not
within the scope of the INSERT statement in func2:

funcl ()
{

EXEC SQL WHENEVER SQLERROR GOTO labelA;
EXEC SQL DELETE FROM emp WHERE deptno = :dept number;

labelA:
}
func?2 ()
{

EXEC SQL INSERT INTO emp (job) VALUES (:job title);

9-25

Chapter 9
About Obtaining the Text of SQL Statements

}

The label to which a WHENEVER GOTO directive branches must be in the same
precompilation file as the statement.

9.8.6.5 About Returning After an Error

If your program must return after handling an error, use the DO routine_call action.
Alternatively, you can test the value of sglcode, as shown in the following example:

EXEC SQL UPDATE emp SET sal = sal * 1.10;
if (sglca.sglcode < 0)
{ /* handle error */

EXEC SQL DROP INDEX emp index;

Just make sure no WHENEVER GOTO or WHENEVER STOP directive is active.

9.9 About Obtaining the Text of SQL Statements

ORACLE

In many precompiler applications it is convenient to know the text of the statement
being processed, its length, and the SQL command (such as INSERT or SELECT) that
it contains. This is especially true for applications that use dynamic SQL.

The sQLStmtGetText () function (old name:sqlgls () function)—part of the SQLLIB
runtime library—returns the following information:

* The text of the most recently parsed SQL statement
» The effective length of the statement
e A function code for the SQL command used in the statement

SQLStmtGetText () is thread-safe. You can call SQLStmtGetText () after issuing a static
SQL statement. For dynamic SQL Method 1, call SQLstmtGetText () after the SQL
statement is executed. For dynamic SQL Methods 2, 3, and 4, you can call
SQLStmtGetText () as soon as the statement has been PREPAREd.

For the new names of all the SQLLIB functions, see also "New Names for SQLLIB
Public Functions".

The prototype for SQLStmtGetText () is

voild SQLStmtGetText (dvoid *context, char *sglstm, size t *stmlen, size t
*sqlfc);

The context parameter is the runtime context. For definition and use of contexts, see
"CONTEXT Variables".

The sqlstm parameter is a character buffer that holds the returned text of the SQL
statement. Your program must statically declare the buffer or dynamically allocate
memory for the buffer.

The stmlen parameter is a size_t variable. Before calling sQLStmtGetText (), set this
parameter to the actual size, in bytes, of the sql/stm buffer. When SQLStmtGetText ()
returns, the sqlstm buffer contains the SQL statement text, blank padded to the length
of the buffer. The stmlen parameter returns the actual number of bytes in the returned

9-26

Table 9-3 SQL Function Codes

Chapter 9

About Obtaining the Text of SQL Statements

statement text, not counting blank padding. The maximum value of stmlen is port-specific and
generally will be the maximum integer size.

The sglfc parameter is a size_t variable that returns the SQL function code for the SQL
command in the statement. Table 9-3 shows the SQL function codes for the commands.

Code SQL Function Code SQL Function Code SQL Function
01 CREATE TABLE 26 ALTER TABLE 51 DROP TABLESPACE
02 SET ROLE 27 EXPLAIN 52 ALTER SESSION
03 INSERT 28 GRANT 53 ALTER USER
04 SELECT 29 REVOKE 54 COMMIT
05 UPDATE 30 CREATE SYNONYM 55 ROLLBACK
06 DROP ROLE 31 DROP SYNONYM 56 SAVEPOINT
07 DROP VIEW 32 ALTER SYSTEM 57 CREATE CONTROL FILE
SWITCH LOG
08 DROP TABLE 33 SET TRANSACTION 58 ALTER TRACING
09 DELETE 34 PL/SQL EXECUTE 59 CREATE TRIGGER
10 CREATE VIEW 35 LOCK TABLE 60 ALTER TRIGGER
11 DROP USER 36 (NOT USED) 61 DROP TRIGGER
12 CREATE ROLE 37 RENAME 62 ANALYZE TABLE
13 CREATE 38 COMMENT 63 ANALYZE INDEX
SEQUENCE
14 ALTER 39 AUDIT 64 ANALYZE CLUSTER
SEQUENCE
15 (NOT USED) 40 NOAUDIT 65 CREATE PROFILE
16 DROP SEQUENCE 41 ALTER INDEX 66 DROP PROFILE
17 CREATE SCHEMA 42 CREATE EXTERNAL 67 ALTER PROFILE
DATABASE
18 CREATE 43 DROP EXTERNAL 68 DROP PROCEDURE
CLUSTER DATABASE
19 CREATE USER 44 CREATE DATABASE 69 (NOT USED)
20 CREATE INDEX 45 ALTER DATABASE 70 ALTER RESOURCE COST
21 DROP INDEX 46 CREATE ROLLBACK 71 CREATE SNAPSHOT LOG
SEGMENT
22 DROP CLUSTER 47 ALTER ROLLBACK 72 ALTER SNAPSHOT LOG
SEGMENT
23 VALIDATE INDEX 48 DROP ROLLBACK 73 DROP SNAPSHOT LOG
SEGMENT
24 CREATE 49 CREATE TABLESPACE 74 CREATE SNAPSHOT
PROCEDURE
25 ALTER 50 ALTER TABLESPACE 75 ALTER SNAPSHOT
PROCEDURE
-- -- -- -- 76 DROP
SNAPSHOT
ORACLE 9-27

Chapter 9
About Using the Oracle Communications Area (ORACA)

The length parameter (stmlen) returns a zero if an error occurred. Possible error
conditions are:

* No SQL statement has been parsed.
* You passed an invalid parameter (for example, a negative length parameter).

* Aninternal exception occurred in SQLLIB.

9.9.1 Restrictions (using SQLStmtGetText())

SQLStmtGetText () does not return the text for statements that contain the following

commands:

e CONNECT
« COMMIT

* ROLLBACK
e FETCH

There are no SQL function codes for these commands.

9.9.2 Example Program

The example program sqlvcp.pc, is available in the demo directory. It demonstrates
how you can use the sqlgls () function.

Related Topics

e Datatypes and Host Variables

9.10 About Using the Oracle Communications Area
(ORACA)

The SQLCA handles standard SQL communications The ORACA handles Oracle
communications. When you need more information about runtime errors and status
changes than the SQLCA provides, use the ORACA. It contains an extended set of
diagnostic tools. However, use of the ORACA is optional because it adds to runtime
overhead.

Besides helping you to diagnose problems, the ORACA lets you monitor your
program's use of Oracle resources such as the SQL Statement Executor and the
cursor cache.

Your program can have more than one ORACA. For example, it might have one global
ORACA and several local ones. Access to a local ORACA is limited by its scope within
the program. Oracle returns information only to the ORACA that is in scope.

9.10.1 About Declaring the ORACA

To declare the ORACA, copy it into your program with the INCLUDE statement or the
#include preprocessor directive, as follows:

EXEC SQL INCLUDE ORACA;

ORACLE 9-28

Chapter 9
About Using the Oracle Communications Area (ORACA)

or

#include <oraca.h>

If your ORACA must be of the extern storage class, define ORACA _STORAGE_CLASS in
your program as follows:

#define ORACA STORAGE CLASS extern

If the program uses a Declare Section, the ORACA must be defined outside it.

9.10.2 About Enabling the ORACA

To enable the ORACA, you must specify the ORACA option, either on the command line with

ORACA=YES

or inline with

EXEC ORACLE OPTION (ORACA=YES);

Then, you must choose appropriate runtime options by setting flags in the ORACA.

9.10.3 ORACA Contents

ORACLE

The ORACA contains option settings, system statistics, and extended diagnostics such as

e SQL statement text (you can specify when to save the text)

e The name of the file in which an error occurred (useful when using subroutines)
* Location of the error in a file

» Cursor cache errors and statistics

A partial listing of oraca.his

/*
NAME
ORACA : Oracle Communications Area.

If the symbol ORACA NONE is defined, then there will be no ORACA
variable, although there will still be a struct defined. This
macro should not normally be defined in application code.

If the symbol ORACA INIT is defined, then the ORACA will be
statically initialized. Although this is not necessary in order
to use the ORACA, it is a good pgming practice not to have
unitialized variables. However, some C compilers/operating systems
don't allow automatic variables to be init'd in this manner. Therefore,
if you are INCLUDE'ing the ORACA in a place where it would be
an automatic AND your C compiler/operating system doesn't allow this style
of initialization, then ORACA INIT should be left undefined --
all others can define ORACA INIT if they wish.
*/

#ifndef ORACA
#define ORACA 1

struct oraca

{

9-29

ORACLE

Chapter 9

About Using the Oracle Communications Area (ORACA)

char oracaid[8]; /* Reserved */
long oracabc; /* Reserved */

/* Flags which are setable by User. */

long oracchf; /* <> 0 if "check cur cache consistncy"
long oradbgf; /* <> 0 if "do DEBUG mode checking"
long orahchf; /* <> 0 if "do Heap consistency check"
long orastxtf; /* SQL stmt text flag */
#define ORASTFNON 0 /* = don't save text of SQL stmt
#define ORASTFERR 1 /* = only save on SQLERROR */
#define ORASTFWRN 2 /* = only save on SQLWARNING/SQLERROR
#define ORASTFANY 3 /* = always save */

struct
{
unsigned short orastxtl;
char orastxtc[70];
} orastxt; /* text of last SQL stmt */
struct
{

unsigned short orasfnml;

char orasfnmc[70];

} orasfnm; /* name of file containing SQL stmt
long oraslnr; /* line nr-within-file of SQL stmt
long orahoc; /* highest max open OraCurs requested
long oramoc; /* max open OraCursors required
long oracoc; /* current OraCursors open */
long oranor; /* nr of OraCursor re-assignments
long oranpr; /* nr of parses */
long oranex; /* nr of executes */

}i
#ifndef ORACA NONE

#ifdef ORACA STORAGE CLASS
ORACA STORAGE CLASS struct oraca oraca
felse
struct oraca oraca
#endif
#ifdef ORACA INIT
{
{'o','R',"A",'C", A", ",),
sizeof (struct oraca),
0,0,0,0,
{0,{0}},
{0,{0}},
Ol
0,0,0,0,0,0
}
#endif

’

#endif

#endif
/* end oraca.h */

*/
*/
*/
*/

*/

*

/

*/

*/
*/

*/

9-30

Chapter 9
About Using the Oracle Communications Area (ORACA)

9.10.4 About Choosing Runtime Options

The ORACA includes several option flags. Setting these flags by assigning them nonzero
values provides the ability to

e Save the text of SQL statements
» Enable DEBUG operations

» Check cursor cache consistency (the cursor cache is a continuously updated area of
memory used for cursor management)

» Check heap consistency (the heap is an area of memory reserved for dynamic variables)
» Gather cursor statistics

The following descriptions will help you choose the options you need.

9.10.5 Structure of the ORACA

This section describes the structure of the ORACA, its components, and the values they can
store.

9.10.5.1 oracaid

This string component is initialized to "ORACA" to identify the Oracle Communications Area.

9.10.5.2 oracabc

This integer component holds the length, in bytes, of the ORACA data structure.

9.10.5.3 oracchf

If the master DEBUG flag (oradbgf) is set, this flag enables the gathering of cursor cache
statistics and lets you check the cursor cache for consistency before every cursor operation.

The Oracle runtime library does the consistency checking and might issue error messages,
which are listed in the manual Oracle Database Error Messages. They are returned to the
SQLCA just like Oracle error messages.

This flag has the following settings:

» Disable cache consistency checking (the default).

» Enable cache consistency checking.

9.10.5.4 oradbgf

This master flag lets you choose all the DEBUG options. It has the following settings:
Disable all DEBUG operations (the default).
Enable all DEBUG operations.

ORACLE 9-31

Chapter 9
About Using the Oracle Communications Area (ORACA)

9.10.5.5 orahchf

If the master DEBUG flag (oradbgf) is set, this flag tells the Oracle runtime library to
check the heap for consistency every time the precompiler dynamically allocates or
frees memory. This is useful for detecting program bugs that upset memory.

This flag must be set before the CONNECT command is issued and, once set, cannot
be cleared; subsequent change requests are ignored. It has the following settings:

e Disable heap consistency checking (the default).

e Enable heap consistency checking.

9.10.5.6 orastxtf

This flag lets you specify when the text of the current SQL statement is saved. It has
the following settings:

* Never save the SQL statement text (the default).

e Save the SQL statement text on SQLERROR only.

» Save the SQL statement text on SQLERROR or SQLWARNING.
* Always save the SQL statement text.

The SQL statement text is saved in the ORACA embedded struct named orastxt.

9.10.5.7 Diagnostics

The ORACA provides an enhanced set of diagnostics; the following variables help you
to locate errors quickly:

9.10.5.8 orastxt

This embedded struct helps you find faulty SQL statements. It lets you save the text of
the last SQL statement parsed by Oracle. It contains the following two components:

Components Description

orastxtl This integer component holds the length of the current SQL
statement.

orastxtc This string component holds the text of the current SQL statement.

At most, the first 70 characters of text are saved. The string is not
null terminated. Use the oratxtl length component when printing the
string.

Statements parsed by the precompiler, such as CONNECT, FETCH, and COMMIT, are
not saved in the ORACA.

9.10.5.9 orasfnm

This embedded struct identifies the file containing the current SQL statement and so
helps you find errors when multiple files are precompiled for one application. It
contains the following two components:

ORACLE 9-32

Chapter 9
About Using the Oracle Communications Area (ORACA)

Components Description

orasfnmi This integer component holds the length of the filename stored in
orasfnmc.

orasfnmc This string component holds the filename. At most, the first 70

characters are stored.

9.10.5.10 oraslInr

This integer component identifies the line at (or near) which the current SQL statement can
be found.

9.10.5.11 Cursor Cache Statistics

If the master DEBUG flag (oradbgf) and the cursor cache flag (oracchf) are set, the following
variables let you gather cursor cache statistics. They are automatically set by every COMMIT
or ROLLBACK command your program issues.

Internally, there is a set of these variables for each CONNECTed database. The current
values in the ORACA pertain to the database against which the last COMMIT or ROLLBACK
was executed:

9.10.5.12 orahoc

This integer component records the highest value to which MAXOPENCURSORS was set
during program execution.

9.10.5.13 oramoc

This integer component records the maximum number of open Oracle cursors required by
your program. This number can be higher than orahoc if MAXOPENCURSORS was set too
low, which forced the precompiler to extend the cursor cache.

9.10.5.14 oracoc

This integer component records the current number of open Oracle cursors required by your
program.

9.10.5.15 oranor

This integer component records the number of cursor cache reassignments required by your
program. This number shows the degree of "thrashing" in the cursor cache and should be
kept as low as possible.

9.10.5.16 oranpr

This integer component records the number of SQL statement parses required by your
program.

ORACLE 9-33

Chapter 9
About Using the Oracle Communications Area (ORACA)

9.10.5.17 oranex

This integer component records the number of SQL statement executions required by
your program. The ratio of this number to the oranpr number should be kept as high as
possible. In other words, avoid unnecessary re-parsing.

Related Topics

* Performance Tuning

9.10.6 ORACA Example

ORACLE

The following program prompts for a department number, inserts the name and salary
of each employee in that department into one of two tables, then displays diagnostic
information from the ORACA. This program is available online in the demo directory, as
oraca.pc.

/* oraca.pc

* This sample program demonstrates how to

* use the ORACA to determine various performance
* parameters at runtime.

*/

#include <stdio.h>

#include <string.h>

#include <sglca.h>

#include <oraca.h>

EXEC SQL BEGIN DECLARE SECTION;
char *userid = "SCOTT/TIGER";
char emp name[21];

int dept number;

float salary;

char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

void sql error();
main ()
{

char temp buf[32];

EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle error");
EXEC SQL CONNECT :userid;

EXEC ORACLE OPTION (ORACA=YES);

oraca.oradbgf = 1; /* enable debug operations */
oraca.oracchf = 1; /* gather cursor cache statistics */
oraca.orastxtf = 3; /* always save the SQL statement */

printf ("Enter department number: ");
gets(temp buf);
dept number = atoi (temp buf);

EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT ename, sal + NVL(comm,0) AS sal comm
FROM emp

9-34

ORACLE

WHERE deptno = :dept number
ORDER BY sal comm DESC;
EXEC SQL OPEN emp cursor;

Chapter 9

About Using the Oracle Communications Area (ORACA)

EXEC SQL WHENEVER NOT FOUND DO sql error("End of data");

salary;

EXEC SQL INSERT INTO payl VALUES (:emp name, :salary);

EXEC SQL INSERT INTO pay2 VALUES (:emp name, :salary);

for (;7)
{
EXEC SQL FETCH emp cursor INTO :emp name,
printf("%.10s\n", emp name);
if (salary < 2500)
else
}
}
void

sql error (errmsq)
char *errmsg;
{

char buf[6];

strcpy (buf, SQLSTATE);

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL COMMIT WORK RELEASE;

if (strncmp(errmsg, "Oracle error", 12)
printf("\n%s, sqglstate is %s\n\n", errmsg, buf);

else
printf ("\n%s\n\n", errmsqg);

printf ("Last SQL statement: %.*s\n",
oraca.orastxt.orastxtl, oraca.orastxt.orastxtc);
printf ("\nAt or near line number %d\n", oraca.oraslnr);

== 0)

printf

("\nCursor Cache Statistics\n---—--———————————-————————— \n");
printf

("Maximum value of MAXOPENCURSORS: %d\n", oraca.orahoc);
printf

("Maximum open cursors required: %d\n", oraca.oramoc);
printf

("Current number of open cursors: %d\n", oraca.oracoc);
printf

("Number of cache reassignments: %d\n", oraca.oranor);
printf

("Number of SQL statement parses: %d\n", oraca.oranpr);
printf

("Number of SQL statement executions: %d\n", oraca.oranex);

exit (1) ;

9-35

Precompiler Options

This chapter tells you how to run the Pro*C/C++ precompiler, and describes the extensive set
of precompiler options in detail. This chapter contains the following topics:

e The Precompiler Command

e Precompiler Options

e Quick Reference

e Entering Options

e About Using the Precompiler Options

10.1 The Precompiler Command

The location of the precompiler differs from system to system. The system or database
administrator usually defines logicals or aliases, or uses other system-specific means to
make the Pro*C/C++ executable accessible.

To run the Pro*C/C++ precompiler, you issue the following command:

proc option=value...

" Note:

The option value is always separated from the option name by an equals sign, with
no whitespace around the equals sign.

For example, the command

proc INAME=test proc

precompiles the file test proc.pc in the current directory, since the precompiler assumes
that the filename extension is pc. The INAME=argument specifies the source file to be
precompiled. The INAME option does not have to be the first option on the command line, but
if it is, you can omit the option specification. So, the command

proc myfile

is equivalent to

proc INAME=myfile

ORACLE 10-1

Chapter 10
Precompiler Options

< Note:

The option names, and option values that do not name specific operating
system objects, such as filenames, are not case-sensitive. In the examples in
this guide, option names are written in upper case, and option values are
usually in lower case. When you enter filenames, including the name of the
Pro*C/C++ precompiler executable itself, always follow the case conventions
used by your operating system.

Some platforms, such as UNIX, require "escape characters" before certain
characters in value strings. Consult your platform-specific documentation.

10.1.1 Case Sensitivity

In general, you can use either uppercase or lowercase for precompiler option names
and values. However, if your operating system is case sensitive, like UNIX, you must
specify filename values, including the name of the Pro*C/C++ executable, using the

correct combination of uppercase and lowercase letters.

10.2 Precompiler Options

ORACLE

Precompiler options enable you to control how resources are used, how errors are
reported, how input and output are formatted, and how cursors are managed.

The value of an option is a literal, which represents text or numeric values. For
example, for the option

INAME=my test
the value is a string literal that specifies a filename.

For the option MAXOPENCURSORS

. . .MAXOPENCURSORS=20

the value is numeric.

Some options take Boolean values, and you can represent these with the strings yes
or no, true or false, or with the integer literals 1 or 0 respectively. For example, the
option

SELECT ERROR=yes

is equivalent to

SELECT ERROR=true

or

SELECT ERROR=1

all of which mean that SELECT errors should be flagged at run time.

10-2

Chapter 10
Precompiler Options

10.2.1 Environment Variables

You can use environment variables in SYS_INCLUDE and INCLUDE precompiler options.
Environment variables like ORACLE HOME can be used in SYS_INCLUDE and INCLUDE
directory paths while precompiling a PROC application. SYS_INCLUDE and INCLUDE option
values can also come from the config file, pcscfg.cfg. The following usages of environment
variables are supported.

In Linux

SENV_VAR
sys_include=$ORACLE HOME/precomp/public
include=$ORACLE HOME/precomp/public

$ (ENV_VAR)
sys_include=$ (ORACLE HOME) /precomp/public
include=$ (ORACLE_HOME) /precomp/public

${ENV_VAR}
sys_include=${ORACLE HOME}/precomp/public
include=${ORACLE_HOME}/precomp/public

In Windows

%ENV_VARS
sys_include=%0RACLE HOME$%\precomp\public
include=%0RACLE HOMES%\precomp\public

10.2.2 Configuration Files

ORACLE

A configuration file is a text file that contains precompiler options. Each record (line) in the file
contains only one option, with its associated value or values. Any options entered on a line
after the first option are ignored. For example, the following configuration file contains the
lines:

FIPS=YES
MODE=ANST
CODE=ANSI C

to set defaults for the FIPS, MODE, and CODE options.

There is a restriction of 300 characters per line for each entry in pcscfg.cfg. To set a value
longer than 300 characters, for example, the SYS_INCLUDE path), create entries in multiple
lines. For example,

sys_include=/ade/aime rdbms 9819/oracle/precomp/public
sys_include=/usr/include, /usr/lib/gcc-1ib/1486-suse-1inux/2.95.3/include
sys_include=/usr/lib/gcc-1ib/1386-redhat-1inux/3.2.3/include
sys_include=/usr/lib/gcc-1ib/1386-redhat-1inux7/2.96/include
sys_include=/usr/include

Do not use brackets at the end of a line. A bracket at the right hand end of a line nullifies all
previous lines. For example, a bracket at the end of the third line,

sys_include=/ade/aime rdbms 9819/oracle/precomp/public
sys_include=/usr/include, /usr/1lib/gcc-1ib/1486-suse-1inux/2.95.3/include
sys_include=/usr/lib/gcc-1ib/1i386-redhat-1inux/3.2.3/include)

10-3

Chapter 10
Precompiler Options

sys_include=/usr/lib/gcc-1ib/i386-redhat-1inux7/2.96/include
sys_include=/usr/include

sets SYS_INCLUDE to

/usr/lib/gcc-1ib/1386-redhat-1linux/3.2.3/include, /usr/lib/gcc-1ib/i386-redhat-
linux7/2.96/include, /usr/include

There is a single system configuration file for each installation. The name of the
system configuration file is pcscfg.cfg. The location of the file is system specific.

Note:

pcscfg.cfg contains default path settings for variables like include or
LIBPATH. These paths may be computer or operating system dependent. You
must verify that default paths are valid for your computer and operating
system. If not valid, replace the path with 8dot3 notation.

In the pcscfg.cfg file, you cannot use spaces. For example, if the file
contains the following line:

include="D:\Program Files\Microsoft Visual Studio\VC98\include"
the precompilation will fail. You can replace it with the following:

include=D:\Progra~1\Microa~4\VC98\include

Each Pro*C/C++ user can have one or more private configuration files. The name of
the configuration file must be specified using the CONFIG= precompiler option.

" Note:

You cannot nest configuration files. This means that CONFIG= is not a valid
option inside a configuration file.

Related Topics
e About Using the Precompiler Options

10.2.3 Precedence of Option Values

ORACLE

The value of an option is determined, in increasing precedence, by:
e Avalue built in to the precompiler

e Avalue set in the Pro*C/C++ system configuration file

e Avalue set in a Pro*C/C++ user configuration file

* Avalue set in the command line

* Avalue setinline

For example, the option MAXOPENCURSORS specifies the maximum number of
cached open cursors. The built-in precompiler default value for this option is 10.

10-4

ORACLE

Chapter 10
Precompiler Options

However, if MAXOPENCURSORS=32 is specified in the system configuration file, the default
now becomes 32. The user configuration file could set it to yet another value, which then
overrides the system configuration value. Finally, an inline specification takes precedence
over all preceding defaults.

If a PROC command-line option is used a multiple number of times, the last value assigned in
the last occurence is the value used by PROC for precompilation. For example,

$ proc iname=sample.pc ... oname=outputl.c ... oname=output2.c ... oname=output3.c

In the example, output3.c is the ONAME value used by PROC and the generated output
filename is output3.c.

If an option is specified both inside the config file (system default or user specified) and on
the command line, then the value specified in the command line takes precedence.

In the case of SYS_INCLUDE and INCLUDE options, the behavior is as defined in
Environment Variables. The values are appended unless interrupted by a bracket at the end
of a line.

If you specify a private configuration file with CONFIG=filename, then the first value takes
precedence and subsequent occurences in the command line are ignored. This is an
exception to command-line last-value precedence.

Some options, such as USERID, do not have a precompiler default value. The built-in default
values for options that do have them are listed in Table 10-2.

" Note:

Check your system-specific documentation for the precompiler default values; they
may have been changed from the values in this chapter for your platform.

Determining Current Values

You can interactively determine the current value for one or more options by using a question
mark on the command line. For example, if you issue the command

proc ?

the complete set of options, along with their current values, is printed to your terminal. (On a
UNIX system running the C shell, escape the '?' with a backslash.) In this case, the values
are those built into the precompiler, overridden by any values in the system configuration file.
But if you issue the command

proc config=my config file.h ?

and there is a file named my config file.h in the current directory, all options are listed.
Values in the user configuration file supply missing values, and supersede values built-in to
the Pro*C/C++ precompiler, or values specified in the system configuration file.

You can also determine the current value of a single option, by simply specifying that option
name, followed by =?. For example:

Proc maxopencursors=?

prints the current default value for the MAXOPENCURSORS option.

10-5

Chapter 10
Precompiler Options

Entering:

proc

will give a short summary that resembles "Table 10-2".
Related Topics
e What Occurs During Precompilation?

e About Using the Precompiler Options

10.2.4 Macro and Micro Options

The option MODE controls several options at once. MODE is known as a macro
option. Some newer options such as CLOSE_ON_COMMIT, DYNAMIC and
TYPE_CODE control only one function and are known as micro options. A macro
option has precedence over micro options only if the macro option is at a higher level
of precedence.

The following table lists the values of micro options set by the macro option values:

Table 10-1 How Macro Option Values Set Micro Option Values
|

Macro Option Micro Option

MODE=ANSI | ISO CLOSE_ON_COMMIT=YES
DYNAMIC=ANSI
TYPE_CODE=ANSI

MODE=0ORACLE CLOSE_ON_COMMIT=NO

DYNAMIC=0ORACLE
TYPE_CODE=0ORACLE

If you specify both MODE=ANSI and CLOSE_ON_COMMIT=NO in the user
configuration file, then cursors will not be closed after a COMMIT. If you specify
MODE=0ORACLE in your configuration file and CLOSE_ON_COMMIT=YES on the
command line, then the cursors will be closed.

Related Topics

* Precedence of Option Values

10.2.5 What Occurs During Precompilation?

During precompilation, Pro*C/C++ generates C or C++ code that replaces the SQL
statements embedded in your host program. The generated code contains data
structures that indicate the datatype, length, and address of host variables, as well as
other information required by the runtime library, SQLLIB. The generated code also
contains the calls to SQLLIB routines that perform the embedded SQL operations.

< Note:

The precompiler does not generate calls to Oracle Call Interface (OCI)
routines.

ORACLE 10-6

Chapter 10
Quick Reference

Table 10-2 is a quick reference to the major precompiler options. The options that are
accepted, but do not have any affect, are not included in this table.

Related Topics
* Oracle Database Error Messages Reference

e About Using the Precompiler Options

10.2.6 Scope of Options

A precompilation unit is a file containing C code and one or more embedded SQL statements.
The options specified for a given precompilation unit affect only that unit; they have no effect
on other units. For example, if you specify HOLD_CURSOR=YES and
RELEASE_CURSOR=YES for unit A, but not for unit B, SQL statements in unit A run with
these HOLD CURSOR and RELEASE_CURSOR values, but SQL statements in unit B run
with the default values.

10.2.7 Pro*C/C++ Precompiler Issues for Windows Platforms

This section highlights issues related to Pro*C/C++ for Windows platforms.

10.2.7.1 Configuration File

For this release, the system configuration file is called pcscfg.cfg. This file is located in the
ORACLE HOME\precomp\admin directory.

10.2.7.2 CODE

The CODE option has a default setting of ANSI C. Pro*C/C++ for other operating systems may
have a default setting of KR C.

10.2.7.3 DBMS

DBMS=V6_CHAR is not supported when using CHAR MAP=VARCHARZ2. Instead, use DBMS=V7.

10.2.7.4 INCLUDE

For sample programs that precompile with PARSE=PARTIAL Or PARSE=FULL, an include path of
c:\program files\devstudio\vc\include has been added. If Microsoft Visual Studio has
been installed in a different location, modify the Include Directories field accordingly for the
sample programs to precompile correctly.

10.2.7.5 PARSE

The PARSE option has a default setting of NONE. Pro*C/C++ for other operating systems may
have a default setting of FULL.

10.3 Quick Reference

Table 10-2 is a quick reference to the Pro*C/C++ options. Options marked with an asterisk
can be entered inline.

ORACLE 10-7

Table 10-2 Precompiler Options

Chapter 10
Quick Reference

Syntax Default Specifics

AUTO_CONNECT={YES | NO} NO Automatic CLUSTER$ account
connection before the first executable
statement.

CHAR_MAP={VARCHAR2 | CHARZ | STRING | CHARZ Mapping of character arrays and strings.

CHARF} *

CINCR 1 Allows the application to set the next
increment for physical connections to be
opened to the database, if the current
number of physical connections is less
than CMAX.

CLOSE_ON_COMMIT={YES | NO} NO Close all cursors on COMMIT.

CODE={ANSI_C | KR_C | CPP} KR_C Kind of C code generated.

COMP_CHARSET={MULTI_BYTE | MULTI_BYTE The character set type the C/C++

SINGLE_BYTE} compiler supports.

CONFIG=filename none User's private configuration file.

CMIN 2 Specifies the minimum number of
physical connections in the connection
pool.

CMAX 100 Specifies the maximum number of
physical connections that can be opened
for the database.

CNOWAIT 0 which means not This attribute determines if the application

set. must repeatedly try for a physical
connection when all other physical
connections in the pool are busy, and the
total number of physical connections has
already reached its maximum.

CPOOL NO Based on this option, the precompiler
generates the appropriate code that
directs SQLLIB to enable or disable the
connection pool feature.

CPP_SUFFIX=extension none Specify the default filename extension for

CTIMEOUT

DBMS={V7 | NATIVE | V8}

DEF_SQLCODE={YES | NO}
DEFINE=name *

DURATION={TRANSACTION | SESSION}
DYNAMIC={ANSI | ORACLE}

ORACLE

0 which means not
set.

