Oracle® Database
ODBC Developer's Guide

23ai
F92980-03
November 2024

ORACLE"

Oracle Database ODBC Developer's Guide, 23ai

F92980-03

Copyright © 2024, Oracle and/or its affiliates.

Primary Author: Jiji Thomas

Contributing Authors: Rhonda Day

Contributors: Veronica Dumitriu, Christopher Jones, Alan Williams

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience Viii
Documentation Accessibility viii
Related Documents viii
Conventions ix
Changes in ODBC Developer's Guide
New Features in 23ai X
New Features in Earlier Releases X
Deprecated Features Xi
1 Introduction to the Oracle Database ODBC Driver
1.1 About the ODBC Driver 1-1
1.2 What Is the Oracle Database ODBC Driver 1-2
1.3 Certifications for Oracle Database ODBC Driver on Windows 1-4
1.4 Certifications for Oracle ODBC Driver on UNIX Platforms 1-4
1.5 Driver Conformance Levels 1-4
2 Getting Started
2.1 Summary of Steps 2-1
2.2 Installation 2-2
2.2.1 System Requirements 2-2
2.2.1.1 Software Required 2-3
2.2.1.2 Server Software Requirements 2-3
2.2.1.3 Hardware Required 2-3
2.2.2 Installing Oracle Instant Client ODBC (Linux and UNIX) 2-3
2.2.2.1 Recommended unixODBC Driver Manager Versions for Linux and UNIX 2-4
2.2.3 Installing Oracle Instant Client ODBC (Windows) 2-5
2.2.4 Content of the Oracle Instant Client ODBC Package 2-6
2.2.5 Files Created by the Installation 2-6
2.3 Configuration 2-8

ORACLE"

2.3.1 Environment Setup for ODBC Applications 2-8
2.3.2 Configuring Oracle Net Services 2-9
2.3.3 Configuration for UNIX Platforms 2-9
2.3.3.1 Usage 2-10
2.3.4 Configuration for Windows 2-10
2.3.4.1 Configuring the Data Source 2-10
2.3.4.2 Oracle Database ODBC Driver Configuration Dialog Box 2-11
2.3.5 Reducing Lock Timeout 2-19
2.4 Patching Oracle Instant Client ODBC 2-20
2.4.1 Patching Oracle Instant Client ODBC on Linux and UNIX Method 1 2-20
2.4.2 Patching Oracle Instant Client ODBC on Linux and UNIX Method 2 2-20
2.4.3 Patching on Windows 2-21
2.5 Uninstallation 2-22
2.5.1 Uninstalling Oracle Instant Client ODBC on Linux and UNIX 2-22
2.5.2 Uninstalling Oracle Instant Client ODBC on Windows 2-22
Basic Connection Steps
3.1 Connecting to an Oracle Data Source 3-1
3.2 Troubleshooting 3-2
3.2.1 About Using Oracle Database ODBC Driver for the First Time 3-2
3.2.2 Expired Password 3-2
Using the Oracle Database ODBC Driver
4.1 Connecting to Oracle Database Using TLS (Preconfigured for Azure AD) 4-1
411 Overview 4-1
4.1.2 Prerequisite Steps to Using Oracle ODBC with Excel 4-2
4.1.3 Installing the ODBC Driver 4-2
4.1.4 Configuring thsnames.ora, TNS_ADMIN, and PATH 4-3
415 Getting an OAuth 2 Token 4-3
4.1.6 Configuring DSN 4-3
4.1.7 Configuring Excel 4-7
4.2 Creating Oracle Database ODBC Driver TNS Service Names 4-9
4.3 SQL Statements 4-9
4.4 Data Types 4-9
4.5 Implementation of Data Types (Advanced) 4-10
4.6 Error Messages 4-11
Oracle Database ODBC Driver for Programmers
5.1 Format of the Connection String 5-1

ORACLE"

5.2 SQLDriverConnect Implementation 5-4
5.3 Reducing Lock Timeout in a Program 5-4
5.4 Linking with odbc32.lib (Windows) or libodbc.so (UNIX) 5-4
5.5 Information about ROWID 5-4
5.6 ROWID in a WHERE Clause 5-5
5.7 Enabling Result Sets 5-5
5.8 Enabling EXEC Syntax 5-10
5.9 Enabling Event Notification for Connection Failures in an Oracle RAC Environment 5-11
5.10 Using Implicit Results Feature through ODBC 5-15
5.11 About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH
LOCAL TIME ZONE Column Type in ODBC 5-16
5.12 About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle
Database ODBC Driver, and Others) 5-19
6 Supported Functionality
6.1 API Conformance 6-1
6.2 Implementation of ODBC API Functions 6-1
6.3 Implementation of the ODBC SQL Syntax 6-2
6.4 Implementation of Data Types (Programming) 6-2
7 Unicode Support
7.1 Unicode Support within the ODBC Environment 7-1
7.2 Unicode Support in ODBC API 7-1
7.3 Unicode Functions in the Driver Manager 7-2
7.4 SQLGetData Performance 7-2
7.5 Unicode Samples 7-3
8 Performance and Tuning
8.1 General ODBC Programming Tips 8-1
8.2 Data Source Configuration Options 8-2
8.3 DATE and TIMESTAMP Data Types 8-3
Index
ORACLE

List of Figures

1-1 Components of the ODBC Model

1-2 Oracle Database ODBC Driver Architecture

2-1 Oracle ODBC Driver Configuration Dialog Box

2-2 The Application Options Tab of the Oracle ODBC Driver Configuration Dialog Box
2-3 The Oracle Options Tab of the Oracle ODBC Driver Configuration Dialog Box

2-4 The Workarounds Options Tab of the Oracle ODBC Driver Configuration Dialog Box
2-5 The SQL Server Migration Options Tab of the Oracle ODBC Driver Configuration Dialog Box
4-1 ODBC Data Source Administrator (32-bit)

4-2 Create New Data Source

4-3 Oracle ODBC Driver Configuration

4-4 Oracle ODBC Driver Configuration - Connection Successful Message

4-5 ODBC Data Source Administrator (32-bit)

4-6 Data Connection Wizard - Connect to ODBC Data Source

4-7 Data Connection Wizard - Select Database and Table

4-8 Excel Sheet with Imported Data

ORACLE

1-2

1-3
2-12
2-13
2-15
2-17
2-19

Vi

List of Tables

1-1 Oracle Database ODBC Driver Is Certified on Windows Operating Systems

1-2 Certification Matrix for Oracle Database ODBC Driver on UNIX Platforms

2-1 Files Installed by the Oracle Database ODBC driver Kit

2-2 Parameter Descriptions

4-1 Error Message Values of Prefixes Returned by the Oracle Database ODBC Driver

5-1 Keywords that Can Be Included in the Connection String Argument of the SQLDriverConnect
Function Call

5-2 Keywords Required by the SQLDriverConnect Connection String

6-1 How the Oracle Database ODBC Driver Implements Specific Functions

7-1 Supported SQL Data Types and the Equivalent ODBC SQL Data Type

ORACLE

1-4
1-4
2-6
2-10
4-12

5-1
5-4
6-1
7-2

Vii

Preface

Preface

Audience

This guide provides comprehensive information about the Oracle Database Open Database
Connectivity (ODBC) driver, including instructions on how to install and configure the ODBC
driver, and how to use the ODBC driver to connect ODBC-compliant applications to an Oracle
data source.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

This guide is intended for use by administrators and software programmers who want to use
the Oracle Database ODBC driver in their database applications to connect to an Oracle data
source.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

ORACLE

These documents in the Oracle Database documentation set provide more information that
can assist you when using this document:

e Oracle Call Interface Programmer's Guide

* Oracle Database Net Services Administrator's Guide
* Oracle Database Net Services Reference

* Oracle Database Client Installation Guide for Linux

e Oracle Database Security Guide

e Oracle Database JDBC Developer's Guide

e Oracle Database Globalization Support Guide

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Conventions

This guide uses these text conventions:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE

Changes in ODBC Developer's Guide

Changes in ODBC Developer's Guide

The following are the changes in ODBC Developer's Guide for Oracle Database 23ai, and
earlier releases:

* New Features in 23ai
 New Features in Earlier Releases

e Deprecated Features
The following is the deprecated feature in ODBC Developer's Guide for Oracle Database
Release 23ai.

New Features in 23ali

The following are the new features in ODBC Developer's Guide for Oracle Database 23ai.

« ODBC Release 23ai

ODBC Release 23ali

The following new features are added to the Oracle Database ODBC driver, release 23ai.

ODBC Support for SQL BOOLEAN Data Type

The Oracle Database ODBC driver supports a native SQL BOOLEAN data type, using SOL BIT to
map to the SQL BOOLEAN data type, and returning "1" or "0."

ODBC Support for VECTOR Data Type

The Oracle Database ODBC driver supports VECTOR data type, using SQL CHAR to map to the
VECTOR data type.

See Implementation of Data Types (Advanced)

New Features in Earlier Releases

The following are the new features in the earlier releases of the Oracle Database ODBC driver.

* ODBC Release 21c, Version 21.1

+ ODBC Release 19c, Version 19.1.0.0.0
+ ODBC Release 18c, Version 18.1.0.0.0
¢ ODBC 12.2.0.1.0

ODBC Release 21c, Version 21.1

There are no new features for Oracle Database ODBC Driver Release 21c, Version 21.1.

ORACLE

Changes in ODBC Developer's Guide

ODBC Release 19c, Version 19.1.0.0.0

There are no new features of Oracle Database ODBC Driver, Release 19c¢, Version 19.1.0.0.0
software for the Microsoft Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, Windows Server 2012 R2, Windows 7, Windows 8, Windows 8.1, Windows 10, Linux
X86-64 (32-bit, 64-bit), Sun Solaris SPARC64 (32-bit, 64-bit), IBM AIX 5L (32-bit, 64-bit), Sun
Solaris X64 (32-bit, 64-bit), HPUX I1A64 (32-bit, 64-bit), ZLinux (32-bit, 64-bit) operating
systems.

ODBC Release 18c, Version 18.1.0.0.0

Features of Oracle Database ODBC Driver Release 18c, Version 18.1.0.0.0 software for the
Microsoft Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows
Server 2012 R2, Windows 7, Windows 8, Windows 8.1, Windows 10, Linux X86-64 (32-bit, 64-
bit), Sun Solaris SPARC64 (32-bit, 64-bit), IBM AIX 5L (32-bit, 64-bit), Sun Solaris X64 (32-bit,
64-bit), HPUX 1A64 (32-bit, 64-bit), ZLinux (32-bit, 64-bit) operating systems are described as
follows:

* unixODBC ODBC Driver Manager is upgraded from unixODBC-2.3.2 to unixODBC-2.3.4.

ODBC 12.2.0.1.0

Features of Oracle Database ODBC Driver Release 12.2.0.1.0 software for the Microsoft
Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server
2012 R2, Windows 7, Windows 8, Windows 8.1, Windows 10, Linux X86-64 (32-bit, 64-bit),
Sun Solaris SPARC64 (32-bit, 64-bit), IBM AlX 5L (32-bit, 64-bit), Sun Solaris X64 (32-bit, 64-
bit), HPUX 1A64 (32-bit, 64-bit), ZLinux (32-bit, 64-bit) operating systems are described as
follows:

e Support is added for long identifiers up to 128 bytes.
e Support is added for time stamp with time zone and time stamp with local time zone.

This feature does not require changes to the existing ODBC application where ODBC
TIMESTAMP data type is used. If an existing application uses ODBC TIMESTAMP data type
and the database column is TIMESTAMP, the current behavior is preserved.

For database column TIMESTAMP WITH TIMEZONE Or TIMESTAMP WITH LOCAL TIMEZONE, the
time component in the ODBC TIMESTAMP STRUCT is in the user’s session time zone. This
behavior is transparent to the user’s application, requiring no change to the ODBC
application.

Deprecated Features

ORACLE

The following is the deprecated feature in ODBC Developer's Guide for Oracle Database
Release 23ai.

Oracle OLAP

Analytic workspaces, the OLAP DML programming language, financial reporting, and the
OLAP Java API continue to be deprecated in Oracle Database 23ai.

Be aware that OLAP will not be supported beyond the term of the current release (Oracle
Database 23ai) premier support. Oracle strongly recommends that you do not start new
projects using OLAP and begin migrating applications using OLAP to alternatives now. If your
application requires an in-database dimensional model, then consider using Oracle Analytic

Xi

Changes in ODBC Developer's Guide

Views. Analytic views provide a dimensional semantic model, calculations, and query
semantics using data in Oracle Database. When used with columnar tables, analytic views
provide query performance similar to the OLAP Option. If your application requires support for
advanced dimensional analytics, what-if analysis, or forecasting, then consider Oracle

Essbase. Oracle Essbhase is a multidimensional database management system with support
for complex dimensional business analytics.

ORACLE Xii

Introduction to the Oracle Database ODBC
Driver

This chapter introduces you to the Oracle Database ODBC driver.
Topics:

* About the ODBC Driver

* What Is the Oracle Database ODBC Driver

* Certifications for Oracle Database ODBC Driver on Windows
* Certifications for Oracle ODBC Driver on UNIX Platforms

e Driver Conformance Levels

1.1 About the ODBC Driver

Open Database Connectivity (ODBC) provides a standard interface that allows one application
to access many different data sources. The application’'s source code does not have to be
recompiled for each data source. A database driver links the application to a specific data
source. A database driver is a dynamic-link library that an application can invoke on demand to
gain access to a particular data source. Therefore, the application can access any data source
for which a database driver exists.

The ODBC interface defines the following:

e Alibrary of ODBC function calls that allows an application to connect to a data source,
execute structured query language (SQL) statements, and retrieve results.

e SQL syntax based on the SQL-99 specification.

* A standard set of error codes.

e A standard way to connect to and log in to a data source.
e A standard representation for data types.

The following figure shows the components of the ODBC model. The model begins with an
ODBC application making a call to the Driver Manager through the ODBC application program
interface (API). The Driver Manager can be either the Microsoft Driver Manager or the
unixODBC Driver Manager. While using the ODBC API, the Driver Manager makes a call to the
ODBC driver. The ODBC driver accesses the database over a network communications link
using the database API. This figure shows an ODBC application accessing three separate
databases.

ORACLE 1

Chapter 1
What Is the Oracle Database ODBC Driver

Figure 1-1 Components of the ODBC Model

oDBC
App”c ation | [Driver Manager

oODBC

& oDBC

APl
h
ODBC Driver ODBC Driver ODBC Driver
A B Cc
Database API Database AP Database API
A B

Network
Transports

= e

Ll /fo

Related Topic
What Is the Oracle Database ODBC Driver

1.2 What Is the Oracle Database ODBC Driver

ORACLE

The Oracle Database ODBC driver enables ODBC applications on Microsoft Windows, and on
UNIX platforms such as Linux, Solaris, and IBM AlX to have read and write access to Oracle®
Databases through the ODBC interface using the Oracle Net Services software.

The Oracle Database ODBC driver uses the Oracle Call Interface (OCI) client and server
software to submit requests to and receive responses from a data source. The Oracle Net
Services communications protocol is used for communications between the OCI client and the
Oracle server.

The Oracle Database ODBC driver translates the ODBC SQL syntax into the syntax that can
be used to access a data source. When the results are returned from the data source, the
Oracle Database ODBC driver translates them back to the ODBC SQL syntax.

The following figure shows the Oracle Database ODBC driver architecture as described in the
preceding paragraphs.

1-2

Chapter 1
What Is the Oracle Database ODBC Driver

Figure 1-2 Oracle Database ODBC Driver Architecture

ODBEC QDBC
Application Application
oDac oDac
AP AP
8 ¥
unixODBC Microsoft
Driver Manager Driver Manager
(libodhe.so) (ODBC32.0LL)
I ODBC API ODBC API I
ODBC Driver ODBC Driver *
{libsgora.se12.1) (SQORA32.DLL)
OCI Client OCI Client
Network Network
Transports Transports
Listener Listener

! I

—

Oracle Datab Cracle Datab, —

= racle Database racle Database [—=
* The Oracle ODBC Resource data definition language (DLL) file (sqresxx.d11), where xx
represents the language abbreviation, contains all pertinent language information; the default
resource file used is sqresus.dll.
The Oracle Database ODBC driver complies with ODBC version 3.52 specifications. For UNIX
platforms, the ODBC driver is certified with unixODBC Driver Manager version 2.3.11.
Related Topics
Configuring the Data Source (Windows)
Configuration for UNIX Platforms
Connecting to a Data Source
Driver Conformance Levels

ORACLE

1-3

Chapter 1
Certifications for Oracle Database ODBC Driver on Windows

New and Changed Features

Files Created by the Installation

1.3 Certifications for Oracle Database ODBC Driver on Windows

The following table summarizes the Windows operating system versions on which the Oracle
Database ODBC driver is certified.

Table 1-1 Oracle Database ODBC Driver Is Certified on Windows Operating Systems

Driver Version Database Version Operating Systems
ODBC Release 23ai, Version As Supported by OCI See Software Required.
23.3.0.0

ODBC Release 21c, Version 21.1 As Supported by OCI See Software Required.
ODBC Release 19c, Version As Supported by OCI See Software Required.
19.1.0.0.0

ODBC Release 18c, Version As Supported by OCI See Software Required.
18.1.0.0.0

ODBC 12.2.0.1.0 As Supported by OCI See Software Required.

1.4 Certifications for Oracle ODBC Driver on UNIX Platforms

Oracle has certified the Oracle Database ODBC driver for release 23.3 against Driver Manager
(DM) 2.3.11 on the following listed UNIX platforms.

These UNIX platforms are shown in Table 1-2. On 64-bit UNIX platforms, DM 2.3.11 is built
with the -DBUILD REAL 64 BIT MODE -DSIZEOF LONG=8 -fshort-wchar flags and then
certified.

Table 1-2 Certification Matrix for Oracle Database ODBC Driver on UNIX Platforms

Platform 32-bit/64-bit UnixODBC DM version
Linux x86-64 32-bit, 64-bit 2311
Solaris SPARC64 32-bit, 64-bit 2311
AIX5L 32-bit, 64-bit 2311
Solaris x64 32-bit, 64-bit 23.11
HPUX.IA64 32-bit, 64-bit 2.3.11
ZLinux 32-bit, 64-bit 2311

To learn more about each operating system and Oracle Client software requirements, see the
Installation guide of each platform.

1.5 Driver Conformance Levels

ODBC defines the conformance levels for drivers in two areas:

e ODBC application programming interface (API)
« ODBC SQL-99 syntax

ORACLE 4

ORACLE

Chapter 1
Driver Conformance Levels

The Oracle Database ODBC driver supports all core API functionality and a limited set of Level
1 and Level 2 functionalities.

The Oracle Database ODBC driver is broadly compatible with the SQL-99 Core specification,
which is a superset of the SQL-92 Entry Level specification. Applications must call SQLGetInfo
with the appropriate information type to retrieve a list of SQL-99 supported features.

See Also:

API Conformance for more information about the core API functionality support

1-5

Getting Started

This chapter guides you through the procedures required to install and configure the Oracle
Database ODBC driver.

The Oracle Database ODBC driver enables applications to connect to Oracle Database from a
Windows client as well as a UNIX client that use Microsoft Open Database Connectivity
(ODBC) API to read from and write to Oracle Databases.

The Oracle Database ODBC driver distribution kit consists of Dynamic Link Libraries and
shared libraries (for UNIX platforms), help file (on Windows and UNIX platforms), a copy of the
license, and this product description. To use an ODBC-enabled application, the following
software is required in addition to the Oracle Database ODBC driver:

* Oracle Client, such as full client install or Oracle Instant Client

* Oracle Database Server

¢ See Also:

e The OCI documentation in Oracle Call Interface Programmer's Guide for more
information about the OCI client and server software

Topics:
e Summary of Steps

e Installation
This section guides you through the procedures required to install the Oracle Database
ODBC driver.

e Configuration
This section guides you through the procedures required to configure the Oracle Database
ODBC driver.

e Patching Oracle Instant Client ODBC
This section guides you through the procedures required to patch Oracle Instant Client
ODBC.

e Uninstallation
This section takes you through the steps required to uninstall the Oracle Database ODBC
driver.

