
Oracle® Database
ODBC Developer's Guide

23ai
F92980-01
May 2024

Oracle Database ODBC Developer's Guide, 23ai

F92980-01

Copyright © 2024, Oracle and/or its affiliates.

Primary Author: Jiji Thomas

Contributing Authors: Rhonda Day

Contributors: Veronica Dumitriu, Christopher Jones, Alan Williams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Related Documents viii

Conventions ix

 Changes in ODBC Developer's Guide

New Features in 23ai x

New Features in Earlier Releases x

1 Introduction to the Oracle Database ODBC Driver

1.1 About the ODBC Driver 1-1

1.2 What Is the Oracle Database ODBC Driver 1-2

1.3 Certifications for Oracle Database ODBC Driver on Windows 1-4

1.4 Certifications for Oracle ODBC Driver on UNIX Platforms 1-4

1.5 Driver Conformance Levels 1-5

2 Getting Started

2.1 Summary of Steps 2-1

2.2 Installation 2-2

2.2.1 System Requirements 2-3

2.2.1.1 Software Required 2-3

2.2.1.2 Server Software Requirements 2-3

2.2.1.3 Hardware Required 2-3

2.2.2 Installing Oracle Instant Client ODBC (Linux and UNIX) 2-3

2.2.2.1 Recommended unixODBC Driver Manager Versions for Linux and UNIX 2-5

2.2.3 Installing Oracle Instant Client ODBC (Windows) 2-6

2.2.4 Content of the Oracle Instant Client ODBC Package 2-6

2.2.5 Files Created by the Installation 2-6

2.3 Configuration 2-8

iii

2.3.1 Environment Setup for ODBC Applications 2-9

2.3.2 Configuring Oracle Net Services 2-9

2.3.3 Configuration for UNIX Platforms 2-10

2.3.3.1 Usage 2-10

2.3.4 Configuration for Windows 2-11

2.3.4.1 Configuring the Data Source 2-11

2.3.4.2 Oracle Database ODBC Driver Configuration Dialog Box 2-12

2.3.5 Reducing Lock Timeout 2-21

2.4 Patching Oracle Instant Client ODBC 2-21

2.4.1 Patching Oracle Instant Client ODBC on Linux and UNIX Method 1 2-21

2.4.2 Patching Oracle Instant Client ODBC on Linux and UNIX Method 2 2-22

2.4.3 Patching on Windows 2-23

2.5 Uninstallation 2-23

2.5.1 Uninstalling Oracle Instant Client ODBC on Linux and UNIX 2-24

2.5.2 Uninstalling Oracle Instant Client ODBC on Windows 2-24

3 Basic Connection Steps

3.1 Connecting to an Oracle Data Source 3-1

3.2 Troubleshooting 3-2

3.2.1 About Using Oracle Database ODBC Driver for the First Time 3-2

3.2.2 Expired Password 3-2

4 Oracle Database ODBC Driver for Advanced Users

4.1 Connecting to Oracle Database Using TLS (Preconfigured for Azure AD) 4-1

4.1.1 Overview 4-1

4.1.2 Prerequisite Steps to Using Oracle ODBC with Excel 4-2

4.1.3 Installing the ODBC Driver 4-2

4.1.4 Configuring tnsnames.ora, TNS_ADMIN, and PATH 4-3

4.1.5 Getting an OAuth 2 Token 4-3

4.1.6 Configuring DSN 4-3

4.1.7 Configuring Excel 4-7

4.2 Creating Oracle Database ODBC Driver TNS Service Names 4-10

4.3 SQL Statements 4-10

4.4 Data Types 4-10

4.5 Implementation of Data Types (Advanced) 4-11

4.6 Limitations on Data Types 4-13

4.7 Error Messages 4-14

iv

5 Oracle Database ODBC Driver for Programmers

5.1 Format of the Connection String 5-1

5.2 SQLDriverConnect Implementation 5-4

5.3 Reducing Lock Timeout in a Program 5-4

5.4 Linking with odbc32.lib (Windows) or libodbc.so (UNIX) 5-4

5.5 Information about ROWID 5-5

5.6 ROWID in a WHERE Clause 5-5

5.7 Enabling Result Sets 5-5

5.8 Enabling EXEC Syntax 5-10

5.9 Enabling Event Notification for Connection Failures in an Oracle RAC Environment 5-11

5.10 Using Implicit Results Feature through ODBC 5-15

5.11 About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH
LOCAL TIME ZONE Column Type in ODBC 5-16

5.12 About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle
Database ODBC Driver, and Others) 5-19

6 Supported Functionality

6.1 API Conformance 6-1

6.2 Implementation of ODBC API Functions 6-1

6.3 Implementation of the ODBC SQL Syntax 6-2

6.4 Implementation of Data Types (Programming) 6-2

7 Unicode Support

7.1 Unicode Support within the ODBC Environment 7-1

7.2 Unicode Support in ODBC API 7-1

7.3 Unicode Functions in the Driver Manager 7-2

7.4 SQLGetData Performance 7-2

7.5 Unicode Samples 7-3

8 Performance and Tuning

8.1 General ODBC Programming Tips 8-1

8.2 Data Source Configuration Options 8-2

8.3 DATE and TIMESTAMP Data Types 8-3

Index

v

List of Figures

1-1 Components of the ODBC Model 1-2

1-2 Oracle Database ODBC Driver Architecture 1-3

2-1 Oracle ODBC Driver Configuration Dialog Box 2-13

2-2 The Application Options Tab of the Oracle ODBC Driver Configuration Dialog Box 2-14

2-3 The Oracle Options Tab of the Oracle ODBC Driver Configuration Dialog Box 2-16

2-4 The Workarounds Options Tab of the Oracle ODBC Driver Configuration Dialog Box 2-18

2-5 The SQL Server Migration Options Tab of the Oracle ODBC Driver Configuration

Dialog Box 2-20

4-1 ODBC Data Source Administrator (32-bit) 4-4

4-2 Create New Data Source 4-5

4-3 Oracle ODBC Driver Configuration 4-5

4-4 Oracle ODBC Driver Configuration - Connection Successful Message 4-6

4-5 ODBC Data Source Administrator (32-bit) 4-7

4-6 Data Connection Wizard - Connect to ODBC Data Source 4-8

4-7 Data Connection Wizard - Select Database and Table 4-9

4-8 Excel Sheet with Imported Data 4-9

vi

List of Tables

1-1 Oracle Database ODBC Driver Is Certified on Windows Operating Systems 1-4

1-2 Certification Matrix for Oracle Database ODBC Driver on UNIX Platforms 1-4

2-1 Files Installed by the Oracle Database ODBC driver Kit 2-7

2-2 Parameter Descriptions 2-10

4-1 Oracle Database ODBC Driver and Oracle Database Limitations on Data Types 4-13

4-2 Error Message Values of Prefixes Returned by the Oracle Database ODBC Driver 4-14

5-1 Keywords that Can Be Included in the Connection String Argument of the

SQLDriverConnect Function Call 5-1

5-2 Keywords Required by the SQLDriverConnect Connection String 5-4

6-1 How the Oracle Database ODBC Driver Implements Specific Functions 6-1

7-1 Supported SQL Data Types and the Equivalent ODBC SQL Data Type 7-2

vii

Preface

This guide provides comprehensive information about the Oracle Database Open
Database Connectivity (ODBC) driver, including instructions on how to install and
configure the ODBC driver, and how to use the ODBC driver to connect ODBC-
compliant applications to an Oracle data source.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is intended for use by administrators and software programmers who want
to use the Oracle Database ODBC driver in their database applications to connect to
an Oracle data source.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
These documents in the Oracle Database documentation set provide more information
that can assist you when using this document:

• Oracle Call Interface Programmer's Guide

• Oracle Database Net Services Administrator's Guide

• Oracle Database Net Services Reference

• Oracle Database Client Installation Guide for Linux

• Oracle Database Security Guide

• Oracle Database JDBC Developer's Guide

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database Globalization Support Guide

Conventions
This guide uses these text conventions:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

ix

Changes in ODBC Developer's Guide

The following are the changes in ODBC Developer's Guide for Oracle Database 23ai,
and earlier releases:

• New Features in 23ai

• New Features in Earlier Releases

New Features in 23ai
The following are the new features in ODBC Developer's Guide for Oracle Database
23ai.

• ODBC Release 23ai

ODBC Release 23ai
The following new features are added to the Oracle Database ODBC driver, release
23ai.

ODBC Support for SQL BOOLEAN Data Type

The Oracle Database ODBC driver supports a native SQL BOOLEAN data type, using
SQL_BIT to map to the SQL BOOLEAN data type, and returning "1" or "0."

ODBC Support for VECTOR Data Type

The Oracle Database ODBC driver supports VECTOR data type, using SQL_CHAR to map
to the VECTOR data type.

See Implementation of Data Types (Advanced)

New Features in Earlier Releases
The following are the new features in the earlier releases of the Oracle Database
ODBC driver.

• ODBC Release 21c, Version 21.1

• ODBC Release 19c, Version 19.1.0.0.0

• ODBC Release 18c, Version 18.1.0.0.0

• ODBC 12.2.0.1.0

Changes in ODBC Developer's Guide

x

ODBC Release 21c, Version 21.1
There are no new features for Oracle Database ODBC Driver Release 21c, Version 21.1.

ODBC Release 19c, Version 19.1.0.0.0
There are no new features of Oracle Database ODBC Driver, Release 19c, Version
19.1.0.0.0 software for the Microsoft Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows 7, Windows 8, Windows 8.1,
Windows 10, Linux X86-64 (32-bit, 64-bit), Sun Solaris SPARC64 (32-bit, 64-bit), IBM AIX 5L
(32-bit, 64-bit), Sun Solaris X64 (32-bit, 64-bit), HPUX IA64 (32-bit, 64-bit), ZLinux (32-bit, 64-
bit) operating systems.

ODBC Release 18c, Version 18.1.0.0.0
Features of Oracle Database ODBC Driver Release 18c, Version 18.1.0.0.0 software for the
Microsoft Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows
Server 2012 R2, Windows 7, Windows 8, Windows 8.1, Windows 10, Linux X86-64 (32-bit,
64-bit), Sun Solaris SPARC64 (32-bit, 64-bit), IBM AIX 5L (32-bit, 64-bit), Sun Solaris X64
(32-bit, 64-bit), HPUX IA64 (32-bit, 64-bit), ZLinux (32-bit, 64-bit) operating systems are
described as follows:

• unixODBC ODBC Driver Manager is upgraded from unixODBC–2.3.2 to unixODBC–
2.3.4.

ODBC 12.2.0.1.0
Features of Oracle Database ODBC Driver Release 12.2.0.1.0 software for the Microsoft
Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server
2012 R2, Windows 7, Windows 8, Windows 8.1, Windows 10, Linux X86-64 (32-bit, 64-bit),
Sun Solaris SPARC64 (32-bit, 64-bit), IBM AIX 5L (32-bit, 64-bit), Sun Solaris X64 (32-bit, 64-
bit), HPUX IA64 (32-bit, 64-bit), ZLinux (32-bit, 64-bit) operating systems are described as
follows:

• Support is added for long identifiers up to 128 bytes.

• Support is added for time stamp with time zone and time stamp with local time zone.

This feature does not require changes to the existing ODBC application where ODBC
TIMESTAMP data type is used. If an existing application uses ODBC TIMESTAMP data type
and the database column is TIMESTAMP, the current behavior is preserved.

For database column TIMESTAMP WITH TIMEZONE or TIMESTAMP WITH LOCAL TIMEZONE,
the time component in the ODBC TIMESTAMP_STRUCT is in the user’s session time zone.
This behavior is transparent to the user’s application, requiring no change to the ODBC
application.

Changes in ODBC Developer's Guide

xi

1
Introduction to the Oracle Database ODBC
Driver

This chapter introduces you to the Oracle Database ODBC driver.

Topics:

• About the ODBC Driver

• What Is the Oracle Database ODBC Driver

• Certifications for Oracle Database ODBC Driver on Windows

• Certifications for Oracle ODBC Driver on UNIX Platforms

• Driver Conformance Levels

1.1 About the ODBC Driver
Open Database Connectivity (ODBC) provides a standard interface that allows one
application to access many different data sources. The application's source code does not
have to be recompiled for each data source. A database driver links the application to a
specific data source. A database driver is a dynamic-link library that an application can invoke
on demand to gain access to a particular data source. Therefore, the application can access
any data source for which a database driver exists.

The ODBC interface defines the following:

• A library of ODBC function calls that allows an application to connect to a data source,
execute structured query language (SQL) statements, and retrieve results.

• SQL syntax based on the SQL-99 specification.

• A standard set of error codes.

• A standard way to connect to and log in to a data source.

• A standard representation for data types.

The following figure shows the components of the ODBC model. The model begins with an
ODBC application making a call to the Driver Manager through the ODBC application
program interface (API). The Driver Manager can be either the Microsoft Driver Manager or
the unixODBC Driver Manager. While using the ODBC API, the Driver Manager makes a call
to the ODBC driver. The ODBC driver accesses the database over a network
communications link using the database API. This figure shows an ODBC application
accessing three separate databases.

1-1

Figure 1-1 Components of the ODBC Model

Related Topic

What Is the Oracle Database ODBC Driver

1.2 What Is the Oracle Database ODBC Driver
The Oracle Database ODBC driver enables ODBC applications on Microsoft Windows,
and on UNIX platforms such as Linux, Solaris, and IBM AIX to have read and write
access to Oracle® Databases through the ODBC interface using the Oracle Net
Services software.

The Oracle Database ODBC driver uses the Oracle Call Interface (OCI) client and
server software to submit requests to and receive responses from a data source. The
Oracle Net Services communications protocol is used for communications between the
OCI client and the Oracle server.

The Oracle Database ODBC driver translates the ODBC SQL syntax into the syntax
that can be used to access a data source. When the results are returned from the data
source, the Oracle Database ODBC driver translates them back to the ODBC SQL
syntax.

The following figure shows the Oracle Database ODBC driver architecture as
described in the preceding paragraphs.

Chapter 1
What Is the Oracle Database ODBC Driver

1-2

Figure 1-2 Oracle Database ODBC Driver Architecture

* The Oracle ODBC Resource data definition language (DLL) file (sqresxx.dll), where xx
represents the language abbreviation, contains all pertinent language information; the default
resource file used is sqresus.dll.

The Oracle Database ODBC driver complies with ODBC version 3.52 specifications. For
UNIX platforms, the ODBC driver is certified with unixODBC Driver Manager version 2.3.11.

Related Topics

Configuring the Data Source (Windows)

Configuration for UNIX Platforms

Connecting to a Data Source

Chapter 1
What Is the Oracle Database ODBC Driver

1-3

Driver Conformance Levels

New and Changed Features

Files Created by the Installation

1.3 Certifications for Oracle Database ODBC Driver on
Windows

The following table summarizes the Windows operating system versions on which the
Oracle Database ODBC driver is certified.

Table 1-1 Oracle Database ODBC Driver Is Certified on Windows Operating
Systems

Driver Version Database Version Operating Systems

ODBC Release 23ai, Version
23.3.0.0

As Supported by OCI See Software Required.

ODBC Release 21c, Version
21.1

As Supported by OCI See Software Required.

ODBC Release 19c, Version
19.1.0.0.0

As Supported by OCI See Software Required.

ODBC Release 18c, Version
18.1.0.0.0

As Supported by OCI See Software Required.

ODBC 12.2.0.1.0 As Supported by OCI See Software Required.

1.4 Certifications for Oracle ODBC Driver on UNIX Platforms
Oracle has certified the Oracle Database ODBC driver for release 23.3 against Driver
Manager (DM) 2.3.11 on the following listed UNIX platforms.

These UNIX platforms are shown in Table 1-2. On 64-bit UNIX platforms, DM 2.3.11 is
built with the -DBUILD_REAL_64_BIT_MODE -DSIZEOF_LONG=8 -fshort-wchar flags and
then certified.

Table 1-2 Certification Matrix for Oracle Database ODBC Driver on UNIX
Platforms

Platform 32-bit/64-bit UnixODBC DM version

Linux x86-64 32-bit, 64-bit 2.3.11

Solaris SPARC64 32-bit, 64-bit 2.3.11

AIX5L 32-bit, 64-bit 2.3.11

Solaris x64 32-bit, 64-bit 2.3.11

HPUX.IA64 32-bit, 64-bit 2.3.11

ZLinux 32-bit, 64-bit 2.3.11

To learn more about each operating system and Oracle Client software requirements,
see the Installation guide of each platform.

Chapter 1
Certifications for Oracle Database ODBC Driver on Windows

1-4

1.5 Driver Conformance Levels
ODBC defines the conformance levels for drivers in two areas:

• ODBC application programming interface (API)

• ODBC SQL-99 syntax

The Oracle Database ODBC driver supports all core API functionality and a limited set of
Level 1 and Level 2 functionalities.

The Oracle Database ODBC driver is broadly compatible with the SQL-99 Core specification,
which is a superset of the SQL-92 Entry Level specification. Applications must call
SQLGetInfo with the appropriate information type to retrieve a list of SQL-99 supported
features.

See Also:

API Conformance for more information about the core API functionality support

Chapter 1
Driver Conformance Levels

1-5

2
Getting Started

This chapter guides you through the procedures required to install and configure the Oracle
Database ODBC driver.

The Oracle Database ODBC driver enables applications to connect to Oracle Database from
a Windows client as well as a UNIX client that use Microsoft Open Database Connectivity
(ODBC) API to read from and write to Oracle Databases.

The Oracle Database ODBC driver distribution kit consists of Dynamic Link Libraries and
shared libraries (for UNIX platforms), help file (on Windows and UNIX platforms), a copy of
the license, and this product description. To use an ODBC-enabled application, the following
software is required in addition to the Oracle Database ODBC driver:

• Oracle Client, such as full client install or Oracle Instant Client

• Oracle Database Server

See Also:

• The OCI documentation in Oracle Call Interface Programmer's Guide for more
information about the OCI client and server software

Topics:

• Summary of Steps

• Installation
This section guides you through the procedures required to install the Oracle Database
ODBC driver.

• Configuration
This section guides you through the procedures required to configure the Oracle
Database ODBC driver.

• Patching Oracle Instant Client ODBC
This section guides you through the procedures required to patch Oracle Instant Client
ODBC.

• Uninstallation
This section takes you through the steps required to uninstall the Oracle Database ODBC
driver.