NATIVE

NO

none

TRANSACTION
ORACLE

C++ output files.

Physical connections that are idle for
more than the specified time (in seconds)
are terminated to maintain an optimum
number of open physical connections.

Compatibility (Oracle7, Oracle8, Oracle8i,
Oracle9i, or the database version to
which you are connected at precompile
time).

Generate a macro to #define SQLCODE.

Define a name for use by the Pro*C/C++
precompiler.

Set pin duration for objects in the cache.

Specifies Oracle or ANSI SQL semantics.

10-8

Table 10-2 (Cont.) Precompiler Options

Chapter 10
Quick Reference

Syntax Default Specifics

ERRORS={YES | NO} YES Where to direct error messages (NO
means only to listing file, and not to
terminal).

ERRTYPE=filename none Name of the listing file for intype file error
messages.

FIPS={NO | SQL89 | SQL2 | YES} * none Whether to flag ANSI/ISO non-
compliance.

HEADER=extension none Specify file extension for precompiled
header files.

HOLD_CURSOR={YES | NO} * NO How cursor cache handles SQL
statement.

INAME=]filename none Name of the input file.

INCLUDE=pathname * none Directory path for EXEC SQL INCLUDE
or #include statements.

INTYPE=filename none Name of the input file for type information.

LINES={YES | NO} NO Whether #line directives are generated.

LNAME=filename none Name of listing file.

LTYPE={NONE | SHORT | LONG} none Type of listing file to be generated, if any.

MAXLITERAL=10..1024 1024 Maximum length (bytes) of string literals
in generated C code.

MAXOPENCURSORS=5..255 * 10 Maximum number of concurrent cached
open Ccursors.

MODE={ANSI | ISO | ORACLE} ORACLE ANSI/ISO or Oracle behavior.

NATIVE_TYPES NO Support for native float/double.

NLS_CHAR=(varl, ..., varn) none Specify multibyte character variables.

NLS_LOCAL={YES | NO} NO Control multibyte character semantics.

OBJECTS={YES | NO} YES Support of object types.

ONAME=]filename iname.c Name of the output (code) file.

ORACA={YES | NO} * NO Whether to use the ORACA.

PAGELEN=30..256 80 Page length of the listing file.

PARSE={NONE | PARTIAL | FULL} FULL Whether Pro*C/C++ parses (with a C
parser) the.pc source.

PLAN_BASELINE={module_name |YES [NO} NO Specify a module name to create a SQL
Plan Baseline.

PLAN_PREFIX={prefix_name | none} none Ensures that the plan name does not
exceed 128 bytes.

PLAN_RUN={YES | NO} NO Executes the generated SQL file

PLAN_FIXED={YES | NO} YES Specifies whether or not the created plan
baseline is fixed or non-fixed

PLAN_ENABLED={YES | NO} YES Enables the Plan Baseline that is created.

MEMFORPREFETCH=0..4294967294 none Speed up queries by pre-fetching rows

ORACLE

that fill the specified memory.

10-9

Table 10-2 (Cont.) Precompiler Options

Chapter 10
Entering Options

Syntax Default Specifics

PREFETCH=0..65535 1 Speed up queries by pre-fetching a given
number of rows.

RELEASE_CURSOR={YES | NO} * NO Control release of cursors from cursor
cache.

SELECT_ERROR={YES | NO} * YES Flagging of SELECT errors.

SQLCHECK={SEMANTICS | SYNTAX} * SYNTAX Amount of precompile time SQL
checking.

SYS_INCLUDE=pathname none Directory where system header files, such
as iostream.h, are found.

THREADS={YES | NO} NO Indicates a shared server application.

TYPE_CODE={ORACLE | ANSI} ORACLE Use of Oracle or ANSI type codes for
dynamic SQL.

UNSAFE_NULL={YES | NO} NO UNSAFE_NULL=YES disables the
ORA-01405 message.

USERID=username/password[@dbname] none Username/password[@dbname] connect

UTF16_CHARSET={NCHAR_CHARSET |
DB_CHARSET}

NCHAR_CHARSET

string.

Specify the character set form used by
UNICODE(UTF16).

VARCHAR={YES | NO} NO Allow the use of implicit VARCHAR
structures.
VERSION={ANY | LATEST | RECENT} * RECENT Which version of an object is to be

returned.

10.4 Entering Options

You can enter any precompiler option in the command line. Many can also be entered
inline in the precompiler program source file, using the EXEC ORACLE OPTION

statement.

10.4.1 On the Command Line

You enter precompiler options in the command line using the following syntax:

[OPTION NAME=value] [OPTION NAME=value]

Separate each option=value specification with one or more spaces. For example, you
might enter the following:

. CODE=ANSI C MODE=ANSI

10.4.2 Inline

You enter options inline by coding EXEC ORACLE statements, using the following
syntax:

EXEC ORACLE OPTION (OPTION NAME=value);

ORACLE 10-10

Chapter 10
Entering Options

For example, you might code the following:

EXEC ORACLE OPTION (RELEASE CURSOR=yes);

10.4.2.1 Uses for EXEC ORACLE

The EXEC ORACLE feature is especially useful for changing option values during
precompilation. For example, you might want to change HOLD_CURSOR and
RELEASE_CURSOR on a statement-by-statement basis.

Specifying options inline or in a configuration file is also helpful if your operating system limits
the number of characters you can enter on the command line.

" See Also:

Performance Tuning shows you how to optimize runtime performance using inline
options.

10.4.2.2 Scope of EXEC ORACLE

An EXEC ORACLE statement stays in effect until textually superseded by another EXEC
ORACLE statement specifying the same option. In the following example,
HOLD_CURSOR=NO stays in effect until superseded by HOLD CURSOR=YES:

char emp name[20];
int emp number, dept number;
float salary;

EXEC SQL WHENEVER NOT FOUND DO break;
EXEC ORACLE OPTION (HOLD CURSOR=NO);

EXEC SQL DECLARE emp cursor CURSOR FOR
SELECT empno, deptno FROM emp;

EXEC SQL OPEN emp cursor;

printf (

"Employee Number Department\n--------—-—-—————————————— \n");

for (i)

{
EXEC SQL FETCH emp cursor INTO :emp number, :dept number;
printf ("$d\t%d\n", emp number, dept number);

}

EXEC SQL WHENEVER NOT FOUND CONTINUE;
for (;7)
{
printf ("Employee number: ");
scanf ("%d", &emp number);
if (emp number ==
break;
EXEC ORACLE OPTION (HOLD CURSOR=YES);
EXEC SQL SELECT ename, sal
INTO :emp name, :salary
FROM emp WHERE empno = :emp number;
printf("Salary for %s is %6.2f.\n", emp name, salary);

ORACLE 10-11

Chapter 10
Entering Options

10.4.3 Column Properties Support

Column properties are returned in an 8-byte value, where each bit indicates a column
property. Three column properties are supported:

| |-> auto-increment column
|-> auto value always generated
-> if generated by default when null

You can get the column properties through dynamic statements using the new SQLDA
member (sqlda->CP[]).

struct SQLDA ({

/* ubd */ int N; /* Descriptor size in number of entries */
/* ub2* */ short *Z; /* Ptr to Arr of cur lengths of ind. var. names*/
/* ub8* */ long long *CP; /* Ptr to Arr of column properties */

This member is updated as part of a metadata DESCRIBE.

You can get the column properties through static statements using the function
SQLGetColProp (), which gets the column properties from the last executed statement.

void SQLGetColProp (

void *uga, --> IN -- run time context

text *coln, --> IN -- column name

ub2 *colatr, --> IN -- column attributes

ub8 *colprop --> IN/OUT -- column attribute/ub8 value that holds column
properties

)

SQLGetColProp () returns values determined by the column attribute colatr.

* SQL_ATTR_COL_PROPERTIES: Returns an 8 byte value (colprop) containing
the column properties of the named column

* SQL_ATTR_COL_PROPERTY_IS_IDENTITY colprop is true if the named column
is an identity column

« SQL_ATTR_COL_PROPERTY_IS_GEN_ALWAYS colprop is true if the named
column always generates an auto increment value

e SQL_ATTR_COL_PROPERTY_IS_GEN_BY_DEF_ON_NULL colprop is true if
the named column generates an auto increment value in the case of a default-null
column constraint.

e SQL_ATTR_COL_PROPERTY_HAS DOMAIN returns colprop is true if the
named column has a DOMAIN constraint.

ORACLE 10-12

Chapter 10
About Data Use Case Domain Metadata Support

10.5 About Data Use Case Domain Metadata Support

ORACLE

A data use case domain (also called use case domain or domain) is a database object that
maintains properties and annotations associated with an existing Oracle Database data type.
Using domains, application developers can indicate intended usage of a column of a given
type. Oracle Database enables applications to create a domain and associate it with
columns.

¢ See Also:

e Data Use Case Domains in Oracle Database Concepts

e Data Use Case Domains in Oracle Database Development Guide

Precompilers can use predefined functions to obtain domain metadata or annotation
information from columns associated with a domain. Applications with references to the
DOMAIN syntax must be precompiled using the common front-end parser, for example:

proc common parser=yes userid=scott/tiger samplel0.p

The following API function gets the domain name associated with a column (in the
domainName argument), and returns the length of the domain (in the domainLen argument).

void SQLGetDomainName (
void *uga,
text *coln,
text *domainName
ub4 *domainLen) ;

Parameters:

* uga (IN) - runtime context

e coln (IN) - column name

* domainName (OUT) - domain name

e domainLen (OUT) - length of the domain name
The following is an example:

EXEC SQL SELECT empId, empEmail FROM empTable;
strcpy ("empEMail", colName);

cp = SQL ATTR COL PROPERTY HAS DOMAIN;
SQLGetColProp (NULL, colName, &cp, colProp);
SQLColumnHasDomain (NULL, &colProp, &hasDomain);

if (hasDomain)
{
SQLGetDomainName (NULL, colName, domainName, &domainLen);
printf ("column %s has domain name:%.*s\n", colName, domainLen, domainName);

}

printf ("domainName:%.*s\n", domainLen, domainName) ;
printf ("domainLen:%d\n", domainLen);

10-13

Chapter 10
About Using the Precompiler Options

¢ Note:
The CAST AS DOMAIN feature is not supported. For example:

EXEC SQL SELECT First Name, CAST (Score AS domain domain 1) Int Score
into :nfname, :nscore FROM Student Score;

returns the following error:

ORA-11537 CAST AS DOMAIN feature is not supported.

10.6 About Using the Precompiler Options

This section is organized for easy reference. It lists precompiler options alphabetically,
and for each option gives its purpose, syntax, and default value. Usage notes help you
understand how the option works.

10.6.1 AUTO_CONNECT

Purpose

Allows automatic connection to the CLUSTER$ account.

Syntax
AUTO_CONNECT={YES | NO}

Default

NO

Usage Notes
Can be entered only on the command line or in a configuration file.

If AUTO_CONNECT=YES, and the application is not already connected to a database
when it processes the first executable SQL statement, it attempts to connect using the
userid

CLUSTERSusername

where username is your current operating system user or task name and
CLUSTERS$username is a valid Oracle userid.

When AUTO_CONNECT=NO, you must use the CONNECT statement in your
program to connect to Oracle.

10.6.2 CHAR_MAP

Purpose

Specifies the default mapping of C host variables of type char or char[n], and pointers
to them, into SQL.

ORACLE 10-14

Chapter 10
About Using the Precompiler Options

Syntax
CHAR_MAP={VARCHAR?2 | CHARZ | STRING | CHARF}

Default
CHARZ

Usage Note

Before release 8.0, you had to declare char or char[n] host variables as CHAR, using the
SQL DECLARE statement. The external datatypes VARCHAR?2 and CHARZ were the default
character mappings of Oracle7.

¢ See Also:

* "VARCHAR Variables " for a table of CHAR_MAP settings, descriptions of the
datatype, and where they are the default.

e "Inline Usage of the CHAR_MAP Option" for an example of usage of
CHAR_MAP in Pro*C/C++.

10.6.3 CINCR

Purpose

Allows the application to set the next increment for physical connections to be opened to the
database.

Syntax
CINCR = Range is 1 to (CMAX-CMIN).

Default

1

Usage Notes

Initially, all physical connections as specified through CMIN are opened to the server.
Subsequently, physical connections are opened only when necessary. Users should set
CMIN to the total number of planned or expected concurrent statements to be run by the
application to get optimum performance. The default value is set to 2.

10.6.4 CLOSE_ON_COMMIT

Purpose

Specifies whether or not all cursors declared without the WITH HOLD clause are closed on
commit.

ORACLE 10-15

Chapter 10
About Using the Precompiler Options

Syntax
CLOSE_ON_COMMIT={YES | NO}

Default
NO

Usage Notes
Can be used only on the command line or in a configuration file.

This option will only have an effect when a cursor is not coded using the WITH HOLD
clause in a DECLARE CURSOR statement, since that will override both the new
option and the existing behavior which is associated with the MODE option. If MODE
is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. For example, the defaults are MODE=ORACLE and
CLOSE_ON_COMMIT=NO. If the user specifies MODE=ANSI on the command line,
then any cursors not using the WITH HOLD clause will be closed on commit.

When CLOSE_ON_COMMIT=NO (when MODE=ORACLE), issuing a COMMIT or
ROLLBACK will close only cursors that are declared using the FOR UPDATE clause or
are referenced in a CURRENT OF clause. Other cursors that are not affected by the
COMMIT or ROLLBACK statement, remain open, if they are open already. However,
when CLOSE_ON_COMMIT=YES (when MODE=ANS]I), issuing a COMMIT or
ROLLBACK closes all cursors.

Related Topics
e Scrollable Cursors

e Macro and Micro Options

10.6.5 CMAX

ORACLE

Purpose

Specifies the maximum number of physical connections that can be opened for the
database.

Syntax
CINCR = Range is 1 to 65535

Default
100

Usage Notes

CMAX value must be at least CMIN+CINCR.Once this value is reached, more physical
connections cannot be opened.In a typical application, running 100 concurrent
database operations is more than sufficient. The user can set an appropriate value.

10-16

Chapter 10
About Using the Precompiler Options

10.6.6 CMIN

Purpose

Specifies the minimum number of physical connections that can be opened for the database.

Syntax
CINCR = Range is 1 to (CMAX-CINCR).

Default
2

Usage Notes

CMAX value must be at least CMIN+CINCR.Once this value is reached, more physical
connections cannot be opened.In a typical application, running 100 concurrent database
operations is more than sufficient. The user can set an appropriate value.

10.6.7 CNOWAIT

Purpose

This attribute determines if the application must repeatedly try for a physical connection when
all other physical connections in the pool are busy, and the total number of physical
connections has already reached its maximum.

Syntax
CNOWAIT = Range is 1 to 65535.

Default

0 which means not set.

Usage Notes

If physical connections are not available and no more physical connections can be opened,
an error is thrown when this attribute is set. Otherwise, the call waits until it acquires another
connection. By default, CNOWAIT is not to be set so a thread will wait until it can acquire a
free connection, instead of returning an error.

10.6.8 CODE

ORACLE

Purpose

Specifies the format of C function prototypes generated by the Pro*C/C++ precompiler. (A
function prototype declares a function and the datatypes of its arguments.) The precompiler
generates function prototypes for SQL library routines, so that your C compiler can resolve
external references. The CODE option lets you control the prototyping.

Syntax
CODE={ANSI_C | KR_C | CPP}

10-17

Chapter 10
About Using the Precompiler Options

Default

KR_C

Usage Notes
Can be entered on the command line, but not inline.

ANSI C standard X3.159-1989 provides for function prototyping. When
CODE=ANSI_C, Pro*C/C++ generates full function prototypes, which conform to the
ANSI C standard. An example follows:

extern void sqglora(long *, void *);

The precompiler can also generate other ANSI-approved constructs such as the const
type qualifier.

When CODE=KR_C (the default), the precompiler comments out the argument lists of
generated function prototypes, as shown here:

extern void sqlora(/*_ long *, void * */);

Specify CODE=KR_C if your C compiler is not compliant with the X3.159 standard.

When CODE=CPP, the precompiler generates C++ compatible code.

" See Also:

"Code Generation" for all of the consequences of using this option value.

10.6.9 COMMON_PARSER

Purpose

Specifies that the SQL99 syntax for SELECT, INSERT, DELETE, UPDATE and body of
the cursor in a DECLARE CURSOR statement will be supported.

Syntax
COMMON_PARSER={YES | NO}

Default
NO

Usage Notes

Can be entered in the command line.

ORACLE 10-18

Chapter 10
About Using the Precompiler Options

10.6.10 COMP_CHARSET

Purpose

Indicates to the Pro*C/C++ Precompiler whether multibyte character sets are (or are not)
supported by the compiler to be used. It is intended for use by developers working in a
multibyte client-side environment (for example, when NLS_LANG is set to a multibyte
character set).

Syntax
COMP_CHARSET={MULTI_BYTE | SINGLE_BYTE}

Default
MULTI_BYTE

Usage Notes
Can be entered only on the command line.

With COMP_CHARSET=MULTI_BYTE (default), Pro*C/C++ generates C code that is to be
compiled by a compiler that supports multibyte character sets.

With COMP_CHARSET=SINGLE_BYTE, Pro*C/C++ generates C code for single-byte
compilers that addresses a complication that may arise from the ASCII equivalent of a
backslash (\) character in the second byte of a double-byte character in a multibyte string. In
this case, the backslash (\) character is "escaped" with another backslash character
preceding it.

Note:

The need for this feature is common when developing in a Shift-JIS environment
with older C compilers.

This option has no effect when NLS_LANG is set to a single-byte character set.

10.6.11 CONFIG

ORACLE

Purpose

Specifies the name of a user configuration file.

Syntax
CONFIG=filename

Default

None

10-19

Chapter 10
About Using the Precompiler Options

Usage Notes
Can be entered only on the command line.

This option is the only way you can inform Pro*C/C++ of the name and location of user
configuration files.

10.6.12 CPOOL

Purpose

Based on this option, the precompiler generates the appropriate code that directs
SQLLIB to enable or disable the connection pool feature.

Syntax
CPOOL ={YES|NO}

Default

NO

Usage Notes

If this option is set to NO, other connection pooling options will be ignored by the
precompiler.

10.6.13 CPP_SUFFIX

Purpose

The CPP_SUFFIX option provides the ability to specify the filename extension that the
precompiler appends to the C++ output file generated when the CODE=CPP option is
specified.

Syntax
CPP_SUFFIX=filename_extension

Default

System-specific.

Usage Notes

Most C compilers expect a default extension of ".c" for their input files. Different C++
compilers, however, can expect different filename extensions. The CPP_SUFFIX
option provides the ability to specify the filename extension that the precompiler
generates. The value of this option is a string, without the quotes or the period. For
example, CPP_SUFFIX=cc, or CPP_SUFFIX=C.

ORACLE 10-20

Chapter 10
About Using the Precompiler Options

10.6.14 CTIMEOUT

Purpose

Physical connections that are idle for more than the specified time (in seconds) are
terminated to maintain an optimum number of open physical connections

Syntax
CTIMEOUT = Range is 1 to 65535.
Default

0 which means not set.

Usage Notes

Physical connections will not be closed until the connection pool is terminated.Creating a new
physical connection will cost a round trip to the server.

10.6.15 DB2_ARRAY

Purpose

Based on this option, the precompiler activates the additional array insert/select syntax.
Syntax

DB2_ARRAY={YES |NO}

Default

NO

Usage Notes

If this option is set to NO, the Oracle precompiler syntax is supported, otherwise the DB2
insert/select array syntax is supported.

10.6.16 DBMS

ORACLE

Purpose

Specifies whether Oracle follows the semantic and syntactic rules of Oracle9i, Oracle8;,
Oracle8, Oracle7, or the native version of Oracle (that is, the version to which the application
is connected).

Syntax
DBMS={NATIVE | V7 | V8}

Default
NATIVE

10-21

Usage Notes

Chapter 10
About Using the Precompiler Options

Can be entered only on the command line, or in a configuration file.

The DBMS option lets you control the version-specific behavior of Oracle. When
DBMS=NATIVE (the default), Oracle follows the semantic and syntactic rules of the
database version to which the application is connected.

When DBMS=V8, or DBMS=V7, Oracle follows the respective rules for Oracle9i
(which remain the same as for Oracle7, Oracle8, and Oracle8i).

V6_CHAR is not supported in Oracle and its functionality is provided by the
precompiler option CHAR_MAP.

Table 10-3 DBMS and MODE Interaction
]
Situation DBMS=V7 | V8 DBMS=V7 | V8

MODE=ANSI MODE=ORACLE
"no data found" warning code +100 +1403
fetch NULLs without using indicator variables error -1405 error -1405

fetch truncated values without using indicator
variables

cursors closed by COMMIT or ROLLBACK
open an already OPENed cursor

close an already CLOSEd cursor

SQL group function ignores NULLs

when SQL group function in multirow query is
called

declare SQLCA structure

declare SQLCODE or SQLSTATE status
variable

integrity constraints
PCTINCREASE for rollback segments
MAXEXTENTS storage parameters

no error but sqlwarn[1] is
set

all explicit
error -2117
error -2114
no warning
FETCH time

optional

required

enabled
not allowed

not allowed

no error but sqlwarn[1]) is set

CURRENT OF only
no error

no error

no warning

FETCH time

required

optional, but Oracle ignores

enabled
not allowed

not allowed

Related Topics
e CHAR_MAP

10.6.17 DEF_SQLCODE

Purpose

Controls whether the Pro*C/C++ precompiler generates #define's for SQLCODE.

Syntax

DEF_SQLCODE={NO | YES}

Default

NO

ORACLE

10-22

Chapter 10
About Using the Precompiler Options

Usage Notes
Can be used only on the command line or in a configuration file.

When DEF_SQLCODE=YES, the precompiler defines SQLCODE in the generated source
code as follows:

#define SQLCODE sqglca.sglcode

You can then use SQLCODE to check the results of executable SQL statement. The
DEF_SQLCODE option is supplied for compliance with standards that require the use of
SQLCODE.

In addition, you must also include the SQLCA using one of the following entries in your
source code:

#include <sglca.h>

or

EXEC SQL INCLUDE SQLCA;

If the SQLCA is not included, using this option causes a precompile time error.

10.6.18 DEFINE

ORACLE

Purpose

Defines a name that can be used in #ifdef and #ifndef Pro*C/C++ precompiler directives.
The defined name can also be used by the EXEC ORACLE IFDEF and EXEC ORACLE
IFNDEF statements.

Syntax
DEFINE=name

Default

None

Usage Notes

Can be entered on the command line or inline. You can only use DEFINE to define a name—
you cannot define macros with it. For example, the following use of define is not valid:

proc my prog DEFINE=LEN=20

Using DEFINE in the correct way, you could do

proc my prog DEFINE=XYZZY

And then in my_prog.pc, code

#ifdef XYZZY
#else

#endif

10-23

Chapter 10
About Using the Precompiler Options

Or, you could just as well code

EXEC ORACLE IFDEF XYZZY;
EXEC ORACLE ELSE;

EXEC ORACLE ENDIF;

The following example is invalid:

#define XYZZY
EXEC ORACLE IFDEF XYZZY
EXEC ORACLE ENDIF;

EXEC ORACLE conditional statements are valid only if the macro is defined using
EXEC ORACLE DEFINE or the DEFINE option.

If you define a name using DEFINE=, and then conditionally include (or exclude) a
code section using the Pro*C/C++ precompiler #ifdef (or #ifndef) directives, you must
also make sure that the name is defined when you run the C compiler. For example,
for UNIX cc, you must use the -D option to define the name.

10.6.19 DURATION

Purpose

Sets the pin duration used by subsequent EXEC SQL OBJECT CREATE and EXEC
SQL OBJECT DEREF statements. Objects in the cache are implicitly unpinned at the
end of the duration.

Syntax
DURATION={TRANSACTION | SESSION}

Default
TRANSACTION

Usage Notes
Can be entered inline by use of the EXEC ORACLE OPTION statement.

TRANSACTION means that objects are implicitly unpinned when the transaction
completes.

SESSION means that objects are implicitly unpinned when the connection is
terminated.

10.6.20 DYNAMIC

Purpose

This micro option specifies the descriptor behavior in dynamic SQL Method 4. The
setting of MODE determines the setting of DYNAMIC.

ORACLE 10-24

Chapter 10
About Using the Precompiler Options

Syntax
DYNAMIC={ORACLE | ANSI}
Default

ORACLE

Usage Notes
Cannot be entered inline by use of the EXEC ORACLE OPTION statement.
See the DYNAMIC option settings in ANSI Dynamic SQL Precompiler Options.

10.6.21 ERRORS

Purpose

Specifies whether error messages are sent to the terminal as well as the listing file (YES), or
just to the listing file (NO).

Syntax
ERRORS={YES | NO}

Default

YES

Usage Notes

Can be entered only on the command line, or in a configuration file.

10.6.22 ERRTYPE

ORACLE

Purpose

Specifies an output file in which errors generated in processing type files are written. If
omitted, errors are output to the screen.

Syntax
ERRTYPE=filename

Default

None

Usage Notes

Only one error file will be produced. If multiple values are entered, the last one is used by the
precompiler.

Related Topics
e INTYPE

10-25

Chapter 10
About Using the Precompiler Options

10.6.23 EVENTS

Purpose

Specifies that the application is interested in registering for and receiving notifications.

Syntax
EVENTS={YES | NO}

Default
NO

Usage Notes

Can only be entered in the command line.

10.6.24 FIPS

ORACLE

Purpose

Specifies whether extensions to ANSI SQL are flagged (by the FIPS Flagger). An
extension is any SQL element that violates ANSI format or syntax rules, except
privilege enforcement rules.

Syntax

FIPS={SQL89 | SQL2 | YES | NO}

Default

None

Usage Notes
Can be entered inline or on the command line.

When FIPS=YES, the FIPS Flagger is enabled, and warning (not error) messages are
issued if you use an Oracle extension to ANSI SQL, or use an ANSI SQL feature in a
nonconforming manner. Extensions to ANSI SQL that are flagged at precompile time

include the following:

e Array interface including the FOR clause

e SQLCA, ORACA, and SQLDA data structures

e Dynamic SQL including the DESCRIBE statement
Embedded PL/SQL blocks

e Automatic datatype conversion

e DATE, NUMBER, RAW, LONGRAW, VARRAW, ROWID, VARCHARZ2, and
VARCHAR datatypes

e Pointer host variables

e Oracle OPTION statement for specifying runtime options

10-26

Chapter 10
About Using the Precompiler Options

* TOOLS statements in user exits

* CONNECT statement

* TYPE and VAR datatype equivalence statements

* AT db_name clause

e DECLARE...DATABASE, ...STATEMENT, and ...TABLE statements

* SQLWARNING condition in WHENEVER statement

* DO function_name() and "do break™ and "do continue"actions in WHENEVER statement
¢ COMMENT and FORCE TRANSACTION clauses in COMMIT statement

* FORCE TRANSACTION and TO SAVEPOINT clauses in ROLLBACK statement

* RELEASE parameter in COMMIT and ROLLBACK statements

* Optional colon-prefixing of WHENEVER...GOTO labels, and of host variables in the INTO
clause

10.6.25 HEADER

ORACLE

Purpose

Permits precompiled header files. Specifies the file extension for precompiled header files.

Syntax
HEADER=extension

Default
NONE

Usage Notes

When precompiling a header file, this option is required and is used to specify the file
extension for the output file that is created by precompiling that header file.

When precompiling an ordinary Pro*C/C++ program this option is optional. When given, it
enables the use of the precompiled header mechanism during the precompilation of that
Pro*C/C++ program.

In both cases, this option also specifies the file extension to use when processing a #include
directive. If an #include file exists with the specified extension, Pro*C/C++ assumes the file is
a precompiled header file previously generated by Pro*C/C++. Pro*C/C++ will then instantiate
the data from that file rather than process the #include directive and precompile the included
header file.

This option is only allowed on the command line or in a configuration file. It is not allowed
inline. When using this option, specify the file extension only. Do not include any file
separators. For example, do not include a period "." in the extension.

Related Topics

* Precompiled Header Files

10-27

Chapter 10
About Using the Precompiler Options

10.6.26 HOLD_CURSOR

Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the
cursor cache.

Syntax
HOLD_CURSOR={YES | NO}

Default
NO

Usage Notes
Can be entered inline or on the command line.
You can use HOLD_CURSOR to improve the performance of your program.

When a SQL data manipulation statement is executed, its associated cursor is linked
to an entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle
private SQL area, which stores information needed to process the statement.
HOLD_CURSOR controls what happens to the link between the cursor and cursor
cache.

When HOLD_CURSOR=NO, after Oracle executes the SQL statement and the cursor
is closed, the precompiler marks the link as reusable. The link is reused as soon as
the cursor cache entry to which it points is needed for another SQL statement. This
frees memory allocated to the private SQL area and releases parse locks.

When HOLD_CURSOR=YES, the link is maintained; the precompiler does not reuse
it. This is useful for SQL statements that are often executed because it speeds up
subsequent executions and there is no need to re-parse the statement or allocate
memory for an Oracle private SQL area.

For inline use with implicit cursors, set HOLD_CURSOR before executing the SQL
statement. For inline use with explicit cursors, set HOLD_CURSOR before CLOSEing
the cursor.

RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES and
HOLD_CURSOR=NO overrides RELEASE_CURSOR=NO. For information showing
how these two options interact, see Table B-1.

Related Topics

» Performance Tuning

10.6.27 IMPLICIT_SVPT

Purpose

Controls whether an implicit savepoint is taken prior to the start of a new batched
insert.

ORACLE 10-28

Chapter 10
About Using the Precompiler Options

Syntax
implicit_svpt={YES|NO}
Default

NO

Usage Notes

If implict_svpt=yes, a savepoint is taken prior to the start of a new batch of rows. If an error
occurs on the insert, an implicit "rollback to savepoint" is executed. This option exists for DB2
compatibility, the obvious downside being the extra round-trip.

If implict_svpt=no, there is no implicit savepoint taken. If an error occurs on the buffered
insert, then it is reported back to the application, but no rollback is executed.

10.6.28 INAME

Purpose

Specifies the name of the input file.

Syntax
INAME=path_and_filename

Default

None

Usage Notes
Can be entered only on the command line.
All input file names must be unique at precompilation time.

You can omit the filename extension if it is .pc. If the input filename is the first option on the
command line, you can omit the INAME= part of the option. For example:

proc samplel MODE=ansi

to precompile the file samplel.pc, using ANSI mode. This command is the same as

proc INAME=samplel MODE=ansi

¢ Note:

The sqlctx hash value is generated based on the INAME parameter passed to the
Pro*C/C++ command. This can cause issues in the applications where files having
the same name are stored in different directories containing different functions and
the build scripts are sent to the physical directory to precompile the program. As a
result, there is no need to place the makefiles at a higher level and precompile files
using their pathnames.