2.1 Summary of Steps

ORACLE

The summary of steps for installing and configuring the Oracle Database ODBC driver is as
follows.

Linux and UNIX

1. Confirm that the system requirements have been met for the installation.

2-1

Chapter 2
Installation

Download and install the Oracle Instant Client Basic or Light package.
Download and install the unixODBC Driver Manager.
Download and extract the Instant Client ODBC package into the Instant Client directory.

Configure the path for the driver's shared library and other environment variables.

o a » W N

Configure the Oracle net services (TNS service hame) using the Oracle Net Configuration
Assistant (NETCA) tool.

7. Runodbc update ini.sh from the Instant Client directory to configure the data source.

8. Set globalization variables, if required for your locale.

Windows

Confirm that the system requirements have been met for the installation.

Download and install the Oracle Instant Client Basic or Light package.

Download and extract the Instant Client ODBC package into the Instant Client directory.
Run odbc_install.exe from the Instant Client directory.

Configure the path for the driver's shared library and other environment variables.

Configure the Oracle net services (TNS service name) using the Oracle NETCA tool.

N o g M 8w Dd PR

Run ODBC Data Source Administrator to configure the data source.

2.2 Installation

This section guides you through the procedures required to install the Oracle Database ODBC
driver.

Oracle's Instant Client ODBC software is a standalone package that offers the full functionality
of the Oracle Database ODBC driver (except the Oracle service for Microsoft Transaction
Server) with a simple installation procedure.

The ODBC driver has Oracle's standard client-server version interoperability (see Support Doc
ID 207303.1). For example, Instant Client ODBC 19c can connect to Oracle Database 11.2, or
later.

Topics:

e System Requirements

e Installing Oracle Instant Client ODBC (Linux and UNIX)
* Installing Oracle Instant Client ODBC (Windows)

« Content of the Oracle Instant Client ODBC Package

* Files Created by the Installation

2.2.1 System Requirements

ORACLE

Before installing the ODBC driver, verify that the hardware, the target operating system and
server versions are compatible for use with the ODBC driver.

Topics:
e Software Required

e Server Software Requirements

2-2

https://support.oracle.com/epmos/faces/DocumentDisplay?id=207303.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=207303.1

Chapter 2
Installation

e Hardware Required
The requirements for the Oracle Database ODBC driver system configuration for Windows
and UNIX platforms.

2.2.1.1 Software Required

The Oracle Database ODBC driver was certified against the currently supported Windows and
UNIX operating system versions, the most current release of Oracle Net Client and Oracle
Universal Installer shipping with Oracle Database.

The Oracle Database ODBC driver was certified against the following versions of software:

* Windows operating system versions: Windows Server 2008, Windows Server 2008 R2,
Windows 7, Windows 8, and Windows Server 2012

e UNIX operating system versions: 32-bit and 64-bit ports of Linux X86-64, AIX5L,
Solaris.Sparc64, Solaris X64, HPUX.IA64, and ZLinux

¢ Oracle Net Client 12.2

e Oracle Universal Installer shipping with Oracle Database 12.2

2.2.1.2 Server Software Requirements

Oracle Database Server 12.2, or later, is the server software required to support ODBC-
enabled applications that use the Oracle Database ODBC driver.

2.2.1.3 Hardware Required

The requirements for the Oracle Database ODBC driver system configuration for Windows and
UNIX platforms.

The Oracle Database ODBC driver requires a system configuration that the certified Windows
platforms as mentioned in Software Required supports, and on a few UNIX platforms, the
hardware requirements are as documented in the Oracle Databse ODBC driver for UNIX
Platforms Readme.

2.2.2 Installing Oracle Instant Client ODBC (Linux and UNIX)

1. Install the unixODBC Driver Manager from unixODBC. org. To install the ODBC Driver
Manager, first download . tar file from http://www.unixodbc.org/.

¢ See Also:

Recommended unixODBC Driver Manager Versions for Linux and UNIX for more
information about the recommended unixODBC Driver Manager versions

2. Navigate to package from OTN to download Oracle Instant Client Basic or Basic Lite.
3. Download the Instant Client ODBC package.

4. Unzip the Instant Client package to the desired location, for example: /opt/oracle/
instantclient xx_yy, or use yum to install the RPM packages on Linux.

ORACLE)3

http://www.unixodbc.org/
https://www.oracle.com/database/technologies/instant-client/downloads.html
https://www.oracle.com/database/technologies/instant-client/downloads.html

See Also:

Client

Chapter 2
Installation

Installing Oracle Instant Client for more information about installing Oracle Instant

Unzip the ODBC package into the Instant Client folder, for example: /opt/oracle/

instantclient xx_yy, which is the same directory as the Basic or Basic Light
package. Alternatively, if using the RPM package on Linux, install it with yum.

e After the installation, set the environment variables, configure net services, and run
odbc _update ini.sh (from the Instant Client directory) to configure data sources.

See Also:

Configuration for more post-installation configuration steps.

e Set any Oracle globalization variables required for your locale. For example, on Linux,
you could set export NLS LANG=JAPANESE JAPAN.JA16EUC to work in the JAIGEUC

character in Japanese.

¢ See Also:

Oracle Database Globalization Support Guide for more information.

* Recommended unixODBC Driver Manager Versions for Linux and UNIX

2.2.2.1 Recommended unixODBC Driver Manager Versions for Linux and UNIX

ORACLE

For Instant Client 23ai:

Platform unixODBC Driver Manager Version
Linux 32bit, 64bit 2.3.11
Solaris SPARC64 32bit, 64bit 2.3.11
Solaris 32bit, 64bit 2311
AIX 5L 32bit, 64bit 2311
HP 1A64 32bit, 64bit 2311
z/Linux 31bit, 64bit 2.3.11

For Instant Client 21c:

Platform unixODBC Driver Manager Version
Linux 32bit, 64bit 234
Solaris SPARC64 32bit, 64bit 234
Solaris 32bit, 64bit 234
AIX 5L 32bit, 64bit 234

2-4

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=NLSPG

Chapter 2
Installation

Platform unixODBC Driver Manager Version
HP 1A64 32bit, 64bit 234
z/Linux 31bit, 64bit 234

For Instant Client 18c and 19c:

Platform unixODBC Driver Manager Version
Linux 32bit, 64bit 234
Solaris SPARC64 32bit, 64bit 234
Solaris 32bit, 64bit 234
AIX 5L 32bit, 64bit 234
HP 1A64 32bit, 64bit 234
z/Linux 31bit, 64bit 2.3.4

For Instant Client 12.1 and 12.2

Platform unixODBC Driver Manager Version
Linux 32bit, 64bit 234
Solaris SPARC64 32bit, 64bit 234
Solaris 32bit, 64bit 234
AIX 5L 32bit, 64bit 234
HP 1A64 32bit, 64bit 234
z/Linux 31bit, 64bit 2.34

2.2.3 Installing Oracle Instant Client ODBC (Windows)

ORACLE

1.

Navigate to https://www.oracle.com/database/technologies/instant-client/microsoft-
windows-32-downloads.html or https://www.oracle.com/database/technologies/instant-
client/winx64-64-downloads.html

Download and install the Instant Client Basic or Basic Light package.
Download the Instant Client ODBC package.

Unzip the Instant Client folder (instantclient xx yy) to the desired location. For
example: C:\Users\app)\.

Unzip the ODBC package and put the contents of the zip file: instantclient xx yy
into the Instant Client folder (in the same directory as your Instant Client Basic or Basic
Light package).

Run odbc_install.exe from the Instant Client directory.
This registers the ODBC driver with the ODBC Data Sources GUI.
To install with Japanese language support, execute the command odbc_install.exe JA.

After the installation, set the environment variables, configure net services, and configure
the data sources.

2-5

https://www.oracle.com/database/technologies/instant-client/microsoft-windows-32-downloads.html
https://www.oracle.com/database/technologies/instant-client/microsoft-windows-32-downloads.html
https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html
https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html
https://www.oracle.com/database/technologies/instant-client/downloads.html

See Also:

Chapter 2
Installation

Configuration for more post-installation configuration steps.

2.2.4 Content of the Oracle Instant Client ODBC Package

Description Linux and UNIX

Windows

Oracle Database libsqgora.so.XX.Y. For example
ODBC driver libsgora.so.23.1
shared library

sgora32.dll

Installation file odbc_update ini.sh

odbc_install.exe,
odbc_uninstall.exe

Oracle Database Not available

sqoras32.dll, sgresus.dll,

ODBC driver sqgresja.dll
configuration dialog

box (GUI)

Help System help/ help/

2.2.5 Files Created by the Installation

The following table describes the files that are installed by the Oracle Database ODBC driver

ORACLE

kit.

Table 2-1 Files Installed by the Oracle Database ODBC driver Kit
]

Description File Name for Windows Installation File Name for UNIX Installation
Oracle ODBC sgora3z.dll libsgora.so.nn.n (where nn.n reflects a
Database version number; for example,
Access DLL libsqora.s0.23.1)

Oracle sgoras32.dll None

Database ODBC

driver Setup

DLL

Oracle ODBC sqresus.dll None

Resource DLL

Oracle ODBC sqresja.dll None

Resource DLL
for Japanese

Oracle oraodbcus.msb
Database ODBC

driver message

file

Oracle oraodbcja.msb
Database ODBC

driver message
file for Japanese

oraodbcus.msb

oraodbcja.msb

2-6

Chapter 2
Installation

Table 2-1 (Cont.) Files Installed by the Oracle Database ODBC driver Kit
]

Description File Name for Windows Installation File Name for UNIX Installation
Oracle Oracle Database ODBC Driver Release Oracle Database ODBC Driver Release
Database ODBC Notes Notes

driver release

notes

Oracle ODBC_IC Readme Win.html ODBC_IC Readme Unix.html

Database ODBC
driver Instant
Client Release
Notes

Oracle sqgora.htm sqora.htm
Database ODBC
driver help file

Oracle sqora.htm sgora.htm
Database ODBC

driver help file

for Japanese

Oracle odbc_install.exe odbc_update ini.sh
Database ODBC

driver Instant

Client install

script

Oracle odbc uninstall.exe None
Database ODBC

driver Instant

Client uninstall

script

Microsoft Driver Manager and Administrator Files

See the Microsoft ODBC 3.52 Software Development Kit and Programmer's Reference for the
list of files that are installed with Microsoft's ODBC 3.52 Components.

The Microsoft ODBC components are packages in the Microsoft Data Access Component
(MDAC) kit. The Oracle Database ODBC driver on Windows has been tested using MDAC
version 2.8.

unixODBC Driver Manager and Administrator Files

See the unixODBC readme and INSTALL files for the list of files that are installed with
unixODBC Driver Manager.

See Also:

e MDAC Kit to download MDAC kit
e Unix ODBC Driver Manager to download unixODBC Driver

ORACLE .

https://www.microsoft.com/en-us/download/details.aspx?id=21995

Chapter 2
Configuration

2.3 Configuration

This section guides you through the procedures required to configure the Oracle Database
ODBC driver.

Post installation, you must set environment variables for ODBC applications, configure network
database services, and configure the data sources on Windows and UNIX platforms.

Use the Microsoft ODBC Administrator to configure your Oracle Database ODBC driver data
sources on Windows. For more information, see the information about configuring the data
source in Configuring the Data Source.

To configure the Oracle Database ODBC driver data source on a UNIX Client, see
Configuration for UNIX Platforms.

Topics:
* Environment Setup for ODBC Applications

e Configuring Oracle Net Services

e Configuration for UNIX Platforms
Complete these post-installation configuration tasks for the Oracle Database ODBC driver
on UNIX platforms.

e Configuration for Windows
Complete these post-installation configuration tasks for the Oracle Database ODBC driver
on Windows.

¢ Reducing Lock Timeout

2.3.1 Environment Setup for ODBC Applications

An ODBC application must load the Oracle Instant Client ODBC driver's shared library file to
connect to Oracle Database. On Linux/Unix, the directory path of the shared library file
libsgora.so.XX.Y (for example libsgora.so.19.1) should be setin the

LD LIBRARY PATH environment variable, or in a platform equivalent. It can also be configured
in /etc/1d.so.conf. On Windows, the directory path of the shared library file should be set
in the PATH environment variable.

See Also:

» Content of the Oracle Instant Client ODBC Package for more information about
the ODBC driver's shared library

» Environment Variables for Oracle Instant Client for more information about
related environment variables, such as TNS ADMIN, TWO TASK, and LOCAL

o Database Connection Strings in Oracle Call Interface Programmer's Guide for
information about setting up a database connection string

ORACLE)8

Chapter 2
Configuration

2.3.2 Configuring Oracle Net Services

Before configuring the data source, you must configure network database services to ensure
that there is an entry for each Transparent Network Substrate (TNS) Service Name. To do this,
use the Oracle Net Configuration Assistant (NETCA) tool.

TNS service name is the location of the Oracle database from which the ODBC driver retrieves
data.

Using NETCA, you can create an entry in the tnsnames . ora file for each TNS Service Name.

Note:

NETCA is installed when you install Oracle Net Services.

¢ See Also:

Using Oracle Net Configuration Assistant to Configure Network Components in
Oracle Database Net Services Administrator's Guide for more information about
using the NETCA tool.

2.3.3 Configuration for UNIX Platforms

ORACLE

Complete these post-installation configuration tasks for the Oracle Database ODBC driver on
UNIX platforms.

1. Run install-home/odbc/utl/odbc_update ini.sh to configure the Oracle Database
ODBC driver on UNIX.

The utility odbc_update ini.sh takes four command-line arguments:
* arg-1: Complete path where unixODBC DM has been installed.

e arg-2. Complete path of driver install location (optional); if this argument is not passed,
the driver path is set to the directory from where the utility is run.

e arg-3: Driver name (optional); if this argument is not passed, the driver name is set to
the downloaded version.

e arg-4: Data Source Name or DSN (optional); if no value is passed, the DSN is set to
the downloaded version.

See Also:

Usage for detailed information about how to use odbc_update ini.sh.

2. Update and verify values of environment variables such as: PATH, LD LIBRARY PATH,
LIBPATH, and TNS_ADMIN.

2-9

Chapter 2
Configuration

e Usage

2.3.3.1 Usage

odbc_update ini.sh <ODBCDM Home> [<Install Location> <Driver Name> <DSN>
<ODBCINI>]

Table 2-2 Parameter Descriptions

Parameter Required/ Description
Optional
ODBCDM Home Required unixODBC Driver Manager home directory path.
Install Loca Optional Oracle Instant Client directory path. The default path is the current
tion directory.
Driver Name Optional Driver name to identify the Oracle Database ODBC driver residing in

current Oracle Instant Client home. The default name is like "Oracle
23ai ODBC driver."

DSN Optional Sets ODBC Data Source Name (DSN). The default name is
"OracleODBC-23ai."

ODBCINI Optional Directory path of the . odbc. ini file. The default path is the user's
home directory, for example ~/ .odbc.ini.

2.3.4 Configuration for Windows

Complete these post-installation configuration tasks for the Oracle Database ODBC driver on
Windows.

Topics:
e Configuring the Data Source

e Oracle Database ODBC Driver Configuration Dialog Box

2.3.4.1 Configuring the Data Source

ORACLE

Note:

The following configuration steps are for Windows users. Unix users must use the
odbc_update ini.sh file to create a Data Source Name (DSN).

After installing the Oracle Database ODBC driver and Configuring Oracle Net Services, and
before using the Oracle Database ODBC driver, you must configure the data source.

Before an application can communicate with the data source, you must provide configuration
information. The configuration information informs the Oracle Database ODBC driver as to
which information you want to access.

The data source consists of the data that you want to access, its associated operating system,
database management system, and network platform used to access the database

2-10

Chapter 2
Configuration

management system. The data source for requests submitted by the Oracle Database ODBC
driver is an Oracle Database and supports transports available under Oracle Net Services.

To configure or add an Oracle data source:

After you have installed the Oracle Database ODBC driver, use the ODBC Data Source
Administrator to configure or add an Oracle data source for each of your Oracle Databases.
the Oracle Database ODBC driver uses the information you enter when you add the data
source to access the data. Follow these steps:

1. From the start menu, select Programs, Administrative Tools, Data Sources (ODBC).

In the ODBC Data Source Administrator dialog box, in the Drivers tab, a list of installed
drivers is displayed. Ensure that the Drivers tab displays the Oracle Database ODBC
driver that you just installed.

2. Onthe System DSN tab, click Add to display the Create New Data Source dialog box.

3. Inthe Create New Data Source dialog box, from the list of installed drivers, select the
Oracle Database ODBC driver for which you want to set up a data source.

4. Click Finish.

The Oracle ODBC Driver Configuration dialog box is displayed. You must enter the DSN
and TNS Service Name. You can provide the other information requested in the dialog box,
or you can leave the fields blank and provide the information when you run the application.

5. After you have entered the data, click OK or click Return.
You can change or delete a data source at any time. The following subtopics explain how to
add, change, or delete a data source.

To modify an Oracle data source:

1. From the start menu, select Programs, Administrative Tools, Data Sources(ODBC).

2. Inthe ODBC Data Source Administrator dialog box, select the data source from the Data
Sources list and click Configure.

The Oracle ODBC Driver Configuration dialog box is displayed.
3. Inthe Oracle ODBC Driver Configuration dialog box, modify the option values as
necessary and click OK.

To delete an Oracle data source:

1. From the start menu, select Programs, Administrative Tools, Data Sources(ODBC).

2. Inthe ODBC Data Source Administrator dialog box, select the data source you want to
delete from the Data Sources list.

3. Click Remove, and then click Yes to confirm the deletion.

2.3.4.2 Oracle Database ODBC Driver Configuration Dialog Box

Note:

The Oracle Database ODBC Driver Configuration dialog box is available only to
Microsoft Windows users.

ORACLE 11

The

Chapter 2
Configuration

following screenshot shows an example of the Oracle Database ODBC Driver

Configuration dialog box.

Figure 2-1 Oracle ODBC Driver Configuration Dialog Box

[Data Source Wame
[Dezcription
THS Service Mame

zer D

Application i Dracle

Mumerniz Settings

Enable Result Setz I¥ Enable Guem Timeout - W Fead-=Only Connection T

Enable Closing Cursors I Ewable Thread Safety v

Batch Autocommit Mode ; Cammit only if all statements succeed

Ok,

_:_j Help

T ezt Connection

|
; Cancel |
| 1
| |

i Wiorkarunds i SOLServer Migration i

Led bl

iLlse Oracle MLS setlings

The

following list is an explanation of the main setup options and fields found on the Oracle

Database ODBC Driver Configuration dialog box shown in the preceding graphic. The tabs
found on the lower half of this dialog box are described in the subsequent topics.

You

Data Source Name (DSN) - The name used to identify the data source to ODBC. For
example, "odbc-pc”. You must enter a DSN.

Description - A description or comment about the data in the data source. For example,
"Hire date, salary history, and current review of all employees.” The Description field is
optional.

TNS Service Name - The location of the Oracle database from which the ODBC driver will
retrieve data. This is the same name entered in Configuring Oracle Net Services using the
Oracle Net Configuration Assistant (NETCA). For more information, see the NETCA
documentation and About Using Oracle Database ODBC Driver for the First Time. The
TNS Service Name can be selected from a pull-down list of available TNS names. For
example, "ODBC-PC." You must enter a TNS Service Name.

User ID - The user name of the account on the server used to access the data. For
example, "scott.” The User ID field is optional.

must enter the DSN and the TNS Service Name. You can provide the other information

requested in the dialog box or you can leave the fields blank and provide the information when

you

ORACLE

run the application.