2.1 Summary of Steps
The summary of steps for installing and configuring the Oracle Database ODBC driver is as
follows.

2-1

Linux and UNIX

1. Confirm that the system requirements have been met for the installation.

2. Download and install the Oracle Instant Client Basic or Light package.

3. Download and install the unixODBC Driver Manager.

4. Download and extract the Instant Client ODBC package into the Instant Client
directory.

5. Configure the path for the driver's shared library and other environment variables.

6. Configure the Oracle net services (TNS service name) using the Oracle Net
Configuration Assistant (NETCA) tool.

7. Run odbc_update_ini.sh from the Instant Client directory to configure the data
source.

8. Set globalization variables, if required for your locale.

Windows

1. Confirm that the system requirements have been met for the installation.

2. Download and install the Oracle Instant Client Basic or Light package.

3. Download and extract the Instant Client ODBC package into the Instant Client
directory.

4. Run odbc_install.exe from the Instant Client directory.

5. Configure the path for the driver's shared library and other environment variables.

6. Configure the Oracle net services (TNS service name) using the Oracle NETCA
tool.

7. Run ODBC Data Source Administrator to configure the data source.

2.2 Installation
This section guides you through the procedures required to install the Oracle
Database ODBC driver.

Oracle's Instant Client ODBC software is a standalone package that offers the full
functionality of the Oracle Database ODBC driver (except the Oracle service for
Microsoft Transaction Server) with a simple installation procedure.

The ODBC driver has Oracle's standard client-server version interoperability (see
Support Doc ID 207303.1). For example, Instant Client ODBC 19c can connect to
Oracle Database 11.2, or later.

Topics:

• System Requirements

• Installing Oracle Instant Client ODBC (Linux and UNIX)

• Installing Oracle Instant Client ODBC (Windows)

• Content of the Oracle Instant Client ODBC Package

• Files Created by the Installation

Chapter 2
Installation

2-2

https://support.oracle.com/epmos/faces/DocumentDisplay?id=207303.1

2.2.1 System Requirements
Before installing the ODBC driver, verify that the hardware, the target operating system and
server versions are compatible for use with the ODBC driver.

Topics:

• Software Required

• Server Software Requirements

• Hardware Required
The requirements for the Oracle Database ODBC driver system configuration for
Windows and UNIX platforms.

2.2.1.1 Software Required
The Oracle Database ODBC driver was certified against the currently supported Windows
and UNIX operating system versions, the most current release of Oracle Net Client and
Oracle Universal Installer shipping with Oracle Database.

The Oracle Database ODBC driver was certified against the following versions of software:

• Windows operating system versions: Windows Server 2008, Windows Server 2008 R2,
Windows 7, Windows 8, and Windows Server 2012

• UNIX operating system versions: 32-bit and 64-bit ports of Linux X86-64, AIX5L,
Solaris.Sparc64, Solaris X64, HPUX.IA64, and ZLinux

• Oracle Net Client 12.2

• Oracle Universal Installer shipping with Oracle Database 12.2

2.2.1.2 Server Software Requirements
Oracle Database Server 12.2, or later, is the server software required to support ODBC-
enabled applications that use the Oracle Database ODBC driver.

2.2.1.3 Hardware Required
The requirements for the Oracle Database ODBC driver system configuration for Windows
and UNIX platforms.

The Oracle Database ODBC driver requires a system configuration that the certified Windows
platforms as mentioned in Software Required supports, and on a few UNIX platforms, the
hardware requirements are as documented in the Oracle Databse ODBC driver for UNIX
Platforms Readme.

2.2.2 Installing Oracle Instant Client ODBC (Linux and UNIX)
1. Install the unixODBC Driver Manager from unixODBC.org. To install the ODBC Driver

Manager, first download .tar file from http://www.unixodbc.org/.

Chapter 2
Installation

2-3

http://www.unixodbc.org/

See Also:

Recommended unixODBC Driver Manager Versions for Linux and UNIX
for more information about the recommended unixODBC Driver Manager
versions

2. Navigate to package from OTN to download Oracle Instant Client Basic or Basic
Lite.

3. Download the Instant Client ODBC package.

4. Unzip the Instant Client package to the desired location, for example: /opt/
oracle/instantclient_xx_yy, or use yum to install the RPM packages on
Linux.

See Also:

Installing Oracle Instant Client for more information about installing
Oracle Instant Client

5. Unzip the ODBC package into the Instant Client folder, for example: /opt/
oracle/instantclient_xx_yy, which is the same directory as the Basic or
Basic Light package. Alternatively, if using the RPM package on Linux, install it
with yum.

• After the installation, set the environment variables, configure net services,
and run odbc_update_ini.sh (from the Instant Client directory) to
configure data sources.

See Also:

Configuration for more post-installation configuration steps.

• Set any Oracle globalization variables required for your locale. For example,
on Linux, you could set export NLS_LANG=JAPANESE_JAPAN.JA16EUC to work in
the JA16EUC character in Japanese.

See Also:

Oracle Database Globalization Support Guide for more information.

• Recommended unixODBC Driver Manager Versions for Linux and UNIX

Chapter 2
Installation

2-4

https://www.oracle.com/database/technologies/instant-client/downloads.html
https://www.oracle.com/database/technologies/instant-client/downloads.html
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=NLSPG

2.2.2.1 Recommended unixODBC Driver Manager Versions for Linux and UNIX

For Instant Client 23ai:

Platform unixODBC Driver Manager Version

Linux 32bit, 64bit 2.3.11

Solaris SPARC64 32bit, 64bit 2.3.11

Solaris 32bit, 64bit 2.3.11

AIX 5L 32bit, 64bit 2.3.11

HP IA64 32bit, 64bit 2.3.11

z/Linux 31bit, 64bit 2.3.11

For Instant Client 21c:

Platform unixODBC Driver Manager Version

Linux 32bit, 64bit 2.3.11

Solaris SPARC64 32bit, 64bit 2.3.11

Solaris 32bit, 64bit 2.3.11

AIX 5L 32bit, 64bit 2.3.11

HP IA64 32bit, 64bit 2.3.11

z/Linux 31bit, 64bit 2.3.11

For Instant Client 18c and 19c:

Platform unixODBC Driver Manager Version

Linux 32bit, 64bit 2.3.11

Solaris SPARC64 32bit, 64bit 2.3.11

Solaris 32bit, 64bit 2.3.11

AIX 5L 32bit, 64bit 2.3.11

HP IA64 32bit, 64bit 2.3.11

z/Linux 31bit, 64bit 2.3.11

For Instant Client 12.1 and 12.2

Platform unixODBC Driver Manager Version

Linux 32bit, 64bit 2.3.1

Solaris SPARC64 32bit, 64bit 2.3.1

Solaris 32bit, 64bit 2.3.1

AIX 5L 32bit, 64bit 2.3.1

HP IA64 32bit, 64bit 2.3.1

z/Linux 31bit, 64bit 2.3.1

Chapter 2
Installation

2-5

2.2.3 Installing Oracle Instant Client ODBC (Windows)
1. Navigate to https://www.oracle.com/database/technologies/instant-client/microsoft-

windows-32-downloads.html or https://www.oracle.com/database/technologies/
instant-client/winx64-64-downloads.html

2. Download and install the Instant Client Basic or Basic Light package.

3. Download the Instant Client ODBC package.

4. Unzip the Instant Client folder (instantclient_xx_yy) to the desired location.
For example: C:\Users\app\.

5. Unzip the ODBC package and put the contents of the zip file:
instantclient_xx_yy into the Instant Client folder (in the same directory as
your Instant Client Basic or Basic Light package).

6. Run odbc_install.exe from the Instant Client directory.

This registers the ODBC driver with the ODBC Data Sources GUI.

7. To install with Japanese language support, execute the command
odbc_install.exe JA.

After the installation, set the environment variables, configure net services, and
configure the data sources.

See Also:

Configuration for more post-installation configuration steps.

2.2.4 Content of the Oracle Instant Client ODBC Package

Description Linux and UNIX Windows

Oracle Database
ODBC driver
shared library

libsqora.so.XX.Y. For
example libsqora.so.23.1

sqora32.dll

Installation file odbc_update_ini.sh odbc_install.exe,
odbc_uninstall.exe

Oracle Database
ODBC driver
configuration
dialog box (GUI)

Not available sqoras32.dll, sqresus.dll,
sqresja.dll

Help System help/ help/

2.2.5 Files Created by the Installation
The following table describes the files that are installed by the Oracle Database ODBC
driver kit.

Chapter 2
Installation

2-6

https://www.oracle.com/database/technologies/instant-client/microsoft-windows-32-downloads.html
https://www.oracle.com/database/technologies/instant-client/microsoft-windows-32-downloads.html
https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html
https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html
https://www.oracle.com/database/technologies/instant-client/downloads.html

Table 2-1 Files Installed by the Oracle Database ODBC driver Kit

Description File Name for Windows Installation File Name for UNIX Installation

Oracle ODBC
Database
Access DLL

sqora32.dll libsqora.so.nn.n (where nn.n reflects a
version number; for example,
libsqora.so.23.1)

Oracle
Database
ODBC driver
Setup DLL

sqoras32.dll None

Oracle ODBC
Resource DLL

sqresus.dll None

Oracle ODBC
Resource DLL
for Japanese

sqresja.dll None

Oracle
Database
ODBC driver
message file

oraodbcus.msb oraodbcus.msb

Oracle
Database
ODBC driver
message file for
Japanese

oraodbcja.msb oraodbcja.msb

Oracle
Database
ODBC driver
release notes

Oracle Database ODBC Driver Release
Notes

Oracle Database ODBC Driver Release
Notes

Oracle
Database
ODBC driver
Instant Client
Release Notes

ODBC_IC_Readme_Win.html ODBC_IC_Readme_Unix.html

Oracle
Database
ODBC driver
help file

sqora.htm sqora.htm

Oracle
Database
ODBC driver
help file for
Japanese

sqora.htm sqora.htm

Oracle
Database
ODBC driver
Instant Client
install script

odbc_install.exe odbc_update_ini.sh

Oracle
Database
ODBC driver
Instant Client
uninstall script

odbc_uninstall.exe None

Chapter 2
Installation

2-7

Microsoft Driver Manager and Administrator Files

See the Microsoft ODBC 3.52 Software Development Kit and Programmer's Reference
for the list of files that are installed with Microsoft's ODBC 3.52 Components.

The Microsoft ODBC components are packages in the Microsoft Data Access
Component (MDAC) kit. The Oracle Database ODBC driver on Windows has been
tested using MDAC version 2.8.

unixODBC Driver Manager and Administrator Files

See the unixODBC readme and INSTALL files for the list of files that are installed with
unixODBC Driver Manager.

See Also:

• MDAC Kit to download MDAC kit

• Unix ODBC Driver Manager to download unixODBC Driver

2.3 Configuration
This section guides you through the procedures required to configure the Oracle
Database ODBC driver.

Post installation, you must set environment variables for ODBC applications, configure
network database services, and configure the data sources on Windows and UNIX
platforms.

Use the Microsoft ODBC Administrator to configure your Oracle Database ODBC
driver data sources on Windows. For more information, see the information about
configuring the data source in Configuring the Data Source.

To configure the Oracle Database ODBC driver data source on a UNIX Client, see
Configuration for UNIX Platforms.

Topics:

• Environment Setup for ODBC Applications

• Configuring Oracle Net Services

• Configuration for UNIX Platforms
Complete these post-installation configuration tasks for the Oracle Database
ODBC driver on UNIX platforms.

• Configuration for Windows
Complete these post-installation configuration tasks for the Oracle Database
ODBC driver on Windows.

• Reducing Lock Timeout

Chapter 2
Configuration

2-8

https://www.microsoft.com/en-us/download/details.aspx?id=21995

2.3.1 Environment Setup for ODBC Applications
An ODBC application must load the Oracle Instant Client ODBC driver's shared library file to
connect to Oracle Database. On Linux/Unix, the directory path of the shared library file
libsqora.so.XX.Y (for example libsqora.so.19.1) should be set in the
LD_LIBRARY_PATH environment variable, or in a platform equivalent. It can also be configured
in /etc/ld.so.conf. On Windows, the directory path of the shared library file should be
set in the PATH environment variable.

See Also:

• Content of the Oracle Instant Client ODBC Package for more information about
the ODBC driver's shared library

• Environment Variables for Oracle Instant Client for more information about
related environment variables, such as TNS_ADMIN, TWO_TASK, and LOCAL

• Database Connection Strings in Oracle Call Interface Programmer's Guide for
information about setting up a database connection string

2.3.2 Configuring Oracle Net Services
Before configuring the data source, you must configure network database services to ensure
that there is an entry for each Transparent Network Substrate (TNS) Service Name. To do
this, use the Oracle Net Configuration Assistant (NETCA) tool.

TNS service name is the location of the Oracle database from which the ODBC driver
retrieves data.

Using NETCA, you can create an entry in the tnsnames.ora file for each TNS Service
Name.

Note:

NETCA is installed when you install Oracle Net Services.

See Also:

Using Oracle Net Configuration Assistant to Configure Network Components in
Oracle Database Net Services Administrator's Guide for more information about
using the NETCA tool.

Chapter 2
Configuration

2-9

2.3.3 Configuration for UNIX Platforms
Complete these post-installation configuration tasks for the Oracle Database ODBC
driver on UNIX platforms.

1. Run install-home/odbc/utl/odbc_update_ini.sh to configure the Oracle
Database ODBC driver on UNIX.

The utility odbc_update_ini.sh takes four command-line arguments:

• arg-1: Complete path where unixODBC DM has been installed.

• arg-2: Complete path of driver install location (optional); if this argument is not
passed, the driver path is set to the directory from where the utility is run.

• arg-3: Driver name (optional); if this argument is not passed, the driver name
is set to the downloaded version.

• arg-4: Data Source Name or DSN (optional); if no value is passed, the DSN is
set to the downloaded version.

See Also:

Usage for detailed information about how to use odbc_update_ini.sh.

2. Update and verify values of environment variables such as: PATH,
LD_LIBRARY_PATH, LIBPATH, and TNS_ADMIN.

• Usage

2.3.3.1 Usage

odbc_update_ini.sh <ODBCDM_Home> [<Install_Location> <Driver_Name>
<DSN> <ODBCINI>]

Table 2-2 Parameter Descriptions

Parameter Required/
Optional

Description

ODBCDM_Home Required unixODBC Driver Manager home directory path.

Install_Loc
ation

Optional Oracle Instant Client directory path. The default path is the
current directory.

Driver_Name Optional Driver name to identify the Oracle Database ODBC driver
residing in current Oracle Instant Client home. The default
name is like "Oracle 23ai ODBC driver."

DSN Optional Sets ODBC Data Source Name (DSN). The default name is
"OracleODBC-23ai."

ODBCINI Optional Directory path of the .odbc.ini file. The default path is the
user's home directory, for example ~/.odbc.ini.

Chapter 2
Configuration

2-10

2.3.4 Configuration for Windows
Complete these post-installation configuration tasks for the Oracle Database ODBC driver on
Windows.

Topics:

• Configuring the Data Source

• Oracle Database ODBC Driver Configuration Dialog Box

2.3.4.1 Configuring the Data Source

Note:

The following configuration steps are for Windows users. Unix users must use the
odbc_update_ini.sh file to create a Data Source Name (DSN).

After installing the Oracle Database ODBC driver and Configuring Oracle Net Services, and
before using the Oracle Database ODBC driver, you must configure the data source.

Before an application can communicate with the data source, you must provide configuration
information. The configuration information informs the Oracle Database ODBC driver as to
which information you want to access.

The data source consists of the data that you want to access, its associated operating
system, database management system, and network platform used to access the database
management system. The data source for requests submitted by the Oracle Database ODBC
driver is an Oracle Database and supports transports available under Oracle Net Services.

To configure or add an Oracle data source:

After you have installed the Oracle Database ODBC driver, use the ODBC Data Source
Administrator to configure or add an Oracle data source for each of your Oracle Databases.
the Oracle Database ODBC driver uses the information you enter when you add the data
source to access the data. Follow these steps:

1. From the start menu, select Programs, Administrative Tools, Data Sources (ODBC).

In the ODBC Data Source Administrator dialog box, in the Drivers tab, a list of installed
drivers is displayed. Ensure that the Drivers tab displays the Oracle Database ODBC
driver that you just installed.

2. On the System DSN tab, click Add to display the Create New Data Source dialog box.

3. In the Create New Data Source dialog box, from the list of installed drivers, select the
Oracle Database ODBC driver for which you want to set up a data source.

4. Click Finish.

The Oracle ODBC Driver Configuration dialog box is displayed. You must enter the DSN
and TNS Service Name. You can provide the other information requested in the dialog
box, or you can leave the fields blank and provide the information when you run the
application.

5. After you have entered the data, click OK or click Return.

Chapter 2
Configuration

2-11

You can change or delete a data source at any time. The following subtopics explain
how to add, change, or delete a data source.

To modify an Oracle data source:

1. From the start menu, select Programs, Administrative Tools, Data
Sources(ODBC).

2. In the ODBC Data Source Administrator dialog box, select the data source from
the Data Sources list and click Configure.

The Oracle ODBC Driver Configuration dialog box is displayed.

3. In the Oracle ODBC Driver Configuration dialog box, modify the option values as
necessary and click OK.

To delete an Oracle data source:

1. From the start menu, select Programs, Administrative Tools, Data
Sources(ODBC).

2. In the ODBC Data Source Administrator dialog box, select the data source you
want to delete from the Data Sources list.

3. Click Remove, and then click Yes to confirm the deletion.

2.3.4.2 Oracle Database ODBC Driver Configuration Dialog Box

Note:

The Oracle Database ODBC Driver Configuration dialog box is available only
to Microsoft Windows users.

The following screenshot shows an example of the Oracle Database ODBC Driver
Configuration dialog box.

Chapter 2
Configuration

2-12

Figure 2-1 Oracle ODBC Driver Configuration Dialog Box

The following list is an explanation of the main setup options and fields found on the Oracle
Database ODBC Driver Configuration dialog box shown in the preceding graphic. The tabs
found on the lower half of this dialog box are described in the subsequent topics.

• Data Source Name (DSN) - The name used to identify the data source to ODBC. For
example, "odbc-pc". You must enter a DSN.

• Description - A description or comment about the data in the data source. For example,
"Hire date, salary history, and current review of all employees." The Description field is
optional.

• TNS Service Name - The location of the Oracle database from which the ODBC driver
will retrieve data. This is the same name entered in Configuring Oracle Net Services
using the Oracle Net Configuration Assistant (NETCA). For more information, see the
NETCA documentation and About Using Oracle Database ODBC Driver for the First
Time. The TNS Service Name can be selected from a pull-down list of available TNS
names. For example, "ODBC-PC." You must enter a TNS Service Name.

• User ID - The user name of the account on the server used to access the data. For
example, "scott." The User ID field is optional.

