
Oracle® Real Application Clusters
Real Application Clusters Administration and
Deployment Guide

23ai
F46762-04
May 2025

Oracle Real Application Clusters Real Application Clusters Administration and Deployment Guide, 23ai

F46762-04

Copyright © 1999, 2025, Oracle and/or its affiliates.

Primary Author: Subhash Chandra

Contributing Authors: Janet Stern, Eric Belden, Mark Bauer, Troy Anthony, Carol Colrain, Anil Nair

Contributors: Ram Avudaiappan, Prasad Bagal, Anand Beldalker, Gajanan Bhat, David Brower, George Claborn, Maria
Colgan, Jonathan Creighton, Rajesh Dasari, Mark Dilman, Richard Frank, GP Prabhaker Gongloor, Wei Hu, Yong Hu,
Dominique Jeunot, Sameer Joshi, Raj K. Kammend, Ankita Khandelwal, Sana Karam, Roland Knapp, Karen Li, Barb
Lundhild, Venkat Maddali, Bill Manry, John McHugh, Saar Maoz, Markus Michalewicz, Philip Newlan, Michael Nowak,
Muthu Olagappan, Bharat Paliwal, Hanlin Qian, Hairong Qin, Mark Ramacher, Sampath Ravindhran, Kevin Reardon,
Kathy Rich, Dipak Saggi, Daniel Semler, Ara Shakian, Kesavan Srinivasan, Leo Tominna, Peter Wahl, Tak Wang,
Richard Wessman, Douglas Williams, Michael Zoll, Aseem Kashyap

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxiv

Documentation Accessibility xxiv

Diversity and Inclusion xxv

Set Up Java Access Bridge to Implement Java Accessibility xxv

Command Syntax xxv

Conventions xxvi

1 Introduction to Oracle RAC

Overview of Oracle RAC 1-2

Overview of Oracle Multitenant with Oracle RAC 1-4

Overview of Installing Oracle RAC 1-4

Understanding Compatibility in Oracle RAC Environments 1-5

Oracle RAC Database Installation 1-5

Oracle RAC Database Creation 1-6

Overview of Extending Oracle RAC Clusters 1-7

Overview of Oracle Real Application Clusters One Node 1-8

Overview of Oracle Clusterware for Oracle RAC 1-9

Guidelines for Using Oracle Clusterware 1-9

Overview of Temporary Tablespaces 1-10

Parallel Execution Support for Cursor-Duration Temporary Tablespaces 1-11

Temporary Tablespace Organization 1-11

Temporary Tablespace Hierarchy 1-12

Temporary Tablespace Features 1-12

Metadata Management of Temporary Files 1-13

DDL Support for Temporary Tablespaces 1-13

Temporary Tablespace for Users 1-14

Atomicity Requirement for Commands 1-15

Temporary Tablespace and Dictionary Views 1-15

Overview of Oracle RAC Architecture and Processing 1-16

Understanding Cluster-Aware Storage Solutions 1-17

Oracle RAC and Network Connectivity 1-17

Overview of Using Dynamic Database Services to Connect to Oracle Databases 1-18

iii

Overview of Virtual IP Addresses 1-18

Restricted Service Registration in Oracle RAC 1-19

About Oracle RAC Software Components 1-20

About Oracle RAC Background Processes 1-20

Overview of Automatic Workload Management with Dynamic Database Services 1-22

Overview of Blocker Resolver 1-24

Overview of Database In-Memory and Oracle RAC 1-25

Overview of Managing Oracle RAC Environments 1-26

About Designing and Deploying Oracle RAC Environments 1-26

About Administrative Tools for Oracle RAC Environments 1-27

About Monitoring Oracle RAC Environments 1-28

About Evaluating Performance in Oracle RAC Environments 1-29

2 Administering Storage in Oracle RAC

About Oracle ASM 2-1

Overview of Storage Management for Oracle RAC 2-2

Data File Access in Oracle RAC 2-3

NFS Server for Storage 2-3

Redo Log File Storage in Oracle RAC 2-3

Automatic Undo Management in Oracle RAC 2-4

Oracle Automatic Storage Management with Oracle RAC 2-4

Storage Management in Oracle RAC 2-5

Modifying Disk Group Configurations for Oracle ASM 2-6

Oracle ASM Disk Group Management 2-6

Configuring Preferred Mirror Read Disks in Extended Distance Clusters 2-7

Converting Nonclustered Oracle ASM to Clustered Oracle ASM 2-7

Administering Oracle ASM Instances with SRVCTL in Oracle RAC 2-7

3 Administering Database Instances and Cluster Databases

Overview of Oracle RAC Database Administration 3-2

Required Privileges for Oracle RAC Database Administration 3-2

Oracle RAC Database Deployment Models 3-3

Tools for Administering Oracle RAC 3-4

Administering Oracle RAC with SRVCTL 3-4

Administering Oracle RAC with Oracle Enterprise Manager 3-5

Administering Oracle RAC with SQL*Plus 3-5

How SQL*Plus Commands Affect Instances 3-6

Starting and Stopping Instances and Oracle RAC Databases 3-7

Starting One or More Instances and Oracle RAC Databases Using SRVCTL 3-8

Stopping One or More Instances and Oracle RAC Databases Using SRVCTL 3-9

iv

Stopping All Databases and Instances Using CRSCTL 3-11

Starting and Stopping Individual Instances Using SQL*Plus 3-11

Starting and Stopping PDBs in Oracle RAC 3-12

Local Rolling Database Maintenance 3-14

About Local Rolling Database Maintenance 3-15

Requirements for Using Local Rolling Maintenance 3-15

Patching Oracle RAC Database in Local Rolling Mode 3-16

How to Recover from a Failed Transfer in Local Rolling Mode 3-17

Pluggable Database Rank 3-18

Pluggable Database Placement 3-19

Example of Creating a Pluggable Database with Cardinality and Rank 3-19

Reducing Downtime During Database and Instance Outages 3-20

Oracle RAC High Availability Best Practices 3-21

Oracle RAC Two-Stage Rolling Updates 3-21

Smooth Reconfiguration of Oracle RAC Instances 3-22

Ordered Sequence Optimizations in Oracle RAC 3-22

Verifying That Instances are Running 3-23

Using SRVCTL to Verify That Instances are Running 3-23

Using SQL*Plus to Verify That Instances are Running 3-24

Terminating Sessions On a Specific Cluster Instance 3-25

Overview of Initialization Parameter Files in Oracle RAC 3-27

About Creating an SPFILE for Oracle RAC 3-27

Setting SPFILE Parameter Values for Oracle RAC 3-28

Parameter File Search Order in Oracle RAC 3-29

Backing Up the Server Parameter File 3-30

Initialization Parameter Use in Oracle RAC 3-30

Initialization Parameters Specific to Oracle RAC 3-31

Parameters That Must Have Identical Settings on All Instances 3-33

Parameters That Should Have Identical Settings on All Instances 3-34

Quiescing Oracle RAC Databases 3-35

Administering Multiple Cluster Interconnects on Linux and UNIX Platforms 3-36

Use Cases for Setting the CLUSTER_INTERCONNECTS Parameter 3-36

Customizing How Oracle Clusterware Manages Oracle RAC Databases 3-38

Advanced Oracle Enterprise Manager Administration 3-39

Using Oracle Enterprise Manager Cloud Control to Discover Nodes and Instances 3-40

Other Oracle Enterprise Manager Capabilities 3-40

Administering Jobs and Alerts in Oracle RAC 3-41

Administering Jobs in Oracle RAC 3-41

Administering Alerts in Oracle RAC with Oracle Enterprise Manager 3-42

Using Defined Suspensions in Oracle Enterprise Manager 3-42

v

4 Administering Oracle RAC One Node

Creating an Oracle RAC One Node Database 4-1

Converting Databases 4-2

Converting a Database from Oracle RAC to Oracle RAC One Node 4-3

Converting a Database from Oracle RAC One Node to Oracle RAC 4-3

Online Database Relocation 4-4

5 Workload Management with Dynamic Database Services

Connection Load-Balancing 5-2

About Connection Load-Balancing 5-2

Server-Side Load Balancing 5-3

Generic Database Clients 5-3

Client-Side Connection Configuration for Older Clients 5-4

About Client-Side Connection Configuration for Older Clients 5-4

JDBC Thin Clients 5-5

OCI Clients 5-5

Client-Side Load Balancing 5-5

Smart Connection Rebalance 5-6

Load Balancing Advisory 5-7

Overview of the Load Balancing Advisory 5-7

Configuring Your Environment to Use the Load Balancing Advisory 5-8

Load Balancing Advisory FAN Events 5-9

Monitoring Load Balancing Advisory FAN Events 5-10

Enabling Clients for Oracle RAC 5-10

Overview of Oracle Integrated Clients and FAN 5-11

Enabling JDBC-Thin Clients for Fast Connection Failover 5-12

About Fast Connection Failover and JDBC-Thin Clients 5-12

Oracle Notification Service for JDBC-Thin Clients 5-13

Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients 5-13

Enabling JDBC Clients for Run-time Connection Load Balancing 5-15

Configuring JDBC-Thin Clients for Application Continuity for Java 5-15

Configuring JDBC-Thin Clients for Transaction Guard 5-16

Enabling OCI Clients for Fast Connection Failover 5-17

Enabling OCI Clients for Run-time Connection Load Balancing 5-18

Configuring OCI Clients to use Transaction Guard 5-18

Enabling ODP.NET Clients to Receive FAN High Availability Events 5-19

Enabling ODP.NET Clients to Receive FAN Load Balancing Advisory Events 5-19

Configuring ODP.NET Clients to use Transaction Guard 5-20

Distributed Transaction Processing in Oracle RAC 5-21

Overview of XA Transactions and Oracle RAC 5-21

vi

Using Global Transactions and XA Affinity for XA Transactions 5-22

Using Services with XA Transactions on Oracle RAC 5-23

Configuring Services for XA Applications 5-23

Relocating Services in Administrator-Managed Databases 5-24

Oracle RAC Sharding 5-24

Automatic Workload Repository 5-25

Measuring Performance by Service Using the Automatic Workload Repository 5-26

Automatic Workload Repository Service Thresholds and Alerts 5-27

About Automatic Workload Repository Service Thresholds and Alerts 5-27

Example of Services and Thresholds Alerts 5-28

Enable Service, Module, and Action Monitoring 5-29

Using Oracle Services 5-29

Service Deployment Options 5-30

Service Usage in an Oracle RAC Database 5-30

Oracle Clusterware Resources for a Service 5-30

Database Resource Manager Consumer Group Mappings for Services 5-31

Performance Monitoring by Service with AWR 5-31

Parallel Operations and Services 5-31

Oracle GoldenGate and Oracle RAC 5-31

Service Characteristics 5-32

Service Name 5-32

Service Edition 5-33

Service Management Policy 5-33

Database Role for a Service 5-33

Instance Preference 5-34

Service Co-location 5-35

Load Balancing Advisory Goal for Run-time Connection Load Balancing 5-35

Connection Load Balancing Goal 5-35

Distributed Transaction Processing 5-36

Default Service Connections 5-36

Restricted Service Registration 5-37

Administering Services 5-38

Overview of Service Administration 5-38

Administering Services with Oracle Enterprise Manager 5-39

Administering Services with SRVCTL 5-40

Creating Services with SRVCTL 5-41

Creating Services for Application Continuity and Transaction Guard 5-41

Starting and Stopping Services with SRVCTL 5-43

Enabling and Disabling Services with SRVCTL 5-43

Relocating Services with SRVCTL 5-43

Obtaining the Status of Services with SRVCTL 5-44

Obtaining the Configuration of Services with SRVCTL 5-44

vii

Global Services 5-45

Service-Oriented Buffer Cache Access 5-45

Connecting to a Service: An Example 5-46

6 Ensuring Application Continuity

Understanding Application Continuity 6-2

About Application Continuity 6-2

Key Concepts for Application Continuity 6-3

How Application Continuity Works for Applications 6-5

Support for Oracle Application Continuity and Transparent Application Continuity 6-7

Restrictions and Other Considerations for Application Continuity 6-9

Application Continuity for Various Applications 6-11

Applications That Use Containers with Request Boundaries 6-11

Applications that are Database Agnostic 6-12

Transparent Application Continuity 6-12

About Transparent Application Continuity 6-13

Deciding on Transparent Application Continuity 6-14

Using Transparent Application Continuity in Oracle Cloud Environments 6-16

Configuring Application Continuity 6-17

Overview of Application Continuity Configuration Tasks 6-17

Configuring Connections for High Availability and Application Continuity 6-20

Configuring Oracle Database for Application Continuity 6-21

Establishing the Initial State Before Application Continuity Replays 6-22

Checking Initial States for Application Continuity 6-23

FAILOVER_RESTORE 6-24

States Restored with FAILOVER_RESTORE 6-24

Full FAILOVER_RESTORE with Database Templates 6-25

FAILOVER_RESTORE with Database Templates 6-26

Configuring a Keystore using WALLET_ROOT for FAILOVER_RESTORE 6-26

Configuring a Keystore using SQLNET.ORA for FAILOVER_RESTORE 6-30

FAILOVER_RESTORE = NONE and No Callback 6-32

Connection Labeling 6-32

Connection Initialization Callback 6-32

Potential Side Effects of Application Continuity 6-33

Administering Application Continuity Operation and Usage 6-37

Using Application Continuity for Planned Maintenance 6-38

Administering Restoring Original Function Results 6-38

Restoring Original Oracle Function Values and Application Continuity 6-39

Checking Your Keep Permissions 6-41

Granting and Revoking Keep Permissions for Restoring Original Oracle Function
Values 6-42

viii

Granting Permission to Keep Restoring Original Oracle Function Values for Oracle
Sequences 6-42

Rules for Grants on Restoring Original Oracle Function Values 6-43

Protection-Level Statistics 6-43

Session State Consistency 6-44

About Session State Consistency 6-44

Auto Session State Consistency 6-45

Dynamic Session State Consistency 6-46

Application Continuity Statistics 6-47

Application Continuity Protection Check 6-48

About Application Continuity Protection Check 6-48

Enabling and Disabling Application Continuity Protection Check 6-49

Generating an Application Continuity Protection Check Report 6-50

Filtering Statistics and Events 6-53

Cleaning Up ACCHK Collected Information 6-54

Delaying the Reconnection in Application Continuity 6-54

Understanding How to Wait for the Service to be Ready for Application Continuity 6-54

Creating Services on Oracle RAC with Application Continuity 6-55

Modifying Services on Single-instance Databases to use Application Continuity 6-55

Running Without Application Continuity 6-56

Disabling Replay in Application Continuity 6-57

Understanding Enabling and Disabling Replay in Application Continuity 6-57

Application Calls Autonomous Transactions, External PL/SQL, or Java Actions that
Should Not Be Repeated 6-58

Application Synchronizes Independent Sessions 6-58

Application Uses Time at the Middle Tier in the Processing Logic 6-59

Application Assumes that ROWIds Do Not Change 6-59

Application Assumes that Location Values Do Not Change 6-59

Terminating or Disconnecting a Session Without Replay 6-60

Fast Application Notification (FAN) 6-60

Overview of Fast Application Notification (FAN) 6-61

The Importance of Using Fast Application Notification 6-62

How FAN is Used with Oracle Database and Applications 6-62

Requirements for Using FAN 6-64

FAN Callouts 6-64

Fast Application Notification High Availability Events 6-65

Subscription to High Availability Events 6-68

Using Fast Application Notification Callouts 6-68

Configure for Unplanned Outages 6-69

Managing Planned Maintenance 6-70

About Planned Maintenance Management 6-70

Planned Maintenance Without User Interruption 6-71

ix

Managing a Group of Services for Maintenance 6-73

Stopping a Group of Services Example 6-74

Starting Services 6-74

Pluggable Database-Level Operations 6-75

Relocating Services 6-75

Stopping Services 6-76

Server Draining Ahead of Planned Maintenance 6-77

Planned Failover with Application Continuity 6-82

Transaction Guard for Improving Client Failover 6-83

About Transaction Guard 6-84

Database Native Transaction Guard 6-84

Transaction Guard Support During Major Database Version Upgrades 6-85

Transaction Guard Configuration Checklist 6-86

Configuring Services for Transaction Guard 6-86

Application Continuity During Major Database Version Upgrades with DBMS_ROLLING 6-87

Reset Database Session State 6-88

7 Configuring Recovery Manager and Archiving

Overview of Configuring RMAN for Oracle RAC 7-1

Archiving Mode in Oracle RAC 7-2

Configuring the RMAN Snapshot Control File Location 7-2

Configuring RMAN to Automatically Backup the Control File and SPFILE 7-3

Crosschecking on Multiple Oracle RAC Nodes 7-3

Configuring Channels for RMAN in Oracle RAC 7-4

Configuring Channels to Use Automatic Load Balancing 7-4

Managing Archived Redo Logs Using RMAN in Oracle RAC 7-4

Archived Redo Log File Conventions in Oracle RAC 7-5

RMAN Archiving Configuration Scenarios 7-6

Oracle Advanced Cluster File System Archiving Scheme 7-6

Advantages of the Cluster File System Archiving Scheme 7-7

Initialization Parameter Settings for the Cluster File System Archiving Scheme 7-7

Location of Archived Logs for the Cluster File System Archiving Scheme 7-8

Noncluster File System Local Archiving Scheme 7-8

Considerations for Using Noncluster File System Local Archiving 7-8

Initialization Parameter Settings for Non-Cluster File System Local Archiving 7-9

Location of Archived Logs for Noncluster File System Local Archiving 7-9

File System Configuration for Noncluster File System Local Archiving 7-10

Monitoring the Archiver Processes 7-10

x

8 Managing Backup and Recovery

Managing Backup and Recovery in Clusters 8-1

RMAN Backup Scenario for Noncluster File System Backups 8-1

RMAN Restore Scenarios for Oracle RAC 8-2

Restoring Backups from a Cluster File System 8-2

Restoring Backups from a Noncluster File System 8-3

Using RMAN or Oracle Enterprise Manager to Restore the Server Parameter File
(SPFILE) 8-3

Instance Recovery in Oracle RAC 8-3

Single Node Failure in Oracle RAC 8-4

Multiple-Node Failures in Oracle RAC 8-4

Using RMAN to Create Backups in Oracle RAC 8-4

Channel Connections to Cluster Instances with RMAN 8-5

Node Affinity Awareness of Fast Connections 8-6

Deleting Archived Redo Logs after a Successful Backup 8-6

Autolocation for Backup and Restore Commands 8-7

Media Recovery in Oracle RAC 8-7

Parallel Recovery in Oracle RAC 8-7

Parallel Recovery with RMAN 8-8

Disabling Parallel Recovery 8-8

Disabling Instance and Crash Recovery Parallelism 8-8

Disabling Media Recovery Parallelism 8-8

Using a Fast Recovery Area in Oracle RAC 8-8

9 Cloning Oracle RAC to Nodes in a New Cluster

Introduction to Cloning Oracle RAC 9-1

Preparing to Clone Oracle RAC 9-2

Deploying Oracle RAC Clones to Nodes in a Cluster 9-3

Locating and Viewing Log Files Generated During Cloning 9-7

10

Using Cloning to Extend Oracle RAC to Nodes in the Same Cluster

About Adding Nodes Using Cloning in Oracle RAC Environments 10-1

Cloning Local Oracle Homes on Linux and UNIX Systems 10-2

Cloning Shared Oracle Homes on Linux and UNIX Systems 10-3

Cloning Oracle Homes on Windows Systems 10-3

11

Adding and Deleting Oracle RAC from Nodes on Linux and Unix Systems

About Adding and Deleting Nodes 11-1

Adding Oracle RAC to Nodes with Oracle Grid Infrastructure Installed 11-2

xi

Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes 11-4

About Adding Administrator-Managed Oracle RAC Database Instances 11-4

Using Oracle DBCA in Interactive Mode to Add Database Instances to Target Nodes 11-5

Using Oracle DBCA in Silent Mode to Add Database Instances to Target Nodes 11-6

Deleting Oracle RAC from a Cluster Node 11-6

Deleting Instances from Oracle RAC Databases 11-7

Using Oracle DBCA in Interactive Mode to Delete Instances from Nodes 11-8

Using Oracle DBCA in Silent Mode to Delete Instances from Nodes 11-8

Removing Oracle RAC 11-9

Deleting Nodes from A Cluster 11-9

12

Adding and Deleting Oracle RAC from Nodes on Windows Systems

Adding Oracle RAC to Nodes with Oracle Grid Infrastructure Installed 12-1

Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes 12-3

About Using Oracle DBCA to Add Oracle RAC Instances 12-3

Using Oracle DBCA in Interactive Mode to Add Database Instances to Target Nodes 12-4

Using Oracle DBCA in Silent Mode to Add Database Instances to Target Nodes 12-5

Deleting Oracle RAC from a Cluster Node 12-5

Deleting Instances from Administrator-Managed Databases 12-6

Using Oracle DBCA in Silent Mode to Delete Instances from Nodes 12-7

Using Oracle DBCA in Interactive Mode to Delete Instances from Nodes 12-7

Removing Oracle RAC 12-8

Deleting Nodes from the Cluster 12-9

13

Design and Deployment Techniques

Deploying Oracle RAC for High Availability 13-1

About Designing High Availability Systems 13-1

Best Practices for Deploying Oracle RAC in High Availability Environments 13-2

Consolidating Multiple Applications in Cluster Databases 13-3

Managing Capacity During Consolidation 13-4

Managing the Global Cache Service Processes During Consolidation 13-4

Using Oracle Database Cloud for Consolidation 13-4

Scalability of Oracle RAC 13-5

General Design Considerations for Oracle RAC 13-6

General Database Deployment Topics for Oracle RAC 13-7

Tablespace Use in Oracle RAC 13-7

Object Creation and Performance in Oracle RAC 13-7

Node Addition and Deletion and the SYSAUX Tablespace in Oracle RAC 13-7

Distributed Transactions and Oracle RAC 13-8

Deploying OLTP Applications in Oracle RAC 13-8

xii

Flexible Implementation with Cache Fusion 13-8

Deploying Data Warehouse Applications in Oracle RAC 13-9

Parallelism for Data Warehouse Applications on Oracle RAC 13-9

Parallel Processing in Data Warehouse Systems and Oracle RAC 13-9

Data Security Considerations in Oracle RAC 13-10

Transparent Data Encryption and Keystores 13-10

Windows Firewall Considerations 13-10

Securely Run ONS Clients Using Wallets 13-11

Introduction to Blocker Resolver 13-12

Blocker Resolver Architecture 13-12

Optional Configuration for Blocker Resolver 13-13

Blocker Resolver Diagnostics and Logging 13-14

14

Monitoring Performance

Monitoring and Tuning Oracle RAC Databases 14-1

Overview of Monitoring Oracle RAC and Oracle Clusterware 14-2

Monitoring Oracle RAC and Oracle Clusterware with Oracle Enterprise Manager 14-2

The Cluster Database Home Page 14-3

The Interconnects Page 14-3

The Cluster Database Performance Page 14-4

Tuning Oracle RAC Databases 14-5

Database Reliability Framework 14-5

Verifying the Interconnect Settings for Oracle RAC 14-5

Influencing Interconnect Processing 14-6

Performance Views in Oracle RAC 14-7

Creating Oracle RAC Data Dictionary Views with CATCLUST.SQL 14-7

Oracle RAC Performance Statistics 14-8

Automatic Workload Repository in Oracle RAC Environments 14-8

Active Session History Reports for Oracle RAC 14-8

Overview of ASH Reports for Oracle RAC 14-9

ASH Report for Oracle RAC: Top Cluster Events 14-9

ASH Report for Oracle RAC: Top Remote Instance 14-9

Monitoring Oracle RAC Statistics and Wait Events 14-10

Oracle RAC Statistics and Events in AWR and Statspack Reports 14-10

Oracle RAC Wait Events 14-11

Monitoring Performance by Analyzing GCS and GES Statistics 14-11

Analyzing the Effect of Cache Fusion in Oracle RAC 14-11

Analyzing Performance Using GCS and GES Statistics 14-12

Analyzing Cache Fusion Transfer Impact Using GCS Statistics 14-13

Analyzing Response Times Based on Wait Events 14-13

Understanding Normal and Problem Wait Event Response Times 14-14

xiii

Block-Related Wait Events 14-14

Message-Related Wait Events 14-14

Contention-Related Wait Events 14-15

Load-Related Wait Events 14-15

15

Converting Single-Instance Oracle Databases to Oracle RAC and Oracle
RAC One Node

Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA 15-1

Overview of Converting Databases to Oracle RAC Using Oracle DBCA 15-2

Converting Oracle Database Installations to Oracle RAC Using Oracle DBCA 15-2

Use Oracle DBCA to Create an Image of the Single-Instance Database 15-3

Perform the Oracle Grid Infrastructure Installation 15-4

Validate the Cluster 15-4

Copy the Preconfigured Database Image 15-4

Install the New Oracle Database Software with Oracle RAC 15-5

Converting Single Instance on a Cluster to Oracle RAC One Node Using Oracle DBCA 15-5

Converting Single Instance on a Cluster to Oracle RAC Using Oracle DBCA 15-5

Scenarios for Converting Single Instance on a Cluster to Oracle RAC 15-6

Single-Instance Database on a Cluster Running from an Oracle RAC-Enabled Home 15-6

Single-Instance Database on a Cluster Running from an Oracle RAC-Disabled
Home 15-9

Converting Single Instance on a Single Server to Oracle RAC One Node Using Oracle
DBCA 15-10

Preparing to Convert with rconfig and Oracle Enterprise Manager 15-11

Prerequisites for Converting to Oracle RAC Databases 15-12

Configuration Changes During Oracle RAC Conversion Using rconfig 15-13

Converting Databases to Oracle RAC Using rconfig or Oracle Enterprise Manager 15-13

Converting Databases to Oracle RAC Using Oracle Enterprise Manager 15-14

Converting Databases to Oracle RAC Using rconfig 15-15

Example of rconfig XML Input Files for ConvertToRAC 15-16

Postconversion Steps 15-18

A Server Control Utility Reference

SRVCTL Usage Information A-1

Specifying Command Parameters as Keywords Instead of Single Letters A-2

Character Set and Case Sensitivity of SRVCTL Object Values A-3

Summary of Tasks for Which SRVCTL Is Used A-4

Using SRVCTL Help A-5

SRVCTL Privileges and Security A-6

Additional SRVCTL Topics A-7

Deprecated SRVCTL Subprograms or Commands A-7

xiv

Single Character Parameters Deprecated for all SRVCTL Commands A-7

Miscellaneous SRVCTL Commands and Parameters A-14

SRVCTL Command Reference A-14

About Using SRVCTL Commands A-15

database Commands A-17

srvctl add database A-18

srvctl config database A-21

srvctl convert database A-23

srvctl disable database A-24

srvctl downgrade database A-24

srvctl enable database A-24

srvctl getenv database A-25

srvctl modify database A-26

srvctl predict database A-29

srvctl relocate database A-30

srvctl remove database A-31

srvctl setenv database A-32

srvctl start database A-33

srvctl status database A-34

srvctl stop database A-35

srvctl unsetenv database A-37

srvctl update database A-37

srvctl upgrade database A-37

diskgroup Commands A-38

srvctl disable diskgroup A-38

srvctl enable diskgroup A-39

srvctl predict diskgroup A-39

srvctl remove diskgroup A-39

srvctl start diskgroup A-40

srvctl status diskgroup A-40

srvctl stop diskgroup A-41

home Commands A-42

srvctl start home A-42

srvctl status home A-42

srvctl stop home A-43

instance Commands A-44

srvctl add instance A-45

srvctl disable instance A-45

srvctl enable instance A-46

srvctl modify instance A-47

srvctl remove instance A-48

srvctl start instance A-48

xv

srvctl status instance A-50

srvctl stop instance A-50

srvctl transfer instance A-51

srvctl update instance A-52

listener Commands A-53

srvctl add listener A-54

srvctl config listener A-56

srvctl disable listener A-56

srvctl enable listener A-57

srvctl getenv listener A-57

srvctl modify listener A-58

srvctl predict listener A-59

srvctl remove listener A-60

srvctl setenv listener A-60

srvctl start listener A-61

srvctl status listener A-61

srvctl stop listener A-62

srvctl unsetenv listener A-63

srvctl update listener A-63

network Commands A-64

srvctl add network A-64

srvctl config network A-65

srvctl modify network A-66

srvctl predict network A-67

srvctl remove network A-68

nodeapps Commands A-68

srvctl add nodeapps A-69

srvctl config nodeapps A-71

srvctl disable nodeapps A-71

srvctl enable nodeapps A-72

srvctl getenv nodeapps A-72

srvctl modify nodeapps A-73

srvctl remove nodeapps A-75

srvctl setenv nodeapps A-75

srvctl start nodeapps A-76

srvctl status nodeapps A-77

srvctl stop nodeapps A-77

srvctl unsetenv nodeapps A-78

ons Commands A-78

srvctl add ons A-79

srvctl config ons A-79

srvctl disable ons A-80

xvi

srvctl enable ons A-80

srvctl export ons A-80

srvctl modify ons A-81

srvctl remove ons A-82

srvctl start ons A-82

srvctl status ons A-82

srvctl stop ons A-82

pdb Commands A-83

srvctl add pdb A-84

srvctl config pdb A-86

srvctl disable pdb A-86

srvctl enable pdb A-87

srvctl modify pdb A-87

srvctl remove pdb A-89

srvctl start pdb A-89

srvctl status pdb A-90

srvctl stop pdb A-91

scan Commands A-92

srvctl add scan A-92

srvctl config scan A-93

srvctl disable scan A-94

srvctl enable scan A-94

srvctl modify scan A-95

srvctl predict scan A-95

srvctl relocate scan A-96

srvctl remove scan A-96

srvctl start scan A-97

srvctl status scan A-98

srvctl stop scan A-98

scan_listener Commands A-99

srvctl add scan_listener A-99

srvctl config scan_listener A-100

srvctl disable scan_listener A-101

srvctl enable scan_listener A-102

srvctl export scan_listener A-102

srvctl modify scan_listener A-103

srvctl predict scan_listener A-104

srvctl relocate scan_listener A-104

srvctl remove scan_listener A-104

srvctl start scan_listener A-105

srvctl status scan_listener A-106

srvctl stop scan_listener A-106

xvii

srvctl update scan_listener A-107

service Commands A-107

srvctl add service A-108

srvctl config service A-116

srvctl disable service A-117

srvctl enable service A-118

srvctl modify service A-119

srvctl predict service A-127

srvctl relocate service A-127

srvctl remove service A-129

srvctl start service A-130

srvctl status service A-132

srvctl stop service A-133

vip Commands A-135

srvctl add vip A-136

srvctl config vip A-137

srvctl disable vip A-137

srvctl enable vip A-138

srvctl getenv vip A-138

srvctl modify vip A-139

srvctl predict vip A-139

srvctl relocate vip A-140

srvctl remove vip A-140

srvctl setenv vip A-141

srvctl start vip A-142

srvctl status vip A-142

srvctl stop vip A-143

srvctl unsetenv vip A-144

volume Commands A-144

srvctl config volume A-145

srvctl disable volume A-146

srvctl enable volume A-147

srvctl remove volume A-147

srvctl start volume A-148

srvctl status volume A-149

srvctl stop volume A-150

B Troubleshooting Oracle RAC

Where to Find Files for Analyzing Errors B-1

Managing Diagnostic Data in Oracle RAC B-2

Using Instance-Specific Alert Files in Oracle RAC B-3

xviii

Enabling Tracing for Java-Based Tools and Utilities in Oracle RAC B-3

Resolving Pending Shutdown Issues B-3

How to Determine If Oracle RAC Instances Are Using the Private Network B-3

xix

List of Tables

3-1 How SQL*Plus Commands Affect Instances 3-7

3-2 Descriptions of V$ACTIVE_INSTANCES Columns 3-24

3-3 Parameters That Should Have Identical Settings on All Instances 3-34

5-1 Load Balancing Advisory FAN Events 5-9

6-1 Example Treatment of Restoring Original Oracle Function Values by Products During Replay 6-39

6-2 Event Parameter Name-Value Pairs and Descriptions 6-66

6-3 FAN Parameters and Matching Session Information 6-68

6-4 Standard Connection Tests for Some Common Application Servers 6-81

7-1 Archived Redo Log File Name Format Parameters 7-5

7-2 UNIX/NFS Location Log Examples, Noncluster File System Local Archiving 7-10

7-3 UNIX/NFS Configuration for Shared Read Local Archiving Examples 7-10

9-1 clone.pl Script Parameters 9-5

9-2 Environment Variables Passed to the clone.pl Script 9-6

9-3 Cloning Parameters Passed to the clone.pl Script. 9-6

9-4 Finding the Location of the Oracle Inventory Directory 9-8

11-1 Variables in the Oracle DBCA Silent Mode Syntax 11-6

12-1 Variables in the Oracle DBCA Silent Mode Syntax 12-7

A-1 String Restrictions for SRVCTL Object Names A-3

A-2 Deprecated Single-Character Parameters for SRVCTL Commands A-8

A-3 Deprecated Commands and Parameters for SRVCTL A-14

A-4 Object Keywords and Abbreviations A-16

A-5 srvctl add database Command Parameters A-19

A-6 srvctl config database Command Parameters A-22

A-7 srvctl convert database Command Parameters A-23

A-8 srvctl disable database Command Parameters A-24

A-9 srvctl downgrade database Command Parameters A-24

A-10 srvctl enable database Command Parameters A-25

A-11 srvctl getenv database Command Parameters A-25

A-12 srvctl modify database Command Parameters A-26

A-13 srvctl relocate database Command Parameters A-30

A-14 srvctl remove database Command Parameters A-31

A-15 srvctl setenv database Command Parameters A-32

A-16 srvctl start database Command Parameters A-33

A-17 srvctl status database Parameters A-34

A-18 srvctl stop database Command Parameters A-36

A-19 srvctl unsetenv database Command Parameters A-37

xx

A-20 srvctl upgrade database Command Parameters A-38

A-21 srvctl disable diskgroup Command Parameters A-38

A-22 srvctl enable diskgroup Command Parameters A-39

A-23 srvctl start diskgroup Command Parameters A-40

A-24 srvctl status diskgroup Command Parameters A-41

A-25 srvctl stop diskgroup Command Parameters A-41

A-26 srvctl start home Command Parameters A-42

A-27 srvctl status home Command Parameters A-43

A-28 srvctl stop home Command Parameters A-43

A-29 srvctl add instance Command Parameters A-45

A-30 srvctl disable instance Command Parameters A-46

A-31 srvctl enable instance Command Parameters A-46

A-32 srvctl modify instance Command Parameters A-47

A-33 srvctl remove instance Command Parameters A-48

A-34 srvctl start instance Parameters A-49

A-35 srvctl status instance Command Parameters A-50

A-36 srvctl stop instance Command Parameters A-51

A-37 srvctl transfer instance Command Parameters A-52

A-38 srvctl add listener Command Parameters A-54

A-39 srvctl config listener Command Parameters A-56

A-40 srvctl disable listener Command Parameters A-56

A-41 srvctl enable listener Command Parameters A-57

A-42 srvctl getenv listener Command Parameters A-58

A-43 srvctl modify listener Command Parameters A-58

A-44 srvctl setenv listener Command Parameters A-60

A-45 srvctl start listener Command Parameters A-61

A-46 srvctl status listener Command Parameters A-62

A-47 srvctl stop listener Command Parameters A-62

A-48 srvctl unsetenv listener Command Parameters A-63

A-49 srvctl update listener Command Parameters A-63

A-50 srvctl add network Command Parameters A-64

A-51 srvctl modify network Command Parameters A-66

A-52 srvctl remove network Command Parameters A-68

A-53 srvctl add nodeapps Command Parameters A-69

A-54 srvctl disable nodeapps Command Parameters A-71

A-55 srvctl enable nodeapps Command Parameters A-72

A-56 srvctl getenv nodeapps Command Parameters A-72

xxi

A-57 srvctl modify nodeapps Command Parameters A-73

A-58 srvctl remove nodeapps Command Parameters A-75

A-59 srvctl setenv nodeapps Command Parameters A-76

A-60 srvctl start nodeapps Command Parameters A-76

A-61 srvctl stop nodeapps Command Parameters A-77

A-62 srvctl unsetenv nodeapps Command Parameters A-78

A-63 srvctl add ons Command Parameters A-79

A-64 srvctl export ons Command Parameters A-80

A-65 srvctl modify ons Command Parameters A-81

A-66 srvctl add pdb Command Parameters A-84

A-67 srvctl config pdb Command Parameters A-86

A-68 srvctl disable pdb Command Parameters A-86

A-69 srvctl enable pdb Command Parameters A-87

A-70 srvctl modify pdb Command Parameters A-88

A-71 srvctl remove pdb Command Parameters A-89

A-72 srvctl start pdb Command Parameters A-90

A-73 srvctl status pdb Parameters A-90

A-74 srvctl stop pdb Command Parameters A-91

A-75 srvctl add scan Command Parameters A-92

A-76 srvctl config scan Command Parameters A-93

A-77 srvctl modify scan Command Parameters A-95

A-78 srvctl relocate scan Command Parameters A-96

A-79 srvctl remove scan Command Parameters A-97

A-80 srvctl start scan Command Parameters A-97

A-81 srvctl add scan_listener Command Parameters A-99

A-82 srvctl config scan_listener Command Parameters A-100

A-83 srvctl disable scan_listener Command Parameters A-101

A-84 srvctl enable scan_listener Command Parameters A-102

A-85 srvctl export scan_listener Command Parameters A-103

A-86 srvctl modify scan_listener Command Parameters A-103

A-87 srvctl remove scan_listener Command Parameters A-105

A-88 srvctl start scan_listener Command Parameters A-105

A-89 srvctl status scan_listener Command Parameters A-106

A-90 srvctl stop scan_listener Command Parameters A-107

A-91 srvctl add service Command Parameters A-109

A-92 Service Attribute Dependency Validation A-116

A-93 srvctl config service Command Parameters A-117

xxii

A-94 srvctl disable service Command Parameters A-118

A-95 srvctl enable service Command Parameters A-119

A-96 srvctl modify service Parameters for Moving a Service A-120

A-97 srvctl modify service Parameters for Changing to a Preferred Instance A-121

A-98 srvctl modify service Parameters for Changing Status of Multiple Instances A-121

A-99 srvctl modify service Parameters A-122

A-100 srvctl predict service Command Parameters A-127

A-101 srvctl relocate service Command Parameters A-128

A-102 srvctl remove service Command Parameters A-130

A-103 srvctl status service Command Parameters A-132

A-104 srvctl stop service Command Parameters A-133

A-105 srvctl add vip Command Parameters A-136

A-106 srvctl config vip Command Parameters A-137

A-107 srvctl getenv vip Command Parameters A-138

A-108 srvctl modify vip Command Parameters A-139

A-109 srvctl relocate vip Command Parameters A-140

A-110 srvctl remove vip Command Parameters A-141

A-111 srvctl setenv vip Command Parameters A-141

A-112 srvctl start vip Command Parameters A-142

A-113 srvctl status vip Command Parameters A-142

A-114 srvctl stop vip Command Parameters A-143

A-115 srvctl unsetenv vip Command Parameters A-144

A-116 srvctl config volume Command Parameters A-145

A-117 srvctl disable volume Command Parameters A-146

A-118 srvctl enable volume Command Parameters A-147

A-119 srvctl remove volume Command Parameters A-148

A-120 srvctl start volume Command Parameters A-148

A-121 srvctl status volume Command Parameters A-149

A-122 srvctl stop volume Command Parameters A-150

xxiii

Preface

Oracle Real Application Clusters Administration and Deployment Guide describes the Oracle
Real Application Clusters (Oracle RAC) architecture.

This publication provides an overview of the product, including Oracle Real Application
Clusters One Node (Oracle RAC One Node). This publication also describes administrative
and deployment topics for Oracle RAC.

Information in this manual applies to Oracle RAC as it runs on all platforms, unless otherwise
noted. In addition, the content of this manual supplements administrative and deployment
topics for noncluster Oracle Database that appear in other Oracle documentation. Where
necessary, this publication refers to platform-specific documentation.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Set Up Java Access Bridge to Implement Java Accessibility
Install Java Access Bridge so that assistive technologies on Microsoft Windows systems
can use the Java Accessibility API.

• Command Syntax
Refer to these command syntax conventions to understand command examples in this
guide.

• Conventions

Audience
The Oracle Real Application Clusters Administration and Deployment Guide is intended for
database administrators, network administrators, and system administrators who perform the
following tasks:

• Install and configure an Oracle RAC database

• Administer and manage Oracle RAC databases

• Manage and troubleshoot clusters and networks that use Oracle RAC

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Preface

xxiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Set Up Java Access Bridge to Implement Java Accessibility
Install Java Access Bridge so that assistive technologies on Microsoft Windows systems can
use the Java Accessibility API.

Java Access Bridge is a technology that enables Java applications and applets that implement
the Java Accessibility API to be visible to assistive technologies on Microsoft Windows
systems.

Refer to Java Platform, Standard Edition Accessibility Guide for information about the minimum
supported versions of assistive technologies required to use Java Access Bridge. Also refer to
this guide to obtain installation and testing instructions, and instructions for how to use Java
Access Bridge.

Related Topics

• Java Platform, Standard Edition Java Accessibility Guide

Command Syntax
Refer to these command syntax conventions to understand command examples in this guide.

Convention Description

$ Bourne or BASH shell prompt in a command example. Do not enter the prompt as
part of the command.

% C Shell prompt in a command example. Do not enter the prompt as part of the
command.

Superuser (root) prompt in a command example. Do not enter the prompt as part
of the command.

monospace UNIX command syntax

backslash \ A backslash is the UNIX and Linux command continuation character. It is used in
command examples that are too long to fit on a single line. Enter the command as
displayed (with a backslash) or enter it on a single line without a backslash:

dd if=/dev/rdsk/c0t1d0s6 of=/dev/rst0 bs=10b \ count=10000

braces { } Braces indicate required items:

.DEFINE {macro1}

Preface

xxv

Convention Description

brackets [] Brackets indicate optional items:

cvtcrt termname [outfile]

ellipses ... Ellipses indicate an arbitrary number of similar items:

CHKVAL fieldname value1 value2 ... valueN

italic Italic type indicates a variable. Substitute a value for the variable:

library_name

vertical line | A vertical line indicates a choice within braces or brackets:

FILE filesize [K|M]

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxvi

1
Introduction to Oracle RAC

Provides an overview of Oracle Real Application Clusters (Oracle RAC) installation and
administration, and various components and functions.

Note:

A multitenant Container Database (CDB) is the only supported architecture in Oracle
Database 21c and later releases.

• Overview of Oracle RAC
Learn about Oracle Real Application Clusters (Oracle RAC), and the differences in
functionality between Oracle RAC and a single-instance Oracle Database.

• Overview of Oracle Multitenant with Oracle RAC
You can configure a multitenant Container Database (CDB) to use Oracle RAC.

• Overview of Installing Oracle RAC
Install Oracle Grid Infrastructure and Oracle Database software using Oracle Universal
Installer, and create your database with Oracle Database Configuration Assistant (Oracle
DBCA).

• Overview of Oracle Real Application Clusters One Node
Oracle Real Application Clusters One Node (Oracle RAC One Node) is an option to Oracle
Database Enterprise Edition available since Oracle Database 11g release 2 (11.2).

• Overview of Oracle Clusterware for Oracle RAC
Oracle Clusterware provides a complete, integrated clusterware management solution on
all Oracle Database platforms.

• Overview of Oracle RAC Architecture and Processing
Installing Oracle RAC requires software, a network, and a storage configuration.

• Overview of Automatic Workload Management with Dynamic Database Services
Services represent groups of applications with common attributes, service level thresholds,
and priorities.

• Overview of Blocker Resolver
Blocker Resolver is an Oracle Database feature that automatically detects and resolves
system delays.

• Overview of Database In-Memory and Oracle RAC
Every Oracle RAC node has its own In-Memory (IM) column store. By default, populated
objects are distributed across all IM column stores in the cluster.

• Overview of Managing Oracle RAC Environments
When managing Oracle RAC, there are many considerations, such as the deployment
type, the tools to use, how to monitor the system, and how to evaluate performance.

1-1

Overview of Oracle RAC
Learn about Oracle Real Application Clusters (Oracle RAC), and the differences in functionality
between Oracle RAC and a single-instance Oracle Database.

Non-cluster Oracle Database instances have a one-to-one relationship between Oracle
Database and the instance. Oracle RAC environments, however, have a one-to-many
relationship between the database and instances. An Oracle RAC database can have several
instances, all of which access one Oracle Database. All database instances must use the
same interconnect, which can also be used by Oracle Clusterware.

Oracle RAC databases differ architecturally from a non-cluster Oracle Database, in that each
Oracle RAC database instance also has:

• At least one additional thread of redo for each instance

• An instance-specific undo tablespace

The combined processing power of the multiple servers can provide greater throughput and
Oracle RAC scalability than is available from a single server.

A cluster comprises multiple interconnected computers or servers that appear as if they are
one server to end users and applications. The Oracle RAC option with Oracle Database
enables you to cluster Oracle Database instances. Oracle RAC uses Oracle Clusterware for
the infrastructure to bind multiple servers so they operate as a single system.

Oracle Clusterware is a portable cluster management solution that is integrated with Oracle
Database. Oracle Clusterware is a required component for using Oracle RAC that provides the
infrastructure necessary to run Oracle RAC. Oracle Clusterware also manages resources,
such as Virtual Internet Protocol (VIP) addresses, databases, listeners, services, and so on.
In addition, Oracle Clusterware enables both non-cluster Oracle databases and Oracle RAC
databases to use the Oracle high-availability infrastructure. Oracle Clusterware along with
Oracle Automatic Storage Management (Oracle ASM) (the two together comprise the Oracle
Grid Infrastructure) enables you to create a clustered pool of storage to be used by any
combination of non cluster and Oracle RAC databases.

Oracle Clusterware is the only clusterware that you need for most platforms on which Oracle
RAC operates. Starting with Oracle Database 19c, the integration of vendor clusterware with
Oracle Clusterware is deprecated, and is not supported in Oracle Database 21c and later
releases.

The following figure shows how Oracle RAC is the Oracle Database option that provides a
single system image for multiple servers to access one Oracle database. In Oracle RAC, each
Oracle instance must run on a separate server.

Chapter 1
Overview of Oracle RAC

1-2

Figure 1-1 Oracle Database with Oracle RAC Architecture

HR

Sales�

Call Center

HR

Sales

Call Center

HR

Sales�

Call Center

Node 3

Call Center Service

Node 1 Node 2

Application / Web Servers

HR Service Sales Service

RAC
Database

Oracle Net Services Client Access

hb
hb

Instance 1

Heartbeat hb

hb
hb

Instance 2 Instance 3

Traditionally, an Oracle RAC environment is located in one data center. However, you can
configure Oracle RAC on an Oracle Extended Cluster, which is an architecture that provides
extremely fast recovery from a site failure and allows for all nodes, at all sites, to actively
process transactions as part of a single database cluster. In an extended cluster, the nodes in
the cluster are typically dispersed, geographically, such as between two fire cells, between two
rooms or buildings, or between two different data centers or cities. For availability reasons, the
data must be located at both sites, thus requiring the implementation of disk mirroring
technology for storage.

If you choose to implement this architecture, then you must assess whether this architecture is
a good solution for your business, especially considering distance, latency, and the degree of
protection it provides. Oracle RAC on extended clusters provides higher availability than is
possible with local Oracle RAC configurations. However, an extended cluster may not fulfill all
of the disaster-recovery requirements of your organization. A feasible separation provides
great protection for some disasters (for example, local power outage or server room flooding),
but it cannot provide protection against all types of outages. For comprehensive protection
against disasters—including protection against corruptions and regional disasters—Oracle
recommends the use of Oracle Data Guard with Oracle RAC, as described in the Oracle Data
Guard Concepts and Administration, and on the Maximum Availability Architecture (MAA) Web
site.

Oracle RAC is a unique technology that provides high availability and scalability for all
application types. The Oracle RAC infrastructure is also a key component for implementing the
Oracle enterprise grid computing architecture. Having multiple instances access a single
database prevents the server from being a single point of failure. Oracle RAC enables you to
combine smaller commodity servers into a cluster to create scalable environments that support

Chapter 1
Overview of Oracle RAC

1-3

mission critical business applications. Applications that you deploy on Oracle RAC databases
can operate without code changes.

Oracle RAC allows multiple instances running on different nodes to access the database.
Oracle RAC Cache Fusion automatically ensures changes from multiple sessions running on
different instances are coordinated. In Oracle Database 21c and later releases, these
background processes that perform Oracle RAC Cache fusion functionality have been
enhanced to handle irrecoverable errors. Depending on the cause, Oracle RAC can retry the
operation or correct the error to prevent instance failure. This reduces the occurrence of
instance failures and helps to prevent these workload impacts.

Related Topics

• Introduction to Oracle Clusterware

• Oracle Data Guard and Oracle Real Application Clusters

• Maximum Availability Architecture (MAA)

Overview of Oracle Multitenant with Oracle RAC
You can configure a multitenant Container Database (CDB) to use Oracle RAC.

You can make each PDB available on either every database instance of the Oracle RAC CDB
or on a subset of instances. In either case, access to PDBs is regulated using dynamic
database services. Applications uses these services to connect to a PDB, like they would
connect to a single-instance non-CDB.

You can isolate PDBs to prevent certain operations from being performed on or within a
particular PDB that may interfere with other PDBs sharing the same Oracle RAC database or
instance. PDB isolation allows for greater consolidation.

If you create an Oracle RAC database as a CDB, and if you plug PDBs into the CDB, then by
default a PDB is not started automatically on any instance. With the first dynamic database
service assigned to the PDB (other than the default database service, which has the same
name as the database name), the PDB is made available on those instances on which the
service runs.

Regardless of whether a PDB is available on multiple instances of an Oracle RAC CDB, the
CDB is typically managed by the services running on the PDB. You can manually enable PDB
access on each instance by starting the PDB manually on that instance.

Overview of Installing Oracle RAC
Install Oracle Grid Infrastructure and Oracle Database software using Oracle Universal
Installer, and create your database with Oracle Database Configuration Assistant (Oracle
DBCA).

This ensures that your Oracle RAC environment has the optimal network configuration,
database structure, and parameter settings for the environment that you selected.

Alternatively, you can install Oracle RAC using Fleet Patching and Provisioning, which offers all
of the advantages of Oracle Universal Installer and Oracle DBCA previously specified. In
addition, Fleet Patching and Provisioning allows for standardization and automation.

• Understanding Compatibility in Oracle RAC Environments
As part of your deployment plan, review the release compatibility restrictions and
guidelines for using different Oracle Database releases on Oracle Grid Infrastructure.

Chapter 1
Overview of Oracle Multitenant with Oracle RAC

1-4

http://www.oracle.com/au/products/database/maa-096107.html

• Oracle RAC Database Installation
Learn how to install Oracle Real Application Clusters (Oracle RAC) and review the
restrictions.

• Oracle RAC Database Creation
Part of Oracle Database deployment is the creation of the database.

• Overview of Extending Oracle RAC Clusters
To extend an Oracle RAC cluster, also known as cloning, and add nodes to your
environment after your initial deployment, then you must to do this on multiple layers,
considering the management style that you currently use in the cluster.

Related Topics

• Oracle Real Application Clusters Installation Guide for Linux and UNIX

• Oracle Grid Infrastructure Installation and Upgrade Guide for Linux

Understanding Compatibility in Oracle RAC Environments
As part of your deployment plan, review the release compatibility restrictions and guidelines for
using different Oracle Database releases on Oracle Grid Infrastructure.

To run Oracle RAC in configurations with different releases of Oracle Database in the same
cluster, you must first install Oracle Grid Infrastructure, which must be the same version, or
higher, as the highest version of Oracle Database that you want to deploy in this cluster. For
example, to run an Oracle RAC 19c database and an Oracle RAC 23ai database in the same
cluster, you must install Oracle Grid Infrastructure 23ai. Contact My Oracle Support for more
information about version compatibility in Oracle RAC environments.

Oracle RAC Database Installation
Learn how to install Oracle Real Application Clusters (Oracle RAC) and review the restrictions.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

Before you install Oracle RAC, first install Oracle Grid Infrastructure. The release of Oracle
Grid Infrastructure must be the same as or newer than the Oracle RAC release that you are
installing. Oracle Universal Installer only enables you to deploy an Oracle Database home
across the nodes in a cluster if you previously installed and configured Oracle Grid
Infrastructure for the cluster. If Oracle Universal Installer does not give you an option to deploy
the database home across all of the nodes in the cluster, then the server on which you are
attempting to install Oracle RAC is not a cluster member node.

During installation, you must manually run Oracle DBCA to create an Oracle RAC or an Oracle
RAC One Node database. In these cases, database creation is a two-step process. First,
install the Oracle RAC software by running the Oracle Database installer. Then create and
configure your Oracle RAC or Oracle RAC One Node database using Oracle DBCA.

Chapter 1
Overview of Installing Oracle RAC

1-5

Note:

Before you create a database, a default listener must be running in the Oracle Grid
Infrastructure home. If there is no default listener in the Oracle Grid Infrastructure
home, then Oracle DBCA returns an error instructing you to run NETCA from the
Oracle Grid Infrastructure home to create a default listener.

The Oracle RAC software is distributed as part of the Oracle Database installation media. By
default, the Oracle Database software installation process installs the Oracle RAC option when
the installation process recognizes that you are performing the installation on a cluster. Oracle
Universal Installer installs Oracle RAC into a directory structure referred to as the Oracle
home, which is separate from the Oracle home directory for other Oracle software running on
the system. Because Oracle Universal Installer is cluster aware, it installs the Oracle RAC
software on all of the nodes that you defined to be part of the cluster.

Starting with Oracle Database 21c, the installation process creates a read-only Oracle home
directory by default. You can use the read-only Oracle home as a software image to be shared
across multiple database servers. This simplifies patching and mass rollout because only one
Oracle home image needs to be updated to distribute a patch to multiple database servers.
Read-only Oracle Database homes are more secure than traditional Oracle Database homes
because there is a clear separation of configuration information from the actual software. Thus,
there is no risk of new files being created inside the Oracle Database home from active
processes.

Related Topics

• Oracle RAC Database Creation
Part of Oracle Database deployment is the creation of the database.

• Oracle Database Net Services Administrator's Guide

Oracle RAC Database Creation
Part of Oracle Database deployment is the creation of the database.

You can create a database as part of the database deployment or you can only deploy the
database software first, then create any database that is meant to run out of the newly created
Oracle home by using Oracle DBCA.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

In Oracle RAC environments, the values for DB_UNIQUE_NAME.DB_DOMAIN in its entirety must be
unique for each database within your enterprise. The name of each Pluggable Database (PDB)
should also be unique within the cluster.

By default, Oracle DBCA creates one service for your Oracle RAC installation. This is the
default database service and you should not use this service for user connectivity. The default
database service is typically identified using the combination of the DB_NAME and DB_DOMAIN
initialization parameters: db_name.db_domain. The default service is available on all instances
in Oracle RAC environments, unless the database is in restricted mode.

Chapter 1
Overview of Installing Oracle RAC

1-6

Note:

Oracle recommends that you reserve the default database service for maintenance
operations and create dynamic database services for user or application connectivity
as a post-database creation step, using either SRVCTL or Oracle Enterprise
Manager. Oracle DBCA no longer offers a dynamic database service creation option
for Oracle RAC databases. For Oracle RAC One Node databases, you must create
at least one dynamic database service.

Related Topics

• Oracle RAC Database Installation
Learn how to install Oracle Real Application Clusters (Oracle RAC) and review the
restrictions.

Overview of Extending Oracle RAC Clusters
To extend an Oracle RAC cluster, also known as cloning, and add nodes to your environment
after your initial deployment, then you must to do this on multiple layers, considering the
management style that you currently use in the cluster.

Oracle provides various means of extending Oracle RAC clusters. Choose from the following
approaches to extend the current environment:

• Fleet Patching and Provisioning to provision new Oracle RAC databases and other
software

• Cloning using cloning scripts

• Adding nodes using the addnode.sh (addnode.bat on Windows) script

Both approaches apply, regardless of how you initially deployed your environment. Both
approaches copy the Oracle software on to the node that you plan to add to the cluster.
Software that is copied to the node includes the Oracle Grid Infrastructure software and the
Oracle Database homes.

For Oracle Database homes, ensure that the database software is deployed on all of the nodes
on which database instances can potentially run. In either case, first deploy Oracle Grid
Infrastructure on all of the nodes that are to be part of the cluster.

Note:

Oracle cloning is not a replacement for cloning using Oracle Enterprise Manager as
part of the Provisioning Pack. When you clone Oracle RAC using Oracle Enterprise
Manager, the provisioning process includes a series of steps where details about the
home that you want to capture, the location to which you want to deploy, and various
other parameters are collected.

For new installations, or if you install only one Oracle RAC database, use the traditional
automated and interactive installation methods, such as Oracle Universal Installer, Fleet
Patching and Provisioning, or the Provisioning Pack feature of Oracle Enterprise Manager. To
add or delete Oracle RAC from nodes in a cluster, use the procedures detailed in the Adding
and Deleting Oracle RAC from Nodes... topics listed at the end of this topic.

Chapter 1
Overview of Installing Oracle RAC

1-7

The cloning process assumes that you successfully installed an Oracle Clusterware home and
an Oracle home with Oracle RAC on at least one node. In addition, all root scripts must have
run successfully on the node from which you are extending your cluster database.

Related Topics

• Fleet Patching and Provisioning

• Cloning Oracle RAC to Nodes in a New Cluster
Learn how to clone Oracle Real Application Clusters (Oracle RAC) database homes on
Linux and Unix systems to nodes in a new cluster.

• Adding and Deleting Oracle RAC from Nodes on Linux and Unix Systems
Extend an existing Oracle Real Application Clusters (Oracle RAC) home to other nodes
and instances in the cluster, and delete Oracle RAC from nodes and instances in the
cluster.

• Adding and Deleting Oracle RAC from Nodes on Windows Systems
Use these procedures to extend an existing Oracle Real Application Clusters (Oracle RAC)
home on Microsoft Windows to other nodes and instances in the cluster, or delete Oracle
RAC from nodes and instances in the cluster.

See Also:

Oracle Enterprise Manager online help system for more information about the
Provisioning Pack

Overview of Oracle Real Application Clusters One Node
Oracle Real Application Clusters One Node (Oracle RAC One Node) is an option to Oracle
Database Enterprise Edition available since Oracle Database 11g release 2 (11.2).

Oracle RAC One Node is a single instance of an Oracle RAC-enabled database running on
one node in the cluster, only, under normal operations. This option adds to the flexibility that
Oracle offers for database consolidation while reducing management overhead by providing a
standard deployment for Oracle databases in the enterprise. Oracle RAC One Node database
requires Oracle Grid Infrastructure and, therefore, requires the same hardware setup as an
Oracle RAC database.

Oracle supports Oracle RAC One Node on all platforms on which Oracle RAC is certified.
Similar to Oracle RAC, Oracle RAC One Node is certified on Oracle Virtual Machine (Oracle
VM). Using Oracle RAC or Oracle RAC One Node with Oracle VM increases the benefits of
Oracle VM with the high availability and scalability of Oracle RAC.

With Oracle RAC One Node, there is no limit to server scalability and, if applications grow to
require more resources than a single node can supply, then you can upgrade your applications
online to Oracle RAC. If the node that is running Oracle RAC One Node becomes overloaded,
then you can relocate the instance to another node in the cluster. With Oracle RAC One Node
you can use the Online Database Relocation feature to relocate the database instance with no
downtime for application users. Alternatively, you can limit the CPU consumption of individual
database instances per server within the cluster using Resource Manager Instance Caging and
dynamically change this limit, if necessary, depending on the demand scenario.

Using the Single Client Access Name (SCAN) to connect to the database, clients can locate
the service independently of the node on which it is running. Relocating an Oracle RAC One
Node instance is therefore mostly transparent to the client, depending on the client connection.

Chapter 1
Overview of Oracle Real Application Clusters One Node

1-8

Oracle recommends to use either Application Continuity and Oracle Fast Application
Notification or Transparent Application Failover to minimize the impact of a relocation on the
client.

Oracle RAC One Node databases are administered slightly differently from Oracle RAC or non-
cluster databases. For Oracle RAC One Node databases, you must monitor the candidate
node list and make sure a server is always available for failover, if possible.

Note:

• Oracle RAC One Node supports Transaction Guard and Application Continuity
for failing clients over.

• To prepare for all failure possibilities, you must add at least one Dynamic
Database Service (Oracle Clusterware-managed database service) to an Oracle
RAC One Node database.

Related Topics

• Oracle Real Application Clusters Installation Guide for Linux and UNIX

• Transaction Guard for Improving Client Failover
Transaction Guard is a developer feature that your applications can use to determine
COMMIT_OUTCOME following recoverable errors.

Overview of Oracle Clusterware for Oracle RAC
Oracle Clusterware provides a complete, integrated clusterware management solution on all
Oracle Database platforms.

• Guidelines for Using Oracle Clusterware
The functionality provided by Oracle Clusterware provides all of the features that are
required to manage cluster databases, including node membership, group services, global
resource management, and high availability functions.

• Overview of Temporary Tablespaces
Oracle uses temporary tablespaces to write spill-overs to non-shared tablespaces that are
created on local disks.

Guidelines for Using Oracle Clusterware
The functionality provided by Oracle Clusterware provides all of the features that are required
to manage cluster databases, including node membership, group services, global resource
management, and high availability functions.

You can install Oracle Grid Infrastructure independently or as a prerequisite to installing Oracle
RAC. Oracle Database features, such as services, use the underlying Oracle Clusterware
mechanisms to provide advanced capabilities. Starting with Oracle Database 21c, third-party
clusterware products are no longer supported with Oracle RAC.

Oracle Clusterware is designed for, and tightly integrated with, Oracle RAC. You can use
Oracle Clusterware to manage high-availability operations in a cluster. When you create an
Oracle RAC database using any of the management tools, the database is registered with and
managed by Oracle Clusterware, along with the other required components such as the VIP
address, the Single Client Access Name (SCAN) (which includes the SCAN VIPs and the

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-9

SCAN listener), Oracle Notification Service, and the Oracle Net listeners. These resources
automatically start when the node starts and automatically restart if they fail. The Oracle
Clusterware daemons run on each node.

Anything that Oracle Clusterware manages is known as a CRS resource. A CRS resource can
be a database, an instance, a Pluggable Database (PDB), a service, a listener, a VIP address,
or an application process. Oracle Clusterware manages CRS resources based on a resource's
configuration information that is stored in the Oracle Cluster Registry (OCR). You can use
SRVCTL commands to administer any Oracle-defined CRS resources. Oracle Clusterware
provides the framework that enables you to create CRS resources to manage any process
running on servers in the cluster which are not predefined by Oracle. Oracle Clusterware
stores the information that describes the configuration of these components in OCR that you
can administer.

Related Topics

• Managing Oracle Cluster Registry and Oracle Local Registry

Overview of Temporary Tablespaces
Oracle uses temporary tablespaces to write spill-overs to non-shared tablespaces that are
created on local disks.

It is still possible for SQL operations, such as hash aggregations, sorts, hash joins, creations of
cursor-duration temporary tables for the WITH clause, and star transformations to spill over to
disk. The spill overs go to the tablespaces on shared disks. Management of temporary
tablespaces is similar to that of existing tablespaces.

Temporary tablespaces improve tablespace management by:

• Storing temp files in private storage to take advantage of local storage I/O benefits.

• Avoiding expensive cross-instance temporary tablespace management.

• Increased addressability of temporary tablespace.

• Improving instance warm-up performance by eliminating on-disk space metadata
management.

Note:

You cannot use temporary tablespaces to store database objects, such as tables or
indexes.

• Parallel Execution Support for Cursor-Duration Temporary Tablespaces
The temporary tablespaces that are created using the WITH clause and star transformation
exist in the temporary tablespace on shared disk.

• Temporary Tablespace Organization
Review the following information when organizing the temporary tablespaces.

• Temporary Tablespace Hierarchy
When you define temporary tablespaces, there is a hierarchy that determines how the
tablespaces are used.

• Temporary Tablespace Features
Review the following information when using temporary tablespaces.

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-10

• Metadata Management of Temporary Files
Instance-specific information, such as bitmap for allocation, current size for a temporary
file, and the file status, is stored in the SGA and not in control files because such
information can vary across instances.

• DDL Support for Temporary Tablespaces
You can manage temporary tablespaces and temporary files with either the DDL command
ALTER TABLESPACE, or ALTER DATABASE.

• Temporary Tablespace for Users
When you create a user without explicitly specifying shared or temporary tablespace, the
user inherits shared and temporary tablespace from the corresponding default database
tablespaces.

• Atomicity Requirement for Commands
All of the commands that you run from read-write instances are performed in an atomic
manner.

• Temporary Tablespace and Dictionary Views
Oracle extended dictionary views can display information about temporary tablespaces.

Related Topics

• Oracle Database SQL Language Reference

Parallel Execution Support for Cursor-Duration Temporary Tablespaces
The temporary tablespaces that are created using the WITH clause and star transformation
exist in the temporary tablespace on shared disk.

A set of parallel query child processes loads the intermediate query results into these
temporary tablespaces, which are then read by a different child processes. There is no
restriction on how these child processes reading these results are allocated, because any
parallel query child process on any instance can read the temporary tablespaces residing on
the shared disk.

For read-write and read-only instance architecture, when the parallel query child processes
load the intermediate results to the temporary tablespaces of these instances, the parallel
query child processes of the instance where the intermediate results are stored share an
affinity with the read operations for the intermediate results and can thus read them.

Temporary Tablespace Organization
Review the following information when organizing the temporary tablespaces.

For example:

CREATE TEMPORARY TABLESPACE temp_ts TEMPFILE\
 '/u01/app/oracle/database/23.4.0/dbs/temp_file'\
 EXTENT MANAGEMENT UNIFORM SIZE 1M AUTOEXTEND ON;

• Creation of a temporary tablespace results in the creation of temporary files on every
instance and not a single file.

• You can create temporary tablespaces for both read-only and read-write instances.

CREATE TEMPORARY TABLESPACE FOR ALL temp_ts TEMPFILE\
 ‘/u01/app/oracle/database/23.4.0/dbs/temp_file’\
 EXTENT MANAGEMENT UNIFORM SIZE 1M AUTOEXTEND ON;

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-11

Temporary Tablespace Hierarchy
When you define temporary tablespaces, there is a hierarchy that determines how the
tablespaces are used.

There can be multiple temporary tablespaces in a database, such the default shared temporary
tablespace for the database and multiple temporary tablespaces that are assigned to individual
users. If a user has a shared temporary tablespace assigned, then that tablespace is used first,
otherwise the database default temporary tablespace is used.

Once a tablespace has been selected for spilling during query processing, there is no
switching to another tablespace. For example, if a user has a shared temporary tablespace
assigned and during spilling it runs out of space, then there is no switching to an alternative
tablespace. The spilling, in that case, results in an error. Additionally, remember that shared
temporary tablespaces are shared among instances.

The allocation of temporary space for spilling to a temporary tablespace differs between read-
only and read-write instances. For read-only instances, the following is the priority of selecting
which temporary location to use for spills:

1. Allocate from a user's temporary tablespace.

2. Allocate from the database default temporary tablespace.

Note:

If there is no temporary tablespace in the database, then read-only instances spill to
shared temporary tablespace.

For read-write instances, the priority of allocation differs from the preceding allocation order,
because shared temporary tablespaces are given priority, allocating as follows from:

1. A user’s shared temporary tablespace.

2. The database default shared temporary tablespace.

Temporary Tablespace Features
Review the following information when using temporary tablespaces.

Instances cannot share temporary tablespace. Therefore, one instance cannot take temporary
tablespace from another. If an instance runs out of temporary tablespace during spilling, then
the statement results in an error.

• Temporary tablespaces support only one BIGFILE per tablespace.

• To address contention issues arising from having only one BIGFILE-based temporary
tablespace, you can assign multiple temporary tablespaces to different users as the
default.

• A database administrator can specify the default temporary tablespace for a user using
ALTER USER syntax. For example:

ALTER USER MAYNARD TEMPORARY TABLESPACE temp_ts;

• You can configure a user with two default temporary tablespaces:

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-12

– One temporary tablespace when the user is connected to the read-only instance.

– One shared temporary tablespace to be used when the same user is connected on the
read-write instances that are running on a node.

Metadata Management of Temporary Files
Instance-specific information, such as bitmap for allocation, current size for a temporary file,
and the file status, is stored in the SGA and not in control files because such information can
vary across instances.

Currently, temporary file information (such as file name, creation size, creation SCN, temporary
block size, and file status) is stored in the control file along with the initial and max files, as well
as auto extent attributes. However, information about temporary files in the control file is
common to all applicable instances.

When an instance starts, it reads the control file information and creates the temporary files
that constitute the temporary tablespace for that instance. If there are two or more instances
running on a node, then each instance has its own temporary files.

For temporary tablespaces, there is a separate file for each involved instance. The temporary
file names follow a naming convention such that the instance numbers are appended to the
temporary file names that are specified while creating the temporary tablespace.

For example, assume that a read-only node, N1, runs two Oracle read-only database
instances with numbers 3 and 4. The following DDL command creates two files on node N1—/
temp/temp_file_3 and /temp/temp_file_4, for instance 3 and 4 respectively:

CREATE TEMPORARY TABLESPACE temp_ts TEMPFILE '/temp/temp_file'\
 EXTENT MANAGEMENT UNIFORM SIZE 1M AUTOEXTEND ON;

Assuming that there are two read-write instances, instances 1 and 2, and two read-only
instances, instances 3 and 4, the following DDL command creates four files—/temp/
temp_file_all_1 and /temp/temp_file_all_2 for instances 1 and 2, respectively,
and /temp/temp_file_all_3 and /temp/temp_file_all_4 for instances 3 and 4,
respectively:

CREATE TEMPORARY TABLESPACE FOR ALL temp_ts_for_all TEMPFILE '/temp/
temp_file_all'\
 EXTENT MANAGEMENT UNIFORM SIZE 1M AUTOEXTEND ON;

DDL Support for Temporary Tablespaces
You can manage temporary tablespaces and temporary files with either the DDL command
ALTER TABLESPACE, or ALTER DATABASE.

Run all temporary tablespace management and creation DDL commands from the read-write
instances. Running all other DDL commands affects all instances in a homogeneous manner.

For example, the following command resizes the temporary files on all read-only instances:

ALTER TABLESPACE temp_ts RESIZE 1G;

For temporary tablespaces, Oracle supports the allocation options and their restrictions that
are currently active for temporary files.

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-13

To run a DDL command on a temporary tablespace on a read-only instance, there must be at
least one read-only instance in the cluster. This restriction is not applicable when creating or
altering temporary tablespaces FOR ALL. You can assign a default temporary tablespace to the
database with the clause DEFAULT TEMPORARY TABLESPACE appended to the command ALTER
DATABASE.

For example:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE temp_ts;

You can specify default temporary tablespaces when creating the database, as follows:

CREATE DATABASE .. DEFAULT TEMPORARY TABLESPACE temp_ts_for_dbtemp_ts
TEMPFILE\
 '/temp/temp_file_for_db' EXTENT MANAGEMENT UNIFORM SIZE 1M AUTOEXTEND ON;

You cannot specify default temporary tablespaces using the command CREATE DATABASE.
When you create a database, its default temporary tablespace points to the default shared
temporary tablespace. You must run the command ALTER DATABASE to assign an existing
temporary tablespace as the default for the database.

Temporary Tablespace for Users
When you create a user without explicitly specifying shared or temporary tablespace, the user
inherits shared and temporary tablespace from the corresponding default database
tablespaces.

You can specify default temporary tablespace for a user, as follows:

CREATE USER new_user IDENTIFIED BY new_user TEMPORARY TABLESPACE
temp_ts_for_all;

You can change the temporary tablespace for a user using the ALTER USER command, as
follows:

ALTER USER maynard TEMPORARY TABLESPACE temp_ts;

As previously mentioned, default user temporary tablespace can be shared temporary space.
Consider the following items for the ALTER USER...TEMPORARY TABLESPACE command:

• You can change the user default temporary tablespace to any existing temporary
tablespace.

• If you want to set the user default temporary tablespace to a shared temporary tablespace,
T, then T must be the same as the default shared temporary tablespace.

• If a default user temporary tablespace points to a shared temporary tablespace, then,
when you change the default shared temporary tablespace of the user, you also change
the default temporary tablespace to that tablespace.

Following are some examples of temporary space management using the command ALTER:

• To take a temporary tablespace offline:

ALTER DATABASE TEMPFILE ‘/temp/temp_file’ OFFLINE;

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-14

• To decrease the size of a temporary tablespace:

ALTER TABLESPACE temp_ts SHRINK SPACE KEEP 20M

• To change the auto-extension attributes of a temporary file:

ALTER TABLESPACE temp_ts AUTOEXTEND ON NEXT 20G

• To resize a temporary file:

ALTER TABLESPACE temp_ts RESIZE 10G

Note:

When you resize a temporary file, it applies to individual files.

Some read-only instances may be down when you run the preceding commands. This does
not prevent the commands from succeeding because when a read-only instance starts up later,
it creates the temporary files based on information in the control file. Creation is fast because
Oracle Database reformats only the header block of the temporary file, recording information
about the file size, among other things. If you cannot create the temporary files, then the read-
only instance stays down. Commands that you submitted from read-write instances are
replayed immediately on all open, read-only instances.

Atomicity Requirement for Commands
All of the commands that you run from read-write instances are performed in an atomic
manner.

This means that the command succeeds only when it succeeds on all live instances.

Temporary Tablespace and Dictionary Views
Oracle extended dictionary views can display information about temporary tablespaces.

Note the following changes to data dictionary views:

• All of the diagnosibility information that is related to temporary tablespaces and temporary
files that are exposed through AWR, SQL monitor, and other utilities, is also available for
temporary tablespaces and temporary files. This information is available with the existing
dictionary views for temporary tablespaces and temporary files: DBA_TEMP_FILES,
DBA_TEMP_FREE_SPACE.

• The USER_TABLESPACES and DBA_TABLESPACES dictionary view are extended by a column
called SHARED, that indicates if the temporary file is shared.

• The DBA_TEMP_FILES dictionary view is extended by two columns: SHARED and INST_ID.
The SHARED column indicates if the temp file is shared. The INST_ID column contains the
instance number. For shared temporary files, there is a single row per file and the INST_ID
is null. For temporary files, this column contains information about temporary files for each
instance, such as the size of the file in bytes (BYTES column).

• The DBA_TEMP_FREE_SPACE dictionary view is extended by two columns: SHARED and
INST_ID. The SHARED column indicates of the temporary file is shared. The INST_ID column
contains the instance number. For shared temporary files, there is a single row for each file

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-15

and the INST_ID is null. For temporary files, this column contains information about
temporary files for each instance, such as the total free space available (FREE_SPACE
column).

• In the dictionary views, such as DBA_TABLESPACES, Oracle distinguishes the type of the
tablespace using the SHARED column with the following values:

– SHARED: for shared temporary tablespace

– LOCAL_ON_ALL: for temporary tablespace on all of the instances

Note:

Currently, spills onto temporary tablespace for queries, such as sort and hash
join spills, are automatically encrypted. This is also true for spills to temporary
tablespace.

Overview of Oracle RAC Architecture and Processing
Installing Oracle RAC requires software, a network, and a storage configuration.

Oracle RAC requires several components:

• Oracle Clusterware for concurrent access to the same storage and the same set of data
files from all of the nodes in a cluster

• A communications protocol for enabling interprocess communication (IPC) across all of the
nodes in a cluster

• Multiple database instances that process data as if the data resided on a logically
combined, single cache

• A mechanism for monitoring and communicating the statuses of the nodes in a cluster

• Understanding Cluster-Aware Storage Solutions
Learn about the Oracle Real Application Clusters shared everything architecture and what
shared everything means for your storage options.

• Oracle RAC and Network Connectivity
All nodes in Oracle RAC environments must connect to at least one Local Area Network
(LAN). This network is commonly referred to as the public network, and it enables users
and applications to access the database.

• Overview of Using Dynamic Database Services to Connect to Oracle Databases
Applications should use the Dynamic Database Services feature to connect to an Oracle
database over the public network.

• Overview of Virtual IP Addresses
Node VIPs are virtual IP (VIP) addresses that clients use to connect to Oracle RAC
databases.

• Restricted Service Registration in Oracle RAC
The valid node checking feature provides the ability to configure and dynamically update a
set of IP addresses or subnets from which registration requests are allowed by the listener.

• About Oracle RAC Software Components
In an Oracle RAC environment, Oracle RAC Cache Fusion automatically synchronizes
each Oracle instance's buffer cache.

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-16

• About Oracle RAC Background Processes
The global cache service (GCS) and the global enqueue service (GES) processes,
along with the global resource directory (GRD) collaborate to enable Cache Fusion.

Understanding Cluster-Aware Storage Solutions
Learn about the Oracle Real Application Clusters shared everything architecture and what
shared everything means for your storage options.

An Oracle RAC database is a shared everything database. All data files, control files,
SPFILEs, and redo log files in Oracle RAC environments must reside on cluster-aware shared
disks. This enables all of the cluster database instances to access these storage components.
Because Oracle RAC databases use a shared everything architecture, Oracle RAC requires
cluster-aware storage for all of the database files.

In Oracle RAC, Oracle Database manages the disk access and is certified for use on a variety
of storage architectures. It is your choice how to configure your storage, but you must use a
supported cluster-aware storage solution. Oracle Database provides the following Oracl RAC
storage options:

• Oracle Automatic Storage Management (Oracle ASM)

Oracle recommends this solution to manage your storage.

• A certified cluster file system

– Oracle recommends Oracle Advanced Cluster File System (Oracle ACFS).

– A third-party cluster file system on a cluster-aware volume manager that is certified for
Oracle RAC. For example:

* Oracle OCFS2 (Linux only)

* IBM GPFS (IBM AIX only)

• Certified network file system (NFS) solution

Oracle RAC and Network Connectivity
All nodes in Oracle RAC environments must connect to at least one Local Area Network (LAN).
This network is commonly referred to as the public network, and it enables users and
applications to access the database.

In addition to the public network, Oracle RAC requires private network connectivity that is used
exclusively for communication among the nodes and database instances that are running on
those nodes. This network is commonly referred to as the interconnect.

The interconnect network is a private network that connects all of the servers in a cluster. The
interconnect network must use at least one switch and a Gigabit Ethernet adapter.

Note:

• Oracle supports interfaces with higher bandwidth but does not support using
crossover cables with the interconnect.

• Do not use the interconnect, the private network, for user communication,
because Cache Fusion uses the interconnect for interinstance communication.

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-17

You can configure Oracle RAC to use either the User Datagram Protocol (UDP) or Reliable
Data Socket (RDS) protocols for inter-instance communication on the interconnect. Oracle
Clusterware uses the same interconnect using the UDP protocol, but cannot be configured to
use RDS.

An additional network connectivity is required when using Network Attached Storage (NAS).
Network attached storage can be typical NAS devices, such as NFS filers, or it can be storage
that is connected using Fibre Channel over IP, for example. This additional network
communication channel should be independent of the other communication channels that
Oracle RAC uses (the public and private network communication). If the storage network
communication must be converged with one of the other network communication channels,
then ensure that storage-related communication gets first priority.

Overview of Using Dynamic Database Services to Connect to Oracle
Databases

Applications should use the Dynamic Database Services feature to connect to an Oracle
database over the public network.

Dynamic Database Services enable you to define rules and characteristics to control how
users and applications connect to database instances. These characteristics include a unique
name, workload balancing and failover options, and high availability characteristics.

Users can access an Oracle RAC database using a client/server configuration or through one
or more middle tiers, with or without connection pooling. By default, a user connection to an
Oracle RAC database is established using the TCP/IP protocol but Oracle supports other
protocols. Oracle RAC database instances must be accessed through the SCAN for the
cluster.

Related Topics

• Overview of Automatic Workload Management with Dynamic Database Services
Services represent groups of applications with common attributes, service level thresholds,
and priorities.

Overview of Virtual IP Addresses
Node VIPs are virtual IP (VIP) addresses that clients use to connect to Oracle RAC databases.

Oracle Clusterware hosts the node VIP addresses on a public network. The process for a
typical connection attempt from a database client to an Oracle RAC database instance can be
summarized as follows:

1. The database client connects to SCAN (which includes a SCAN VIP on a public network),
providing the SCAN listener with a valid service name.

2. The SCAN listener then determines which database instance hosts this service and routes
the client to the local or node listener on the respective node.

3. The node listener, listening on a node VIP and a given port, retrieves the connection
request and connects the client to an instance on the local node.

If multiple public networks are used on the cluster to support client connectivity through
multiple subnets, then the preceding operation is performed within a given subnet.

If a node fails, then the VIP address fails over to another node on which the VIP address can
accept TCP connections, but it does not accept connections to the Oracle database. Clients
that attempt to connect to a VIP address that does not reside on its home node receive a rapid
connection refused error instead of waiting for TCP connect timeout messages. When the

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-18

network on which the VIP is configured comes back online, Oracle Clusterware fails back the
VIP to its home node, where connections are accepted. Generally, VIP addresses fail over
when:

• The node on which a VIP address runs fails

• All interfaces for the VIP address fail

• All interfaces for the VIP address are disconnected from the network

Oracle RAC supports multiple public networks to enable access to the cluster through different
subnets. Each network resource represents its own subnet and each database service uses a
particular network to access the Oracle RAC database. Each network resource is a resource
that is managed by Oracle Clusterware, which enables the VIP behavior previously described.

SCAN is a single network name that is defined either in your organization's Domain Name
Server (DNS) or in the Grid Naming Service (GNS) that operates in a round robin order
among three IP addresses. Oracle recommends that all of the connections to the Oracle RAC
database use the SCAN in their client connection string. Incoming connections are load
balanced across the active instances providing the requested service through the three SCAN
listeners. With SCAN, you do not have to change the client connection even if the configuration
of the cluster changes (nodes added or removed). SCAN fully supports multiple subnets. This
means that you can create one SCAN for each subnet in which you want your cluster to
operate.

Restricted Service Registration in Oracle RAC
The valid node checking feature provides the ability to configure and dynamically update a set
of IP addresses or subnets from which registration requests are allowed by the listener.

Database instance registration with a listener succeeds only when the request originates from
a valid node. The network administrator can specify a list of valid nodes, excluded nodes, or
disable valid node checking altogether. The list of valid nodes explicitly lists the nodes and
subnets that can register with the database. The list of excluded nodes explicitly lists the nodes
that cannot register with the database. The control of dynamic registration results in increased
manageability and security of Oracle RAC deployments.

By default, the SCAN listener agent sets REMOTE_ADDRESS_REGISTRATION_listener_name to a
private IP endpoint. The SCAN listener accepts registration requests only from the private
network. Remote nodes that are not accessible to the private network of the SCAN listener
must be included in the list of valid nodes by using the registration_invited_nodes_alias
parameter in the listener.ora file, or by modifying the SCAN listener using the command-line
interface, SRVCTL.

Note:

Starting with Oracle Grid Infrastructure 12c, for a SCAN listener, if the
VALID_NODE_CHECKING_REGISTRATION_listener_name and
REGISTRATION_INVITED_NODES_listener_name parameters are set in the
listener.ora file, then the listener agent overwrites these parameters.

If you use the SRVCTL utility to set the invitednodes and invitedsubnets values, then the
listener agent automatically sets VALID_NODE_CHECKING_REGISTRATION_listener_name to
SUBNET and sets REGISTRATION_INVITED_NODES_listener_name to the specified list in the
listener.ora file.

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-19

For other listeners managed by CRS, the listener agent sets
VALID_NODE_CHECKING_REGISTRATION_listener_name to be SUBNET in the listener.ora file
only if it is not already set in the listener.ora file. The SRVCTL utility does not support setting
the invitednodes and invitedsubnets values for a non-SCAN listener. The listener agent
does not update REGISTRATION_INVITED_NODES_listener_name in the listener.ora file for a
non SCAN listener.

About Oracle RAC Software Components
In an Oracle RAC environment, Oracle RAC Cache Fusion automatically synchronizes each
Oracle instance's buffer cache.

Oracle RAC database automatically manages the block transfer between the instances without
any manual intervention from the Database Administrators. The Global Cache Service (GCS)
and the Global Enqueue Service (GES) perform the bulk of the work. The GCS and GES
coordinate buffer cache blocks and enqueues in the Global Resource Directory (GRD). The
GRD contents are distributed across all the active instances, resulting in a slight increase in
the SGA size.

Note:

• GRD and Oracle RAC Cache Fusion components use approximately 10 percent
of the total SGA. When you move from a single-instance database to an Oracle
RAC database, plan to increase your SGA accordingly.

• Starting with Oracle Database 23.7:

– The default value of the number of lock manager tickets has increased,
resulting in improved performance in very busy concurrent workloads. This
also results in a slight increase in the memory usage by the GCS process.

– Improved monitoring capabilities by GCR* processes may result in a slight
increase in memory usage. The V_GCR_METRICS view provides details on
the new monitoring capabilities.

Once the cache is warm, the blocks can be transferred to any other instance needing the block
via the private network. This is often faster than reading the block from a disk. Even in cases
where a consistent block is requested from another instance, Cache Fusion transfers the block
image directly.

In addition, Cache Fusion monitors the latency on the private networks and the service time on
the disks, and automatically chooses the best path.

Related Topics

• Oracle Database In-Memory Guide

About Oracle RAC Background Processes
The global cache service (GCS) and the global enqueue service (GES) processes, along
with the global resource directory (GRD) collaborate to enable Cache Fusion.

The Oracle RAC processes and their identifiers are as follows:

• ACMS: Atomic Controlfile to Memory Service (ACMS)

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-20

In Oracle RAC environments, the ACMS process on each instance is an agent that
contributes to ensuring a distributed SGA memory update is either globally committed on
success or globally terminated if a failure occurs.

• BG00: Background Process

The ora_bg is a standard background process in Oracle RAC environments that performs
various maintenance and monitoring tasks. It is responsible for buffer cache management,
log writer (LGWR) process support, checkpoint coordination, background process
monitoring, and statistics gathering.

• GCW: Global Conflict Resolution (GCR) Monitor Process (LMHB)

The ora_gcw is an infrastructure helper processes for LMHB. It monitors the LMHB process
for stall and restarts, if necessary.

• GTX0-j: Global Transaction Process

The GTX0-j process provides transparent support for XA global transactions in Oracle RAC
environments. The database autotunes the number of these processes based on the
workload of XA global transactions.

• LMON: Global Enqueue Service Monitor

The LMON process monitors global enqueues and resources across the cluster and
performs global enqueue recovery operations.

• LMD: Global Enqueue Service Daemon

The LMD process manages incoming remote resource requests within each instance.

• LMS: Global Cache Service Process

The LMS process maintains records of the data file statuses and each cached block by
recording information in the global resource directory (GRD). The LMS process also
controls the flow of messages to remote instances and manages global data block access
and transmits block images between the buffer caches of different instances. This
processing is part of Cache Fusion.

• LCK0: Instance Enqueue Process

The LCK0 process manages non-Cache Fusion resource requests such as library and row
cache requests.

• RMSn: Oracle RAC Management Processes (RMSn)

The RMSn processes perform manageability tasks for Oracle RAC. Tasks that are
accomplished by an RMSn process include the creation of resources that are related to
Oracle RAC when new instances are added to the clusters.

• RSMN: The RSMN process manages background secondary process creation and
communication on remote instances. These background secondary processes perform
tasks on behalf of a coordinating process running in another instance.

• SCMN: Statistics Collection and Management

SCMN is the main thread for a multithreaded process in a threaded Oracle RAC architecture.
All other threads are spawned within the processes through SCMN based on the requests in
the instance. It is an idle main thread, which waits for any requests, especially spawn
threads, and takes care of them along with some periodic maintenance operations.

• VOSD: Virtual Operating System Daemon

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-21

The VOSD process executes time bound Oracle Database service actions. VOSD is spawned
at instance startup and it is responsible for executing system service actions critical for the
database.

Note:

Many of the Oracle Database components that this section describes are in addition
to the components that are described for single-instance Oracle databases in Oracle
Database Concepts.

Related Topics

• Oracle Database Reference

Overview of Automatic Workload Management with Dynamic
Database Services

Services represent groups of applications with common attributes, service level thresholds,
and priorities.

Application functions can be divided into workloads that are identified by services. For
example, Oracle E-Business Suite can define a service for each responsibility, such as general
ledger, accounts receivable, order entry, and so on. A service can span one or more Oracle
Database instances, or multiple databases in a global cluster. A single instance can support
multiple services. The number of instances that are serving a service is transparent to the
application. Services provide a single system image to manage competing applications, and to
enable each workload to be managed as a unit.

Middle tier applications and clients select a service by specifying the service name as part of
the connection in the TNS connect string. For example, data sources for Oracle WebLogic
Server are set to route to a service. Using Net Easy*Connection, this connection comprises
only the service name and network address, as follows: user_name/password@SCAN/
service_name.

Server-side work, such as Oracle Scheduler, Parallel Query, and Oracle GoldenGate queues,
set the service name as part of the workload definition. For Oracle Scheduler, jobs are
assigned to job classes, and job classes run within services. For Parallel Query and Parallel
DML, the query coordinator connects to a service, and the parallel query workers inherit the
service for the duration of the parallel processing. For Oracle GoldenGate, streams queues are
accessed using services. Work running under a service inherits the thresholds and attributes
for the service and is measured as part of the service.

Oracle Database Resource Manager binds services to consumer groups and priorities. Binding
services by groups and priorities enables the database to manage the services in the order of
their importance. For example, the DBA can define separate services for high priority online
users, and lower priority for internal reporting applications. Likewise, the DBA can define Gold,
Silver and Bronze services to prioritize the order in which requests are serviced for the same
application. When planning the services for a system, the plan should include the priority of
each service relative to the other services. In this way, Oracle Database Resource Manager
can satisfy the priority-one services first, followed by the priority-two services, and so on.

When users or applications connect to a database, Oracle recommends that you use a service
that is specified in the CONNECT_DATA portion of the connect string. Oracle Database

Chapter 1
Overview of Automatic Workload Management with Dynamic Database Services

1-22

automatically creates one database service when the database is created but the behavior of
this service is different from that of database services that you subsequently create. To enable
more flexibility in the management of a workload that uses the database, Oracle Database
enables you to create multiple services and specify on which instances the services start. If
you are interested in greater workload management flexibility, then continue reading this
chapter to understand the added features that you can use with services.

Note:

The features discussed in this chapter do not work with the following default
database services: DB_NAME, DB_UNIQUE_NAME, PDB_NAME, SYS$BACKGROUND, and
SYS$USERS. Oracle strongly recommends that you not use these services for
applications to connect to the database. You must create cluster managed services
to take advantage of these features. You can only manage the services that you
create. Any service that a database creates is automatically managed by the
database server.

Dynamic Database Services

Dynamic database services enable you to manage workload distributions to provide optimal
performance for users and applications. Dynamic database services offer the following:

• Services: Oracle Database provides a powerful automatic workload management facility,
called services, to enable the enterprise grid vision. Services are entities that you can
define in Oracle Real Application Clusters (Oracle RAC) databases that enable you to
group database workloads, route work to the optimal instances that are assigned to offer
the service, and achieve high availability for planned and unplanned actions.

• High Availability Framework: An Oracle RAC component that enables Oracle Database
to always maintain components in a running state.

• Fast Application Notification (FAN): Provides information to Oracle RAC applications
and clients about cluster state changes and Load Balancing Advisory events, such as UP
and DOWN events for instances, services, or nodes. FAN has two methods for publishing
events to clients, the Oracle Notification Service daemon, which is used by Java Database
Connectivity (JDBC) clients including the Oracle Application Server, and Oracle
GoldenGate Advanced Queueing, which is only used by previous releases of Oracle Call
Interface (OCI) and Oracle Data Provider for .NET (ODP.NET) clients.

Note:

All Oracle Database clients use Oracle Notification Service.

• Transaction Guard: Provides a protocol and an API for at-most-once running of
transactions in case of unplanned outages and duplicate submissions.

• Application Continuity: Provides a general purpose infrastructure that replays an in-flight
request when a recoverable error is received, masking many system, communication, and
storage outages, and hardware failures. Unlike existing recovery technologies, this feature
attempts to recover the transactional and non-transactional session states beneath the
application, so that the outage appears to the application as a delayed processing.

• Connection Load Balancing: An Oracle Net Services feature that balances incoming
connections across all of the instances that provide the requested database service.

Chapter 1
Overview of Automatic Workload Management with Dynamic Database Services

1-23

• Load Balancing Advisory: Provides information to applications about the current service
levels that the database and its instances provide. The load balancing advisory makes
recommendations to applications about where to direct application requests to obtain the
best service based on the management policy that you have defined for that service. Load
balancing advisory events are published through Oracle Notification Service.

• Automatic Workload Repository (AWR): Tracks service-level statistics as metrics. You
can create server-generated alerts for these metrics when the statistics exceed or fail to
meet certain thresholds.

• Fast Connection Failover (FCF): Enables Oracle Clients to provide rapid failover of
connections by subscribing to FAN events.

• Runtime Connection Load Balancing: Enables Oracle Clients to provide intelligent
allocations of connections in the connection pool, based on the current service level
provided by the database instances when applications request a connection to complete
some work.

• Single Client Access Name (SCAN): Provides a single name to clients that connect to
Oracle RAC that do not change throughout the life of a cluster, even if you add or remove
nodes from the cluster. Clients connecting with SCAN can use a straightforward
connection string, such as a thin JDBC URL or EZConnect, and still achieve load
balancing and client connection failover goals.

You can deploy Oracle RAC and non-cluster Oracle Database environments to use dynamic
database service features in many different ways. Depending on the number of nodes and
your environment complexity and objectives, your choices for optimal automatic workload
management and high-availability configuration depend on several considerations, which are
explained in the Automatic Workload Management topics.

Related Topics

• Oracle Database Administrator’s Guide

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

Overview of Blocker Resolver
Blocker Resolver is an Oracle Database feature that automatically detects and resolves
system delays.

Note:

Starting with Oracle Database Release 23ai, Oracle Quality of Service Management
(QoSM, or QoS Management) is desupported.

Blocker Resolver initially identified system delays and then dumped the relevant information
about the delay into a trace file. In Oracle Database 12c release 2 (12.2) and later releases,
Blocker Resolver can take action on and attempt to resolve the system delay. Blocker Resolver
also runs in both single-instance and Oracle RAC database instances.

Blocker Resolver functions, as follows:

• First detects a system delay and then analyzes the delay and verifies the cause of the
delay. It then applies heuristics to decide on a course of action to resolve the delay.

Chapter 1
Overview of Blocker Resolver

1-24

• Automates the tasks that used to require manual steps by a DBA to provide the trace files
to My Oracle Support so that someone there could identify the source of the delay,
minimizing or eliminating database and application downtime.

• Periodically scans all processes and analyzes a smaller subset of processes that are
holding resources in successive scans. Blocker Resolver ignores processes if there is
nothing waiting on the resource.

• Considers cross-instance delays, which are delays where the holder is a database process
waiting on a response from an Oracle ASM instance.

• Terminates the holder process so the next process waiting on that resource can move on
and prevent a delay.

• Notifies a DBA with an ORA-32701 error message in the alert log.

Overview of Database In-Memory and Oracle RAC
Every Oracle RAC node has its own In-Memory (IM) column store. By default, populated
objects are distributed across all IM column stores in the cluster.

Oracle recommends that you size the IM column stores equally on every Oracle RAC node. If
an Oracle RAC node does not require an IM column store, then set the INMEMORY_SIZE
parameter to 0.

Starting with Oracle Database 19c, Database In-Memory has a new Base Level feature that
allows you to use Database In-Memory with up to a 16 GB column store without requiring the
Database In-Memory option. In an Oracle RAC database, the INMEMORY_SIZE setting in each
database instance must not exceed 16 GB. Set the INMEMORY_FORCE parameter to BASE_LEVEL
to enable this feature.

It is possible to have completely different objects populated on every node, or to have larger
objects distributed across all of the IM column stores in the cluster. On Oracle Engineered
Systems, it is also possible for the same objects to appear in the IM column store on every
node. The distribution of objects across the IM column stores in a cluster is controlled by two
subclauses to the INMEMORY attribute: DISTRIBUTE and DUPLICATE.

In an Oracle RAC environment, an object that only has the INMEMORY attribute specified is
automatically distributed across the IM column stores in the cluster. You can use the
DISTRIBUTE clause to specify how an object is distributed across the cluster. By default, the
type of partitioning used (if any) determines how the object is distributed. If the object is not
partitioned, then it is distributed by rowid range. Alternatively, you can specify the DISTRIBUTE
clause to override the default behavior.

On an Oracle Engineered System, you can duplicate or mirror populated objects across the IM
column stores in the cluster. This technique provides the highest level of redundancy. The
DUPLICATE clause controls how an object is duplicated. If you specify only DUPLICATE, then one
mirrored copy of the data is distributed across the IM column stores in the cluster. To duplicate
the entire object in each IM column store, specify DUPLICATE ALL.

Note:

When you deploy Oracle RAC on a non-Engineered System, the DUPLICATE clause is
treated as NO DUPLICATE.

Chapter 1
Overview of Database In-Memory and Oracle RAC

1-25

Overview of Managing Oracle RAC Environments
When managing Oracle RAC, there are many considerations, such as the deployment type,
the tools to use, how to monitor the system, and how to evaluate performance.

• About Designing and Deploying Oracle RAC Environments
Any enterprise that is designing and implementing a high availability strategy with Oracle
RAC must begin by performing a thorough analysis of the business drivers that require
high availability.

• About Administrative Tools for Oracle RAC Environments
You administer a cluster database as a single-system image using the Server Control
Utility (SRVCTL), Oracle Enterprise Manager, SQL*Plus, and other utilities.

• About Monitoring Oracle RAC Environments
Web-based Oracle Enterprise Manager Cloud Control enables you to monitor an Oracle
RAC database.

• About Evaluating Performance in Oracle RAC Environments
You do not need to perform special tuning for Oracle RAC; Oracle RAC scales without
special configuration changes.

About Designing and Deploying Oracle RAC Environments
Any enterprise that is designing and implementing a high availability strategy with Oracle RAC
must begin by performing a thorough analysis of the business drivers that require high
availability.

An analysis of business requirements for high availability combined with an understanding of
the level of investment required to implement different high availability solutions enables the
development of a high availability architecture that achieves both business and technical
objectives.

Related Topics

• Design and Deployment Techniques
Learn about methods to design and deploy Oracle RAC.

See Also:

For help choosing and implementing the architecture that best fits your availability
requirements:

• "Design and Deployment Techniques" provides a high-level overview you can
use to evaluate the high availability requirements of your business.

• Oracle Database High Availability Overview and Best Practices describes how to
select the most suitable architecture for your organization, describes several high
availability architectures, and provides guidelines for choosing the one that best
meets your requirements, and also provides information about the Oracle
Maximum Availability Architecture

Chapter 1
Overview of Managing Oracle RAC Environments

1-26

About Administrative Tools for Oracle RAC Environments
You administer a cluster database as a single-system image using the Server Control Utility
(SRVCTL), Oracle Enterprise Manager, SQL*Plus, and other utilities.

• Server Control Utility (SRVCTL): SRVCTL is a command-line interface that you can use
to manage an Oracle RAC database from a single point. You can use SRVCTL to start and
stop the database and instances and to delete or move instances and services. You can
also use SRVCTL to manage configuration information, Oracle Real Application Clusters
One Node (Oracle RAC One Node), Oracle Clusterware, and Oracle ASM.

• Oracle Fleet Patching and Provisioning (Oracle FPP): Use Oracle Fleet Patching and
Provisioning to patch, upgrade, and provision Oracle RAC databases.

• Oracle Enterprise Manager: Oracle Enterprise Manager Cloud Control GUI interface for
managing both noncluster database and Oracle RAC database environments. Oracle
recommends that you use Oracle Enterprise Manager to perform administrative tasks
whenever feasible.

You can use Oracle Enterprise Manager Cloud Control to also manage Oracle RAC One
Node databases.

• SQL*Plus: SQL*Plus commands operate on the current instance. The current instance
can be either the local default instance on which you initiated your SQL*Plus session, or it
can be a remote instance to which you connect with Oracle Net Services.

• Configuration Verification Utility (CVU): CVU is a command-line tool that you can use to
verify a range of cluster and Oracle RAC components, such as shared storage devices,
networking configurations, system requirements, and Oracle Clusterware, in addition to
operating system groups and users. You can use CVU for preinstallation checks and for
postinstallation checks of your cluster environment. CVU is especially useful during
preinstallation and during installation of Oracle Grid Infrastructure and Oracle RAC
components. Oracle Universal Installer runs CVU after installing Oracle Clusterware and
Oracle Database to verify your environment.

Install and use CVU before you install Oracle RAC to ensure that your configuration meets
the minimum Oracle RAC installation requirements. Also, use CVU for verifying the
completion of ongoing administrative tasks, such as node addition and node deletion.

Note:

Starting with Oracle Grid Infrastructure 23ai, Cluster Verification Utility (CVU) is
renamed to Configuration Verification Utility (CVU).

• Oracle DBCA: The recommended utility for creating and initially configuring Oracle RAC,
Oracle RAC One Node, and Oracle noncluster databases.

• NETCA: Configures the network for your Oracle RAC environment.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Administering Database Instances and Cluster Databases
This chapter describes how to administer Oracle Real Application Clusters (Oracle RAC)
databases and database instances.

Chapter 1
Overview of Managing Oracle RAC Environments

1-27

• Overview of Monitoring Oracle RAC and Oracle Clusterware
Learn about the monitoring capabilities of Oracle Enterprise Manager, including the Cluster
Database Homepage, the Interconnects page, and the Cluster Database Performance
page.

• Server Control Utility Reference
Use the Server Control Utility (SRVCTL) to manage Oracle Real Application Clusters
(Oracle RAC) configuration information.

• Oracle Clusterware Administration and Deployment Guide

• Oracle Database Net Services Administrator's Guide

See Also:

• "Administering Database Instances and Cluster Databases" for an introduction to
Oracle RAC administration using SRVCTL, Oracle Enterprise Manager, and
SQL*Plus

• "Monitoring Oracle RAC and Oracle Clusterware"

• "Server Control Utility Reference" for SRVCTL reference information

• Oracle Clusterware Administration and Deployment Guide for information about
the Configuration Verification Utility (CVU), in addition to other Oracle
Clusterware tools, such as the OIFCFG tool for allocating and deallocating
network interfaces and the OCRCONFIG command-line tool for managing OCR

• Oracle Database Net Services Administrator's Guide for more information about
NETCA

About Monitoring Oracle RAC Environments
Web-based Oracle Enterprise Manager Cloud Control enables you to monitor an Oracle RAC
database.

Oracle Enterprise Manager Cloud Control is a central point of control for the Oracle
environment that you access by way of a graphical user interface (GUI). See "Monitoring
Oracle RAC and Oracle Clusterware" for more information about using Oracle Enterprise
Manager to monitor Oracle RAC environments.

Also, note the following recommendations about monitoring Oracle RAC environments:

• Use Oracle Enterprise Manager Cloud Control to initiate cluster database management
tasks.

• Use Oracle Enterprise Manager Cloud Control to administer multiple or individual Oracle
RAC databases.

• Use the global views (GV$ views), which are based on V$ views. The catclustdb.sql script
creates the GV$ views. Run this script if you do not create your database with Oracle
DBCA. Otherwise, Oracle DBCA runs this script for you.

For almost every V$ view, there is a corresponding global GV$ view. In addition to the V$
information, each GV$ view contains an extra column named INST_ID, which displays the
instance number from which the associated V$ view information was obtained.

Chapter 1
Overview of Managing Oracle RAC Environments

1-28

• Use the sophisticated management and monitoring features of the Oracle Database
Diagnostic and Tuning packs within Oracle Enterprise Manager that include the Automatic
Database Diagnostic Monitor (ADDM) and Automatic Workload Repository (AWR).

Note:

Although Statspack is available for backward compatibility, Statspack provides
reporting only. You must run Statspack at level 7 to collect statistics related to
block contention and segment block waits.

Related Topics

• Overview of Monitoring Oracle RAC and Oracle Clusterware
Learn about the monitoring capabilities of Oracle Enterprise Manager, including the Cluster
Database Homepage, the Interconnects page, and the Cluster Database Performance
page.

• Oracle Database Performance Tuning Guide

About Evaluating Performance in Oracle RAC Environments
You do not need to perform special tuning for Oracle RAC; Oracle RAC scales without special
configuration changes.

If your application performs well on a noncluster Oracle database, then it will perform well in an
Oracle RAC environment. Many of the tuning tasks that you would perform on a noncluster
Oracle database can also improve Oracle RAC database performance. This is especially true if
your environment requires scalability across a greater number of CPUs.

Some of the performance features specific to Oracle RAC include:

• Dynamic resource allocation

– Oracle Database dynamically allocates Cache Fusion resources as needed

– The dynamic acquiring of resources improves performance by keeping resources local
to data blocks

• Cache Fusion enables a simplified tuning methodology

– You do not have to tune any parameters for Cache Fusion

– No application-level tuning is necessary

– You can use a bottom-up tuning approach with virtually no effect on your existing
applications

• More detailed performance statistics

– More views for Oracle RAC performance monitoring

– Oracle RAC-specific performance views in Oracle Enterprise Manager

Chapter 1
Overview of Managing Oracle RAC Environments

1-29

2
Administering Storage in Oracle RAC

Oracle recommends Oracle Automatic Storage Management (Oracle ASM) as a storage
management solution that provides an alternative to conventional volume managers, file
systems, and raw devices.

• About Oracle ASM
Oracle Automatic Storage Management (Oracle ASM) is a volume manager and a file
system for Oracle database files that supports single-instance Oracle Database and Oracle
Real Application Clusters (Oracle RAC) configurations.

• Overview of Storage Management for Oracle RAC
All data files (including an undo tablespace for each instance) and redo log files (at least
two for each instance) for an Oracle RAC database must reside on shared storage.

• Data File Access in Oracle RAC

• NFS Server for Storage
An Oracle database can serve as a network file system (NFS) server. The database
responds to NFS requests from any NFS client and stores both the files and their metadata
within the database.

• Redo Log File Storage in Oracle RAC
Learn about redo log requirements for Oracle Real Application Clusters (Oracle RAC)
databases.

• Automatic Undo Management in Oracle RAC
Oracle Database automatically manages undo segments within a specific undo tablespace
that is assigned to an instance.

• Oracle Automatic Storage Management with Oracle RAC
Oracle Automatic Storage Management (Oracle ASM) automatically maximizes I/O
performance by managing the storage configuration across the disks that Oracle ASM
manages.

About Oracle ASM
Oracle Automatic Storage Management (Oracle ASM) is a volume manager and a file system
for Oracle database files that supports single-instance Oracle Database and Oracle Real
Application Clusters (Oracle RAC) configurations.

Oracle ASM uses disk groups to store data files; an Oracle ASM disk group is a collection of
disks that Oracle ASM manages as a unit. Within a disk group, Oracle ASM exposes a file
system interface for Oracle database files. The content of files that are stored in a disk group is
evenly distributed to eliminate hot spots and to provide uniform performance across the disks.
The performance is comparable to the performance of raw devices.

You can add or remove disks from a disk group while a database continues to access files from
the disk group. When you add or remove disks from a disk group, Oracle ASM automatically
redistributes the file contents and eliminates the need for downtime when redistributing the
content.