2-12

Chapter 2
Configuration

In addition to the main setup options previously described, there is a Test Connection option
available. The Test Connection option verifies whether the ODBC environment is configured
properly, by connecting to the database specified by the DSN definition. When you click Test
Connection, you are prompted for the username and password.

For an explanation of the options tabs found on the lower half of the Oracle Database ODBC
Driver Configuration dialog box, click any of these links:

Application Options
Oracle Options
Workarounds Options

SQL Server Migration Options

Application Options

The following screenshot shows an example of the Application options tab found on the
Oracle ODBC Driver Configuration dialog box.

Figure 2-2 The Application Options Tab of the Oracle ODBC Driver Configuration Dialog Box

zer D

[Data Source Wame
[Dezcription

THS Service Mame

Application i Draclei Wnrkarnundsi SOLServer Migratinni
Enable Result Setz I¥ Enable Guem Timeout - W Fead-=Only Connection T

Enable Closing Cursors I Ewable Thread Safety v

Batch Autocommit Mode ; Cammit only if all statements succeed

Mumerniz Settings ;Llse Oracle MLS settings

Ok,

_:_j Help

T ezt Connection

|
; Cancel |
| 1
| |

Led Ll

ORACLE

The following list is an explanation of the fields found on the Application options tab shown in
the preceding graphic:

e Enable Result Sets enables the processing of Oracle Result Sets. If Result Sets are not
required for your application, Result Set support can be disabled. There is a small

2-13

Chapter 2
Configuration

performance penalty for procedures called from packages not containing Result Sets.
Result Sets are enabled by default.

« Enable Query Timeout enables query timeout for SQL queries. By default, the Oracle
Database ODBC driver supports the SQL_ATTR QUERY TIMEOUT attribute for the
SQLSetStmtAttr function. If this box is not checked, the Oracle Database ODBC driver
responds with a "not capable" message. Query Timeout is enabled by default.

* Read-Only Connection - Check this box to force read-only access. The default is write
access.

- Enable Closing Cursors enables closing cursors. By default, closing cursors is disabled
(the field is empty), meaning a call to close a cursor does not force the closing of OCI
cursors when this behavior is not desired because it can cause an unnecessary
performance hit. Enable closing cursors when you want to force the closing of OCI cursors
upon a call to close a cursor.

Note:

There is an impact on performance each time a cursor is closed.

- Enable Thread Safety - Thread safety can be disabled for a data source. If thread safety
is not required, disabling this option eliminates the overhead of using thread safety. By
default, thread safety is enabled.

- Batch Autocommit Mode - By default, commit is executed only if all statements succeed.

* Numeric Settings allows you to choose the numeric settings that determine the decimal
and group separator characters when receiving and returning numeric data that is bound
as strings. This option allows you to choose Oracle NLS settings (the default setting),
Microsoft default regional settings (to provide a way to mirror the Oracle OLE DB driver's
behavior for greater interoperability), or US numeric settings (which are necessary when
using MS Access or DAO (Database Access Objects) in non-US environments).

¢ See Also:

Oracle ODBC Driver Configuration Dialog Box for the main configuration setup
options

Oracle Options

The following screenshot shows an example of the Oracle options tab found on the Oracle
Database ODBC Driver Configuration dialog box.

ORACLE 14

Chapter 2
Configuration

Figure 2-3 The Oracle Options Tab of the Oracle ODBC Driver Configuration Dialog Box

- Oracle ODBC Driver Configuration

Data Source Mame . ’ |

Description

TNS Service Name vl L

[| Test Connection
User D ; |

| Applcation | Oracle | Workarounds | SQLServerMigmaton |

Failover Support
Fetch Buffer Size 64000 Enable Failover

Enable LOBs v Retry

Enable Statement Caching

Delay
Bk B dar S 2[}

_ | roiate SOL Tyoé
Max Token Size 18192 g Aagreg k [SQL-FLOAT V]

Translate ORAemors [Lob Prefetch Size 18192 |

The following list is an explanation of the fields found on the Oracle options tab shown in the
preceding graphic:

* Fetch Buffer Size - The amount of memory used to determine how many rows of data the
ODBC driver prefetches at a time from an Oracle database regardless of the number of
rows the application program requests in a single query. However, the number of
prefetched rows depends on the width and number of columns specified in a single query.
Applications that typically fetch fewer than 20 rows of data at a time improve their response
time, particularly over slow network connections or on heavily loaded servers. Setting the
Fetch Buffer Size too high can make response time worse or consume large amounts of
memory.

Note:

When LONG and LOB data types are present, the number of rows prefetched by the
ODBC driver is not determined by the Fetch Buffer Size. The inclusion of the LONG
and LOB data types minimizes the performance improvement and could result in
excessive memory use. The ODBC driver disregards the Fetch Buffer Size and
prefetches a set number of rows only in the presence of the LoNG and LOB data

types.

ORACLE o

ORACLE

Chapter 2
Configuration

Enable LOBs - Enables the writing of Oracle LOBs. If writing Oracle LOBs is not required
for your application, LOB support can be disabled. There is a small performance penalty
for insert and update statements when LOBs are enabled. LOB writing is enabled by
default but disabled for Oracle databases that do not support the LOB data type.

Enable Statement Caching - Enables statement caching feature, which increases the
performance of parsing the query, in case the user has to parse the same text of query and
related parameters multiple times. The default is disabled.

Cache Buffer Size - The statement cache has a maximum size (number of statements)
that can be modified by an attribute on the service context, 0CI_ATTR STMTCACHESIZE. The
default cache buffer size is 20 that are used only if statement caching option is enabled.
Setting cache buffer size to 0 disables statement caching feature.

Max Token Size - Sets the token size to the nearest multiple of 1 KB (1024 bytes)
beginning at 4 KB (4096 bytes). The default size is 8 KB (8192 bytes). The maximum value
that can be set is 128 KB (131068 bytes).

Translate ORA errors - Any migrated third party ODBC application, which is using the
SQL Translation Framework feature, expects that the errors returned by the server need to
be in their native database format, then users can enable this option to receive native
errors based on the error translation registered with SQL Translation Profile.

The Failover area of the Oracle options tab contains the following fields:

— Enable Failover - Enables Oracle Fail Safe and Oracle Parallel Server failover retry.
This option in an enhancement to the failover capabilities of Oracle Fail Safe and
Oracle Parallel Server. Enable this option to configure additional failover retries. The
default is enabled.

— Retry - The number of times the connection failover is attempted. The default is 10
attempts.

— Delay - The number of seconds to delay between failover attempts. The default is 10
seconds.

Aggregate SQL Type - Specifies the number type return for aggregate functions:
SQL FLOAT, SQL DOUBLE, Or SQL DECIMAL.

Lob Prefetch Size - Sets the amount of LOB data (in bytes) to prefetch from the database
at one time. The default size is 8192.

Note:

Oracle Fail Safe is deprecated and it can be desupported and unavailable in a future
release. Oracle recommends that you evaluate other single-node failover options,
such as Oracle RAC One Node.

Note:

See the Oracle Fail Safe and Oracle Parallel Server documentation on how to set up
and use both of these products.

2-16

Chapter 2
Configuration

See Also:

Oracle ODBC Driver Configuration Dialog Box for the main configuration setup
options

Workarounds Options

The following screenshot shows an example of the Workarounds options tab found on the
Oracle Database ODBC Driver Configuration dialog box.

Figure 2-4 The Workarounds Options Tab of the Oracle ODBC Driver Configuration Dialog Box

Dezcription

zer D

Data Source Wame

THS Service Mame

.-’-‘-.pplin::atin:nni Oracle “Workarounds i SQLServer Migration

Oracle ODBC Driver Configuration

OE

:__j Help

T ezt Connechion

; Cancel
1
|

Bind TIMESTAME as DATE: - Dizable SELDescrbeParam N
Force SAL_WCHAR Support [Bind HUMBER Az FLOAT I
Dizahle Microgsoft Transaction Server W Dizable RULE Hint v
Set Metadata Id Default to SOL_TRUE Use OCIDescribesny r~

Pre-fetch zize for LOMG column data i':'

ORACLE

The following list is an explanation of the fields found on the Workarounds options tab shown
in the preceding graphic:

Bind TIMESTAMP as DATE - Check this box to force the Oracle Database ODBC driver to
bind SQL_TIMESTAMP parameters as the Oracle DATE type instead of as the Oracle
TIMESTAMP type (the default).

Force SQL_WCHAR Support - Check this box to enable SQLDescribeCol, SQLColumns,
and SQLProcedureColumns to unconditionally return the data type of SQL_WCHAR for

SQL CHAR columns; SQL WVARCHAR for SQL_VARCHAR columns; and SQL WLONGVARCHAR for
SQL LONGVARCHAR columns. This feature enables Unicode support in applications that rely
on the results of these ODBC calls (for example, ADO). This support is disabled by default.

2-17

Chapter 2
Configuration

» Disable Microsoft Transaction Server - Clear the check in this box to enable Microsoft
Transaction Server (MTS) support. By default, MTS support is disabled.

* Set Metadata Id Default to SQL_TRUE - Check this box to change the default value of
the SQL ATTR METADATA ID connection and statement attribute at connection time to
SQL_TRUE. Under normal circumstances, SQL ATTR METADATA ID would default to
SQL FALSE. ODBC calls made by the application to specifically change the value of the
attribute after connection time are unaffected by this option and complete their functions as
expected. By default, this option is off.

e Prefetch size for LONG column data - Set this value to prefetch LONG or LONG RAW data
to improve performance of ODBC applications. This enhancement improves the
performance of Oracle ODBC driver up to 10 times, depending on the prefetch size set by
the user. The default value is 0. The maximum value that you can set is 64 KB (65536
bytes).

If the value of prefetch size is greater than 65536, the data fetched is only 65536 bytes. If
you have LONG or LONG RAW data in the database that is greater than 65536 bytes, then set
the prefetch size to 0 (the default value), which causes single-row fetch and fetches
complete LONG data. If you pass a buffer size less than the prefetch size in nonpolling
mode, a data truncation error occurs if the LONG data size in the database is greater than
the buffer size.

* Disable SQLDescribeParam - If the SQLDescribeParam function is enabled, the
SQL VARCHAR data type is returned for all parameters. If the Force SQL_WCHAR Support
function is also enabled, the SQL_WVARCHAR data type is returned for all parameters. By
default, this function is enabled.

* Bind NUMBER as FLOAT - Check this box to force the Oracle Database ODBC driver to
bind NUMBER column containing FLOAT data as Float instead of as the Binary Float (the
default).

* Disable RULE Hint - Clear the check in this box to enable RULE Hint specified with
catalogue queries. By default, RULE Hint option is disabled.

* Use OCIDescribeAny - Check this box to gain a performance improvement by forcing the
driver to use 0CIDescribeAny () when an application makes heavy calls to small packaged
procedures that return REF CURSORS.

¢ See Also:

* Implementation of Data Types (Advanced) for more information about DATE and
TIMESTAMP

* Implementation of ODBC API Functions for more information about the
SQL ATTR METADATA ID attribute

» Oracle ODBC Driver Configuration Dialog Box for the main configuration setup
options

e About Using OCIDescribeAny() for more information about 0CIDescribeAny ()

SQL Server Migration Options

The following screenshot shows an example of the SQL Server Migration options tab found
on the Oracle ODBC Driver Configuration dialog box.

ORACLE T

Chapter 2
Configuration

Figure 2-5 The SQL Server Migration Options Tab of the Oracle ODBC Driver Configuration Dialog Box

Oracle ODBC Driver Configuration

[Data Source-Mame ; | Ok 1
i Cancel i

D ezcription ;
THS Service Mame i _‘:j SR 1
Test Connection 1

Uzer 1D i

.-i'-.pplin:atin:nn; Draclei Wwarkarounds SELServer Migration i

Enabie EXEL Sontan T Schema | R

The fields of the SQL Server Migration options tab in the preceding graphic are:

* EXEC Syntax Enabled enables support for SQL Server EXEC syntax. A subprogram call
specified in an EXEC statement is translated to its equivalent Oracle subprogram call
before being processed by an Oracle database server. By default this option is disabled.

* Schema is the translated Oracle subprogram assumed to be defined in the user's default
schema. However, if all subprograms from the same SQL Server database are migrated to
the same Oracle schema with their database name as the schema name, then set this field
to database. If all subprograms owned by the same SQL Server user are defined in the
same Oracle schema, then set this field to owner. This field is empty by default.

See Also:

Oracle ODBC Driver Configuration Dialog Box for the main configuration setup
options

2.3.5 Reducing Lock Timeout

An Oracle server waits indefinitely for lock conflicts between transactions to be resolved. You
can limit the amount of time that an Oracle server waits for locks to be resolved by setting the
Oracle Database ODBC driver's LockTimeOut entry in the oraodbc. ini file. The value you

ORACLE 519

Chapter 2
Patching Oracle Instant Client ODBC

enter for the LockTimeOut parameter is the number of seconds after which an Oracle server
times out if it cannot obtain the requested locks. In the following example, the Oracle server
times out after 60 seconds:

[Oracle ODBC Driver Common]
LockTimeOut=60

2.4 Patching Oracle Instant Client ODBC

This section guides you through the procedures required to patch Oracle Instant Client ODBC.

Topics:

Note:

* Back up the Oracle Database ODBC driver shared library and other files before

patching them.

* You must rebuild your Oracle Instant Client packages and libraries as part of the

patching process.

« Patching Oracle Instant Client ODBC on Linux and UNIX Method 1

« Patching Oracle Instant Client ODBC on Linux and UNIX Method 2

* Patching on Windows

2.4.1 Patching Oracle Instant Client ODBC on Linux and UNIX Method 1

Patching the Instant Client ODBC driver on Linux/UNIX can be done by generating the Instant
Client ODBC package and Basic or Basic Light package in a patched ORACLE_HOME. These
new packages should then be unzipped into the Instant Client directory that needs to be
patched. This method of patching is recommended.

¢ See Also:

Patching Oracle Instant Client explains the procedure for patching and generating
Instant Client Basic and Basic Light packages and Instant Client ODBC.

2.4.2 Patching Oracle Instant Client ODBC on Linux and UNIX Method 2

Alternatively, to patch Oracle Instant Client ODBC Driver, copy the following files from a
patched ORACLE_HOME:

ORACLE

e ODBC driver shared library file:

For 23ai: libsqora.s0.23.1
For 21c: libsqora.so.21.1
For 19c: libsqora.s0.19.1
For 18c: libsqora.s0.18.1

2-20

Chapter 2
Patching Oracle Instant Client ODBC

For 12c: libsgora.s0.12.1

* Required additional files when using Oracle Instant Client Basic:

For 23ai: libociei.so, libcintshcore.s0.23.1, libclntsh.s0.23.1, libnnz23.s0, libons.so
For 21c: libociei.so, libcintshcore.so.21.1, libcIntsh.so0.21.1, libnnz21.so, libons.so
For 19c: libociei.so, libcIntshcore.s0.19.1, libclntsh.so0.19.1, libnnz19.so0, libons.so
For 18c: libociei.so, libcIntshcore.s0.18.1, libclntsh.so.18.1, libnnz18.so, libons.so

For 12c: libociei.so, libcintshcore.so.12.1, libcIntsh.so0.12.1, libnnz12.so, libons.so

* Required additional files when using Oracle Instant Client Basic Light:

For 23ai: libclntsh.s0.23.1, libcIntshcore.so.23.1, libociicus.so, libnnz23.so, libons.so
For 21c: libclntsh.so.21.1, libcIintshcore.so.21.1, libociicus.so, libnnz21.so, libons.so
For 19c: libclntsh.s0.19.1, libcintshcore.s0.19.1, libociicus.so, libnnz19.so, libons.so
For 18c: libclntsh.s0.18.1, libcintshcore.s0.18.1, libociicus.so, libnnz18.so, libons.so

For 12c: libcIntsh.so.12.1, libclntshcore.so.12.1, libociicus.so, libnnz12.so, libons.so

2.4.3 Patching on Windows

You can patch Instant Client ODBC Driver on Windows only manually by copying the ODBC
driver shared library files and supporting library files from a patched ORACLE_HOME or from
an unpacked Oracle Database Bundle patch. These should be copied into the Instant Client
directory. Generating an Instant Client ODBC package is not available on Windows.

ORACLE

The files that must be copied to the Instant Client directory:

e ODBC driver shared library files: sqora32.dll, sqoras32.dll, sqresus.dll, sgresja.dll

* Required additional files when using Oracle Basic Instant Client:

For 23ai: oraociei23.dll, orannzsbb23.dll, oci.dll, oraons.dll, ociw32.dll, oraociei23.sym,
orannzsbb23.sym, oci.sym, ociw32.sym

For 21c: oraociei21.dll, orannzsbb21.dll, oci.dll, oraons.dll, ociw32.dll, oraociei21.sym,
orannzsbb21.sym, oci.sym, ociw32.sym

For 19c: oraocieil9.dll, orannzsbb19.dll, oci.dll, oraons.dll, ociw32.dll, oraocieil9.sym,
orannzsbb19.sym, oci.sym, ociw32.sym

For 18c: oraocieil8.dll, orannzsbb18.dll, oci.dll, oraons.dll, ociw32.dll, oraocieil8.sym,
orannzsbb18.sym, oci.sym, ociw32.sym

For 12c: oraocieil2.dll, orannzsbb12.dll, oci.dll, oraons.dll, ociw32.dll, oraocieil2.sym,
orannzsbb12.sym, oci.sym, ociw32.sym

* Required additional files when using Oracle Basic Light Instant Client:

For 23ai: oraociicus23.dll, orannzsbb23.dll, oci.dll, oraons.dll, ociw32.dll,
oraociicus23.sym, orannzsbb23.sym, oci.sym, ociw32.sym

For 21c: oraociicus21.dll, orannzsbb21.dll, oci.dll, oraons.dll, ociw32.dll,
oraociicus21.sym, orannzsbb21.sym, oci.sym, ociw32.sym

For 19c: oraociicus19.dll, orannzsbb19.dll, oci.dll, oraons.dll, ociw32.dll,
oraociicus19.sym, orannzsbb19.sym, oci.sym, ociw32.sym

For 18c: oraociicus18.dll, orannzsbb18.dll, oci.dll, oraons.dll, ociw32.dll,
oraociicus18.sym, orannzsbb18.sym, oci.sym, ociw32.sym

2-21

Chapter 2
Uninstallation

— For 12c: oraociicus12.dll, orannzsbb12.dll, oci.dll, oraons.dll, ociw32.dll,
oraociicus12.sym, orannzsbb12.sym, oci.sym, ociw32.sym

Note:

While copying from the Oracle Database Bundle patch, some of the aforementioned
files may be missing. This implies that those files are unchanged and do not need to
be patched.

2.5 Uninstallation

This section takes you through the steps required to uninstall the Oracle Database ODBC
driver.

Topics:

* Uninstalling Oracle Instant Client ODBC on Linux and UNIX
Use the following procedure to uninstall Oracle Instant Client ODBC on Linux and UNIX.

« Uninstalling Oracle Instant Client ODBC on Windows
Use the following procedure to uninstall Instant Client ODBC on Windows.

2.5.1 Uninstalling Oracle Instant Client ODBC on Linux and UNIX

Use the following procedure to uninstall Oracle Instant Client ODBC on Linux and UNIX.

1. Remove the Oracle Database ODBC driver entry from the odbcinst. ini file of the
unixODBC Driver Manager.

The default name of this entry is like: [Oracle 19c ODBC driver].
2. Remove the DSN entry of the Oracle Database ODBC driver from odbc.ini.
The default name of the DSN entry is like [OracleODBC-19c].