You must enter the DSN and the TNS Service Name. You can provide the other information
requested in the dialog box or you can leave the fields blank and provide the information
when you run the application.

Chapter 2
Configuration

2-13

In addition to the main setup options previously described, there is a Test Connection
option available. The Test Connection option verifies whether the ODBC environment
is configured properly, by connecting to the database specified by the DSN definition.
When you click Test Connection, you are prompted for the username and password.

For an explanation of the options tabs found on the lower half of the Oracle Database
ODBC Driver Configuration dialog box, click any of these links:

Application Options

Oracle Options

Workarounds Options

SQL Server Migration Options

Application Options

The following screenshot shows an example of the Application options tab found on
the Oracle ODBC Driver Configuration dialog box.

Figure 2-2 The Application Options Tab of the Oracle ODBC Driver Configuration Dialog Box

The following list is an explanation of the fields found on the Application options tab
shown in the preceding graphic:

• Enable Result Sets enables the processing of Oracle Result Sets. If Result Sets
are not required for your application, Result Set support can be disabled. There is

Chapter 2
Configuration

2-14

a small performance penalty for procedures called from packages not containing Result
Sets. Result Sets are enabled by default.

• Enable Query Timeout enables query timeout for SQL queries. By default, the Oracle
Database ODBC driver supports the SQL_ATTR_QUERY_TIMEOUT attribute for the
SQLSetStmtAttr function. If this box is not checked, the Oracle Database ODBC driver
responds with a "not capable" message. Query Timeout is enabled by default.

• Read-Only Connection - Check this box to force read-only access. The default is write
access.

• Enable Closing Cursors enables closing cursors. By default, closing cursors is disabled
(the field is empty), meaning a call to close a cursor does not force the closing of OCI
cursors when this behavior is not desired because it can cause an unnecessary
performance hit. Enable closing cursors when you want to force the closing of OCI
cursors upon a call to close a cursor.

Note:

There is an impact on performance each time a cursor is closed.

• Enable Thread Safety - Thread safety can be disabled for a data source. If thread safety
is not required, disabling this option eliminates the overhead of using thread safety. By
default, thread safety is enabled.

• Batch Autocommit Mode - By default, commit is executed only if all statements
succeed.

• Numeric Settings allows you to choose the numeric settings that determine the decimal
and group separator characters when receiving and returning numeric data that is bound
as strings. This option allows you to choose Oracle NLS settings (the default setting),
Microsoft default regional settings (to provide a way to mirror the Oracle OLE DB driver's
behavior for greater interoperability), or US numeric settings (which are necessary when
using MS Access or DAO (Database Access Objects) in non-US environments).

See Also:

Oracle ODBC Driver Configuration Dialog Box for the main configuration setup
options

Oracle Options

The following screenshot shows an example of the Oracle options tab found on the Oracle
Database ODBC Driver Configuration dialog box.

Chapter 2
Configuration

2-15

Figure 2-3 The Oracle Options Tab of the Oracle ODBC Driver Configuration Dialog Box

The following list is an explanation of the fields found on the Oracle options tab shown
in the preceding graphic:

• Fetch Buffer Size - The amount of memory used to determine how many rows of
data the ODBC driver prefetches at a time from an Oracle database regardless of
the number of rows the application program requests in a single query. However,
the number of prefetched rows depends on the width and number of columns
specified in a single query. Applications that typically fetch fewer than 20 rows of
data at a time improve their response time, particularly over slow network
connections or on heavily loaded servers. Setting the Fetch Buffer Size too high
can make response time worse or consume large amounts of memory.

Note:

When LONG and LOB data types are present, the number of rows prefetched
by the ODBC driver is not determined by the Fetch Buffer Size. The inclusion
of the LONG and LOB data types minimizes the performance improvement
and could result in excessive memory use. The ODBC driver disregards the
Fetch Buffer Size and prefetches a set number of rows only in the presence
of the LONG and LOB data types.

Chapter 2
Configuration

2-16

• Enable LOBs - Enables the writing of Oracle LOBs. If writing Oracle LOBs is not required
for your application, LOB support can be disabled. There is a small performance penalty
for insert and update statements when LOBs are enabled. LOB writing is enabled by
default but disabled for Oracle databases that do not support the LOB data type.

• Enable Statement Caching - Enables statement caching feature, which increases the
performance of parsing the query, in case the user has to parse the same text of query
and related parameters multiple times. The default is disabled.

• Cache Buffer Size - The statement cache has a maximum size (number of statements)
that can be modified by an attribute on the service context, OCI_ATTR_STMTCACHESIZE.
The default cache buffer size is 20 that are used only if statement caching option is
enabled. Setting cache buffer size to 0 disables statement caching feature.

• Max Token Size - Sets the token size to the nearest multiple of 1 KB (1024 bytes)
beginning at 4 KB (4096 bytes). The default size is 8 KB (8192 bytes). The maximum
value that can be set is 128 KB (131068 bytes).

• Translate ORA errors - Any migrated third party ODBC application, which is using the
SQL Translation Framework feature, expects that the errors returned by the server need
to be in their native database format, then users can enable this option to receive native
errors based on the error translation registered with SQL Translation Profile.

• The Failover area of the Oracle options tab contains the following fields:

– Enable Failover - Enables Oracle Fail Safe and Oracle Parallel Server failover retry.
This option in an enhancement to the failover capabilities of Oracle Fail Safe and
Oracle Parallel Server. Enable this option to configure additional failover retries. The
default is enabled.

– Retry - The number of times the connection failover is attempted. The default is 10
attempts.

– Delay - The number of seconds to delay between failover attempts. The default is 10
seconds.

• Aggregate SQL Type - Specifies the number type return for aggregate functions:
SQL_FLOAT, SQL_DOUBLE, or SQL_DECIMAL.

• Lob Prefetch Size - Sets the amount of LOB data (in bytes) to prefetch from the
database at one time. The default size is 8192.

Note:

Oracle Fail Safe is deprecated and it can be desupported and unavailable in a
future release. Oracle recommends that you evaluate other single-node failover
options, such as Oracle RAC One Node.

Note:

See the Oracle Fail Safe and Oracle Parallel Server documentation on how to set
up and use both of these products.

Chapter 2
Configuration

2-17

See Also:

Oracle ODBC Driver Configuration Dialog Box for the main configuration
setup options

Workarounds Options

The following screenshot shows an example of the Workarounds options tab found
on the Oracle Database ODBC Driver Configuration dialog box.

Figure 2-4 The Workarounds Options Tab of the Oracle ODBC Driver Configuration Dialog Box

The following list is an explanation of the fields found on the Workarounds options tab
shown in the preceding graphic:

• Bind TIMESTAMP as DATE - Check this box to force the Oracle Database ODBC
driver to bind SQL_TIMESTAMP parameters as the Oracle DATE type instead of as the
Oracle TIMESTAMP type (the default).

• Force SQL_WCHAR Support - Check this box to enable SQLDescribeCol,
SQLColumns, and SQLProcedureColumns to unconditionally return the data type
of SQL_WCHAR for SQL_CHAR columns; SQL_WVARCHAR for SQL_VARCHAR columns; and
SQL_WLONGVARCHAR for SQL_LONGVARCHAR columns. This feature enables Unicode

Chapter 2
Configuration

2-18

support in applications that rely on the results of these ODBC calls (for example, ADO).
This support is disabled by default.

• Disable Microsoft Transaction Server - Clear the check in this box to enable Microsoft
Transaction Server (MTS) support. By default, MTS support is disabled.

• Set Metadata Id Default to SQL_TRUE - Check this box to change the default value of
the SQL_ATTR_METADATA_ID connection and statement attribute at connection time to
SQL_TRUE. Under normal circumstances, SQL_ATTR_METADATA_ID would default to
SQL_FALSE. ODBC calls made by the application to specifically change the value of the
attribute after connection time are unaffected by this option and complete their functions
as expected. By default, this option is off.

• Prefetch size for LONG column data - Set this value to prefetch LONG or LONG RAW data
to improve performance of ODBC applications. This enhancement improves the
performance of Oracle ODBC driver up to 10 times, depending on the prefetch size set
by the user. The default value is 0. The maximum value that you can set is 64 KB (65536
bytes).

If the value of prefetch size is greater than 65536, the data fetched is only 65536 bytes. If
you have LONG or LONG RAW data in the database that is greater than 65536 bytes, then
set the prefetch size to 0 (the default value), which causes single-row fetch and fetches
complete LONG data. If you pass a buffer size less than the prefetch size in nonpolling
mode, a data truncation error occurs if the LONG data size in the database is greater than
the buffer size.

• Disable SQLDescribeParam - If the SQLDescribeParam function is enabled, the
SQL_VARCHAR data type is returned for all parameters. If the Force SQL_WCHAR Support
function is also enabled, the SQL_WVARCHAR data type is returned for all parameters. By
default, this function is enabled.

• Bind NUMBER as FLOAT - Check this box to force the Oracle Database ODBC driver to
bind NUMBER column containing FLOAT data as Float instead of as the Binary Float (the
default).

• Disable RULE Hint - Clear the check in this box to enable RULE Hint specified with
catalogue queries. By default, RULE Hint option is disabled.

• Use OCIDescribeAny - Check this box to gain a performance improvement by forcing
the driver to use OCIDescribeAny() when an application makes heavy calls to small
packaged procedures that return REF CURSORS.

See Also:

• Implementation of Data Types (Advanced) for more information about DATE
and TIMESTAMP

• Implementation of ODBC API Functions for more information about the
SQL_ATTR_METADATA_ID attribute

• Oracle ODBC Driver Configuration Dialog Box for the main configuration setup
options

• About Using OCIDescribeAny() for more information about OCIDescribeAny()

Chapter 2
Configuration

2-19

SQL Server Migration Options

The following screenshot shows an example of the SQL Server Migration options tab
found on the Oracle ODBC Driver Configuration dialog box.

Figure 2-5 The SQL Server Migration Options Tab of the Oracle ODBC Driver Configuration
Dialog Box

The fields of the SQL Server Migration options tab in the preceding graphic are:

• EXEC Syntax Enabled enables support for SQL Server EXEC syntax. A
subprogram call specified in an EXEC statement is translated to its equivalent
Oracle subprogram call before being processed by an Oracle database server. By
default this option is disabled.

• Schema is the translated Oracle subprogram assumed to be defined in the user's
default schema. However, if all subprograms from the same SQL Server database
are migrated to the same Oracle schema with their database name as the schema
name, then set this field to database. If all subprograms owned by the same SQL
Server user are defined in the same Oracle schema, then set this field to owner.
This field is empty by default.

Chapter 2
Configuration

2-20

See Also:

Oracle ODBC Driver Configuration Dialog Box for the main configuration setup
options

2.3.5 Reducing Lock Timeout
An Oracle server waits indefinitely for lock conflicts between transactions to be resolved. You
can limit the amount of time that an Oracle server waits for locks to be resolved by setting the
Oracle Database ODBC driver's LockTimeOut entry in the oraodbc.ini file. The value you
enter for the LockTimeOut parameter is the number of seconds after which an Oracle server
times out if it cannot obtain the requested locks. In the following example, the Oracle server
times out after 60 seconds:

[Oracle ODBC Driver Common]
LockTimeOut=60

2.4 Patching Oracle Instant Client ODBC
This section guides you through the procedures required to patch Oracle Instant Client
ODBC.

Note:

• Back up the Oracle Database ODBC driver shared library and other files before
patching them.

• You must rebuild your Oracle Instant Client packages and libraries as part of
the patching process.

Topics:

• Patching Oracle Instant Client ODBC on Linux and UNIX Method 1

• Patching Oracle Instant Client ODBC on Linux and UNIX Method 2

• Patching on Windows

2.4.1 Patching Oracle Instant Client ODBC on Linux and UNIX Method 1
Patching the Instant Client ODBC driver on Linux/UNIX can be done by generating the
Instant Client ODBC package and Basic or Basic Light package in a patched
ORACLE_HOME. These new packages should then be unzipped into the Instant Client
directory that needs to be patched. This method of patching is recommended.

Chapter 2
Patching Oracle Instant Client ODBC

2-21

See Also:

Patching Oracle Instant Client explains the procedure for patching and
generating Instant Client Basic and Basic Light packages and Instant Client
ODBC.

2.4.2 Patching Oracle Instant Client ODBC on Linux and UNIX Method
2

Alternatively, to patch Oracle Instant Client ODBC Driver, copy the following files from
a patched ORACLE_HOME:

• ODBC driver shared library file:

– For 23ai: libsqora.so.23.1

– For 21c: libsqora.so.21.1

– For 19c: libsqora.so.19.1

– For 18c: libsqora.so.18.1

– For 12c: libsqora.so.12.1

• Required additional files when using Oracle Instant Client Basic:

– For 23ai: libociei.so, libclntshcore.so.23.1, libclntsh.so.23.1, libnnz23.so,
libons.so

– For 21c: libociei.so, libclntshcore.so.21.1, libclntsh.so.21.1, libnnz21.so,
libons.so

– For 19c: libociei.so, libclntshcore.so.19.1, libclntsh.so.19.1, libnnz19.so,
libons.so

– For 18c: libociei.so, libclntshcore.so.18.1, libclntsh.so.18.1, libnnz18.so,
libons.so

– For 12c: libociei.so, libclntshcore.so.12.1, libclntsh.so.12.1, libnnz12.so,
libons.so

• Required additional files when using Oracle Instant Client Basic Light:

– For 23ai: libclntsh.so.23.1, libclntshcore.so.23.1, libociicus.so, libnnz23.so,
libons.so

– For 21c: libclntsh.so.21.1, libclntshcore.so.21.1, libociicus.so, libnnz21.so,
libons.so

– For 19c: libclntsh.so.19.1, libclntshcore.so.19.1, libociicus.so, libnnz19.so,
libons.so

– For 18c: libclntsh.so.18.1, libclntshcore.so.18.1, libociicus.so, libnnz18.so,
libons.so

– For 12c: libclntsh.so.12.1, libclntshcore.so.12.1, libociicus.so, libnnz12.so,
libons.so

Chapter 2
Patching Oracle Instant Client ODBC

2-22

2.4.3 Patching on Windows
You can patch Instant Client ODBC Driver on Windows only manually by copying the ODBC
driver shared library files and supporting library files from a patched ORACLE_HOME or from
an unpacked Oracle Database Bundle patch. These should be copied into the Instant Client
directory. Generating an Instant Client ODBC package is not available on Windows.

The files that must be copied to the Instant Client directory:

• ODBC driver shared library files: sqora32.dll, sqoras32.dll, sqresus.dll, sqresja.dll

• Required additional files when using Oracle Basic Instant Client:

– For 23ai: oraociei23.dll, orannzsbb23.dll, oci.dll, oraons.dll, ociw32.dll,
oraociei23.sym, orannzsbb23.sym, oci.sym, ociw32.sym

– For 21c: oraociei21.dll, orannzsbb21.dll, oci.dll, oraons.dll, ociw32.dll,
oraociei21.sym, orannzsbb21.sym, oci.sym, ociw32.sym

– For 19c: oraociei19.dll, orannzsbb19.dll, oci.dll, oraons.dll, ociw32.dll,
oraociei19.sym, orannzsbb19.sym, oci.sym, ociw32.sym

– For 18c: oraociei18.dll, orannzsbb18.dll, oci.dll, oraons.dll, ociw32.dll,
oraociei18.sym, orannzsbb18.sym, oci.sym, ociw32.sym

– For 12c: oraociei12.dll, orannzsbb12.dll, oci.dll, oraons.dll, ociw32.dll,
oraociei12.sym, orannzsbb12.sym, oci.sym, ociw32.sym

• Required additional files when using Oracle Basic Light Instant Client:

– For 23ai: oraociicus23.dll, orannzsbb23.dll, oci.dll, oraons.dll, ociw32.dll,
oraociicus23.sym, orannzsbb23.sym, oci.sym, ociw32.sym

– For 21c: oraociicus21.dll, orannzsbb21.dll, oci.dll, oraons.dll, ociw32.dll,
oraociicus21.sym, orannzsbb21.sym, oci.sym, ociw32.sym

– For 19c: oraociicus19.dll, orannzsbb19.dll, oci.dll, oraons.dll, ociw32.dll,
oraociicus19.sym, orannzsbb19.sym, oci.sym, ociw32.sym

– For 18c: oraociicus18.dll, orannzsbb18.dll, oci.dll, oraons.dll, ociw32.dll,
oraociicus18.sym, orannzsbb18.sym, oci.sym, ociw32.sym

– For 12c: oraociicus12.dll, orannzsbb12.dll, oci.dll, oraons.dll, ociw32.dll,
oraociicus12.sym, orannzsbb12.sym, oci.sym, ociw32.sym

Note:

While copying from the Oracle Database Bundle patch, some of the aforementioned
files may be missing. This implies that those files are unchanged and do not need to
be patched.

2.5 Uninstallation
This section takes you through the steps required to uninstall the Oracle Database ODBC
driver.

Topics:

Chapter 2
Uninstallation

2-23

• Uninstalling Oracle Instant Client ODBC on Linux and UNIX
Use the following procedure to uninstall Oracle Instant Client ODBC on Linux and
UNIX.

• Uninstalling Oracle Instant Client ODBC on Windows
Use the following procedure to uninstall Instant Client ODBC on Windows.

2.5.1 Uninstalling Oracle Instant Client ODBC on Linux and UNIX
Use the following procedure to uninstall Oracle Instant Client ODBC on Linux and
UNIX.

1. Remove the Oracle Database ODBC driver entry from the odbcinst.ini file of
the unixODBC Driver Manager.

The default name of this entry is like: [Oracle 19c ODBC driver].

2. Remove the DSN entry of the Oracle Database ODBC driver from odbc.ini.

The default name of the DSN entry is like [OracleODBC-19c].

3. Delete all files and directories in the Instant Client ODBC directory.

2.5.2 Uninstalling Oracle Instant Client ODBC on Windows
Use the following procedure to uninstall Instant Client ODBC on Windows.

1. Remove the DSN associated with the Oracle Database ODBC driver in the ODBC
Data Source Administrator (odbcad32) console.

2. Execute the odbc_uninstall.exe file from the Instant Client ODBC directory.

3. Delete all files and directories in the Instant Client ODBC directory.

Chapter 2
Uninstallation

2-24

3
Basic Connection Steps

This chapter guides you through the steps required to connect your ODBC application to an
Oracle data source.

Topics:

• Connecting to an Oracle Data Source

• Troubleshooting

3.1 Connecting to an Oracle Data Source
To connect to a data source, the Oracle Database ODBC driver requires that the OCI client
software be installed on your computer and the corresponding listener be running on the
Oracle server. Oracle Net Services for Windows is a Dynamic Linked Library (DLL) based
application.