ORACLE 10-29

Chapter 10
About Using the Precompiler Options

10.6.29 INCLUDE

Purpose

Specifies a directory path for files included using the #include or EXEC SQL
INCLUDE directives.

Syntax
INCLUDE=pathname or INCLUDE=(path_1,path_2,...,path_n)

Default

Current directory and paths built into Pro*C/C++.

Usage Notes
Can be entered inline or on the command line.

You use INCLUDE to specify a directory path for included files. The precompiler
searches directories in the following order:

1. the current directory

2. the system directory specified in a SYS_INCLUDE precompiler option

3. the directories specified by the INCLUDE option, in the order they are entered
4. the built-in directories for standard header files

You normally do not need to specify a directory path for Oracle-specific header files
such as sglca.h and sqlda.h.

¢ Note:

If you specify an Oracle-specific filename without an extension for inclusion,
Pro*C/C++ assumes an extension of .h. So, included files should have an
extension, even if it is not .h.

For all other header files, the precompiler does not assume a .h extension.

You must still use INCLUDE to specify directory paths for non-standard files, unless
they are stored in the current directory. You can specify more than one path on the
command line, as follows:

. INCLUDE=path 1 INCLUDE=path 2 ...

< Note:

If the file you want to include resides in another directory, make sure that
there is no file with the same name in the current directory.

ORACLE 10-30

Chapter 10
About Using the Precompiler Options

The syntax for specifying a directory path using the INCLUDE option is system specific.
Follow the conventions used for your operating system

Note:

For the INCLUDE option, the precedence of option values gets reversed. Unlike
other options in which the values get overwritten, INCLUDE appends all the
directory files that are mentioned in:

e Precompiler

e Pro*C/C++ system configuration file
e Pro*C/C++ user configuration file

e Command line

* Inline

However, there is a difference between passing values within or without brackets. If
you pass a single value or directory list within brackets, then the existing value of
INCLUDE is overwritten. If you pass the list as a simple value without brackets, it
will supplement any existing value.

10.6.30 INTYPE

Purpose

Specifies one or more OTT-generated type files (only needed if Object types are used in the
application).

Syntax
INTYPE=(file_1,file_2,....file_n)
Default

None

Usage Notes

There will be one type file for each Object type in the Pro*C/C++ code.

10.6.31 LINES

ORACLE

Purpose

Specifies whether the Pro*C/C++ precompiler adds #line preprocessor directives to its output
file.

Syntax
LINES={YES | NO}

10-31

Chapter 10
About Using the Precompiler Options

Default

NO

Usage Notes
Can be entered only on the command line.
The LINES option helps with debugging.

When LINES=YES, the Pro*C/C++ precompiler adds #line preprocessor directives to
its output file.

Normally, your C compiler increments its line count after each input line is processed.
The #line directives force the compiler to reset its input line counter so that lines of
precompiler-generated code are not counted. Moreover, when the name of the input
file changes, the next #line directive specifies the new filename.

The C compiler uses the line numbers and filenames to show the location of errors.
Thus, error messages issued by the C compiler always refer to your original source
files, not the modified (precompiled) source file. This also enables stepping through
the original source code using most debuggers.

When LINES=NO (the default), the precompiler adds no #line directives to its output
file.

Note:

The Pro*C/C++ precompiler does not support the #line directive. This means
that you cannot directly code #line directives in the precompiler source. But
you can still use the LINES= option to have the precompiler insert #line
directives for you.

Related Topics

e Directives Ignored

10.6.32 LNAME

ORACLE

Purpose

Specifies the name of the listing file.

Syntax
LNAME=filename

Default

None

Usage Notes

Can be entered only on the command line.

10-32

Chapter 10
About Using the Precompiler Options

The default filename extension for the listing file is . 1is.

10.6.33 LTYPE

Purpose

Specifies the type of listing file generated.

Syntax
LTYPE={NONE | SHORT | LONG}

Default
SHORT

Usage Notes
Can be entered on the command line or in a configuration file.

When a listing file is generated, the LONG format is the default. With LTYPE=LONG
specified, all of the source code is listed as it is parsed and messages listed as they are
generated. In addition, the Pro*C/C++ options currently in effect are listed.

With LTYPE=SHORT specified, only the generated messages are listed—no source code—
with line references to the source file to help you locate the code that generated the message
condition.

With LTYPE=NONE specified, no list file is produced unless the LNAME option explicitly
specifies a name for a list file. Under the latter condition, the list file is generated with
LTYPE=LONG assumed.

10.6.34 MAX_ROW_INSERT

Purpose

Controls the number of rows that need to be buffered before executing the INSERT
statement.

Syntax
max_row_insert={0...1000}

Default
0

Usage Notes

Any number greater than zero enables buffered insert feature and buffers that many rows
before executing the INSERT statement.

ORACLE 10-33

Chapter 10
About Using the Precompiler Options

10.6.35 MAXLITERAL

Purpose

Specifies the maximum length of string literals generated by the precompiler, so that
compiler limits are not exceeded.

Syntax
MAXLITERAL=integer, range is 10 to 1024

Default
1024

Usage Notes
Cannot be entered inline.

The maximum value of MAXLITERAL is compiler dependent. For example, some C
compilers cannot handle string literals longer than 512 characters, so you would
specify MAXLITERAL=512.

Strings that exceed the length specified by MAXLITERAL are divided during
precompilation, then recombined (concatenated) at run time.

You can enter MAXLITERAL inline but your program can set its value only once, and
the EXEC ORACLE statement must precede the first EXEC SQL statement.
Otherwise, Pro*C/C++ issues a warning message, ignores the extra or misplaced
EXEC ORACLE statement, and continues processing.

10.6.36 MAXOPENCURSORS

ORACLE

Purpose

Specifies the number of concurrently open cursors that the precompiler tries to keep
cached.

Syntax
MAXOPENCURSORS=integer

Default
10

Usage Notes
Can be entered inline or on the command line.

You can use MAXOPENCURSORS to improve the performance of your program.
When precompiling separately, use MAXOPENCURSORS. MAXOPENCURSORS
specifies the initial size of the SQLLIB cursor cache.

When an implicit statement is executed and HOLD_CURSOR=NO, or an explicit
cursor is closed, the cursor entry is marked as reusable. If this statement is issued
again and the cursor entry has not been used for another statement, it is reused.

10-34

Chapter 10
About Using the Precompiler Options

If a new cursor is needed and the number of cursors allocated is less than
MAXOPENCURSORS, then the next one in the cache is allocated. Once
MAXOPENCCURSORS has been exceeded Oracle first tries to reuse a previous entry. If
there are no free entries, then an additional cache entry will be allocated. Oracle will continue
to do this until the program runs out of memory or the database parameter
OPEN_CURSORS is exceeded.

During normal processing, when using HOLD_CURSOR=NO and RELEASE_CURSOR=NO
(the default), it is advisable to set MAXOPENCURSORS to no more than 6 less than the
database parameter OPEN_CURSORS to allow for the cursors used by the data dictionary to
process statements.

As your program's need for concurrently open cursors grows, you might want to respecify
MAXOPENCURSORS to match the need. A value of 45 to 50 is not uncommon, but
remember that each cursor requires another private SQL area in the user process memory
space. The default value of 10 is adequate for most programs.

Related Topics
» Performance Tuning

* Guidelines for Programming

10.6.37 MODE

ORACLE

Purpose

Specifies whether your program observes Oracle practices or complies with the current
ANSI/ISO SQL standards.

Syntax
MODE={ANSI | ISO | ORACLE}

Default
ORACLE

Usage Notes
Can be entered only on the command line or in a configuration file.
In the context of this option 1SO is equivalent to ANSI.

When MODE=ORACLE (the default), your embedded SQL program observes Oracle
practices. For example, a Declare Section is optional, and blanks are stripped.

When MODE=ANSI, your program complies fully with the ANSI SQL standard, and the
following changes go into effect:

* Issuing a COMMIT or ROLLBACK closes all explicit cursors.

* You cannot OPEN an already open cursor or CLOSE an already closed cursor. (When
MODE=0ORACLE, you can reOPEN an open cursor to avoid re-parsing.)

* You must declare a either a long variable named SQLCODE or a char SQLSTATE]6]
variable (uppercase is required for both variables) that is in the scope of every EXEC
SQL statement. The same SQLCODE or SQLSTATE variable need not be used in each
case; that is, the variable need not be global.

10-35

Chapter 10
About Using the Precompiler Options

* Declaring the SQLCA is optional. You need not include the SQLCA.

e The "no data found" Oracle warning code returned to SQLCODE becomes +100
instead of +1403. The message text does not change.

* You must have a Declare Section for host variables.

10.6.38 NATIVE_TYPES

Purpose

Support for native float/double.

Syntax
NATIVE_TYPES = {YES|NO}

Default
NO

Usage Notes

The native float and native double datatypes represent the single-precision and
double-precision floating point values. They are represented natively, that is, in the
host system's floating point format.

10.6.39 NLS_CHAR

Purpose

Specifies which C host character variables are treated by the precompiler as multibyte
character variables.

Syntax
NLS_ CHAR=varname or NLS_CHAR=(var_1,var_2,...,var_n)

Default

None.

Usage Notes
Can be entered only on the command line, or in a configuration file.

This option provides the ability to specify at precompile time a list of the names of one
or more host variables that the precompiler must treat as multibyte character variables.
You can specify only C char variables or Pro*C/C++ VARCHARS using this option.

If you specify in the option list a variable that is not declared in your program, then the
precompiler generates no error.

ORACLE 10-36

Chapter 10
About Using the Precompiler Options

10.6.40 NLS_LOCAL

Purpose

Determines whether multibyte character set conversions are performed by the precompiler
runtime library, SQLLIB, or by the database server.

Syntax
NLS_LOCAL={NO | YES}

Default
NO

Usage Notes

When set to YES, local multibyte support is provided by Pro*C/C++ and the SQLLIB library.
The option NLS_CHAR must be used to indicate which C host variables are multibyte.

When set to NO, Pro*C/C++ will use the database server support for multibyte objects. Set
NLS_LOCAL to NO for all new applications.

Environment variable NLS_NCHAR must be set to a valid fixed-width National Character Set.
Variable-width National Character Sets are not supported.

Can be entered only on the command line, or in a configuration file.

10.6.41 OBJECTS

Purpose

Requests support for object types.
Syntax

OBJECTS={YES | NO}

Default
YES

Usage Notes

Can only be entered in the command line.

10.6.42 ONAME

ORACLE

Purpose

Specifies the name of the output file. The output file is the C code file that the precompiler
generates.

Syntax
ONAME=path_and_filename

10-37

Chapter 10
About Using the Precompiler Options

Default

INAME with a .c extension.

Usage Notes

Can be entered only on the command line. Use this option to specify the full path
name of the output file, where the path name differs from that of the input (.pc) file. For
example, if you issue the command:

proc iname=my test

the default output filename is my test.c. If you want the output filename to be
my test 1.c, issue the command

proc iname=my test oname=my test 1l.c

You should add the . c extension to files specified using ONAME because one is not
added by default.

" Note:

Oracle recommends that you not let the output filename default, but rather
name it explicitly using ONAME. If you specify an ONAME value without an
extension, the name of the generated file will not have one.

10.6.43 ORACA

Purpose

Specifies whether a program can use the Oracle Communications Area (ORACA).
Syntax

ORACA={YES | NO}

Default

NO

Usage Notes
Can be entered inline or on the command line.

When ORACA=YES, you must place either the EXEC SQL INCLUDE ORACA or
#include oraca.h statement in your program.

10.6.44 OUTLINE

Purpose

Indicates that the outline SQL file needs to be generated for the SQL statements.

ORACLE 10-38

Chapter 10
About Using the Precompiler Options

Syntax

outline={yes | no | category_name}

Default

no

Usage Notes

The outline SQL file should be in the DEFAULT category if the value is yes and the generated
outline format is

DEFAULT <filename> <filetype> <sequence no>

If the category name is mentioned, then the SQL file should be generated in the category
mentioned. The generated outline format for this is

<category name> <filename> <filetype> <sequence no>
The outline SQL file is not generated if the value is no.

Semantic check should be full when this option is turned on, which means option
sqglcheck=full/semantics. If sqlcheck=syntax/limited/none, then error will be generated.

10.6.45 OUTLNPREFIX

ORACLE

Purpose

Controls the generation of the outline names.

Syntax

outlnprefix={none | prefix_name}

Default

no

Usage Notes

If outinprefix=prefix_name, then the outline format
<category name> <filename> <filetype>

is replaced with <prefix name> for the outline names.

If the length of the outline name exceeds 128 bytes, then this option is helpful for the user
who can just specify the prefix name.

If outinprefix=none, then the outline names are generated by the system. The generated
format is

<category name> <filename> <filetype> <sequence no>

Semantic check should be full when this option is turned on, which means option
sglcheck=full/semantics. If sqlcheck=syntax/limited/none, and/or outline=false, then error will
be generated.

10-39

Chapter 10
About Using the Precompiler Options

10.6.46 PAGELEN

Purpose

Specifies the number of lines for each physical page of the listing file.

Syntax
PAGELEN-=integer

Default
80

Usage Notes

Cannot be entered inline. The value range allowed is 30..256..

10.6.47 PARSE

Purpose

Specifies the way that the Pro*C/C++ precompiler parses the source file.

Syntax
PARSE={FULL | PARTIAL | NONE}

Default
FULL

Usage Notes

To generate C++ compatible code, the PARSE option must be either NONE or
PARTIAL.

If PARSE=NONE or PARSE=PARTIAL, all host variables must be declared inside a
Declare Section.

The variable SQLCODE must also be declared inside a declare section, or it cannot be
relied on to detect errors. Check the default value of PARSE for your platform.

If PARSE=FULL, the C parser is used, and it does not understand C++ constructs,
such as classes, in your code.

With PARSE=FULL or PARSE=PARTIAL Pro*C/C++ fully supports C preprocessor
directives, such as #define, #ifdef, and so on. However, with PARSE=NONE
conditional preprocessing is supported by EXEC ORACLE statements.

" Note:

Some platforms have the default value of PARSE as other than FULL. See
your system-dependent documentation.

ORACLE 10-40

Chapter 10
About Using the Precompiler Options

Related Topics
* About Parsing Code
* Declare Section

» Conditional Precompilation

10.6.48 PLAN_BASELINE

Purpose

Creates a SQL Plan Baseline by specifying the module name.

Syntax
PLAN_BASELINE={module_name | YES | NO}

Default
NO

Usage Notes

The module name will become a part of the unique plan name generated by appending the
filename, file type, and sequence number.

Note:

To generate and execute the plan baseline SQL statements, you must have the
Execute privilege on the DBMS_SPM_INTERNAL package and the Administer SQL
Management Object privilege.

The plan baseline options are valid only with SQLCHECK=FULL. If you specify
these options without this, then the options are ignored and a warning is thrown
informing that the option should be used with SQLCHECK=FULL only.

10.6.49 PLAN_PREFIX

ORACLE

Purpose

Ensures that the plan name does not exceed 128 bytes.

Syntax
PLAN_PREFIX={prefix_name | none}
Default

none

Usage Notes

It is an optional command. The default is none which means that no prefix name is used, and
if the plan name exceeds 128 bytes an error message is generated.

10-41

Chapter 10
About Using the Precompiler Options

10.6.50 PLAN_RUN

Purpose

Executes the generated SQL file.

Syntax
PLAN_RUN={YES | NO}
Default

NO

Usage Notes

If the PLAN_RUN option is not set then the generated SQL file is not executed.

10.6.51 PLAN_FIXED

Purpose

Specifies whether or not the created plan baseline is fixed or non-fixed.

Syntax
PLAN_FIXED={ YES | NO }

Default
YES

Usage Notes

When set to NO, a non-fixed Plan Baseline is created.

10.6.52 PLAN_ENABLED

ORACLE

Purpose

Enables the use of the Plan Baseline that is created.

Syntax
PLAN_ENABLED={ YES | NO }

Default
YES

Usage Notes

When set to the default, YES, the created Plan Baseline is used for plan selection.
When set to NO, the Plan Baseline is created, but is not used until enabled manually.

10-42

Chapter 10
About Using the Precompiler Options

10.6.53 MEMFORPREFETCH

Purpose

Use this option to speed up queries by pre-fetching the number of rows that can be
accommodated in the specified memory.

Syntax
MEMFORPREFETCH-=integer

Default

No value set.

Usage Notes

This option can be used in configuration file or on the command line. The value of the integer
is used for execution of all queries using explicit cursors, subject to the rules of precedence.

When used inline it must be placed before OPEN statements with explicit cursors. Then the
number of rows pre-fetched when that OPEN is done is determined by the last in-line
MEMFORPREFETCH option in effect.

The MEMFORPREFETCH default is no-value-is-set. To turn off prefetching, use
MEMFORPREFETCH=0 on the command line.

Prefetching is turned off when LONG or LOB columns are being accessed.
MEMFORPREFETCH is used to enhance the performance of single row fetches.
MEMFORPREFETCH values have no effect when doing array fetches, regardless of which
value is assigned.

There is no single perfect prefetch memory value that can be used to assist all the fetches in
an application.

Therefore, when using the MEMFORPREFETCH option, you should test different values to
give a general improvement across all statements in the program. Note that if certain
statements need to be tuned individually, the MEMFORPREFETCH option can be specified
inline using EXEC ORACLE OPTION. Note that this will affect all fetch statements that follow
the command in your program. Select the appropriate prefetch memory to enhance the
performance of any particular FETCH statement. To achieve this individual prefetch count,
you should use the inline prefetch option rather than from the command line.

10.6.54 PREFETCH

ORACLE

Purpose

Use this option to speed up queries by pre-fetching a number of rows.

Syntax
PREFETCH=integer

Default

1

10-43

Chapter 10
About Using the Precompiler Options

Usage Notes

Can be used in a configuration file or on the command-line. The value of the integer is
used for execution of all queries using explicit cursors, subject to the rules of
precedence.

When used in-line it must placed before OPEN statements with explicit cursors. Then
the number of rows pre-fetched when that OPEN is done is determined by the last in-
line PREFETCH option in effect.

The value range allowed is 0.. 65535.

10.6.55 RELEASE_CURSOR

ORACLE

Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the
cursor cache.

Syntax
RELEASE_CURSOR={YES | NO}

Default
NO

Usage Notes
Can be entered inline or on the command line.
You can use RELEASE_CURSOR to improve the performance of your program.

When a SQL data manipulation statement is executed, its associated cursor is linked
to an entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle
private SQL area, which stores information needed to process the statement.
RELEASE_CURSOR controls what happens to the link between the cursor cache and
private SQL area.

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the
cursor is closed, the precompiler immediately removes the link. This frees memory
allocated to the private SQL area and releases parse locks. To make sure that
associated resources are freed when you CLOSE a cursor, you must specify
RELEASE_CURSOR=YES.

When RELEASE_CURSOR=NO, the link is maintained. The precompiler does not
reuse the link unless the number of open cursors exceeds the value of
MAXOPENCURSORS. This is useful for SQL statements that are often executed
because it speeds up subsequent executions. There is no need to re-parse the
statement or allocate memory for an Oracle private SQL area.

For inline use with implicit cursors, set RELEASE_CURSOR before executing the SQL
statement. For inline use with explicit cursors, set RELEASE_CURSOR before
CLOSEing the cursor.

RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES.

10-44

Chapter 10
About Using the Precompiler Options

Related Topics

» Performance Tuning

10.6.56 RUNOUTLINE

Purpose

Provides the developer with the option of executing "create outline" statements either by
using precompiler or by the developer manually at a later time.

Syntax

runoutline={yes | no}

Default

no

Usage Notes

If runoutline=yes, then the generated 'create outline' statements are executed by the
precompiler/translator at the end of a successful precompilation.

The outline option should be set to true or category_name when runoutline is used. Semantic
check should be full when this option is turned on, which means option sqglcheck=full/
semantics. If sglcheck=syntax/limited/none, then error will be generated.

10.6.57 SELECT_ERROR

ORACLE

Purpose

Specifies whether your program generates an error when a SELECT statement returns more
than one row, or more rows than a host array can accommodate.

Syntax
SELECT_ERROR={YES | NO}

Default
YES

Usage Notes
Can be entered inline or on the command line.

When SELECT_ERROR=YES, an error is generated when a single-row SELECT returns too
many rows, or when an array SELECT returns more rows than the host array can
accommodate. The result of the SELECT is indeterminate.

When SELECT_ERROR=NO, no error is generated when a single-row SELECT returns too
many rows, or when an array SELECT returns more rows than the host array can
accommodate.

Whether you specify YES or NO, a random row is selected from the table. The only way to
ensure a specific ordering of rows is to use the ORDER BY clause in your SELECT
statement. When SELECT_ERROR=NO and you use ORDER BY, Oracle returns the first

10-45

Chapter 10
About Using the Precompiler Options

row, or the first n rows when you are SELECTing into an array. When
SELECT_ERROR=YES, whether or not you use ORDER BY, an error is generated
when too many rows are returned.

10.6.58 STMT _CACHE

Purpose

Denotes the Statement cache size for the dynamic SQL statements.

Syntax
STMT_CACHE = Range is 0 to 65535

Default
0

Usage Notes

The stmt_cache option can be set to hold the anticipated number of distinct dynamic
SQL statements in the application.

10.6.59 SYS_INCLUDE

ORACLE

Purpose

Specifies the location of system header files.

Syntax
SYS_INCLUDE=pathname | (pathi, ..., pathn)

Default

System-specific.

Usage Notes

Pro*C/C++ searches for standard system header files, such as stdio.h, in standard
locations that are platform specific. For example, on almost all UNIX systems, the file
stdio.h has the full path name /usr/include/stdio.h.

But C++ compilers can have system header files, such as stdio.h, that are not in the
standard system locations. You can use the SYS_INCLUDE command line option to
specify a list of directory paths that Pro*C/C++ searches to look for system header
files. For example:

SYS INCLUDE=(/usr/lang/SC2.0.1/include, /usr/lang/SC2.1.1/include)

The search path that you specify using SYS_INCLUDE overrides the default header
location.

If PARSE=NONE, the value specified in SYS_INCLUDE is irrelevant for the
precompilation, since there is no need for Pro*C/C++ to include system header files in
the precompilation. (You must, of course, still include Oracle-specific headers, such as

10-46

Chapter 10
About Using the Precompiler Options

sqlca.h. and system header files, with #include directives for pre-processing by the
compiler.)

The precompiler searches directories in the following order:

1. The current directory

2. The system directory specified in the SYS_INCLUDE precompiler option
3. The directories specified by the INCLUDE option, in the order entered

4. The built-in directory for standard header files

Because of step 3, you normally do not need to specify a directory path for standard header
files such as sqlca.h and sqlda.h.

The syntax for specifying a directory path using the SYS_INCLUDE option is system specific.
Follow the conventions used for your operating system

" Note:

For the SYS_INCLUDE option, the precedence of option values gets reversed.
Unlike other options in which the values get overwritten, SYS_INCLUDE appends
all the directory files that are mentioned in:

e Precompiler

e Pro*C/C++ system configuration file
e Pro*C/C++ user configuration file

e Command line

* Inline

However, there is a difference between passing values within or without brackets. If
you pass a single value or directory list within brackets, then the existing value of
SYS_INCLUDE is overwritten. If you pass the list as a simple value without
brackets, it will supplement any existing value.

10.6.60 THREADS

Purpose

When THREADS=YES, the precompiler searches for context declarations.
Syntax

THREADS={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

This precompiler option is required for any program that requires multithreading support.

ORACLE 10-47

Chapter 10
About Using the Precompiler Options

With THREADS=YES, the precompiler generates an error if no EXEC SQL CONTEXT
USE directive is encountered before the first context is visible and an executable SQL
statement is found.

Related Topics
e Multithreaded Applications

10.6.61 TYPE_CODE

Purpose

This micro option specifies whether ANSI or Oracle datatype codes are used in
dynamic SQL Method 4. Its setting is the same as the setting of MODE option.

Syntax
TYPE_CODE={ORACLE | ANSI}

Default

ORACLE

Usage Notes
Cannot be entered inline.

See the possible option settings in Table 14-3.

10.6.62 UNSAFE_NULL

Purpose

Specifying UNSAFE_NULL=YES prevents generation of ORA-01405 messages when
fetching NULLs without using indicator variables.

Syntax
UNSAFE_NULL={YES | NO}

Default

NO

Usage Notes
Cannot be entered inline.
The UNSAFE_NULL=YES is allowed only when MODE=ORACLE.

The UNSAFE_NULL option has no effect on host variables in an embedded PL/SQL
block. You must use indicator variables to avoid ORA-01405 errors.

10.6.63 USERID

ORACLE

Purpose

Specifies an Oracle username and password.

10-48

Chapter 10
About Using the Precompiler Options

Syntax

USERID=usernamel/password[@dbname]

Default

None

Usage Notes
Can be entered only on the command line.

Do not specify this option when using the automatic connect feature, which accepts your
Oracle username prefixed with CLUSTERS$. The actual value of the "CLUSTERS$" string is set
as a parameter in the INIT.ORA file.

When SQLCHECK=SEMANTICS, if you want the precompiler to get needed information by
connecting to Oracle and accessing the data dictionary, you must also specify USERID.

10.6.64 UTF16_CHARSET

Purpose
Specify the character set form used by UNICODE(UTF16) variables.

Syntax

UTF16 CHARSET={NCHAR CHARSET | DB CHARSET}

Default

NCHAR CHARSET
Usage Notes

Can be used only on the command line or in a configuration file, but not inline.

If UTF16_CHARSET=NCHAR_CHARSET (the default), the UNICODE(UTF16) bind / define
buffer is converted according to the server side National Character Set. There may be a
performance impact when the target column is CHAR.

If UTF16_CHAR=DB_CHARSET, the UNICODE(UTF16) bind / define buffer is converted
according to the database character set.

WARNING:

There may be data loss when the target column is NCHAR.

10.6.65 VARCHAR

Purpose

Instructs the Pro*C/C++ precompiler to interpret some structs as VARCHAR host variables.

ORACLE 10-49

Chapter 10
About Using the Precompiler Options

Syntax
VARCHAR={NO | YES}

Default
NO

Usage Notes
Can be entered only on the command line.

When VARCHAR=YES, a C struct that you code as

struct {
short len;
char arr[n];
} name;

is interpreted by the precompiler as a VARCHAR(N] host variable.

VARCHAR can be used in conjunction with the NLS_CHAR option to designate a
multibyte character variable.

10.6.66 VERSION

ORACLE

Purpose

Determines which version of the object will be returned by the EXEC SQL OBJECT
DEREF statement.

Syntax
VERSION={RECENT | LATEST | ANY}

Default
RECENT

Usage Notes
Can be entered inline by use of the EXEC ORACLE OPTION statement.

RECENT means that if the object has been selected into the object cache in the
current transaction, then that object is returned. For transactions running in serializable
mode, this option has the same effect as LATEST without incurring as many network
round trips. Most applications should use RECENT.

LATEST means that if the object does not reside in the object cache, it is retrieved
from the database. If It does reside in the object cache, it is refreshed from the server.
Use LATEST with caution because it incurs the greatest number of network round
trips. Use LATEST only when it is imperative that the object cache is kept as coherent
as possible with the server buffer cache

ANY means that if the object already resides in the object cache, return that object. If
not, retrieve the object from the server. ANY incurs the fewest network round trips. Use
in applications that access read-only objects or when a user will have exclusive access
to the objects.

10-50

Multithreaded Applications

If your development platform does not support threads, ignore this chapter. This chapter
contains the following topics:

* What are Threads?

* Runtime Contexts in Pro*C/C++

* Runtime Context Usage Models

* User Interface Features for Multithreaded Applications
e Multithreaded Example

* Connection Pooling

Note:

When using XA with the Pro*C/C++ Precompiler, you must use multithreading
provided by XA. Use of multithreading provided by Pro*C/C++ using the
statement EXEC SQL ENABLE THREADS will result in an error.

11.1 What are Threads?

Multithreaded applications have multiple threads executing in a shared address space.
Threads are "lightweight" subprocesses that execute within a process. They share code and
data segments, but have their own program counters, machine registers and stack. Global
and static variables are common to all threads, and a mutual exclusivity mechanism is often
required to manage access to these variables from multiple threads within an application.
Mutexes are the synchronization mechanism to insure that data integrity is preserved.

For further discussion of mutexes, see texts on multithreading. For more detailed information
about multithreaded applications, see the documentation of your threads functions.

Pro*C/C++ supports development of multithreaded Oracle Server applications (on platforms
that support multithreaded applications) using the following:

* A command-line option to generate thread-safe code
 Embedded SQL statements and directives to support multithreading

* Thread-safe SQLLIB and other client-side Oracle libraries

¢ Note:

While your platform may support a particular thread package, see your
platform-specific Oracle documentation to determine whether Oracle supports
it.

ORACLE 11-1

Chapter 11
Runtime Contexts in Pro*C/C++

The chapter's topics discuss how to use the preceding features to develop
multithreaded Pro*C/C++ applications:

* Runtime contexts for multithreaded applications

e Two models for using runtime contexts

» User-interface features for multithreaded applications

* Programming considerations for writing multithreaded applications with Pro*C/C++

* An example multithreaded Pro*C/C++ application

11.2 Runtime Contexts in Pro*C/C++

ORACLE

To loosely couple a thread and a connection, Pro*C/C++ introduces the notion of a
runtime context. The runtime context includes the following resources and their current
states:

e Zero or more connections to one or more Oracle Servers
« Zero or more cursors used for the server connections

e Inline options, such as MODE, HOLD CURSOR, RELEASE_CURSOR, and
SELECT_ERROR

Rather than simply supporting a loose coupling between threads and connections,
Pro*C/C++ provides the ability to loosely couple threads with runtime contexts.
Pro*C/C++ allows your application to define a handle to a runtime context, and pass
that handle from one thread to another.

For example, an interactive application spawns a thread, T1, to execute a query and
return the first 10 rows to the application. T1 then terminates. After obtaining the
necessary user input, another thread, T2, is spawned (or an existing thread is used)
and the runtime context for T1 is passed to T2 so it can fetch the next 10 rows by
processing the same cursor. See Figure 11-1.

11-2

Chapter 11
Runtime Context Usage Models

Figure 11-1 Loosely Coupling Connections and Threads
Application
Main Program
ENABLE THREADS
ALLOCATE :ctx
Connect...
féﬁE rctx
m Shared runtime Execution
Thread context is Time
passed from
USE :ctx one thread to
Fetch... the next

Thread

USE :ctx e ®
Fetch...

R

Thread

USE :ctx
Fetch...

Note: The syntax used in this
and subsequent figures is for
structural use only. for correct
syntax, see the section titled,
"User-interface Features for
Multi-threaded Applications."