The Oracle ASM volume manager functionality provides flexible server-based mirroring
options. The Oracle ASM normal and high redundancy disk groups enable two-way and three-

2-1

way mirroring respectively. You can use external redundancy to enable a Redundant Array of
Independent Disks (RAID) storage subsystem to perform the mirroring protection function.

Oracle ASM also uses the Oracle Managed Files feature to simplify database file
management. Oracle Managed Files automatically creates files in designated locations. Oracle
Managed Files also names files and removes them while relinquishing space when
tablespaces or files are deleted.

Oracle ASM reduces the administrative overhead for managing database storage by
consolidating data storage into a small number of disk groups. The smaller number of disk
groups consolidates the storage for multiple databases and provides for improved I/O
performance.

Oracle ASM files can coexist with other storage management options such as raw disks and
third-party file systems. This capability simplifies the integration of Oracle ASM into pre-existing
environments.

Oracle ASM has various management interfaces such as SQL*Plus, the Oracle ASM
Command Line Utility (ASMCMD) command-line interface, and Oracle ASM Configuration
Assistant (ASMCA).

Related Topics

• Administering Oracle ASM Disk Groups

• Oracle ASM Instances and Disk Groups

Overview of Storage Management for Oracle RAC
All data files (including an undo tablespace for each instance) and redo log files (at least two
for each instance) for an Oracle RAC database must reside on shared storage.

Oracle recommends that you use Oracle ASM to store these files in an Oracle ASM disk
group.

Oracle supports alternative ways of using shared storage, such as certified cluster file
systems. In addition, Oracle recommends that you use one shared server parameter file
(SPFILE) with instance-specific entries. Oracle RAC allows storing shared password files in
Oracle ASM and storing Oracle Database files on Oracle Advanced Cluster File System
(Oracle ACFS).

Note:

Oracle Database and related technologies, such as Oracle Clusterware, no longer
support the use of raw (block) storage devices.

Unless otherwise noted, Oracle Database storage features such as Oracle ASM, Oracle
Managed Files, automatic segment-space management, and so on, function the same in
Oracle RAC environments as they do in non-cluster Oracle database environments.

Related Topics

• Overview of Installing Oracle Database Software and Creating a Database

• Introducing Oracle Automatic Storage Management

• Oracle Database Structure and Storage

Chapter 2
Overview of Storage Management for Oracle RAC

2-2

Data File Access in Oracle RAC
All Oracle RAC instances must be able to access all data files. If a data file must be recovered
when the database is opened, then the first Oracle RAC instance to start is the instance that
performs the recovery and verifies access to the file. As other instances start, they also verify
their access to the data files. Similarly, when you add a tablespace or data file or bring a
tablespace or data file online, all instances verify access to the file or files.

If you add a data file to a disk that other instances cannot access, then verification fails.
Verification also fails if instances access different copies of the same data file. If verification
fails for any instance, then diagnose and fix the problem. Then run the ALTER SYSTEM CHECK
DATAFILES statement on each instance to verify data file access.

NFS Server for Storage
An Oracle database can serve as a network file system (NFS) server. The database responds
to NFS requests from any NFS client and stores both the files and their metadata within the
database.

Files associated with a primary database, such as SQL scripts, can be automatically replicated
on a standby database. You can also store unstructured data, such as emails, on the
database.

You can create or destroy an Oracle file system and access it though the NFS server using the
procedures documented in Oracle Database SecureFiles and Large Objects Developer's
Guide.

Related Topics

• Oracle Database SecureFiles and Large Objects Developer's Guide

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Reference

Redo Log File Storage in Oracle RAC
Learn about redo log requirements for Oracle Real Application Clusters (Oracle RAC)
databases.

In an Oracle RAC database, each instance must have at least two groups of redo log files.
When you use Oracle DBCA to create the database, Oracle DBCA allocates redo log files to
instances, as required, automatically. You can change the number of redo log groups and the
size of the redo log files as required either during the initial database creation or as a post-
creation step. If you add a node to the cluster, then the addNode script configures the redo logs
on the new server.

When the current group fills, an instance begins writing to the next log file group. If your
database is in ARCHIVELOG mode, then each instance must save filled online log groups as
archived redo log files that are tracked in the control file. During database recovery, all enabled
instances are checked to see if recovery is needed. If you remove an instance from your
Oracle RAC database, then you should disable the instance's thread of redo so that Oracle
does not have to check the thread during database recovery.

Chapter 2
Data File Access in Oracle RAC

2-3

Related Topics

• About Designing and Deploying Oracle RAC Environments
Any enterprise that is designing and implementing a high availability strategy with Oracle
RAC must begin by performing a thorough analysis of the business drivers that require
high availability.

• Creating Redo Log Groups and Members

• ALTER DATABASE

Automatic Undo Management in Oracle RAC
Oracle Database automatically manages undo segments within a specific undo tablespace that
is assigned to an instance.

Instances can always read all undo blocks throughout the cluster environment for consistent
read purposes. Also, any instance can update any undo tablespace during transaction
recovery, if that undo tablespace is not currently used by another instance for undo generation
or transaction recovery.

You assign undo tablespaces in your Oracle Real Application Clusters (Oracle RAC) database
by specifying a different value for the UNDO_TABLESPACE parameter for each instance in your
SPFILE or individual PFILEs. Oracle automatically allocates the undo tablespace when the
instance starts if you have Oracle Managed Files enabled. You cannot simultaneously use
automatic undo management and manual undo management in an Oracle RAC database. In
other words, all instances of an Oracle RAC database must operate in the same undo mode.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

Related Topics

• Setting SPFILE Parameter Values for Oracle RAC
You can change SPFILE settings with Oracle Enterprise Manager or by using the SET
clause of the ALTER SYSTEM statement.

• Guidelines for Managing Tablespaces

Oracle Automatic Storage Management with Oracle RAC
Oracle Automatic Storage Management (Oracle ASM) automatically maximizes I/O
performance by managing the storage configuration across the disks that Oracle ASM
manages.

Oracle ASM does this by evenly distributing the database files across all of the available
storage assigned to the disk groups within Oracle ASM. Oracle ASM allocates your total disk
space requirements into uniformly sized units across all disks in a disk group. Oracle ASM can
also automatically mirror files to prevent data loss. Because of these features, Oracle ASM
also significantly reduces your administrative overhead.

Oracle ASM instances are created on each node where you install Oracle Grid Infrastructure.
Each Oracle ASM instance has either an SPFILE or PFILE type parameter file. Oracle

Chapter 2
Automatic Undo Management in Oracle RAC

2-4

recommends that you back up the parameter files and the TNS entries for nondefault Oracle
Net listeners.

To use Oracle ASM with Oracle Real Application Clusters (Oracle RAC), select Oracle ASM as
your storage option when you create your database with the Oracle Database Configuration
Assistant (Oracle DBCA). As in noncluster Oracle databases, using Oracle ASM with Oracle
RAC does not require I/O tuning.

• Storage Management in Oracle RAC
You can create Oracle ASM disk groups and configure mirroring for Oracle ASM disk
groups using the Oracle ASM configuration assistant (ASMCA).

• Modifying Disk Group Configurations for Oracle ASM
When you create a disk group for a cluster or add new disks to an existing clustered disk
group, prepare the underlying physical storage on shared disks and give the Oracle user
permission to read and write to the disk.

• Oracle ASM Disk Group Management
To use Oracle ASM, you must first create disk groups with ASMCA before creating a
database with Oracle DBCA.

• Configuring Preferred Mirror Read Disks in Extended Distance Clusters
You can configure preferred read disks to improve performance.

• Converting Nonclustered Oracle ASM to Clustered Oracle ASM

• Administering Oracle ASM Instances with SRVCTL in Oracle RAC
You can use the Server Control Utility (SRVCTL) to add or remove an Oracle ASM
instance.

Related Topics

• Introducing Oracle Automatic Storage Management

Storage Management in Oracle RAC
You can create Oracle ASM disk groups and configure mirroring for Oracle ASM disk groups
using the Oracle ASM configuration assistant (ASMCA).

Alternatively, you can use Oracle Enterprise Manager to administer Oracle ASM disk groups
after you have discovered the respective servers with Oracle Enterprise Manager.

The Oracle tools that you use to manage Oracle ASM, including ASMCA, Oracle Enterprise
Manager, and the silent mode install and upgrade commands, include options to manage
Oracle ASM instances and disk groups.

You can use the Configuration Verification Utility (CVU) to verify the integrity of Oracle ASM
across the cluster. Typically, this check ensures that the Oracle ASM instances on all nodes
run from the same Oracle home and, if asmlib exists, that it is a valid version and has valid
ownership. Run the following command to perform this check:

cluvfy comp asm [-n node_list] [-verbose]

Replace node_list with a comma-delimited list of node names on which the check is to be
performed. Specify all to check all nodes in the cluster.

Use the cluvfy comp ssa command to locate shared storage.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Chapter 2
Oracle Automatic Storage Management with Oracle RAC

2-5

Modifying Disk Group Configurations for Oracle ASM
When you create a disk group for a cluster or add new disks to an existing clustered disk
group, prepare the underlying physical storage on shared disks and give the Oracle user
permission to read and write to the disk.

The shared disk requirement is the only substantial difference between using Oracle ASM with
an Oracle RAC database compared to using it with a noncluster Oracle database. Oracle ASM
automatically redistributes the data files after you add or delete a disk or disk group.

In a cluster, each Oracle ASM instance manages its node's metadata updates to the disk
groups. In addition, each Oracle ASM instance coordinates disk group metadata with other
nodes in the cluster. As with noncluster Oracle databases, you can use Oracle Enterprise
Manager, ASMCA, SQL*Plus, and the Server Control Utility (SRVCTL) to administer disk
groups for Oracle ASM that are used by Oracle RAC. Oracle Automatic Storage Management
Administrator's Guide explains how to use SQL*Plus to administer Oracle ASM instances.
Subsequent sections describe how to use the other tools.

Note:

When you start ASMCA, if there is not an Oracle ASM instance, then the utility
prompts you to create one.

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

Oracle ASM Disk Group Management
To use Oracle ASM, you must first create disk groups with ASMCA before creating a database
with Oracle DBCA.

You can also use the disk group management commands to create and manage an Oracle
ASM instance and its associated disk groups independently of creating a database. You can
use Oracle Enterprise Manager or ASMCA to add disks to a disk group, to mount a disk group
or to mount all of the disk groups, or to create Oracle ASM instances. Additionally, you can use
Oracle Enterprise Manager to dismount and drop disk groups or to delete Oracle ASM
instances.

Oracle ASM instances are created when you install Oracle Grid Infrastructure. To create an
Oracle ASM disk group, run ASMCA from the Grid_home/bin directory. You can also use the
Oracle ASM Disk Groups page in ASMCA for Oracle ASM management. That is, you can
configure Oracle ASM storage separately from database creation. For example, from the ASM
Disk Groups page, you can create disk groups, add disks to existing disk groups, or mount disk
groups that are not currently mounted.

When you start ASMCA, if the Oracle ASM instance has not been created, then ASMCA
prompts you to create the instance. ASMCA prompts you for the sysasm password and the
ASMSNMP password.

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

Chapter 2
Oracle Automatic Storage Management with Oracle RAC

2-6

Configuring Preferred Mirror Read Disks in Extended Distance Clusters
You can configure preferred read disks to improve performance.

When you configure Oracle Automatic Storage Management (Oracle ASM) failure groups, it
may be more efficient for a node to read from an extent that is closest to the node, even if that
extent is a secondary extent. You can configure Oracle ASM to read from a secondary extent if
that extent is closer to the node instead of Oracle ASM reading from the primary copy which
might be farther from the node. Using preferred read failure groups is most beneficial in an
extended distance cluster.

To configure this feature, set the ASM_PREFERRED_READ_FAILURE_GROUPS initialization parameter
to specify a list of failure group names as preferred read disks. Oracle recommends that you
configure at least one mirrored extent copy from a disk that is local to a node in an extended
cluster. However, a failure group that is preferred for one instance might be remote to another
instance in the same Oracle Real Application Clusters (Oracle RAC) database. The parameter
setting for preferred read failure groups is instance specific.

Related Topics

• Preferred Read Failure Groups

• ASM_PREFERRED_READ_FAILURE_GROUPS

Converting Nonclustered Oracle ASM to Clustered Oracle ASM
When installing Oracle Grid Infrastructure, any nonclustered Oracle Automatic Storage
Management (Oracle ASM) instances are automatically converted to clustered Oracle ASM.

Related Topics

• Preferred Read Failure Groups

Administering Oracle ASM Instances with SRVCTL in Oracle RAC
You can use the Server Control Utility (SRVCTL) to add or remove an Oracle ASM instance.

To issue SRVCTL commands to manage Oracle ASM, log in as the operating system user who
owns the Oracle Grid Infrastructure home and issue the SRVCTL commands from the bin
directory of the Oracle Grid Infrastructure home.

Use the following syntax to add an Oracle ASM instance:

srvctl add asm

Use the following syntax to remove an Oracle ASM instance:

srvctl remove asm [-force]

You can also use SRVCTL to start, stop, and obtain the status of an Oracle ASM instance as in
the following examples.

Use the following syntax to start an Oracle ASM instance:

srvctl start asm [-node node_name] [-startoption start_options]

Chapter 2
Oracle Automatic Storage Management with Oracle RAC

2-7

Use the following syntax to stop an Oracle ASM instance:

srvctl stop asm [-node node_name] [-stopoption stop_options]

Use the following syntax to show the configuration of an Oracle ASM instance:

srvctl config asm -node node_name

Use the following syntax to display the state of an Oracle ASM instance:

srvctl status asm [-node node_name]

Related Topics

• Server Control Utility Reference
Use the Server Control Utility (SRVCTL) to manage Oracle Real Application Clusters
(Oracle RAC) configuration information.

• Oracle Automatic Storage Management Administrator's Guide

Chapter 2
Oracle Automatic Storage Management with Oracle RAC

2-8

3
Administering Database Instances and Cluster
Databases

This chapter describes how to administer Oracle Real Application Clusters (Oracle RAC)
databases and database instances.

Note:

A multitenant Container Database (CDB) is the only supported architecture in Oracle
Database 21c and later releases.

• Overview of Oracle RAC Database Administration
Oracle RAC database administration requires certain privileges and administrative tasks
can vary depending on the deployment model.

• Tools for Administering Oracle RAC
The tools most commonly used to managed Oracle Real Application Clusters (Oracle
RAC) databases and instances are the SRVCTL utility, Oracle Enterprise Manager, and
SQL*Plus.

• Starting and Stopping Instances and Oracle RAC Databases
You can start and stop instances with Oracle Enterprise Manager, SQL*Plus, or SRVCTL.

• Starting and Stopping PDBs in Oracle RAC
You can use SRVCTL commands to manage PDBs.

• Local Rolling Database Maintenance
Starting with Oracle Database 23ai, you can patch Oracle Real Application Clusters
(Oracle RAC) and Oracle RAC One Node databases locally in out-of-place mode without
affecting availability and workload of the database.

• Pluggable Database Rank
The PDB -rank parameter defines relative importance of the PDBs, which are created
specifying cardinality, in a database with the RANK management policy.

• Pluggable Database Placement
Configure PDBs to either run explicitly in the specified CDB instances or run dynamically in
any CDB or a subset of CDBs in the cluster.

• Example of Creating a Pluggable Database with Cardinality and Rank
You can use these examples to see how to create an Oracle database and create a
Pluggable Database, specifying cardinality, in the Oracle database.

• Reducing Downtime During Database and Instance Outages
Outages can be either planned (maintenance) or unplanned. You can use features to help
minimize both types of outages.

• Oracle RAC High Availability Best Practices
Implement Oracle Real Application Clusters (Oracle RAC) best practices to achieve
minimal downtime for patching and reconfiguration.

3-1

• Verifying That Instances are Running
To verify that a database instance is available, use Oracle Enterprise Manager, SRVCTL,
or SQL*Plus.

• Terminating Sessions On a Specific Cluster Instance
You can use the ALTER SYSTEM KILL SESSION statement to terminate a session on a
specific instance.

• Overview of Initialization Parameter Files in Oracle RAC
The initialization parameters for an Oracle RAC database are stored in a SPFILE.

• Initialization Parameter Use in Oracle RAC
By default, most parameters are set to a default value and this value is the same across all
instances.

• Quiescing Oracle RAC Databases
The procedure for quiescing Oracle RAC databases is identical to quiescing a noncluster
database.

• Administering Multiple Cluster Interconnects on Linux and UNIX Platforms
In Oracle RAC environments that run on Linux and UNIX platforms, you can use the
CLUSTER_INTERCONNECTS initialization parameter to specify an alternative interconnect to
the one Oracle Clusterware is using for the private network.

• Customizing How Oracle Clusterware Manages Oracle RAC Databases
Use these examples to minimize Oracle Clusterware control over Oracle RAC databases,
which you may need to do during upgrades.

• Advanced Oracle Enterprise Manager Administration
You can install, configure, and monitor an Oracle Real Application Clusters (Oracle RAC)
database from a single location using Oracle Enterprise Manager Cloud Control.

See Also:

The Oracle Enterprise Manager Cloud Control online help for more information about
Oracle Enterprise Manager Cloud Control.

Overview of Oracle RAC Database Administration
Oracle RAC database administration requires certain privileges and administrative tasks can
vary depending on the deployment model.

The policy-managed database deployment option is desupported in Oracle Database 23ai.

• Required Privileges for Oracle RAC Database Administration
Use the SYSRAC administrative privilege to manage Oracle RAC databases.

• Oracle RAC Database Deployment Models
Starting with Oracle Database 21c, there is a single, merged management style for Oracle
RAC databases.

Required Privileges for Oracle RAC Database Administration
Use the SYSRAC administrative privilege to manage Oracle RAC databases.

To increase security and further separate administrative duties, Oracle RAC database
administrators manage Oracle RAC databases with the SYSRAC administrative privilege.

Chapter 3
Overview of Oracle RAC Database Administration

3-2

The SYSRAC administrative privilege is the default mode of connecting to the database by the
Oracle Clusterware agent on behalf of Oracle RAC utilities, such as SRVCTL.

Related Topics

• Oracle Database Security Guide

Oracle RAC Database Deployment Models
Starting with Oracle Database 21c, there is a single, merged management style for Oracle
RAC databases.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

Prior to Oracle Database 21c, Oracle RAC databases support two different management styles
and deployment models: administrator-managed deployment and policy-managed deployment.

Administrator-managed deployment requires that you statically configure each database
instance to run on a specific node in the cluster. This deployment also requires that you
configure database services to run on specific instances that belong to a particular database
using the preferred and available designation.

Policy-managed deployment is based on server pools. In this deployment, database services
run within a server pool as singleton or uniform across all of the servers in the server pool.
Databases are deployed in one or more server pools and the size of the server pools
determine the number of database instances in the deployment.

Starting with Oracle Database 21c, the two management styles are merged into a single
deployment model that combines the best features of each model. The administrator-managed
database deployment style now has additional capabilities that were previously available only
in policy-managed databases. These enhancements result in a new, converged deployment
style. To use the merged database management style, you must have a Container Database
(CDB) with at least one Pluggable Database (PDB).

You manage the merged database deployment model using the same commands and utilities
(such as SRVCTL, Oracle DBCA, or Oracle Enterprise Manager) as before. All commands and
utilities, except for the policy-management specific commands such as srvpool commands,
maintain backward compatibility to support the management of Oracle databases prior to
Oracle Database 21c.

The merged database management style simplifies management of dynamic systems. The
clusters and databases can expand or shrink as requirements change. The Oracle home
software must be installed on every node in the cluster.

Benefits of the merged management style

The PDBs in the cluster database are available on all nodes, or a subset of the nodes, based
on the cardinality setting for the PDB. The cardinality of a PDB governs the number of nodes
where a PDB can run at the same time. If you use a number for cardinality instead of ALL, then
the instances in which the PDBs are opened depend on the resources available to each
instance.

A database instance is started on every server in the cluster that hosts a PDB. If you are using
Oracle Automatic Storage Management (Oracle ASM) with Oracle Managed Files for your

Chapter 3
Overview of Oracle RAC Database Administration

3-3

database storage, then, when an instance starts and there is no redo thread available, Oracle
RAC automatically enables one and creates the required redo log files and undo tablespace.

Clients can connect to a PDB using the same SCAN-based connect string irrespective of which
servers the PDBs are running on at the time.

Tools for Administering Oracle RAC
The tools most commonly used to managed Oracle Real Application Clusters (Oracle RAC)
databases and instances are the SRVCTL utility, Oracle Enterprise Manager, and SQL*Plus.

In many cases, you use these tools the same way to manage Oracle RAC environments as
you would use them manage noncluster Oracle databases:

• Administering Oracle RAC with SRVCTL
The Server Control Utility (SRVCTL) is a command-line interface that you can use to
manage Oracle Databases in a centralized manner.

• Administering Oracle RAC with Oracle Enterprise Manager
Oracle Enterprise Manager provides a central point of control for the Oracle RAC
environment, allowing you to perform administrative tasks simultaneously on multiple
cluster databases.

• Administering Oracle RAC with SQL*Plus
Unlike SRVCTL or Oracle Enterprise Manager, SQL*Plus is an instance-oriented
management tool.

• How SQL*Plus Commands Affect Instances
You can use SQL*Plus to start and stop instances in the Oracle RAC database.

Administering Oracle RAC with SRVCTL
The Server Control Utility (SRVCTL) is a command-line interface that you can use to manage
Oracle Databases in a centralized manner.

Oracle made centralized, SRVCTL-based database management available in Oracle Database
11g release 2 (11.2) for single-instance Oracle Databases, using Oracle ASM in the Oracle
Grid Infrastructure, for both a noncluster environment and Oracle RAC databases, based on
Oracle Grid Infrastructure for a cluster. This enables homogeneous management of all Oracle
Database types using SRVCTL. You can use SRVCTL to start and stop the database and
instances, and to delete or move instances and services. You can also use SRVCTL to add
services and manage configuration information, in addition to other resources in the cluster.

When you use SRVCTL to perform configuration operations on your cluster, SRVCTL stores
configuration data in the Oracle Cluster Registry (OCR) in a cluster or Oracle Local Registry
(OLR) in Oracle Restart environments. SRVCTL performs other operations, such as starting
and stopping instances, by configuring and managing Oracle Clusterware resources, which
define agents that perform database startup and shutdown operations using Oracle Call
Interface APIs.

Chapter 3
Tools for Administering Oracle RAC

3-4

Note:

If you require your database (or database instance) to start using certain environment
variables, then use the srvctl setenv command to set those variables for the
database profile that is maintained for the database using SRVCTL. You do not need
to set the ORACLE_HOME and ORACLE_SID environment variables, because SRVCTL
maintains and sets those parameters, automatically.

Related Topics

• Server Control Utility Reference
Use the Server Control Utility (SRVCTL) to manage Oracle Real Application Clusters
(Oracle RAC) configuration information.

Administering Oracle RAC with Oracle Enterprise Manager
Oracle Enterprise Manager provides a central point of control for the Oracle RAC environment,
allowing you to perform administrative tasks simultaneously on multiple cluster databases.

Based on the Oracle Enterprise Manager Cloud Control (Grid Control in Oracle Enterprise
Manager 11g) graphical user interface (GUI), you can manage both non-clustered and Oracle
RAC environments.

In Oracle Enterprise Manager, Oracle RAC-specific administrative tasks generally focus on two
levels: tasks that affect an entire cluster database and tasks that affect specific instances. For
example, you can use Oracle Enterprise Manager to start, stop, and monitor databases, cluster
database instances, and their listeners, and to schedule jobs or set up alert thresholds for
metrics. Or you can perform instance-specific commands such as setting parameters or
creating resource plans. You can also use Oracle Enterprise Manager to manage schemas,
security, and cluster database storage features.

Related Topics

• Advanced Oracle Enterprise Manager Administration
You can install, configure, and monitor an Oracle Real Application Clusters (Oracle RAC)
database from a single location using Oracle Enterprise Manager Cloud Control.

Administering Oracle RAC with SQL*Plus
Unlike SRVCTL or Oracle Enterprise Manager, SQL*Plus is an instance-oriented management
tool.

SQL*Plus commands operate on the current instance. The current instance can be either the
local default instance on which you initiated your SQL*Plus session, or it can be a remote
instance to which you connect with Oracle Net Services. For an Oracle RAC environment that
runs multiple instances on one database at the same time, this implies that you need to
consider the extent to which SQL*Plus can operate on this instance.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

Chapter 3
Tools for Administering Oracle RAC

3-5

For example, when using Pluggable Databases (PDBs) you must consider that any alteration
performed on the PDB using a SQL*Plus connection will, by default, only affect the current
instance. To make changes affecting all instances that belong to the PDB, you must use the
ALTER PLUGGABLE DATABASE command with instance=all. When using PDBs you must
connect, using a dynamic database service (net_service_name), to an instance, as PDBs
represent themselves as dynamic database services associated with one or more instances of
an Oracle RAC database.

Because, by default, the SQL*Plus prompt does not identify the current instance, you should
direct your commands to the correct instance. Starting a SQL*Plus session and connecting to
the database without specifying an instance directs all SQL*Plus commands to the local
instance. In this case, the default instance is also the current instance.

Since the SQL*Plus prompt does not identify the current instance by default, you should direct
your commands to the correct instance. Starting a SQL*Plus session and connecting to the
database without specifying an instance directs all SQL*Plus commands to the local instance.
In this case, the default instance is also the current instance. To connect to a different instance
in SQL*Plus, issue a new CONNECT command and specify a remote instance net service name,
as shown in the following example, where password is the password:

CONNECT user_name@net_service_name
Enter password: password

Connecting as SYSOPER or SYSRAC enables you to perform privileged operations, such as
instance startup and shutdown. Multiple SQL*Plus sessions can connect to the same instance
at the same time. SQL*Plus automatically disconnects you from the first instance whenever
you connect to another one.

Note:

Use the SYSASM privilege instead of the SYSRAC privilege to connect to and administer
an Oracle ASM instance. If you use the SYSRAC privilege to connect to an Oracle ASM
instance, then Oracle Database writes warnings to the alert log files because
commands that run using the SYSRAC privilege on an Oracle ASM instance are
deprecated.

Related Topics

• Authentication for Accessing Oracle ASM Instances

• Configuring Naming Methods

• Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement

How SQL*Plus Commands Affect Instances
You can use SQL*Plus to start and stop instances in the Oracle RAC database.

Most SQL statements affect the current instance. You do not need to run SQL*Plus commands
as root on Linux and UNIX systems or as Administrator on Windows systems. You need only
the proper database account with the privileges that you normally use for a noncluster Oracle
database. Some examples of how SQL*Plus commands affect instances are:

• ALTER SYSTEM CHECKPOINT LOCAL affects only the instance to which you are currently
connected, rather than the default instance or all instances.

Chapter 3
Tools for Administering Oracle RAC

3-6

• ALTER SYSTEM CHECKPOINT or ALTER SYSTEM CHECKPOINT GLOBAL affects all instances in
the cluster database.

• ALTER SYSTEM SWITCH LOGFILE affects only the current instance.

– To force a global log switch, use the ALTER SYSTEM ARCHIVE LOG CURRENT statement.

– The INSTANCE option of ALTER SYSTEM ARCHIVE LOG enables you to archive each
online redo log file for a specific instance.

The following table describes how SQL*Plus commands affect instances.

Table 3-1 How SQL*Plus Commands Affect Instances

SQL*Plus Command Associated Instance

ARCHIVE LOG Always affects the current instance.

CONNECT Affects the default instance if no instance is specified in the CONNECT
command.

HOST Affects the node running the SQL*Plus session, regardless of the location of
the current and default instances.

RECOVER Does not affect any particular instance, but rather the database.

SHOW INSTANCE Displays information about the current instance, which can be different from
the default local instance if you have redirected your commands to a remote
instance.

SHOW PARAMETER
and

SHOW SGA

Displays parameter and SGA information from the current instance.

STARTUP
and

SHUTDOWN

Always affects the current instance. These are privileged SQL*Plus
commands.

Starting and Stopping Instances and Oracle RAC Databases
You can start and stop instances with Oracle Enterprise Manager, SQL*Plus, or SRVCTL.

Both Oracle Enterprise Manager and SRVCTL provide options to start and stop all of the
instances in an Oracle Real Application Clusters (Oracle RAC) database with a single step.

Using any tool, you can choose the startup state to which you want to start the database. The
state of the database and database instance will determine what operations you can perform.
You can perform certain operations only when the database is in the MOUNT (NOMOUNT) state.
Performing other operations requires that the database be in the OPEN state.

Note:

Oracle does not support running more than one instance of the same database on
the same node.

To start an Oracle RAC database instance on a node in the cluster, you must first start the
Oracle Grid Infrastructure stack on the node. An Oracle RAC database instance will not start
on a server on which the Oracle Grid Infrastructure stack is not running.

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-7

• Starting One or More Instances and Oracle RAC Databases Using SRVCTL
Use SRVCTL start Oracle RAC databases and instances.

• Stopping One or More Instances and Oracle RAC Databases Using SRVCTL
Use SRVCTL to stop instances and Oracle RAC databases.

• Stopping All Databases and Instances Using CRSCTL
You can use the crsctl stop crs command on the node or the crsctl stop cluster -
all command to stop all instances on a node or the entire cluster.

• Starting and Stopping Individual Instances Using SQL*Plus
If you want to start or stop only one instance and you are connected to your local node,
then you must first ensure that your current environment includes the SID for the local
instance.

Related Topics

• Overview of Database Instance Startup and Shutdown

Starting One or More Instances and Oracle RAC Databases Using SRVCTL
Use SRVCTL start Oracle RAC databases and instances.

Note:

This section assumes that you are using an SPFILE for your database.

Enter the following SRVCTL syntax from the command line, providing the required database
name and instance name, or include multiple instance names to start multiple specific
instances:

• To start your entire cluster database, that is, all of the instances and its dependencies,
enter the following SRVCTL command:

$ srvctl start database -db db_unique_name [-startoption start_options]

The following SRVCTL command, for example, mounts all of the non-running instances of
an Oracle RAC database:

$ srvctl start database -db orcl -startoption mount

• To start specific instances of a database, enter a comma-delimited list of instance names:

$ srvctl start instance -db db_unique_name -instance "instance_name_list"
 [-startoption start_options]

You must enclose a comma-delimited list in double quotation marks ("").

•

• To start an instance of a database on a specific node, use the following command with a
single node name:

$ srvctl start instance -db db_unique_name -node node_name
 [-startoption start_options]

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-8

Note:

The policy-managed database deployment option is desupported in Oracle
Database 23ai.
Policy-managed databases were deprecated in Oracle Database 21c, and
admin-managed database deployment was enhanced with functions similar to
policy managed databases. By converging the automation provided by policy-
managed database with the consistency of an admin-managed database, Oracle
seeks to simplify database management tasks for database administrators. This
converged database deployment provides the best of both options, such as
providing the options to rank and define the order of database startup, without
requiring you to choose a specific style during deployment.

Note that this command also starts all enabled and non-running services and PDBs that
have AUTOMATIC management policy, and for which the database role matches one of the
service's roles.

Related Topics

• Server Control Utility Reference
Use the Server Control Utility (SRVCTL) to manage Oracle Real Application Clusters
(Oracle RAC) configuration information.

Stopping One or More Instances and Oracle RAC Databases Using
SRVCTL

Use SRVCTL to stop instances and Oracle RAC databases.

The procedure for shutting down Oracle RAC instances is identical to shutting down instances
in noncluster Oracle databases, with the following exceptions:

• In Oracle RAC, shutting down one instance does not interfere with the operation of other
running instances.

• To shut down an Oracle RAC database completely, shut down every instance that has the
database open or mounted.

• After a NORMAL or IMMEDIATE shutdown, instance recovery is not required. Recovery is
required, however, after you issue the SHUTDOWN ABORT command or after an instance
terminates unusually. An instance that is still running performs instance recovery for the
instance that shut down. If no other instances are running, the next instance to open the
database performs instance recovery for any instances needing it.

• Using the SHUTDOWN TRANSACTIONAL command with the LOCAL option is useful to shut down
a particular Oracle RAC database instance. Transactions on other instances do not block
this operation. If you omit the LOCAL option, then this operation waits until transactions on
all other instances that started before you ran the SHUTDOWN command either commit or
rollback, which is a valid approach, if you intend to shut down all instances of an Oracle
RAC database.

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-9

Note:

SHUTDOWN TRANSACTIONAL and SHUTDOWN TRANSACTIONAL LOCAL both perform the
same action on a nonclustered database but the two commands are different on
an Oracle RAC database.

Enter the following SRVCTL syntax from the command line, providing the required database
name and instance name, or include multiple instance names to stop multiple specific
instances:

• To stop your entire cluster database, that is, all of the instances and its enabled services,
enter the following SRVCTL command:

$ srvctl stop database -db db_unique_name [-stopoption stop_options]

Use the TRANSACTIONAL stop option with the srvctl stop database command and the
TRANSACTIONAL LOCAL stop option with the srvctl stop instance command.

• To stop all instances and their enabled services that are managed by Oracle Clusterware
on one or more nodes, enter the following SRVCTL command:

$ srvctl stop instance -node "node_list" [-stopoption stop_options]

Note:

If any of the instances has services running on it, then you must use the -force
option to stop the services and the instance.

• To stop one or more instances, enter the following SRVCTL syntax from the command line:

$ srvctl stop instance -db db_unique_name {-node "node_list" | -instance
"inst_name_list"}
 [-stopoption stop_options]

You can enter either a comma-delimited list of instance names to stop several instances or
you can enter a node name to stop one instance. In Windows you must enclose a comma-
delimited list in double quotation marks ("").

The srvctl stop instance command also stops the services related to the terminated
instances on the nodes where the instances were running. As an example, the following
command shuts down the two instances, orcl3 and orcl4, on the orcl database using the
failover option for CRS to find another node to run the services from it and the immediate
stop option:

$ srvctl stop instance -db orcl -instance "orcl3,orcl4" -force -failover -
stopoption immediate

Related Topics

• srvctl stop database
Stops a database, its instances, and its services.

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-10

• srvctl stop instance
The srvctl stop instance command stops instances and stops any services running on
specified instances.

• Overview of Database and Instance Shutdown

• Shutting Down a Database

Stopping All Databases and Instances Using CRSCTL
You can use the crsctl stop crs command on the node or the crsctl stop cluster -all
command to stop all instances on a node or the entire cluster.

When you want to stop an entire node or cluster (for maintenance purposes, for example), you
run either the crsctl stop crs command on the node or the crsctl stop cluster -all
command, provided you have the required cluster privileges. These commands stop all
database instances running on a server or in the cluster and ensure that their state is
recovered after you restart the cluster. Using CRSCTL also enables Oracle Clusterware to
relocate services and other resources that can run elsewhere.

Using either of these CRSCTL commands to stop all database instances on a server or in the
cluster can lead to the database instances being stopped similar to shutdown abort, which
requires an instance recovery on startup. If you use SRVCTL to stop the database instances
manually before stopping the cluster, then you can prevent a shutdown abort, but this requires
that you manually restart the database instances after restarting Oracle Clusterware.

Starting and Stopping Individual Instances Using SQL*Plus
If you want to start or stop only one instance and you are connected to your local node, then
you must first ensure that your current environment includes the SID for the local instance.

Note that any subsequent commands in your session, whether inside or outside a SQL*Plus
session, are associated with that same SID.

Note:

This section assumes you are using an SPFILE.

To start or shutdown your local instance, initiate a SQL*Plus session and connect with the
SYSRAC or SYSOPER privilege and then issue the required command. For example to start
and mount an instance on your local node, run the following commands in your SQL*Plus
session:

 CONNECT / AS SYSRAC
 STARTUP MOUNT

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-11

Note:

If you use Oracle ASM disk groups, then use the SYSASM privilege instead of the
SYSRAC privilege to connect to and administer the Oracle ASM instances.

Oracle recommends that you do not use SQL*Plus to manage Oracle ASM instances
in an Oracle RAC environment. Oracle Clusterware automatically manages Oracle
ASM instances, as required. If manual intervention is necessary, then use respective
SRVCTL commands.

You can start multiple instances from a single SQL*Plus session on one node using Oracle Net
Services. Connect to each instance in turn by using a Net Services connection string, typically
an instance-specific alias from your tnsnames.ora file.

For example, you can use a SQL*Plus session on a local node to perform a transactional
shutdown for two instances on remote nodes by connecting to each in turn using the instance's
individual alias name. Assume the alias name for the first instance is db1 and that the alias for
the second instance is db2. Connect to the first instance and shut it down as follows:

 CONNECT /@db1 AS SYSRAC
 SHUTDOWN TRANSACTIONAL

Note:

To ensure that you connect to the correct instance, you must use an alias in the
connect string that is associated with only one instance. If you use a connect string
that uses a TNS alias that connects to a service or an Oracle Net address that lists
multiple IP addresses, then you might not be connected to the specific instance you
want to shut down.

Then connect to and shutdown the second instance by entering the following from your
SQL*Plus session:

 CONNECT /@db2 AS SYSRAC
 SHUTDOWN TRANSACTIONAL

It is not possible to start or stop multiple instances, simultaneously, with SQL*Plus, so you
cannot start or stop all of the instances for a cluster database with a single SQL*Plus
command. You may want to create a script that connects to each instance in turn and start it up
and shut it down. However, you must maintain this script manually if you add or drop instances.

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

• SQL*Plus User's Guide and Reference

Starting and Stopping PDBs in Oracle RAC
You can use SRVCTL commands to manage PDBs.

Chapter 3
Starting and Stopping PDBs in Oracle RAC

3-12

Note:

Starting with Oracle Database 21c, installation of non-CDB Oracle Database
architecture is no longer supported. The policy-managed database deployment
option is desupported in Oracle Database 23ai.

Starting with Oracle Database 21c, PDBs are a resource managed by Oracle Clusterware.
Consider a admin-managed CDB called raccont that has a PDB called spark.

Note:

If you attempt to create the service without first creating the PDB, then you will get an
error message indicating you must create the PDB resource first.

If the spark PDB was created with cardinality set to 1, or 2, or ALL, then if you create a service
named plug for the PDB, the service can use the –cardinality argument, too. If the spark
PDB was created without specifying the -cardinality argument, then new services you create
for the PDB use the -preferred or -available arguments, not the –cardinality argument.

Because PDBs are managed as an Oracle Clusterware resource, typical Oracle RAC-based
management practices apply. For this reason, if the PDB spark has AUTOMATIC management
policy, then the PDB is started when CDB starts. Similarly, if the PDB spark is in the online
state when Oracle Clusterware is shut down on a server hosting this service and the
management policy is set to MANUAL, then the PDB is restored to its original state after the
restart of Oracle Clusterware on this server. The default PDB management policy is derived
from the management policy of its CDB.

To start a Pluggable Database:

$ srvctl start pdb -db db_name -pdb pdb_name [-startoption start_options]

To start a Pluggable Database on specific nodes:

$ srvctl start pdb -db db_name -pdb pdb_name -node node_list
 [-startoption start_options]

To stop a PDB and all its services on all nodes within a database using the IMMEDIATE option:

$ srvctl stop pdb -db db_name -pdb pdb_name -stopoption IMMEDIATE -
drain_timeout 0
 -stopsvcoption IMMEDIATE

To stop a Pluggable Database on specific nodes:

$ srvctl stop pdb -db db_name -pdb pdb_name -node node_list
 [-stopoption stop_options] [-stopsvcoption stop_service_options
 [-drain_timeout timeout]

Chapter 3
Starting and Stopping PDBs in Oracle RAC

3-13

If you do not want the spark PDB to restart when the Oracle RAC database is restarted on all,
or on a specific node, use the following command:

srvctl disable pdb -db raccont -pdb spark [-node node_name]

To view the status of the PDB service plug, use the following command:

srvctl status service -db raccont -service plug -verbose

To view the status of the PDB spark, use the following command:

srvctl status pdb -db raccont -pdb spark -detail

To modify the configuration of the PDB, use the following command:

srvctl modify pdb -db db_unique_name -pdb pdb_name
 [-cardinality {num_of_instances | ALL}]
 [-maxcpu max_cpu_usage] [-mincpuunit min_cpu_usage]
 [-rank rank] [-startoption start_options]
 [-stopoption stop_options] [-policy policy]

Note:

You can modify the -cardinality parameter only if you had set the -cardinality
parameter when creating the PDB.

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

Local Rolling Database Maintenance
Starting with Oracle Database 23ai, you can patch Oracle Real Application Clusters (Oracle
RAC) and Oracle RAC One Node databases locally in out-of-place mode without affecting
availability and workload of the database.

• About Local Rolling Database Maintenance
Starting with Oracle Database 23ai, you can apply rolling patches and perform other
maintenance operations locally for Oracle Real Application Clusters (Oracle RAC) and
Oracle RAC One Node deployments.

• Requirements for Using Local Rolling Maintenance
Learn what you need to do to configure and use local rolling database maintenance.

• Patching Oracle RAC Database in Local Rolling Mode
You can patch Oracle Real Application Clusters (Oracle RAC) and Oracle RAC One Node
databases in local rolling mode, reducing the time to migrate the connections.

Chapter 3
Local Rolling Database Maintenance

3-14

• How to Recover from a Failed Transfer in Local Rolling Mode
During local rolling database maintenance, some instances may fail to transfer to target
Oracle home. Use any one of these procedures to recover from a failed transfer in local
rolling mode.

About Local Rolling Database Maintenance
Starting with Oracle Database 23ai, you can apply rolling patches and perform other
maintenance operations locally for Oracle Real Application Clusters (Oracle RAC) and Oracle
RAC One Node deployments.

Local rolling creates and starts a second database instance from the second home on the
same node, instead of stopping the database instance and relocating the workload to another
instance on another node. Local rolling database maintenance reduces the time to migrate the
connections. This feature reduces brownout time by keeping the workload on the local node.
You must ensure that there are enough CPU, memory, and other computing resources to
temporarily run two instances.

Local rolling ensures that at least the same number of Oracle RAC and Oracle RAC One Node
instances are running in the cluster during rolling migration of the database between two
Oracle homes. Using this feature, you can do out-of-place rolling patching within a single
cluster node.

When you use local rolling out-of-place patching, Oracle RAC creates a second instance in the
new Oracle home, starts the second instance, and then stops the first instance in the old
Oracle home on the node you are patching. This feature also preserves the PDB placement
and the services, and thus the node keeps doing the same work it was doing before patching.

Note:

• The srvctl modify database command automatically creates a new instance
with a unique instance name (ORACL_SID).

• The new instance name is the current instance name appended with an
underscore (_) and a number. For example, if the current instance name is
sales_1, then the new instance name could be sales_2. After the patching
operation is complete, only the new instance runs on the patched node.

• When you perform rolling patching the second time, the original ORACLE_SID is
restored. For example, the ORACLE_SID goes back to sales_1 after the second
rolling patching operation. The third rolling patching operation will use sales_2,
and so on.

The local rolling out-of-place patching is optional in a multi-node environment. By default it is
disabled. Use the -localrolling option with srvctl modify database to enable this feature.

Requirements for Using Local Rolling Maintenance
Learn what you need to do to configure and use local rolling database maintenance.

To take advantage of local rolling database maintenance capabilities in Oracle RAC, you must
meet the following requirements:

• Configure Oracle Managed Files (OMF).

Chapter 3
Local Rolling Database Maintenance

3-15

• Use the Server Parameters File (SPFILE).

• Reset the THREAD and UNDO_TABLESPACE initialization parameters after local rolling is
complete.

• Do not run srvctl add instance, srvctl remove instance, or srvctl modify instance
commands during local rolling patching.

• You must ensure that enough free storage space is available to create a new redo thread
and a new undo tablespace for each instance. This feature creates a new redo thread and
a new undo tablespace for each new instance when you use this feature for the first time.
The second and subsequent time you use this feature, the previously used old redo thread
and undo tablespace are used, and new redo and undo are not created.

Patching Oracle RAC Database in Local Rolling Mode
You can patch Oracle Real Application Clusters (Oracle RAC) and Oracle RAC One Node
databases in local rolling mode, reducing the time to migrate the connections.

1. Download the Oracle Database installation image file (db_home.zip) and extract the image
file into a new Oracle home directory.

$ mkdir -p /u01/app/oracle/product/23.4.0/dbhome_1
$ chgrp oinstall /u01/app/oracle/product/23.4.0/dbhome_1
$ cd /u01/app/oracle/product/23.4.0/dbhome_1
$ unzip -q /tmp/db_home.zip

2. From the new Oracle home directory, start the Oracle Database software installation and
apply the required Release Updates (RUs).

$ cd /u01/app/oracle/product/23.4.0/dbhome_1
$./runInstaller -applyRU patch_directory_location

3. Prepare a new Oracle RAC or Oracle RAC One Node-enabled home.

Note:

You can also use Oracle FPP or any other method to install Oracle RAC
software.

4. Enable local rolling for your database.

$ srvctl modify database –db mydb -oraclehome new_Oracle_home -localrolling

This command also generates a name for the new instance.

5. Transfer Oracle RAC and Oracle RAC One Node PDBs and services from the old Oracle
home to the new Oracle home.

$ srvctl transfer instance –d mydb [-node node_list]
{[-stopoption stop_option] | -rollback} [-drain_timeout timeout] [-verbose]

The new instance starts from the new Oracle home and waits for up to the time specified in
the -drain_timeout parameter for the sessions to migrate to the new instance. The old
instance stops when all the sessions are migrated to the new instance.

Chapter 3
Local Rolling Database Maintenance

3-16

Note:

If -drain_timeout is not specified, then the maximum configured drain timeout of
all the running services of the database on the specified nodes is used.

6. Verify the database configuration changes.

$ srvctl config database -db mydb

7. Add or modify services and connect strings, as required.

Related Topics

• service Commands
Use commands with the service keyword to add, modify, list the configuration of, enable,
disable, start, stop, obtain the status of, relocate, and remove services.

How to Recover from a Failed Transfer in Local Rolling Mode
During local rolling database maintenance, some instances may fail to transfer to target Oracle
home. Use any one of these procedures to recover from a failed transfer in local rolling mode.

1. Revert all instances from the target Oracle home to the old Oracle home.

a. Revert the Oracle RAC local rolling configuration changes.

srvctl modify database -db mydb -localrolling_revert

b. Transfer all database instances to the old Oracle home.

srvctl transfer instance -db mydb

This procedure restores the database to the original state, before local rolling. All
instances start running from the old Oracle home. You can delete the previous target
Oracle home, create a new Oracle home and start local rolling procedure again.

2. Revert some instances from the target Oracle home to the old Oracle home.

a. Revert the Oracle RAC local rolling configuration changes.

srvctl modify database -db mydb -localrolling_revert

b. Transfer some database instances to the old Oracle home.

srvctl transfer instance -db mydb -node node_list

Fix the local rolling target Oracle home on the transferred nodes. If any instances are
still running from the local rolling target Oracle home, then the database goes in to the
local rolling REVERT state.

c. Modify the database to TRANSFER state using the same target Oracle home to transfer
the instances.

srvctl modify database -db mydb -localrolling -oraclehome
target_Oracle_home

Chapter 3
Local Rolling Database Maintenance

3-17

3. Revert some instances from the target Oracle home to the old Oracle home.

a. Rollback some instances from the target Oracle home to the old Oracle home.

srvctl transfer instance -db mydb -node node_list -rollback

The database goes into the TRANSFER state.

b. Fix the target Oracle home.

c. Transfer the database instance back to the target Oracle home.

srvctl transfer instance -db mydb

Related Topics

• service Commands
Use commands with the service keyword to add, modify, list the configuration of, enable,
disable, start, stop, obtain the status of, relocate, and remove services.

Pluggable Database Rank
The PDB -rank parameter defines relative importance of the PDBs, which are created
specifying cardinality, in a database with the RANK management policy.

The Pluggable Database (PDB) rank is a predefined value that you can assign to a PDB to
specify workload importance of the PDB. Oracle Clusterware makes several decisions based
on the rank of the PDB. By default, Oracle Clusterware has the same workload importance for
each PDB. However, with the PDB -rank parameter, you can choose from a set of predefined
values to distinguish workload importance of a PDB. The higher rank means the higher PDB
workload importance, for example, the PDB rank 5 is the highest rank and 1 is the lowest rank.

The PDB -rank parameter is optional, and it is not set by default. You can configure it using
the srvctl modify pdb command. When the -rank parameter is set, Oracle Clusterware gives
precedence to the PDBs with ranks to perform the following operations:

• Determines the startup order of the PDBs in the cluster. Oracle Clusterware attempts to
start PDBs with the highest rank before the other PDBs with the lower ranks.

• Shuts down a cluster database instance, with the RANK management policy, if there are no
running PDBs that require that database instance.

• Decides whether to refuse starting the PDBs or stop running the PDBs when the cluster
does not have sufficient resources to meet resource requirements of the PDBs with higher
ranks when PDB’s resource requirements are set to non-default values. The PDBs with
non-default rank and resource requirement values have higher priority than the PDBs with
default rank and resource requirement values.

If a PDB in CDB1 has RANK 3 and a PDB in CDB2 has RANK 2, and if there are only
enough resources to start only one CDB, then Oracle Clusterware starts CDB1 by
dependency because the PDB in CDB1 has a higher rank. Oracle Clusterware does not
start CDB2 because the PDB in CDB2 has a lower rank.

How PDB Rank Works?

If the PDB -rank parameter is defined, then Oracle Clusterware first considers PDB with the
highest rank and then considers number of required CPUs while failing over the PDBs. For
example, in a three node cluster with four CPUs in each node, and three PDBs named PDB1

Chapter 3
Pluggable Database Rank

3-18

with RANK 1 and CPU count 4, PDB2 with RANK 2 and CPU count 4, and PDB3 with RANK 3
and CPU count 4, Oracle Clusterware handles failover in the following order:

1. The cluster has enough resources to start all PDBs. When the first node fails, PDB2 and
PDB3 keep running, but Oracle Clusterware stops PDB1 because it has the lowest rank. If
PDB2 and PDB3 were hosted on the failed node, then Oracle Clusterware stops PDB1 on
the running nodes and starts PDB2 and PDB3 on these nodes.

2. When the second node fails, PDB3 keeps running, but Oracle Clusterware stops PDB2
because it has the lowest rank. If PDB3 was hosted on the failed node, then Oracle
Clusterware stops PDB2 on the running node and starts PDB3 on that node.

3. PDBs can run from different CDBs. If you have multiple CDBs and any of these CDBs
does not have a running PDB, then Oracle Clusterware shuts down the CDBs that do not
have any running PDBs.

The rank of a PDB is set for the entire cluster, not only for the CDB in which you create a PDB.

Pluggable Database Placement
Configure PDBs to either run explicitly in the specified CDB instances or run dynamically in any
CDB or a subset of CDBs in the cluster.

You can choose from the following two placement options for the PDBs:

• Preferred and Available PDBs: These PDBs can run only in the explicitly specified CDB
instances that are running on the list of specified cluster nodes. While configuring such
PDBs, you need to provide a CDB name and the list of instances or nodes where the CDB
can run. You can modify the list of instances or nodes where the CDB can run.

• Floating PDBs: These PDBs are created with specified cardinality and they can run on
any instance of the CDB in which they are created. The cardinality of a PDB governs the
number of nodes where a PDB can run at the same time. If you use a number for
cardinality instead of ALL, then which instances the PDBs are opened in depends on the
available resources of each instance.

Oracle Clusterware evaluates resources for each cluster database instance based on the
values of the -maxcpu and -mincpuunit parameters for the PDB. You must be logged in as
either the grid or the root user to modify the -maxcpu, -mincpuunit, and -rank
parameters.

You can configure the PDB placement option either while creating a new PDB or by modifying
an existing PDB.

Example of Creating a Pluggable Database with Cardinality and
Rank

You can use these examples to see how to create an Oracle database and create a Pluggable
Database, specifying cardinality, in the Oracle database.

You can define relative importance of Pluggable Databases in an Oracle database using the -
rank parameter. This option works for the Pluggable Databases that are created specifying
cardinality in a database with the RANK management policy.

The following examples show you how to create an Oracle database with the RANK
management policy, add a Pluggable Database in the Oracle database specifying cardinality,
and modify the PDB cardinality.

Chapter 3
Pluggable Database Placement

3-19

Example 3-1 Creating an Oracle Database Using SRVCTL

In this example, you create an Oracle database DATA with the RANK management policy using
SRVCTL:

$ srvctl add database -db db_unique_name -policy RANK -
oraclehome $ORACLE_HOME -dbname DATA

Example 3-2 Creating a Pluggable Database Using SRVCTL

In this example, you create a Pluggable Database MYPDB, specifying cardinality, in Oracle
database DATA using SRVCTL:

$ srvctl add pdb -db DATA -pdb MYPDB -cardinality 2

Note:

If you set the management policy of your CDB to RANK, then the default policy of your
PDBs that you create in that CDB will be set to RESTART.

Example 3-3 Checking PDB Configuration Using SRVCTL

In this example, you check configuration of Pluggable Database MYPDB using SRVCTL:

$ srvctl config pdb -db DATA -pdb MYPDB
Pluggable database name: MYPDB
Application Root PDB:
Cardinality: 2
Maximum CPU count (whole CPUs): 0
Minimum CPU count unit (1/100 CPU count): 0
Start Option: open
Stop Option: immediate

Example 3-4 Modifying Pluggable Database Cardinality and Rank Using SRVCTL

In this example, as the grid user, you modify cardinality of Pluggable Database MYPDB, and set
maximum CPU usage, minimum CPU usage, and rank using SRVCTL:

$ srvctl modify pdb -db DATA -pdb MYPDB -cardinality 1 -maxcpu 3 -mincpuunit
20 -rank 2

Reducing Downtime During Database and Instance Outages
Outages can be either planned (maintenance) or unplanned. You can use features to help
minimize both types of outages.

In an Oracle RAC database, the outage of a single instance does not affect database
availability. If a server or instance fails, restart and recovery are automatic, including the
restarting of the subsystems, such as the listener and the Oracle Automatic Storage
Management (Oracle ASM) processes, not only the database. User sessions that connect
using a service can be transitioned to a remaining instance automatically. This happens
transparently, with little impact to the users.

Chapter 3
Reducing Downtime During Database and Instance Outages

3-20

If the entire database needs to be stopped, then this can be done in a rolling fashion. You can
stop each instance individually with stopping the entire database. While an instance is stopped,
you perform the task that required the database to be stopped, and then restart the instance.
This process is repeated until each instance in the Oracle RAC database has been stopped
and restarted.

There are additional features you can use to minimize outages, both planned and unplanned:

• The Oracle RAC high-availability framework maintains service availability by using Oracle
Clusterware and resource profiles. Oracle Clusterware recovers and balances services
according to business rules and the service attributes. If these services are used for client
connections to the database, then they are automatically redirected to a remaining
instance instead of getting an outage error.

• For repairs, upgrades, and changes that require you to isolate one or more instances or
nodes, Oracle RAC provides interfaces that relocate, disable, and enable services to
minimize service disruption to application users.

• Fast Application Notification (FAN) provides immediate interrupt of clients following
outages related to the database, nodes, and networks. FAN notifies clients immediately
when resources become available and initiates draining of database sessions so clients
experience no outages during planned maintenance. Oracle connection pools, for
example, use FAN to receive very fast notification of failures, to balance connections
following failures, and to balance connections again after the failed components are
repaired.

• Application Continuity is a feature that enables the replay, in a non-disruptive and rapid
manner, of a request against the database after a recoverable error that makes the
database session unavailable so an outage appears to the user as no more than a delayed
processing of the request.

Oracle RAC High Availability Best Practices
Implement Oracle Real Application Clusters (Oracle RAC) best practices to achieve minimal
downtime for patching and reconfiguration.

• Oracle RAC Two-Stage Rolling Updates
Starting with Oracle Database 23ai, the Oracle RAC two-stage rolling patches feature
enables you to apply previously non-rolling patches in a rolling fashion.

• Smooth Reconfiguration of Oracle RAC Instances
Smooth reconfiguration of Oracle Real Application Clusters (Oracle RAC) instances
reduces brownout time during cluster reconfiguration.

• Ordered Sequence Optimizations in Oracle RAC
Sequence is a database object from which multiple users may generate unique integers.
You can use sequences to automatically generate primary key values.

Oracle RAC Two-Stage Rolling Updates
Starting with Oracle Database 23ai, the Oracle RAC two-stage rolling patches feature enables
you to apply previously non-rolling patches in a rolling fashion.

Oracle RAC two-stage rolling patches are new types of patches, which you can apply in a
rolling fashion in stages. Once the patch is applied on the first node, the second node is
patched, and so on. When all the nodes are patched, you can enable the patches. Fixes that
you apply using this feature are disabled by default.

Chapter 3
Oracle RAC High Availability Best Practices

3-21

You can enable these fixes using the alter system enable RAC two_stage rolling updates
all; command, after all the nodes are patched successfully. You have the option to enable
two-stage rolling patches either immediately after applying the patches or later. However, these
patches are automatically enabled, if another patch or Release Update (RU) is applied using
two-stage rolling patching. Use the V$RAC_TWO_STAGE_ROLLING_UPDATES view to list the patches
applied using the Oracle RAC two-stage rolling updates.

Note:

Oracle RAC two-stage rolling updates apply to non-rolling RUs, but it does not apply
to major Oracle RAC database upgrades.

Oracle RAC two-stage rolling updates reduce the need for downtime to apply non-rolling
patches. However, not all non-rolling fixes can be applied in RAC rolling fashion. With this
feature, the number of Oracle RAC non-rolling patches is significantly reduced.

Note:

Review the patch README file for instruction on how to apply the patch, and
complete all the required steps before starting the patch upgrade.

This feature enables you to include all Oracle RAC bug fixes in RUs and new features. You are
recommended to patch all the instances in a single maintenance window to avoid release
version mismatch.

Smooth Reconfiguration of Oracle RAC Instances
Smooth reconfiguration of Oracle Real Application Clusters (Oracle RAC) instances reduces
brownout time during cluster reconfiguration.

The smooth reconfiguration feature reduces the brownout time caused by certain Oracle RAC
operations such as nodes joining or leaving an Oracle RAC cluster, or when a node is
undergoing maintenance or suffers a failure. This feature ensures continuous availability of
Oracle RAC services and client applications.

The brownout time depends on the SGA size of the database. The bigger SGA size causes
longer brownout. The brownout is related to redistribution of the resources for Global Enqueue
Service (GES) and Cache Fusion to new instances when a new node joins or to redistribute
resources to existing instances when a node fails or leaves the cluster. The Cache Fusion
requests can trigger reconfiguration on an individual resource basis.

The smooth reconfiguration feature allows on-demand Cache Fusion reconfiguration for the
Cache Fusion resources that client requests during cluster reconfiguration. The Cache Fusion
request reconfigures immediately when the client requests so that the client can complete the
request after the on-demand reconfiguration. The on-demand Cache Fusion reconfiguration
can work in parallel with the ongoing cluster reconfiguration.

Ordered Sequence Optimizations in Oracle RAC
Sequence is a database object from which multiple users may generate unique integers. You
can use sequences to automatically generate primary key values.

Chapter 3
Oracle RAC High Availability Best Practices

3-22

Oracle Real Application Clusters (Oracle RAC) supports the following sequence configurations:

• CACHE and ORDER: If your application requires sequence number ordering but can
tolerate gaps, then use CACHE and ORDER to cache and order sequence numbers in Oracle
RAC. Every instance caches the same set of numbers.

• CACHE and NOORDER: If you use sequence numbers, then always use CACHE with the
NOORDER option for optimal performance in sequence number generation. With the CACHE
option, however, you may have gaps in the sequence numbers. This configuration has the
least performance impact and it is the default configuration when creating a new sequence
without options.

• NOCACHE and ORDER: If your application requires ordered sequence numbers without
gaps, then use NOCACHE and ORDER. The NOCACHE and ORDER combination has the most
negative effect on performance compared to other caching and ordering combinations.

• NOCACHE and NOORDER: If government regulations or laws legally require sequence
numbers with limited gaps, then use NOCACHE and NOORDER. Ordering is not guaranteed in
this configuration, however, it provides better performance than NOCACHE and ORDER.

Note:

Starting with Oracle Database 18c, you can use scalable sequences to provide better
data load scalability instead of configuring a very large sequence cache. Scalable
sequences improve the performance of concurrent data load operations, especially
when the sequence values are used for populating primary key columns of tables.

In Oracle Database 23ai, ordered sequences in Oracle RAC environments are optimized for
performance by reducing the number of lock acquisitions of the ordering enqueue. These
improvements do not require any manual intervention or modification of the sequence. Ordered
sequence optimization, along with the automatic sizing of the sequence cache feature that was
introduced in Oracle Database 19c, works to improve performance of workloads that use
ordered sequences.

Related Topics

• Oracle Database Administrator’s Guide

Verifying That Instances are Running
To verify that a database instance is available, use Oracle Enterprise Manager, SRVCTL, or
SQL*Plus.

• Using SRVCTL to Verify That Instances are Running
You can use SRVCTL to verify that instances are running on a particular database.

• Using SQL*Plus to Verify That Instances are Running
You can use SQL*Plus to verify that database instances are running.

Using SRVCTL to Verify That Instances are Running
You can use SRVCTL to verify that instances are running on a particular database.

Chapter 3
Verifying That Instances are Running

3-23

The following command provides an example of using SRVCTL to check the status of the
database instances for the Oracle RAC database named mail:

$ srvctl status database -db mail

This command returns output similar to the following:

Instance mail1 is running on node node11
Instance mail2 is running on node node10

Additionally, you can check whether a PDB is running in the cluster, as follows:

$ srvctl status pdb -db db_unique_name -pdb pdb_name

Using SQL*Plus to Verify That Instances are Running
You can use SQL*Plus to verify that database instances are running.

1. On any node, from a SQL*Plus prompt, connect to a database instance by using a Net
Services connection string, typically an instance-specific alias from your tnsnames.ora file.

CONNECT /@db1 as SYSRAC

2. Query the V$ACTIVE_INSTANCES view, using the following statement:

CONNECT SYS/as SYSRAC
Enter password: password
SELECT * FROM V$ACTIVE_INSTANCES;

This query returns output similar to the following:

INST_NUMBER INST_NAME
----------- -----------------
1 db1-sun:db1
2 db2-sun:db2
3 db3-sun:db3

The output columns for this example are shown in the following table.

Table 3-2 Descriptions of V$ACTIVE_INSTANCES Columns

Column Description

INST_NUMBER Identifies the instance number.

INST_NAME Identifies the host name and instance name as
host_name:instance_name.

Related Topics

• Viewing the Open Mode of Each PDB

Chapter 3
Verifying That Instances are Running

3-24

Terminating Sessions On a Specific Cluster Instance
You can use the ALTER SYSTEM KILL SESSION statement to terminate a session on a
specific instance.

When a session is terminated, any session active transactions are rolled back, and resources
held by the session (such as locks and memory areas) are immediately released and available
to other sessions.

Using the ALTER SYSTEM KILL SESSION statement enables you to maintain strict application
service-level agreements in Oracle RAC environments. Often, the goal of a service-level
agreement is to carry out a transaction in a specified time limit. In an Oracle RAC environment,
this may require terminating a transaction on an instance, and retrying the transaction on
another instance within a specified time frame.

Note:

You can use Application Continuity to hide the cancellation of a transaction from the
user, if the application initially used an Application Continuity-enabled dynamic
database service to connect to the database instance.

To terminate sessions, follow these steps:

1. Query the value of the INST_ID column in the GV$SESSION dynamic performance view to
identify which session to terminate.

2. Issue the ALTER SYSTEM KILL SESSION and specify the session index number (SID) and
serial number of a session that you identified with the GV$SESSION dynamic performance
view.

KILL SESSION 'integer1, integer2[, @integer3]'

• For integer1, specify the value of the SID column.

• For integer2, specify the value of the SERIAL# column.

• For the optional integer3, specify the ID of the instance where the session to be
terminated exists. You can find the instance ID by querying the GV$ tables.

To use this statement, your instance must have the database open, and your session and
the session to be terminated must be on the same instance unless you specify integer3.

If the session is performing some activity that must be completed, such as waiting for a reply
from a remote database or rolling back a transaction, then Oracle Database waits for this
activity to complete, marks the session as terminated, and then returns control to you. If the
waiting lasts a minute, then Oracle Database marks the session to be terminated and returns
control to you with a message that the session is marked to be terminated. The PMON
background process then marks the session as terminated when the activity is complete.

Examples of Identifying and Terminating Sessions

The following examples provide three scenarios in which a user identifies and terminates a
specific session. In each example, the SYSDBA first queries the GV$SESSION view for the SCOTT
user's session to identify the session to terminate, and then runs the ALTER SYSTEM KILL
SESSION statement to terminate the session on the instance.

Chapter 3
Terminating Sessions On a Specific Cluster Instance

3-25

Example 3-5 Identify and terminate the session on an busy instance

In this example, assume that the running session is SYSDBA on the instance INST_ID=1. The
ORA-00031 message is returned because some activity must be completed before the session
can be terminated.

SQL> SELECT SID, SERIAL#, INST_ID FROM GV$SESSION WHERE USERNAME='SCOTT';

 SID SERIAL# INST_ID
---------- ---------- ----------
 80 4 2

SQL> ALTER SYSTEM KILL SESSION '80, 4, @2';
alter system kill session '80, 4, @2'
*
ERROR at line 1:
ORA-00031: session marked for kill
SQL>

Example 3-6 Identify and terminate the session on an idle instance

In this example, assume that the running session is SYSDBA on the instance INST_ID=1. The
session on instance INST_ID=2 is terminated immediately when Oracle Database runs the
statement within 60 seconds.

SQL> SELECT SID, SERIAL#, INST_ID FROM GV$SESSION WHERE USERNAME='SCOTT';

 SID SERIAL# INST_ID
---------- ---------- ----------
 80 6 2

SQL> ALTER SYSTEM KILL SESSION '80, 6, @2';

System altered.

SQL>

Example 3-7 Using the IMMEDIATE parameter

The following example includes the optional IMMEDIATE clause to immediately terminate the
session without waiting for outstanding activity to complete.

SQL> SELECT SID, SERIAL#, INST_ID FROM GV$SESSION WHERE USERNAME='SCOTT';

 SID SERIAL# INST_ID
---------- ---------- ----------
 80 8 2

SQL> ALTER SYSTEM KILL SESSION '80, 8, @2' IMMEDIATE;

System altered.

SQL>

Chapter 3
Terminating Sessions On a Specific Cluster Instance

3-26

Related Topics

• Oracle Database Administrator’s Guide

• Oracle Database Get Started with Performance Tuning

• About Application Continuity
Application Continuity provides high availability for your application workloads.

Overview of Initialization Parameter Files in Oracle RAC
The initialization parameters for an Oracle RAC database are stored in a SPFILE.

When you create the database, Oracle Database creates an SPFILE in the file location that
you specify. This location can be either an Oracle Automatic Storage Management (Oracle
ASM) disk group or a cluster file system. If you manually create your database, then Oracle
recommends that you create an SPFILE from an initialization parameter file (PFILE).

Note:

Oracle RAC uses a traditional PFILE only if an SPFILE does not exist or if you
specify PFILE in your STARTUP command. Oracle recommends that you use an
SPFILE to simplify administration, to maintain parameter setting consistency, and to
guarantee parameter setting persistence across database shutdown and startup
events. In addition, you can configure Oracle Recovery Manager (RMAN) to back up
your SPFILE.

All instances in the cluster database use the same SPFILE at startup. Because the SPFILE is
a binary file, do not directly edit the SPFILE with an editor. Instead, change SPFILE parameter
settings using Oracle Enterprise Manager or ALTER SYSTEM SQL statements.

• About Creating an SPFILE for Oracle RAC
All instances in an Oracle Real Application Clusters environment must use the same
server parameter file.

• Setting SPFILE Parameter Values for Oracle RAC
You can change SPFILE settings with Oracle Enterprise Manager or by using the SET
clause of the ALTER SYSTEM statement.

• Parameter File Search Order in Oracle RAC
Oracle Database searches for your parameter file in a particular order depending on your
platform. For Oracle RAC databases, you can easily determine the location of the
parameter file by using the srvctl config database command.

• Backing Up the Server Parameter File
Oracle recommends that you regularly back up the server parameter file for recovery
purposes.

About Creating an SPFILE for Oracle RAC
All instances in an Oracle Real Application Clusters environment must use the same server
parameter file.

However, when otherwise permitted, individual instances can have different settings of the
same parameter within this one file. Instance-specific parameter definitions are specified as
SID.parameter = value, where SID is the instance identifier.

Chapter 3
Overview of Initialization Parameter Files in Oracle RAC

3-27

For Oracle RAC, the location of the SPFILE is an attribute of the database resource managed
by Oracle Clusterware. When creating a new SPFILE, if the instance from which you issued
the command is running, then the following command creates a new SPFILE and automatically
updates the database resource with the new SPFILE location:

CREATE SPFILE='location' FROM PFILE;

In this case, you can start up the database without referring to the server parameter file by
name.

If the instance from which you issued the command is not running, then the SPFILE in the
database resource must be updated manually using srvctl modify database -db dbname -
spfile spfile_path. Also, if you use the following commands, then the SPFILE location is not
automatically updated in the database resource:

CREATE SPFILE FROM PFILE [AS COPY];

CREATE SPFILE='location' FROM PFILE AS COPY;

CREATE SPFILE FROM MEMORY;

When creating an SPFILE, if you include the FROM MEMORY clause (for example, CREATE PFILE
FROM MEMORY or CREATE SPFILE FROM MEMORY), then the CREATE statement creates a PFILE or
SPFILE using the current system-wide parameter settings. Because the FROM MEMORY clause
requires all other instances to send their parameter settings to the instance that is trying to
create the parameter file, the total processing time depends on the number of instances, the
number of parameter settings on each instance, and the amount of data for these settings.

Setting SPFILE Parameter Values for Oracle RAC
You can change SPFILE settings with Oracle Enterprise Manager or by using the SET clause of
the ALTER SYSTEM statement.

Note:

Modifying the SPFILE using tools other than Oracle Enterprise Manager or SQL*Plus
can corrupt the file and prevent database startup. To repair the file, you might be
required to create a PFILE and then regenerate the SPFILE.

The examples in this section appear in ASCII text although the SPFILE is a binary file. Assume
that you start an instance with an SPFILE containing the following entries:

*.OPEN_CURSORS=500
prod1.OPEN_CURSORS=1000

The value before the period (.) in an SPFILE entry identifies the instance to which the particular
parameter value belongs. When an asterisk (*) precedes the period, the value is applied to all
instances that do not have a subsequent, individual value listed in the SPFILE.

Chapter 3
Overview of Initialization Parameter Files in Oracle RAC

3-28

For the instance with the Oracle system identifier (SID) prod1, the OPEN_CURSORS parameter is
set to 1000 even though it has a database-wide setting of 500. Parameter file entries that have
the asterisk (*) wildcard character only affect the instances without an instance-specific entry.
This gives you control over parameter settings for instance prod1. These two types of settings
can appear in any order in the parameter file.

If another DBA runs the following statement, then Oracle Database updates the setting on all
instances except the instance with SID prod1:

ALTER SYSTEM SET OPEN_CURSORS=1500 sid='*' SCOPE=SPFILE;

The SPFILE now has the following entries for OPEN_CURSORS:

*.OPEN_CURSORS=1500
prod1.OPEN_CURSORS=1000

Run the following statement to reset OPEN_CURSORS to its default value for all instances except
prod1:

ALTER SYSTEM RESET OPEN_CURSORS SCOPE=SPFILE;

The SPFILE now has only the following entry for prod1:

prod1.OPEN_CURSORS=1000

Run the following statement to reset the OPEN_CURSORS parameter to its default value for
instance prod1 only:

ALTER SYSTEM RESET OPEN_CURSORS SCOPE=SPFILE SID='prod1';

Parameter File Search Order in Oracle RAC
Oracle Database searches for your parameter file in a particular order depending on your
platform. For Oracle RAC databases, you can easily determine the location of the parameter
file by using the srvctl config database command.

On Linux and UNIX platforms, the search order is as follows:

1. The location specified by the -spfile attribute for the database resource managed by
Oracle Clusterware.

2. The spfilesid.ora file in the location returned by the $ORACLE_HOME/bin/
orabaseconfig utility, in the subdirectory /dbs.

3. The spfile.ora file in the location returned by the $ORACLE_HOME/bin/
orabaseconfig utility, in the subdirectory /dbs.

4. The initsid.ora file in the location returned by the $ORACLE_HOME/bin/
orabaseconfig utility, in the subdirectory /dbs.

On Windows platforms, the search order is as follows:

1. %ORACLE_HOME%\database\spfilesid.ora
2. %ORACLE_HOME%\database\spfile.ora

Chapter 3
Overview of Initialization Parameter Files in Oracle RAC

3-29

3. %ORACLE_HOME%\database\initsid.ora

Note:

Oracle recommends that you do not use the default SPFILE names because all
instances must use the same file and they all have different SIDs. Instead, store the
SPFILE on Oracle ASM. If you store the SPFILE on a cluster file system, then use
the following naming convention for the SPFILE: path/dbs/
spfiledb_unique_name.ora. Create a PFILE named path/dbs/initsid.ora that
contains the name SPFILE=path/dbs/spfiledb_unique_name.ora.

Related Topics

• srvctl config database
Displays the configuration for an Oracle RAC database or lists all configured databases
that are registered with Oracle Clusterware.

Backing Up the Server Parameter File
Oracle recommends that you regularly back up the server parameter file for recovery
purposes.

Do this using Oracle Enterprise Manager or use the CREATE PFILE statement. For example:

CREATE PFILE='/u01/oracle/dbs/test_init.ora'
FROM SPFILE='/u01/oracle/dbs/test_spfile.ora';

You can use Recovery Manager (RMAN) to create backups of the server parameter file. You
can also recover an SPFILE by starting an instance using a client-side initialization parameter
file. Then re-create the server parameter file using the CREATE SPFILE statement. Note that if
the parameter file that you use for this operation was for a single instance, then the parameter
file does not contain instance-specific values, even those that must be unique in Oracle RAC
instances. Therefore, ensure that your parameter file contains the appropriate settings as
described earlier in this chapter.

To ensure that your SPFILE (and control files) are automatically backed up by RMAN during
typical backup operations, use Oracle Enterprise Manager or the RMAN CONTROLFILE
AUTOBACKUP statement to enable the RMAN autobackup feature

Related Topics

• CREATE SPFILE

• Oracle Database Backup and Recovery Reference

Initialization Parameter Use in Oracle RAC
By default, most parameters are set to a default value and this value is the same across all
instances.

However, many initialization parameters can also have different values on different instances
as described in Initialization Parameters Specific to Oracle RAC. Other parameters must either
be unique or identical as described in the following sections:

Chapter 3
Initialization Parameter Use in Oracle RAC

3-30

• Initialization Parameters Specific to Oracle RAC
The following table summarizes the initialization parameters used specifically for Oracle
RAC databases.

• Parameters That Must Have Identical Settings on All Instances
Certain parameters that are critical at database creation or that affect certain database
operations must have the same value for every instance in an Oracle RAC database.

• Parameters That Should Have Identical Settings on All Instances
Oracle recommends that the parameters listed here have identical settings on all
instances.

Related Topics

• Initialization Parameters

Initialization Parameters Specific to Oracle RAC
The following table summarizes the initialization parameters used specifically for Oracle RAC
databases.

Parameter Description

ACTIVE_INSTANCE_COUNT This initialization parameter was deprecated in Oracle RAC 11g release 2 (11.2).
Instead, use a service with one preferred and one available instance.

ASM_PREFERRED_READ_FAILURE
_GROUPS

Specifies a set of disks to be the preferred disks from which to read mirror data copies.
The values you set for this parameter are instance specific and need not be the same
on all instances.

CLUSTER_DATABASE Enables a database to be started in cluster mode. Set this parameter to TRUE.

CLUSTER_DATABASE_INSTANCES Oracle RAC uses this parameter to allocate adequate memory resources. It must be set
to the same value on all instances.

Note:The policy-managed database deployment option is desupported in Oracle
Database 23ai.

You can set this parameter to a value that is greater than the current number of
instances, if you are planning to add instances.

CLUSTER_INTERCONNECTS Specifies an alternative cluster interconnect for the private network when there are
multiple interconnects.

Notes:
• Oracle recommends that all Oracle databases and Oracle Clusterware use the

same interconnect network.
• Oracle does not recommend setting the CLUSTER_INTERCONNECTS parameter

except in certain situations.
• This parameter is stored in the Grid Plug and Play profile in a Grid Plug and Play

environment.

DB_NAME If you set a value for DB_NAME in instance-specific parameter files, the setting must be
identical for all instances.

Chapter 3
Initialization Parameter Use in Oracle RAC

3-31

Parameter Description

DISPATCHERS Set the DISPATCHERS parameter to enable a shared server configuration, that is a
server that is configured to enable many user processes to share very few server
processes. With shared server configurations, many user processes connect to a
dispatcher. The DISPATCHERS parameter may contain many attributes.

Oracle recommends that you configure at least the PROTOCOL and LISTENER attributes.
PROTOCOL specifies the network protocol for which the dispatcher process generates a
listening end point. LISTENER specifies an alias name for the Oracle Net Services
listeners. Set the alias to a name that is resolved through a naming method such as a
tnsnames.ora file. The tnsnames.ora file contains net service names. Clients, nodes,
and the Oracle Performance Manager node need this file. Oracle Enterprise Manager
Cloud Control does not require tnsnames.ora entries on the client.

GCS_SERVER_PROCESSES This static parameter specifies the initial number of server processes for an Oracle RAC
instance's Global Cache Service (GCS). The GCS processes manage the routing of
inter-instance traffic among Oracle RAC instances. The default number of GCS server
processes is calculated based on system resources with a minimum setting of 2. For
systems with one CPU, there is one GCS server process. For systems with two to eight
CPUs, there are two GCS server processes. For systems with more than eight CPUs,
the number of GCS server processes equals the number of CPUs divided by 4,
dropping any fractions. For example, if you have 10 CPUs, then 10 divided by 4 means
that your system has 2 GCS processes. You can set this parameter to different values
on different instances.

INSTANCE_NAME Specifies the unique name of an instance. Clients can use this name to force their
session to be connected to a specific instance in the cluster. The format of the
INSTANCE_NAME parameter is generally db_unique_name_instance_number, such
as orcldb_2.

Note: In Grid Plug and Play environments, the INSTANCE_NAME parameter is not
required and defaults to db_unique_name_instance_number if not specified.

RESULT_CACHE_MAX_SIZE In a clustered database, you can either set RESULT_CACHE_MAX_SIZE=0 on every
instance to disable the result cache, or use a nonzero value on every instance to enable
the result cache. To switch between enabled and disabled result cache requires that you
restart every instance:

• Enabling the result cache: Set RESULT_CACHE_MAX_SIZE to a value greater than
0, or leave the parameter unset. You can size the cache differently on individual
instances.

• Disabling the result cache: Set RESULT_CACHE_MAX_SIZE=0 on all instances to
disable the result cache. If you set RESULT_CACHE_MAX_SIZE=0 upon start up of
any one instance, then you must set the parameter to zero on all instance start ups
because disabling the result cache must done cluster-wide. Disabling the result
cache on some instances may lead to incorrect results.

If you do not set the RESULT_CACHE_MAX_SIZE parameter, the parameter resolves to a
default, nonzero value.

Starting with Oracle Database 21c, the result cache fetch functionality has been
enhanced. Before fetching a cached result from a remote instance, the database uses
heuristics to determine if it is more cost efficient to recompute the result on the local
instance. You can monitor the use of this functionality by querying the
V$RESULT_CACHE_OBJECTS and V$RESULT_CACHE_STATISTICS views.

Chapter 3
Initialization Parameter Use in Oracle RAC

3-32

Parameter Description

SERVICE_NAMES When you use services, Oracle recommends that you do not set a value for the
SERVICE_NAMES parameter but instead you should create cluster managed services
through the Cluster Managed Services page in Oracle Enterprise Manager Cloud
Control. This is because Oracle Clusterware controls the setting for this parameter for
the services that you create and for the default database service.

The service features described in Workload Management with Dynamic Database
Services are not directly related to the features that Oracle provides when you set
SERVICE_NAMES. In addition, setting a value for this parameter may override some
benefits of using services.

Note: Oracle recommends that client connections use services rather than instance
names. Entries in the SERVICE_NAMES parameter may be used by client connections
rather than the INSTANCE_NAME parameter value. The SERVICE_NAMES parameter may
include one or more names and different instances may share one or more names with
other instances, enabling a client to connect to either a specific instance or to any one of
a set of instances, depending on the service name chosen in the connection string.

SPFILE When you use an SPFILE, all Oracle RAC database instances must use the SPFILE
and the file must be on shared storage.

THREAD Specifies the number of the redo threads to be used by an instance. You can specify
any available redo thread number if that thread number is enabled and is not used. If
specified, this parameter must have unique values on all instances. The best practice is
to use the INSTANCE_NAME parameter to specify redo log groups.

Related Topics

• Administering Multiple Cluster Interconnects on Linux and UNIX Platforms
In Oracle RAC environments that run on Linux and UNIX platforms, you can use the
CLUSTER_INTERCONNECTS initialization parameter to specify an alternative interconnect to
the one Oracle Clusterware is using for the private network.

• About Dispatchers

Parameters That Must Have Identical Settings on All Instances
Certain parameters that are critical at database creation or that affect certain database
operations must have the same value for every instance in an Oracle RAC database.

Specify these initialization parameter values in the SPFILE or in the individual PFILEs for each
instance. The following list contains the parameters that must be identical on every instance:

COMPATIBLE
CLUSTER_DATABASE
CONTROL_FILES
DB_BLOCK_SIZE
DB_DOMAIN
DB_FILES
DB_NAME
DB_RECOVERY_FILE_DEST
DB_RECOVERY_FILE_DEST_SIZE
DB_UNIQUE_NAME
INSTANCE_TYPE (RDBMS or ASM)
PARALLEL_EXECUTION_MESSAGE_SIZE
REMOTE_LOGIN_PASSWORDFILE

Chapter 3
Initialization Parameter Use in Oracle RAC

3-33

UNDO_MANAGEMENT
The following parameters must be identical on every instance only if the parameter value is set
to zero:

DML_LOCKS
RESULT_CACHE_MAX_SIZE

Parameters That Should Have Identical Settings on All Instances
Oracle recommends that the parameters listed here have identical settings on all instances.

Oracle recommends that you set the values for the parameters in Table 3-3 to the same value
on all instances. Although you can have different settings for these parameters on different
instances, setting each parameter to the same value on all instances simplifies administration.

Table 3-3 Parameters That Should Have Identical Settings on All Instances

Parameter Description

ARCHIVE_LAG_TARGET Different values for instances in your Oracle RAC database are likely to
increase overhead because of additional automatic synchronization
performed by the database processing.

When using either Oracle GoldenGate downstream capture or Oracle
GoldenGate integrated capture mode in a downstream capture
configuration with your Oracle RAC database, the value must be greater
than zero.

CLUSTER_DATABASE_INSTA
NCES

While it is preferable for this parameter to have identical settings across all
Oracle RAC database instances, it is not required.

LICENSE_MAX_USERS Because this parameter determines a database-wide limit on the number
of users defined in the database, it is useful to have the same value on all
instances of your database so you can see the current value no matter
which instance you are using. Setting different values may cause Oracle
Database to generate additional warning messages during instance
startup, or cause commands related to database user management to fail
on some instances.

LOG_ARCHIVE_FORMAT If you do not use the same value for all your instances, then you
unnecessarily complicate media recovery. The recovering instance
expects the required archive log file names to have the format defined by
its own value of LOG_ARCHIVE_FORMAT, regardless of which instance
created the archive log files.

Databases that support Oracle Data Guard, either to send or receive
archived redo log files, must use the same value of
LOG_ARCHIVE_FORMAT for all instances.

SPFILE If this parameter does not identify the same file to all instances, then each
instance may behave differently and unpredictably in fail over, load-
balancing, and during normal operations. Additionally, a change you make
to the SPFILE with an ALTER SYSTEM SET or ALTER SYSTEM RESET
command is saved only in the SPFILE used by the instance where you
run the command. Your change is not reflected in instances using different
SPFILEs.

If the SPFILE values are different in instances for which the values were
set by the server, then you should restart the instances that are not using
the default SPFILE.

Chapter 3
Initialization Parameter Use in Oracle RAC

3-34

Table 3-3 (Cont.) Parameters That Should Have Identical Settings on All Instances

Parameter Description

TRACE_ENABLED If you want diagnostic trace information to be always available for your
Oracle RAC database, you must set TRACE_ENABLED to TRUE on all of
your database instances. If you trace on only some of your instances, then
diagnostic information might not be available when required should the
only accessible instances be those with TRACE_ENABLED set to FALSE.

UNDO_RETENTION By setting different values for UNDO_RETENTION in each instance, you are
likely to reduce scalability and encounter unpredictable behavior following
a failover. Therefore, you should carefully consider whether there are any
benefits before you assign different values for this parameter to the
instances in your Oracle RAC database.

Quiescing Oracle RAC Databases
The procedure for quiescing Oracle RAC databases is identical to quiescing a noncluster
database.

You use the ALTER SYSTEM QUIESCE RESTRICTED statement from one instance. You cannot
open the database from any instance while the database is in the process of being quiesced.
When all non-DBA sessions become inactive, the ALTER SYSTEM QUIESCE RESTRICTED
statement finishes, and the database is considered as in a quiesced state. In an Oracle RAC
environment, this statement affects all instances, not only the one from which the statement is
issued.

To successfully issue the ALTER SYSTEM QUIESCE RESTRICTED statement in an Oracle RAC
environment, you must have the Database Resource Manager feature activated, and it must
have been activated since instance startup for all instances in the cluster database. It is
through the facilities of the Database Resource Manager that non-DBA sessions are prevented
from becoming active. Also, while this statement is in effect, any attempt to change the current
resource plan is queued until after the system is unquiesced.

These conditions apply to Oracle RAC:

• If you issued the ALTER SYSTEM QUIESCE RESTRICTED statement but Oracle Database has
not finished processing it, you cannot open the database.

• You cannot open the database if it is in a quiesced state.

• The ALTER SYSTEM QUIESCE RESTRICTED and ALTER SYSTEM UNQUIESCE statements affect
all instances in an Oracle RAC environment, not only the instance that issues the
command.

Note:

You cannot use the quiesced state to take a cold backup. This is because Oracle
Database background processes may still perform updates for Oracle Database
internal purposes even while the database is in quiesced state. In addition, the file
headers of online data files continue to look like they are being accessed. They do
not look the same as if a clean shutdown were done. You can still take online
backups while the database is in a quiesced state.

Chapter 3
Quiescing Oracle RAC Databases

3-35

Related Topics

• Oracle Database Administrator’s Guide

• ALTER SYSTEM

Administering Multiple Cluster Interconnects on Linux and UNIX
Platforms

In Oracle RAC environments that run on Linux and UNIX platforms, you can use the
CLUSTER_INTERCONNECTS initialization parameter to specify an alternative interconnect to the
one Oracle Clusterware is using for the private network.

Note:

The CLUSTER_INTERCONNECTS initialization parameter should not be set to highly
available IP (HAIP) addresses provided by Redundant Interconnect Usage. HAIP
addresses are recognized automatically.

If you set multiple values for CLUSTER_INTERCONNECTS, then Oracle Database uses all of the
network interfaces that you specify for the interconnect, providing load balancing if all of the
listed interconnects remain operational. You must use identical values, including the order in
which the interconnects are listed, on all instances of your database when defining multiple
interconnects with this parameter.

Note:

Oracle does not recommend setting the CLUSTER_INTERCONNECTS initialization
parameter, which overrides the default interconnect settings at the operating system
level.

Instead, the best practice is to use Redundant Interconnect Usage, available with Oracle Grid
Infrastructure for Oracle RAC and Oracle Real Application Clusters One Node databases, and
later. Oracle Database uses operating system-based network bonding technologies to enable
high availability (and load balancing) for network interface cards meant to be used as the
cluster interconnect. If you want to use multiple database versions in one cluster, you can
combine both techniques. Redundant Interconnect Usage will use the interfaces as presented
on the operating system level, regardless of bonding. For more information regarding bonding
technologies contact your operating system vendor.

• Use Cases for Setting the CLUSTER_INTERCONNECTS Parameter

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Use Cases for Setting the CLUSTER_INTERCONNECTS Parameter
The CLUSTER_INTERCONNECTS initialization parameter requires an IP address. It enables you to
specify multiple IP addresses, separated by colons. Oracle RAC network traffic is distributed
between the specified IP addresses.

Chapter 3
Administering Multiple Cluster Interconnects on Linux and UNIX Platforms

3-36

Note:

Oracle recommends that all databases and Oracle Clusterware use the same
interconnect network.

Typically, you set the CLUSTER_INTERCONNECTS parameter only in the following situations:

• The cluster is running multiple databases and you need the interconnect traffic to be
separated and you do not use Redundant Interconnect Usage.

• You have a single IP address that is made highly available by the operating system, and it
does not have a stable interface name (for example, the name can change when you
restart).

Do not set the CLUSTER_INTERCONNECTS parameter for the following common configurations:

• If you want to use Redundant Interconnect Usage.

• If you have only one cluster interconnect.

• If the default cluster interconnect meets the bandwidth requirements of your Oracle RAC
database, which is typically the case.

Consider the following important points when specifying the CLUSTER_INTERCONNECTS
initialization parameter:

• The CLUSTER_INTERCONNECTS initialization parameter is useful only in Linux and UNIX
environments where UDP IPC is enabled.

• Specify a different value for each instance of the Oracle RAC database when setting the
CLUSTER_INTERCONNECTS initialization parameter in the parameter file.

• The IP addresses you specify for the different instances of the same database on different
nodes must belong to network adapters that connect to the same interconnect network.

• If you specify multiple IP addresses for this parameter, then list them in the same order for
all instances of the same database. For example, if the parameter for the first instance on
node1 lists the IP addresses of the alt0:, fta0:, and ics0: devices in that order, then the
parameter for the second instance on node2 must list the IP addresses of the equivalent
network adapters in the same order.

• If an operating system error occurs while Oracle Database is writing to the interconnect
that you specify with the CLUSTER_INTERCONNECTS parameter, then Oracle Database returns
an error even if some other interfaces are available. This is because the communication
protocols between Oracle Database and the interconnect can vary greatly depending on
your platform. See your Oracle Database platform-specific documentation for more
information.

Example

Consider setting CLUSTER_INTERCONNECTS when a single cluster interconnect cannot meet your
bandwidth requirements. You may need to set this parameter in data warehouse environments
with high interconnect bandwidth demands from one or more databases that cannot use
Redundant Interconnect Usage.

For example, if you have two databases with high interconnect bandwidth requirements, then
you can override the default interconnect provided by your operating system and nominate a

Chapter 3
Administering Multiple Cluster Interconnects on Linux and UNIX Platforms

3-37

different interconnect for each database using the following syntax in each server parameter
file where ipn is an IP address in standard dot-decimal format, for example: 144.25.16.214:

Database One: crm1.CLUSTER_INTERCONNECTS = ip1
Database Two: ext1.CLUSTER_INTERCONNECTS = ip2

If you have one database with high bandwidth demands, then you can nominate multiple
interconnects using the following syntax:

CLUSTER_INTERCONNECTS = ip1:ip2:...:ipn

Related Topics

• Oracle Database Reference

Customizing How Oracle Clusterware Manages Oracle RAC
Databases

Use these examples to minimize Oracle Clusterware control over Oracle RAC databases,
which you may need to do during upgrades.

By default, Oracle Clusterware controls database restarts in Oracle RAC environments. In
some cases, you may need to minimize the level of control that Oracle Clusterware has over
your Oracle RAC database, for example, during database upgrades.

To prevent Oracle Clusterware from restarting your Oracle RAC database when you restart
your system, or to avoid restarting failed instances more than once, configure a management
policy to define the degree of control. There are three management policies:

• AUTOMATIC: This is the default management policy. The database is automatically
restored to its previous running condition (started or stopped) upon restart of the database
host computer.

• MANUAL: The database is never automatically restarted upon restart of the database host
computer. A MANUAL setting does not prevent Oracle Restart from monitoring the
database while it is running and restarting it if a failure occurs.

• NORESTART: Similar to the MANUAL setting, the database is never automatically
restarted upon restart of the database host computer. A NORESTART setting, however,
never restarts the database even if a failure occurs.

Use SRVCTL commands to display and change the Oracle Clusterware management policies,
as shown in the following examples:

Example 1: Display the Current Management Policy

Use the following command syntax to display the current management policy where
db_unique_name is the name of the database for which you want to change management
policies:

srvctl config database -db db_unique_name -all

Chapter 3
Customizing How Oracle Clusterware Manages Oracle RAC Databases

3-38

Example 2: Change the Current Management Policy to Another Management Policy

Use the following SRVCTL command syntax to change the current management policy to
either AUTOMATIC, MANUAL, or NORESTART:

srvctl modify database -db db_unique_name -policy [AUTOMATIC | MANUAL |
NORESTART]

This command syntax sets the resource attribute of the database resource.

Example 3: Specify a Management Policy for a New Database

When you add a new database using the srvctl add database command, you can use
the -policy parameter to specify the management policy as either AUTOMATIC, MANUAL, or
NORESTART, as shown in the following example where db_unique_name is the name of the
database:

srvctl add database -db db_unique_name -policy [AUTOMATIC | MANUAL |
NORESTART]
 -oraclehome $ORACLE_HOME -dbname DATA

This command syntax places the new database under the control of Oracle Clusterware. If you
do not provide a management policy option, then Oracle Database uses the default value of
automatic. After you change the management policy, the Oracle Clusterware resource records
the new value for the affected database.

Related Topics

• srvctl config database
Displays the configuration for an Oracle RAC database or lists all configured databases
that are registered with Oracle Clusterware.

• srvctl modify database
Modifies the configuration for a database.

• srvctl add database
Adds a database configuration to Oracle Clusterware.

Advanced Oracle Enterprise Manager Administration
You can install, configure, and monitor an Oracle Real Application Clusters (Oracle RAC)
database from a single location using Oracle Enterprise Manager Cloud Control.

This section provides advanced administration tasks that are not covered in Monitoring and
Tuning Oracle RAC Databases.

• Using Oracle Enterprise Manager Cloud Control to Discover Nodes and Instances
Discovering Oracle RAC database and instance targets in Oracle Enterprise Manager
enables monitoring and administration.

• Other Oracle Enterprise Manager Capabilities
Oracle Enterprise Manager provides a variety of administrative capabilities.

• Administering Jobs and Alerts in Oracle RAC
You can use the Administration tab in Oracle Enterprise Manager for an Oracle RAC
database.

Chapter 3
Advanced Oracle Enterprise Manager Administration

3-39

Using Oracle Enterprise Manager Cloud Control to Discover Nodes and
Instances

Discovering Oracle RAC database and instance targets in Oracle Enterprise Manager enables
monitoring and administration.

Oracle Enterprise Manager Cloud Control enables you to use the Oracle Enterprise
Manager console interface to discover Oracle Real Application Clusters (Oracle RAC)
database and instance targets.

If the Oracle Enterprise Manager Cloud Control agents are installed on a cluster that has an
Oracle RAC database, then Oracle RAC database targets are discovered at install time. You
can use the console interface to discover targets if a database is created after agents are
installed or if a database is not automatically discovered at agent install time.

To discover nodes and instances, use Oracle Enterprise Manager Cloud Control as follows:

1. Log in to Oracle Enterprise Manager and click the Targets tab.

2. Click the Database tab to view all of the available targets. The column labeled Types
shows the Oracle RAC databases using the entry Cluster Database.

3. Add the database target by selecting the target name, then clicking Add. The Add
Database Target: Specify Host page appears, which enables you to add databases,
listeners, and Oracle Automatic Storage Management (Oracle ASM) as monitored targets.

4. Click the flashlight icon to display the available host names, select a host, then click
Continue. The Add Database: Specify Source page appears.

5. Either request Oracle Enterprise Managerr to discover only noncluster databases and
listeners, or to discover all cluster databases, noncluster databases, and listeners on the
cluster, then click Continue.

6. If this procedure did not discover your reconfigured cluster database and all of its
instances, you can use the Targets Discovered on Cluster page to manually configure your
cluster database and noncluster databases.

Other Oracle Enterprise Manager Capabilities
Oracle Enterprise Manager provides a variety of administrative capabilities.

• The Oracle Grid Infrastructure/Oracle RAC Provisioning deployment procedure provisions
Oracle RAC and Oracle Grid Infrastructure. This procedure also has a feature called
Profiles, which enables you to record the inputs and subsequently use them for repeated
deployments.

• Dynamic prerequisites for the new procedures enable Oracle Enterprise Manager, when
connected to My Oracle Support, to download the latest prerequisites and tools for Oracle
RAC provisioning.

• The existing One-Click Extend Cluster Database capability now supports Oracle RAC
stack.

• The existing Delete/Scale down Oracle Real Application Clusters capability is certified with
Oracle RAC clusters.

• The existing Oracle Database Provisioning procedure now supports provisioning of single
instances of Oracle Database.

Chapter 3
Advanced Oracle Enterprise Manager Administration

3-40

• A new deployment procedure—Oracle Grid Infrastructure Provisioning for Standalone
Servers—has been introduced to provision Oracle Grid Infrastructure for noncluster
databases.

Administering Jobs and Alerts in Oracle RAC
You can use the Administration tab in Oracle Enterprise Manager for an Oracle RAC
database.

The Cluster Database Home page shows all of the instances in the Oracle Real Application
Clusters (Oracle RAC) database and provides an aggregate collection of several statistics
specific to Oracle RAC that are collected by the Automatic Workload Repository (AWR) for
server manageability.

You do not need to navigate to an instance-specific page to see these details. However, on the
Cluster Database Home page, if an instance is down that should be operating, or if an instance
has a high number of alerts, then you can drill down to the instance-specific page for each
alert.

To perform specific administrative tasks as described in the remainder of this section, log in to
the target Oracle RAC database, navigate to the Cluster Database Home page, and click the
Administration tab.

• Administering Jobs in Oracle RAC
You can administer Oracle Enterprise Manager jobs at both the database and instance
levels.

• Administering Alerts in Oracle RAC with Oracle Enterprise Manager
You can use Oracle Enterprise Manager to configure Oracle RAC environment alerts.

• Using Defined Suspensions in Oracle Enterprise Manager
You can define suspensions (which are time periods in which database monitoring is
suspended so that maintenance operations do not skew monitoring data or generate
needless alerts) for all managed targets of an Oracle Real Application Clusters (Oracle
RAC) database.

Administering Jobs in Oracle RAC
You can administer Oracle Enterprise Manager jobs at both the database and instance levels.

For example, you can create a job at the cluster database level to run on any active instance of
the target Oracle Real Application Clusters (Oracle RAC) database. Or you can create a job at
the instance level to run on the specific instance for which you created it. If there is a failure,
then recurring jobs can run on a remaining instance.

Because you can create jobs at the instance level, cluster level, or cluster database level, jobs
can run on any available host in the cluster database. This applies to scheduled jobs as well.
Oracle Enterprise Manager also displays job activity in several categories, including, Active,
History, and Library.

Use the Jobs tab to submit operating system scripts and SQL scripts and to examine
scheduled jobs. For example, to create a backup job for a specific Oracle RAC database:

1. Click Targets and click the database for which you want to create the job.

2. Log in to the target database.

3. When Oracle Enterprise Manager displays the Database Home page, click Maintenance.

4. Complete the Enterprise Manage Job Wizard pages to create the job.

Chapter 3
Advanced Oracle Enterprise Manager Administration

3-41

Administering Alerts in Oracle RAC with Oracle Enterprise Manager
You can use Oracle Enterprise Manager to configure Oracle RAC environment alerts.

You can also configure special Oracle RAC database tests, such as global cache converts,
consistent read requests, and so on.

Oracle Enterprise Manager distinguishes between database- and instance-level alerts in
Oracle RAC environments. Alert thresholds for instance-level alerts, such as archive log alerts,
can be set at the instance target level. This function enables you to receive alerts for the
specific instance if performance exceeds your threshold. You can also configure alerts at the
database level, such as setting alerts for tablespaces, to avoid receiving duplicate alerts at
each instance.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

See Also:

Oracle Technology Network for an example of configuring alerts in Oracle RAC, and
Oracle Database PL/SQL Packages and Types Reference for information about
using packages to configure thresholds

Using Defined Suspensions in Oracle Enterprise Manager
You can define suspensions (which are time periods in which database monitoring is
suspended so that maintenance operations do not skew monitoring data or generate needless
alerts) for all managed targets of an Oracle Real Application Clusters (Oracle RAC) database.

Defining suspensions prevents alerts from occurring while performing maintenance. You can
define suspensions for an entire cluster database or for specific cluster database instances.

Chapter 3
Advanced Oracle Enterprise Manager Administration

3-42

4
Administering Oracle RAC One Node

Learn how to administer Oracle Real Application Clusters One Node (Oracle RAC One Node).

Oracle Real Application Clusters One Node (Oracle RAC One Node) is a single instance of an
Oracle Real Application Clusters (Oracle RAC) database that runs on one node in a cluster.
This option adds to the flexibility that Oracle offers for database consolidation. You can
consolidate many databases into one cluster with minimal overhead while also providing the
high availability benefits of failover protection, online rolling patch application, and rolling
upgrades for the operating system and Oracle Clusterware.

• Creating an Oracle RAC One Node Database
You can create Oracle RAC One Node databases by using Fleet Patching and
Provisioning or the Oracle Database Configuration Assistant (Oracle DBCA), as with any
other Oracle database (manually created scripts are also a valid alternative).

• Converting Databases
Using SRVCTL, you can convert an Oracle Real Application Clusters (Oracle RAC)
database with one instance to an Oracle RAC One Node database, or back to an Oracle
RAC database instance.

• Online Database Relocation
You can relocate an Oracle RAC One Node database to another node while still
maintaining service availability using the online database relocation feature.

Creating an Oracle RAC One Node Database
You can create Oracle RAC One Node databases by using Fleet Patching and Provisioning or
the Oracle Database Configuration Assistant (Oracle DBCA), as with any other Oracle
database (manually created scripts are also a valid alternative).

You can create an Oracle RAC One Node database using Fleet Patching and Provisioning and
the rhpctl add database command with the -dbtype RACONENODE parameter. You can also
include an Oracle RAC One Node database using the rhpctl add workingcopy command.

Oracle RAC One Node databases may also be the result of a conversion from either a single-
instance Oracle database or an Oracle RAC database. Typically, Oracle-provided tools register
the Oracle RAC One Node database with Oracle Clusterware. Depending on your
configuration, automatic registration of an Oracle RAC One Node database with Oracle
Clusterware may not have happened. If this is the case, then follow the steps in this section to
register the Oracle RAC One Node database with Oracle Clusterware.

Note:

Oracle recommends that you manage Oracle RAC One Node databases with Server
Control Utility (SRVCTL). You can only perform certain operations (such as Online
Database Relocation) using SRVCTL.

4-1

If your Oracle RAC One Node database did not register automatically with Oracle Clusterware,
then use the srvctl add database command to add an Oracle RAC One Node database to
your cluster. For example:

$ srvctl add database -dbtype RACONENODE [-server server_list]
 [-instance instance_name] [-timeout timeout]

Use the -server option and the -instance option when adding an administrator-managed
Oracle RAC One Node database.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

For Oracle RAC One Node databases, you must configure at least one dynamic database
service (in addition to and opposed to the default database service). When using an Oracle
RAC One Node database, service registration is performed as with any other Oracle RAC
database.

Note:

When adding an Oracle RAC One Node database, you can optionally supply an
instance prefix with the -instance instance_name parameter of the srvctl add
database command. The name of the instance will then be prefix_1. If you do not
specify an instance prefix, then the first 12 characters of the unique name of the
database becomes the prefix. The instance name changes to prefix_2 during an
online database relocation and reverts back to prefix_1 during a subsequent online
database relocation. The same instance name is used on failover.

Related Topics

• Fleet Patching and Provisioning

• srvctl add database
Adds a database configuration to Oracle Clusterware.

• Using Oracle DBCA in Interactive Mode to Add Database Instances to Target Nodes
To add a database instance to a target node with Oracle DBCA in interactive mode,
perform the steps described here.

Converting Databases
Using SRVCTL, you can convert an Oracle Real Application Clusters (Oracle RAC) database
with one instance to an Oracle RAC One Node database, or back to an Oracle RAC database
instance.

• Converting a Database from Oracle RAC to Oracle RAC One Node
Use SRVCTL to convert an Oracle RAC database to an Oracle RAC One Node database.

• Converting a Database from Oracle RAC One Node to Oracle RAC
You can convert an Oracle RAC One Node database to an Oracle RAC database using
SRVCTL.

Chapter 4
Converting Databases

4-2

Converting a Database from Oracle RAC to Oracle RAC One Node
Use SRVCTL to convert an Oracle RAC database to an Oracle RAC One Node database.

Before converting an Oracle RAC database to an Oracle RAC One Node database, you must
first ensure that the Oracle RAC database has only one instance. If your Oracle RAC database
is administrator managed and has more than one instance, then you must remove all instances
except one using the srvctl remove instance command.

If the Oracle RAC database is administrator managed, then you must change the configuration
of all services to set the preferred instance to the instance that you want to keep as an Oracle
RAC One Node database after conversion. If any service had a PRECONNECT TAF policy, then its
TAF policy must be updated to BASIC or NONE before starting the conversion process. These
services must no longer have any available instance.

You can convert an Oracle RAC database with one instance to an Oracle RAC One Node
database using the srvctl convert database command, as follows:

$ srvctl convert database -db db_unique_name -dbtype RACONENODE
 [-instance instance_name -timeout timeout]
 -w timeout]

Note:

An Oracle RAC database that you want to convert to Oracle RAC One Node must
either use Oracle Managed Files (to enable automatic thread allocation) or have at
least two redo threads.

Related Topics

• srvctl remove instance

• srvctl stop instance

• srvctl convert database

Converting a Database from Oracle RAC One Node to Oracle RAC
You can convert an Oracle RAC One Node database to an Oracle RAC database using
SRVCTL.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

Log in as the Oracle RAC One Node database owner and enter the following SRVCTL
command:

srvctl convert database -db db_unique_name -dbtype RAC

Chapter 4
Converting Databases

4-3

If you are relocating the database you want to convert to Oracle RAC using online database
relocation, or an online database relocation has failed, then you must either quit or complete
the relocation before you run the srvctl convert database command.

Converting an Oracle RAC One Node database to an Oracle RAC database configures all
database services so that the instance from the Oracle RAC One Node database is the
preferred instance in the converted Oracle RAC database for that service. After you convert
the database, you can add instances to your database by using the srvctl add instance
command.

Related Topics

• srvctl convert database
Converts a database either to or from an Oracle RAC One Node database.

Online Database Relocation
You can relocate an Oracle RAC One Node database to another node while still maintaining
service availability using the online database relocation feature.

Only during a planned online database relocation is a second instance of an Oracle RAC One
Node database created, so that any database sessions can continue while the database is
relocated to a new node. You can only use online database relocation with Oracle RAC One
Node databases but you cannot use online database relocation with Oracle RAC databases.

You can use the srvctl relocate database command configure the amount of time after the
relocated database starts and services are migrated, before the former instance of the
database stops. This configured amount of time is not an upper bound on the amount of time
taken by the entire operation, but only controls how long the relocated database waits for
connections to migrate from the former instance to the new instance, before stopping the
former instance.