See Also:

Oracle Database Net Services Administrator's Guide and Oracle Database Net
Services Reference for more information about Oracle Net Services.

As part of the connection process, an application can prompt you for information. If an
application prompts you for information about an Oracle data source, do the following:

1. In the TNS Service Name box, enter the name of the TNS service.

2. In the User Name box, enter the name you use to access an Oracle Database.

3. In the Password box, enter the password you use to access an Oracle Database.

4. Click OK.

An application must connect to a data source to access the data in it. Different applications
connect to data sources at different times. For example, an application might connect to a
data source only at your request, or it might connect automatically when it starts. For
information about when an application connects to a data source, see the documentation for
that application.

For additional information, click any of these links:

• For all users:

– Configuring the Data Source

• For programmers:

– SQLDriverConnect Implementation

– Data Source Configuration Options

3-1

3.2 Troubleshooting
Topics:

• About Using Oracle Database ODBC Driver for the First Time
Describes useful information about using the Oracle Database ODBC driver for the
first time.

• Expired Password
This section contains information about expired passwords.

3.2.1 About Using Oracle Database ODBC Driver for the First Time
Describes useful information about using the Oracle Database ODBC driver for the
first time.

See the Oracle Database ODBC driver developer home: ODBC Developer Center,
where you can find additional information about the Oracle Database ODBC driver
features, resources, such as where to find Oracle Instant Client ODBC installation
information, the Oracle Instant Client ODBC download site, the Oracle ODBC
discussion forum, and information about some related technologies.

3.2.2 Expired Password
This section contains information about expired passwords.

Expired Password Behavior

If you try to connect to the database and your password has expired, you are
prompted to change your password. Upon making a successful password change, you
are connected to the database. However, if you try to connect to the database using a
SQLDriverConnect call with a SQL_DRIVER_NOPROMPT parameter value, the Oracle
Database ODBC driver does not prompt you for the password change. Instead, an
error condition results, producing an error message and number that indicates that the
password has expired.

Chapter 3
Troubleshooting

3-2

http://www.oracle.com/technetwork/database/windows/index-098976.html

4
Oracle Database ODBC Driver for Advanced
Users

The chapter is intended to provide advanced users with information about configuring and
using the Oracle Database ODBC driver.

Topics:

• Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

• Creating Oracle Database ODBC Driver TNS Service Names

• SQL Statements

• Data Types

• Implementation of Data Types (Advanced)

• Limitations on Data Types

• Error Messages

4.1 Connecting to Oracle Database Using TLS (Preconfigured
for Azure AD)

This example demonstrates how to connect to Oracle Database from Microsoft Excel with the
TLS preconfigured to use Azure AD.

• Overview

• Prerequisite Steps to Using Oracle ODBC with Excel

• Installing the ODBC Driver

• Configuring tnsnames.ora, TNS_ADMIN, and PATH

• Getting an OAuth 2 Token

• Configuring DSN

• Configuring Excel

4.1.1 Overview
You can use your Microsoft Entra ID (was Azure AD) SSO credentials to access an Oracle
Database from Microsoft Excel and other tools, when using the Oracle Database ODBC
driver. The following example shows you how you can access an Oracle Database from
Microsoft Excel.

4-1

4.1.2 Prerequisite Steps to Using Oracle ODBC with Excel

Note:

Only Oracle Database 19.16, and higher, and Oracle Database 23ai (not
including Oracle Database 21c) support the Entra ID integration.

• Configure the database for Entra ID integration.

See Also:

Authenticating and Authorizing Microsoft Entra ID (Azure AD) Users for
Oracle Databases in Oracle Database Security Guide for more
information about Entra ID integration with Oracle Database.

• Get a valid OAuth 2 token for your database before you start your configuration
and put the token into the location specified by the TOKEN_LOCATION parameter in
your connect string.

Note:

The token is only valid for about an hour. You may need to request a new
token if the time taken to complete the configurations exceeds an hour.

See Also:

Local Naming Parameters in the tnsnames.ora File in Oracle Database
Net Services Reference for more information about the TOKEN_LOCATION
parameter.

4.1.3 Installing the ODBC Driver
Download and install the appropriate version (19 or 23) of the 32 or 64-bit ODBC
driver. Follow these steps:

1. Navigate to https://www.oracle.com/database/technologies/instant-client/microsoft-
windows-32-downloads.html or https://www.oracle.com/database/technologies/
instant-client/winx64-64-downloads.html

2. Download the Instant Client Basic Package.

3. Download the ODBC package.

4. Unzip the Instant Client folder (instantclient_xx_yy) to the desired location.
For example: C:\Oracle\SQLPlus\.

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

4-2

https://www.oracle.com/database/technologies/instant-client/microsoft-windows-32-downloads.html
https://www.oracle.com/database/technologies/instant-client/microsoft-windows-32-downloads.html
https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html
https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html

5. Unzip the ODBC package and put the contents of the zip file: instantclient_xx_yy
into the Instant Client folder (files include odbc_install.exe, odbc_license, and
odbc_readme).

6. Run odbc_install.

This registers the ODBC driver with the ODBC Data Sources GUI.

4.1.4 Configuring tnsnames.ora, TNS_ADMIN, and PATH
1. Set the TNS_ADMIN environment variable to point to your tnsnames.ora folder.

2. Add the path to your ODBC driver in the PATH environment variable.

• The name of the ODBC driver is odbcad32.exe – for both the 32-bit and 64-bit
drivers.

• Paradoxically, on a 64-bit Windows Operating System (OS), the 32-bit
odbcad32.exe is installed in C:\Windows\sysWOW64, and the 64-bit
odbcad32.exe is installed in C:\Windows\system32.

• If you are on a 64-bit Windows OS, put C:\Windows\system32 near the beginning
of the path – and definitely in front of sysWOW64 to make sure it sees the 64-bit
version first.

3. Add the connect string for the Oracle Database configured for the Entra ID in
tnsnames.ora.

The following is an example:

azuredb = (description= (retry_count=20)(retry_delay=3)
(address=(protocol=tcps)(port=1521)
(host=adb.us-ashburn-1.oraclecloud.com))
(connect_data=(service_name=xxx123_azuredb_high.adb.oraclecloud.com))
(security=(ssl_server_dn_match=yes)(TOKEN_AUTH=OAUTH)
(TOKEN_LOCATION="C:\USERS\PETERFI\Oracle\azuredb\token")))

See Also:

Authenticating and Authorizing Microsoft Entra ID (Azure AD) Users for Oracle
Databases in Oracle Database Security Guide for more information about Entra
ID integration with Oracle Database.

4.1.5 Getting an OAuth 2 Token
• You need to get an OAuth 2 token (if not already done) at this point because you need

the token to test the new Data Source Name (DSN) that you will create in the ODBC Data
Source Administrator GUI in the next section.

4.1.6 Configuring DSN
1. Open ODBC Data Source Administrator for the correct bit (32-bit or 64-bit).

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

4-3

You can open ODBC Data Source Administrator from the command line or you
can use search or open.

2. Ensure that the Drivers tab displays the Oracle Database ODBC driver that you
just installed.

Figure 4-1 ODBC Data Source Administrator (32-bit)

3. Open the User DSN tab.

4. Click Add.

5. In the Create New Data Source dialog box, select the appropriate Oracle
Database ODBC driver.

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

4-4

Figure 4-2 Create New Data Source

6. Select Finish.

The Oracle ODBC Driver Configuration dialog box is displayed.

7. In the Oracle ODBC Driver Configuration dialog box, do the following:

Figure 4-3 Oracle ODBC Driver Configuration

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

4-5

a. In Data Source Name, fill in a data source name.

b. In TNS Service Name, select the database for the TNS service name.

The selected name should reflect what is in the tnsnames.ora file.

c. Leave User ID blank.

d. Click the Test Connection button.

You should see a connection successful message (make sure you still have a
valid token).

The token that you put into TOKEN_LOCATION is sent to the database. If you are
authorized to access the database, then you get a connection successful
message as follows:

Figure 4-4 Oracle ODBC Driver Configuration - Connection Successful Message

e. Click OK to close the message.

8. In the Oracle ODBC Driver Configuration dialog box, click OK.

In the ODBC Data Source Administrator dialog box, in the User Data Sources list,
you can see your new user data source displayed.

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

4-6

Figure 4-5 ODBC Data Source Administrator (32-bit)

4.1.7 Configuring Excel
1. Open a new Excel sheet.

2. Select the Data tab.

3. On the Data tab, in the Get & Transform Data section, click Existing Connections.

4. On the Existing Connections dialog box, click Browse for More.

5. On the Select Data Source dialog box, click New Source.

6. On the Data Connection Wizard dialog box, select ODBC DSN from the data source type
list, and click Next.

You should see your new DSN.

7. On the Data Connection Wizard - Connect to ODBC Data Source dialog box, select the
new DSN and click Next.

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

4-7

Figure 4-6 Data Connection Wizard - Connect to ODBC Data Source

When you click Next, Excel accesses the database using your token.

Note:

Ensure that your token is still valid.

The Data Connection Wizard - Select Database and Table dialog box is displayed.

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

4-8

Figure 4-7 Data Connection Wizard - Select Database and Table

8. In the Data Connection Wizard - Select Database and Table dialog box, select the
database that contains the data you want to import to Excel, and click Next.

9. Fill out the next form with file name and description, and other details as needed, and
click Finish.

10. From the data import form, select the required data to import.

You can now see the data in the Excel sheet.

Figure 4-8 Excel Sheet with Imported Data

This concludes the setup of the Oracle Database ODBC driver in Microsoft Excel.

Chapter 4
Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)

4-9

4.2 Creating Oracle Database ODBC Driver TNS Service
Names

To create the Oracle Database ODBC driver TNS Service Names with Oracle Net
Services, use the Oracle Net Configuration Assistant (NETCA), which is installed when
you install Oracle Net Services. NETCA creates the Oracle Database ODBC driver
TNS Service Name entries in the tnsnames.ora file.

4.3 SQL Statements
The Oracle Database ODBC Driver is broadly compatible with the SQL-99 Core
specification, which is a superset of the SQL-92 Entry Level specification. In addition
to Oracle's grammar, the vendor-specific escape sequences outlined in Appendix C of
the ODBC specifications are also supported. In accordance with the design of ODBC,
the Oracle Database ODBC driver passes the native SQL syntax to Oracle Database.

See Also:

• Data Types for advanced users

• Implementation of the ODBC SQL Syntax for programmers

4.4 Data Types
The Oracle Database ODBC driver maps the Oracle Database data types to ODBC
SQL data types.

Note:

All conversions in Appendix D of the Microsoft ODBC 3.52 Software
Development Kit and Programmer's Reference are supported for the ODBC
SQL data types listed from a call to SQLGetInfo with the appropriate
information type.

Chapter 4
Creating Oracle Database ODBC Driver TNS Service Names

4-10

See Also:

• For advanced users:

– Implementation of Data Types (Advanced)

– Limitations on Data Types

– SQL Statements

• For programmers:

– Implementation of Data Types (Programming)

4.5 Implementation of Data Types (Advanced)
Topics:

• BOOLEAN Data Types

• DATE and TIMESTAMP

• Floating Point Data Types

• VECTOR Data Type

BOOLEAN Data Types

Starting Oracle Database 23ai, Oracle Database supports the native BOOLEAN data type in
compliance with the ISO SQL standard. The native boolean type enables you to define a
table column as a SQL boolean data type with the value as true, false, or null.

Using the SQL boolean data type provides clarity, consistency, and speed to coding. With the
boolean data type, you can represent a boolean state more clearly, and improve the
readability of the code.

Using the native boolean data types support, ODBC-compliant applications can:

• Fetch or modify BOOLEAN column data

• Fetch metadata about a BOOLEAN column

The boolean data type is represented externally as the SQLT_BOL data type. The SQLT_BOL
data type is used as the SQL type identifier for BOOLEAN columns. Bind and define API calls
enable the SQLT_BOL data type to be associated with host variables in ODBC-based
applications.

The ODBC interface represents boolean type with SQL_C_BIT, which is the C data type
identifier. SQL_C_BIT is an unsigned char (UCHAR) that represents boolean type in applications.
SQL_C_BIT only takes a 0 or 1 value, and so, when retrieving boolean data from the database,
the data value is represented as 0 or 1.

To bind and fetch (or modify) boolean type data with BOOLEAN columns, you can have an
application call the bind and define functions, and specify the C data type: SQL_C_BIT with
the:

• TargetType argument in the SQLBindCol() and SQLGetData() functions.

Chapter 4
Implementation of Data Types (Advanced)

4-11

• ValueType argument in the SQLBindParameter() function.

The SQLBindCol() function binds the BOOLEAN column to an application variable before
the fetch and the SQLGetData() function binds the fetched data to variables after the
fetch. The SQLBindParameter() function binds parameters in an SQL statement to
application variables.

If the TargetType argument is a SQL_C_BIT data type, the Oracle Database ODBC
driver maps SQLT_BOL to SQL_C_BIT while processing the bind and define parameters.
The driver then performs the necessary conversions when fetching (or modifying) and
retrieving data from the BOOLEAN columns.

To determine if a data source supports boolean data type, you can have an application
call the SQLGetTypeInfo function.

To retrieve metadata for table columns that are externally defined with the SQLT_BOL
data type, you can have an application call the SQLDescribeCol() function.

For backward compatibility, Oracle Database releases prior to 23ai use internal data
type conversions to support boolean values in the Oracle Database ODBC driver.

See Also:

• Boolean Data Type in Oracle Database SQL Language Reference for
more information about boolean data types

• Microsoft ODBC API specifications for more information about the ODBC
bind and define functions and supported data types

DATE and TIMESTAMP

The semantics of Oracle DATE and TIMESTAMP data types do not correspond exactly
with the ODBC data types with the same names. The Oracle DATE data type contains
both date and time information while the SQL_DATE data type contains only date
information. The Oracle TIMESTAMP data type also contains date and time information,
but it has greater precision in fractional seconds. The ODBC driver reports the data
types of both Oracle DATE and TIMESTAMP columns as SQL_TIMESTAMP to prevent
information loss. Similarly, the ODBC driver binds SQL_TIMESTAMP parameters as
Oracle TIMESTAMP values.

Floating Point Data Types

When connected to a 10.1 or later Oracle server, the ODBC driver maps the Oracle
floating point data types BINARY_FLOAT and BINARY_DOUBLE to the ODBC data types
SQL_REAL and SQL_DOUBLE, respectively. In previous releases, SQL_REAL and
SQL_DOUBLE are mapped to the generic Oracle numeric data type.

See Also:

DATE and TIMESTAMP Data Types

Chapter 4
Implementation of Data Types (Advanced)

4-12

VECTOR Data Type

Starting Oracle Database 23ai, the Oracle Database ODBC driver supports VECTOR data type.
The driver uses SQL_CHAR to map to the VECTOR data type.

See Also:

Vector Data Type in Oracle Database SQL Language Reference for more
information about vector data types

4.6 Limitations on Data Types

Note:

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new
applications developed with later releases, Oracle strongly recommends that you
use CLOB and NCLOB data types for large amounts of character data.

For more information, see:

Migrating Columns from LONGs to LOBs

The Oracle Database ODBC driver and Oracle Database impose some limitations on data
types. The following table describes these limitations.

Table 4-1 Oracle Database ODBC Driver and Oracle Database Limitations on Data
Types

Limited Data Type Description

Literals Oracle Database limits literals in SQL statements to 32K bytes.

SQL_LONGVARCHAR and
SQL_WLONGVARCHAR

Oracle's limit for SQL_LONGVARCHAR data where the column type is
LONG is 2,147,483,647 bytes. Oracle's limit for the SQL_LONGVARCHAR
data where the column type is CLOB is 4 gigabytes. The limiting factor
is the client workstation memory.

SQL_LONGVARCHAR and
SQL_LONGVARBINARY

Oracle database allows only a single long data column per table. The
long data types are SQL_LONGVARCHAR (LONG) and
SQL_LONGVARBINARY (LONG RAW). Oracle recommends you use
CLOB and BLOB columns instead. There is no restriction on the
number of CLOB and BLOB columns in a table.

Chapter 4
Limitations on Data Types

4-13

4.7 Error Messages
When an error occurs, the Oracle Database ODBC driver returns the native error
number, the SQLSTATE (an ODBC error code), and an error message. The driver
derives this information both from errors detected by the driver and errors returned by
the Oracle server.

Native Error

For errors that occur in the data source, the Oracle Database ODBC driver returns the
native error returned to it by the Oracle server. When the Oracle Database ODBC
driver or the Driver Manager detects an error, the Oracle Database ODBC driver
returns a native error of zero.

SQLSTATE

For errors that occur in the data source, the Oracle Database ODBC driver maps the
returned native error to the appropriate SQLSTATE. When the Oracle Database ODBC
driver detects an error, it generates the appropriate SQLSTATE. When the Driver
Manager detects an error, it generates the appropriate SQLSTATE.

Error Message

For errors that occur in the data source, the Oracle Database ODBC driver returns an
error message based on the message returned by the Oracle server. For errors that
occur in the Oracle Database ODBC driver or the Driver Manager, the Oracle
Database ODBC driver returns an error message based on the text associated with
the SQLSTATE.

Error messages have the following format:

[vendor] [ODBC-component] [data-source] error-message

The prefixes in brackets ([]) identify the source of the error. The following table
shows the values of these prefixes returned by the Oracle Database ODBC driver.
When the error occurs in the data source, the [vendor] and [ODBC-component]
prefixes identify the vendor and name of the ODBC component that received the error
from the data source.

Table 4-2 Error Message Values of Prefixes Returned by the Oracle Database
ODBC Driver

Error Source Prefix Value

Driver Manager [vendor][ODBC-
component][data-
source]

[Microsoft/unixODBC][ODBC Driver
Manager]N/A

Oracle ODBC Driver [vendor][ODBC-
component][data-
source]

[ORACLE][ODBC Driver]N/A

Oracle server [vendor][ODBC-
component][data-
source]

[ORACLE][ODBC Driver]N/A

Chapter 4
Error Messages

4-14

For example, if the error message does not contain the [Ora] prefix shown in the following
format, the error is an Oracle ODBC Driver error and should be self-explanatory.

[Oracle][ODBC]Error message text here

If the error message contains the [Ora] prefix shown in the following format, it is not an Oracle
ODBC Driver error.

Note:

Although the error message contains the [Ora] prefix, the actual error may be
originating from one of several sources.

[Oracle][ODBC][Ora]Error message text here

If the error message text starts with the following prefix, you can obtain more information
about the error in the Oracle server documentation.