3. Delete all files and directories in the Instant Client ODBC directory.

2.5.2 Uninstalling Oracle Instant Client ODBC on Windows

Use the following procedure to uninstall Instant Client ODBC on Windows.

1. Remove the DSN associated with the Oracle Database ODBC driver in the ODBC Data
Source Administrator (odbcad32) console.

2. Execute the odbc_uninstall.exe file from the Instant Client ODBC directory.

3. Delete all files and directories in the Instant Client ODBC directory.

ORACLE 529

Basic Connection Steps

This chapter guides you through the steps required to connect your ODBC application to an
Oracle data source.

Topics:
« Connecting to an Oracle Data Source

e Troubleshooting

3.1 Connecting to an Oracle Data Source

ORACLE

To connect to a data source, the Oracle Database ODBC driver requires that the OCI client
software be installed on your computer and the corresponding listener be running on the
Oracle server. Oracle Net Services for Windows is a Dynamic Linked Library (DLL) based
application.

See Also:

Oracle Database Net Services Administrator's Guide and Oracle Database Net
Services Reference for more information about Oracle Net Services.

As part of the connection process, an application can prompt you for information. If an
application prompts you for information about an Oracle data source, do the following:

1. Inthe TNS Service Name box, enter the name of the TNS service.

2. Inthe User Name box, enter the name you use to access an Oracle Database.

3. Inthe Password box, enter the password you use to access an Oracle Database.
4. Click OK.

An application must connect to a data source to access the data in it. Different applications

connect to data sources at different times. For example, an application might connect to a data

source only at your request, or it might connect automatically when it starts. For information
about when an application connects to a data source, see the documentation for that
application.

For additional information, click any of these links:
e For all users:

— Configuring the Data Source
e For programmers:

— SQLDriverConnect Implementation

— Data Source Configuration Options

3-1

Chapter 3
Troubleshooting

3.2 Troubleshooting

Topics:

* About Using Oracle Database ODBC Driver for the First Time
Describes useful information about using the Oracle Database ODBC driver for the first
time.

» Expired Password
This section contains information about expired passwords.

3.2.1 About Using Oracle Database ODBC Driver for the First Time

Describes useful information about using the Oracle Database ODBC driver for the first time.

See the Oracle Database ODBC driver developer home: ODBC Developer Center, where you
can find additional information about the Oracle Database ODBC driver features, resources,
such as where to find Oracle Instant Client ODBC installation information, the Oracle Instant
Client ODBC download site, the Oracle ODBC discussion forum, and information about some
related technologies.

3.2.2 Expired Password

ORACLE

This section contains information about expired passwords.

Expired Password Behavior

If you try to connect to the database and your password has expired, you are prompted to
change your password. Upon making a successful password change, you are connected to the
database. However, if you try to connect to the database using a SQLDriverConnect call with a
SQL DRIVER NOPROMPT parameter value, the Oracle Database ODBC driver does not prompt
you for the password change. Instead, an error condition results, producing an error message
and number that indicates that the password has expired.

3-2

http://www.oracle.com/technetwork/database/windows/index-098976.html

Using the Oracle Database ODBC Driver

This chapter is intended to provide the Oracle Database ODBC driver users with information
about configuring and using the Oracle Database ODBC driver.

Topics:

Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)
Creating Oracle Database ODBC Driver TNS Service Names

SQL Statements

Data Types

Implementation of Data Types (Advanced)

Error Messages

4.1 Connecting to Oracle Database Using TLS (Preconfigured for

Azure AD)

This example demonstrates how to connect to Oracle Database from Microsoft Excel with the
TLS preconfigured to use Azure AD.

Overview

Prerequisite Steps to Using Oracle ODBC with Excel
Installing the ODBC Driver

Configuring thsnames.ora, TNS_ADMIN, and PATH
Getting an OAuth 2 Token

Configuring DSN

Configuring Excel

4.1.1 Overview

You can use your Microsoft Entra ID (was Azure AD) SSO credentials to access an Oracle
Database from Microsoft Excel and other tools, when using the Oracle Database ODBC driver.
The following example shows you how you can access an Oracle Database from Microsoft
Excel.

ORACLE

4-1

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

4.1.2 Prerequisite Steps to Using Oracle ODBC with Excel

Note:

Only Oracle Database 19.16, and higher, and Oracle Database 23ai (not including
Oracle Database 21c) support the Entra ID integration.

* Configure the database for Entra ID integration.

See Also:

Authenticating and Authorizing Microsoft Entra ID (Azure AD) Users for Oracle
Databases in Oracle Database Security Guide for more information about Entra
ID integration with Oracle Database.

e Get a valid OAuth 2 token for your database before you start your configuration and put the
token into the location specified by the TOKEN LOCATION parameter in your connect string.

¢ Note:

The token is only valid for about an hour. You may need to request a new token if
the time taken to complete the configurations exceeds an hour.

See Also:

Local Naming Parameters in the thsnames.ora File in Oracle Database Net
Services Reference for more information about the TOKEN LOCATION parameter.

4.1.3 Installing the ODBC Driver

ORACLE

Download and install the appropriate version (19 or 23) of the 32 or 64-bit ODBC driver.
Follow these steps:

1. Navigate to https://www.oracle.com/database/technologies/instant-client/microsoft-
windows-32-downloads.html or https://www.oracle.com/database/technologies/instant-
client/winx64-64-downloads.html

2. Download the Instant Client Basic Package.
3. Download the ODBC package.

4. Unzip the Instant Client folder (instantclient xx yy) to the desired location. For
example: C:\Oracle\SQLPlus\.

5. Unzip the ODBC package and put the contents of the zip file: instantclient xx yy
into the Instant Client folder (files include odbc_install.exe, odbc license, and
odbc_readme).

4-2

https://www.oracle.com/database/technologies/instant-client/microsoft-windows-32-downloads.html
https://www.oracle.com/database/technologies/instant-client/microsoft-windows-32-downloads.html
https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html
https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html

6

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

Run odbc_install.

This registers the ODBC driver with the ODBC Data Sources GUI.

4.1.4 Configuring tnsnames.ora, TNS_ADMIN, and PATH

1.

2

3.

Set the TNS_ADMIN environment variable to point to your tnsnames . ora folder.
Add the path to your ODBC driver in the PATH environment variable.

¢ The name of the ODBC driver is odbcad32 . exe — for both the 32-bit and 64-bit
drivers.

» Paradoxically, on a 64-bit Windows Operating System (OS), the 32-bit odbcad32.exe
is installed in C:\Windows\sysWOW64, and the 64-bit odbcad32.exe is installed in
C:\Windows\system32.

e If you are on a 64-bit Windows OS, put C:\Windows\system32 near the beginning

of the path — and definitely in front of syswowWe64 to make sure it sees the 64-bit version
first.

Add the connect string for the Oracle Database configured for the Entra ID in
tnsnames.ora.

The following is an example:

azuredb = (description= (retry count=20) (retry delay=3)
(address=(protocol=tcps) (port=1521)
(host=adb.us-ashburn-1.oraclecloud.com))

(connect data=(service name=xxx123 azuredb high.adb.oraclecloud.com))
(security=(ssl server dn match=yes) (TOKEN AUTH=0AUTH)
(TOKEN_LOCATION="C:\USERS\PETERFI\Oracle\azuredb\token")))

¢ See Also:

Authenticating and Authorizing Microsoft Entra ID (Azure AD) Users for Oracle
Databases in Oracle Database Security Guide for more information about Entra
ID integration with Oracle Database.

4.1.5 Getting an OAuth 2 Token

You need to get an OAuth 2 token (if not already done) at this point because you need the
token to test the new Data Source Name (DSN) that you will create in the ODBC Data
Source Administrator GUI in the next section.

4.1.6 Configuring DSN

ORACLE

1.

Open ODBC Data Source Administrator for the correct bit (32-bit or 64-bit).

You can open ODBC Data Source Administrator from the command line or you can use
search or open.

Ensure that the Drivers tab displays the Oracle Database ODBC driver that you just
installed.

4-3

Chapter 4

Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

Figure 4-1 ODBC Data Source Administrator (32-bit)

; ODBC Data Source Administrator (32-bit]

User DSN System DSM File DSN Drivers Tracing Connection Pooling About

QDBC Drivers that are installed on your system:

Mame Version Company

Microsoft Excel-Treiber (" xls) 10.00.22621.01 Microsoft Corporation
Microsoft ODBC for Oracle 10.00.22621.01 Microsoft Corporation
Microsoft Paradox Driver (".db) 10.00.22621.01 Microsoft Corporation
Microsoft Paradox-Treiber (".db) 10.00.22621.01 Microsoft Corporation
Microsoft Text Driver ("bd; *.cav) 10.00.22621.01 Microsoft Corporation
Microsoft Text-Treiber (" tat; *.cav) 10.00.22621.01 Microsoft Corporation
Uracle in instantclient 19257 190000000 Uracle Corporation |
SQL Server 10.00.22621.3007 Microsoft Corporation

File

ODBCJT3ZI
MSORCL3Z.
ODBCJT32ZI
ODBCJT32ZI
ODBCJT32ZI
ODBCJT32I
SQORA32D
SQLSRV3ZI

An ODBC driver allows ODBC-enabled programs to get information from ODBC data sources. To ingtall
@ new drivers, use the driver's setup program.

oK

3. Open the User DSN tab.

4. Click Add.

Cancel Apply

Help

5. Inthe Create New Data Source dialog box, select the appropriate Oracle Database ODBC

driver.

Figure 4-2 Create New Data Source

Select a driver for which you want to set up a data source.

ORACLE"

Mame W
Microsaoft ODBC for Oracle 1
Microsoft Paradox Driver (*.db) 1
Microsoft Paradox-Treiber (*.db) 1
Microsoft Text Driver (" tat; *.csv) 1
Microsoft Text-Treiber (" tat; *.csv) 1
Qracle in instantclient_19_22 T
SQL Server 1
: Back Finish Cancel

4-4

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

6. Select Finish.
The Oracle ODBC Driver Configuration dialog box is displayed.
7. Inthe Oracle ODBC Driver Configuration dialog box, do the following:

Figure 4-3 Oracle ODBC Driver Configuration

Data Source Mame Test Azure 550 Ok
[escription Cancel
Hel
THS Service Mame azuredb V elp
Test Connection
Uzer D

Application Oracle Workarounds SQLServer Migration

Enable Result Sets B Enable Query Timeout @ Read-Only Connection [

Enable Closing Cursors [_] Enable Thread Safety [
Batch Autocommit Made Commit only if all statements succeed W
MNumeric Settings Use Oracle NLS settings w

a. In Data Source Name, fill in a data source name.

b. In TNS Service Name, select the database for the TNS service name.
The selected name should reflect what is in the tnsnames.ora file.

c. Leave User ID blank.

d. Click the Test Connection button.

You should see a connection successful message (make sure you still have a valid
token).

The token that you put into TOKEN LOCATION is sent to the database. If you are

authorized to access the database, then you get a connection successful message as
follows:

ORACLE s

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

Figure 4-4 Oracle ODBC Driver Configuration - Connection Successful Message

Tir=~l= 5 ™ M srer — — e
Cracle ODBC Driver Conf gQuration
esting Connection >,

dzure 550

Connection successful

x»db

CE

(e e -] L] 1 1 P o I H .
e. Click OK to close the message.
8. Inthe Oracle ODBC Driver Configuration dialog box, click OK.

In the ODBC Data Source Administrator dialog box, in the User Data Sources list, you can
see your new user data source displayed.

Figure 4-5 ODBC Data Source Administrator (32-bit)

@ ODBC Data Source Administrator (32-bit)
User DSN System DSM File DSN Drivers Tracing Connection Pooling About

User Data Sources:

Mame Flatform Driver Add...

dBASE Files NAA Microsoft Access dBASE Driver (" .dbf, *ndx, *m

Excel Files 32bit Microsoft Excel Driver (" xls, *xlsx, *xlsm, °xlsb) Remove
r Test Azure 550 32-bit Oracle in instantclient_19_22 Configure...

An ODBC User data source stores information about how to connect to the indicated data provider. A
m; |User data source is only visible to you and can only be used on this computer.

QK Cancel Apply Help

ORACLE 4-6

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

4.1.7 Configuring Excel

Open a new Excel sheet.

Select the Data tab.

On the Data tab, in the Get & Transform Data section, click Existing Connections.
On the Existing Connections dialog box, click Browse for More.

On the Select Data Source dialog box, click New Source.

o g » 0w NP

On the Data Connection Wizard dialog box, select ODBC DSN from the data source type
list, and click Next.

You should see your new DSN.

7. On the Data Connection Wizard - Connect to ODBC Data Source dialog box, select the
new DSN and click Next.

Figure 4-6 Data Connection Wizard - Connect to ODBC Data Source

Data Connection Wizard

Connect to ODBC Data Source

Choose the ODBC data source you want to connedt to,

DDEBC data sources:

dBASE Files
Excel Files
M5 Access Database

Test Azure FﬁD

Cancel < Back Finish

When you click Next, Excel accesses the database using your token.

Note:

Ensure that your token is still valid.

The Data Connection Wizard - Select Database and Table dialog box is displayed.

ORACLE 4-7

Chapter 4

Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

Figure 4-7 Data Connection Wizard - Select Database and Table

Data Connection Wizard

Select Database and Table

Select the Database and Table/Cube which contains the data you want.

Select the database that contains the data you want:

[Default) b
ﬂ Connect to a specific table:

MName Owner Description Modified Cr
DBA_USED_USERPRIVS_PATH PUBLIC

DBA_USERS PUBLIC

DBA_USERS_WITH_DEFPWD PUBLIC

DBA_USTATS PUELIC

DBA_VARRAYS PUBLIC

DBA_VIEWS PUBLIC

FE DBA VIEWS AE PUBLIC

Figure 4-8

h Cancel < Back Einish

4

In the Data Connection Wizard - Select Database and Table dialog box, select the

database that contains the data you want to import to Excel, and click Next.

Fill out the next form with file name and description, and other details as needed, and click

Finish.

. From the data import form, select the required data to import.

You can now see the data in the Excel sheet.

Excel Sheet with Imported Data

P Dds Rews Wes s el ACAOMT Tuble Deige
mmﬂu—-] e B[] it e Flmln-‘

» Tipen o i | D Tonmifom] ot G
R [~ | Bt b | Rl St
Ertwerad Tuisn Dot Tt Tyte Cydaarn

ol s [} DR T Tisse LT aen
el i D VMR 0000 Srweam Tl e WAL ar)
s L] OERiD e sritim T Time Wi
AL L Jid sl il WM DATA Tise TP Mt
wrion e e A BN ATA Tive nime At
SO Jid dsoery e RIE et R) nATA L4 L N
e Fr ey Ve DATA Tise TimE]
Buti [0 ADERID 13 nE srativg T (0 Wi
IImI__IK“mI._ﬁﬂNI L2 [LestEe] e kn DATA Finme L M
MADIIN TR = e 1 wreaLn Tine e N
LA = ADERID A0 DATA TR TiME AWt
C » lia e T PO T DATA Tinae TiMe Humn

4 LR LA PO RIDCAR MR SR e nmp LR
Dervasin = 0CxID 10 3 s Tive ME L

8 onacui_oow & = Uhatme =n DATA, tinae THME Hmn

i Fridins b] DTN 1o En DATA TR TiMP mn

w T m DERLE A 1 DATA Tine e T

R O L 100 VoM rn AL Tinee L wmn

el A=y L] L0CKED Ve En PrEA TR TEME L]
GAMCATUSIE w OERED 1M/ B3 BATA TR TEME WL
(o L] LocKn VvaimM e L T Ll e

This concludes the setup of the Oracle Database ODBC driver in Microsoft Excel.

Chapter 4
Creating Oracle Database ODBC Driver TNS Service Names

4.2 Creating Oracle Database ODBC Driver TNS Service Names

To create the Oracle Database ODBC driver TNS Service Names with Oracle Net Services,
use the Oracle Net Configuration Assistant (NETCA), which is installed when you install Oracle
Net Services. NETCA creates the Oracle Database ODBC driver TNS Service Name entries in
the tnsnames.ora file.

4.3 SQL Statements

The Oracle Database ODBC Driver is broadly compatible with the SQL-99 Core specification,
which is a superset of the SQL-92 Entry Level specification. In addition to Oracle's grammatr,
the vendor-specific escape sequences outlined in Appendix C of the ODBC specifications are
also supported. In accordance with the design of ODBC, the Oracle Database ODBC driver
passes the native SQL syntax to Oracle Database.

See Also:

e Data Types
¢ Implementation of the ODBC SQL Syntax for programmers

4.4 Data Types

ORACLE

The Oracle Database ODBC driver maps the Oracle Database data types to the ODBC SQL
data types.

Note:

All conversions in Appendix D of the Microsoft ODBC 3.52 Software Development Kit
and Programmer's Reference are supported for the ODBC SQL data types listed
from a call to sQLGetInfo with the appropriate information type.

See Also:

e — Implementation of Data Types (Advanced)
— SQL Statements
e For programmers:

— Implementation of Data Types (Programming)

4-9

Chapter 4
Implementation of Data Types (Advanced)

4.5 Implementation of Data Types (Advanced)

ORACLE

Topics:

e BOOLEAN Data Types

e DATE and TIMESTAMP

* Floating Point Data Types
e VECTOR Data Type

BOOLEAN Data Types

Starting Oracle Database 23ai, Oracle Database supports the native BOOLEAN data type in
compliance with the ISO SQL standard. The native boolean type enables you to define a table
column as a SQL boolean data type with the value as true, false, or null.

Using the SQL boolean data type provides clarity, consistency, and speed to coding. With the
boolean data type, you can represent a boolean state more clearly, and improve the readability
of the code.

Using the native boolean data types support, ODBC-compliant applications can:
e Fetch or modify BOOLEAN column data
e Fetch metadata about a BOOLEAN column

The boolean data type is represented externally as the SQLT BOL data type. The SQLT BOL data
type is used as the SQL type identifier for BOOLEAN columns. Bind and define API calls enable
the SOLT BOL data type to be associated with host variables in ODBC-based applications.

The ODBC interface represents boolean type with SQL _C BIT, which is the C data type
identifier. SOL_C BIT is an unsigned char (UCHAR) that represents boolean type in applications.
SQL C BIT only takes a O or 1 value, and so, when retrieving boolean data from the database,
the data value is represented as 0 or 1.

To bind and fetch (or modify) boolean type data with BOOLEAN columns, you can have an
application call the bind and define functions, and specify the C data type: SQL C BIT with the:

e TargetType argument in the SQLBindCol () and SQLGetData () functions.
* ValueType argument in the sQLBindParameter () function.

The SQLBindCol () function binds the BOOLEAN column to an application variable before the
fetch and the sQLGetData () function binds the fetched data to variables after the fetch. The
SQLBindParameter () function binds parameters in an SQL statement to application variables.

If the TargetType argument is a SQL_C BIT data type, the Oracle Database ODBC driver maps
SQLT BOL to SQL_C_BIT while processing the bind and define parameters. The driver then
performs the necessary conversions when fetching (or modifying) and retrieving data from the
BOOLEAN columns.

To determine if a data source supports boolean data type, you can have an application call the
SQLGetTypelInfo function.

To retrieve metadata for table columns that are externally defined with the SQLT BOL data type,
you can have an application call the SQLDescribeCol () function.

4-10

Chapter 4
Error Messages

For backward compatibility, Oracle Database releases prior to 23ai use internal data type
conversions to support boolean values in the Oracle Database ODBC driver.

¢ See Also:

e Boolean Data Type in Oracle Database SQL Language Reference for more
information about boolean data types

e Microsoft ODBC API specifications for more information about the ODBC bind
and define functions and supported data types

DATE and TIMESTAMP

The semantics of Oracle DATE and TIMESTAMP data types do not correspond exactly with the
ODBC data types with the same names. The Oracle DATE data type contains both date and
time information while the SOL_DATE data type contains only date information. The Oracle
TIMESTAMP data type also contains date and time information, but it has greater precision in
fractional seconds. The ODBC driver reports the data types of both Oracle DATE and TIMESTAMP
columns as SQL_TIMESTAMP to prevent information loss. Similarly, the ODBC driver binds

SQL TIMESTAMP parameters as Oracle TIMESTAMP values.