Online database relocation occurs, as follows:

1. Start a new database instance in a different location.

2. Move all the services to the relocated instance.

3. Wait for all the connections to migrate to the relocated instance.

4. Shut down the former database instance, forcing any remaining connections to move to
the relocated instance.

The online relocation timeout is the amount of time you configure to complete step 3.

Before you initiate the online relocation of a database instance, perform the following tasks:

• When you relocate a database instance to a target node that is not currently in the
candidate server list for the database, you must copy the password file, if configured, to the
target node, unless you use shared password files stored in Oracle ASM.

• When you use password file-based authentication for remote management of Oracle RAC
One Node databases without any shared password file, you must have two password files
on each node where the database can run: one named SID_prefix_1 and the other
named SID_prefix_2. You must recopy both of these files to all candidate nodes every
time you update the password file.

Oracle recommends using Oracle Clusterware to start and stop the database, and defining
users in the data dictionary for other management.

• If your operating system is Microsoft Windows, then before you relocate a database
instance, you must ensure that the database service user is added to the wallet. Run

Chapter 4
Online Database Relocation

4-4

crsctl query wallet -type OSUSER -all to check whether the database service user is
in the wallet. If not, then run crsctl add wallet -type OSUSER -user user_name -
passwd to add the database service user to the wallet.

Use the srvctl relocate database command to initiate relocation of an Oracle RAC One
Node database. For example:

$ srvctl relocate database -d rac1 -n node7

Related Topics

• Creating and Maintaining a Database Password File

• srvctl relocate database
Initiates the relocation of an Oracle RAC One Node database from one node to another
node.

Chapter 4
Online Database Relocation

4-5

5
Workload Management with Dynamic
Database Services

Workload management includes load balancing, enabling clients for Oracle Real Application
Clusters (Oracle RAC), distributed transaction processing, and services.

• Connection Load-Balancing
Learn how Oracle Net Services provide the ability to distribute client connections across
the instances in an Oracle RAC configuration.

• Load Balancing Advisory
Learn about how to configure and use the load balancing advisory, and how to manage
FAN events.

• Enabling Clients for Oracle RAC
Learn how FAN is integrated with Oracle Clients, and how to enable FAN events for the
several specific client development environments.

• Distributed Transaction Processing in Oracle RAC
Learn how Oracle Real Application Clusters (Oracle RAC) supports global (XA)
transactions and DTP processing

• Oracle RAC Sharding
Oracle RAC Sharding creates an affinity between table partitions and Oracle RAC
instances, and routes database requests that specify a partitioning key to the instance that
logically holds the corresponding partition.

• Automatic Workload Repository
The Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for the database.

• Measuring Performance by Service Using the Automatic Workload Repository
Services add a new dimension for performance tuning because workloads are visible and
measurable, and therefore resource consumption and wait times are attributable by
application.

• Automatic Workload Repository Service Thresholds and Alerts
To provide accountability for your required levels of service, you can use the Oracle Real
Application Clusters (Oracle RAC) Automatic Workload Repository (AWR) service.

• Using Oracle Services
To manage workloads or a group of applications, you can define services that you assign
to a particular application, or to a subset of an application's operations, or you can group
work by type under services.

• Service Deployment Options
Learn about services in Oracle Real Application Clusters (Oracle RAC) databases, and
how to define and deploy services.

• Administering Services
Learn how to create and administer services, and perform other service-related tasks using
Oracle Enterprise Manager and the SRVCTL utility.

5-1

• Global Services
Oracle RAC supports database services and enables service-level workload management
across instances in a single cluster.

• Service-Oriented Buffer Cache Access
Service-oriented buffer cache access improves performance by managing data with the
service to which the data belongs.

• Connecting to a Service: An Example
You can use this example to see how to create a service, and see several examples of
connecting to that service using different client methods.

Connection Load-Balancing
Learn how Oracle Net Services provide the ability to distribute client connections across the
instances in an Oracle RAC configuration.

• About Connection Load-Balancing
There are two types of load balancing that you can implement: client-side and server-side
load balancing.

• Server-Side Load Balancing
Using Oracle DBCA to create an Oracle Real Application Clusters (Oracle RAC) database
enables you to obtain server-side load-balancing configuration automatically.

• Generic Database Clients
Oracle Net Services enables you to add the CONNECT_TIMEOUT, RETRY_COUNT, and
TRANSPORT_CONNECT_TIMEOUT parameters to the tnsnames.ora connection string.

• Client-Side Connection Configuration for Older Clients
Learn about the ways you can set up connection failovers and timeouts with Java
Database Connectivity (JDBC) Thin Clients, and Oracle Call Interface (OCI) clients.

• Client-Side Load Balancing
Learn about client-side load balancing, and how a Single Client Access Name (SCAN) can
assist with connection loads.

• Smart Connection Rebalance
Smart Connection Rebalance automatically routes sessions to an instance with the intent
to optimize performance by monitoring the access patterns of the underlying objects of the
workload.

About Connection Load-Balancing
There are two types of load balancing that you can implement: client-side and server-side load
balancing.

With client-side load balancing, connection requests are distributed across the listeners,
independently at each client. With server-side load balancing, the SCAN listener directs a
connection request to the best instance currently providing the service, based on the -clbgoal
and -rlbgoal settings for the service.

The SCAN listener is aware of the HTTP protocol. With this awareness, the SCAN can redirect
HTTP clients to the appropriate handler, which can reside on different nodes in the cluster, not
only the node on which the SCAN listener resides.

In an Oracle RAC database, client connections should use both types of connection load
balancing.

Chapter 5
Connection Load-Balancing

5-2

Related Topics

• Oracle Database Net Services Administrator's Guide

Server-Side Load Balancing
Using Oracle DBCA to create an Oracle Real Application Clusters (Oracle RAC) database
enables you to obtain server-side load-balancing configuration automatically.

When you create an Oracle RAC database with Oracle Database Configuration Assistant
(Oracle DBCA), it automatically:

• Configures and enables server-side load balancing

• Creates a sample client-side load balancing connection definition in the tnsnames.ora file
on the server

The Oracle Clusterware Database Agent is responsible for managing the LISTENER_NETWORKS
parameter.

Note:

Note: If you set the REMOTE_LISTENER parameter manually, then set this parameter to
scan_name:scan_port.

FAN, Fast Connection Failover, and the load balancing advisory depend on an accurate
connection load-balancing configuration that includes setting the connection load-balancing
goal for the service. You can use a goal of either LONG or SHORT for connection load-balancing.
These goals have the following characteristics:

• SHORT: Use the SHORT connection load-balancing method for applications that benefit
from using run-time load-balancing. The following is an example of modifying a service
using SRVCTL to set the connection load balancing goal to SHORT:

$ srvctl modify service -db db_unique_name -service service_name -clbgoal
SHORT

• LONG: Use the LONG connection load-balancing method for applications that benefit from
server-side load-balancing and do not require run-time load balancing. LONG is the default
connection load balancing goal. The following is an example of modifying a service using
SRVCTL to set the connection load balancing goal to LONG:

$ srvctl modify service -db db_unique_name -service service_name -clbgoal
LONG

Generic Database Clients
Oracle Net Services enables you to add the CONNECT_TIMEOUT, RETRY_COUNT, and
TRANSPORT_CONNECT_TIMEOUT parameters to the tnsnames.ora connection string.

For example, when using SCAN addresses for the remote listeners at the database:

jdbc:oracle:thin:@(DESCRIPTION =
 (TRANSPORT_CONNECT_TIMEOUT=3)(CONNECT_TIMEOUT=60)

Chapter 5
Connection Load-Balancing

5-3

 (RETRY_COUNT=3)(FAILOVER=ON)
 (ADDRESS_LIST =(ADDRESS=(PROTOCOL=tcp)
 (HOST=CLOUD-SCANVIP.example.com)(PORT=5221))
 (CONNECT_DATA=(SERVICE_NAME=orcl)))
Remote_listeners=CLOUD-SCANVIP.example.com:5221

For example, when using remote listeners pointing to VIPs at the database:

jdbc:oracle:thin:@(DESCRIPTION =
 (TRANSPORT_CONNECT_TIMEOUT=3)
 (CONNECT_TIMEOUT=60)(RETRY_COUNT=20)
 (RETRY_DELAY=3)(FAILOVER=ON)
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=CLOUD-VIP1)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=CLOUD-VIP2)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=CLOUD-VIP3)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=GOLD)))

The value of these parameters is expressed in seconds. In the preceding examples, Oracle
Net waits for 60 seconds for each full connection to receive a response, after which it assumes
that a failure occurred and retries the next address in the ADDRESS_LIST. Oracle Net retries the
address list 3 times before it returns a failure message to the client. The
TRANSPORT_CONNECT_TIMEOUT parameter establishes the time to wait to establish a TCP
connection to the database server.

For SCAN, Oracle Net Services tries all three addresses (returned by the SCAN address)
before returning a failure to the client. EZConnect with SCAN includes this connection failover
feature.

This behavior is called Oracle Net connection failover. If an error is returned from a chosen
address in the list, then Oracle Net Services tries the next address in the list until it is either
successful or it has exhausted all addresses in its list.

Client-Side Connection Configuration for Older Clients
Learn about the ways you can set up connection failovers and timeouts with Java Database
Connectivity (JDBC) Thin Clients, and Oracle Call Interface (OCI) clients.

• About Client-Side Connection Configuration for Older Clients
Oracle Net Services provide connection failover and availability features for service
requests from older clients.

• JDBC Thin Clients
You can avoid delays by setting the oracle.net.ns.SQLnetDef.TCP_CONNTIMEOUT_STR
property

• OCI Clients
For Oracle Call Interface (OCI) clients, create a local sqlnet.ora file on the client side.

About Client-Side Connection Configuration for Older Clients
Oracle Net Services provide connection failover and availability features for service requests
from older clients.

In addition to client-side load balancing, Oracle Net Services include connection failover. If
an error is returned from the chosen address in the list, Oracle Net Services tries the next

Chapter 5
Connection Load-Balancing

5-4

address in the list until it is either successful or it has exhausted all addresses in its list. For
SCAN, Oracle Net Services tries all three addresses before returning a failure to the client.
EZConnect with SCAN includes this connection failover feature.

To increase availability, you can specify a timeout that specifies how long Oracle Net waits for a
response from the listener before returning an error. The method of setting this timeout
parameter depends on the type of client access. Oracle Net maintains these parameters for
backward compatibility.

JDBC Thin Clients
You can avoid delays by setting the oracle.net.ns.SQLnetDef.TCP_CONNTIMEOUT_STR property

Use the following example to see how to set the property for Java Database Connectivity
(JDBC) thin clients:

Properties prop = new Properties ();
prop.put (oracle.net.ns.SQLnetDef.TCP_CONNTIMEOUT_STR,
"" + (1 * 1000)); // 1 second
dbPools[poolIndex].setConnectionProperties (prop);

The parameter value is specified in milliseconds, so you can configure a timeout less than one
second. For example, if the application retries connecting, it is possible to reduce the timeout
to 500Ms.

OCI Clients
For Oracle Call Interface (OCI) clients, create a local sqlnet.ora file on the client side.

To configure the connection timeout in the sqlnet.ora file, add the following line:

sqlnet.outbound_connect_timeout = number_of_seconds

The granularity of the timeout value for the OCI client is in seconds. The sqlnet.ora file affects
all connections using this client.

Note:

Do not configure the connection timeout in the sqlnet.ora file on the server.

Related Topics

• Oracle Call Interface Developer's Guide

Client-Side Load Balancing
Learn about client-side load balancing, and how a Single Client Access Name (SCAN) can
assist with connection loads.

Client-side load balancing is defined in your client connection definition (tnsnames.ora file, for
example) by setting the parameter LOAD_BALANCE=ON. When you set this parameter to ON,
Oracle Database randomly selects an address in the address list, and connects to that node's
listener. This balances client connections across the available SCAN listeners in the cluster.

Chapter 5
Connection Load-Balancing

5-5

If you configured SCAN for connection requests, then client-side load balancing is not relevant
for those clients that support SCAN access. When clients connect using SCAN, Oracle Net
automatically balances the load of client connection requests across the three IP addresses
you defined for the SCAN, unless you are using EZConnect.

The SCAN listener redirects the connection request to the local listener of the instance that is
least loaded (if -clbgoal is set to SHORT) and provides the requested service. When the listener
receives the connection request, the listener connects the user to an instance that the listener
knows provides the requested service. To see what services a listener supports, run the
lsnrctl services command.

Note:

Oracle recommends -clbgoal LONG for client-side load balancing.

When clients connect using SCAN, Oracle Net automatically load balances client connection
requests across the three IP addresses you defined for the SCAN, unless you are using
EZConnect.

If you are using clients that do not support SCAN, then, to use SCAN you must change the
client tnsnames.ora to include the SCAN VIPs, and set LOAD_BALANCE=ON to balance requests
across the VIPs. For example:

Sales.example.com=(DESCRIPTION=
 (ADDRESS_LIST=(LOAD_BALANCE=ON)(FAILOVER=ON)
 (ADDRESS=(PROTOCOL=TCP)(HOST=172.22.67.192)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=172.22.67.193)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=172.22.67.194)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=salesservice.example.com))
)

Smart Connection Rebalance
Smart Connection Rebalance automatically routes sessions to an instance with the intent to
optimize performance by monitoring the access patterns of the underlying objects of the
workload.

Oracle Real Application Clusters (Oracle RAC) offers two options for load balancing: client-side
load balancing and server- side load balancing. Sessions connect to an Oracle RAC instance
using Single Client Access Network (SCAN) and a user-defined service name. You can
configure a service to run on all or a subset of Oracle RAC instances. By default, SCAN
redirects the sessions to the local listener and the SCAN listener directs a connection request
to the best instance currently hosting the service, based on the -clbgoal and -rlbgoal
settings for the service.

Smart Connection Rebalance avoids resource conflict and ensures that workloads accessing
similar objects end up in one instance and benefit from the reduced inter-instance network
messages and data block transfers over the private network. This feature ensures optimum
load balancing and performance. Oracle RAC features, such as partitioning, local indexes,
Right Growing Index (RGI) optimizations, and Exafusion help reduce resource conflict.

Chapter 5
Connection Load-Balancing

5-6

You can enable Smart Connection Rebalance by setting the -rlbgoal attribute to SMART_CONN:

$ srvctl modify service -db db_unique_name -service service_name -rlbgoal
SMART_CONN

To disable Smart connection load balancing, set the -rlbgoal of that service to Service_TIME.

This feature performs real-time monitoring of different workloads and attempt to transparently
relocate service-based connections across Oracle RAC instances to significantly improve
database performance.

Note:

The connection relocation is automatic and does not need database administrators to
manually distribute the sessions.

Related Topics

• Load Balancing Advisory

Load Balancing Advisory
Learn about how to configure and use the load balancing advisory, and how to manage FAN
events.

• Overview of the Load Balancing Advisory
Learn about load balancing, and about guidelines that Oracle recommends for load
balancing on Oracle Real Application Clusters (Oracle RAC).

• Configuring Your Environment to Use the Load Balancing Advisory
You can configure your environment to use the load balancing advisory by defining
service-level goals for each service for which you want to enable load balancing.

• Load Balancing Advisory FAN Events
The load balancing advisory FAN events provide metrics for load balancing algorithms.

• Monitoring Load Balancing Advisory FAN Events
To monitor load balancing advisory events for an instance, use this query.

Overview of the Load Balancing Advisory
Learn about load balancing, and about guidelines that Oracle recommends for load balancing
on Oracle Real Application Clusters (Oracle RAC).

Load balancing distributes work across all of the available Oracle RAC database instances.
Oracle recommends that applications use connection pools with persistent connections that
span the instances that offer a particular service. When using persistent connections,
connections are created infrequently and exist for a long duration. Work comes into the system
with high frequency, borrows these connections, and exists for a relatively short duration. The
load balancing advisory provides advice about how to direct incoming work to the instances
that provide the optimal service quality for that work. This minimizes the need to relocate the
work later.

By using the Load Balancing Advisory and run-time connection load balancing goals, feedback
is built in to the system. Work is routed to provide the best service times globally, and routing

Chapter 5
Load Balancing Advisory

5-7

responds gracefully to changing system conditions. In a steady state, the system approaches
equilibrium with improved throughput across all of the Oracle RAC instances.

Standard architectures that can use the load balancing advisory include connection load
balancing, transaction processing monitors, application servers, connection concentrators,
hardware and software load balancers, job schedulers, batch schedulers, and message
queuing systems. All of these applications can allocate work.

The load balancing advisory is deployed with key Oracle clients, such as a listener, the JDBC
universal connection pool, OCI session pool, Oracle WebLogic Server Active GridLink for
Oracle RAC, and the ODP.NET Connection Pools. Third-party applications can also subscribe
to load balancing advisory events by using JDBC and Oracle RAC FAN API or by using
callbacks with OCI.

Configuring Your Environment to Use the Load Balancing Advisory
You can configure your environment to use the load balancing advisory by defining service-
level goals for each service for which you want to enable load balancing.

Configuring a service-level goal enables the load balancing advisory and the publishing of FAN
load balancing events for that service. There are three types of service-level goals for run-time
connection load balancing:

• SMART_CONN: Enables Smart Connection Rebalance and tries to ensure that workloads
accessing similar objects end up in one instance and benefit from the reduced inter-
instance network messages and data block transfers over the private network. The
following example shows how to set the goal to SMART_CONN for connections using the
odpapp service:

$ srvctl modify service -db db_unique_name -service odpapp
 -rlbgoal SMART_CONN

• SERVICE_TIME: Attempts to direct work requests to instances according to response time.
Load balancing advisory data is based on elapsed time for work done in the service plus
available bandwidth to the service. An example for the use of SERVICE_TIME is for
workloads such as internet shopping where the rate of demand changes. The following
example shows how to set the goal to SERVICE_TIME for connections using the online
service:

$ srvctl modify service -db db_unique_name -service online
 -rlbgoal SERVICE_TIME -clbgoal SHORT

• THROUGHPUT: Attempts to direct work requests according to throughput. The load balancing
advisory is based on the rate that work is completed in the service plus available
bandwidth to the service. An example for the use of THROUGHPUT is for workloads such as
batch processes, where the next job starts when the last job completes. The following
example shows how to set the goal to THROUGHPUT for connections using the sjob service:

$ srvctl modify service -db db_unique_name -service sjob
 -rlbgoal THROUGHPUT -clbgoal LONG

Setting the run-time connection load balancing goal to NONE disables load balancing for the
service. You can see the goal settings for a service in the data dictionary by querying the
DBA_SERVICES, V$SERVICES, and V$ACTIVE_SERVICES views. You can also review the load
balancing settings for a service using Oracle Enterprise Manager.

Chapter 5
Load Balancing Advisory

5-8

Related Topics

• Administering Services
Learn how to create and administer services, and perform other service-related tasks using
Oracle Enterprise Manager and the SRVCTL utility.

Load Balancing Advisory FAN Events
The load balancing advisory FAN events provide metrics for load balancing algorithms.

The easiest way to take advantage of these events is to use the run-time connection load
balancing feature of an Oracle integrated client such as JDBC, Universal Connection Pool (or
the deprecated Implicit Connection Cache), ODP.NET Connection Pools, OCI session pools, or
Oracle WebLogic Server Active GridLink for Oracle RAC. Other client applications can take
advantage of FAN programatically by using the Oracle RAC FAN API to subscribe to FAN
events and perform event-handling actions upon receipt. Table 5-1 describes the load
balancing advisory FAN event parameters.

See Also:

Oracle Database JDBC Developer’s Guide for more information about the Oracle
RAC FAN API

Table 5-1 Load Balancing Advisory FAN Events

Parameter Description

VERSION Version of the event record. Used to identify release changes.

EVENT_TYPE A load balancing advisory event is always of the SERVICEMETRICS event type.

SERVICE The service name; matches the value of NAME in DBA_SERVICES.

DATABASE The unique database supporting the service; matches the initialization parameter value for
DB_UNIQUE_NAME, which defaults to the value of the initialization parameter DB_NAME.

INSTANCE The name of the instance that supports the service; matches the ORACLE_SID value.

PERCENT The percentage of work requests to send to this database instance.

FLAG Indication of the service quality relative to the service goal. Valid values are GOOD, VIOLATING,
NO DATA, and BLOCKED.

TIMESTAMP The local time zone to use when ordering notification events.

Note:

The INSTANCE, PERCENT, and FLAG event parameters are generated for each instance
offering the service. Each set of instance data is enclosed within braces ({}).

Related Topics

• Oracle Database JDBC Developer’s Guide

Chapter 5
Load Balancing Advisory

5-9

Monitoring Load Balancing Advisory FAN Events
To monitor load balancing advisory events for an instance, use this query.

You can use the following query against the internal queue table for load balancing advisory
FAN events to monitor load balancing advisory events generated for an instance:

SET PAGES 60 COLSEP '|' LINES 132 NUM 8 VERIFY OFF FEEDBACK OFF
COLUMN user_data HEADING "AQ Service Metrics" FORMAT A60 WRAP
BREAK ON service_name SKIP 1
SELECT
 TO_CHAR(enq_time, 'HH:MI:SS') Enq_time, user_data
 FROM sys.sys$service_metrics_tab
 ORDER BY 1 ;

The results of this query contain rows similar to the following:

02:56:05|SYS$RLBTYP('hr', 'VERSION=1.0 database=sales service=hr
 { {instance=sales_4 percent=38 flag=GOOD aff=TRUE}{instance=sales_1
 percent=62 flag=GOOD aff=TRUE} } timestamp=2012-07-16 07:56:05')

Following is an example of a load balancing advisory event for the lba_serv service offered on
two instances (orcl1 and orcl2), as captured from Oracle Notification Service using the
Oracle RAC FAN API:

Notification Type: database/event/servicemetrics/lba_serv.example.com
 VERSION=1.0 database=orcl service=lba_serv.example.com { {instance=orcl2
 percent=50 flag=UNKNOWN aff=FALSE}{instance=orcl1 percent=50 flag=UNKNOWN
 aff=FALSE} } timestamp=2012-07-06 13:19:12

Note:

The SERVICMETRICS events are not visible through the FAN callout mechanism.

Enabling Clients for Oracle RAC
Learn how FAN is integrated with Oracle Clients, and how to enable FAN events for the several
specific client development environments.

Oracle has integrated FAN with many of the common client application environments used to
connect to Oracle Real Application Clusters (Oracle RAC). The easiest way to use FAN is to
use an integrated Oracle Client.

• Overview of Oracle Integrated Clients and FAN
The overall goals of FAN are to enable end-to-end, lights-out recovery of applications and
load balancing based on real transaction performance.

• Enabling JDBC-Thin Clients for Fast Connection Failover
Enabling Fast Connection Failover (FCF) for Universal Connection Pool and Oracle
WebLogic Server Active GridLink for Oracle RAC enables the use of FAN HA and load
balancing advisory events.

Chapter 5
Enabling Clients for Oracle RAC

5-10

• Enabling JDBC Clients for Run-time Connection Load Balancing
Run-time connection load balancing requires the use of an Oracle JDBC driver and an
Oracle RAC database.

• Configuring JDBC-Thin Clients for Application Continuity for Java
This oracle.jdbc.datasource.impl.OracleDataSource data source is a JDBC-thin data
source that Application Continuity requires for Java.

• Configuring JDBC-Thin Clients for Transaction Guard
Transaction Guard provides a protocol and a generic tool for applications to use for at-
most-once processing in case of planned and unplanned outages.

• Enabling OCI Clients for Fast Connection Failover
Complete the procedure that enables Fast Connection Failover (FCF) by registering to
receive notifications for Oracle RAC high availability Fast Application Notification (FAN)
events.

• Enabling OCI Clients for Run-time Connection Load Balancing
Oracle Call Interface (OCI) session pooling enables multiple threads of an application to
use a dynamically managed set of pre-created database sessions.

• Configuring OCI Clients to use Transaction Guard
OCI supports FAN messages and Transaction Guard. FAN is designed to quickly notify an
OCI-based application of outages at the node, database, instance, service, and public
network levels.

• Enabling ODP.NET Clients to Receive FAN High Availability Events
ODP.NET connection pools can subscribe to FAN HA notifications that indicate when
nodes, services, and service members are down.

• Enabling ODP.NET Clients to Receive FAN Load Balancing Advisory Events
When connecting to Oracle Database 12c and later, ODP.NET uses Oracle Notification
Service, rather than Advanced Queuing.

• Configuring ODP.NET Clients to use Transaction Guard
ODP.NET supports FAN messages and Transaction Guard. FAN is designed to quickly
notify an ODP.NET-based application of outages at the node, database, instance, service,
and public network levels.

Overview of Oracle Integrated Clients and FAN
The overall goals of FAN are to enable end-to-end, lights-out recovery of applications and load
balancing based on real transaction performance.

Applications use the FAN high availability (HA) events to achieve very fast detection of failures,
balancing of connection pools following failures, and distribution of connections again when the
failed components are repaired.

The FAN events carrying load balancing advice help connection pools consistently deliver
connections to available instances that provide the best service. FAN HA is integrated with the
JDBC-thin and OCI drivers. FAN HA and FAN load balancing are both integrated with the
JDBC Universal Connection Pool (and the deprecated Implicit Connection Cache), the OCI
session pools, the ODP.NET connection pool, and Oracle WebLogic Server Active GridLink for
Oracle RAC.

Due to the integration with FAN, Oracle integrated clients are more aware of the current status
of an Oracle RAC cluster. This prevents client connections from waiting or trying to connect to
instances or services that are no longer available. When instances start, Oracle RAC uses
FAN to notify the connection pool so that the connection pool can create connections to the
recently started instance and take advantage of the additional resources that this instance
provides.

Chapter 5
Enabling Clients for Oracle RAC

5-11

Oracle client drivers that are integrated with FAN can:

• Remove terminated connections immediately when a service is declared DOWN at an
instance, and immediately when nodes are declared DOWN

• Report errors to clients immediately when Oracle Database detects the NOT RESTARTING
state, instead of making the client wait while the service repeatedly attempts to restart

Oracle connection pools that are integrated with FAN can:

• Balance connections across all of the Oracle RAC instances when a service starts; this is
preferable to directing the sessions that are defined for the connection pool to the first
Oracle RAC instance that supports the service

• Balance work requests at run time using load balancing advisory events

The use of client drivers or connection pools and FAN requires that you properly configure the
Oracle Notification Service to deliver the FAN events to the clients. In addition, for load
balancing, configure database connection load balancing across all of the instances that
provide the services used by the connection pool. Oracle recommends that you configure both
client-side and server-side load balancing with Oracle Net Services. If you use Oracle DBCA to
create your database, then both client-side and server-side load balancing are configured by
default.

Related Topics

• Connection Load-Balancing
Learn how Oracle Net Services provide the ability to distribute client connections across
the instances in an Oracle RAC configuration.

• Fast Application Notification (FAN)
The Oracle RAC high availability framework monitors a database and its services, and
sends Fast Application Notification (FAN) event notifications.

Enabling JDBC-Thin Clients for Fast Connection Failover
Enabling Fast Connection Failover (FCF) for Universal Connection Pool and Oracle WebLogic
Server Active GridLink for Oracle RAC enables the use of FAN HA and load balancing advisory
events.

• About Fast Connection Failover and JDBC-Thin Clients
Learn how Oracle Real Application Clusters (Oracle RAC) FAN APIs enable application
code to receive and respond to FAN event notifications.

• Oracle Notification Service for JDBC-Thin Clients
Learn about the benefits of using Remote Oracle Notification Service subscription with
your Oracle Real Application Clusters (Oracle RAC) database.

• Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients
You can enable FCF for Universal Connection Pool or Implicit Connection Cache.

About Fast Connection Failover and JDBC-Thin Clients
Learn how Oracle Real Application Clusters (Oracle RAC) FAN APIs enable application code
to receive and respond to FAN event notifications.

For Universal Connection Pool to use Oracle RAC Fast Application Notification (FAN), your
application can use the Java Database Connectivity (JDBC) development environment for
either JDBC OCI or JDBC Thin clients. The Java Database Connectivity Oracle Call Interface
(JDBC/OCI) driver connection pooling functionality is part of the JDBC-thin client. This
functionality is provided by the OracleOCIConnectionPool class.

Chapter 5
Enabling Clients for Oracle RAC

5-12

To enable FCF for the JDBC-thin client, call the method
setFastConnectionFailoverEnabled(true) of the OracleDataSource class in the
oracle.jdbc.pool package before making the first getConnection() request. When you
enable FCF for the JDBC-thin client, the failover property applies to every connection in the
connection pool. Enabling FCF with JDBC-thin driver or JDBC/OCI clients enables the
connection pool to receive and react to all FAN events.

JDBC application developers can programmatically integrate with FAN by using a set of APIs
first introduced in Oracle Database 11g release 2 (11.2). The Oracle RAC FAN APIs enable
application code to receive and respond to FAN event notifications sent by Oracle RAC in the
following ways:

• Listening for Oracle RAC service down, service up, and node down events

• Listening for load balancing advisory events and responding to them

Related Topics

• Oracle Database JDBC Developer’s Guide

Oracle Notification Service for JDBC-Thin Clients
Learn about the benefits of using Remote Oracle Notification Service subscription with your
Oracle Real Application Clusters (Oracle RAC) database.

FCF relies on Oracle Notification Service to propagate database events between the
connection pool and the Oracle RAC database. At run time, the connection pool must be able
to setup an Oracle Notification Service environment. Oracle Notification Service (ons.jar) is
included as part of the Oracle Client software. Oracle Notification Service can be configured
using either remote configuration or client-side Oracle Notification Service daemon
configuration. Remote Oracle Notification Service subscription offers the following advantages:

• Support for an All Java mid-tier software

• An Oracle Notification Service daemon is not necessary on the client system, so you do
not have to manage this process

• Configuration by way of a DataSource property

Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients
You can enable FCF for Universal Connection Pool or Implicit Connection Cache.

Oracle recommends using the Universal Connection Pool for Java because the Implicit
Connection Cache is deprecated. You can also use Oracle WebLogic Server Active GridLink
for Oracle RAC.

This procedure explains how to enable FCF for JDBC. For JDBC/OCI clients, if you enable
FCF, then do not use the method used with Oracle Database 11g release 2 (11.2) of enabling
FAN for OCI clients (setting notification to TRUE on the service), and do not configure TAF,
either on the client or for the service. You can also configure Application Continuity and
Transaction Guard.

To enable FCF, you must first enable the Universal Connection Pool, as described in the
following procedure:

1. Create the connection pool and set setFastConnectionFailoverEnabled(true).

Chapter 5
Enabling Clients for Oracle RAC

5-13

The following example creates a connection pool and enables FCF. The ucp.jar library
must be included in the classpath of an application to use this example.

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setFastConnectionFailoverEnabled(true);

2. Determine the ports to use for Oracle Notification Service remote subscriptions.

Use the following command to view the Oracle Notification Service configuration on each
node that is running Oracle Clusterware as in the following example:

srvctl config nodeapps -onsonly

The output of this command lists the local and remote ports configured for Oracle
Notification Service.

Note:

Oracle Notification Service configuration should have been automatically
completed during the Oracle Grid Infrastructure installation.

3. Configure the remote Oracle Notification Service subscription.

When using the Universal Connection Pool, an application calls setONSConfiguration for
an OracleDataSource instance and specifies the nodes and port numbers to use. The port
numbers used for each node are the same as the remote port displayed for each node in
Step 2, as shown in the following example. The ons.jar library must be included in the
classpath of an application to use this example.

pds.setONSConfiguration("nodes=racnode1:6200,racnode2:6200");

Applications that use remote Oracle Notification Service configuration must set the
oracle.ons.oraclehome system property to the location of ORACLE_HOME before starting the
application, for example:

java -Doracle.ons.oraclehome=$ORACLE_HOME ...

4. Configure the connection URL.

A connection factory's connection URL must use the service name syntax when using
FCF. The service name is used to map the connection pool to the service. The following
example demonstrates configuring the connection URL:

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin@//SCAN_name:service_name");...

Related Topics

• Oracle Database JDBC Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

Chapter 5
Enabling Clients for Oracle RAC

5-14

Enabling JDBC Clients for Run-time Connection Load Balancing
Run-time connection load balancing requires the use of an Oracle JDBC driver and an Oracle
RAC database.

Oracle JDBC Universal Connection Pool and Oracle WebLogic Server Active GridLink for
Oracle RAC leverage the load balancing functionality provided by an Oracle RAC database.

The Universal Connection Pool and Oracle WebLogic Server Active GridLink for Oracle RAC
are integrated to take advantage of Load Balancing Advisory information.

Run-time connection load balancing requires that FCF is enabled and configured properly. In
addition, the Oracle RAC load balancing advisory must be configured with service-level goals
for each service used by the connection pool.

srvctl modify service -db db_unique_name -service service_name
 -rlbgoal SERVICE_TIME -clbgoal LONG

Related Topics

• Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients
You can enable FCF for Universal Connection Pool or Implicit Connection Cache.

• Oracle Universal Connection Pool Developer’s Guide

Configuring JDBC-Thin Clients for Application Continuity for Java
This oracle.jdbc.datasource.impl.OracleDataSource data source is a JDBC-thin data
source that Application Continuity requires for Java.

This data source serves as the connection factory that produces new physical JDBC
connections, for both Universal Connection Pool and Oracle WebLogic Server Active GridLink
for Oracle RAC data sources. The JDBC replay driver maintains a history of calls during a
client conversation with Oracle Database. Following any outage of the session caused by a
loss of database service, planned or unplanned, under the direction of the database, the JDBC
replay driver attempts to rebuild the non-transactional and transactional database session
states, so that the outage appears as a delayed processing.

To use Application Continuity for Java and the JDBC replay driver, you must use an Oracle
Database 12c or later client and connect to an Oracle Database 12c or later database.
Application Continuity for Java is supported in the following configurations:

• JDBC applications using Oracle JDBC data source and using neither Universal Connection
Pool or Oracle WebLogic Server Active GridLink—typical third-party, JDBC-based
connection pools

• JDBC applications using Universal Connection Pool data sources—standalone or third-
party application servers configured to use a Universal Connection Pool data source

• JDBC applications using only Oracle WebLogic Server Active GridLink but not Universal
Connection Pool data sources—typical Oracle WebLogic Server J2EE cases

To configure JDBC-thin clients to use the JDBC Replay Driver:

1. Ensure that you are using an application that is certified for replay.

Chapter 5
Enabling Clients for Oracle RAC

5-15

2. Use SRVCTL to create a service for use by the application, if one does not already exist.
Set the -failovertype parameter to TRANSACTION and the -commit_outcome parameter to
TRUE for this service.

3. Configure the connection element using the PoolDataSource object, as shown in the
following example:

PoolDataSource rds = PoolDataSourceFactory.getPoolDataSource();
rds.setConnnectionPoolName("replayExample");
rds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200");
rds.setFastConnectionFailoverEnabled(true);
rds.setConnectionFactoryClassName("oracle.jdbc.datasource.impl.OracleDataSo
urce");

Connection conn = rds.getConnection();

4. When connecting to the database, use a URL that can access all instances offering the
service.

Related Topics

• About Application Continuity
Application Continuity provides high availability for your application workloads.

• Creating Services for Application Continuity and Transaction Guard
To configure services for Application Continuity, when you create a service using SRVCTL,
set the -failovertype parameter to TRANSACTION and -commit_outcome to TRUE.

• Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients
You can enable FCF for Universal Connection Pool or Implicit Connection Cache.

• Oracle Database JDBC Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

See Also:

Oracle Database JDBC Developer’s Guide for information about configuring
Transaction Guard without enabling Application Continuity

Configuring JDBC-Thin Clients for Transaction Guard
Transaction Guard provides a protocol and a generic tool for applications to use for at-most-
once processing in case of planned and unplanned outages.

Applications use the logical transaction ID to determine the outcome of the last transaction
open in a database session following an outage. Without Transaction Guard, end users or
applications that attempt to retry operations following outages can cause logical corruption by
committing duplicate transactions or committing transactions out of order.

Related Topics

• Oracle Database JDBC Developer’s Guide

• Oracle Database Development Guide

• Oracle Call Interface Developer's Guide

Chapter 5
Enabling Clients for Oracle RAC

5-16

Enabling OCI Clients for Fast Connection Failover
Complete the procedure that enables Fast Connection Failover (FCF) by registering to receive
notifications for Oracle RAC high availability Fast Application Notification (FAN) events.

Oracle Call Interface (OCI) clients can enable FCF by registering to receive notifications for
Oracle Real Application Clusters (Oracle RAC) high availability FAN events and responding
when events occur. Using FCF improves the session failover response time in OCI applications
and also removes connections to nonfunctioning instances from connection and session pools.
FCF can be used in OCI applications that also use TAF, OCI drivers (including your own
connection pools), OCI connection pool, and OCI session pools. FAN is posted over the Oracle
Notification Service for both high availability and load balancing events.

To use FCF, you must use a service with FAN enabled. FAN is published over Oracle
Notification Service. Client applications can also register callbacks that are used whenever an
event occurs. This reduces the time that it takes to detect a connection failure.

During DOWN event processing, OCI:

• Terminates affected connections at the client and returns an error

• Removes connections from the OCI connection pool and the OCI session pool—the
session pool maps each session to a physical connection in the connection pool, and there
can be multiple sessions for each connection

• Fails over the connection if you have configured TAF. If TAF is not configured, then the
client only receives an error if the instance it is connected to fails.

If your application is using TAF, then you must enable the TAF properties for the service using
SRVCTL or Oracle Enterprise Manager. Configure your OCI client applications to connect to an
Oracle RAC database using the configured service.

Note:

OCI does not manage UP events.

Example 5-1 Configuring FCF for OCI Clients

OCI applications must connect to an Oracle RAC instance to enable HA event notification.
Furthermore, these applications must perform the following steps to configure FCF for an OCI
client:

1. Configure the service for your OCI connection pool to enable FAN, connection load
balancing, and run-time connection load balancing, as shown in the following example:

$ srvctl modify service -db crm -service ociapp.example.com -notification
TRUE

2. Link the application with a thread library.

3. After linking with the thread library, the applications can register a callback that is invoked
whenever a FAN event occurs.

Related Topics

• Oracle Database Net Services Administrator's Guide

Chapter 5
Enabling Clients for Oracle RAC

5-17

• Oracle Call Interface Developer's Guide

Enabling OCI Clients for Run-time Connection Load Balancing
Oracle Call Interface (OCI) session pooling enables multiple threads of an application to use a
dynamically managed set of pre-created database sessions.

In connection pooling, the pool element is a connection, but in session pooling, the pool
element is a session. Oracle Database continually reuses the sessions in the session pool to
form nearly permanent channels to the instances, thus saving the overhead of creating and
closing sessions every time applications need them.

Run-time connection load balancing is enabled by default in Oracle Database. For Oracle RAC
environments, session pools use service metrics received from the Oracle RAC load balancing
advisory through Fast Application Notification (FAN) events to balance application session
requests. The work requests coming into the session pool can be distributed across the
instances of Oracle RAC offering a service, using the current service performance.

Note:

Run-time connection load balancing is basically routing work requests to sessions in
a session pool that can best serve the work. It comes into effect when selecting a
session from an existing session pool. Thus, run-time connection load balancing is a
very frequent activity.

Example 5-2 Configuring OCI Clients to Receive Load Balancing Advisory FAN Events

For Oracle RAC environments, session pools use service metrics received from the Oracle
RAC load balancing advisory through Fast Application Notification (FAN) events to balance
application session requests. To enable your application to receive the service metrics based
on the service time, ensure that you configure FAN, the load balancing advisory goal (-rlbgoal
parameter), and the connection load balancing goal (-clbgoal parameter) for a service that is
used by the session pool, as shown in the following example:

$ srvctl modify service -db crm -service ociapp.example.com -rlbgoal
SERVICE_TIME
 -clbgoal LONG -notification TRUE

Related Topics

• Oracle Call Interface Developer's Guide

Configuring OCI Clients to use Transaction Guard
OCI supports FAN messages and Transaction Guard. FAN is designed to quickly notify an
OCI-based application of outages at the node, database, instance, service, and public network
levels.

Once notified of the failure, an application can leverage Transaction Guard to reliably
determine the outcome of the last in-flight transaction.

Transaction Guard avoids the costs of ambiguous errors that lead to user frustration, customer
support calls, and lost opportunities. Transaction Guard is safer and performs better, with lower
overheads, than home grown solutions for a known outcome.

Chapter 5
Enabling Clients for Oracle RAC

5-18

Related Topics

• Fast Application Notification (FAN)
The Oracle RAC high availability framework monitors a database and its services, and
sends Fast Application Notification (FAN) event notifications.

• Enabling Clients for Oracle RAC
Learn how FAN is integrated with Oracle Clients, and how to enable FAN events for the
several specific client development environments.

• Oracle Call Interface Developer's Guide

Enabling ODP.NET Clients to Receive FAN High Availability Events
ODP.NET connection pools can subscribe to FAN HA notifications that indicate when nodes,
services, and service members are down.

After a DOWN event, Oracle Database cleans up sessions in the connection pool that go to the
instance and ODP.NET proactively removes connections that are no longer valid. ODP.NET
establishes additional connections to existing Oracle RAC instances if the removal of invalid
connections reduces the total number of connections to below the value for the Min Pool Size
parameter.

When connecting to Oracle Database, ODP.NET uses Oracle Notification Service, rather than
Advanced Queuing.

Enable Fast Connection Failover for ODP.NET connection pools by subscribing to FAN high
availability events. To enable Fast Connection Failover, include "HA Events=true" and
"pooling=true" (the default value) in the connection string, as shown in the following example
where user_name is the name of the database user and password is the password for that user:

con.ConnectionString =
 "User Id=user_name;Password=password;Data Source=odpnet;" +
 "Min Pool Size=10;Connection Lifetime=120;Connection Timeout=60;" +
 "HA Events=true;Incr Pool Size=5;Decr Pool Size=2";

Related Topics

• Oracle Data Provider for .NET Developer's Guide

• Fast Application Notification (FAN)
The Oracle RAC high availability framework monitors a database and its services, and
sends Fast Application Notification (FAN) event notifications.

Enabling ODP.NET Clients to Receive FAN Load Balancing Advisory Events
When connecting to Oracle Database 12c and later, ODP.NET uses Oracle Notification
Service, rather than Advanced Queuing.

Use the following procedure to enable ODP.NET clients or applications to receive FAN load
balancing advisory events:

1. Enable Oracle Notification Service notifications by using SRVCTL, and set the run-time
load balancing goal, as shown in the following example:

$ srvctl modify service -db crm -service odpapp.example.com
 -notification TRUE -clbgoal LONG -rlbgoal SERVICE_TIME

Chapter 5
Enabling Clients for Oracle RAC

5-19

2. Ensure Oracle Notification Service (ONS) is configured for FAN events including run-time
load balancing advice.

3. To take advantage of load balancing events with ODP.NET connection pools, set the load
balancing attribute in the ConnectionString to TRUE (the default is FALSE). You can do this at
connect time. This only works if you are using connection pools, or when the pooling
attribute is set to TRUE which is the default.

The following example demonstrates how to configure the ConnectionString to enable load
balancing, where user_name is the name of the user and password is the password:

con.ConnectionString =
 "User Id=user_name;Password=password;Data Source=odpapp;" +
 "Min Pool Size=10;Connection Lifetime=120;Connection Timeout=60;" +
 "Load Balancing=true;Incr Pool Size=5;Decr Pool Size=2";

Note:

ODP.NET does not support connection redistribution when a node starts (UP events).
However, if you have enabled failover on the server-side, then ODP.NET can migrate
connections to newly available instances.

Related Topics

• srvctl modify service
Modifies a service configuration.

• Oracle Data Provider for .NET Developer's Guide

• Fast Application Notification (FAN)
The Oracle RAC high availability framework monitors a database and its services, and
sends Fast Application Notification (FAN) event notifications.

Configuring ODP.NET Clients to use Transaction Guard
ODP.NET supports FAN messages and Transaction Guard. FAN is designed to quickly notify
an ODP.NET-based application of outages at the node, database, instance, service, and public
network levels.

Once notified of the failure, an application can leverage Transaction Guard to reliably
determine the outcome of the last in-flight transaction.

Transaction Guard avoids the costs of ambiguous errors that lead to user frustration, customer
support calls, and lost opportunities. Transaction Guard is safer and performs better, with lower
overheads, than home grown solutions for a known outcome.

Related Topics

• Fast Application Notification (FAN)
The Oracle RAC high availability framework monitors a database and its services, and
sends Fast Application Notification (FAN) event notifications.

• Administering Services
Learn how to create and administer services, and perform other service-related tasks using
Oracle Enterprise Manager and the SRVCTL utility.

Chapter 5
Enabling Clients for Oracle RAC

5-20

• Creating Services for Application Continuity and Transaction Guard
To configure services for Application Continuity, when you create a service using SRVCTL,
set the -failovertype parameter to TRANSACTION and -commit_outcome to TRUE.

• Oracle Data Provider for .NET Developer's Guide

Distributed Transaction Processing in Oracle RAC
Learn how Oracle Real Application Clusters (Oracle RAC) supports global (XA) transactions
and DTP processing

The X/Open Distributed Transaction Processing (DTP) architecture defines a standard
architecture or interface that enables multiple application programs (APs) to share resources
provided by multiple, and possibly different, resource managers (RMs). It coordinates the work
between APs and RMs into global transactions.

• Overview of XA Transactions and Oracle RAC
A global (XA) transaction can span Oracle RAC instances by default, allowing any
application that uses the Oracle XA library to take full advantage of the Oracle RAC
environment to enhance the availability and scalability of the application.

• Using Global Transactions and XA Affinity for XA Transactions
To provide improved application performance with distributed transaction processing (DTP)
in Oracle RAC, you can take advantage of XA affinity.

• Using Services with XA Transactions on Oracle RAC
Most applications using XA on Oracle RAC can use uniform or (all preferred) services with
XA affinity provided by the connection pool or transaction processing monitor.

• Configuring Services for XA Applications
To create distributed transaction processing (DTP) services for distributed transaction
processing, use this procedure.

• Relocating Services in Administrator-Managed Databases
Beginning with Oracle Real Application Clusters 11g release 1 (11.1), global transactions
and XA affinity replace the need for distributed transaction processing (DTP) services.

Overview of XA Transactions and Oracle RAC
A global (XA) transaction can span Oracle RAC instances by default, allowing any application
that uses the Oracle XA library to take full advantage of the Oracle RAC environment to
enhance the availability and scalability of the application.

GTXn background processes support XA transactions in an Oracle RAC environment. The
GLOBAL_TXN_PROCESSES initialization parameter, which is set to 1 by default, specifies the initial
number of GTXn background processes for each Oracle RAC instance. Use the default value
for this parameter clusterwide to allow distributed transactions to span multiple Oracle RAC
instances. Using the default value allows the units of work performed across these Oracle RAC
instances to share resources and act as a single transaction (that is, the units of work are
tightly coupled). It also allows 2PC requests to be sent to any node in the cluster.

Before Oracle RAC 11g release 1 (11.1), the way to achieve tight coupling in Oracle RAC was
to use distributed transaction processing (DTP) services, that is, services whose cardinality
(one) ensured that all tightly-coupled branches landed on the same instance—regardless of
whether load balancing was enabled. If the XA application does not use suspend and resume
on the same transaction branch, and does not issue savepoints that span branches, then
tightly coupled XA transactions no longer require the special type of singleton services to be
deployed on Oracle RAC databases. If your application cannot determine whether a

Chapter 5
Distributed Transaction Processing in Oracle RAC

5-21

transaction branch has been suspended and resumed, then the application must continue to
use DTP services or preferably use XA affinity.

XA affinity (placing all branches of the same XA transaction at the same Oracle RAC instance)
is a requirement when suspending and resuming the same XA branch or if using savepoints
across branches. It also provides much better performance because different transactions can
be balanced. XA affinity is available with Oracle WebLogic Server Active GridLink for Oracle
RAC, JDBC Universal Connection Pool, and Oracle Tuxedo. XA affinity is also standard for
RedHat JBoss, IBM WebSphere, and IBM Liberty.

Note:

Transaction Processing monitors with XA work best when using services with one
preferred instance and many available instances. Oracle does not recommend using
the DTP setting for Oracle Database 11g release 1 (11.1) and later.

Related Topics

• Using Global Transactions and XA Affinity for XA Transactions
To provide improved application performance with distributed transaction processing (DTP)
in Oracle RAC, you can take advantage of XA affinity.

• Oracle Database Reference

Using Global Transactions and XA Affinity for XA Transactions
To provide improved application performance with distributed transaction processing (DTP) in
Oracle RAC, you can take advantage of XA affinity.

Using XA affinity, you can direct all branches of a distributed transaction to a single instance in
the cluster. To implement XA affinity you can use an application server that provides XA affinity,
such as WebLogic Server and Universal Connection Pool. If your application server does not
have XA affinity, then you can also use singleton services across Oracle RAC.

Connection pools at the application server tier that load balance across multiple connections to
an Oracle RAC database use XA affinity to ensure that all tightly-coupled branches of a global
distributed transaction run on only one Oracle RAC instance. When using a connection pool
with XA affinity, your services using XA can span Oracle RAC. This is also true in distributed
transaction environments using protocols such as X/Open Distributed Transaction Processing
or the Microsoft Distributed Transaction Coordinator.

To enhance the performance of distributed transactions, use services with one preferred
instance. A singleton service runs on one Oracle RAC instance at time in an Oracle RAC
database. This service still allows draining for maintenance, so has better high-availability
characteristics than an older DTP service. To load balance across the cluster, it is better to
have several groups of smaller application servers with each group directing its transactions to
a single service, or set of services, than it is to have one or two larger application servers.
Using singleton services, global distributed transactions performed through the services have
their tightly-coupled branches running on a single Oracle RAC instance. This has the following
benefits:

• The changes are available locally within one Oracle RAC instance when tightly coupled
branches need information about changes made by each other

• Relocation and failover of services are fully supported using global transactions

Chapter 5
Distributed Transaction Processing in Oracle RAC

5-22

• By using more singleton services than there are Oracle RAC instances, Oracle Database
can balance the load by services across all of the Oracle RAC database instances

Note:

Oracle does not recommend using the DTP setting for Oracle Database 11g release
1 (11.1) and later.

Using Services with XA Transactions on Oracle RAC
Most applications using XA on Oracle RAC can use uniform or (all preferred) services with XA
affinity provided by the connection pool or transaction processing monitor.

The application may also use singleton services to provide XA affinity.

When using singleton services, to leverage all of the instances in a cluster, create one or more
singleton services for each Oracle RAC instance that hosts distributed transactions. Choose
different services for application servers to balance the workload among the Oracle RAC
database instances. Because all of the branches of a distributed transaction are on one
instance, you can leverage all of the instances to balance the load of many transactions
through multiple singleton services, thereby maximizing application throughput.

If you add or delete nodes from your cluster database, then you may have to identify and
relocate services to ensure that you maintain optimum performance levels. Using singleton
services, current work can complete.

Configuring Services for XA Applications
To create distributed transaction processing (DTP) services for distributed transaction
processing, use this procedure.

1. Create a singleton service using Oracle Enterprise Manager or SRVCTL.

For an administrator-managed database, define only one instance as the preferred
instance. You can have as many available instances as you want, for example:

$ srvctl add service -db crm -service xa_01.example.com -preferred RAC01
 -available RAC02,RAC03

2. Set the DTP parameter (-dtp) for the service to TRUE (the default value is FALSE). You can
use Oracle Enterprise Manager or SRVCTL to modify the DTP property of the singleton
service. The following example shows how to modify the xa_01.example.com service using
SRVCTL:

$ srvctl modify service -db crm -service xa_01.example.com -dtp TRUE

Note:

If the application does require DTP services, then use the -dtp parameter. If not,
then use the preceding example with no -dtp parameter.

Chapter 5
Distributed Transaction Processing in Oracle RAC

5-23

Related Topics

• srvctl add service
Adds services to a database and assigns them to instances.

• srvctl modify service
Modifies a service configuration.

Relocating Services in Administrator-Managed Databases
Beginning with Oracle Real Application Clusters 11g release 1 (11.1), global transactions and
XA affinity replace the need for distributed transaction processing (DTP) services.

Most XA deployments should be using global transactions with XA affinity for improved load
balancing and flexibility rather than the DTP attribute.

If services migrate to other instances, then you might have to force the relocation of the service
back to the preferred instance after it is restarted to evenly re-balance the load on all of the
available hardware. You can use data from the GV$ACTIVE_SERVICES view to determine
whether you need to relocate the DTP service.

Oracle RAC Sharding
Oracle RAC Sharding creates an affinity between table partitions and Oracle RAC instances,
and routes database requests that specify a partitioning key to the instance that logically holds
the corresponding partition.

Oracle routes database requests to Oracle RAC instances in such a way that each instance
always gets requests for a disjoint subset of rows in the database, which creates affinity of
rows with instances. The affinity leads to higher Oracle RAC performance and scalability
because of improved cache locality and reduced inter-node synchronization and block pings.

Sharding for Oracle RAC affinity uses client and server-side support for key-based routing,
which is part of the Oracle Database sharding. An application that supplies a sharding key in
the database using the same API implemented for sharding support in Oracle connection pools
(such as Universal Connection Pool, OCI), in the same way it is done for sharding, utilizes key-
based routing and, by doing so, enables Oracle RAC affinity.

Application changes that are required to supply the sharding key, do not have to affect all
modules of the application. Changes can only be applied to a few frequently processed
database requests. Requests that do not provide the sharding key in the connect string are
routed based on the load-balancing policy. Keyless requests do not have any negative impact
on data affinity because of the explicit ownership assignment of data objects to instances.

Note:

Oracle only supports Oracle RAC affinity for partitioned tables. You can partition a
table using any supported method without making changes to the database schema
to enable this feature and then run the ALTER SYSTEM ENABLE AFFINITY command.

If you want to make changes to your applications to take advantage of affinity-enabling routing,
then you may also take advantage of sharding when data is distributed across multiple
independent databases. You can later move to distributed sharding if you require extreme
scalability or fault isolation.

Chapter 5
Oracle RAC Sharding

5-24

Related Topics

• Oracle Database SQL Language Reference

• Oracle Database Net Services Administrator's Guide

• Oracle Globally Distributed Database Guide

• Oracle Database JDBC Developer’s Guide

• Oracle Call Interface Developer's Guide

Automatic Workload Repository
The Automatic Workload Repository (AWR) collects, processes, and maintains performance
statistics for the database.

The gathered data can be displayed in both reports and views. If you use services with your
database, then AWR tracks metrics at the service level.

Metrics can be measured against a variety of units, including time, transactions, or database
calls. For example, the number of database calls per second is a metric. Server generated
alerts can be placed on these metrics when they exceed or fail to meet user-specified
thresholds. The database or system administrator can then respond, for example, by:

• Using the Oracle Database Resource Manager to configure the service level for one
service to have priorities relative to other services

• Stopping overloaded processes

• Modifying a service level requirement

• Implementing recovery scenarios in response to service quality changes

Using AWR metrics and performance alerts enables you to maintain continued service
availability despite service level changes. It also enables you to measure the service quality
provided by the database services.

The AWR ensures that the Oracle Clusterware workload management framework and the
database resource manager have persistent and global representations of performance data.
This information helps Oracle Database schedule job classes by service and to assign
priorities to consumer groups. If necessary, you can rebalance workloads manually with either
Oracle Enterprise Manager or SRVCTL. You can also disconnect a series of sessions, but
leave the service running.

Note:

Oracle does not recommend using the DBMS_SERVICE package for use with
services used by an Oracle RAC database. Use SRVCTL or Oracle Enterprise
Manager to create database services for Oracle RAC.

Related Topics

• Oracle Database Get Started with Performance Tuning

• Oracle Database Performance Tuning Guide

• Oracle Database PL/SQL Packages and Types Reference

Chapter 5
Automatic Workload Repository

5-25

Measuring Performance by Service Using the Automatic
Workload Repository

Services add a new dimension for performance tuning because workloads are visible and
measurable, and therefore resource consumption and wait times are attributable by
application.

Tuning by using "service and SQL" replaces tuning by "session and SQL" in the majority of
systems where all sessions are anonymous and shared.

The AWR maintains performance statistics that include information about response time,
throughput, resource consumption, and wait events for all services and work that a database
performs. Oracle Database also maintains metrics, statistics, wait events, wait classes, and
SQL-level traces for services. You can optionally augment these statistics by defining modules
within your application to monitor certain statistics. You can also define the actions within those
modules that business critical transactions should run in response to particular statistical
values.

Enable module and action monitoring using the DBMS_MONITOR PL/SQL package. For example,
for connections that use the erp service, the following command enables monitoring for the
exceptions pay action in the payroll module:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(SERVICE_NAME => 'ERP',
 MODULE_NAME=> 'PAYROLL', ACTION_NAME => 'EXCEPTIONS PAY');

For connections that use the erp service, the following command enables monitoring for all
actions in the payroll module:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(SERVICE_NAME => 'ERP',
 MODULE_NAME=> 'PAYROLL', ACTION_NAME => NULL);

Use the DBA_ENABLED_AGGREGATIONS view to verify that you have enabled monitoring for
application modules and actions.

Statistics aggregation and tracing by service are global in scope for Oracle RAC databases. In
addition, these statistic aggregations are persistent across instance restarts and service
relocations for both Oracle RAC and noncluster Oracle databases.

The service, module, and action names are visible in V$SESSION, V$ACTIVE_SESSION_HISTORY,
and V$SQL views. The call times and performance statistics are visible in V$SERVICE_STATS,
V$SERVICE_EVENT, V$SERVICE_WAIT_CLASS, V$SERVICEMETRIC, and V$SERVICEMETRIC_HISTORY.
When you enable statistics collection for an important transaction, you can see the call speed
for each service, module, and action name at each database instance using the
V$SERV_MOD_ACT_STATS view.

The following sample SQL*Plus script provides service quality statistics for a five second
interval. You can use these service quality statistics to monitor the service quality, to direct
work, and to balance services across Oracle RAC instances:

SET PAGESIZE 60 COLSEP '|' NUMWIDTH 8 LINESIZE 132 VERIFY OFF FEEDBACK OFF
COLUMN service_name FORMAT A20 TRUNCATED HEADING 'Service'
COLUMN begin_time HEADING 'Begin Time' FORMAT A10
COLUMN end_time HEADING 'End Time' FORMAT A10

Chapter 5
Measuring Performance by Service Using the Automatic Workload Repository

5-26

COLUMN instance_name HEADING 'Instance' FORMAT A10
COLUMN service_time HEADING 'Service Time|mSec/Call' FORMAT 999999999
COLUMN throughput HEADING 'Calls/sec'FORMAT 99.99
BREAK ON service_name SKIP 1
SELECT
 service_name
 , TO_CHAR(begin_time, 'HH:MI:SS') begin_time
 , TO_CHAR(end_time, 'HH:MI:SS') end_time
 , instance_name
 , elapsedpercall service_time
 , callspersec throughput
FROM
 gv$instance i
 , gv$active_services s
 , gv$servicemetric m
WHERE s.inst_id = m.inst_id
 AND s.name_hash = m.service_name_hash
 AND i.inst_id = m.inst_id
 AND m.group_id = 10
ORDER BY
 service_name
 , i.inst_id
 , begin_time ;

Automatic Workload Repository Service Thresholds and Alerts
To provide accountability for your required levels of service, you can use the Oracle Real
Application Clusters (Oracle RAC) Automatic Workload Repository (AWR) service.

• About Automatic Workload Repository Service Thresholds and Alerts
Learn how you can maintain the service quality delivery by using the Automatic Workload
Repository (AWR) service.

• Example of Services and Thresholds Alerts
In this task scenario, you need to check the thresholds for the payroll service. To obtain the
threshold information, you can use the AWR report.

• Enable Service, Module, and Action Monitoring
To enable performance data tracing for important modules and actions within each service,
you can use the V$SERV_MOD_ACT_STATS view.

About Automatic Workload Repository Service Thresholds and Alerts
Learn how you can maintain the service quality delivery by using the Automatic Workload
Repository (AWR) service.

Service level thresholds enable you to compare actual service levels against required levels of
service. This provides accountability for the delivery or the failure to deliver an agreed service
level. The end goal is a predictable system that achieves service levels. There is no
requirement to perform as fast as possible with minimum resource consumption; the
requirement is to meet the service quality.

AWR enables you to explicitly specify two performance thresholds for each service: the
response time for calls (ELAPSED_TIME_PER_CALL), and the CPU time for calls
(CPU_TIME_PER_CALL). The response time threshold indicates that the elapsed time for each
user call for each service should not exceed a certain value, and the CPU time for calls

Chapter 5
Automatic Workload Repository Service Thresholds and Alerts

5-27

threshold indicates that the time spent using the CPU for each call for each service should not
exceed a certain value. Response time is a fundamental measure that reflects all delays and
faults that might be blocking the call from running on behalf of the user. Response time can
also indicate differences in node power across the nodes of an Oracle RAC database.

You must set these thresholds on each instance of an Oracle RAC database. The elapsed time
and CPU time are calculated as the moving average of the elapsed, server-side call time. The
AWR monitors the elapsed time and CPU time and publishes AWR alerts when the
performance exceeds the thresholds. You can schedule actions using Oracle Enterprise
Manager jobs for these alerts, or you can schedule actions to occur programmatically when the
alert is received. You can respond to these alerts by changing the priority of a job, stopping
overloaded processes, or by relocating, starting or stopping a service. This permits you to
maintain service availability despite changes in demand.

Example of Services and Thresholds Alerts
In this task scenario, you need to check the thresholds for the payroll service. To obtain the
threshold information, you can use the AWR report.

To prepare for checking the payroll service thresholds, you should compare the results from
reports run over several successive intervals during which time the system is running optimally.
For example, assume that for servers accessed by a payroll application, the AWR report runs
each Thursday during the peak usage times of 1:00 p.m. to 5:00 p.m. The AWR report contains
the response time, or elapsed database time, and the CPU consumption time, or CPU time, for
calls for each server, including the payroll service. The AWR report also provides a
breakdown of the work done and the wait times that are contributing to the response times.

Using DBMS_MONITOR, you set a warning threshold for the elapsed time per call for the payroll
service at 0.5 seconds (500000 microseconds). You also set a critical threshold for the elapsed
time per call for the payroll service at 0.75 seconds (750000 microseconds).

Example 5-3 Adding Thresholds to Check for Service Quality

In this example, The commands add thresholds for the payroll service:

EXECUTE DBMS_SERVER_ALERT.SET_THRESHOLD(
METRICS_ID => DBMS_SERVER_ALERT.ELAPSED_TIME_PER_CALL
, warning_operator => DBMS_SERVER_ALERT.OPERATOR_GE
, warning_value => '500000'
, critical_operator => DBMS_SERVER_ALERT.OPERATOR_GE
, critical_value => '750000'
, observation_period => 30
, consecutive_occurrences => 5
, instance_name => NULL
, object_type => DBMS_SERVER_ALERT.OBJECT_TYPE_SERVICE
, object_name => 'payroll');

To verify that the threshold configuration is set on all the instances, you can use the following
SELECT statement:

SELECT METRICS_NAME, INSTANCE_NAME, WARNING_VALUE, CRITICAL_VALUE,
OBSERVATION_PERIOD FROM dba_thresholds ;

Chapter 5
Automatic Workload Repository Service Thresholds and Alerts

5-28

Enable Service, Module, and Action Monitoring
To enable performance data tracing for important modules and actions within each service, you
can use the V$SERV_MOD_ACT_STATS view.

To see how you can trace performance data for modules and actions within services using the
V$SERV_MOD_ACT_STATS view, suppose you want to set the following performance checks:

• For the ERP service, enable monitoring for the exceptions pay action in the payroll
module.

• For the ERP service, enable monitoring for the all actions in the payroll module.

• For the HOT_BATCH service, enable monitoring for all actions in the posting module.

The following commands show how to enable the module and action monitoring for the
services:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(service_name => 'erp',
module_name=>
 'payroll', action_name => 'exceptions pay');
EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(service_name => 'erp',
module_name=>
 'payroll');
EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(service_name => 'hot_batch',
module_name =>'posting');

To verify monitoring is enabled for the service, module, and actions, use the following SELECT
statement:

COLUMN AGGREGATION_TYPE FORMAT A21 TRUNCATED HEADING 'AGGREGATION'
COLUMN PRIMARY_ID FORMAT A20 TRUNCATED HEADING 'SERVICE'
COLUMN QUALIFIER_ID1 FORMAT A20 TRUNCATED HEADING 'MODULE'
COLUMN QUALIFIER_ID2 FORMAT A20 TRUNCATED HEADING 'ACTION'
SELECT * FROM DBA_ENABLED_AGGREGATIONS ;

The output is similar to the following:

AGGREGATION SERVICE MODULE ACTION
------------ -------------------- ---------- -------------
SERVICE_MODULE_ACTION erp payroll exceptions pay
SERVICE_MODULE erp payroll
SERVICE_MODULE hot_batch posting

Using Oracle Services
To manage workloads or a group of applications, you can define services that you assign to a
particular application, or to a subset of an application's operations, or you can group work by
type under services.

To understand how you can manage workloads by defining services or groups, consider this
example: To connect to the database, you configure one service for online users, while batch
processing uses another service, and reporting uses yet another service. You can thus track
workloads by services.

Chapter 5
Using Oracle Services

5-29

Oracle recommends that all users who share a service have the same service level
requirements. You can define specific characteristics for services, and each service can
represent a separate unit of work. There are many options that you can take advantage of
when using services. Although you do not have to implement these options, using them can
help you to optimize application performance.

Service Deployment Options
Learn about services in Oracle Real Application Clusters (Oracle RAC) databases, and how to
define and deploy services.

• Service Usage in an Oracle RAC Database
Learn how several database features use services for an Oracle Real Application Clusters
(Oracle RAC) database.

• Service Characteristics
When you create new services for your Oracle Real Application Clusters (Oracle RAC)
database, you should define the automatic workload management characteristics for each
service.

• Default Service Connections
Oracle Real Application Clusters (Oracle RAC) includes default service connections, which
you should not attempt to manage.

• Restricted Service Registration
This feature allows listener registration only from local IP addresses, by default, and
provides the ability to configure and dynamically update a set of IP addresses or subnets
from which registration requests are allowed by the listener.

Service Usage in an Oracle RAC Database
Learn how several database features use services for an Oracle Real Application Clusters
(Oracle RAC) database.

Services provide location transparency. A service name can identify multiple database
instances, and an instance can belong to multiple services.

• Oracle Clusterware Resources for a Service

• Database Resource Manager Consumer Group Mappings for Services

• Performance Monitoring by Service with AWR

• Parallel Operations and Services
By default, in an Oracle RAC environment, a SQL statement processed in parallel can run
across all of the nodes in the cluster.

• Oracle GoldenGate and Oracle RAC
Oracle GoldenGate takes advantage of Oracle RAC features.

Oracle Clusterware Resources for a Service
Resource profiles are automatically created when you define a service. A resource profile
describes how Oracle Clusterware should manage the service and which instance the service
should failover to if the preferred instance stops. Resource profiles also define service
dependencies for the instance and the database. Due to these dependencies, if you stop a
database, then the instances and services are automatically stopped in the correct order.

Chapter 5
Service Deployment Options

5-30

Database Resource Manager Consumer Group Mappings for Services
Services are integrated with Oracle Resource Manager, which enables you to restrict the
resources that users use to connect to an instance by using a service. Oracle Resource
Manager enables you to map a consumer group to a service so that users who connect to an
instance using that service are members of the specified consumer group. Oracle Resource
Manager operates at an instance level.

Performance Monitoring by Service with AWR
The metric data generated by Automatic Workload Repository (AWR) is organized into various
groups, such as event, event class, session, service, and tablespace metrics. Typically, you
view the AWR data using Oracle Enterprise Manager or AWR reports.

Related Topics

• Oracle Database Performance Tuning Guide

Parallel Operations and Services
By default, in an Oracle RAC environment, a SQL statement processed in parallel can run
across all of the nodes in the cluster.

For this cross-node or inter-node parallel processing to perform well, the interconnect in the
Oracle RAC environment must be sized appropriately because inter-node parallel processing
may result in a lot of interconnect traffic. To limit inter-node parallel processing, you can control
parallel processing in an Oracle RAC environment using the PARALLEL_FORCE_LOCAL
initialization parameter. By setting this parameter to TRUE, the parallel processing servers can
only run on the same Oracle RAC node where the SQL statement was started.

Services are used to limit the number of instances that participate in a parallel SQL operation.
When the default database service is used, the parallel SQL operation can run on all available
instances. You can create any number of services, each consisting of one or more instances.
When a parallel SQL operation is started, the parallel processing servers are only spawned on
instances which offer the specified service used in the initial database connection.

PARALLEL_INSTANCE_GROUP is an Oracle RAC parameter that, when used with services, lets you
restrict parallel query operations to a limited number of instances.To restrict parallel query
operations to a limited number of instances, set the PARALLEL_INSTANCE_GROUP initialization
parameter to the name of a service. This does not affect other parallel operations such as
parallel recovery or the processing of GV$ queries.

Oracle GoldenGate and Oracle RAC
Oracle GoldenGate takes advantage of Oracle RAC features.

When Oracle GoldenGate is configured in an Oracle RAC environment, each queue table has
an owning instance. If the instance that hosts a queue table fails, another instance in the
Oracle RAC database becomes the owning instance for the queue table, allowing Oracle
GoldenGate to continue operating.

Also, on an Oracle RAC database, a service is created for each buffered queue. This service
always runs on the owner instance of the destination queue and follows the ownership of this
queue if the ownership switches because of instance startup, instance shutdown, and so on.
This service is used by queue-to-queue propagations.

Chapter 5
Service Deployment Options

5-31

Service Characteristics
When you create new services for your Oracle Real Application Clusters (Oracle RAC)
database, you should define the automatic workload management characteristics for each
service.

• Service Name
The service name is used by clients to connect to one or more instances.

• Service Edition
To upgrade an application's objects while these objects are in use, you can use edition-
based redefinition of database objects.

• Service Management Policy
When you use Oracle Clusterware to manage your database, you can configure startup
options for each individual database service when you add the service using the srvctl
add service command with the -policy parameter.

• Database Role for a Service
If you configured Oracle Data Guard in your environment, then you can define a role for
services when you add or modify a service using SRVCTL and the -role parameter with
the appropriate command.

• Instance Preference
When you define a service for an administrator-managed database, you define which
instances normally support that service using SRVCTL with the -preferred parameter.

• Service Co-location
Oracle RAC routes clients with the same COLOCATION_TAG to the same database instance,
when possible.

• Load Balancing Advisory Goal for Run-time Connection Load Balancing
To provide better service to users, take advantage of load balancing advisory events to
manage workloads.

• Connection Load Balancing Goal
Oracle Net Services provide connection load balancing to enable you to spread user
connections across all of the instances that are supporting a service.

• Distributed Transaction Processing
Learn about Oracle XA applications in Oracle Real Application Clusters (Oracle RAC).

Service Name
The service name is used by clients to connect to one or more instances.

Each service has a service name. The service name must be unique throughout your system.

The service name must meet the following qualifications:

• The name must consist of alphanumeric characters (a-z, A-Z, 0-9), underscore (_), and
hyphen (-).

• The service domain portion of the name must consist of alphanumeric characters (a-z, A-Z,
0-9), underscore (_), dollar sign ($), number sign (#), period (.), and hyphen (-)

• A domain qualified service name is of the form service_name.service_domain.

• You cannot create a service with the same name as the database default service, which is
db_unique_name.db_domain.

Chapter 5
Service Deployment Options

5-32

Service Edition
To upgrade an application's objects while these objects are in use, you can use edition-based
redefinition of database objects.

You can set the edition attribute of a database service when you create it, or modify an
existing service to set the edition. When you set the service edition, connections that use this
service use this edition as the initial session edition. If the service does not specify the edition
name, then the initial session edition is the database default edition.

In this example, you use SRVCTL to set the service edition:

$ srvctl modify service –db hr –s crmsrv –edition e2

Service Management Policy
When you use Oracle Clusterware to manage your database, you can configure startup
options for each individual database service when you add the service using the srvctl add
service command with the -policy parameter.

If you set the management policy for a service to AUTOMATIC (the default), then the service
starts automatically when you start the database with SRVCTL. If you set the management
policy to MANUAL, then the service does not automatically start, and you must manually start it
with SRVCTL. A MANUAL setting does not prevent Oracle Clusterware from monitoring the
service when it is running and restarting it if a failure occurs. Before Oracle RAC 11g release 2
(11.2), all services worked as though they were defined with a MANUAL management policy.

Using CRSCTL to stop and restart Oracle Clusterware is treated as a failure and the service is
restarted if it was previously running.

Note:

When you use automatic services in an administrator-managed database, during
planned database startup, services may start on the first instances to start rather than
their preferred instances, provided that the started instances are in the (combined)
preferred and available services list.

Related Topics

• srvctl add service
Adds services to a database and assigns them to instances.

Database Role for a Service
If you configured Oracle Data Guard in your environment, then you can define a role for
services when you add or modify a service using SRVCTL and the -role parameter with the
appropriate command.

When you specify a role for a service, Oracle Clusterware automatically starts the service only
when the database role matches the role you specified for the service. Valid roles are PRIMARY,
PHYSICAL_STANDBY, LOGICAL_STANDBY, and SNAPSHOT_STANDBY and you can specify more than
one role for a service.

Chapter 5
Service Deployment Options

5-33

Note:

• The service role only controls automatic startup of services. Using SRVCTL to
manually start a service will succeed even if the roles do not match.

• If the service role specifies only read-only database roles (*STANDBY), then
changes to the service resource attributes with SRVCTL cannot take effect in the
database until you start the service on a read-write database at least once. This
is because DBMS_SERVICE.MODIFY_SERVICE cannot work in a read-only database.

Redo Apply (physical standby database) can run on all or some standby instances that you
can configure. This enables Redo Apply performance to scale, if necessary, by adding
additional standby instances.

If multiple databases in the cluster offer the same service name, then Oracle RAC balances
connections to that service across all such databases. This is useful for standby and active
Oracle Data Guard databases, but if you want client connections to a service to be directed to
a particular database, then the service name must be unique within the cluster (not offered by
any other database).

Related Topics

• Oracle Data Guard Concepts and Administration

Instance Preference
When you define a service for an administrator-managed database, you define which
instances normally support that service using SRVCTL with the -preferred parameter.

These are known as the preferred instances. You can also define other instances to support a
service if the service's preferred instance fails using SRVCTL with the -available parameter.
These are known as available instances.

When you specify preferred instances, you are specifying the number of instances on which a
service normally runs. This is the maximum cardinality of the service. Oracle Clusterware
attempts to ensure that the service always runs on the number of instances for which you have
configured the service. Afterward, due to either instance failure or planned service relocations,
a service may be running on an available instance.

If an instance fails, then, because Oracle Clusterware interprets the preferred and available
lists as ordered lists, you have some control to which available instance Oracle Clusterware
relocates the services, if there are multiple instances in the lists. During a planned operation,
however, you can manually direct the service to any instance in either the preferred or the
available list not currently offering the service.

When a service moves to an available instance, Oracle Database does not automatically move
the service back to the preferred instance when the preferred instance restarts because:

• The service is running on the desired number of instances.

• Maintaining the service on the current instance provides a higher level of service
availability.

• Not moving the service back to the initial preferred instance prevents a second outage.

Starting with Oracle Database release 19.3, if you specify yes for the -failback attribute of a
service, then, after failing over to an available instance when the last preferred instance went

Chapter 5
Service Deployment Options

5-34

down, the service transfers back to a preferred instance when one becomes available. For
earlier releases, you can automate fail back to the preferred instance by using FAN callouts.

Related Topics

• Tools for Administering Oracle RAC
The tools most commonly used to managed Oracle Real Application Clusters (Oracle
RAC) databases and instances are the SRVCTL utility, Oracle Enterprise Manager, and
SQL*Plus.

Service Co-location
Oracle RAC routes clients with the same COLOCATION_TAG to the same database instance,
when possible.

Co-location of sessions on the same instance can help decrease inter-instance communication
and increase performance for workloads that benefit from being run in the same instance. You
configure the COLOCATION_TAG in the CONNECT_DATA parameter of the TNS connect string used
by the service as described in Oracle Database Net Services Reference.

Related Topics

• COLOCATION_TAG

Load Balancing Advisory Goal for Run-time Connection Load Balancing
To provide better service to users, take advantage of load balancing advisory events to
manage workloads.

With run-time connection load balancing, applications can use load balancing advisory events
to provide better service to users. Oracle JDBC, Oracle Universal Connection Pool for Java,
OCI session pool, ODP.NET, and Oracle WebLogic Server Active GridLink for Oracle RAC
clients are automatically integrated to take advantage of load balancing advisory events. The
load balancing advisory informs the client about the current service level that an instance is
providing for a service. To enable the load balancing advisory, use SRVCTL with the -rlbgoal
parameter when creating or modifying the service.

The load balancing advisory also recommends how much of the workload should be sent to
that instance. The goal determines whether connections are made to the service based on
best service quality (how efficiently a single transaction completes) or best throughput (how
efficiently a complete job or long-running query completes).

Connection Load Balancing Goal
Oracle Net Services provide connection load balancing to enable you to spread user
connections across all of the instances that are supporting a service.

For each service, you can use SRVCTL to define the method you want the listener to use for
load balancing by setting the connection load balancing goal, specified with the -clbgoal
parameter. Connections are classified as LONG, which tells the listener to use session count, or
SHORT, which tells the listener to use response-time or throughput statistics.

If load balancing advisory is enabled (the -rlbgoal parameter does not equal NONE), then
connection load balancing attempts to use load balancing advisory (whether load balancing
goal is set to SHORT or LONG). If load balancing is set to SHORT, then it uses the GOODNESS value
of a service to try to prevent all connection requests from going to one instance. If load
balancing is set to LONG, then it uses run queue length if the service is singleton, or session
count if the service is uniform.

Chapter 5
Service Deployment Options

5-35

Note:

Oracle recommends -clbgoal LONG for both server-side and client-side load
balancing.

Distributed Transaction Processing
Learn about Oracle XA applications in Oracle Real Application Clusters (Oracle RAC).

Oracle XA is the Oracle implementation of the X/Open Distributed Transaction Processing
(DTP) XA interface. Oracle XA applications have unique requirements. Oracle provides global
transactions across Oracle RAC. For best performance, Oracle recommends that you use XA
affinity (all branches at the same instance) for most transactions, and global transactions when
needed. You can use XA affinity with connection pools, such as Universal Connection Pools
and WebLogic Server. You can also use singleton services that you create using SRVCTL. If you
want to suspend and resume the same Oracle XA branch, then you also use SRVCTL to set
the distributed transaction processing parameter (-dtp) to TRUE. However, Oracle recommends
that you do not do this in general, because managing branches this way does not offer rolling
planned maintenance.

Related Topics

• Distributed Transaction Processing in Oracle RAC
Learn how Oracle Real Application Clusters (Oracle RAC) supports global (XA)
transactions and DTP processing

• srvctl add service
Adds services to a database and assigns them to instances.

Default Service Connections
Oracle Real Application Clusters (Oracle RAC) includes default service connections, which you
should not attempt to manage.

Your Oracle RAC database includes an Oracle Database service identified by DB_UNIQUE_NAME,
if set, or DB_NAME or PDB_NAME, if not. This default service is always available on all instances in
an Oracle RAC environment, unless an instance is in restricted mode. You cannot alter this
service or its properties. Additionally, the database supports the following two internal services:

• SYS$BACKGROUND is used by the background processes only

• SYS$USERS is the default service for user sessions that are not associated with any
application service

All of these services are used for internal management. You cannot stop or disable any of
these internal services to do planned outages or to failover to Oracle Data Guard. Do not use
these services for client connections.

Note:

You can explicitly manage only the services that you create. If a feature of the
database creates an internal service, you cannot manage it using the information in
this chapter.

Chapter 5
Service Deployment Options

5-36

Restricted Service Registration
This feature allows listener registration only from local IP addresses, by default, and provides
the ability to configure and dynamically update a set of IP addresses or subnets from which
registration requests are allowed by the listener.

Security is a high priority to all enterprises, and network security and controlling access to the
database is a critical component of overall security endeavours. Database Instance registration
with a listener succeeds only when the request originates from a valid node. The network
administrator can specify a list of valid nodes, excluded nodes, or disable valid node checking.
The list of valid nodes explicitly lists the nodes and subnets that can register with the database.
The list of excluded nodes explicitly lists the nodes that cannot register with the database. The
control of dynamic registration results in increased manageability and security of Oracle RAC
deployments.

By default, valid node checking for registration (VNCR) is enabled. In the default configuration,
the listener accepts registration requests only from the nodes that are in the subnet of the
SCAN listener and have access to the private network. Non-SCAN listeners only accept
registration from instances on the local node. You must manually include remote nodes or
nodes outside the subnet of the SCAN listener on the list of valid nodes by using the
registration_invited_nodes_alias parameter in the listener.ora file or by modifying the
SCAN listener using SRVCTL, as follows:

$ srvctl modify scan_listener -invitednodes node_list -invitedsubnets
subnet_list

Note:

Starting with Oracle Grid Infrastructure 12c, for a SCAN listener, if the
VALID_NODE_CHECKING_REGISTRATION_listener_name and
REGISTRATION_INVITED_NODES_listener_name parameters are set in the
listener.ora file, then the listener agent overwrites these parameters.

If you use the SRVCTL utility to set the invitednodes and invitedsubnets values, then the
listener agent automatically sets VALID_NODE_CHECKING_REGISTRATION_listener_name to
SUBNET and sets REGISTRATION_INVITED_NODES_listener_name to the specified list in the
listener.ora file.

For other listeners managed by CRS, the listener agent sets
VALID_NODE_CHECKING_REGISTRATION_listener_name in the listener.ora file only if it is not
already set in the listener.ora file. The SRVCTL utility does not support setting the
invitednodes and invitedsubnets values for a non-SCAN listener. The listener agent does
not update REGISTRATION_INVITED_NODES_listener_name in the listener.ora file for a non
SCAN listener.

Related Topics

• Oracle Database Net Services Administrator's Guide

Chapter 5
Service Deployment Options

5-37

Administering Services
Learn how to create and administer services, and perform other service-related tasks using
Oracle Enterprise Manager and the SRVCTL utility.

Note:

You can also use the DBMS_SERVICE package to create or modify services and service
attributes, but SRVCTL will override any settings made using this package. Oracle
does not recommend using the DBMS_SERVICE package with services used either by
an Oracle Real Application Clusters (Oracle RAC) database, or with Oracle Restart,
or when Oracle Clusterware is managing a single-instance database.

• Overview of Service Administration
When you create and administer services, you are dividing the work that your database
performs into manageable units.

• Administering Services with Oracle Enterprise Manager
The Cluster Managed Database Services page is the main page for beginning all tasks
related to services.

• Administering Services with SRVCTL
Learn how to use SRVCTL to perform service administration on an Oracle Real Application
Clusters (Oracle RAC) database.

Overview of Service Administration
When you create and administer services, you are dividing the work that your database
performs into manageable units.

The goal of using services is to achieve optimal utilization of your database infrastructure. You
can create and deploy services based on business requirements. Oracle Database can
measure the performance for each service. Using the DBMS_MONITOR package, you can define
both the application modules within a service and the individual actions for a module and
monitor thresholds for these actions, enabling you to manage workloads to deliver capacity on
demand.

When you create new services for your database, you should define the automatic workload
management characteristics for each service, as described in "Service Characteristics".

In addition to creating services, you can:

• Delete a service. You can delete services that you created. However, you cannot delete or
modify the properties of the default database service that Oracle Database created.

• Check the status of a service. A service can be assigned different roles among the
available instances. In a complex database with many services, you may not remember
the details of every service. Therefore, you may have to check the status on an instance or
service basis. For example, you may have to know the status of a service for a particular
instance before you make modifications to that instance or to the Oracle home from which
it runs.

• Start or stop a service for a database or an instance. A service must be started before
it can be used for client connections to that instance. If you shut down your database, for

Chapter 5
Administering Services

5-38

example, by running the SRVCTL command srvctl stop database -db db_unique_name
where db_unique_name is the name of the database you want to stop, then Oracle
Database stops all services for that database. Depending on the service management
policy, you may have to manually restart the services when you start the database. Both
the srvctl stop database and srvctl stop service commands accept the -force
option to forcibly disconnect connections. To drain sessions for planned outages do not
use the -force option.

• Map a service to a consumer group. You can map services to Resource Manager
Consumer groups to limit the amount of resources that services can use in an instance.
You must create the consumer group and then map the service to the consumer group.

• Enable or disable a service for a database or an instance. By default, Oracle
Clusterware attempts to restart a service automatically after failures. You can prevent this
behavior by disabling a service. Disabling a service is useful when you must perform
database or instance maintenance, such as when you are performing an upgrade and you
want to prevent connection requests from succeeding.

• Relocate a service to a different instance. You can move a service from one instance to
another instance to re-balance workloads, for example, after adding or deleting cluster
nodes.

Note:

• When you use services, do not set a value for the SERVICE_NAMES parameter;
Oracle Database controls the setting for this parameter for the services that you
create and for the default database service. The service features that this chapter
describes are not directly related to the features that Oracle Database provides
when you set SERVICE_NAMES. In addition, setting a value for this parameter may
override some benefits of using services.

• Service status information must be obtained from SRVCTL or from the service-
related database views, such as dba_services.

• If you specify a service using the DISPATCHERS initialization parameter, it
overrides any service in the SERVICE_NAMES parameter, and cannot be managed.
(For example, stopping the service with a SRVCTL command does not stop
users connecting with the service.)

Related Topics

• Enabling Clients for Oracle RAC
Learn how FAN is integrated with Oracle Clients, and how to enable FAN events for the
several specific client development environments.

• Oracle Database PL/SQL Packages and Types Reference

Administering Services with Oracle Enterprise Manager
The Cluster Managed Database Services page is the main page for beginning all tasks related
to services.

Access this page, as follows:

1. In Oracle Enterprise Manager, go to the Cluster Database Home page.

Chapter 5
Administering Services

5-39

2. From the Availability menu, select Cluster Managed Database Services to display the
Cluster Managed Database Services page.

3. Enter or confirm the credentials for the Oracle RAC database and host operating system
and click Continue to display the Cluster Managed Database Services page.

From the Cluster Managed Database Services page you can drill down to perform the following
tasks:

• View a list of services for the cluster

• View the instances on which each service is currently running

• View the status for each service

• Create or edit a service

• Start or stop a service

• Enable or disable a service

• Perform instance-level tasks for a service

• Delete a service

Note:

You must have SYSDBA credentials to access a cluster database. Cluster Managed
Database Services does not permit you to connect as anything other than SYSDBA.

See Also:

Oracle Enterprise Manager online help for more information about administering
services with Oracle Enterprise Manager

Administering Services with SRVCTL
Learn how to use SRVCTL to perform service administration on an Oracle Real Application
Clusters (Oracle RAC) database.

Note:

When you create a service using SRVCTL, you must start the service with a separate
SRVCTL command. However, you may later have to manually stop or restart the
service. You may also have to disable the service to prevent automatic restarts, to
manually relocate the service, or to obtain status information about the service.

• Creating Services with SRVCTL
To create a service with SRVCTL, use the srvctl add service command on the
command line.

Chapter 5
Administering Services

5-40

• Creating Services for Application Continuity and Transaction Guard
To configure services for Application Continuity, when you create a service using SRVCTL,
set the -failovertype parameter to TRANSACTION and -commit_outcome to TRUE.

• Starting and Stopping Services with SRVCTL
To start or stop a service on Oracle Real Application Clusters (Oracle RAC), use the
SRVCTL syntax described here.

• Enabling and Disabling Services with SRVCTL
To enable or disable a service on Oracle Real Application Clusters (Oracle RAC), use the
SRVCTL syntax described here.

• Relocating Services with SRVCTL
To relocate a service on Oracle Real Application Clusters (Oracle RAC), use the SRVCTL
syntax described here.

• Obtaining the Status of Services with SRVCTL
to obtain the status of a service on Oracle Real Application Clusters (Oracle RAC), run the
srvctl status service command from the command line.

• Obtaining the Configuration of Services with SRVCTL
To obtain the high availability configuration of a service on Oracle Real Application Clusters
(Oracle RAC), run the srvctl config service command from the command line.

Creating Services with SRVCTL
To create a service with SRVCTL, use the srvctl add service command on the command
line.

Related Topics

• srvctl add service
Adds services to a database and assigns them to instances.

Creating Services for Application Continuity and Transaction Guard
To configure services for Application Continuity, when you create a service using SRVCTL, set
the -failovertype parameter to TRANSACTION and -commit_outcome to TRUE.

When using Application Continuity and Transaction Guard with your applications, you must
configure a service. This section describes how to configure these application services
depending on the functionality you plan to implement.

Creating Services for Application Continuity

Additionally, you can set values for these other service parameters for Application Continuity
and load balancing:

• -replay_init_time: Specifies how long, in seconds, you allow replay to start. Oracle
recommends that you choose a value based on how long you will allow replay to be
initiated. The default value is 300 seconds.

• -retention: Specifies the time (in seconds) that the commit outcome information is stored
in the database. The default value is 86400 (1 day).

• -session_state: After a COMMIT has run, if the state was changed in that transaction,
then it is not possible to replay the transaction to reestablish that state if the session is lost.
When configuring Application Continuity, the applications are categorized depending on
whether it is correct to continue past a COMMIT operation within a request.

Chapter 5
Administering Services

5-41

– Dynamic: (default) A session has a dynamic state if the session state changes are not
fully encapsulated by the initialization, and cannot be fully captured in a callback at
failover. Once the first transaction in a request commits, failover is internally disabled
until the next request begins. This is the default mode that almost all applications
should use for requests.

– AUTO: Use session state AUTO so that the session state is managed as the application
evolves. Session state AUTO is available with TAC. When using TAC, both the client
visible and server visible session states must match for a successful failover or session
migration. When there is unrestorable session state at the beginning of a request, TAC
does not enable as the state cannot be proven at the beginning of the request. Use
ACCHK and the protection statistics to detect unrestorable session state at the
beginning of request. Use RESET_STATE to clean session state automatically by Oracle
Database between requests.

–

• -failoverretry: Number of connection retries for each connection attempt; recommended
value is 30.

• -failoverdelay: Delay in seconds between each connection attempt; recommended value
is 10.

• -notification: FAN is highly recommended—set this value to TRUE to enable FAN for OCI
and ODP.Net clients.

• -clbgoal: For connection load balancing, use LONG when using run-time load balancing.

• -rlbgoal: For run-time load balancing, set to SERVICE_TIME.

You can use SRVCTL to modify an existing service for Application Continuity, similar to the
following command, where racdb is the name of your Oracle RAC database, and app1 is the
name of the service you are modifying:

$ srvctl modify service -db racdb -service app1 -clbgoal LONG
 -rlbgoal SERVICE_TIME -failoverretry 30 -failoverdelay 10
 -failovertype TRANSACTION -commit_outcome TRUE -replay_init_time 1800
 -retention 86400 -notification TRUE

Creating Services for Transaction Guard

To enable Transaction Guard, but not Application Continuity, create the service using SRVCTL
and set only -commit_outcome TRUE.

You can use SRVCTL to modify an existing service to enable Transaction Guard, similar to the
following command, where racdb is the name of your Oracle RAC database, and app2 is the
name of the service you are modifying:

$ srvctl modify service -db racdb -service app2 -commit_outcome TRUE
 -retention 86400 -notification TRUE

In the preceding example, the -retention parameter specifies how long, in seconds, to
maintain the history. Additionally the –notification parameter is set to TRUE, enabling FAN
events.

To use Transaction Guard, a DBA must grant permission, as follows:

GRANT EXECUTE ON DBMS_APP_CONT;

Chapter 5
Administering Services

5-42

Related Topics

• Oracle Database Development Guide

Starting and Stopping Services with SRVCTL
To start or stop a service on Oracle Real Application Clusters (Oracle RAC), use the SRVCTL
syntax described here.

For applications to connect using a server, the service must be started. If you stop a service,
then it is temporarily unavailable, but is still subject to automatic restart and failover.

To start a service, enter the following SRVCTL syntax at the command line:

$ srvctl start service -db db_unique_name [-service service_name_list]
 [-instance inst_name] [-startoption start_options]

To stop a service, enter the following SRVCTL syntax at the command line:

$ srvctl stop service -db db_unique_name -service service_name_list
 [-instance inst_name] [-stopoption stop_options]

Enabling and Disabling Services with SRVCTL
To enable or disable a service on Oracle Real Application Clusters (Oracle RAC), use the
SRVCTL syntax described here.

If you disable a service, then Oracle Clusterware does not consider the service for automatic
startup, failover, or restart. You might disable a service when performing application
maintenance, to ensure the service is not accidentally restarted by Oracle Clusterware until
your maintenance operations are complete. To make the service available for normal operation
again, you enable the service.

To enable services, use the following SRVCTL syntax from the command line:

$ srvctl enable service -db db_unique_name -service service_name_list
 [-instance inst_name]

To disable services, use the following SRVCTL syntax from the command line:

$ srvctl disable service -db db_unique_name -service service_name_list
 [-instance inst_name]

Relocating Services with SRVCTL
To relocate a service on Oracle Real Application Clusters (Oracle RAC), use the SRVCTL
syntax described here.

to relocate a service, you run the srvctl relocate service command from the command line.
For example, you can use this command when a service has failed over to an available
instance, but you want to move it back to the preferred instance after that instance is restarted.

Chapter 5
Administering Services

5-43

In the following example, the srvctl relocate service command relocates the crm service
from instance apps1 to instance apps3:

$ srvctl relocate service -db apps -service crm -oldinst apps1 -newinst apps3

In the following example, the srvctl relocate service command relocates the crm service
from node1 to node3 using node syntax:

$ srvctl relocate service -db apps -service crm -currentnode node1
 -targetnode node3

Obtaining the Status of Services with SRVCTL
to obtain the status of a service on Oracle Real Application Clusters (Oracle RAC), run the
srvctl status service command from the command line.

In the following example, the srvctl status service command returns the status of the
services that are running on the apps database:

$ srvctl status service -db apps

Service erp is running on nodes: apps02,apps03
Service hr is running on nodes: apps02,apps03
Service sales is running on nodes: apps01,apps04

Obtaining the Configuration of Services with SRVCTL
To obtain the high availability configuration of a service on Oracle Real Application Clusters
(Oracle RAC), run the srvctl config service command from the command line.

In the following example, the srvctl config service command returns the configuration of
the erp service that is running on the apps database:

$ srvctl config service -db apps -service erp

Service name: erp
Service is enabled
Cardinality: 1
Disconnect: false
Service role: PRIMARY
Management policy: AUTOMATIC
DTP transaction: false
AQ HA notifications: true
Global: false
Commit Outcome: true
Failover type: TRANSACTION
Failover method: NONE
TAF failover retries: 30
TAF failover delay: 10
Connection Load Balancing Goal: LONG
Runtime Load Balancing Goal: SERVICE_TIME
TAF policy specification: NONE
Edition:

Chapter 5
Administering Services

5-44

Pluggable database name:
Maximum lag time: ANY
SQL Translation Profile:
Retention: 86400 seconds
Replay Initiation Time: 1800 seconds
Session State Consistency: AUTO
Preferred instances: apps
Available instances:

Global Services
Oracle RAC supports database services and enables service-level workload management
across instances in a single cluster.

Global services provide dynamic load balancing, failover, and centralized service management
for a set of replicated databases that offer common services. The set of databases may include
Oracle RAC and non-clustered Oracle databases interconnected by Oracle Data Guard,
Oracle GoldenGate, or any other replication technology.

When you create and use global services, the following workload management features are
available:

• Ability to specify preferred and available databases for a global service

• Handling of replication lag

• Geographical affinity between clients and servers

• Connection load balancing

• Run-time load balancing

• Inter-database service failover

• Fast connection failover

• Connect-time failover

• Application Continuity

• Transaction Guard

• Backward compatibility with existing clients

Note:

You can manage instance placement of a global service within an Oracle RAC
database with SRVCTL but you can only manage other global service attributes with
GDSCTL.

Related Topics

• Oracle Database Global Data Services Concepts and Administration Guide

Service-Oriented Buffer Cache Access
Service-oriented buffer cache access improves performance by managing data with the service
to which the data belongs.

Chapter 5
Global Services

5-45

Access of an object, over time, through a service is mapped and persisted to the database,
and this information can be used to improve performance. Blocks that are accessed through
the service are cached in the instances where the services are running and, more importantly,
the information is not cached where the services are not running.

This information can also be used to pre-warm the cache prior to a service starting. The
service start-up can be triggered either by instance start-up or by service relocation. Service-
oriented buffer cache access provides consistent performance to any user of that service
because the blocks that the service user accesses are cached in the new relocated instance.

Connecting to a Service: An Example
You can use this example to see how to create a service, and see several examples of
connecting to that service using different client methods.

The service is enabled for run-time load balancing using the following scenario:

• Service Name: HR.example.com
– Running on database named CRM

– The system consists of 4 nodes

• SERVICE_TIME is specified as the value for the -rlbgoal parameter

• The SCAN address of the listener is rws3010104-scan.example.com
• The Listener port is 1585

The service has a cardinality of two, but if needed, can be offered by any of the CRM database
instances. The service configuration is as follows:

• Preferred Instances: CRM1, CRM2

• Available Instances: CRM3, CRM4

• LONG is specified as the value for the -clbgoal parameter

The application using this service takes advantage of Application Continuity, so you must set -
failovertype and -commit_outcome. Use the default retention parameters, but set a 10
second delay between connection attempts, and set a limit of up to 40 retries before failing to
get a connection.

Example 5-4 Creating the HR Service Using SRVCTL

In this example, you create the HR service using SRVCTL:

$ srvctl add service –db CRM –service HR.example.com –preferred CRM1,CRM2
 –available CRM3,CRM4 –clbgoal LONG –failovertype TRANSACTION
 –commit_outcome TRUE –failoverdelay 10 –failoverretry 40

Next, start the HR.example.com service:

$ srvctl start service –db CRM –service HR.example.com

The service is now available on up to two instances, and CRM1 and CRM2 are the preferred
instances.

Chapter 5
Connecting to a Service: An Example

5-46

Example 5-5 Connecting to the HR Service from a JDBC Application

In this example, the application that connects to the HR service is a Java Database
Connectivity (JDBC) application that is using the JDBC Universal Connection Pool with the
JDBC thin driver.

A URL is constructed specifying the thin-style service name format for the database specifier.
Fast Connection Failover is enabled, and remote Oracle Notification Service is configured,
where the Oracle Notification Service daemon on the cluster listens on port 6200.

//import packages and register the driver
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

//set the connection properties on the data source.
pds.setConnectionPoolName("FCFPool");
pds.setFastConnectionFailoverEnabled(true);
pds.setONSConfiguration("nodes=rws3010104-scan.example.com:6200");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//rws3010104-scan.example.com:1585/
HR.example.com");
pds.setUser("HR");
pds.setPassword("hr");

//Override any pool properties.
pds.setInitialPoolSize(5);

//Get a database connection from the datasource.

Connection conn = pds.getConnection();

// do some work

//return connection to pool
conn.close();
conn=null

Related Topics

• Oracle Universal Connection Pool Developer’s Guide

Chapter 5
Connecting to a Service: An Example

5-47

6
Ensuring Application Continuity

Application Continuity is a feature that enables the replay, in a non-disruptive and rapid
manner, of a request against the database after a recoverable error that makes the database
session unavailable so an outage appears to the user as no more than a delayed processing of
the request.

AC needs request boundaries, which means AC depends on Oracle or third-party pools that
embed request boundaries when connections are borrowed and returned to the pool.
Whereas, TAC uses provided request boundaries and creates its own. With TAC request
boundaries advance automatically when there is no transaction, the session state is restorable,
and cursors are closed.

To use this chapter, you should be familiar with the major relevant concepts and techniques of
the technology or product environment in which you are using Application Continuity, such as
Oracle RAC or Oracle Active Data Guard (Oracle ADG).

• Understanding Application Continuity
Application Continuity can be used to mask outages from clients and recover in-flight
transactions that would otherwise be lost.

• Transparent Application Continuity
A version of Application Continuity for simple applications that uses discovery to detect
request boundaries.

• Configuring Application Continuity
Application Continuity (AC) requires using an Oracle Pool or an application that allows
Transparent Application Continuity (TAC) to discover request boundaries.

• Administering Application Continuity Operation and Usage
Learn how to manage the use of Application Continuity, and how you can use it in
applications.

• Fast Application Notification (FAN)
The Oracle RAC high availability framework monitors a database and its services, and
sends Fast Application Notification (FAN) event notifications.

• Configure for Unplanned Outages
You can assign services to one or more instances in an administrator-managed Oracle
RAC database to hide outages.

• Managing Planned Maintenance
To minimize service disruption to application users, Oracle Real Application Clusters
(Oracle RAC) provides interfaces that relocate, disable, and enable services.

• Transaction Guard for Improving Client Failover
Transaction Guard is a developer feature that your applications can use to determine
COMMIT_OUTCOME following recoverable errors.

• Application Continuity During Major Database Version Upgrades with DBMS_ROLLING
Starting with Oracle Database 23ai, Application Continuity and draining of database
sessions are supported during major database version upgrades and database
restructuring when using Application Continuity with DBMS_ROLLING.

6-1

• Reset Database Session State
When you set the RESET_STATE service attribute to LEVEL1 or LEVEL2, the session state set
by the application in a request is cleared when a request to the database ends.

See Also:

Oracle Database High Availability Overview and Best Practices describes how you
can choose and implement the level of Application Continuity protection that is the
best for your applications.

Understanding Application Continuity
Application Continuity can be used to mask outages from clients and recover in-flight
transactions that would otherwise be lost.

• About Application Continuity
Application Continuity provides high availability for your application workloads.

• Key Concepts for Application Continuity
This section describes several terms and concepts that you must understand to use
Application Continuity.

• How Application Continuity Works for Applications
If a recoverable error occurs and if you enabled replay, then Application Continuity
attempts recovery of the database session.

• Support for Oracle Application Continuity and Transparent Application Continuity
Support for Application Continuity (AC) is integrated into many Oracle applications.

• Restrictions and Other Considerations for Application Continuity
Be aware of these restrictions and considerations when using Application Continuity.

• Application Continuity for Various Applications
Transparent Application Continuity covers applications that belong to three different
groups, automatically tracked by the state tracking system.

About Application Continuity
Application Continuity provides high availability for your application workloads.

Application Continuity is a high availability feature that masks many recoverable Oracle
Database outages (when replay is successful) from applications and users by restoring the
database session: the full session, including all states, cursors, variables, and the last
transaction if there is one. Application Continuity addresses the problem that arises when an
application is trying to access the database and the database instance becomes unavailable
due to an unplanned outage or planned maintenance (such as timeout, network outage,
instance failure, repair, configuration change, and patch apply). Without Application Continuity
in place, database recovery does not mask outages to applications and end users. In such
scenarios, developers and users must handle the exception conditions, and users can be left
not knowing what happened to their funds transfers, time sheets, orders, and bill payments.
Users might lose screens of uncommitted data, and must log in again and reenter that data. In
the worst cases, the administrator might be forced to restart the middle tier to recover from an
overwhelming number of logins.

With Application Continuity, if the database instance becomes unavailable, then Application
Continuity attempts to rebuild the session and any open transactions using the correct states;

Chapter 6
Understanding Application Continuity

6-2

and if the transaction committed and need not be resubmitted, then the successful return
status is returned to the application. If replay is successful, then the request can continue
safely without risk of duplication. If replay cannot restore data that the application has already
processed and potentially made decisions on, then the database rejects the replay and the
application receives the original error.

Client requests can contain transactional and non-transactional work. After a successful replay
on Oracle Database, the application can continue where that database session left off, instead
of having users left in doubt, not knowing what happened to their transactions. Recovering
these client requests also helps to avoid the need to reboot mid-tier servers to recover from an
overload of logins when the application comes back online. With Application Continuity, the
end-user experience is improved by masking many outages, planned and unplanned, without
the application developer needing to attempt to recover the request.

Application Continuity performs the recovery of in-flight transactions and database session
state, while ensuring the transaction idempotence provided by Transaction Guard. Each
database session is tagged with a logical transaction ID (LTXID), so the database recognizes
whether each replay committed any transactions, and if it did commit any transactions, whether
the work also ran to completion. While Application Continuity attempts to replay, the replay
appears to the application as a delayed processing, or the application receives the commit
response for the original transaction (if the last transaction had completed before the outage).

Application Continuity is supported for Oracle RAC, Oracle Active Data Guard, and
DBMS_ROLLING. It is supported for Oracle Database using the multitenant architecture (with
failover at the Pluggable Database level). It is not currently supported for Oracle GoldenGate,
Logical Standby, third-party replication solutions, or DML redirection if using Oracle Active Data
Guard.

Related Topics

• Administering Application Continuity Operation and Usage
Learn how to manage the use of Application Continuity, and how you can use it in
applications.

• Restrictions and Other Considerations for Application Continuity
Be aware of these restrictions and considerations when using Application Continuity.

Key Concepts for Application Continuity
This section describes several terms and concepts that you must understand to use
Application Continuity.

The following terms are used throughout this chapter:

Database request

A database request is a unit of work submitted to the database from the application, such as a
transaction. A request typically corresponds to the SQL and PL/SQL, and other database calls,
of a single web request on a single database connection. A request is generally demarcated by
the calls made to check-out and check-in the database connection from a connection pool.

Request Boundaries

Request Boundaries demarcate where applications and application servers borrow and return
connections from their connection pools. Request Boundaries indicate when a session is not in
use. When request boundaries are visible to the database, it enables functionality such as
draining for planned maintenance, load balancing, and multiplexing to be isolated at the
database layer. Sessions can be re-established with no visible disruption to the application
layers above.

Chapter 6
Understanding Application Continuity

6-3

Recoverable error

A recoverable error is an error that arises due to an external system failure, independent of the
application session logic that is running, such as a lost or invalid connection. Recoverable
errors occur following planned and unplanned outages of foregrounds, networks, nodes,
storage, and databases. The application receives an error code that can leave the application
not knowing the status of the last operation submitted. Application Continuity reestablishes
database sessions and resubmits the pending work for the class of recoverable errors.

Application Continuity does not resubmit work following call failures due to nonrecoverable
errors. An example of a nonrecoverable error that would not be replayed is submission of
invalid data values.

Commit outcome

A transaction is committed by updating its entry in the transaction table. Oracle Database
generates a redo-log record corresponding to this update and writes out this redo-log record.
Once this redo-log record is written out to the redo log on disk, the transaction is considered
committed at the database. From the client perspective, the transaction is considered
committed when an Oracle message (called the commit outcome), generated after that redo is
written, is received by the client. However, if a COMMIT has been issued, then the COMMIT failure
message cannot be retrieved if it is not received by the client or the application.

Restoring original function results

Restoring original function results are non-deterministic that can obtain a new value every time
they are called, and thus their results can change frequently. Restoring original function results
cause a problem for replay because the results can change at replay. Consider
sequence.NEXTVAL and SYSDATE, often used in key values. If a primary key is built with values
from these function calls, and is used in later foreign keys or other binds, at replay the same
function result must be returned.

Support for keeping the original results of Oracle functions is provided for SYSDATE,
SYSTIMESTAMP, SYS_GUID, sequence.NEXTVAL, CURRENT_TIMESTAMP, and LOCALTIMESTAMP.
Identity sequences are supported for owned sequences in SQL.