Litl-

Server

11.3 Runtime Context Usage Models

Two possible models for using runtime contexts in multithreaded Pro*C/C++ applications are
shown here:

e Multiple threads sharing a single runtime context
e Multiple threads using separate runtime contexts

Regardless of the model you use for runtime contexts, you cannot share a runtime context
between multiple threads at the same time. If two or more threads attempt to use the same
runtime context simultaneously, a runtime error occurs.

11.3.1 Multiple Threads Sharing a Single Runtime Context

ORACLE

Figure 11-2 shows an application running in a multithreaded environment. The various
threads share a single runtime context to process one or more SQL statements. Again,
runtime contexts cannot be shared by multiple threads at the same time. The mutexes in
Figure 11-2 show how to prevent concurrent usage.

11-3

Figure 11-2 Context Sharing Among Threads

Application

Main Program

ENABLE THREADS
ALLOCATE
USE :ctx
Connect. ..
Spawning Threads. ..
FREE :ctx

n Thread

USE :ctx
Mutex
Select. ..
UnMutex

Thread

USE :ctx
Mutex
Update. ..
UnMutex

Thread

USE :ctx
Mutex

Select. ..
UnMutex

1

N A
L]
—————7

Server

Chapter 11
Runtime Context Usage Models

11.3.2 Multiple Threads Sharing Multiple Runtime Contexts

Figure 11-3 shows an application that executes multiple threads using multiple runtime
contexts. In this situation, the application does not require mutexes, because each

thread has a dedicated runtime context.

ORACLE

11-4

Chapter 11
User Interface Features for Multithreaded Applications

Figure 11-3 No Context Sharing Among Threads

Application

Main Program

ENABLE THREADS
ALLOCATE :ctxl
ALLOCATE :ctx2
ALLOCATE :ctxn
Spawning Threads...

FREE :ctxl
FREE :ctx2

FREE :ctxn

n Thread Thread Thread
USE :ctxl USE :ctx2 * ° ° |USE :ctxn
Connect... Connect. .. Connect. ..
Select. .. Update. .. Select...

v
]
| S—

Server

11.4 User Interface Features for Multithreaded Applications

The Pro*C/C++ Precompiler provides the following user-interface features to support
multithreaded applications:

e Command-line option, THREADS=YES|NO
e Embedded SQL statements and directives

e Thread-safe SQLLIB public functions

11.4.1 THREADS Option

ORACLE

With THREADS=YES specified on the command line, the Pro*C/C++ Precompiler ensures
that the generated code is thread-safe, given that you follow the guidelines. With
THREADS=YES specified, Pro*C/C++ verifies that all SQL statements execute within the
scope of a user-defined runtime context. If your program does not meet this requirement, a
precompiler error is returned.

11-5

Chapter 11
User Interface Features for Multithreaded Applications

Related Topics

* Programming Considerations

11.4.2 Embedded SQL Statements and Directives

The following embedded SQL statements and directives support the definition and
usage of runtime contexts and threads:

« EXEC SQL ENABLE THREADS;

e EXEC SQL CONTEXT ALLOCATE :context_var;

* EXEC SQL CONTEXT USE { :context_var | DEFAULT},
e EXEC SQL CONTEXT FREE :context_var,;

For these EXEC SQL statements, context_var is the handle to the runtime context and
must be declared of type sql_context as follows:

sgl context <context7variable>;

Using DEFAULT means that the default (global) runtime context will be used in all
embedded SQL statements that lexically follow until another CONTEXT USE
statement overrides it.

11.4.2.1 EXEC SQL ENABLE THREADS

This executable SQL statement initializes a process that supports multiple threads.
This must be the first executable SQL statement in your multithreaded application.

< Note:

When using XA with the Pro*C/C++ Precompiler, you must use
multithreading provided by XA. Use of multithreading provided by Pro*C
using the statement EXEC SQL ENABLE THREADS will result in an error.

Related Topics
e ENABLE THREADS (Executable Embedded SQL Extension)

11.4.2.2 EXEC SQL CONTEXT ALLOCATE

This executable SQL statement allocates and initializes memory for the specified
runtime context; the runtime-context variable must be declared of type sql_context.

Related Topics
* CONTEXT ALLOCATE (Executable Embedded SQL Extension)

11.4.2.3 EXEC SQL CONTEXT USE

This directive instructs the precompiler to use the specified runtime context for
subsequent executable SQL statements. The runtime context specified must be
previously allocated using an EXEC SQL CONTEXT ALLOCATE statement.

ORACLE 11-6

Chapter 11
User Interface Features for Multithreaded Applications

The EXEC SQL CONTEXT USE directive works similarly to the EXEC SQL WHENEVER
directive in that it affects all executable SQL statements which positionally follow it in a given
source file without regard to standard C scope rules. In the following example, the UPDATE
statement in function2 () uses the global runtime context, ctx1:

sql context ctxl; /* declare global context ctxl */
functionl ()
{

sql context :ctxl; /* declare local context ctxl */

EXEC SQL CONTEXT ALLOCATE :ctxl;
EXEC SQL CONTEXT USE :ctxl;

EXEC SQL INSERT INTO ... /* local ctxl used for this stmt */
}
function2 ()
{ EXEC SQL UPDATE ... /* global ctxl used for this stmt */

}

To use the global context after using a local context, add this code to functionl1():

functionl ()

{
sql context :ctxl; /* declare local context ctxl */
EXEC SQL CONTEXT ALLOCATE :ctxl;
EXEC SQL CONTEXT USE :ctxl;

EXEC SQL INSERT INTO ... /* local ctxl used for this stmt */
EXEC SQL CONTEXT USE DEFAULT;
EXEC SQL INSERT INTO ... /* global ctxl used for this stmt */

}

In the next example, there is no global runtime context. The precompiler refers to the ctx1
runtime context in the generated code for the UPDATE statement. However, there is no
context variable in scope for function2 (), S0 errors are generated at compile time.

functionl ()

{
sql context ctxl; /* local context variable declared */
EXEC SQL CONTEXT ALLOCATE :ctxl;
EXEC SQL CONTEXT USE :ctxl;

EXEC SQL INSERT INTO ... /* ctxl used for this statement */
}
function?2 ()
{

EXEC SQL UPDATE ... /* Error! No context variable in scope */

}

Related Topics
e CONTEXT OBJECT OPTION GET (Executable Embedded SQL Extension)
* CONTEXT ALLOCATE (Executable Embedded SQL Extension)

11.4.2.4 EXEC SQL CONTEXT FREE

This executable SQL statement frees the memory associated with the specified runtime
context and places a null pointer in the host program variable.

ORACLE 11-7

Chapter 11
User Interface Features for Multithreaded Applications

Related Topics
 CONTEXT FREE (Executable Embedded SQL Extension)

11.4.3 CONTEXT USE Examples

The following code fragments show how to use embedded SQL statements and
precompiler directives for two typical programming models; they use thread_create() to
create threads.

The first example showing multiple threads using multiple runtime contexts:

main ()
{
sql context ctxl,ctx2; /* declare runtime contexts */
EXEC SQL ENABLE THREADS;
EXEC SQL CONTEXT ALLOCATE :ctxl;
EXEC SQL CONTEXT ALLOCATE :ctx2;

/* spawn thread, execute functionl (in the thread) passing ctxl */

thread create(..., functionl, ctxl);
/* spawn thread, execute function2 (in the thread) passing ctx2 */
thread create(..., function2, ctx2);

EXEC SQL CONTEXT FREE :ctxl;
EXEC SQL CONTEXT FREE :ctx2;

void functionl (sql context ctx)

{
EXEC SQL CONTEXT USE :ctx;
/* execute executable SQL statements on runtime context ctxl!!! */

void function2(sql context ctx)

{
EXEC SQL CONTEXT USE :ctx;
/* execute executable SQL statements on runtime context ctx2!!! */

The next example shows how to use multiple threads that share a common runtime
context. Because the SQL statements executed in functionl () and function2 ()
potentially execute at the same time, you must place mutexes around every
executable EXEC SQL statement to ensure serial, therefore safe, manipulation of the
data.

main ()

{
sgl_context ctx; /* declare runtime context */
EXEC SQL CONTEXT ALLOCATE :ctx;

/* spawn thread, execute functionl (in the thread) passing ctx */

thread create(..., functionl, ctx);
/* spawn thread, execute function2 (in the thread) passing ctx */
thread create(..., function2, ctx);

ORACLE 11-8

Chapter 11
Multithreaded Example

void functionl (sql context ctx)

{
EXEC SQL CONTEXT USE :ctx;
/* Execute SQL statements on runtime context ctx. */

}

void function2(sql context ctx)

{
EXEC SQL CONTEXT USE :ctx;
/* Execute SQL statements on runtime context ctx. */

}

11.4.4 Programming Considerations

While Oracle ensures that the SQLLIB code is thread-safe, you are responsible for ensuring
that your Pro*C/C++ source code is designed to work properly with threads; for example,
carefully consider your use of static and global variables.

In addition, multithreaded applications require design decisions regarding the following:

e Declaring the SQLCA as a thread-safe struct, typically an auto variable and one for each
runtime context

e Declaring the SQLDA as a thread-safe struct, like the SQLCA, typically an auto variable
and one for each runtime context

e Declaring host variables in a thread-safe fashion, in other words, carefully consider your
use of static and global host variables.

e Avoiding simultaneous use of a runtime context in multiple threads

e Whether or not to use default database connections or to explicitly define them using the
AT clause

Also, no more than one executable embedded SQL statement, for example, EXEC SQL
UPDATE, may be outstanding on a runtime context at a given time.

Existing requirements for precompiled applications also apply. For example, all references to
a given cursor must appear in the same source file.

11.5 Multithreaded Example

ORACLE

The following program is one approach to writing a multithreaded embedded SQL application.
The program creates as many sessions as there are threads. Each thread executes zero or
more transactions, that are specified in a transient structure called "records.”

Note:

This program was developed specifically for a Sun workstation running Solaris.
Either the DCE or Solaris threads package is usable with this program. See your
platform-specific documentation for the availability of threads packages.

11-9

ORACLE

Chapter 11

Multithreaded Example

Description: This program illustrates how to use threading in

The program creates as many
Each thread executes zero or

more transactions, that are specified in a transient

NUMBER (36)
NUMBER (36, 2)

/*
* Name: Thread examplel.pc

*

*

* conjunction with precompilers.

* sessions as there are threads.

*

* structure called 'records'.

* Requirements:

*

* scott/tiger. The description of ACCOUNTS is:
* SQL> desc accounts

* Name

K e
* ACCOUNT

* BALANCE

*

*

* 10001 to 10008.

*

*

*

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sglca.h>

#define _EXC 0S_ _EXC_ UNIX
#define _CMA 0S_ _CMA_ UNIX

#ifdef DCE_THREADS
#include <pthread.h>
felse
#include <thread.h>
#endif

/* Function prototypes */
void err report();
#ifdef DCE_THREADS

void do transaction();
felse

void *do_transaction();
#endif

void get transaction();
void logon () ;

void logoff();

#define CONNINFO "scott/tiger™
#define THREADS 3

struct parameters

{ sql _context * ctx;
int thread id;

}i

typedef struct parameters parameters;

struct record log

{ char action;
unsigned int from account;
unsigned int to_account;

The program requires a table 'ACCOUNTS' to be in the schema

For proper execution, the table should be filled with the accounts

11-10

Chapter 11
Multithreaded Example

float amount;
}i
typedef struct record log record log;
record log records([]= { { 'M', 10001, 10002, 12.50 },
{ '™M', 10001, 10003, 25.00 },
{ '™M', 10001, 10003, 123.00 },
{ 'M', 10001, 10003, 125.00 },
{ 'M', 10002, 10006, 12.23 1},
{ 'M', 10007, 10008, 225.23 },
{ 'M', 10002, 10008, 0.70 },
{ '™M', 10001, 10003, 11.30 },
{ 'M', 10003, 10002, 47.50 },
{ 'M', 10002, 10006, 125.00 },
{ 'M', 10007, 10008, 225.00 },
{ '™M', 10002, 10008, 0.70 },
{ '™M', 10001, 10003, 11.00 },
{ 'M', 10003, 10002, 47.50 },
{ 'M', 10002, 10006, 125.00 },
{ 'M', 10007, 10008, 225.00 },
{ 'M', 10002, 10008, 0.70 },
{ '™M', 10001, 10003, 11.00 },
{ 'M', 10003, 10002, 47.50 },
{ 'M', 10008, 10001, 1034.54}};
static unsigned int trx nr=0;
#ifdef DCE_THREADS
pthread mutex t mutex;
#else
mutex t mutex;
#endif

/******‘k***************‘k***************‘k******************************
* Main
******‘k***************‘k***************‘k*****************************/

main ()

{

sql context ctx[THREADS];
#ifdef DCE_THREADS

pthread t thread id[THREADS];

pthread addr t status;

felse

thread t thread id[THREADS];
int status;

#endif

parameters params[THREADS];
int i;

EXEC SQL ENABLE THREADS;
EXEC SQL WHENEVER SQLERROR DO err report (sqlca);

/* Create THREADS sessions by connecting THREADS times */
for (i=0;i<THREADS; i++)
{
printf ("Start Session %d....",1i);
EXEC SQL CONTEXT ALLOCATE :ctx[i];
logon (ctx[1i],CONNINFO) ;
}

ORACLE 11-11

ORACLE

Chapter 11
Multithreaded Example

/*Create mutex for transaction retrieval */
#ifdef DCE_THREADS
if (pthread mutex init (&mutex,pthread mutexattr default))
felse
if (mutex_init(&mutex, USYNC THREAD, NULL))
#endif
{
printf("Can't initialize mutex\n");
exit (1),
}

/*Spawn threads*/

for (i=0; i<THREADS; i++)

{
params[i].ctx=ctx[i];
params[i].thread id=i;

printf ("Thread %d... ",1);
#ifdef DCE_THREADS
if (pthread create(&thread id[i],pthread attr default,
(pthread startroutine t)do transaction,
(pthread addr t) é¶ms([i]))
felse
if (status = thr create
(NULL, 0, do_transaction, ¶ms[i], 0, &thread id[i]))
#endif
printf ("Cant create thread %d\n",1i);
else
printf ("Created\n");

/* Logoff sessions....*/
for (i=0; i<THREADS; i++)
{
/*wait for thread to end */
printf ("Thread %d",1);
#ifdef DCE_THREADS
if (pthread join(thread id[i], &status))
printf ("Error when waiting for thread % to terminate\n", 1i);
else
printf ("stopped\n");

printf ("Detach thread...");
if (pthread detach (&thread id[i])
printf ("Error detaching thread! \n");
else
printf ("Detached!\n");
felse
if (thr join(thread id[i], NULL, NULL))
printf ("Error waiting for thread to terminate\n");
#endif
printf ("Stop Session %d....",1i);
logoff(ctx[i]);
EXEC SQL CONTEXT FREE :ctx[i];

/*Destroys mutex*/
#ifdef DCE_THREADS

11-12

Chapter 11
Multithreaded Example

if (pthread mutex destroy(&mutex))
felse
if (mutex destroy(&mutex))
#endif
{
printf("Can't destroy mutex\n");
exit (1) ;

/***

* Function: do transaction

*

* Description: This functions executes one transaction out of the
* records array. The records array is 'managed' by

* the get transaction function.
*
*

**/

#ifdef DCE_THREADS
void do transaction (params)
felse
void *do transaction(params)
#endif
parameters *params;
{
struct sqglca sqglca;
record log *trx;
sql context ctx=params->ctx;

/* Done all transactions ? */
while (trx nr < (sizeof(records)/sizeof(record_log)))
{

get transaction(&trx);

EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
EXEC SQL CONTEXT USE :ctx;

printf ("Thread %d executing transaction\n",params->thread id);
switch (trx->action)
{
case 'M': EXEC SQL UPDATE ACCOUNTS
SET BALANCE=BALANCE+: trx->amount
WHERE ~ACCOUNT=:trx->to_account;
EXEC SQL UPDATE ACCOUNTS
SET BALANCE=BALANCE-:trx->amount
WHERE ACCOUNT=:trx->from account;
break;
default: break;
}
EXEC SQL COMMIT;

/***

* Function: err report
*

* Description: This routine prints out the most recent error
*

**/

ORACLE 11-13

ORACLE

Chapter 11
Multithreaded Example

void err report (sqlca)

struct sqglca sqlca;

{
if (sglca.sglcode < 0)
printf ("\n%.*s\n\n",sqglca.sqglerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc) ;
exit (1),

/***

* Function: logon
*

* Description: Logs on to the database as USERNAME/PASSWORD
*

***/

void logon (ctx, connect info)
sql context ctx;
char * connect info;
{
EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
EXEC SQL CONTEXT USE :ctx;
EXEC SQL CONNECT :connect info;
printf ("Connected!\n");

/**

* Function: logoff
*

* Description: This routine logs off the database
*

**/

void logoff (ctx)
sql context ctx;
{
EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
EXEC SQL CONTEXT USE :ctx;
EXEC SQL COMMIT WORK RELEASE;
printf ("Logged off!\n");

/**

* Function: get transaction
*

* Description: This routine returns the next transaction to process
*

**/
void get transaction(trx)
record log ** trx;
{
#ifdef DCE_THREADS

if (pthread mutex lock(&mutex))
felse

if (mutex lock(&mutex))
#endif

printf("Can't lock mutex\n");

*trx=&records([trx nr];

trx _nr++;

11-14

Chapter 11
Connection Pooling

#ifdef DCE_THREADS
if (pthread mutex unlock (&mutex))
felse
if (mutex unlock(&mutex))
#endif
printf("Can't unlock mutex\n");

11.6 Connection Pooling

A connection pool is a group of physical connections to a database that can be re-used by
several connections. The objective of the connection pooling feature is to improve
performance, and reduce resource use by avoiding usage of dedicated connections by each
connection.

Figure 11-4 illustrates functionality of the connection pooling feature. In this example, four

threads of the application are interacting with the database using the connection pool. The
connection pool has two physical connections. The connection pool handle is used by four
threads using different runtime contexts.

Figure 11-4 Connection Pooling

. Virtual : Physical
Application Connection Connection Pool Connections /_75E;_\
TC1
1 >
TC2 C1
T2 - o
TC3 C2
T3 - |
TC4
T4 P
-/
threadl ()

{

EXEC SQL CONTEXT ALLOCATE :ctxl;

EXEC SQL CONTEXT USE:ctxl;

EXEC SQL CONNECT :uid AT :TCl USING :db string;

}

thread?2 ()

{
EXEC SQL CONTEXT ALLOCATE :ctx2;
EXEC SQL CONNECT :uid AT :TC2 USING :db string;

}

thread3 ()

{

EXEC SQL CONTEXT ALLOCATE :ctx3;

EXEC SQL CONNECT :uid AT :TC3 USING :db_string;

EXEC SQL AT :TC3 SELECT count(*) into :count FROM emp;

ORACLE 11-15

Chapter 11
Connection Pooling

}

thread4 ()

{
EXEC SQL CONTEXT ALLOCATE :ctx4;
EXEC SQL CONNECT :uid AT :TC4 USING :db string;

}

In this example, four named connections TC1, TC2, TC3, and TC4 are virtual
connections created by threads T1, T2, T3, and T4 respectively. Named connections
TC1, TC2, TC3, and TC4 from different runtime contexts share the same connection
pool, and share physical database connections available in the connection pool. Two
physical connections, C1 and C2, serve four named connections and connect to the
same database.

When the first connect request TC1 from thread T1 is received, SQLLIB creates a
connection pool with one physical connection C1 to the database. When another
connect request TC2 from thread T2 is sent to the same database, C1 serves the TC2
request to the database, if it is free. Otherwise, a new physical connection C2 is
created to serve the request. If another connect request from thread T3 named TC3
comes in, TC3 either waits for a specified time or returns an error message, if both
physical connections C1 and C2 are busy.

When thread T2 needs to select data using the TC2 named connection, it acquires any
free physical connection, C1 or C2. After the request is served, the chosen connection
will again be available in the connection pool, so that another named or virtual
connection can utilize the same physical connection.

11.6.1 About Using the Connection Pooling Feature

This section comprises the following topics:

* How to Enable Connection Pooling

* Command Line Options for Connection Pooling
* Example

* Performance Tuning

11.6.1.1 How to Enable Connection Pooling

To enable connection pooling while precompiling an application, the user must set the
command line option CPOOL=YES. Based on CPOOL=YES/NO, the connection pool feature

is enabled or disabled.

ORACLE 11-16

< Note:

Chapter 11
Connection Pooling

By default, CPOOL is set to NO and hence the connection pool feature is disabled.
This feature cannot be enabled or disabled inline.

Connection pool will not be created with external operating system
authentication, even if CPOOL is set to YES.

11.6.1.2 Command Line Options for Connection Pooling

Table 11-1 lists the command line options for connection pooling:

Table 11-1 Command Line Options for Connection Pooling

Option Valid Default Remarks
Values

CPOOL YES/NO NO Based on this option, the precompiler generates the appropriate code

that directs SQLLIB to enable or disable the connection pool feature.
Note: If this option is set to NO, other connection pooling options will be
ignored by the precompiler.

CMAX Valid 100 Specifies the maximum number of physical connections that can be
values are opened for the database. CMAX value must be at least CMIN+CINCR.
lto Note: Once this value is reached, more physical connections cannot be
65535. opened.

In a typical application, running 100 concurrent database operations is
more than sufficient. The user can set an appropriate value.

CMIN Valid 2 Specifies the minimum number of physical connections in the
values are connection pool. Initially, all physical connections as specified through
1to CMIN are opened to the server. Subsequently, physical connections are
(CMAX- opened only when necessary. Users should set CMIN to the total
CINCR). number of planned or expected concurrent statements to be run by the

application to get optimum performance. The default value is set to 2.

CINCR Valid 1 Allows the application to set the next increment for physical connections
values are to be opened to the database, if the current number of physical
1to connections is less than CMAX. To avoid creating unnecessary extra
(CMAX- connections, the default value is set to 1.

CMIN).

CTIMEOUT Valid 0 which Physical connections that are idle for more than the specified time (in
values are means not seconds) are terminated to maintain an optimum number of open
1to set; hence physical connections. If this attribute is not set, the physical connections
65535. will not time are never timed out. Hence, physical connections will not be closed until

out. the connection pool is terminated.
Note: Creating a new physical connection will cost a round trip to the
server.

ORACLE

11-17

Chapter 11
Connection Pooling

Table 11-1 (Cont.) Command Line Options for Connection Pooling

Option Valid Default Remarks
Values
CNOWAIT Valid 0 which This attribute determines if the application must repeatedly try for a
values are means not physical connection when all other physical connections in the pool are
1lto set; hence busy, and the total number of physical connections has already reached
65535. waits fora its maximum. If physical connections are not available and no more
free physical connections can be opened, an error is thrown when this

connection. attribute is set. Otherwise, the call waits until it acquires another
connection. By default, CNOWAIT is not to be set so a thread will wait
until it can acquire a free connection, instead of returning an error.

A typical multithreaded application creates a pool of 'n' physical connections. The 'n'
value needs to be specified by providing the CMIN value during precompilation. A
minimum number of physical connections (CMIN) to the database are created on the
first connect call. For new incoming requests, the mapping from a virtual connection
(named connection) to a physical connection is carried out as described in the
following section:

Case 1: If a physical connection is available (among the already opened connections),
a new request will be served by this connection.

Case 2: If all physical connections are in use then,

Case 2a: If the number of opened connections has not reached the maximum limit
(CMAX), new CINCR connections are created, and one of these connections is used
to serve the request.

Case 2b: If the number of opened connections has reached the maximum limit
(CMAX) without the CNOWAIT being set, the request waits until it acquires a
connection. Otherwise, the application displays an error message ORA 24401: cannot
open further connections.

11.6.1.3 Example

Refer to Figure 11-4 for an illustration of the following example.

Let

CMIN be 1,
CMAX be 2, and
CINCR be 1.

Consider the following scenario. When the first request TC1 comes in, SQLLIB creates
the connection pool with one physical connection C1. When another request TC2
comes in, the application checks if C1 is free. As C1 is used to serve the first request
(Case 1), a new physical connection C2 is created to serve the request (Case 2a). If
another request TC3 comes in, and if both C1 and C2 are busy, then TC3 either waits
for a specified time or returns with an error message (Case 2b).

11.6.1.4 Performance Tuning

Users can set the connection pooling parameters to get better performance, based on
the application. The Performance Graph in Figure 11-5 illustrates performance gain by

ORACLE 11-18

Chapter 11
Connection Pooling

changing the CMIN value for the Pro*C/C++ Demo Program:1. Demo Program:2 illustrates
performance gain by changing the CMAX parameter.

11.6.2 Demo Program:1

The following connection pool parameters are used while precompiling the Demo Program:1.

CMAX = 40

CINCR = 3

CMIN = varying values between 1 to 40
CPOOL = YES

CTIMEOUT - Do not set

(indicates that physical connections never time out)

CNOWAIT - Do not set

(indicates that a thread waits until it gets a free connection; see Table 11-1, for more details)

Other command line options required for this example are provided in the following section:

threads = yes

" Note:

In this example, there are 40 threads and database operations are performed
against the local database.

It was observed that with CPOOL=NO (without connection pooling), the time taken by the
application was 6.1 seconds, whereas, with CPOOL=YES (with connection pooling), the
minimum time taken by the application was 1.3 seconds (when CMIN was 2).

In both cases, the time taken for database query operations should remain the same since
the connection pool only reduces the time taken for CONNECT statements. When
CPOOL=NO the application will create 40 dedicated connections. When CPOOL=YES and
CMIN=2 it will create 2 connections initially and, only if 2 threads access the connections
concurrently, will it create more connections. Otherwise all threads will share those 2
connections. So the application potentially avoids 38 connections which in turn avoids 38
round trips to the server to establish those connections. This is where the three fold
performance gain is seen.

Note:

These results were observed on a Sparc Ultra60 single CPU, 256 MB RAM
machine, running one Oracle server on a Solaris 2.6 operating system, the server
and client were running on the same machine.

ORACLE 11-19

Chapter 11
Connection Pooling

Figure 11-5 Performance Graph

Time Taken by Applications in Seconds
O = N W H» OO N ©

PERFORMANCE GRAPH

CMIN

The CPOOL=YES curve represents the time taken by the application when connection
pooling is enabled. The CPOOL=NO curve represents the time taken by the
application when connection pooling is disabled.

11.6.2.1 Example

/*
* cpdemol.pc

* Description:

* The program creates as many sessions as there are threads.
* Each thread connects to the default database and executes the
* SELECT statement 5 times. Each thread has its own runtime context.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sglca.h>

#define _EXC 0S_ _EXC__UNIX

#define _CMA 0S_ _CMA_ UNIX

#ifdef DCE_THREADS

#include <pthread.h>

#else

#include <pthread.h>

typedef void* pthread addr t;

typedef void* (*pthread startroutine t) (void*);

#define pthread attr default

#endif

/* Function prototypes */

void err report();

void do_transaction();
void get transaction();

void logon() ;
void logoff();

(const pthread attr t *)NULL

ORACLE"

11-20

Chapter 11
Connection Pooling

#define CONNINFO "hr/hr"
#define THREADS 40

struct parameters
{
sql context * ctx;
int thread id;
}i

typedef struct parameters parameters;

struct timeval tpl;
struct timeval tp2;

/******‘k***************‘k***************‘k

* Main
*******‘k***************‘k***************/

main ()

{
sql context ctx[THREADS];
pthread t thread id[THREADS];
pthread addr t status;
parameters params[THREADS];
int i;

EXEC SQL ENABLE THREADS;
EXEC SQL WHENEVER SQLERROR DO err report (sqlca);

if (gettimeofday (&tpl, (void*)NULL) == -1)
{

perror ("First: ");

exit (0);

/* Create THREADS sessions by connecting THREADS times */
for (i=0;i<THREADS; i++)
{
printf ("Start Session %d....",1i);
EXEC SQL CONTEXT ALLOCATE :ctx[i];
logon(ctx[1i],CONNINFO) ;
}

/*Spawn threads*/

for (i=0; i<THREADS; i++)

{
params[i].ctx=ctx[i];
params[i].thread id=i;

if (pthread create(&thread id[i],pthread attr default,
(pthread startroutine t)do transaction,
(pthread addr t) ¶ms[i]))
printf ("Cant create thread %d\n",1i);
else
printf ("Created Thread %d\n", 1i);

/* Logoff sessions....*/
for (i=0;1<THREADS; i++)
{
/*wait for thread to end */

ORACLE 11-21

ORACLE

Chapter 11
Connection Pooling

if (pthread join(thread id[i], &status))

printf ("Error when waiting for thread % to terminate\n", 1i);
else

printf ("stopped\n");

if (1==THREADS-1)
{
logoff (ctx[i]);
EXEC SQL CONTEXT FREE :ctx[i];

if (gettimeofday (&tp2, (void*)NULL) == -1)
{

perror ("Second: ");

exit (0);

printf (" \n\nTHE TOTAL TIME TAKEN FOR THE PROGRAM EXECUTION = %f \n\n",
(float) (tp2.tv_sec - tpl.tv _sec) + ((float) (tp2.tv usec -
tpl.tv_usec)/1000000.0));

/***

* Function: do_ transaction
* Description: This functions executes SELECT 5 times and calls COMMIT.
***/
void do transaction (params)
parameters *params;
{

struct sqglca sqglca;

int src_count;

sql context ctx=params->ctx;

EXEC SQL WHENEVER SQLERROR DO err report (sqlca);
EXEC SQL CONTEXT USE :ctx;
printf ("Thread %d executing transaction\n",params->thread id);
EXEC SQL COMMIT;
EXEC SQL SELECT count(*) into :src count from EMPLOYEES;
EXEC SQL SELECT count(*) into :src_count from EMPLOYEES;
EXEC SQL SELECT count(*) into :src_count from EMPLOYEES;
(*)
(*)

*

*

EXEC SQL SELECT count(*) into :src_count from EMPLOYEES;
EXEC SQL SELECT count into :src _count from EMPLOYEES;

*

/**

* Function: err report

* Description: This routine prints out the most recent error
**/
void err report (sqlca)

struct sqglca sqlca;

{
if (sglca.sglcode < 0)
printf ("\n%.*s\n\n",sqlca.sglerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc) ;
exit (1),

/**

* Function: logon

11-22

Chapter 11
Connection Pooling

* Description: Logs on to the database as USERNAME/PASSWORD

**/

void logon (ctx, connect info)
sql context ctx;
char * connect info;
{
EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
EXEC SQL CONTEXT USE :ctx;
EXEC SQL CONNECT :connect info;
printf ("Connected!\n");

}

/***

* Function: logoff

* Description: This routine logs off the database
***/

void logoff (ctx)
sql context ctx;
{
EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
EXEC SQL CONTEXT USE :ctx;
EXEC SQL COMMIT WORK RELEASE;
printf ("Logged off!\n");

11.6.3 Demo Program:2

The following connection pool parameters are used while precompiling the Demo Program:2.
CMAX = varying values between 5 to 40

CINCR =3

CMIN = varying values between 1 to 40

CPOOL = YES

CTIMEOUT - Do not set

(indicates that physical connections never time out)

CNOWAIT - Do not set

(indicates that a thread waits until it gets a free connection; see Table 11-1, for more details)
Other command line options required for this example are provided in the following section:
threads = yes

The following figure illustrates the performance graph for cpdemo2.