ORA-

Oracle Net Services errors and Trace logging are located under the ORACLE_HOME\NETWORK
directory on Windows systems or the ORACLE_HOME/NETWORK directory on UNIX systems
where the OCI software is installed and specifically in the log and trace directories
respectively. Database logging is located under the ORACLE_HOME\RDBMS directory on
Windows systems or the ORACLE_HOME/rdbms directory on UNIX systems where the Oracle
server software is installed.

See the Oracle server documentation for more information about server error messages.

Chapter 4
Error Messages

4-15

5
Oracle Database ODBC Driver for
Programmers

The chapter is intended for programmers who want to develop robust ODBC applications
using the Oracle Database ODBC driver.

Topics:

• Format of the Connection String

• SQLDriverConnect Implementation

• Reducing Lock Timeout in a Program

• Linking with odbc32.lib (Windows) or libodbc.so (UNIX)

• Information about ROWID

• ROWID in a WHERE Clause

• Enabling Result Sets

• Enabling EXEC Syntax

• Enabling Event Notification for Connection Failures in an Oracle RAC Environment

• Using Implicit Results Feature through ODBC

• About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH
LOCAL TIME ZONE Column Type in ODBC

• About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle
Database ODBC Driver, and Others)
Describes the effect of setting the system variable ORA_SDTZ in Oracle Clients.

5.1 Format of the Connection String
The following table describes keywords that can be included in the connection string
argument of the SQLDriverConnect function call. Missing keywords are read from the
Administrator entry for the data source. Values specified in the connection string override
those contained in the Administrator entry. See the Microsoft ODBC 3.52 Software
Development Kit and Programmer's Reference for more information about the
SQLDriverConnect function.

Table 5-1 Keywords that Can Be Included in the Connection String Argument of the
SQLDriverConnect Function Call

Keyword Meaning Comments

DSN ODBC Data Source Name User-supplied name.

DBQ TNS Service Name User-supplied name.

UID User ID or User Name User-supplied name.

5-1

Table 5-1 (Cont.) Keywords that Can Be Included in the Connection String Argument
of the SQLDriverConnect Function Call

Keyword Meaning Comments

PWD Password User-supplied password. Specify PWD=; for an
empty password.

DBA Database Attribute W=write access.

R=read-only access.

APA Applications Attributes T=Thread Safety Enabled.

F=Thread Safety Disabled.

RST Result Sets T=Result Sets Enabled.

F=Result Sets Disabled.

QTO Query Timeout Option T=Query Timeout Enabled.

F=Query Timeout Disabled.

CSR Close Cursor T=Close Cursor Enabled.

F=Close Cursor Disabled.

BNF Bind NUMBER as FLOAT T=Bind NUMBER as FLOAT.

F=Bind NUMBER as NUMBER.

DRH Disable Rule Hint T=Disable Rule Hint.

F=Enable Rule Hint.

BAM Batch Autocommit Mode IfAllSuccessful=Commit only if all statements
are successful (old behavior).

UpToFirstFailure=Commit up to first failing
statement (V7 ODBC behavior).

AllSuccessful=Commit all successful
statements (only when connected to an Oracle
database; against other databases, same
behavior as V7).

FBS Fetch Buffer Size User-supplied numeric value (specify a value in
bytes of 0 or greater).

The default is 60,000 bytes.

FEN Failover T=Failover Enabled.

F=Failover Disabled.

FRC Failover Retry Count User-supplied numeric value.

The default is 10.

FDL Failover Delay User-supplied numeric value.

The default is 10.

LOB LOB Writes T=LOBs Enabled.

F=LOBs Disabled.

MTS Microsoft Transaction Server
Support

T=Disabled.

F=Enabled.

FWC Force SQL_WCHAR Support T=Force SQL_WCHAR Enabled.

F=Force SQL_WCHAR Disabled.

EXC EXEC Syntax T=EXEC Syntax Enabled.

F=EXEC Syntax Disabled.

Chapter 5
Format of the Connection String

5-2

Table 5-1 (Cont.) Keywords that Can Be Included in the Connection String Argument
of the SQLDriverConnect Function Call

Keyword Meaning Comments

XSM Schema Field Default=Default.

Database=Database Name.

Owner=Owner Name.

MDI Set Metadata ID Default T=SQL_ATTR_METADATA_ID defaults to
SQL_TRUE.

F=SQL_ATTR_METADATA_ID defaults to
SQL_FALSE.

DPM Disable SQLDescribeParam T=SQLDescribeParam Disabled.

F=SQLDescribeParam Enabled.

BTD Bind TIMESTAMP as DATE T=Bind SQL_TIMESTAMP as Oracle DATE
F=Bind SQL_TIMESTAMP as Oracle TIMESTAMP

NUM Numeric Settings NLS=Use Oracle NLS numeric settings (to
determine the decimal and group separator).

MS=Use Microsoft regional settings.

US=Use US settings.

ODA Use OCIDescribeAny() T= Use OCIDescribeAny() call to gain
performance improvement when application
makes heavy calls to small packaged
procedures that return REF CURSORS.

F= Do not use OCIDescribeAny(). By default,
use OCIDescribeAny() value is FALSE.

STE SQL Translate ORA Errors

Specifies whether the Oracle
Database ODBC driver is to
translate the Oracle error codes

T=Translate ORA errors.

F=Do not translate any ORA error. By default,
SQLTranslateErrors is FALSE.

TSZ Token Size User-supplied numeric value.

Sets the token size to the nearest multiple of 1
KB (1024 bytes) beginning at 4 KB (4096
bytes). The default size is 8 KB (8192 bytes).
The maximum value that can be set is 128 KB
(131068 bytes).

If the following keyword is specified in the connection string, the Oracle Database ODBC
driver does not read values defined from the Administrator:

DRIVER={Oracle ODBC Driver}

Examples of valid connection strings are:

1) DSN=Personnel;UID=Kotzwinkle;PWD=;2) DRIVER={Oracle ODBC
Driver};UID=Kotzwinkle;PWD=whatever;DBQ=instl_alias;DBA=W;

Chapter 5
Format of the Connection String

5-3

See Also:

• Connecting to an Oracle Data Source for all users

• SQLDriverConnect Implementation for programmers

5.2 SQLDriverConnect Implementation
The following table describes the keywords required by the SQLDriverConnect
connection string.

Table 5-2 Keywords Required by the SQLDriverConnect Connection String

Keyword Description

DSN The name of the data source.

DBQ The TNS Service Name. See Creating Oracle Database ODBC
Driver TNS Service Names. For more information, see the
Oracle Net Services documentation.

UID The user login ID or user name.

PWD The user-specified password.

5.3 Reducing Lock Timeout in a Program
The Oracle server waits indefinitely for lock conflicts between transactions, to be
resolved. You can limit the amount of time that the Oracle server waits for locks to be
resolved by calling the ODBC SQLSetConnectAttr function before connecting to the
data source.

Specify a non-zero value for the SQL_ATTR_QUERY_TIMEOUT attribute in the ODBC
SQLSetStmtAttr function. If you specify a lock timeout value using the ODBC
SQLSetConnectAttr function, it overrides any value specified in the oraodbc.ini file.

See Also:

Reducing Lock Timeout for more information about specifying a value in the
oraodbc.ini file

5.4 Linking with odbc32.lib (Windows) or libodbc.so (UNIX)
For Windows platforms, when you link your program, you must link it with the import
library odbc32.lib.

For UNIX platforms, an ODBC application must be linked to libodbc.so.

Chapter 5
SQLDriverConnect Implementation

5-4

5.5 Information about ROWID
The ODBC SQLSpecialColumns function returns information about the columns in a table.
When used with the Oracle Database ODBC driver, it returns information about the Oracle
ROWIDs associated with an Oracle table.

5.6 ROWID in a WHERE Clause
ROWIDs can be used in the WHERE clause of an SQL statement. However, the ROWID value must
be presented in a parameter marker.

5.7 Enabling Result Sets
Oracle reference cursors (Result Sets) allow an application to retrieve data using stored
procedures and stored functions. The following information identifies how to use reference
cursors to enable Result Sets through ODBC.

• The ODBC syntax for calling stored procedures must be used. Native PL/SQL is not
supported through ODBC. The following identifies how to call the procedure or function
without a package and within a package. The package name, in this case, is RSET.

Procedure call:
{CALL Example1(?)}
{CALL RSET.Example1(?)}
Function Call:
{? = CALL Example1(?)}
{? = CALL RSET.Example1(?)}

• The PL/SQL reference cursor parameters are omitted when calling the procedure. For
example, assume that the procedure Example2 is defined to have four parameters.
Parameters 1 and 3 are reference cursor parameters and parameters 2 and 4 are
character strings. The call is specified as:

{CALL RSET.Example2("Literal 1", "Literal 2")}
The following example application shows how to return a Result Set using the Oracle
Database ODBC driver:

/*
 * Sample Application using Oracle reference cursors via ODBC
 *
 * Assumptions:
 *
 * 1) Oracle Sample database is present with data loaded for the EMP table.
 * 2) Two fields are referenced from the EMP table ename and mgr.
 * 3) A data source has been setup to access the sample database.
 *
 * Program Description:
 *
 * Abstract:
 *
 * This program demonstrates how to return result sets using
 * Oracle stored procedures
 *
 * Details:
 *
 * This program:

Chapter 5
Information about ROWID

5-5

 * Creates an ODBC connection to the database.
 * Creates a Packaged Procedure containing two result sets.
 * Executes the procedure and retrieves the data from both result sets.
 * Displays the data to the user.
 * Deletes the package then logs the user out of the database.
 *
 *
 * The following is the actual PL/SQL this code generates to
 * create the stored procedures.
 *
 * DROP PACKAGE ODBCRefCur;
 *
 * CREATE PACKAGE ODBCRefCur AS
 * TYPE ename_cur IS REF CURSOR;
 * TYPE mgr_cur IS REF CURSOR;
 * PROCEDURE EmpCurs(Ename IN OUT ename_cur, Mgr IN OUT mgr_cur, pjob IN
VARCHAR2);
 * END;
 *
 * CREATE or REPLACE PACKAGE BODY ODBCRefCur AS
 * PROCEDURE EmpCurs(Ename IN OUT ename_cur, Mgr IN OUT mgr_cur, pjob IN
VARCHAR2)
 * AS
 * BEGIN
 * IF NOT Ename%ISOPEN
 * THEN
 * OPEN Ename for SELECT ename from emp;
 * END IF;
 * IF NOT Mgr%ISOPEN
 * THEN
 * OPEN Mgr for SELECT mgr from emp where job = pjob;
 * END IF;
 * END;
 * END;
 *
 */

/* Include Files */
#ifdef WIN32
 #include <windows.h>
#endif
#include <stdio.h>
#include <sql.h>
#include <sqlext.h>

/* Defines */
#define JOB_LEN 9
#define DATA_LEN 100
#define SQL_STMT_LEN 500

/* Procedures */
void DisplayError(SWORD HandleType, SQLHANDLE hHandle, char *Module);

/* Main Program */
int main()
{
 SQLHENV hEnv;
 SQLHDBC hDbc;
 SQLHSTMT hStmt;
 SQLRETURN rc;
 char *DefUserName ="scott";

Chapter 5
Enabling Result Sets

5-6

 char *DefPassWord ="tiger";
 SQLCHAR ServerName[DATA_LEN];
 SQLCHAR *pServerName=ServerName;
 SQLCHAR UserName[DATA_LEN];
 SQLCHAR *pUserName=UserName;
 SQLCHAR PassWord[DATA_LEN];
 SQLCHAR *pPassWord=PassWord;
 char Data[DATA_LEN];
 SQLINTEGER DataLen;
 char error[DATA_LEN];
 char *charptr;
 SQLCHAR SqlStmt[SQL_STMT_LEN];
 SQLCHAR *pSqlStmt=SqlStmt;
 char *pSalesMan = "SALESMAN";
 SQLINTEGER sqlnts=SQL_NTS;

 /* Allocate the Environment Handle */
 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
 if (rc != SQL_SUCCESS)
 {
 printf("Cannot Allocate Environment Handle/n");
 printf("/nHit Return to Exit/n");
 charptr = gets ((char *)error);
 exit(1);
 }

 /* Set the ODBC Version */
 rc = SQLSetEnvAttr(hEnv, SQL_ATTR_ODBC_VERSION, (void *)SQL_OV_ODBC3, 0);
 if (rc != SQL_SUCCESS)
 {
 printf("Cannot Set ODBC Version/n");
 printf("/nHit Return to Exit/n");
 charptr = gets((char *)error);
 exit(1);
 }

 /* Allocate the Connection handle */
 rc = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
 if (rc != SQL_SUCCESS)
 {
 printf("Cannot Allocate Connection Handle/n");
 printf("/nHit Return to Exit/n");
 charptr = gets((char*) error);
 exit(1);
 }

 /* Get User Information */
 lstrcpy((char*) pUserName, DefUserName);
 lstrcpy((char*) pPassWord, DefPassWord);

 /* Data Source name */
 printf("/nEnter the ODBC Data Source Name/n");
 charptr = gets((char*) ServerName);

 /* User Name */
 printf("/nEnter User Name Default [%s]/n", pUserName);
 charptr = gets((char*) UserName);
 if (*charptr == '/0')
 {
 lstrcpy((char*) pUserName, (char*) DefUserName);

Chapter 5
Enabling Result Sets

5-7

 }

 /* Password */
 printf ("/nEnter Password Default [%s]/n", pPassWord);
 charptr = gets((char*) PassWord);
 if (*charptr == '/0')
 {
 lstrcpy((char*) pPassWord, (char*) DefPassWord);
 }

 /* Connection to the database */
 rc = SQLConnect(hDbc, pServerName, (SQLSMALLINT) lstrlen((char *)pServerName),
pUserName,
 (SQLSMALLINT) lstrlen((char*)pUserName), pPassWord,
 (SQLSMALLINT) lstrlen((char *)pPassWord));
 if (rc != SQL_SUCCESS)
 {
 DisplayError(SQL_HANDLE_DBC, hDbc, "SQLConnect");
 }

 /* Allocate a Statement */
 rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);
 if (rc != SQL_SUCCESS)
 {
 printf("Cannot Allocate Statement Handle/n");
 printf("/nHit Return to Exit/n");
 charptr = gets((char *)error);
 exit(1);
 }

 /* Drop the Package */
 lstrcpy((char *) pSqlStmt, "DROP PACKAGE ODBCRefCur");
 rc = SQLExecDirect(hStmt, pSqlStmt, lstrlen((char *)pSqlStmt));

 /* Create the Package Header */
 lstrcpy((char *) pSqlStmt, "CREATE PACKAGE ODBCRefCur AS/n");
 lstrcat((char *) pSqlStmt, " TYPE ename_cur IS REF CURSOR;/n");
 lstrcat((char *) pSqlStmt, " TYPE mgr_cur IS REF CURSOR;/n");
 lstrcat((char *) pSqlStmt, " PROCEDURE EmpCurs (Ename IN OUT ename_cur,");
 lstrcat((char *) pSqlStmt, " Mgr IN OUT mgr_cur,pjob IN VARCHAR2);/n/n");
 lstrcat((char *) pSqlStmt, "END;/n");

 rc = SQLExecDirect(hStmt, pSqlStmt, lstrlen((char *)pSqlStmt));
 if (rc != SQL_SUCCESS)
 {
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLExecDirect");
 }

 /* Create the Package Body */
 lstrcpy((char *) pSqlStmt, "CREATE PACKAGE BODY ODBCRefCur AS/n");
 lstrcat((char *) pSqlStmt, " PROCEDURE EmpCurs (Ename IN OUT ename_cur,");
 lstrcat((char *) pSqlStmt, " Mgr IN OUT mgr_cur, pjob IN VARCHAR2)/n");
 lstrcat((char *) pSqlStmt, " AS/n");
 lstrcat((char *) pSqlStmt, " BEGIN/n");
 lstrcat((char *) pSqlStmt, " IF NOT Ename%ISOPEN/n");
 lstrcat((char *) pSqlStmt, " THEN/n");
 lstrcat((char *) pSqlStmt, " OPEN Ename for SELECT ename from emp;/n");
 lstrcat((char *) pSqlStmt, " END IF;/n/n");
 lstrcat((char *) pSqlStmt, " IF NOT Mgr%ISOPEN/n THEN/n");
 lstrcat((char *) pSqlStmt, " OPEN Mgr for SELECT mgr from emp where job =
pjob;/n");

Chapter 5
Enabling Result Sets

5-8

 lstrcat((char *) pSqlStmt, " END IF;/n");
 lstrcat((char *) pSqlStmt, " END;/n");

 lstrcat((char *) pSqlStmt, "END;/n");

 rc = SQLExecDirect(hStmt, pSqlStmt, lstrlen((char *)pSqlStmt));
 if(rc != SQL_SUCCESS)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLExecDirect");

 /* Bind the Parameter */
 rc = SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, JOB_LEN, 0,
pSalesMan, 0, &sqlnts);

 /* Call the Store Procedure which executes the Result Sets */
 lstrcpy((char *) pSqlStmt, "{CALL ODBCRefCur.EmpCurs(?)}");

 rc = SQLExecDirect(hStmt, pSqlStmt, lstrlen((char *)pSqlStmt));
 if(rc != SQL_SUCCESS)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLExecDirect");

 /* Bind the Data */
 rc = SQLBindCol(hStmt, 1, SQL_C_CHAR, Data, sizeof(Data), &DataLen);
 if(rc != SQL_SUCCESS)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLBindCol");

 /* Get the data for Result Set 1 */
 printf("/nEmployee Names/n/n");

 while(rc == SQL_SUCCESS)
 {
 rc = SQLFetch(hStmt);
 if(rc == SQL_SUCCESS)
 printf("%s/n", Data);
 else
 if(rc != SQL_NO_DATA)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLFetch");
 }

 printf("/nFirst Result Set - Hit Return to Continue/n");
 charptr = gets ((char *)error);

 /* Get the Next Result Set */
 rc = SQLMoreResults(hStmt);
 if(rc != SQL_SUCCESS)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLMoreResults");

 /* Get the data for Result Set 2 */
 printf("/nManagers/n/n");
 while (rc == SQL_SUCCESS)
 {
 rc = SQLFetch(hStmt);
 if(rc == SQL_SUCCESS)
 printf("%s/n", Data);
 else
 if (rc != SQL_NO_DATA)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLFetch");
 }

 printf("/nSecond Result Set - Hit Return to Continue/n");
 charptr = gets((char *)error);

Chapter 5
Enabling Result Sets

5-9

 /* Should Be No More Results Sets */
 rc = SQLMoreResults(hStmt);
 if (rc != SQL_NO_DATA)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLMoreResults");

 /* Drop the Package */
 lstrcpy((char *)pSqlStmt, "DROP PACKAGE ODBCRefCur");
 rc = SQLExecDirect(hStmt, pSqlStmt, lstrlen((char *)pSqlStmt));

 /* Free handles close connections to the database */
 SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
 SQLDisconnect(hDbc);
 SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
 SQLFreeHandle(SQL_HANDLE_ENV, hEnv);

 printf("/nAll Done - Hit Return to Exit/n");
 charptr = gets ((char *)error);
 return(0);
}

/* Display Error Messages */
void DisplayError(SWORD HandleType, SQLHANDLE hHandle, char *Module)
{
 SQLCHAR MessageText[255];
 SQLCHAR SQLState[80];
 SQLRETURN rc=SQL_SUCCESS;
 LONG NativeError;
 SWORD RetLen;
 SQLCHAR error[25];
 char *charptr;

 rc = SQLGetDiagRec(HandleType, hHandle, 1, SQLState, &NativeError,
MessageText, 255, &RetLen);
 printf("Failure Calling %s/n", Module);
 if (rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)
 {
 printf("/t/t/t State: %s/n", SQLState);
 printf("/t/t/t Native Error: %d/n", NativeError);
 printf("/t/t/t Error Message: %s/n", MessageText);
 }

 printf("/nHit Return to Exit/n");
 charptr = gets ((char *)error);
 exit(1);
}

5.8 Enabling EXEC Syntax
If the syntax of your SQL Server EXEC statement can be readily translated to an
equivalent Oracle procedure call without change, the Oracle Database ODBC driver
can translate it, if you enable this option.