Floating Point Data Types

When connected to a 10.1 or later Oracle server, the ODBC driver maps the Oracle floating
point data types BINARY FLOAT and BINARY DOUBLE to the ODBC data types SQL REAL and
SQL DOUBLE, respectively. In previous releases, SOL REAL and SQL_DOUBLE are mapped to the
generic Oracle numeric data type.

See Also:
DATE and TIMESTAMP Data Types

VECTOR Data Type

Starting Oracle Database 23ai, the Oracle Database ODBC driver supports VECTOR data type.
The driver uses SQL_CHAR to map to the VECTOR data type.

See Also:

Vector Data Type in Oracle Database SQL Language Reference for more information
about vector data types

4.6 Error Messages

When an error occurs, the Oracle Database ODBC driver returns the native error number, the
SQLSTATE (an ODBC error code), and an error message. The driver derives this information
both from errors detected by the driver and errors returned by the Oracle server.

ORACLE 411

Chapter 4
Error Messages

Native Error

For errors that occur in the data source, the Oracle Database ODBC driver returns the native
error returned to it by the Oracle server. When the Oracle Database ODBC driver or the Driver
Manager detects an error, the Oracle Database ODBC driver returns a native error of zero.

SQLSTATE

For errors that occur in the data source, the Oracle Database ODBC driver maps the returned
native error to the appropriate SQLSTATE. When the Oracle Database ODBC driver detects an
error, it generates the appropriate SQLSTATE. When the Driver Manager detects an error, it
generates the appropriate SQLSTATE.

Error Message

For errors that occur in the data source, the Oracle Database ODBC driver returns an error
message based on the message returned by the Oracle server. For errors that occur in the
Oracle Database ODBC driver or the Driver Manager, the Oracle Database ODBC driver
returns an error message based on the text associated with the SQLSTATE.

Error messages have the following format:

[vendor] [ODBC-component] [data-source] error-message

The prefixes in brackets ([]) identify the source of the error. The following table shows the
values of these prefixes returned by the Oracle Database ODBC driver. When the error occurs
in the data source, the [vendor] and [ODBC-component] prefixes identify the vendor and name
of the ODBC component that received the error from the data source.

Table 4-1 Error Message Values of Prefixes Returned by the Oracle Database ODBC
Driver

Error Source Prefix Value

Driver Manager [vendor][ODBC- [Microsoft/unixODBC][ODBC Driver
component][data-source] Manager]N/A

Oracle ODBC Driver [vendor][ODBC- [ORACLE][ODBC Driver]N/A
component][data-source]

Oracle server [vendor][ODBC- [ORACLE][ODBC Driver]N/A

component][data-source]

For example, if the error message does not contain the [Ora] prefix shown in the following
format, the error is an Oracle ODBC Driver error and should be self-explanatory.

[Oracle] [ODBC]Error message text here

If the error message contains the [Ora] prefix shown in the following format, it is not an Oracle
ODBC Driver error.

Note:

Although the error message contains the [Ora] prefix, the actual error may be
originating from one of several sources.

ORACLE 415

Chapter 4
Error Messages

[Oracle] [ODBC] [Ora]Error message text here

If the error message text starts with the following prefix, you can obtain more information about
the error in the Oracle server documentation.

ORA-

Oracle Net Services errors and Trace logging are located under the ORACLE HOME\NETWORK
directory on Windows systems or the ORACLE HOME/NETWORK directory on UNIX systems where
the OCI software is installed and specifically in the log and trace directories respectively.
Database logging is located under the ORACLE HOME\RDBMS directory on Windows systems or
the ORACLE HOME/rdbms directory on UNIX systems where the Oracle server software is
installed.

See the Oracle server documentation for more information about server error messages.

ORACLE 413

Oracle Database ODBC Driver for
Programmers

The chapter is intended for programmers who want to develop robust ODBC applications using
the Oracle Database ODBC driver.

Topics:

e Format of the Connection String

e SQLDriverConnect Implementation

e Reducing Lock Timeout in a Program

e Linking with odbc32.lib (Windows) or libodbc.so (UNIX)
* Information about ROWID

* ROWID in a WHERE Clause

e Enabling Result Sets

* Enabling EXEC Syntax

* Enabling Event Notification for Connection Failures in an Oracle RAC Environment
e Using Implicit Results Feature through ODBC

« About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE Column Type in ODBC

e About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database
ODBC Diriver, and Others)
Describes the effect of setting the system variable OR2 sSDTZ in Oracle Clients.

5.1 Format of the Connection String

ORACLE

The following table describes keywords that can be included in the connection string argument
of the sQLDriverConnect function call. Missing keywords are read from the Administrator entry
for the data source. Values specified in the connection string override those contained in the
Administrator entry. See the Microsoft ODBC 3.52 Software Development Kit and
Programmer's Reference for more information about the SQLDriverConnect function.

Table 5-1 Keywords that Can Be Included in the Connection String Argument of the
SQLDriverConnect Function Call

Keyword Meaning Comments

DSN ODBC Data Source Name User-supplied name.

DBQ TNS Service Name User-supplied name.

uiD User ID or User Name User-supplied name.

PWD Password User-supplied password. Specify PWD=; for an

empty password.

5-1

ORACLE

Chapter 5
Format of the Connection String

Table 5-1 (Cont.) Keywords that Can Be Included in the Connection String Argument of
the SQLDriverConnect Function Call

Keyword Meaning Comments

DBA Database Attribute W=write access.
R=read-only access.

APA Applications Attributes T=Thread Safety Enabled.
F=Thread Safety Disabled.

RST Result Sets T=Result Sets Enabled.
F=Result Sets Disabled.

QTO Query Timeout Option T=Query Timeout Enabled.
F=Query Timeout Disabled.

CSR Close Cursor T=Close Cursor Enabled.
F=Close Cursor Disabled.

BNF Bind NUMBER as FLOAT T=Bind NUMBER as FLOAT.
F=Bind NUMBER as NUMBER.

DRH Disable Rule Hint T=Disable Rule Hint.
F=Enable Rule Hint.

BAM Batch Autocommit Mode IfAlISuccessful=Commit only if all statements
are successful (old behavior).
UpToFirstFailure=Commit up to first failing
statement (V7 ODBC behavior).
AllSuccessful=Commit all successful statements
(only when connected to an Oracle database;
against other databases, same behavior as V7).

FBS Fetch Buffer Size User-supplied numeric value (specify a value in
bytes of 0 or greater).
The default is 60,000 bytes.

FEN Failover T=Failover Enabled.
F=Failover Disabled.

FRC Failover Retry Count User-supplied numeric value.
The default is 10.

FDL Failover Delay User-supplied numeric value.
The default is 10.

LOB LOB Writes T=LOBs Enabled.
F=LOBs Disabled.

MTS Microsoft Transaction Server T=Disabled.

Support F=Enabled.

FwC Force SQL._ WCHAR Support T=Force SQL WCHAR Enabled.
F=Force SQL_WCHAR Disabled.

EXC EXEC Syntax T=EXEC Syntax Enabled.
F=EXEC Syntax Disabled.

XSM Schema Field Default=Default.

Database=Database Name.
Owner=0Owner Name.

5-2

ORACLE

Chapter 5
Format of the Connection String

Table 5-1 (Cont.) Keywords that Can Be Included in the Connection String Argument of
the SQLDriverConnect Function Call

Keyword Meaning Comments

MDI Set Metadata ID Default T=SQL ATTR METADATA ID defaults to
SQL TRUE.

F=SQL ATTR METADATA ID defaultsto
SQL FALSE

DPM Disable SQLDescribeParam T=SQLDescribeParam Disabled.
F=SQLDescribeParam Enabled.

BTD Bind TIMESTAMP as DATE T=Bind SQL TIMESTAMP as Oracle DATE
F=Bind SQL TIMESTAMP as Oracle TIMESTAMP

NUM Numeric Settings NLS=Use Oracle NLS numeric settings (to
determine the decimal and group separator).
MS=Use Microsoft regional settings.

US=Use US settings.

ODA Use OCIDescribeAny () T=Use OCIDescribeAny () call to gain
performance improvement when application
makes heavy calls to small packaged
procedures that return REF CURSORS.

F= Do not use OCIDescribeAny (). By default,
use OCIDescribeAny () value is FALSE.
STE SQL Translate ORA Errors T=Translate ORA errors.
Specifies whether the Oracle F=Do not translate any ORA error. By default,
Database ODBC driver is to SQLTranslateErrors is FALSE.
translate the Oracle error codes

TSZ Token Size User-supplied numeric value.

Sets the token size to the nearest multiple of 1
KB (1024 bytes) beginning at 4 KB (4096 bytes).
The default size is 8 KB (8192 bytes). The
maximum value that can be set is 128 KB
(131068 bytes).

If the following keyword is specified in the connection string, the Oracle Database ODBC driver
does not read values defined from the Administrator:

DRIVER={Oracle ODBC Driver}

Examples of valid connection strings are:

1) DSN=Personnel;UID=Kotzwinkle;PWD=;2)

DRIVER={Oracle ODBC

Driver};UID=Kotzwinkle; PWD=whatever;DBQ=instl alias;DBA=W;

See Also:

Connecting to an Oracle Data Source for all users

SQLDriverConnect Implementation for programmers

5-3

Chapter 5
SQLDriverConnect Implementation

5.2 SQLDriverConnect Implementation

The following table describes the keywords required by the SQLDriverConnect connection
string.

Table 5-2 Keywords Required by the SQLDriverConnect Connection String

Keyword Description
DSN The name of the data source.
DBQ The TNS Service Name. See Creating Oracle Database ODBC Driver

TNS Service Names. For more information, see the Oracle Net
Services documentation.

uiD The user login ID or user name.

PWD The user-specified password.

5.3 Reducing Lock Timeout in a Program

The Oracle server waits indefinitely for lock conflicts between transactions, to be resolved. You
can limit the amount of time that the Oracle server waits for locks to be resolved by calling the
ODBC sQLsetConnectAttr function before connecting to the data source.

Specify a non-zero value for the SQL._ATTR QUERY TIMEOUT attribute in the ODBC
SQLSetStmtAttr function. If you specify a lock timeout value using the ODBC
SQLSetConnectAttr function, it overrides any value specified in the oraodbc. ini file.

¢ See Also:

Reducing Lock Timeout for more information about specifying a value in the
oraodbc.ini file

5.4 Linking with odbc32.lib (Windows) or libodbc.so (UNIX)

For Windows platforms, when you link your program, you must link it with the import library
odbc32.1ib.

For UNIX platforms, an ODBC application must be linked to 1ibodbc. so.

5.5 Information about ROWID

The ODBC sQLSpecialColumns function returns information about the columns in a table.
When used with the Oracle Database ODBC driver, it returns information about the Oracle
ROWIDS associated with an Oracle table.

ORACLE -

Chapter 5
ROWID in a WHERE Clause

5.6 ROWID in a WHERE Clause

ROWIDS can be used in the WHERE clause of an SQL statement. However, the ROWID value must
be presented in a parameter marker.

5.7 Enabling Result Sets

Oracle reference cursors (Result Sets) allow an application to retrieve data using stored
procedures and stored functions. The following information identifies how to use reference
cursors to enable Result Sets through ODBC.

ORACLE

The ODBC syntax for calling stored procedures must be used. Native PL/SQL is not
supported through ODBC. The following identifies how to call the procedure or function
without a package and within a package. The package name, in this case, is RSET.

Procedure call:

{CALL Examplel(?)}

{CALL RSET.Examplel (?)}
Function Call:

{? = CALL Examplel(?)}

{? = CALL RSET.Examplel(?)}

The PL/SQL reference cursor parameters are omitted when calling the procedure. For
example, assume that the procedure Example2 is defined to have four parameters.
Parameters 1 and 3 are reference cursor parameters and parameters 2 and 4 are
character strings. The call is specified as:

{CALL RSET.Example2 ("Literal 1", "Literal 2")}

The following example application shows how to return a Result Set using the Oracle
Database ODBC driver:

Sample Application using Oracle reference cursors via ODBC

Assumptions:

1) Oracle Sample database is present with data loaded for the EMP table.
2) Two fields are referenced from the EMP table ename and mgr.

3) A data source has been setup to access the sample database.

Program Description:

Abstract:

This program demonstrates how to return result sets using
Oracle stored procedures

Details:

This program:

Creates an ODBC connection to the database.

Creates a Packaged Procedure containing two result sets.

Executes the procedure and retrieves the data from both result sets.
Displays the data to the user.

Deletes the package then logs the user out of the database.

The following is the actual PL/SQL this code generates to

5-5

ORACLE

Chapter 5
Enabling Result Sets

create the stored procedures.
DROP PACKAGE ODBCRefCur;

CREATE PACKAGE ODBCRefCur AS

TYPE ename cur IS REF CURSOR;

TYPE mgr cur IS REF CURSOR;

PROCEDURE EmpCurs (Ename IN OUT ename cur, Mgr IN OUT mgr cur, pjob IN VARCHARZ);
END;

CREATE or REPLACE PACKAGE BODY ODBCRefCur AS
PROCEDURE EmpCurs (Ename IN OUT ename cur, Mgr IN OUT mgr cur, pjob IN VARCHAR2)
AS

BEGIN

IF NOT Ename$ISOPEN

THEN

OPEN Ename for SELECT ename from emp;

END IF;

IF NOT Mgr%ISOPEN

THEN

OPEN Mgr for SELECT mgr from emp where job = pjob;
END IF;

END;

END;

/* Include Files */
#ifdef WIN32

#include <windows.h>

#endif

#include <stdio.h>
#include <sql.h>
#include <sglext.h>

/* Defines */

#define JOB_LEN 9
#define DATA LEN 100
#define SQL_STMT LEN 500

/* Procedures */
void DisplayError (SWORD HandleType, SQLHANDLE hHandle, char *Module);

/* Main Program */
int main ()

{

SQLHENV hEnv;

SQLHDBC hDbc;

SQLHSTMT hStmt;

SQLRETURN rc;

char *DefUserName ="scott";
char *DefPassWord ="tiger";
SQLCHAR ServerName [DATA LEN];
SQLCHAR *pServerName=ServerName;
SQLCHAR UserName [DATA LEN];
SQLCHAR *pUserName=UserName;
SQLCHAR PassWord[DATA LEN];
SQLCHAR *pPassWord=PassWord;
char Data[DATA LEN];
SQLINTEGER Datalen;

char error[DATA LEN];

char *charptr;

5-6

ORACLE

SQLCHAR SglStmt[SQL STMT LEN];
SQLCHAR *pSqglStmt=SglStmt;
char *pSalesMan = "SALESMAN";
SQLINTEGER sglnts=SQL NTS;

/* Allocate the Environment Handle */
rc = SQLAllocHandle(SQL HANDLE ENV, SQL NULL HANDLE, &hEnv);
if (rc !'= SQL SUCCESS)
{
printf("Cannot Allocate Environment Handle/n");
printf("/nHit Return to Exit/n");
charptr = gets ((char *)error);
exit (1);

/* Set the ODBC Version */

Chapter 5
Enabling Result Sets

rc = SQLSetEnvAttr (hEnv, SQL ATTR ODBC VERSION, (void *)SQL OV _ODBC3, 0);

if (rc != SQL SUCCESS)

{
printf ("Cannot Set ODBC Version/n");
printf ("/nHit Return to Exit/n");
charptr = gets((char *)error);
exit (1);

/* Allocate the Connection handle */
rc = SQLAllocHandle (SQL HANDLE DBC, hEnv, &hDbc);
if (rc != SQL SUCCESS)
{
printf ("Cannot Allocate Connection Handle/n");
printf ("/nHit Return to Exit/n");
charptr = gets((char*) error);
exit (1);

/* Get User Information */
lstrcpy((char*) pUserName, DefUserName);
lstrcpy((char*) pPassWord, DefPassWord);

/* Data Source name */
printf("/nEnter the ODBC Data Source Name/n");
charptr = gets((char*) ServerName);

/* User Name */

printf ("/nEnter User Name Default [%s]/n", pUserName);
charptr = gets((char*) UserName);

if (*charptr == '/0")

{

lstrcpy((char*) pUserName, (char*) DefUserName);

/* Password */
printf ("/nEnter Password Default [%s]/n", pPassWord);
charptr = gets((char*) PassWord);
if (*charptr == '/0")
{
lstrcpy((char*) pPassWord, (char*) DefPassWord);

/* Connection to the database */

rc = SQLConnect (hDbc, pServerName, (SQLSMALLINT) lstrlen((char *)pServerName),

5-7

Chapter 5
Enabling Result Sets

pUserName,
(SQLSMALLINT) lstrlen((char*)pUserName), pPassWord,
(SQLSMALLINT) lstrlen((char *)pPassWord));
if (rc != SQL SUCCESS)
{
DisplayError(SQL_HANDLE_DBC, hDbc, "SQLConnect");
}

/* Allocate a Statement */
rc = SQLAllocHandle (SQL HANDLE STMT, hDbc, &hStmt);
if (rc != SQL SUCCESS)
{
printf("Cannot Allocate Statement Handle/n");
printf("/nHit Return to Exit/n");
charptr = gets((char *)error);
exit(1);

/* Drop the Package */
Istrcpy((char *) pSqglStmt, "DROP PACKAGE ODBCRefCur");
rc = SQLExecDirect (hStmt, pSqglStmt, lstrlen((char *)pSglStmt));

/* Create the Package Header */

lstrcpy((char *) pSqlStmt, "CREATE PACKAGE ODBCRefCur AS/n");

lstrcat ((char *) pSqlStmt, " TYPE ename cur IS REF CURSOR; /n");

lstrcat ((char *) pSqlStmt, " TYPE mgr cur IS REF CURSOR; /n");

lstrcat ((char *) pSqlStmt, " PROCEDURE EmpCurs (Ename IN OUT ename cur,");
lstrcat((char *) pSqglStmt, " Mgr IN OUT mgr cur,pjob IN VARCHAR2);/n/n");
lstrcat ((char *) pSqglStmt, "END;/n");

rc = SQLExecDirect (hStmt, pSqglStmt, lstrlen((char *)pSglStmt));
if (rc != SQL SUCCESS)
{
DisplayError (SQL HANDLE STMT, hStmt, "SQLExecDirect");
}

/* Create the Package Body */
lstrcpy((char *) pSqglStmt, "CREATE PACKAGE BODY ODBCRefCur AS/n");

lstrcat((char *) pSqlStmt, " PROCEDURE EmpCurs (Ename IN OUT ename cur,");
lstrcat ((char *) pSqlStmt, " Mgr IN OUT mgr cur, pjob IN VARCHAR2) /n");
lstrcat ((char *) pSqglStmt, " AS/n");

lstrcat ((char *) pSqglStmt, " BEGIN/n");

lstrcat ((char *) pSqglStmt, " IF NOT Ename%ISOPEN/n");

lstrcat ((char *) pSqglStmt, " THEN/n");

lstrcat ((char *) pSqglStmt, " OPEN Ename for SELECT ename from emp;/n");
lstrcat ((char *) pSglStmt, " END IF;/n/n");

lstrcat ((char *) pSqglStmt, " IF NOT Mgr%ISOPEN/n THEN/n");

lstrcat ((char *) pSqglStmt, " OPEN Mgr for SELECT mgr from emp where job = pjob;/n");
lstrcat ((char *) pSglStmt, " END IF;/n");

lstrcat ((char *) pSqglStmt, " END;/n");

lstrcat ((char *) pSqglStmt, "END;/n");

rc = SQLExecDirect (hStmt, pSqglStmt, lstrlen((char *)pSglStmt));
if (rc != SQL SUCCESS)
DisplayError (SQL HANDLE STMT, hStmt, "SQLExecDirect");