Application Continuity keeps the original values for SQL automatically. If you are using PL/
SQL, then grant KEEP for application users, and the KEEP clause for a sequence owner.

Session state consistency

After a COMMIT statement has processed, if state was changed in that transaction, it is not
possible to replay the transaction to reestablish that state if the session is lost. Transparent
Application Continuity creates a new checkpoint of the session state to reestablish a new
starting point for replay. When configuring Transparent Application Continuity, use session
state consistency set to AUTO.

• A session has dynamic state if the session state changes during the request. When using
Application Continuity, failover is internally disabled until the next request begins.

• With Transparent Application Continuity, the state is managed for you when you set the
session state consistency service attribute to AUTO. The session states are tracked and
verified at failover. After a disable, when session state consistency service attribute is set
to AUTO, failover is re-enabled automatically when possible.

• Use session state AUTO so that the session state is managed as the application evolves.
Session state AUTO is available with TAC. When using TAC, both the client visible and
server visible session states must match for a successful failover or session migration.

Chapter 6
Understanding Application Continuity

6-4

When there is an unrestorable session state at the beginning of a request, TAC does not
enable because the state cannot be proven at the beginning of the request. Use ACCHK
and the protection statistics to report unrestorable session state at the beginning of the
request. Use RESET_STATE to clean session state automatically by Oracle Database
between requests.

•

Note:

The service attribute values FAILOVER_TYPE = TRANSACTION with
SESSION_STATE_CONSISTENCY = STATIC are no longer a supported service
attribute combination.

Stateless applications

A stateless application is an application program that does not use session state in one
request – such as context and PL/SQL states that were set by a prior usage of that session by
another web request or similar usage. The necessary state to handle the request is contained
within the request itself, whether as part of the URL, query-string parameters, body, or
headers. In a cloud environment, it is preferable that applications be stateless for the sake of
scalability and portability. Statelessness enables greater scalability because the server does
not have to maintain, update, or communicate that session state. Additionally, load balancers
do not have to consider session affinity for stateless systems. Most modern Java Web
applications are stateless. The service attribute RESET_STATE is recommended for all stateless
applications to prevent leakage of session state to later reuses.

How Application Continuity Works for Applications
If a recoverable error occurs and if you enabled replay, then Application Continuity attempts
recovery of the database session.

The following figure is a graphical representation of how Application Continuity works.

Chapter 6
Understanding Application Continuity

6-5

Figure 6-1 Application Continuity

To attempt to recover a database session following a recoverable error, Application Continuity
performs the following steps:

Note:

The steps to recover a database session apply for both unplanned and planned
outages, although specific steps vary depending on the type of outage.

1. The client application makes a request, which is passed to a middle tier (such as the
Universal Connection Pool (UCP), ODP.NET, WebLogic Server, OCI session pool, Tuxedo,
or third-party pool using UCP) and forwarded to the database. The application could also
make a request directly to the database using the JDBC replay driver or ODP.NET
managed provider 23ai.

2. The middle tier, or Oracle drivers (JDBC replay driver, OSI, or ODPM 23ai).

3. A planned or unplanned DOWN Fast Application Notification (FAN) event or recoverable error
is received. The driver stops the terminated session.

4. Application Continuity begins the replay and does the following:

a. Replaces the terminated physical session with a new clean session.

Chapter 6
Understanding Application Continuity

6-6

b. Prepares for replay by using Transaction Guard to determine the outcome of the in-
flight transaction, if one was open.

c. If FAILOVER_RESTORE=LEVEL2, FAILOVER_RESTORE=LEVEL1, or FAILOVER_TYPE=AUTO,
then Application Continuity restores the initial session state. Use Wallets with
FAILOVER_RESTORE to restore all modifiable parameters. Application Continuity uses a
label callback or initial callback if an application also sets session states that are not
provided by FAILOVER_RESTORE in the callback

d. Rebuilds the database session, recovering the transactional and non-transactional
states, and validating at each step that the data and messages seen by the client
driver are the same as those that the client may have seen and used to make a
decision.

e. Ends the replay and returns to run-time mode.

f. Submits the last queued call.

This is the last call made when the outage was discovered. During replay, only this call
can run a COMMIT. A COMMIT midway through rebuilding the session terminates replay
(excluding autonomous transactions).

5. The response is returned to the application.

If replay succeeded, then the application can continue with the problem masked. If not,
then the application must handle the original error.

The behavior of Application Continuity after a communication failure depends on the Oracle
products and technologies involved. For example:

• If you use Oracle RAC or an Oracle Active Data Guard farm, then, after the connection is
reestablished on another running instance, Application Continuity attempts to rebuild the
session and replay the last transaction if there is one in flight.

• If you use Oracle Active Data Guard and fail over to a standby site, then Application
Continuity connects to the failover instance and attempts to rebuild the session and replay
the last transaction there, if a transaction was in-flight. Application Continuity does not
replay if the Oracle Active Data Guard switchover or failover has lost data.

• If you are using Oracle RAC or Oracle RAC One Node and not using Oracle Active Data
Guard, and if an outage causes a break in all public networks or causes the database or
database session to shut down briefly, then Application Continuity attempts to rebuild the
session and replay the last transaction (if a transaction was in flight) against the database
after connectivity is restored.

Related Topics

• FAILOVER_RESTORE
Setting FAILOVER_RESTORE to LEVEL1 (for AC with older 19c versions), LEVEL2 (for AC with
database templates), or LEVEL1 or AUTO (for TAC) automatically restores all modifiable
parameters before replaying the request.

• Using Application Continuity for Planned Maintenance
For planned maintenance, Oracle recommends that you drain requests from Oracle
connection pools in combination with Application Continuity for those requests that do not
complete.

Support for Oracle Application Continuity and Transparent Application
Continuity

Support for Application Continuity (AC) is integrated into many Oracle applications.

Chapter 6
Understanding Application Continuity

6-7

Application Continuity is available for general use with the following Oracle technologies:

• Oracle JDBC Replay Driver 12c or later. This is a JDBC driver feature provided with Oracle
Database 12c for Application Continuity.

• The Oracle Database 21c or later JDBC Consolidated Data Source automatically enables
replay when Application Continuity is enabled. There is no longer a need to choose the
replay driver.

• Oracle Universal Connection Pool (UCP) 12c or later

• Oracle WebLogic Server Active GridLink or third-party JDBC application servers using
UCP with Oracle JDBC Replay Driver 19c or later, or JDBC Consolidated Data Source.

• Java connection pools or standalone Java applications using Oracle JDBC Replay Driver
12c or later with Request Boundaries.

• Applications and language drivers using Oracle Call Interface (OCI) 12c Release 2 (12.2)
or later, including Python with thick mode.

• SQL*Plus 19c or later.

• ODP.NET Unmanaged Provider 12c Release 2 (12.2) or later (Set “pooling=true” and
“Application Continuity=true” as default in 12.2 and later).

• Oracle Data Provider for .NET (ODP.NET), Managed Driver 23ai and later.

Transparent Application Continuity (TAC) is available for general use with the following Oracle
technologies:

• Oracle JDBC Replay Driver 19c or later. This is a JDBC driver feature provided with Oracle
Database 19c for Application Continuity

• The Oracle Database 21c or later JDBC Consolidated Data Source automatically enables
replay when Application Continuity is enabled. There is no longer a need to choose the
replay driver.

• Oracle Universal Connection Pool (UCP) 19c or later with Oracle JDBC Replay Driver 19c
or later

• Oracle WebLogic Server Active GridLink, or third-party JDBC application servers using
UCP with Oracle JDBC Replay Driver 19c or later

• Java connection pools or standalone Java applications using Oracle JDBC Replay Driver
19c or later

• Oracle Call Interface (OCI) 19c or later

• Python (python-oracledb) and Node.js (node-oracledb) drivers in thick mode

• SQL*Plus 19.3 or later

• ODP.NET pooled, Unmanaged Driver 18c or later (Set “pooling=true” as default in 12.2
and later)

• OCI-based applications using OCI 19c or later

• Oracle Data Provider for .NET (ODP.NET), Managed Driver 23ai and later

Application Continuity for Java is embedded in the Universal Connection Pool, WebLogic data
sources, including non-XA and XA data sources, and is available with the thin JDBC replay
driver, standalone (which is a JDBC replay driver without Oracle connection pools, such as
Apache Tomcat or a custom Java connection pool). Application Continuity for OCI is
embedded in SQL*Plus, OCI 12.2 or later, ODP.NET, Unmanaged Provider including Python
with thick mode, (ODP.NET), Managed Provider 23ai and later, and Python when using thick

Chapter 6
Understanding Application Continuity

6-8

mode. With AC and TAC, JDBC applications auto enable starting with Oracle Database 21c,
and OCI applications starting with Oracle Database 19c (19.3).

If a connection pool or container does not use an Oracle connection pool, then many third-
party applications fully support replacing the connection pool with the Universal Connection
Pool. This includes IBM WebSphere and Apache Tomcat. C applications that implement their
own pooling can use OCIRequestBegin and OCIRequestEnd calls. Alternatively—for Java
applications, only—an application can add its own request boundaries.

Request Boundaries

Request boundaries are embedded in Oracle connection pools starting with Oracle Database
release 12.1. Request boundaries are also embedded for third party Java Application Servers
that are standard with JDK9 or later. When you use the Oracle connection pools, request
boundaries are marked explicitly at check-out and check-in, delimiting the size of each replay.
When using third-party connection pools, use UCP if Java, or use Transparent Application
Continuity, or add request boundaries, or use third party Java Application Servers that are
standard with JDK9 or later. Request boundaries are discovered using state tracking when
using Transparent Application Continuity. This type of request boundary is called an implicit
request boundary. This functionality is available starting with the Oracle Database 19c Java
replay driver, and the Oracle Database 19c OCI driver, which includes open source and
ODP.NET Unmanaged Provider.

Note:

For Oracle Database 18c ONLY: Java requires an initial beginRequest. This is not
needed when using later versions of the Java replay driver.

Related Topics

• Introducing Oracle Data Provider for .NET

• Introducing JDBC

Restrictions and Other Considerations for Application Continuity
Be aware of these restrictions and considerations when using Application Continuity.

Application Continuity is not supported for:

• JDBC OCI driver (type 2)

• OLE DB

• ODBC

• OCCI

• Pre-compilers including C, COBOL, and FORTRAN

• XA

• python-oracledb in thin mode

• node-oracledb in thin mode

Chapter 6
Understanding Application Continuity

6-9

Note:

If applications in these environments require support for planned maintenance, then
consider draining using connection tests.

Note:

Oracle Data Provider for .NET (ODP.NET), Unmanaged Driver is deprecated in
Oracle Database 23ai.
ODP.NET provides ADO.NET-based data access to Oracle Database. There are two
primary Oracle data access drivers for Microsoft .NET Framework: ODP.NET,
Managed Driver and ODP.NET, Unmanaged Driver. In Oracle Database 23ai,
ODP.NET, Managed Driver supports all major features available in ODP.NET,
Unmanaged Driver with the same application programming interfaces and
configuration settings. Code migration from unmanaged ODP.NET to managed
ODP.NET is straightforward for the vast majority of existing .NET applications. Oracle
recommends that you migrate existing unmanaged ODP.NET applications to
ODP.NET, Managed Driver. The ODP.NET, Unmanaged Driver can be desupported in
a future release.

For OCI and ODP.NET Unmanaged drivers, Application Continuity does not work for ADTs,
Advanced Queues (AQ), and some LOB APIs. These exclusions do not apply to Java.

For applications using JDBC, there is no support for oracle.sql deprecated concrete classes:
OPAQUE, ANYDATA, or STRUCT.

If a statement cache at the application server level is enabled (for example, the WebLogic or
third-party application server statement cache), this cache must be disabled when replay is
used. Instead, configure the JDBC statement cache, which supports Application Continuity and
is optimized for JDBC and Oracle Database
(oracle.jdbc.implicitstatementcachesize=nnn).

Note the following restrictions when replay of transactions can occur:

• Replay is disabled intentionally if a request issues an ALTER SYSTEM or ALTER DATABASE
statement.

• Replay is disabled at a request level for ALTER SESSION statements that are deemed
unsafe to rebuild the session. This includes SERIALIZABLE mode. Starting with Oracle
Database 23ai, statements for events and disabling and enabling COMMIT IN PROCEDURE
and GUARD are supported.

Note that other ALTER SESSION statements at an application level are supported for replay.
These include statements for globalization support (NLS) settings, stored and private
outlines, setting the container (CDB/PDB), SQL trace, and PL/SQL warnings.

• The replay target database must be in the same database cluster (Oracle RAC, Oracle
Data Guard, Oracle Active Data Guard, or Oracle Multitenant) as the source database. To
protect the integrity of business transactions, Application Continuity does not replay if the
target is a different database. Application Continuity also does not replay if the target
database is the same as the source database (or Pluggable Database) but with data loss,
such as one flashed back, recovered incompletely by media recovery, or opened by Oracle
Data Guard to an earlier point in time.

Chapter 6
Understanding Application Continuity

6-10

• For streams arguments, replay is on a "best effort" basis. For example, if the application is
using physical addresses, the address has gone with the outage and cannot be
repositioned. JDBC stream setters (such as setBinaryStream), for example, cause replay
to be disabled.

• Application Continuity is not currently supported for Oracle GoldenGate, Logical Standby,
third-party replication solutions, or DML redirection if using Oracle Active Data Guard.

• Replay does not support ISOLATION_LEVEL=SERIALIZABLE.

Note:

If you are creating clones of databases by splitting disk images (for example, BCVs)
or by cloning so it is a "different" database for the purpose of making a logical
standby or logical copy that is not a physical or Oracle Active Data Guard database,
then the nid utility must be used to change the DBID to differentiate the databases.

Related Topics

• When Application Continuity in OCI Can Fail Over

• How to Change the DBID, DBNAME Using NID Utility (My Oracle Support Doc ID
863800.1)

Application Continuity for Various Applications
Transparent Application Continuity covers applications that belong to three different groups,
automatically tracked by the state tracking system.

• Applications That Use Containers with Request Boundaries
Applications that use containers with request boundaries enable Application Continuity to
manage replay between explicit boundaries.

• Applications that are Database Agnostic
Database-agnostic applications set a state when the connection is established, and do not
change non-transactional session states again, or change it rarely.

Applications That Use Containers with Request Boundaries
Applications that use containers with request boundaries enable Application Continuity to
manage replay between explicit boundaries.

A request boundary is a tag that marks the beginning and end of a database request.
Beginning with Oracle Database 12c release 2 (12.2.0.1), connection pools that embed
request boundaries include Oracle Universal Connection Pool, all WebLogic server data
sources, Tuxedo, Oracle Call Interface, ODP.NET Unmanaged Provider, and standard third-
party application servers and standalone Java pools that use the JDBC drivers
PooledConnection interface, in addition to SQL*Plus.

When Oracle Database is aware of request boundaries:

• The database can process web requests effectively and with no performance overhead,
including when to attach and release connections. It can multiplex, drain, rebalance, shed,
and allow complex states inside requests. Without request boundaries, the lower layers of
the database are not aware of web requests. Subsequently, the database relies on Oracle
Client actions, advisory methods and heuristics, such as fast connection failover,
connection validation, and state advice.

Chapter 6
Understanding Application Continuity

6-11

https://support.oracle.com/rs?type=doc&id=863800.1
https://support.oracle.com/rs?type=doc&id=863800.1

• The length of replay is limited to the initial state, followed by the user calls in that request
less those that are purged by Application Continuity. Request boundaries enable you to
control the length of replay. You can also determine where to drain for planned
maintenance (at the end of the request), and where to fail over for planned maintenance
(at the beginning of the request).

• When using Transparent Application Continuity with Java and Oracle Database 18c ONLY:
Java requires an initial beginRequest (and only for the first request boundary). This is not
needed in later versions.

• When using Application Continuity, the replay driver detects safe places to move the
request boundaries forward automatically. This feature is available when FAILOVER_TYPE is
set to AUTO.

• Applications deployed using middle-tier containers that set request boundaries have
access to the full set of transparency features that the database server provides. The
database detects when a client sets request boundaries and uses the boundaries to mark
safe points for draining, failover, concentration, and throughput measures.

Request boundaries enable an application to use all complex, non-transactional session states
within a request. The request boundary specification requires that these states are not
dependent across boundaries.

Applications that are Database Agnostic
Database-agnostic applications set a state when the connection is established, and do not
change non-transactional session states again, or change it rarely.

Database-agnostic applications (applications with no request boundaries) set basic, non-
transactional states. These applications do not use features or sequences proprietary to Oracle
Database. For these applications, Application Continuity identifies implicit boundaries. These
applications often set state once when a connection is created, and then do not change state
again, or change the state infrequently. This category of applications includes those
applications that use anonymous PL/SQL that does not create server-side session states.

When using Transparent Application Continuity with Oracle Database 19.3 or later releases,
explicit request boundaries are not required, but they are recommended. (For Oracle Database
18c ONLY: Java requires an initial beginRequest.) This allows support for SQL*Plus and third-
party connection pools. When explicit request boundaries are present, they are used. Explicit
request boundaries continue to be needed for Application Continuity. Oracle recommends that
you return your connections to the connection pools, when not in use.

Transparent Application Continuity
A version of Application Continuity for simple applications that uses discovery to detect request
boundaries.

• About Transparent Application Continuity
In Oracle Database both Application Continuity and Transparent Application Continuity
transparently tracks and records session and transactional state so that a database
session can be recovered following recoverable outages.

• Deciding on Transparent Application Continuity
Transparent Application Continuity (TAC) is an application failover solution that is safe
to enable by default.

Chapter 6
Transparent Application Continuity

6-12

• Using Transparent Application Continuity in Oracle Cloud Environments
Transparent Application Continuity is enabled by default on TP and TPURGENT services
in an Oracle Cloud environment for Oracle Autonomous Database–Dedicated, and is
available for Oracle Autonomous Database–Serverless.

About Transparent Application Continuity
In Oracle Database both Application Continuity and Transparent Application Continuity
transparently tracks and records session and transactional state so that a database session
can be recovered following recoverable outages.

Transparent Application Continuity uses this information to discover boundaries for basic
applications. Recovery of the user database session is done safely and with no need for a DBA
or developer to have any knowledge of the application or make application code changes.
Transparency is achieved by using a state-tracking infrastructure that categorizes session state
usage as an application issues user calls.

Transparent Application Continuity is enabled when FAILOVER_TYPE=AUTO.

You can enable Application Continuity or Transparent Application Continuity to protect
applications during planned maintenance and when unplanned outages occur. For planned
maintenance, database sessions that reach a safe place (such as a connection test or a known
recoverable point) are drained at the database. For database sessions that do not drain, the
database determines when to fail the database session over and triggers Transparent
Application Continuity or Application Continuity to do so. Application Continuity hides
unplanned outages for Java-based applications, OCI and ODP.NET applications including
SQL*Plus, all Oracle connection pools, Tuxedo, WebLogic Server, and third-party application
servers using Universal Connection Pool.

Starting with Oracle Database 23ai, Transparent Application Continuity (TAC) includes
Transparent Application Failover (TAF) style cursors, known as Resumable Cursors. TAC
supports basic SELECT cursors in FETCH. To support SELECT cursors in FETCH, not in
transactions, set session state consistency to AUTO. In addition, the database repositions these
cursors at failover for much faster failover. TAC provides higher protection because cursors can
remain open across transaction boundaries. This provides better-unplanned outages and
planned maintenance support for applications. It allows TAC to re-enable faster to provide
higher protection and achieves speedier failover.

For unplanned outages, Transparent Application Continuity is invoked for outages that result in
recoverable errors, typically related to underlying software, foreground, hardware,
communications, network, or storage layers, hiding most failures from applications and users.

TAC supports basic applications using SQL and basic ALTER SESSION statements. With
Transparent Application Continuity, DBAs no longer need to have knowledge of an application
to:

• Restore preset states—At run time, Transparent Application Continuity records the initial
preset session states, monitors further states, and records session signatures sufficient to
detect deviation in the state of a session at failover for monitored states. At failover,
Transparent Application Continuity restores the preset session states before replay starts,
and verifies that these session states fully match the original before replay starts. This also
allows for session state that has been restored using both Application Continuity and other
mechanisms, such as log-on triggers, labels, and connection call backs. You will continue
to add log-on triggers, call backs, or labels if the state is outside the preset states.

• Recognize and disable application-level side effects when recovering a session—
Transparent Application Continuity records the transactions and session state from the
client, which is referred to as capture, to enable replay. During normal run-time,

Chapter 6
Transparent Application Continuity

6-13

Transparent Application Continuity detects side effects, or changes that occur as a result
of the transaction, but are not part of the transaction itself. The type of side effect is
distinguished between those that relate to an application’s logic and those that are internal,
relating to database housekeeping. For applications that use statements that have side
effects, capture is disabled when the statement is running. Once a new request starts,
capture is re-enabled automatically.

• Restoring original function values for owned functions—Such functions can return a new
value each time they are run. Oracle provides support for keeping the original results of
these functions SYSDATE, SYSTIMESTAMP, LOCAL_TIMESTAMP, CURRENT_TIMESTAMP, SYS_GUID,
and sequence.NEXTVAL. If the original values are not kept and if different values are
returned to the application at replay, then Transparent Application Continuity rejects replay.
Use grants to keep your sequences, dates, and times. When an application is using its
own schema, you can assign the grants for keeping to a role and then grant this role to
users.

• Know about request boundaries—Request Boundaries demarcate where applications and
application servers borrow and return connections from their connection pools. For
applications using Application Continuity with the JDBC thin driver (beginning with Oracle
Database 18c), OCI, and ODP.NET Unmanaged Provider (beginning with Oracle Database
19c release 19.3), DBAs do not need to know about request boundaries but when they are
in use, Transparent Application Continuity takes advantage of them. As a best practice,
use explicitly delineated request boundaries in your application because it is not always
possible for the database to identify a checkpoint where a request boundary can be
inserted.

Using Transparent Application Continuity, the server and the drivers are tracking
transaction and session state usage. This allows the driver to detect implicit request
boundaries. For an implicit boundary with SSS cursors, no objects may be open, cursors
must have been returned to the statement cache, no transaction may be active, and the
session state must have been recognized as fully restorable. The driver either discards the
currently tracked information, and starts tracking again from this point, or it re-enables
tracking if there had been a disabling event. On the next call to the server, the server
verifies and, if applicable, creates a request boundary where there was previously no
explicit boundary.

• To use Transparent Application Continuity for more complex applications with unrestorable
session states, use a pool like you use for Application Continuity and set RESET_STATE to
clean the session state between usages. RESET_SATE is suitable for applications that must
not leak session state from one pooled usage to a later usage.

Deciding on Transparent Application Continuity
Transparent Application Continuity (TAC) is an application failover solution that is safe to
enable by default.

TAC provides failover for planned events, called planned failover, as well as for unplanned
events. Refer to Oracle Database High Availability Overview and Best Practices to know more
about planned and unplanned failover and Oracle Maximum Availability Architecture (MAA)
levels.

A successful failover is a delayed execution, with no error returned to the application. If TAC
cannot produce the same logical session, TAC returns an error to the application. The
correctness guarantees for a successful failover includes the following, but not limited to:

• Within the SLA set for the service under replay_initiation_timeout- Failover starts if the
timestamp for the failover is less than or equal to replay_initiation_timeout, where
replay_initiation_timeout is set at the start of the request.

Chapter 6
Transparent Application Continuity

6-14

• Same database forward in time- The failover checks that the target database is at the
correct database (DBID or PDBID) and is at the same time or is forward in time (called SCN
ancestry) from the original.

• No duplication of transactions- The failover checks whether the last request committed and
if the request committed returns COMMITTED to the client.

• Same session state at the start of replay as the original session- If replay is needed, after
restoring the session state using FAILOVER_RESTORE and before replaying, the session
states are checked to ensure that they match the original session at the start of the current
request.

• Same results that the application has already processed- Cursors are repositioned and the
results of that repositioning are checked to be the same as before. This is similar to TAF
with the difference that the reposition in Oracle Database 23ai is at the server with the
rows no longer returned to the client. To provide higher success of same results, TAC keep
original function results for sequences, date, time, and GUIDs.

TAC does this automatically for your application and declares success when it is correct to do
so. This enables application developers to focus on business functionality while TAC handles
the failover in the best possible way.

Know about planned failover?

With TAC enabled, the planned failover engine in the Oracle Database looks for places where
it is confident to failover and initiates the failover. This bounds your drain time and aims to
prevent sessions from being aborted. This is automatic with both TAC and AC, but it is
frequently with TAC.

Difference between TAC and AC (original)

AC needs request boundaries, which means AC depends on Oracle or third-party pools that
embed request boundaries when connections are borrowed and returned to the pool.
Whereas, TAC uses provided request boundaries and creates its own. With TAC request
boundaries advance automatically when there is no transaction, the session state is restorable,
and cursors are closed.

AC provides similar correctness guarantees for a successful failover as TAC, with a small
variation. AC enforces same client visible session states at the start of replay as the original
session. AC replays side effects, such as sending email by default. TAC does not replay side
effects as the default. The action for side effects is customizable in Oracle Database 23ai.

TAC request boundaries

TAC creates its own request boundaries, when:

• There is no transaction.

• The session state is restorable (no PL/SQL global variables, temporary tables, OJVM, and
session duration LOBs)

• The cursors are resumable in Oracle Database 23ai or closed

Cleaning sessions for next usage

The service attribute RESET_STATE cleans your session state and cursors at the end of each
request so these states do not leak to later requests. RESET_STATE saves you work and is
future proofed, meaning that later changes to your application are also cleaned. It allows TAC
to re-enable if TAC was unable to clean a session due to not restorable states.

Chapter 6
Transparent Application Continuity

6-15

Using Transparent Application Continuity in Oracle Cloud Environments
Transparent Application Continuity is enabled by default on TP and TPURGENT services in an
Oracle Cloud environment for Oracle Autonomous Database–Dedicated, and is available for
Oracle Autonomous Database–Serverless.

In Oracle Cloud environments, the use of FAILOVER_RESTORE and wallets means that you
should not have to add callbacks to set initial state, as was required for Transparent
Application Failover (TAF) and Application Continuity in Oracle Database releases prior to
12.2.

There are two features that work together to enable Transparent Application Continuity
automatically:

• For planned outages, sessions that reach a safe place for transactions are drained from
the instance and automatically failed over to another instance. For sessions that do not
drain, Oracle Database determines where to fail over the session and invokes Application
Continuity to fail over the session.

• For unplanned outages, Transparent Application Continuity transfers the user sessions to
a remaining instance, hiding the outage from users automatically without having to
understand or change the application.

Enable Application Continuity on Your Service

You can change the service attributes specified on your service by using the generic package
DBMS_APP_CONT_ADMIN. Use this procedure to enable Application Continuity or Transparent
Application Continuity, or to disable failover. New sessions will use the new failover type. You
must have the PDBADMIN user permissions to use these procedures. Use the full service name
in these examples.

• Use the dbms_app_cont_admin.enable_tac('TPURGENT') procedure to enable Transparent
Application Continuity for your service:

SQL> execute dbms_app_cont_admin.enable_tac('TPURGENT');

• Use the dbms_app_cont_admin.enable_ac('TPURGENT') procedure to enable Application
Continuity for your service:

SQL> execute dbms_app_cont_admin.enable_ac('TPURGENT');

• Use the dbms_app_cont_admin.disable_failover('HIGH') procedure to disable failover
for your service:

SQL> execute dbms_app_cont_admin.disable_failover('HIGH');

• Use the dbms_app_cont_admin.acchk_set procedure to enable ACCHK for your service:

SQL> execute dbms_app_cont_admin.acchk_set(true);

Chapter 6
Transparent Application Continuity

6-16

• Use the dbms_app_cont_admin.acchk_set_filter procedure to set ACCHK filter for your
service:

SQL> execute
dbms_app_cont_admin.acchk_set_filter(DBMS_APP_CONT_ADMIN.SERVICE_FIL
TER, 'TPURGENT');

• Use the dbms_app_cont_admin.enable_reset_state procedure to enable RESET STATE
for your service:

SQL> execute dbms_app_cont_admin.enable_reset_state('TPURGENT', 'LEVEL1');

• Use the dbms_app_cont_admin.set_draining procedure to configure draining for your
service:

SQL> execute dbms_app_cont_admin.set_draining('TPURGENT', 300,
'IMMEDIATE');

Configuring Application Continuity
Application Continuity (AC) requires using an Oracle Pool or an application that allows
Transparent Application Continuity (TAC) to discover request boundaries.

• Overview of Application Continuity Configuration Tasks
The Application Continuity features in various Oracle applications are used automatically if
you set the required service attributes.

• Configuring Connections for High Availability and Application Continuity
These are general recommendations for configuring the connections used by applications
for high availability.

• Configuring Oracle Database for Application Continuity
Before you can use Application Continuity, you must ensure that your system is configured
correctly.

• Establishing the Initial State Before Application Continuity Replays
At the beginning of replay, Application Continuity restores the initial session state.

• Potential Side Effects of Application Continuity
When you use Application Continuity with the service attribute FAILOVER_TYPE set to
TRANSACTION, statements that perform side effects are replayed.

Overview of Application Continuity Configuration Tasks
The Application Continuity features in various Oracle applications are used automatically if you
set the required service attributes.

The main actions for ensuring transparent replay for an application are the following:

1. Ensure that you have the necessary CPU and memory resources.

• CPU: Application Continuity is managed on the client and server sides and requires
minimal CPU overhead to operate.

At the client, CPU is used to build proxy objects and for garbage collection (GC).

At the server, CPU is used for validation. CPU overhead is reduced for platforms with
current Intel and SPARC chips where validation is assisted in the hardware.

Chapter 6
Configuring Application Continuity

6-17

• Memory: When using Application Continuity, the replay driver requires more memory
than the base driver because the calls are retained until the end of a request. At the
end of the request, the calls are released to the garbage collector. This action differs
from the base driver that releases closed calls.

The memory consumption of the replay driver depends on the number of calls per
request. If this number is small, then the memory consumption of the replay driver is
less, and comparable to the base driver.

To obtain the best performance, you must set the same value for both the -Xmx and -
Xms parameters on the client. For example, if there is sufficient memory, then allocate 4
to 8 GB (or more) of memory for the Virtual Machine (VM), for example, by setting -
Xms4g for 4 GB. If the -Xms parameter has a lower value, then the VM also uses a
lower value from the operating system, and performance might suffer and garbage
collection operations increase.

2. Determine whether the application borrows and returns connections from the connection
pool, for example WebLogic Server Pool, Universal Connection Pool, OCI Session Pool,
Oracle Tuxedo request, or ODP.NET connection pool, for each request, or whether to add
beginRequest and endRequest APIs to the application's own connection pool to identify
request boundaries for Java, only.

Caution:

Do not use the beginRequest and endRequest Java API calls or the
OCIRequestBegin and OCIRequestEnd OCI API calls anywhere other than at
request boundaries (borrow and return connections from your connection pool).
endRequest indicates that the request is complete, and that it is now stateless.
Replay starts from the next beginRequest. If there is prior state, it must be
reestablished using FAILOVER_RESTORE or callback.

3. Application Continuity replays all states in a request. If the application sets states before
vending connections, FAILOVER_RESTORE or a callback is needed. When using Oracle
WebLogic Server or the Universal Connection Pool, use FAILOVER_RESTORE, connection
labeling, or triggers. When using Oracle Call Interface (OCI) session pool, Oracle Tuxedo
or ODP.NET with Oracle Database 18c or later clients, use FAILOVER_RESTORE, and only
add the Transparent Application Failover (TAF) callback if it is needed. The labeling is used
for both runtime and replay. Oracle strongly recommends setting FAILOVER_RESTORE to
AUTO, LEVEL1, or LEVEL2 with wallets, to use database templates.

4. Determine whether the application requires, and therefore needs to configure keeping
original values for, SYSDATE, SYSTIMESTAMP, and SYS_GUID and sequences during failover.

5. Assess the application style for the session_state_consistency value, and set the
appropriate value on the service:

• If session_state_consistency is set to AUTO, then Transparent Application Continuity
monitors the session state and decides what to do. If you are unsure about state
usage or know that states can change in the future, then use Transparent Application
Continuity. With Oracle Database 23ai templates and wallets, modifiable parameters
are restored. For .NET applications, use ODP.NET, Managed Driver 23ai or later, or
ODP.NET Unmanaged Provider or later.

Use session state AUTO so that the session state is managed as the application
evolves. Session state AUTO is available with TAC. When using TAC, both the client
visible and server visible session states must match for a successful failover or session
migration. When there is unrestorable session state at the beginning of a request, TAC

Chapter 6
Configuring Application Continuity

6-18

does not enable as the state cannot be proven at the beginning of the request. Use
ACCHK and the protection statistics to detect unrestorable session state at the
beginning of request. Use RESET_STATE to clean session state automatically by Oracle
Database between requests.

• If session_state_consistency is set to DYNAMIC, then the application changes the
environment or settings during the request. Replay is disabled after the first COMMIT
until the beginning of the next request. DYNAMIC is the default mode, appropriate for
most applications.

Note:

The service attribute values FAILOVER_TYPE = TRANSACTION with
SESSION_STATE_CONSISTENCY = STATIC are no longer a supported service
attribute combination.

6. Determine if any requests in the application should not be replayed.

For example, replay may need to be disabled for requests using external PL/SQL actions.

7. Follow these configuration guidelines:

• For Java, use Oracle Database 12c release 1 (12.1.0.1), or later. For OCI-based
applications, use Oracle Database 12c release 2 (12.2), or later.

• For .NET applications, use ODP.NET, Managed Driver 23ai or later, or ODP.NET,
Unmanaged Provider 12.2, or later, connecting to an Oracle Database 12c Release 2
(12.2) or later. By default, Application Continuity is enabled for ODP.NET applications
in this configuration. When using OCI-based applications that do not use the OCI
Session Pool, including SQL*Plus, use Transparent Application Continuity that adds
boundaries for you.

Note:

Oracle Data Provider for .NET (ODP.NET), Unmanaged Driver is deprecated
in Oracle Database 23ai.

• Custom Java pools and standalone Java applications can also use the JDBC replay
data source directly. When using custom Java pools and standalone applications,
Oracle recommends that you use Transparent Application Continuity which adds
boundaries for you. You can also add beginRequest and endRequest Java APIs to your
application.

• If the application does not borrow and return from the Oracle connection pools,
explicitly mark request boundaries. For example, if using custom JDBC pools, or other
pools, Oracle recommends that you use Transparent Application Continuity which
adds boundaries for you. You can also add beginRequest and endRequest Java APIs
to your application. These APIs can also be used for standalone JDBC applications
without a connection pool.

• Enable FAN for fast interrupt on errors. This is essential to eliminate a TCP delay
occurring before the failover can start. In 12.2 FAN is built into the JDBC and OCI
drivers and is on by default for Java.

• Use a database service to connect; never use a SID or an instance name, or the
administration service that is the DB_NAME or DB_UNIQUE_NAME.

Chapter 6
Configuring Application Continuity

6-19

• Use a connection string that sets retries for new incoming connections and a delay
between these retries.

• For the service, set FAILOVER_TYPE to TRANSACTION for Application Continuity or set
FAILOVER_TYPE to AUTO for Transparent Application Continuity. Set COMMIT_OUTCOME to
TRUE and, for OCI FAN, set NOTIFICATION to TRUE. Optionally to find the best
connections to use, set GOAL to SERVICE_TIME and CLB_GOAL to LONG.

• Use the statistics for request boundaries and protection level to monitor the level of
coverage. If you need more details, then use Application Continuity Check Coverage
(with the ORAchk utility) to report the percentage of requests that are fully protected by
Application Continuity, and the location of those requests that are not fully protected.
Use this coverage check before deployment and after application changes. Developers
and management will know how well protected an application release is from failures
of the underlying infrastructure. If there is a problem, then it can be fixed before the
application is released, or waived knowing the level of coverage.

Related Topics

• Session State Consistency
Session state consistency describes how non-transactional state is changed during a
request.

• Oracle Data Provider for .NET Developer's Guide

• Oracle Database JDBC Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

Configuring Connections for High Availability and Application Continuity
These are general recommendations for configuring the connections used by applications for
high availability.

If you are using Java, then you must use the
oracle.jdbc.datasource.impl.OracleDataSource,
oracle.jdbc.replay.OracleConnectionPoolDataSourceImpl, or
oracle.jdbc.replay.driver.OracleXADataSourceImpl data source to obtain JDBC
connections. These data sources support all the properties and configuration parameters of all
the Oracle JDBC data sources, for example, the oracle.jdbc.pool.OracleDataSource.

For OCI based applications including SQL*Plus and ODP.NET, the OCI driver 12.2, and later,
supports Application Continuity.

You must remember the following points while using the connection URL:

• If the REMOTE_LISTENER setting for the database does not match the addresses in the
ADDRESS_LIST at the client, then it does not connect, showing services cannot be found.
So, the REMOTE_LISTENER setting for the database must match the addresses in the
ADDRESS_LIST at the client:

– If the connect string uses the SCAN Name, then REMOTE_LISTENER must be set to the
SCAN name.

– If the connect string uses an ADDRESS_LIST of host VIPs, then REMOTE_LISTENER must
be set to an address list that includes all SCAN VIPs and all host VIPs

Chapter 6
Configuring Application Continuity

6-20

Note:

Use SCAN for location independence, to avoid having to reconfigure the client
when you add or delete nodes, or when databases change to running on different
nodes.

• Set RETRY_COUNT, RETRY_DELAY, CONNECT_TIMEOUT, and TRANSPORT_CONNECT_TIMEOUT
parameters in the connection string. These settings improve acquiring new connections at
runtime, at replay, and during work drains for planned outages.

The CONNECT_TIMEOUT parameter is equivalent to the SQLNET.OUTBOUND_CONNECT_TIMEOUT
parameter in the sqlnet.ora file and applies to the full connection. The
TRANSPORT_CONNECT_TIMEOUT parameter applies per address.

• Set CONNECT_TIMEOUT to a high value to prevent an overabundance of log ins. Low values
can result in log in storms to the application. Do not set (RETRY_COUNT+1)*RETRY_DELAY or
CONNECT_TIMEOUT larger than your response time SLA. The application must either connect
or receive an error within the response time SLA.

• You are not recommended to use Easy*Connect for High Availability deployments.

Example 6-1 Recommended TNS Entry for High Availability

The following is an example of a Transparent Network Substrate (TNS entry). This is the
required TNS format for Oracle Notification Service (ONS) to be auto configured. ONS is the
transport system used for Fast Application Notification (FAN). Oracle recommends using FAN
with Application Continuity to provide fast outage detection.

myAlias=(DESCRIPTION=
 (CONNECT_TIMEOUT=90)(RETRY_COUNT=30)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=3)
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (ADDRESS=(PROTOCOL=TCP)(HOST=RAC-scan)(PORT=1521)))
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (ADDRESS=(PROTOCOL=TCP)(HOST=DG-Scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))

Related Topics

• Local Naming Parameters in the tnsnames.ora File

• Installing and Configuring Oracle Data Provider for .NET

Configuring Oracle Database for Application Continuity
Before you can use Application Continuity, you must ensure that your system is configured
correctly.

Your Oracle Database configuration must include the following to use Application Continuity:

• If you are using Oracle Real Application Clusters (Oracle RAC) or Oracle RAC One Node,
Oracle Data Guard, or Oracle Active Data Guard, then ensure that Fast Application
Notification (FAN) is configured with Oracle Notification Service (ONS) to communicate
with pools and drivers that are Oracle Database 12c or later.

• Set the service attributes on the service for replay and load balancing. For example, set:

Chapter 6
Configuring Application Continuity

6-21

– FAILOVER_TYPE = AUTO | TRANSACTION: Use FAILOVER_TYPE=AUTO for Transparent
Application Continuity or FAILOVER_TYPE=TRANSACTION for Application Continuity. This
attribute enables the replay functionality for the replay drivers and Application
Continuity. Oracle drivers keep track of all replayable statements issued during a
database session. If all of the statements are replayable, and any in-flight transactions
did not commit or the session is in conversation, then Oracle replays the uncommitted
work following a planned or unplanned database outage. This mode re-establishes
transactional and non-transaction states automatically with no additional application
steps.

– REPLAY_INITIATION_TIMEOUT = n: For setting the duration, in seconds, to allow replay
to start. For example, you might set the value of n to 300.

– FAILOVER_RETRIES = 3: For specifying the number of connection retries for each
replay. Oracle recommends that you set retry_count in the tnsnames.ora file, rather
than on the service.

– FAILOVER_DELAY = 3: For specifying the delay in seconds between connection retries.
Oracle recommends that you set retry_count in the tnsnames.ora file, rather than on
the service.

– COMMIT_OUTCOME = TRUE: If you are using Transaction Guard, the COMMIT_OUTCOME
service parameter determines whether the transaction commit outcome is accessible
after the COMMIT has run and an outage has occurred. Starting with Oracle Database
23ai, COMMIT_OUTCOME defaults to using Native Transaction Guard. Native Transaction
Guard is used whenever the XID can be sent to the driver in advance of the COMMIT.
While Oracle Database has always made the COMMIT action durable, Transaction
Guard makes the outcome of the COMMIT durable.

– FAILOVER_RESTORE = AUTO | LEVEL1 | LEVEL2: Use FAILOVER_RESTORE=AUTO or
FAILOVER_RESTORE=LEVEL1 for Transparent Application Continuity and
FAILOVER_RESTORE=LEVEL1 | LEVEL2 for Application Continuity. To automatically
restore client states that are preset on the connection pool or driver before replay
begins—including NLS states, TAGS (MODULE, ACTION, ECID, CLIENT_ID,
CLIENT_INFO) states, and all server modifiable session states that use
FAILOVER_RESTORE=LEVEL1 | LEVEL2 with Wallets.

Caution:

Do not use the default database service corresponding to the DB_NAME or
DB_UNIQUE_NAME. Also, do not use the default database service for high availability,
because this service cannot be enabled or disabled, and cannot be relocated on
Oracle RAC or switched over to Oracle Data Guard. This service is reserved for
Oracle Enterprise Manager Cloud Control (Cloud Control) and for DBAs.

Establishing the Initial State Before Application Continuity Replays
At the beginning of replay, Application Continuity restores the initial session state.

The topics in this section describe how to configure the service and database to successfully
restore the session state before replaying.

• Checking Initial States for Application Continuity
Learn about the session state that is restored.

Chapter 6
Configuring Application Continuity

6-22

• FAILOVER_RESTORE
Setting FAILOVER_RESTORE to LEVEL1 (for AC with older 19c versions), LEVEL2 (for AC with
database templates), or LEVEL1 or AUTO (for TAC) automatically restores all modifiable
parameters before replaying the request.

• States Restored with FAILOVER_RESTORE
The following session states are restored when FAILOVER_RESTORE is set to LEVEL1,
LEVEL2, or AUTO, with or without wallets.

• Full FAILOVER_RESTORE with Database Templates
Oracle Database 23ai supports database templates. A database template is a set of
session states with their values that describe a database session.

• FAILOVER_RESTORE with Database Templates
Starting with Oracle Database 23ai, Application Continuity uses database templates to
checkpoint session state, restore the session state at the start of replay, and support
session migration during planned maintenance.

• Configuring a Keystore using WALLET_ROOT for FAILOVER_RESTORE
Use these steps to configure encryption of dictionary credentials by using a software
keystore (wallet) and Transparent Data Encryption (TDE) for use with FAILOVER_RESTORE.

• Configuring a Keystore using SQLNET.ORA for FAILOVER_RESTORE
Use these steps to configure encryption of dictionary credentials by using SQLNET.ORA to
point to the wallet location for use with FAILOVER_RESTORE.

• FAILOVER_RESTORE = NONE and No Callback
FAILOVER_RESTORE = NONE does not restore session state at failover.

• Connection Labeling
Connection Labeling is not required unless you want to restore more complex states, such
as proxying a session.

• Connection Initialization Callback
Use the Connection Initialization Callback only if you need to restore session states such
as SYS_CONTEXT and password protected roles. FAILOVER_RESTORE with wallets restores all
modifiable parameters.

Checking Initial States for Application Continuity
Learn about the session state that is restored.

If your application sets an initial state for the connection before allowing applications to use the
connection, then Application Continuity must establish this initial state before replay starts.
With common states, which are listed in the topics in this section, FAILOVER_RESTORE restores
the states. However, you must review the topics that describe common states. If the states that
your application presets are not listed, and the application needs initial states, then you must
add an additional callback.

Examples of states that can be preset include:

• PL/SQL package state

• NLS Setting

• Optimizer setting

During a request, Application Continuity reestablishes the entire state for the request. This
prerequisite is for the initial state before Application Continuity starts replaying.

A callback is not required if FAILOVER_RESTORE restores all required states, which is the case
for most applications.

Chapter 6
Configuring Application Continuity

6-23

See Also:

Oracle Database Release Notes for your platform, because more parameters are
restored in each release

FAILOVER_RESTORE
Setting FAILOVER_RESTORE to LEVEL1 (for AC with older 19c versions), LEVEL2 (for AC with
database templates), or LEVEL1 or AUTO (for TAC) automatically restores all modifiable
parameters before replaying the request.

FAILOVER_RESTORE is a setting on your service. Available with Oracle Database 12.2 and later,
FAILOVER_RESTORE automatically restores all session states available for your application at the
client-side.

Oracle recommends setting FAILOVER_RESTORE to LEVEL2, LEVEL1, or AUTO for all applications.

Refer to States Restored with FAILOVER_RESTORE for the client-side session states that are
restored.

States Restored with FAILOVER_RESTORE
The following session states are restored when FAILOVER_RESTORE is set to LEVEL1, LEVEL2, or
AUTO, with or without wallets.

Session States That Are Restored

• NLS_CALENDAR

• NLS_CURRENCY

• NLS_DATE_FORMAT

• NLS_DATE_LANGUAGE

• NLS_DUAL_CURRENCY

• NLS_ISO_CURRENCY

• NLS_LANGUAGE

• NLS_LENGTH_SEMANTICS

• NLS_NCHAR_CONV_EXCP

• NLS_NUMERIC_CHARACTER

• NLS_SORT

• NLS_TERRITORY

• NLS_TIME_FORMAT

• NLS_TIME_TZ_FORMAT

• TIME_ZONE

• NLS_TIMESTAMP_FORMAT

• NLS_TIMESTAMP_TZ_FORMAT

• CURRENT_SCHEMA

Chapter 6
Configuring Application Continuity

6-24

• MODULE

• ACTION

• CLIENT_ID

• AUTOCOMMIT states (for Java and SQL*Plus)

• CONTAINER (PDB) and SERVICE

• ROLES (excludes secure roles, which continue to require a call back)

• ROW_ARCHIVAL

• EDITION

• ERROR_ON_OVERLAP_TIME

• SQL_TRANSLATION_PROFILE

• CLIENT_INFO. (JDBC)

Full FAILOVER_RESTORE with Database Templates
Oracle Database 23ai supports database templates. A database template is a set of session
states with their values that describe a database session.

Database templates are created or assigned by the database automatically as the session
state changes. TAC and AC use templates to restore the session state at replay.

Using database templates, a larger subset of sessions failover during planned maintenance
and unplanned outages because their session states are restored and verified automatically,
and clients use less memory. Database templates are enabled by default for TAC and you are
recommended to use FAILOVER_RESTORE=LEVEL2 for AC.

At failover, FAILOVER_RESTORE restores session parameters that were altered in your session.
Examples of session parameters restored include optimizer_capture_sql_plan_baselines
and create_stored_outlines that were set in the session.

If you are already using a logon trigger, connection label, or callback to restore session
parameters, you can continue to use them. Labels and callbacks are fully supported with and
without extended FAILOVER_RESTORE. Using extended FAILOVER_RESTORE has the advantage
that you do not need to update it as the application changes.

To use this feature, you must set FAILOVER_RESTORE to LEVEL2 or AUTO and ensure that the
dictionary credentials are encrypted on your system. You can also set FAILOVER_RESTORE to
LEVEL1 for AC and TAC that also restores all modifiable session parameters when wallets are
used.

There are two methods of adding the wallet or keystore for dictionary credentials encryption:

Note:

You must use either one of the following methods to configure a keystore for
FAILOVER_RESTORE.

• Recommended: Use the WALLET_ROOT database instance initialization parameter to
specify the wallet location. Using an initialization parameter for the wallet location ensures
consistency across Oracle Real Application Clusters (Oracle RAC) and Oracle Data
Guard. This method requires a rolling restart of the database.

Chapter 6
Configuring Application Continuity

6-25

• Modify the sqlnet.ora file in your TNS_ADMIN directory on the database server to point to
the wallet location. This method does not require a database restart,unless your database
runs on the Microsoft Windows operating system. You are responsible for ensuring that the
sqlnet.ora files are consistent in all ORACLE_HOME directories. Also, the sqlnet.ora
might require additional maintenance when performing database upgrades.

Related Topics

• Recommendations for Oracle Net Services When Upgrading Oracle Database

• Using Application Contexts to Retrieve User Information

• Connection Initialization Callback
Use the Connection Initialization Callback only if you need to restore session states such
as SYS_CONTEXT and password protected roles. FAILOVER_RESTORE with wallets restores all
modifiable parameters.

FAILOVER_RESTORE with Database Templates
Starting with Oracle Database 23ai, Application Continuity uses database templates to
checkpoint session state, restore the session state at the start of replay, and support session
migration during planned maintenance.

Database templates restore server-side and client-visible session states at the beginning of the
Application Continuity replay, thus increasing Application Continuity protection. To use this
feature set FAILOVER_RESTORE=AUTO for Transparent Application Continuity or set
FAILOVER_RESTORE=LEVEL2 for Application Continuity.

FAILOVER_RESTORE with database templates improves coverage for applications with a wider
set of session states and lowers client memory usage. It enables you to migrate more sessions
during planned maintenance and to have a higher number of successful and faster failovers
during unplanned outages as protection by Application Continuity is higher.

Database templates for Application Continuity ensures the migration of sessions containing
server-side session states that have not reached a boundary to drain during the draining
period, and improves the Application Continuity protection for unplanned outages. Database
templates for Application Continuity enables migration of sessions using secure and large
session states for planned maintenance and for load balancing.

To enable this feature, you must set FAILOVER_RESTORE to LEVEL2 or AUTO. To retain the Oracle
Database 19c restore functionality, set FAILOVER_RESTORE to LEVEL1 for both Application
Continuity and Transparent Application Continuity. To restore all session states at failover, the
database must have encryption enabled, for example using TDE wallets.

Related Topics

• Configuring a Keystore using WALLET_ROOT for FAILOVER_RESTORE
Use these steps to configure encryption of dictionary credentials by using a software
keystore (wallet) and Transparent Data Encryption (TDE) for use with FAILOVER_RESTORE.

Configuring a Keystore using WALLET_ROOT for FAILOVER_RESTORE
Use these steps to configure encryption of dictionary credentials by using a software keystore
(wallet) and Transparent Data Encryption (TDE) for use with FAILOVER_RESTORE.

1. If you are using Oracle Autonomous Database, you do not need to perform these steps.

For Oracle Autonomous Database, a software keystore already exists and dictionary
credentials are encrypted

Chapter 6
Configuring Application Continuity

6-26

2. If you are not using Oracle Autonomous Database, then check if your system is already
configured to enforce dictionary credential encryption.

a. Verify a wallet (a Keystore) exists using the following SQL query:

SELECT con_id, wrl_type, status , wallet_type FROM V$ENCRYPTION_WALLET
ORDER BY con_id;
 CON_ID WRL_TYPE STATUS WALLET_TYPE
---------- ------------ -------- -----------
 0 FILE OPEN PASSWORD

If no rows are returned by this SQL query, then a wallet, or keystore, does not exist.

b. Verify that dictionary credentials are encrypted using the following SQL query:

SQL> SELECT enforcement FROM DICTIONARY_CREDENTIALS_ENCRYPT;
ENFORCEMENT

ENABLED

If this SQL query returns DISABLED, then the dictionary is not encrypted.

If you have a wallet and dictionary credentials encrypted, you can use extended
FAILOVER_RESTORE by setting the attribute on your service. You do not need to complete
any more of the steps in this procedure.

If you do not have an existing wallet, or if you need to enable dictionary credentials
encryption, then continue with the following steps.

3. Configure the database to use a software keystore.

a. If necessary, create a directory to store the wallet.

The location selected needs to be shared across Oracle RAC nodes and replicated to
Oracle Data Guard sites. For Oracle RAC, the directory must be on shared storage.

b. Change the initialization parameter WALLET_ROOT.

The parameter value should be the directory where the wallet is stored.

SQL> CONNECT / AS SYSDBA
SQL> ALTER SYSTEM SET WALLET_ROOT='/myOracleBase/admin/wallet/'
SCOPE=spfile;

You can also change the WALLET_ROOT initialization parameter using the init.ora file
on all RAC nodes by adding wallet_root='/myOracleBase/admin/wallet/'.

Starting with Oracle Database 23ai, the parameter ENCRYPTION_WALLET_LOCATION is
desupported.
To store and retrieve the TDE wallet, use the WALLET_ROOT structure (introduced with
Oracle Database 18c).

Chapter 6
Configuring Application Continuity

6-27

Note:

If Transparent Data Encryption (TDE) is enabled, but WALLET_ROOT is not
configured, then you will be blocked from upgrading to Oracle Database 23ai.
This block for upgrades of databases using TDE is to prevent the possibility
of not being able to open the database after the upgrade.

c. Change the initialization parameter TDE_CONFIGURATION to specify a software keystore.

SQL> CONNECT / AS SYSDBA
SQL> ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE"
SCOPE=BOTH SID='*'

You can also change the TDE_CONFIGURATION initialization parameter using the
init.ora file on all RAC nodes by adding
TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE" .

d. Perform a rolling restart of the database instances to activate the new initialization
parameters.

For example, for a two node clustered database named orcl, where the instances are
named orcl1 and orcl2, you would use the following commands to stop and restart
each instance individually to avoid a complete outage of your database.

$ srvctl stop instance -db orcl -instance orcl1 -drain_timeout 600 -
stopoption IMMEDIATE
$ srvctl start instance -db orcl -instance orcl1

$ srvctl stop instance -db orcl -instance orcl2 -drain_timeout 600 -
stopoption IMMEDIATE
$ srvctl start instance -db orcl -instance orcl2

Note:

Fleet Patching and Provisioning, if used, automates this process and can be
used instead if you are modifying the parameters during a patch upgrade.

e. Verify that the parameters are set to the correct values after restarting the instances.

SQL> SHOW PARAMETER WALLET_ROOT;
SQL> SHOW PARAMETER TDE_CONFIGURATION;

4. Create a keystore with a password, if one does not already exist.

In the following example password is the password for the keystore. The password is case
sensitive. Keystore passwords adhere to the same rules as database user passwords.

SQL> CONNECT / AS SYSKM
SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY "password";

5. Open a keystore and set an encryption key.

Chapter 6
Configuring Application Continuity

6-28

If your database is configured as an Oracle Multitenant database, then a keystore and
encryption key must be set for each PDB using the CONTAINER=all clause. In the following
example password is the password for the keystore.

SQL> CONNECT / AS SYSKM
SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "password"
CONTAINER=all;
SQL> ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "password"
SQL> WITH BACKUP CONTAINER=all;

If your database is not configured as an Oracle Multitenant database, then use the
following SQL commands, where password is the password for the keystore:

SQL> CONNECT / AS SYSKM
SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "password";
SQL> ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "password"
WITH BACKUP;

6. Encrypt the database dictionary credentials.

Use an operator with the SYSKM role to run the following SQL command from within the
Container Database (CDB) root and each PDB.

SQL> CONNECT / AS SYSKM
SQL> ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS;

Encryption and decryption of the information occurs automatically at the server during failover
restoration.

WARNING:

It is recommended to backup the software keystore and the wallet location. Do not
lose your TDE software keystore or WALLET_ROOT location. If you do, for Application
Continuity or Transparent Application Continuity, a new keystore can be created but
encrypted dictionary credentials will need to be re-instantiated. Failover will not
succeed while there is a mismatch in the wallet keys.

Related Topics

• Configuring a Software Keystore

• Managing the Keystore and the Master Encryption Key

• Permitted Features, Options, and Management Packs by Oracle Database Offering

Chapter 6
Configuring Application Continuity

6-29

Configuring a Keystore using SQLNET.ORA for FAILOVER_RESTORE
Use these steps to configure encryption of dictionary credentials by using SQLNET.ORA to point
to the wallet location for use with FAILOVER_RESTORE.

Note:

Oracle recommends that you configure a Keystore using WALLET_ROOT for
FAILOVER_RESTORE in preference to SQLNET.ORA.

This method does not require a database restart, unless your database runs on the Microsoft
Windows operating system. You are responsible for ensuring that the sqlnet.ora files are
consistent in all ORACLE_HOME directories.

1. If you are using Oracle Autonomous Database, you do not need to perform these steps.

For Oracle Autonomous Database, a software keystore already exists and dictionary
credentials are encrypted

2. If you are not using Oracle Autonomous Database, then check if your system is already
configured to enforce dictionary credential encryption.

a. Verify a wallet exists using the following SQL query:

SQL> SELECT con_id, wrl_type, status , wallet_type FROM
V$ENCRYPTION_WALLET
ORDER BY con_id;
 CON_ID WRL_TYPE STATUS WALLET_TYPE
---------- ------------ -------- -----------
 0 FILE OPEN PASSWORD

If no rows are returned by this SQL query, then a wallet, or keystore, does not exist.

b. Verify that dictionary credentials are encrypted using the following SQL query:

SQL> SELECT enforcement FROM DICTIONARY_CREDENTIALS_ENCRYPT;
ENFORCEMENT

ENABLED

If this SQL query returns DISABLED, then the dictionary is not encrypted.

If you have a wallet and dictionary credentials encrypted, you can use extended
FAILOVER_RESTORE by setting the attribute on your service. You do not need to complete
any more of the steps in this procedure.

If you do not have an existing wallet, or if you need to enable dictionary credentials
encryption, then continue with the following steps.

3. Configure the database to use a wallet.

a. View the TNS_ADMIN environment variable to find the location of the network
configuration files used by your database.

Chapter 6
Configuring Application Continuity

6-30

• On Linux and UNIX systems, as the Oracle Home software owner, view the current
setting of the TNS_ADMIN environment variable.

$ env | grep TNS_ADMIN

• On Microsoft Windows systems, check the value set for TNS_ADMIN as both an
environment variable and in the registry in the path
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\KEY_HOME_NAME.

If the TNS_ADMIN variable is not set, then the default location
of $ORACLE_BASE_HOME/network/admin is used for the Oracle Net configuration
files with read-only Oracle homes.

b. If necessary, create a directory to store the wallet.

The location selected needs to be shared across Oracle RAC nodes and replicated to
Oracle Data Guard sites. For Oracle RAC, the directory must be on shared storage.

c. Change the initialization parameter TDE_CONFIGURATION to specify a software keystore.

SQL> CONNECT / AS SYSDBA
SQL> ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE"
SCOPE=BOTH SID='*'

4. Create a keystore with a password, if one does not already exist.

In the following example myOracleWalletLoc is the full path name of the directory created
to store the wallet (or keystore) and password is the password for the keystore. The
password is case sensitive. Keystore passwords adhere to the same rules as database
user passwords.

SQL> CONNECT / AS SYSKM
SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/myOracleWalletLoc'
IDENTIFIED BY "password";

5. Open a keystore and set an encryption key.

If your database is configured as an Oracle Multitenant database, then a keystore and
encryption key must be set for each PDB using the CONTAINER=all clause. In the following
example password is the password for the keystore.

SQL> CONNECT / AS SYSKM
SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "password"
CONTAINER=all;
SQL> ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "password"
WITH BACKUP CONTAINER=all;

If your database is not configured as an Oracle Multitenant database, then use the
following SQL commands, where password is the password for the keystore:

SQL> CONNECT / AS SYSKM
SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "password";
SQL> ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "password"
WITH BACKUP;

6. Encrypt the database dictionary credentials.

Chapter 6
Configuring Application Continuity

6-31

Use an operator with the SYSKM role to run the following SQL command from within the
Container Database (CDB) root and each PDB.

SQL> CONNECT / AS SYSKM
SQL> ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS;

Encryption and decryption of the information occurs automatically at the server during failover
restoration.

Caution:

It is recommended to backup the wallet location. Do not lose your wallet or location. If
you do, for Application Continuity or Transparent Application Continuity, a new wallet
can be created but encrypted dictionary credentials will need to be re-instantiated.

Failover will not succeed while there is a mismatch in the wallet keys.

Related Topics

• Locating Oracle Net Services Configuration Files

• Using sqlnet.ora to Configure Transparent Data Encryption Keystores

• Permitted Features, Options, and Management Packs by Oracle Database Offering

FAILOVER_RESTORE = NONE and No Callback
FAILOVER_RESTORE = NONE does not restore session state at failover.

Oracle recommends setting FAILOVER_RESTORE to LEVEL2, LEVEL1, or AUTO for all applications.

Connection Labeling
Connection Labeling is not required unless you want to restore more complex states, such as
proxying a session.

This scenario is applicable to Universal Connection Pool (UCP) and Oracle WebLogic server.
Connection Labeling APIs are required to match secure session states- SYS_CONTEXT and
password protected roles. They are also useful in reporting a failover on the driver side. When
a connection is borrowed, Connection Labeling populates the gap by using a callback.

Related Topics

• Oracle Universal Connection Pool Developer’s Guide

Connection Initialization Callback
Use the Connection Initialization Callback only if you need to restore session states such as
SYS_CONTEXT and password protected roles. FAILOVER_RESTORE with wallets restores all
modifiable parameters.

If your replaying driver uses an application callback to set the initial state of the session during
runtime and replay, then the callback interface depends on whether the driver is a Java
Database Connectivity (JDBC) driver or an Oracle Call Interface (OCI) driver.

Chapter 6
Configuring Application Continuity

6-32

In this scenario, with either JDBC or OCI, the driver uses an application callback to set the
initial state of the session during runtime and replay. With the JDBC replay driver, the driver
provides a connection initialization callback interface and methods to register and unregister
connection initialization callbacks in the oracle.jdbc.replay.OracleDataSource
interface. With OCI and Oracle Data Provider for .NET (ODP.NET), you register the
Transparent Application Failover (TAF) callback.

When registered, the initialization callback is run every time a connection is borrowed from the
pool, and at each successful reconnection following a recoverable error. (This is true for the
JDBC/UCP initialization callback, and should be the same for TAF.) Using the same callback
during both runtime and replay ensures that the same initialization is established at replay, as it
was when the session was first established. An application is responsible for ensuring that the
initialization actions are the same as that on the original connection before failover. If the
callback invocation fails, then replay is disabled on that connection. Use the connection
initialization callback only when the application has not implemented UCP and WebLogic
Connection Labeling and the state cannot be restored automatically by setting either
FAILOVER_RESTORE=AUTO or FAILOVER_RESTORE=LEVEL1 for Transparent Application Continuity
or FAILOVER_RESTORE=LEVEL2 for Application Continuity.

Potential Side Effects of Application Continuity
When you use Application Continuity with the service attribute FAILOVER_TYPE set to
TRANSACTION, statements that perform side effects are replayed.

When you use Transparent Application Continuity with the FAILOVER_TYPE service attribute set
to AUTO, then replay is disabled when a side effect is detected. Replay re-enables at the next
discovered or explicit boundary.

Note:

As an application owner you can elect to disable replay for requests that contain side
effects that you do not want to repeat. The simplest way to disable side effects is to
use Transparent Application Continuity (set the service attribute FAILOVER_TYPE to
AUTO, which disables side effects for you.

Application Continuity replays PL/SQL chronologically to restore database state. This serves to
rebuild the session as if the user submission was delayed. Most applications want the full state
rebuilt as if the submission was repeated, such as writing a report or completing some auditing.
However, the actions that are replayed to build the state might include some for which you
want to take action to accommodate or mitigate the effects of the replay. Some applications
elect to disable replay for requests that contain calls that they do not want to repeat.

Examples of actions that create side effects include the following:

• DBMS_ALERT calls (email or other notifications)

• DBMS_FILE_TRANSFER calls (copying files)

• DBMS_PIPE and RPC calls (to external sources)

• UTL_FILE calls (writing text files)

• UTL_HTTP calls (making HTTP callouts)

• UTL_MAIL calls (sending email)

• UTL_SMTP calls (sending SMTP messages)

Chapter 6
Configuring Application Continuity

6-33

• UTL_TCP calls (sending TCP messages)

• UTL_URL calls (accessing URLs)

For applications with external actions (such as autonomous transactions or using UTL_HTTP to
issue a service-oriented application (SOA) call), Application Continuity is transparent when the
application is satisfied with replaying external actions, such as resending email, auditing, and
transferring a file.

Allowing and Disallowing Side Effects for 23ai

Replay disabled for side effect by default for TAC, use
DBMS_APP_CONT_ADMIN.SET_REPLAY_RULES or DBMS_APP_CONT_APPLY_REPLAY_RULE to allow or
disallow side effects.

Replayable Interface Side Effect Use Cases

The following use cases cover various scenarios for replayable interface side effects:

• Use the following interface to allow side effects with TAC for entire service:

SQL> execute
DBMS_APP_CONT_ADMIN.SET_REPLAY_RULES('Service_name',TRUE,dbms_app_cont.side
_effects);
PL/SQL procedure successfully completed.

SQL> execute DBMS_APP_CONT_ADMIN.CHECK_REPLAY_RULES('Service_name');
PL/SQL procedure successfully completed.
ResultSet #1
TARGETS REPLAY
----------------------- --------------------------------
PL/SQL Side Effects enabled
Autonomous Transactions disabled
Database Links disabled

• Use the following interface to allow side effects with TAC:

begin
insert into file_tab values (1,'file1.txt');
DBMS_APP_CONT.APPLY_REPLAY_RULE(REPLAYABLE => TRUE, TARGETS =>
DBMS_APP_CONT.SIDE_EFFECTS);
DBMS_FILE_TRANSFER.COPY_FILE(source_directory_object=>'SOURCEDIR',
source_file_name=>'file1.txt', destination_directory_object=>'DGROUP',
destination_file_name=>'file1.txt');
commit;
end

• Use the following interface to disallow side effects with AC:

begin
insert into file_tab values (1,'file1.txt');
DBMS_APP_CONT.APPLY_REPLAY_RULE(REPLAYABLE => FALSE, TARGETS =>
DBMS_APP_CONT.SIDE_EFFECTS);
DBMS_FILE_TRANSFER.COPY_FILE(source_directory_object=>'SOURCEDIR',
source_file_name=>'file1.txt', destination_directory_object=>'DGROUP',
destination_file_name=>'file1.txt');

Chapter 6
Configuring Application Continuity

6-34

commit;
end

• Use the following statement to wrap a replayable interface function for TAC:

create or replace procedure mark_replayable as
begin
DBMS_APP_CONT.APPLY_REPLAY_RULE(REPLAYABLE => TRUE, TARGETS =>
DBMS_APP_CONT.SIDE_EFFECTS, SCOPE => DBMS_APP_CONT.SCOPE_PARENT);
end mark_replayable;

begin
insert into file_tab values (1,'file1.txt');
mark_replayable;
DBMS_FILE_TRANSFER.COPY_FILE(source_directory_object=>'SOURCEDIR',
source_file_name=>'file1.txt', destination_directory_object=>'DGROUP',
destination_file_name=>'file1.txt');
commit;
end

Replayable Interface Autonomous Transaction Use Cases

Replay is also disabled for autonomous transaction and DB link by default for TAC. Use
DBMS_APP_CONT_ADMIN.SET_REPLAY_RULES or DBMS_APP_CONT_APPLY_REPLAY_RULE to allow or
disallow autonomous transaction and DB link.

• Use the following interface to allow autonomous transaction with TAC for entire service:

SQL> execute
DBMS_APP_CONT_ADMIN.SET_REPLAY_RULES('Service_name',TRUE,dbms_app_cont.auto
nomous_transactions);
PL/SQL procedure successfully completed.

SQL> execute DBMS_APP_CONT_ADMIN.CHECK_REPLAY_RULES('Service_name');
PL/SQL procedure successfully completed.
ResultSet #1
TARGETS REPLAY
----------------------- --------------------------------
PL/SQL Side Effects disabled
Autonomous Transactions enabled
Database Links disabled

• Use the following interface to allow autonomous transaction with TAC:

create or replace procedure log_update(description VARCHAR2) as
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO update_history VALUES (description, sysdate);
 COMMIT;
END log_update;

begin
DBMS_APP_CONT.APPLY_REPLAY_RULE(REPLAYABLE => TRUE, TARGETS =>
DBMS_APP_CONT.AUTONOMOUS_TRANSACTIONS);
insert into emp_tab('Andy', 100);
log_update('ID updated for user Andy');

Chapter 6
Configuring Application Continuity

6-35

commit;
end

• Use the following interface to disallow autonomous transaction with AC:

create or replace procedure log_update(description VARCHAR2) as
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO update_history VALUES (description, sysdate);
 COMMIT;
END log_update;

begin
DBMS_APP_CONT.APPLY_REPLAY_RULE(REPLAYABLE => FALSE, TARGETS =>
DBMS_APP_CONT.AUTONOMOUS_TRANSACTIONS);
insert into emp_tab('Andy', 100);
log_update('ID updated for user Andy');
commit;
end

• Use the following interface to allow DB Link with TAC for entire service:

SQL> execute
DBMS_APP_CONT_ADMIN.SET_REPLAY_RULES('Service_name',TRUE,dbms_app_cont.data
base_links);
PL/SQL procedure successfully completed.

SQL> execute DBMS_APP_CONT_ADMIN.CHECK_REPLAY_RULES('Service_name');
PL/SQL procedure successfully completed.
ResultSet #1
TARGETS REPLAY
----------------------- --------------------------------
PL/SQL Side Effects disabled
Autonomous Transactions disabled
Database Links enabled

• Use the following interface to allow DB Link with TAC for the current code block:

create database link dblink connect to scott identified by tiger using
'dblink_service';
begin
DBMS_APP_CONT.APPLY_REPLAY_RULE(REPLAYABLE => TRUE, TARGETS =>
DBMS_APP_CONT.DATABASE_LINKS);
select emp_id,emp_name from emp@dblink_servie;
commit;
end

• Use the following interface to disallow DB Link with AC for the current code block:

create database link dblink connect to scott identified by tiger using
'dblink_service';
begin
DBMS_APP_CONT.APPLY_REPLAY_RULE(REPLAYABLE => FALSE, TARGETS =>
DBMS_APP_CONT.DATABASE_LINKS);
select emp_id,emp_name from emp@dblink_service;

Chapter 6
Configuring Application Continuity

6-36

commit;
end

Related Topics

• Understanding Enabling and Disabling Replay in Application Continuity
Replay occurs following a recoverable error, but you can disable replay.

Administering Application Continuity Operation and Usage
Learn how to manage the use of Application Continuity, and how you can use it in applications.

• Using Application Continuity for Planned Maintenance
For planned maintenance, Oracle recommends that you drain requests from Oracle
connection pools in combination with Application Continuity for those requests that do not
complete.

• Administering Restoring Original Function Results
To manage restoring original function results, you need to grant certain privileges.

• Protection-Level Statistics
Use the statistics for request boundaries and protection level to monitor the level of
coverage.

• Session State Consistency
Session state consistency describes how non-transactional state is changed during a
request.

• Application Continuity Statistics
Once Application Continuity is configured, you can use the statistics to verify Application
Continuity usage and to check how well Application Continuity is protecting user
workloads.

• Application Continuity Protection Check
The Application Continuity Protection Check (ACCHK) feature generates Application
Continuity coverage reports and views that describe the protection of your application by
Application Continuity.

• Delaying the Reconnection in Application Continuity
Learn about how you can set parameters to manage reconnects with Application
Continuity, or Transparent Application Continuity, and see examples on single-instance and
Oracle Real Application Clusters (Oracle RAC) databases.

• Running Without Application Continuity
Sometimes Application Continuity is not in effect because a disabling call has been issued.

• Disabling Replay in Application Continuity
Learn about how you can disable replay with applications, and about specific rules and
guidelines for disabling replay.

• Terminating or Disconnecting a Session Without Replay
Learn how to disable replay when a DBA terminates or disconnects a session by using the
ALTER SYSTEM KILL SESSION or ALTER SYSTEM DISCONNECT SESSION statement.

Chapter 6
Administering Application Continuity Operation and Usage

6-37

Using Application Continuity for Planned Maintenance
For planned maintenance, Oracle recommends that you drain requests from Oracle connection
pools in combination with Application Continuity for those requests that do not complete.

This procedure has the least impact when there is minimal recovery to complete. Instances do
need to be stopped to switch over to the patched software.

1. FAN-aware pool, such as OCI, UCP, WebLogic Server, or ODP.NET Managed and
Unmanaged Drivers.

The FAN planned event drains at request boundaries.

Note:

• ODP.NET Managed Driver does not support Application Continuity.

• Oracle Data Provider for .NET (ODP.NET), Unmanaged Driver is deprecated
in Oracle Database 23ai.

2. Use the srvctl relocate service command to relocate the service from the instance
without disrupting the sessions or, for a uniform service, use the srvctl stop service
command on the instance (do not use the -force parameter).

The FAN planned event clears the idle sessions immediately and marks the active
sessions to be released at check-in (end of request). This drains the sessions from the
instance without disrupting work.

3. If not all sessions have checked in and the time to stop the instance has been reached,
then stop the instance (terminate).

For Application Continuity-enabled pools (UCP, WebLogic, Tuxedo, ODP.NET, and OCI),
and any Java pool that adds beginRequest/endRequest , Application Continuity attempts to
recover those remaining sessions.

4. Restart the instance and service.

Runtime load balancing, when enabled, balances the sessions back to the restored
instance at the next request boundaries.

Related Topics

• Oracle Autonomous Health Framework User's Guide

• Transparent Application Continuity
A version of Application Continuity for simple applications that uses discovery to detect
request boundaries.

• Oracle Orachk and Exachk User’s Guide

Administering Restoring Original Function Results
To manage restoring original function results, you need to grant certain privileges.

• Restoring Original Oracle Function Values and Application Continuity
When a request is replayed, the default and desired treatment of restoring original Oracle
function values can vary.

Chapter 6
Administering Application Continuity Operation and Usage

6-38

• Checking Your Keep Permissions
You must ensure that you have required KEEP permissions to keep function results at
replay.

• Granting and Revoking Keep Permissions for Restoring Original Oracle Function Values
To keep function results at replay, you must grant KEEP privileges to the user invoking the
function.

• Granting Permission to Keep Restoring Original Oracle Function Values for Oracle
Sequences
To keep the original values of sequence.nextval for replaying so that keys match, you
must grant permissions on the sequence.

• Rules for Grants on Restoring Original Oracle Function Values
These considerations apply to granting and revoking privileges on restoring original Oracle
function values.

Restoring Original Oracle Function Values and Application Continuity
When a request is replayed, the default and desired treatment of restoring original Oracle
function values can vary.

By default, for SQL the original value received is restored for sequences. This is the value that
the application owns. For PL/SQL, DATE and TIME, and SYSGUID restoring original Oracle
function values, the KEEP clause must be granted as a part of the schema.

Support for restoring original Oracle function values is currently provided for SYSDATE,
SYSTIMESTAMP, LOCALTIMESTAMP, CURRENT_TIMESTAMP, SYS_GUID, and sequence.NEXTVAL. If the
original values are not kept and if different values for these objects are returned to the client,
then replay is rejected because the client observes different results. If the application can use
original values, then configure restoring original Oracle function values using the KEEP clause
for owned sequences and GRANT KEEP for other users. (Most applications need sequence
values to be kept at replay, for bind variable consistency.)

Note:

Keeping SYS_GUID values is supported only for serial processing plans. When parallel
query is used, Application Continuity is not able to restore original values for
SYS_GUID.

The following table shows examples of the treatment of restoring original Oracle function
values by products during replay. (Actual implementation depends on specific products and
releases.)

Table 6-1 Example Treatment of Restoring Original Oracle Function Values by
Products During Replay

Function Product 1 Product 2 Product 3

SYSDATE, SYSTIMESTAMP Original Original Current

Sequence NEXTVAL and CURRVAL Original Original (Not applicable)

SYS_GUID Original (Not applicable) (Not applicable)

To allow Application Continuity to keep and use original function results at replay:

Chapter 6
Administering Application Continuity Operation and Usage

6-39

• The database user running the application might have the KEEP DATE TIME and KEEP
SYSGUID privileges granted, and the KEEP SEQUENCE object privilege on each sequence
whose value is to be kept. For example:

GRANT KEEP DATE TIME TO user2;
GRANT KEEP SYSGUID TO user2;
GRANT KEEP SEQUENCE ON sales.seq1 TO user2;

Notes:

– Starting with Oracle Database 19c, grants are not required for restoring
original Oracle function values for SQL for sequences.

– GRANT ALL ON object does not include (that is, does not grant the access
provided by) the KEEP DATE TIME and KEEP SYSGUID privileges, and the KEEP
SEQUENCE object privilege.

– Grant privileges related to restoring original Oracle function values support
only to application users, and to each application user grant only the
necessary privileges.

– Do not grant DBA privileges to database users running applications for which
you want replay to be enabled.

• Sequences in the application can use the KEEP attribute, which keeps the original values of
sequence.NEXTVAL for the sequence owner, so that the keys match during replay. Most
applications need sequence values to be kept at replay. The following example sets the
KEEP attribute for a sequence (in this case, one owned by the user running the statement;
for others, use GRANT KEEP SEQUENCE):

SQL> CREATE SEQUENCE my_seq KEEP;
SQL> -- Or, if the sequence already exists but without KEEP:
SQL> ALTER SEQUENCE my_seq KEEP;

Note:

Specifying ALTER SEQUENCE ... KEEP/NOKEEP applies to the owner of the
sequence. It does not affect other users (not the owner) that have the KEEP
SEQUENCE object privileges. If you want KEEP for all users, then be sure to grant
the KEEP SEQUENCE object privilege to these users (or to revoke it from each user
if the privilege has been granted).

• To keep function results (for named functions) at replay, the DBA must grant KEEP
privileges to the user invoking the function. This security restriction ensures that it is valid
for replay to save and restore function results for code that is not owned by that user.

For identity sequences, restoring original Oracle function values is supported for owned
sequences. Restoring original Oracle function values at SQL level is automatic for identity

Chapter 6
Administering Application Continuity Operation and Usage

6-40

sequences. To restore original Oracle function values in PL/SQL for identity sequences use the
KEEP clause. The definition of procedure and table are as follows:

create table tab_identity_mine(id NUMBER GENERATED ALWAYS AS IDENTITY keep,
content varchar2(50));

Use the following statement to create a procedure:

insert_identity(cnt in varchar2,newid out number) as
begin
insert into tab_identity_mine(content) values(cnt) returning id into newid;
end insert_identity;

Related Topics

• Rules for Grants on Restoring Original Oracle Function Values
These considerations apply to granting and revoking privileges on restoring original Oracle
function values.

• ALTER SEQUENCE

• GRANT

Checking Your Keep Permissions
You must ensure that you have required KEEP permissions to keep function results at replay.

• To check permission to keep SYSDATE and SYSGUID:

SELECT * FROM USER_SYS_PRIVS WHERE PRIVILEGE LIKE '%KEEP%';

This query returns output similar to the following:

USERNAME PRIVILEGE ADM COM INH
-------- -------------- --- --- ---
SOE1 KEEP SYSGUID NO NO NO
SOE1 KEEP DATE TIME NO NO NO

• To check permission to keep SEQUENCES:

SELECT SEQUENCE_NAME, KEEP_VALUE FROM USER_SEQUENCES;

This query returns output similar to the following:

SEQUENCE_NAME KEEP_VALUE
------------- ----------
SEQ_PERSON N
SEQ_PLSQL N
SEQ_PRODUCTS Y
SEQ_PRODUCT_ID Y

The KEEP_VALUE in the above example is Y or N.

Chapter 6
Administering Application Continuity Operation and Usage

6-41

Note:

For all sequences grants, run the SELECT SEQUENCE_NAME, KEEP_VALUE FROM
ALL_SEQUENCES; statement.

Granting and Revoking Keep Permissions for Restoring Original Oracle Function
Values

To keep function results at replay, you must grant KEEP privileges to the user invoking the
function.

• To grant permission to keep restoring original Oracle function values for SYSDATE and
SYSTIMESTAMP, or SYSGUID:

GRANT [KEEP DATE TIME | KEEP SYSGUID]...[to USER]

For example, for possible Oracle E-Business Suite usage with original dates:

GRANT KEEP DATE TIME, KEEP SYSGUID to [custom user];
GRANT KEEP DATE TIME, KEEP SYSGUID to [apps user];

• To revoke permission to keep restoring original Oracle function values for SYSDATE and
SYSTIMESTAMP, or SYSGUID:

REVOKE [KEEP DATE TIME | KEEP SYSGUID]...[from USER]

Granting Permission to Keep Restoring Original Oracle Function Values for Oracle
Sequences

To keep the original values of sequence.nextval for replaying so that keys match, you must
grant permissions on the sequence.

• To grant permission as the owner of the sequence:

CREATE SEQUENCE [sequence object] [KEEP|NOKEEP];
ALTER SEQUENCE [sequence object] [KEEP|NOKEEP];

• To grant and revoke permission for others using the sequence:

GRANT KEEP SEQUENCE on sequence.object to [myUser|role];
REVOKE KEEP SEQUENCE on sequence.object from [myUser|role];

For example, for possible Oracle E-Business Suite usage with original sequence values:

GRANT KEEP SEQUENCE on sequence.object to apps-user;
REVOKE KEEP SEQUENCE on sequence.object from my-user ;

Chapter 6
Administering Application Continuity Operation and Usage

6-42

For example, for identity sequences, use the KEEP clause on the table create or alter
statements:

CREATE TABLE tab_identity_mine(id NUMBER GENERATED ALWAYS AS IDENTITY
keep,
content varchar2(50));

Rules for Grants on Restoring Original Oracle Function Values
These considerations apply to granting and revoking privileges on restoring original Oracle
function values.

• If you grant all on an object for a user, then restoring original Oracle function values are
excluded. Restoring original Oracle function values require explicit grants. Oracle does not
support granting restoring original Oracle function values to the users supplied or created
by Oracle Database, such as SYS, AUDSYS, GSMUSER, and SYSTEM.

• The DBA role includes restoring original Oracle function value permission.

• If a user has restoring original Oracle function values granted, then the objects inherit
restoring original Oracle function value access when the functions are called (in SYS_GUID,
SYSDATE and SYSTIMESTAMP).

• If keeping restoring original Oracle function values on a sequence object is revoked, then
SQL or PL/SQL commands using that object does not allow restoring original Oracle
function value collection or application for that sequence.

• If grants are revoked between run time and failover, then the restoring original Oracle
function values that were collected are not applied.

• If grants are granted between run time and failover, then restoring original Oracle function
values are not collected and so none are applied.

Protection-Level Statistics
Use the statistics for request boundaries and protection level to monitor the level of coverage.

Application Continuity collects statistics from the system, the session, and the service, enabling
you to monitor your protection levels. The statistics are available in V$SESSTAT, V$SYSSTAT,
and, when service statistics are enabled, in V$SERVICE_STATS. For example, if you query
V$SESSTAT and join with V$STATNAME, you can view output like the following:

NAME VALUE
-- ----------
cumulative begin requests 731
cumulative end requests 739
cumulative user calls in requests 7285
cumulative user calls protected by Application Continuity 7228
cumulative time in requests 2665167909

These statistics are saved in the Automatic Workload Repository (AWR) and are available in
AWR reports. Statistics include:

• Requests completed per second

• User calls in a request

• Protected user calls

Chapter 6
Administering Application Continuity Operation and Usage

6-43

The AWR report output is similar to the following:

Statistic Total per Second per Trans
-- -------- ------------- ---------
cumulative requests 177,406 49.2 5.0
cumulative user calls in request 493,329 136.8 13.8
cumulative user calls protected 493,329 136.8 13.8

To enable protection-level statistics, use (_request_boundaries = 3).

Session State Consistency
Session state consistency describes how non-transactional state is changed during a request.

• About Session State Consistency
To ensure session state consistency, Oracle recommends that you set the service
parameter session_state to AUTO, which is available with Transparent Application
Continuity.

• Auto Session State Consistency
When you set the service parameter session_state to AUTO, Transparent Application
Continuity tracks and records session and transactional states so the database session
can be recovered following recoverable outages.

• Dynamic Session State Consistency
Application Continuity uses Dynamic Session State Consistency. The session state is
tracked as it is for TAC when using Session State Consistency = AUTO.

About Session State Consistency
To ensure session state consistency, Oracle recommends that you set the service parameter
session_state to AUTO, which is available with Transparent Application Continuity.

Transparent Application Continuity tracks and manages session states. If you choose to use
Transparent Application Continuity, then you do not have to do anything else to ensure session
state consistency.

You can set session_state to DYNAMIC for Application Continuity. You should only set
session_state to DYNAMIC if you fully understand the application, and the application is not
expected to change from the value set.

Examples of session state are NLS settings (globalization support), optimizer preferences,
event settings, PL/SQL global variables, temporary tables, advanced queues, Large Objects
(LOBs), and result cache. If non-transactional values change in committed transactions, then
use the default value, DYNAMIC.

Using DYNAMIC mode, after a COMMIT has run, if the state was changed in that transaction, then
it is not possible to replay the transaction to reestablish that state if the session is lost.
Applications can be categorized depending on whether the session state after the initial setup
is dynamic, and hence whether it is correct to continue past a COMMIT operation.

AUTO mode is appropriate for almost all applications. If your customers or users can modify
your application, then you must use AUTO or DYNAMIC mode. AUTO mode is a newer version of
DYNAMIC mode with the additional feature that it re-enables automatically when possible.

Chapter 6
Administering Application Continuity Operation and Usage

6-44

Note:

Set session_state to AUTO for long-running, stateless applications. Unless you
require Application Continuity, Oracle recommends setting session_state to AUTO.

Auto Session State Consistency
When you set the service parameter session_state to AUTO, Transparent Application
Continuity tracks and records session and transactional states so the database session can be
recovered following recoverable outages.

Setting session_state to AUTO is the only value permitted for Transparent Application
Continuity. When set to AUTO, a state-tracking infrastructure categorizes session state usage as
the application issues user calls. Tracked session states are monitored and verified.

Note:

If you set session_state to AUTO, then you must also set failovertype to AUTO.

Replay (that is, Transparent Application Continuity) is enabled at an explicit begin request
(from an Oracle pool, which is the usual source, or added by OCI or JDBC thin APIs), and is
disabled on a COMMIT, at the end of a request (most often return to the pool), or a restricted
call. Transparent Application Continuity automatically re-enables replay when the session state
is describable after a disable within a request. Following is the step logic for three application
scenarios:

• No transaction

• A transaction with COMMIT as the last statement

• A transaction with an embedded COMMIT statement

Note:

Enable RESET_STATE if the session state set should not leak to the next request. This
also ensures that TAC is enabled in the next request when PL/SQL is used.

For the request with no transaction, the logical steps are as follows:

1. Check out from a connection pool.

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. Other actions.

5. Check in.

6. End request.

For the request with a transaction with COMMIT as the last statement, the logical steps are
as follows:

1. Check out from a connection pool.

Chapter 6
Administering Application Continuity Operation and Usage

6-45

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. The transaction begins.

5. Other actions.

6. Commit (which disables replay).

7. Check in.

8. End request.

For the request with a transaction with an embedded COMMIT statement, the logical steps
are as follows:

1. Check out from a connection pool.

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. The transaction begins.

5. Other actions.

6. Commit (which disables replay).

7. Next PL/SQL statement, which re-enables Transparent Application Continuity when
possible.

8. Check in.

9. End request.

Dynamic Session State Consistency
Application Continuity uses Dynamic Session State Consistency. The session state is tracked
as it is for TAC when using Session State Consistency = AUTO.

Replay (that is, Application Continuity) is enabled at the beginRequest call, and is disabled on
a COMMIT , an endRequest call, or a restricted call. Following is the step logic for three
application scenarios:

• No transaction

• A transaction with COMMIT as the last statement

• A transaction with an embedded COMMIT statement

For the request with no transaction, the logical steps are as follows:

1. Check out from a connection pool.

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. Other actions.

5. Check in.

6. End request and disable replay.

For the request with a transaction with COMMIT as the last statement, the logical steps are
as follows:

1. Check out from a connection pool.

Chapter 6
Administering Application Continuity Operation and Usage

6-46

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. The transaction begins.

5. Other actions.

6. Commit (which disables replay).

7. Check in.

8. End request.

For the request with a transaction with an embedded COMMIT statement, the logical steps
are as follows:

1. Check out from a connection pool.

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. The transaction begins.

5. Other actions.

6. Commit (which disables replay).

7. Other actions, during which Application Continuity is not covering the application.

8. Check in.

9. End request.

Application Continuity Statistics
Once Application Continuity is configured, you can use the statistics to verify Application
Continuity usage and to check how well Application Continuity is protecting user workloads.

You can read the following statistics from the V$SESSTATS and V$SYSSTAT views:

• cumulative begin requests
• cumulative end requests
• cumulative user calls in requests
• cumulative user calls protected by Application Continuity
• cumulative time in requests
You can read the following statistics only from the V$SESSTATS view:

• cumulative DB time in requests
• cumulative DB time protected in requests
• successful replays by Application Continuity
• rejected replays by Application Continuity
The following example shows you how to read Application Continuity statistics values for each
active session.

SQL> SELECT sn.name, s.value FROM V$SESSTAT s, V$STATNAME sn WHERE
sn.statistic# = s.statistic# AND sn.name in(
 'cumulative begin requests','cumulative end requests','cumulative user

Chapter 6
Administering Application Continuity Operation and Usage

6-47

calls in requests','cumulative user calls protected by Application
 Continuity','cumulative time in requests');

The following example shows you how to read Application Continuity statistics from the
V$SYSSTAT view.

SQL> SELECT name, value FROM V$SYSSTAT WHERE name in ('cumulative begin
requests','cumulative end requests',
 'cumulative user calls in requests','cumulative user calls protected by
Application Continuity','cumulative time in requests',
 'cumulative DB time in requests','cumulative DB time protected in
requests','successful replays by Application Continuity',
 'rejected replays by Application Continuity');

Application Continuity Protection Check
The Application Continuity Protection Check (ACCHK) feature generates Application Continuity
coverage reports and views that describe the protection of your application by Application
Continuity.

• About Application Continuity Protection Check
The Application Continuity Protection Check (ACCHK) utility provides protection guidance
for applications that use Application Continuity.

• Enabling and Disabling Application Continuity Protection Check
You can manually enable or disable the Application Continuity Protection Check (ACCHK)
feature for applications that use Application Continuity.

• Generating an Application Continuity Protection Check Report
Generate the Application Continuity Protection Check (ACCHK) report to get guidance for
the level of protection, reason for incomplete protection, and methods to increase the
protection level.

• Filtering Statistics and Events
ACCHK can gather the statistics and events by filtering the data through a service, module,
program, or machine name.

• Cleaning Up ACCHK Collected Information
You can purge the information collected by ACCHK after the ACCHK reports are
generated and data gathered from ACCHK views is analyzed.

About Application Continuity Protection Check
The Application Continuity Protection Check (ACCHK) utility provides protection guidance for
applications that use Application Continuity.

ACCHK provides guidance on the level of protection for each application that uses Application
Continuity and helps guide you to increase protection, if required. ACCHK uses Application
Continuity traces to collect coverage for a workload and provides detailed information as per
your request. You must enable Application Continuity tracing to collect coverage before you run
a database workload. ACCHK also provides diagnostics for an unsuccessful failover.

Database views and PL/SQL-based reports show you the level of protection for your
applications for failover. If an application is not fully protected, then ACCHK identifies that
application, finds out the reason why the application is not fully protected, and guides you how
to increase the protection.

Chapter 6
Administering Application Continuity Operation and Usage

6-48

For the protected applications, ACCHK also reports which operations of an application are
protected, and which operations of an application are not protected. If any operation or
configuration of an application is not protected by the Application Continuity, then you can
make configuration changes to increase the protection coverage. ACCHK generates a report
with coverage statement and percentage value for the workload. The ACCHK report also
shows how many operations were performed, how many operations were fully protected, and
how many operations were not fully protected.

Related Topics

• DBA_ACCHK_EVENTS

• DBA_ACCHK_EVENTS_SUMMARY

• DBA_ACCHK_STATISTICS

• DBA_ACCHK_STATISTICS_SUMMARY

Enabling and Disabling Application Continuity Protection Check
You can manually enable or disable the Application Continuity Protection Check (ACCHK)
feature for applications that use Application Continuity.

Application Continuity Protection Check is not enabled by default. Follow this procedure to
enable or disable ACCHK and generate reports to check protection level for the applications.

1. Grant read access to the users, who will run the Application Continuity Protection Check
report and views, using the ACCHK_READ role:

GRANT ACCHK_READ TO USER;

2. Enable Application Continuity tracing for your applications using the
dbms_app_cont_admin.acchk_set(true) procedure:

SQL> execute dbms_app_cont_admin.acchk_set(true);

By default, ACCHK is disabled automatically after 600 seconds. You can specify a lower
number to reduce the auto disable time. For example, use the
dbms_app_cont_admin.acchk_set(true,300) procedure to disable ACCHK after 300
seconds.

The dbms_app_cont_admin.acchk_set(true) procedure enables Application Continuity
tracing at the database level to which you are connected. If you are connected at the CDB
level, then tracing is enabled for the CDB, and if you are connected at the PDB level, then
tracing is enabled for the PDB.

Note:

Set the COMPATIBLE parameter to 19c or greater. If the COMPATIBLE parameter
was previously set to a lower value, then the acchk_set procedure creates the
ACCHK views and roles when you run the procedure for the first time after
updating the COMPATIBLE parameter.

Chapter 6
Administering Application Continuity Operation and Usage

6-49

3. Use the dbms_app_cont_admin.acchk_set(false) procedure to disable Application
Continuity tracing for new sessions in your applications:

SQL> execute dbms_app_cont_admin.acchk_set(false);

Note:

• The tracing will be disabled for the current sessions after the time expires.

• The tracing is enabled by default for the entire Oracle Real Application
(Oracle RAC) Cluster.

Related Topics

• ACCHK_SET Procedure

• Running Application Continuity Protection Check
Generate the Application Continuity Protection Check (ACCHK) report to get guidance for
the level of protection, reason for incomplete protection, and methods to increase the
protection level.

Generating an Application Continuity Protection Check Report
Generate the Application Continuity Protection Check (ACCHK) report to get guidance for the
level of protection, reason for incomplete protection, and methods to increase the protection
level.

The ACCHK utility is a post-processing tool that uses ACCHK tables in AUX to report
Application Continuity coverage. Enable the Application Continuity tracing and Application
Continuity Protection Check before running a workload and generating the report.
When in read-only mode, traces can record event and statistics. The parameter source in
ACCHK_REPORT is used to decide which input will use the procedure for displaying the report.
You can choose either from tables or traces. When the database is in read-only mode, set this
parameter to DBMS_APP_CONT_REPORT.FROM_TRACES.

1. Run a set of database options after enabling ACCHK and tracing for your applications.

ACCHK generates reports only for the Application Continuity sessions.

2. Generate the Application Continuity Protection Check report using the
dbms_app_cont_report.acchk_report procedure:

SQL> SET LINESIZE 350;
SQL> SET SERVEROUTPUT ON FORMAT WRAPPED;
SQL> execute dbms_app_cont_report.acchk_report;

You can specify the type of the report from FULL, WARNING, or SUMMARY. For example:

SQL> SET LINESIZE 350;
SQL> SET SERVEROUTPUT ON FORMAT WRAPPED;
SQL> execute dbms_app_cont_report.acchk_report(dbms_app_cont_report.FULL);
SQL> execute
dbms_app_cont_report.acchk_report(dbms_app_cont_report.WARNING);

Chapter 6
Administering Application Continuity Operation and Usage

6-50

SQL> execute
dbms_app_cont_report.acchk_report(dbms_app_cont_report.SUMMARY);

The default report type is SUMMARY.

3. Analyze the report and increase the protection level for the applications that are not fully
protected. For example, a summary report looks like the following:

------------ ACCHK Report ------------

CON_ID SERVICE FAILOVER PROTECTED_ PROTECTED_ REQUESTS AVG_CALLS/
PROTECTED_ AVG_TIME/ PROTECTED_TIME/ EVENT_ ERROR_ PROGRAM
MODULE ACTION SQL_ CALL TOTAL
 CALLS % TIME % REQUEST
CALLS/REQUEST REQUEST MS REQUEST MS TYPE
CODE ID
------ ------------- -------- ---------- ---------- -------- ----------
------------- ---------- --------------- ------- ------ ---------
----------------- –-------- ---- --------- –-----
3 srv_tacr_pdb1 AUTO 98.734 98.432 117 9.453
9.333 2279.751 2244.014 DISABLE 41409 JDBC Thin
AddCustNewOrder Action-20 COMMIT 1

Client
3 srv_tacr_pdb1 AUTO 98.734 98.432 117 9.453
9.333 2279.751 2244.014 REPLAY_ 41412 JDBC Thin
InsertNewChecksum Action-1 SQL/PLSQL 1

 FAILED
Client Execu
End of report.

The following examples show how to query detailed information from an ACCHK report using
the ACCHK views.

Example 6-2 Using the DBA_ACCHK_EVENTS View

In this example, the last row indicates that the application that is using the srv_tacr_pdb1
service has an event that caused Application Continuity to fail.

SQL> SELECT * FROM DBA_ACCHK_EVENTS ORDER BY TIMESTAMP;
INST_ID CON_ID TIMESTAMP SESSION_ID SERIAL# SERVICE_NAME PROGRAM
MODULE ACTION SQL_ID CALL_NAME EVENT_TYPE ERROR_CODE
------- ------ ---------------- ---------- ------- ------------- -------
----------------- --------- ------ --------- ---------- ----------
2 3 21-SEP-20 9598 1644 srv_tacr_pdb1 JDBC
AddCustNewOrder Action-36 COMMIT DISABLE 41409
 06.54.18.191 PM
Thin
 -07:00
Client
2 3 21-SEP-20 1703 61265 srv_tacr_pdb1 JDBC
InsertNewChecksum Action-1 SQL/PLSQL REPLAY_ 41412
 06.51.07.624 PM
Thin Execution FAILED

Chapter 6
Administering Application Continuity Operation and Usage

6-51

 -07:00
Client

Example 6-3 Using the DBA_ACCHK_EVENTS_SUMMARY View

In this example, the last row indicates that the application that is using the srv_tacr_pdb1
service has an event that caused Application Continuity to fail.

SQL> SELECT * FROM DBA_ACCHK_EVENTS_SUMMARY ORDER BY SERVICE_NAME;
INST_ID CON_ID SERVICE_NAME FAILOVER_TYPE FAILOVER_RESTORE RESET_STATE
PROGRAM MODULE ACTION SQL_ID CALL_NAME EVENT_TYPE ERROR_CODE
FREQUENCY
------- ------ ------------- ------------- ---------------- -----------
------- ----------------- --------- ------ --------- ---------- ----------

2 3 srv_tacr_pdb1 AUTO AUTO LEVEL1
JDBC AddCustNewOrder Action-20 COMMIT DISABLE 41409 1

Thin Execution

Client
2 3 srv_tacr_pdb1 AUTO AUTO LEVEL1
JDBC InsertNewChecksum Action-1 SQL/PLSQL REPLAY_ 41412 1

Thin Execution FAILED

Client

Example 6-4 Using the DBA_ACCHK_STATISTICS View

In this example, the first row indicates that the application that is using the srv_tacr_pdb1
service has 11 implicit requests from JDBC and 31 calls in the application. 30 calls in these
requests are protected.

SQL> SELECT * FROM DBA_ACCHK_STATISTICS ORDER BY TIMESTAMP;
INST_ID CON_ID TIMESTAMP SESSION_ID SERIAL# STAT_TYPE SERVICE_NAME
FAILOVER_ FAILOVER_ RESET_ PROGRAM BEGIN_ END_ USER_CALLS_
PROTECTED_CALLS_ TIME_IN_ TIME_PROTECTED_

TYPE RESTORE STATE REQUESTS REQUESTS IN_REQUESTS
IN_REQUESTS REQUESTS IN_REQUEST
------- ------ ---------------- ---------- ------- ---------- -------------
--------- --------- ------ ------- -------- -------- -----------
---------------- -------- ---------------
2 3 21-SEP-20 5653 54237 SESSION_ srv_tacr_pdb1
AUTO AUTO LEVEL1 JDBC 11 11 31
30 13316750 12415247
 06.54.25.321 PM
STATISTICS
Thin

-07:00
 Client
2 3 21-SEP-20 11291 26560 SESSION_ srv_tacr_pdb1
AUTO AUTO LEVEL1 JDBC 3 3 50

Chapter 6
Administering Application Continuity Operation and Usage

6-52

49 13094072 13068259
 06.54.24.915 PM
STATISTICS Thin

-07:00
 Client

Example 6-5 Using the DBA_ACCHK_STATISTICS_SUMMARY View

In this example, the application that is using the srv_tacr_pdb1 service has 144 implicit
requests, 99.5688328 percent calls in these requests are protected by Application Continuity or
Transparent Application Continuity.

SQL> SELECT * FROM DBA_ACCHK_STATISTICS_SUMMARY ORDER BY SERVICE_NAME;
INST_ID CON_ID SERVICE_NAME FAILOVER_ FAILOVER_ RESET_ TOTAL_
PROTECTED_CALLS_ PROTECTED_TIME_ AVG_USER_CALLS_ AVG_PROTECTED_
AVG_TIME_ AVG_TIME_
 TYPE RESTORE STATE REQUESTS
PERCENT PERCENT IN_REQUESTS CALLS_IN_REQUESTS
IN_REQUESTS PROTECTED_IN_REQUESTS
------- ------ ------------- --------- --------- ------ --------
---------------- --------------- --------------- -----------------
----------- –--------------------
2 3 srv_tacr_pdb1 AUTO AUTO LEVEL1 144
99.5688328 99.0130288 22.5486111 22.4513889
3078654.35 3048268.92

Related Topics

• DBA_ACCHK_EVENTS

• DBA_ACCHK_STATISTICS

• DBA_ACCHK_STATISTICS_SUMMARY

• ACCHK_REPORT Procedure

Filtering Statistics and Events
ACCHK can gather the statistics and events by filtering the data through a service, module,
program, or machine name.

When you provide single service filter or multiple service filters, ACCHK records only the
statistics and events related to the specified services. This functionality also applies when you
provide only a single or multiple program filters for only a single or multiple module filters.
Provide a service, program, module, and machine filter for ACCHK to record only the statistics
and events that match the service, program, module, and machine.

The DBMS_APP_CONT_ADMIN package contains the following procedures for filtering data:

• ACCHK_SET_FILTER
• ACCHK_CLEAR_FILTER
• ACCHK_SHOW_FILTERS

Chapter 6
Administering Application Continuity Operation and Usage

6-53

Note:

After adding filters by using ACCHK_SET_FILTER, you must run ACCHK_SET(TRUE) to
load the filters. If you add or clear a filter, but do not run ACCHK_SET(TRUE), then that
particular filter is not updated.

Filter Life Span

• Filters are accumulative.

• The ACCHK_CLEAR_FILTER procedure clears one or all filters depending on how you run the
procedure.

Related Topics

• ACCHK_SET_FILTER Procedure

• ACCHK_CLEAR_FILTER Procedure

• ACCHK_SHOW_FILTERS Procedure

Cleaning Up ACCHK Collected Information
You can purge the information collected by ACCHK after the ACCHK reports are generated
and data gathered from ACCHK views is analyzed.

Purging the ACCHK collected information is optional. You can initiate a new ACCHK process
with new collected data after purging existing ACCHK information.

Use the following statement to purge all previously collected ACCHK information:

SQL> execute dbms_app_cont_admin.acchk_purge(purge_all => TRUE);

Delaying the Reconnection in Application Continuity
Learn about how you can set parameters to manage reconnects with Application Continuity, or
Transparent Application Continuity, and see examples on single-instance and Oracle Real
Application Clusters (Oracle RAC) databases.

• Understanding How to Wait for the Service to be Ready for Application Continuity
To manage planned and unplanned outages, learn about the parameters that you use to
manage application continuity.

• Creating Services on Oracle RAC with Application Continuity
You can create services on Oracle RAC that utilize Transparent Application Continuity or
Application Continuity.

• Modifying Services on Single-instance Databases to use Application Continuity
If you are using a single-instance database, then use the DBMS_SERVICE package to modify
services.

Understanding How to Wait for the Service to be Ready for Application Continuity
To manage planned and unplanned outages, learn about the parameters that you use to
manage application continuity.

Chapter 6
Administering Application Continuity Operation and Usage

6-54

By default, when Application Continuity initiates a failover, the driver attempts to recover the in-
flight work at an instance where the service is available. For recovering the work, the driver
must establish a good connection with the instance. This reconnection can take some time if
the database or the instance must be restarted before the service is relocated and published.
For this reason, the failover must be delayed until the service is available from another
instance or database.

To manage connecting and reconnecting, you must use the RETRY_COUNT and RETRY_DELAY
parameters in your TNS or URL. These TNS parameters can work well in conjunction with a
planned outage, for example, an outage that may make a service unavailable for several
seconds. While setting the RETRY_COUNT and RETRY_DELAY parameters, check the value of the
REPLAY_INITIATION_TIMEOUT parameter first. A high value for the RETRY_DELAY parameter can
cause replay to be canceled.

Parameter Name Possible Value Default Value

RETRY_COUNT Positive integer zero or above 30

RETRY_DELAY Time in sec, ms, or cs 3

Creating Services on Oracle RAC with Application Continuity
You can create services on Oracle RAC that utilize Transparent Application Continuity or
Application Continuity.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

You can create services that use Transparent Application Continuity, as follows:

$ srvctl add service -db mydb -service TACSERVICE -pdb mypdb –preferred inst1
-available inst2
 -failovertype AUTO -session_state AUTO -failover_restore AUTO -
commit_outcome TRUE -replay_init_time 600
 -retention 86400 -notification TRUE -drain_timeout 300 -stopoption
IMMEDIATE -role PRIMARY

You can create services that use Application Continuity, as follows:

$ srvctl add service -db mydb -service ACSERVICE -pdb mypdb -preferred inst1 -
available inst2
 -failovertype TRANSACTION -session_state DYNAMIC -failover_restore LEVEL1 -
commit_outcome TRUE -replay_init_time 600
 -retention 86400 - notification TRUE -drain_timeout 300 -stopoption
IMMEDIATE -role PRIMARY

Modifying Services on Single-instance Databases to use Application Continuity
If you are using a single-instance database, then use the DBMS_SERVICE package to modify
services.

Chapter 6
Administering Application Continuity Operation and Usage

6-55

For Application Continuity:

DECLARE
params dbms_service.svc_parameter_array;
BEGIN
params('FAILOVER_TYPE'):='TRANSACTION';
params('REPLAY_INITIATION_TIMEOUT'):=1800;
params('RETENTION_TIMEOUT'):=86400;
params('FAILOVER_DELAY'):=10;
params('FAILOVER_RETRIES'):=30;
params('FAILOVER_RESTORE'):='LEVEL1';
params('commit_outcome'):='true';
params('aq_ha_notifications'):='true';
dbms_service.modify_service('[your service]',params);
END;
/

For Transparent Application Continuity:

DECLARE
params dbms_service.svc_parameter_array;
BEGIN
params('FAILOVER_TYPE'):='AUTO';
params('REPLAY_INITIATION_TIMEOUT'):=1800;
params('RETENTION_TIMEOUT'):=86400;
params('FAILOVER_DELAY'):=10;
params('FAILOVER_RETRIES'):=30;
params('FAILOVER_RESTORE'):='AUTO';
params('commit_outcome'):='true';
params('aq_ha_notifications'):='true';
dbms_service.modify_service('[your service]',params);
END;
/

Running Without Application Continuity
Sometimes Application Continuity is not in effect because a disabling call has been issued.