The complete name of a SQL Server procedure consists of up to four identifiers:

• server name

• database name

• owner name

Chapter 5
Enabling EXEC Syntax

5-10

• procedure name

The format for the name is:

[[[server.][database].][owner_name].]procedure_name

During the migration of the SQL Server database to Oracle, the definition of each SQL Server
procedure (or function) is converted to its equivalent Oracle syntax and is defined in a
schema in Oracle. Migrated procedures are often reorganized (and created in schemas) in
one of these ways:

• All procedures are migrated to one schema (the default option).

• All procedures defined in one SQL Server database are migrated to the schema named
with that database name.

• All procedures owned by one user are migrated to the schema named with that user's
name.

To support these three ways of organizing migrated procedures, you can specify one of these
schema name options for translating procedure names. Object names in the translated
Oracle procedure call are not case-sensitive.

5.9 Enabling Event Notification for Connection Failures in an
Oracle RAC Environment

If the SQL_ORCLATTR_FAILOVER_CALLBACK and SQL_ORCLATTR_FAILOVER_HANDLE attributes of
the SQLSetConnectAttr function are set when a connection failure occurs in an Oracle Real
Application Clusters (Oracle RAC) Database environment, event notification is enabled. Both
attributes are set using the SQLSetConnectAttr function. The symbols for the new attributes
are defined in the file sqora.h.

The SQL_ORCLATTR_FAILOVER_CALLBACK attribute specifies the address of a routine to call
when a failure event takes place.

The SQL_ORCLATTR_FAILOVER_HANDLE attribute specifies a context handle that is passed as a
parameter in the callback routine. This attribute is necessary for the ODBC application to
determine which connection the failure event is taking place on.

The function prototype for the callback routine is:

void failover_callback(void *handle, SQLINTEGER fo_code)

The 'handle' parameter is the value that was set by the SQL_ORCLATTR_FAILOVER_HANDLE
attribute. Null is returned if the attribute has not been set.

The fo_code parameter identifies the failure event that is taking place. The failure events map
directly to the events defined in the OCI programming interface. The list of possible events is:

• ODBC_FO_BEGIN
• ODBC_FO_ERROR
• ODBC_FO_ABORT
• ODBC_FO_REAUTH
• ODBC_FO_END
The following is a sample program that demonstrates, using this feature:

Chapter 5
Enabling Event Notification for Connection Failures in an Oracle RAC Environment

5-11

/*
 NAME
 ODBCCallbackTest

 DESCRIPTION
 Simple program to demonstrate the connection failover callback feature.

 PUBLIC FUNCTION(S)
 main

 PRIVATE FUNCTION(S)

 NOTES

 Command Line: ODBCCallbackTest filename [odbc-driver]

*/

#include <windows.h>
#include <tchar.h>
#include <malloc.h>
#include <stdio.h>
#include <string.h>
#include <sql.h>
#include <sqlext.h>
#include "sqora.h"

/*
** Function Prototypes
*/
void display_errors(SQLSMALLINT HandleType, SQLHANDLE Handle);
void failover_callback(void *Handle, SQLINTEGER fo_code);

/*
** Macros
*/
#define ODBC_STS_CHECK(sts) \
 if (sts != SQL_SUCCESS) \
{ \
 display_errors(SQL_HANDLE_ENV, hEnv); \
 display_errors(SQL_HANDLE_DBC, hDbc); \
 display_errors(SQL_HANDLE_STMT, hStmt); \
 return FALSE; \
}

/*
** ODBC Handles
*/
SQLHENV *hEnv = NULL; // ODBC Environment Handle
SQLHANDLE *hDbc = NULL; // ODBC Connection Handle
SQLHANDLE *hStmt = NULL; // ODBC Statement Handle

/*
** Connection Information
*/
TCHAR *dsn = _T("odbctest");
TCHAR *uid = _T("scott");
TCHAR *pwd = _T("tiger");
TCHAR *szSelect = _T("select * from emp");

/*

Chapter 5
Enabling Event Notification for Connection Failures in an Oracle RAC Environment

5-12

** MAIN Routine
*/
main(int argc, char **argv)
{
 SQLRETURN rc;

 /*
 ** Allocate handles
 */
 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, (SQLHANDLE *)&hEnv);
 ODBC_STS_CHECK(rc)

 rc = SQLSetEnvAttr(hEnv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER)SQL_OV_ODBC3, 0);
 ODBC_STS_CHECK(rc);

 rc = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, (SQLHANDLE *)&hDbc);
 ODBC_STS_CHECK(rc);

 /*
 ** Connect to the database
 */
 rc = SQLConnect(hDbc, dsn, (SQLSMALLINT)_tcslen(dsn),
 uid, (SQLSMALLINT)_tcslen(uid),
 pwd, (SQLSMALLINT)_tcslen(pwd));
 ODBC_STS_CHECK(rc);

 /*
 ** Set the connection failover attributes
 */
 rc = SQLSetConnectAttr(hDbc, SQL_ORCLATTR_FAILOVER_CALLBACK, &failover_callback, 0);
 ODBC_STS_CHECK(rc);

 rc = SQLSetConnectAttr(hDbc, SQL_ORCLATTR_FAILOVER_HANDLE, hDbc, 0);
 ODBC_STS_CHECK(rc);

 /*
 ** Allocate the statement handle
 */
 rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, (SQLHANDLE *)&hStmt);
 ODBC_STS_CHECK(rc);

 /*
 ** Wait for connection failovers
 */
 while (TRUE)
 {
 Sleep(5000);
 rc = SQLExecDirect(hStmt,szSelect, _tcslen(szSelect));
 ODBC_STS_CHECK(rc);

 rc = SQLFreeStmt(hStmt, SQL_CLOSE);
 ODBC_STS_CHECK(rc);
 }

 /*
 ** Free up the handles and close the connection
 */
 rc = SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
 ODBC_STS_CHECK(rc);

 rc = SQLDisconnect(hDbc);

Chapter 5
Enabling Event Notification for Connection Failures in an Oracle RAC Environment

5-13

 ODBC_STS_CHECK(rc);

 rc = SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
 ODBC_STS_CHECK(rc);

 rc = SQLFreeHandle(SQL_HANDLE_ENV, hEnv);
 ODBC_STS_CHECK(rc);

 return TRUE;
}

/*
** Failover Callback Routine
*/
void failover_callback(void *Handle, SQLINTEGER fo_code)
{
 switch(fo_code)
 {
 case ODBC_FO_BEGIN:
 printf("ODBC_FO_BEGIN recevied\n");
 break;

 case ODBC_FO_ERROR:
 printf("ODBC_FO_ERROR recevied\n");
 break;

 case ODBC_FO_ABORT:
 printf("ODBC_FO_ABORT recevied\n");
 break;

 case ODBC_FO_REAUTH:
 printf("ODBC_FO_REAUTH recevied\n");
 break;

 case ODBC_FO_END:
 printf("ODBC_FO_END recevied\n");
 break;

 default:
 printf("Invalid or unknown ODBC failover code recevied\n");
 break;
 }
 return;

}

/*
** Retrieve the errors associated with the handle passed
** and display them.
*/
void display_errors(SQLSMALLINT HandleType, SQLHANDLE Handle)
{
 SQLTCHAR MessageText[256];
 SQLTCHAR SqlState[5+1];
 SQLSMALLINT i=1;
 SQLINTEGER NativeError;
 SQLSMALLINT TextLength;
 SQLRETURN sts = SQL_SUCCESS;

 if (Handle == NULL) return;

Chapter 5
Enabling Event Notification for Connection Failures in an Oracle RAC Environment

5-14

 /* Make sure all SQLState text is null terminated */
 SqlState[5] = '\0';

 /*
 ** Fetch and display all diagnostic records that exist for this handle
 */
 while (sts == SQL_SUCCESS)
 {
 NativeError = 0;
 TextLength = 0;

 sts = SQLGetDiagRec(HandleType, Handle, i, SqlState, &NativeError, (SQLTCHAR
*)&MessageText, sizeof(MessageText), &TextLength);
 if (sts == SQL_SUCCESS)
 {
 printf("[%s]%s\n", SqlState, MessageText);
 if (NativeError != 0)
 printf("Native Error Code: %d\n", NativeError);
 i++;
 }
 }
 return;
}

5.10 Using Implicit Results Feature through ODBC
Use this option when you migrate any third party ODBC application to Oracle Database and
you want to use implicit results functionality as supported by the previous vendor. The Oracle
Database ODBC driver supports implicit results with stored procedures or an anonymous
PL/SQL block. For the current release, implicit results are returned only for SELECT
statements.

The following code example shows an example ODBC test case using an anonymous SQL
script for implicit results.

const char *query1="declare \
 c1 sys_refcursor; \
 c2 sys_refcursor; \
 begin \
 open c1 for select empno,ename from emp where rownum<=3; \
 dbms_sql.return_result(c1); \
 open c2 for select empno,ename from emp where rownum<=3; \
 dbms_sql.return_result(c2); end; ";

int main()
{
 ...
 ...
 //Allocate all required handles and establish a connection to the database.

 //Prepare and execute the above anonymous PL/SQL block
 SQLPrepare (hstmt, (SQLCHAR *) query1, SQL_NTS);
 SQLExecute(hstmt);

 //Bind the columns for the results from the first SELECT statement in an anonymous
block.
 SQLBindCol (hstmt, 1, SQL_C_ULONG, &eno, 0, &jind);
 SQLBindCol (hstmt, 2, SQL_C_CHAR, empname, sizeof (empname),&enind);

 //Fetch implicit results through the SQLFetch() call.

Chapter 5
Using Implicit Results Feature through ODBC

5-15

 while((retCode = SQLFetch(hstmt)) != SQL_NO_DATA)
 {
 //Do whatever you want to do with the data.
 }

 retCode = SQLMoreResults(hstmt);

 if(retCode == SQL_SUCCESS)
 {
 printf("SQLMoreResults returned with SQL_SUCCESS\n");

 //Bind the columns for the results from the second SELECT statement in an
anonymous block.
 SQLBindCol (hstmt, 1, SQL_C_ULONG, &eno, 0, &jind);
 SQLBindCol (hstmt, 2, SQL_C_CHAR, empname, sizeof (empname),&enind);

 //Fetch implicit results through the SQLFetch() call.
 while((retCode = SQLFetch(hstmt)) != SQL_NO_DATA)
 {
 //Do whatever you want to do with data.
 }
 }
}

5.11 About Supporting Oracle TIMESTAMP WITH TIME
ZONE and TIMESTAMP WITH LOCAL TIME ZONE Column
Type in ODBC

The time zone is dictated by the system variable ORA_SDTZ. The system variable can
be set to 'OS_TZ', 'DB_TZ', or a valid time zone value. When ORA_SDTZ is set to
'OS_TZ', the operating system time zone is used. If it is set to 'DB_TZ', the default
time zone set in the database is used.

By default, when ORA_SDTZ is not set, the operating system time zone is used.

Note:

When setting the ORA_SDTZ variable in a Microsoft Windows environment -- in
the Registry, among system environment variables, or in a command prompt
window -- do not enclose the time zone value in quotes.

See Also:

Oracle Database Globalization Support Guide for information about Datetime
data types and time zone support

Chapter 5
About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC

5-16

https://docs.oracle.com/en/database/oracle/oracle-database/18/nlspg/datetime-data-types-and-time-zone-support.html#GUID-7A1BA319-767A-43CC-A579-4DAC7063B243

Fetching Data from These Time Zone Columns Using the Variable of ODBC Data Type
TIMESTAMP_STRUCT

The following example demonstrates how to fetch data from TIMESTAMP WITH TIME ZONE and
TIMESTAMP WITH LOCAL TIME ZONE column using the variable of ODBC datatype
TIMESTAMP_STRUCT.

Example 5-1 How to Fetch Data from TIMESTAMP WITH TIME ZONE and TIMESTAMP
WITH LOCAL TIME ZONE Columns Using the Variable of ODBC Data Type
TIMESTAMP_STRUCT

int main()
{
...
...
 /* TSTAB table's DDL statement:
 * ---------------------------
 * CREATE TABLE TSTAB (COL_TSTZ TIMESTAMP WITH TIME ZONE,
 * COL_TSLTZ TIMESTAMP WITH LOCAL TIME ZONE);
 *
 * Insert statement:
 * ----------------
 * Sample #1:
 * ---------
 * INSERT INTO TSTAB VALUES (TIMESTAMP '2010-03-13 03:47:30.123456 America/
Los_Angeles'
 * TIMESTAMP '2010-04-14 04:47:30.123456 America/
Los_Angeles');
 *
 * Sample #2:
 * ---------
 * INSERT INTO TSTAB VALUES ('22-NOV-1963 12:30:00.000000 PM',
 * '24-NOV-1974 02:30:00.000000 PM');
 *
 * Refer Oracle Database documentations to know more details about
TIMESTAMP
 * WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE columns.
 */
 SQLCHAR sqlSelQuery[] = "SELECT COL_TSTZ, COL_TSLTZ FROM TSTAB";
 TIMESTAMP_STRUCT timestampcol1;
 TIMESTAMP_STRUCT timestampcol2;
...
...
 /* Allocate the ODBC statement handle. */
 SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 /* Execute the statement sqlSelQuery. */
 SQLExecDirect(hstmt, sqlSelQuery, SQL_NTS);

 /* Bind the variable to read the value from the TIMESTAMP WITH TIME ZONE
column. */
 SQLBindCol(hstmt, 1, SQL_C_TIMESTAMP, ×tampcol1,
sizeof(timestampcol1), NULL);

Chapter 5
About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC

5-17

 /* Bind the variable to read the value from the TIMESTAMP WITH LOCAL
TIME ZONE column. */
 SQLBindCol(hstmt, 2, SQL_C_TIMESTAMP, ×tampcol2,
sizeof(timestampcol2), NULL);
...
...
 /* Fetch data from the TSTAB table. */
 retcode = SQLFetch(hstmt);
 /* Values of column COL_TSTZ and COL_TSLTZ are available in
variables
 * timestampcol1 and timestampcol2 respectively. Refer to Microsoft
ODBC
 * documentation for more information about data type
TIMESTAMP_STRUCT. */

...

...
 /* Close the statement. */
 SQLFreeStmt(hstmt, SQL_CLOSE);
 /* Free the statement handle. */
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt); }

Example 5-2 How to Insert Data into TIMESTAMP WITH TIME ZONE and
TIMESTAMP WITH LOCAL TIME ZONE Columns

int main()
{
...
...
 SQLCHAR sqlInsQuery[] = "INSERT INTO TSTAB VALUES (?, ?)";
 TIMESTAMP_STRUCT timestampcol1;
 TIMESTAMP_STRUCT timestampcol2;
...
...
 /* Input the value for column COL_TSTZ in table TSTAB. */
 timestampcol1.year = 2000;
 timestampcol1.month = 1;
 timestampcol1.day = 1;
 timestampcol1.hour = 0;
 timestampcol1.minute = 0;
 timestampcol1.second = 1;
 timestampcol1.fraction = 1000;

 /* Input the value for column COL_TSLTZ in table TSTAB. */
 timestampcol1.year = 2012;
 timestampcol1.month = 2;
 timestampcol1.day = 5;
 timestampcol1.hour = 10;
 timestampcol1.minute = 30;
 timestampcol1.second = 10;
 timestampcol1.fraction = 1000;
...
...
 /* Allocate the ODBC statement handle. */

Chapter 5
About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC

5-18

 SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
...
...
 /* Bind the input value for column COL_TSTZ. */
 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_TIMESTAMP,
SQL_TIMESTAMP,
 0, 0, ×tampcol1, sizeof(timestampcol1), NULL);

 /* Bind the input value for column COL_TSLTZ. */
 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_TIMESTAMP,
SQL_TIMESTAMP,
 0, 0, ×tampcol2, sizeof(timestampcol2), NULL);
...
...
 /* Execute the statement sqlInsQuery. */
 SQLExecDirect(hstmt, sqlInsQuery, SQL_NTS);

 /* Close the statement. */
 SQLFreeStmt(hstmt, SQL_CLOSE);
 /* Free the statement handle. */
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
...
...
}

5.12 About the Effect of Setting ORA_SDTZ in Oracle Clients
(OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

Describes the effect of setting the system variable ORA_SDTZ in Oracle Clients.

The time zone is dictated by the system variable ORA_SDTZ.

The following sections describe the effects of not setting and setting the system variable
ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and others). The
examples in these sections are run in India (GMT+5:30) time zone.

See Also:

Oracle Database Globalization Support Guide for more information about setting
the session time zone

Environment Setup

To set up the environment, create the following table with TSLTZ (TIMESTAMP WITH LOCAL
TIME ZONE) column and insert the value of 01/01/2016 00:00 GMT into the TSLTZ column
as follows:

Chapter 5
About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

5-19

https://docs.oracle.com/en/database/oracle/oracle-database/18/nlspg/datetime-data-types-and-time-zone-support.html#GUID-578B5988-31E2-4D0F-ACEA-95C827F6012B

Example 5-3 How to Set Up the Environment

The following example sets up the environment for the example sections that follow.

SQL> create table timezone_demo(col1 TIMESTAMP WITH LOCAL TIME ZONE);

Table created.