/* Bind the Parameter */
rc = SQLBindParameter (hStmt, 1, SQL PARAM INPUT, SQL C CHAR, SQL CHAR, JOB LEN, 0,
pSalesMan, 0, &sqglnts);

ORACLE -

ORACLE

Chapter 5
Enabling Result Sets

/* Call the Store Procedure which executes the Result Sets */
Istrcpy((char *) pSglStmt, "{CALL ODBCRefCur.EmpCurs(?)}");

rc = SQLExecDirect (hStmt, pSqglStmt, lstrlen((char *)pSglStmt));
if (rc != SQL SUCCESS)
DisplayError (SQL HANDLE STMT, hStmt, "SQLExecDirect");

/* Bind the Data */
rc = SQLBindCol (hStmt, 1, SQL C CHAR, Data, sizeof(Data), &DatalLen);
if (rc != SQL SUCCESS)

DisplayError (SQL HANDLE STMT, hStmt, "SQLBindCol");

/* Get the data for Result Set 1 */
printf ("/nEmployee Names/n/n");

while (rc == SQL SUCCESS)
{
rc = SQLFetch (hStmt) ;
if (rc == SQL SUCCESS)
printf ("$s/n", Data);
else
if(rc != SQL NO DATA)
DisplayError(SQL_HANDLE_STMT, hStmt, "SQLFetch");

printf("/nFirst Result Set - Hit Return to Continue/n");
charptr = gets ((char *)error);

/* Get the Next Result Set */
rc = SQLMoreResults(hStmt);
if (rc != SQL SUCCESS)
DisplayError(SQL_HANDLE_STMT, hStmt, "SQLMoreResults");

/* Get the data for Result Set 2 */
printf ("/nManagers/n/n") ;
while (rc == SQL SUCCESS)
{
rc = SQLFetch (hStmt) ;
if (rc == SQL SUCCESS)
printf ("$s/n", Data);
else
if (rc != SQL NO DATA)
DisplayError(SQL_HANDLE_STMT, hStmt, "SQLFetch");

printf ("/nSecond Result Set - Hit Return to Continue/n");
charptr = gets((char *)error);

/* Should Be No More Results Sets */
rc = SQLMoreResults(hStmt);
if (rc != SQL NO DATA)
DisplayError(SQL_HANDLE_STMT, hStmt, "SQLMoreResults");

/* Drop the Package */
lstrcpy((char *)pSglStmt, "DROP PACKAGE ODBCRefCur");
rc = SQLExecDirect (hStmt, pSqglStmt, lstrlen((char *)pSglStmt));

/* Free handles close connections to the database */
SQLFreeHandle (SQL HANDLE STMT, hStmt);
SQLDisconnect (hDbc);

SQLFreeHandle (SQL HANDLE DBC, hDbc);
SQLFreeHandle (SQL HANDLE ENV, hEnv);

5-9

Chapter 5
Enabling EXEC Syntax

printf("/nAll Done - Hit Return to Exit/n");
charptr = gets ((char *)error);
return(0);

}

/* Display Error Messages */
void DisplayError(SWORD HandleType, SQLHANDLE hHandle, char *Module)
{

SQLCHAR MessageText[255];

SQLCHAR SQLState[80];

SQLRETURN rc=SQL_SUCCESS;

LONG NativeError;

SWORD RetLen;

SQLCHAR error[25];

char *charptr;

rc = SQLGetDiagRec (HandleType, hHandle, 1, SQLState, &NativeError, MessageText, 255,
&Retlen) ;
printf("Failure Calling %s/n", Module);
if (rc == SQL SUCCESS || rc == SQL SUCCESS WITH INFO)
{
printf("/t/t/t State: %s/n", SQLState);
printf("/t/t/t Native Error: %d/n", NativeError);
printf("/t/t/t Error Message: %s/n", MessageText);
}

printf("/nHit Return to Exit/n");
charptr = gets ((char *)error);
exit (1) ;

5.8 Enabling EXEC Syntax

ORACLE

If the syntax of your SQL Server EXEC statement can be readily translated to an equivalent
Oracle procedure call without change, the Oracle Database ODBC driver can translate it, if you
enable this option.

The complete name of a SQL Server procedure consists of up to four identifiers:

e server name
e database name

e owner name

e procedure name

The format for the name is:

[[[server.] [database].] [owner name].]procedure name

During the migration of the SQL Server database to Oracle, the definition of each SQL Server
procedure (or function) is converted to its equivalent Oracle syntax and is defined in a schema

in Oracle. Migrated procedures are often reorganized (and created in schemas) in one of these
ways:

e All procedures are migrated to one schema (the default option).

e All procedures defined in one SQL Server database are migrated to the schema named
with that database name.

5-10

Chapter 5
Enabling Event Notification for Connection Failures in an Oracle RAC Environment

* All procedures owned by one user are migrated to the schema named with that user's
name.

To support these three ways of organizing migrated procedures, you can specify one of these
schema name options for translating procedure names. Object names in the translated Oracle
procedure call are not case-sensitive.

5.9 Enabling Event Notification for Connection Failures in an
Oracle RAC Environment

ORACLE

If the SQL_ ORCLATTR FAILOVER CALLBACK and SQL ORCLATTR FAILOVER HANDLE attributes of the
SQLSetConnectAttr function are set when a connection failure occurs in an Oracle Real
Application Clusters (Oracle RAC) Database environment, event notification is enabled. Both
attributes are set using the sQLSetConnectAttr function. The symbols for the new attributes
are defined in the file sqora.h.

The SQL ORCLATTR FAILOVER CALLBACK attribute specifies the address of a routine to call when
a failure event takes place.

The SQL ORCLATTR FAILOVER HANDLE attribute specifies a context handle that is passed as a
parameter in the callback routine. This attribute is necessary for the ODBC application to
determine which connection the failure event is taking place on.

The function prototype for the callback routine is:

void failover callback(void *handle, SQLINTEGER fo code)

The 'handle’ parameter is the value that was set by the SQL_ORCLATTR FAILOVER HANDLE
attribute. Null is returned if the attribute has not been set.

The fo_code parameter identifies the failure event that is taking place. The failure events map
directly to the events defined in the OCI programming interface. The list of possible events is:

* ODBC_FO BEGIN

* ODBC_FO ERROR

* ODBC_FO ABORT

* ODBC FO REAUTH

* ODBC_FO END

The following is a sample program that demonstrates, using this feature:
/%

NAME
ODBCCallbackTest

DESCRIPTION
Simple program to demonstrate the connection failover callback feature.

PUBLIC FUNCTION(S)
main

PRIVATE FUNCTION (S)
NOTES

Command Line: ODBCCallbackTest filename [odbc-driver]

5-11

Chapter 5
Enabling Event Notification for Connection Failures in an Oracle RAC Environment

*/

#include <windows.h>
#include <tchar.h>
#include <malloc.h>
#include <stdio.h>
#include <string.h>
#include <sql.h>
#include <sglext.h>
#include "sgora.h"

/*
** Function Prototypes

*/

void display errors(SQLSMALLINT HandleType, SQLHANDLE Handle);
void failover callback(void *Handle, SQLINTEGER fo code);

/%

** Macros

*/

#define ODBC_STS CHECK(sts) \
if (sts != SQL SUCCESS) \

{\
display_errors(SQL_HANDLE_ENV, hEnv); \
display_errors(SQL_HANDLE_DBC, hDbc); \
display_errors(SQL_HANDLE_STMT, hStmt); \
return FALSE; \

/%
** ODBC Handles

*/

SQLHENV *hEnv = NULL; // ODBC Environment Handle
SQLHANDLE *hDbc = NULL; // ODBC Connection Handle
SQLHANDLE *hStmt = NULL; // ODBC Statement Handle

/%
** Connection Information

*/

TCHAR *dsn = T("odbctest");
TCHAR *uid = T("scott");

TCHAR *pwd = T("tiger");

TCHAR *szSelect = T("select * from emp");

/*
** MAIN Routine
*/
main (int argc, char **argv)
{

SQLRETURN rc;

/*
** Allocate handles

*/

rc = SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, (SQLHANDLE *)&hEnv);
ODBC_STS CHECK(rc)

rc = SQLSetEnvAttr (hEnv, SQL ATTR ODBC_VERSION, (SQLPOINTER)SQL OV_ODBC3, 0);
ODBC_STS CHECK (rc);

rc = SQLAllocHandle (SQL HANDLE DBC, hEnv, (SQLHANDLE *)&hDbc);
ODBC_STS_ CHECK (rc);

ORACLE 5.12

ORACLE

/*
* %
*/
VO

{

Chapter 5

Enabling Event Notification for Connection Failures in an Oracle RAC Environment

/*
** Connect to the database

*/

rc = SQLConnect (hDbc, dsn, (SQLSMALLINT) tcslen(dsn),
uid, (SQLSMALLINT) tcslen(uid),

pwd, (SQLSMALLINT) tcslen(pwd));

ODBC_STS CHECK(rc);

/*
** Set the connection failover attributes

*/

rc = SQLSetConnectAttr (hDbc, SQL ORCLATTR FAILOVER CALLBACK, &failover callback,

ODBC_STS_ CHECK (rc);

rc = SQLSetConnectAttr (hDbc, SQL ORCLATTR FAILOVER HANDLE, hDbc, 0);
ODBC_STS CHECK (rc);

/*
** Allocate the statement handle

*/

rc = SQLAllocHandle (SQL HANDLE STMT, hDbc, (SQLHANDLE *)&hStmt);
ODBC_STS CHECK(rc);

/*
** Wait for connection failovers
*/

while (TRUE)

{

Sleep(5000);

rc = SQLExecDirect (hStmt,szSelect, _tcslen(szSelect));
ODBC_STS CHECK(rc);

rc = SQLFreeStmt (hStmt, SQL CLOSE);

ODBC_STS CHECK(rc);

}

/%

** Free up the handles and close the connection
*/

rc = SQLFreeHandle (SQL HANDLE STMT, hStmt);
ODBC_STS CHECK(rc);

rc = SQLDisconnect (hDbc) ;
ODBC_STS_CHECK (rc) ;

rc = SQLFreeHandle (SQL HANDLE DBC, hDbc);
ODBC_STS CHECK(rc);

rc = SQLFreeHandle (SQL HANDLE ENV, hEnv);
ODBC_STS CHECK(rc);

return TRUE;

Failover Callback Routine
id failover callback(void *Handle, SQLINTEGER fo_code)

switch (fo_code)

{

0);

5-13

Chapter 5

Enabling Event Notification for Connection Failures in an Oracle RAC Environment

case ODBC_FO BEGIN:
printf ("ODBC_FO BEGIN recevied\n");
break;

case ODBC_FO ERROR:
printf ("ODBC_FO ERROR recevied\n");
break;

case ODBC_FO ABORT:
printf ("ODBC_FO ABORT recevied\n");
break;

case ODBC_FO REAUTH:
printf ("ODBC FO REAUTH recevied\n");
break;

case ODBC FO END:
printf ("ODBC_FO END recevied\n");
break;

default:
printf ("Invalid or unknown ODBC failover code recevied\n");
break;

}

return;

/%
** Retrieve the errors associated with the handle passed
** and display them.
*/
void display errors(SQLSMALLINT HandleType, SQLHANDLE Handle)
{

SQLTCHAR MessageText[256];

SQLTCHAR SqglState([5+1];

SQLSMALLINT i=1;

SQLINTEGER NativeError;

SQLSMALLINT TextLength;

SQLRETURN sts = SQL SUCCESS;

if (Handle == NULL) return;

/* Make sure all SQLState text is null terminated */

Sqlstate[5] = '\0';

/*

** Fetch and display all diagnostic records that exist for this handle
*/

while (sts == SQL SUCCESS)
{
NativeError = 0;
TextLength = 0;

sts = SQLGetDiagRec (HandleType, Handle, i, SqglState, &NativeError, (SQLTCHAR
*) &§MessageText, sizeof (MessageText), &TextLength);

if (sts == SQL SUCCESS)
{

printf ("[%s]%s\n", SglState, MessageText);

if (NativeError != 0)

printf ("Native Error Code: %d\n", NativeError);
it+;

ORACLE"

5-14

Chapter 5
Using Implicit Results Feature through ODBC

}

return;

5.10 Using Implicit Results Feature through ODBC

Use this option when you migrate any third party ODBC application to Oracle Database and
you want to use implicit results functionality as supported by the previous vendor. The Oracle
Database ODBC driver supports implicit results with stored procedures or an anonymous
PL/SQL block. For the current release, implicit results are returned only for SELECT statements.

The following code example shows an example ODBC test case using an anonymous SQL
script for implicit results.

const char *queryl="declare \
cl sys_refcursor; \
c2 sys_refcursor; \
begin \
open cl for select empno,ename from emp where rownum<=3; \
doms_sqgl.return result(cl); \
open c2 for select empno,ename from emp where rownum<=3; \
dbms sql.return result(c2); end; ";

int main(

{

//Allocate all required handles and establish a connection to the database.

//Prepare and execute the above anonymous PL/SQL block
SQLPrepare (hstmt, (SQLCHAR *) queryl, SQL NTS);
SQLExecute (hstmt) ;

//Bind the columns for the results from the first SELECT statement in an anonymous
block.
SQLBindCol (hstmt, 1, SQL C ULONG, é&eno, 0, &jind);
SQLBindCol (hstmt, 2, SQL C CHAR, empname, sizeof (empname),&enind);

//Fetch implicit results through the SQLFetch() call.
while ((retCode = SQLFetch (hstmt)) != SQL NO DATA)

{
//Do whatever you want to do with the data.

}
retCode = SQLMoreResults (hstmt);

if (retCode == SQL SUCCESS)

{
printf ("SQLMoreResults returned with SQL_SUCCESS\n");

//Bind the columns for the results from the second SELECT statement in an anonymous
block.
SQLBindCol (hstmt, 1, SQL C ULONG, é&eno, 0, &jind);
SQLBindCol (hstmt, 2, SQL C CHAR, empname, sizeof (empname),&enind);

//Fetch implicit results through the SQLFetch() call.
while ((retCode = SQLFetch (hstmt)) != SQL NO DATA)
{

//Do whatever you want to do with data.

}

ORACLE .

Chapter 5

About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC

}
}

5.11 About Supporting Oracle TIMESTAMP WITH TIME ZONE
and TIMESTAMP WITH LOCAL TIME ZONE Column Type in

ODBC

ORACLE

The time zone is dictated by the system variable ORA SDTZ. The system variable can be set to
'0oS_Tz', 'DB_Tz', or a valid time zone value. When ORA SDTZ is setto '0S Tz', the operating
system time zone is used. If it is set to 'DB_Tz', the default time zone set in the database is
used.

By default, when ORA_SDTZ is not set, the operating system time zone is used.

Note:

When setting the ORA_SDTZ variable in a Microsoft Windows environment -- in the
Registry, among system environment variables, or in a command prompt window --
do not enclose the time zone value in quotes.

¢ See Also:

Oracle Database Globalization Support Guide for information about Datetime data
types and time zone support

Fetching Data from These Time Zone Columns Using the Variable of ODBC Data Type
TIMESTAMP_STRUCT

The following example demonstrates how to fetch data from TIMESTAMP WITH TIME ZONE and
TIMESTAMP WITH LOCAL TIME ZONE column using the variable of ODBC datatype
TIMESTAMP STRUCT.

Example 5-1 How to Fetch Data from TIMESTAMP WITH TIME ZONE and TIMESTAMP
WITH LOCAL TIME ZONE Columns Using the Variable of ODBC Data Type
TIMESTAMP_STRUCT

int main()

{

/* TSTAB table's DDL statement:

CREATE TABLE TSTAB (COL TSTZ TIMESTAMP WITH TIME ZONE,
COL_TSLTZ TIMESTAMP WITH LOCAL TIME ZONE);

*

* X ok %

Insert statement:

*

* Sample #1:

5-16

https://docs.oracle.com/en/database/oracle/oracle-database/18/nlspg/datetime-data-types-and-time-zone-support.html#GUID-7A1BA319-767A-43CC-A579-4DAC7063B243

Chapter 5

About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC

ORACLE

* INSERT INTO TSTAB VALUES (TIMESTAMP '2010-03-13 03:47:30.123456 America/
Los_Angeles'

* TIMESTAMP '2010-04-14 04:47:30.123456 America/
Los_Angeles');

*

* Sample #2:

X

* INSERT INTO TSTAB VALUES ('22-NOV-1963 12:30:00.000000 PM',
* '24-NOV-1974 02:30:00.000000 PM") ;

*

* Refer Oracle Database documentations to know more details about TIMESTAMP

* WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE columns.

*/
SQLCHAR sqlSelQuery[] = "SELECT COL TSTZ, COL TSLTZ FROM TSTAB";
TIMESTAMP STRUCT timestampcoll;
TIMESTAMP STRUCT timestampcol2;

/* Allocate the ODBC statement handle. */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

/* Execute the statement sglSelQuery. */
SQLExecDirect (hstmt, sqglSelQuery, SQL NTS);

/* Bind the variable to read the value from the TIMESTAMP WITH TIME ZONE
column. */

SQLBindCol (hstmt, 1, SQL C TIMESTAMP, ×tampcoll,
sizeof (timestampcoll), NULL);

/* Bind the variable to read the value from the TIMESTAMP WITH LOCAL TIME
ZONE column. */

SQLBindCol (hstmt, 2, SQL C TIMESTAMP, ×tampcolZz,
sizeof (timestampcol?2), NULL);

/* Fetch data from the TSTAB table. */

retcode = SQLFetch (hstmt) ;

/* Values of column COL TSTZ and COL _TSLTZ are available in variables

* timestampcoll and timestampcol2 respectively. Refer to Microsoft ODBC

* documentation for more information about data type TIMESTAMP STRUCT. */

/* Close the statement. */

SQLFreeStmt (hstmt, SQL CLOSE);

/* Free the statement handle. */
SQLFreeHandle (SQL HANDLE STMT, hstmt); }

Example 5-2 How to Insert Data into TIMESTAMP WITH TIME ZONE and TIMESTAMP
WITH LOCAL TIME ZONE Columns

int main ()

{

5-17

Chapter 5

About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC

ORACLE

SQLCHAR sqglInsQuery|]

= "INSERT INTO TSTAB VALUES (?, ?2)";

TIMESTAMP STRUCT timestampcoll;
TIMESTAMP STRUCT timestampcol2;

/* Input the value for column COL TSTZ in table TSTAB. */

timestampcoll.year = 2000;
timestampcoll.month = 1;
timestampcoll.day = 1;
timestampcoll.hour = 0;
timestampcoll.minute = 0;
timestampcoll.second = 1;

timestampcoll.

fraction = 1000;

/* Input the value for column COL TSLTZ in table TSTAB. */

timestampcoll.year = 2012;
timestampcoll.month = 2;
timestampcoll.day = 5;
timestampcoll.hour = 10;
timestampcoll.minute = 30;

timestampcoll.
timestampcoll.

second = 10;
fraction = 1000;

/* Allocate the ODBC statement handle. */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

/* Bind the input value for column COL TSTZ. */
SQLBindParameter (hstmt, 1, SQL PARAM INPUT, SQL C TIMESTAMP, SQL TIMESTAMP,

0, 0, ×tampcoll, sizeof (timestampcoll), NULL);
/* Bind the input value for column COL TSLTZ. */
SQLBindParameter (hstmt, 2, SQL PARAM INPUT, SQL C TIMESTAMP, SQL TIMESTAMP,

0, 0, ×tampcol?2, sizeof (timestampcol2), NULL);

/* Execute the statement sqglInsQuery. */
SQLExecDirect (hstmt, sqlInsQuery, SQL NTS);

/* Close the statement. */

SQLFreeStmt (hstmt, SQL CLOSE);

/* Free the statement handle. */
SQLFreeHandle (SQL HANDLE STMT, hstmt);

5-18

Chapter 5
About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

5.12 About the Effect of Setting ORA_SDTZ in Oracle Clients
(OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

ORACLE

Describes the effect of setting the system variable ORA _SDTZ in Oracle Clients.
The time zone is dictated by the system variable ORA SDTZ.