Application Continuity is not in effect when it has not been started or when it has been
disabled. If it has been disabled, it remains so through to the endRequest call.

Application Continuity is not started when the service property FAILOVER_TYPE does not have
the value set to TRANSACTION or AUTO. For planned maintenance, set the FAILOVER_TYPE value
to TRANSACTION or AUTO, beforehand; the setting applies to new connections, and existing
connections retain their original service value.

Application Continuity is disabled for the current request when any of the following occurs:

• The application runs a statement that is restricted for Application Continuity (for example,
ALTER SYSTEM).

• Application Continuity is explicitly disabled using disableReplay.

• A COMMIT statement is issued when the service parameter session_state_consistency is
set to Dynamic (the default, when not using Transparent Application Continuity).

• An endRequest statement is issued until the next beginRequest is issued.

Chapter 6
Administering Application Continuity Operation and Usage

6-56

• The session is terminated or disconnected and the NOREPLAY keyword is specified.

Related Topics

• Transparent Application Continuity

• Understanding Enabling and Disabling Replay in Application Continuity

• Terminating or Disconnecting a Session Without Replay
Learn how to disable replay when a DBA terminates or disconnects a session by using the
ALTER SYSTEM KILL SESSION or ALTER SYSTEM DISCONNECT SESSION statement.

Disabling Replay in Application Continuity
Learn about how you can disable replay with applications, and about specific rules and
guidelines for disabling replay.

The rules described in this section are generic. They apply to all applications that replay work,
including Application Continuity, and TAF (release 12.2 and after).

• Understanding Enabling and Disabling Replay in Application Continuity
Replay occurs following a recoverable error, but you can disable replay.

• Application Calls Autonomous Transactions, External PL/SQL, or Java Actions that Should
Not Be Repeated
Autonomous transactions, external PL/SQL calls, and Java callouts can have side effects
that are separate from the main transaction, and these side effects are replayed unless
you specify otherwise.

• Application Synchronizes Independent Sessions
If the application synchronizes independent sessions using volatile entities that are held
until COMMIT, ROLLBACK, or session loss, then you must not configure an application for
replay.

• Application Uses Time at the Middle Tier in the Processing Logic
If the application uses the wall clock at the middle tier as part of the processing logic, then
you must not configure an application for replay.

• Application Assumes that ROWIds Do Not Change
If an application caches ROWID values, then access to these ROWID values can be
invalidated due to database changes.

• Application Assumes that Location Values Do Not Change
If you have applications that use physical identifiers, then review the guidelines and
examples here to avoid issues.

Understanding Enabling and Disabling Replay in Application Continuity
Replay occurs following a recoverable error, but you can disable replay.

If an application has requests that you do not want the application to repeat, then the
application either can take a connection to a service that does not have Application Continuity
enabled, or the application can explicitly call an API to disable replay for those requests. If you
use Transparent Application Continuity, then side effects are detected and disabled
automatically. You do not need either to understand the application, or to disable requests with
side effects.

When using Application Continuity, all calls are replayed. If an application uses UTL_SMTP, for
example, and you do not want that application to repeat messages, then the application can
use a connection to a different service, or use the disableReplay API on Java, or use the

Chapter 6
Administering Application Continuity Operation and Usage

6-57

OCIRequestDisableReplay API for Oracle Call Interface (OCI). All other requests continue to
be replayed.

For applications with external actions (for example, autonomous transactions or using
UTL_HTTP to issue an SOA call), Application Continuity remains transparent if the application's
correctness is preserved when these external actions are replayed after a failure.

Related Topics

• Transparent Application Continuity

• Potential Side Effects of Application Continuity

• Restrictions and Other Considerations for Application Continuity

Application Calls Autonomous Transactions, External PL/SQL, or Java Actions that
Should Not Be Repeated

Autonomous transactions, external PL/SQL calls, and Java callouts can have side effects that
are separate from the main transaction, and these side effects are replayed unless you specify
otherwise.

Examples of side effects separate from the main transaction include the following:

• Writing to an external table, sending email, forking sessions out of PL/SQL(including calls
to UTL_HTTP, UTL_URL, UTL_FILE, UTL_FILE_TRANSFER, UTL_SMPT, UTL_TCP, UTL_MAIL,
DBMS_PIPE, or DBMS_ALERT)

• Writing to an external table, sending email, forking sessions out of Java (including running
a shell script in the form Process proc = rt.exec(command);), transferring files, and
accessing external URLs

Actions such as these leave persistent side effects. PL/SQL messaging and Java callouts can
leave persistent results behind. For example, if a user walks away partway through some work
without committing, and the session times out, or the user issues a Ctrl+C command, then the
foreground or a component fails. As a result, the main transaction rolls back, while the side
effects may have been applied.

Application developers decide whether to allow replay for external actions. Examples include
using UTL_HTTP to issue an SOA call, or UTL_SMTP to send a message, or UTL_URL to access a
website. If you do not want these kinds of external actions replayed, then use a connection
without application continuity, or use one of the disable replay APIs.

Related Topics

• Potential Side Effects of Application Continuity
When you use Application Continuity with the service attribute FAILOVER_TYPE set to
TRANSACTION, statements that perform side effects are replayed.

Application Synchronizes Independent Sessions
If the application synchronizes independent sessions using volatile entities that are held until
COMMIT, ROLLBACK, or session loss, then you must not configure an application for replay.

For example, if an application synchronizes multiple sessions connected to several data
sources that are otherwise interdependent using resources such as a database lock, then this
synchronization can be acceptable if the application is only serializing these sessions, and
understands that any session can fail. However, if the application assumes that a lock or any
other volatile resource held by one data source implies exclusive access to data on the same

Chapter 6
Administering Application Continuity Operation and Usage

6-58

or a separate data source from other connections, then this assumption can be invalidated
when replaying.

During replay, the client driver is not aware that the sessions are dependent on one session
holding a lock or other volatile resource. To implement the synchronization lost by failures, you
can also use pipes, buffered queues, or stored procedures taking a resource (such as a
semaphore, device, or socket).

Application Uses Time at the Middle Tier in the Processing Logic
If the application uses the wall clock at the middle tier as part of the processing logic, then you
must not configure an application for replay.

The client driver does not repeat the middle tier time logic, but instead uses the database calls
that run as part of this logic. For example, an application using middle-tier time might assume
that a statement processed at Time T1 is not re-processed at Time T2, unless the application
explicitly does so.

Application Assumes that ROWIds Do Not Change
If an application caches ROWID values, then access to these ROWID values can be invalidated
due to database changes.

Although a ROWID uniquely identifies a row in a table, a ROWID can change its value in the
following situations:

• The underlying table is reorganized.

• An index is created on the table.

• The underlying table is partitioned.

• The underlying table is migrated.

• The underlying table is exported and imported using EXP/IMP/DUL.

• The underlying table is rebuilt using Oracle GoldenGate, or other replication technology.

• The database of the underlying table is flashed back or restored.

In general, Oracle does not recommend that an application stores ROWID values for later use,
because the corresponding row either might not exist, might contain completely different data.
Note that using ROWID values do not prevent using Application Continuity. Replays can be
rejected.

Application Assumes that Location Values Do Not Change
If you have applications that use physical identifiers, then review the guidelines and examples
here to avoid issues.

SYSCONTEXT options comprise two sets:

• A location-independent set, such as National Language Support (NLS) settings, ISDBA,
CLIENT_IDENTIFIER, MODULE, and ACTION

• A location-dependent set, which uses physical locators

Typically, an application does not use the physical identifiers, except in testing environments. If
physical locators are used in mainline code, then the replay finds the mismatch and rejects it.
However, it is acceptable to use physical locators between requests (before beginRequest) or
in callbacks. A common issue is for QA to modify test applications to select V$INSTANCE. As

Chapter 6
Administering Application Continuity Operation and Usage

6-59

V$INSTANCE can change, only put this check in the callback, or select the instance locally at the
client and not from the database.

Example of Physical Identifier Use

select
 sys_context('USERENV','DB_NAME')
 ,sys_context('USERENV','HOST')
 ,sys_context('USERENV','INSTANCE')
 ,sys_context('USERENV','IP_ADDRESS')
 ,sys_context('USERENV','ISDBA')
 ,sys_context('USERENV','SESSIONID')
 ,sys_context('USERENV','TERMINAL')
 ,sys_context('USERENV','SID')
from dual;

Terminating or Disconnecting a Session Without Replay
Learn how to disable replay when a DBA terminates or disconnects a session by using the
ALTER SYSTEM KILL SESSION or ALTER SYSTEM DISCONNECT SESSION statement.

If Application Continuity is configured and if a DBA terminates or disconnects a session by
using the ALTER SYSTEM KILL SESSION or ALTER SYSTEM DISCONNECT SESSION statement, then
Application Continuity, by default attempts, to recover the session. However, if you do not want
the session to be replayed, then use the NOREPLAY keyword. For example:

alter system kill session 'sid, serial#, @inst' noreplay;

alter system disconnect session 'sid, serial#, @inst' noreplay

$ srvctl stop service -db orcl -instance orcl2 –drain_timeout 60 -stopoption
immediate -force -noreplay

$ srvctl stop service -db orcl -node myode3 –noreplay -drain_timeout 60 -
stopoption immediate -force

$ srvctl stop instance -node mynode3 -drain_timeout 60 -stopoption immediate -
force –noreplay

To terminate all sessions running on the local instance (rather that only one session) and not
have the sessions replayed, you can also use the DBMS_SERVICE.DISCONNECT_SESSION PL/SQL
procedure, and specify NOREPLAY for the disconnect_option parameter.

Related Topics

• ALTER SYSTEM

• DBMS_SERVICE.DISCONNECT_SESSION

Fast Application Notification (FAN)
The Oracle RAC high availability framework monitors a database and its services, and sends
Fast Application Notification (FAN) event notifications.

Chapter 6
Fast Application Notification (FAN)

6-60

Oracle Database focuses on maintaining the highest possible service availability. In Oracle
Real Application Clusters (Oracle RAC), services are designed to be continuously available
with loads shared across one or more instances. The Oracle RAC high-availability framework
maintains service availability by using Oracle Clusterware and resource profiles. Oracle
Clusterware recovers and balances services according to business rules and the service
attributes.

• Overview of Fast Application Notification (FAN)
FAN provides immediate interrupt of clients following outages related to the database,
nodes, and networks.

• The Importance of Using Fast Application Notification
Using Fast Application Notification (FAN) events eliminates applications waiting on TCP
timeouts, time wasted processing the last result at the client after a failure has occurred,
and time wasted running work on slow, suspended, or terminated nodes.

• How FAN is Used with Oracle Database and Applications
Fast Application Notification (FAN) is essential to prevent applications from stop
responding on TCP/IP timeouts.

• Requirements for Using FAN
Learn what you need to do to take advantage of FAN-aware capabilities in client drivers
connecting to Oracle Real Application Clusters (Oracle RAC) databases.

• FAN Callouts
Fast Application Notification (FAN) callouts are server-side scripts or executables that run
whenever a FAN event is generated.

• Fast Application Notification High Availability Events
Learn how the Fast Application Notification (FAN) event delivers information to a callout
program.

• Subscription to High Availability Events
To monitor and notify applications about services, Oracle Real Application Clusters (Oracle
RAC) uses Oracle RAC Fast Application Notification (FAN).

• Using Fast Application Notification Callouts
Fast Application Notification (FAN) callouts are server-side program files that Oracle RAC
runs immediately when high availability events occur.

Overview of Fast Application Notification (FAN)
FAN provides immediate interrupt of clients following outages related to the database, nodes,
and networks.

FAN is essential to break clients out of TCP/IP timeouts immediately following failures. FAN
notifies clients immediately when resources become available and initiates draining of
database sessions so clients experience no outages during planned maintenance. FAN also
includes notifying configuration-level and service-level information that includes changes in
service status.

The Oracle client drivers and Oracle Real Application Clusters (Oracle RAC) connection pools
respond to FAN events, and take immediate action. FAN UP and DOWN events apply to services,
databases, instances, networks, and nodes.

Related Topics

• Enabling Clients for Oracle RAC
Learn how FAN is integrated with Oracle Clients, and how to enable FAN events for the
several specific client development environments.

Chapter 6
Fast Application Notification (FAN)

6-61

• Server Draining Ahead of Planned Maintenance
Before planned maintenance, drain or failover database sessions at the database instance
so application work is not interrupted.

The Importance of Using Fast Application Notification
Using Fast Application Notification (FAN) events eliminates applications waiting on TCP
timeouts, time wasted processing the last result at the client after a failure has occurred, and
time wasted running work on slow, suspended, or terminated nodes.

Applications can waste time in many critical ways:

• Waiting for TCP/IP timeouts when a node fails without closing sockets, and for every
subsequent connection while that IP address is down.

• Attempting to connect when services are down.

• Not connecting when services resume.

• Processing the last result at the client when the server goes down.

• Attempting to run work on sub-optimal nodes.

When a node fails without closing sockets, all sessions that are blocked in an I/O wait (read or
write) wait for tcp_keepalive. This wait status is the typical condition for an application
connected by a socket. Sessions processing the last result are even worse off, not receiving an
interrupt until the next data is requested.

How FAN is Used with Oracle Database and Applications
Fast Application Notification (FAN) is essential to prevent applications from stop responding on
TCP/IP timeouts.

FAN events are published using Oracle Notification Service starting with Oracle Database
12.2. Advanced Queuing is used for FAN events only for older Oracle Call Interface (OCI)
applications (OCI drivers before 12.2). The publication mechanisms are automatically
configured as part of your Oracle RAC installation. There are specific settings needed on each
client to enable the client to receive FAN events.

• For OCI clients, the service attribute notification must be set on the server. For example
srvctl modify service -db EMEA -service GOLD -notification TRUE. Also, for OCI
clients you must set events to TRUE in the oraaccess.xml configuration file.

• For ODP .Net clients, you must set HA events to TRUE in the oraaccess.xml in the
connect string.

• For Universal Connection Pool clients, set the pool property Fast Connection Failover to
true (setFastConnectionFailoverEnabled(true)) in the properties file.

All clients can use the auto-configuration of ONS to receive events, but the clients still need
settings to ensure they react to these events.

Oracle Net Services listeners and Global Data Services (GDS) are integrated with FAN events,
enabling the listener and GDS to immediately de-register services provided by the failed
instance and to avoid erroneously sending connection requests to failed instances.

Oracle connection pools use FAN to receive very fast notification of failures, to balance
connections following failures, and to balance connections again after the failed components
are repaired. So, when a service connecting to an Oracle Database instance starts, the
connection pool uses the FAN event to route work to that resource, immediately. When a

Chapter 6
Fast Application Notification (FAN)

6-62

service for a database instance or node fails, the connection pool uses the FAN event to
immediately interrupt applications to recover.

For cluster configuration changes, the Oracle Real Application Clusters (Oracle RAC) high
availability framework publishes a FAN event immediately when a state change occurs in the
cluster. Instead of waiting for the application to time out against the database and detect a
problem, applications can receive FAN events and react immediately. With FAN, in-flight
transactions are immediately terminated and the client notified when the instance fails.

FAN also publishes load balancing advisory events. Applications can take advantage of the
load balancing advisory FAN events to direct work requests to the instance in the cluster that is
currently providing the best service quality.

If you specify the connection load balancing goal CLB_GOAL_LONG for a database service, then
the listener uses the load balancing advisory when the listener balances the connection loads.
When load balancing advisory is enabled, the metrics used for the listener are finer grained.

You can take advantage of FAN events in the following ways:

• Applications can use FAN if you use an integrated Oracle client. The integrated clients for
FAN events include Oracle JDBC Universal Connection Pool, ODP.NET connection pool,
OCI session pool, Oracle WebLogic Server Active Gridlink for Oracle RAC, and OCI,
JDBC-thin, and ODP.NET Managed and Unmanaged clients. The integrated Oracle clients
must be Oracle Database 10g release 2 (10.2) or later to take advantage of the FAN high-
availability events. The pooled clients can also take advantage of the load balancing
advisory FAN events.

• You can configure third-party application containers, such as those provided by Apache
Tomcat and WebSphere, to use the built-in FAN support offered by using the Universal
Connection Pool in place of the default pool, which is certified as a connection pool for
third-party Java application servers including Apache Tomcat and WebSphere.

• Use the FAN-aware capability of the Oracle drivers by using standard interfaces to test
connections on get or release from the third-party connection pools in use by third-party
application servers or custom applications.

– This solution applies to standard Java applications through the use of the standard
TNS connect string and ensures that the ons.jar and simpleFAN.jar files are
available on the application CLASSPATH.

– For the OCI/OCCI driver, the OCI_ATTR_SERVER_STATUS server context handle attribute
is sensitive to FAN events and will return OCI_SERVER_NOT_CONNECTED if the connection
has been affected by a FAN event.

• You can implement FAN with server-side callouts on your database tier.

• Applications can use FAN programmatically by using the JDBC and Oracle RAC FAN
application programming interface (API) or by using callbacks with OCI and ODP.NET to
subscribe to FAN events and to run event handling actions upon the receipt of an event.

For planned maintenance and applications using OCI or Pro* precompilers (and not using the
OCI session pool or Tuxedo), an application must check OCI_ATTR_SERVER_STATUS. Add this
check when sessions are returned to your own connection pool, and for idle connections,
regularly. Following a FAN down event with planned maintenance, this attribute is set to
OCI_SERVER_NOT_CONNECTED. The application closes the connection after reading this
disconnected status. The session remains open for draining of active work until the application
closes, providing error-free failover.

If you use one of the integrated clients listed in the first item of the preceding list, then, for DOWN
events, the disruption to the application is minimized because the FAN-aware client terminates
the connections to the failed instance or node before they are reused. Active work can be

Chapter 6
Fast Application Notification (FAN)

6-63

allowed to complete and, if there is a remaining instance, then continuous service can be
maintained for ongoing work. Any sessions active when the instance or service stops are
terminated and the application user is immediately notified. Incomplete transactions can be
protected by Application Continuity, if it is enabled. Application users who request connections
are directed only to available instances.

For UP events, when database services and instances are started, new connections are
created so that the application can immediately take advantage of the extra hardware
resources or additional capacity.

Requirements for Using FAN
Learn what you need to do to take advantage of FAN-aware capabilities in client drivers
connecting to Oracle Real Application Clusters (Oracle RAC) databases.

Client drivers on releases after Oracle Database 12c release 2 (12.2) are FAN-aware, and FAN
is enabled by default. This is also true for the JDBC Thin driver (12.2.0.1 and later), and Oracle
Data Provider for Net (ODP.NET) drivers. A client driver can detect planned and unplanned
FAN events, and take action beneath the application.

To take advantage of FAN-aware capabilities in the drivers, the following is required:

• For the thin Java driver, beginning with release 12.2, FAN is automatically enabled by
placing the ons.jar and simpleFAN.jar files on the CLASSPATH, and by using the
recommended TNS format. Using the recommended TNS format automatically configures
ONS. Also with the Java thin driver, FAN is supported for both planned and unplanned
events. For unplanned outages, the FAN interrupt is immediate. For planned maintenance,
configure the Java application servers or custom pools using standard interfaces to test
connections on get or release from third-party connection pools. For example, depending
on the application server, test TestConnectionsOnReserve, TestOnBorrow, or PreTest
connections.

With this approach, when a FAN event is received during planned maintenance, Fast
Connection Failover (FCF) closes sessions when they are tested, because the application
does not have a connection to the database at this time, and can retry for a new
connection. The connection tests may use isValid, isClosed, isUsable, or PingDatabase.

• At the time the SQL command runs, the database will drain the connection, if it is affected
by the upcoming planned maintenance. Connection pools, data sources, and, in the
programmatic case, customer applications, must all be ready to manage the recoverable
error that occurs when the SQL command runs, which usually closes the physical
connection.

• Third-party Java application servers and Java applications can use the PooledConnection
standard interface when developing connection pools.

• Beginning with the 11.2.0.3 release of the Oracle Call Interface (OCI) and Oracle C++ Call
Interface (OCCI) drivers, when the OCI_ATTR_SERVER_STATUS server context handle
attribute returns OCI_SERVER_NOT_CONNECTED, the application must terminate the
connection. Work will be drained for planned maintenance. Releases of the driver after
12.2.0.1 can also detect OCISessionRelease and OCIRequestEnd when it receives a
planned DOWN event.

FAN Callouts
Fast Application Notification (FAN) callouts are server-side scripts or executables that run
whenever a FAN event is generated.

Chapter 6
Fast Application Notification (FAN)

6-64

You can design and build callouts to do many things, such as:

• Log status information

• Page DBAs or to open support tickets when resources fail to start

• Automatically start dependent external applications that must be co-located with a service

• Shut down services when the number of available instances for a database decreases, for
example, if nodes fail

• Automate the fail back of a service to preferred instances, if the -failback parameter is
not sufficient

Fast Application Notification High Availability Events
Learn how the Fast Application Notification (FAN) event delivers information to a callout
program.

In the following example, FAN event types are listed always as the first entry when you receive
FAN information through a callout, as in the following examples:

#service UP when the service starts
SERVICEMEMBER VERSION=1.0
 service=HRPDB1.example.com database=ractest
 instance=ractest2 host=prod_host01_1 status=up reason=BOOT
 card=1 timestamp=2019-10-24 09:11:51 timezone=+00:00
 db_domain=example.com
SERVICE VERSION=1.0
 service=HRPDB1.example.com database=ractest instance=ractest2
 host=prod_host01_1 status=up reason=BOOT
 timestamp=2019-10-24 09:11:51 timezone=+00:00
 db_domain=example.com

#service DOWN
SERVICEMEMBER VERSION=1.0 service=HRPDB1.example.com database=ractest
 instance=ractest2 host=prod_host01_1 status=down reason=USER
 timestamp=2019-10-25 17:59:43 timezone=+00:00 db_domain=example.com
 drain_timeout=120
SERVICE VERSION=1.0 service=HRPDB1.example.com database=ractest
 instance=ractest2 host=prod_host01_1 status=down reason=FAILURE
 timestamp=2019-10-24 21:25:57 timezone=+00:00 db_domain=example.com

Note that the preceding examples normally display as one line.

FAN event types include:

DATABASE
INSTANCE
NODE
SERVICE
SERVICEMEMBER
SERVICEMETRICS

The DATABASE and INSTANCE types list the default database service as DB_UNIQUE_NAME.

All events except for NODE events include a db_domain field.

Events of SERVICEMETRICS type are load balancing advisory events.

Chapter 6
Fast Application Notification (FAN)

6-65

The following table describes name-value pairs for the event parameters, and provides more
information about load balancing events:

Table 6-2 Event Parameter Name-Value Pairs and Descriptions

Parameter Description

VERSION Version of the event record. Used to identify release changes.

database The unique name of the database supporting the service; matches the
initialization parameter value for DB_UNIQUE_NAME, which defaults to the
value of the DB_NAME initialization parameter.

instance The name of the instance that supports the service.

host The name of the node that supports the service or the node that has
stopped; matches the node name known to Cluster Synchronization
Services (CSS).

service The service name; matches the name of the service as listed in
DBA_SERVICES and is domain-qualified as appropriate. Refer to the
following examples:

SERVICEMEMBER VERSION=1.0 service=swingbench
 database=orcl instance=orcl_2 host=dev_host1 status=up
 reason=USER card=1 timestamp=2018-05-29 17:26:37
 timezone=-07:00 db_domain=

SERVICEMEMBER VERSION=1.0
service=swingbench.example.com
 database=orcl instance=orcl1 host=dev_host1 status=up
 reason=USER card=2 timestamp=2018-05-03 17:29:28
 timezone=-07:00 db_domain=example.com

SERVICEMEMBER VERSION=1.0
service=swingbench.example.com
 database=orcl instance=orcl2 host=dev_host1 status=up
 reason=USER card=1 timestamp=2018-07-03 17:29:18
 timezone=-07:00 db_domain=example.com

status Values are UP, DOWN, NODEDOWN (this only applies to the NODE event type),
NOT_RESTARTING, and UNKNOWN.

Notes:
• When the node is down, the status is NODEDOWN, as opposed to DOWN

for other event types.
• When STATUS=NODEDOWN and REASON=MEMBER_LEAVE, a node has

failed and is no longer part of the cluster, or a user has stopped a
node.

• When STATUS=NODEDOWN and REASON=PUBLIC_NW_DOWN, the node
is up but it is unreachable because the public network is down
because of either a failure or a user action.

• Multiple public networks are supported by Oracle Clusterware. The
FAN event reflects this fact.

Chapter 6
Fast Application Notification (FAN)

6-66

Table 6-2 (Cont.) Event Parameter Name-Value Pairs and Descriptions

Parameter Description

reason AUTOSTART, BOOT, DEPENDENCY, FAILURE, MEMBER_LEAVE,
PUBLIC_NW_DOWN, USER.

Notes:
• For DATABASE and SERVICE event types, REASON=AUTOSTART if,

when the node started, the AUTO_START resource attribute was set to
restore, and the resource was offline before the node started.

• For DATABASE and SERVICE event types, REASON=BOOT if, when the
node started, the resource started because it was online before the
node started.

• For SRVCTL and Oracle Enterprise Manager operations,
REASON=USER describes planned actions for such operations as
draining work.

card (cardinality) The number of service members that are currently active; included in all
SERVICEMEMBER UP events.

Here is an example of a SERVICEMEMBER UP event:

SERVICEMEMBER VERSION=1.0
service=swingbench.example.com
database=orcl instance=orcl_2 host=dev_host3 status=up
reason=USER card=1
timestamp=2018-07-12 14:46:46 timezone=-07:00
db_domain=example.com

incarn (incarnation) For NODEDOWN events; the new cluster incarnation. This value changes
each time a member joins or leaves the cluster.

Here is an example of a NODEDOWN event:

VERSION=1.0 event_type=NODE host=dev_host2
incarn=175615351 status=nodedown
reason=member_leave timestamp=2019-10-24 05:55:06
timezone=+00:00

timestamp The time according to Oracle Clusterware that an event occurs.

timezone The time zone of Oracle Clusterware where the event occurred, given as
GMT +/-hh:mm.

drain_timeout Time in seconds during which a service will drain. Appears with
SERVICEMEMBER events

vip_ips VIP on a public network that has gone down. Part of a NODE event.

Here is an example of a NODEDOWN event:

NODE VERSION=2.0 host=my-exa status=nodedown
reason=public_nw_down
incarn=0 timestamp=2019-10-24 09:02:35 timezone=+00:00
vip_ips=10.1.1.94

Chapter 6
Fast Application Notification (FAN)

6-67

Some of the FAN event record parameters have values that correspond to values returned by
the SYS_CONTEXT function using the default namespace USERENV, as shown in the following
table:

Table 6-3 FAN Parameters and Matching Session Information

FAN Parameter Matching Session Information

SERVICE sys_context('userenv', 'service_name')
DATABASE_UNIQUE_NAME sys_context('userenv', 'db_unique_name')
INSTANCE sys_context('userenv', 'instance_name')
CLUSTER_NODE_NAME sys_context('userenv', 'server_host')

Subscription to High Availability Events
To monitor and notify applications about services, Oracle Real Application Clusters (Oracle
RAC) uses Oracle RAC Fast Application Notification (FAN).

Oracle RAC uses FAN to notify applications about configuration changes and the current
service level that is provided by each instance where the service is enabled. If you are using
an Oracle Call Interface (OCI) client, or an ODP.NET client to receive FAN events, then you
must enable the service used by that client to access the alert notification queue by using
SRVCTL with the -notification parameter.

Using Fast Application Notification Callouts
Fast Application Notification (FAN) callouts are server-side program files that Oracle RAC runs
immediately when high availability events occur.

You can use FAN callouts to automate activities when events occur in a cluster configuration,
such as:

• Opening fault tracking tickets

• Sending messages to pagers

• Sending e-mail

• Starting and stopping server-side applications

• Maintaining an up-time log by logging each event as it occurs

• Relocating low-priority services when high priority services come online

To use FAN callouts, place a program file in the Grid_home/racg/usrco directory on every
node that runs Oracle Clusterware. The program file must be able to run standalone when
called, with optional arguments, from another program. The following is an example of a shell
script, named callout.sh, which is placed in the Grid_home/racg/usrco directory:

#! /bin/bash
FAN_LOGFILE= [your_path_name]/admin/log/'hostname'_uptime'.log
echo $* "reported="'date' >> $FAN_LOGFILE &

Chapter 6
Fast Application Notification (FAN)

6-68

The previous example adds entries similar to the following in the log file, indicated
by $FAN_LOGFILE in the shell script, each time a FAN event is generated:

NODE VERSION=2.0 host=my-exa status=nodedown reason=public_nw_down
incarn=0 timestamp=2019-10-24 09:02:35 timezone=+00:00 vip_ips=10.1.1.94

The contents of a FAN event record matches the current session of the user logged on to the
database. The user environment (USERENV) information is also available using Oracle Call
Interface (OCI) connection handle and descriptor attributes (using OCIAttrGet()). Use this
information to take actions on sessions that match the FAN event data.

In general, events are only posted to user callouts on the node from which the event
originated. For example, if the database on node1 goes down, then the callout is posted to
node1, only. The only exceptions to this are node down and VIP down events—these events
are posted to all nodes, regardless of from where they originated.

Related Topics

• Fast Application Notification High Availability Events
Learn how the Fast Application Notification (FAN) event delivers information to a callout
program.

• Oracle Call Interface Developer's Guide

Configure for Unplanned Outages
You can assign services to one or more instances in an administrator-managed Oracle RAC
database to hide outages.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

It is a complex task for application developers to mask outages of a database session
(instance, node, storage or network, or any other related component). As a result, errors and
timeouts are often exposed to the end users, which can lead to user frustration, lost
productivity, and lost opportunities. Together, FAN and Application Continuity mask outages
from users and applications by recovering the in-flight work for impacted database sessions
following outages. Application Continuity performs this recovery beneath the application, so
that the outage appears to the application as a slightly delayed processing of the request.

If Oracle Real Application Clusters (Oracle RAC) detects an outage, then Oracle Clusterware
isolates the failed component and recovers the dependent components. For services, if the
failed component is an instance, then Oracle Clusterware attempts to maintain the cardinality
of the service. If the service definition allows for failover and that is necessary to maintain
cardinality, then failover occurs.

Fast Application Notification (FAN) events can occur at various levels within the Oracle
Database architecture. To provide backward compatibility with earlier release Oracle Call
Interface (OCI) clients, they are published through Oracle Notification Service and Advanced
Queuing. FAN callouts can also be written to run on the database server in response to FAN
events.

Chapter 6
Configure for Unplanned Outages

6-69

Note:

Oracle Database does not run Oracle RAC callouts with guaranteed ordering.
Callouts are run asynchronously, and they are subject to scheduling variability.

FAN is published from a remaining node when the failed node is out of service. The location
and number of instances in an Oracle RAC environment that provide a service are transparent
to applications. Restart and recovery are automatic, including the restarting of the subsystems,
such as the listener and the Oracle Automatic Storage Management (Oracle ASM) processes,
not only the database. You can use FAN callouts to report faults to your fault management
system and to initiate repair jobs.

Related Topics

• About Application Continuity
Application Continuity provides high availability for your application workloads.

• Oracle Database Net Services Administrator's Guide

Managing Planned Maintenance
To minimize service disruption to application users, Oracle Real Application Clusters (Oracle
RAC) provides interfaces that relocate, disable, and enable services.

• About Planned Maintenance Management
For repairs, upgrades, and changes, drain your sessions before stopping or relocating the
services.

• Planned Maintenance Without User Interruption
Oracle recommends that you drain database sessions from the instance over a controlled
time period from FAN-enabled Oracle or non-Oracle connection pools, or, beginning with
Oracle Database 18c at the database, itself.

• Managing a Group of Services for Maintenance
With Oracle Real Application Clusters (Oracle RAC), you can use SRVCTL to manage
groups of services in your cluster.

• Server Draining Ahead of Planned Maintenance
Before planned maintenance, drain or failover database sessions at the database instance
so application work is not interrupted.

• Planned Failover with Application Continuity
Planned Failover is a failover that is invoked by Oracle Database at points where the
database knows that the session is replayable using Application Continuity and that the
session is expected not to drain.

About Planned Maintenance Management
For repairs, upgrades, and changes, drain your sessions before stopping or relocating the
services.

When you relocate a service, you indicate the service should run on another instance. When a
service is stopped or relocated, FAN is published with a planned reason code, typically
reason=user. Once you complete the operation, you can return the service to normal operation
or enable the service and then restart it. When a service restarts, FAN is published with UP
status codes.

Chapter 6
Managing Planned Maintenance

6-70

Due to dependencies, if you manually shut down your database, then all of your services for
that database automatically stop. If you want your services to automatically start when you
manually restart the database, then you must set the management policy of the service to
automatic. If you want to shut down only one instance of the database and you want the
service to remain offered, then you can either relocate the service using srvctl relocate
service or stop the instance using srvctl stop instance with the -failover option, which
enables the service to automatically failover according to its failover policy.

In either case, Oracle recommends that work running under the service drain at request
boundaries. The drain interval is specified as an attribute of the service or you can provide a
drain interval on the SRVCTL command line.

Related Topics

• Service Management Policy
When you use Oracle Clusterware to manage your database, you can configure startup
options for each individual database service when you add the service using the srvctl
add service command with the -policy parameter.

Planned Maintenance Without User Interruption
Oracle recommends that you drain database sessions from the instance over a controlled time
period from FAN-enabled Oracle or non-Oracle connection pools, or, beginning with Oracle
Database 18c at the database, itself.

Draining database sessions is the safest way to migrate work without interrupting applications.
When draining occurs at connection tests and outside of request boundaries, it is 100%
correct. Applications continue with no interruption as existing work completes and new work
acquires a session for the same service functioning at another instance, resulting in no errors
returned to applications and no risk of incorrect database session states. For connection tests,
the caller expects to receive a good or bad return code and is ready to handle the result,
making inspecting connection tests a widely applicable and very powerful solution.

The service attributes -drain_timeout and -stopoption control the drain time period, and
then how the service manages sessions that have not completed once this time period expires.
Requests that complete and then check back in to the pool or close, can be directed to a new
location that is not affected by the planned maintenance.

Application Continuity provides additional cover, giving continuous service for those requests
that do not complete within the allotted drain time. Using any FAN-aware pool allows sessions
to drain at request boundaries after receipt of the FAN planned DOWN event.

Because not every application uses an Oracle connection pool and not every application is
FAN-aware, the database inspects sessions during planned maintenance seeking safe places
to stop a session so that the application is not disrupted. After stopping the service, the
database looks for safe places where the connection can be closed. When the connection is
closed, the database cleans up the session.

Stopping a session at a safe place enables the application to open a new connection with the
states that it needs. Draining sessions may take a period of work to flow through each session.
There is no requirement that closing a session is immediate, rather the close must occur at a
safe place that exposes no errors to the application, and, preferably, before the drain timeout
period has expired.

Requests are far more important than transactions because they enable the issued work to
complete. For draining requests, the Oracle Universal Connection Pool uses the drain timeout
to gradually drain, which prevents an overload of logins on the instances drained, by slowly

Chapter 6
Managing Planned Maintenance

6-71

releasing the original sessions across the time period rather than all at once. Gradual draining
has the benefit of not disturbing the other work ongoing at the target instances.

Both DRAIN_TIMEOUT and STOP_OPTION are service attributes that you can define when you add
the service or modify it after creation. You can also specify these attributes using SRVCTL,
which will take precedence over what is defined on the service. You can specify the -
drain_timeout and -stopoption parameters when using the following SRVCTL commands:

• srvctl add service
• srvctl modify service
• srvctl relocate service
• srvctl stop service
• srvctl stop database
• srvctl stop instance
• srvctl stop pdb
• srvctl relocate pdb
To manage planned maintenance without user interruption:

1. Use SRVCTL to relocate a singleton service or a service not running on all nodes. Use the
-force flag with the previously listed SRVCTL commands, except add and modify. You
must use the -force flag if you specify the -stopoption parameter on the command line
when you run either srvctl relocate service or srvctl stop service. For example:

$ srvctl relocate service –db mycdb01 –service myservice –drain_timeout 120
 –stopoption IMMEDIATE –oldinst mycdb01_01 -force

The preceding command relocates the service named myservice01 from the instance
named mycdb01_01 to any instance on which it is configured to run. Oracle Clusterware
chooses the instance if you do not specify a target on the command line, and waits two
minutes (in this example) for any active sessions to drain, after which any sessions
remaining on mycdb01_01 are forcibly disconnected. The connection pool automatically
releases a connection at a request boundary.

Note:

If the service you want to relocate is a uniform service that is currently running on
all nodes, then the preceding command returns an error, unless the service is not
up on all instances, in which case the preceding command example would
succeed for a uniform service.

2. The FAN planned DOWN event clears idle sessions from the connection pool immediately
and marks active sessions to be released at the next check-in. These FAN actions drain
the sessions from the instance without disrupting the users.

Existing connections on other instances remain usable, and new connections can be
opened to these instances if needed. The database also marks the sessions to drain. The
database looks for connection tests and, in Oracle Database 19c and later, for safe places
to failover. An implicit connection boundary with Transparent Application Continuity is such
a place.

Chapter 6
Managing Planned Maintenance

6-72

3. Not all sessions, in all cases, will check their connections into the pool. Oracle
recommends, as a best practice, to have a timeout period (by setting the -drain_timeout
parameter), after which the instance is forcibly shut down or the service stopped, evicting
any remaining client connections.

After the drain interval expires, the -stopoption parameter is implemented, which you can
define against a service or a database, as follows:

• When stopping a service (srvctl stop service), you can specify one of the following
stop options using the -stopoption parameter: TRANSACTIONAL or IMMEDIATE

• When stopping a database (srvctl stop database), you can specify one of the
following stop options using the -stopoption parameter: NORMAL,
TRANSACTIONAL, IMMEDIATE, or ABORT

The database stop options correlate to the service stop options, as follows:

NORMAL=NONE
TRANSACTIONAL/TRANSACTIONAL LOCAL=TRANSACTIONAL
IMMEDIATE/ABORT=IMMEDIATE

For those services that are configured to use Application Continuity, an attempt is made to
recover these remaining sessions, after they are terminated, masking the outage from
users and applications.

4. Once maintenance is complete, restart the instance and the services on the original node.

5. The FAN UP event for the service informs the connection pool that a new instance is
available for use, allowing sessions to be created on this instance at next request
boundaries.

Related Topics

• About Application Continuity

• Server Draining Ahead of Planned Maintenance
Before planned maintenance, drain or failover database sessions at the database instance
so application work is not interrupted.

Managing a Group of Services for Maintenance
With Oracle Real Application Clusters (Oracle RAC), you can use SRVCTL to manage groups
of services in your cluster.

• Stopping a Group of Services Example
See how you can use SRVCTL to stop services by node name, database name, Pluggable
Database name, or instance name.

• Starting Services
You can use the srvctl start service command to start all services on a node, all
services offered by a database, or all services offered by a Pluggable Database.

• Pluggable Database-Level Operations
You can use SRVCTL to manage services on Pluggable Databases.

• Relocating Services
You can use the srvctl relocate service command to relocate services to a target
destination, which can be an instance, a node, or a database.

• Stopping Services
You can use the srvctl stop service command to stop all services on a node, all
services offered by a database, or all services offered by a Pluggable Database.

Chapter 6
Managing Planned Maintenance

6-73

Stopping a Group of Services Example
See how you can use SRVCTL to stop services by node name, database name, Pluggable
Database name, or instance name.

Many enterprises run a large number of services, whether it be many services offered by a
single database or instance, or many databases offering a few services running on the same
node. You no longer need to run SRVCTL commands for each individual service but need only
specify the node name, database name, Pluggable Database name, or the instance name for
all affected services.

For example, if you want to stop all of the services running on a node called racnode01, then
you can use the following command:

$ srvctl stop service –node racnode01 –drain_timeout 60 –stopoption IMMEDIATE

The command stops all services running on racnode01, allowing a drain interval of 60 seconds.
After 60 seconds, any remaining sessions are stopped immediately. The 60-second drain
timeout interval overrides any attribute setting on any of the services.

The command can also be qualified to stop the databases on a node, as in the following
example:

$ srvctl stop instance -node racnode01 -drain_timeout 60 –stopoption
TRANSACTIONAL LOCAL -failover –force

When you specify the -failover parameter:

• All services are relocated, if possible, respecting the drain timeout interval and the stop
option specified.

• Any services that cannot be failed over are stopped, using the stop option specified.

• Wait for the length of the drain timeout interval or until all sessions for targeted services are
removed, whichever is sooner.

• All instances stop according to the stop option specified.

When you specify the –stopoption TRANSACTIONAL LOCAL parameter:

• Remaining services stop according to the drain timeout interval and stop option specified.

• Wait for the length of the drain timeout interval or until all sessions for targeted services are
removed, whichever is sooner.

• The instance stops using the TRANSACTIONAL LOCAL stop option.

Starting Services
You can use the srvctl start service command to start all services on a node, all services
offered by a database, or all services offered by a Pluggable Database.

To start services, you can also supply a list of services (a subset of all services) to the srvctl
start service command that you want to start. Additionally, you can provide a node
restriction, used in conjunction with the database option, for all services that can be started on
a particular node. You can restrict the srvctl start service command to start only the
parallel query service by specifying the -pq parameter.

The following examples illustrate how you can start services:

Chapter 6
Managing Planned Maintenance

6-74

To start all of the services offered by a single Pluggable Database:

$ srvctl start service –db myRACCDB01 –pdb myPDB01 –startoption OPEN

To start all services on a given database and any of its Pluggable Databases:

$ srvctl start service –db myRACDB

To start a list of services on a given database, regardless of any Pluggable Database with
which they are associated:

$ srvctl start service –db myRACDB –service
"myFirstService,mySecondService,myThirdService"

To start all services for a database that can run on a given node:

$ srvctl start service –d myRACDB –node racnode01

Pluggable Database-Level Operations
You can use SRVCTL to manage services on Pluggable Databases.

To start all services for a Pluggable Database, for all instances or a single instance:

$ srvctl start service -db db_name -pdb pdb_name [-instance instance_name]

To stop all services for a Pluggable Database, for all instances or a single instance:

$ srvctl stop service -db db_name -pdb pdb_name [-node node_name | -instance
 inst_name] [-stopoption stop_option] [-drain_timeout timeout]
 [-force [-noreplay]]

Note:

The -pdb pdb_name parameter is optional. If you omit the Pluggable Database name,
then the operation occurs for the entire Container Database (all Pluggable Databases
within this container).

Relocating Services
You can use the srvctl relocate service command to relocate services to a target
destination, which can be an instance, a node, or a database.

In the following command examples, all services are relocated from the named database,
Pluggable Database, instance, or node. The services will only relocate if the target can support
that service, as defined by the service configuration. Any services that cannot be relocated
remain at the original location. A placement error is recorded against any services that could

Chapter 6
Managing Planned Maintenance

6-75

not be relocated, or were already running at the new target. Services that fail to relocate
remain running at their original location, and any sessions remain active.

$ srvctl relocate service –db myRACCDB –oldinst RACCDB_01 –newinst RACCDB_03
 -drain_timeout 30 -stopoption immediate

or

$ srvctl relocate service –db myRACCDB –pdb myPDB01 –currentnode racnode01
 –targetnode racnode02 -drain_timeout 30 -stopoption immediate

The relocate operation starts the service in the new location before stopping the service in its
existing location.

If you do not specify a target destination, then Oracle Clusterware relocates all services or
specific services from the specified database, Pluggable Database, instance, or node, as in the
following examples:

$ srvctl relocate service –db myRACCDB –service "myService01,myService02"
 -drain_timeout 30 -stopoption immediate

or

$ srvctl relocate service –db myRACCDB –pdb myPDB01 -drain_timeout 30
 -stopoption transactional

If there is no valid target available, then the service remains at the original location and the
sessions remain active. You must examine the services and stop them if that is what you want
to do.

When you relocate a service, it starts at the new location before it stops at the original location.
Oracle Clusterware can start that new instance or Pluggable Database as a dependency.
When specified, the -drain_timeout and -stopoption parameters override the service
attributes.

Stopping Services
You can use the srvctl stop service command to stop all services on a node, all services
offered by a database, or all services offered by a Pluggable Database.

When you want to stop a subset of services, you can also supply a list of services (a subset of
all services) that you want to stop to the srvctl stop service command. You can also restrict
the srvctl stop service command to stop only the parallel query service by specifying the -
pq parameter.

To stop all of the services offered by a single Pluggable Database:

$ srvctl stop service –db myRACCDB01 –pdb myPDB01 –drain_timeout 15 –
stopoption TRANSACTIONAL

To stop all services on a given database and any of its Pluggable Databases:

$ srvctl stop service –db myRACDB –drain_timeout 15 –stopoption IMMEDIATE

Chapter 6
Managing Planned Maintenance

6-76

To stop only a subset of the services offered by a database:

$ srvctl stop service –db myRACDB –service "myFirstService,mySecondService,
 myThirdService" –drain_timeout 60 –stopoption IMMEDIATE

Note:

If you use the –wait YES SRVCTL command line parameter, then the –stopoption
parameter is not enforced until the entire drain timeout interval has expired, even if all
of the sessions have exited prior to this interval completing.

Server Draining Ahead of Planned Maintenance
Before planned maintenance, drain or failover database sessions at the database instance so
application work is not interrupted.

When you prepare for planned maintenance, you must stop or relocate the services that are
using the server infrastructure. Relocating services is done over a period of time prior to the
planned outage and is based on the nature of work associated with each service.

The procedure for rolling planned maintenance moves services in advance of maintenance to
another database instance, and notifies the client-side drivers, connections pools, the
database instance itself, and other subscribers that maintenance is pending, and what needs
to be drained (either connections or sessions using this service). Once notified of draining, a
Fast Application Notification (FAN) event is sent and the client pools behave as described
elsewhere, in addition, the database begins to search for safe places to release connections
and, if needed, to migrate the connections.

Moving or stopping a service triggers a FAN notification that is received by the subscribing
Oracle drivers and Oracle connection pools. The FAN notification also triggers session draining
at the server. Immediately, new work to that service is directed to another functioning instance
of that service. Existing sessions are marked for release after their work completes. As work
completes and the connections are returned to the connection pool, either the Oracle driver or
the connection pool terminates these sessions.

Draining Sessions at the Database

For OLTP applications, application servers, and custom applications, which all have their own
connection pools that borrow and return database sessions, it is safe to drain a database
session when it is no longer borrowed. The optimal point for the Oracle server infrastructure to
close a session is when the application server tests the validity of that connection. No error is
returned to the application when the connection pool manager tests the validity of connections
when borrowing and releasing, and also finds that the connection is no longer valid.

A safe place is a point where an application is not disturbed. In the case of connection pools,
that means connections that are not borrowed (checked-in), and, in the case of applications,
the same applies at the point of borrowing or returning a connection. At this time, all work is
either complete or not started. The database can also fail over connections when all states can
be restored transparent to the application.

Starting with Oracle Database 18c, the database uses an extensible set of rules and heuristics
to detect when to take the database session away. When draining starts, the database session
persists at the database until a rule is satisfied. The rules include the following:

• Standard application server tests for validity

Chapter 6
Managing Planned Maintenance

6-77

• Custom SQL tests for validity

• Request boundaries are in effect and no request is active

• Request boundaries are in effect and the current request has ended

• The session has one or more session states that are recoverable, and can be recreated at
failover

In the case of connection tests, for example, it is standard practice for application servers,
pooled applications, job schedulers, and others, to test connections when borrowed from
connection pools, when returned to the pool, and at batch commits. When draining, the
database intercepts the connection test, closes the connection and returns a failed status for
the test. The application layer issuing the connection test is ready to handle a failed return
status and, typically, issues a further request, to obtain a different connection. The application
is not disturbed.

Not all sessions can be drained, such as when a connection is not returned to the pool or when
FAN is not in use. If Transparent Application Continuity or Application Continuity is enabled,
then the server detects request boundaries where Application Continuity can recover the
session fast. The server can interrupt the session, which Application Continuity recovers
elsewhere (such as, to another server in the Oracle RAC cluster) with no interruption.

For database sessions that do not drain, the database must finds a break point when the
session can be replaced. At a break point, a connection can be failed over transparently when
states are known and recoverable. Break points can be transaction boundaries, a request
starting (beginRequest), before calls are processed in that request, and patterns, such as an
audit call that signals that a request is starting or ending. Break points apply only when states
are known to be restorable. Starting with Oracle Database 21c, the database software
determines where to failover the session and invokes Application Continuity to failover the
session.

Failing over connections requires that you enable Application Continuity, Transparent
Application Continuity, or transparent application failover (TAF), depending on your application.

Adding, Disabling, Enabling, and Removing Connection Tests for Draining at the Server

You can add a SQL connection test to a service, a Pluggable Database. To add a new
connection test to your PDB, use ALTER SESSION SET CONTAINER to switch to your PDB.

There are four SQL connection tests added for every database service and Pluggable
Database service, by default, so, if an application uses these following SQL connection tests
on the connection, then you do not to need to add them:

SELECT 1 FROM DUAL;
SELECT COUNT(*) FROM DUAL;
SELECT 1;
BEGIN NULL;END

Chapter 6
Managing Planned Maintenance

6-78

Note:

• When you use a connection test, the outcome of the connection test applies to
that session only. Do not use connection tests to make general decisions about
the instance and to make a determination to stop more than the session to which
the test applies. Disable connection pool properties for flushing and destroying
the pool on connection test failure. This is important for Oracle WebLogic Server
data sources.

• For external monitors, you are recommended to prefix the SQL used in that
monitor with a hint /*+ MONITOR */ for SQL used inside the monitors, so that the
monitor does not drain.

• To add a server-side SQL connection test for a service, use a SQL statement similar to the
following:

SQL> execute dbms_app_cont_admin.add_sql_connection_test('select dummy
from dual','sw_orcl');

To add a server-side SQL connection test for a Pluggable Database, use a SQL statement
similar to the following:

SQL> execute dbms_app_cont_admin.add_sql_connection_test('begin
null;end;');

After you add the SQL connection test, it will be enabled by default.

• You can disable a SQL connection test if you do not need it or it is not in use by logging on
to a Pluggable Database and using a SQL statement similar to the following:

SQL> execute
dbms_app_cont_admin.disable_connection_test(dbms_app_cont_admin.sql_test,'s
elect dummy from dual');

By default, the ping test and end request test are disabled but, if you want to disable them
after enabling them, then you can use either of the following SQL statements:

If you want to disable the ping test, then use a SQL statement similar to the following:

SQL> execute
dbms_app_cont_admin.disable_connection_test(dbms_app_cont_admin.ping_test);

If you want to disable the end request test, then use a SQL statement similar to the
following:

SQL> execute
dbms_app_cont_admin.disable_connection_test(dbms_app_cont_admin.endrequest_
test);

Chapter 6
Managing Planned Maintenance

6-79

• You can enable a SQL connection test after you disable it by logging on to the Pluggable
Database and using a SQL statement similar to the following:

SQL> execute
dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admin.sql_test,'se
lect dummy from dual');

You can also enable the ping test and end request test if they are disabled by using either
of the following SQL statements:

If you want to run any test that uses ping such as isValid, isUsable, OCIping, or
connection.status, then use a SQL statement similar to the following:

SQL> execute
dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admin.ping_test);

If you want to enable draining at the end of a request, then use a SQL statement similar to
the following:

SQL> execute
dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admin.endrequest_t
est);

If you want to disable draining on the end of a request, then use a SQL statement similar to
the following:

SQL> execute
dbms_app_cont_admin.disable_connection_test(dbms_app_cont_admin.endrequest_
test);

• You can remove a SQL connection test if it is not needed by logging on to the Pluggable
Database and running SQL statements similar to the following:

SQL> execute dbms_app_cont_admin.delete_sql_connection_test('select dummy
from dual','sw_orcl');
SQL> execute dbms_app_cont_admin.delete_sql_connection_test('begin
null;end;');

• If you want to modify rules for a service that belongs to a specific PDB, then switch to that
PDB and modify the rules. For example, for eBusiness Suite:

SQL> alter session set container=’VISPRD’;
SQL> execute dbms_app_cont_admin.add_sql_connection_test('Begin null;
End ;');
SQL> executedbms_app_cont_admin.add_sql_connection_test('Begin null;
End ;', ‘VISPRD’);

Every application server has a feature to test the validity of the connections in their respective
connection pools, which is set either by a configuration property or at the administrative
console. The purpose of the test is to prevent vending an unusable connection to an
application, and when an unusable connection is detected, to remove it when released to the
pool.

Chapter 6
Managing Planned Maintenance

6-80

Across the various application servers, the tests have similar names. The tests offered use
various approaches, the most common being a SQL statement. Oracle recommends that Java
application servers use the standard Java call connection.isValid. Beginning with Oracle
Database 18c, these tests are used to drain the database. Also beginning with Oracle
Database 18c, the database drains sessions without using FAN by inspecting sessions for safe
draining points.

The following table describes the standard connection tests available for several of the more
common application servers:

Table 6-4 Standard Connection Tests for Some Common Application Servers

Application
Server

Connection Test to Database

Oracle WebLogic
Server

The tests offered include:
• dbms_app_cont_admin.enable_connection_test(dbms_app_cont_a

dmin.sql_test,'select 1 from dual');
• TestConnectionsonReserve:

isUsable, isValid, or PingDatabase
• TestConnectionsOnCreate (SQL syntax) for server draining:

Select 1 from dual;

Oracle WebLogic
Server Active
Gridlink

The test is embedded:

isUsable

IBM WebSphere
dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admi
n.sql_test,'select 1 from dual');

Pretest connections (SQL syntax) for server draining:

Select 1 from dual;

RedHat JBoss check-valid-connection-sql (SQL syntax):

dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admi
n.sql_test,'select 1 from
 dual');

Chapter 6
Managing Planned Maintenance

6-81

Table 6-4 (Cont.) Standard Connection Tests for Some Common Application Servers

Application
Server

Connection Test to Database

Apache Tomcat There are two tests available—testOnBorrow and testOnReturn—and they both
use SQL syntax to test the connection to the database:

dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admi
n.sql_test,'select 1 from dual');

Application server uses:

Select 1 from dual;

Oracle recommends that you use the following format for supporting automatic configuration of
Oracle Notification Services (ONS), so that you can receive FAN events (over ONS):

Example 6-6 Automatic Configuration of FAN

alias =(DESCRIPTION =
 (CONNECT_TIMEOUT=90)(RETRY_COUNT=20)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=3)
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=primary-scan)(PORT=1521)))
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=secondary-scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME = gold-cloud)))

Related Topics

• Planned Maintenance Without User Interruption
Oracle recommends that you drain database sessions from the instance over a controlled
time period from FAN-enabled Oracle or non-Oracle connection pools, or, beginning with
Oracle Database 18c at the database, itself.

Related Topics

• Transparent Application Continuity
A version of Application Continuity for simple applications that uses discovery to detect
request boundaries.

Planned Failover with Application Continuity
Planned Failover is a failover that is invoked by Oracle Database at points where the database
knows that the session is replayable using Application Continuity and that the session is
expected not to drain.

Planned failover is an automatic solution that is used for relocating sessions during planned
maintenance for batch and long running operations that are not expected to complete in the
specified drain timeout period. Session migration is also used with ALTER SYSTEM DISCONNECT
SESSION statement.

Chapter 6
Managing Planned Maintenance

6-82

Planned failover is activated when draining starts. A rules engine decides when to invoke a
failover.

• The database maintains statistics regarding the rate and size of requests, and when a
failover feature such as Application Continuity is enabled, then the database also
maintains statistics for the level of protection for calls for replay, and the session state that
needs to be recovered.

• The database knows when Transparent Application Continuity or Application Continuity are
enabled on a session and whether session state is tracked and recoverable, and when
failover is enabled, if that failover is likely to be disabled before the drain timeout expires.

• The database knows when a session is not expected to drain, and that a session is likely
to recover, and how much replay it would need to run if it needs to replay.

• The database knows if Fast Application Notification is enabled.

• The database knows when request boundaries are discovered for Transparent Application
Continuity.

A session failed over by the database is marked in the alert log so that you can find more
information about the failed over session.

To use planned failover, follow these steps:

1. Enable Application Continuity or Transparent Application Continuity.

2. Set the service attributes -drain_timeout and -stopoption on your services.

3. During maintenance, drain your services by relocating or stopping them. For Data Guard,
you can use switchover wait with Data Guard Broker.

Transaction Guard for Improving Client Failover
Transaction Guard is a developer feature that your applications can use to determine
COMMIT_OUTCOME following recoverable errors.

• About Transaction Guard
Transaction Guard provides a fully integrated tool for applications to use to achieve
idempotence automatically and transparently, and in a manner that scales.

• Database Native Transaction Guard
Database Native Transaction Guard enhances the existing Transaction Guard protocols to
use the database Transaction ID (DB XID) to impose at-most-once processing.

• Transaction Guard Support During Major Database Version Upgrades
Starting with Oracle Database 23ai, Transaction Guard works during DBMS_ROLLING
operations to ensure continuous application functions during switchover, issued by
DBMS_ROLLING to Transient Logical Standby.

• Transaction Guard Configuration Checklist
Oracle recommends that you use this configuration checklist before you configure services
for Transaction Guard.

• Configuring Services for Transaction Guard
To configure services to use Transaction Guard, review and set the required service
parameters.

Chapter 6
Transaction Guard for Improving Client Failover

6-83

About Transaction Guard
Transaction Guard provides a fully integrated tool for applications to use to achieve
idempotence automatically and transparently, and in a manner that scales.

Transaction Guard uses Logical Transaction ID (LTXID) to avoid submitting duplicate
transactions. This function is referred to as transaction idempotence. The LTXID persists on
commit, and is reused following a rollback. During normal runtime, a LTXID is automatically
held in the session at both the client and server for each database transaction. At commit, the
LTXID is persisted as part of committing the transaction and the next LTXID to use is returned
to the client.

Note:

Application Continuity protects outages only for normal applications. Administrative
tasks through AC-enabled services are not supported and you must avoid them.

Applications have a problem if they fail to recognize that the last submission has committed, or
that it will commit sometime soon, or that the last submission has not run to completion.
Applications failing to recognize these submission states can result in users who resubmit or
applications that use their own replay to issue duplicate requests, repeating changes that are
already committed to the database, and other forms of logical corruption. Transaction Guard
can be used to solve this problem.

Application Continuity automatically enables and uses Transaction Guard, but you can also
enable Transaction Guard independently. If the application has implemented an application-
level replay, then it requires the application to be integrated with Transaction Guard to provide
idempotence.

Transaction Guard for XA Transactions

Transaction Guard also supports XA-based transactions, which are transactions that are an
option for transaction managers, such as Oracle WebLogic Server, Oracle Tuxedo, and
Microsoft Transaction Server (exposed to Oracle Database through Oracle ODP.NET) when
using one-phase commit with XA.

Related Topics

• Oracle Database Development Guide

• Oracle Database Development Guide

• Oracle Database JDBC Developer’s Guide

Database Native Transaction Guard
Database Native Transaction Guard enhances the existing Transaction Guard protocols to use
the database Transaction ID (DB XID) to impose at-most-once processing.

A server-side transaction is identified by a database transaction identifier or DB XID. Persisting
the LTXID in the LTXID_TRANS table as part of the commit of each DB XID introduces
overheads in normal transaction operation. This overhead with respect to performance and
redo generation is visible in CPU overhead in the case of small transactions because the extra
work required by Transaction Guard is not insignificant relative to the work done by the user
transaction.

Chapter 6
Transaction Guard for Improving Client Failover

6-84

Note:

Database Native Transaction Guard is the default option when you use Application
Continuity.

The DB XID is unique within a Pluggable Database (PDB) with local undo and uniquely
identifies a transaction in the database. Using the DB XID does not require persistence in a
separate table, thus does not incur extra redo generation or performance overheads. The
FORCE_OUTCOME procedure takes advantage of the DB XID, instead of relying on the
persistence of the LTXID in the separate table.

Database Native Transaction Guard provides the Transaction Guard functionality with lower
overheads by avoiding extra writes to the LTXID_TRANS table. This feature does not affect any
client-side APIs and does not require administrative changes.

By default, the COMMIT_OUTCOME_FAST_PATH service parameter is set to TRUE if COMMIT_OUTCOME
is set to TRUE. Set the COMMIT_OUTCOME_FAST_PATH service parameter to FALSE to disable
Database Native Transaction Guard.

Transaction Guard Support During Major Database Version Upgrades
Starting with Oracle Database 23ai, Transaction Guard works during DBMS_ROLLING operations
to ensure continuous application functions during switchover, issued by DBMS_ROLLING to
Transient Logical Standby.

Transaction Guard returns the commit outcome of the current in-flight transaction when an
error or outage occurs. Applications embed the Transaction Guard APIs in their error handling
procedures to ensure that work continues without any in-flight work lost or duplicate
submissions after an outage. Transaction Guard provides idempotence support to ensure that
a commit occurs not more than once when a transaction is re-processed (replay) after an
outage.

Transaction Guard ensures continuous application operation during the DBMS_ROLLING
switchover operation to Transient Logical Standby. Transaction Guard ensures that the last
commit outcome of transactions in the in-flight sessions during a switchover outage is used to
protect the applications from duplicate submissions of the transactions on replay.

Transaction Guard maintains a transaction history table called LTXID_TRANS that has the
mapping of logical transaction identifiers (LTXIDs) to database transactions. For a failover to
succeed after an outage, the changes to LTXID_TRANS from the primary database must first
replicate and apply to Transient Logical Standby. With supplemental logging enabled for the
DBMS_ROLLING procedure, Transaction Guard uses SQL to allow supplemental capture of
LTXID_TRANS at CDB and PDB levels. The capture process replicates the LTXID_TRANS table
and the apply process reads and recreates the LTXID_TRANS tables for the logical standby,
along with the committed user transactions.

As a part of its support for the DBMS_ROLLING procedure, Transaction Guard performs the
following functions:

• Tracks when the primary database is in DBMS_ROLLING mode (when the database upgrade
is initiated)

• Checks that supplemental logging is in use

• Records the redo vector for the primary key (PK) at runtime while in supplemental logging
mode

Chapter 6
Transaction Guard for Improving Client Failover

6-85

• Waits for all current updates to finish and replicate to the logical standby before performing
the LTXID replication

• Replicates the LTXID_TRANS tables and applies the redo to Transient Logical Standby for
each PDB

• Provides a mechanism for failover to know about successful LTXID replication

• Enforces last commit outcome for inflight sessions on replay after an outage

• Handles new users during supplemental capture and apply process to ensure that any
apply does not create mismatched logged-in UIDs (user IDs) at the target database

Transaction Guard Configuration Checklist
Oracle recommends that you use this configuration checklist before you configure services for
Transaction Guard.

Before configuring services for Transaction Guard, complete each check on this list:

• Grant permission to the application user who will call GET_LTXID_OUTCOME, as follows:

GRANT EXECUTE ON DBMS_APP_CONT to user_name;

Note:

Do not run this statement if you use Application Continuity.

• Locate and define the transaction history table for optimal performance.

The transaction history table (LTXID_HIST) is created, by default, in the SYSAUX
tablespace when you create or upgrade an Oracle Database. New partitions are added
when you add instances, using the storage of the last partition. If the location of transaction
history table is not optimal for performance, then you can move it to another tablespace
and create partitions there. For example, the following statement moves the transaction
history table to a tablespace named FastPace:

ALTER TABLE LTXID_TRANS move partition LTXID_TRANS_1 tablespace FastPace
 storage (initial 10G next 10G minextents 1 maxextents 121);

• Set values for the COMMIT_OUTCOME and RETENTION_TIMEOUT service parameters.

• If you are using Oracle Real Application Clusters (Oracle RAC), Oracle Data Guard, or
Oracle Active Data Guard, then to obtain rapid notification of an outage, Oracle
recommends that you use Fast Application Notification (FAN).

Configuring Services for Transaction Guard
To configure services to use Transaction Guard, review and set the required service
parameters.

Review and set the following parameters:

• COMMIT_OUTCOME: Set the COMMIT_OUTCOME service parameter to TRUE.

The COMMIT_OUTCOME service parameter determines whether the transaction commit
outcome is accessible after the COMMIT has run and an outage has occurred. While Oracle

Chapter 6
Transaction Guard for Improving Client Failover

6-86

Database has always made COMMIT durable, Transaction Guard makes the outcome of
the COMMIT durable. Applications use this durability of a commit to enforce the status of the
last transaction run before an outage.

• RETENTION_TIMEOUT: Use the RETENTION_TIMEOUT service parameter with COMMIT_OUTCOME.
The RETENTION_TIMEOUT service parameter determines the amount of time, in seconds,
that the COMMIT outcome is retained. Oracle recommends that most installations use the
default value.

In the following example, the SRVCTL command configures a service named sales for
Transaction Guard:

$ srvctl add service -db crm -service sales -preferred crm_1,crm_2
 -available crm_3,crm_4 -commit_outcome TRUE -retention 86400
 -notification TRUE

You can also modify an existing service to configure it for Transaction Guard by using the
srvctl modify service command.

Note:

Do not use the default database service, the service which has the name set to the
value of db_name or db_unique_name. The default service is used for administrative
purposes and does not have the same properties as user-created services.

Related Topics

• srvctl add service
Adds services to a database and assigns them to instances.

• srvctl modify service
Modifies a service configuration.

• About Application Continuity
Application Continuity provides high availability for your application workloads.

• Oracle Database JDBC Developer’s Guide

• Oracle Call Interface Developer's Guide

Application Continuity During Major Database Version Upgrades
with DBMS_ROLLING

Starting with Oracle Database 23ai, Application Continuity and draining of database sessions
are supported during major database version upgrades and database restructuring when using
Application Continuity with DBMS_ROLLING.

This is the strategic approach for applying non-rolling patches. This feature also supports the
upgrade from one major release to another major release. For the major release upgrade from
Oracle Database 19c to Oracle Database 23ai, it is supported for Oracle Autonomous
Database - Dedicated only.

Applications are continuously available during DBMS_ROLLING when you use Application
Continuity. This means that your applications can continue through the database upgrade
process.

Chapter 6
Application Continuity During Major Database Version Upgrades with DBMS_ROLLING

6-87

DBMS_ROLLING support for Application Continuity enables transparent failover of database
sessions across different major versions of a database so that the interruption is minimized
during major database upgrades and restructuring of that database. This feature relocates the
database sessions in real time to a different logical version of the database, where it is the
same database in terms of data but is a different major version or major database
restructuring.

This feature provides failover of the application during the transition period, termed switchover,
to the new logical database. Although the transition to the new database is a planned
maintenance operation, but the applications are unaware of when the switchover step will
occur to the new logical database. The infrastructure monitors and starts the switchover
automatically when the lag between the databases is sufficiently small enough for the
switchover to run in low numbers of seconds to minutes.

The database sessions failover to the new primary database thereby keeping the application
operational. The failover minimizes the interruption and thus enable business continuity during
major upgrades and major restructures. This feature integrates support for Oracle Application
Continuity with a Logical Standby when using DBMS_ROLLING.

Reset Database Session State
When you set the RESET_STATE service attribute to LEVEL1 or LEVEL2, the session state set by
the application in a request is cleared when a request to the database ends.

Note:

Starting with Oracle Database 23ai, RESET_STATE does not have a dependency on
the Application Continuity feature.

RESET_STATE is a very important database feature that enables developers to rely on the
session state being clean when a session is returned to a connection pool with request
boundaries. This can be an Oracle connection pool or a custom connection pool with added
request boundaries. Set RESET_STATE to LEVEL1 to clear the unrestorable session state in the
request.

Setting session state in a request leaves the session dirty, meaning that subsequent usages of
that session can see that session state if it is not cleaned. For example, when an application
borrows and returns a connection to a connection pool, the next usage of that connection can
see the session state used previously. Without RESET_STATE or if RESET_STATE is set to NONE,
application developers must cancel their cursors and clear session state that has been set
before returning their connections to a pool for reuse.

The RESET_STATE service property also improves your protection when using Transparent
Application Continuity because the session state is clean at the beginning of the next request.

Chapter 6
Reset Database Session State

6-88

7
Configuring Recovery Manager and Archiving

You can configure Oracle Recovery Manager (Oracle RMAN) to support your Oracle RAC
environment.

This chapter provides procedures for using for archiving in Oracle RAC environments and
discusses online redo log and archived redo log considerations.

• Overview of Configuring RMAN for Oracle RAC
Oracle Recovery Manager (Oracle RMAN) enables you to back up, restore, and recover
files and archived logs.

• Archiving Mode in Oracle RAC
To archive redo log files, the Oracle RAC database must be in ARCHIVELOG mode.

• Configuring the RMAN Snapshot Control File Location
The snapshot control file is a copy of a database control file that RMAN creates in an
operating system-specific location.

• Configuring RMAN to Automatically Backup the Control File and SPFILE
If you set CONFIGURE CONTROLFILE AUTOBACKUP to ON, then RMAN automatically creates a
control file and an SPFILE backup after you run the BACKUP or COPY commands.

• Crosschecking on Multiple Oracle RAC Nodes
When crosschecking on multiple nodes, and when operating RMAN in general, configure
your cluster so that every node can access all of the backups, regardless of which node
created the backups.

• Configuring Channels for RMAN in Oracle RAC
Learn how to configure channels for RMAN in Oracle RAC.

• Managing Archived Redo Logs Using RMAN in Oracle RAC
Learn about managing archived redo logs using RMAN in Oracle RAC.

• Archived Redo Log File Conventions in Oracle RAC
For any archived redo log configuration, uniquely identify the archived redo logs with the
LOG_ARCHIVE_FORMAT parameter.

• RMAN Archiving Configuration Scenarios
Learn about the various RMAN archiving scenarios.

• Monitoring the Archiver Processes
Learn how to monitor the archiver processes.

Overview of Configuring RMAN for Oracle RAC
Oracle Recovery Manager (Oracle RMAN) enables you to back up, restore, and recover files
and archived logs.

RMAN enables you to back up, restore, and recover data files, control files, server parameter
files (SPFILEs) and archived redo log files. RMAN is included with Oracle Database and does
not require separate installation. You can run RMAN from the command line or use RMAN in
the Backup Manager in Oracle Enterprise Manager.

7-1

Archiving Mode in Oracle RAC
To archive redo log files, the Oracle RAC database must be in ARCHIVELOG mode.

You can run the ALTER DATABASE SQL statement to change the archiving mode in Oracle RAC,
because the database is mounted by the local instance but not open in any instances. You do
not need to modify parameter settings to run this statement.

Note:

• The ARCHIVELOG mode is set at the database level, not the instance level. Either
all instances archive or none do.

• You can also change the archive log mode by using the Recovery Settings page
in the Maintenance tab of the Oracle Enterprise Manager Oracle RAC Database
Home Page.

Related Topics

• Managing Archived Redo Log Files

Configuring the RMAN Snapshot Control File Location
The snapshot control file is a copy of a database control file that RMAN creates in an operating
system-specific location.

RMAN creates the snapshot control file so that it has a consistent version of a control file to
use when either resynchronizing the recovery catalog or backing up the control file.

For effective backup and recovery operations, the RMAN snapshot control file must be on
shared storage that is accessible by all database nodes in a cluster. Run the following RMAN
command to determine the configured location of the snapshot control file:

SHOW SNAPSHOT CONTROLFILE NAME;

You can change the configured location of the snapshot control file. For example, on Linux and
UNIX systems you can specify the snapshot control file location in Oracle ASM, for example,
by entering the following at the RMAN prompt:

CONFIGURE SNAPSHOT CONTROLFILE NAME TO '+RECODG/Oracle SID/snap_prod.cf';

This command sets the configuration for the location of the snapshot control file for every
instance of your cluster database. Therefore, ensure that the directory location is shared by all
nodes that perform backups.

The CONFIGURE command creates persistent settings across RMAN sessions. Therefore, you
do not need to run this command again unless you want to change the location of the snapshot
control file.

Chapter 7
Archiving Mode in Oracle RAC

7-2

To delete a snapshot control file you must first change the snapshot control file location, then
delete the file at the older location, as follows:

CONFIGURE SNAPSHOT CONTROLFILE NAME TO 'new_name';
DELETE COPY OF CONTROLFILE;

Related Topics

• RMAN Commands: @ (at sign) to QUIT

Configuring RMAN to Automatically Backup the Control File and
SPFILE

If you set CONFIGURE CONTROLFILE AUTOBACKUP to ON, then RMAN automatically creates a
control file and an SPFILE backup after you run the BACKUP or COPY commands.

RMAN can also automatically restore an SPFILE, if this is required to start an instance to
perform recovery, because the default location for the SPFILE must be available to all nodes in
your Oracle RAC database.

Note:

If you back up the control file using the SQL*Plus ALTER DATABASE command, then
you must also create the control file backup on a device shared by all nodes.

These features are important in disaster recovery because RMAN can restore the control file
even without a recovery catalog. RMAN can restore an autobackup of the control file even after
the loss of both the recovery catalog and the current control file. You can change the default
name that RMAN gives to this file with the CONFIGURE CONTROLFILE AUTOBACKUP FORMAT
command. Note that if you specify an absolute path name in this command, then this path
must exist identically on all nodes that participate in backups.

RMAN performs the control file autobackup on the first allocated channel. Therefore, when you
allocate multiple channels with different parameters, especially when you allocate a channel
with the CONNECT command, determine which channel will perform the control file autobackup.
Always allocate the channel for this node first.

Besides using the RMAN control file, you can also use Oracle Enterprise Manager to use the
RMAN features.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Crosschecking on Multiple Oracle RAC Nodes
When crosschecking on multiple nodes, and when operating RMAN in general, configure your
cluster so that every node can access all of the backups, regardless of which node created the
backups.

When the cluster is configured this way, you can allocate channels to any node in the cluster
during restore or crosscheck operations.

Chapter 7
Configuring RMAN to Automatically Backup the Control File and SPFILE

7-3

If you cannot configure the cluster so that each node can access all backups, then during
restore and crosscheck operations, you must allocate channels on multiple nodes by providing
the CONNECT option to the CONFIGURE CHANNEL command, so that every backup can be
accessed by at least one node. If some backups are not accessible during crosscheck
because no channel was configured on the node that can access those backups, then those
backups are marked EXPIRED in the RMAN repository after the crosscheck.

For example, you can use CONFIGURE CHANNEL ... CONNECT in an Oracle RAC configuration in
which tape backups are created on various nodes in the cluster and each backup is only
accessible on the node on which it is created.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Configuring Channels for RMAN in Oracle RAC
Learn how to configure channels for RMAN in Oracle RAC.

This section describes how to configure channels for RMAN. You can configure channels to
use automatic load balancing or you can specify specific channels for specific instances as
described in the following topics:

• Configuring Channels to Use Automatic Load Balancing
Learn how to configure channels to use automatic load balancing.

Configuring Channels to Use Automatic Load Balancing
Learn how to configure channels to use automatic load balancing.

To configure channels to use automatic load balancing, use the following syntax:

CONFIGURE DEVICE TYPE [disk | sbt] PARALLELISM number_of_channels;
...

Where number_of_channels is the number of channels that you want to use for the operation.
After you complete this one-time configuration, you can run the BACKUP or RESTORE commands.

Managing Archived Redo Logs Using RMAN in Oracle RAC
Learn about managing archived redo logs using RMAN in Oracle RAC.

When a node generates an archived redo log, Oracle Database always records the file name
of the log in the control file of the target database. If you are using a recovery catalog, then
RMAN also records the archived redo log filenames in the recovery catalog when a
resynchronization occurs.

The archived redo log naming scheme that you use is important because when a node writes
to a log with a specific file name on its file system, the file must be readable by any node that
must access this archived redo log. For example, if node1 archives a log to /oracle/arc_dest/
log_1_100_23452345.arc, then node2 can back up this archived redo log only if it can read /
oracle/arc_dest/log_1_100_23452345.arc on its own file system.

The backup and recovery strategy that you choose depends on how you configure the
archiving destinations for each node. Whether only one node or all nodes perform archived
redo log backups, you must ensure that all archived redo logs are backed up. If you use RMAN

Chapter 7
Configuring Channels for RMAN in Oracle RAC

7-4

parallelism during recovery, then the node that performs recovery must have read access to all
archived redo logs in your cluster.

Multiple nodes can restore archived logs in parallel. However, during recovery, only one node
applies the archived logs. Therefore, the node that is performing the recovery must be able to
access all of the archived logs that are needed for the recovery operation. By default, the
database determines the optimum number of parallel threads to use during the recovery
operation. You can use the PARALLEL clause in the RECOVER command to change the number of
parallel threads.

Guidelines and Considerations for Archived Redo Logs

The primary consideration is to ensure that all archived redo logs can be read from every node
during recovery, and, if possible, during backups. During recovery, if the archived log
destinations are visible from the node that performs the recovery, then Oracle Database can
successfully recover the archived log data.

Archived Redo Log File Conventions in Oracle RAC
For any archived redo log configuration, uniquely identify the archived redo logs with the
LOG_ARCHIVE_FORMAT parameter.

The format of this parameter is operating system-specific and the format can include text
strings, one or more variables, and a file name extension.

Table 7-1 Archived Redo Log File Name Format Parameters

Parameter Description Example

%r Resetlogs identifier, not padded log_1_62_23452345
%R Resetlogs identifier, left-zero-padded log_1_62_0023452345
%s Log sequence number, not padded log_251
%S Log sequence number, left-zero-padded log_0000000251
%t Thread number, not padded log_1
%T Thread number, left-zero-padded log_0001

All of the file name format parameters for the archive redo logs, in either upper or lowercase,
are mandatory for Oracle RAC. These parameters enable Oracle Database to create unique
names for archive logs across the incarnation. This requirement is in effect when the
COMPATIBLE parameter is set to 10.0 or greater.

Use the %R or %r parameters to include the resetlogs identifier to avoid overwriting the logs
from a previous incarnation. If you do not specify a log format, then the default is operating
system-specific and includes %t, %s, and %r.

As an example, if the instance associated with redo thread number 1 sets LOG_ARCHIVE_FORMAT
to log_%t_%s_%r.arc, then its archived redo log files are named:

log_1_1000_23435343.arc
log_1_1001_23452345.arc
log_1_1002_23452345.arc
...

Chapter 7
Archived Redo Log File Conventions in Oracle RAC

7-5

Related Topics

• Oracle Database Administrator’s Guide

RMAN Archiving Configuration Scenarios
Learn about the various RMAN archiving scenarios.

This section describes the archiving scenarios for an Oracle RAC database. The two
configuration scenarios in this chapter describe a three-node UNIX cluster for an Oracle RAC
database. For both scenarios, the LOG_ARCHIVE_FORMAT that you specify for the instance
performing recovery must be the same as the format that you specified for the instances that
archived the redo log files.

• Oracle Advanced Cluster File System Archiving Scheme
The preferred configuration for Oracle RAC is to use Oracle Automatic Storage
Management (Oracle ASM) for a recovery area using a disk group for your recovery set
that is different from the disk group used for your data files.

• Noncluster File System Local Archiving Scheme
Learn about the noncluster file system local archiving scheme.

Oracle Advanced Cluster File System Archiving Scheme
The preferred configuration for Oracle RAC is to use Oracle Automatic Storage Management
(Oracle ASM) for a recovery area using a disk group for your recovery set that is different from
the disk group used for your data files.

When you use Oracle ASM, it uses an Oracle Managed Files naming format. Alternatively, you
can use a cluster file system archiving scheme. If you use a cluster file system, then each node
writes to a single location on the cluster file system when archiving the redo log files. Each
node can read the archived redo log files of the other nodes. For example, as shown in the
following image, if Node 1 archives a redo log file to /arc_dest/log_1_100_23452345.arc on
the cluster file system, then any other node in the cluster can also read this file.

Figure 7-1 Cluster File System Archiving Scheme

Chapter 7
RMAN Archiving Configuration Scenarios

7-6

Note:

The archive log naming format in this example is only for a cluster file system
example.

If you do not use a cluster file system, then the archived redo log files cannot be on raw
devices. This is because raw devices do not enable sequential writing of consecutive archive
log files.

• Advantages of the Cluster File System Archiving Scheme
The main advantage of the cluster file system arcvhiving scheme is that any node can read
the achive logs.

• Initialization Parameter Settings for the Cluster File System Archiving Scheme
Learn about parameter settings for cluster file system archiving.

• Location of Archived Logs for the Cluster File System Archiving Scheme
Any node can read the archive logs, regarless of which node created the logs.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Advantages of the Cluster File System Archiving Scheme
The main advantage of the cluster file system arcvhiving scheme is that any node can read the
achive logs.

The advantage of this scheme is that none of the nodes uses the network to archive logs.
Because the file name written by a node can be read by any node in the cluster, RMAN can
back up all logs from any node in the cluster. Backup and restore scripts are simplified
because each node has access to all archived redo logs.

Initialization Parameter Settings for the Cluster File System Archiving Scheme
Learn about parameter settings for cluster file system archiving.

In the cluster file system scheme, each node archives to a directory that is identified with the
same name on all instances within the cluster database (/arc_dest, in the following example).
To configure this directory, set values for the LOG_ARCH_DEST_1 parameter, as shown in the
following example:

*.LOG_ARCHIVE_DEST_1="LOCATION=/arc_dest"

The following list shows archived redo log entry examples that would appear in the RMAN
catalog or in the control file based on the previous example. Note that any node can archive
logs using any of the threads:

/arc_dest/log_1_999_23452345.arc
/arc_dest/log_1_1000_23435343.arc
/arc_dest/log_1_1001_23452345.arc <- thread 1 archived in node3
/arc_dest/log_3_1563_23452345.arc <- thread 3 archived in node2
/arc_dest/log_2_753_23452345.arc <- thread 2 archived in node1
/arc_dest/log_2_754_23452345.arc
/arc_dest/log_3_1564_23452345.arc

Chapter 7
RMAN Archiving Configuration Scenarios

7-7

Location of Archived Logs for the Cluster File System Archiving Scheme
Any node can read the archive logs, regarless of which node created the logs.

Because the file system is shared and because each node is writing its archived redo logs to
the /arc_dest directory in the cluster file system, each node can read the logs written by itself
and any other node.

Noncluster File System Local Archiving Scheme
Learn about the noncluster file system local archiving scheme.

When archiving locally to a noncluster file system, each node archives to a uniquely named
local directory. If recovery is required, then you can configure the recovery node so that it can
access directories on the other nodes remotely. For example, use NFS on Linux and UNIX
computers, or mapped drives on Windows systems. Therefore, each node writes only to a local
destination, but each node can also read archived redo log files in remote directories on the
other nodes.

• Considerations for Using Noncluster File System Local Archiving
If you use noncluster file system local archiving for media recovery, then you must
configure the node that is performing recovery for remote access to the other nodes so that
the node can read the archived redo log files in the archive directories on the other nodes.

• Initialization Parameter Settings for Non-Cluster File System Local Archiving
You can set the archiving destination values as follows in the initialization parameter file.

• Location of Archived Logs for Noncluster File System Local Archiving
Learn about the location of archived logs for noncluster file system local archiving.

• File System Configuration for Noncluster File System Local Archiving
Use NFS to perform recovery using a remaining instance to read logs that are not yet
backed up.

Considerations for Using Noncluster File System Local Archiving
If you use noncluster file system local archiving for media recovery, then you must configure
the node that is performing recovery for remote access to the other nodes so that the node can
read the archived redo log files in the archive directories on the other nodes.

In addition, if you are performing recovery and you do not have all of the available archive logs,
then you must perform an incomplete recovery up to the first missing archived redo log
sequence number. You do not have to use a specific configuration for this scheme. However, to
distribute the backup processing onto multiple nodes, the easiest method is to configure
channels as described in the backup scenarios in "Managing Backup and Recovery".

Note:

Because different file systems are used in a noncluster case, the archive log
directories must be unique on each node. For example, /arc_dest_1 is only available
on node1, /arc_dest_2 is only directly mounted on node2, and so on.

Then node1 mounts /arc_dest_2 from node2 and /arc_dest_3 from node3 through
NFS.

Chapter 7
RMAN Archiving Configuration Scenarios

7-8

Related Topics

• Managing Backup and Recovery
Learn how to use Recovery Manager (RMAN) to back up and restore Oracle Real
Application Clusters (Oracle RAC) databases, and about Oracle RAC instance recovery,
parallel backup, recovery with SQL*Plus, and using the Fast Recovery Area in Oracle
RAC.

Initialization Parameter Settings for Non-Cluster File System Local Archiving
You can set the archiving destination values as follows in the initialization parameter file.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

Set the SID.LOG_ARCH_DEST parameter for each instance using the SID designator, as shown in
the following example:

sid1.LOG_ARCHIVE_DEST_1="LOCATION=/arc_dest_1"
sid2.LOG_ARCHIVE_DEST_1="LOCATION=/arc_dest_2"
sid3.LOG_ARCHIVE_DEST_1="LOCATION=/arc_dest_3"

The following list shows the possible archived redo log entries in the database control file. Note
that any node can read archived redo logs from any of the threads, which must happen in
order for the database to recover after a failure.

/arc_dest_1/log_1_1000_23435343.arc
/arc_dest_2/log_1_1001_23452345.arc <- thread 1 archived in node2
/arc_dest_2/log_3_1563_23452345.arc <- thread 3 archived in node2
/arc_dest_1/log_2_753_23452345.arc <- thread 2 archived in node1
/arc_dest_2/log_2_754_23452345.arc
/arc_dest_3/log_3_1564_23452345.arc

Location of Archived Logs for Noncluster File System Local Archiving
Learn about the location of archived logs for noncluster file system local archiving.

As illustrated in the following table, each of three nodes has a directory containing the locally
archived redo logs. Additionally, if you mount directories on the other nodes remotely through
NFS or mapped drives, then each node has two remote directories through which RMAN can
read the archived redo log files that are archived by the remaining nodes.

Note:

The archive log destinations, similar to those shown in the following table, must be
different on each node so that if you mount the NFS directory on a different node,
then it does not conflict with an existing archive log directory

Chapter 7
RMAN Archiving Configuration Scenarios

7-9

Table 7-2 UNIX/NFS Location Log Examples, Noncluster File System Local Archiving

Node Reads the archived redo log
files in the directory

For logs archived by node

1 /arc_dest_1 1

1 /arc_dest_2 2 (through NFS)

1 /arc_dest_3 3 (through NFS)

2 /arc_dest_1 1 (through NFS)

2 /arc_dest_2 2

2 /arc_dest_3 3 (through NFS)

3 /arc_dest_1 1 (through NFS)

3 /arc_dest_2 2 (through NFS)

3 /arc_dest_3 3

File System Configuration for Noncluster File System Local Archiving
Use NFS to perform recovery using a remaining instance to read logs that are not yet backed
up.

If you are performing recovery and a remaining instance must read all of the logs that are on
disk but not yet backed up, then you should configure NFS as shown in the following table.

Table 7-3 UNIX/NFS Configuration for Shared Read Local Archiving Examples

Node Directory... Is configured... And mounted on... On node...

1 /arc_dest_1 Local read/write n/a n/a

1 /arc_dest_2 NFS read /arc_dest_2 2

1 /arc_dest_3 NFS read /arc_dest_3 3

2 /arc_dest_1 NFS read /arc_dest_1 1

2 /arc_dest_2 Local read/write n/a n/a

2 /arc_dest_3 NFS read /arc_dest_3 3

3 /arc_dest_1 NFS read /arc_dest_1 1

3 /arc_dest_2 NFS read /arc_dest_2 2

3 /arc_dest_3 Local read/write n/a n/a

Note:

Microsoft Windows users can achieve the same results depicted in the examples in
this section by using mapped drives.

Monitoring the Archiver Processes
Learn how to monitor the archiver processes.

Chapter 7
Monitoring the Archiver Processes

7-10

After your RMAN configuration is operative in your Oracle RAC environment, use the
GV$ARCHIVE_PROCESSES and V$ARCHIVE_PROCESSES views to determine the status of the
archiver processes. Depending on whether you query the global or local views, these views
display information for all database instances, or for only the instance to which you are
connected.

Note:

If you use the kill command to stop the archiver process, then the database
instance will fail.

Related Topics

• Oracle Database Administrator’s Guide

• Oracle Database Reference

Chapter 7
Monitoring the Archiver Processes

7-11

8
Managing Backup and Recovery

Learn how to use Recovery Manager (RMAN) to back up and restore Oracle Real Application
Clusters (Oracle RAC) databases, and about Oracle RAC instance recovery, parallel backup,
recovery with SQL*Plus, and using the Fast Recovery Area in Oracle RAC.

• Managing Backup and Recovery in Clusters
In a cluster, any node in the cluster can restore archived redo log files.

• RMAN Backup Scenario for Noncluster File System Backups
Learn about using RMAN for noncluster file system backups.

• RMAN Restore Scenarios for Oracle RAC
Learn about the RMAN restore scenarios for Oracle RAC.

• Instance Recovery in Oracle RAC
Learn about instance recovery in Oracle RAC.

• Media Recovery in Oracle RAC
Learn about media recovery in Oracle RAC.

• Parallel Recovery in Oracle RAC
Oracle Database automatically selects the optimum degree of parallelism for instance,
crash, and media recovery.

• Using a Fast Recovery Area in Oracle RAC
To use a fast recovery area in Oracle RAC, place the recovery area on an Oracle ASM disk
group, on a Cluster File System, or on a shared directory that is configured through a
network file system file for each Oracle RAC instance.

Managing Backup and Recovery in Clusters
In a cluster, any node in the cluster can restore archived redo log files.

For restore and recovery in Oracle Real Application Clusters (Oracle RAC) database
environments, you do not have to configure the instance that performs the recovery to also be
the sole instance that restores all of the data files. In Oracle RAC, data files are accessible
from every node in the cluster, so any node can restore archived redo log files.

Related Topics

• Managing Oracle Cluster Registry and Voting Files

RMAN Backup Scenario for Noncluster File System Backups
Learn about using RMAN for noncluster file system backups.

In a noncluster file system environment, each node can back up only to a locally-mounted
noncluster file system directory. For example, node1 cannot access the archived redo log files
on node2 or node3 unless you configure the network file system for remote access. If you
configure a network file system file for backups, then each node backs up its archived redo
logs to a local directory.

8-1

RMAN Restore Scenarios for Oracle RAC
Learn about the RMAN restore scenarios for Oracle RAC.

• Restoring Backups from a Cluster File System
Learn how to restore backups from cluster file systems.

• Restoring Backups from a Noncluster File System
Learn how to restore backups from noncluster file systems.

• Using RMAN or Oracle Enterprise Manager to Restore the Server Parameter File (SPFILE)
You can restore SPFILEs with RMAN or Oracle Enterprise Manager.

Restoring Backups from a Cluster File System
Learn how to restore backups from cluster file systems.

The scheme that this section describes assumes that you are using the "Oracle Advanced
Cluster File System Archiving Scheme". In this scheme, assume that node3 performed the
backups to a cluster file system. If node3 is available for the restore and recovery operation,
and if all of the archived logs have been backed up or are on disk, then run the following
commands to perform complete recovery:

RESTORE DATABASE;
RECOVER DATABASE;

If node3 performed the backups but is unavailable, then configure a media management device
for one of the remaining nodes and make the backup media from node3 available to this node.

Note:

If you configured RMAN as described in "Configuring Channels to Use Automatic
Load Balancing", then, to load balance the channels across nodes, note that
channels cannot be load balanced before at least one instance has successfully
opened the database. This means that the channels will not be load balanced across
the nodes during a full database restore. To achieve load balancing of channels for
RESTORE and RECOVER commands, you can temporarily reallocate channels by running
commands similar to the following:

run {
ALLOCATE CHANNEL DEVICE TYPE sbt C1 CONNECT '@racinst_1'
ALLOCATE CHANNEL DEVICE TYPE sbt C2 CONNECT '@racinst_2'
...
}

Related Topics

• Oracle Advanced Cluster File System Archiving Scheme
The preferred configuration for Oracle RAC is to use Oracle Automatic Storage
Management (Oracle ASM) for a recovery area using a disk group for your recovery set
that is different from the disk group used for your data files.

Chapter 8
RMAN Restore Scenarios for Oracle RAC

8-2

• Configuring Channels to Use Automatic Load Balancing
Learn how to configure channels to use automatic load balancing.

Restoring Backups from a Noncluster File System
Learn how to restore backups from noncluster file systems.

The scheme that this section describes assumes that you are using the "Noncluster File
System Local Archiving Scheme". In this scheme, each node archives locally to a different
directory. For example, node1 archives to /arc_dest_1, node2 archives to /arc_dest_2, and
node3 archives to /arc_dest_3. You must configure a network file system file so that the
recovery node can read the archiving directories on the remaining nodes.

If all nodes are available and if all archived redo logs have been backed up, then you can
perform a complete restore and recovery by mounting the database and running the following
commands from any node:

RESTORE DATABASE;
RECOVER DATABASE;

Because the network file system configuration enables each node read access to the redo log
files on other nodes, then the recovery node can read and apply the archived redo logs located
on the local and remote disks. No manual transfer of archived redo logs is required.

Related Topics

• Noncluster File System Local Archiving Scheme
Learn about the noncluster file system local archiving scheme.

Using RMAN or Oracle Enterprise Manager to Restore the Server
Parameter File (SPFILE)

You can restore SPFILEs with RMAN or Oracle Enterprise Manager.

RMAN can restore the server parameter file either to the default location or to a location that
you specify.

You can also use Oracle Enterprise Manager to restore the SPFILE. From the Backup/
Recovery section of the Maintenance tab, click Perform Recovery. The Perform Recovery
link is context-sensitive and navigates you to the SPFILE restore only when the database is
closed.

Instance Recovery in Oracle RAC
Learn about instance recovery in Oracle RAC.

Instance failure occurs when software or hardware problems disable an instance. After
instance failure, Oracle Database automatically uses the online redo logs to perform recovery
as described in this section.

• Single Node Failure in Oracle RAC
Learn about single node failures in Oracle RAC.

• Multiple-Node Failures in Oracle RAC
Learn how to manage multi-node failures in Oracle RAC.

Chapter 8
Instance Recovery in Oracle RAC

8-3

• Using RMAN to Create Backups in Oracle RAC
Oracle Database provides RMAN for backing up and restoring the database.

• Channel Connections to Cluster Instances with RMAN
Learn about using RMAN for channel connections to cluster instances.

• Node Affinity Awareness of Fast Connections
Learn about fast connection node affinity awareness.

• Deleting Archived Redo Logs after a Successful Backup
Learn how to delete archived redo logs after backups.

• Autolocation for Backup and Restore Commands
Learn about autolocation for the backup and restore commands.

Single Node Failure in Oracle RAC
Learn about single node failures in Oracle RAC.

Instance recovery in Oracle RAC does not include the recovery of applications that were
running on the failed instance. Oracle Clusterware restarts the instance automatically.

Applications that were running on a node before it failed continue running by using failure
recognition and recovery. This provides consistent and uninterrupted service if hardware or
software fails. When one instance performs recovery for another instance, the remaining
instance reads online redo logs generated by the failed instance and uses that information to
ensure that committed transactions are recorded in the database. Thus, data from committed
transactions is not lost. The instance performing recovery rolls back transactions that were
active at the time of the failure and releases resources used by those transactions.

Note:

All online redo logs must be accessible for instance recovery. Therefore, Oracle
recommends that you mirror your online redo logs.

Multiple-Node Failures in Oracle RAC
Learn how to manage multi-node failures in Oracle RAC.

When failures occur, if one instance remains active, then Oracle RAC performs instance
recovery for any other instances that fail. If all instances of an Oracle RAC database fail, then
Oracle Database automatically recovers the instances the next time one instance opens the
database. The instance performing recovery can mount the database in either cluster database
or exclusive mode from any node of an Oracle RAC database. This recovery procedure is the
same for Oracle Database running in shared mode as it is for Oracle Database running in
exclusive mode, except that one instance performs instance recovery for all of the failed
instances.

Using RMAN to Create Backups in Oracle RAC
Oracle Database provides RMAN for backing up and restoring the database.

RMAN enables you to back up, restore, and recover data files, control files, SPFILEs, and
archived redo logs. RMAN is included with the Oracle Database server and it is installed by
default. You can run RMAN from the command line or you can use it from the Backup Manager

Chapter 8
Instance Recovery in Oracle RAC

8-4

in Oracle Enterprise Manager. In addition, RMAN is the recommended backup and recovery
tool if you are using Oracle Automatic Storage Management (Oracle ASM). The procedures for
using RMAN in Oracle RAC environments do not differ substantially from those for Oracle
noncluster environments.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Channel Connections to Cluster Instances with RMAN
Learn about using RMAN for channel connections to cluster instances.

Channel connections to the instances are determined using the connect string defined by
channel configurations. For example, in the following configuration, three channels are
allocated using dbauser/pwd@service_name. If you configure the SQL Net service name with
load balancing turned on, then the channels are allocated at a node as decided by the load
balancing algorithm.

CONFIGURE DEVICE TYPE sbt PARALLELISM 3;
CONFIGURE DEFAULT DEVICE TYPE TO sbt;
CONFIGURE CHANNEL DEVICE TYPE SBT CONNECT 'dbauser/pwd@service_name'

However, if the service name used in the connect string is not for load balancing, then you can
control at which instance the channels are allocated using separate connect strings for each
channel configuration, as follows:

CONFIGURE DEVICE TYPE sbt PARALLELISM 3;
CONFIGURE CHANNEL 1.. CONNECT 'dbauser/pwd@mydb_1';
CONFIGURE CHANNEL 2.. CONNECT 'dbauser/pwd@mydb_2';
CONFIGURE CHANNEL 3.. CONNECT 'dbauser/pwd@mydb_3';

In the previous example, it is assumed that mydb_1, mydb_2 and mydb_3 are SQL*Net service
names that connect to pre-defined nodes in your Oracle RAC environment. Alternatively, you
can also use manually allocated channels to backup your database files. For example, the
following command backs up the SPFILE, control file, data files and archived redo logs:

RUN
{
 ALLOCATE CHANNEL CH1 CONNECT 'dbauser/pwd@mydb_1';
 ALLOCATE CHANNEL CH2 CONNECT 'dbauser/pwd@mydb_2';
 ALLOCATE CHANNEL CH3 CONNECT 'dbauser/pwd@mydb_3';
 BACKUP DATABASE PLUS ARCHIVED LOG;
}

During a backup operation, if at least one channel allocated has access to the archived log,
then RMAN automatically schedules the backup of the specific log on that channel. Because
the control file, SPFILE, and data files are accessible by any channel, the backup operation of
these files is distributed across the allocated channels.

For a local archiving scheme, there must be at least one channel allocated to all of the nodes
that write to their local archived logs. For a cluster file system archiving scheme, if every node
writes the archived logs in the same cluster file system, then the backup operation of the
archived logs is distributed across the allocated channels.

Chapter 8
Instance Recovery in Oracle RAC

8-5

During a backup, the instances to which the channels connect must be either all mounted or all
open. For example, if the instance on node1 has the database mounted while the instances on
node2 and node3 have the database open, then the backup fails.

Related Topics

• Oracle Database Backup and Recovery Reference

See Also:

Oracle Database Backup and Recovery Reference for more information about the
CONNECT clause of the CONFIGURE CHANNEL statement

Node Affinity Awareness of Fast Connections
Learn about fast connection node affinity awareness.

In some cluster database configurations, some nodes of the cluster have faster access to
certain data files than to other data files. RMAN automatically detects this situation, which is
known as node affinity awareness. When deciding which channel to use to back up a particular
data file, RMAN gives preference to the nodes with faster access to the data files that you want
to back up. For example, if you have a three-node cluster, and if node1 has faster read/write
access to data files 7, 8, and 9 than the other nodes, then node1 has greater node affinity to
those files than node2 and node3.

Deleting Archived Redo Logs after a Successful Backup
Learn how to delete archived redo logs after backups.

If you have configured the automatic channels as defined in section "Channel Connections to
Cluster Instances with RMAN", then you can use the following example to delete the archived
logs that you backed up n times. The device type can be DISK or SBT:

DELETE ARCHIVELOG ALL BACKED UP n TIMES TO DEVICE TYPE device_type;

During a delete operation, if at least one channel allocated has access to the archived log, then
RMAN automatically schedules the deletion of the specific log on that channel. For a local
archiving scheme, there must be at least one channel allocated that can delete an archived
log. For a cluster file system archiving scheme, if every node writes to the archived logs on the
same cluster file system, then the archived log can be deleted by any allocated channel.

If you have not configured automatic channels, then you can manually allocate the
maintenance channels as follows and delete the archived logs.

ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE DISK CONNECT 'SYS/oracle@node1';
ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE DISK CONNECT 'SYS/oracle@node2';
ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE DISK CONNECT 'SYS/oracle@node3';
DELETE ARCHIVELOG ALL BACKED UP n TIMES TO DEVICE TYPE device_type;

Related Topics

• Channel Connections to Cluster Instances with RMAN
Learn about using RMAN for channel connections to cluster instances.

Chapter 8
Instance Recovery in Oracle RAC

8-6

Autolocation for Backup and Restore Commands
Learn about autolocation for the backup and restore commands.

RMAN automatically performs autolocation of all files that it must back up or restore. If you use
the noncluster file system local archiving scheme, then a node can only read the archived redo
logs that were generated by an instance on that node. RMAN never attempts to back up
archived redo logs on a channel it cannot read.

During a restore operation, RMAN automatically performs the autolocation of backups. A
channel connected to a specific node only attempts to restore files that were backed up to the
node. For example, assume that log sequence 1001 is backed up to the drive attached to
node1, while log 1002 is backed up to the drive attached to node2. If you then allocate channels
that connect to each node, then the channel connected to node1 can restore log 1001 (but not
1002), and the channel connected to node2 can restore log 1002 (but not 1001).

Media Recovery in Oracle RAC
Learn about media recovery in Oracle RAC.

Media recovery must be user-initiated through a client application, whereas instance recovery
is automatically performed by the database. In these situations, use RMAN to restore backups
of the data files and then recover the database. The procedures for RMAN media recovery in
Oracle RAC environments do not differ substantially from the media recovery procedures for
noncluster environments.

The node that performs the recovery must be able to restore all of the required data files. That
node must also be able to either read all of the required archived redo logs on disk or be able
to restore them from backups.

When recovering a database with encrypted tablespaces (for example after a SHUTDOWN ABORT
or a catastrophic error that brings down the database instance), you must open the Oracle
Wallet after database mount and before you open the database, so the recovery process can
decrypt data blocks and redo.

Parallel Recovery in Oracle RAC
Oracle Database automatically selects the optimum degree of parallelism for instance, crash,
and media recovery.

Oracle Database applies archived redo logs using an optimal number of parallel processes
based on the availability of CPUs. You can use parallel instance recovery and parallel media
recovery in Oracle RAC databases as described under the following topics:

• Parallel Recovery with RMAN
Learn how to use parallel recovery with RMAN.

• Disabling Parallel Recovery
Learn how to disable parallel recovery.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Chapter 8
Media Recovery in Oracle RAC

8-7

Parallel Recovery with RMAN
Learn how to use parallel recovery with RMAN.

With RMAN's RESTORE and RECOVER commands, Oracle Database automatically makes parallel
the following three stages of recovery:

Restoring Data Files

When restoring data files, the number of channels you allocate in the RMAN recover script
effectively sets the parallelism that RMAN uses. For example, if you allocate five channels, you
can have up to five parallel streams restoring data files.

Applying Incremental Backups

Similarly, when you are applying incremental backups, the number of channels you allocate
determines the potential parallelism.

Applying Archived Redo Logs

With RMAN, the application of archived redo logs is performed in parallel. Oracle Database
automatically selects the optimum degree of parallelism based on available CPU resources.

Disabling Parallel Recovery
Learn how to disable parallel recovery.

You can override parallel recovery using the procedures under the following topics:

• Disabling Instance and Crash Recovery Parallelism
Learn how to disable instance and crash recovery parallelism.

• Disabling Media Recovery Parallelism
Learn how to disable media recovery parallelism.

Disabling Instance and Crash Recovery Parallelism
Learn how to disable instance and crash recovery parallelism.

To disable parallel instance and crash recovery on a system with multiple CPUs, set the
RECOVERY_PARALLELISM parameter in the database initialization parameter file, SPFILE, to 0 or
1.

Disabling Media Recovery Parallelism
Learn how to disable media recovery parallelism.

Use the NOPARALLEL clause of the RMAN RECOVER command or the ALTER DATABASE RECOVER
statement to force Oracle Database to use non-parallel media recovery.

Using a Fast Recovery Area in Oracle RAC
To use a fast recovery area in Oracle RAC, place the recovery area on an Oracle ASM disk
group, on a Cluster File System, or on a shared directory that is configured through a network
file system file for each Oracle RAC instance.

Chapter 8
Using a Fast Recovery Area in Oracle RAC

8-8

In other words, the fast recovery area must be shared among all of the instances of an Oracle
RAC database. In addition, set the parameter DB_RECOVERY_FILE_DEST to the same value on all
instances.

Oracle Enterprise Manager enables you to set up a fast recovery area. To use this feature:

1. From the Cluster Database home page, click the Maintenance tab.

2. Under the Backup/Recovery options list, click Configure Recovery Settings.

3. Specify your requirements in the Fast Recovery Area section of the page.

4. Click ui on this page for more information.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Chapter 8
Using a Fast Recovery Area in Oracle RAC

8-9

9
Cloning Oracle RAC to Nodes in a New
Cluster

Learn how to clone Oracle Real Application Clusters (Oracle RAC) database homes on Linux
and Unix systems to nodes in a new cluster.

• Introduction to Cloning Oracle RAC
Learn how to use cloning in Oracle RAC to simplify your administrative tasks.

• Preparing to Clone Oracle RAC
Use this overview to understand the Oracle RAC cloning procedures.

• Deploying Oracle RAC Clones to Nodes in a Cluster
Learn about deploying Oracle RAC clones from one node to other nodes in a cluster.

• Locating and Viewing Log Files Generated During Cloning
The cloning script runs multiple tools, each of which may generate its own log files.

Introduction to Cloning Oracle RAC
Learn how to use cloning in Oracle RAC to simplify your administrative tasks.

You can implement a noninteractive cloning technique using scripts. These cloning techniques
are best suited for performing multiple simultaneous cluster installations. Creating the scripts is
a manual process and can be error-prone. If you only have one cluster to install, then you
should use the traditional automated and interactive installation methods, such as Oracle
Universal Installer, or the Provisioning Pack feature of Oracle Enterprise Manager.

Cloning is the process of copying an existing Oracle RAC installation to a different location and
updating the copied bits to work in the new environment. The changes made by one-off
patches applied on the source Oracle home, would also be present after the clone operation.
The source and the destination path (host to be cloned) need not be the same.

Some situations in which cloning is useful are:

• Cloning provides a way to prepare an Oracle home once and deploy it to many hosts
simultaneously. You can complete the installation silently, as a noninteractive process. You
do not need to use a graphical user interface (GUI) console and you can perform cloning
from a Secure Shell (SSH) terminal session, if required.