SQL> INSERT INTO TIMEZONE_DEMO VALUES(TIMESTAMP '2016-01-01
00:00:00.000000 ETC/GREENWICH');

1 row created.

When ORA_SDTZ Is Not Set in the Environment

When ORA_SDTZ is not set in the environment, then the operating system (OS) time
zone setting is taken as the default time zone for Oracle Clients. For example:

Example 5-4 What Happens When ORA_SDTZ Is Not Set

C:\Users\example.ORADEV>set ORA_SDTZ=

C:\Users\example.ORADEV>sqlplus scott/password@//
host01.example.com:1521/ORCL12C1

SQL*Plus: Release 12.1.0.2.0 Production on Fri Apr 22 12:03:52 2016

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Last Successful login time: Fri Apr 22 2016 11:47:12 +05:30

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit
Production
With the Partitioning, Advanced Analytics and Real Application Testing
options

SQL> select sessiontimezone from dual;

SESSIONTIMEZONE

+05:30

SQL> select * from timezone_demo;

COL1

01-JAN-16 05.30.00.000000 AM

Chapter 5
About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

5-20

Setting ORA_SDTZ to the Operating System (OS) Timezone in the Environment

When ORA_SDTZ is set to the operating system (OS) Time zone, the Oracle Client’s user
session is set to the OS time zone setting. You can either unset it in the environment or set
ORA_SDTZ to OS_TZ. For example:

Example 5-5 What Happens When ORA_SDTZ Is Set to the Operating System (OS)
Timezone

C:\Users\example.ORADEV>set ORA_SDTZ=OS_TZ

C:\Users\example.ORADEV>sqlplus scott/password@//host01.example.com:1521/
ORCL12C1

SQL*Plus: Release 12.1.0.2.0 Production on Fri Apr 22 11:42:36 2016

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Last Successful login time: Fri Apr 22 2016 11:42:09 +05:30

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, Advanced Analytics and Real Application Testing
options

SQL> select sessiontimezone from dual;

SESSIONTIMEZONE

+05:30

SQL> select * from timezone_demo;

COL1

01-JAN-16 05.30.00.000000 AM

Setting ORA_SDTZ to a Specific Time Zone in the Environment

The Oracle Client can be set to retrieve the time stamp value adjusted to a specific time zone
(for example, Helsinki Time Zone). To do this, you can set ORA_SDTZ to the Oracle Time Zone
region name for the corresponding time zone (Oracle Time Zone Region Name for Helsinki
Time Zone is Europe/Helsinki). For example:

Example 5-6 What Happens When ORA_SDTZ Is Set to a Specific Time Zone

C:\Users\example.ORADEV>set ORA_SDTZ=Europe/Helsinki

C:\Users\example.ORADEV>sqlplus scott/password@//host01.example.com:1521/
ORCL12C1

SQL*Plus: Release 12.1.0.2.0 Production on Fri Apr 22 11:47:10 2016

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Chapter 5
About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

5-21

Last Successful login time: Fri Apr 22 2016 09:16:18 EUROPE/HELSINKI
EEST

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit
Production
With the Partitioning, Advanced Analytics and Real Application Testing
options
SQL> select sessiontimezone from dual;

SESSIONTIMEZONE

Europe/Helsinki

SQL> select * from timezone_demo;

COL1

01-JAN-16 02.00.00.000000 AM

Chapter 5
About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

5-22

6
Supported Functionality

This chapter is intended for use by the programmers and provides information about the
additional functionality that the Oracle Database ODBC driver supports.

Topics:

• API Conformance

• Implementation of ODBC API Functions

• Implementation of the ODBC SQL Syntax

• Implementation of Data Types (Programming)

6.1 API Conformance
The Oracle Database ODBC driver release 9.2.0.0.0, and higher, support all Core, Level 2,
and Level 1 functions.

Also, the Oracle Database ODBC driver release 9.2.0.0.0, and higher, support translation
DLLs.

The following topics describe the ODBC API functions implemented by the Oracle Database
ODBC driver.

See Also:

• Error Messages for advanced users

• Implementation of ODBC API Functions for programmers

6.2 Implementation of ODBC API Functions
The following table describes how the Oracle Database ODBC driver implements specific
functions:

Table 6-1 How the Oracle Database ODBC Driver Implements Specific Functions

Function Description

SQLConnect SQLConnect requires only a DBQ, user ID, and password.

SQLDriverConnect SQLDriverConnect uses the DSN, DBQ, UID, and PWD keywords.

SQLMoreResults Implements ODBC support for implicit results. This is a new API
implemented for Oracle Database 12c Release 1 (12.1.0.1). See
SQLMoreResults Function for more information.

6-1

Table 6-1 (Cont.) How the Oracle Database ODBC Driver Implements Specific
Functions

Function Description

SQLSpecialColumns If SQLSpecialColumns is called with the SQL_BEST_ROWID attribute,
it returns the rowid column.

SQLProcedures
andSQLProcedureColumns

See the information that follows.

All catalog functions If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE, a
string argument is treated as an identifier argument, and its case is
not significant. In this case, the underscore ("_") and the percent sign
("%") are treated as the actual character, not as a search pattern
character. On the other hand, if this attribute is SQL_FALSE, it is either
an ordinary argument or a pattern value argument and is treated
literally, and its case is significant.

6.3 Implementation of the ODBC SQL Syntax
If a comparison predicate has a parameter marker as the second expression in the
comparison and the value of that parameter is SQL_NULL_DATA with SQLBindParameter,
the comparison fails. This is consistent with the null predicate syntax in ODBC SQL.

6.4 Implementation of Data Types (Programming)
For programmers, the noteworthy part of the implementation of the data types
concerns the CHAR, VARCHAR, and VARCHAR2 data types.

For an fSqlType value of SQL_VARCHAR, SQLGetTypeInfo returns the Oracle database
data type VARCHAR2. For an fSqlType value of SQL_CHAR, SQLGetTypeInfo returns the
Oracle database data type CHAR.

Chapter 6
Implementation of the ODBC SQL Syntax

6-2

7
Unicode Support

This chapter provides information about the Unicode support in the Oracle Database ODBC
driver.

Topics:

• Unicode Support within the ODBC Environment

• Unicode Support in ODBC API

• Unicode Functions in the Driver Manager

• SQLGetData Performance

• Unicode Samples

7.1 Unicode Support within the ODBC Environment
The Microsoft or unixODBC ODBC Driver Manager (Driver Manager) makes all ODBC
drivers, regardless of if they support Unicode, appear as if they are Unicode compliant. This
allows ODBC applications to be written independent of the Unicode capabilities of underlying
ODBC drivers.

The extent to which the Driver Manager can emulate Unicode support for ANSI ODBC drivers
is limited by the conversions possible between the Unicode data and the local code page.
Data loss is possible when the Driver Manager is converting from Unicode to the local code
page. Full Unicode support is not possible unless the underlying ODBC driver supports
Unicode. the Oracle Database ODBC driver provides full Unicode support.

7.2 Unicode Support in ODBC API
The ODBC API supports both Unicode and ANSI entry points using the "W" and "A" suffix
convention. An ODBC application developer need not explicitly call entry points with the
suffix. An ODBC application that is compiled with the UNICODE and _UNICODE
preprocessor definitions generates the appropriate calls. For example, a call to SQLPrepare is
compiled as SQLPrepareW.

The C data type, SQL_C_WCHAR, was added to the ODBC interface to allow applications to
specify that an input parameter is encoded as Unicode or to request column data returned as
Unicode. The macro SQL_C_TCHAR is useful for applications that must be built as both Unicode
and ANSI. The SQL_C_TCHAR macro compiles as SQL_C_WCHAR for Unicode applications and as
SQL_C_CHAR for ANSI applications.

The SQL data types: SQL_WCHAR, SQL_WVARCHAR, and SQL_WLONGVARCHAR have been added to
the ODBC interface to represent columns defined in a table as Unicode. Potentially, these
values are returned from calls to SQLDescribeCol, SQLColAttribute, SQLColumns, and
SQLProcedureColumns.

7-1

Unicode encoding is supported for SQL column types NCHAR, NVARCHAR2, and NCLOB.
Additionally, Unicode encoding is supported for SQL column types CHAR and VARCHAR2
if the character semantics are specified in the column definition.

The ODBC driver supports these SQL column types and maps them to ODBC SQL
data types.

The following table lists the supported SQL data types and the equivalent ODBC SQL
data type.

Table 7-1 Supported SQL Data Types and the Equivalent ODBC SQL Data Type

SQL Data Types ODBC SQL Data Types

CHAR SQL_CHAR or SQL_WCHAR 1

VARCHAR2 SQL_VARCHAR or SQL_WVARCHAR 2

NCHAR SQL_WCHAR
NVARCHAR2 SQL_WVARCHAR
NCLOB SQL_WLONGVARCHAR

1 CHAR maps to SQL_WCHAR if the character semantics were specified in the column definition and if the
character set for the database is Unicode.

2 VARCHAR2 maps to SQL_WVARCHAR if the character semantics were specified in the column definition
and if the character set for the database is Unicode.

7.3 Unicode Functions in the Driver Manager
The Driver Manager (DM) performs the following functions when it detects that the
underlying ODBC driver does not support Unicode:

• The DM converts Unicode function calls to ANSI function calls before calling the
ANSI ODBC driver. String arguments are converted from Unicode to the local code
page. For example, a call to SQLPrepareW is converted to call SQLPrepare. The text
of the SQL statement parameter is converted from Unicode to the local code page.

• The DM converts return parameters that are character data from the local code
page to Unicode. For example, returning the column name through
SQLColAttribute.

• The DM converts data from the local code page to Unicode for columns bound as
SQL_C_WCHAR.

• The DM converts data from Unicode to the local code page for input parameters
bound as SQL_C_WCHAR.

7.4 SQLGetData Performance
The SQLGetData function allows an ODBC application to specify the data type to
receive a column as after the data has been fetched. OCI requires the Oracle
Database ODBC driver to specify the data type before it is fetched. In this case, the
Oracle Database ODBC driver uses the knowledge it has about the data type of the
column as defined in the database to determine how to best default to fetching the
column through OCI.

Chapter 7
Unicode Functions in the Driver Manager

7-2

If a column that contains character data is not bound by SQLBindCol, the Oracle Database
ODBC driver must determine if it must fetch the column as Unicode or as the local code
page. The driver could default to receiving the column as Unicode, however, this may result
in as many as two unnecessary conversions. For example, if the data were encoded in the
database as ANSI, there would be an ANSI to Unicode conversion to fetch the data into the
Oracle Database ODBC driver. If the ODBC application then requested the data as
SQL_C_CHAR, there would be an additional conversion to revert the data back to its original
encoding.

The default encoding of the Oracle client is used when fetching data. However, an ODBC
application can overwrite this default and fetch the data as Unicode by binding the column or
the parameter as the WCHAR data type.

7.5 Unicode Samples
As the Oracle Database ODBC driver itself was implemented using TCHAR macros, Oracle
recommends that ODBC application programs use TCHAR to take advantage of the driver.

The following links are program examples showing how to use TCHAR, which becomes the
WCHAR data type in case you compile with UNICODE and _UNICODE.

• Example 1: Connection to Database

• Example 2: Simple Retrieval

• Example 3: Retrieval Using SQLGetData (Binding After Fetch)

• Example 4: Simple Update

• Example 5: Update and Retrieval for Long Data (CLOB)

Example 1: Connection to Database

No difference other than specifying Unicode literals for SQLConnect.

SQLHENV envHnd;
SQLHDBC conHnd;
SQLHSTMT stmtHnd;
RETCODE rc;

rc = SQL_SUCCESS;

// ENV is allocated
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &envHnd);
// Connection Handle is allocated
rc = SQLAllocHandle(SQL_HANDLE_DBC, envHnd, &conHnd);
rc = SQLConnect(conHnd, _T("stpc19"), SQL_NTS, _T("scott"), SQL_NTS, _T("tiger"),
 SQL_NTS);
.
.
.
if (conHnd)
{
 SQLDisconnect(conHnd);
 SQLFreeHandle(SQL_HANDLE_DBC, conHnd);
}
if (envHnd)
 SQLFreeHandle(SQL_HANDLE_ENV, envHnd);

Chapter 7
Unicode Samples

7-3

Example 2: Simple Retrieval

The following example retrieves the employee names and the job titles from the EMP
table. With the exception that you must specify TCHAR compliant data to every ODBC
function, there is no difference to the ANSI case. If the case is a Unicode application,
you have to specify the length of the buffer to the BYTE length when you call
SQLBindCol (for example, sizeof(ename)).

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLExecDirect
** SQLBindCol
** SQLFetch
**
 */
static SQLTCHAR *sqlStmt = _T("SELECT ename, job FROM emp");
SQLTCHAR ename[50];
SQLTCHAR job[50];
SQLINTEGER enamelen, joblen;

_tprintf(_T("Retrieve ENAME and JOB using SQLBindCol 1.../n[%s]/n"), sqlStmt);

/* Step 1: Prepare and Execute */
rc = SQLExecDirect(stmtHnd, sqlStmt, SQL_NTS); /* select */
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 2: Bind Columns */
rc = SQLBindCol(stmtHnd, 1, SQL_C_TCHAR, ename, sizeof(ename), &enamelen);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLBindCol(stmtHnd, 2, SQL_C_TCHAR, job, sizeof(job), &joblen);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

do
{
 /* Step 3: Fetch Data */
 rc = SQLFetch(stmtHnd);
 if (rc == SQL_NO_DATA)
 break;
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);
 _tprintf(_T("ENAME = %s, JOB = %s/n"), ename, job);
} while (1);
_tprintf(_T("Finished Retrieval/n/n"));

Example 3: Retrieval Using SQLGetData (Binding After Fetch)

This example shows how to use SQLGetData. For those who are not familiar with
ODBC programming, the fetch is allowed before binding the data using SQLGetData,
unlike in an OCI program. There is no difference to the ANSI application in terms of
Unicode-specific issues.

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLExecDirect
** SQLFetch

Chapter 7
Unicode Samples

7-4

** SQLGetData
 */
static SQLTCHAR *sqlStmt = _T("SELECT ename,job FROM emp"); // same as Case 1.
SQLTCHAR ename[50];
SQLTCHAR job[50];

_tprintf(_T("Retrieve ENAME and JOB using SQLGetData.../n[%s]/n"), sqlStmt);
if (rc != SQL_SUCCESS)
{
 _tprintf(_T("Failed to allocate STMT/n"));
 goto exit2;
}

/* Step 1: Prepare and Execute */
rc = SQLExecDirect(stmtHnd, sqlStmt, SQL_NTS); // select
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

do
{
 /* Step 2: Fetch */
 rc = SQLFetch(stmtHnd);
 if (rc == SQL_NO_DATA)
 break;

 checkSQLErr(envHnd, conHnd, stmtHnd, rc);

 /* Step 3: GetData */
 rc = SQLGetData(stmtHnd, 1, SQL_C_TCHAR, (SQLPOINTER)ename, sizeof(ename), NULL);
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);

 rc = SQLGetData(stmtHnd, 2, SQL_C_TCHAR, (SQLPOINTER)job, sizeof(job), NULL);
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);

 _tprintf(_T("ENAME = %s, JOB = %s/n"), ename, job);

} while (1);

_tprintf(_T("Finished Retrieval/n/n"));

Example 4: Simple Update

This example shows how to update data. Likewise, the length of data for SQLBindParameter
has to be specified with the BYTE length, even in the case of a Unicode application.

/
*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLPrepare
** SQLBindParameter
** SQLExecute
*/

static SQLTCHAR *sqlStmt = _T("INSERT INTO emp(empno,ename,job) VALUES(?,?,?)");
static SQLTCHAR *empno = _T("9876"); // Emp No
static SQLTCHAR *ename = _T("ORACLE"); // Name
static SQLTCHAR *job = _T("PRESIDENT"); // Job

_tprintf(_T("Insert User ORACLE using SQLBindParameter.../n[%s]/n"), sqlStmt);

Chapter 7
Unicode Samples

7-5

/* Step 1: Prepare */

rc = SQLPrepare(stmtHnd, sqlStmt, SQL_NTS);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 2: Bind Parameter */

rc = SQLBindParameter(stmtHnd, 1, SQL_PARAM_INPUT, SQL_C_TCHAR, SQL_DECIMAL,4,
0, (SQLPOINTER)empno, 0, NULL);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLBindParameter(stmtHnd, 2, SQL_PARAM_INPUT, SQL_C_TCHAR, SQL_CHAR,
lstrlen(ename)*sizeof(TCHAR), 0, (SQLPOINTER)ename,
lstrlen(ename)*sizeof(TCHAR), NULL);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLBindParameter(stmtHnd, 3, SQL_PARAM_INPUT, SQL_C_TCHAR, SQL_CHAR,
lstrlen(job)*sizeof(TCHAR), 0, (SQLPOINTER)job, lstrlen(job)*sizeof(TCHAR),
NULL);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 3: Execute */

rc = SQLExecute(stmtHnd);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

Example 5: Update and Retrieval for Long Data (CLOB)

This example may be the most complicated case to update and retrieve data for long
data, like CLOB, in Oracle. Because the length of data must be the BYTE length,
lstrlen(TCHAR data)*sizeof(TCHAR) is needed to derive the BYTE length.