" Note:

In this example there are 40 threads and database operations are performed
against the local database.

In this example the best performance is observed with CMIN=5 and CMAX=14 when the
program runs approximately 2.3 times faster compared to using CPOOL=NO.This is less of

ORACLE 11-23

Chapter 11
Connection Pooling

an improvement than "cpdemol” though which ran faster with connection pooling
enabled.The reason for this is because "cpdemol" performs only simple SELECT
statements whereas "cpdemo?2" performs both UPDATE AND SELECT
statements.Therefore "cpdemol"” spends more time creating connections than
performing database operations.When connection pooling is enabled, time is saved as
fewer connections are created. Hence overall performance improves. Since
"cpdemo2" spends less time creating connections compared to performing database
operations, the overall performance gain is less.

In the following graphs, the CPOOL=YES curve represents the time taken by the
application when connection pooling is enabled. The CPOOL=NO curve represents
the time taken by the application when connection pooling is disabled. The demo
program "cpdemo?2" creates 40 threads. With CPOOL=NO option, each thread
establishes its own dedicated connection to the server. Hence 40 connections are
created. The same demo program, when built with CPOOL=YES and CMAX=14,
creates a maximum of 14 connections. These connections are shared across the 40
threads thus saving at least 26 connections and so avoiding 26 round-trips to the
server.

The following two graphs show performance against varying CMIN and CMAX values
respectively.

11.6.3.1 Case 1. By varying CMIN

Figure 11-6 Performance Graph Case 1

PERFORMANCE

CPOOL=NC

CPOOL=YES

TIME(SECONDS)
O = bWk 10~ 0

CMIN

The application takes around 7.5 seconds for execution with CPOOL=NO. With
CPOOL=YES, and CMIN=8 and CMAX=14, the execution time reduces to 4.5
seconds. So, the performance improvement is about 1.7 times. The difference in
performance is because of different database operations (SELECT vs UPDATE) which
is purely a server side activity and beyond the scope of connection pool feature which
is a client side feature.

ORACLE 11-24

Chapter 11
Connection Pooling

11.6.3.2 Case 2: By varying CMAX

Figure 11-7 Performance Graph Case 2

PERFORMANCE :
8
f ; CPOOL=NO :
P :
i 8 i CPOOL=YES ‘
P8 4 ~ i
: " 3 i
:E 2
1

0

14 15 22 25 32 36 40 i

CMAX i

For the preceding graph the demo program was run with CMIN=5 and CINCR=3. The best
performance was observed with CMAX=14. Execution takes around 7.4 seconds with
CPOOL=NO. With CPOOL=YES, when CMAX=14 the execution time reduces to around 3.1
seconds, resulting in a 2.3 fold performance gain.

The performance improvement varies with CMAX.Therefore to obtain the best performance
for a given application, the user should vary CMIN and CMAX until the optimal performance
is achieved.

11.6.3.3 Example

/*
* cpdemo?2.pc
* Program to show the performance imcrement when the cpool option is used
* Run this program with cpool=no. Record the time taken for the program to
* execute

* Compare the execution time

* This program also demonstrates the impact of a properly tuned CMAX
* parameter on the performance

* Run the program with the following parameter values

* CMIN=5
* CINCR=2
* CMAX=20

#include <stdio.h>
#include <sglca.h>

#ifdef DCE_THREADS
#include <pthread.h>
#else

#include <sys/time.h>
#include <pthread.h>

ORACLE 11-25

ORACLE

Chapter 11
Connection Pooling

typedef void* pthread addr t;

typedef void* (*pthread startroutine t) (void*);
#define pthread attr default (const pthread attr t *)NULL
#endif

#define CONNINFO "hr/hr"
#define THREADS 40

/***** prototypes *kkkkkkkkkkkkk */
void selectFunction();
void updateFunction();

void err report(struct sqlca sqlca);
/* dhkkhkhkkhkkrkkhkhkkhkhkhkhkrkxkxkkxk */

/***** parameter to the function selectFunction, updateFunction */
struct parameters
{

sql context ctx;

char connName[20];

char dbName[20];

int thread id;
}i
typedef struct parameters parameters;
/***/

parameters params[THREADS];

struct timeval tpl;
struct timeval tp2;

int main()
{
int i;
pthread t thread id[THREADS];
pthread addr t status;
int thrNos [THREADS];

for (i=0; i<THREADS; i++)
thrNos[i] = i;

EXEC SQL ENABLE THREADS;

/* Time before executing the program */

if (gettimeofday (&tpl, (void*)NULL) == -1){
perror ("First: ");
exit (0);

EXEC SQL WHENEVER SQLERROR DO err report (sqlca);
/* connect THREADS times to the data base */
for (i=0; i<THREADS; i++)
{
strcpy (params[i] .dbName, "");
sprintf (params[i].connName, "conn%d", 1i);
params[i].thread id = i;

/* logon to the data base */
EXEC SQL CONTEXT ALLOCATE :params[i].ctx;

11-26

Chapter 11
Connection Pooling

EXEC SQL CONTEXT USE :params[i].ctx;
EXEC SQL CONNECT :CONNINFO
AT :params[i].connName USING :params[i].dbName;

/* create THREADS number of threads */
for (i=0; i<THREADS; i++)
{
printf ("Creating thread %d \n", 1i);
if (1%2)
{
/* do a select operation if the thread id is odd */
if (pthread create(&thread id[i],pthread attr default,
(pthread startroutine t)selectFunction,
(pthread addr t) ¶ms([i]))
printf ("Cant create thread %d \n", 1i);
}
else
{
/* otherwise do an update operation */
if (pthread create(&thread id[i],pthread attr default,
(pthread startroutine t)updateFunction,
(pthread addr t) ¶ms[i]))
printf ("Cant create thread %d \n", 1i);
}

for (i=0; i<THREADS; i++)
{
if (pthread join(thread id[i], &status))
printf ("Error when waiting for thread % to terminate\n", 1i);

if (gettimeofday (&tp2, (void*)NULL) == -1){
perror ("Second: ");

exit (0);
}

printf (" \n\nTHE TOTAL TIME TAKEN FOR THE PROGRAM EXECUTION = %f \n\n",
(float) (tp2.tv_sec - tpl.tv _sec) + ((float) (tp2.tv_usec -
tpl.tv_usec)/1000000.0));

/* free the context */
for (i=0; i<THREADS; i++)
{
EXEC SQL CONTEXT USE :params[i].ctx;
EXEC SQL AT :params[i].connName COMMIT WORK RELEASE;

EXEC SQL CONTEXT FREE :params[i].ctx;
}

return 0;

void selectFunction(parameters *params)

{
struct sqglca sqglca;
char empName[110][21];
printf("Thread %d selecting \n", params->thread id);

ORACLE 11-27

ORACLE

EXEC SQL CONTEXT USE :params->ctx;
EXEC SQL AT : params->connName
SELECT FIRST NAME into empName from EMPLOYEES;
printf ("Thread %d selected\n", params->thread id);
return 0;

void updateFunction (parameters *params)

struct sqlca sqglca;
printf (" Thread %d Updating ... \n", params->thread id);

EXEC SQL CONTEXT USE :params->ctx;
EXEC SQL AT :params->connName update EMPLOYEES
set SALARY = 4000 where DEPARTMENT ID = 10;

/* commit the changes */
EXEC SQL AT :params->connName COMMIT;

printf (" Thread %d Updated ... \n", params->thread id);
return 0;

/******‘k**** Oracle error ***********/
void err report(struct sqglca sqlca)

if (sglca.sglcode < 0)

Chapter 11
Connection Pooling

printf ("\n%.*s\n\n",sqglca.sqglerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc) ;

exit (0);

11-28

Applications

ORACLE

Part Il contains the following chapters:

C++ Applications

Oracle Dynamic SQL

ANSI Dynamic SQL

Oracle Dynamic SQL: Method 4
LOBs

Objects

Collections

The Object Type Translator

User Exits

C++ Applications

This chapter describes how you can use the Pro*C/C++ Precompiler to precompile your C++
embedded SQL application, and how Pro*C/C++ generates C++ compatible code. This
chapter contains the following topics:

e Understanding C++ Support
e Precompiling for C++

* Example Programs

12.1 Understanding C++ Support

To understand how Pro*C/C++ supports C++, you must understand the basic functional
capabilities of Pro*C/C++. In particular, you must be aware of how Pro*C/C++ differs from
Pro*C Version 1.

The basic capabilities of Pro*C/C++ are:

* Full C preprocessor support. You can use #define, #include, #ifdef, and other
preprocessor directives in your Pro*C/C++ program, to handle constructs that the
precompiler itself must process.

* Use of native C structures as host variables, including the ability to pass structs (or
pointers to structs) as host variables to functions, and write functions that return host
structures or struct pointers.

To support its C preprocessor capabilities and to enable host variables to be declared outside
a special Declare Section, Pro*C/C++ incorporates a complete C parser. The Pro*C/C++
parser is a C parser; it cannot parse C++ code.

This means that for C++ support, you must be able to disable the C parser, or at least
partially disable it. To disable the C parser, the Pro*C/C++ Precompiler includes command-
line options to give you control over the extent of C parsing that Pro*C/C++ performs on your
source code.

Related Topics
* Oracle Datatypes

e Precompiling for C++

12.1.1 No Special Macro Processing

ORACLE

Using C++ with Pro*C/C++ does not require any special preprocessing or special macro
processors that are external to Pro*C/C++. There is no need to run a macro processor on the
output of the precompiler to achieve C++ compatibility.

If you are a user of a release of Pro*C/C++ Precompiler before this one, and you did use
macro processors on the precompiler output, you should be able to precompile your C++
applications using Pro*C/C++ with no changes to your code.

12-1

Chapter 12
Precompiling for C++

12.2 Precompiling for C++

To control precompilation so that it accommodates C++, there are four considerations:

* Code emission by the precompiler
e Parsing capability
* The output filename extension

* The location of system header files

12.2.1 Code Generation

ORACLE

You must be able to specify what kind of code, C compatible code or C++ compatible
code, the precompiler generates. Pro*C/C++ by default generates C code. C++ is not
a perfect superset of C. Some changes are required in generated code so that it can

be compiled by a C++ compiler.

For example, in addition to emitting your application code, the precompiler interposes
calls to its runtime library, SQLLIB. The functions in SQLLIB are C functions. There is
no special C++ version of SQLLIB. For this reason, if you want to compile the
generated code using a C++ compiler, Pro*C/C++ must declare the functions called in
SQLLIB as C functions.

For C output, the precompiler would generate a prototype such as

void sqglora(unsigned long *, void *);

But for C++ compatible code, the precompiler must generate

extern "C" {
void sqglora(unsigned long *, void *);

}i

You control the kind of code Pro*C/C++ generates using the precompiler option
CODE. There are three values for this option: CPP, KR_C, and ANSI_C. The
differences between these options can be illustrated by considering how the
declaration of the SQLLIB function sqglora differs among the three values for the CODE
option:

void sqlora(/* wunsigned long *, void * */); /* K&R C */
void sqglora(unsigned long *, void *); /* BNSI C */
extern "C" { /* CPP */

void sqglora(unsigned long *, void *);

}i
When you specify CODE=CPP, the precompiler

* Generates C++ compilable code.

» Gives the output file a platform-specific file extension (suffix), such as ".C" or ".cc",
rather than the standard ".c" extension. (You can override this by using the
CPP_SUFFIX option.)

12-2

Chapter 12
Precompiling for C++

» Causes the value of the PARSE option to default to PARTIAL. You can also specify
PARSE=NONE. If you specify PARSE=FULL, an error is issued at precompile time.

* Allows the use of the C++ style // Comments in your code. This style of Commenting is
also permitted inside SQL statements and PL/SQL blocks when CODE=CPP.

* Pro*C/C++ recognizes SQL optimizer hints that begin with //+.

* Requires that header files generated by OTT (Object Type Translator) must be included
inside a declare section.

¢ See Also:

"CODE" for information about the KR_C and ANSI_C values for the CODE
option.

12.2.2 About Parsing Code

You must be able to control the effect of the Pro*C/C++ C parser on your code. You do this by
using the PARSE precompiler option, which controls how the precompiler's C parser treats
your code.

The values and effects of the PARSE option are:

Table 12-1 Values and Effects of the PARSE Option

Values Effects
PARSE=NONE The value NONE has the following effects:
» C preprocessor directives are understood only inside a declare
section.

* You must declare all host variables inside a Declare Section.
e Precompiler release 1.x behavior

PARSE=PARTIAL The value PARTIAL has the following effects:
e All preprocessor directives are understood
e You must declare all host variables inside a Declare Section
This option value is the default if CODE=CPP

PARSE=FULL The value FULL has the following effects:
* The precompiler C parser runs on your code.

e All Preprocessor directives are understood.

* You can declare host variables at any place that they can be
declared legally in C.

This option value is the default if the value of the CODE option is anything other than CPP. It
is an error to specify PARSE=FULL when CODE=CPP.

To generate C++ compatible code, the PARSE option must be either NONE or PARTIAL. If
PARSE=FULL, the C parser runs, and it does not understand C++ constructs in your code,
such as classes.

ORACLE 12-3

Chapter 12
Example Programs

12.2.3 Output Filename Extension

Most C compilers expect a default extension of ".c" for their input files. Different C++
compilers, however, can expect different filename extensions. The CPP_SUFFIX
option provides the ability to specify the filename extension that the precompiler
generates. The value of this option is a string, without the quotes or the period. For
example, CPP_SUFFIX=cc, or CPP_SUFFIX=C.

12.2.4 System Header Files

Pro*C/C++ searches for standard system header files, such as stdio.h, in standard
locations that are platform specific. Pro*C/C++ does not search for header files with
extensions such as hpp or h++. For example, on almost all UNIX systems, the file
stdio.h has the full path name /usr/include/stdio.h.

But a C++ compiler has its own version of stdio.h that is not in the standard system
location. When you are precompiling for C++, you must use the SYS_INCLUDE
precompiler option to specify the directory paths that Pro*C/C++ searches to look for
system header files. For example:

SYS INCLUDE=(/usr/lang/SC2.0.1/include, /usr/lang/SC2.1.1/include)
Use the INCLUDE precompiler option to specify the location of non-system header

files. The directories specified by the SYS_INCLUDE option are searched before
directories specified by the INCLUDE option.

If PARSE=NONE, the values specified in SYS_INCLUDE and INCLUDE for system
files are not relevant, since there is no need for Pro*C/C++ to include system header
files. (You can, of course, still include Pro*C/C++-specific headers, such sqlca.h,
using the EXEC SQL INCLUDE statement.)

Related Topics
e INCLUDE

12.3 Example Programs

This section includes three example Pro*C/C++ programs that include C++ constructs.
Each of these programs is available on-line, in your demo directory.

12.3.1 cppdemol.pc

ORACLE

/* cppdemol.pc

Prompts the user for an employee number, then queries the
emp table for the employee's name, salary and commission.
Uses indicator variables (in an indicator struct) to
determine if the commission is NULL.

L

*/
#include <iostream.h>

#include <stdio.h>
#include <string.h>

12-4

Chapter 12
Example Programs

// Parse=partial by default when code=cpp,

// so preprocessor directives are recognized and parsed fully.
#define UNAME LEN 20

#define PWD_LEN 40

// Declare section is required when CODE=CPP or

// PARSE={PARTIAL|NONE} or both.

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR username [UNAME LEN]; // VARCHAR is an ORACLE pseudotype
varchar password[PWD LEN]; // can be in lower case also

// Define a host structure for the output values
// of a SELECT statement
struct empdat {

VARCHAR emp name [UNAME LEN];

float salary;
float commission;
} emprec;

// Define an indicator struct to correspond to the
// host output struct
struct empind {

short emp name_ind;
short sal ind;
short comm_ind;

} emprec ind;

// Input host variables
int emp number;
int total queried;

EXEC SQL END DECLARE SECTION;

// Define a C++ class object to match the desired
// struct from the preceding declare section.
class emp {

char ename[UNAME LEN];

float salary;

float commission;
public:

// Define a constructor for this C++ object that

// takes ordinary C objects.

emp (empdaté&, empindé);

friend ostreamé& operator<<(ostream&, empé&);

}s

emp: :emp (empdaté& dat, empind& ind)
{
strncpy (ename, (char *)dat.emp name.arr, dat.emp name.len);
ename [dat.emp name.len] = "\0';
this->salary = dat.salary;
this->commission = (ind.comm ind < 0) ? 0 : dat.commission;

ostreamé& operator<<(ostream& s, emp& €)
{
return s << e.ename << " earns " << e.salary <<
" plus " << e.commission << " commission."
<< endl << endl;

ORACLE 12-5

// Include the SQL Communications Area
// You can use #include or EXEC SQL INCLUDE
#include <sglca.h>

// Declare error handling function
void sql error(char *msg);

main ()
{
char temp char[32];

// Register sql error() as the error handler

EXEC SQL WHENEVER SQLERROR DO sgl error ("ORACLE error:");

// Connect to ORACLE. Program calls sql error()
// if an error occurs

// when connecting to the default database.

// Note the (char *) cast when

// copying into the VARCHAR array buffer.

username.len = strlen(strcpy((char *)username.arr, "SCOTT"));
password.len = strlen(strcpy((char *)password.arr, "TIGER"));

EXEC SQL CONNECT :username IDENTIFIED BY :password;

// Here again, note the (char *) cast when using VARCHARs

cout << "\nConnected to ORACLE as user: "
<< (char *)username.arr << endl << endl;

// Loop, selecting individual employee's results
total queried = 0;
while (1)
{
emp number = 0;
printf ("Enter employee number (0 to quit): ");
gets (temp char);
emp number = atoi(temp char);
if (emp number == 0)
break;

// Branch to the notfound label when the
// 1403 ("No data found") condition occurs

EXEC SQL WHENEVER NOT FOUND GOTO notfound;

EXEC SQL SELECT ename, sal, comm

INTO :emprec INDICATOR :emprec_ind // You can also use

// C++ style

FROM EMP // Comments in SQL statemtents.

WHERE EMPNO = :emp number;

// Basic idea is to pass C objects to

// C++ constructors thus

// creating equivalent C++ objects used in the
// usual C++ way

emp e (emprec, emprec_ind);

cout << e;

total queried++;
continue;
notfound:

ORACLE

Chapter 12
Example Programs

12-6

cout << "Not a valid employee number - try again."
<< endl << endl;
} // end while(1)

cout << endl << "Total rows returned was "
<< total queried << endl;
cout << "Have a nice day!" << endl << endl;

// Disconnect from ORACLE
EXEC SQL COMMIT WORK RELEASE;
exit (0);

void sql error(char *msg)

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
cout << endl << msg << endl;
cout << sqglca.sglerrm.sglerrmc << endl;
EXEC SQL ROLLBACK RELEASE;
exit (1);

12.3.2 cppdemo2.pc

The next application is a simple modular example. First, execute the following SQL script,

ORACLE

cppdemo?.sql, in SQL*Plus:

Rem This is the SQL script that accompanies the cppdemo2 C++ Demo
Rem Program. Run this prior to Precompiling the empclass.pc file.
/
CONNECT SCOTT/TIGER
/
CREATE OR REPLACE VIEW emp view AS SELECT ename, empno FROM EMP
/
CREATE OR REPLACE PACKAGE emp package AS
TYPE emp cursor type IS REF CURSOR RETURN emp view¥ROWTYPE;
PROCEDURE open_cursor (curs IN OUT emp cursor type);
END emp package;
/
CREATE OR REPLACE PACKAGE BODY emp package AS
PROCEDURE open cursor (curs IN OUT emp cursor type) IS
BEGIN
OPEN curs FOR SELECT ename, empno FROM emp view ORDER BY ename ASC;
END;
END emp package;
/
EXIT
/

The header file empclass.h defines the class emp:

// This class definition may be included in a Pro*C/C++ application
// program using the EXEC SQL INCLUDE directive only. Because it

// contains EXEC SQL syntax, it may not be included using a #include
// directive. Any program that includes this header must be

// precompiled with the CODE=CPP option. This emp class definition
// 1is used when building the cppdemo2 C++ Demo Program.

Chapter 12
Example Programs

12-7

ORACLE

Chapter 12
Example Programs

class emp
{
public:
emp () ; // Constructor: ALLOCATE Cursor Variable
~emp(); // Desctructor: FREE Cursor Variable
void open () // Open Cursor

void fetch() throw (int); // Fetch (throw NOT FOUND condition)
void close(); // Close Cursor

void emp error(); // Error Handler

EXEC SQL BEGIN DECLARE SECTION;
// When included using EXEC SQL INCLUDE, class variables have
// global scope and are thus basically treated as ordinary
// global variables by Pro*C/C++ during precompilation.
char ename[10];
int empno;
EXEC SQL END DECLARE SECTION;

private:
EXEC SQL BEGIN DECLARE SECTION;
// Pro*C/C++ treats this as a simple global variable also.
SQL CURSOR emp cursor;
EXEC SQL END DECLARE SECTION;
}i

The code in empclass.pc contains the emp methods:

#include <stdio.h>
#include <stdlib.h>

// This example uses a single (global) SQLCA that is shared by the
// emp class implementation as well as the main program for this
// application.

#define SQLCA STORAGE CLASS extern

#include <sqlca.h>

// Include the emp class specification in the implementation of the
// class body as well as the application program that makes use of it.
EXEC SQL INCLUDE empclass.h;

emp: :emp ()
{
// The scope of this WHENEVER statement spans the entire module.
// Note that the error handler function is really a member function
// of the emp class.
EXEC SQL WHENEVER SQLERROR DO emp error();
EXEC SQL ALLOCATE :emp cursor; // Constructor - ALLOCATE Cursor.

emp: :~emp ()
{
EXEC SQL FREE :emp cursor; // Destructor - FREE Cursor.

void emp::open()
{
EXEC SQL EXECUTE
BEGIN
emp package.open cursor (:emp cursor);

12-8

ORACLE

Chapter 12

Example Programs

END;
END-EXEC;

void emp::close()

{
EXEC SQL CLOSE :emp cursor;

void emp::fetch() throw (int)
{
EXEC SQL FETCH :emp cursor INTO :ename, :empno;
if (sglca.sglcode == 1403)
throw sqlca.sqglcode; // Like a WHENEVER NOT FOUND statement.

void emp::emp error ()
{
printf("$.*s\n", sqglca.sglerrm.sqglerrml, sglca.sqglerrm.sglerrmc);
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;
exit (1),

The main program, cppdemo? . pc, uses the cursor variable:

// Pro*C/C++ sample program demonstrating a simple use of Cursor Variables
// implemented within a C++ class framework. Build this program as follows
//

// 1. Execute the cppdemo2.sql script within SQL*Plus

// 2. Precompile the empclass.pc program as follows

// > proc code=cpp sglcheck=full user=scott/tiger lines=yes empclass
// 3. Precompile the cppdemo2.pc program as follows

// > proc code=cpp lines=yes cppdemo2

// 4. Compile and Link

//

// Note that you may have to specify various include directories using the
// include option when precompiling.

#include <stdio.h>
#include <stdlib.h>
#include <sqlca.h>

static void sql_error(
{
printf ("$.*s\n", sqglca.sglerrm.sqlerrml, sglca.sqglerrm.sglerrmc);
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;
exit(1l);

// Physically include the emp class definition in this module.
EXEC SQL INCLUDE empclass.h;

int main ()
{
EXEC SQL BEGIN DECLARE SECTION;
char *uid = "scott/tiger";
EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR DO sql error();

12-9

Chapter 12
Example Programs

EXEC SQL CONNECT :uid;

emp *e = new emp(); // Invoke Constructor - ALLOCATE Cursor Variable.
e->open () ; // Open the Cursor.
while (1)

{
// Fetch from the Cursor, catching the NOT FOUND condition
// thrown by the fetch() member function.
try { e->fetch(); } catch (int code)
{ 1f (code == 1403) break; }
printf ("Employee: $s[%d]\n", e->ename, e->empno);

e->close(); // Close the Cursor.

delete e; // Invoke Destructor - FREE Cursor Variable.

EXEC SQL ROLLBACK WORK RELEASE;
return (0);

12.3.3 cppdemo3.pc

ORACLE

/*
* cppdemo3.pc : An example of C++ Inheritance

*

* This program finds all salesman and prints their names
* followed by how much they earn in total (ie; including
* any commissions).

*/

#include <iostream.h>
#include <stdio.h>
#include <sglca.h>
#include <string.h>

#define NAMELEN 10

class employee { // Base class 1s a simple employee
public:

char ename [NAMELEN] ;

int sal;

employee (char *, int);

s

employee: :employee (char *ename, int sal)
{

strcpy (this->ename, ename);

this->sal = sal;

}

// A salesman is a kind of employee
class salesman : public employee
{
int comm;
public:
salesman (char *, int, int);
friend ostreamé& operator<<(ostream&, salesmang);

12-10

ORACLE

}s

// Inherits employee attributes
salesman::salesman (char *ename, int sal, int comm)
employee (ename, sal), comm(comm) {}

ostreamé& operator<<(ostream& s, salesman& m)

{

return s << m.ename << m.sal + m.comm << endl;

void print(char *ename, int sal, int comm)
{

salesman man (ename, sal, comm);

cout << man;

main ()
{

EXEC SQL BEGIN DECLARE SECTION;
char *uid = "scott/tiger";
char ename[NAMELEN];
int sal, comm;
short comm ind;

EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR GOTO error;

EXEC SQL CONNECT :uid;
EXEC SQL DECLARE c¢ CURSOR FOR

SELECT ename, sal, comm FROM emp WHERE job = 'SALESMAN'

ORDER BY ename;
EXEC SQL OPEN c;

cout << "Name Salary" << endl << "------ ------

EXEC SQL WHENEVER NOT FOUND DO break;
while (1)
{

EXEC SQL FETCH c INTO :ename, :sal, :comm:comm ind;

print (ename, sal, (comm ind < 0) ? 0 : comm);
}
EXEC SQL CLOSE c;
exit (0);

error:
cout << endl << sglca.sglerrm.sglerrmc << endl;
exit (1),

Chapter 12
Example Programs

12-11

Oracle Dynamic SQL

This chapter shows you how to use Oracle Dynamic SQL, an advanced programming
technique that adds flexibility and functionality to your applications. You will learn four
methods for writing programs that accept and process SQL statements at run time. This
chapter contains the following topics:

" Note:

Oracle Dynamic SQL does not support object types, cursor variables, arrays of
structs, DML returning clauses, Unicode variables, and LOBs. Use ANSI Dynamic
SQL method 4 instead.

* What is Dynamic SQL?

» Advantages and Disadvantages of Dynamic SQL
* When to Use Dynamic SQL

* Requirements for Dynamic SQL Statements

* How Dynamic SQL Statements are Processed

* Methods for Using Dynamic SQL

e Using Method 1

* Using Method 2

* Using Method 3

e Using Method 4

e About Using the DECLARE STATEMENT Statement
e About Using PL/SQL

* Dynamic SQL Statement Caching

* About Boolean Data Type Support

13.1 What is Dynamic SQL?

ORACLE

Most database applications do a specific job. For example, a simple program might prompt
the user for an employee number, then update rows in the EMP and DEPT tables. In this
case, you know the makeup of the UPDATE statement at precompile time. That is, you know
which tables might be changed, the constraints defined for each table and column, which
columns might be updated, and the datatype of each column.

However, some applications must accept (or build) and process a variety of SQL statements
at run time. For example, a general-purpose report writer must build different SELECT
statements for the various reports it generates. In this case, the statement's makeup is

13-1

Chapter 13
Advantages and Disadvantages of Dynamic SQL

unknown until run time. Such statements can, and probably will, change from
execution to execution. They are aptly called dynamic SQL statements.

Unlike static SQL statements, dynamic SQL statements are not embedded in your
source program. Instead, they are stored in character strings input to or built by the
program at run time. They can be entered interactively or read from a file.

13.2 Advantages and Disadvantages of Dynamic SQL

Host programs that accept and process dynamically defined SQL statements are more
versatile than plain embedded SQL programs. Dynamic SQL statements can be built
interactively with input from users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search condition to be
used in the WHERE clause of a SELECT, UPDATE, or DELETE statement. A more
complex program might allow users to choose from menus listing SQL operations,
table and view names, column names, and so on. Thus, dynamic SQL lets you write
highly flexible applications.

However, some dynamic queries require complex coding, the use of special data
structures, and more runtime processing. While you might not notice the added
processing time, you might find the coding difficult unless you fully understand
dynamic SQL concepts and methods.

13.3 When to Use Dynamic SQL

In practice, static SQL will meet nearly all your programming needs. Use dynamic SQL
only if you need its open-ended flexibility. Its use is suggested when one of the
following items is unknown at precompile time:

» Text of the SQL statement (commands, clauses, and so on)
e The number of host variables
* The datatypes of host variables

» References to database objects such as columns, indexes, sequences, tables,
usernames, and views

13.4 Requirements for Dynamic SQL Statements

ORACLE

To represent a dynamic SQL statement, a character string must contain the text of a
valid SQL statement, but not contain the EXEC SQL clause, or the statement
terminator, or any of the following embedded SQL commands:

* ALLOCATE
e CLOSE

« DECLARE
« DESCRIBE
« EXECUTE
e FETCH

* FREE

13-2

13.5 How

Chapter 13
How Dynamic SQL Statements are Processed

- GET
 INCLUDE
» OPEN

* PREPARE
e SET

* WHENEVER

In most cases, the character string can contain dummy host variables. They hold places in
the SQL statement for actual host variables. Because dummy host variables are just
placeholders, you do not declare them and can name them anything you like. For example,
Oracle makes no distinction between the following two strings:

'DELETE FROM EMP WHERE MGR :mgr_number AND JOB = :job title'
'DELETE FROM EMP WHERE MGR = :m AND JOB = :j'

Dynamic SQL Statements are Processed

Typically, an application program prompts the user for the text of a SQL statement and the
values of host variables used in the statement. Oracle then parses the SQL statement to
ensure it meets syntax rules.

Next, Oracle binds the host variables to the SQL statement. That is, Oracle gets the
addresses of the host variables so that it can read or write their values.

Then Oracle executes the SQL statement. That is, Oracle does what the SQL statement
requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for the host variables.

13.6 Methods for Using Dynamic SQL

ORACLE

This section introduces four methods you can use to define dynamic SQL statements. It
briefly describes the capabilities and limitations of each method, then offers guidelines for
choosing the right method. Later sections show you how to use the methods, and include
example programs that you can study.