• Cloning enables you to create an installation (copy of a production, test, or development
installation) with all patches applied to it in a single step. Once you have performed the
base installation and applied all patch sets and patches on the source system, the clone
performs all of these individual steps as a single procedure. This is in contrast to going
through the installation process to perform the separate steps to install, configure, and
patch the installation on each node in the cluster.

• Installing Oracle RAC by cloning is a very quick process. For example, cloning an Oracle
home to a new cluster of more than two nodes requires a few minutes to install the Oracle
base software, plus a few minutes more for each node (approximately the amount of time it
takes to run the root.sh script).

9-1

The cloned installation behaves the same as the source installation. For example, the cloned
Oracle home can be removed using Oracle Universal Installer. You can also use the cloned
Oracle home as the source for another cloning operation. You can create a cloned copy of a
test, development, or production installation by using the command-line cloning scripts. The
default cloning procedure is adequate for most usage cases. However, you can also customize
various aspects of cloning, for example, to specify custom port assignments, or to preserve
custom settings.

The cloning process works by copying all of the files from the source Oracle home to the
destination Oracle home. Thus, any files used by the source instance that are located outside
the source Oracle home's directory structure are not copied to the destination location.

The size of the binaries at the source and the destination may differ because these are
relinked as part of the clone operation and the operating system patch levels may also differ
between these two locations. Additionally, the number of files in the cloned home would
increase because several files copied from the source, specifically those being instantiated,
are backed up as part of the clone operation.

Note:

Cloning is not a replacement for Oracle Enterprise Manager cloning that is a part of
the Provisioning Pack. During Oracle Enterprise Manager cloning, the provisioning
process interactively asks you the details about the Oracle home (such as the
location to which you want to deploy the clone, the name of the Oracle Database
home, a list of the nodes in the cluster, and so on).

The Provisioning Pack feature of Oracle Enterprise Manager Cloud Control provides
a framework to automate the provisioning of new nodes and clusters. For data
centers with many Oracle RAC clusters, the investment in creating a cloning
procedure to easily provision new clusters and new nodes to existing clusters is
worth the effort.

Related Topics

• Using Cloning to Extend Oracle RAC to Nodes in the Same Cluster
Learn how to use cloning to extend Oracle RAC nodes within a cluster.

Preparing to Clone Oracle RAC
Use this overview to understand the Oracle RAC cloning procedures.

In the preparation phase, you create a copy of an Oracle home that you then use to perform
the cloning procedure on one or more nodes. You also install Oracle Grid Infrastructure.

Install Oracle RAC

Use the detailed instructions in Oracle Real Application Clusters Installation Guide for your
platform for your platform to install the Oracle RAC software and patches:

1. Install Oracle RAC and choose the Software only installation option.

2. Patch the release to the required Release Update (RU).

3. Apply one-off patches, if necessary.

Chapter 9
Preparing to Clone Oracle RAC

9-2

Create a backup of the source home

Create a copy of the Oracle RAC home. Use this file to copy the Oracle RAC home to each
node in the cluster.

When creating the backup file, the best practice is to include the release number in the name
of the file. For example:

cd /u01/app/oracle/product/23ai/db_1
tar –zcvf /pathname/db23ai.tgz .

Install and start Oracle Clusterware

Before you can use cloning to create an Oracle RAC home, you must first install and start
Oracle Clusterware on the node or nodes to which you want to copy a cloned Oracle RAC
home. In other words, you configure an Oracle RAC home that you cloned from a source
cluster onto the nodes in a target cluster in the same order that you installed the Oracle
Clusterware and Oracle RAC software components on the original nodes.

Related Topics

• Oracle Real Application Clusters Installation Guide for Linux and UNIX

• Deploying Oracle RAC Clones to Nodes in a Cluster
Learn about deploying Oracle RAC clones from one node to other nodes in a cluster.

• Oracle Clusterware Administration and Deployment Guide

Deploying Oracle RAC Clones to Nodes in a Cluster
Learn about deploying Oracle RAC clones from one node to other nodes in a cluster.

After you complete the prerequisite tasks described in "Preparing to Clone Oracle RAC", you
can deploy cloned Oracle homes.

Deploy the Oracle RAC database home to a cluster, as follows:

1. Perform any Oracle RAC preinstallation tasks, as described in your platform-specific
Oracle RAC installation guide, to prepare the new cluster nodes, such things as:

• Specify the kernel parameters.

• Ensure Oracle Clusterware is active.

• Ensure that Oracle ASM is active and that at least one Oracle ASM disk group exists
and is mounted.

2. Deploy the Oracle RAC database software, as follows:

a. Copy the clone of the Oracle home to all nodes. For example:

[root@node1 root]# mkdir -p /u01/app/oracle/product/23ai/db
[root@node1 root]# cd /u01/app/oracle/product/23ai/db
[root@node1 db]# tar –zxvf /path_name/db23ai.tgz

When providing the home location and path_name, the home location can be in the
same directory path or in a different directory path from the source home that you used
to create the tar.

Chapter 9
Deploying Oracle RAC Clones to Nodes in a Cluster

9-3

b. If either the oracle user or the oinstall group, or both is different between the source
and destination nodes, then change the ownership of the Oracle Inventory files, as
follows:

[root@node1]# chown -R oracle:oinstall /u01/app/oracle/product/23ai/db

When you run the preceding command on the Oracle RAC home, it clears setuid and
setgid information from the Oracle binary.

Note:

You can perform this step at the same time you perform Step 5 and Step 6 to
run the clone.pl and $ORACLE_HOME/root.sh scripts on each cluster node.

3. Change the directory to the unzipped Oracle home directory, and remove all the .ora
(*.ora) files present in the unzipped $ORACLE_HOME/network/admin directory.

4. Delete unnecessary files from the unzipped Oracle home directory.

The unzipped Oracle home directory contains files that are relevant only to the source
Oracle home. The following example shows how to remove these unnecessary files from
the unzipped Oracle home directory:

Remove the .ora files from the network/admin directory, and remove the old database
entries from the dbs directory.

cd $ORACLE_HOME
rm -rf network/admin/*.ora
rm dbs/old_database_entries

5. Use any of the following methods to perform the main Oracle RAC cloning tasks:

a. Perform a software-only Oracle RAC installation on each cluster node to register the
Oracle RAC Database.

i. From this new destination Oracle home directory, run the runInstaller command
to start the Oracle Database Setup Wizard and register Oracle RAC Database.

$ cd /u01/app/oracle/product/23ai/db
$./runInstaller

ii. In the Select Configuration Option screen, select Set Up Software Only to
perform a software-only Oracle RAC installation.

iii. Select your installation type and respond to the configuration prompts as needed.

b. Run the clone.pl script on each node:

i. Supply the environment variables and cloning parameters in the start.sh script,
as described in Table 9-2 and Table 9-3. Because the clone.pl script is sensitive
to the parameters being passed to it, you must be accurate in your use of
brackets, single quotation marks, and double quotation marks.

ii. Run the script as oracle or the user that owns the Oracle RAC software.

The following table lists and describes the clone.pl script parameters:

Chapter 9
Deploying Oracle RAC Clones to Nodes in a Cluster

9-4

Table 9-1 clone.pl Script Parameters

Parameter Description

ORACLE_HOME=Oracle_h
ome

The complete path to the Oracle home you want to clone. If you
specify an invalid path, then the script exits. This parameter is
required.

ORACLE_BASE=ORACLE_B
ASE

The complete path to the Oracle base you want to clone. If you
specify an invalid path, then the script exits. This parameter is
required.

ORACLE_HOME_NAME=
Oracle_home_name | -
defaultHomeName

The Oracle home name of the home you want to clone. Optionally,
you can specify the -defaultHomeName flag. This parameter is
optional.

ORACLE_HOME_USER=Ora
cle_home_user

The OracleHomeUser for Windows services. This parameter is
applicable to Windows only and is optional.

OSDBA_GROUP=group_na
me

Specify the operating system group you want to use as the OSDBA
privileged group. This parameter is optional.

OSOPER_GROUP=group_n
ame

Specify the operating system group you want to use as the
OSOPER privileged group. This parameter is optional.

OSRACDBA_GROUP=group
_name

Specify the operating system group you want to use as the
OSRACDBA privileged group. This parameter is optional.

OSASM_GROUP=group_na
me

Specify the operating system group you want to use as the OSASM
privileged group. This parameter is optional.

OSBACKUPDBA_GROUP=gr
oup_name

Specify the operating system group you want to use as the
OSBACKUPDBA privileged group. This parameter is optional.

OSDGDBA_GROUP=group_
name

Specify the operating system group you want to use as the
OSDGDBA privileged group. This parameter is optional.

OSKMDBA_GROUP=group_
name

Specify the operating system group you want to use as the
OSKMDBA privileged group. This parameter is optional.

-debug Specify this option to run the clone.pl script in debug mode

-help Specify this option to obtain help for the clone.pl script.

The following example shows an excerpt from the start.sh script that calls the
clone.pl script:

ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/23ai/db
cd $ORACLE_HOME/clone
THISNODE='host_name'

E01=ORACLE_HOME=/u01/app/oracle/product/23ai/db
E02=ORACLE_HOME_NAME=OraDBRAC
E03=ORACLE_BASE=/u01/app/oracle
C01="-O CLUSTER_NODES={node1,node2}"
C02="-O LOCAL_NODE=$THISNODE"

perl $ORACLE_HOME/clone/bin/clone.pl $E01 $E02 $E03 $C01 $C02

The following table lists and describes the environment variables E01, E02, and E03
that are shown in bold typeface in the preceding example:

Chapter 9
Deploying Oracle RAC Clones to Nodes in a Cluster

9-5

Table 9-2 Environment Variables Passed to the clone.pl Script

Symbol Variable Description

E01 ORACLE_HOME The location of the Oracle RAC database home. This directory
location must exist and must be owned by the Oracle operating
system group: oinstall.

E02 ORACLE_HOME_NAM
E

The name of the Oracle home for the Oracle RAC database.
This is stored in the Oracle Inventory.

E03 ORACLE_BASE The location of the Oracle Base directory.

The following table lists and describes the cloning parameters C01 and C02, that are
shown in bold typeface in the preceding example:

Table 9-3 Cloning Parameters Passed to the clone.pl Script.

Variable Name Parameter Description

C01 Cluster Nodes CLUSTER_NODES Lists the nodes in the cluster.

C02 Local Node LOCAL_NODE The name of the local node.

The following example shows an excerpt from the start.bat script that the user must
create that calls the clone.pl script:

set ORACLE_home=C:\oracle\product\23ai\db1
cd %ORACLE_home%\clone\bin
set THISNODE=%hostname%
set E01=ORACLE_HOME=%ORACLE_home%
set E02=ORACLE_HOME_NAME=OraDBRAC
set E03=ORACLE_BASE=Oracle_Base
set C01="CLUSTER_NODES={node1,node2}"
set C02="-O LOCAL_NODE=%THISNODE%"
perl clone.pl %E01% %E02% %E03% %C01% %C02%

6. Note:

This step applies to Linux and UNIX installations, only.

Run the $ORACLE_HOME/root.sh as the root operating system user as soon as the cloning
procedure completes on the node.

[root@node1 root]# /u01/app/oracle/product/23ai/db/root.sh -silent

Note that you can run the script on each node simultaneously:

[root@node2 root]# /u01/app/oracle/product/23ai/db/root.sh -silent

Ensure the script has completed on each node before proceeding to the next step.

Chapter 9
Deploying Oracle RAC Clones to Nodes in a Cluster

9-6

7. Note:

You need only run Oracle DBCA on one node in the cluster to create Oracle RAC
instances on all nodes.

This step shows how to run Oracle DBCA in silent mode and provide response file input to
create the Oracle RAC instances.

The following example creates an Oracle RAC database named ERI on each node with
AUTOMATIC management policy, creates database instances on each node, registers the
instances in OCR, and creates the database files in the Oracle ASM disk group called
DATA. It also configures Oracle Machine Learning for Python in the database and sets the
SYS and SYSTEM passwords to password, which is the password for each account:

[oracle@node1 oracle]$ export ORACLE_HOME=/u01/app/oracle/product/23ai/db
[oracle@node1 oracle]$ cd $ORACLE_HOME/bin/
[oracle@node1 bin]$./dbca -silent -createDatabase -templateName
"General_Purpose.dbc" \
-gdbName gdb_name -sid SID_prefix \
-storageType ASM -diskGroupName DATA -nodelist node1,node2 -characterset
WE8MSWIN1252 \
-recoveryAreaDestination RECO -databaseType "MULTIPURPOSE" \
-createAsContainerDatabase true -numberofPDBs 2 -pdbName rracwpdb

Related Topics

• Preparing to Clone Oracle RAC
Use this overview to understand the Oracle RAC cloning procedures.

• Oracle Real Application Clusters Installation Guide

See Also:

Oracle Multitenant Administrator's Guide for a complete description of Oracle
Database Configuration Assistant (Oracle DBCA) commands and options.

Locating and Viewing Log Files Generated During Cloning
The cloning script runs multiple tools, each of which may generate its own log files.

After the clone.pl script finishes running, you can view log files to obtain more information
about the cloning process.

The following log files that are generated during cloning are the key log files of interest for
diagnostic purposes:

• Central_Inventory/logs/cloneActionstimestamp.log
Contains a detailed log of the actions that occur during the Oracle Universal Installer part
of the cloning.

• Central_Inventory/logs/oraInstalltimestamp.err
Contains information about errors that occur when Oracle Universal Installer is running.

Chapter 9
Locating and Viewing Log Files Generated During Cloning

9-7

• Central_Inventory/logs/oraInstalltimestamp.out
Contains other miscellaneous messages generated by Oracle Universal Installer.

• $ORACLE_HOME/clone/logs/clonetimestamp.log
Contains a detailed log of the actions that occur before cloning and during the cloning
operations.

• $ORACLE_HOME/clone/logs/errortimestamp.log
Contains information about errors that occur before cloning and during cloning operations.

The following table describes how to find the location of the Oracle inventory directory.

Table 9-4 Finding the Location of the Oracle Inventory Directory

Type of System... Location of the Oracle Inventory Directory

All UNIX computers except
Linux and IBM AIX

/var/opt/oracle/oraInst.loc

IBM AIX and Linux /etc/oraInst.loc file.

Windows C:\Program Files\Oracle\Inventory

Chapter 9
Locating and Viewing Log Files Generated During Cloning

9-8

10
Using Cloning to Extend Oracle RAC to Nodes
in the Same Cluster

Learn how to use cloning to extend Oracle RAC nodes within a cluster.

This chapter provides information about using cloning to extend Oracle Real Application
Clusters (Oracle RAC) to nodes in an existing cluster.

To add Oracle RAC to nodes in a new cluster, see Cloning Oracle RAC to Nodes in a New
Cluster.

• About Adding Nodes Using Cloning in Oracle RAC Environments
You can use cloning to add nodes in Oracle RAC environments.

• Cloning Local Oracle Homes on Linux and UNIX Systems
Add nodes to Oracle RAC environments by cloning a local, non-shared Oracle home in
Linux and UNIX environments.

• Cloning Shared Oracle Homes on Linux and UNIX Systems
Add nodes to Oracle RAC environments by cloning a shared Oracle home in Linux and
UNIX systems.

• Cloning Oracle Homes on Windows Systems
Add nodes to Oracle RAC environments by cloning a shared or local Oracle home in
Microsoft Windows environments.

Related Topics

• Introduction to Cloning Oracle RAC
Learn how to use cloning in Oracle RAC to simplify your administrative tasks.

• Oracle Clusterware Administration and Deployment Guide

About Adding Nodes Using Cloning in Oracle RAC Environments
You can use cloning to add nodes in Oracle RAC environments.

The cloning procedures assume that you have successfully installed and configured an Oracle
RAC environment to which you want to add nodes and instances. To add nodes to an Oracle
RAC environment using cloning, first extend the Oracle Clusterware configuration, then extend
the Oracle Database software with Oracle RAC, and then add the listeners and instances by
running the Oracle assistants

The cloning script runs multiple tools, each of which may generate its own log files. After the
clone.pl script finishes running, you can view log files to obtain more information about the
cloning process.

Related Topics

• Locating and Viewing Log Files Generated During Cloning
The cloning script runs multiple tools, each of which may generate its own log files.

10-1

Cloning Local Oracle Homes on Linux and UNIX Systems
Add nodes to Oracle RAC environments by cloning a local, non-shared Oracle home in Linux
and UNIX environments.

Complete the following steps to clone Oracle Database with Oracle RAC:

1. Follow the steps in the topic "Preparing to Clone Oracle RAC" to create a copy of an
Oracle home that you then use to perform the cloning procedure on one or more nodes.

2. Use the tar utility to create an archive of the Oracle home on the existing node and copy it
to the new node. If the location of the Oracle home on the source node is $ORACLE_HOME,
then you must use this same directory as the destination location on the new node.

3. On the new node, configure the environment variables ORACLE_HOME and ORACLE_BASE.
Then go to the Grid_home/clone/bin directory on the new node and run the following
command, where existing_node is the name of the node that you are cloning, new_node2
and new_node3 are the names of the new nodes, and Oracle_home_name is the name of the
Oracle home:

perl clone.pl ORACLE_HOME=$ORACLE_HOME ORACLE_HOME_NAME=Oracle_home_name
 ORACLE_BASE=$ORACLE_BASE
"'CLUSTER_NODES={existing_node,new_node2,new_node3}'"
 "'LOCAL_NODE=new_node2'" CRS=TRUE INVENTORY_LOCATION=/u01/app/
oraInventory

4. Run the following command to run the configuration assistants to configure Oracle RAC on
the new nodes:

$ORACLE_HOME/cfgtoollogs/configToolFailedCommands

This script contains all commands that failed, were skipped, or were canceled during the
installation. You can use this script to run the database configuration assistants outside of
Oracle Universal Installer. Note that before you run the script you should check the script to
see if any passwords within it need to be updated.

5. Run the following command on the existing node from the $ORACLE_HOME/oui/bin directory
to update the inventory in the Oracle Database home with Oracle RAC, specified by
Oracle_home, where existing_node is the name of the original node that you are cloning
and new_node2 and new_node3 are the names of the new nodes:

./runInstaller -updateNodeList ORACLE_HOME=$ORACLE_HOME -O "CLUSTER_NODES=
{existing_node,new_node2,new_node3}"

6. On each new node, go to the $ORACLE_HOME directory and run the following command:

./root.sh

7. From the node that you cloned, run Oracle Database Configuration Assistant (Oracle
DBCA) to add Oracle RAC database instances on the new nodes.

Related Topics

• Preparing to Clone Oracle RAC
Use this overview to understand the Oracle RAC cloning procedures.

Chapter 10
Cloning Local Oracle Homes on Linux and UNIX Systems

10-2

Cloning Shared Oracle Homes on Linux and UNIX Systems
Add nodes to Oracle RAC environments by cloning a shared Oracle home in Linux and UNIX
systems.

Complete the following steps to clone Oracle Database with Oracle RAC:

1. Follow the steps in the "Preparing to Clone Oracle RAC" to create a copy of an Oracle
home that you then use to perform the cloning procedure on one or more nodes.

2. On the new node, configure the environment variables ORACLE_HOME and ORACLE_BASE.
Then go to the $ORACLE_HOME/clone/bin directory and run the following command, where
existing_node is the name of the node that you are cloning, new_node2, and new_node3
are the names of the new nodes, Oracle_home_name is the name of the Oracle home, and
the -cfs option indicates the Oracle home is shared:

perl clone.pl -O 'CLUSTER_NODES={existing_node,new_node2,new_node3}'
-O LOCAL_NODE=new_node2 ORACLE_BASE=$ORACLE_BASE ORACLE_HOME=$ORACLE_HOME
 ORACLE_HOME_NAME=Oracle_home_name [-cfs]

Note:

In the preceding command:

• Use the -cfs option for a shared Oracle Database home with Oracle RAC.

• The value for the ORACLE_HOME_NAME parameter must be that of the node you
are cloning.

3. Run the following command on the existing node from the $ORACLE_HOME/oui/bin directory
to update the inventory in the Oracle Database home with Oracle RAC, specified by
Oracle_home, where existing_node is the name of the original node that you are cloning
and new_node2 and new_node3 are the names of the new nodes:

./runInstaller -updateNodeList ORACLE_HOME=$ORACLE_HOME "CLUSTER_NODES=
{existing_node,new_node2,new_node3}"

4. On each new node, go to the $ORACLE_HOME directory and run the following command:

./root.sh

5. From the node that you cloned, run Oracle Database Configuration Assistant (Oracle
DBCA) to add Oracle RAC database instances to the new nodes.

Related Topics

• Preparing to Clone Oracle RAC
Use this overview to understand the Oracle RAC cloning procedures.

Cloning Oracle Homes on Windows Systems
Add nodes to Oracle RAC environments by cloning a shared or local Oracle home in Microsoft
Windows environments.

Chapter 10
Cloning Shared Oracle Homes on Linux and UNIX Systems

10-3

Complete the following steps to clone Oracle Database with Oracle RAC:

1. If you have a local Oracle home, then use the ZIP utility to create an archive of the Oracle
Database home with Oracle RAC on the existing node and copy it to the new node.
Otherwise, proceed to the next step.

Extract the Oracle Database with Oracle RAC home files from the ZIP file on the new node
in the same directory in which the Oracle Database home with Oracle RAC resided on the
existing node. For example, assume that the location of the destination Oracle RAC home
on the new node is %ORACLE_HOME%.

2. On the new node, go to the %ORACLE_HOME%\clone\bin directory and run the following
command, where Oracle_Home is the Oracle Database home, Oracle_Home_Name is the
name of the Oracle Database home, Oracle_Base is the Oracle base directory, user_name
is the name of the Oracle home user (a non-Administrator user) for the Oracle home being
cloned, existing_node is the name of the existing node, and new_node is the name of the
new node:

perl clone.pl ORACLE_HOME=Oracle_Home ORACLE_BASE=Oracle_Base
ORACLE_HOME_NAME=Oracle_Home_Name ORACLE_HOME_USER=user_name
-O 'CLUSTER_NODES={existing_node,new_node}'
-O LOCAL_NODE=new_node

If you have a shared Oracle Database home with Oracle RAC, then append the -cfs
option to the command to indicate that the Oracle home is shared as shown in the
following example:

perl clone.pl ORACLE_HOME=Oracle_Home ORACLE_BASE=Oracle_Base
ORACLE_HOME_NAME=Oracle_Home_Name ORACLE_HOME_USER=user_name
-O 'CLUSTER_NODES={existing_node,new_node}' -O LOCAL_NODE=new_node
[-cfs -noConfig]

Note:

• The ORACLE_HOME_USER is required only if you are cloning a secured Oracle
home.

• Use the -cfs and -noConfig options for a shared Oracle Database home
with Oracle RAC.

• The value for the ORACLE_HOME_NAME parameter must be that of the node you
are cloning. To obtain the ORACLE_HOME_NAME, look in the registry on the node
you cloning for the ORACLE_HOME_NAME parameter key under
HKEY_LOCAL_MACHINE\SOFTWARE\oracle\KEY_OraCRs23ai_home1.

3. On the existing node, from the %ORACLE_HOME%\oui\bin directory run the following
command to update the inventory in the Oracle Database home with Oracle RAC,
specified by Oracle_home, where existing_node is the name of the existing node, and
new_node is the name of the new node:

setup.exe -updateNodeList ORACLE_HOME=Oracle_home "CLUSTER_NODES=
{existing_node,new_node}" LOCAL_NODE=existing_node

Chapter 10
Cloning Oracle Homes on Windows Systems

10-4

4. From the node that you cloned, run Oracle DBCA to add Oracle RAC database instances
to the new nodes.

Chapter 10
Cloning Oracle Homes on Windows Systems

10-5

11
Adding and Deleting Oracle RAC from Nodes
on Linux and Unix Systems

Extend an existing Oracle Real Application Clusters (Oracle RAC) home to other nodes and
instances in the cluster, and delete Oracle RAC from nodes and instances in the cluster.

• About Adding and Deleting Nodes
Adding and deleting nodes is the process of adding or modifying your Oracle Real
Application Clusters database cluster

• Adding Oracle RAC to Nodes with Oracle Grid Infrastructure Installed
To add Oracle Real Application Clusters (Oracle RAC) with Oracle Grid Infrastructure
installed, your procedure depends on the storage you use, and your Oracle home
configuration,

• Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes
Learn how to configure Administrator-Managed Oracle Real Application Clusters (Oracle
RAC) instances.

• Deleting Oracle RAC from a Cluster Node
You can delete Oracle RAC from cluster nodes using this procedure.

About Adding and Deleting Nodes
Adding and deleting nodes is the process of adding or modifying your Oracle Real Application
Clusters database cluster

If your goal is to clone an existing Oracle RAC home to create multiple new Oracle RAC
installations across the cluster, then use the cloning procedures that are described in "Cloning
Oracle RAC to Nodes in a New Cluster".

Note:

• Ensure that you have a current backup of Oracle Cluster Registry (OCR) before
adding or deleting Oracle RAC by running the ocrconfig -showbackup
command.

• The phrase "target node" in the context of configuring Oracle RAC nodes refers
to the node to which you plan to extend the Oracle RAC environment.

Related Topics

• Cloning Oracle RAC to Nodes in a New Cluster
Learn how to clone Oracle Real Application Clusters (Oracle RAC) database homes on
Linux and Unix systems to nodes in a new cluster.

11-1

• Adding and Deleting Oracle RAC from Nodes on Windows Systems
Use these procedures to extend an existing Oracle Real Application Clusters (Oracle RAC)
home on Microsoft Windows to other nodes and instances in the cluster, or delete Oracle
RAC from nodes and instances in the cluster.

Adding Oracle RAC to Nodes with Oracle Grid Infrastructure
Installed

To add Oracle Real Application Clusters (Oracle RAC) with Oracle Grid Infrastructure installed,
your procedure depends on the storage you use, and your Oracle home configuration,

Before beginning the procedure on your system, ensure that your existing nodes have the
correct path to the Grid_home and that the $ORACLE_HOME environment variable is set to the
Oracle RAC home.

Procedure for Local (Non-Shared) Oracle Home

If you are using a local (non-shared) Oracle home, then you must extend the Oracle RAC
database home that is on an existing node (node1 in this procedure) to a target node (node3 in
this procedure).

1. Navigate to the Oracle_home/addnode directory on node1 and run the addnode.sh script.

2. If you want to perform a silent installation, run the addnode.sh script using the following
syntax:

$./addnode.sh -silent "CLUSTER_NEW_NODES={node3}"

3. Run the Oracle_home/root.sh script on node3 as root.

4. Manually copy the tnsnames.ora file from your old node to the newly added node.

$ cd $ORACLE_BASE_HOME/network/admin
$ sftp tnsnames.ora new_node:$ORACLE_BASE_HOME/network/admin/

5. Open the Pluggable Databases (PDBs) on the newly added node using the following
commands in your SQL*Plus session:

SQL> CONNECT / AS SYSDBA
SQL> ALTER PLUGGABLE DATABASE pdb_name OPEN;

Procedure for Shared Oracle Home Using Oracle ACFS

If you have a shared Oracle home that is shared using Oracle Advanced Cluster File System
(Oracle ACFS), then do the following to extend the Oracle Database Oracle home to node3:

1. Start the Oracle ACFS resource on the new node by running the following command as
root from the Grid_home/bin directory:

srvctl start filesystem -device volume_device [-node node_name]

Chapter 11
Adding Oracle RAC to Nodes with Oracle Grid Infrastructure Installed

11-2

Note:

Make sure the Oracle ACFS resources, including Oracle ACFS registry resource
and Oracle ACFS file system resource where the Oracle home is located, are
online on the newly added node.

2. Run the following command as the user who installed Oracle RAC from the
Oracle_home/oui/bin directory on the node you are adding to add the Oracle RAC
database home:

$./runInstaller -attachHome ORACLE_HOME="ORACLE_HOME"
"CLUSTER_NODES={node3}"
 LOCAL_NODE="node3" ORACLE_HOME_NAME="home_name" -cfs

3. Navigate to the Oracle_home/addnode directory on node1 and run the addnode.sh script as
the user who installed Oracle RAC using the following syntax:

$./addnode.sh -noCopy "CLUSTER_NEW_NODES={node3}"

Note:

Use the -noCopy option because the Oracle home on the destination node is
already fully populated with software.

4. Run the Oracle_home/root.sh script on node3 as root.

Procedure for Shared Oracle Home Not Using Oracle ACFS

If you have a shared Oracle home on a shared file system that is not Oracle ACFS, then you
must first create a mount point for the Oracle RAC database home on the target node, mount
and attach the Oracle RAC database home, and update the Oracle Inventory:

1. Run the srvctl config database -db db_name command on an existing node in the
cluster to obtain the mount point information.

2. Run the following command as root on node3 to create the mount point:

mkdir -p mount_point_path

3. Mount the file system that hosts the Oracle RAC database home.

4. Run the following command as the user who installed Oracle RAC from the
Oracle_home/oui/bin directory on the node you are adding to add the Oracle RAC
database home:

$./runInstaller -attachHome ORACLE_HOME="ORACLE_HOME" "CLUSTER_NODES=
 {local_node_name}" LOCAL_NODE="node_name" ORACLE_HOME_NAME="home_name"

5. Update the Oracle Inventory as the user who installed Oracle RAC, as follows:

$./runInstaller -updateNodeList ORACLE_HOME=mount_point_path
"CLUSTER_NODES=
 {node_list}"

Chapter 11
Adding Oracle RAC to Nodes with Oracle Grid Infrastructure Installed

11-3

In the preceding command, node_list refers to a list of all nodes where the Oracle RAC
database home is installed, including the node you are adding.

6. Run the Oracle_home/root.sh script on node3 as root.

You can now add an Oracle RAC database instance to the target node.

draf

Note:

Oracle recommends that you back up the OCR after you complete the node addition
process.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Adding Administrator-Managed Oracle RAC Database Instances
to Target Nodes

Learn how to configure Administrator-Managed Oracle Real Application Clusters (Oracle RAC)
instances.

• About Adding Administrator-Managed Oracle RAC Database Instances
To add Oracle Real Application Clusters (Oracle RAC) database instances, you have
several tools available.

• Using Oracle DBCA in Interactive Mode to Add Database Instances to Target Nodes
To add a database instance to a target node with Oracle DBCA in interactive mode,
perform the steps described here.

• Using Oracle DBCA in Silent Mode to Add Database Instances to Target Nodes
You can use Oracle DBCA in silent mode to add instances to nodes on which you have
extended an Oracle Clusterware home and an Oracle Database home.

About Adding Administrator-Managed Oracle RAC Database Instances
To add Oracle Real Application Clusters (Oracle RAC) database instances, you have several
tools available.

You can use either Oracle Enterprise Manager or Oracle DBCA to add Oracle RAC database
instances to the target nodes.

This section describes using Oracle DBCA to add Oracle RAC database instances.

These tools guide you through the following tasks:

• Creating a new database instance on each target node

• Creating and configuring high availability components

• Creating the Oracle Net configuration for a non-default listener from the Oracle home

• Starting the new instance

• Creating and starting services if you entered services information on the Services
Configuration page

Chapter 11
Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes

11-4

After adding the instances to the target nodes, you should perform any necessary service
configuration procedures, as described in "Workload Management with Dynamic Database
Services".

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

Using Oracle DBCA in Interactive Mode to Add Database Instances to
Target Nodes

To add a database instance to a target node with Oracle DBCA in interactive mode, perform
the steps described here.

1. Ensure that your existing nodes have the $ORACLE_HOME environment variable set to the
Oracle RAC home.

2. Start Oracle DBCA by entering dbca at the system prompt from the Oracle_home/bin
directory.

Oracle DBCA performs certain CVU checks while running. However, you can also run CVU
from the command line to perform various verifications.

Oracle DBCA displays the Welcome page for Oracle RAC. Click Help on any Oracle
DBCA page for additional information.

3. Select Instance Management, click Next, and Oracle DBCA displays the Instance
Management page.

4. Select Add Instance and click Next. Oracle DBCA displays the List of Cluster Databases
page that shows the databases and their current status, such as ACTIVE or INACTIVE.

5. From the List of Cluster Databases page, select the active Oracle RAC database to which
you want to add an instance. Click Next and Oracle DBCA displays the List of Cluster
Database Instances page showing the names of the existing instances for the Oracle RAC
database that you selected.

6. Click Next to add a new instance and Oracle DBCA displays the Adding an Instance page.

7. On the Adding an Instance page, enter the instance name in the field at the top of this
page if the instance name that Oracle DBCA provides does not match your existing
instance naming scheme.

8. Review the information on the Summary dialog and click OK or click Cancel to end the
instance addition operation. Oracle DBCA displays a progress dialog showing Oracle
DBCA performing the instance addition operation.

9. After you terminate your Oracle DBCA session, run the following command to verify the
administrative privileges on the target node and obtain detailed information about these
privileges where node_list consists of the names of the nodes on which you added
database instances:

cluvfy comp admprv -o db_config -d Oracle_home -n node_list [-verbose]

10. Perform any necessary service configuration procedures, as described in "Workload
Management with Dynamic Database Services".

Chapter 11
Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes

11-5

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

Using Oracle DBCA in Silent Mode to Add Database Instances to Target
Nodes

You can use Oracle DBCA in silent mode to add instances to nodes on which you have
extended an Oracle Clusterware home and an Oracle Database home.

Before you run the dbca command, ensure that you have set the ORACLE_HOME environment
variable correctly on the existing nodes. Run Oracle DBCA, supplying values for the variables
using the following syntax:

dbca -silent -addInstance -nodeName node_name -gdbName gdb_name
 [-instanceName instance_name -sysDBAUserName sysdba -sysDBAPassword
 password]

The following table describes the values that you need to supply for each variable.

Table 11-1 Variables in the Oracle DBCA Silent Mode Syntax

Variable Description

node_name The node on which you want to add (or delete) the instance.

gdb_name Global database name.

instance_name Name of the instance. Provide an instance name only if you want to
override the Oracle naming convention for Oracle RAC instance names.

sysdba Name of the Oracle user with SYSDBA privileges.

password Password for the SYSDBA user.

Perform any necessary service configuration procedures, as described in "Workload
Management with Dynamic Database Services".

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

Deleting Oracle RAC from a Cluster Node
You can delete Oracle RAC from cluster nodes using this procedure.

To remove Oracle RAC from cluster nodes, delete the database instance and Oracle RAC
before removing the node from the cluster.

Chapter 11
Deleting Oracle RAC from a Cluster Node

11-6

Note:

If there are no database instances on the node you want to delete, then proceed to
"Removing Oracle RAC".

• Deleting Instances from Oracle RAC Databases
You can use the SRVCTL utility to delete an Oracle RAC database instance.

• Removing Oracle RAC
This procedure removes Oracle RAC from the node that you are deleting from a cluster
and updates the inventories on the remaining nodes.

• Deleting Nodes from A Cluster
Use this procedure to delete nodes from a cluster.

Related Topics

• Removing Oracle RAC
This procedure removes Oracle RAC from the node that you are deleting from a cluster
and updates the inventories on the remaining nodes.

Deleting Instances from Oracle RAC Databases
You can use the SRVCTL utility to delete an Oracle RAC database instance.

Deleting Instances from Administrator-Managed Databases

Note:

Before deleting an instance from an Oracle RAC database using SRVCTL to do the
following:

• If you have services configured, then relocate the services

• Modify the services so that each service can run on one of the remaining
instances

• Ensure that the instance to be removed from an administrator-managed
database is neither a preferred nor an available instance of any service

• Using Oracle DBCA in Interactive Mode to Delete Instances from Nodes
This procedure explains how to use Oracle DBCA in interactive mode to delete instances
from Oracle RAC databases.

• Using Oracle DBCA in Silent Mode to Delete Instances from Nodes
Learn how to use Oracle DBCA in silent mode to delete instances from nodes.

Related Topics

• Removing Oracle RAC
This procedure removes Oracle RAC from the node that you are deleting from a cluster
and updates the inventories on the remaining nodes.

• Administering Services with SRVCTL
Learn how to use SRVCTL to perform service administration on an Oracle Real Application
Clusters (Oracle RAC) database.

Chapter 11
Deleting Oracle RAC from a Cluster Node

11-7

• Using Oracle DBCA in Interactive Mode to Delete Instances from Nodes
This procedure explains how to use Oracle DBCA in interactive mode to delete instances
from Oracle RAC databases.

Using Oracle DBCA in Interactive Mode to Delete Instances from Nodes
This procedure explains how to use Oracle DBCA in interactive mode to delete instances from
Oracle RAC databases.

To delete an instance using Oracle DBCA in interactive mode, perform the following steps:

1. Start Oracle DBCA.

Start Oracle DBCA on a node other than the node that hosts the instance that you want to
delete. The database and the instance that you plan to delete should be running during this
step.

2. On the Oracle DBCA Operations page, select Instance Management and click Next.
Oracle DBCA displays the Instance Management page.

3. On the Oracle DBCA Instance Management page, select the instance to be deleted, select
Delete Instance, and click Next.

4. On the List of Cluster Databases page, select the Oracle RAC database from which to
delete the instance, as follows:

a. On the List of Cluster Database Instances page, Oracle DBCA displays the instances
that are associated with the Oracle RAC database that you selected and the status of
each instance. Select the cluster database from which you will delete the instance.

b. Click OK on the Confirmation dialog to proceed to delete the instance.

Oracle DBCA displays a progress dialog showing that Oracle DBCA is deleting the
instance. During this operation, Oracle DBCA removes the instance and the instance's
Oracle Net configuration.

Click No and exit Oracle DBCA or click Yes to perform another operation. If you click
Yes, then Oracle DBCA displays the Operations page.

5. Verify that the dropped instance's redo thread has been removed by using SQL*Plus on an
existing node to query the GV$LOG view. If the redo thread is not disabled, then disable the
thread. For example:

SQL> ALTER DATABASE DISABLE THREAD 2;

6. Verify that the instance has been removed from OCR by running the following command,
where db_unique_name is the database unique name for your Oracle RAC database:

$ srvctl config database -db db_unique_name

7. If you are deleting more than one node, then repeat these steps to delete the instances
from all the nodes that you are going to delete.

Using Oracle DBCA in Silent Mode to Delete Instances from Nodes
Learn how to use Oracle DBCA in silent mode to delete instances from nodes.

Run the following command, where the variables are the same as those shown in Table 11-1
for the Oracle DBCA command to remove an instance. Provide a node name only if you are

Chapter 11
Deleting Oracle RAC from a Cluster Node

11-8

deleting an instance from a node other than the one on where Oracle DBCA is running as
shown in the following example where password is the password:

dbca -silent -deleteInstance [-nodeName node_name] -gdbName gdb_name
-instanceName instance_name [-sysDBAUserName sysdba -sysDBAPassword password]

At this point, you have accomplished the following:

• Deregistered the selected instance from its associated Oracle Net Services listeners

• Deleted the selected database instance from the instance's configured node

• Removed the Oracle Net configuration

• Deleted the Oracle Flexible Architecture directory structure from the instance's configured
node.

Removing Oracle RAC
This procedure removes Oracle RAC from the node that you are deleting from a cluster and
updates the inventories on the remaining nodes.

1. If there is a listener in the Oracle RAC home on the node you are deleting, then you must
disable and stop it before deleting the Oracle RAC software. Run the following commands
on any node in the cluster, specifying the name of the listener and the name of the node
you are deleting:

$ srvctl disable listener -l listener_name -n name_of_node_to_delete
$ srvctl stop listener -l listener_name -n name_of_node_to_delete

2. Deinstall the Oracle home—only if the Oracle home is not shared—from the node that you
are deleting by running the following command from the Oracle_home\deinstall directory:

deinstall -local

Caution:

If the Oracle home is shared, then do not run this command because it will
remove the shared software. Proceed to the next step instead.

Deleting Nodes from A Cluster
Use this procedure to delete nodes from a cluster.

After you delete the database instance and Oracle RAC, you can delete the node from the
cluster. Do this by running scripts on the node that you want to delete to remove Oracle
Clusterware. Then run scripts on the remaining nodes to update the node list.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Chapter 11
Deleting Oracle RAC from a Cluster Node

11-9

12
Adding and Deleting Oracle RAC from Nodes
on Windows Systems

Use these procedures to extend an existing Oracle Real Application Clusters (Oracle RAC)
home on Microsoft Windows to other nodes and instances in the cluster, or delete Oracle RAC
from nodes and instances in the cluster.

In these topics, the entries for Grid_home refer to the full path name for the Oracle Grid
Infrastructure home, and the entries for Oracle_home refer to substitutes for environment
variables for the Oracle home with Oracle RAC.

If your goal is to clone an existing Oracle RAC home to create multiple new Oracle RAC
installations across the cluster, then use the cloning procedures that are described in "Cloning
Oracle RAC to Nodes in a New Cluster".

Note:

• Ensure that you have a current backup of Oracle Cluster Registry (OCR) before
adding or deleting Oracle RAC by running the ocrconfig -showbackup
command.

• For all of the add node and delete node procedures, temporary directories such
as %TEMP% or C:\Temp should not be shared directories. If your temporary
directories are shared, then set your temporary environment variable, such as
%TEMP%, to a location on a local node. In addition, use a directory path that exists
on all of the nodes.

• Adding Oracle RAC to Nodes with Oracle Grid Infrastructure Installed
To add Oracle Real Application Clusters to Microsoft Windows nodes that are Oracle
Clusterware cluster nodes, review these procedures.

• Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes
Learn about how to use Oracle DBCA to add Oracle RAC database instances.

• Deleting Oracle RAC from a Cluster Node

Adding Oracle RAC to Nodes with Oracle Grid Infrastructure
Installed

To add Oracle Real Application Clusters to Microsoft Windows nodes that are Oracle
Clusterware cluster nodes, review these procedures.

Before beginning these procedures, ensure that your existing nodes have the correct path to
the Grid_home and that the Oracle_home environment variables are set correctly.

12-1

Extending the Oracle RAC Home On an Existing Node

To add Oracle RAC database instances to nodes that already have Oracle Grid Infrastructure
installed, you must extend the Oracle RAC home that is on an existing node (node1 in this
procedure) of the cluster to the target nodes.

1. Navigate to the Oracle_home\addnode directory on node1 and run the addnode.bat script
using the following syntax, where node2 is the name of the node you are adding:

addnode.bat "CLUSTER_NEW_NODES={node2}"

To run this command in silent mode:

addNode.bat -silent "CLUSTER_NEW_NODES={node2}"

For the Oracle home directory you use, if an Oracle home user was specified when the
Oracle Database software was installed, then OUI requires the password for the Oracle
home user. OUI checks the wallet (stored in the OCR) for the user and extracts the
password from there. If the user information is not contained in the wallet, then the
addnode.bat script generates an error unless you specify the -promptPasswd flag on the
command line.

Creating a Mount Point for the Oracle Home On a Shared File System

If you have a shared Oracle home on a shared file system that is not Oracle ACFS, then you
must first create a mount point for the Oracle RAC database home on the target node, mount
and attach the Oracle RAC database home, and update the Oracle Inventory, as follows:

1. Run the srvctl config database -db db_name command on an existing node in the
cluster to obtain the mount point information.

2. Mount the file system that hosts the Oracle RAC database home.

3. Run the following command as the user who installed Oracle RAC from the
Oracle_home\oui\bin directory on the node you are adding to add the Oracle RAC
database home:

setup.exe -attachHome ORACLE_HOME="ORACLE_HOME" "CLUSTER_NODES=
 local_node_name}" LOCAL_NODE="node_name" ORACLE_HOME_NAME="home_name"

4. Update the Oracle Inventory as the user who installed Oracle RAC, as follows:

setup.exe -updateNodeList ORACLE_HOME=mount_point_path
"CLUSTER_NODES={node_list}"

In the preceding command, node_list refers to a list of all nodes where the Oracle RAC
database home is installed, including the node you are adding.

Note:

Oracle recommends that you back up your voting disk and Oracle Cluster Registry
(OCR) files after you complete the node addition process.

Chapter 12
Adding Oracle RAC to Nodes with Oracle Grid Infrastructure Installed

12-2

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes
Learn about how to use Oracle DBCA to add Oracle RAC database instances.

Adding Administrator-Managed Oracle RAC Database Instances
to Target Nodes

Learn about how to use Oracle DBCA to add Oracle RAC database instances.

To add Oracle RAC database instances to the target nodes. you can use either Oracle
Enterprise Manager or Oracle Database Configuration Assistant (Oracle DBCA) . These topics
describe using Oracle DBCA

• About Using Oracle DBCA to Add Oracle RAC Instances
When you use Oracle Database Configuration Assistant (Oracle DBCA) to add Oracle
Real Application Clusters instances to Oracle Clusterware, it helps you to complete more
than only a database deployment.

• Using Oracle DBCA in Interactive Mode to Add Database Instances to Target Nodes
In these procedures, you first use Oracle DBCA to add a database instance to a target
node, and then create a service for Oracle Services for Microsoft Transaction Server
(OraMTS).

• Using Oracle DBCA in Silent Mode to Add Database Instances to Target Nodes
Add instances to nodes on which you have extended an Oracle Clusterware home and an
Oracle Database home.

About Using Oracle DBCA to Add Oracle RAC Instances
When you use Oracle Database Configuration Assistant (Oracle DBCA) to add Oracle Real
Application Clusters instances to Oracle Clusterware, it helps you to complete more than only
a database deployment.

Oracle DBCA guides you through the following tasks:

• Creating a new database instance on each target node

• Creating and configuring high availability components

• Creating the Oracle Net configuration for a non-default listener from the Oracle home

• Starting the new instance

• Creating and starting services if you entered services information on the Services
Configuration page

After adding the instances to the target nodes, you should perform any necessary service
configuration procedures.

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

Chapter 12
Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes

12-3

Using Oracle DBCA in Interactive Mode to Add Database Instances to
Target Nodes

In these procedures, you first use Oracle DBCA to add a database instance to a target node,
and then create a service for Oracle Services for Microsoft Transaction Server (OraMTS).

Adding a Database Instance To Target Nodes

To add a database instance to a target node using Oracle DBCA in interactive mode, perform
the following steps:

1. Ensure that your existing nodes have the Oracle home environment variable set correctly.

2. Start Oracle DBCA by entering dbca at the system prompt from the Oracle_home\bin
directory on an existing node.

Oracle DBCA performs certain CVU checks while running. However, you can also run CVU
from the command line to perform various verifications.

3. On the Database Operations page, select Instance Management, click Next, and Oracle
DBCA displays the Instance Management page.

4. Select Add Instance and click Next. Oracle DBCA displays the List of Cluster Databases
page that shows the databases and their current status, such as ACTIVE or INACTIVE.

5. From the List of Cluster Databases page, select the active Oracle RAC database to which
you want to add an instance. Click Next and Oracle DBCA displays the List of Cluster
Database Instances page showing the names of the existing instances for the Oracle RAC
database that you selected.

6. Click Next to add a new instance and Oracle DBCA displays the Adding an Instance page.

7. On the Adding an Instance page, enter the instance name in the field at the top of this
page if the instance name that Oracle DBCA provides does not match your existing
instance naming scheme. Then select the new node name from the list.

Note:

If you installed the Oracle home with the Oracle Home User option, then Oracle
DBCA prompts you for that password on this page.

8. Review the information on the Summary Page and click Finish to initiate instance addition
operation. Oracle DBCA displays a progress dialog showing Oracle DBCA performing the
instance addition operation.

Creating the OraMTS Service for Microsoft Transaction Server

Oracle Services for Microsoft Transaction Server (OraMTS) permits Oracle Database to be used
as a resource manager in Microsoft application-coordinated transactions. OraMTS acts as a
proxy for Oracle Database to the Microsoft Distributed Transaction Coordinator (MSDTC). As a
result, OraMTS provides client-side connection pooling and allows client components that
leverage Oracle to participate in promotable and distributed transactions. In addition, OraMTS
can operate with Oracle databases running on any operating system, given that the services
themselves are run on Windows.

Chapter 12
Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes

12-4

On releases earlier than Oracle Database 12c, the OraMTS service was created as part of a
software-only installation. With releases after Oracle Database 12c, you must use a
configuration tool to create this service.

To create the OraMTS service after adding a node or performing a software-only installation for
Oracle RAC, complete this procedure:

1. Open a command window.

2. Change directories to %ORACLE_HOME%\bin.

3. Run the OraMTSCtl utility to create the OraMTS Service, where host_name is a list of nodes
on which the service should be created:

C:\..bin> oramtsctl.exe -new -host host_name

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Oracle Services for Microsoft Transaction Server Developer's Guide for Microsoft Windows

Using Oracle DBCA in Silent Mode to Add Database Instances to Target
Nodes

Add instances to nodes on which you have extended an Oracle Clusterware home and an
Oracle Database home.

Use Oracle DBCA in silent mode with the following syntax:

dbca -silent -addInstance -nodeName node_name -gdbName gdb_name
[-instanceName instance_name -sysDBAUserName sysdba -sysDBAPassword password]

Perform any necessary service configuration procedures.

Related Topics

• Service Management Policy
When you use Oracle Clusterware to manage your database, you can configure startup
options for each individual database service when you add the service using the srvctl
add service command with the -policy parameter.

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

Deleting Oracle RAC from a Cluster Node
To remove Oracle Real Application Clusters (Oracle RAC) from a cluster node, you must
delete the database instance and the Oracle RAC software before removing the node from the
cluster.

Chapter 12
Deleting Oracle RAC from a Cluster Node

12-5

Note:

If there are no database instances on the node that you want to delete, then remove
Oracle RAC.

• Deleting Instances from Administrator-Managed Databases
Deleting an administrator-managed database instance involves using Oracle Database
Configuration Assistant (Oracle DBCA) to delete the database instance.

• Using Oracle DBCA in Silent Mode to Delete Instances from Nodes
You can use Oracle DBCA in silent mode to delete a database instance from a node.

• Using Oracle DBCA in Interactive Mode to Delete Instances from Nodes
To delete an Oracle Real Application Clusters (Oracle RAC) instance using Oracle
Database Configuration Assistasnt (Oracle DBCA) in interactive mode, complete this
procedure. /

• Removing Oracle RAC
This procedure removes the Oracle RAC software from the node you are deleting from the
cluster and updates inventories on the remaining nodes.

• Deleting Nodes from the Cluster
After you delete the instance, you can begin the process of deleting the node from the
cluster.

Deleting Instances from Administrator-Managed Databases
Deleting an administrator-managed database instance involves using Oracle Database
Configuration Assistant (Oracle DBCA) to delete the database instance.

Note:

Before deleting an instance from an Oracle RAC database using SRVCTL, do the
following:

• If you have services configured, then relocate the services

• Modify the services so that each service can run on one of the remaining
instances

• Ensure that the instance to be removed from an administrator-managed
database is neither a preferred nor an available instance of any service

Related Topics

• Removing Oracle RAC
This procedure removes the Oracle RAC software from the node you are deleting from the
cluster and updates inventories on the remaining nodes.

• Administering Services with SRVCTL
Learn how to use SRVCTL to perform service administration on an Oracle Real Application
Clusters (Oracle RAC) database.

Chapter 12
Deleting Oracle RAC from a Cluster Node

12-6

Using Oracle DBCA in Silent Mode to Delete Instances from Nodes
You can use Oracle DBCA in silent mode to delete a database instance from a node.

To remove an instance, use the following command syntax. Provide a node name only if you
are deleting an instance from a node other than the one on where Oracle DBCA is running as
shown in the following example where password is the SYSDBA password:

dbca -silent -deleteInstance [-nodeName node_name] -gdbName gdb_name
-instanceName instance_name [-sysDBAUserName sysdba] [-sysDBAPassword password]

The following table describes the values that you need to supply for each variable.

Table 12-1 Variables in the Oracle DBCA Silent Mode Syntax

Variable Description

node_name The node on which you want to add (or delete) the instance.

gdb_name Global database name.

instance_name Name of the instance. Provide an instance name only if you want to
override the Oracle naming convention for Oracle RAC instance names.

sysdba Name of the Oracle user with SYSDBA privileges.

password Password for the SYSDBA user.

At this point, you have accomplished the following:

• Deregistered the selected instance from its associated Oracle Net Services listeners

• Deleted the selected database instance from the instance's configured node

• Removed the Oracle Net configuration

• Deleted the Oracle Flexible Architecture directory structure from the instance's configured
node.

Using Oracle DBCA in Interactive Mode to Delete Instances from Nodes
To delete an Oracle Real Application Clusters (Oracle RAC) instance using Oracle Database
Configuration Assistasnt (Oracle DBCA) in interactive mode, complete this procedure. /

1. Verify there is a current backup of OCR.

Run the ocrconfig -showbackup command to ensure there is a valid backup.

2. Start Oracle DBCA.

Start Oracle DBCA on a node other than the node that hosts the instance that you want to
delete. The database and the instance that you plan to delete should continue to be started
and running during this step.

3. On the Oracle DBCA Operations page, select Instance Management, click Next, and
Oracle DBCA displays the Instance Management page.

4. On the Instance Management page, select Delete Instance, click Next, and Oracle DBCA
displays the List of Cluster Databases page.

5. Select an Oracle RAC database from which to delete an instance. Click Next and Oracle
DBCA displays the List of Cluster Database Instances page. The List of Cluster Database

Chapter 12
Deleting Oracle RAC from a Cluster Node

12-7

Instances page shows the instances that are associated with the Oracle RAC database
that you selected and the status of each instance.

6. On the List of Cluster Databases page, select the Oracle RAC database from which to
delete the instance, as follows:

a. On the List of Cluster Database Instances page, Oracle DBCA displays the instances
that are associated with the Oracle RAC database that you selected and the status of
each instance. Select the cluster database from which you will delete the instance.
Click Finish.

b. Click OK on the Confirmation dialog to proceed to delete the instance.

c. Click OK on the next Confirmation dialog to delete the instance and related Optimal
Flexible Architecture (OFA) directory structure.

Oracle DBCA displays a progress dialog showing that Oracle DBCA is deleting the
instance. During this operation, Oracle DBCA removes the instance and the instance's
Oracle Net configuration.

Click No and exit Oracle DBCA or click Yes to perform another operation. If you click
Yes, then Oracle DBCA displays the Operations page.

7. Verify that the dropped instance's redo thread has been removed using SQL*Plus to query
the V$LOG view from an existing instance. If the redo thread is not disabled, then disable
the thread. For example:

SQL> ALTER DATABASE DISABLE THREAD 2;
8. Verify that the instance has been removed from OCR by running the following command,

where db_unique_name is the name of the database:

srvctl config database -db db_unique_name
9. If you are deleting more than one node, then repeat these steps to delete the instances

from all the nodes that you are going to delete.

Removing Oracle RAC
This procedure removes the Oracle RAC software from the node you are deleting from the
cluster and updates inventories on the remaining nodes.

1. If there is a listener in the Oracle RAC home on the node you are deleting, then you must
disable and stop it before deleting the Oracle RAC software. Run the following commands
on any node in the cluster, specifying the name of the listener and the name of the node
you are deleting:

C:\srvctl disable listener -listener listener_name -node
name_of_node_to_delete
C:\srvctl stop listener -listener listener_name -node
name_of_node_to_delete

2. Deinstall the Oracle home from the node that you are deleting by running the following
command from the Oracle_home\deinstall directory:

deinstall -local

If you have a shared Oracle RAC home, then append the -cfs option to the command
example in this step and provide a complete path location for the cluster file system.

Chapter 12
Deleting Oracle RAC from a Cluster Node

12-8

Deleting Nodes from the Cluster
After you delete the instance, you can begin the process of deleting the node from the cluster.

To delete a node from the cluster, you run scripts on the node that you want to delete to
remove the Oracle Grid Infrastructure installation. You then run scripts on the remaining nodes
to update the node list.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Chapter 12
Deleting Oracle RAC from a Cluster Node

12-9

13
Design and Deployment Techniques

Learn about methods to design and deploy Oracle RAC.

This chapter briefly describes database design and deployment techniques for Oracle Real
Application Clusters (Oracle RAC) environments. It also describes considerations for high
availability and provides general guidelines for various Oracle RAC deployments.

• Deploying Oracle RAC for High Availability
Learn how to deploy Oracle RAC for high availability.

• General Design Considerations for Oracle RAC
Learn about design considerations for Oracle RAC.

• General Database Deployment Topics for Oracle RAC
Learn about various Oracle RAC deployment considerations such as tablespace use,
object creation, distributed transactions, and more.

• Introduction to Blocker Resolver
Blocker Resolver is an Oracle Real Application Clusters (Oracle RAC) environment feature
that autonomously resolves delays and keeps the resources available.

Deploying Oracle RAC for High Availability
Learn how to deploy Oracle RAC for high availability.

Many customers implement Oracle RAC to provide high availability for their Oracle Database
applications. For true high availability, you must make the entire infrastructure of the application
highly available. This requires detailed planning to ensure there are no single points of failure
throughout the infrastructure. Even though Oracle RAC makes your database highly available,
if a critical application becomes unavailable, then your business can be negatively affected. For
example, if you choose to use the Lightweight Directory Access Protocol (LDAP) for
authentication, then you must make the LDAP server highly available. If the database is up but
the users cannot connect to the database because the LDAP server is not accessible, then the
entire system appears to be down to your users.

• About Designing High Availability Systems
For mission critical systems, you must be able to perform failover and recovery, and your
environment must be resilient to all types of failures.

• Best Practices for Deploying Oracle RAC in High Availability Environments
You can improve performance in your Oracle RAC environment by following the best
practices described here.

• Consolidating Multiple Applications in Cluster Databases
Learn about consolidating applications in Oracle RAC databases.

• Scalability of Oracle RAC
Learn about your choices for improving Oracle RAC scalability.

About Designing High Availability Systems
For mission critical systems, you must be able to perform failover and recovery, and your
environment must be resilient to all types of failures.

13-1

For mission critical systems, you must be able to perform failover and recovery, and your
environment must be resilient to all types of failures. To reach these goals, start by defining
service level requirements for your business. The requirements should include definitions of
maximum transaction response time and recovery expectations for failures within the data
center (such as for node failure) or for disaster recovery (if the entire data center fails).
Typically, the service level objective is a target response time for work, regardless of failures.
Determine the recovery time for each redundant component. Even though you may have
hardware components that are running in an active/active mode, do not assume that if one
component fails the other hardware components can remain operational while the faulty
components are being repaired. Also, when components are running in active/passive mode,
perform regular tests to validate the failover time. For example, recovery times for storage
channels can take minutes. Ensure that the outage times are within your business' service
level agreements, and where they are not, work with the hardware vendor to tune the
configuration and settings.

When deploying mission critical systems, the testing should include functional testing,
destructive testing, and performance testing. Destructive testing includes the injection of
various faults in the system to test the recovery and to make sure it satisfies the service level
requirements. Destructive testing also allows the creation of operational procedures for the
production system.

To help you design and implement a mission critical or highly available system, Oracle
provides a range of solutions for every organization regardless of size. Small work groups and
global enterprises alike are able to extend the reach of their critical business applications. With
Oracle and the Internet, applications and their data are now reliably accessible everywhere, at
any time. The Oracle Maximum Availability Architecture (MAA) is the Oracle best practices
blueprint that is based on proven Oracle high availability technologies and recommendations.
The goal of the MAA is to remove the complexity in designing an optimal high availability
architecture.

Related Topics

• Oracle Maximum Availability Architecture (MAA)

Best Practices for Deploying Oracle RAC in High Availability Environments
You can improve performance in your Oracle RAC environment by following the best practices
described here.

Applications can take advantage of many Oracle Database, Oracle Clusterware, and Oracle
RAC features and capabilities to minimize or mask any failure in the Oracle RAC environment.
For example, you can:

• Remove TCP/IP timeout waits by using the VIP address to connect to the database.

• Create detailed operational procedures and ensure you have the appropriate support
contracts in place to match defined service levels for all components in the infrastructure.

• Take advantage of the Oracle RAC Automatic Workload Management features such as
connect time failover, Fast Connection Failover, Fast Application Notification, and the Load
Balancing Advisory.

• Place voting disks on separate volume groups to mitigate outages due to slow I/O
throughput. To remain functional after the failure of x voting devices, configure 2x + 1
mirrors.

• Place OCR with I/O service times in the order of 2 milliseconds (ms) or less.

• Tune database recovery using the FAST_START_MTTR_TARGET initialization parameter.

• Use Oracle Automatic Storage Management (Oracle ASM) to manage database storage.

Chapter 13
Deploying Oracle RAC for High Availability

13-2

http://www.oracle.com/au/products/database/maa-096107.html

• Ensure that strong change control procedures are in place.

• Check the surrounding infrastructure for high availability and resiliency, such as LDAP, NIS,
and DNS. These entities affect the availability of your Oracle RAC database. If possible,
perform a local backup procedure routinely.

• Use Oracle Enterprise Manager to administer your entire Oracle RAC environment, not
only the Oracle RAC database. Use Oracle Enterprise Manager to create and modify
services, and to start and stop the cluster database instances and the cluster database.

• Use Recovery Manager (RMAN) to back up, restore, and recover data files, control files,
server parameter files (SPFILEs) and archived redo log files. You can use RMAN with a
media manager to back up files to external storage. You can also configure parallelism
when backing up or recovering Oracle RAC databases. In Oracle RAC, RMAN channels
can be dynamically allocated across all of the Oracle RAC instances. Channel failover
enables failed operations on one node to continue on another node. You can start RMAN
from Oracle Enterprise Manager Backup Manager or from the command line.

• If you use sequence numbers, then always use CACHE with the NOORDER option for optimal
performance in sequence number generation. With the CACHE option, however, you may
have gaps in the sequence numbers. If your environment cannot tolerate sequence
number gaps, then use the NOCACHE option or consider pre-generating the sequence
numbers. If your application requires sequence number ordering but can tolerate gaps,
then use CACHE and ORDER to cache and order sequence numbers in Oracle RAC. If your
application requires ordered sequence numbers without gaps, then use NOCACHE and
ORDER. The NOCACHE and ORDER combination has the most negative effect on performance
compared to other caching and ordering combinations.

Note:

If your environment cannot tolerate sequence number gaps, then consider pre-
generating the sequence numbers or use the ORDER and CACHE options.

Starting with Oracle Database 18c, you can use scalable sequences to provide better data
load scalability instead of configuring a very large sequence cache. Scalable sequences
improve the performance of concurrent data load operations, especially when the
sequence values are used for populating primary key columns of tables.

• If you use indexes, then consider alternatives, such as reverse key indexes to optimize
index performance. Reverse key indexes are especially helpful if you have frequent inserts
to one side of an index, such as indexes that are based on insert date.

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

• Configuring Recovery Manager and Archiving
You can configure Oracle Recovery Manager (Oracle RMAN) to support your Oracle RAC
environment.

• Making a Sequence Scalable

Consolidating Multiple Applications in Cluster Databases
Learn about consolidating applications in Oracle RAC databases.

Chapter 13
Deploying Oracle RAC for High Availability

13-3

Many people want to consolidate multiple databases in a single cluster. Oracle Clusterware
and Oracle RAC support both types of consolidation.

Creating a cluster with a single pool of storage that is managed by Oracle ASM provides the
infrastructure to manage multiple databases whether they are single-instance databases or
Oracle RAC databases.

• Managing Capacity During Consolidation
Learn how to manage capacity during consolidation.

• Managing the Global Cache Service Processes During Consolidation
Learn how to manage the global cache services processes during consolidation.

• Using Oracle Database Cloud for Consolidation
A database cloud is a set of databases integrated by the Global Data Services framework
into a single virtual server that offers one or more global services while ensuring high
performance, availability, and optimal use of resources.

Managing Capacity During Consolidation
Learn how to manage capacity during consolidation.

With Oracle RAC databases, you can adjust the number of instances, and which nodes run
instances within a given database based, on your workload requirements. Features such as
cluster-managed services enable you to manage multiple workloads on a single database or
across multiple databases.

It is important to properly manage the capacity in the cluster when adding work. The processes
that manage the cluster,including processes both from Oracle Clusterware and the database,
must be able to obtain CPU resources in a timely fashion and must be given higher priority in
the system. You can use cluster configuration policies to manage resources at the cluster level.

Managing the Global Cache Service Processes During Consolidation
Learn how to manage the global cache services processes during consolidation.

Oracle recommends that the number of real time Global Cache Service Processes (LMSn) on
a server is less than or equal to the number of processors. (Note that this is the number of
recognized CPUs that includes cores. For example, a dual-core CPU is considered to be two
CPUs.) It is important that you load test your system when adding instances on a node to
ensure that you have enough capacity to support the workload.

If you are consolidating many small databases into a cluster, then you may want to reduce the
number of LMSn created by the Oracle RAC instance. By default, Oracle Database calculates
the number of processes based on the number of CPUs it finds on the server. This calculation
may result in more LMSn processes than is needed for the Oracle RAC instance. One LMS
process may be sufficient for up to 4 CPUs.To reduce the number of LMSn processes, set the
GCS_SERVER_PROCESSES initialization parameter minimally to a value of 1. Add a process for
every four CPUs needed by the application. In general, it is better to have few busy LMSn
processes. Oracle Database calculates the number of processes when the instance is started,
and you must restart the instance to change the value.

Using Oracle Database Cloud for Consolidation
A database cloud is a set of databases integrated by the Global Data Services framework into
a single virtual server that offers one or more global services while ensuring high performance,
availability, and optimal use of resources.

Chapter 13
Deploying Oracle RAC for High Availability

13-4

Global Data Services manages these virtualized resources with minimum administration
overhead, and allows the database cloud to quickly scale to handle additional client requests.
The databases that constitute a cloud can be globally distributed, and clients can connect to
the database cloud by specifying only a service name, without needing to know anything about
the components and topology of the cloud.

A database cloud can be comprised of multiple database pools. A database pool is a set of
databases within a database cloud that provide a unique set of global services and belong to a
certain administrative domain. Partitioning of cloud databases into multiple pools simplifies
service management and provides higher security by allowing each pool to be administered by
a different administrator. A database cloud can span multiple geographic regions. A region is a
logical boundary that contains database clients and servers that are considered to be close to
each other. Usually a region corresponds to a data center, but multiple data centers can be in
the same region if the network latencies between them satisfy the service-level agreements of
the applications accessing these data centers.

Global services enable you to integrate locally and globally distributed, loosely coupled,
heterogeneous databases into a scalable and highly available private database cloud. This
database cloud can be shared by clients around the globe. Using a private database cloud
provides optimal utilization of available resources and simplifies the provisioning of database
services.

Related Topics

• Oracle Database Global Data Services Concepts and Administration Guide

Scalability of Oracle RAC
Learn about your choices for improving Oracle RAC scalability.

Oracle RAC provides concurrent, transactionally consistent access to a single copy of your
data from multiple systems. It provides scalability beyond the capacity of a single server. If your
application scales transparently on symmetric multiprocessing (SMP) servers, then the
application should scale well on Oracle RAC without making application code changes.

Traditionally, when a database server runs out of capacity, it is replaced with a new, larger
server. As servers grow in capacity, they become more expensive. However, for Oracle RAC
databases, you have alternatives for increasing the capacity:

• You can migrate applications that traditionally run on large SMP servers to run on clusters
of small servers.

• You can maintain the investment in the current hardware and add a new server to the
cluster (or create or add a new cluster) to increase the capacity.

Adding servers to a cluster with Oracle Clusterware and Oracle RAC does not require an
outage. As soon as the new instance is started, the application can take advantage of the extra
capacity.

All servers in the cluster must run the same operating system and same version of Oracle
Database but the servers do not have to have the same capacity. With Oracle RAC, you can
build a cluster that fits your needs, whether the cluster is made up of servers where each
server is a two-CPU commodity server or clusters where the servers have 32 or 64 CPUs in
each server. The Oracle parallel processing feature allows a single SQL statement to be
divided up into multiple processes, where each process completes a subset of work. In an
Oracle RAC environment, you can define the parallel processes to run only on the instance
where the user is connected or to run across multiple instances in the cluster.

Chapter 13
Deploying Oracle RAC for High Availability

13-5

Related Topics

• Cloning Oracle RAC to Nodes in a New Cluster
Learn how to clone Oracle Real Application Clusters (Oracle RAC) database homes on
Linux and Unix systems to nodes in a new cluster.

• Using Cloning to Extend Oracle RAC to Nodes in the Same Cluster
Learn how to use cloning to extend Oracle RAC nodes within a cluster.

• Adding and Deleting Oracle RAC from Nodes on Linux and Unix Systems
Extend an existing Oracle Real Application Clusters (Oracle RAC) home to other nodes
and instances in the cluster, and delete Oracle RAC from nodes and instances in the
cluster.

• Adding and Deleting Oracle RAC from Nodes on Windows Systems
Use these procedures to extend an existing Oracle Real Application Clusters (Oracle RAC)
home on Microsoft Windows to other nodes and instances in the cluster, or delete Oracle
RAC from nodes and instances in the cluster.

General Design Considerations for Oracle RAC
Learn about design considerations for Oracle RAC.

This section briefly describes database design and deployment techniques for Oracle RAC
environments. It also describes considerations for high availability and provides general
guidelines for various Oracle RAC deployments.

Consider performing the following steps during the design and development of applications
that you are deploying on an Oracle RAC database:

1. Tune the design and the application

2. Tune the memory and I/O

3. Tune contention

4. Tune the operating system

Note:

If an application does not scale on an SMP system, then moving the application to an
Oracle RAC database cannot improve performance.

Consider using hash partitioning for insert-intensive online transaction processing (OLTP)
applications. Hash partitioning:

• Reduces contention on concurrent inserts into a single database structure

• Affects sequence-based indexes when indexes are locally partitioned with a table and
tables are partitioned on sequence-based keys

• Is transparent to the application

If you use hash partitioning for tables and indexes for OLTP environments, then you can
greatly improve performance in your Oracle RAC database. Note that you cannot use index
range scans on an index with hash partitioning.

Chapter 13
General Design Considerations for Oracle RAC

13-6

General Database Deployment Topics for Oracle RAC
Learn about various Oracle RAC deployment considerations such as tablespace use, object
creation, distributed transactions, and more.

This section describes considerations when deploying Oracle RAC databases. Oracle RAC
database performance is not compromised if you do not employ these techniques. If you have
an effective noncluster design, then your application will run well on Oracle RAC.

• Tablespace Use in Oracle RAC
Learn how to optimize tablespace use in Oracle RAC.

• Object Creation and Performance in Oracle RAC
Learn about object creation and performance in Oracle RAC.

• Node Addition and Deletion and the SYSAUX Tablespace in Oracle RAC
Learn how adding and deleting nodes affects the SYSAUX tablespace in Oracle RAC.

• Distributed Transactions and Oracle RAC
Learn about distributed transactions in Oracle RAC.

• Deploying OLTP Applications in Oracle RAC
Learn about deploying OTLP applications in Oracle RAC.

• Flexible Implementation with Cache Fusion
Learn about flexible workload implementation with cache fusion in Oracle RAC.

• Deploying Data Warehouse Applications in Oracle RAC
Learn how to deploy data warehouse applications in Oracle RAC

• Data Security Considerations in Oracle RAC
Learn about transparent data encryption and Microsoft Windows firewall considerations for
Oracle RAC data security.

Tablespace Use in Oracle RAC
Learn how to optimize tablespace use in Oracle RAC.

In addition to using locally managed tablespaces, you can further simplify space administration
by using automatic segment space management (ASSM) and automatic undo management.

ASSM distributes instance workloads among each instance's subset of blocks for inserts. This
improves Oracle RAC performance because it minimizes block transfers. To deploy automatic
undo management in an Oracle RAC environment, each instance must have its own undo
tablespace.

Object Creation and Performance in Oracle RAC
Learn about object creation and performance in Oracle RAC.

As a general rule, only use DDL statements for maintenance tasks and avoid running DDL
statements during peak system operation periods. In most systems, the amount of new object
creation and other DDL statements should be limited. As in noncluster Oracle databases,
excessive object creation and deletion can increase performance overhead.

Node Addition and Deletion and the SYSAUX Tablespace in Oracle RAC
Learn how adding and deleting nodes affects the SYSAUX tablespace in Oracle RAC.

Chapter 13
General Database Deployment Topics for Oracle RAC

13-7

If you add nodes to your Oracle RAC database environment, then you may need to increase
the size of the SYSAUX tablespace. Conversely, if you remove nodes from your cluster
database, then you may be able to reduce the size of your SYSAUX tablespace.

See Also:

Your platform-specific Oracle RAC installation guide for guidelines about sizing the
SYSAUX tablespace for multiple instances

Distributed Transactions and Oracle RAC
Learn about distributed transactions in Oracle RAC.

If you are running XA Transactions in Oracle RAC environments and the performance is poor,
then direct all of the branches of a tightly coupled distributed transaction to the same instance
by creating multiple Oracle Distributed Transaction Processing (DTP) services, with one or
more on each Oracle RAC instance.

Each DTP service is a singleton service that is available on one and only one Oracle RAC
instance. All access to the database server for distributed transaction processing must be done
by way of the DTP services. Ensure that all of the branches of a single global distributed
transaction use the same DTP service. In other words, a network connection descriptor, such
as a TNS name, a JDBC URL, and so on, must use a DTP service to support distributed
transaction processing.

Related Topics

• Distributed Transaction Processing in Oracle RAC
Learn how Oracle Real Application Clusters (Oracle RAC) supports global (XA)
transactions and DTP processing

• Oracle Database Development Guide

Deploying OLTP Applications in Oracle RAC
Learn about deploying OTLP applications in Oracle RAC.

Cache Fusion makes Oracle RAC databases the optimal deployment servers for online
transaction processing (OLTP) applications. This is because these types of applications
require:

• High availability if there are failures

• Scalability to accommodate increased system demands

• Load balancing according to demand fluctuations

The high availability features of Oracle Database and Oracle RAC can re-distribute and load
balance workloads to remaining instances without interrupting processing. Oracle RAC also
provides excellent scalability so that if you add or replace a node, then Oracle Database
updates resources and re-distributes processing loads.

Flexible Implementation with Cache Fusion
Learn about flexible workload implementation with cache fusion in Oracle RAC.

Chapter 13
General Database Deployment Topics for Oracle RAC

13-8

To accommodate the frequently changing workloads of online transaction processing systems,
Oracle RAC remains flexible and dynamic despite changes in system load and system
availability. Oracle RAC addresses a wide range of service levels that, for example, fluctuate
due to:

• Varying user demands

• Peak scalability issues like trading storms (bursts of high volumes of transactions)

• Varying availability of system resources

Deploying Data Warehouse Applications in Oracle RAC
Learn how to deploy data warehouse applications in Oracle RAC

This section discusses how to deploy data warehouse systems in Oracle RAC environments
by briefly describing the data warehouse features available in shared disk architectures.

• Parallelism for Data Warehouse Applications on Oracle RAC
Learn about parallelism for data warehouse applications in Oracle RAC.

• Parallel Processing in Data Warehouse Systems and Oracle RAC
Use parallel processing to improve data warehouse performance in Oracle RAC.

Parallelism for Data Warehouse Applications on Oracle RAC
Learn about parallelism for data warehouse applications in Oracle RAC.

Oracle RAC is ideal for data warehouse applications because it augments the noncluster
benefits of Oracle Database. Oracle RAC does this by maximizing the processing available on
all of the nodes that belong to an Oracle RAC database to providespeed-up for data
warehouse systems.

The query optimizer considers parallel processing when determining the optimal processing
plans. The default cost model for the query optimizer is CPU+I/O and the cost unit is time. In
Oracle RAC, the query optimizer dynamically computes intelligent defaults for parallelism
based on the number of processors in the nodes of the cluster. An evaluation of the costs of
alternative access paths, table scans versus indexed access, for example, takes into account
the degree of parallelism available for the operation. This results in Oracle Database selecting
the processing plans that are optimized for your Oracle RAC configuration.

Parallel Processing in Data Warehouse Systems and Oracle RAC
Use parallel processing to improve data warehouse performance in Oracle RAC.

Parallel processing uses multiple processes to run SQL statements on one or more CPUs and
is available on both noncluster Oracle databases and Oracle RAC databases.

Oracle RAC takes full advantage of parallel processing by distributing parallel processing
across all available instances. The number of processes that can participate in parallel
operations depends on the degree of parallelism assigned to each table or index.

Related Topics

• Oracle Database Performance Tuning Guide

• Oracle Database Concepts

Chapter 13
General Database Deployment Topics for Oracle RAC

13-9

Data Security Considerations in Oracle RAC
Learn about transparent data encryption and Microsoft Windows firewall considerations for
Oracle RAC data security.

• Transparent Data Encryption and Keystores
Learn about transparent data encryption and keystores in Oracle RAC.

• Windows Firewall Considerations
Learn about Microsoft Windows firewall considerations.

• Securely Run ONS Clients Using Wallets
You can configure and use SSL certificates to set up authentication between the ONS
server in the database tier and the notification client in the middle tier.

Transparent Data Encryption and Keystores
Learn about transparent data encryption and keystores in Oracle RAC.

Oracle Database enables Oracle RAC nodes to share the keystore (wallet). This eliminates the
need to manually copy and synchronize the keystore across all nodes. Oracle recommends
that you create the keystore on a shared file system. This allows all instances to access the
same shared keystore.

Oracle RAC uses keystores in the following ways:

1. Any keystore operation, such as opening or closing the keystore, performed on any one
Oracle RAC instance is applicable for all other Oracle RAC instances. This means that
when you open and close the keystore for one instance, then it opens and closes the
keystore for all Oracle RAC instances.

Starting with Oracle Database 23ai, the parameter ENCRYPTION_WALLET_LOCATION is
desupported.
To store and retrieve the TDE wallet, use the WALLET_ROOT structure (introduced with
Oracle Database 18c).

2. A master key rekey performed on one instance is applicable for all instances. When a new
Oracle RAC node comes up, it is aware of the current keystore open or close status.

3. Do not issue any keystore ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN or CLOSE
SQL statements while setting up or changing the master key.

Oracle does not support the use of individual TDE wallets for each Oracle RAC node. Instead,
use shared wallets for TDE in the Oracle RAC environment. This enables all of the instances to
access the same shared software keystore.

Related Topics

• Oracle Database Advanced Security Guide

Windows Firewall Considerations
Learn about Microsoft Windows firewall considerations.

By default, all installations of Windows Server 2003 Service Pack 1 and higher enable the
Windows Firewall to block virtually all TCP network ports to incoming connections. As a result,
any Oracle products that listen for incoming connections on a TCP port will not receive any of
those connection requests, and the clients making those connections will report errors.

Chapter 13
General Database Deployment Topics for Oracle RAC

13-10

Depending upon which Oracle products you install and how they are used, you may need to
perform additional Windows post-installation configuration tasks so that the Firewall products
are functional on Windows Server 2003.

Securely Run ONS Clients Using Wallets
You can configure and use SSL certificates to set up authentication between the ONS server in
the database tier and the notification client in the middle tier.

JDBC or Oracle Universal Connection Pools, and other Oracle RAC features, such as Fast
Connection Failover, subscribe to notifications from the Oracle Notification Service (ONS)
running on Oracle RAC nodes. These connections are not usually authenticated.

1. Starting with Oracle Database 18c, a default wallet is created during the installation of
Oracle Grid Infrastructure.

2. If you are running a client-side ONS daemon on the middle tier, then there are two possible
configurations:

• ONS started from OPMN (as in OracleAS 10.1.3.x), which uses opmn.xml for its
configuration.

• ONS started standalone (as when using ONSCTL), which uses ons.config for its
configuration.

For the first configuration, refer to the OPMN Administrator's Guide for the Oracle
Application Server release. This involves modifying the opmn.xml file to specify the wallet
location.

For the second configuration, the client-side ONS daemon can, potentially, run on different
servers. Copy the wallet from step 1 to those client-side servers and specify the path on
that client-side server in either the ons.config file or in the opmn.xml file.

3. If you are running a remote ONS configuration without a client-side ONS daemon, then
configure the client-side server.

a. Export the ONS resource to the client cluster.

Use a command similar to the following, where cluster_name is the name of the
remote cluster, and filename is the name of the file to which the credentials data will be
written.

$ srvctl export ons -clientcluster cluster_name -clientdata filename

b. Specify the path on the client-side server.

Modify either the ons.config file or the opmn.xml file to point to the location of the
copied file.

Related Topics

• Overview of ONS Configuration File

Related Topics

• Remote Configuration of ONS

Related Topics

• Client Side ONS Daemon Configuration

Chapter 13
General Database Deployment Topics for Oracle RAC

13-11

Introduction to Blocker Resolver
Blocker Resolver is an Oracle Real Application Clusters (Oracle RAC) environment feature that
autonomously resolves delays and keeps the resources available.

Enabled by default, Blocker Resolver:

• Reliably detects database delays and deadlocks

• Autonomously resolves database delays and deadlocks

• Logs all detections and resolutions

• Provides SQL interface to configure sensitivity (Normal/High) and trace file sizes

A database delays when a session blocks a chain of one or more sessions. The blocking
session holds a resource such as a lock or latch that prevents the blocked sessions from
progressing. The chain of sessions has a root or a final blocker session, which blocks all the
other sessions in the chain. Blocker Resolver resolves these issues autonomously by detecting
and resolving the delays.

• Blocker Resolver Architecture
Blocker Resolver autonomously runs as a DIA0 task within the database.

• Optional Configuration for Blocker Resolver
You can adjust the sensitivity, and control the size and number of the log files used by
Blocker Resolver.

• Blocker Resolver Diagnostics and Logging
Blocker Resolver autonomously resolves delays and continuously logs the resolutions in
the database alert logs and the diagnostics in the trace files.

Blocker Resolver Architecture
Blocker Resolver autonomously runs as a DIA0 task within the database.

Blocker Resolver works in the following three phases:

• Detect: In this phase, Blocker Resolver collects the data on all the nodes and detects the
sessions that are waiting for the resources held by another session.

• Analyze: In this phase, Blocker Resolver analyzes the sessions detected in the Detect
phase to determine if the sessions are part of a potential delay. If the sessions are
suspected as delayed, Blocker Resolver then waits for a certain threshold time period to
ensure that the sessions are delayed.

• Verify: In this phase, after the threshold time period is up, Blocker Resolver verifies that
the sessions are delayed and selects a session that's causing the delay.

After selecting the session that's causing the delay, Blocker Resolver applies resolution
methods on that session. If the chain of sessions or the delay resolves automatically, then
Blocker Resolver does not apply delay resolution methods. However, if the delay does not
resolve by itself, then Blocker Resolver resolves the delay by terminating the session that's
causing the delay. If terminating the session fails, then Blocker Resolver terminates the
process of the session. This entire process is autonomous and does not block resources for a
long period and does not affect the performance.

For example, if a high rank session is included in the chain of delayed sessions, then Blocker
Resolver expedites the termination of the session that's causing the delay. Termination of the

Chapter 13
Introduction to Blocker Resolver

13-12

session that's causing the delay prevents the high rank session from waiting too long and helps
to maintain performance objective of the high rank session.

Optional Configuration for Blocker Resolver
You can adjust the sensitivity, and control the size and number of the log files used by Blocker
Resolver.

Note:

The DBMS_HANG_MANAGER package is deprecated in Oracle Database 23ai. Use
DBMS_BLOCKER_RESOLVER instead. The DBMS_HANG_MANAGER package provides a
method of changing some configuration parameters and constraints to address
session issues. This package is being replaced with DBMS_BLOCKER_RESOLVER.
DBMS_HANG_MANAGER can be removed in a future release.

Sensitivity

If Blocker Resolver detects a delay, then Blocker Resolver waits for a certain threshold time
period to ensure that the sessions are delayed. Change threshold time period by using
DBMS_BLOCKER_RESOLVER to set the sensitivity parameter to either Normal or High. If the
sensitivity parameter is set to Normal, then Blocker Resolver waits for the default time
period. However, if the sensitivity is set to High, then the time period is reduced by 50%.

By default, the sensitivity parameter is set to Normal. To set Blocker Resolver sensitivity, run
the following commands in SQL*Plus as SYS user:

• To set the sensitivity parameter to Normal:

exec dbms_blocker_resolver.set(dbms_blocker_resolver.sensitivity,
dbms_blocker_resolver.sensitivity_normal);

• To set the sensitivity parameter to High:

exec dbms_blocker_resolver.set(dbms_blocker_resolver.sensitivity,
dbms_blocker_resolver.sensitivity_high);

Size of the Trace Log File

The Blocker Resolver logs detailed diagnostics of the delays in the trace files with _base_ in
the file name. Change the size of the trace files in bytes with the base_file_size_limit
parameter. Run the following command in SQL*Plus, for example, to set the trace file size limit
to 100 MB:

exec dbms_blocker_resolver.set(dbms_blocker_resolver.base_file_size_limit,
104857600);

Chapter 13
Introduction to Blocker Resolver

13-13

Number of Trace Log Files

The base Blocker Resolver trace files are part of a trace file set. Change the number of trace
files in trace file set with the base_file_set_count parameter. Run the following command in
SQL*Plus, for example, to set the number of trace files in trace file set to 6:

exec dbms_blocker_resolver.set(dbms_blocker_resolver.base_file_set_count,6);

By default, base_file_set_count parameter is set to 5.

Blocker Resolver Diagnostics and Logging
Blocker Resolver autonomously resolves delays and continuously logs the resolutions in the
database alert logs and the diagnostics in the trace files.

Blocker Resolver logs the resolutions in the database alert logs as Automatic Diagnostic
Repository (ADR) incidents with incident code ORA–32701.

You also get detailed diagnostics about the delay detection in the trace files. Trace files and
alert logs have file names starting with database instance_dia0_.

• The trace files are stored in the $ ADR_BASE/diag/rdbms/database name/
database instance/incident/incdir_xxxxxx directory

• The alert logs are stored in the $ ADR_BASE/diag/rdbms/database name/database
instance/trace directory

Example 13-1 Blocker Resolver Trace File for a Local Instance

This example shows an example of the output you see for Blocker Resolver for the local
database instance

Trace Log File .../oracle/log/diag/rdbms/hm1/hm11/incident/incdir_111/
hm11_dia0_11111_i111.trc
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production
...
*** 2016-07-16T12:39:02.715475-07:00
HM: Hang Statistics - only statistics with non-zero values are listed

 current number of active sessions 3
 current number of hung sessions 1
 instance health (in terms of hung sessions) 66.67%
 number of cluster-wide active sessions 9
 number of cluster-wide hung sessions 5
 cluster health (in terms of hung sessions) 44.45%

*** 2016-07-16T12:39:02.715681-07:00
Resolvable Hangs in the System
 Root Chain Total Hang
 Hang Hang Inst Root #hung #hung Hang Hang Resolution
 ID Type Status Num Sess Sess Sess Conf Span Action
 ----- ---- -------- ---- ----- ----- ----- ------ ------ -------------------
 1 HANG RSLNPEND 3 44 3 5 HIGH GLOBAL Terminate Process
 Hang Resolution Reason: Although hangs of this root type are typically
 self-resolving, the previously ignored hang was automatically resolved.

Chapter 13
Introduction to Blocker Resolver

13-14

Example 13-2 Error Message in the Alert Log Indicating a Delayed Session

This example shows an example of a Blocker Resolver alert log on the primary instance

2016-07-16T12:39:02.616573-07:00
Errors in file .../oracle/log/diag/rdbms/hm1/hm1/trace/hm1_dia0_i1111.trc
(incident=1111):
ORA-32701: Possible hangs up to hang ID=1 detected
Incident details in: .../oracle/log/diag/rdbms/hm1/hm1/incident/incdir_1111/
hm1_dia0_11111_i1111.trc
2016-07-16T12:39:02.674061-07:00
DIA0 requesting termination of session sid:44 with serial # 23456
(ospid:34569) on instance 3
 due to a GLOBAL, HIGH confidence hang with ID=1.
 Hang Resolution Reason: Although hangs of this root type are typically
 self-resolving, the previously ignored hang was automatically resolved.
DIA0: Examine the alert log on instance 3 for session termination status of
hang with ID=1.

Example 13-3 Error Message in the Alert Log Showing a Session Delay Resolved by
Blocker Resolver

This example shows an example of a Blocker Resolver alert log on the local instance for
resolved delays

2016-07-16T12:39:02.707822-07:00
Errors in file .../oracle/log/diag/rdbms/hm1/hm11/trace/hm11_dia0_11111.trc
(incident=169):
ORA-32701: Possible hangs up to hang ID=1 detected
Incident details in: .../oracle/log/diag/rdbms/hm1/hm11/incident/incdir_169/
hm11_dia0_30676_i169.trc
2016-07-16T12:39:05.086593-07:00
DIA0 terminating blocker (ospid: 30872 sid: 44 ser#: 23456) of hang with ID =
1
 requested by master DIA0 process on instance 1
 Hang Resolution Reason: Although hangs of this root type are typically
 self-resolving, the previously ignored hang was automatically resolved.
 by terminating session sid:44 with serial # 23456 (ospid:34569)
...
DIA0 successfully terminated session sid:44 with serial # 23456 (ospid:34569)
with status 0.

Chapter 13
Introduction to Blocker Resolver

13-15

14
Monitoring Performance

Learn how to monitor and tune the performance of your Oracle Real Application Clusters
(Oracle RAC) database.

• Monitoring and Tuning Oracle RAC Databases
Learn about monitoring and tuning Oracle Real Application Clusters (Oracle RAC)
databases, and about how you can use the Database Reliability Framework to assist you
in these tasks.

• Verifying the Interconnect Settings for Oracle RAC
To verify the interconnect settings for Oracle Real Application Clusters (Oracle RAC), you
can use SQL statements.

• Influencing Interconnect Processing
After your interconnect is operative, you cannot significantly influence its performance.
However, you can influence an interconnect protocol's efficiency by adjusting the
interprocess communication (IPC) buffer sizes.

• Performance Views in Oracle RAC
To obtain performance information about your Oracle Real Application Clusters (Oracle
RAC) database, you can query either instance-specific views, or dynamic performance
views for the entire cluster.

• Creating Oracle RAC Data Dictionary Views with CATCLUST.SQL
If you did not create your Oracle RAC database with Oracle DBCA, then you must run the
CATCLUST.SQL script to create views and tables related to Oracle RAC.

• Oracle RAC Performance Statistics
Oracle Real Application Clusters (Oracle RAC) statistics appear either as message request
counters, or as timed statistics.

• Automatic Workload Repository in Oracle RAC Environments
You can use Automatic Workload Repository to monitor performance statistics related to
Oracle RAC databases.

• Active Session History Reports for Oracle RAC
Learn about the ways that you can check the status of your Oracle Real Application
Clusters (Oracle RAC) database by using Active Session History (ASH) reports.

• Monitoring Oracle RAC Statistics and Wait Events
Learn about wait events and statistics specific to Oracle RAC and how to interpret them
when assessing performance data generated by the Automatic Workload Repository
(AWR), Statspack, or by ad-hoc queries of the dynamic performance views.

Monitoring and Tuning Oracle RAC Databases
Learn about monitoring and tuning Oracle Real Application Clusters (Oracle RAC) databases,
and about how you can use the Database Reliability Framework to assist you in these tasks.

• Overview of Monitoring Oracle RAC and Oracle Clusterware
Learn about the monitoring capabilities of Oracle Enterprise Manager, including the Cluster
Database Homepage, the Interconnects page, and the Cluster Database Performance
page.

14-1

• Tuning Oracle RAC Databases
All of the noncluster tuning practices for Oracle Database also apply to Oracle Real
Application Clusters (Oracle RAC) databases.

• Database Reliability Framework
The Database Reliability Framework (DRF) is a proactive and automatic monitoring and
correction framework for Oracle Real Application Clusters (Oracle RAC) databases.

Overview of Monitoring Oracle RAC and Oracle Clusterware
Learn about the monitoring capabilities of Oracle Enterprise Manager, including the Cluster
Database Homepage, the Interconnects page, and the Cluster Database Performance page.

• Monitoring Oracle RAC and Oracle Clusterware with Oracle Enterprise Manager
Using Oracle Enterprise Manager is the preferred method for monitoring Oracle Real
Application Clusters (Oracle RAC) and Oracle Clusterware.

• The Cluster Database Home Page
Using the Oracle Enterprise Manager Cluster Database Home page, you can use a client
browser to monitor the status of both Oracle Clusterware and Oracle Real Application
Clusters (Oracle RAC) environments.

• The Interconnects Page
Using the Oracle Enterprise Manager Interconnects page, you can use a client browser to
monitor private network status, and troubleshoot cluster wait events.

• The Cluster Database Performance Page
The Oracle Enterprise Manager Cluster Database Performance page provides a quick
glimpse of the performance statistics for an Oracle Real Application Clusters (Oracle RAC)
database.

Monitoring Oracle RAC and Oracle Clusterware with Oracle Enterprise Manager
Using Oracle Enterprise Manager is the preferred method for monitoring Oracle Real
Application Clusters (Oracle RAC) and Oracle Clusterware.

Oracle Enterprise Manager is an Oracle Web-based integrated management solution for
monitoring and administering your computing environment. From any location where you can
access a web browser, you can manage Oracle RAC databases, application servers, host
computers, and Web applications, in addition to related hardware and software. For example,
you can monitor your Oracle RAC database performance from your office, home, or a remote
site, if you have access to a Web browser.

Oracle Enterprise Manager Cloud Control is cluster-aware and provides a central console to
manage your cluster database. From the Cluster Database Home page, you can do all of the
following:

• View the overall system status, such as the number of nodes in the cluster and their
current status. This high-level view capability means that you do not have to access each
individual database instance for details if you only want to see inclusive, aggregated
information.

• View alert messages aggregated across all the instances with lists for the source of each
alert message. An alert message is an indicator that signifies that a particular metric
condition has been encountered. A metric is a unit of measurement used to report the
system's conditions.

• Review issues that are affecting the entire cluster and those issues that are affecting
individual instances.

Chapter 14
Monitoring and Tuning Oracle RAC Databases

14-2

• Monitor cluster cache coherency statistics to help you identify processing trends and
optimize performance for your Oracle RAC environment. Cache coherency statistics
measure how well the data in caches on multiple instances is synchronized. If the data
caches are completely synchronized with each other, then reading a memory location from
the cache on any instance will return the most recent data written to that location from any
cache on any instance.

Oracle Enterprise Manager accumulates data over specified periods of time, called collection-
based data. Oracle Enterprise Manager also provides current data, called real-time data.

Related Topics

• Oracle Database Get Started with Performance Tuning

• Oracle Clusterware Administration and Deployment Guide

The Cluster Database Home Page
Using the Oracle Enterprise Manager Cluster Database Home page, you can use a client
browser to monitor the status of both Oracle Clusterware and Oracle Real Application Clusters
(Oracle RAC) environments.

The Oracle Enterprise Manager Cluster Database Home Page monitors your entire cluster
environment. Monitoring can include such things as:

• Notification if there are any VIP relocations

• Status of the Oracle Clusterware on each node of the cluster using information obtained
through the Configuration Verification Utility (cluvfy)

• Notification if node applications (nodeapps) start or stop

• Notification of issues in the Oracle Clusterware alert log for OCR, voting disk issues (if
any), and node evictions

The Cluster Database Home page is similar to a noncluster Database Home page. However,
on the Cluster Database Home page, Oracle Enterprise Manager displays the system state
and availability. The system state includes a summary about alert messages and job activity,
and links to all the database and Oracle Automatic Storage Management (Oracle ASM)
instances. For example, you can track problems with services on the cluster including when a
service is not running on all of the preferred instances or when a service response time
threshold is not being met.

The Interconnects Page
Using the Oracle Enterprise Manager Interconnects page, you can use a client browser to
monitor private network status, and troubleshoot cluster wait events.

You can use the Oracle Enterprise Manager Interconnects page to monitor the Oracle
Clusterware environment. The Interconnects page shows the public and private interfaces on
the cluster and the load contributed by database instances on the interconnect, including:

• Overall throughput across the private interconnect

• Notification if a database instance is using public interface due to misconfiguration

• Throughput and errors (if any) on the interconnect

• Throughput contributed by individual instances on the interconnect

All of this information is also available as collections that have a historic view, which is useful
with cluster cache coherency, such as when diagnosing problems related to cluster wait
events. You can access the Interconnects page by clicking the Interconnect tab on the Cluster

Chapter 14
Monitoring and Tuning Oracle RAC Databases

14-3

Database home page, or by clicking the Interconnect Alerts link under Diagnostic Findings on
the Oracle RAC database home page.

The Cluster Database Performance Page
The Oracle Enterprise Manager Cluster Database Performance page provides a quick glimpse
of the performance statistics for an Oracle Real Application Clusters (Oracle RAC) database.

Statistics are rolled up across all the instances in the cluster database in charts. Using the links
next to the charts, you can get more specific information and perform any of the following
tasks:

• Identify the causes of performance issues.

• Decide whether resources need to be added or redistributed.

• Tune your SQL plan and schema for better optimization.

• Resolve performance issues

The charts on the Cluster Database Performance page include the following:

• Chart for Cluster Host Load Average: The Cluster Host Load Average chart in the
Cluster Database Performance page shows potential problems that are outside the
database. The chart shows maximum, average, and minimum load values for available
nodes in the cluster for the previous hour.

• Chart for Global Cache Block Access Latency: Each cluster database instance has its
own buffer cache in its System Global Area (SGA). Using Cache Fusion, Oracle RAC
environments logically combine each instance's buffer cache to enable the database
instances to process data as if the data resided on a logically combined, single cache.

• Chart for Average Active Sessions: The Average Active Sessions chart in the Cluster
Database Performance page shows potential problems inside the database. Categories,
called wait classes, show how much of the database is using a resource, such as CPU or
disk I/O. Comparing CPU time to wait time helps to determine how much of the response
time is consumed with useful work rather than waiting for resources that are potentially
held by other processes.

• Chart for Database Throughput: The Database Throughput charts summarize any
resource contention that appears in the Average Active Sessions chart, and also show how
much work the database is performing on behalf of the users or applications. The Per
Second view shows the number of transactions compared to the number of logons, and
the amount of physical reads compared to the redo size per second. The Per Transaction
view shows the amount of physical reads compared to the redo size per transaction.
Logons is the number of users that are logged on to the database.

In addition, the Top Activity drill down menu on the Cluster Database Performance page
enables you to see the activity by wait events, services, and instances. Plus, you can see the
details about SQL/sessions by going to a prior point in time by moving the slider on the chart.

The Cluster Database Performance page provides a quick glimpse of the performance
statistics for an Oracle RAC database. Statistics are rolled up across all of the instances in the
cluster database so that users can identify performance issues without going through all the
instances. To help triage the performance issues related to services, Oracle Enterprise
Manager aggregates the activity data at the following levels:

• Aggregate by waits

All the activity data is presented in 12 categories: CPU, Scheduler, User I/O, System I/O,
Concurrency, Application, Commit, Configuration, Administrative, Network, Cluster and
Other. The data presented is rolled up from all of the running instances.

Chapter 14
Monitoring and Tuning Oracle RAC Databases

14-4

• Aggregate by services

All the activity data is rolled up for each service. When the activity data is presented in this
way, it is effortless to identify which service is most active, and needs more analysis.

• Aggregate by instances

As a similar effort, the activity data is rolled up for each instance, if services are not the
interested ones.

The aggregates are provided on the pages where the activity data is presented, including:
Database Performance Page, Top Activity Page, Wait Details Page, and Service Details Page.

Tuning Oracle RAC Databases
All of the noncluster tuning practices for Oracle Database also apply to Oracle Real Application
Clusters (Oracle RAC) databases.

Related Topics

• Oracle Database Get Started with Performance Tuning

• Oracle Database Performance Tuning Guide

Database Reliability Framework
The Database Reliability Framework (DRF) is a proactive and automatic monitoring and
correction framework for Oracle Real Application Clusters (Oracle RAC) databases.

The Database Reliability Framework (DRF) monitors various metrics across different layers of
the database continuously to detect problems before any disruption of service occurs. DRF
improves database availability by monitoring critical events across all of the database
instances in the cluster to identify root causes. It then can take corrective actions when these
critical events hit certain thresholds.

After a problem is identified, an action is implemented automatically. Automatic actions include
resizing internal memory structures or changing the priority of Oracle RAC processes,
depending on the identified problem. For example, consider a system that has high redo
waits with no I/O contention based on the metrics collected over time. If there is enough CPU
resources available, then a possible action plan for reducing the redo waits is to move the
LGWR process to higher priority to ensure that enough CPU resources are available. DRF can
take this action automatically, drawing from metrics across the entire cluster to reach the best
solution available. This capability results in problem resolution with minimal service disruption,
and it performs these corrective actios before the problem multiplies over time, and affects
database availability.

Verifying the Interconnect Settings for Oracle RAC
To verify the interconnect settings for Oracle Real Application Clusters (Oracle RAC), you can
use SQL statements.

The interconnect and internode communication protocols can affect Cache Fusion
performance. In addition, the interconnect bandwidth, its latency, and the efficiency of the IPC
protocol determine the speed with which Cache Fusion processes block transfers.

To verify the interconnect settings of the Oracle RAC database instance to which you are
connected, query the V$CLUSTER_INTERCONNECTS and V$CONFIGURED_INTERCONNECTS views. For
example:

Chapter 14
Verifying the Interconnect Settings for Oracle RAC

14-5

Example 14-1 Verify Interconnect Settings with V$CLUSTER_INTERCONNECTS

SQL> SELECT * FROM V$CLUSTER_INTERCONNECTS;

NAME IP_ADDRESS IS_PUBLIC SOURCE
--------------- -------------- --- -------------------------------
eth2 10.137.20.181 NO Oracle Cluster Repository

Note:

You can query the GV$CLUSTER_INTERCONNECTS view to display the entries for all of
the instances in the cluster.

Example 14-2 Verify Interconnect Settings with V$CONFIGURED_INTERCONNECTS

SQL> SELECT * FROM V$CONFIGURED_INTERCONNECTS;

NAME IP_ADDRESS IS_PUBLIC SOURCE
--------------- --------------- --- -------------------------------
eth2 10.137.20.181 NO Oracle Cluster Repository
eth0 10.137.8.225 YES Oracle Cluster Repository

Influencing Interconnect Processing
After your interconnect is operative, you cannot significantly influence its performance.
However, you can influence an interconnect protocol's efficiency by adjusting the interprocess
communication (IPC) buffer sizes.

In Oracle Clusterware, the Oracle Cluster Registry (OCR) stores your system's interconnect
information. To identify the interconnect for your cluster, use the Oracle Interface Configuration
(OIFCFG) command-line utility oifcfg getif command, or the OCRDUMP utility. You can then
change the interconnect that you are using by running an OIFCFG command.

Although you rarely need to set the CLUSTER_INTERCONNECTS parameter, you can use it to
assign a private network IP address, or a network interface card (NIC). For example:

CLUSTER_INTERCONNECTS=10.0.0.1

If you are using an operating system-specific vendor IPC protocol, then the trace information
may not reveal the IP address.

Chapter 14
Influencing Interconnect Processing

14-6

Notes:

• You can also use OIFCFG command to assign private network or private IP
addresses.

• With Oracle Clusterware releases after Oracle Clusterware 12c release 2 (12.2),
you can assign either IPv4 or IPv6 addresses to multiple private networks.
However, you must choose one or the other protocol, and you must and use that
protocol for all of the private networks in the cluster.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Oracle Clusterware Administration and Deployment Guide

• Oracle Database Reference

Performance Views in Oracle RAC
To obtain performance information about your Oracle Real Application Clusters (Oracle RAC)
database, you can query either instance-specific views, or dynamic performance views for the
entire cluster.

Each instance in an Oracle Real Application Clusters (Oracle RAC) database has a set of
instance-specific views, which are prefixed with V$.You can also query global dynamic
performance views to retrieve performance information from all of the qualified instances.
Global dynamic performance view names are prefixed with GV$.

Querying a GV$ view retrieves the V$ view information from all qualified instances. In addition to
the V$ information, each GV$ view contains an extra column named INST_ID of data type
NUMBER. The INST_ID column displays the instance number from which the associated V$ view
information was obtained.

You can use the INST_ID column as a filter to retrieve V$ information from a subset of available
instances. For example, the following query retrieves the information from the V$LOCK view for
instances 2 and 5:

SQL> SELECT * FROM GV$LOCK WHERE INST_ID = 2 OR INST_ID = 5;

Related Topics

• Oracle Database Reference

Creating Oracle RAC Data Dictionary Views with
CATCLUST.SQL

If you did not create your Oracle RAC database with Oracle DBCA, then you must run the
CATCLUST.SQL script to create views and tables related to Oracle RAC.

If you did not create your Oracle Real Application Clusters (Oracle RAC) database by using
Oracle Database Configuration Assistant (Oracle DBCA), then the data dictionary setup for
Oracle RAC is incomplete. To create the views and tables related to Oracle RAC, you must run

Chapter 14
Performance Views in Oracle RAC

14-7

the CATCLUST.SQL script. To run the CATCLUST.SQL script, the user account you use must be
granted SYSDBA privileges.

Oracle RAC Performance Statistics
Oracle Real Application Clusters (Oracle RAC) statistics appear either as message request
counters, or as timed statistics.

Message request counters include statistics showing the number of certain types of block
mode conversions. Timed statistics reveal the total or average time waited for read and write
I/O for particular types of operations.

Automatic Workload Repository in Oracle RAC Environments
You can use Automatic Workload Repository to monitor performance statistics related to
Oracle RAC databases.

Automatic Workload Repository (AWR) automatically generates snapshots of the performance
data once every hour and collects the statistics in the workload repository. In Oracle RAC
environments, each AWR snapshot captures data from all active instances in the cluster. The
data for each snapshot set is captured from the same point in time. AWR stores the snapshot
data for all instances in the same table and the data is identified by an instance qualifier. For
example, the BUFFER_BUSY_WAIT statistic shows the number of buffer waits on each instance.
AWR does not store data that is aggregated from across the entire cluster. In other words, the
data is stored for each individual instance.

Using the Automatic Database Diagnostic Monitor (ADDM), you can analyze the information
collected by AWR for possible performance problems with Oracle Database. ADDM presents
performance data from a cluster-wide perspective, thus enabling you to analyze performance
on a global basis. In an Oracle RAC environment, ADDM can analyze performance using data
collected from all instances and present it at different levels of granularity, including:

• Analysis for the entire cluster

• Analysis for a specific database instance

• Analysis for a subset of database instances

To perform these analyses, you can run the ADDM Advisor in ADDM for Oracle RAC mode to
perform an analysis of the entire cluster; in Local ADDM mode to analyze the performance of
an individual instance; or in Partial ADDM mode to analyze a subset of instances. Activate
ADDM analysis using the advisor framework through Advisor Central in Oracle Enterprise
Manager, or through the DBMS_ADVISOR and DBMS_ADDM PL/SQL packages.

Related Topics

• Oracle Database Performance Tuning Guide

• Oracle Database PL/SQL Packages and Types Reference

Active Session History Reports for Oracle RAC
Learn about the ways that you can check the status of your Oracle Real Application Clusters
(Oracle RAC) database by using Active Session History (ASH) reports.

• Overview of ASH Reports for Oracle RAC
To diagnose performance issues, Active Session History (ASH) reports provide information
about all active sessions in Oracle Real Application Clusters (Oracle RAC) databases.

Chapter 14
Oracle RAC Performance Statistics

14-8

• ASH Report for Oracle RAC: Top Cluster Events
To identify which events and instances cause a high percentage of cluster wait events, use
the Active Sessions History (ASH) Top Cluster Events report.

• ASH Report for Oracle RAC: Top Remote Instance
To identify specific instances that cause extended cluster wait periods, use the Active
Sessions History (ASH) Top Remote Instance report.

Overview of ASH Reports for Oracle RAC
To diagnose performance issues, Active Session History (ASH) reports provide information
about all active sessions in Oracle Real Application Clusters (Oracle RAC) databases.