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLPrepare
** SQLBindParameter
** SQLExecute
** SQLParamData
** SQLPutData
**
** SQLExecDirect
** SQLFetch
** SQLGetData
 */

static SQLTCHAR *sqlStmt1 = _T("INSERT INTO clobtbl(clob1) VALUES(?)");
static SQLTCHAR *sqlStmt2 = _T("SELECT clob1 FROM clobtbl");
SQLTCHAR clobdata[1001];
SQLTCHAR resultdata[1001];
SQLINTEGER ind = SQL_DATA_AT_EXEC;
SQLTCHAR *bufp;
SQLTCHAR ch;
int clobdatalen, chunksize, dtsize, retchklen, i, len;

_tprintf(_T("Insert CLOB1 using SQLPutData.../n[%s]/n"), sqlStmt1);

/* Set CLOB Data *

for (i=0, ch=_T('A'); i< sizeof(clobdata)/sizeof(SQLTCHAR); ++i, ++ch)

Chapter 7
Unicode Samples

7-6

{
 if (ch > _T('Z'))
 ch = _T('A');
 clobdata[i] = ch;
}

clobdata[sizeof(clobdata)/sizeof(SQLTCHAR)-1] = _T('/0');
clobdatalen = lstrlen(clobdata);
chunksize = clobdatalen / 7;

/* Step 1: Prepare */
rc = SQLPrepare(stmtHnd, sqlStmt1, SQL_NTS);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 2: Bind Parameter with SQL_DATA_AT_EXEC */
rc = SQLBindParameter(stmtHnd, 1, SQL_PARAM_INPUT, SQL_C_TCHAR, SQL_LONGVARCHAR,
clobdatalen*sizeof(TCHAR), 0, (SQLPOINTER)clobdata, clobdatalen*sizeof(TCHAR), &ind);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 3: Execute */
rc = SQLExecute(stmtHnd);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);
sdhamoth: Continuation:

/* Step 4: ParamData (initiation) */
rc = SQLParamData(stmtHnd, (SQLPOINTER*)&bufp);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

for (dtsize=0, bufp = clobdata; dtsize < clobdatalen; dtsize += chunksize, bufp +=
chunksize)
{
 if (dtsize+chunksize<clobdatalen)
 len = chunksize;
 else
 len = clobdatalen-dtsize;

 /* Step 5: PutData */
 rc = SQLPutData(stmtHnd, (SQLPOINTER)bufp, len*sizeof(TCHAR));
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);
}

/* Step 6: ParamData (termination) */
rc = SQLParamData(stmtHnd, (SQLPOINTER*)&bufp);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLFreeStmt(stmtHnd, SQL_CLOSE);
_tprintf(_T("Finished Update/n/n"));

rc = SQLAllocStmt(conHnd, &stmtHnd);
if (rc != SQL_SUCCESS)
{
 _tprintf(_T("Failed to allocate STMT/n"));
 goto exit2;
}

/* Clear Result Data */
memset(resultdata, 0, sizeof(resultdata));
chunksize = clobdatalen / 15; /* 15 times to put */

/* Step 1: Prepare */

Chapter 7
Unicode Samples

7-7

rc = SQLExecDirect(stmtHnd, sqlStmt2, SQL_NTS); /* select */
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 2: Fetch */
rc = SQLFetch(stmtHnd);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

for(dtsize=0, bufp = resultdata; dtsize < sizeof(resultdata)/sizeof(TCHAR) &&
rc != SQL_NO_DATA; dtsize += chunksize-1, bufp += chunksize-1)
{
 if (dtsize+chunksize<sizeof(resultdata)/sizeof(TCHAR))
 len = chunksize;
 else
 len = sizeof(resultdata)/sizeof(TCHAR)-dtsize;

 /* Step 3: GetData */
 rc = SQLGetData(stmtHnd, 1, SQL_C_TCHAR, (SQLPOINTER)bufp, len*sizeof(TCHAR),
&retchklen);
}

if (!_tcscmp(resultdata, clobdata))
{
 _tprintf(_T("Succeeded!!/n/n"));
}
else
{
 _tprintf(_T("Failed!!/n/n"));
}

Chapter 7
Unicode Samples

7-8

8
Performance and Tuning

This chapter provides necessary information for programmers to manage the performance
and tuning of the Oracle Database ODBC driver.

Topics:

• General ODBC Programming Tips

• Data Source Configuration Options

• DATE and TIMESTAMP Data Types

8.1 General ODBC Programming Tips
This section describes some general programming tips to improve the performance of an
ODBC application.

• Enable connection pooling if the application frequently connects to and disconnects from
a data source. Reusing pooled connections is extremely efficient compared to
reestablishing a connection.

• Minimize the number of times a statement must be prepared. Where possible, use bind
parameters to make a statement reusable for different parameter values. Preparing a
statement once and executing it several times is much more efficient than preparing a
statement for every SQLExecute.

• Do not include columns in a SELECT statement if you know the application will not retrieve
them; especially LONG columns. Due to the nature of the database server protocols, the
ODBC driver must fetch the entire contents of a LONG column if it is included in the SELECT
statement, regardless of if the application binds the column or does a SQLGetData.

• If you are performing transactions that do not update the data source, set the
SQL_ATTR_ACCESS_MODE attribute of the ODBC SQLSetConnectAttr function to
SQL_MODE_READ_ONLY.

• If you are not using ODBC escape clauses, set the SQL_ATTR_NOSCAN attribute of the
ODBC SQLSetConnectAttr function or the ODBC SQLSetStmtAttr function to true.

• Use the ODBC SQLFetchScroll function instead of the ODBC SQLFetch function for
retrieving data from tables that have a large number of rows.

• Enable OCI statement caching when the same SQL statements are used multiple times
(StatementCache=T).

• Binding NUMBER columns as FLOAT speeds up query execution (BindAsFLOAT=T).

• While fetching LONG or LONG RAW set MaxLargeData=<value> for optimum performance.

• Setting UseOCIDescribeAny=T for applications that make heavy calls to small packaged
procedures with return Ref Cursor improves performance.

8-1

8.2 Data Source Configuration Options
This topic discusses performance implications of the following ODBC data source
configuration options:

Topics:

• Enable Result Sets

• Enable LOBs

• Bind TIMESTAMP as DATE

• Enable Closing Cursors

• Enable Thread Safety

• Fetch Buffer Size

Enable Result Sets

This option enables the support of returning result sets (for example, RefCursor) from
procedure calls. The default is enabling the returning of result sets.

The ODBC driver must query the database server to determine the set of parameters
for a procedure and their data types to determine if there are any RefCursor
parameters. This query incurs an additional network round trip the first time any
procedure is prepared and executed.

Enable LOBs

This option enables the support of inserting and updating LOBs. By default, it is
enabled.

The ODBC driver must query the database server to determine the data types of each
parameter in an INSERT or UPDATE statement to determine if there are any LOB
parameters. This query incurs an additional network round trip the first time any
INSERT or UPDATE is prepared and executed.

Bind TIMESTAMP as DATE

Binds SQL_TIMESTAMP parameters as the appropriate Oracle data type. If this option is
TRUE, SQL_TIMESTAMP binds as the Oracle DATE data type. If this option is FALSE,
SQL_TIMESTAMP binds as the Oracle TIMESTAMP data type (which is the default).

Enable Closing Cursors

The SQL_CLOSE option of the ODBC function, SQLFreeStmt, is supposed to close
associated cursors with a statement and discard all pending results. The application
can reopen the cursor by executing the statement again without doing a SQLPrepare
again. A typical scenario for this is an application that is idle for a while but reuses the
same SQL statement. While the application is idle, it might free up associated server
resources.

The Oracle Call Interface (OCI), on which the Oracle Database ODBC driver is
layered, does not support the functionality of closing cursors. So, by default, the
SQL_CLOSE option has no effect in the Oracle Database ODBC driver. The cursor and
associated resources remain open on the database server.

Chapter 8
Data Source Configuration Options

8-2

Enabling this option causes the associated cursor to be closed on the database server.
However, this results in the parse context of the SQL statement being lost. The ODBC
application can execute the statement again without calling SQLPrepare. However, internally
the ODBC driver must prepare and execute the statement all over. Enabling this option
severely impacts performance of applications that prepare a statement once and execute it
repeatedly.

Enable this option only if freeing the resources on the server is absolutely necessary.

Enable Thread Safety

If an application is single-threaded, this option can be disabled. By default, the ODBC driver
ensures that access to all internal structures (environment, connection, statement) are
thread-safe. Single-threaded applications can eliminate some of the thread safety overhead
by disabling this option. Disabling this option typically shows a minor performance
improvement.

Fetch Buffer Size

Set the Fetch Buffer Size in the Oracle Options tab of the Oracle ODBC Driver Configuration
Dialog Box to a value specified in bytes. This value determines how many rows of data at a
time the ODBC driver prefetches from an Oracle Database to the client's cache, regardless of
the number of rows the application program requests in a single query, thus improving
performance.

Applications that typically fetch fewer than 20 rows of data at a time improve their response
time, particularly over slow network connections or on heavily loaded servers. Setting this too
high can worsen response time or consume large amounts of memory. The default is 64,000
bytes. Choose a value that works best for your application.

Note:

When LONG and LOB data types are present, the number of rows prefetched by the
ODBC driver is not determined by the Fetch Buffer Size. The inclusion of the LONG
and LOB data types minimizes the performance improvement and could result in
excessive memory use. The ODBC driver disregards the Fetch Buffer Size and
prefetches a set number of rows in the presence of the LONG and LOB data types.

8.3 DATE and TIMESTAMP Data Types
If a DATE column in the database is used in a WHERE clause and the column has an index,
there can be an impact on performance. For example:

SELECT * FROM EMP WHERE HIREDATE = ?

In this example, an index on the HIREDATE column could be used to make the query execute
quickly. But, because HIREDATE is actually a DATE value and the ODBC driver supplies the
parameter value as TIMESTAMP, the Oracle server's query optimizer must apply a conversion
function. To prevent incorrect results (as might happen if the parameter value had non-zero
fractional seconds), the optimizer applies the conversion to the HIREDATE column resulting in
the following statement:

SELECT * FROM EMP WHERE TO_TIMESTAMP(HIREDATE) = ?

Chapter 8
DATE and TIMESTAMP Data Types

8-3

Unfortunately, this has the effect of disabling the use of the index on the HIREDATE
column and, instead, the server performs a sequential scan of the table. If the table
has many rows, this can take a long time. As a workaround for this situation, the
ODBC driver has the connection option to Bind TIMESTAMP as DATE. When this option
is enabled, the ODBC driver binds SQL_TIMESTAMP parameters as the Oracle DATE data
type instead of the Oracle TIMESTAMP data type. This allows the query optimizer to use
any index on the DATE columns.

Note:

This option is intended for use only with Microsoft Access or other similar
programs that bind DATE columns as TIMESTAMP columns. Do not use this
option when there are actual TIMESTAMP columns present or when data loss
may occur. Microsoft Access executes such queries using whatever columns
are selected as the primary key.

See Also:

Implementation of Data Types (Advanced)

Chapter 8
DATE and TIMESTAMP Data Types

8-4

A.1 Appendix: Unsupported Features and
Known Issues

Topics:

• Unsupported Features

• Known Limitations

• Known Software Issues

A.1.1 Unsupported Features
The Oracle Database ODBC driver does not support the following ODBC 3.0 features:

• Interval data types

• Shared connections

• Shared environments

The Oracle Database ODBC driver does not support the following SQL string functions:

• BIT_LENGTH
• CHAR_LENGTH
• CHARACTER_LENGTH
• DIFFERENCE
• OCTET_LENGTH
• POSITION
The Oracle Database ODBC driver does not support the following SQL numeric functions:

• ACOS
• ASIN
• ATAN
• ATAN2
• COT
• DEGREES
• RADIANS
• RAND
• ROUND
The Oracle Database ODBC driver does not support the following SQL time, date, and
interval functions:

• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP

5

• EXTRACT
• TIMESTAMPDIFF

A.1.2 Known Limitations
The Oracle Database ODBC driver does not support the following:

• ODBC ASYNC interface

• Control-C to cancel execution in an application

A.1.3 Known Software Issues
The following are the known software issues and unsupported usage in the Oracle
Database ODBC driver:

• The SQLSetStmtOption SQL_QUERY_TIMEOUT does not work if the database server
is running on Windows NT. As a workaround, setting BREAK_POLL_SKIP=1 in the
server's sqlnet.ora file solves the problem. By default, this is set to 100, and the
database would not check for a time-out set by the ODBC application.

• SQLBindParameter, when used to bind a buffer as SQL_PARAM_INPUT_OUTPUT and
having a PL/SQL procedure with IN OUT parameter, and if the parameter is not
changed in the procedure, then the driver does not return SQL_NULL_DATA in
StrLen_or_IndPtr.

• The Oracle Database ODBC driver does not support the usage of Keyset cursors
with the CASE clause in a SQL SELECT query.

Known Limitations

6

Index

A
about ODBC driver, 1-1
API conformance, 6-1
API functions implementation, 6-1

C
certifications

UNIX certifications, 1-4
Windows certifications, 1-4

configuration, 2-8
configuring net services, 2-9
environment setup, 2-9
reducing lock timeout, 2-21
UNIX configurations, 2-10
Windows configurations, 2-11

configuring data source, 2-11
Oracle ODBC Driver configuration dialog,

2-12
connecting to a data source, 3-1
connection string format, 5-1
creating driver TNS service names, 4-10

D
data source configuration options, 8-2
data type limitations, 4-13
data types, 4-10
data types implementation, 4-11, 6-2
DATE and TIMESTAMP data types, 8-3
driver conformance levels, 1-5

E
enabling event notification for connection failures,

5-11
enabling EXEC syntax, 5-10
enabling result sets, 5-5
error messages, 4-14

I
installation, 2-2

installed files, 2-6
installing instant client ODBC on Linux and

UNIX, 2-3
recommended driver manager, 2-5
usage, 2-10

installing instant client ODBC on WIndows,
2-6

Instant Client ODBC Package contents, 2-6
system requirements, 2-3

hardware required, 2-3
software required, 2-3
sserver oftware required, 2-3

K
known limitations, 6

L
linking with odbc32.lib or libodbc.so, 5-4

O
ORA_SDTZ system variable

effect of setting, 5-19
Oracle ODBC driver, 1-2

P
patching, 2-21

patching on Linux method 1, 2-21
patching on Linux method 2, 2-22
patching on Windows, 2-23

programming tips, 8-1

R
reducing lock timeout, 5-4
rowids, 5-5
rowids in WHERE clause, 5-5

Index-1

S
Setting ORA_SDTZ system variable

effect of, 5-19
SQL statements, 4-10
SQL syntax implementation, 6-2
SQLDriverConnect Implementation, 5-4
SQLGetData performance, 7-2
summary of steps - installing and configuring, 2-1

T
TIMESTAMP WITH LOCAL TIME ZONE

examples, 5-16
TIMESTAMP WITH TIME ZONE

examples, 5-16
troubleshooting, 3-2

expired password, 3-2
first using ODBC driver, 3-2

U
unicode functions in DM, 7-2
unicode samples, 7-3
Unicode support, 7-1
unicode support in ODBC API, 7-1
uninstallation, 2-23

Linux and UNIX, 2-24
Windows, 2-24

unsupported features, 5
using implicit results, 5-15
using Oracle ODBC with Windows Excel, 4-1

configuring DSN, 4-3
configuring Excel, 4-7
configuring tnsnames.ora, TNS_ADMIN, and

path, 4-3
getting an OAuth token, 4-3
installing the ODBC driver, 4-2
overview, 4-1
prerequisites, 4-2

Index

Index-2

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in ODBC Developer's Guide
	New Features in 23ai
	ODBC Release 23ai

	New Features in Earlier Releases
	ODBC Release 21c, Version 21.1
	ODBC Release 19c, Version 19.1.0.0.0
	ODBC Release 18c, Version 18.1.0.0.0
	ODBC 12.2.0.1.0

	1 Introduction to the Oracle Database ODBC Driver
	1.1 About the ODBC Driver
	1.2 What Is the Oracle Database ODBC Driver
	1.3 Certifications for Oracle Database ODBC Driver on Windows
	1.4 Certifications for Oracle ODBC Driver on UNIX Platforms
	1.5 Driver Conformance Levels

	2 Getting Started
	2.1 Summary of Steps
	2.2 Installation
	2.2.1 System Requirements
	2.2.1.1 Software Required
	2.2.1.2 Server Software Requirements
	2.2.1.3 Hardware Required

	2.2.2 Installing Oracle Instant Client ODBC (Linux and UNIX)
	2.2.2.1 Recommended unixODBC Driver Manager Versions for Linux and UNIX

	2.2.3 Installing Oracle Instant Client ODBC (Windows)
	2.2.4 Content of the Oracle Instant Client ODBC Package
	2.2.5 Files Created by the Installation

	2.3 Configuration
	2.3.1 Environment Setup for ODBC Applications
	2.3.2 Configuring Oracle Net Services
	2.3.3 Configuration for UNIX Platforms
	2.3.3.1 Usage

	2.3.4 Configuration for Windows
	2.3.4.1 Configuring the Data Source
	2.3.4.2 Oracle Database ODBC Driver Configuration Dialog Box

	2.3.5 Reducing Lock Timeout

	2.4 Patching Oracle Instant Client ODBC
	2.4.1 Patching Oracle Instant Client ODBC on Linux and UNIX Method 1
	2.4.2 Patching Oracle Instant Client ODBC on Linux and UNIX Method 2
	2.4.3 Patching on Windows

	2.5 Uninstallation
	2.5.1 Uninstalling Oracle Instant Client ODBC on Linux and UNIX
	2.5.2 Uninstalling Oracle Instant Client ODBC on Windows

	3 Basic Connection Steps
	3.1 Connecting to an Oracle Data Source
	3.2 Troubleshooting
	3.2.1 About Using Oracle Database ODBC Driver for the First Time
	3.2.2 Expired Password

	4 Oracle Database ODBC Driver for Advanced Users
	4.1 Connecting to Oracle Database Using TLS (Preconfigured for Azure AD)
	4.1.1 Overview
	4.1.2 Prerequisite Steps to Using Oracle ODBC with Excel
	4.1.3 Installing the ODBC Driver
	4.1.4 Configuring tnsnames.ora, TNS_ADMIN, and PATH
	4.1.5 Getting an OAuth 2 Token
	4.1.6 Configuring DSN
	4.1.7 Configuring Excel

	4.2 Creating Oracle Database ODBC Driver TNS Service Names
	4.3 SQL Statements
	4.4 Data Types
	4.5 Implementation of Data Types (Advanced)
	4.6 Limitations on Data Types
	4.7 Error Messages

	5 Oracle Database ODBC Driver for Programmers
	5.1 Format of the Connection String
	5.2 SQLDriverConnect Implementation
	5.3 Reducing Lock Timeout in a Program
	5.4 Linking with odbc32.lib (Windows) or libodbc.so (UNIX)
	5.5 Information about ROWID
	5.6 ROWID in a WHERE Clause
	5.7 Enabling Result Sets
	5.8 Enabling EXEC Syntax
	5.9 Enabling Event Notification for Connection Failures in an Oracle RAC Environment
	5.10 Using Implicit Results Feature through ODBC
	5.11 About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC
	5.12 About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle Database ODBC Driver, and Others)

	6 Supported Functionality
	6.1 API Conformance
	6.2 Implementation of ODBC API Functions
	6.3 Implementation of the ODBC SQL Syntax
	6.4 Implementation of Data Types (Programming)

	7 Unicode Support
	7.1 Unicode Support within the ODBC Environment
	7.2 Unicode Support in ODBC API
	7.3 Unicode Functions in the Driver Manager
	7.4 SQLGetData Performance
	7.5 Unicode Samples

	8 Performance and Tuning
	8.1 General ODBC Programming Tips
	8.2 Data Source Configuration Options
	8.3 DATE and TIMESTAMP Data Types

	A.1 Appendix: Unsupported Features and Known Issues
	A.1.1 Unsupported Features
	A.1.2 Known Limitations
	A.1.3 Known Software Issues

	Index