The four methods are increasingly general. That is, Method 2 encompasses Method 1,
Method 3 encompasses Methods 1 and 2, and so on. However, each method is most useful
for handling a certain kind of SQL statement, as Table 13-1 shows:

Table 13-1 Methods for Using Dynamic SQL
- __]

Method Kind of SQL Statement

1 non-query without host variables

2 non-query with known number of input host variables

3 query with known number of select-list items and input host variables
4 query with unknown number of select-list items or input host variables

13-3

Chapter 13
Methods for Using Dynamic SQL

< Note:

The term select-list item includes column names and expressions such as
SAL * 1.10 and MAX(SAL).

13.6.1 Method 1

This method lets your program accept or build a dynamic SQL statement, then
immediately execute it using the EXECUTE IMMEDIATE command. The SQL
statement must not be a query (SELECT statement) and must not contain any
placeholders for input host variables. For example, the following host strings qualify:

'DELETE FROM EMP WHERE DEPTNO = 20'
'GRANT SELECT ON EMP TO scott'

With Method 1, the SQL statement is parsed every time it is executed.

13.6.2 Method 2

This method lets your program accept or build a dynamic SQL statement, then
process it using the PREPARE and EXECUTE commands. The SQL statement must
not be a query. The number of placeholders for input host variables and the datatypes
of the input host variables must be known at precompile time. For example, the
following host strings fall into this category:

"INSERT INTO EMP (ENAME, JOB) VALUES (:emp name, :job title)'
'DELETE FROM EMP WHERE EMPNO = :empinumber'

With Method 2, the SQL statement is parsed just once, but can be executed many
times with different values for the host variables. SQL data definition statements such
as CREATE and GRANT are executed when they are PREPAREd.

13.6.3 Method 3

This method lets your program accept or build a dynamic query, then process it using
the PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE cursor
commands. The number of select-list items, the number of placeholders for input host
variables, and the datatypes of the input host variables must be known at precompile
time. For example, the following host strings qualify:

'SELECT DEPTNO, MIN(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO'
'SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :dept number'

13.6.4 Method 4

ORACLE

This method lets your program accept or build a dynamic SQL statement, then
process it using descriptors. The number of select-list items, the number of
placeholders for input host variables, and the datatypes of the input host variables can
be unknown until run time. For example, the following host strings fall into this
category:

13-4

Chapter 13
Methods for Using Dynamic SQL

'"INSERT INTO EMP (<unknown>) VALUES (<unknown>)'
'SELECT <unknown> FROM EMP WHERE DEPTNO = 20'

Method 4 is required for dynamic SQL statements that contain an unknown number of select-
list items or input host variables.

Related Topics
* Using Method 4

13.6.5 Guidelines

With all four methods, you must store the dynamic SQL statement in a character string, which
must be a host variable or quoted literal. When you store the SQL statement in the string,
omit the keywords EXEC SQL and the ';' statement terminator.

With Methods 2 and 3, the number of placeholders for input host variables and the datatypes
of the input host variables must be known at precompile time.

Each succeeding method imposes fewer constraints on your application, but is more difficult
to code. As a rule, use the simplest method you can. However, if a dynamic SQL statement
will be executed repeatedly by Method 1, use Method 2 instead to avoid reparsing for each
execution.

Method 4 provides maximum flexibility, but requires complex coding and a full understanding
of dynamic SQL concepts. In general, use Method 4 only if you cannot use Methods 1, 2, or
3.

The decision logic in Figure 13-1 will help you choose the right method.

13.6.5.1 About Avoiding Common Errors

If you precompile using the command-line option DBMS=V6_CHAR, blank-pad the array
before storing the SQL statement. That way, you clear extraneous characters. This is
especially important when you reuse the array for different SQL statements. As a rule, always
initialize (or re-initialize) the host string before storing the SQL statement. Do not null-
terminate the host string. Oracle does not recognize the null terminator as an end-of-string
sentinel. Instead, Oracle treats it as part of the SQL statement.

If you precompile with the command-line option DBMS=V8, make sure that the string is null
terminated before you execute the PREPARE or EXECUTE IMMEDIATE statement.

Regardless of the value of DBMS, if you use a VARCHAR variable to store the dynamic SQL
statement, make sure the length of the VARCHAR is set (or reset) correctly before you
execute the PREPARE or EXECUTE IMMEDIATE statement.

ORACLE 13-5

Figure 13-1 Choosing the Right Method

About the SQL statement...

Does its select list
contain an unknown
number of items?

Is it a query?

Does it
contain an
unknown number of
input host
variables?

Does it contain
input host
variables?

yes

Chapter 13
Using Method 1

yes

yes

13.7 Using Method 1

ORACLE

. no
Does it
contain an unknown yes _
number of input "
host variables?
Will it be executed
repeatedly?
v v v
Method 1 Method 2 Method 3 Method 4

The simplest kind of dynamic SQL statement results only in "success" or “failure” and

uses no host variables. Some examples follow:

'DELETE FROM table name WHERE column name = constant'
'CREATE TABLE table name ...'

'DROP INDEX index name'

'"UPDATE table name SET column name = constant'

'GRANT SELECT ON table name TO username'

'REVOKE RESOURCE FROM username'

13-6

Chapter 13
Using Method 1

Method 1 parses, then immediately executes the SQL statement using the EXECUTE
IMMEDIATE command. The command is followed by a character string (host variable or
literal) containing the SQL statement to be executed, which cannot be a query.

The syntax of the EXECUTE IMMEDIATE statement follows:

EXEC SQL EXECUTE IMMEDIATE { :host string | string literal };

In the following example, you use the host variable dyn_stmt to store SQL statements input
by the user:

char dyn stmt[132];
for (;7)
{
printf ("Enter SQL statement: ");
gets(dyn stmt);
if (*dyn_stmt == '\0')
break;

/* dyn stmt now contains the text of a SQL statement */
EXEC SQL EXECUTE IMMEDIATE :dyn_stmt;

You can also use string literals, as the following example shows:
EXEC SQL EXECUTE IMMEDIATE 'REVOKE RESOURCE FROM MILLER';
Because EXECUTE IMMEDIATE parses the input SQL statement before every execution,

Method 1 is best for statements that are executed only once. Data definition language
statements usually fall into this category.

13.7.1 Example Program: Dynamic SQL Method 1

ORACLE

The following program uses dynamic SQL Method 1 to create a table, insert a row, commit
the insert, then drop the table. This program is available on-line in your demo directory in the
file sample6.pc.

* sample6.pc: Dynamic SQL Method 1

* This program uses dynamic SQL Method 1 to create a table,
* insert a row, commit the insert, then drop the table.

*/

#include <stdio.h>
#include <string.h>

/* Include the SQL Communications Area, a structure through

* which ORACLE makes runtime status information such as error
* codes, warning flags, and diagnostic text available to the
* program.

*/

#include <sglca.h>

/* Include the ORACLE Communications Area, a structure through
* which ORACLE makes additional runtime status information
* available to the program.

*/

13-7

ORACLE

Chapter 13
Using Method 1

#include <oraca.h>

/* The ORACA=YES option must be specified to enable you
* to use the ORACA.
*/

EXEC ORACLE OPTION (ORACA=YES);

Specifying the RELEASE CURSOR=YES option instructs Pro*C

to release resources associated with embedded SQL
statements after they are executed. This ensures that
ORACLE does not keep parse locks on tables after data
manipulation operations, so that subsequent data definition
operations on those tables do not result in a parse-lock
error.

* ok ok ok k% %

EXEC ORACLE OPTION (RELEASE CURSOR=YES);

void dyn error();

main ()
{
/* Declare the program host variables. */
char *username = "SCOTT";
char *password = "TIGER";
char *dynstmtl;
char dynstmt2[10];
VARCHAR dynstmt3[80];

/* Call routine dyn error() if an ORACLE error occurs. */
EXEC SQL WHENEVER SQLERROR DO dyn error ("Oracle error:");

/* Save text of current SQL statement in the ORACA if an
* error occurs.
*/

oraca.orastxtf = ORASTFERR;

/* Connect to Oracle. */

EXEC SQL CONNECT :username IDENTIFIED BY :password;
puts ("\nConnected to ORACLE.\n");

/* Execute a string literal to create the table. This
* usage 1s actually not dynamic because the program does
* not determine the SQL statement at run time.
*/
puts ("CREATE TABLE dynl (coll VARCHAR2 (4))");

EXEC SQL EXECUTE IMMEDIATE
"CREATE TABLE dynl (coll VARCHARZ(4))";

/* Execute a string to insert a row. The string must
* be null-terminated. This usage is dynamic because the
* SQL statement is a string variable whose contents the
* program can determine at run time.
*/

dynstmtl = "INSERT INTO DYN1 values ('TEST')";

puts (dynstmtl);

13-8

Chapter 13
Using Method 1

EXEC SQL EXECUTE IMMEDIATE :dynstmtl;

/* Execute a SQL statement in a string to commit the insert.
* Pad the unused trailing portion of the array with spaces.
* Do NOT null-terminate it.

*/
strncpy (dynstmt2, "COMMIT ", 10);
printf ("$.10s\n", dynstmt2);

EXEC SQL EXECUTE IMMEDIATE :dynstmt2;

/* Execute a VARCHAR to drop the table. Set the .len field
* to the length of the .arr field.
*/

strcpy(dynstmt3.arr, "DROP TABLE DYN1");

dynstmt3.len = strlen(dynstmt3.arr);

puts((char *) dynstmt3.arr);

EXEC SQL EXECUTE IMMEDIATE :dynstmt3;

/* Commit any outstanding changes and disconnect from Oracle. */
EXEC SQL COMMIT RELEASE;

puts ("\nHave a good day!\n");

return 0;
}
void
dyn error (msg)
char *msg;

{
/* This is the Oracle error handler.
* Print diagnostic text containing the error message,
* current SQL statement, and location of error.
*/
printf ("\n%.*s\n",
sglca.sglerrm.sqglerrml, sglca.sglerrm.sglerrmc);
printf("in \"%.*s...\'\n",
oraca.orastxt.orastxtl, oraca.orastxt.orastxtc);
printf("on line %d of %.*s.\n\n",
oraca.oraslnr, oraca.orasfnm.orasfnml,
oraca.orasfnm.orasfnmc) ;

/* Disable Oracle error checking to avoid an infinite loop
* should another error occur within this routine as a
* result of the rollback.
*/
EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Roll back any pending changes and disconnect from Oracle. */
EXEC SQL ROLLBACK RELEASE;

exit(1);

ORACLE 13-9

Chapter 13
Using Method 2

13.8 Using Method 2

ORACLE

What Method 1 does in one step, Method 2 does in two. The dynamic SQL statement,
which cannot be a query, is first PREPAREd (named and parsed), then EXECUTECJ.

With Method 2, the SQL statement can contain placeholders for input host variables
and indicator variables. You can PREPARE the SQL statement once, then EXECUTE
it repeatedly using different values of the host variables. Furthermore, you need not
rePREPARE the SQL statement after a COMMIT or ROLLBACK (unless you log off
and reconnect).

You can use EXECUTE for non-queries with Method 4.

The syntax of the PREPARE statement follows:

EXEC SQL PREPARE statement name
FROM { :host string | string literal };

PREPARE parses the SQL statement and gives it a name.

The statement_name is an identifier used by the precompiler, not a host or program
variable, and should not be declared in the Declare Section. It simply designates the
PREPAREd statement you want to EXECUTE.

The syntax of the EXECUTE statement is

EXEC SQL EXECUTE statement name [USING host variable list];

where host_variable_list stands for the following syntax:

:host _variablel[:indicatorl] [, host variable2[:indicator2], ...]

EXECUTE executes the parsed SQL statement, using the values supplied for each
input host variable.

In the following example, the input SQL statement contains the placeholder n:

int emp number INTEGER;
char delete stmt[120], search cond[40];;

strcpy (delete stmt, "DELETE FROM EMP WHERE EMPNO = :n AND ");
printf ("Complete the following statement's search condition--\n");
printf ("$s\n", delete stmt);

gets (search cond);

strcat (delete stmt, search cond);
EXEC SQL PREPARE sql_stmt FROM :delete_stmt;
for (;7)

{

printf ("Enter employee number: ");

gets (temp);

emp number = atoi (temp);

if (emp number == 0)
break;

EXEC SQL EXECUTE sgl stmt USING :emp number;

13-10

Chapter 13
Using Method 2

With Method 2, you must know the datatypes of input host variables at precompile time. In
the last example, emp_number was declared as an int. It could also have been declared as
type float, or even a char, because Oracle supports all these datatype conversions to the
internal Oracle NUMBER datatype.

13.8.1 The USING Clause

When the SQL statement is EXECUTEQ, input host variables in the USING clause replace
corresponding placeholders in the PREPAREd dynamic SQL statement.

Every placeholder in the PREPAREd dynamic SQL statement must correspond to a different
host variable in the USING clause. So, if the same placeholder appears two or more times in
the PREPAREJ statement, each appearance must correspond to a host variable in the
USING clause.

The names of the placeholders need not match the names of the host variables. However,
the order of the placeholders in the PREPAREd dynamic SQL statement must match the
order of corresponding host variables in the USING clause.

If one of the host variables in the USING clause is an array, all must be arrays.

To specify NULLS, you can associate indicator variables with host variables in the USING
clause.

Related Topics

e Indicator Variables

13.8.2 Example Program: Dynamic SQL Method 2

ORACLE

The following program uses dynamic SQL Method 2 to insert two rows into the EMP table,
then delete them. This program is available on-line in your demo directory, in the file
sample7.pc.

/%
* sample7.pc: Dynamic SQL Method 2

*

* This program uses dynamic SQL Method 2 to insert two rows into
* the EMP table, then delete them.

*/

#include <stdio.h>
#include <string.h>

#define USERNAME "SCOTT"
#define PASSWORD "TIGER"

/* Include the SQL Communications Area, a structure through

* which ORACLE makes runtime status information such as error
* codes, warning flags, and diagnostic text available to the
* program.

*/

#include <sglca.h>

/* Include the ORACLE Communications Area, a structure through
* which ORACLE makes additional runtime status information

* available to the program.

*/

#include <oraca.h>

13-11

ORACLE

Chapter 13
Using Method 2

/* The ORACA=YES option must be specified to enable use of
* the ORACA.

*/

EXEC ORACLE OPTION (ORACA=YES);

char *username = USERNAME;
char *password = PASSWORD;
VARCHAR dynstmt[80];

int empno = 1234;
int deptnol = 97;
int deptno2 = 99;

/* Handle SQL runtime errors. */
void dyn error();

main ()
{
/* Call dyn error () whenever an error occurs
* processing an embedded SQL statement.
*/
EXEC SQL WHENEVER SQLERROR DO dyn error ("Oracle error");

/* Save text of current SQL statement in the ORACA if an
* error occurs.
*/

oraca.orastxtf = ORASTFERR;

/* Connect to Oracle. */

EXEC SQL CONNECT :username IDENTIFIED BY :password;
puts ("\nConnected to Oracle.\n");

/* Assign a SQL statement to the VARCHAR dynstmt. Both
* the array and the length parts must be set properly.
* Note that the statement contains two host-variable
* placeholders, vl and v2, for which actual input
* host variables must be supplied at EXECUTE time.
*/
strcpy (dynstmt.arr,
"INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:v1, :v2)");
dynstmt.len = strlen(dynstmt.arr);

/* Display the SQL statement and its current input host
* variables.
*/

puts ((char *) dynstmt.arr);

printf (" vl = %d, v2 = %d\n", empno, deptnol);

/* The PREPARE statement associates a statement name with

* a string containing a SQL statement. The statement name
* is a SQL identifier, not a host variable, and therefore
* does not appear in the Declare Section.

* A single statement name can be PREPAREd more than once,
* optionally FROM a different string variable.
*/

EXEC SQL PREPARE S FROM :dynstmt;

13-12

Chapter 13
Using Method 2

The EXECUTE statement executes a PREPAREd SQL statement
USING the specified input host variables, which are
substituted positionally for placeholders in the
PREPAREd statement. For each occurrence of a
placeholder in the statement there must be a variable
in the USING clause. That is, if a placeholder occurs
multiple times in the statement, the corresponding
variable must appear multiple times in the USING clause.
The USING clause can be omitted only if the statement
contains no placeholders.

A single PREPAREd statement can be EXECUTEd more
than once, optionally USING different input host
variables.
/

EXEC SQL EXECUTE S USING :empno, :deptnol;

T R R T T T

/* Increment empno and display new input host variables. */

empno++;
printf (" vl = %d, v2 = %d\n", empno, deptno2);

/* ReEXECUTE S to insert the new value of empno and a
* different input host variable, deptno2.
* A rePREPARE is unnecessary.
*/
EXEC SQL EXECUTE S USING :empno, :deptno2;

/* Assign a new value to dynstmt. */

strcpy (dynstmt.arr,
"DELETE FROM EMP WHERE DEPTNO = :v1 OR DEPTNO = :v2");
dynstmt.len = strlen(dynstmt.arr);

/* Display the new SQL statement and its current input host
* variables.
*/
puts ((char *) dynstmt.arr);
printf (" vl = %d, v2 = %d\n", deptnol, deptno2);
/* RePREPARE S FROM the new dynstmt. */
EXEC SQL PREPARE S FROM :dynstmt;

/* EXECUTE the new S to delete the two rows previously
* inserted.
*/

EXEC SQL EXECUTE S USING :deptnol, :deptno2;

/* Commit any pending changes and disconnect from Oracle. */

EXEC SQL COMMIT RELEASE;
puts ("\nHave a good day!\n");
exit (0);

void
dyn error (msg)
char *msg;

{

ORACLE 13-13

Chapter 13
Using Method 3

/* This is the ORACLE error handler.
* Print diagnostic text containing error message,
* current SQL statement, and location of error.
*/
printf ("\n%s", msg);
printf ("\n%.*s\n",
sglca.sqglerrm.sqglerrml, sqglca.sqglerrm.sqglerrmc);
printf("in \"$.*s...\"\n",
oraca.orastxt.orastxtl, oraca.orastxt.orastxtc);
printf("on line %d of %.*s.\n\n",
oraca.oraslnr, oraca.orasfnm.orasfnml,
oraca.orasfnm.orasfnmc) ;

/* Disable ORACLE error checking to avoid an infinite loop
* should another error occur within this routine.
*/

EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Roll back any pending changes and
* disconnect from Oracle.
*/

EXEC SQL ROLLBACK RELEASE;

exit (1);

13.9 Using Method 3

ORACLE

Method 3 is similar to Method 2 but combines the PREPARE statement with the
statements needed to define and manipulate a cursor. This allows your program to
accept and process queries. In fact, if the dynamic SQL statement is a query, you must
use Method 3 or 4.

For Method 3, the number of columns in the query select list and the number of
placeholders for input host variables must be known at precompile time. However, the
names of database objects such as tables and columns need not be specified until run
time. Names of database objects cannot be host variables. Clauses that limit, group,
and sort query results (such as WHERE, GROUP BY, and ORDER BY) can also be
specified at run time.

With Method 3, you use the following sequence of embedded SQL statements:

PREPARE statement name FROM { :host string | string literal };
DECLARE cursor name CURSOR FOR statement name;

OPEN cursor name [USING host variable list];

FETCH cursor name INTO host variable list;

CLOSE cursor name;

Scrollable Cursors can also be used with Method 3. The following sequence of
embedded SQL statements must be used for scrollable cursors.

PREPARE statement name FROM { :host string | string literal };
DECLARE cursor name SCROLL CURSOR FOR statement name;
OPEN cursor name [USING host variable list];
FETCH [FIRST| PRIOR|NEXT|LAST|CURRENT | RELATIVE fetch offset
|ABSOLUTE fetch offset] cursor name INTO host variable list;
CLOSE cursor name;

Now we look at what each statement does.

13-14

Chapter 13
Using Method 3

13.9.1 PREPARE (Dynamic SQL)

PREPARE parses the dynamic SQL statement and gives it a name. In the following example,
PREPARE parses the query stored in the character string select_stmt and gives it the name
sql_stmt:

char select stmt[132] =
"SELECT MGR, JOB FROM EMP WHERE SAL < :salary";
EXEC SQL PREPARE sql stmt FROM :select stmt;

Commonly, the query WHERE clause is input from a terminal at run time or is generated by
the application.

The identifier sql_stmt is not a host or program variable, but must be unique. It designates a
particular dynamic SQL statement.

The following statement is correct also:

EXEC SQL PREPARE sql stmt FROM SELECT MGR, JOB FROM EMP WHERE SAL < :salary;

The following prepare statement, which uses the '%' wildcard, is correct also:

EXEC SQL PREPARE S FROM select ename FROM test WHERE ename LIKE 'SMITS';

13.9.2 DECLARE (Dynamic SQL)

DECLARE defines a cursor by giving it a name and associating it with a specific query.
Continuing our example, DECLARE defines a cursor named emp_cursor and associates it
with sql_stmt, as follows:

EXEC SQL DECLARE emp cursor CURSOR FOR sql stmt;

The identifiers sql_stmt and emp_cursor are not host or program variables, but must be
unique. If you declare two cursors using the same statement name, the precompiler
considers the two cursor names synonymous.

We can define a scrollable cursor named emp_cursor and associate it with sgl_stmt as
follows:

EXEC SQL DECLARE emp cursor SCROLL CURSOR FOR sql stmt;

For example, if you execute the statements

EXEC SQL PREPARE sql stmt FROM :select stmt;
EXEC SQL DECLARE emp cursor FOR sqgl stmt;
EXEC SQL PREPARE sql_stmt FROM :delete_stmt;
EXEC SQL DECLARE dept cursor FOR sql stmt;

when you OPEN emp_cursor, you will process the dynamic SQL statement stored in
delete_stmt, not the one stored in select_stmt.

13.9.3 OPEN (Dynamic SQL)

OPEN allocates an Oracle cursor, binds input host variables, and executes the query,
identifying its active set. OPEN also positions the cursor on the first row in the active set and
zeroes the rows-processed count kept by the third element of sqlerrd in the SQLCA. Input

ORACLE 13-15

Chapter 13
Using Method 3

host variables in the USING clause replace corresponding placeholders in the
PREPAREd dynamic SQL statement.

In our example, OPEN allocates emp_cursor and assigns the host variable salary to
the WHERE clause, as follows:

EXEC SQL OPEN emp cursor USING :salary;

13.9.4 FETCH (Dynamic SQL)

FETCH returns a row from the active set, assigns column values in the select list to
corresponding host variables in the INTO clause, and advances the cursor to the next
row. If there are no more rows, FETCH returns the "no data found" Oracle error code
to sqlca.sqlcode.

In our example, FETCH returns a row from the active set and assigns the values of
columns MGR and JOB to host variables mgr_number and job_title, as follows:

EXEC SQL FETCH emp cursor INTO :mgr number, :job title;

If the cursor is declared in SCROLL mode, you can then use the various FETCH
orientation modes to randomly access the result set.

13.9.5 CLOSE (Dynamic SQL)

CLOSE disables the cursor. Once you CLOSE a cursor, you can no longer FETCH
from it.

In our example, CLOSE disables emp_cursor, as follows:

EXEC SQL CLOSE emp cursor;

13.9.6 Example Program: Dynamic SQL Method 3

ORACLE

The following program uses dynamic SQL Method 3 to retrieve the names of all
employees in a given department from the EMP table. This program is available on-
line in your demo directory, in the file sample8.pc

* sample8.pc: Dynamic SQL Method 3

* This program uses dynamic SQL Method 3 to retrieve the names
* of all employees in a given department from the EMP table.
*/

#include <stdio.h>
#include <string.h>

#define USERNAME "SCOTT"
#define PASSWORD "TIGER"

/* Include the SQL Communications Area, a structure through

* which ORACLE makes runtime status information such as error
* codes, warning flags, and diagnostic text available to the
* program. Also include the ORACA.

*/

#include <sglca.h>

13-16

Chapter 13
Using Method 3

#include <oraca.h>

/* The ORACA=YES option must be specified to enable use of
* the ORACA.
*/

EXEC ORACLE OPTION (ORACA=YES);

char *username = USERNAME;
char *password = PASSWORD;
VARCHAR dynstmt[80];
VARCHAR ename[10];

int deptno = 10;

void dyn error();

main ()
{
/* Call dyn error() function on any error in
* an embedded SQL statement.
*/
EXEC SQL WHENEVER SQLERROR DO dyn error ("Oracle error");

/* Save text of SQL current statement in the ORACA if an
* error occurs.
*/

oraca.orastxtf = ORASTFERR;

/* Connect to Oracle. */

EXEC SQL CONNECT :username IDENTIFIED BY :password;
puts ("\nConnected to Oracle.\n");

/* Assign a SQL query to the VARCHAR dynstmt. Both the

* array and the length parts must be set properly. Note
* that the query contains one host-variable placeholder,
* vl, for which an actual input host variable must be

* supplied at OPEN time.

strcpy (dynstmt.arr,
"SELECT ename FROM emp WHERE deptno = :v1");
dynstmt.len = strlen(dynstmt.arr);

/* Display the SQL statement and its current input host
* variable.

*/
puts ((char *) dynstmt.arr);
printf (" vl = %d\n", deptno);
printf ("\nEmployee\n");
printf ("-------- \n");

/* The PREPARE statement associates a statement name with
* a string containing a SELECT statement. The statement
* name is a SQL identifier, not a host variable, and
* therefore does not appear in the Declare Section.

* A single statement name can be PREPAREd more than once,
* optionally FROM a different string variable.
*/

EXEC SQL PREPARE S FROM :dynstmt;

ORACLE 13-17

ORACLE

Chapter 13
Using Method 3

/* The DECLARE statement associates a cursor with a
* PREPAREd statement. The cursor name, like the statement
* name, does not appear in the Declare Section.

* A single cursor name cannot be DECLAREd more than once.
*/
EXEC SQL DECLARE C CURSOR FOR S;

The OPEN statement evaluates the active set of the
PREPAREd query USING the specified input host variables,
which are substituted positionally for placeholders in
the PREPAREd query. For each occurrence of a
placeholder in the statement there must be a variable
in the USING clause. That is, if a placeholder occurs
multiple times in the statement, the corresponding
variable must appear multiple times in the USING clause.

* ok ok ok k% %

*

The USING clause can be omitted only if the statement
* contains no placeholders. OPEN places the cursor at the
* first row of the active set in preparation for a FETCH.

* A single DECLAREd cursor can be OPENed more than once,
* optionally USING different input host variables.

EXEC SQL OPEN C USING :deptno;

/* Break the loop when all data have been retrieved. */
EXEC SQL WHENEVER NOT FOUND DO break;

/* Loop until the NOT FOUND condition is detected. */

for (;;)

{
The FETCH statement places the select list of the
current row into the variables specified by the INTO
clause, then advances the cursor to the next row. If
there are more select-list fields than output host
variables, the extra fields will not be returned.
Specifying more output host variables than select-list
fields results in an ORACLE error.

* ok ok ok k% %

EXEC SQL FETCH C INTO :ename;

/* Null-terminate the array before output. */
ename.arr[ename.len] = "\0';
puts ((char *) ename.arr);

}

/* Print the cumulative number of rows processed by the
* current SQL statement.
*/
printf ("\nQuery returned %d row%s.\n\n", sqglca.sqglerrd[2],
(sglca.sglerrd([2] == 1) 2 "" : "s");

/* The CLOSE statement releases resources associated with
* the cursor.
*/

EXEC SQL CLOSE C;

/* Commit any pending changes and disconnect from Oracle. */

13-18

Chapter 13
Using Method 4

EXEC SQL COMMIT RELEASE;
puts ("Sayonara.\n");
exit (0);

}

void

dyn error (msg)
char *msg;

{

printf ("\n%s", msqg);

sqlca.sqlerrm.sqlerrmc[sqglca.sqlerrm.sqlerrml] = '"\0';
oraca.orastxt.orastxtc[oraca.orastxt.orastxtl] = "\0';
oraca.orasfnm.orasfnmc[oraca.orasfnm.orasfnml] = "\0';

printf ("\n%s\n", sqglca.sglerrm.sqglerrmc);

printf("in \"%s...\"\n", oraca.orastxt.orastxtc);

printf("on line %d of %s.\n\n", oraca.oraslnr,
oraca.orasfnm.orasfnmc) ;

/* Disable ORACLE error checking to avoid an infinite loop
* should another error occur within this routine.
*/

EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Release resources associated with the cursor. */
EXEC SQL CLOSE C;

/* Roll back any pending changes and disconnect from Oracle. */
EXEC SQL ROLLBACK RELEASE;
exit(1);

13.10 Using Method 4

ORACLE

This section gives an overview of Oracle Dynamic SQL Method 4. Oracle Dynamic SQL
Method 4 does not support object types, results sets, arrays of structs, or LOBs.

ANSI SQL does support all datatypes. Use ANSI SQL for all new applications.

There is a kind of dynamic SQL statement that your program cannot process using Method 3.
When the number of select-list items or placeholders for input host variables is unknown until
run time, your program must use a descriptor. A descriptor is an area of memory used by
your program and Oracle to hold a complete description of the variables in a dynamic SQL
statement.

Recall that for a multirow query, you FETCH selected column values INTO a list of declared
output host variables. If the select list is unknown, the host-variable list cannot be established
at precompile time by the INTO clause. For example, you know the following query returns
two column values:

SELECT ename, empno FROM emp WHERE deptno = :dept number;

However, if you let the user define the select list, you might not know how many column
values the query will return.

Related Topics
e ANSI Dynamic SQL
e Oracle Dynamic SQL: Method 4

13-19

Chapter 13
Using Method 4

13.10.1 Need for the SQLDA

To process this kind of dynamic query, your program must issue the DESCRIBE
SELECT LIST command and declare a data structure called the SQL Descriptor Area
(SQLDA). Because it holds descriptions of columns in the query select list, this
structure is also called a select descriptor.

Likewise, if a dynamic SQL statement contains an unknown number of placeholders
for input host variables, the host-variable list cannot be established at precompile time
by the USING clause.

To process the dynamic SQL statement, your program must issue the DESCRIBE
BIND VARIABLES command and declare another kind of SQLDA called a bind
descriptor to hold descriptions of the placeholders for input host variables. (Input host
variables are also called bind variables.)

If your program has more than one active SQL statement (it might have OPENed two
or more cursors, for example), each statement must have its own SQLDA(s). However,
non-concurrent cursors can reuse SQLDAs. There is no set limit on the number of
SQLDAs in a program.

13.10.2 The DESCRIBE Statement

DESCRIBE initializes a descriptor to hold descriptions of select-list items or input host
variables.

If you supply a select descriptor, the DESCRIBE SELECT LIST statement examines
each select-list item in a PREPAREd dynamic query to determine its name, datatype,
constraints, length, scale, and precision. It then stores this information in the select
descriptor.

If you supply a bind descriptor, the DESCRIBE BIND VARIABLES statement examines
each placeholder in a PREPAREd dynamic SQL statement to determine its name,
length, and the datatype of its associated input host variable. It then stores this
information in the bind descriptor for your use. For example, you might use
placeholder names to prompt the user for the values of input host variables.