The following sections describe the effects of not setting and setting the system variable
ORA_sDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and others). The
examples in these sections are run in India (GMT+5:30) time zone.

¢ See Also:

Oracle Database Globalization Support Guide for more information about setting the
session time zone

Environment Setup

To set up the environment, create the following table with TsLTZ (TIMESTAMP WITH LOCAL
TIME ZONE) column and insert the value of 01/01/2016 00:00 GMT into the TSLTZ column as
follows:

Example 5-3 How to Set Up the Environment

The following example sets up the environment for the example sections that follow.
SQL> create table timezone demo(coll TIMESTAMP WITH LOCAL TIME ZONE);
Table created.

SQL> INSERT INTO TIMEZONE DEMO VALUES (TIMESTAMP '2016-01-01 00:00:00.000000
ETC/GREENWICH') ;

1 row created.

When ORA_SDTZ Is Not Set in the Environment

When ORA SDTZ is not set in the environment, then the operating system (OS) time zone
setting is taken as the default time zone for Oracle Clients. For example:

Example 5-4 What Happens When ORA_SDTZ Is Not Set
C:\Users\example.ORADEV>set ORA SDTZ=

C:\Users\example.ORADEV>sqglplus scott/password@//host0l.example.com:1521/
ORCL12C1

SQL*Plus: Release 23.0.0.0.0 - Production on Wed Jun 19 13:14:27 2024 Version
23.4.1.24.05

Copyright (c) 1982, 2024, Oracle. All rights reserved.

5-19

https://docs.oracle.com/en/database/oracle/oracle-database/18/nlspg/datetime-data-types-and-time-zone-support.html#GUID-578B5988-31E2-4D0F-ACEA-95C827F6012B

ORACLE

Chapter 5
About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

Connected to:0Oracle Database 23ai Enterprise Edition Release 23.0.0.0.0 -
Development Version 23.4.0.24.00

With the Partitioning, OLAP, Advanced Analytics, and Real Application Testing
options

SQL> select sessiontimezone from dual;

SESSIONTIMEZONE

01-JAN-24 05.30.00.000000 AM

Setting ORA_SDTZ to the Operating System (OS) Timezone in the Environment

When ORA SDTZ is set to the operating system (OS) Time zone, the Oracle Client’s user
session is set to the OS time zone setting. You can either unset it in the environment or set
ORA_SDTZ to 0S_Tz. For example:

Example 5-5 What Happens When ORA_SDTZ Is Set to the Operating System (OS)
Timezone

C:\Users\example.ORADEV>set ORA SDTZ=0S TZ

C:\Users\example.ORADEV>sglplus scott/password@//host0l.example.com:1521/
ORCL12C1

SQL*Plus: Release 23.0.0.0.0 - for Oracle Cloud on Wed Jun 19 13:14:27 2024
Version 23.4.1.24.06

Copyright (c) 1982, 2024, Oracle. All rights reserved.

Connected to:0racle Database 23ai Enterprise Edition Release 23.0.0.0.0 - for
Oracle Cloud Version 23.4.1.24.06

With the Partitioning, OLAP, Advanced Analytics, and Real Application Testing
options

SQL> select sessiontimezone from dual;

SESSIONTIMEZONE

01-JAN-24 05.30.00.000000 AM
Setting ORA_SDTZ to a Specific Time Zone in the Environment

The Oracle Client can be set to retrieve the time stamp value adjusted to a specific time zone
(for example, Helsinki Time Zone). To do this, you can set ORA_SDTZ to the Oracle Time Zone

5-20

ORACLE

Chapter 5
About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

region name for the corresponding time zone (Oracle Time Zone Region Name for Helsinki
Time Zone is Europe/Helsinki). For example:

Example 5-6 What Happens When ORA_SDTZ Is Set to a Specific Time Zone
C:\Users\example.ORADEV>set ORA SDTZ=FEurope/Helsinki

C:\Users\example.ORADEV>sqglplus scott/password@//host0l.example.com:1521/
ORCL12C1

SQL*Plus: Release 23.0.0.0.0 - for Oracle Cloud on Wed Jun 19 13:14:27 2024
Version 23.4.1.24.06

Copyright (c) 1982, 2024, Oracle. All rights reserved.

Connected to:0racle Database 23ai Enterprise Edition Release 23.0.0.0.0 - for
Oracle Cloud Version 23.4.1.24.06

With the Partitioning, OLAP, Advanced Analytics, and Real Application Testing
options

SQL> select sessiontimezone from dual;

SESSIONTIMEZONE

Europe/Helsinki

SQL> select * from timezone demo;

01-JAN-24 02.00.00.000000 AM

5-21

Supported Functionality

This chapter is intended for use by the programmers and provides information about the
additional functionality that the Oracle Database ODBC driver supports.

Topics:

* API Conformance

e Implementation of ODBC API Functions

e Implementation of the ODBC SQL Syntax

* Implementation of Data Types (Programming)

6.1 API Conformance

The Oracle Database ODBC driver release 9.2.0.0.0, and higher, support all Core, Level 2, and
Level 1 functions.

Also, the Oracle Database ODBC driver release 9.2.0.0.0, and higher, support translation
DLLs.

The following topics describe the ODBC API functions implemented by the Oracle Database
ODBC driver.

See Also:

e Error Messages

e Implementation of ODBC API Functions for programmers

6.2 Implementation of ODBC API Functions

ORACLE

The following table describes how the Oracle Database ODBC driver implements specific
functions:

Table 6-1 How the Oracle Database ODBC Driver Implements Specific Functions

Function Description

SQLConnect SQLConnect requires only a DBQ, user ID, and password.
SQLDriverConnect SQLDriverConnect uses the DSN, DBQ, UID, and PWD keywords.
SQLMoreResults Implements ODBC support for implicit results. This is a new API

implemented for Oracle Database 12c Release 1 (12.1.0.1). See
SQLMoreResults Function for more information.

SQLSpecialColumns If SQLSpecialColumns is called with the SQL BEST ROWID attribute, it
returns the rowid column.

6-1

Chapter 6
Implementation of the ODBC SQL Syntax

Table 6-1 (Cont.) How the Oracle Database ODBC Driver Implements Specific

Functions
|
Function Description
SQLProcedures See the information that follows.

andSQLProcedureColumns

All catalog functions If the SQL. ATTR METADATA ID statement attribute is SQL TRUE, a
string argument is treated as an identifier argument, and its case is not
significant. In this case, the underscore ("_") and the percent sign ("%")
are treated as the actual character, not as a search pattern character.
On the other hand, if this attribute is SQL._FALSE, it is either an ordinary
argument or a pattern value argument and is treated literally, and its
case is significant.

6.3 Implementation of the ODBC SQL Syntax

If a comparison predicate has a parameter marker as the second expression in the comparison
and the value of that parameter is SQL_NULL DATA with SQLBindParameter, the comparison
fails. This is consistent with the null predicate syntax in ODBC SQL.

6.4 Implementation of Data Types (Programming)

For programmers, the noteworthy part of the implementation of the data types concerns the
CHAR, VARCHAR, and VARCHAR? data types.

For an £3q1Type value of SQL VARCHAR, SQLGetTypeInfo returns the Oracle database data type
VARCHAR2. For an £Sq1Type value of SQL CHAR, SQLGetTypeInfo returns the Oracle database
data type CHAR.

ORACLE 60

Unicode Support

This chapter provides information about the Unicode support in the Oracle Database ODBC
driver.

Topics:

e Unicode Support within the ODBC Environment
e Unicode Supportin ODBC API

e Unicode Functions in the Driver Manager

¢ SQLGetData Performance

e Unicode Samples

7.1 Unicode Support within the ODBC Environment

The Microsoft or unixODBC ODBC Driver Manager (Driver Manager) makes all ODBC drivers,
regardless of if they support Unicode, appear as if they are Unicode compliant. This allows
ODBC applications to be written independent of the Unicode capabilities of underlying ODBC
drivers.

The extent to which the Driver Manager can emulate Unicode support for ANSI ODBC drivers
is limited by the conversions possible between the Unicode data and the local code page. Data
loss is possible when the Driver Manager is converting from Unicode to the local code page.
Full Unicode support is not possible unless the underlying ODBC driver supports Unicode. the
Oracle Database ODBC driver provides full Unicode support.

7.2 Unicode Support in ODBC API

ORACLE

The ODBC API supports both Unicode and ANSI entry points using the "W" and "A" suffix
convention. An ODBC application developer need not explicitly call entry points with the suffix.
An ODBC application that is compiled with the UNICODE and _UNICODE preprocessor
definitions generates the appropriate calls. For example, a call to SQLPrepare is compiled as
SQLPrepareW.

The C data type, SQL_C WCHAR, was added to the ODBC interface to allow applications to
specify that an input parameter is encoded as Unicode or to request column data returned as
Unicode. The macro SQL C TCHAR is useful for applications that must be built as both Unicode
and ANSI. The sQL_C_TCHAR macro compiles as SQL_C WCHAR for Unicode applications and as
SQL_C_CHAR for ANSI applications.

The SQL data types: SQL_WCHAR, SQL WVARCHAR, and SQL WLONGVARCHAR have been added to
the ODBC interface to represent columns defined in a table as Unicode. Potentially, these
values are returned from calls to SQLDescribeCol, SQLColAttribute, SQLColumns, and
SQLProcedureColumns.

Unicode encoding is supported for SQL column types NCHAR, NVARCHARZ, and NCLOB.
Additionally, Unicode encoding is supported for SQL column types CHAR and VARCHAR? if the
character semantics are specified in the column definition.

7-1

Chapter 7
Unicode Functions in the Driver Manager
The ODBC driver supports these SQL column types and maps them to ODBC SQL data types.
The following table lists the supported SQL data types and the equivalent ODBC SQL data
type.

Table 7-1 Supported SQL Data Types and the Equivalent ODBC SQL Data Type
]

SQL Data Types ODBC SQL Data Types

CHAR SQL CHAR or SQL_WCHAR 1
VARCHAR2 SQL VARCHAR or SQL WVARCHAR 2
NCHAR SQL WCHAR

NVARCHAR?2 SQL_WVARCHAR

NCLOB SQL WLONGVARCHAR

1 CHAR maps to SQL_WCHAR if the character semantics were specified in the column definition and if the character
set for the database is Unicode.

2 VARCHAR2 maps to SQL_WVARCHAR if the character semantics were specified in the column definition and if the
character set for the database is Unicode.

7.3 Unicode Functions in the Driver Manager

The Driver Manager (DM) performs the following functions when it detects that the underlying
ODBC driver does not support Unicode:

e The DM converts Unicode function calls to ANSI function calls before calling the ANSI
ODBC driver. String arguments are converted from Unicode to the local code page. For
example, a call to SQLPrepareW is converted to call sQLPrepare. The text of the SQL
statement parameter is converted from Unicode to the local code page.

e The DM converts return parameters that are character data from the local code page to
Unicode. For example, returning the column name through sQLColAttribute.

e The DM converts data from the local code page to Unicode for columns bound as
SQL C WCHAR.

* The DM converts data from Unicode to the local code page for input parameters bound as
SQL C WCHAR.

7.4 SQLGetData Performance

ORACLE

The sQLGetData function allows an ODBC application to specify the data type to receive a
column as after the data has been fetched. OCI requires the Oracle Database ODBC driver to
specify the data type before it is fetched. In this case, the Oracle Database ODBC driver uses
the knowledge it has about the data type of the column as defined in the database to
determine how to best default to fetching the column through OCI.

If a column that contains character data is not bound by SQL.BindCol, the Oracle Database
ODBC driver must determine if it must fetch the column as Unicode or as the local code page.
The driver could default to receiving the column as Unicode, however, this may result in as
many as two unnecessary conversions. For example, if the data were encoded in the database
as ANSI, there would be an ANSI to Unicode conversion to fetch the data into the Oracle
Database ODBC driver. If the ODBC application then requested the data as SQL_C_CHAR, there
would be an additional conversion to revert the data back to its original encoding.

7-2

Chapter 7
Unicode Samples

The default encoding of the Oracle client is used when fetching data. However, an ODBC
application can overwrite this default and fetch the data as Unicode by binding the column or

the parameter as the WCHAR data type.

7.5 Unicode Samples

As the Oracle Database ODBC driver itself was implemented using TCHAR macros, Oracle
recommends that ODBC application programs use TCHAR to take advantage of the driver.

ORACLE

The following links are program examples showing how to use TCHAR, which becomes the

WCHAR data type in case you compile with UNICODE and UNICODE.

e Example 1: Connection to Database

* Example 2: Simple Retrieval

« Example 3: Retrieval Using SQLGetData (Binding After Fetch)
e Example 4: Simple Update

« Example 5: Update and Retrieval for Long Data (CLOB)

Example 1: Connection to Database
No difference other than specifying Unicode literals for SQL.Connect.

SQLHENV envHnd;
SQLHDBC conHnd;
SQLHSTMT stmtHnd;
RETCODE rc;

rc = SQL SUCCESS;

// ENV is allocated

rc = SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &envHnd);

// Connection Handle is allocated

rc = SQLAllocHandle (SQL HANDLE DBC, envHnd, &conHnd);

rc = SQLConnect (conHnd, T("stpcl9"), SQL NTS, T("scott"), SQL NTS,
SQL _NTS) ;

if (conHnd)

{
SQLDisconnect (conHnd) ;
SQLFreeHandle (SQL HANDLE DBC, conHnd);

}

if (envHnd)
SQLFreeHandle (SQL HANDLE ENV, envHnd);

Example 2: Simple Retrieval

_T("tiger"),

The following example retrieves the employee names and the job titles from the EMP table. With
the exception that you must specify TCHAR compliant data to every ODBC function, there is
no difference to the ANSI case. If the case is a Unicode application, you have to specify the
length of the buffer to the BYTE length when you call SQLBindCol (for example,

sizeof (ename)).

/*
** Execute SQL, bind columns, and Fetch.

** Procedure:
* %

7-3

ORACLE

Chapter 7
Unicode Samples

** SQLExecDirect
** SQLBindCol
** SQLFetch
* %
*/
static SQLTCHAR *sqlStmt = T("SELECT ename, job FROM emp");
SQLTCHAR ename[50];
SQLTCHAR job[50];
SQLINTEGER enamelen, joblen;

_tprintf(T("Retrieve ENAME and JOB using SQLBindCol 1.../n[%s]/n"), sqlStmt);
/* Step 1: Prepare and Execute */

rc = SQLExecDirect (stmtHnd, sqlStmt, SQL NTS); /* select */

checkSQLErr (envHnd, conHnd, stmtHnd, rc);

/* Step 2: Bind Columns */
rc = SQLBindCol (stmtHnd, 1, SQL C TCHAR, ename, sizeof (ename), &enamelen);
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

rc = SQLBindCol (stmtHnd, 2, SQL C TCHAR, job, sizeof(job), &joblen);
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

do
{

/* Step 3: Fetch Data */

rc = SQLFetch (stmtHnd) ;

if (rc == SQL_NO DATA)

break;

checkSQLErr (envHnd, conHnd, stmtHnd, rc);

_tprintf(T("ENAME = $%s, JOB = %s/n"), ename, job);
} while (1);
_tprintf(T("Finished Retrieval/n/n"));

Example 3: Retrieval Using SQLGetData (Binding After Fetch)

This example shows how to use SQLGetData. For those who are not familiar with ODBC
programming, the fetch is allowed before binding the data using SQLGetData, unlike in an OCI
program. There is no difference to the ANSI application in terms of Unicode-specific issues.

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
* %
** SQLExecDirect
** SQLFetch
** SQLGetData
*/
static SQLTCHAR *sqlStmt = T("SELECT ename,job FROM emp"); // same as Case 1.
SQLTCHAR ename[50];
SQLTCHAR job[50];

_tprintf(T("Retrieve ENAME and JOB using SQLGetData.../n[%s]/n"), sqlStmt);
if (rc != SQL SUCCESS)
{

_tprintf(T("Failed to allocate STMT/n"));

goto exit2;

/* Step 1: Prepare and Execute */
rc = SQLExecDirect (stmtHnd, sglStmt, SQL NTS); // select
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

7-4

ORACLE

Chapter 7
Unicode Samples

do

/* Step 2: Fetch */

rc = SQLFetch (stmtHnd) ;

if (rc == SQL NO DATA)
break;

checkSQLErr (envHnd, conHnd, stmtHnd, rc);

/* Step 3: GetData */
rc = SQLGetData (stmtHnd, 1, SQL C TCHAR, (SQLPOINTER)ename, sizeof (ename), NULL);
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

rc = SQLGetData (stmtHnd, 2, SQL C TCHAR, (SQLPOINTER)job, sizeof(job), NULL);
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

_tprintf(T("ENAME = $%s, JOB = %s/n"), ename, job);
} while (1);

_tprintf(T("Finished Retrieval/n/n"));

Example 4: Simple Update

This example shows how to update data. Likewise, the length of data for SQL.BindParameter
has to be specified with the BYTE length, even in the case of a Unicode application.

/

*

** Execute SQL, bind columns, and Fetch.
** Procedure:

* %

** SQLPrepare

** SQLBindParameter

** SQLExecute

*/

static SQLTCHAR *sqlStmt = T ("INSERT INTO emp (empno,ename,job) VALUES(?,?,?)");
static SQLTCHAR *empno = ("9876"); // Emp No
static SQLTCHAR *ename = ("ORACLE"); // Name
static SQLTCHAR *job = T("PRESIDENT"); // Job

T
T

_tprintf(T("Insert User ORACLE using SQLBindParameter.../n[%s]/n"), sglStmt);
/* Step 1: Prepare */

rc = SQLPrepare (stmtHnd, sqlStmt, SQL NTS);
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

/* Step 2: Bind Parameter */

rc = SQLBindParameter (stmtHnd, 1, SQL PARAM INPUT, SQL C TCHAR, SQL DECIMAL,4, 0,
(SQLPOINTER) empno, 0, NULL);

checkSQLErr (envHnd, conHnd, stmtHnd, rc);

rc = SQLBindParameter (stmtHnd, 2, SQL PARAM INPUT, SQL C TCHAR, SQL CHAR,

lstrlen (ename) *sizeof (TCHAR), 0, (SQLPOINTER)ename, lstrlen (ename)*sizeof (TCHAR), NULL);

checkSQLErr (envHnd, conHnd, stmtHnd, rc);

rc = SQLBindParameter (stmtHnd, 3, SQL PARAM INPUT, SQL C TCHAR, SQL CHAR,
lstrlen(job) *sizeof (TCHAR), 0, (SQLPOINTER)job, lstrlen(job)*sizeof (TCHAR), NULL);

7-5

ORACLE

Chapter 7
Unicode Samples

checkSQLErr (envHnd, conHnd, stmtHnd, rc);
/* Step 3: Execute */

rc = SQLExecute (stmtHnd) ;
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

Example 5: Update and Retrieval for Long Data (CLOB)

This example may be the most complicated case to update and retrieve data for long data, like
CLOB, in Oracle. Because the length of data must be the BYTE length, 1strlen (TCHAR
data) *sizeof (TCHAR) is needed to derive the BYTE length.