ASH is an integral part of the Oracle Database self-management framework and is useful for
diagnosing performance problems in Oracle RAC environments. ASH report statistics provide
details about Oracle Database session activity. Oracle Database records information about
active sessions for all active Oracle RAC instances, and stores this data in the System Global
Area (SGA). Any session that is connected to the database and using CPU is considered an
active session. The exception to this is sessions that are waiting for an event that belongs to
the idle wait class.

ASH reports present a manageable set of data by capturing only information about active
sessions. The amount of the data is directly related to the work being performed, rather than
the number of sessions allowed on the system.

ASH statistics that are gathered over a specified duration can be put into ASH reports. Each
ASH report is divided into multiple sections to help you identify short-lived performance
problems that do not appear in the ADDM analysis. Two ASH report sections that are specific
to Oracle RAC are Top Cluster Events and Top Remote Instance as described in the next two
sections.

Related Topics

• Oracle Database Performance Tuning Guide

ASH Report for Oracle RAC: Top Cluster Events
To identify which events and instances cause a high percentage of cluster wait events, use the
Active Sessions History (ASH) Top Cluster Events report.

The ASH report Top Cluster Events section is part of the Top Events report that is specific to
Oracle RAC. The Top Cluster Events report lists events that account for the highest percentage
of session activity in the cluster wait class event along with the instance number of the affected
instances. You can use this information to identify which events and instances caused a high
percentage of cluster wait events.

ASH Report for Oracle RAC: Top Remote Instance
To identify specific instances that cause extended cluster wait periods, use the Active Sessions
History (ASH) Top Remote Instance report.

The ASH report Top Remote Instance section is part of the Top Load Profile report that is
specific to Oracle Real Application Clusters (Oracle RAC). The Top Remote Instance report
shows cluster wait events along with the instance numbers of the instances that accounted for
the highest percentages of session activity. You can use this information to identify the instance
that caused the extended cluster wait period.

Chapter 14
Active Session History Reports for Oracle RAC

14-9

Monitoring Oracle RAC Statistics and Wait Events
Learn about wait events and statistics specific to Oracle RAC and how to interpret them when
assessing performance data generated by the Automatic Workload Repository (AWR),
Statspack, or by ad-hoc queries of the dynamic performance views.

• Oracle RAC Statistics and Events in AWR and Statspack Reports
To evaluate statistics snapshots generated by AWR and Statspack, you can produce
summary data reports.

• Oracle RAC Wait Events
Analyzing and interpreting what causes sessions to wait is an important method to
determine where time is spent.

• Monitoring Performance by Analyzing GCS and GES Statistics
Learn how to determine the amount of work and cost related to inter-instance messaging
and contention, examine block transfer rates and remote requests made by each
transaction, and determine the number and time waited for global cache events.

• Analyzing Cache Fusion Transfer Impact Using GCS Statistics
Learn how to monitor and tune GCS performance by identifying objects read and modified
frequently and the service times imposed by the remote access.

• Analyzing Response Times Based on Wait Events
Learn how to analyze global cache wait events that may present themselves as the top
database time consumers without actually indicating a problem.

Oracle RAC Statistics and Events in AWR and Statspack Reports
To evaluate statistics snapshots generated by AWR and Statspack, you can produce summary
data reports.

The statistics snapshots generated by Automatic Workload Repository (AWR) and the
Statspack package set of SQL, PL/SQL, and SQL*Plus scripts can be evaluated by producing
reports displaying summary data. For example, you can produce summary reports that show
such data as load and cluster profiles based on regular statistics, and wait events gathered on
each instance.

Most of the relevant data is summarized on the Oracle Real Application Clusters (Oracle RAC)
Statistics Page. This information includes:

• Global cache load profile

• Global cache efficiency percentages—workload characteristics

• Global cache and Enqueue Service (GES)—messaging statistics

Additional Oracle RAC sections appear later in the report:

• Global enqueue statistics

• Global CR statistics

• Global CURRENT served statistics

• Global cache transfer statistics.

Related Topics

• Oracle Database Performance Tuning Guide

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-10

Oracle RAC Wait Events
Analyzing and interpreting what causes sessions to wait is an important method to determine
where time is spent.

In Oracle RAC, the wait time is attributed to an event which reflects the exact outcome of a
request. For example, when a session on an instance is looking for a block in the global cache,
it does not know whether it will receive the data cached by another instance or whether it will
receive a message to read from disk. The wait events for the global cache convey precise
information and waiting for global cache blocks or messages is:

• Summarized in a broader category called Cluster Wait Class

• Temporarily represented by a placeholder event which is active while waiting for a block,
for example:

– gc current block request
– gc cr block request

• Attributed to precise events when the outcome of the request is known, for example:

– gc current block 3-way
– gc current block busy
– gc cr block grant 2-way

• Multi-block read request events when all disk reads are preferred, for example:

– gc cr multi block grant
– gc cr multi block mixed

In summary, the wait events for Oracle RAC convey information valuable for performance
analysis. They are used in Automatic Database Diagnostic Monitor (ADDM) to enable precise
diagnostics of the effect of cache fusion.

Monitoring Performance by Analyzing GCS and GES Statistics
Learn how to determine the amount of work and cost related to inter-instance messaging and
contention, examine block transfer rates and remote requests made by each transaction, and
determine the number and time waited for global cache events.

• Analyzing the Effect of Cache Fusion in Oracle RAC
Learn about Global Cache Service (GCS) statistics, GCS wait events, and their relation to
Cache Fusion in Oracle Real Application Clusters (Oracle RAC) databases.

• Analyzing Performance Using GCS and GES Statistics
You can monitor GCS performance by identifying data blocks and objects which are
frequently used (hot) by all instances.

Analyzing the Effect of Cache Fusion in Oracle RAC
Learn about Global Cache Service (GCS) statistics, GCS wait events, and their relation to
Cache Fusion in Oracle Real Application Clusters (Oracle RAC) databases.

The effect of accessing blocks in the global cache and maintaining coherency is represented
by:

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-11

• The Global Cache Service (GCS) statistics for current and cr blocks. For example: gc
current blocks received, gc cr blocks received, and so on

• The GCS wait events, for gc current block 3-way, gc cr grant 2-way, and so on

The response time for cache fusion transfers is determined by the messaging and processing
times imposed by the physical interconnect components, the IPC protocol and the GCS
protocol. Cache Fusion response time is not affected by disk I/O factors, other than occasional
log writes. The Cache Fusion protocol requires no I/O resources to guarantee cache
coherency for data files (the synchronization of data in multiple caches so that reading a
memory location through any cache will return the most recent data written to that location
through any other cache). Oracle RAC inherently requires no more I/O to disk than a
nonclustered instance requires.

Analyzing Performance Using GCS and GES Statistics
You can monitor GCS performance by identifying data blocks and objects which are frequently
used (hot) by all instances.

High concurrency on certain blocks may be identified by GCS wait events and times.

The gc current block busy wait event indicates that the access to cached data blocks was
delayed because they were busy either in the remote or the local cache. This could be caused
by any of the following:

• The blocks were pinned

• The blocks were held up by sessions

• The blocks were delayed by a log write on a remote instance

• A session on the same instance was already accessing a block which was in transition
between instances and the current session needed to wait behind it (for example, gc
current block busy)

Use the V$SESSION_WAIT view to identify objects and data blocks with contention. The GCS
wait events contain the file and block number for a block request in p1 and p2, respectively.

An additional segment statistic, gc buffer busy, has been added to quickly determine the
busy objects without having to query the V$SESSION_WAIT view mentioned earlier.

The AWR infrastructure provides a view of active session history which can also be used to
trace recent wait events and their arguments. It is therefore useful for hot block analysis. Most
of the reporting facilities used by AWR and Statspack contain the object statistics and cluster
wait class category, so that sampling of the views mentioned earlier is largely unnecessary.

Note:

Oracle recommends using ADDM and AWR. However, Statspack is available for
backward compatibility. Statspack provides reporting only. You must run Statspack at
level 7 to collect statistics related to block contention and segment block waits.

It is advisable to run ADDM on the snapshot data collected by the AWR infrastructure to obtain
an overall evaluation of the impact of the global cache. The advisory will also identify the busy
objects and SQL highest cluster wait time.

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-12

Analyzing Cache Fusion Transfer Impact Using GCS Statistics
Learn how to monitor and tune GCS performance by identifying objects read and modified
frequently and the service times imposed by the remote access.

Waiting for blocks to arrive can constitute a significant portion of the response time, in the
same way that reading from disk can increase the block access delays. The difference is that
Cache Fusion transfers are usually faster than disk access latencies.

The following wait events indicate that the remotely cached blocks were shipped to the local
instance without having been busy, pinned or requiring a log flush:

• gc current block 2-way
• gc current block 3-way
• gc cr block 2-way
• gc cr block 3-way
The object statistics for gc current blocks received and gc cr blocks received enable
quick identification of the indexes and tables which are shared by the active instances. As
mentioned earlier, creating an Automatic Database Diagnostic Monitor (ADDM) analysis
usually points you to the SQL statements and database objects that can be impacted by inter-
instance contention.

Any increases in the average wait times for the events mentioned in the preceding list can be
caused by the following occurrences:

• High load: CPU shortages, long run queues, scheduling delays

• Misconfiguration: using public instead of private interconnect for message and block traffic

If the average wait times are acceptable, and you can diagnose no interconnect or load issues,
then the accumulated time waited can usually be attributed to a few SQL statements that need
to be tuned to minimize the number of blocks accessed.

The column CLUSTER_WAIT_TIME in V$SQLAREA represents the wait time incurred by individual
SQL statements for global cache events. By reviewing this column, you can identify the SQL
that may need to be tuned.

Analyzing Response Times Based on Wait Events
Learn how to analyze global cache wait events that may present themselves as the top
database time consumers without actually indicating a problem.

• Understanding Normal and Problem Wait Event Response Times
To distinguish between normal wait events, and wait events that indicate a problem, review
routine performance statistics, and then look for the frequent wait events that you should
be aware of when interpreting performance data.

• Block-Related Wait Events
Learn about the main wait events associated with block-related waits.

• Message-Related Wait Events
Learn about the main wait events associated with message-related waits.

• Contention-Related Wait Events
Learn about the main wait events associated with contention-related waits.

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-13

• Load-Related Wait Events
Learn about the main wait events associated with load-related waits.

Understanding Normal and Problem Wait Event Response Times
To distinguish between normal wait events, and wait events that indicate a problem, review
routine performance statistics, and then look for the frequent wait events that you should be
aware of when interpreting performance data.

When you review the Automatic Workload Repository (AWR) reports and the Statspack set of
SQL, PL/SQL, and SQL*Plus reports, or review the dynamic performance views, most global
cache wait events that show a high total time in these reports are normal. These normal wait
events can present themselves as the top database time consumers, without actually
indicating a problem.

If user response times increase and a high proportion of time waited is for global cache, then
you should determine the cause. Most reports include a breakdown of events sorted by
percentage of the total time.

It is useful to start with an Automatic Database Diagnostic Monitor (ADDM) report. The ADDM
report analyzes the routinely collected performance statistics with respect to their impact,
points to the objects and SQL contributing most to the time waited, and moves on to the more
detailed reports produced by AWR and Statspack.

Block-Related Wait Events
Learn about the main wait events associated with block-related waits.

The main wait events for block-related waits are:

• gc current block 2-way
• gc current block 3-way
• gc cr block 2-way
• gc cr block 3-way
The block-related wait event statistics indicate that a block was received as either the result of
a 2-way or a 3-way message, that is, the block was sent from either the primary resource
requiring 1 message and 1 transfer, or was forwarded to a third node from which it was sent,
requiring 2 messages and 1 block transfer.

Message-Related Wait Events
Learn about the main wait events associated with message-related waits.

The main wait events for message-related waits are:

• gc current grant 2-way
• gc cr grant 2-way
The message-related wait event statistics indicate that no block was received, because it was
not cached in any instance. Instead, a global grant was given, enabling the requesting instance
to read the block from disk, or to modify it.

If the time consumed by these events is high, then you can assume that the frequently used
SQL causes a lot of disk I/O (in the event of the cr grant), or that the workload inserts a lot of
data, and needs to find and format new blocks frequently (in the event of the current grant).

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-14

Contention-Related Wait Events
Learn about the main wait events associated with contention-related waits.

The main wait events for contention-related waits are:

• gc current block busy
• gc cr block busy
• gc buffer busy acquire/release
The contention-related wait event statistics indicate that a block was received that was pinned
by a session on another node, or was deferred because a change had not yet been flushed to
disk, or was deferred because of high concurrency, and therefore could not be shipped
immediately. A buffer can also be busy locally when a session has already initiated a Cache
Fusion operation, and is waiting for its completion when another session on the same node is
trying to read or modify the same data. High service times for blocks exchanged in the global
cache can exacerbate the contention, which can be caused by frequent concurrent read and
write accesses to the same data.

The gc current block busy and gc cr block busy wait events indicate that the local
instance that is making the request did not immediately receive a current or consistent read
block. The term busy in these events names indicates that the sending of the block was
delayed on a remote instance. For example, a block cannot be shipped immediately if Oracle
Database has not yet written the redo for the block's changes to a log file.

In comparison to block busy wait events, a gc buffer busy event indicates that Oracle
Database cannot immediately grant access to data that is stored in the local buffer cache. This
is because a global operation on the buffer is pending and the operation has not yet
completed. In other words, the buffer is busy and all other processes that are attempting to
access the local buffer must wait to complete.

The existence of gc buffer busy events also means that there is block contention that is
resulting in multiple requests for access to the local block. Oracle Database must queue these
requests. The length of time that Oracle Database needs to process the queue depends on the
remaining service time for the block. The service time is affected by the processing time that
any network latency adds, the processing time on the remote and local instances, and the
length of the wait queue.

The average wait time and the total wait time should be considered when being alerted to
performance issues where these particular waits have a high impact. Usually, either
interconnect or load issues or SQL processing against a large shared working set can be found
to be the root cause.

Load-Related Wait Events
Learn about the main wait events associated with load-related waits.

The main wait events for load-related waits are:

• gc current block congested
• gc cr block congested
The load-related wait events indicate that a delay in processing has occurred in the GCS,
which is usually caused by high load or CPU saturation. To solve this kind of wait event, you
add additional CPUs, provide greater load-balancing, or offload processing to different times,
or to a new cluster node. For the two events mentioned here, the wait time encompasses the

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-15

entire round trip from the time a session starts to wait after initiating a block request until the
block arrives.

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-16

15
Converting Single-Instance Oracle Databases
to Oracle RAC and Oracle RAC One Node

Learn about procedures for converting from Oracle Database single-instance databases to
Oracle Real Application Clusters (Oracle RAC) and Oracle RAC One Node databases.

• Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA
Learn about guidelines and procedures for using Oracle Database Configuration Assistant
(Oracle DBCA) to convert from single-instance Oracle Database to Oracle Real Application
Clusters (Oracle RAC) or Oracle RAC One Node databases.

• Preparing to Convert with rconfig and Oracle Enterprise Manager
You can use rconfig or Oracle Enterprise Manager to assist with converting a single-
instance database installation to an Oracle RAC database.

• Converting Databases to Oracle RAC Using rconfig
You can use the command-line utility rconfig to convert a single-instance database to an
Oracle RAC database, or to convert it to an Oracle RAC One Node database, depending
on the values you provide in the ConvertToRAC.xml file.

• Example of rconfig XML Input Files for ConvertToRAC
Review this example of an XML ConvertToRAC input file for the rconfig utility.

• Postconversion Steps
After completing the conversion of your single instance database to an Oracle Real
Application Clusters (Oracle RAC) database, follow these recommendations for configuring
Oracle RAC environments.

Converting to Oracle RAC and Oracle RAC One Node Using
Oracle DBCA

Learn about guidelines and procedures for using Oracle Database Configuration Assistant
(Oracle DBCA) to convert from single-instance Oracle Database to Oracle Real Application
Clusters (Oracle RAC) or Oracle RAC One Node databases.

• Overview of Converting Databases to Oracle RAC Using Oracle DBCA
Oracle Database Configuration Assistant (Oracle DBCA) provides certain benefits that can
assist you with converting from single-instance Oracle Database to Oracle Real Application
Clusters (Oracle RAC) or Oracle RAC One Node databases.

• Converting Oracle Database Installations to Oracle RAC Using Oracle DBCA
To convert from a single-instance Oracle Database that is on a non-clustered computer to
Oracle Real Application Clusters (Oracle RAC), complete each of the procedures
described here.

• Converting Single Instance on a Cluster to Oracle RAC One Node Using Oracle DBCA
To convert a single-instance Oracle Database to Oracle RAC One Node, use this Oracle
Database Configuration Assistant (Oracle DBCA) procedure.

• Converting Single Instance on a Cluster to Oracle RAC Using Oracle DBCA
Learn when you can convert a single instance Oracle Database to an Oracle Real
Application Clusters instance, and find out how to perform the conversion.

15-1

• Converting Single Instance on a Single Server to Oracle RAC One Node Using Oracle
DBCA
To convert a single-instance Oracle Database on a single server to Oracle RAC One Node,
use this Oracle Database Configuration Assistant (Oracle DBCA) procedure.

Overview of Converting Databases to Oracle RAC Using Oracle DBCA
Oracle Database Configuration Assistant (Oracle DBCA) provides certain benefits that can
assist you with converting from single-instance Oracle Database to Oracle Real Application
Clusters (Oracle RAC) or Oracle RAC One Node databases.

Oracle DBCA automates the configuration of the control file attributes, creates the undo
tablespaces and the redo logs, and creates the initialization parameter file entries for cluster-
enabled environments. Oracle DBCA also configures Oracle Net Services, Oracle Clusterware
resources, and the configuration for Oracle RAC database management using Oracle
Enterprise Manager or the Server Control utility (SRVCTL).

Before you use Oracle DBCA to convert a single-instance database to an Oracle RAC or an
Oracle RAC One Node database, ensure that your system meets the following conditions:

• Your system uses supported hardware and operating system software. Your system is
configured properly to support an Oracle RAC database.

• The nodes have access to shared storage; for example, either Oracle Cluster File System
or Oracle ASM is available and accessible from all nodes. On Linux on POWER systems,
ensure that GPFS is available and accessible from all nodes.

Note:

If your cluster is a single node cluster installed with Oracle Grid Infrastructure to
Manage Generic Applications, the database can also be on local file systems.

• Your applications have no design characteristics that preclude their use with cluster
database processing.

If your platform supports a cluster file system, then you can use it for Oracle RAC. You can
also convert to Oracle RAC and use a non-shared file system. In either case, Oracle strongly
recommends that you use Oracle Universal Installer to install Oracle Database, which sets up
the Oracle home and inventory in an identical location on each of the selected nodes in your
cluster.

Related Topics

• Converting Databases
Using SRVCTL, you can convert an Oracle Real Application Clusters (Oracle RAC)
database with one instance to an Oracle RAC One Node database, or back to an Oracle
RAC database instance.

Converting Oracle Database Installations to Oracle RAC Using Oracle
DBCA

To convert from a single-instance Oracle Database that is on a non-clustered computer to
Oracle Real Application Clusters (Oracle RAC), complete each of the procedures described
here.

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA

15-2

Caution:

You must perform each of the procedures described in the following sections, and in
the order shown.

• Use Oracle DBCA to Create an Image of the Single-Instance Database
To create a preconfigured image of your single-instance database as part of your
conversion process from a single instance database to Oracle Real Application Clusters
(Oracle RAC) database, use this Oracle DBCA procedure.

• Perform the Oracle Grid Infrastructure Installation
You must complete the installation of Oracle Grid Infrastructure before you can proceed
with the conversion of the single-instance Oracle Database to Oracle Real Application
Clusters (Oracle RAC).

• Validate the Cluster
After you install Oracle Grid Infrastructure, validate the cluster configuration by using the
Configuration Verification Utility (CVU).

• Copy the Preconfigured Database Image
After you validate the cluster, copy the preconfigured database image.

• Install the New Oracle Database Software with Oracle RAC
Install the new Oracle Database release, selecting Cluster Installation Mode.

Use Oracle DBCA to Create an Image of the Single-Instance Database
To create a preconfigured image of your single-instance database as part of your conversion
process from a single instance database to Oracle Real Application Clusters (Oracle RAC)
database, use this Oracle DBCA procedure.

1. Navigate to the bin directory in $ORACLE_HOME, and start Oracle DBCA.

2. At the Welcome page, click Next.

3. On the Operations page, select Manage Templates, and click Next.

4. On the Template Management page, select Create a database template and From an
existing database (structure as well as data), then click Next.

5. On the Source Database page, select the database name in the Database instance list,
and click Next.

6. Use SQL to ensure that all Pluggable Databases (PDBs) are open:

SQL> SELECT name, open_mode FROM v$pdbs;

If any of the PDBs are in a state other than OPEN, then open them using SQL.

7. On the Template Properties page, enter a name for your template in the Name field. Oracle
recommends that you use the database name.

By default, the template files are generated in the directory $ORACLE_HOME/assistants/
dbca/templates. You can enter a description of the file in the Description field, and
change the template file location in the Template data file field.

When you have completed the entries, click Next.

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA

15-3

8. On the Location of Database Related Files page, select Maintain the file locations, so
that you can restore the database to the current directory structure, and click Finish.

Oracle DBCA generates two files: a database structure file (template_name.dbc), and a
database preconfigured image file (template_name.dfb).

Perform the Oracle Grid Infrastructure Installation
You must complete the installation of Oracle Grid Infrastructure before you can proceed with
the conversion of the single-instance Oracle Database to Oracle Real Application Clusters
(Oracle RAC).

To complete the installation of Oracle Grid Infrastructure, refer to the documentation for your
operating system.

Note:

The option of Installing Oracle Grid Infrastructure to Manage Generic Applications on
the single server can support single server rolling database maintenance.

After Oracle Grid Infrastructure is installed on the server running the single-instance Oracle
Database, you must register the database to Oracle Clusterware:

1. As the software owner of the Oracle Database home, register the single-instance Oracle
Database to Oracle Clusterware.

$ srvctl add database -dbname db_name -oraclehome Oracle_home
-spfile spfile_path_name -dbtype SINGLE

2. Create and start the database service for your registered database using the SRVCTL
commands.

$ srvctl add service -db db_name -pdb pdb_name -service service_name
[additional_options]
$ srvctl start service -db db_name -s service_name

Related Topics

• Oracle Grid Infrastructure Installation and Upgrade Guide for Linux

Validate the Cluster
After you install Oracle Grid Infrastructure, validate the cluster configuration by using the
Configuration Verification Utility (CVU).

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Copy the Preconfigured Database Image
After you validate the cluster, copy the preconfigured database image.

When you copy the preconfigured database image, this includes copying the database
structure *.dbc file, and the database preconfigured image *.dfb file (the one that you used

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA

15-4

Oracle DBCA to create earlier in the conversion process) to a temporary location on the node
in the cluster from which you plan to run Oracle DBCA.

Related Topics

• Use Oracle DBCA to Create an Image of the Single-Instance Database
To create a preconfigured image of your single-instance database as part of your
conversion process from a single instance database to Oracle Real Application Clusters
(Oracle RAC) database, use this Oracle DBCA procedure.

Install the New Oracle Database Software with Oracle RAC
Install the new Oracle Database release, selecting Cluster Installation Mode.

1. Run Oracle Universal Installer to install an Oracle Database with Oracle RAC.

2. Select Cluster Installation Mode on the Specify Hardware Cluster Installation page of
Oracle Universal Installer, and select the nodes to include in your Oracle RAC database.

3. On the Oracle Universal Installer Database Configuration Types page, select the
Advanced installation type.

After installing the Oracle Database software, Oracle Universal Installer runs
postinstallation configuration tools, such as Net Configuration Assistant (NETCA), Oracle
DBCA, and so on.

4. On the Oracle DBCA Template Selection page, use the template that you copied to a
temporary location in the previous section. Use the browse option to select the template
location.

Select the option that you want to deploy. Your choices are the following: Oracle RAC
database; Oracle RAC One Node database; or Oracle single-instance database.

5. After creating the Oracle RAC database, Oracle DBCA displays the Password
Management page on which you must change the passwords for database users who
have SYSDBA and SYSOPER privileges. When Oracle DBCA exits, the conversion
process is complete.

Converting Single Instance on a Cluster to Oracle RAC One Node Using
Oracle DBCA

To convert a single-instance Oracle Database to Oracle RAC One Node, use this Oracle
Database Configuration Assistant (Oracle DBCA) procedure.

1. Change directory to $ORACLE_HOME/bin.

2. Start Oracle DBCA:

$ dbca

3. From the Welcome window, select Oracle RAC One Node database.

4. Use the Oracle DBCA template that you selected during conversion of the single-instance
Oracle Database to Oracle RAC to deploy Oracle RAC One Node.

Converting Single Instance on a Cluster to Oracle RAC Using Oracle DBCA
Learn when you can convert a single instance Oracle Database to an Oracle Real Application
Clusters instance, and find out how to perform the conversion.

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA

15-5

• Scenarios for Converting Single Instance on a Cluster to Oracle RAC
There are three scenarios where you can use Oracle Database Configuration Assistant
(Oracle DBCA) to convert an Oracle Database single instance on a cluster to an Oracle
Real Application Clusters (Oracle RAC) instance.

• Single-Instance Database on a Cluster Running from an Oracle RAC-Enabled Home
To convert a single-instance database on a cluster node running from an Oracle home that
has the Oracle RAC option enabled, complete these procedures.

• Single-Instance Database on a Cluster Running from an Oracle RAC-Disabled Home
You can create a single-instance database on a cluster running from an Oracle home with
the Oracle Real Application Clusters (Oracle RAC) option disabled.

Scenarios for Converting Single Instance on a Cluster to Oracle RAC
There are three scenarios where you can use Oracle Database Configuration Assistant (Oracle
DBCA) to convert an Oracle Database single instance on a cluster to an Oracle Real
Application Clusters (Oracle RAC) instance.

• Scenario 1: The Oracle home for the single-instance database was installed on a cluster
node, and has Oracle RAC enabled.

• Scenario 2: The Oracle home for the single-instance database was installed on a cluster
node, but the Oracle RAC feature is disabled for this Oracle home.

• Scenario 3: The Oracle home for the single-instance database was installed only on the
local node in a cluster. This configuration happens when you select the Local Installation
option on the Oracle Universal Installer Specify Hardware Cluster Installation page during
Oracle Database installation.

Related Topics

• Setting up the Cluster to Convert a Single-Instance Database on a Cluster
To convert a single-instance database on a cluster node running from an Oracle home that
has the Oracle RAC option enabled, you first use Oracle DBCA to set up the cluster.

• Single-Instance Database on a Cluster Running from an Oracle RAC-Disabled Home
You can create a single-instance database on a cluster running from an Oracle home with
the Oracle Real Application Clusters (Oracle RAC) option disabled.

• Converting Oracle Database Installations to Oracle RAC Using Oracle DBCA
To convert from a single-instance Oracle Database that is on a non-clustered computer to
Oracle Real Application Clusters (Oracle RAC), complete each of the procedures
described here.

• Install the New Oracle Database Software with Oracle RAC
Install the new Oracle Database release, selecting Cluster Installation Mode.

Single-Instance Database on a Cluster Running from an Oracle RAC-Enabled Home
To convert a single-instance database on a cluster node running from an Oracle home that has
the Oracle RAC option enabled, complete these procedures.

• Setting up the Cluster to Convert a Single-Instance Database on a Cluster
To convert a single-instance database on a cluster node running from an Oracle home that
has the Oracle RAC option enabled, you first use Oracle DBCA to set up the cluster.

• Automated Conversion Procedure Using Oracle DBCA
To complete conversion automatically from a single instance Oracle Database to an Oracle
Real Application Clusters (Oracle RAC) database, you can us this procedure.

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA

15-6

• Manual Conversion Procedure
To complete conversion manually from a single instance Oracle Database to an Oracle
Real Application Clusters (Oracle RAC) database, you can us this procedure.

Setting up the Cluster to Convert a Single-Instance Database on a Cluster
To convert a single-instance database on a cluster node running from an Oracle home that has
the Oracle RAC option enabled, you first use Oracle DBCA to set up the cluster.

1. Use Oracle DBCA to create a preconfigured image of your single-instance database. To
perform the conversion manually, shut down the single-instance database.

2. Add nodes to your cluster. Ensure that all nodes can access the shared storage used by
Oracle Clusterware and Oracle RAC.

3. From the existing Oracle home, extend this home to the new nodes.

4. From a newly added node, configure the listeners on the additional nodes using NETCA.
Choose the same port number and protocol that you used on the existing node. If NETCA
displays the existing node in the node list page, then do not select this node, because the
listener is already configured on it.

5. Convert the database using one of the following procedures:

After you prepare the cluster, you are ready to convert the database, either by using an
automated conversion with Oracle Database Configuration Assistant (Oracle DBCA), or by
performing a manual conversion. Select the procedure that you prefer.

Related Topics

• Use Oracle DBCA to Create an Image of the Single-Instance Database
To create a preconfigured image of your single-instance database as part of your
conversion process from a single instance database to Oracle Real Application Clusters
(Oracle RAC) database, use this Oracle DBCA procedure.

• Oracle Clusterware Administration and Deployment Guide

• Adding Oracle RAC to Nodes with Oracle Grid Infrastructure Installed
To add Oracle Real Application Clusters (Oracle RAC) with Oracle Grid Infrastructure
installed, your procedure depends on the storage you use, and your Oracle home
configuration,

Automated Conversion Procedure Using Oracle DBCA
To complete conversion automatically from a single instance Oracle Database to an Oracle
Real Application Clusters (Oracle RAC) database, you can us this procedure.

If you used Oracle DBCA to create a preconfigured image of your single-instance database,
then perform the following steps to complete the conversion to an Oracle RAC database

1. Start Oracle DBCA from the initial node. Select the names of the nodes to include as part
of your cluster database. On the Template Selection page, select the preconfigured
template that you created previously with Oracle DBCA. Enter the database name, and
respond to the remaining Oracle DBCA prompts.

2. Specify the shared storage location for the Oracle Database data files.

After creating the Oracle RAC database, Oracle DBCA displays the Password Management
page on which you must change the passwords for the database users who have SYSDBA
and SYSOPER privileges. When Oracle DBCA exits, the conversion process is complete.

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA

15-7

Manual Conversion Procedure
To complete conversion manually from a single instance Oracle Database to an Oracle Real
Application Clusters (Oracle RAC) database, you can us this procedure.

If you did not use Oracle DBCA to create a preconfigured image of your single-instance
database as described in a previous section, then perform the following steps to complete the
conversion:

1. Create the Optimal Flexible Architecture directory structure on each of the nodes that you
have added.

2. Shut down the database instance.

3. Set the INSTANCE_NUMBER parameter to a unique value for each instance, using the
sid.parameter=value syntax in the SPFILE using the following SQL statement:

ALTER SYSTEM SET sid.parameter=value SCOPE=SPFILE;

If you optimized memory usage on your single-instance database, then adjust the size of
the system global area (SGA) to avoid swapping and paging when you convert to Oracle
RAC. You should make this adjustment because Oracle RAC requires about 350 bytes for
each buffer to accommodate the Global Cache Service (GCS). For example, if you have
10,000 buffers, then Oracle RAC requires approximately 350 multiplied by 10,000 bytes
more memory. Therefore, adjust the size of the SGA by changing the DB_CACHE_SIZE and
DB_nK_CACHE_SIZE parameters accordingly.

Note:

If you do not use the SPFILE, then create the SPFILE using the PFILE.

4. Start the database instance using the SPFILE.

5. If your single-instance database was using automatic undo management, then create an
undo tablespace for each additional instance using the CREATE UNDO TABLESPACE SQL
statement.

6. Create redo threads that have at least two redo logs for each additional instance. Enable
the new redo threads by using an ALTER DATABASE SQL statement. Then, shut down the
database instance.

7. Copy the Oracle password file from the initial node, or from the node on which you are
working, to the corresponding location on the additional nodes on which the cluster
database will have an instance. Replace the ORACLE_SID name in each password file
appropriately for each additional instance.

8. Add the single client access name (SCAN), SCAN port, and service name entries to
the $ORACLE_HOME/network/admin/tnsnames.ora file for each database instance on all
cluster nodes.

SERVICE1 =
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = TCP)(HOST = myhost.example.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA

15-8

 (SERVICE_NAME = service1.example.com)
)
)

9. On the local node, use SQL*Plus to run catclust.sql. This script creates the dictionary
views needed for Oracle RAC databases. For example:

SQL> start ?/rdbms/admin/catclust.sql

10. Add the configuration for the Oracle RAC or Oracle RAC One Node database and its
instance-to-node mapping using SRVCTL.

a. To add the configuration of an Oracle RAC database, use the following commands:

$ srvctl add database -dbname db_name -oraclehome
 Oracle_home -spfile spfile_path_name
$ srvctl add instance -dbname db_name -instance inst1_name -node
 node1_name
$ srvctl add instance -dbname db_name -instance inst2_name -node
 node2_name
...

b. To add the configuration of an Oracle RAC One Node database, use the following
command:

$ srvctl add database -dbname db_name -dbtype
 RACONENODE -oraclehome Oracle_home
 -spfile spfile_path_name

11. Start the Oracle RAC or Oracle RAC One Node database using SRVCTL:

srvctl start database -d db_name

After starting the database with SRVCTL, your conversion process is complete. You can run
the following SQL statement to see the status of all the instances in your Oracle RAC
database:

SQL> SELECT * FROM v$active_instances;

Related Topics

• Use Oracle DBCA to Create an Image of the Single-Instance Database
To create a preconfigured image of your single-instance database as part of your
conversion process from a single instance database to Oracle Real Application Clusters
(Oracle RAC) database, use this Oracle DBCA procedure.

Single-Instance Database on a Cluster Running from an Oracle RAC-Disabled Home
You can create a single-instance database on a cluster running from an Oracle home with the
Oracle Real Application Clusters (Oracle RAC) option disabled.

To create an Oracle home on a cluster with Oracle RAC disabled, you can select local and
non-cluster on the Node Selection Page of Oracle Universal Installer when installing the
Oracle Database software. You can also performed a one-node cluster (with Oracle RAC)
installation, but later disable the Oracle RAC option.

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA

15-9

Perform the following procedures to convert this type of single-instance database to an Oracle
RAC or Oracle RAC One Node database:

1. Use Oracle DBCA to create a preconfigured image of your single-instance database. To
perform the conversion manually, shut down the single-instance database.

2. Change the directory to the lib subdirectory in the rdbms directory under the Oracle home.

3. Relink the oracle binary by running the following commands:

export ORACLE_HOME=/u01/app/oracle/product/23.4.0/dbhome_1
make -f ins_rdbms.mk rac_on
make -f ins_rdbms.mk ioracle

4. Add nodes to your cluster. Ensure that all nodes can access the shared storage used by
Oracle Clusterware and Oracle RAC.

Related Topics

• Use Oracle DBCA to Create an Image of the Single-Instance Database
To create a preconfigured image of your single-instance database as part of your
conversion process from a single instance database to Oracle Real Application Clusters
(Oracle RAC) database, use this Oracle DBCA procedure.

• Oracle Clusterware Administration and Deployment Guide

Converting Single Instance on a Single Server to Oracle RAC One Node
Using Oracle DBCA

To convert a single-instance Oracle Database on a single server to Oracle RAC One Node,
use this Oracle Database Configuration Assistant (Oracle DBCA) procedure.

1. If your single-instance database is running, then stop it.

$ export ORACLE_SID=<DB SID>
$ sqlplus "/as sysdba"
SQL> shutdown immediate
SQL> exit

2. If you have a listener running on port 1521, the stop it.

$ lsnrctl stop listener

3. If you have the ONS server running, then stop it.

$ onsctl stop

4. Perform the Oracle Grid Infrastructure installation by using the procedure described in
Oracle Grid Infrastructure Installation and Upgrade Guide for your platform.

Note:

The option of installing Oracle Grid Infrastructure to Manage Generic
Applications on the single server also supports single server rolling database
maintenance.

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA

15-10

5. Make your existing Oracle Database home RAC-enabled.

a. Change the directory to the lib subdirectory in the rdbms directory under the Oracle
home.

b. Relink the oracle binary by running the following commands:

export ORACLE_HOME=/u01/app/oracle/product/23.4.0/dbhome_1
make -f ins_rdbms.mk rac_on
make -f ins_rdbms.mk ioracle

6. As the software owner of the Oracle Database home, register the single-instance Oracle
Database to Oracle Clusterware.

$ srvctl add database -dbname db_name -oraclehome Oracle_home -spfile
spfile_path_name
$ srvctl start database -db db_unique_name

7. Use Oracle DBCA in silent mode to convert to the single instance Oracle Database to
Oracle RAC One Node database.

$ dbca -silent -convertToRac -sourceDB db_name
$ srvctl start database -db db_unique_name

8. Create and start database service for your registered database using SRVCTL commands.

$ srvctl add service -db db_name -pdb pdb_name -service service_name -
notification true [additional_options]
$ srvctl start service -db db_name -service service_name

Note:

When creating a service, add options as required by your applications. Using
Transparent Application Continuity with the service will minimize the impact to the
transactions during local rolling database maintenance.

Related Topics

• Transparent Application Continuity
A version of Application Continuity for simple applications that uses discovery to detect
request boundaries.

• Use Oracle DBCA to Create an Image of the Single-Instance Database
To create a preconfigured image of your single-instance database as part of your
conversion process from a single instance database to Oracle Real Application Clusters
(Oracle RAC) database, use this Oracle DBCA procedure.

Preparing to Convert with rconfig and Oracle Enterprise Manager
You can use rconfig or Oracle Enterprise Manager to assist with converting a single-instance
database installation to an Oracle RAC database.

The first of these, rconfig, is a command-line utility. Oracle Enterprise Manager Cloud Control
database administration option, Convert to Cluster Database, provides a GUI-based

Chapter 15
Preparing to Convert with rconfig and Oracle Enterprise Manager

15-11

conversion tool. Before you start the conversion, back up your existing database; you should
take a backup of your database before starting any major change.

Note:

Starting with Oracle Database 23ai, the RCONFIG utility is deprecated.

• Prerequisites for Converting to Oracle RAC Databases
Your Oracle Real Application Clusters (Oracle RAC) environment must meet these
prerequisites before you can convert your database.

• Configuration Changes During Oracle RAC Conversion Using rconfig
These changes occur when you convert a single-instance database to Oracle RAC using
the rconfig utility.

• Converting Databases to Oracle RAC Using rconfig or Oracle Enterprise Manager
This list describes scenarios for converting a single-instance Oracle database to an Oracle
RAC database.

• Converting Databases to Oracle RAC Using Oracle Enterprise Manager
You can use Oracle Enterprise Manager Cloud Control to convert a single-instance
database to an Oracle RAC database.

Prerequisites for Converting to Oracle RAC Databases
Your Oracle Real Application Clusters (Oracle RAC) environment must meet these
prerequisites before you can convert your database.

Before you convert a single-instance database to an Oracle RAC database, ensure that the
following conditions are met for each cluster node that you intend to make an Oracle RAC
database node:

• Oracle Clusterware 23ai is installed, configured, and running.

• Oracle RAC 23ai software is installed.

• The Oracle software has the Oracle RAC option enabled.

• Shared storage, either Oracle Cluster File System or Oracle ASM, is available and
accessible from all nodes.

• User equivalence exists for the oracle account, or the user account used to install the
Oracle software.

• If you intend to use Oracle Enterprise Manager, then the Oracle Management Agent on
each node is configured and running, and is configured with cluster and host information.

• You have backed up your existing database.

Note:

You must use clustered Oracle ASM instances for Oracle RAC databases.

Chapter 15
Preparing to Convert with rconfig and Oracle Enterprise Manager

15-12

Configuration Changes During Oracle RAC Conversion Using rconfig
These changes occur when you convert a single-instance database to Oracle RAC using the
rconfig utility.

Note:

Starting with Oracle Database 23ai, the RCONFIG utility is deprecated.
Oracle recommends that you use Database Configuration Assistant (DBCA).
Beginning with Oracle Enterprise Manager 13c Release 5 Update 23 (13.5.0.23),
converting a single-instance database to Oracle RAC through Oracle Enterprise
Manager using the RCONFIG utility is no longer supported.

• During the conversion, rconfig places the target Oracle RAC database into archive log
mode, and enables archiving for the database. If you do not plan to use archive log space,
then you can disable archive logging after the conversion has completed.

• For the Shared Storage Type value, if you enter CFS, and you use a cluster file system
for your single-instance database storage, then rconfig converts the environment to use
Oracle Managed Files for database storage, and places the data files in a subdirectory
located under the shared storage location.

• During the conversion, rconfig moves database files to a specified shared location, and
configures them using Oracle Managed Files.

To avoid using Oracle Managed Files with your converted database, the single-instance
database files must be located in a shared file system, and you must indicate that rconfig
should not move the files.

Converting Databases to Oracle RAC Using rconfig or Oracle Enterprise
Manager

This list describes scenarios for converting a single-instance Oracle database to an Oracle
RAC database.

• Converting a single-instance Oracle Database 23ai database to an Oracle RAC 23ai
database, running out of the same Oracle home and using the same data files as the
single-instance database.

In this scenario, run the rconfig utility from the Oracle RAC database home, or use the
Convert to RAC option on the single-instance database target of Oracle Enterprise
Manager Cloud Control.

• Converting a single-instance database that uses a release of Oracle Database earlier than
Oracle Database 23ai to an Oracle RAC 23ai database, running out of the same Oracle
home and using the same data files as the single-instance database

In this scenario, use Oracle Universal Installer and Database Upgrade Assistant (DBUA) to
update the single-instance database to Oracle Database 23ai. Then use rconfig or the
Oracle Enterprise Manager Convert to RAC option, as described in the preceding
scenario.

Chapter 15
Preparing to Convert with rconfig and Oracle Enterprise Manager

15-13

• Converting a single-instance Oracle Database 23ai to an Oracle RAC 23ai database,
running out of a different Oracle home and using the same data files as the single-instance
database.

In this scenario, run the rconfig utility in the target database home, or use the Convert to
RAC option in the single-instance database target of Oracle Enterprise Manager Cloud
Control. Provide the file storage location when prompted.

Note:

If you specify Oracle home users for both the target database home and the
source database home, then the Oracle home user for the target database home
must be the same as the Oracle home user for the source database home.

• Converting a single-instance Oracle Database 23ai to an Oracle RAC 23ai database,
running out of a different Oracle home, and where the host on which the single-instance
database runs is not a node used by the Oracle RAC database.

In this scenario, create a clone image of the single-instance database, and move the clone
image to a host that is one of the nodes used by the Oracle RAC database. Then use
rconfig or the Oracle Enterprise Manager Convert to RAC option, as described in the
preceding scenario.

Converting Databases to Oracle RAC Using Oracle Enterprise Manager
You can use Oracle Enterprise Manager Cloud Control to convert a single-instance database
to an Oracle RAC database.

To use this feature, complete the following steps:

1. Log in to Oracle Enterprise Manager Cloud Control. From the Home page, click the
Targets tab.

2. On the Targets page, click the Databases secondary tab, and click the link in the Names
column of the database to convert to Oracle RAC.

3. On the Database home page, from the Availability menu, select Convert to Cluster
Database.

4. Log in as the database user SYS with SYSDBA privileges to the database you want to
convert, and click Next.

5. On the Convert to Cluster Database: Cluster Credentials page, provide a user name and
password for the oracle user and password of the target database to convert. If the target
database is using Oracle ASM, then also provide the SYSASM user and password, and
then click Next.

6. On the Hosts page, select the host nodes in the cluster to be cluster members in the
installed Oracle RAC database. When you have completed your selection, click Next.

7. On the Convert to Database: Options page, select whether you want to use the existing
listener and port number, or specify a new listener and port number for the cluster. Also
provide a prefix for cluster database instances on the cluster.

When you have finished entering information, click Next, or click Help if you need
assistance in deciding how to enter information.

8. On the Convert to Cluster Database: Shared Storage page, either select the option to use
your existing shared storage area, or select the option to have your database files copied

Chapter 15
Preparing to Convert with rconfig and Oracle Enterprise Manager

15-14

to a new shared storage location. Also, decide if you want to use your existing fast
recovery area or copy your recovery files to a new fast recovery area using files managed
by Oracle Database.

If you use Oracle ASM, then Oracle recommends that you place the data files and the
recovery files in separate failure groups. A failure group is defined by shared hardware,
such as a controller shared between two disks, or two disks that are on the same spindle.
If two disks share hardware that could fail, making both disks unavailable, then theses
disks are said to be in the same failure group. If you do not use Oracle ASM, then Oracle
recommends that the data files and the recovery files are stored in separate locations, for
example, separate Oracle ASM failure groups, so that a hardware failure does not affect
availability.

When you have finished entering information, click Next, or click Help if you need
assistance in deciding how to enter information.

9. On the Convert to Cluster Database: Review page, review the options you have selected.
Click Submit Job to proceed with the conversion. To change any options you have
selected, click Back. To cancel the conversion, click Cancel.

10. On the Confirmation page, click View Job to check the status of the conversion.

Related Topics

• Oracle Database Upgrade Guide

Converting Databases to Oracle RAC Using rconfig
You can use the command-line utility rconfig to convert a single-instance database to an
Oracle RAC database, or to convert it to an Oracle RAC One Node database, depending on
the values you provide in the ConvertToRAC.xml file.

Note:

Starting with Oracle Database 23ai, the RCONFIG utility is deprecated.

1. As the oracle user, navigate to the directory $ORACLE_HOME/assistants/rconfig/
sampleXMLs, and open the file ConvertToRAC.xml using a text editor, such as vi.

2. Review the ConvertToRAC.xml file, and modify the parameters as required for your system.
The XML sample file contains comments that provide instructions for how to configure the
file. Do NOT put passwords in the XML file. Instead, let the rconfig utility prompt you to
enter the passwords.

Caution:

Set the convert option Convert verify="ONLY" to perform a test conversion to
ensure that a conversion can be completed successfully.

When you have finished modifying parameters, save the file with a name of the format
file_name.xml. Make a note of the name you select.

Chapter 15
Converting Databases to Oracle RAC Using rconfig

15-15

3. Navigate to the directory $ORACLE_HOME/bin, and use the following command to run the
command rconfig, where input.xml is the name of the XML input file you configured in
Step 2:

rconfig input.xml

For example, if you create an input XML file called convert.xml, then you would use the
following command

$./rconfig convert.xml

The rconfig utility will prompt you for the necessary passwords.

Note:

The Convert verify option in the ConvertToRAC.xml file has three options:

• Convert verify="YES": rconfig performs checks to ensure that the prerequisites
for single-instance to Oracle RAC conversion have been met before it starts
conversion

• Convert verify="NO": rconfig does not perform prerequisite checks, and starts
conversion

• Convert verify="ONLY" rconfig only performs prerequisite checks; it does not
start conversion after completing prerequisite checks

If performing the conversion fails, then use the following procedure to recover and reattempt
the conversion:

1. Attempt to delete the database using the DBCA delete database option.

2. Restore the source database.

3. Review the conversion log, and fix any problems reported by rconfig that may have
caused the conversion failure. The rconfig log files are under the rconfig directory
in $ORACLE_BASE/cfgtoollogs.

4. Reattempt the conversion.

Related Topics

• Oracle Database Upgrade Guide

Example of rconfig XML Input Files for ConvertToRAC
Review this example of an XML ConvertToRAC input file for the rconfig utility.

Note:

Do not include passwords in the XML file. Instead, let the rconfig utility prompt you
for the passwords.

Chapter 15
Example of rconfig XML Input Files for ConvertToRAC

15-16

Example 15-1 Example rconfig ConvertToRAC XML File for Administrator-Managed
Databases

This example shows an XML input file to convert a single-instance database with Oracle ASM
to an administrator-managed Oracle RAC database.

<?xml version="1.0" encoding="UTF-8"?>
<n:RConfig xmlns:n="http://www.example.com/rconfig"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/rconfig rconfig.xsd">
 <n:ConvertToRAC>
<!-- Verify does a precheck to ensure all pre-requisites are met, before the
 conversion is attempted. Allowable values are: YES|NO|ONLY -->
 <n:Convert verify="YES">
<!--Specify current OracleHome of non-rac database for SourceDBHome -->
 <n:SourceDBHome>/oracle/product/12.1.0/db_1</n:SourceDBHome>
<!--Specify OracleHome where the rac database should be configured. It can be
same
 as SourceDBHome -->
 <n:TargetDBHome>/oracle/product/12.1.0/db_1</n:TargetDBHome>
<!--Specify SID of non-rac database and credential. User with sysdba role is
 required to perform conversion -->
 <n:SourceDBInfo SID="sales">
 <n:Credentials>
 <n:User>sys</n:User>
 <n:Role>sysdba</n:Role>
 </n:Credentials>
 </n:SourceDBInfo>
<!--Specify the list of nodes that should have rac instances running for the
Admin
 Managed Cluster Database. LocalNode should be the first node in this
nodelist.
 -->
 <n:NodeList>
 <n:Node name="node1"/>
 <n:Node name="node2"/>
 </n:NodeList>
<!--Specify RacOneNode along with servicename to convert database to RACOne
Node -->
<!--n:RacOneNode servicename="salesrac1service"/-->
<!--Instance Prefix tag is optional starting with 11.2. If left empty, it is
 derived from db_unique_name.-->
 <n:InstancePrefix>sales</n:InstancePrefix>
<!-- Listener details are no longer needed starting 11.2. Database is
registered
 with default listener and SCAN listener running from Oracle Grid
Infrastructure
 home. -->
<!--Specify the type of storage to be used by rac database. Allowable values
are
 CFS|ASM. The non-rac database should have same storage type. ASM credentials
are not needed for conversion. -->
 <n:SharedStorage type="ASM">
<!--Specify Database Area Location to be configured for rac database.If this
field
 is left empty, current storage will be used for rac database. For CFS, this

Chapter 15
Example of rconfig XML Input Files for ConvertToRAC

15-17

field will have directory path. -->
 <n:TargetDatabaseArea>+ASMDG</n:TargetDatabaseArea>
<!--Specify Fast Recovery Area to be configured for rac database. If this
field is
 left empty, current recovery area of non-rac database will be configured for
rac
 database. If current database is not using recovery Area, the resulting rac
 database will not have a recovery area. -->
 <n:TargetFlashRecoveryArea>+ASMDG</n:TargetFlashRecoveryArea>
 </n:SharedStorage>
 </n:Convert>
 </n:ConvertToRAC>
</n:RConfig>

Postconversion Steps
After completing the conversion of your single instance database to an Oracle Real Application
Clusters (Oracle RAC) database, follow these recommendations for configuring Oracle RAC
environments.

After conversion, Oracle recommends that you follow these guidelines:

• Follow the recommendations for using load balancing and Application Failover using AC or
TAC as described in a previous chapter. Use the ORAchk utility to perform Oracle
database health check.

• Use locally managed tablespaces instead of dictionary managed tablespaces to reduce
contention and manage sequences in Oracle RAC as described in Oracle Database
Administrator’s Guide

• Follow the guidelines for using automatic segment space management as described in
Oracle Database Administrator’s Guide

The buffer cache and shared pool capacity requirements in Oracle RAC are slightly greater
than the requirements for single-instance Oracle databases. Therefore, you should increase
the size of the buffer cache by about 10 percent, and the size of the shared pool by about 15
percent.

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

• About Locally Managed Tablespaces

• Specifying Segment Space Management in Locally Managed Tablespaces

Chapter 15
Postconversion Steps

15-18

A
Server Control Utility Reference

Use the Server Control Utility (SRVCTL) to manage Oracle Real Application Clusters (Oracle
RAC) configuration information.

Note:

SRVCTL commands specific to Oracle Grid Infrastructure administration operations
are documented in Oracle Clusterware Administration and Deployment Guide

• SRVCTL Usage Information
SRVCTL is installed on each node in a cluster by default. To use SRVCTL, log in to the
operating system of a node and enter the SRVCTL command and its parameters in case-
sensitive syntax.

• Specifying Command Parameters as Keywords Instead of Single Letters
The use of single letter commands is deprecated. Oracle recommends that you use full
command words with SRVCTL.

• Character Set and Case Sensitivity of SRVCTL Object Values
SRVCTL interacts with many different types of objects. The character set and name length
limitations, and whether the object name is case sensitive, can vary between object types.

• Summary of Tasks for Which SRVCTL Is Used
Use SRVCTL to manage databases, instances, cluster databases, cluster database
instances, Oracle ASM instances and disk groups, services, listeners, or other clusterware
resources.

• Using SRVCTL Help
Learn about how to use context sensitive help with SRVCTL commands.

• SRVCTL Privileges and Security
To use SRVCTL to change your Oracle RAC database configuration, log in to the operating
system as the software owner of the home that you want to manage.

• Additional SRVCTL Topics
You can use SRVCTL to manage Oracle-supplied resources, but Oracle strongly advises
you to follow the guidelines provided here.

• Deprecated SRVCTL Subprograms or Commands
Oracle recommends that you use alternatives for several SRVCTL commands and
parameters deprecated with Oracle Database 12c.

• SRVCTL Command Reference
Use this comprehensive list of SRVCTL commands to manage Oracle Real Application
Clusters (Oracle RAC) environments.

SRVCTL Usage Information
SRVCTL is installed on each node in a cluster by default. To use SRVCTL, log in to the
operating system of a node and enter the SRVCTL command and its parameters in case-
sensitive syntax.

A-1

• Use the version of SRVCTL that is provided with the current Oracle Database release from
the Oracle home of the database that you are managing. The version of SRVCTL must be
the same as the version of the object (listeners, Oracle ASM instances, Oracle Database,
Oracle Database instances, and Oracle Database services) being managed.

• SRVCTL does not support concurrent processing of commands on the same object.
Therefore, run only one SRVCTL command at a time for each database, service, or other
object.

• When specifying a comma-delimited list as part of a SRVCTL command, there should not
be any spaces between the items in the list.

When you specify a comma-delimited list in a Windows environment, you must enclose the
list in double quotation marks (""). You can enclose a comma-delimited list in double
quotation marks in a Linux or UNIX environment but they will be ignored.

• If you are entering a SRVCTL command, and you want to continue the input on a new line,
then you can use the operating system continuation character. In Linux, this is the
backslash (\) symbol.

• A SRVCTL command that produces no output is a successful command. Not all SRVCTL
commands return a message when it completes, successfully. However, if a SRVCTL
command fails, then it always returns an error message.

• SRVCTL returns 0 on success, 1 on failure, and 2 on warnings. Some commands, such as
start, stop, enable, and disable, can return 2 for a warning when the request would not
change anything. In other words, the object of the command is already started, already
stopped, already disabled, and so on. In warning cases, SRVCTL also prints a message
about what was already done.

• You can use the -eval parameter with several SRVCTL commands. This parameter, when
you use it, enables you to simulate running a command without making any changes to the
system. SRVCTL returns output that informs you what will happen if you run a particular
command. For example, to know what might happen if you relocate a server:

The -eval parameter is available with the following commands:

– srvctl add database
– srvctl modify database
– srvctl relocate service
– srvctl start database
– srvctl start service
– srvctl stop database
– srvctl stop service

Specifying Command Parameters as Keywords Instead of Single
Letters

The use of single letter commands is deprecated. Oracle recommends that you use full
command words with SRVCTL.

In releases earlier than Oracle Database 12c, the SRVCTL command-line interface used single
letter parameters. However, single letter parameters impose a limit on the number of unique
parameters available for use with SRVCTL commands. SRVCTL command parameters in

Appendix A
Specifying Command Parameters as Keywords Instead of Single Letters

A-2

current Oracle Database releases use full words instead of single letters, such as -
multicastport and -subdomain.

To support backward compatibility, you can use a mix of single-letter parameters and new
keyword parameters. New parameters introduced with keywords can be used with single letter
parameters.

Note:

The use of single letter parameters are deprecated. Oracle recommends that you use
the keyword parameters, so that you avoid using the same letter to implement
different functionality, depending on the command.

You can obtain the single-letter equivalents, where applicable, by adding the -
compatible parameter after the -help parameter.

Character Set and Case Sensitivity of SRVCTL Object Values
SRVCTL interacts with many different types of objects. The character set and name length
limitations, and whether the object name is case sensitive, can vary between object types.

Table A-1 String Restrictions for SRVCTL Object Names

Object
Type

Character Set Limitations Case
Sensitive?

Maximum Length

db_domain Alpha-numeric characters, underscore
(_), and number sign (#)

No 128 characters

db_unique
_name

Alpha-numeric characters, underscore
(_), number sign (#), and dollar sign
($); the first 8 characters must be
unique because those characters are
used to form instance names

No 30 characters but the first 12
characters must be unique relative to
any other database in the same
cluster

pdb_name Alpha-numeric characters and
underscore (_); the first character
must be an alphabet character

No 30 characters

diskgroup
_name

Naming disk groups have the same
limitations as naming other database
objects.

No (all
names are
converted
to
uppercase)

30 characters

instance_
name

Alphanumeric characters Depends
on the
platform

15 characters

listener_
name

Alphanumeric characters Depends
on the
platform

15 characters

node_name Alphanumeric characters No 15 characters

scan_name The first character must be an
alphabetic character

No 15 characters

Appendix A
Character Set and Case Sensitivity of SRVCTL Object Values

A-3

Table A-1 (Cont.) String Restrictions for SRVCTL Object Names

Object
Type

Character Set Limitations Case
Sensitive?

Maximum Length

service_n
ame

Alphanumeric characters, underscore
(_), number sign (#), period (.), and
dollar sign ($); the name cannot begin
with a period, nor contain single
quotation marks ('')

No 250 characters

volume_na
me

Alphanumeric characters; dashes (-)
are not allowed and the first character
must be an alphabetic character.

No 11 characters

Summary of Tasks for Which SRVCTL Is Used
Use SRVCTL to manage databases, instances, cluster databases, cluster database instances,
Oracle ASM instances and disk groups, services, listeners, or other clusterware resources.

• Cluster Database Configuration Tasks

Tasks Commands

Add, modify, and delete
cluster database
configuration information

srvctl add database
srvctl modify database
srvctl remove database

Add an instance to or
delete an instance from the
configuration of a cluster
database

srvctl add instance
srvctl remove instance

Add a service to or delete a
service from the
configuration of a cluster
database

srvctl add service
srvctl remove service

Move instances and
services in a cluster
database configuration and
modify service
configurations

srvctl relocate database
srvctl relocate service
srvctl modify instance
srvctl modify service

Set and unset the
environment for an
instance or service in a
cluster database
configuration

srvctl modify instance
srvctl modify service

Set and unset the
environment for an entire
cluster database in a
cluster database
configuration

srvctl setenv database
srvctl unsetenv database

• General Cluster Database Administration Tasks

Appendix A
Summary of Tasks for Which SRVCTL Is Used

A-4

Tasks Commands

Start and stop cluster
databases

srvctl start database
srvctl stop database

Start and stop cluster
database instances

srvctl start instance
srvctl stop instance

Start, stop, and relocate
cluster database services

srvctl start service
srvctl stop service
srvctl relocate service

Obtain statuses of cluster
databases, cluster
database instances, or
cluster database services

srvctl status database
srvctl status instance
srvctl status service

• Node-Level Tasks

Tasks Commands

Administering VIPs srvctl add vip
srvctl config vip
srvctl disable vip
srvctl enable vip
srvctl getenv vip
srvctl modify vip
srvctl relocate vip
srvctl remove vip
srvctl setenv vip
srvctl start vip
srvctl status vip
srvctl stop vip
srvctl unsetenv vip

Administering node
applications

srvctl add nodeapps
srvctl disable nodeapps
srvctl enable nodeapps
srvctl getenv nodeapps
srvctl modify nodeapps
srvctl remove nodeapps
srvctl setenv nodeapps
srvctl unsetenv nodeapps

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Using SRVCTL Help
Learn about how to use context sensitive help with SRVCTL commands.

Appendix A
Using SRVCTL Help

A-5

To see help for all SRVCTL commands, from the command line enter:

srvctl -help

To see the command syntax and a list of parameters for each SRVCTL command, from the
command line enter:

srvctl command (or verb) object (or noun) -help

When you request online help for a command using -help, SRVCTL prints the full words for
each parameter. You can obtain the single-letter equivalents, where applicable, by adding the -
compatible parameter after the -help parameter. For example:

$ srvctl config database -help -compatible

The preceding command prints usage information for the srvctl config database command,
listing all parameters as full words followed by their single-letter equivalents in parentheses,
where applicable.

To see the SRVCTL version number enter:

$ srvctl -version

SRVCTL Privileges and Security
To use SRVCTL to change your Oracle RAC database configuration, log in to the operating
system as the software owner of the home that you want to manage.

For example, if different users installed Oracle Database and the Oracle Grid Infrastructure,
then log in as the database software owner (for example, ora_db) to manage databases and
log in as the Oracle Grid Infrastructure software owner (for example, ora_asm) to manage the
Oracle ASM instances.

Users who are members of the OSDBA operating system group can start and stop the
database. To stop and start an Oracle ASM instance, you must be a member of the OSASM
operating system group.

To create or register objects such as listeners, Oracle Notification Services, and services, you
must be logged in to the operating system as the software owner of the Oracle home. The
objects you create or register for that Oracle home will run under the user account of the owner
of the Oracle home. Databases run as the database installation owner of the home from which
they run.

To perform srvctl add operations on any object, you must be logged in as the Oracle account
owner of the home on which the object runs.

For some SRVCTL commands, to run the commands on Linux and Unix systems, you must be
logged in as root, and on Windows systems, you must be logged in as a user with
Administrator privileges. In this appendix, those commands are preceded by the root prompt
(#) in the command examples.

Appendix A
SRVCTL Privileges and Security

A-6

Note:

Oracle recommends that you run the SRVCTL commands, which need to be run as
the root user, from the Oracle Grid Infrastructure home because it is secured with
the root ownership.

Additional SRVCTL Topics
You can use SRVCTL to manage Oracle-supplied resources, but Oracle strongly advises you
to follow the guidelines provided here.

• Use SRVCTL to manage Oracle-supplied resources such as listener, instances, disk
groups, and networks, and CRSCTL for managing Oracle Clusterware and its resources.

Caution:

Oracle strongly discourages you from using CRSCTL to directly manipulate
Oracle-supplied resources (resources whose names begin with ora). Making
manual changes to Oracle resources using CRSCTL can adversely affect the
cluster configuration.

• Although you may be able to cancel running SRVCTL commands by pressing the Control-
C keys, Oracle strongly advises that you do not attempt to do this, because you can
corrupt your configuration data by doing this.

Do not to attempt to terminate SRVCTL in this manner.

Deprecated SRVCTL Subprograms or Commands
Oracle recommends that you use alternatives for several SRVCTL commands and parameters
deprecated with Oracle Database 12c.

• Single Character Parameters Deprecated for all SRVCTL Commands
Single-character parameters were deprecated in Oracle Database 12c. Use the full
keyword for each parameter. Refer to the information here to understand how to update
scripts using single-character parameters.

• Miscellaneous SRVCTL Commands and Parameters
If you have scripts dating from Oracle Database 12.2 or earlier releases, then Oracle
recommends that you review the deprecated parameters and update your usage to current
forms.

Single Character Parameters Deprecated for all SRVCTL Commands
Single-character parameters were deprecated in Oracle Database 12c. Use the full keyword
for each parameter. Refer to the information here to understand how to update scripts using
single-character parameters.

Oracle recommends that you use the full keyword for each SRVCTL parameter. To support
older tools and scripts that still use single-character parameters, the current version of
SRVCTL continues to support both single-character parameters and full keyword parameters.
However, deprecated functionality can be desupported in a future release.

Appendix A
Additional SRVCTL Topics

A-7

The command reference topics for SRVCTL show the keywords for each SRVCTL command.
The following table lists the deprecated single-character parameters.

Table A-2 Deprecated Single-Character Parameters for SRVCTL Commands

Single
Letter

Long Form Values Description Related Commands

A address {VIP_name | IP}/
netmask/ [if1[|
if2...]]

VIP address
specification for node
applications

Node applications, VIP,
network, Listener, SCAN
VIP, and SCAN listener
commands

a all none All resources of that kind srvctl config
database
Common

a diskgroup diskgroup_list Comma-delimited list of
Oracle ASM disk groups

Database, instance,
Oracle ASM, disk group,
and file system
commands

a detail None Print detailed
configuration information

Common

a available available_list A comma-delimited list
of available instances

Service commands

a abort None Stop failed online
relocation

Relocate database

a viponly None Display VIP
configuration

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

B rlbgoal {NONE|
SERVICE_TIME|
THROUGHPUT}

The runtime load
balancing goal of a
service

Service commands

c currentnode current_node Node name from which
to relocate the service

Service commands

c cardinality {UNIFORM|
SINGLETON}

Whether the service
should run on every
active server
(UNIFORM) or only one
server (SINGLETON)

Service commands

c dbtype type Type of database: Oracle
RAC One Node, Oracle
RAC, or single instance

Database, instance,
Oracle ASM, disk group,
and file system
commands

d db or
database

db_unique_name Database unique name Common

d device volume_device Volume device path Database, instance,
Oracle ASM, disk group,
and file system
commands

d domain None Display subdomain
served by GNS

OC4J, home, CVU, and
GNS commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-8

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL Commands

Single
Letter

Long Form Values Description Related Commands

e emport em_port_number Local listen port for
Oracle Enterprise
Manager

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

e failovertyp
e

{NONE|SESSION
BASIC|
TRANSACTION}

The failover type for a
service

Service commands

e server server_list Candidate server list for
Oracle RAC One Node
database

Database, instance,
Oracle ASM, disk group,
and file system
commands

f force None Force remove Common

g diskgroup diskgroup_name Disk group name File system, Diskgroup
commands

h help None None Common

i instance instance_name
instance_list

Instance name prefix for
administrator-managed
Oracle RAC One Node
database

A comma-delimited list
of instance names

Database, instance,
Oracle ASM, disk group,
and file system
commands

I ip ip_address VIP address on which
GNS is to listen

OC4J, home, CVU, and
GNS commands

i oldinst instance_name The old instance name Service commands

i scannumber scan_ordinal
_number

Ordinal number of the IP
address for the SCAN

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

i vip vip_name or
"vip_name_list"

VIP names Node applications, GNS,
VIP, network, listener,
SCAN VIP, and SCAN
listener commands

j acfspath acfs_path_list Comma-delimited list of
Oracle ACFS paths
where the dependency
on the database will be
set

Database, instance,
Oracle ASM, disk group,
and file system
commands

j clbgoal {SHORT|LONG} The connection load
balancing goal for a
service

Service commands

k netnum network_number The network number Service commands

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

OC4J, home, CVU, and
GNS commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-9

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL Commands

Single
Letter

Long Form Values Description Related Commands

l list List all records in GNS OC4J, home, CVU, and
GNS commands

l listener listener_name The name of a listener ASM commands

l loglevel log_level Specify the level (0-6) of
logging that GNS should
run with

OC4J, home, CVU, and
GNS commands

l onslocalpor
t

port_number Oracle Notification
Service listening port for
local client connections

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

l role service_role Comma-delimited list of
server roles within
double quotation marks
(""), where each role is
one of PRIMARY,
PHYSICAL_STANDBY,
LOGICAL_STANDBY, or
SNAPSHOT_STANDBY

Service commands

m domain domain_name The domain for the
database

Database, instance,
Oracle ASM, disk group,
and file system
commands

m failovermet
hod

{NONE|BASIC} The failover method of a
service

Service commands

m multicastpo
st

 The port on which the
GNS daemon is listening
for multicast requests

OC4J, home, CVU, and
GNS commands

m path mountpoint_path Mountpoint path Database, instance,
Oracle ASM, disk group,
and file system
commands

n name Advertise a name
through GNS using the
given address

OC4J, home, CVU, and
GNS commands

n node node_name The name of a specific
node

Common

n nodes node_list A comma-delimited list
of node names

File system commands

n dbname database_name The database name
(DB_NAME), if different
from the unique name
specified by the -db
parameter

Database, instance,
Oracle ASM, disk group,
and file system
commands

n scanname scan_name Fully-qualified SCAN
name (includes the
domain)

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-10

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL Commands

Single
Letter

Long Form Values Description Related Commands

n servers server_list A comma-delimited list
of candidate server
names

Service commands

n targetnode node_name Node name to which to
relocate the service

Service commands

o oraclehome oracle_home $ORACLE_HOME path Database commands

p endpoints [TCP:]port
_number[/IPC:
key][/NMP:pipe
_name][/TCPS:
s_port][/SDP:
port]

SCAN listener endpoints Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

p port The port which the GNS
daemon uses to
communicate with the
DNS server

OC4J, home, CVU, and
GNS commands

p rmiport port_number OC4J RMI port number OC4J, home, CVU, and
GNS commands

P tafpolicy {NONE|BASIC} TAF policy specification Service commands

p spfile spfile_location Server parameter file
path

Database, instance,
Oracle ASM, disk group,
and file system
commands

q notificatio
n

{TRUE|FALSE} Whether FAN is enabled
for OCI connections

Service commands

q query Query GNS for the
records belonging to a
name

OC4J, home, CVU, and
GNS commands

r preferred preferred_list A comma-delimited list
of preferred instances

Service commands

r onsremotepo
rt

port_number Oracle Notification
Service listening port for
connections from remote
hosts

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

r relocate Relocate the VIP Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

r revert None Remove target node of
failed online relocation
request from the
candidate server list of
administrator-managed
Oracle RAC One Node
database

Relocate database

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-11

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL Commands

Single
Letter

Long Form Values Description Related Commands

r role role_type Role of the standby
database: PRIMARY,
PHYSICAL_STANDBY,
LOGICAL_STANDBY, or
SNAPSHOT_STANDBY

Database, instance,
Oracle ASM, disk group,
and file system
commands

s onsonly Display Oracle
Notification Service
daemon configuration

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

s skip None Skip checking the ports Listener, SCAN, and
SCAN listener.

s statfile file_name The file path of the
state_file created by
a previously run srvctl
stop home command

OC4J, home, CVU, and
GNS commands

s status Display the status of
GNS

OC4J, home, CVU, and
GNS commands

S subnet subnet/net
_mask/[if1[|
if2...]]

Network address
specification for a
network

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

s service service_name
service_name_list

The name of a service

A comma-delimited list
of service names

Service commands

s startoption start_options Startup options for the
database (mount, open,
read only)

Database, instance,
Oracle ASM, disk group,
and file system
commands

t checkinterv
al

time_interval Interval in minutes
between checks

OC4J, home, CVU, and
GNS commands

t edition edition_name The initial session
edition of a service

Service commands

t envs "name_list" A list of environment
variables

Common

t namevals "name= value,..." Names and values of
environment variables

Common

T nameval "name=value" Name and value of a
single environment
variable

Common

t update instance_name The new instance name Service commands

t remoteserve
rs

host_name[:
port_number]
[,host_name[:
port_number]...]

List of remote host name
and port number pairs
for Oracle Notification
Service daemons
outside this cluster

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-12

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL Commands

Single
Letter

Long Form Values Description Related Commands

t stopoption stop_options Stop options for the
database (NORMAL,
TRANSACTIONAL,
IMMEDITATE, or ABORT)

Database, instance,
Oracle ASM, disk group,
and file system
commands

t toversion target_version Version to which you are
downgrading

Database, instance,
Oracle ASM, disk group,
and file system
commands

u nettype network_type The network server type,
which can be STATIC,
DHCP, or MIXED

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

u newinst None Add a new instance to
the service configuration

Service commands

u update Update SCAN listeners
to match the number of
SCAN VIPs

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

u user oracle_user Oracle user or other
authorized user to mount
and unmount file
systems

Database, instance,
Oracle ASM, disk group,
and file system
commands

v verbose Verbose output Common

v volume volume_name Name of a volume Database, instance,
Oracle ASM, disk group,
and file system
commands

V versions Common

w failoverdel
ay

number Failover delay Service commands

w nettype network_type The network server type,
which can be STATIC,
DHCP, or MIXED

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

w timeout timeout Online relocation timeout
in minutes

Database, instance,
Oracle ASM, disk group,
and file system
commands

x dtp {TRUE | FALSE} Whether to enable
distributed transaction
processing

Service commands

x node node_name Node name (use this
parameter only with
noncluster databases)

Common

y noprompt Suppress the
confirmation prompt

Common

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-13

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL Commands

Single
Letter

Long Form Values Description Related Commands

y policy {AUTOMATIC |
MANUAL}

Management policy for
the resource

Database, instance,
Oracle ASM, disk group,
file system, and service
commands

z failoverret
ry

number Number of failover
retries

Service commands

z rmdepondisk To remove a database's
dependency upon disk
groups

Database, instance,
Oracle ASM, disk group,
and file system
commands

Miscellaneous SRVCTL Commands and Parameters
If you have scripts dating from Oracle Database 12.2 or earlier releases, then Oracle
recommends that you review the deprecated parameters and update your usage to current
forms.

The following command parameters were deprecated in Oracle Database 12c:

Table A-3 Deprecated Commands and Parameters for SRVCTL

Command Deprecated Parameters

srvctl modify asm -node node_name
srvctl modify instance -z

Instead, use the -node option with the value set to ""
srvctl modify gns [-ip ip_address] [-advertise host_name -address address]

[-delete host_name -address address] [-createalias name -
alias alias] [-deletealias alias]
Use the srvctl update gns command instead.

srvctl * oc4j The oc4j noun has been deprecated. SRVCTL still accepts the oc4j
noun until it is desupported.

srvctl add service The PRECONNECToption with the -tafpolicy parameter is deprecated.

srvctl modify service The -failovermethod {NONE | BASIC} is deprecated.

The PRECONNECToption with the -tafpolicy parameter is deprecated.

SRVCTL Command Reference
Use this comprehensive list of SRVCTL commands to manage Oracle Real Application
Clusters (Oracle RAC) environments.

• About Using SRVCTL Commands
To be able to use SRVCTL commands to obtain the outcome you require, review these
guidelines.

• database Commands
Use commands with the database keyword to manage cluster database.

Appendix A
SRVCTL Command Reference

A-14

• diskgroup Commands
Use commands with the diskgroup keyword to manage Oracle ASM disk groups.

• home Commands
Use commands with the home keyword to start, stop, and obtain the status of all
clusterware resources related to a Home directory.

• instance Commands
Use commands with the instance keyword to add, modify, enable, disable, start, stop,
obtain the status of, and remove database instances.

• listener Commands
Use commands with the listener keyword to add, modify, manage environment variables
for, list the configuration of, enable, disable, start, stop, obtain the status of, and remove
listeners.

• network Commands
Use commands with the network keyword to add, modify, list the configuration of, and
remove a non-default Network.

• nodeapps Commands
Use commands with the nodeapps keyword to add, modify, manage environment variables
for, list the configuration of, enable, disable, start, stop, obtain the status of, and remove
node applications.

• ons Commands
Use commands with the ons keyword to manage only Oracle Notification Service instances
for Oracle Restart.

• pdb Commands
Use commands with the pdb keyword to manage the Pluggable Databases (PDBs) in your
cluster database.

• scan Commands
Use commands with the scan keyword to add, list the configuration of, modify, enable,
disable, start, stop, relocate, obtain the status of, and remove SCAN VIPs.

• scan_listener Commands
Use commands with the scan_listener keyword to add, list the configuration of, modify,
enable, disable, start, stop, relocate, obtain the status of, and remove SCAN listeners.

• service Commands
Use commands with the service keyword to add, modify, list the configuration of, enable,
disable, start, stop, obtain the status of, relocate, and remove services.

• vip Commands
Use commands with the vip keyword to add, manage environment variables for, list the
configuration of, enable, disable, start, stop, obtain the status of, and remove a VIP.

• volume Commands
Use commands with the volume keyword to list the configuration of, enable, disable, start,
stop, obtain the status of, and remove an Oracle ACFS volume.

About Using SRVCTL Commands
To be able to use SRVCTL commands to obtain the outcome you require, review these
guidelines.

SRVCTL commands, object names, and parameters are case-sensitive. Database, instance,
listener, and service names are case insensitive and case preserving. You cannot create

Appendix A
SRVCTL Command Reference

A-15

listener names that differ only in case, such as LISTENER and listener. SRVCTL uses the
following command syntax:

srvctl command object [parameters]

In SRVCTL syntax:

• command is a verb, such as start, stop, or remove
• object (also known as a noun) is the target or object on which SRVCTL performs the

command, such as database or instance. You can also use object abbreviations.

• parameters extend the use of a preceding command combination to include additional
parameters for the command. For example, the -instances parameter indicates that a
comma-delimited list of preferred instance names follows; the -instance parameter only
permits one value and not a list of names. Do not use spaces between the items in a
comma-delimited list.

Note:

If specifying a comma-delimited list in Windows, then you must enclose the list within
double quotation marks ("").

The following table lists the keywords that you can use for the object portion of SRVCTL
commands. You can use either the full name or the abbreviation for each object keyword. The
Purpose column describes the object and the actions that can be performed on that object.

Table A-4 Object Keywords and Abbreviations

Object Keyword Purpose

Database database To add, modify, manage environment variables for, list
the configuration of, enable, disable, start, stop, and
obtain the status of databases, remove configuration
information for or get behavior predictions for a
database, and also to convert, upgrade, downgrade,
and relocate databases

Diskgroup diskgroup To enable, disable, start, stop, obtain the status of,
remove, or get behavior predictions for an Oracle ASM
disk group

Home home To start, stop, or obtain the status of resources running
from a particular Oracle home directory

Instance instance
inst

To add, modify, enable, disable, start, stop, obtain the
status of, update, and remove database instances

Listener listener
lsnr

To add, modify, manage environment variables for, list
the configuration of, enable, disable, start, stop, obtain
the status of, remove, and get behavior predictions for
listeners

Network network To add, modify, list the configuration of, remove and get
behavior predictions for a non-default network
resource.

Note: The node applications object, and the config
and modify commands also manage the default
network

Appendix A
SRVCTL Command Reference

A-16

Table A-4 (Cont.) Object Keywords and Abbreviations

Object Keyword Purpose

Node applications nodeapps To add, modify, manage environment variables for, list
the configuration of, enable, disable, start, stop, obtain
the status of, and remove node applications

Oracle Notification
Service

ons To add, configure, enable, start, obtain the status of,
stop, disable, and remove Oracle Notification Service
instances only for Oracle Restart

Pluggable Database
(PDB)

pdb To add, modify, remove, list the configuration of,
enable, disable, start, stop, and obtain the status of
PDBs

Single client access
name (SCAN)

scan To add, list the configuration of, modify, enable, disable,
start, stop, relocate, remove, obtain the status of, and
get behavior predictions for SCAN VIPs

SCAN listener scan_listener To add, list the configuration of, modify, enable, disable,
start, stop, relocate, obtain the status of, remove, and
get behavior predictions for SCAN listeners

Service service To add, modify, list the configuration of, enable, disable,
start, stop, obtain the status of, relocate, remove, and
get behavior predictions for services

Virtual IP vip To add, manage environment variables for, list the
configuration of, enable, disable, start, stop, obtain the
status of, remove, and get behavior predictions for a
VIP

Volume volume To list the configuration of, enable, disable, start, stop,
obtain the status of, and remove an Oracle ACFS
volume

Note:

SRVCTL commands specific to Oracle Grid Infrastructure administration operations
are documented in CWADD SRVCTL Command Reference

database Commands
Use commands with the database keyword to manage cluster database.

You can add, modify, manage environment variables for, list the configuration of, enable,
disable, start, stop, and obtain the status of databases, and also to upgrade, downgrade, and
remove database configuration information about databases.

• srvctl add database
Adds a database configuration to Oracle Clusterware.

• srvctl config database
Displays the configuration for an Oracle RAC database or lists all configured databases
that are registered with Oracle Clusterware.

• srvctl convert database
Converts a database either to or from an Oracle RAC One Node database.

• srvctl disable database

Appendix A
SRVCTL Command Reference

A-17

• srvctl downgrade database

• srvctl enable database

• srvctl getenv database

• srvctl modify database
Modifies the configuration for a database.

• srvctl predict database

• srvctl relocate database
Initiates the relocation of an Oracle RAC One Node database from one node to another
node.

• srvctl remove database
Removes database configurations.

• srvctl setenv database

• srvctl start database

• srvctl status database
This command displays the current state of the of the database.

• srvctl stop database
Stops a database, its instances, and its services.

• srvctl unsetenv database

• srvctl update database
Updates the specified database to use the new listener endpoints.

• srvctl upgrade database

srvctl add database
Adds a database configuration to Oracle Clusterware.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

Syntax

srvctl add database -db db_unique_name -oraclehome oracle_home
 [-dbtype {RACONENODE | RAC | SINGLE} [-server "server_list"]
 [-instance instance_name] [-timeout timeout]] [-domain domain_name]
 [-spfile spfile] [-pwfile password_file_path]
 [-role {PRIMARY | PHYSICAL_STANDBY | LOGICAL_STANDBY | SNAPSHOT_STANDBY
| FAR_SYNC}]
 [-startoption start_options] [-stopoption stop_options]
 [-startconcurrency start_concurrency] [-stopconcurrency stop_concurrency]
 [-dbname db_name] [-policy {AUTOMATIC | MANUAL | NORESTART | USERONLY |
RANK}]
 [-node node_name] [-diskgroup "disk_group_list"] [-acfspath
"acfs_path_list"]
 [-css_critical {yes | no}] [-memorytarget memory_target] [-maxmemory

Appendix A
SRVCTL Command Reference

A-18

max_memory]
 [-defaultnetnum network_number] [-verbose]

Parameters

Table A-5 srvctl add database Command Parameters

Parameter Description

-db db_unique_name The unique name of the database.

-oraclehome
oracle_home

The path for the Oracle database home directory.

-dbtype {RACONENODE |
RAC | SINGLE}

The type of database you are adding: Oracle RAC One Node, Oracle
RAC, or single instance. The default is RAC. If you specify the -node
node_name parameter, then the -dbtype parameter defaults to SINGLE.

-server server_list List of candidate servers for Oracle RAC One Node databases.

Oracle Clusterware attempts to start Oracle RAC One instance in the
order in which the servers are listed. First, it attempts to start the instance
on the first server in the list. If that does not succeed for any reason, then
Oracle Clusterware attempts to start the instance on the second server
defined in the list, and so on. For example, for a 3-node cluster:
• Use "N3,N2,N1" to start a particular instance preferably on the third

node.
• Use "N3,N1,N2" to make the first node the designated failover node.
• Use "N3,N1" to prevent the second node from being used.

Oracle Clusterware refers to this list every time an instance starts, which
can be either a regular start or a start that is triggered by a failure event.

-instance
instance_name

The instance name prefix for Oracle RAC One Node databases. The
default value for this parameter is the first 12 characters of the global
unique name of the database.

-timeout timeout The online database relocation timeout, in minutes, for Oracle RAC One
Node databases. The default value is 30.

-domain db_domain The domain for the database.

Note: You must use this parameter if you set the DB_DOMAIN initialization
parameter for the database.

-spfile spfile The path name of the database server parameter file.

-pwfile
password_file_path

The full path to the location of the password file.

-role {PRIMARY |
PHYSICAL_STANDBY |
LOGICAL_STANDBY |
SNAPSHOT_STANDBY |
FAR_SYNC}

The role of the database in an Oracle Data Guard configuration. The
default is PRIMARY.

-startoption
start_options

Startup options for the database, such as OPEN, MOUNT, and NOMOUNT.
The default value is OPEN.

Notes:
• For multi-word startup options, such as read only and read

write, separate the words with a space and enclose in double
quotation marks (""). For example, "read only".

• When performing a switchover in an Oracle Data Guard configuration,
the -startoption for a standby database that becomes a primary
database is always set to OPEN after the switchover.

Appendix A
SRVCTL Command Reference

A-19

Table A-5 (Cont.) srvctl add database Command Parameters

Parameter Description

-stopoption
stop_options

Stop options for the database, such as NORMAL, TRANSACTIONAL,
IMMEDIATE, and ABORT.

-startconcurrency
start_concurrency

Number of instances to be started simultaneously, or 0 to disable this
option.

-stopconcurrency
stop_concurrency

Number of instances to be stopped simultaneously, or 0 to disable this
option.

-dbname db_name The name of the database, if it is different from the unique name given by
the -db parameter.

-policy {AUTOMATIC |
MANUAL | NORESTART |
USERONLY | RANK}

The management policy for the database.

• AUTOMATIC (default): The database is automatically restored to its
previous running condition (started or stopped) upon restart of the
database host computer.

• MANUAL: The database is never automatically restarted upon restart
of the database host computer. A MANUAL setting does not prevent
Oracle Clusterware from monitoring the database while it is running
and restarting it if a failure occurs.

• NORESTART: Similar to the MANUAL setting, the database is not
automatically restarted upon restart of the database host computer. A
NORESTART setting, however, does not restart the database, even if a
failure occurs, unless it must be started for dependencies, such as
services or PDBs.

• USERONLY: The database can only be restarted by user command,
not as a result of any other reason (auto-start, start by dependency,
node failure, and so on.)

• RANK: The database won't be restarted when the Oracle Clusterware
stack is restarted unless it is restarted by start dependencies of its
PDBs that are started according to RANK. For example, 2 CDBs have
policy set to RANK and their PDBs have policy set to RESTART. If a
PDB of CDB1 has a rank of 3 and a PDB in CDB2 has a rank of 2,
and if there are only enough resources to start one CDB, then CDB1
will be started by dependency when its PDB is started. CDB2 is not
started because its PDB has a lower rank number.

-node node_name The node name on which you want to register a noncluster, or single
instance, Oracle database.

Note: This parameter can be used only with Oracle Clusterware.

-diskgroup
"disk_group_list"

A comma-delimited list of Oracle Automatic Storage Management (Oracle
ASM) disk groups if database uses Oracle ASM storage.

Appendix A
SRVCTL Command Reference

A-20

Table A-5 (Cont.) srvctl add database Command Parameters

Parameter Description

-acfspath
"acfs_path_list"

A single Oracle Advanced Cluster File System (Oracle ACFS) path or a
comma-delimited list of Oracle ACFS paths enclosed in double quotation
marks ("") where the database's dependency is set.

Use this parameter to create dependencies on Oracle ACFS file systems
other than ORACLE_HOME, such as for when the database uses
ORACLE_BASE on a file system that is different from the ORACLE_HOME file
system.

Note:

This parameter is available only on the
platforms on which Oracle ACFS is
supported.

-css_critical {YES |
NO}

You can add weight to a service by setting this parameter to YES. In the
event of a node failure within the cluster, Oracle Clusterware will evict the
node with the least amount of weight, ensuring that critical services
remain available.

-memorytarget
memory_target

The target memory size, in MB, to be allocated for the database. The
default is 0.

-maxmemory max_memory The maximum memory size, in MB, to be allocated for the resource. If you
specify -memorytarget but not -maxmemory, then -maxmemory will
default to 0. Both -maxmemory and -memorytarget are validated as long
as -memorytarget is less than or equal to -maxmemory.

-defaultnetnum
network_number

Specify a network number (an integer) to which services will default in the
event you do not specify a network number when you add the service.
The number must match the value of the -netnum parameter you
specified when you added the network.

Examples

This example shows how to add a database named crm.example.com in a specific Oracle
Home directory.

$ srvctl add database -db crm -oraclehome /u01/oracle/product/23ai/mydb
-domain example.com

srvctl config database
Displays the configuration for an Oracle RAC database or lists all configured databases that
are registered with Oracle Clusterware.

Syntax

srvctl config database [-db db_unique_name] [-all] [-verbose]

Appendix A
SRVCTL Command Reference

A-21

Parameters

Table A-6 srvctl config database Command Parameters

Parameter Description

-db db_unique_name
Unique name for the database. If you do not specify this parameter, then
the utility displays the configuration of all database resources.

-all
Print detailed configuration information.

-verbose
Display verbose output.

Example

This command returns output similar to the following:

$ srvctl config database -d main4

Database unique name: main
Database name:
Oracle home: /ade/mjkeenan_main4/oracle
Oracle user: mjkeenan
Spfile:
Password file:
Domain:
Start options: open
Stop options: immediate
Database role: PRIMARY
Management policy: AUTOMATIC
Disk Groups:
Mount point paths:
Services: test
Type: RAC
Start concurrency:
Stop concurrency:
OSDBA group: dba
OSOPER group: oper
Database instances: main41,main42
Configured nodes: mjkeenan_main4_0,mjkeenan_main4_1
CSS critical: no
CPU count: 0
Memory target : 0
Maximum memory: 0
CPU cap: 0
Database is administrator managed

Appendix A
SRVCTL Command Reference

A-22

srvctl convert database
Converts a database either to or from an Oracle RAC One Node database.

Syntax

Use this command with one of the following syntax models:

srvctl convert database -db db_unique_name -dbtype RACONENODE
 [-instance instance_name] [-timeout timeout]

srvctl convert database -db db_unique_name -dbtype RAC [-node node_name]

Parameters

Table A-7 srvctl convert database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name for the database.

Note: If you specify a noncluster database, then command returns an
error instructing you to first convert the noncluster database to Oracle
RAC or Oracle RAC One Node.

-dbtype RACONENODE |
RAC

Specify the type of database to which you are converting, either Oracle
RAC One Node or Oracle RAC.

Note: If there is an ongoing or failed online database relocation, then the
command returns an error instructing you to first complete or stop the
online database relocation and then rerun the command.

-instance
instance_name

Optionally, you can specify an instance name prefix for Oracle RAC One
Node databases. The default value for this parameter is the first 12
characters of the global unique name of the database.

Notes:
• You can use this parameter only when converting from an Oracle

RAC database to an Oracle RAC One Node database.
• In order for the converted instance to come online, you must restart

the database using the srvctl stop/start database commands.

-timeout timeout Optionally, you can specify online database relocation timeout, in minutes,
for Oracle RAC One Node databases. The default is 30.

-node node_name Optionally, you can specify the name of the node for an administrator-
managed Oracle RAC database. The default is the first candidate.

Note: If you do not specify a node name or you specify a node name
where the database is not running, then the command returns an error
instructing you specify the correct node.

Example

An example of this command is:

$ srvctl convert database -db myDB -dbtype RACONENODE -instance myDB3

Appendix A
SRVCTL Command Reference

A-23

srvctl disable database
Disables a running database.
If the database is a cluster database, then its instances are also disabled.

Syntax

srvctl disable database -db db_unique_name [-node node_name]

Parameters

Table A-8 srvctl disable database Command Parameters

Parameter Description

-db db_unique_name Specify the name of the database you want to disable.

-node node_name Optionally, you can specify a node on which you want to disable the
database.

Note: You can only use this parameter only with Oracle Clusterware.

Example

The following example disables the database mydb1:

$ srvctl disable database -db mydb1

srvctl downgrade database
Downgrades the configuration of a database and its services from its current version to a
specific lower version.

Syntax

srvctl downgrade database -db db_unique_name -oraclehome Oracle_home
 -targetversion to_version

Parameters

Table A-9 srvctl downgrade database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to downgrade.

-oraclehome
Oracle_home

Specify the path to the Oracle home.

-targetversion
to_version

Specify the database version to which you want to downgrade.

srvctl enable database
Enables a cluster database and its instances.

Appendix A
SRVCTL Command Reference

A-24

Syntax

srvctl enable database -db db_unique_name [-node node_name]

Parameters

Table A-10 srvctl enable database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to enable.

-node node_name Optionally, you can specify the name of the node on which the database
resource resides that you want to enable.

Note: You can only use this parameter with Oracle Clusterware.

Example

The following example enables a database named mydb1:

$ srvctl enable database -db mydb1

srvctl getenv database
Displays the values for environment variables associated with a database.

Syntax

srvctl getenv database -db db_unique_name [-envs "name_list"]

Parameters

Table A-11 srvctl getenv database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database for which you want to display the
environment variable values.

-envs "name_list" Optionally, you can specify a comma-delimited list of the names of specific
environment variables enclosed in double quotation marks ("") for which
you want to display the values.

If you do not use this parameter, then SRVCTL displays the values of all
environment variables associated with the database.

Example

The following example displays the environment configuration for a database named crm:

$ srvctl getenv database -db crm

Appendix A
SRVCTL Command Reference

A-25

srvctl modify database
Modifies the configuration for a database.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

Syntax

srvctl modify database -db db_unique_name [-dbname db_name] [-instance
instance_name]
 [-oraclehome oracle_home_path] [-localrolling] | [-localrolling_revert]
[-user user_name]
 [-server "server_list"] [-timeout timeout] [-domain db_domain]
 [-spfile spfile] [-pwfile password_file_path]
 [-role {PRIMARY|PHYSICAL_STANDBY|LOGICAL_STANDBY|SNAPSHOT_STANDBY}]
 [-startoption start_options] [-stopoption stop_options]
 [-startconcurrency start_concurrency] [-stopconcurrency stop_concurrency]
 [-policy {AUTOMATIC | MANUAL | NORESTART | USERONLY | RANK}]
 [{-diskgroup "diskgroup_list" | -nodiskgroup}] [-acfspath
"acfs_path_list"]
 [-css_critical {YES | NO}] [-memorytarget memory_target] [-maxmemory
max_memory]
 [-defaultnetnum network_number] [-disabledreason {DECOMMISSIONED}] [-
force]
 [-verbose]

Parameters

Table A-12 srvctl modify database Command Parameters

Parameter Description

-db db_unique_name Unique name for the database.

-dbname db_name The name of the database, if it is different from the unique name given by
the -db parameter.

-instance
instance_name

Instance name prefix; this parameter is required for administrator-
managed Oracle RAC One Node databases.

-oraclehome
oracle_home

The path for the Oracle database home directory.

-localrolling Creates a new Oracle RAC database instance to enable the local rolling
feature.

-localrolling_revert Use this parameter to revert the Oracle RAC local rolling configuration
changes.

-user user_name The name of the user who owns the Oracle home directory.

Note: If you specify the -userparameter, then you must run this
command in privileged mode.

Appendix A
SRVCTL Command Reference

A-26

Table A-12 (Cont.) srvctl modify database Command Parameters

Parameter Description

-server server_list List of candidate servers for Oracle RAC One Node databases.

Oracle Clusterware attempts to start Oracle RAC One instance in the
order in which the servers are listed. First, it attempts to start the instance
on the first server in the list. If that does not succeed for any reason, then
Oracle Clusterware attempts to start the instance on the second server
defined in the list, and so on. For example, for a 3-node cluster:
• Use "N3,N2,N1" to start a particular instance preferably on the third

node.
• Use "N3,N1,N2" to make the first node the designated failover node.
• Use "N3,N1" to prevent the second node from being used.

Oracle Clusterware refers to this list every time an instance starts, which
can be either a regular start or a start that is triggered by a failure event.

-timeout timeout Online database relocation timeout, in minutes, for Oracle RAC One Node
databases. The default is 30.

-domain db_domain The domain for the database.

Note: You must use this parameter if you set the DB_DOMAIN initialization
parameter for the database.

-spfile spfile The path name of the database server parameter file.

-pwfile
password_file_path

Enter the full path to the location of the password file.

-role {PRIMARY |
PHYSICAL_STANDBY |
LOGICAL_STANDBY |
SNAPSHOT_STANDBY}

The role of the database in an Oracle Data Guard configuration. The
default is PRIMARY.

-startoption
start_options

Startup options for the database, such as OPEN, MOUNT, and NOMOUNT.
The default value is OPEN.

Notes:
• For multi-word startup options, such as read only and read

write, separate the words with a space and enclose in double
quotation marks (""). For example, "read only".

• When performing a switch-over in an Oracle Data Guard
configuration, the -startoption for a standby database that
becomes a primary database is always set to OPEN after the
switchover.

-stopoption
stop_options

Stop options for the database, such as NORMAL, TRANSACTIONAL,
IMMEDIATE, and ABORT.

-startconcurrency
start_concurrency

Number of instances to be started simultaneously, or 0 to disable this
option.

-stopconcurrency
stop_concurrency

Number of instances to be stopped simultaneously, or 0 to disable this
option.

Appendix A
SRVCTL Command Reference

A-27

Table A-12 (Cont.) srvctl modify database Command Parameters

Parameter Description

-policy {AUTOMATIC |
MANUAL | NORESTART |
USERONLY | RANK}

The management policy for the database.

• AUTOMATIC (default): The database is automatically restored to its
previous running condition (started or stopped) upon restart of the
database host computer.

• MANUAL: The database is never automatically restarted upon restart
of the database host computer. A MANUAL setting does not prevent
Oracle Clusterware from monitoring the database while it is running
and restarting it if a failure occurs.

• NORESTART: Similar to the MANUAL setting, the database is not
automatically restarted upon restart of the database host computer. A
NORESTART setting, however, does not restart the database, even if a
failure occurs, unless it must be started for dependencies, such as
services or PDBs.

• USERONLY: The database can only be restarted by user command,
not as a result of any other reason (auto-start, start by dependency,
node failure, and so on.)

• RANK: The database won't be restarted when the Oracle Clusterware
stack is restarted unless it is restarted by start dependencies of its
PDBs that are started according to RANK. For example, 2 CDBs have
policy set to RANK and their PDBs have policy set to RESTART. If a
PDB of CDB1 has a rank of 3 and a PDB in CDB2 has a rank of 2,
and if there are only enough resources to start one CDB, then CDB1
will be started by dependency when its PDB is started. CDB2 is not
started because its PDB has a lower rank number.

-diskgroup
"disk_group_list"

Comma-delimited list of Oracle ASM disk groups if database uses Oracle
ASM storage.

-acfspath
"acfs_path_list"

A single Oracle ACFS path or a comma-delimited list of Oracle ACFS
paths enclosed in double quotation marks ("") where the database's
dependency is set.

Use this parameter to create dependencies on Oracle ACFS file systems
other than ORACLE_HOME, such as for when the database uses
ORACLE_BASE on a file system that is different from the ORACLE_HOME file
system.

Note:

This parameter is available only on the
platforms on which Oracle ACFS is
supported.

-css_critical {YES |
NO}

You can add weight to a service by setting this parameter to YES. In the
event of a node failure within the cluster, Oracle Clusterware will evict the
node with the least amount of weight, ensuring that critical services
remain available.

-memorytarget
memory_target

Specify the target memory, in MB, to be allocated for the database. The
default is 0.

Appendix A
SRVCTL Command Reference

A-28

Table A-12 (Cont.) srvctl modify database Command Parameters

Parameter Description

-maxmemory max_memory Specify the maximum memory, in MB, to be allocated for the resource. If
you specify -memorytarget but not -maxmemory, then -maxmemory will
be the default value of 0. Both -maxmemory and -memorytarget are
validated as long as -memorytarget is less than or equal to -
maxmemory.

-defaultnetnum
network_number

Specify a network number to which services will default in the event you
do not specify a network number when you add a service.

-disabledreason
{DECOMMISSIONED}

Marks the database as being decommissioned, which means it cannot be
started again and is not being used. This is intended for databases that
will be deleted at a future date.

Usage Notes

• When using the srvctl modify database command, for a running database, if the server
list is supplied, then the node where the database is running must be on that list.

• The instance name prefix cannot be modified after running the srvctl add database
command.

• You cannot change the management policy from AUTOMATIC (using the -policy parameter)
for Oracle RAC One Node databases. Any attempt to do so results in an error message.

Examples

The following example changes the role of a database to a logical standby:

$ srvctl modify database -db crm -role logical_standby

The following example directs the racTest database to use the SYSFILES, LOGS, and OLTP
Oracle ASM disk groups:

$ srvctl modify database -db racTest -diskgroup "SYSFILES,LOGS,OLTP"

Related Topics

• Oracle Data Guard Configurations

• Database Startup

• Database Shutdown

srvctl predict database
Predicts the consequences of the failure of a specific database.

Syntax

srvctl predict database -db db_unique_name [-verbose]

Usage Notes

• Specify the unique name of the database you want to check.

Appendix A
SRVCTL Command Reference

A-29

• Optionally, you can use the –verbose parameter to display detailed output.

srvctl relocate database
Initiates the relocation of an Oracle RAC One Node database from one node to another node.

This command also cleans up after a failed relocation, and you can only use it for relocating
Oracle RAC One Node databases.

Syntax

Use this command with one of the following syntax models:

To initiate the online relocation of an Oracle RAC One Node database:

srvctl relocate database -db db_unique_name {[-node target_node] [-timeout
timeout]
 [-stopoption NORMAL] | -abort [-revert]} [-drain_timeout drain_timeout] [-
eval] [-verbose]

To stop the failed online relocation of an Oracle RAC One Node database:

srvctl relocate database -db db_unique_name -abort [-revert]
 [-drain_timeout drain_timeout] [-eval] [-verbose]

Parameters

Table A-13 srvctl relocate database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to relocate.

-node target_node Optionally, you can specify a target node to which to relocate the Oracle
RAC One Node database.

Note: You must use this parameter if you are relocating an administrator-
managed Oracle RAC One Node database.

-timeout timeout Optionally, you can specify an online database relocation timeout, in
minutes, for Oracle RAC One Node databases. The default is 30.

-stopoption NORMAL Use this parameter to override the default shutdown option for a running
instance, such as the default of SHUTDOWN TRANSACTIONAL LOCAL for a
primary database or SHUTDOWN IMMEDIATE for a standby database. The
only value accepted for -stopoption is NORMAL.

–abort Use this parameter to stop a failed online database relocation.

–revert Use this parameter to remove the target node of a failed online relocation
request from the candidate server list of an administrator-managed Oracle
RAC One Node database.

-drain_timeout timeout Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

Appendix A
SRVCTL Command Reference

A-30

Table A-13 (Cont.) srvctl relocate database Command Parameters

Parameter Description

–eval Evaluates the effects of the operation without making any changes to the
system.

–verbose Use this parameter to display verbose output.

Usage Notes

• If the Oracle RAC One Node database you want to relocate is not running, then the
command returns an error.

• If another online database relocation is active for this Oracle RAC One Node database,
then the command returns an error.

• If the -drain_timeout value is higher than the -timeout value, then SRVCTL relocates the
services but does not explicitly start or stop the services on the database instances.

• If an online database relocation for this Oracle RAC One Node database has failed and the
target nodes are not the same for either relocation, then the command returns an error
instructing you to stop the failed online database relocation and then initiate a new one.

• If an online database relocation for this Oracle RAC One Node database has failed and the
target nodes are the same (or you do not specify the target), then the command attempts
to relocate the database.

Example

The following example relocates an Oracle RAC One Node database named rac1 to a server
called node7.

$ srvctl relocate database -db rac1 -node node7

srvctl remove database
Removes database configurations.

After running this command, ensure that the password file is in the default location if you want
to connect to the database as the SYS user with the SYS user's password.

Syntax

srvctl remove database -db db_unique_name [-force] [-noprompt] [-verbose]

Parameters

Table A-14 srvctl remove database Command Parameters

Parameter Description

-database
db_unique_name

Unique name for the database.

-force Forcibly remove the database and ignore any dependencies.

-noprompt Suppress prompts.

Appendix A
SRVCTL Command Reference

A-31

Table A-14 (Cont.) srvctl remove database Command Parameters

Parameter Description

-verbose Display verbose output.

Example

To remove a database named crm:

$ srvctl remove database -db crm

srvctl setenv database
Administers cluster database environment configurations.

Syntax

Use this command with one of the following syntax models:

srvctl setenv database -db db_unique_name -envs "name=val[,...]"

srvctl setenv database -db db_unique_name -env "name=val"

Parameters

Table A-15 srvctl setenv database Command Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database for which you want to set
environment variables.

-envs "name=val[,...]" Specify a comma-delimited list of name-value pairs of environment
variables enclosed in double quotation marks ("") that you want to set.

-env "name=val" Specify a single environment variable that you want to set to a value that
contains commas or other special characters enclosed in double quotation
marks ("").

Usage Notes

Add additional information about the command here.

Example

The following example sets the language environment variable for a cluster database:

$ srvctl setenv database -db crm -env LANG=en

Appendix A
SRVCTL Command Reference

A-32

srvctl start database
Starts a database and its enabled instances, and all listeners on nodes with database
instances.
You can disable listeners that you do not want to start.

Syntax

srvctl start database -db db_unique_name [-eval] [-startoption start_options]
 [-startconcurrency number_of_instances] [-node node_name]

Parameters

Table A-16 srvctl start database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to start.

–eval Optionally, use this parameter to hypothetically evaluate the impact of the
command on the system.

-startoption
start_options

Optionally, you can set options for the startup command (for example:
OPEN, MOUNT, or NOMOUNT).

Notes:
• This command parameter supports all database startup options.
• For multi-word startup options, such as read only and read

write, separate the words with a space and enclose in double
quotation marks (""). For example, "read only".

See Also: SQL*Plus User's Guide and Reference for more
information about startup options

-startconcurrency
number_of_instances

Optionally, you can specify a number of database instances to start
simultaneously, or specify 0 for an empty start concurrency value. When
you use this parameter with the srvctl start database command, it
overrides any -startconcurrency value configured using the srvctl
add | modify database commands.

Note:

If the value for the -startconcurrency
parameter is greater than the number of
total instances, then this parameter does not
have any effect, same as 0.

Appendix A
SRVCTL Command Reference

A-33

Table A-16 (Cont.) srvctl start database Command Parameters

Parameter Description

-node node_name Optionally, you can specify the name of a node on which you want to start
the database.

Notes:
• This command only applies to Oracle RAC One Node and Standard

Edition High Availability databases.
• The node you specify must be in the candidate list for an

administrator-managed Oracle RAC One Node or Standard Edition
High Availability database.

• If the database is already running on a node than the one you specify,
then the command returns an error.

• If you do not specify a node, then Oracle Clusterware chooses which
node on which to start the Oracle RAC One Node or Standard Edition
High Availability database according to its policies, such as
dispersion, number of resources, and order of candidate nodes.

• If there is an active online database relocation for the Oracle RAC
One Node database you are attempting to start, then both instances
will already be running and the command returns an error message.
Only during an online database relocation are two instances of an
Oracle RAC One Node database in existence.

If the online database relocation failed for the Oracle RAC One Node
database and you do not specify a node, then the command attempts
to start both database instances.

If the online database relocation failed for the Oracle RAC One Node
database and you specify a node, then the command attempts to
stop the failed relocation and start the instance on that node.

Examples

The following example starts the crm database and sets the startup option to read only:

$ srvctl start database -db crm -startoption "read only"

srvctl status database
This command displays the current state of the of the database.

Syntax

srvctl status database {-db db_unique_name {[-sid] [-home]} | -thisversion | -
thishome}
 [-force] [-detail] [-verbose]

Parameters

Table A-17 srvctl status database Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database.

Appendix A
SRVCTL Command Reference

A-34

Table A-17 (Cont.) srvctl status database Parameters

Parameter Description

–sid Use this parameter to display the SID of the Oracle instance running on
this node.

–home Use this parameter to display the Oracle home of the specified database.

-thisversion Use this parameter to display the status of databases that are of the same
Oracle product version as SRVCTL.

-thishome Use this parameter to display the status of databases that are configured
in this Oracle home.

-force Include disabled applications

–detail Use this parameter to display detailed database status information.

-verbose Displays STATE_DETAILS and INTERNAL_STATE attributes, which include
STABLE, STARTING, STOPPING, and CLEANING.

If the INTERNAL_STATE is STABLE, then SRVCTL displays no additional
information. If the INTERNAL_STATE is STARTING, then SRVCTL displays:

Instance instance_name is being started

If the INTERNAL_STATE is CLEANING, then SRVCTL displays:

Instance instance_name is being cleaned up

If the INTERNAL_STATE is STOPPING, then SRVCTL displays:

Instance instance_name is being stopped

Usage Notes

The output of this command includes information on the Oracle ASM or Oracle ASM IOServer
instance for each running instance of the database.