13.10.3 What is a SQLDA?

ORACLE

A SQLDA is a host-program data structure that holds descriptions of select-list items
or input host variables.

SQLDA variables are not defined in the Declare Section.

The select SQLDA contains the following information about a query select list:
¢ Maximum number of columns that can be DESCRIBEd

e Actual number of columns found by DESCRIBE

* Addresses of buffers to store column values

e Lengths of column values

e Datatypes of column values

e Addresses of indicator-variable values

13-20

Chapter 13
Using Method 4

» Addresses of buffers to store column names
» Sizes of buffers to store column names
e Current lengths of column names

The bind SQLDA contains the following information about the input host variables in a SQL
statement:

* Maximum number of placeholders that can be DESCRIBEd
* Actual number of placeholders found by DESCRIBE

» Addresses of input host variables

* Lengths of input host variables

o Datatypes of input host variables

* Addresses of indicator variables

» Addresses of buffers to store placeholder names

» Sizes of buffers to store placeholder names

e Current lengths of placeholder names

* Addresses of buffers to store indicator-variable names
» Sizes of buffers to store indicator-variable names

e Current lengths of indicator-variable names

¢ See Also:

Oracle Dynamic SQL: Method 4 for information on the SQLDA structure and
variable names.

13.10.4 About Implementing Oracle Method 4

ORACLE

With Oracle Method 4, you generally use the following sequence of embedded SQL
statements:

EXEC SQL PREPARE statement name
FROM { :host string | string literal };
EXEC SQL DECLARE cursor name CURSOR FOR statement name;
EXEC SQL DESCRIBE BIND VARIABLES FOR statement name
INTO bind descriptor name;
EXEC SQL OPEN cursor name
[USING DESCRIPTOR bind descriptor name];
EXEC SQL DESCRIBE [SELECT LIST FOR] statement name
INTO select descriptor name;
EXEC SQL FETCH cursor name
USING DESCRIPTOR select descriptor name;
EXEC SQL CLOSE cursor name;

However, select and bind descriptors need not work in tandem. So, if the number of columns
in a query select list is known, but the number of placeholders for input host variables is
unknown, you can use the Method 4 OPEN statement with the following Method 3 FETCH
statement:

EXEC SQL FETCH emp cursor INTO host variable list;

13-21

Chapter 13
About Using the DECLARE STATEMENT Statement

Conversely, if the number of placeholders for input host variables is known, but the
number of columns in the select list is unknown, you can use the Method 3 OPEN
statement

EXEC SQL OPEN cursor name [USING host variable list];
with the Method 4 FETCH statement.

EXECUTE can be used for nonqueries with Method 4.

13.10.5 Restriction

In Dynamic SQL Method 4, you cannot bind a host array to a PL/SQL procedure with a
parameter of type "table."

13.11 About Using the DECLARE STATEMENT Statement

With Methods 2, 3, and 4, you might need to use the statement

EXEC SQL [AT db name] DECLARE statement name STATEMENT;

where db_name and statement_name are identifiers used by the precompiler, not host
or program variables.

DECLARE STATEMENT declares the name of a dynamic SQL statement so that the
statement can be referenced by PREPARE, EXECUTE, DECLARE CURSOR, and
DESCRIBE. It is required if you want to execute the dynamic SQL statement at a
nondefault database. An example using Method 2 follows:

EXEC SQL AT remote db DECLARE sql stmt STATEMENT;
EXEC SQL PREPARE sgl stmt FROM :dyn string;
EXEC SQL EXECUTE sql stmt;

In the example, remote_db tells Oracle where to EXECUTE the SQL statement.

With Methods 3 and 4, DECLARE STATEMENT is also required if the DECLARE
CURSOR statement precedes the PREPARE statement, as shown in the following
example:

EXEC SQL DECLARE sql stmt STATEMENT;
EXEC SQL DECLARE emp cursor CURSOR FOR sgl stmt;
EXEC SQL PREPARE sql stmt FROM :dyn string;

The usual sequence of statements is

EXEC SQL PREPARE sgl stmt FROM :dyn string;
EXEC SQL DECLARE emp cursor CURSOR FOR sql stmt;

13.11.1 About Using Host Arrays

ORACLE

The use of host arrays in static SQL and dynamic SQL is similar. For example, to use
input host arrays with dynamic SQL Method 2, simply use the syntax

EXEC SQL EXECUTE statement name USING host array list;

where host_array_list contains one or more host arrays.

Similarly, to use input host arrays with Method 3, use the following syntax:

13-22

Chapter 13
About Using PL/SQL

OPEN cursor name USING host array list;

To use output host arrays with Method 3, use the following syntax:

FETCH cursor name INTO host array list;

With Method 4, you must use the optional FOR clause to tell Oracle the size of your input or
output host array.

Related Topics
e Oracle Dynamic SQL: Method 4

13.12 About Using PL/SQL

The Pro*C/C++ Precompiler treats a PL/SQL block like a single SQL statement. So, like a
SQL statement, a PL/SQL block can be stored in a string host variable or literal. When you
store the PL/SQL block in the string, omit the keywords EXEC SQL EXECUTE, the keyword
END-EXEC, and the '} statement terminator.

However, there are two differences in the way the precompiler handles SQL and PL/SQL:

e The precompiler treats all PL/SQL host variables as input host variables whether they
serve as input or output host variables (or both) inside the PL/SQL block.

* You cannot FETCH from a PL/SQL block because it might contain any number of SQL
statements.

13.12.1 With Method 1

If the PL/SQL block contains no host variables, you can use Method 1 to EXECUTE the
PL/SQL string in the usual way.

13.12.2 With Method 2

If the PL/SQL block contains a known number of input and output host variables, you can use
Method 2 to PREPARE and EXECUTE the PL/SQL string in the usual way.

You must put all host variables in the USING clause. When the PL/SQL string is EXECUTECd,
host variables in the USING clause replace corresponding placeholders in the PREPAREd
string. Though the precompiler treats all PL/SQL host variables as input host variables,
values are assigned correctly. Input (program) values are assigned to input host variables,
and output (column) values are assigned to output host variables.

Every placeholder in the PREPAREd PL/SQL string must correspond to a host variable in the
USING clause. So, if the same placeholder appears two or more times in the PREPAREd
string, each appearance must correspond to a host variable in the USING clause.

13.12.3 With Method 3

ORACLE

Methods 2 and 3 are the same except that Method 3 allows FETCHing. Since you cannot
FETCH from a PL/SQL block, just use Method 2 instead.

13-23

Chapter 13
Dynamic SQL Statement Caching

13.12.4 With Oracle Method 4

If the PL/SQL block contains an unknown number of input or output host variables, you
must use Method 4.

To use Method 4, you set up one bind descriptor for all the input and output host
variables. Executing DESCRIBE BIND VARIABLES stores information about input and
output host variables in the bind descriptor. Because the precompiler treats all PL/SQL
host variables as input host variables, executing DESCRIBE SELECT LIST has no
effect.

WARNING:

In dynamic SQL Method 4, you cannot bind a host array to a PL/SQL
procedure with a parameter of type "table."”

WARNING:

Do not use ANSI-style Comments (- -) in a PL/SQL block that will be
processed dynamically because end-of-line characters are ignored. As a
result, ANSI-style Comments extend to the end of the block, not just to the
end of a line. Instead, use C-style Comments (/* ... */).

Related Topics
e Oracle Dynamic SQL: Method 4

13.13 Dynamic SQL Statement Caching

ORACLE

Statement caching refers to the feature that provides and manages a cache of
statements for each session. In the server, it means that cursors are ready to be used
without the statement being parsed again. Statement caching can be enabled in the
precompiler applications, which will help in the performance improvement of all
applications that rely on the dynamic SQL statements. Performance improvement is
achieved by removing the overhead of parsing the dynamic statements on reuse.

You can obtain this performance improvement by using a new command line option,
stmt_cache (for the statement cache size), which will enable the statement caching of
the dynamic statements. By enabling the new option, the statement cache will be
created at session creation time. The caching is only applicable for the dynamic
statements and the cursor cache for the static statements co-exists with this feature.

The command line option stmt _cache can be given any value in the range of 0 to
65535. Statement caching is disabled by default (value 0). The stmt_cache option can
be set to hold the anticipated number of distinct dynamic SQL statements in the
application.

13-24

ORACLE

Chapter 13
Dynamic SQL Statement Caching

Example 13-1 Using the stmt_cache Option

This example demonstrates the use of the stmt _cache option. In this program, you insert
rows into a table and select the inserted rows by using the cursor in the loop. When the
stmt_cache option is used to precompile this program, the performance increases compared
to a normal precompilation.

/*
* stmtcache.pc

*

* NOTE:

* When this program is used to measure the performance with and without
* stmt cache option, do the following changes in the program,

* 1. Increase ROWSCNT to high value, say 10000.

* 2. Remove all the print statements, usually which comsumes significant
* portion of the total program execution time.

*

* HINT: In Linux, gettimeofday() can be used to measure time.

*

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sglca.h>
#include <oraca.h>

#define ROWSCNT 10

char *username = "scott";
char *password = "tiger";

/* Function prototypes */
void sql error(char *msg);
void selectdata();
void insertdata();

int main()

{
EXEC SQL WHENEVER SQLERROR DO sgl error ("Oracle error");

/* Connect using the default schema scott/tiger */
EXEC SQL CONNECT :username IDENTIFIED BY :password;

/* core functions to insert and select the data */
insertdata();
selectdatal();

/* Rollback pll the changes and disconnect from Oracle. */
EXEC SQL ROLLBACK WORK RELEASE;

exit (0);

/*Insert the data for ROWSCNT items into tpc2sc0l */
void insertdata()
{

varchar dynstmt[80];

int 1i;

varchar ename[10];

float comm;

char *str;

13-25

ORACLE

Chapter 13
Dynamic SQL Statement Caching

/* Allocates temporary buffer */
str = (char *)malloc (11 * sizeof(char));

strcpy ((char *)dynstmt.arr,

"INSERT INTO bonus (ename, comm) VALUES (:ename, :comm)");
dynstmt.len = strlen(dynstmt.arr);
EXEC SQL PREPARE S FROM :dynstmt;

printf ("Inserts %d rows into bonus table using dynamic SQL statement\n",
ROWSCNT) ;
for (i=1; 1<=ROWSCNT; i++)
{
sprintf (str, "EMP %05d",1i);
strcpy (ename.arr, str);
comm = i;
ename.len = strlen (ename.arr);
EXEC SQL EXECUTE S USING :ename, :comm;

free(str);

/* Select the data using the cursor */
void selectdatal()

varchar dynstmt[80];
varchar ename[10];
float comm;

int 1i;

strcpy((char *)dynstmt.arr,
"SELECT ename, comm FROM bonus WHERE comm = :v1");
dynstmt.len = (unsigned short)strlen((char *)dynstmt.arr);

printf ("Fetches the inserted rows using using dynamic SQL statement\n\n"
printf (" ENAME COMMISSION\n\n") ;

for (i=1; 1<=ROWSCNT; i++)
{
/* Do the prepare in the loop so that the advantage of stmt caching
is visible*/
EXEC SQL PREPARE S FROM :dynstmt;

EXEC SQL DECLARE C CURSOR FOR S;
EXEC SQL OPEN C USING :1i;

EXEC SQL WHENEVER NOT FOUND DO break;

/* Loop until the NOT FOUND condition is detected. */
for (;7)
{
EXEC SQL FETCH C INTO :ename, :comm;
ename.arr[ename.len] = "\0';
printf ("%10s %7.2f\n", ename.arr, comm);

}

)7

/* Close the cursor so that the reparsing is not required for stmt cache */

EXEC SQL CLOSE C;

13-26

Chapter 13
About Boolean Data Type Support

void sql error(char *msg)
{

printf ("\n%s", msqg);

sqlca.sqlerrm.sqlerrmc[sqglca.sqlerrm.sqlerrml] = '\0';
oraca.orastxt.orastxtc[oraca.orastxt.orastxtl] = "\0';
oraca.orasfnm.orasfnmc[oraca.orasfnm.orasfnml] = "\0';

printf ("\n%s\n", sqglca.sglerrm.sqglerrmc);

printf("in \"%s...\"\n", oraca.orastxt.orastxtc);

printf("on line %d of %s.\n\n", oraca.oraslnr,
oraca.orasfnm.orasfnmc) ;

/* Disable ORACLE error checking to avoid an infinite loop
* should another error occur within this routine.

*/

EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Release resources associated with the cursor. */
EXEC SQL CLOSE C;

/* Roll back any pending changes and disconnect from Oracle. */
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

13.14 About Boolean Data Type Support

ORACLE

Using Dynamic SQL, applications can build SQL statements at runtime and take explicit
control over data type comversions, With the support for boolean data type, applications can
set, get bind, or define BOOLEAN column metadata using these statements:

e DESCRIBE BIND VARIABLES

e DESCRIBE SELECT LIST

DESCRIBE BIND VARIABLES

The DESCRIBE BIND VARIABLES statement puts descriptions of bind placeholders into a bind
descriptor:

char *select stmt = "SELECT empNo FROM boolTable WHERE comm < :boolVal"
EXEC SQL PREPARE sql stmt FROM :select stmt;
Exec sql describe bind variables for sql stmt into bind des;
/* Now application can assign new values to bind variables that replaces the
placeholder in the query */
for (i = 0; i < bind des->F; i++) // bind des->F denote max bind
// variables

bind des->L[i] // set value length

bind des->V[i] = //set value

bind des->T[i] = SQLT BOL; //set data type for bind variable
// (boolVal in query)

DESCRIBE SELECT LIST

If a dynamic SQL statement is a SELECT query, then a DESCRIBE SELECT LIST statement can
be used. The DESCRIBE SELECT LIST statement sets the length and data type of each select-
list item:

13-27

Chapter 13
About Boolean Data Type Support

EXEC SQL DESCRIBE SELECT LIST FOR sql stmt INTO select des;
// Now application can reset length/datatype of each select-list item.
for (i = 0; 1 < bind des->F; i++) // bind des->F denote max define
// variables

{

if (select des->T[i] == SQLT NUM)
select des->T[i] = SQLT BOL; // set data type (for empno in
// query)

// Now data will be fetched as SQLT BOL type in next fetch

operation.

ORACLE" 13-28

ANSI Dynamic SQL

This chapter describes Oracle's implementation of ANSI dynamic SQL (also known as SQL
standard dynamic SQL) which should be used for new Method 4 applications. It has
enhancements over the older Oracle dynamic SQL Method 4, described in the previous
chapter.

The ANSI Method 4 supports all Oracle types, while the older Oracle Method 4 does not
support object types, cursor variables, arrays of structs, DML returning clauses, Unicode
variables, and LOBs.

In ANSI dynamic SQL, descriptors are internally maintained by Oracle, while in the older
Oracle dynamic SQL Method 4, descriptors are defined in the user's Pro*C/C++ program. In

both cases, Method 4 means that your Pro*C/C++ program accepts or builds SQL statements

that contain a varying number of host variables.

This chapter contains the following topics:

Basics of ANSI Dynamic SQL

Overview of ANSI SQL Statements

Oracle Extensions

ANSI Dynamic SQL Precompiler Options
Full Syntax of the Dynamic SQL Statements

Example Programs

14.1 Basics of ANSI Dynamic SQL

Consider the SQL statement:

ORACLE

SELECT ename, empno FROM emp WHERE deptno = :deptno data

The steps you follow to use ANSI dynamic SQL are:

Declare variables, including a string to hold the statement to be executed.

Allocate descriptors for input and output variables.

Prepare the statement.

Describe input for the input descriptor.

Set the input descriptor (in our example the one input host bind variable, deptno data).
Declare and open a dynamic cursor.

Set the output descriptors (in our example, the output host variables ename and empno).

Repeatedly fetch data, using GET DESCRIPTOR to retrieve the ename and empno data
fields from each row.

Do something with the data retrieved (output it, for instance).

Close the dynamic cursor and deallocate the input and output descriptors.

14-1

Chapter 14
Overview of ANSI SQL Statements

14.1.1 Precompiler Options

Set the micro precompiler option DYNAMIC to ANSI, or set the macro option MODE to
ANSI, which causes the default value of DYNAMIC to be ANSI. The other setting of
DYNAMIC is ORACLE.

In order to use ANSI type codes, set the precompiler micro option TYPE_CODE to
ANSI, or set the macro option MODE to ANSI which makes the default setting of
TYPE_CODE to ANSI. To set TYPE_CODE to ANSI, DYNAMIC must also be ANSI.

Oracle's implementation of the ANSI SQL types in Overview of ANSI SQL Statements
does not exactly match the ANSI standard. For example, a describe of a column
declared as INTEGER will return the code for NUMERIC. As Oracle moves closer to
the ANSI standard, small changes in behavior may be required. Use the ANSI types
with precompiler option TYPE_CODE set to ANSI if you want your application to be
portable across database platforms and as ANSI compliant as possible. Do not use
TYPE_CODE set to ANSI if such changes are not acceptable.

14.2 Overview of ANSI SQL Statements

ORACLE

Allocate a descriptor area first before using it in a dynamic SQL statement.

The ALLOCATE DESCRIPTOR statement syntax is:

EXEC SQL ALLOCATE DESCRIPTOR [GLOBAL | LOCAL] {:desc nam | string_literal}
[WITH MAX {:occurrences | numeric literal}];

A global descriptor can be used in any module in the program. A local descriptor can
be accessed only in the file in which it is allocated. Local is the default.

The descriptor name, desc_nam, can be a literal in single quotes or a character value
stored in a host variable.

occurrences is the maximum number of bind variables or columns that the descriptor
can hold. This must be a numeric literal. The default is 100.

When a descriptor is no longer needed, deallocate it to conserve memory. Otherwise,
deallocation is done automatically when there are no more active database
connections.

The deallocate statement is:

EXEC SQL DEALLOCATE DESCRIPTOR [GLOBAL | LOCAL] {:desc nam | string literal};

Use the DESCRIBE statement to obtain information on a prepared SQL statement.
DESCRIBE INPUT describes bind variables for the dynamic statement that has been
prepared. DESCRIBE OUTPUT (the default) can give the number, type, and length of
the output columns. The simplified syntax is:

EXEC SQL DESCRIBE [INPUT | OUTPUT] sql statement
USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc nam | string literal};

If your SQL statement has input and output values, you must allocate two descriptors:
one for input and one for output values. If there are no input values, for example:

SELECT ename, empno FROM emp ;

14-2

ORACLE

Chapter 14
Overview of ANSI SQL Statements

then the input descriptor is not needed.

Use the SET DESCRIPTOR statement to specify input values for INSERTS, UPDATES,
DELETES and the WHERE clauses of SELECT statements. Use SET DESCRIPTOR to set
the number of input bind variables (stored in COUNT) when you have not done a DESCRIBE
into your input descriptor:

EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc nam | string literal}
COUNT = {:kount | numeric literal};

kount can be a host variable or a numeric literal, such as 5. Use a SET DESCRIPTOR
statement for each host variable, giving at least the data source of the variable:

EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc nam | string literal}
VALUE item number DATA = :hv3;

You can also set the type and length of the input host variable:

" Note:

When TYPE_CODE=0ORACLE, if you do not set TYPE and LENGTH, either
explicitly using the SET statement or implicitly by doing a DESCRIBE OUTPUT, the
precompiler will use values for them derived from the host variable itself. When
TYPE_CODE=ANSI, you must set TYPE using the values in Table 14-1. You should
also set LENGTH because the ANSI default lengths may not match those of your
host variables.

EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc nam | string literal}
VALUE item number TYPE = :hvl, LENGTH = :hv2, DATA = :hv3;

We use the identifiers hv1, hv2, and hv3 to remind us that the values must be supplied by
host variables. item_number is the position of the input variable in the SQL statement.

TYPE is the Type Code selected from the following table, if TYPE_CODE is set to ANSI:

Table 14-1 ANSI SQL Datatypes

|
Datatype Type Code

CHARACTER 1
CHARACTER VARYING
DATE

DECIMAL

DOUBLE PRECISION
FLOAT

INTEGER

NUMERIC

REAL

SMALLINT

=
N

g N N b O 0O W ©

DATA is the value of the host variable that is to be input

14-3

ORACLE

Chapter 14
Overview of ANSI SQL Statements

You can also set other input values such as indicator, precision and scale.

Starting from release 12c, the numeric values in the SET DESCRIPTOR statement
must be declared as either int or short int, except for indicator and returned length
values which you must declare as int. For 11gR2 or earlier releases, the indicator and
returned length values must be declared as short int.

For example, in the following example, when you want to retrieve an empno, set these
values: VALUE = 2, because empno is the second output host variable in the dynamic
SQL statement. The host variable empno_typ is set to 3 (Oracle Type for integer). The
length of a host integer, empno_len, is set to 4, which is the size of the host variable.
The DATA is equated to the host variable empno data which will receive the value from
the database table. The code fragment is as follows:

char *dyn statement = "SELECT ename, empno FROM emp
WHERE deptno = :deptno number" ;

int empno_data ;

int empno typ = 3 ;

int empno len = 4

’

EXEC SQL SET DESCRIPTOR 'out' VALUE 2 TYPE = :empno typ, LENGTH = :empno len,
DATA = :empno data ;

After setting the input values, execute or open your statement using the input
descriptor. If there are output values in your statement, set them before doing a
FETCH. If you have performed a DESCRIBE OUTPUT, you may have to test the
actual type and length of your host variables. The DESCRIBE execution produces
internal types and lengths that differ from your host variable external types and length.

After the FETCH of the output descriptor, use GET DESCRIPTOR to access the
returned data. Again we show a simplified syntax with details later in this chapter:

EXEC SQL GET DESCRIPTOR [GLOBAL | LOCAL] {:desc nam | string literal}
VALUE item number :hvl = DATA, :hv2 = INDICATOR, :hv3 = RETURNED LENGTH ;

desc_namand item number can be literals or host variables. A descriptor name can be
a literal such as 'out’. An item number can be a numeric literal such as 2.

hvl, hv2, and hv3 are host variables. They must be host variables, not literals. Only
three are shown in the example.

Use either long, int or short for all numeric values, except for indicator and returned
length variables, which must be short.

See Also:

e Table 15-2 for the Oracle type codes

e "SET DESCRIPTOR" for a complete discussion of all the possible
descriptor item names

e Table 14-4 for a list of all possible items of returned data that you can
get.

14-4

Chapter 14
Oracle Extensions

14.2.1 Example Code

The following example demonstrates the use of ANSI Dynamic SQL. It allocates an input
descriptor ('in') and an output descriptor (‘'out’) to execute a SELECT statement. Input values
are set using the SET DESCRIPTOR statement. The cursor is opened and fetched from and
the resulting output values are retrieved using a GET DESCRIPTOR statement.

char* dyn statement = "SELECT ename, empno FROM emp WHERE deptno = :deptno data" ;
int deptno_type = 3, deptno len = 2, deptno data = 10 ;

int ename type = 97, ename len = 30 ;

char ename data([31] ;

int empno type = 3, empno len = 4 ;

int empno_data ;

long SQLCODE = 0 ;

main ()

{

/* Place preliminary code, including connection, here. */

EXEC SQL ALLOCATE DESCRIPTOR 'in' ;

EXEC SQL ALLOCATE DESCRIPTOR 'out' ;

EXEC SQL PREPARE s FROM :dyn_statement ;

EXEC SQL DESCRIBE INPUT s USING DESCRIPTOR 'in' ;

EXEC SQL SET DESCRIPTOR 'in' VALUE 1 TYPE = :deptno_type,
LENGTH = :deptno_len, DATA = :deptno data ;

EXEC SQL DECLARE c CURSOR FOR s ;

EXEC SQL OPEN c USING DESCRIPTOR 'in' ;

EXEC SQL DESCRIBE OUTPUT s USING DESCRIPTOR 'out' ;

EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE = :ename_type,
LENGTH = :ename len, DATA = :ename data ;

EXEC SQL SET DESCRIPTOR 'out' VALUE 2 TYPE = :empno_type,
LENGTH = :empno_len, DATA = :empno data ;

EXEC SQL WHENEVER NOT FOUND DO BREAK ;

while (SQLCODE == 0)

{
EXEC SQL FETCH c INTO DESCRIPTOR 'out' ;
EXEC SQL GET DESCRIPTOR 'out' VALUE 1 :ename data = DATA ;
EXEC SQL GET DESCRIPTOR 'out' VALUE 2 :empno_data = DATA ;
printf ("\nEname = %s Empno = %s", ename data, empno data) ;

}

EXEC SQL CLOSE c ;

EXEC SQL DEALLOCATE DESCRIPTOR 'in' ;

EXEC SQL DEALLOCATE DESCRIPTOR 'out' ;

Scrollable cursors can also be used with ANSI Dynamic SQL. In order to use ANSI dynamic
SQL with scrollable cursors, we DECLARE the cursor in SCROLL mode. Use the various
fetch orientation modes with the FETCH statement to access the result set.

14.3 Oracle Extensions

These extensions are described next:

» Reference semantics for data items in SET statements.

ORACLE 14-5

Chapter 14
Oracle Extensions

* Arrays for bulk operations.

* Support for object types, NCHAR columns, and LOBs.

14.3.1 Reference Semantics

ORACLE

The ANSI standard specifies value semantics. To improve performance, Oracle has
extended this standard to include reference semantics.

Value semantics makes a copy of your host variables data. Reference semantics uses
the addresses of your host variables, avoiding a copy. Thus, reference semantics can
provide performance improvements for large amounts of data.

To help speed up fetches, use the REF keyword before the data clauses:

EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE = rename_type,
LENGTH = :ename len, REF DATA = :ename data ;

EXEC SQL DESCRIPTOR 'out' VALUE 2 TYPE = :empno_type,
LENGTH = :empno len, REF DATA = :empno data ;

Then the host variables receive the results of the retrieves. The GET statement is not
needed. The retrieved data is written directly into ename data and empno_data after
each FETCH.

Use of the REF keyword is allowed only before DATA, INDICATOR and
RETURNED_LENGTH items (which can vary with each row fetched) as in this
fragment of code:

int indi, returnLen ;

EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE = rename_type,
LENGTH = :ename len, REF DATA = :ename data,
REF INDICATOR = :indi, REF RETURNED LENGTH = :returnlLen ;

After each fetch, returnLen holds the actual retrieved length of the ename field, which
is useful for CHAR or VARCHAR2 data.

ename_len will not receive the returned length. It will not be changed by the FETCH
statement. Use a DESCRIBE statement, followed by a GET statement to find out the
maximum column width before fetching rows of data.

REF keyword is also used for other types of SQL statements than SELECT, to speed
them up. With reference semantics, the host variable is used rather than a value
copied into the descriptor area. The host variable data at the time of execution of the
SQL statement is used, not its data at the time of the SET. Here is an example:

int x =1 ;

EXEC SQL SET DESCRIPTOR 'value' VALUE 1 DATA = :x ;

EXEC SQL SET DESCRIPTOR 'reference' VALUE 1 REF DATA = :x ;

X =2 ;

EXEC SQL EXECUTE s USING DESCRIPTOR 'value' ; /* Will use x =1 */
EXEC SQL EXECUTE s USING DESCRIPTOR 'reference' ; /* Will use x = 2 */

Related Topics
e SET DESCRIPTOR

14-6

Chapter 14
Oracle Extensions

14.3.2 About Using Arrays for Bulk Operations

ORACLE

Oracle extends ANSI dynamic SQL by providing bulk operations. To use bulk operations, use
the FOR clause with an array size to specify the amount of input data or the number of rows
you want to process.

The FOR clause is used in the ALLOCATE statement to give the maximum amount of data or
number of rows. For example, to use a maximum array size of 100:

EXEC SQL FOR 100 ALLOCATE DESCRIPTOR 'out' ;

or:

int array size = 100 ;
EXEC SQL FOR :array_size ALLOCATE DESCRIPTOR 'out' ;

The FOR clause is then used in subsequent statements that access the descriptor. In an
output descriptor the FETCH statement must have an array size equal to or less than the
array size already used in the ALLOCATE statement:

EXEC SQL FOR 20 FETCH cl USING DESCRIPTOR 'out' ;

Subsequent GET statements for the same descriptor, that get DATA, INDICATOR, or
RETURNED_LENGTH values, must use the same array size as the FETCH statement.

int val data[20] ;
short val indi[20] ;

EXEC SQL FOR 20 GET DESCRIPTOR 'out' VALUE 1 :val data = DATA,
:val indi = INDICATOR ;

However, GET statements that reference other items which do not vary from row to row, such
as LENGTH, TYPE and COUNT, must not use the FOR clause:

int cnt, len ;

EXEC SQL GET DESCRIPTOR 'out' :cnt = COUNT ;
EXEC SQL GET DESCRIPTOR 'out' VALUE 1 :len = LENGTH ;

The same holds true for SET statements with reference semantics. SET statements which
precede the FETCH and employ reference semantics for DATA, INDICATOR, or
RETURNED_LENGTH must have the same array size as the FETCH:

int ref data[20] ;
short ref indi[20] ;

EXEC SQL FOR 20 SET DESCRIPTOR 'out' VALUE 1 REF DATA = :ref_data,
REF INDICATOR = :ref indi ;

Similarly, for a descriptor that is used for input, to insert a batch of rows, for instance, the
EXECUTE or OPEN statement must use an array size equal to or less than the size used in
the ALLOCATE statement. The SET statement, for both value and reference semantics, that
accesses DATA, INDICATOR, or RETURNED_LENGTH must use the same array size as in
the EXECUTE statement.

The FOR clause is never used on the DEALLOCATE or PREPARE statements.

14-7

Chapter 14

Oracle Extensions

The following code example illustrates a bulk operation with no output descriptor (there
is no output, only input to be inserted into the table emp). The value of COUNT is 2 (there
are two host variables, ename _arr and empno_arr, in the INSERT statement). The data
array ename_arr holds three character strings: "Tom", "Dick" and "Harry", in that order.

The indicator array ename ind has a value of -1 for the second element; so a NULL will

be inserted instead of "Dick". The data array empno_arr contains three employee

numbers. A DML returning clause could be used to confirm the actual names inserted.

char* dyn statement = "INSERT INTO emp (ename) VALUES (:ename arr)" ;
char ename arr[3][6] = {Tom","Dick","Harry"} ;

short ename ind[3] = {0,-1,0} ;

int ename len = 6, ename type = 97, cnt = 2 ;

int empno_arr([3] = {8001, 8002, 8003} ;

int empno len = 4 ;

int empno type = 3 ;

int array size = 3 ;

EXEC SQL FOR :array_size ALLOCATE DESCRIPTOR 'in' ;

EXEC SQL SET DESCRIPTOR 'in' COUNT = :cnt ;

EXEC SQL SET DESCRIPTOR 'in' VALUE 1 TYPE = :ename type, LENGTH = :ename len ;
EXEC SQL SET DESCRIPTOR 'in' VALUE 2 TYPE = :empno_type, LENGTH = :empno len ;

EXEC SQL FOR :array_size SET DESCRIPTOR 'in' VALUE 1
DATA = :ename arr, INDICATOR = :ename ind ;
EXEC SQL FOR :array_size SET DESCRIPTOR 'in' VALUE 2
DATA = :empno_arr ;
EXEC SQL PREPARE s FROM :dyn_statement ;
EXEC SQL FOR :array_size EXECUTE s USING DESCRIPTOR 'in' ;

The preceding code will insert these values:

EMPNO ENAME

8001 Tom
8002
8003 Harry

Related Topics
e The DML Returning Clause
e About Using the FOR Clause

14.3.3 Support for Arrays of Structs

You must set the HOST_STRIDE_LENGTH to the size of the struct, and the
INDICATOR_STRIDE_LENGTH to the size of the indicator struct, and the
RETURNED_LENGTH_STRIDE to the size of your returned length struct.