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:

* %

** SQLPrepare

** SQLBindParameter

** SQLExecute

** SQLParamData

** SQLPutData

* %

** SQLExecDirect

** SQLFetch

** SQLGetData

%/

static SQLTCHAR *sqlStmtl
static SQLTCHAR *sqlStmt2
SQLTCHAR clobdata[1001];
SQLTCHAR resultdata[1001];
SQLINTEGER ind = SQL DATA AT EXEC;

SQLTCHAR *bufp;

SQLTCHAR ch;

int clobdatalen, chunksize, dtsize, retchklen, i, len;

T ("INSERT INTO clobtbl (clobl) VALUES(?)");

_T("SELECT clobl FROM clobtbl");

_tprintf(T("Insert CLOBl using SQLPutData.../n[%s]/n"), sqlStmtl);

/* Set CLOB Data *

for (i=0, ch=_T('A'); i< sizeof (clobdata) /sizeof (SQLTCHAR); ++i, ++ch)
{
if (ch > T('2"))

ch = T('A");
clobdata[i] = ch;
}
clobdata[sizeof (clobdata)/sizeof (SQLTCHAR)-1] = _T('/O');

clobdatalen = lstrlen(clobdata);
chunksize = clobdatalen / 7;

/* Step 1: Prepare */
rc = SQLPrepare (stmtHnd, sqlStmtl, SQL NTS);
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

/* Step 2: Bind Parameter with SQL DATA AT EXEC */

rc = SQLBindParameter (stmtHnd, 1, SQL PARAM INPUT, SQL C TCHAR, SQL LONGVARCHAR,
clobdatalen*sizeof (TCHAR), 0, (SQLPOINTER)clobdata, clobdatalen*sizeof (TCHAR), &ind);
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

/* Step 3: Execute */

7-6

ORACLE

Chapter 7
Unicode Samples

rc = SQLExecute (stmtHnd) ;
checkSQLErr (envHnd, conHnd, stmtHnd, rc);
sdhamoth: Continuation:

/* Step 4: ParamData (initiation) */
rc = SQLParamData (stmtHnd, (SQLPOINTER*)é&bufp);
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

for (dtsize=0, bufp = clobdata; dtsize < clobdatalen; dtsize += chunksize, bufp +=
chunksize)
{
if (dtsize+chunksize<clobdatalen)
len = chunksize;
else
len = clobdatalen-dtsize;

/* Step 5: PutData */
rc = SQLPutData (stmtHnd, (SQLPOINTER)bufp, len*sizeof (TCHAR));
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

/* Step 6: ParamData (termination) */
rc = SQLParamData (stmtHnd, (SQLPOINTER*)é&bufp);
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

rc = SQLFreeStmt (stmtHnd, SQL CLOSE);
_tprintf(T("Finished Update/n/n"));

rc = SQLAllocStmt (conHnd, &stmtHnd);

if (rc != SQL SUCCESS)

{
_tprintf(T("Failed to allocate STMT/n")) ;
goto exit2;

/* Clear Result Data */
memset (resultdata, 0, sizeof (resultdata));
chunksize = clobdatalen / 15; /* 15 times to put */

/* Step 1: Prepare */
rc = SQLExecDirect (stmtHnd, sqlStmt2, SQL NTS); /* select */
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

/* Step 2: Fetch */
rc = SQLFetch (stmtHnd) ;
checkSQLErr (envHnd, conHnd, stmtHnd, rc);

for (dtsize=0, bufp = resultdata; dtsize < sizeof (resultdata)/sizeof (TCHAR) && rc !=
SQL NO DATA; dtsize += chunksize-1, bufp += chunksize-1)
{
if (dtsize+chunksize<sizeof (resultdata)/sizeof (TCHAR))
len = chunksize;
else
len = sizeof (resultdata)/sizeof (TCHAR)-dtsize;

/* Step 3: GetData */

rc = SQLGetData (stmtHnd, 1, SQL C TCHAR, (SQLPOINTER)bufp, len*sizeof (TCHAR),
&retchklen);
}

if (! tcscmp(resultdata, clobdata))

7-7

Chapter 7
Unicode Samples

{
_tprintf(T("Succeeded!!/n/n"));
}
else
{
_tprintf(T("Failed!!/n/n"));
}

ORACLE" 7-8

Performance and Tuning

This chapter provides necessary information for programmers to manage the performance and
tuning of the Oracle Database ODBC driver.

Topics:

General ODBC Programming Tips
Data Source Configuration Options
DATE and TIMESTAMP Data Types

8.1 General ODBC Programming Tips

This section describes some general programming tips to improve the performance of an
ODBC application.

ORACLE

Enable connection pooling if the application frequently connects to and disconnects from a
data source. Reusing pooled connections is extremely efficient compared to reestablishing
a connection.

Minimize the number of times a statement must be prepared. Where possible, use bind
parameters to make a statement reusable for different parameter values. Preparing a
statement once and executing it several times is much more efficient than preparing a
statement for every sQLExecute.

Do not include columns in a SELECT statement if you know the application will not retrieve
them; especially LONG columns. Due to the nature of the database server protocols, the
ODBC driver must fetch the entire contents of a LONG column if it is included in the SELECT
statement, regardless of if the application binds the column or does a SQLGetData.

If you are performing transactions that do not update the data source, set the
SQL ATTR ACCESS_MODE attribute of the ODBC SQLSetConnectAttr function to
SQL MODE READ ONLY.

If you are not using ODBC escape clauses, set the SOL_ATTR NOSCAN attribute of the ODBC
SQLSetConnectAttr function or the ODBC sQLSetStmtAttr function to true.

Use the ODBC sQLFetchScroll function instead of the ODBC sQLFetch function for
retrieving data from tables that have a large number of rows.

Enable OCI statement caching when the same SQL statements are used multiple times
(StatementCache=T).

Binding NUMBER columns as FLOAT speeds up query execution (BindAsFLOAT=T).
While fetching LONG or LONG RAW set MaxLargeData=<value> for optimum performance.

Setting UseOCIDescribeAny=T for applications that make heavy calls to small packaged
procedures with return Ref Cursor improves performance.

8-1

Chapter 8
Data Source Configuration Options

8.2 Data Source Configuration Options

ORACLE

This topic discusses performance implications of the following ODBC data source configuration
options:

Topics:

* Enable Result Sets

* Enable LOBs

e Bind TIMESTAMP as DATE

» Enable Closing Cursors

e Enable Thread Safety

* Fetch Buffer Size

Enable Result Sets

This option enables the support of returning result sets (for example, RefCursor) from
procedure calls. The default is enabling the returning of result sets.

The ODBC driver must query the database server to determine the set of parameters for a
procedure and their data types to determine if there are any RefCursor parameters. This query
incurs an additional network round trip the first time any procedure is prepared and executed.

Enable LOBs
This option enables the support of inserting and updating LOBs. By default, it is enabled.

The ODBC driver must query the database server to determine the data types of each
parameter in an INSERT or UPDATE statement to determine if there are any LOB parameters.
This query incurs an additional network round trip the first time any INSERT or UPDATE is
prepared and executed.

Bind TIMESTAMP as DATE

Binds sQL_TIMESTAMP parameters as the appropriate Oracle data type. If this option is TRUE,
SQL TIMESTAMP binds as the Oracle DATE data type. If this option is FALSE, SQL TIMESTAMP
binds as the Oracle TIMESTAMP data type (which is the default).

Enable Closing Cursors

The SQL_CLOSE option of the ODBC function, SQLFreeStmt, is supposed to close associated
cursors with a statement and discard all pending results. The application can reopen the cursor
by executing the statement again without doing a sQLPrepare again. A typical scenario for this
is an application that is idle for a while but reuses the same SQL statement. While the
application is idle, it might free up associated server resources.

The Oracle Call Interface (OCI), on which the Oracle Database ODBC driver is layered, does
not support the functionality of closing cursors. So, by default, the SQL_CLOSE option has no
effect in the Oracle Database ODBC driver. The cursor and associated resources remain open
on the database server.

Enabling this option causes the associated cursor to be closed on the database server.
However, this results in the parse context of the SQL statement being lost. The ODBC
application can execute the statement again without calling sQL.Prepare. However, internally

8-2

8.3 DATE

ORACLE

Chapter 8
DATE and TIMESTAMP Data Types

the ODBC driver must prepare and execute the statement all over. Enabling this option
severely impacts performance of applications that prepare a statement once and execute it
repeatedly.

Enable this option only if freeing the resources on the server is absolutely necessary.

Enable Thread Safety

If an application is single-threaded, this option can be disabled. By default, the ODBC driver
ensures that access to all internal structures (environment, connection, statement) are thread-
safe. Single-threaded applications can eliminate some of the thread safety overhead by
disabling this option. Disabling this option typically shows a minor performance improvement.

Fetch Buffer Size

Set the Fetch Buffer Size in the Oracle Options tab of the Oracle ODBC Driver Configuration
Dialog Box to a value specified in bytes. This value determines how many rows of data at a
time the ODBC driver prefetches from an Oracle Database to the client's cache, regardless of
the number of rows the application program requests in a single query, thus improving
performance.

Applications that typically fetch fewer than 20 rows of data at a time improve their response
time, particularly over slow network connections or on heavily loaded servers. Setting this too
high can worsen response time or consume large amounts of memory. The default is 64,000
bytes. Choose a value that works best for your application.

Note:

When 1ONG and LOB data types are present, the number of rows prefetched by the
ODBC driver is not determined by the Fetch Buffer Size. The inclusion of the LONG
and LOB data types minimizes the performance improvement and could result in
excessive memory use. The ODBC driver disregards the Fetch Buffer Size and
prefetches a set number of rows in the presence of the LONG and LOB data types.

and TIMESTAMP Data Types

If a DATE column in the database is used in a WHERE clause and the column has an index, there
can be an impact on performance. For example:

SELECT * FROM EMP WHERE HIREDATE = ?

In this example, an index on the HIREDATE column could be used to make the query execute
quickly. But, because HIREDATE is actually a DATE value and the ODBC driver supplies the
parameter value as TIMESTAMP, the Oracle server's query optimizer must apply a conversion
function. To prevent incorrect results (as might happen if the parameter value had non-zero
fractional seconds), the optimizer applies the conversion to the HIREDATE column resulting in
the following statement:

SELECT * FROM EMP WHERE TO TIMESTAMP (HIREDATE) = ?
Unfortunately, this has the effect of disabling the use of the index on the HIREDATE column and,
instead, the server performs a sequential scan of the table. If the table has many rows, this can

take a long time. As a workaround for this situation, the ODBC driver has the connection option
to Bind TIMESTAMP as DATE. When this option is enabled, the ODBC driver binds

8-3

ORACLE

Chapter 8
DATE and TIMESTAMP Data Types

SQL TIMESTAMP parameters as the Oracle DATE data type instead of the Oracle TIMESTAMP data
type. This allows the query optimizer to use any index on the DATE columns.

< Note:

This option is intended for use only with Microsoft Access or other similar programs
that bind DATE columns as TIMESTAMP columns. Do not use this option when there are
actual TIMESTAMP columns present or when data loss may occur. Microsoft Access
executes such queries using whatever columns are selected as the primary key.

See Also:

Implementation of Data Types (Advanced)

8-4

A.1 Appendix: Unsupported Features and
Known Issues

Topics:

Unsupported Features
Known Limitations

Known Software Issues

A.1.1 Unsupported Features

The Oracle Database ODBC driver does not support the following ODBC 3.0 features:

ORACLE

Interval data types
Shared connections

Shared environments

The Oracle Database ODBC driver does not support the following SQL string functions:

BIT LENGTH

CHAR LENGTH
CHARACTER LENGTH
DIFFERENCE
OCTET_LENGTH

POSITION

The Oracle Database ODBC driver does not support the following SQL numeric functions:

ACOS
ASIN
ATAN
ATAN2
COT
DEGREES
RADIANS
RAND

ROUND

The Oracle Database ODBC driver does not support the following SQL time, date, and interval
functions:

CURRENT DATE
CURRENT TIME

CURRENT TIMESTAMP

Known Limitations

e EXTRACT

° TIMESTAMPDIFF

A.1.2 Known Limitations

The Oracle Database ODBC driver does not support the following:

e ODBC ASYNC interface

e Control-C to cancel execution in an application

A.1.3 Known Software Issues

The following are the known software issues and unsupported usage in the Oracle Database
ODBC driver:

* The sQLSetStmtOption SQL QUERY TIMEOUT does not work if the database server is
running on Windows NT. As a workaround, setting BREAK POLL_SKIP=1 in the server's
sqlnet.ora file solves the problem. By default, this is set to 100, and the database would
not check for a time-out set by the ODBC application.

* SQLBindParameter, when used to bind a buffer as SQL_PARAM INPUT OUTPUT and having a
PL/SQL procedure with IN oUT parameter, and if the parameter is not changed in the
procedure, then the driver does not return SQL_NULL DATA in StrLen or IndPtr.

* The Oracle Database ODBC driver does not support the usage of Keyset cursors with the
CASE clause in a SQL SELECT query.

ORACLE 6

Index

A

about ODBC driver, 1-1
API conformance, 6-1
API functions implementation, 6-1

C

certifications
UNIX certifications, 1-4
Windows certifications, 1-4
configuration, 2-8
configuring net services, 2-9
environment setup, 2-8
reducing lock timeout, 2-19
UNIX configurations, 2-9
Windows configurations, 2-10
configuring data source, 2-10
Oracle ODBC Driver configuration dialog,
2-11
connecting to a data source, 3-1
connection string format, 5-1
creating driver TNS service names, 4-9

D

installation (continued)
installing instant client ODBC on Linux and
UNIX, 2-3
recommended driver manager, 2-4
usage, 2-10
installing instant client ODBC on Windows,
2-5
Instant Client ODBC Package contents, 2-6
system requirements, 2-2
hardware required, 2-3
software required, 2-3
sserver oftware required, 2-3

K

known limitations, 6

L

linking with odbc32.lib or libodbc.so, 5-4

O

data source configuration options, 8-2
data types, 4-9

data types implementation, 4-10, 6-2
DATE and TIMESTAMP data types, 8-3
driver conformance levels, 1-4

E

ORA_SDTZ system variable
effect of setting, 5-19
Oracle ODBC driver, 1-2

P

enabling event notification for connection failures,
5-11

enabling EXEC syntax, 5-10

enabling result sets, 5-5

error messages, 4-11

patching, 2-20
patching on Linux method 1, 2-20
patching on Linux method 2, 2-20
patching on Windows, 2-21
programming tips, 8-1

R

installation, 2-2
installed files, 2-6

ORACLE

reducing lock timeout, 5-4
rowids, 5-4
rowids in WHERE clause, 5-5

S

Setting ORA_SDTZ system variable
effect of, 5-19

Index-1

SQL statements, 4-9

SQL syntax implementation, 6-2
SQLDriverConnect Implementation, 5-4
SQLGetData performance, 7-2

summary of steps - installing and configuring, 2-1

T

TIMESTAMP WITH LOCAL TIME ZONE
examples, 5-16

TIMESTAMP WITH TIME ZONE
examples, 5-16

troubleshooting, 3-2
expired password, 3-2
first using ODBC driver, 3-2

U

unicode functions in DM, 7-2

ORACLE

Index

unicode samples, 7-3
Unicode support, 7-1
unicode support in ODBC API, 7-1
uninstallation, 2-22
Linux and UNIX, 2-22
Windows, 2-22
unsupported features, 5
using implicit results, 5-15
using Oracle ODBC with Windows Excel, 4-1
configuring DSN, 4-3
configuring Excel, 4-7
configuring tnsnames.ora, TNS_ADMIN, and
path, 4-3
getting an OAuth token, 4-3
installing the ODBC driver, 4-2
overview, 4-1
prerequisites, 4-2

Index-2

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in ODBC Developer's Guide
	New Features in 23ai
	ODBC Release 23ai

	New Features in Earlier Releases
	ODBC Release 21c, Version 21.1
	ODBC Release 19c, Version 19.1.0.0.0
	ODBC Release 18c, Version 18.1.0.0.0
	ODBC 12.2.0.1.0

	Deprecated Features

	1 Introduction to the Oracle Database ODBC Driver
	1.1 About the ODBC Driver
	1.2 What Is the Oracle Database ODBC Driver
	1.3 Certifications for Oracle Database ODBC Driver on Windows
	1.4 Certifications for Oracle ODBC Driver on UNIX Platforms
	1.5 Driver Conformance Levels

	2 Getting Started
	2.1 Summary of Steps
	2.2 Installation
	2.2.1 System Requirements
	2.2.1.1 Software Required
	2.2.1.2 Server Software Requirements
	2.2.1.3 Hardware Required

	2.2.2 Installing Oracle Instant Client ODBC (Linux and UNIX)
	2.2.2.1 Recommended unixODBC Driver Manager Versions for Linux and UNIX

	2.2.3 Installing Oracle Instant Client ODBC (Windows)
	2.2.4 Content of the Oracle Instant Client ODBC Package
	2.2.5 Files Created by the Installation

	2.3 Configuration
	2.3.1 Environment Setup for ODBC Applications
	2.3.2 Configuring Oracle Net Services
	2.3.3 Configuration for UNIX Platforms
	2.3.3.1 Usage

	2.3.4 Configuration for Windows
	2.3.4.1 Configuring the Data Source
	2.3.4.2 Oracle Database ODBC Driver Configuration Dialog Box

	2.3.5 Reducing Lock Timeout

	2.4 Patching Oracle Instant Client ODBC
	2.4.1 Patching Oracle Instant Client ODBC on Linux and UNIX Method 1
	2.4.2 Patching Oracle Instant Client ODBC on Linux and UNIX Method 2
	2.4.3 Patching on Windows

	2.5 Uninstallation
	2.5.1 Uninstalling Oracle Instant Client ODBC on Linux and UNIX
	2.5.2 Uninstalling Oracle Instant Client ODBC on Windows

	3 Basic Connection Steps
	3.1 Connecting to an Oracle Data Source
	3.2 Troubleshooting
	3.2.1 About Using Oracle Database ODBC Driver for the First Time
	3.2.2 Expired Password

	4 Using the Oracle Database ODBC Driver
	4.1 Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)
	4.1.1 Overview
	4.1.2 Prerequisite Steps to Using Oracle ODBC with Excel
	4.1.3 Installing the ODBC Driver
	4.1.4 Configuring tnsnames.ora, TNS_ADMIN, and PATH
	4.1.5 Getting an OAuth 2 Token
	4.1.6 Configuring DSN
	4.1.7 Configuring Excel

	4.2 Creating Oracle Database ODBC Driver TNS Service Names
	4.3 SQL Statements
	4.4 Data Types
	4.5 Implementation of Data Types (Advanced)
	4.6 Error Messages

	5 Oracle Database ODBC Driver for Programmers
	5.1 Format of the Connection String
	5.2 SQLDriverConnect Implementation
	5.3 Reducing Lock Timeout in a Program
	5.4 Linking with odbc32.lib (Windows) or libodbc.so (UNIX)
	5.5 Information about ROWID
	5.6 ROWID in a WHERE Clause
	5.7 Enabling Result Sets
	5.8 Enabling EXEC Syntax
	5.9 Enabling Event Notification for Connection Failures in an Oracle RAC Environment
	5.10 Using Implicit Results Feature through ODBC
	5.11 About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC
	5.12 About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

	6 Supported Functionality
	6.1 API Conformance
	6.2 Implementation of ODBC API Functions
	6.3 Implementation of the ODBC SQL Syntax
	6.4 Implementation of Data Types (Programming)

	7 Unicode Support
	7.1 Unicode Support within the ODBC Environment
	7.2 Unicode Support in ODBC API
	7.3 Unicode Functions in the Driver Manager
	7.4 SQLGetData Performance
	7.5 Unicode Samples

	8 Performance and Tuning
	8.1 General ODBC Programming Tips
	8.2 Data Source Configuration Options
	8.3 DATE and TIMESTAMP Data Types

	A.1 Appendix: Unsupported Features and Known Issues
	A.1.1 Unsupported Features
	A.1.2 Known Limitations
	A.1.3 Known Software Issues

	Index