Arrays of structs are supported by ANSI dynamic SQL, but are not supported by the

older Oracle dynamic SQL.

14.3.4 Support for Object Types

For the object types that you have defined yourself, use Oracle TYPE equal to 108.

ORACLE

For an object type column, use a DESCRIBE statement to obtain
USER_DEFINED_TYPE_VERSION, USER_DEFINED_TYPE_NAME,

USER_DEFINED_TYPE_NAME_LENGTH, USER_DEFINED_TYPE_SCHEMA, and

USER_DEFINED_TYPE_SCHEMA_LENGTH.

14-8

Chapter 14
ANSI Dynamic SQL Precompiler Options

If you do not employ the DESCRIBE statement to retrieve these values, you have to set them
yourself through the SET DESCRIPTOR statement.

14.4 ANSI Dynamic SQL Precompiler Options

ORACLE

The macro option MODE sets ANSI compatibility characteristics and controls a number of
functions. It can have the values ANSI or ORACLE. For individual functions there are micro
options that override the MODE setting.

The precompiler micro option DYNAMIC specifies the descriptor behavior in dynamic SQL.
The precompiler micro option TYPE_CODE specifies whether ANSI or Oracle datatype codes
are to be used.

When the macro option MODE is set to ANSI, the micro option DYNAMIC becomes ANSI
automatically. When MODE is set to ORACLE, DYNAMIC becomes ORACLE.

DYNAMIC and TYPE_CODE cannot be used inline.

This table describes functionality and how the DYNAMIC setting affects them.

Table 14-2 DYNAMIC Option Settings

L]
Function DYNAMIC = ANSI DYNAMIC = ORACLE

Descriptor creation. Must use ALLOCATE statement. Must use function
SQLSQLDAAIlIoc().

Descriptor destruction. May use DEALLOCATE statement. May use function SQLLDAFree().

Retrieving data. May use both FETCH and GET Must use only FETCH statement.
statements.
Setting input data. May use DESCRIBE INPUT Must set descriptor values in code.

statement. Must use SET statement. Must use DESCRIBE BIND
VARIABLES statement.

Descriptor representation. Single quoted literal or host identifier Host variable, a pointer to SQLDA.
which contains the descriptor name.

Data types available. All ANSI types except BIT and all Oracle types except objects, LOBs,
Oracle types. arrays of structs and cursor
variables.

The micro option TYPE_CODE is set by the precompiler to the same setting as the macro
option MODE. TYPE_CODE can only equal ANSI if DYNAMIC equals ANSI.

Here is the functionality corresponding to the TYPE_CODE settings:

Table 14-3 TYPE_CODE Option Settings

Function TYPE_CODE = ANSI TYPE_CODE = ORACLE
Data type code numbers Use ANSI code humbers when ANSI Use Oracle code numbers.
input and returned in type exists. Otherwise, use the May be used regardless of the
dynamic SQL. negative of the Oracle code number. setting of DYNAMIC.

Only valid when DYNAMIC = ANSI.

Related Topics
- MODE

14-9

Chapter 14
Full Syntax of the Dynamic SQL Statements

* New Names for SQLLIB Public Functions

14.5 Full Syntax of the Dynamic SQL Statements

See Embedded SQL Statements and Directives for more details on all these
statements.

14.5.1 ALLOCATE DESCRIPTOR

Purpose

Use this statement to allocate a SQL descriptor area. Supply a descriptor and the
maximum number of occurrences of host bind items, and an array size. This statement
is only for the ANSI dynamic SQL.

Syntax

EXEC SQL [FOR [:]array size] ALLOCATE DESCRIPTOR [GLOBAL | LOCAL]
{:desc nam | string literal} [WITH MAX occurrences] ;

Variables
array_size

This is in an optional clause (it is an Oracle extension) that supports array processing.
It tells the precompiler that the descriptor is usable for array processing.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

Descriptor name. Local descriptors must be unique in the module. A runtime error is
generated if the descriptor has been allocated, but not deallocated, previously. A
global descriptor must be unique for the application, or a runtime error results.

occurrences

The maximum number of host variables possible in the descriptor. It must be an
integer constant between 0 and 64K, or an error is returned. Default is 100. The clause
is optional. A precompiler error results if it does not conform to these rules.

Examples

EXEC SQL ALLOCATE DESCRIPTOR 'SELDES' WITH MAX 50 ;

EXEC SQL FOR :batch ALLOCATE DESCRIPTOR GLOBAL :binddes WITH MAX 25 ;

14.5.2 DEALLOCATE DESCRIPTOR

Purpose

Use this statement to deallocate a SQL descriptor area that has been previously
allocated, to free memory. This statement is only used for the ANSI dynamic SQL.

ORACLE 14-10

Chapter 14
Full Syntax of the Dynamic SQL Statements

Syntax

EXEC SQL DEALLOCATE DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string literal} ;
Variable

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

A runtime error results when a descriptor with the same name and scope has not been
allocated, or has been allocated and deallocated already.

Examples

EXEC SQL DEALLOCATE DESCRIPTOR GLOBAL 'SELDES' ;

EXEC SQL DEALLOCATE DESCRIPTOR :binddes ;

14.5.3 GET DESCRIPTOR

ORACLE

Purpose

Use to obtain information from a SQL descriptor area.

Syntax

EXEC SQL [FOR [:]array size] GET DESCRIPTOR [GLOBAL | LOCAL]
{:desc nam | string literal}

{ :hv0 = COUNT | VALUE item number
thvl = item namel [{, :hvN = item nameN}] } ;

Variables
array_size

The FOR array size is an optional Oracle extension. array size has to be equal to the field
array size in the FETCH statement.

COUNT

The total number of bind variables.
desc_nam

Descriptor name.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

VALUE item_number

14-11

ORACLE

Chapter 14
Full Syntax of the Dynamic SQL Statements

The position of the item in the SQL statement. item number can be a variable or a
constant. If item number is greater than COUNT, the "no data found" condition is
returned. item number must be greater than 0.

hvl .. hvN
These are host variables to which values are transferred.
item_namel .. item_nameN

The descriptor item names corresponding to the host variables. The possible ANSI
descriptor item names are:

Table 14-4 Definitions of Descriptor Item Names for GET DESCRIPTOR
|

Descriptor Iltem Name Meaning

TYPE Use the negative value of Oracle type code if the ANSI datatype
is not in the table and TYPE_CODE=ANSI.

LENGTH Length of data in the column: in characters for NCHAR; in bytes
otherwise. Set by the DESCRIBE OUTPUT.

OCTET LENGTH Length of data in bytes.

RETURNED LENGTH The actual data length after a FETCH.

RETURNED OCTET LENGTH Length of the returned data in bytes.

PRECISION The number of digits.

SCALE For exact numeric types, the number of digits to the right of the
decimal point.

NULLABLE If 1, the column can have NULL values. If 0,the column cannot
have NULL values.

INDICATOR The associated indicator value.

DATA The data value.

NAME Column name.

CHARACTER_SET NAME Column's character set.

The Oracle additional descriptor item names are:

Table 14-5 Oracle Extensions to Definitions of Descriptor Item Names for GET
DESCRIPTOR

Descriptor Item Name Meaning

NATIONAL CHARACTER If 2, NCHAR or NVARCHARZ. If 1, character. If 0, non-character.
INTERNAL LENGTH The internal length, in bytes.

HOST STRIDE LENGTH The size of the host struct in bytes.

INDICATOR STRIDE LENG The size of the indicator struct in bytes.
TH

RETURNED LENGTH STRID The size of the returned-length struct in bytes.
E

USER DEFINED TYPE VER Used for character representation of object type version.
SION

14-12

ORACLE

Chapter 14
Full Syntax of the Dynamic SQL Statements

Table 14-5 (Cont.) Oracle Extensions to Definitions of Descriptor tem Names
for GET DESCRIPTOR

___|
Descriptor Item Name Meaning

USER DEFINED TYPE NAM Name of object type.
E

USER _DEFINED TYPE NAM Length of name of object type.
E LENGTH

USER_DEFINED TYPE SCH Used for character representation of the object's schema.
EMA

USER_DEFINED TYPE SCH Length of USER DEFINED TYPE SCHEMA.
EMA LENGTH

NATIONAL CHARACTER If 2, NCHAR or NVARCHARZ. If 1, character. If 0, non-character.

Usage Notes

Use the FOR clause in GET DESCRIPTOR statements which contain DATA, INDICATOR,
and RETURNED_LENGTH items only.

The internal type is provided by the DESCRIBE OUTPUT statement. For both input and
output, you must set the type to be the external type of your host variable.

TYPE is the ANSI SQL Datatype code. Use the negative value of the Oracle type code if the
ANSI type is not in the table.

LENGTH contains the column length in characters for fields that have fixed-width National
Character Sets. It is in bytes for other character columns. It is set in DESCRIBE OUTPUT.

RETURNED_LENGTH is the actual data length set by the FETCH statement. It is in bytes or
characters as described for LENGTH. The fields OCTET_LENGTH and
RETURNED_OCTET_LENGTH are the lengths in bytes.

NULLABLE = 1 means that the column can have NULLS; NULLABLE = 0 means it cannot.

CHARACTER_SET_NAME only has meaning for character columns. For other types, it is
undefined. The DESCRIBE OUTPUT statement obtains the value.

DATA and INDICATOR are the data value and the indicator status for that column. If data =
NULL, but the indicator was not requested, an error is generated at runtime ("DATA
EXCEPTION, NULL VALUE, NO INDICATOR PARAMETER").

Oracle-Specific Descriptor Item Names

NATIONAL_CHARACTER = 2 if the column is an NCHAR or NVARCHAR2 column. If the
column is a character (but not National Character) column, this item is set to 1. If a non-
character column, this item becomes 0 after DESCRIBE OUTPUT is executed.

INTERNAL_LENGTH is for compatibility with Oracle dynamic Method 4. It has the same
value as the length member of the Oracle SQL descriptor area.

The following three items are not returned by a DESCRIBE OUTPUT statement.

e HOST_STRIDE_LENGTH is the size of the struct of host variables.
 INDICATOR_STRIDE_LENGTH is the size of the struct of indicator variables.

14-13

Chapter 14
Full Syntax of the Dynamic SQL Statements

* RETURNED_LENGTH_STRIDE is the size of the struct of returned-length
variables

The following items apply only to object types when the precompiler option OBJECTS
has been set to YES.

- USER_DEFINED_TYPE_VERSION contains the character representation of the
type version.

- USER_DEFINED_TYPE_NAME is the character representation of the name of the
type.
e USER_DEFINED_TYPE_NAME_LENGTH is the length of the type name in bytes.

- USER_DEFINED_TYPE_SCHEMA is the character representation of the schema
name of the type.

e USER_DEFINED_TYPE_SCHEMA LENGTH is the length in characters of the
type's schema name.

Examples
EXEC SQL GET DESCRIPTOR :binddes :n = COUNT ;
EXEC SQL GET DESCRIPTOR 'SELDES' VALUE 1 :t = TYPE, :1 = LENGTH ;

EXEC SQL FOR :batch GET DESCRIPTOR LOCAL 'SELDES'
VALUE :sel item no :i = INDICATOR, :v = DATA ;

¢ See Also:

e Table 14-1 for the ANSI type codes
e "Table 15-2" for the Oracle type codes
e Oracle Dynamic SQL: Method 4

14.5.4 SET DESCRIPTOR

ORACLE

Purpose

Use this statement to set information in the descriptor area from host variables. The
SET DESCRIPTOR statement supports only host variables for the item names.
Syntax

EXEC SQL [FOR array_size] SET DESCRIPTOR [GLOBAL | LOCAL]
{:desc nam | string literal} {COUNT = :hv0 |
VALUE item number
[REF] item namel = :hvl
[{, [REF] item nameN = :hvN}]} ;

Variables
array_size

This optional Oracle clause permits using arrays when setting the descriptor items
DATA, INDICATOR, and RETURNED_LENGTH only. You cannot use other items in a

14-14

ORACLE

Chapter 14
Full Syntax of the Dynamic SQL Statements

SET DESCRIPTOR that contains the FOR clause. All host variable array sizes must match.
Use the same array size for the SET statement that you use for the FETCH statement.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The descriptor name. It follows the rules in ALLOCATE DESCRIPTOR.
COUNT

The number of bind (input) or define (output) variables.

VALUE item_number

Position in the dynamic SQL statement of a host variable.

hvl .. hvN

The host variables (not constants) that you set.

item_namel

In a similar way to the GET DESCRIPTOR syntax desc_item name can take on these values.

Table 14-6 Descriptor Item Names for SET DESCRIPTOR
]

Descriptor Item Name Meaning

TYPE Use negative value of the Oracle type if there is no corresponding
ANSI type.

LENGTH Maximum length of data in the column.

INDICATOR The associated indicator value. Set for reference semantics.

DATA Value of the data to be set. Set for reference semantics.

CHARACTER SET NAME Column's character set.

TYPE Use negative value of the Oracle type if there is no corresponding
ANSI type.

See Table 14-1 for the ANSI type codes and see "Table 15-2" for the Oracle type codes.

The Oracle extensions to the descriptor item names are:

Table 14-7 Oracle Extensions to Descriptor Item Names for SET DESCRIPTOR
]

Descriptor Item Name Meaning

RETURNED LENGTH Length returned after a FETCH. Set if reference semantics is being
used.

NATIONAL CHARACTER Set to 2 when the input host variable is an NCHAR or NVARCHAR2
type.

Set to 0 when the National Character setting is clear.
HOST STRIDE LENGTH Size of the host variable struct in bytes.

14-15

Chapter 14
Full Syntax of the Dynamic SQL Statements

Table 14-7 (Cont.) Oracle Extensions to Descriptor Item Names for SET DESCRIPTOR

___|
Descriptor Item Name Meaning

INDICATOR STRIDE LENGTH Size of the indicator variable in bytes.
RETURNED LENGTH STRIDE Size of the returned-length struct in bytes.
USER DEFINED TYPE NAME Name of object type.

USER DEFINED TYPE NAME Length of name of object type.
LENGTH

USER_DEFINED TYPE SCHEM Used for character representation of the object's schema.
A

USER_DEFINED TYPE SCHEM Length of USER_DEFINED TYPE SCHEMA.
A _LENGTH

Usage Notes

Reference semantics is another optional Oracle extension that speeds performance.
Use the keyword REF before these descriptor items names only: DATA, INDICATOR,
RETURNED_LENGTH. When you use the REF keyword you do not need to use a
GET statement. Complex data types (object and collection types, arrays of structs, and
the DML returning clause) all require the REF form of SET DESCRIPTOR.

If the program reuses DESCRIPTOR for another SQL, the old values of DESCRIPTOR
remain.

When REF is used the associated host variable itself is used in the SET. The GET is
not needed in this case. The RETURNED_LENGTH can only be set when you use the
REF semantics, not the value semantics.

Use the same array size for the SET or GET statements that you use in the FETCH.
Set the NATIONAL_CHAR field to 2 for NCHAR host input values.

Set the NATIONAL_CHARACTER field to 0 when DESCRIPTOR is used for NCHAR
host input values in the old SQL.

When setting an object type's characteristics, you must set
USER_DEFINED_TYPE_NAME and USER_DEFINED_TYPE_NAME_LENGTH.

If omitted, USER_DEFINED_TYPE_SCHEMA and
USER_DEFINED_TYPE_SCHEMA LENGTH default to the current connection.

Set CHARACTER_SET_NAME to UTF16 for client-side Unicode support. The data will
be in UCS2 encoding and the RETURNED_LENGTH is in CHARS.

Example

int bindno = 2 ;

short indi = -1 ;

char data = "ignore" ;
int batch =1 ;

EXEC SQL FOR :batch ALLOCATE DESCRIPTOR 'binddes' ;

EXEC SQL SET DESCRIPTOR GLOBAL :binddes COUNT = 3 ;
EXEC SQL FOR :batch SET DESCRIPTOR :bindes

ORACLE 14-16

Chapter 14
Full Syntax of the Dynamic SQL Statements

VALUE :bindno INDICATOR = :indi, DATA = :data ;

Related Topics

e GET DESCRIPTOR

e The DML Returning Clause

* About Using Arrays for Bulk Operations

¢ See Also:

14.5.5 Use of PREPARE

Purpose

The PREPARE statement used in this method is the same as the PREPARE statement used
in the other dynamic SQL methods. An Oracle extension allows a quoted string for the SQL
statement, as well as a variable.

Syntax

EXEC SQL PREPARE statement_id FROM :sql statement ;

Variables

statement_id

This must not be declared; it is a undeclared SQL identifier.

sql_statement

A character string (a constant or a variable) holding the embedded SQL statement.

Example

char* statement = "SELECT ENAME FROM emp WHERE deptno = :d" ;
EXEC SQL PREPARE S1 FROM :statement ;

14.5.6 DESCRIBE INPUT

Purpose

This statement returns information about the bind variables.

Syntax

EXEC SQL DESCRIBE INPUT statement_id USING [SQL] DESCRIPTOR
[GLOBAL | LOCAL] {:desc nam | string literal} ;

Variables

statement_id

ORACLE 14-17

Chapter 14
Full Syntax of the Dynamic SQL Statements

The same as used in PREPARE and DESCRIBE OUTPUT. This must not be declared;
it is an undeclared SQL identifier.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The descriptor name.

Usage Notes

DESCRIBE INPUT only sets COUNT and NAME items.

Examples

EXEC SQL DESCRIBE INPUT S1 USING SQL DESCRIPTOR GLOBAL :binddes ;
EXEC SQL DESCRIBE INPUT S2 USING DESCRIPTOR 'input' ;

14.5.7 DESCRIBE OUTPUT

ORACLE

Purpose

Use this statement to obtain information about the output columns in a PREPAREd
statement. The ANSI syntax differs from the older Oracle syntax. The information
which is stored in the SQL descriptor area is the number of values returned and
associated information such as type, length, and name.

Syntax

EXEC SQL DESCRIBE [OUTPUT] statementﬁid USING [SQL] DESCRIPTOR
[GLOBAL | LOCAL] {:desc nam | string literal} ;

Variables
statement_id

The same as used in PREPARE. This must not be declared; it is an undeclared SQL
identifier.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam
The descriptor name.

OUTPUT is the default and can be omitted.

Examples

char* desname = "SELDES" ;
EXEC SQL DESCRIBE S1 USING SQL DESCRIPTOR 'SELDES' ; /* Or, */
EXEC SQL DESCRIBE OUTPUT S1 USING DESCRIPTOR :desname ;

14-18

Chapter 14
Full Syntax of the Dynamic SQL Statements

14.5.8 EXECUTE

Purpose

EXECUTE matches input and output variables in a prepared SQL statement and then
executes the statement. This ANSI version of EXECUTE differs from the older EXECUTE
statement by allowing two descriptors in one statement to support DML returning clause.

Syntax

EXEC SQL [FOR :array size] EXECUTE statement id
[USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc nam | string literal}]
[INTO [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc nam | string literal}] ;

Variables

array_size

The number of rows the statement will process.
statement_id

The same as used in PREPARE. This must not be declared; it is an undeclared SQL
identifier. It can be a literal.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The descriptor name.

Usage Notes

The INTO clause implements the DML returning clause for INSERT, UPDATE and DELETE.

Examples

EXEC SQL EXECUTE S1 USING SQL DESCRIPTOR GLOBAL :binddes ;

EXEC SQL EXECUTE S2 USING DESCRIPTOR :bvl INTO DESCRIPTOR 'SELDES' ;

Related Topics
e The DML Returning Clause

14.5.9 Use of EXECUTE IMMEDIATE

ORACLE

Purpose

Executes a literal or host variable character string containing the SQL statement.The ANSI
SQL form of this statement is the same as in the older Oracle dynamic SQL:

Syntax

EXEC SQL EXECUTE IMMEDIATE {:sql statement | string literal}

14-19

Chapter 14
Full Syntax of the Dynamic SQL Statements

Variable
sql_statement

The SQL statement or PL/SQL block in a character string.

Example

EXEC SQL EXECUTE IMMEDIATE :statement ;

14.5.10 Use of DYNAMIC DECLARE CURSOR

Purpose

Declares a cursor that is associated with a statement which is a query. This is a form
of the generic Declare Cursor statement.

Syntax

EXEC SQL DECLARE cursor name CURSOR FOR statement_id;
Variables

cursor_name

A cursor variable (a SQL identifier, not a host variable).
statement_id

An undeclared SQL identifier.

Example

EXEC SQL DECLARE Cl CURSOR FOR S1 ;

14.5.11 OPEN Cursor

ORACLE

Purpose

The OPEN statement associates input parameters with a cursor and then opens the
Ccursor.

Syntax

EXEC SQL [FOR :array;size] OPEN dyn cursor
[[USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] f{:desc naml | string_literalH
[INTO [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc nam2 | string literall}]] ;

Variables

array_size

This limit is less than or equal to number specified when the descriptor was allocated.
dyn_cursor

The cursor variable.

GLOBAL | LOCAL

14-20

Chapter 14
Full Syntax of the Dynamic SQL Statements

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The descriptor name.

Usage Notes

If the prepared statement associated with the cursor contains colons or question marks, a
USING clause must be specified, or an error results at runtime. The DML returning clause is
supported.

Examples

EXEC SQL OPEN Cl USING SQL DESCRIPTOR :binddes ;

EXEC SQL FOR :limit OPEN C2 USING DESCRIPTOR :bl, :b2
INTO SQL DESCRIPTOR :seldes ;

Related Topics
e The DML Returning Clause

14.5.12 FETCH

ORACLE

Purpose
Fetches a row for a cursor declared with a dynamic DECLARE statement.

Syntax

EXEC SQL [FOR :arrayﬁsize] FETCH cursor INTO [SQL] DESCRIPTOR
[GLOBAL | LOCAL] {:desc nam | string literal} ;

Variables

array_size

The number of rows the statement will process.
cursor

The dynamic cursor that was previously declared.
GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

Descriptor name.

Usage Notes

The optional array size inthe FOR clause must be less than or equal to the number
specified in the ALLOCATE DESCRIPTOR statement.

14-21

Chapter 14
Full Syntax of the Dynamic SQL Statements

Examples

EXEC SQL FETCH FROM Cl1 INTO DESCRIPTOR 'SELDES' ;

EXEC SQL FOR :arsz FETCH C2 INTO DESCRIPTOR :desc ;

14.5.13 CLOSE a Dynamic Cursor

Purpose

Closes a dynamic cursor. Syntax has not changed from the older Oracle Method 4:
Syntax

EXEC SQL CLOSE cursor ;

Variable

cursor

The dynamic cursor that was previously declared.

Example

EXEC SQL CLOSE C1 ;

14.5.14 Differences From Oracle Dynamic Method 4

ORACLE

The ANSI dynamic SQL interface supports all the datatypes supported by the Oracle
dynamic Method 4, with these additions:

e All datatypes, including object types, result sets, and LOB types are supported by
ANSI Dynamic SQL.

e The ANSI mode uses an internal SQL descriptor area which is an expansion of the
external SQLDA used in Oracle older dynamic Method 4 to store its input and
output information.

¢ New embedded SQL statements are introduced: ALLOCATE DESCRIPTOR,
DEALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, and SET
DESCRIPTOR.

 The DESCRIBE statement does not return the names of indicator variables in
ANSI Dynamic SQL.

e ANSI Dynamic SQL does not allow you to specify the maximum size of the
returned column name or expression. The default size is set at 128.

e The descriptor name must be either an identifier in single-quotes or a host variable
preceded by a colon.

e For output, the optional SELECT LIST FOR clause in the DESCRIBE is replaced
by the optional keyword OUTPUT. The INTO clause is replaced by the USING
DESCRIPTOR clause, which can contain the optional keyword SQL.

e For input, the optional BIND VARIABLES FOR clause of the DESCRIBE can be
replaced by the keyword INPUT. The INTO clause is replaced by the USING
DESCRIPTOR clause, which can contain the optional keyword SQL.

14-22

Chapter 14
Example Programs

* The optional keyword SQL can come before the keyword DESCRIPTOR in the USING
clause of the EXECUTE, FETCH and OPEN statements.

14.5.15 Restrictions (ANSI Dynamic SQL)

Restrictions in effect on ANSI dynamic SQL are:

* You cannot mix ANSI and Oracle dynamic SQL methods in the same module.

e The precompiler option DYNAMIC must be set to ANSI. The precompiler option
TYPE_CODE can be set to ANSI only if DYNAMIC is set to ANSI.

» The SET statement supports only host variables as item names.

14.6 Example Programs

The following two programs are in the demo directory.

14.6.1 ansidynl.pc

ORACLE

This program demonstrates using ANSI Dynamic SQL to process SQL statements which are
not known until runtime. It is intended to demonstrate the simplest (though not the most
efficient) approach to using ANSI Dynamic SQL. It uses ANSI compatible value semantics
and ANSI type codes. ANSI SQLSTATE is used for error numbers. Descriptor names are
literals. All input and output is through ANSI varying character type.

The program connects you to ORACLE using your username and password, then prompts
you for a SQL statement. Enter legal SQL or PL/SQL statements using regular, not
embedded, SQL syntax and terminate each statement with a semicolon. Your statement will
be processed. If it is a query, the fetched rows are displayed.

You can enter multiline statements. The limit is 1023 characters. There is a limit on the size of
the variables, MAX_VAR_LEN, defined as 255. This program processes up to 40 bind
variables and 40 select-list items. DML returning clauses and user defined types are not
supported with value semantics.

Precompile the program with mode = ansi, for example:

proc mode=ansi ansidynl

Using mode=ansi will set dynamic and type code to ansi.

/********‘k**‘k************‘k**‘k************‘k**‘k************‘k**‘k*******

ANSI Dynamic Demo 1: ANSI Dynamic SQL with value semantics,
literal descriptor names
and ANSI type codes

This program demonstates using ANSI Dynamic SQL to process SQL
statements which are not known until runtime. It is intended to
demonstrate the simplest (though not the most efficient) approach

to using ANSI Dynamic SQL. It uses ANSI compatible value semantics

and ANSI type codes. ANSI Sglstate is used for error numbers.
Descriptor names are literals. All input and output is through ANSI the
varying character type.

The program connects you to ORACLE using your username and password,

then prompts you for a SQL statement. Enter legal SQL or PL/SQL
statements using reqular, not embedded, SQL syntax and terminate each

14-23

Chapter 14
Example Programs

statement with a seimcolon. Your statement will be processed. If it

is a query, the fetched rows are displayed.

You can enter multiline statements. The limit
There is a limit on the size of the variables,
This program processes up to 40 bind variables
DML returning statments and user defined types
value semantics.

is 1023 characters.
MAX VAR LEN, defined as 255.
and 40 select-list items.
are not supported with

Precompile the program with mode=ansi, for example:

proc mode=ansi ansidynl

Using mode=ansi will set dynamic and type code

to ansi.

*******‘k***************‘k***************‘k***************‘k***********/

#include <stdio.h>
#include <string.h>
#include <setjmp.h>
#include <stdlib.h>
#include <sglcpr.h>

#define MAX OCCURENCES 40
#define MAX VAR LEN 255
#define MAX NAME LEN 31

#ifndef NULL
#define NULL 0
#endif

/* Prototypes */
#if defined(_ STDC_)
void sql error(void);
int oracle connect (void);
int get dyn statement (void);
int process input(void);
int process output (void);
void help(void);
felse
void sql_error(/*_ void _*/);
int oracle connect(/*_ void _*/);
int get dyn statement (/* void */);
int process_input(/*_ void _*/
int process_output(/*_ void *
void help(/* wvoid */);
#endif

)i
/)i

EXEC SQL INCLUDE sqglca;

char SQLSTATE[6];

/* global variables */

EXEC SQL BEGIN DECLARE SECTION;
char dyn statement[1024];

char SQLSTATE([6];
EXEC SQL END DECLARE SECTION;

ORACLE

14-24

ORACLE

Chapter 14
Example Programs

/* Define a buffer to hold longjmp state info. */
jmp_buf jmp continue;

/* A global flag for the error routine. */

int parse flag = 0;

/* A global flag to indicate statement is a select */
int select found;

void main ()

{
/* Connect to the database. */
if (oracle connect() != 0)
exit (1),
EXEC SQL WHENEVER SQLERROR DO sgl error();
/* Allocate the input and output descriptors. */
EXEC SQL ALLOCATE DESCRIPTOR 'input descriptor';
EXEC SQL ALLOCATE DESCRIPTOR 'output descriptor';

/* Process SQL statements. */

for (;;)
{
(void) setjmp(jmp_continue);
/* Get the statement. Break on "exit". */
if (get dyn statement() != 0)
break;
/* Prepare the statement and declare a cursor. */
parse flag = 1; /* Set a flag for sql error(). */
EXEC SQL PREPARE S FROM :dyn_statement;
parse flag = 0; /* Unset the flag. */
EXEC SQL DECLARE C CURSOR FOR S;
/* Call the function that processes the input. */
if (process input())
exit (1);
/* Open the cursor and execute the statement. */
EXEC SQL OPEN C USING DESCRIPTOR 'input descriptor';
/* Call the function that processes the output. */
if (process output())
exit (1);
/* Close the cursor. */
EXEC SQL CLOSE C;
} /* end of for(;;) statement-processing loop */

/* Deallocate the descriptors */
EXEC SQL DEALLOCATE DESCRIPTOR 'input descriptor';
EXEC SQL DEALLOCATE DESCRIPTOR 'output descriptor';

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL COMMIT WORK;

14-25

ORACLE

int

puts ("\nHave a good day!\n");

EXEC SQL WHENEVER SQLERROR DO sgl error();
return;

get dyn statement ()

char *cp, linebuf[256];
int iter, plsql;

for (plsgl = 0, iter = 1; ;)
{
if (iter == 1)
{
printf ("\nsSQL> ");
dyn statement[0] =
select found = 0;

I\OI;

fgets(linebuf, sizeof linebuf, stdin);

cp = strrchr(linebuf, '\n');

if (cp && cp != linebuf)
*Cp:' v’.

else if (cp == linebuf)
continue;

if ((strncmp(linebuf,
(strncmp (linebuf,

"SELE