Examples

This command displays output similar to the following:

$ srvctl status database -db db00 -detail

Instance db00_1 is connected to ASM instance +ASM3
Instance db00_2 is connected to ASM I/O server instance +IOS1

srvctl stop database
Stops a database, its instances, and its services.

Appendix A
SRVCTL Command Reference

A-35

Syntax

srvctl stop database -db db_unique_name [-stopoption stop_options]
 [-stopconcurrency number_of_instances] [-drain_timeout timeout] [-eval]
 [-force] [-verbose]

Parameters

Table A-18 srvctl stop database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name for the database that you want to stop.

-stopoption
stop_options

Optionally, you can specify options for the shutdown command, such as
NORMAL, TRANSACTIONAL LOCAL, IMMEDIATE, or ABORT.

-stopconcurrency
number_of_instances

Optionally, you can specify a number of database instances to stop
simultaneously, or specify 0 for an empty stop concurrency value. When
you use this parameter with the srvctl stop database command, it
overrides any -stopconcurrency value configured using the srvctl
add | modify database commands.

Note:

If the value for the -stopconcurrency
parameter is greater than the number of
total instances, then this parameter does not
have any effect, same as 0.

-drain_timeout timeout Optionally, you can specify the time, in seconds, allowed to complete the
resource draining action. By default, this parameter is not set. You can
specify 0 or any positive integer. An empty string unsets the parameter. If
you specify zero, then the agent will perform the actions related to service
draining, immediately.

Drain timeout is the maximum time the service waits before exiting (in
case of srvctl stop service or srvctl stop instance) or
proceeding to stop database (srvctl stop database), until the
draining of sessions is completed. If session draining completes in 10
seconds and the drain timeout value (on CLI or resource attribute) is 100
seconds, then SRVCTL moves on after 10 seconds. It does not wait for
the remaining 90 seconds.

-eval Optionally, you can use this parameter to hypothetically evaluate the
impact of the command on the system.

-force Optionally, you can use this parameter to stop the database, its instances,
its services, and any resources that depend on those services.

—verbose Optionally, you can use this parameter to display detailed output.

Example

The following command example stops a database and includes detailed output:

$ srvctl stop database -db db1 -drain_timeout 50 -verbose
Draining in progress on services svc1,svc2.

Appendix A
SRVCTL Command Reference

A-36

Drain complete on services svc1.
Draining in progress on services svc2.
Draining in progress on services svc2.
Drain complete on services svc2.

srvctl unsetenv database
Unsets the cluster database environment configurations.

Syntax

srvctl unsetenv database -db db_unique_name -envs "name_list"

Parameters

Table A-19 srvctl unsetenv database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database for which you want to unset
environment variables.

-envs "name_list" Specify a comma-delimited list of environment variable names enclosed in
double quotation marks ("").

Example

The following example unsets two cluster database environment variables:

$ srvctl unsetenv database -db crm -envs "CLASSPATH,LANG"

srvctl update database
Updates the specified database to use the new listener endpoints.

Syntax

srvctl update database -db db_unique_name [-startoption start_options [-node
node_name]]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Specify the unique name of the database you want to update.

srvctl upgrade database
Upgrades the configuration of a database and all of its services to the version of the database
home from where this command is run.

Syntax

srvctl upgrade database -db db_unique_name -oraclehome Oracle_home

Appendix A
SRVCTL Command Reference

A-37

Parameters

Table A-20 srvctl upgrade database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to upgrade.

-oraclehome
Oracle_home

Specify the path to the upgraded ORACLE_HOME.

diskgroup Commands
Use commands with the diskgroup keyword to manage Oracle ASM disk groups.

You can add, modify, list the configuration of, enable, disable, start, stop, obtain the status of,
and remove Oracle ASM disk groups.

• srvctl disable diskgroup

• srvctl enable diskgroup

• srvctl predict diskgroup

• srvctl remove diskgroup

• srvctl start diskgroup

• srvctl status diskgroup

• srvctl stop diskgroup

srvctl disable diskgroup
Disables a specific disk group on a number of specified nodes.

Syntax

srvctl disable diskgroup -diskgroup diskgroup_name [-node "node_list"]

Parameters

Table A-21 srvctl disable diskgroup Command Parameters

Parameter Description

-diskgroup
diskgroup_name

Specify the name of the Oracle ASM disk group you want to disable.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") on which to disable the disk
group.

Note: You can only use this parameter with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-38

Example

The following example disables the Oracle ASM disk group, dgroup1, on two nodes in a
cluster, mynode1 and mynode2:

$ srvctl disable diskgroup -diskgroup dgroup1 -node "mynode1,mynode2"

srvctl enable diskgroup
Enables a specific disk group on a number of specified nodes.

Syntax

srvctl enable diskgroup -diskgroup diskgroup_name [-node "node_list"]

Parameters

Table A-22 srvctl enable diskgroup Command Parameters

Parameter Description

-diskgroup
diskgroup_name

Specify the name of the Oracle ASM disk group you want to enable.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") on which to enable the disk
group.

Note: You can only use this parameter with Oracle Clusterware.

Example

The following example enables the diskgroup1 Oracle ASM disk group on nodes mynode1 and
mynode2:

$ srvctl enable diskgroup -diskgroup diskgroup1 -node "mynode1,mynode2"

srvctl predict diskgroup
Predicts the consequences of an Oracle ASM disk group failure.

Syntax

srvctl predict diskgroup -diskgroup diskgroup_name [-verbose]

Usage Notes

Specify the name of the Oracle ASM disk group for which you want to evaluate a failure.
Optionally, you can use the –verbose parameter top print detailed output.

srvctl remove diskgroup
Removes a specific Oracle ASM disk group resource from Oracle Clusterware or Oracle
Restart.

Appendix A
SRVCTL Command Reference

A-39

Syntax

srvctl remove diskgroup -diskgroup diskgroup_name [-force]

Usage Notes

Specify the name of the Oracle ASM disk group you want to remove. Optionally, you can use
the –force parameter to ignore any dependencies and forcibly remove the disk group.

Example

The following example forcibly removes the DG1 Oracle ASM disk group:

$ srvctl remove diskgroup -diskgroup DG1 -force

srvctl start diskgroup
Starts a specific Oracle ASM disk group resource on a number of specified nodes.

Syntax

srvctl start diskgroup -diskgroup diskgroup_name [-node "node_list"]

Parameters

Table A-23 srvctl start diskgroup Command Parameters

Parameter Description

-diskgroup
diskgroup_name

Specify the name of the Oracle ASM disk group you want to start.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") on which to start the disk group
resource.

Note: You can only use this parameter with Oracle Clusterware.

Example

The following example starts the diskgroup1 Oracle ASM disk group on the nodes mynode1
and mynode2:

$ srvctl start diskgroup -diskgroup diskgroup1 -node "mynode1,mynode2"

srvctl status diskgroup
Displays the status of a specific disk group on a number of specified nodes.

Syntax

srvctl status diskgroup -diskgroup diskgroup_name [-node "node_list"]
 [-detail] [-verbose]

Appendix A
SRVCTL Command Reference

A-40

Parameters

Table A-24 srvctl status diskgroup Command Parameters

Parameter Description

-diskgroup
diskgroup_name

Specify the name of the Oracle ASM disk group for which you want to
display the status.

-node "node_list" Optionally, you can specify a comma-delimited list of node names on
which to check status of an Oracle ASM disk group.

Note: You can only use this parameter with Oracle Clusterware.

-detail Optionally, you can use this parameter to display detailed status
information for the Oracle ASM disk group.

-verbose Optionally, you can use this parameter to display verbose output.

Examples

The following example displays the status of the dgrp1 Oracle ASM disk group:

$ srvctl status diskgroup -diskgroup dgrp1 -node "mynode1,mynode2" -detail

srvctl stop diskgroup
Stops a specific Oracle ASM disk group resource on a number of specified nodes.

Syntax

srvctl stop diskgroup -diskgroup diskgroup_name [-node "node_list"] [-force]

Parameters

Table A-25 srvctl stop diskgroup Command Parameters

Parameter Description

-diskgroup
diskgroup_name

Specify the name of the Oracle ASM disk group you want to stop.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") on which to stop the Oracle ASM
disk group resource.

Note: You can only use this parameter with Oracle Clusterware.

-force Optionally, you can use this parameter to perform a forceful dismount.
While this parameter does not stop the databases that depend on the disk
group you are stopping, it still may cause those databases to fail.

Example

The following command stops the diskgroup1 Oracle ASM disk group on the two nodes
mynode1 and mynode2:

$ srvctl stop diskgroup -diskgroup diskgroup1 -node "mynode1,mynode2" -force

Appendix A
SRVCTL Command Reference

A-41

home Commands
Use commands with the home keyword to start, stop, and obtain the status of all clusterware
resources related to a Home directory.

• srvctl start home

• srvctl status home
Displays the status of all the Oracle Restart-managed or Oracle Clusterware-managed
resources for the specified Oracle home.

• srvctl stop home
Stops all the Oracle Restart-managed or Oracle Clusterware-managed resources that run
from the specified Oracle home.

srvctl start home
Starts all the Oracle Restart-managed or Oracle Clusterware-managed resources on the
specified Oracle home.

Syntax

srvctl start home -oraclehome Oracle_home -statefile state_file -node
node_name

Parameters

Table A-26 srvctl start home Command Parameters

Parameter Description

-oraclehome
Oracle_home

Specify the path to the Oracle home for which you want to start the Oracle
Restart or Oracle Clusterware-managed resources.

-statefile state_file Specify the path to the directory where you want SRVCTL to write the
state file.

-node node_name Specify the name of the node on which the Oracle home resides.

Note: You can only use this parameter with Oracle Clusterware.

Example

The following command starts an Oracle home:

$ srvctl start home -oraclehome /u01/app/oracle/product/12.2.0/db_1
 -statefile ~/state.txt -node node1

srvctl status home
Displays the status of all the Oracle Restart-managed or Oracle Clusterware-managed
resources for the specified Oracle home.

Appendix A
SRVCTL Command Reference

A-42

Syntax

srvctl status home -oraclehome Oracle_home -statefile state_file -node
node_name

Parameters

Table A-27 srvctl status home Command Parameters

Parameter Description

-oraclehome
Oracle_home

Specify the path to the Oracle home for which you want to start the Oracle
Restart or Oracle Clusterware-managed resources.

-statefile state_file Specify the path to the directory that contains the text file that holds the
state information generated by this command.

-node node_name Specify the name of the node on which the Oracle home resides.

Note: This parameter is required and you can only use it with Oracle
Clusterware.

Example

The following example obtains the status of a particular Oracle home:

$ srvctl status home -oraclehome /u01/app/oracle/product/23.4.0/dbhome_1 -
statefile
 ~/state.txt -node stvm12

The preceding command returns output similar to the following:

Database cdb1 is running on node stvm12

srvctl stop home
Stops all the Oracle Restart-managed or Oracle Clusterware-managed resources that run from
the specified Oracle home.

Syntax

srvctl stop home -oraclehome Oracle_home -statefile state_file -node node_name
 [-stopoption stop_options] [-force]

Parameters

Table A-28 srvctl stop home Command Parameters

Parameter Description

-oraclehome
Oracle_home

Specify the directory path to the Oracle home for which you want to start
the Oracle Restart or Oracle Clusterware-managed resources.

Note: The path to the Oracle home you specify must be the same version
as the Oracle home from which you invoke SRVCTL.

Appendix A
SRVCTL Command Reference

A-43

Table A-28 (Cont.) srvctl stop home Command Parameters

Parameter Description

-statefile state_file Specify the path to the directory where you want SRVCTL to write the
state file.

-node node_name Specify the name of the node on which the Oracle home resides.

Note: You can only use this parameter with Oracle Clusterware.

-stopoption
stop_options

Optionally, you can specify shutdown options for the database, such as
NORMAL, TRANSACTIONAL, IMMEDIATE, or ABORT
See Also: SQL*Plus User's Guide and Reference for more information
about shutdown options

-force Optionally, you can use this parameter to stop the resources even if errors
are reported.

Example

The following example stops the Oracle home:

$ srvctl stop home -oraclehome /u01/app/oracle/product/23.4.0/db_1 -statefile
 ~/state.txt

instance Commands
Use commands with the instance keyword to add, modify, enable, disable, start, stop, obtain
the status of, and remove database instances.

• srvctl add instance
Adds a configuration for an instance to your cluster database configuration.

• srvctl disable instance

• srvctl enable instance

• srvctl modify instance

• srvctl remove instance

• srvctl start instance
Starts instances and their dependencies in the cluster database.

• srvctl status instance
Displays the status of instances.

• srvctl stop instance
The srvctl stop instance command stops instances and stops any services running on
specified instances.

• srvctl transfer instance
Transfers Oracle RAC and Oracle Oracle RAC One Node databases, PDBs, and services
from the old Oracle home to the new Oracle home in single-server rolling database
maintenance.

• srvctl update instance
The srvctl update instance command changes the open mode or the target Oracle
ASM instance of the database instances.

Appendix A
SRVCTL Command Reference

A-44

srvctl add instance
Adds a configuration for an instance to your cluster database configuration.

Syntax

srvctl add instance -db db_unique_name -instance instance_name
 -node node_name [-force]

Parameters

Table A-29 srvctl add instance Command Parameters

Parameter Description

-db db_unique_name The unique name of the database you are adding the instance to

-instance
instance_name

The name of the instance you are adding

-node node_name The name of the node on which you are creating the instance

-force Optionally, you can force the add operation, even though some resources
will be stopped.

Usage Notes

• You can only use this command with Oracle Clusterware and Oracle RAC.

• This command increments the CARDINALITY resource attribute.

• If you attempt to use this command on an Oracle RAC One Node database, then the
command returns an error stating you must convert the database to Oracle RAC.

Examples

Examples of this command are:

$ srvctl add instance -db crm -instance crm01 -node gm01
$ srvctl add instance -db crm -instance crm02 -node gm02
$ srvctl add instance -db crm -instance crm03 -node gm03

srvctl disable instance
Disables a database instance.
If the database instance that you disable with this command is the last enabled database
instance, then this operation also disables the database.

Note:

• This command is only available with Oracle Clusterware and Oracle RAC.

• If you run this command on an Oracle RAC One Node database, then the
command returns an error instructing you to use the database noun, instead.

Appendix A
SRVCTL Command Reference

A-45

Syntax

srvctl disable instance -db db_unique_name -instance "instance_name_list"

Parameters

Table A-30 srvctl disable instance Command Parameters

Parameter Description

-db db_unique_name Specify the unique name for the database for which you want to disable
the instance.

-instance
"instance_name_list"

Specify an instance name or a comma-delimited list of instance names
enclosed in double quotation marks ("") you want to disable.

Example

The following example disables two instances of the crm database, named crm1 and crm2:

$ srvctl disable instance -db crm -instance "crm1,crm3"

srvctl enable instance
Enables an instance of an Oracle RAC database.
If you use this command to enable all instances, then the database is also enabled.

Note:

• You can only use this command with Oracle Clusterware and Oracle RAC.

• If you run this command on an Oracle RAC One Node database, then the
command returns an error instructing you to use the database noun, instead.

Syntax

srvctl enable instance -db db_unique_name -instance "instance_name_list"

Parameters

Table A-31 srvctl enable instance Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database for which you want to enable
instances.

-instance
"instance_name_list"

Specify a comma-delimited list of instance names enclosed in double
quotation marks ("") that you want to enable.

Appendix A
SRVCTL Command Reference

A-46

Example

The following example enables two instances of the crm database:

$ srvctl enable instance -db crm -instance "crm1,crm2"

srvctl modify instance
This command modifies the configuration for a database instance from its current node to
another node.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

Syntax

srvctl modify instance -db db_unique_name -instance instance_name
 -node node_name

Parameters

Table A-32 srvctl modify instance Command Parameters

Parameter Description

-database
db_unique_name

Specify the unique name for the database.

-instance
instance_name

Specify the database instance name.

Note:

If you specify an instance name that has
never been started before, then you may
have to assign an instance number, undo,
and redo in the SPFILE.

-node node_name Name of the node on which to run the instance.

Usage Notes

You cannot use this command to rename or relocate a running instance.

Examples

The following example to changes the configuration of a database, amdb, so that the database
instance, amdb1, runs on the specified node, mynode:

$ srvctl modify instance -db amdb -instance amdb1 -node mynode

Appendix A
SRVCTL Command Reference

A-47

The following example removes the directive established by the previous example:

$ srvctl modify instance -db pmdb -instance pmdb1_1 -node ""

srvctl remove instance
Removes the configurations for an instance of a database.

Syntax

srvctl remove instance -db db_unique_name -instance instance_name
 [-noprompt] [-force]

Parameters

Table A-33 srvctl remove instance Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database.

-instance
instance_name

Specify the name of the instance that you want to remove.

-noprompt Use this parameter to suppress prompts.

–force Use this parameter to skip checking that the instance is not running, and
remove it even though it is running. This parameter also skips checking
that the instance has no running services using it, and causes those
services to stop before the instance is removed.

Usage Notes

• You can use this command only with Oracle Clusterware and Oracle RAC.

• If you use the -force parameter, then any services running on the instance stop. Oracle
recommends that you reconfigure services to not use the instance you want to removed as
a preferred or available instance before removing the instance.

• If you attempt to use this command on an Oracle RAC One Node database, then the
command returns an error stating that cannot remove the instance except by removing the
database.

Example

The following example removes the crm01 database instance from the crm database.

$ srvctl remove instance -db crm -instance crm01

srvctl start instance
Starts instances and their dependencies in the cluster database.

Use the srvctl start instance command to start database instances, and all listeners on
nodes with database instances.

Appendix A
SRVCTL Command Reference

A-48

Syntax

Use the srvctl start instance command with one of these syntax models:

To start all Oracle Clusterware managed database instances on one or more nodes:

srvctl start instance -node "node_list" [-startoption start_options]

To start an instance of a database on a specific node:

srvctl start instance -db db_unique_name -node node_name
 [-instance "instance_name"] [-startoption start_options]

To start an instance of a database on one or more nodes:

srvctl start instance -db db_unique_name -node "node_list" [-startoption
start_options]

To start specific instances of a database on available nodes:

srvctl start instance -db db_unique_name -instance "inst_name_list"
 [-startoption start_options]

Parameters

Table A-34 srvctl start instance Parameters

Parameter Description

-db db_unique_name Unique name for the database

-node node_name or -
node "node_list"

The name of a single node or a comma-delimited list of node names

-instance
"instance_name" or -
instance
"inst_name_list"

The name of a single instance or a comma-delimited list of instance
names

-startoption
start_options

Options for startup command, such as OPEN, MOUNT, or NOMOUNT)

Note: For multi-word startup options, such as read only and read
write, separate the words with a space and enclose in double quotation
marks (""). For example, "read only".

Usage Notes

• This command is only available with Oracle Clusterware and Oracle RAC.

• If you run this command on an Oracle RAC One Node database, then the command
returns an error instructing you to use the database noun, instead.

Related Topics

• STARTUP

Appendix A
SRVCTL Command Reference

A-49

srvctl status instance
Displays the status of instances.

Syntax

srvctl status instance -db db_unique_name {-node node_list | -instance
instance_name_list}
 [-force] [-detail] [-verbose]

Parameters

Table A-35 srvctl status instance Command Parameters

Parameter Description

-db db_unique_name The unique name of the database.

-node node_list A comma-separated list of node names.

-instance
instance_name_list

A comma-separated list of instance names.

-force Optionally, you can include a list of the disabled applications.

-detail Optionally, print detailed status information of the instance.

-verbose Display verbose output.

Usage Notes

You can only use this command with Oracle Clusterware and Oracle RAC.

Examples

Example of this command is:

$ srvctl status instance -db crm -node gm01,gm02

srvctl stop instance
The srvctl stop instance command stops instances and stops any services running on
specified instances.

Syntax

Use this command with one of the following syntax models.

To stop all instances on one or more nodes:

srvctl stop instance -node "node_list" [-stopoption stop_options]
 [-drain_timeout timeout] [-force] [-failover] [-verbose]

Appendix A
SRVCTL Command Reference

A-50

To stop instances for a database that are running on specific nodes:

srvctl stop instance -db db_unique_name -node "node_list"
 [-stopoption stop_options] [-drain_timeout timeout] [-force] [-failover]
[-verbose]

To stop one or more instances by name for a database:

srvctl stop instance -db db_unique_name -instance "instance_name_list"
 [-stopoption stop_options] [-drain_timeout timeout] [-force] [-failover]
[-verbose]

Parameters

Table A-36 srvctl stop instance Command Parameters

Parameter Description

-db db_unique_name
-node "node_list"
-instance
"instance_name_list"
-stopoption
stop_options
-drain_timeout timeout
-force
–failover
-verbose

Usage Notes

If you run this command on an Oracle RAC One Node database, then the command returns an
error instructing you to use the srvctl stop database command instead.

Example

The following command example stops the instance of the db1 database running on the node
server1, and includes verbose output:

$ srvctl stop instance -db db1 -node server1 -drain_timeout 50 -verbose
Draining in progress on services svc1
Draining in progress on services svc1
Drain complete on services svc1

Related Topics

• Database Shutdown

srvctl transfer instance
Transfers Oracle RAC and Oracle Oracle RAC One Node databases, PDBs, and services from
the old Oracle home to the new Oracle home in single-server rolling database maintenance.

Appendix A
SRVCTL Command Reference

A-51

Syntax

srvctl transfer instance -db db_unique_name [-node node_list]
 [-stopoption stop_options] [-drain_timeout timeout] [-rollback] [-verbose]

Parameters

Table A-37 srvctl transfer instance Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to relocate.

-node target_node Comma-separated list of nodes on which you want to transfer the
instances from the old Oracle homes to the new Oracle homes.

-stopoption NORMAL Use this parameter to override the default shutdown option for the
instance running from the old Oracle home, such as NORMAL,
TRANSACTIONAL, IMMEDIATE, and ABORT.

-drain_timeout timeout Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

-rollback Use this parameter to rollback an online instance transfer.

–verbose Use this parameter to display verbose output.

Example

The following example transfers an Oracle RAC One Node database instance of database
named rac1 on the node called node1.

$ srvctl transfer instance -db rac1 -node node1

srvctl update instance
The srvctl update instance command changes the open mode or the target Oracle ASM
instance of the database instances.

Syntax

srvctl update instance -db db_unique_name [-instance "instance_name_list"
 | -node "node_list"] [-startoption start_options] [-targetinstance
instance_name]

Parameters

Parameter Description

-db db_unique_name The unique name of the database

Appendix A
SRVCTL Command Reference

A-52

Parameter Description

-instance
"instance_name_list" |
-node "node_list"

A comma-delimited list of instance names or node names that you want to
update. If you specify a list of node names, then SRVCTL udpates the
instances running on those specific nodes.

-startoption
start_options

The specify startup options for the database, such as OPEN, MOUNT, or
"READ ONLY"

-targetinstance
instance_name

The target Oracle ASM or Oracle ASM IOServer instance. Use double
quotation marks ("") with no space in-between to specify the default
target instance.

Examples

An example of this command is:

$ srvctl update instance -db db00 -instance db00_3 -targetinstance +ASM2

listener Commands
Use commands with the listener keyword to add, modify, manage environment variables for,
list the configuration of, enable, disable, start, stop, obtain the status of, and remove listeners.

• srvctl add listener
Adds a listener to every node in a cluster.

• srvctl config listener
Displays configuration information of a specific listener that is registered with Oracle
Clusterware.

• srvctl disable listener

• srvctl enable listener

• srvctl getenv listener

• srvctl modify listener

• srvctl predict listener

• srvctl remove listener

• srvctl setenv listener

• srvctl start listener

• srvctl status listener
Displays the status of listener resources.

• srvctl stop listener

• srvctl unsetenv listener

• srvctl update listener
Updates the listener to listen on the new endpoints.

Appendix A
SRVCTL Command Reference

A-53

srvctl add listener
Adds a listener to every node in a cluster.

Syntax

Use this command with one of the following syntax models.

To create an Oracle Database listener:

srvctl add listener [-listener listener_name] [-netnum network_number] [-
oraclehome Oracle_home]
 [-user user_name] [-endpoints "[TCP:]port_list[:FIREWALL={ON|OFF}][/IPC:key]
[/NMP:pipe_name]
 [/{TCPS|SDP|EXADIRECT}port_list[:FIREWALL={ON|OFF}]]" [-group group_name]]
[-skip]

To create an Oracle ASM listener:

srvctl add listener [-listener listener_name] -asmlistener [-subnet subnet]
 [-endpoints "[TCP:]port_list[:FIREWALL={ON|OFF}][/IPC:key][/NMP:pipe_name]
 [/{TCPS|SDP|EXADIRECT}port_list[:FIREWALL={ON|OFF}]]" [-group group_name]]
[-skip]

To create a SCAN listener, use the srvctl add scan_listener command.

Parameters

Table A-38 srvctl add listener Command Parameters

Parameter Description

-listener
listener_name

Specify a listener name. This parameter is optional.

If you do not specify this parameter, then the name of the listener defaults
to LISTENER for a database listener or LISTENER_ASM for an Oracle ASM
listener.

-netnum network_number The optional network number from which VIPs are obtained. If not
specified, the VIPs are obtained from the same default network from
which the nodeapps VIP is obtained.

Note: Use this parameter when you add an Oracle Database listener.

-oraclehome
oracle_home

Specify an Oracle home for the cluster database. If you do not include this
parameter, then SRVCTL uses the Grid home by default.

Note: Use this parameter when you add an Oracle Database listener.

Appendix A
SRVCTL Command Reference

A-54

Table A-38 (Cont.) srvctl add listener Command Parameters

Parameter Description

-user user_name Use this parameter to set the user who will run the listener to a less
privileged user. Oracle recommends using this parameter to increase
security.

Notes:
• You must be logged in as root to run this command and specify the

-user parameter.

• Use this parameter when you add an Oracle Database listener.
• When you use the -user parameter, ensure the following:

The listener log directory in the Oracle Base directory and the
Grid_home/network/admin/user_name directory must both
exist on each node before you can use this parameter. Additionally,
user_name must have read, write, and execute permission in the
directory.

The Oracle_Base/diag/tnslsnr/host_name/
lower_case_listener_name directory exists and user_name
has read, write, and execute permission on it.

• Before you can use LSNRCTL to manage a listener, you must set
TNS_ADMIN to Grid_home/network/admin/user_name.

-endpoints
"[TCP:]port_list[:FIRE
WALL={ON|OFF}][/
IPC:key] [/
NMP:pipe_name][/{TCPS|
SDP|
EXADIRECT}port_list[:F
IREWALL={ON|OFF}]]"]

Protocol specifications for the listener. Use port_list to specify a
comma-delimited list of TCP ports or listener endpoints.

If you do not specify the -endpoints parameter for an Oracle Database
listener, then SRVCTL searches for a free port between 1521 and 1540.

You can also specify endpoints for TCPS, SDP, and EXADIRECT ports.

Note: You can modify this attribute using Online Resource Attribute
Modification.

-group group_name Optionally, you can use the -group parameter with -endpoints to
specify a group for the secure endpoint. This parameter is used for the
EXADIRECT protocol on Exadata and Exalogic systems.

-skip Indicates you want to skip the checking of ports.

-asmlistener Specifies the listener type as an Oracle ASM listener. If you do not specify
the -listener parameter, then the name of the Oracle ASM listener
defaults to LISTENER_ASM.

Note: You can only use this parameter with Oracle Clusterware.

-subnet subnet Specifies the subnet to use for an Oracle ASM listener.

Note: You can only use this parameter with Oracle Clusterware.

Usage Notes

You must run this command as root user on Linux and UNIX platforms when you specify the -
user parameter.

Example

The following command adds a listener named listener112 that is listening on ports 1341,
1342, and 1345 and runs from the Oracle home directory on every node in the cluster.

$ srvctl add listener -listener listener112 -endpoints "1341,1342,1345"
-oraclehome /u01/app/oracle/product/23.4.0/db1

Appendix A
SRVCTL Command Reference

A-55

When a listener is configured in the Oracle RAC home instead of the Grid home, then the
listener.ora file is created under the location returned by the $ORACLE_HOME/bin/
orabasehome utility, in the subdirectory network/admin, for example, /u02/racbase/
homes/OraDB23Home1/network/admin.

srvctl config listener
Displays configuration information of a specific listener that is registered with Oracle
Clusterware.

Syntax

srvctl config listener [-listener listener_name | -asmlistener] [-all]

Parameters

Table A-39 srvctl config listener Command Parameters

Parameter Description

-listener listener_name | -
asmlistener

The name of a specific listener name or the type of listener (Oracle ASM).

If you do not specify this parameter, then SRVCTL displays the configuration for
the default database listener.

-all Print detailed configuration information.

Example

This command returns output similar to the following:

Name: LISTENER
Subnet: 10.100.200.195
Type: type
Owner: scott
Home: Grid_home
End points: TCP:1521

srvctl disable listener
Disables a listener resource.

Syntax

srvctl disable listener [-listener listener_name] [-node node_name]

Parameters

Table A-40 srvctl disable listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a particular listener resource. If
you do not specify this parameter, then the name of the listener defaults to
LISTENER.

Appendix A
SRVCTL Command Reference

A-56

Table A-40 (Cont.) srvctl disable listener Command Parameters

Parameter Description

-node node_name Optionally, you can specify the name of a cluster node on which the
listener resource you want to disable is running.

Note: This parameter is only available with Oracle Clusterware.

Example

The following example disables a listener resource named listener_crm on the node node5:

$ srvctl disable listener -listener listener_crm -node node5

srvctl enable listener
Enables a listener resource.

Syntax

srvctl enable listener [-listener listener_name] [-node node_name]

Parameters

Table A-41 srvctl enable listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a listener resource. If you do not
use this parameter, then the name of the listener defaults to LISTENER.

-node node_name Optionally, you can specify the name of a cluster node on which to enable
the listener.

Note: You can only use this parameter with Oracle Clusterware.

Examples

The following example enables the listener named listener_crm on the node named node5:

$ srvctl enable listener -listener listener_crm -node node5

srvctl getenv listener
Displays the environment variables for the specified listener.

Syntax

srvctl getenv listener [-listener listener_name] [-envs "name_list"]

Appendix A
SRVCTL Command Reference

A-57

Parameters

Table A-42 srvctl getenv listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify a listener name for which you want to obtain
the environment variables.

If you do not use this parameter, then the name of the listener defaults to
LISTENER.

-envs "name_list" Optionally, you can specify a comma-delimited list of the names of
environment variables enclosed in double quotation marks ("").

If you do not use this parameter, then SRVCTL displays the values of all
environment variables associated with the listener.

Example

The following example lists all environment variables specified for the default listener:

$ srvctl getenv listener

srvctl modify listener
Changes several aspects of the listener
Changes the Oracle home directory from which the listener runs, the name of the operating
system user who owns Oracle home directory from which the listener runs, the listener
endpoints, or the public subnet on which the listener listens, either for the default listener, or a
specific listener, that is registered with Oracle Restart or with Oracle Clusterware.

If you want to change the name of a listener, then use the srvctl remove listener and srvctl add
listener commands.

Syntax

srvctl modify listener [-listener listener_name] [-oraclehome oracle_home]
 [-endpoints "[TCP:]port_list[:FIREWALL={ON|OFF}][/IPC:key][/NMP:pipe_name]
 [/{TCPS|SDP|EXADIRECT}port_list[:FIREWALL={ON|OFF}]]"] [-group <group>]
 [-user user_name] [-netnum network_number]

Parameters

Table A-43 srvctl modify listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can enter the name of the listener you want to modify.

If you do not use this parameter, then SRVCTL uses the default name,
LISTENER.

-oraclehome
oracle_home

If you choose to use this parameter, then SRVCTL moves the listener to
run from the Oracle home you specify.

Note: When you use this parameter, run the command as a privileged
user to enable SRVCTL to update resource ownership corresponding to
the new ORACLE_HOME owner.

Appendix A
SRVCTL Command Reference

A-58

Table A-43 (Cont.) srvctl modify listener Command Parameters

Parameter Description

-endpoints
"[TCP:]port_list[:FIRE
WALL={ON|OFF}][/
IPC:key][/
NMP:pipe_name][/{TCPS|
SDP|
EXADIRECT}port_list[:F
IREWALL={ON|OFF}]]"

Optionally, you can use this parameter to modify protocol specifications for
the listener. You must enclose the string of protocols in double quotation
marks ("").

port_list is comma-delimited list of port numbers.

You can also modify endpoints for TCPS, SDP, and EXADIRECT ports.

Note: You can modify this attribute using Online Resource Attribute
Modification.

-group group_name Optionally, you can use the -group parameter with -endpoints to
specify a group for the secure endpoint. This parameter is used for the
EXADIRECT protocol on Exadata and Exalogic systems.

-user user_name Optionally, you can specify the name of the operating system user who
will own the specified Oracle listener

Notes:
• You can only use this parameter with Oracle Clusterware.
• You must be logged in as root to run this command and specify the

-user parameter.

• When you use the -user parameter, ensure the following:

The listener log directory in ORACLE_BASE and the Grid_home/
network/admin/user_name directory must both exist on each
node before you can use this parameter. Additionally, user_name
must have read, write, and execute permission in the directory.

The $ORACLE_BASE/diag/tnslsnr/host_name/
lower_case_listener_name directory exists and user_name
has read, write, and execute permission on it.

• Before you can use LSNRCTL to manage a listener, you must set
TNS_ADMIN to Grid_home/network/admin/user_name.

-netnum network_number Optionally, you can use this parameter to change the public subnet on
which the listener listens.

Note: Oracle recommends that you always have at least one listener on
the default network. Do not use this parameter to change the network of
the only listener that listens on the default network.

Example

The following example changes the TCP ports for the default listener:

$ srvctl modify listener -endpoints "TCP:1521,1522"

srvctl predict listener
Predicts the consequences of a listener failure.

Syntax

srvctl predict listener listener_name [-verbose]

Appendix A
SRVCTL Command Reference

A-59

Usage Notes

Specify the name of the listener for which you want to predict the consequences of a failure.
Optionally, you can use the –verbose parameter for detailed output.

srvctl remove listener
Removes the configuration of a specific listener, or all listeners, from Oracle Clusterware or
Oracle Restart.

Syntax

srvctl remove listener [-listener listener_name | -all] [-force]

Usage Notes

• Optionally, you can specify the name of a listener that you want to remove or use the –all
parameter to remove all listeners. If you do not specify a listener name, then the listener
name defaults to LISTENER for a database listener or LISTENER_ASM for an Oracle ASM
listener.

• Optionally, you can use the –force parameter to skip checking whether there are other
resources that depend on this listener, such as databases, and remove the listener
anyway.

Example

The following example removes the configuration for the listener named lsnr01:

$ srvctl remove listener -listener lsnr01

srvctl setenv listener
Administers listener environment configurations.

Syntax

Use this command with one of the following syntax models:

srvctl setenv listener [-listener listener_name] -envs "name=val[,...]"

srvctl setenv listener [-listener listener_name] -env "name=val"

Parameters

Table A-44 srvctl setenv listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a listener.

If you do not use this parameter, then the listener name defaults to
LISTENER.

Appendix A
SRVCTL Command Reference

A-60

Table A-44 (Cont.) srvctl setenv listener Command Parameters

Parameter Description

-envs
"name=val[,...]"

Specify a comma-delimited list of name-value pairs of environment
variables enclosed in double quotation marks ("").

-env "name=val" Use this parameter to enable single environment variable to be set to a
value that contains commas or other special characters enclosed in
double quotation marks ("").

Examples

The following example sets the language environment configuration for the default listener:

$ srvctl setenv listener -env "LANG=en"

srvctl start listener
Starts the default listener on specific node, or starts the specified listener on all nodes that are
registered with Oracle Clusterware or on the given node.

Syntax

srvctl start listener [-node node_name] [-listener listener_name]

Parameters

Table A-45 srvctl start listener Command Parameters

Parameter Description

-node node_name Specify a particular node name to start the listener on that node.

Note: You can only use this parameter with Oracle Clusterware.

-listener
listener_name

Specify a particular listener name. Use the srvctl config listener command
to obtain the name of a listener.

If you do not assign a value to this parameter, then SRVCTL starts all
known listeners in the cluster.

Examples

The following command starts all listeners managed by Oracle Clusterware on the node
named server3.

$ srvctl start listener -node server3

srvctl status listener
Displays the status of listener resources.

Appendix A
SRVCTL Command Reference

A-61

Syntax

srvctl status listener [-listener listener_name] [-node node_name] [-verbose]

Parameters

Table A-46 srvctl status listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a listener.

If you do not use this parameter, then the listener name defaults to
LISTENER.

-node node_name Optionally, you can specify the name of a cluster node.

Note: You can only use this parameter with Oracle Clusterware.

–verbose Optionally, you can use this parameter to display verbose output.

Examples

The following example displays the status of the default listener on the node node2:

$ srvctl status listener -listener listener -node node2
Listener LISTENER is running on node(s): node2

srvctl stop listener
Stops the default listener or a specific listener on all nodes or the specified node.
You can also use this command to stop a listener on a non-cluster database from the non-
cluster database home. However, SRVCTL does not accept the -node parameter when run
from a non-cluster database home.

Syntax

srvctl stop listener [-listener listener_name] [-node node_name] [-force]

Parameters

Table A-47 srvctl stop listener Command Parameters

Parameter Description

-listener
listener_name

Specify the name of the listener you want to stop.

If you do not assign a value to this parameter, then SRVCTL stops all
known listeners in the cluster.

-node node_name Optionally, you can specify the name of a single node on which a
particular listener runs.

Note: You can only use this parameter with Oracle Clusterware.

–force Forcibly stop the listener.

Appendix A
SRVCTL Command Reference

A-62

Examples

The following command stops all listeners on the node mynode1:

$ srvctl stop listener -node mynode1

srvctl unsetenv listener
Unsets the environment configuration for a listener.

Syntax

srvctl unsetenv listener [-listener listener_name] -envs "name_list"

Parameters

Table A-48 srvctl unsetenv listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a listener for which you want to
unset the environment configuration.

If you do not use this parameter, then the name of the listener defaults to
LISTENER.

-envs "name_list" Specify a comma-delimited list of environment variable names enclosed in
double quotation marks ("") that you want to unset.

Examples

The following example unsets the environment variable TNS_ADMIN for the default listener:

$ srvctl unsetenv listener -envs "TNS_ADMIN"

srvctl update listener
Updates the listener to listen on the new endpoints.

Syntax

srvctl update listener [-listener listener_name -asm -remove [-force]]

Parameters

Table A-49 srvctl update listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a listener that you want to update.

If you do not use this parameter, then the name of the listener defaults to
LISTENER.

-asm Oracle ASM listener type.

Appendix A
SRVCTL Command Reference

A-63

Table A-49 (Cont.) srvctl update listener Command Parameters

Parameter Description

-remove Remove Oracle ASM listener.

-force Forcefully remove Oracle ASM listener.

Usage Notes

You can only use this command with Oracle Clusterware.

network Commands
Use commands with the network keyword to add, modify, list the configuration of, and remove
a non-default Network.

• srvctl add network
Adds a static or dynamic network.

• srvctl config network
Displays the network configuration for the cluster.

• srvctl modify network

• srvctl predict network

• srvctl remove network

srvctl add network
Adds a static or dynamic network.

If your server connects to more than one network, then you can use this command to configure
an additional network interface for Oracle RAC, allowing you to create VIPs on multiple public
networks.

Syntax

srvctl add network [-netnum net_number] -subnet subnet/netmask[/if1[|if2...]]
 [-nettype {STATIC | DHCP | AUTOCONFIG | MIXED}] [-pingtarget
"ping_target_list"]
 [-skip] [-verbose]

Parameters

Table A-50 srvctl add network Command Parameters

Parameter Description

-netnum net_number The network number. The default is 1.

-subnet subnet/netmask [/
if1[|if2|...]]

Defines a subnet. If you do not specify any interface names, then the network uses any
interface on the given subnet.

For IPv6, netmask is a prefix length, such as 64.

Appendix A
SRVCTL Command Reference

A-64

Table A-50 (Cont.) srvctl add network Command Parameters

Parameter Description

-nettype {STATIC|DHCP|
AUTOCONFIG|MIXED}

Specify the network type: STATIC, DHCP, AUTOCONFIG, or MIXED.

If you specify STATIC for the network type, then you must provide the virtual IP address
using the srvctl add vip command.

If you specify DHCP for the network type, then the VIP agent obtains the IP address from
a DHCP server.

If you specify AUTOCONFIG for the network type, then the VIP agent generates a
stateless IPv6 address for the network. You can only use AUTOCONFIG for IPv6
networks. If the subnet/netmask specification is not for an IPv6 address, then SRVCTL
returns an error.

If you specify MIXED for the network type, then the VIP resource uses both a static IP
address and an IP address obtained dynamically, either from a DHCP server for IPv4 or
using stateless auto-configuration for IPv6.

-pingtarget
"ping_target_list"

A comma-delimited list of IP addresses or host names to ping.

-skip Use this parameter to skip the checking of subnet.

-verbose Verbose output.

Usage Notes

• On Linux and UNIX systems, you must be logged in as the root user and on Windows,
you must be logged in as a user with Administrator privileges to run this command.

• This command is only available with Oracle Clusterware.

• Oracle only supports DHCP-assigned networks for the default network, not for subsequent
networks.

• You can also use the LISTENER_NETWORKS database initialization parameter to control client
redirects to the appropriate network.

Example

An example of this command is:

srvctl add network -netnum 3 -subnet 192.168.3.0/255.255.255.0

srvctl config network
Displays the network configuration for the cluster.

Syntax

srvctl config network [-netnum network_number]

Usage Notes

• Specify the network for which you want to display configuration information.

• This command is only available with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-65

Example

An example of this command is:

$ srvctl config network -netnum 2

srvctl modify network
Modifies the subnet, network type, or IP address type for a network.

Syntax

srvctl modify network [-netnum network_number] [-subnet subnet/netmask
 [/if1[|if2|...]]] [-nettype network_type | -iptype {ipv4 | ipv6 | both}]
 [-pingtarget "ping_target_list"] [-verbose]

Parameters

Table A-51 srvctl modify network Command Parameters

Parameter Description

-netnum network_number Optionally, you can specify a network number that you want to modify. The
default is 1.

-subnet subnet/netmask
[/if1[|if2|...]]

Optionally, you can specify a subnet number for the public network. The
netmask and interfaces you specify, if any, change those of the network
you are modifying. If you specify an IPv6 subnet, then enter a prefix
length, such as 64, in place of netmask. If you do not specify any
interface names, then the VIPs use any interface on the given subnet.

If you are changing the network type using the -nettype parameter, then
you must specify either an existing IPv4 or IPv6 network using the -
subnet parameter. Additionally, the subnet and netmask you specify in
the -subnet parameter do not change those of the network you are
modifying.

-nettype network_type Optionally, you can modify the network type using this parameter, to
static, dhcp, autoconfig, or mixed.

-iptype {ipv4 | ipv6 |
both}

Alternative to modifying the network type, you can modify the type of IP
address to ipv4, ipv6, or both.

-pingtarget
"ping_target_list"

Optionally, you can specify a comma-delimited list of IP addresses or host
names to ping enclosed in double quotation marks ("").

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

• You can only use this command with Oracle Clusterware.

• On Linux and UNIX systems, you must be logged in as root and on Windows, you must be
logged in as a user with Administrator privileges to run this command.

• You can modify the IP address type for a network from IPv4 to IPv6, or from IPv6 to IPv4.

• If you specify static for the network type, then you must provide the virtual IP address
using the srvctl add vip command.

Appendix A
SRVCTL Command Reference

A-66

• If you specify dhcp for the network type, then the VIP agent obtains the IP address from a
DHCP server.

• If you specify autoconfig for the network type, then the VIP agent generates a stateless
IPv6 address for the network. You can only use this parameter for IPv6 networks. If the
subnet/netmask specification is not for an IPv6 address, then SRVCTL returns an error.

• If you change a network from static to mixed, then you must first configure GNS, so that
the dynamic addresses obtained can have names registered for them.

• If you specify mixed for the network type, then the VIP resource uses both a static IP
address and an IP address obtained dynamically, either DHCP or autoconfig.

• If you specify mixed_autoconfig for the network type, then the VIP resource retains the
static IP configuration and either obtains an IP address from a DHCP server for an IPv4
network specification or generates a stateless auto-configured IP address for an IPv6
network specification.

Examples

The following example changes the subnet number, netmask, and interface list:

srvctl modify network -subnet 192.168.2.0/255.255.255.0/eth0

The following example changes the second network to DHCP:

srvctl modify network -netnum 2 -nettype dhcp

The following example adds an IPv6 subnet and netmask to the default network:

srvctl modify network -subnet 2606:b400:400:18c0::/64

The following example removes the IPv4 configuration from a network:

srvctl modify network -iptype ipv6

Related Topics

• Oracle Clusterware Administration and Deployment Guide

srvctl predict network
Predicts the consequences of network failure.

Syntax

srvctl predict network [-netnum network_number] [-verbose]

Usage Notes

Optionally, you can specify a network for which you want to evaluate a failure. The default
value is 1. You can also use the –verbose parameter to print detailed output.

Appendix A
SRVCTL Command Reference

A-67

Example

The following example predicts the consequences of a failure on network number 2:

$ srvctl predict network -netnum 2

srvctl remove network
Removes the network configuration.

Syntax

srvctl remove network {-netnum network_number | -all} [-force] [-verbose]

Parameters

Table A-52 srvctl remove network Command Parameters

Parameter Description

-netnum network_number
| -all

Specify which network number you want to remove. Alternatively, you can
use the –all parameter to indicate that you want to remove all networks.

-force Optionally, you can use this parameter to remove the specified network
regardless of any dependencies.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

• You can only use the command with Oracle Clusterware.

• You must have full administrative privileges to run this command. On Linux and UNIX
systems, you must be logged in as root and on Windows systems, you must be logged in
as a user with Administrator privileges.

Example

The following example removes a network:

srvctl remove network -netnum 3

nodeapps Commands
Use commands with the nodeapps keyword to add, modify, manage environment variables for,
list the configuration of, enable, disable, start, stop, obtain the status of, and remove node
applications.

• srvctl add nodeapps
Adds a node application configuration to the specified node.

• srvctl config nodeapps
Displays the VIP configuration for each node in the cluster.

• srvctl disable nodeapps
Disables node applications on all nodes in the cluster.

Appendix A
SRVCTL Command Reference

A-68

• srvctl enable nodeapps
Enables the node applications on all nodes in the cluster.

• srvctl getenv nodeapps
Displays the environment variables for the node application configurations.

• srvctl modify nodeapps
Modifies the configuration for a node application.

• srvctl remove nodeapps
Removes the node application configuration.

• srvctl setenv nodeapps
Sets the environment variables for the node application configurations.

• srvctl start nodeapps
Starts node-level applications on a node or all nodes in the cluster.

• srvctl status nodeapps
Displays the status of node applications.

• srvctl stop nodeapps
Stops node-level applications on a node in the cluster.

• srvctl unsetenv nodeapps
Unsets the environment configuration for the node applications.

srvctl add nodeapps
Adds a node application configuration to the specified node.

Syntax

Use this command with one the following syntax models, specifying either a specific node and
VIP or a specific subnet and netmask:

srvctl add nodeapps {-node node_name -address {vip_name |
 ip_address}/netmask[/if1[|if2|..]] [-skip]}
 [-emport em_port] [-onslocalport ons_local_port] [-onsremoteport
ons_remote_port]
 [-remoteservers hostname[:port][,hostname[:port]]
 [-clientdata client_data_file [-scanclient]] [-pingtarget
"pingtarget_list"] [-vipless] [-verbose]

srvctl add nodeapps -subnet subnet/netmask[/if1[|if2|...]] [-emport em_port]
 [-onslocalport ons_local_port] [-onsremoteport ons_remote_port]
 [-remoteservers hostname[:port][,hostname[:port]]
 [-clientdata client_data_file [-scanclient]] [-pingtarget
"pingtarget_list"] [-vipless] [-verbose]

Parameters

Table A-53 srvctl add nodeapps Command Parameters

Parameter Description

-node node_name The name of the node on which you want to create the node application. Node name is
optional and unnecessary if you run the command on the local node.

Appendix A
SRVCTL Command Reference

A-69

Table A-53 (Cont.) srvctl add nodeapps Command Parameters

Parameter Description

-address {vip_name |
ip_address}/netmask[/if1[|
if2|..]]}

This specification creates a traditional VIP node application on the specified node.

Note: You must use this parameter for upgrade configurations and new, non-DHCP
configurations.

-skip Specify this parameter to skip checking the reachability of the VIP address.

-subnet subnet/netmask [/
if1[|if2 |...]]

Creates a DHCP subnet. If you do not specify any interface names, then the VIPs use
any interface on the given subnet.

-emport em_port Local port on which Oracle Enterprise Manager listens. The default port is 2016.

-onslocalport
ons_local_port

The Oracle Notification Service daemon listener port on its node.

If you do not specify this value, the Oracle Notification Service daemon listener port
defaults to 6100.

Note: The local port and remote port must each be unique.

-onsremoteport
ons_remote_port

The port number for remote Oracle Notification Service daemon connections.

If you do not specify a port number, the default value of 6200 is used for the Oracle
Notification Service remote port.

Note: The local port and remote port must each be unique.

-remoteservers
hostname[:port]

A list of hostname[:port] pairs for Oracle Notification Service daemons on servers
that are not in the cluster.

-clientdata
client_data_file

Optionally, you can specify the file with a wallet to import, or an empty string to delete a
wallet used for SSL to secure Oracle Notification Service communication.

If you want to use a custom certificate, then add your custom certificate to an auto-login
Oracle wallet using the orapki commands, and provide the complete certificate path in
the following format:

/wallet_directory/Oracle_wallet_name/custom_certificate_name.sso

-scanclient Optionally, you can specify SCAN client cluster name.

-pingtarget
"pingtarget_list"

Optionally, you can specify a comma-delimited list of IPs or host names enclosed in
double quotation marks ("") to ping.

-vipless Specify this option to add a network without node VIP addresses.

-verbose Verbose output.

Usage Notes

• On Linux and UNIX systems, you must be logged in as root and on Windows, you must be
logged in as a user with Administrator privileges to run this command.

• This command is only available with Oracle Clusterware.

Example

An example of this command is:

srvctl add nodeapps -node crmnode1 -address 1.2.3.4/255.255.255.0

Related Topics

• Oracle Database Security Guide

Appendix A
SRVCTL Command Reference

A-70

srvctl config nodeapps
Displays the VIP configuration for each node in the cluster.

Note:

This command is only available with Oracle Clusterware.

Syntax

srvctl config nodeapps [-viponly] [-onsonly]

Usage Notes

Use -viponly to display the VIP address configuration. Use -onsonly to display the Oracle
Notification Service configuration.

Example

An example of this command is:

$ srvctl config nodeapps -viponly -onsonly

srvctl disable nodeapps
Disables node applications on all nodes in the cluster.

Syntax

srvctl disable nodeapps [-onsonly] [-adminhelper] [-verbose]

Parameters

Table A-54 srvctl disable nodeapps Command Parameters

Parameter Description

-onsonly Optionally, you can use this parameter to disable only the Oracle
Notification Service (ONS).

-adminhelper Optionally, you can use this parameter to disable the Administrator helper
only.

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this parameter with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-71

Example

The following example disables ONS:

$ srvctl disable nodeapps -onsonly -verbose

srvctl enable nodeapps
Enables the node applications on all nodes in the cluster.

Syntax

srvctl enable nodeapps [-onsonly] [-adminhelper] [-verbose]

Parameters

Table A-55 srvctl enable nodeapps Command Parameters

Parameter Description

-onsonly Optionally, you can use this parameter to disable only the Oracle
Notification Service (ONS).

-adminhelper Optionally, you can use this parameter to enable the Administrator helper
only.

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example enables ONS:

$ srvctl enable nodeapps -onsonly -verbose

srvctl getenv nodeapps
Displays the environment variables for the node application configurations.

Syntax

srvctl getenv nodeapps [-viponly] [-onsonly] [-envs "name_list"]

Parameters

Table A-56 srvctl getenv nodeapps Command Parameters

Parameter Description

-viponly Optionally, you can use this parameter to display the VIP address
configuration.

Appendix A
SRVCTL Command Reference

A-72

Table A-56 (Cont.) srvctl getenv nodeapps Command Parameters

Parameter Description

-onsonly Optionally, you can use this parameter to isplay the Oracle Notification
Service configuration.

-envs "name_list" Optionally, you can specify a comma-delimited list of the names of
environment variables enclosed in double quotation marks ("").

If you do not use this parameter, then SRVCTL displays the values of all
environment variables associated with the node applications.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example lists all environment variables for the node applications:

$ srvctl getenv nodeapps -viponly

srvctl modify nodeapps
Modifies the configuration for a node application.

Syntax

Use this command with one of the following syntax models, specifying either a specific node
and VIP or a specific subnet and netmask:

srvctl modify nodeapps {[-node node_name -address {vip_name|vip_address}/
 netmask[/if1[|if2|...]] [-skip]} [-nettype network_type] [-emport em_port]
 [-onslocalport ons_local_port] [-onsremoteport ons_remote_port]
 [-remoteservers host:[port][,...]] [-verbose]
 [-clientdata file] [-pingtarget "ping_target_list"]

srvctl modify nodeapps [-subnet subnet/netmask[/if1[|if2|...]]]
 [-nettype network_type] [-emport em_port]
 [-onslocalport ons_local_port] [-onsremoteport ons_remote_port]
 [-remoteservers host:[port][,host:port,...]] [-verbose]
 [-clientdata file] [-pingtarget "ping_target_list"]

Parameters

Table A-57 srvctl modify nodeapps Command Parameters

Parameter Description

-node node_name Specify the name of the node on which the node application you want to
modify resides.

Appendix A
SRVCTL Command Reference

A-73

Table A-57 (Cont.) srvctl modify nodeapps Command Parameters

Parameter Description

-address {vip_name|
vip_address}/
netmask[/if1[|
if2|...]]

Specify a node-level virtual IP name or address. The address specified by
name or IP must match the subnet number of the default network.

Note: You must use this parameter for upgrade configurations and new
non-DHCP configurations

–skip Optionally, you can use this parameter to skip checking the reachability of
the VIP address.

-subnet subnet/
netmask[/if1[|
if2|...]]

Alternative to specifying a node name and address, you can specify a
subnet number for the public network. The netmask and interfaces you
specify, if any, change those of the default network. Additionally, if you
specify a value for the netmask option, then you need only specify it for
the first node on each network.

-nettype network_type Optionally, you can change the network server type to static, dhcp, or
mixed.

-emport em_port Optionally, you can change the local port on which Oracle Enterprise
Manager listens.

Note: You can also modify this attribute using Online Resource Attribute
Modification.

-onslocalport
ons_local_port

Optionally, you can change the port on which the Oracle Notification
Service daemon listens for local client connections.

Notes:
• The local port and remote port must each be unique.
• You can modify the local port while the resource remains online,

without restarting the resource.

-onsremoteport
ons_remote_port

Optionally, you can change the port on which the Oracle Notification
Service daemon listens for connections from remote hosts.

Notes:
• The local port and remote port must each be unique.
• You can modify the remote port while the resource remains online,

without restarting the resource.

-remoteservers host:
[port][,...]

Optionally, you can modify the comma-delimited list of host:[port pairs
of remote hosts that are part of the Oracle Notification Service network
but are not part of the cluster. If you do not specify a port for a remote
host, then the utility uses the value you specified for ons_remote_port.

-clientdata file Optionally, you can specify the file with a wallet to import, or an empty
string to delete a wallet used for SSL to secure Oracle Notification Service
communication.

Note:

You must manually restart the ONS server
after updating the ONS security certificate
using this parameter.

-pingtarget
"ping_target_list"

Optionally, you can specify a comma-delimited list of IPs or host names
enclosed in double quotation marks ("") to ping.

-verbose Optionally, you can use this parameter to display detailed output.

Appendix A
SRVCTL Command Reference

A-74

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example changes the nodeapps resource on mynode1 to use the application VIP
of 100.200.300.40 with a subnet mask of 255.255.255.0 on the network interface eth0:

$ srvctl modify nodeapps -node mynode1 -addr 100.200.300.40/255.255.255.0/eth0

Note:

You must manually restart the ONS server after updating the ONS security certificate
using the -clientdata parameter.

srvctl remove nodeapps
Removes the node application configuration.

Syntax

srvctl remove nodeapps [-force] [-noprompt] [-verbose]

Parameters

Table A-58 srvctl remove nodeapps Command Parameters

Parameter Description

-force Optionally, you can use this parameter to forcibly remove node application
configurations, regardless of any dependencies.

-noprompt Optionally, you can use this parameter to suppress prompts.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

• You can only use this command with Oracle Clusterware.

• You must have full administrative privileges to run this command. On Linux and UNIX
systems, you must be logged in as root and on Windows systems, you must be logged in
as a user with Administrator privileges.

srvctl setenv nodeapps
Sets the environment variables for the node application configurations.

Syntax

srvctl setenv nodeapps {-envs "name=val[,...]" | -env "name=val"}
 [-viponly] [-onsonly] [-verbose]

Appendix A
SRVCTL Command Reference

A-75

Parameters

Table A-59 srvctl setenv nodeapps Command Parameters

Parameter Description

-envs "name=val[,...]" Use this parameter to specify a comma-delimited list of name-value pairs
of environment variables enclosed in double quotation marks ("").

-env "name=val" Alternatively, you can use this parameter to enable a single environment
variable that is set to a value which contains commas or other special
characters, enclosed in double quotation marks ("").

-viponly Optionally, you can use this parameter to modify only the VIP
configuration.

-onsonly Optionally, you can use this parameter to modify only the ONS daemon
configuration.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example sets the CLASSPATH environment variable for all node applications:

$ srvctl setenv nodeapps -env "CLASSPATH=/usr/local/jdk/jre/rt.jar" -verbose

srvctl start nodeapps
Starts node-level applications on a node or all nodes in the cluster.

Syntax

srvctl start nodeapps [-node node_name] [-onsonly] [-adminhelper] [-verbose]

Parameters

Table A-60 srvctl start nodeapps Command Parameters

Parameter Description

-node node_name Optionally, you can specify a node on which to start node-level
applications.

If you do not use this parameter, then SRVCTL starts the node
applications on all active nodes in the cluster.

-onsonly Optionally, you can use this parameter to disable only the Oracle
Notification Service (ONS).

-adminhelper Optionally, you can use this parameter to start only an Administrator
helper instead of all node applications.

-verbose Optionally, you can use this parameter to display detailed output.

Appendix A
SRVCTL Command Reference

A-76

Usage Notes

You can only use this command with Oracle Clusterware.

srvctl status nodeapps
Displays the status of node applications.

Syntax

srvctl status nodeapps [-node node_name]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can specify a node for which to display the status of the node applications.

srvctl stop nodeapps
Stops node-level applications on a node in the cluster.

Syntax

srvctl stop nodeapps [-node node_name] [-onsonly] [-adminhelper] [-force]
 [-relocate] [-verbose]

Parameters

Table A-61 srvctl stop nodeapps Command Parameters

Parameter Description

-node node_name Optionally, you can use this parameter to specify a node on which you
want to stop node applications.

If you do not use this parameter, then the utility stops the node
applications on all active nodes in the cluster.

-onsonly Optionally, you can use this parameter to disable only the Oracle
Notification Service (ONS).

-adminhelper Optionally, you can use this parameter to stop only the Administrator
helper instead of all node applications.

-force Optionally, you can use this parameter to stop node applications
regardless of any dependencies.

-relocate Optionally, you can use this parameter to relocate the VIP and possibly-
dependent services.

Note: If you use this parameter, then you must also specify the -node
node_name parameter.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-77

srvctl unsetenv nodeapps
Unsets the environment configuration for the node applications.

Syntax

srvctl unsetenv nodeapps -envs "name_list" [-viponly] [-onsonly]
 [-verbose]

Parameters

Table A-62 srvctl unsetenv nodeapps Command Parameters

Parameter Description

-envs "name_list" Specify a comma-delimited list of the names of environment variables
enclosed in double quotation marks ("") that you want to unset.

-viponly Optionally, you can use this parameter to unset only the VIP configuration.

-onsonly Optionally, you can use this parameter to unset only the ONS daemon
configuration.

-verbose Optionally, you can use this parameter to display detailed output.

Example

The following example unsets the environment configuration for the specified node
applications:

$ srvctl unsetenv nodeapps -envs "test_var1,test_var2"

ons Commands
Use commands with the ons keyword to manage only Oracle Notification Service instances for
Oracle Restart.

You can add, configure, enable, start, obtain the status of, stop, disable, and remove Oracle
Notification Service instances for Oracle Restart.

• srvctl add ons
Adds an Oracle Notification Service daemon to an Oracle Restart configuration.

• srvctl config ons
Displays configuration information for the Oracle Notification Service daemon.

• srvctl disable ons
Disables the Oracle Notification Service (ONS) daemon for Oracle Restart installations.

• srvctl enable ons

• srvctl export ons
Exports ONS server information into a file.

• srvctl modify ons

• srvctl remove ons

• srvctl start ons

Appendix A
SRVCTL Command Reference

A-78

• srvctl status ons

• srvctl stop ons

srvctl add ons
Adds an Oracle Notification Service daemon to an Oracle Restart configuration.

Syntax

srvctl add ons [-emport em_port] [-onslocalport ons_local_port] [-
onsremoteport ons_remote_port]
 [-remoteservers host[:port][,host[:port]...]]
 [-clientcluster cluster_name] [-clientdata filename]

Parameters

Table A-63 srvctl add ons Command Parameters

Parameter Description

-emport em_port Local listen port for Oracle Enterprise Manager. The default port number is 2016.

-onslocalport
ons_local_port

Optionally, you can specify the Oracle Notification Service daemon listening port for
local client connections.

Note: The local port and remote port must each be unique.

-onsremoteport
ons_remote_port

Optionally, you can specify the Oracle Notification Service daemon listening port for
connections from remote hosts.

Note: The local port and remote port must each be unique.

-remoteservers host[:port]
[host[:port]...]

Optionally, you can specify a comma-delimited list of host:port pairs of remote hosts
that are part of the Oracle Notification Service network but are not part of the Oracle
Clusterware cluster.

Note: If port is not specified for a remote host, then ons_remote_port is used.

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN listener.

-clientdata filename Specify the path to the file to which credentials data will be written.

Usage Notes

You can only use this command with Oracle Restart.

Example

An example of this command is:

$ srvctl add ons -onslocalprt 6200

srvctl config ons
Displays configuration information for the Oracle Notification Service daemon.

Syntax

srvctl config ons [-all] [-clientcluster cluster_name]

Appendix A
SRVCTL Command Reference

A-79

Usage Notes

• You can only use this command with Oracle Restart.

• You can display the configuration for all ONS daemons, or those for a specific client
cluster.

srvctl disable ons
Disables the Oracle Notification Service (ONS) daemon for Oracle Restart installations.

Syntax

srvctl disable ons [-clientcluster cluster_name] [-verbose]

Usage Notes

• You can only use this command with Oracle Restart.

• You can disable all ONS daemons, or those for a specific client cluster.

• Optionally, you can use the -verbose parameter to display detailed output.

srvctl enable ons
Enables the Oracle Notification Service daemon.

Syntax

srvctl enable ons [-clientcluster cluster_name] [-verbose]

Usage Notes

• You can only use this command with Oracle Restart.

• You can enable all ONS daemons, or those for a specific client cluster.

• Optionally, you can use the -verbose parameter to display detailed output.

srvctl export ons
Exports ONS server information into a file.

Syntax

srvctl export ons -clientcluster cluster_name -clientdata filename

Parameters

Table A-64 srvctl export ons Command Parameters

Parameter Description

-clientcluster
cluster_name

Specify the cluster name.

Appendix A
SRVCTL Command Reference

A-80

Table A-64 (Cont.) srvctl export ons Command Parameters

Parameter Description

-clientdata filename Specify the path to the file to which credentials data will be written.

srvctl modify ons
Modifies the ports used by the Oracle Notification Service daemon that is registered with
Oracle Restart.

Syntax

srvctl modify ons [-emport em_port] [-onslocalprt ons_local_port] [-
onsremoteport ons_remote_port]
 [-remoteservers host[:port][,host[:port],...]]
 [-clientcluster cluster_name] [-verbose]

Parameters

Table A-65 srvctl modify ons Command Parameters

Parameter Description

-emport em_port Optionally, you can specify the local port on which Oracle Enterprise
Manager listens. The default port is 2016.

-onslocalprt
ons_local_port

Optionally, you can modify the Oracle Notification Service daemon
listening port for local client connections.

Note: The local port and remote port must each be unique.

-onsremoteport
ons_remote_port

Optionally, you can modify the Oracle Notification Service daemon
listening port for connections from remote hosts.

Note: The local port and remote port must each be unique.

-remoteservers
host[:port]
[,host[:port],...]

Optionally, you can specify a list of host:port pairs of remote hosts that
are part of the Oracle Notification Service network but are not part of the
Oracle Clusterware cluster.

Note: If you do not specify port for a remote host, then SRVCTL uses the
value for ons_remote_port.

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN listener.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Restart.

Example

An example of this command is:

$ srvctl modify ons -onslocalprt 6203

Appendix A
SRVCTL Command Reference

A-81

srvctl remove ons
Removes Oracle Notification Service from the Oracle Grid Infrastructure home.

Syntax

srvctl remove ons [-clientcluster cluster_name] [-force] [-verbose]

Usage Notes

• You can only use this command with Oracle Restart.

• If using the shared SCAN feature, then use the -clientcluster parameter to specify the
name of the cluster that is running the shared SCAN listener.

• Optionally, you can use the –force parameter to remove Oracle Notification Service
regardless of dependencies.

• Optionally, you can use the –verbose parameter to display detailed output.

srvctl start ons
Starts the Oracle Notification Service daemon.

Syntax

srvctl start ons [-clientcluster cluster_name] [-verbose]

Usage Notes

• You can only use this command with Oracle Restart.

• You can enable all ONS daemons, or those for a specific client cluster.

• Optionally, you can use the -verbose parameter to display detailed output.

srvctl status ons
Displays the current state of the Oracle Notification Service daemon.

Syntax

srvctl status ons [-clientcluster cluster_name]

Usage Notes

• You can only use this command with Oracle Restart.

• You can display the status for all ONS daemons, or those for a specific client cluster.

srvctl stop ons
Stops the Oracle Notification Service daemon.

Appendix A
SRVCTL Command Reference

A-82

Syntax

srvctl stop ons [-clientcluster cluster_name] [-force]

Usage Notes

• You can only use this command with Oracle Restart.

• You can stop all ONS daemons, or those for a specific client cluster.

• Optionally, you can use the –force parameter to stop the ONS daemons regardless of any
dependencies.

pdb Commands
Use commands with the pdb keyword to manage the Pluggable Databases (PDBs) in your
cluster database.

You can add, modify, remove, list the configuration of, enable, disable, start, stop, and obtain
the status of PDBs.

• srvctl add pdb
Adds a Pluggable Database (PDB) configuration to Oracle Clusterware.

• srvctl config pdb
Displays the configuration information for a Pluggable Database (PDB).

• srvctl disable pdb
Disables a running Pluggable Database (PDB) from Oracle Clusterware management.

• srvctl enable pdb
Enables the Pluggable Database (PDB) for Oracle Clusterware management.

• srvctl modify pdb
Modifies the configuration for a Pluggable Database (PDB).

• srvctl remove pdb
Removes the Pluggable Database (PDB) configuration from Oracle Clusterware
management.

• srvctl start pdb
Starts a Pluggable Database (PDB) and the associated services based on the
management policy of the service. All the services with the AUTOMATIC management policy
will start automatically.

• srvctl status pdb
This command displays the current state of the Pluggable Database (PDB).

• srvctl stop pdb
Stops a Pluggable Database (PDB) and its services.

Related Topics

• Pluggable Database Rank
The PDB -rank parameter defines relative importance of the PDBs, which are created
specifying cardinality, in a database with the RANK management policy.

• Pluggable Database Placement
Configure PDBs to either run explicitly in the specified CDB instances or run dynamically in
any CDB or a subset of CDBs in the cluster.

Appendix A
SRVCTL Command Reference

A-83

• Starting and Stopping PDBs in Oracle RAC
You can use SRVCTL commands to manage PDBs.

srvctl add pdb
Adds a Pluggable Database (PDB) configuration to Oracle Clusterware.

Syntax

srvctl add pdb -db db_unique_name -pdb pdb_name
 [-cardinality {num_of_instances | ALL}]
 [-maxcpu max_cpu_usage] [-mincpuunit min_cpu_usage]
 [-approot approot_database] [-startoption start_options]
 [-stopoption stop_options] [-policy policy]

Parameters

Table A-66 srvctl add pdb Command Parameters

Parameter Description

-db db_unique_name The unique name of the Container Database (CDB).

-pdb pdb_name The name of the PDB.

-cardinality
{num_of_instances |
ALL}

The number of instances of the PDB to be open at any time. If you specify
ALL, then the PDB can open in any or all instances of the cluster
database.

Note:

If this parameter is not set, then the PDB
can run on any node on which the cluster
database can run. Where the PDB runs is
determined by the preferred and available
lists of the PDB services. If this parameter is
set, then the PDB services must be
UNIFORM, SINGLETON, or DUPLEX.

-maxcpu max_cpu_usage The maximum CPU usage limit for the PDB.

-mincpuunit
min_cpu_usage

The minimum CPU usage limit for the PDB.

-approot
approot_database

The application root PDB.

Appendix A
SRVCTL Command Reference

A-84

Table A-66 (Cont.) srvctl add pdb Command Parameters

Parameter Description

-startoption
start_options

Startup options for the PDB, such as OPEN or OPEN READ ONLY. The
default value is an empty string, which means the PDB uses the same
open mode as the CDB.

Note:

For multi-word startup options, such as
read only and read write, separate the
words with a space and enclose in double
quotation marks (""). For example, "read
only".

-stoption stop_options Stop options for the PDB, such as NORMAL. The default stop option is
IMMEDIATE.

-policy policy Management policy for the Pluggable Database, where policy can be one
of the following values:

• AUTOMATIC: The PDBs are started automatically when the database
is started with the srvctl start database command. With this
management policy, a PDB always starts with its CDB starts, whether
it was running before or not.

Note:

When you add a PDB using SRVCTL, then the PDB's
default management policy depends on the CDB's
management policy. For example, if CDB's management
policy is AUTOMATIC, then PDB's management policy is
also set to AUTOMATIC.

• MANUAL: The PDB is restarted when the PDB services require it. The
PDB restart is driven by the previous running state and management
policy of the PDB services. A MANUAL PDB with MANUAL services is
restarted after the CRS restart.

• RESTART: The PDB is restarted upon restart of the database host
computer.

Usage Notes

If a PDB's management policy is RESTART, then the management policy for the CDB must be
RANK.

Related Topics

• Pluggable Database Rank
The PDB -rank parameter defines relative importance of the PDBs, which are created
specifying cardinality, in a database with the RANK management policy.

Appendix A
SRVCTL Command Reference

A-85

srvctl config pdb
Displays the configuration information for a Pluggable Database (PDB).

Syntax

srvctl config pdb -db db_unique_name [-pdb pdb_name] [-detail]

Parameters

Table A-67 srvctl config pdb Command Parameters

Parameter Description

-db db_unique_name
Unique name for the Container Database (CDB).

-pdb pdb_name The name of the PDB.

-detail
Print detailed configuration information.

Example

This examples shows the configuration information for the crmeast PDB.

srvctl config pdb -db crm -pdb crmeast

Pluggable database name: crmeast
Application Root PDB:
Maximum CPU count (whole CPUs): 0
Minimum CPU count unit (1/100 CPU count): 0
Start Option: open
Stop Option: immediate

srvctl disable pdb
Disables a running Pluggable Database (PDB) from Oracle Clusterware management.

Syntax

srvctl disable pdb -db db_unique_name -pdb pdb_name [-node node_name]

Parameters

Table A-68 srvctl disable pdb Command Parameters

Parameter Description

-db db_unique_name The unique name of the Container Database (CDB).

-pdb pdb_name The name of the PDB.

Appendix A
SRVCTL Command Reference

A-86

Table A-68 (Cont.) srvctl disable pdb Command Parameters

Parameter Description

-node node_name The node on which you want to disable the PDB.

Note: You can only use this parameter only with Oracle Clusterware.

Example

The following example disables the PDB crmeast:

srvctl disable pdb -db crm -pdb crmeast

srvctl enable pdb
Enables the Pluggable Database (PDB) for Oracle Clusterware management.

Syntax

srvctl enable pdb -db db_unique_name -pdb pdb_name [-node node_name]

Parameters

Table A-69 srvctl enable pdb Command Parameters

Parameter Description

-db db_unique_name The unique name of the Container Database (CDB).

-pdb pdb_name The name of the PDB that you want to enable.

-node node_name The name of the node on which the PDB resource resides that you want
to enable.

Note: You can only use this parameter with Oracle Clusterware.

Example

The following example enables a PDB named crmeast for Oracle Clusterware management:

srvctl enable pdb -db crm -pdb crmeast

srvctl modify pdb
Modifies the configuration for a Pluggable Database (PDB).

Syntax

srvctl modify pdb -db db_unique_name -pdb pdb_name
 [-cardinality {num_of_instances | ALL}]
 [-maxcpu max_cpu_usage] [-mincpuunit min_cpu_usage]
 [-rank rank] [-startoption start_options]
 [-stopoption stop_options] [-policy policy]

Appendix A
SRVCTL Command Reference

A-87

Parameters

Table A-70 srvctl modify pdb Command Parameters

Parameter Description

-db db_unique_name Unique name for the Container Database (CDB).

-pdb pdb_name The name of the PDB.

-cardinality
{num_of_instances |
ALL}

The number of instances of the PDB to be open at any time. If you specify
ALL, then a PDB is open in every available Container Database (CDB) in
the cluster database.

Note:

You can modify the -cardinality
parameter only if you had set the -
cardinality parameter when creating the
PDB.

-maxcpu max_cpu_usage The maximum CPU usage limit for the PDB in whole CPUs. Specify a
positive integer value that is equal to or greater than 1.

You must be logged in as either the grid or the root user to modify this
parameter.

-mincpuunit
min_cpu_usage

The minimum CPU usage limit for the PDB. Specify a positive integer
value that is equal to or greater than 10. The value must be in hundredths
of the total CPU count (1/100 CPU count).

You must be logged in as either the grid or the root user to modify this
parameter.

-rank rank The rank of the PDB. The range of values you can specify for this
parameter is 0 to 5. The default value is 0.

You must be logged in as either the grid or the root user to modify this
parameter.

Note:

You can modify the -rank parameter only if
you had set the -rank parameter when
creating the PDB.

-startoption
start_options

Startup options for the PDB, such as OPEN or OPEN READ ONLY. The
default value is an empty string, which means the PDB uses the same
open mode as the CDB.

Note:
For multi-word startup options, such as read only and read write,
separate the words with a space and enclose in double quotation marks
(""). For example, "read only".

-stoption stop_options Stop options for the PDB, such as NORMAL. The default stop option is
IMMEDIATE.

Appendix A
SRVCTL Command Reference

A-88

Table A-70 (Cont.) srvctl modify pdb Command Parameters

Parameter Description

-policy policy Management policy for the Pluggable Database, where policy can be one
of the following values: AUTOMATIC, MANUAL, or RESTART.

Related Topics

• Database Startup

• Database Shutdown

• Pluggable Database Rank
The PDB -rank parameter defines relative importance of the PDBs, which are created
specifying cardinality, in a database with the RANK management policy.

srvctl remove pdb
Removes the Pluggable Database (PDB) configuration from Oracle Clusterware management.

Syntax

srvctl remove pdb -db db_unique_name -pdb pdb_name
 [-force] [-noprompt] [-verbose]

Parameters

Table A-71 srvctl remove pdb Command Parameters

Parameter Description

-db db_unique_name Unique name of the Container Database (CDB).

-pdb pdb_name The name of the PDB.

-force Forcibly remove the PDB and ignore any dependencies.

-noprompt Suppress prompts.

-verbose Display verbose output.

Example

This example shows how to remove configuration from Oracle Clusterware management of the
PDB named crmeast in the Container Database (CDB) named crm.

$ srvctl remove pdb -db crm -pdb crmeast

srvctl start pdb
Starts a Pluggable Database (PDB) and the associated services based on the management
policy of the service. All the services with the AUTOMATIC management policy will start
automatically.

Appendix A
SRVCTL Command Reference

A-89

Syntax

srvctl start pdb -db db_unique_name -pdb pdb_name
 [-startoption start_options] [-node node_list]

Parameters

Table A-72 srvctl start pdb Command Parameters

Parameter Description

-db db_unique_name The unique name of the database to start.

-pdb pdb_name The name of the PDB to start.

-startoption
start_options

Options for the startup command, such as READ ONLY or OPEN.

Notes:
• This command parameter supports all PDB startup options.
• For multi-word startup options, such as READ ONLY and READ

WRITE, separate the words with a space and enclose in double
quotation marks (""). For example, "READ ONLY".

See Also: STARTUP command in SQL*Plus User's Guide and
Reference

-node node_list Comma-separated list of nodes on which to start the PDB.

Examples

The following example starts the crmeast PDB in READ ONLY mode:

srvctl start pdb -db crm -pdb crmeast -startoption "read only"

srvctl status pdb
This command displays the current state of the Pluggable Database (PDB).

Syntax

srvctl status pdb -db db_unique_name [-pdb pdb_name]
 [-detail]

Parameters

Table A-73 srvctl status pdb Parameters

Parameter Description

-db db_unique_name The unique name of the Container Database (CDB).

-pdb pdb_name The name of the PDB. If you do not specify a PDB name, then information
on all the PDBs in that particular database are displayed.

–detail Display detailed status information.

Appendix A
SRVCTL Command Reference

A-90

Examples

This example shows sample output for the status information for the crmeast and crmnorth
PDBs.

$ srvctl status pdb -db crm -pdb crmeast

Pluggable database crmeast of crm is running on nodes site1, site3.

$ srvctl status pdb -db crm -pdb crmnorth

Pluggable database crmnorth of crm is not running.

srvctl stop pdb
Stops a Pluggable Database (PDB) and its services.

Syntax

srvctl stop pdb -db db_unique_name -pdb pdb_name [-node node_name]
 [-stopoption stop_options] [-drain_timeout timeout]
 [-stopsvcoption stop_service_options] [-force]

Parameters

Table A-74 srvctl stop pdb Command Parameters

Parameter Description

-db db_unique_name The unique name for the Container Database (CDB).

-pdb pdb_name The name of the PDB to stop.

-node node_name The name of the node on which to stop the PDB. If you do not specify any
nodes, then the specified PDB is stopped on all the nodes where the PDB
is running.

-stopoption
stop_options

Options for the shutdown command, such as NORMAL or IMMEDIATE. The
default value is IMMEDIATE.

-drain_timeout timeout The time, in seconds, for the resource draining action to complete. By
default, this parameter is not set. You can specify 0 or any positive integer.
An empty string unsets the parameter. If you specify zero, then the agent
will perform the actions related to service draining, immediately.

Drain timeout is the maximum time the service waits before exiting (in
case of srvctl stop service or srvctl stop instance) or
proceeding to stop database (srvctl stop database or srvctl stop
pdb), until the draining of sessions is completed. If session draining
completes in 10 seconds and the drain timeout value is 100 seconds, then
SRVCTL continues after 10 seconds. It does not wait for the remaining 90
seconds.

-stopsvcoption
stop_service_options

Options for stopping services, such as TRANSACTIONAL or IMMEDIATE. If
you do not specify this open, then the stop option set in the service
resource attribute USR_ORA_STOP_MODE is used.

-force Use this parameter to force stop the PDB and its services, and any
dependent resources.

Appendix A
SRVCTL Command Reference

A-91

Example

The following command stops a PDB named crmeast that is open in the crm database,
allowing 50 seconds for all sessions to drain from the PDB:

srvctl stop pdb -db crm -pdb crmeast -drain_timeout 50

scan Commands
Use commands with the scan keyword to add, list the configuration of, modify, enable, disable,
start, stop, relocate, obtain the status of, and remove SCAN VIPs.

• srvctl add scan
Adds Oracle Clusterware resources for the given SCAN.

• srvctl config scan
Displays the configuration information for all SCAN VIPs, by default, or a specific SCAN
VIP identified by ordinal_number.

• srvctl disable scan

• srvctl enable scan

• srvctl modify scan

• srvctl predict scan

• srvctl relocate scan
Relocates a specific SCAN VIP from its current hosting node to another node within the
cluster.

• srvctl remove scan

• srvctl start scan

• srvctl status scan

• srvctl stop scan

srvctl add scan
Adds Oracle Clusterware resources for the given SCAN.

Syntax

srvctl add scan -scanname scan_name [-netnum network_number]

Parameters

Table A-75 srvctl add scan Command Parameters

Parameter Description

-scanname scan_name A fully-qualified host name, which includes the domain name. If the network is dynamic,
then you do not have to use fully-qualified host name but, if you choose to do so, then
the domain must be the GNS subdomain.

Note: You can modify this attribute using Online Resource Attribute Modification.

Appendix A
SRVCTL Command Reference

A-92

Table A-75 (Cont.) srvctl add scan Command Parameters

Parameter Description

-netnum network_number The optional network number from which SCAN VIPs are obtained. If you do not specify
this parameter, then the SCAN VIPs are obtained from the same default network from
which the nodeapps VIP is obtained.

Usage Notes

• This command creates the same number of SCAN VIP resources as the number of IP
addresses that SCAN resolves to, or 3 when network_number identifies a dynamic network
and Oracle GNS configuration.

• For static networks, the addresses to which the SCAN resolves in DNS must match the
address type of the subnet.

• For an IPv4 network, the SCAN must resolve to IPv4 addresses.

• This command is only available with Oracle Clusterware.

Example

An example of this command is:

srvctl add scan -scanname scan.mycluster.example.com

srvctl config scan
Displays the configuration information for all SCAN VIPs, by default, or a specific SCAN VIP
identified by ordinal_number.

Syntax

srvctl config scan [[-netnum network_number] [-scannumber ordinal_number] | -
all]

Parameters

Table A-76 srvctl config scan Command Parameters

Parameter Description

-netnum network_number Use this parameter to view the configuration of a specific SCAN
VIP.

-scannumber ordinal_number Use this parameter to specify any one of the three SCAN VIPs,
using values from 1 to 3, for which you want to view the
configuration.

-all Alternative to specifying network or ordinal numbers, you can use
this parameter to view the configuration for all of the SCAN VIPs.

Usage Notes

This command is only available with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-93

Example

This command returns output similar to the following:

$ srvctl config scan -scannumber 1

SCAN name: mjk12700890090-r, Network: 1
Subnet IPv4: 198.51.100.1/203.0.113.46/eth0, static
Subnet IPv6:
SCAN 1 IPv4 VIP: 198.51.100.195
SCAN VIP is enabled.
SCAN VIP is individually enabled on nodes:
SCAN VIP is individually disabled on nodes:

srvctl disable scan
Disables all SCAN VIPs, by default, or a specific SCAN VIP identified by ordinal_number.

Syntax

srvctl disable scan [-scannumber ordinal_number]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can use the -scannumber parameter to specify any one of the three SCAN
VIPs you want to disable. The parameter takes a range of values from 1 to 3.

Example

The following example disables the first SCAN VIP:

$ srvctl disable scan -scannumber 1

srvctl enable scan
Enables all SCAN VIPs, by default, or a specific SCAN VIP identified by its ordinal number.

Syntax

srvctl enable scan [-scannumber ordinal_number]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can use the -scannumber parameter to specify any one of the three SCAN
VIPs you want to enable. The parameter takes a range of values from 1 to 3.

Appendix A
SRVCTL Command Reference

A-94

Example

The following example enables the first SCAN VIP:

$ srvctl enable scan -scannumber 1

srvctl modify scan
Modifies the number of SCAN VIPs to match the number of IP addresses returned by looking
up the scan_name you specify in DNS.
You use this command when DNS was modified to add, change, or remove IP addresses, and
now you must adjust the Oracle Clusterware resource configuration to match.

Syntax

srvctl modify scan -scanname scan_name [-netnum network_number]

Parameters

Table A-77 srvctl modify scan Command Parameters

Parameter Description

-scanname scan_name Identifies the SCAN name that resolves to the SCAN VIPs that you want
to modify.

Note: You can modify this attribute using Online Resource Attribute
Modification.

-netnum network_number The optional network number from which VIPs are obtained. If not
specified, the VIPs are obtained from the same default network from
which the nodeapps VIP is obtained.

Example

Assume your system currently has a SCAN named scan_name1, and it resolves to a single IP
address in DNS. If you modify the SCAN scan_name1 in DNS to resolve to three IP addresses,
then use the following command to create the additional SCAN VIP resources:

$ srvctl modify scan -scanname scan_name1

srvctl predict scan
Predicts the consequences of SCAN failure.

Syntax

srvctl predict scan -scannumber ordinal_number [-verbose]

Usage Notes

• Specify an ordinal number that identifies the SCAN VIP for which you want to simulate
failure. The range of values you can specify for this parameter is 1 to 3.

• Optionally, you can use the –verbose parameter to display detailed output.

Appendix A
SRVCTL Command Reference

A-95

Add additional information about the command here.

srvctl relocate scan
Relocates a specific SCAN VIP from its current hosting node to another node within the cluster.

Syntax

srvctl relocate scan -scannumber ordinal_number [-netnum network_number] [-
node node_name]

Parameters

Table A-78 srvctl relocate scan Command Parameters

Parameter Description

-scannumber
ordinal_number

Specify an ordinal number that identifies which SCAN VIP you want to
relocate. The range of values you can specify for this parameter is 1 to 3.

-netnum network_number The optional network number from which VIPs are obtained. If not
specified, the VIPs are obtained from the same default network from
which the nodeapps VIP is obtained.

The default network number is 1.

-node node_name Optionally, you can specify the name of a single node to which SRVCTL
relocates the SCAN VIP.

If you do not use this parameter, then SRVCTL chooses the node to which
the SCAN VIP is relocated.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example relocates the first SCAN VIP to node1:

$ srvctl relocate scan -scannumber 1 -node node1

srvctl remove scan
Removes Oracle Clusterware resources from all SCAN VIPs.

Syntax

srvctl remove scan [-netnum network_number] [-force] [-noprompt]

Appendix A
SRVCTL Command Reference

A-96

Parameters

Table A-79 srvctl remove scan Command Parameters

Parameter Description

-netnum network_number The optional network number from which VIPs are obtained. If not
specified, the VIPs are obtained from the same default network from
which the nodeapps VIP is obtained.

–force Removes the SCAN VIPs even though there are SCAN listeners running
that are dependent on the SCAN VIPs.

–noprompt Use this parameter to suppress all prompts.

Usage Notes

If you use the -force option, then SCAN VIPs that are running are not stopped before the
dependent resources are removed, which may require manual cleanup.

Examples

An example of this command is:

$ srvctl remove scan -force

srvctl start scan
Starts all SCAN VIPs, by default, or a specific SCAN VIP, on all nodes or a specific node in the
cluster.

Syntax

srvctl start scan [-scannumber ordinal_number] [-node node_name]

Parameters

Table A-80 srvctl start scan Command Parameters

Parameter Description

-scannumber
ordinal_number

Optionally, you can specify an ordinal number that identifies which SCAN
VIP you want to start. The range of values you can specify for this
parameter is 1 to 3.

If you do not use this parameter, then SRVCTL starts all the SCAN VIPs.

-node node_name Optionally, you can specify the name of a single node on which the SCAN
VIP resides that you want to start.

If you do not specify this parameter, then SRVCTL starts the SCAN VIPs
on all nodes in the cluster.

Usage Notes

You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-97

Example

The following example starts the SCAN VIP identified by the ordinal number 1 on the crm1
node:

$ srvctl start scan -scannumber 1 -node crm1

srvctl status scan
Displays the status for all SCAN VIPs, by default, or a specific SCAN VIP.

Syntax

srvctl status scan [-scannumber ordinal_number] [-verbose]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can specify an ordinal number that identifies a specific SCAN VIP for which
you want to display the status. The range of values you can specify for this parameter is 1
to 3. If you do not use this parameter, then SRVCTL displays the status of all SCAN VIPs
in the cluster.

• Optionally, you can use the –verbose parameter to display detailed output.

srvctl stop scan
Stops all SCAN VIPs, by default, that are running or in starting state, or stops a specific SCAN
VIP identified by an ordinal number.

Syntax

srvctl stop scan [-scannumber ordinal_number] [-force]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can specify an ordinal number that identifies which SCAN VIP you want to
stop. The range of values you can specify for this parameter is 1 to 3. If you do not use this
parameter, then SRVCTL stops all the SCAN VIPs.

• Optionally, you can use the –force parameter to stop the SCAN VIPs regardless of any
dependencies.

Example

The following example stops the SCAN VIP identified by the ordinal number 1:

$ srvctl stop scan -scannumber 1

Appendix A
SRVCTL Command Reference

A-98

scan_listener Commands
Use commands with the scan_listener keyword to add, list the configuration of, modify,
enable, disable, start, stop, relocate, obtain the status of, and remove SCAN listeners.

• srvctl add scan_listener
Adds Oracle Clusterware resources for the SCAN listeners.

• srvctl config scan_listener
Displays the configuration information for all SCAN listeners, by default, or a specific
listener identified by network number or ordinal_number.

• srvctl disable scan_listener

• srvctl enable scan_listener

• srvctl export scan_listener
Saves the SCAN listener configuration information to a file.

• srvctl modify scan_listener
Modifies the SCAN listener to match that of the SCAN VIP, or modifies the SCAN listener
endpoints or service registration restrictions.

• srvctl predict scan_listener

• srvctl relocate scan_listener

• srvctl remove scan_listener

• srvctl start scan_listener

• srvctl status scan_listener
Displays the status for all SCAN listeners, by default, or a specific listener.

• srvctl stop scan_listener

• srvctl update scan_listener

srvctl add scan_listener
Adds Oracle Clusterware resources for the SCAN listeners.

Syntax

srvctl add scan_listener [-netnum network_number] [-listener
lsnr_name_prefix] [-skip]
 [-endpoints "[TCP:]port_list[/IPC:key][/NMP:pipe_name]
 [/{TCPS|SDP|EXADIRECT}port_list]"]
 [-invitednodes "node_list"] [-invitedsubnets "subnet_list"]
 [-clientcluster cluster_name] [-clientdata <filename>]

Parameters

Table A-81 srvctl add scan_listener Command Parameters

Parameter Description

-netnum network_number The optional network number from which SCAN VIPs are obtained. If you do not specify
this parameter, then the SCAN VIPs are obtained from the same default network from
which the nodeapps VIP is obtained.

Appendix A
SRVCTL Command Reference

A-99

Table A-81 (Cont.) srvctl add scan_listener Command Parameters

Parameter Description

-listener lsnr_name_prefix The SCAN listener name prefix.

-skip Skip checking of the ports.

-endpoints
"[TCP:]port_list[/IPC:key]
[/NMP:pipe_name][/{TCPS|
SDP|EXADIRECT}port_list]"

Protocol specifications for the SCAN listener. Use port_list to specify a comma-
delimited list of TCP ports or SCAN listener endpoints.

You can also specify endpoints for TCPS, SDP, and EXADIRECT ports.

Note: You can modify this attribute using Online Resource Attribute Modification.

-invitednodes "node_list" A comma-delimited list of host names from outside the cluster that are allowed to
register with the SCAN listener.

-invitedsubnets
"subnet_list"

A comma-delimited list of subnets from outside the cluster that are allowed to register
with the SCAN listener. You can specify the subnets using either CIDR notation or
wildcards (such as 192.168.*).

-clientcluster
cluster_name

The name of the cluster that is running the SCAN listener you want to share.

-clientdata file_name The name of the cluster that is running the shared SCAN listener.

Usage Notes

• The number of SCAN listener resources created is the same as the number of SCAN VIP
resources.

• This command is only available with Oracle Clusterware.

Example

An example of this command is:

srvctl add scan_listener -listener myscanlistener

srvctl config scan_listener
Displays the configuration information for all SCAN listeners, by default, or a specific listener
identified by network number or ordinal_number.

Syntax

srvctl config scan_listener [[-netnum network_number] [-scannumber
ordinal_number]
 [-clientcluster cluster_name] | -all]

Parameters

Table A-82 srvctl config scan_listener Command Parameters

Parameter Description

-netnum network_number Use this parameter to view the configuration of the listener for a
specific SCAN VIP.

Appendix A
SRVCTL Command Reference

A-100

Table A-82 (Cont.) srvctl config scan_listener Command Parameters

Parameter Description

-scannumber ordinal_number Use this parameter to specify any one of the three SCAN VIPs,
using values from 1 to 3, for which you want to view the
configuration of the listener.

-clientcluster cluster_name The name of the cluster that is running the shared SCAN listener.

–all Alternative to specifying network or ordinal numbers, you can use
this parameter to view the configuration of the listeners for all of
the SCAN VIPs.

Usage Notes

This command is only available with Oracle Clusterware.

Example

This command returns output similar to the following:

$ srvctl config scan_listener -scannumber 1

SCAN Listener LISTENER_SCAN1 exists. Port: TCP:1529
Registration invited nodes:
Registration invited subnets:
SCAN Listener is enabled.
SCAN Listener is individually enabled on nodes:
SCAN Listener is individually disabled on nodes:

srvctl disable scan_listener
Disables all SCAN listeners, by default, or a specific listener identified by an ordinal number or
client cluster.

Syntax

srvctl disable scan_listener [-netnum network_number] [-scannumber
ordinal_number]
 [-clientcluster cluster_name]

Parameters

Table A-83 srvctl disable scan_listener Command Parameters

Parameter Description

-netnum network_number Use this parameter to disable SCAN listeners for a specific
network number.

-scannumber ordinal_number Use this parameter to disable any one of the three SCAN VIPs,
using values from 1 to 3. If you do not use this parameter, then
SRVCTL disables all SCAN listeners.

-clientcluster cluster_name The name of the cluster that is running the shared SCAN listener.

Appendix A
SRVCTL Command Reference

A-101

Usage Notes

This command is only available with Oracle Clusterware.

Example

The following example disables the SCAN listener identified as 1:

$ srvctl disable scan_listener -scannumber 1

srvctl enable scan_listener
Enables all SCAN listeners, by default, or a specific listener identified by its ordinal number.

Syntax

srvctl enable scan_listener [-netnum network_number] [-scannumber
ordinal_number]
 [-clientcluster <cluster_name>]

Parameters

Table A-84 srvctl enable scan_listener Command Parameters

Parameter Description

-netnum network_number Use this parameter to enable the listener for a specific SCAN VIP.

-scannumber ordinal_number Use this parameter to enable any one of the three SCAN VIPs,
using values from 1 to 3. If you do not use this parameter, then
SRVCTL enables all SCAN listeners.

-clientcluster cluster_name The name of the cluster that is running the shared SCAN listener.

Usage Notes

This command is only available with Oracle Clusterware.

Example

The following example enables the SCAN listener identified as 1:

$ srvctl enable scan_listener -scannumber 1

srvctl export scan_listener
Saves the SCAN listener configuration information to a file.

Syntax

srvctl export scan_listener -clientcluster cluster_name -clientdata filename

Appendix A
SRVCTL Command Reference

A-102

Parameters

Table A-85 srvctl export scan_listener Command Parameters

Parameter Description

-clientcluster
cluster_name

Specify the cluster name.

-clientdata filename Specify the path to the file to which credentials data will be written.

srvctl modify scan_listener
Modifies the SCAN listener to match that of the SCAN VIP, or modifies the SCAN listener
endpoints or service registration restrictions.

Syntax

srvctl modify scan_listener {-update | -endpoints "[TCP:]port_list[/IPC:key]
 [/NMP:pipe_name][/{TCPS|SDP|EXADIRECT}port_list]"} [-invitednodes
"node_list"]
 [-invitedsubnets "subnet_list"] [-clientcluster cluster_name]

Parameters

Table A-86 srvctl modify scan_listener Command Parameters

Parameter Description

-update Use this parameter to update SCAN listener configuration to match the
current SCAN VIP configuration. This parameter adds new resources or
removes existing SCAN listener resources to match the number of SCAN
VIP resources.

-endpoints
"[TCP:]port_list[/
IPC:key] [/
NMP:pipe_name][/{TCPS|
SDP|
EXADIRECT}port_list]"

Protocol specifications for the SCAN listener. Use port_list to specify a
comma-delimited list of TCP ports or listener endpoints.

You can also specify endpoints for TCPS, SDP, and EXADIRECT ports.

-invitednodes
"node_list"

Use this parameter to specify a comma-delimited list of host names from
outside the cluster that are allowed to register with the SCAN listener.

-invitedsubnets
"subnet_list"

Use this parameter to specify a comma-delimited list of subnets from
outside the cluster that are allowed to register with the SCAN listener. You
can specify the subnets using either CIDR notation or wildcards (such as
192.168.*).

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN listener.

Example

Assume your system currently has a SCAN named scan_name1, and you recently modified the
DNS entry to resolve to three IP addresses instead of one. After running the srvctl modify
scan command to create additional SCAN VIP resources, use the following command to create

Appendix A
SRVCTL Command Reference

A-103

Oracle Clusterware resources for the additional two SCAN listeners to go with the two
additional SCAN VIPs:

$ srvctl modify scan_listener -update

srvctl predict scan_listener
Predicts the consequences of SCAN listener failure.

Syntax

srvctl predict scan_listener -scannumber ordinal_number [-verbose]

Usage Notes

• Use the -scannumber parameter to specify any one of the three SCAN listeners for which
you want to predict the consequences of a failure. The range of values you can specify for
this parameter is 1 to 3.

• Optionally, you can use the –verbose parameter to display detailed output.

srvctl relocate scan_listener
Relocates a specific SCAN listener from its current hosting node to another node within the
cluster.

Syntax

srvctl relocate scan_listener -scannumber ordinal_number [-node node_name]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Specify an ordinal number that identifies which SCAN listener you want to relocate. The
range of values you can specify for this parameter is 1 to 3.

• Optionally, you can specify the name of a single node to which you want to relocate the
SCAN listener. If you do not specify this parameter, then SRVCTL chooses the node to
which the SCAN listener is relocated.

Example

The following example relocates the SCAN listener identified as 3 to node2 of the cluster:

$ srvctl relocate scan_listener -scannumber 3 -node node2

srvctl remove scan_listener
Removes Oracle Clusterware resources from all SCAN listeners.

Appendix A
SRVCTL Command Reference

A-104

Syntax

srvctl remove scan_listener [-netnum network_number] [-clientcluster
cluster_name]
 [-force] [-noprompt]

Parameters

Table A-87 srvctl remove scan_listener Command Parameters

Parameter Description

-netnum network_number The optional network number from which SCAN VIPs are obtained. If you
do not specify this parameter, then the SCAN VIPs are obtained from the
same default network from which the nodeapps VIP is obtained.

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN listener.

-force Removes the SCAN listener without stopping the SCAN listener if it is
running.

–noprompt Use this parameter to suppress all prompts.

Example

An example of this command is:

$ srvctl remove scan_listener -force

srvctl start scan_listener
Starts all SCAN listeners, by default, or a specific listener on all nodes or a specific node in the
cluster.

Syntax

srvctl start scan_listener [-netnum network_number] [-scannumber
ordinal_number]
 [-node node_name] [-clientcluster cluster_name]

Parameters

Table A-88 srvctl start scan_listener Command Parameters

Parameter Description

-netnum network_number Use this parameter to start SCAN listeners for a specific network
number.

-scannumber ordinal_number Use this parameter to start one of the three SCAN VIPs, using
values from 1 to 3. If you do not use this parameter, then SRVCTL
starts all SCAN listeners.

-node node_name Specify the name of a single node on which you want to start a
SCAN listener. If you do not use this parameter, then SRVCTL
starts the SCAN listeners on all nodes in the cluster.

Appendix A
SRVCTL Command Reference

A-105

Table A-88 (Cont.) srvctl start scan_listener Command Parameters

Parameter Description

-clientcluster cluster_name The name of the cluster that is running the shared SCAN listener.

Usage Notes

This command is only available with Oracle Clusterware.

Example

The following example starts the SCAN listener identified as 1:

$ srvctl start scan_listener -scannumber 1

srvctl status scan_listener
Displays the status for all SCAN listeners, by default, or a specific listener.

Syntax

srvctl status scan_listener [[-netnum network_number] [-scannumber
ordinal_number]
 | [-clientcluster cluster_name] | -all] [-verbose]

Parameters

Table A-89 srvctl status scan_listener Command Parameters

Parameter Description

-netnum network_number The network number. The default network number is 1.

-scannumber ordinal_number An ordinal number that identifies a specific SCAN listener. The range of values you can
specify for this parameter is 1 to 3. If you do not use this parameter, then the utility
displays the status of all SCAN listeners in the cluster.

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN listener.

-all Display the status for SCAN listeners for all networks.

-verbose Display detailed information.

Usage Notes

This command is only available with Oracle Clusterware.

srvctl stop scan_listener
Stops all SCAN listeners, by default, that are in a running or starting state, or a specific listener
identified by an ordinal number.

Appendix A
SRVCTL Command Reference

A-106

Syntax

srvctl stop scan_listener [-netnum network_number] [-scannumber
ordinal_number]
 [-clientcluster cluster_name] [-force]

Parameters

Table A-90 srvctl stop scan_listener Command Parameters

Parameter Description

-netnum network_number Use this parameter to stop SCAN listeners for a specific network
number.

-scannumber ordinal_number Use this parameter to stop any one of the three SCAN VIPs, using
values from 1 to 3. If you do not use this parameter, then SRVCTL
stops all SCAN listeners.

-clientcluster cluster_name The name of the cluster that is running the shared SCAN listener.

-force Stops the SCAN listener regardless of any dependencies.

Usage Notes

This command is only available with Oracle Clusterware.

Example

The following example stops the SCAN listener identified as 1:

$ srvctl stop scan_listener -scannumber 1

srvctl update scan_listener
Updates the SCAN listeners to listen on the new endpoints.

Syntax

srvctl update scan_listener

Usage Notes

• You can only use this command with Oracle Clusterware.

• This command does not accept any additional parameters, except for -help.

service Commands
Use commands with the service keyword to add, modify, list the configuration of, enable,
disable, start, stop, obtain the status of, relocate, and remove services.

• srvctl add service
Adds services to a database and assigns them to instances.

• srvctl config service
Displays the configuration for a service.

Appendix A
SRVCTL Command Reference

A-107

• srvctl disable service

• srvctl enable service

• srvctl modify service
Modifies a service configuration.

• srvctl predict service

• srvctl relocate service
Temporarily relocates the specified service names from one specified instance to another
specified instance.

• srvctl remove service
Removes the service from Oracle Clusterware management.

• srvctl start service
Starts a service or multiple services on a database, Pluggable Database (PDB) , or
instance.

• srvctl status service

• srvctl stop service
Stops one or more services globally across the cluster database, or on the specified
instance.

srvctl add service
Adds services to a database and assigns them to instances.

Syntax

Use this command with one of the following syntax models.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

To add a service to a database:

srvctl add service -db db_unique_name -service service_name_list [-
true_cache_service true_cache_service_list]
 [-cardinality {UNIFORM | SINGLETON | DUPLEX} | -preferred "preferred_list"
 [-available "available_list"] [-tafpolicy {BASIC | NONE | PRECONNECT}] |
[-cardinality {UNIFORM | SINGLETON}]]
 [-netnum network_number] [-role "[PRIMARY][,PHYSICAL_STANDBY]
[,LOGICAL_STANDBY][,SNAPSHOT_STANDBY]"]
 [-policy {AUTOMATIC | MANUAL}] [-notification {TRUE | FALSE}] [-dtp {TRUE
| FALSE}]
 [-clbgoal {SHORT | LONG}] [-rlbgoal {NONE | SMART_CONN | SERVICE_TIME |
THROUGHPUT}] [-resetstate {NONE | LEVEL1}]
 [-failovertype {NONE|SESSION|SELECT|TRANSACTION|AUTO}] [-failovermethod
{NONE | BASIC}] [-failoverretry failover_retries]
 [-failoverdelay failover_delay] [-failover_restore {NONE|LEVEL2|LEVEL1|
AUTO}] -template_timeout template_timeout [-failback {YES | NO}]
 [-edition edition_name] [-pdb pdb_name] [-global {TRUE | FALSE}] [-maxlag
max_lag_time]

Appendix A
SRVCTL Command Reference

A-108

 [-sql_translation_profile sql_translation_profile] [-commit_outcome {TRUE|
FALSE}] [-retention retention_time]
 [-replay_init_time replay_initiation_time] [-session_state {DYNAMIC |
AUTO}] [-importfile]
 [-gsmflags gsm_flags] [-tablefamilyid table_family_id]
 [-drain_timeout timeout] [-stopoption {NONE|IMMEDIATE|TRANSACTIONAL}] [-
css_critical {yes | no}]
 [-force] [-verbose]

To update the preferred and available lists of an existing service:

srvctl add service -db db_unique_name -service "service_name_list"
 -update {-preferred "preferred_list" | -available "available_list"} [-
force]
 [-verbose]

Parameters

The following table lists and describes all the srvctl add service parameters and whether
they can be used when adding a service to either an Oracle RAC database or non-cluster
database.

Table A-91 srvctl add service Command Parameters

Parameter Description

-db db_unique_name Unique name for the database.

-service
service_name_list

The service_name.service_domain should be unique within the
cluster unless you want to spread connections across multiple databases
that offer the same service. If you do not specify the service domain as
part of the service name (such as sales.example.com), then the
DB_DOMAIN database attribute is appended to the service name. You can
specify one service or several services in a comma-delimited list.

Note: The -service parameter has a 64 characters limit for its value.
Therefore, the total length of the names of all services assigned to an
instance cannot exceed 64 characters.

-true_cache_service
true_cache_service_lis
t

Specify this parameter to associate a primary service with the True Cache
service.

-cardinality {UNIFORM
| SINGLETON | DUPLEX}

The cardinality of the service, which can be one of the following:

• UNIFORM – offered on all instances or PDBs in the database

• SINGLETON – runs on only one instance or PDB at a time

• DUPLEX – runs on two instances or PDBs at a time

Note:

This parameter can be used only with
Oracle RAC.

Appendix A
SRVCTL Command Reference

A-109

Table A-91 (Cont.) srvctl add service Command Parameters

Parameter Description

-preferred
"preferred_list"

A comma-separated list of preferred instances on which the service runs.

The list of preferred instances must be mutually exclusive with the list of
available instances.

Note:

This parameter can be used only with
Oracle RAC.

-available
"available_list"

A comma-separated list of available instances, in priority order, to which
the service fails over.

The list of available instances must be mutually exclusive with the list of
preferred instances.

Note:

This parameter can be used only with
Oracle RAC.

-tafpolicy {BASIC|
NONE}

Transparent Application Failover (TAF) policy specification.

-netnum network_number Use this parameter to determine on which network this service is offered.
The service is configured to depend on VIPs from the specified network.

Notes:
• If you omit this parameter, then the default is taken from the database

configuration, which you specify using srvctl add database or
srvctl modify database, with the -defaultnetwork parameter
to specify the default network for that database's services.

• This parameter can be used only with Oracle RAC and Oracle RAC
One Node database configurations.

-role "[PRIMARY]
[,PHYSICAL_STANDBY]
[,LOGICAL_STANDBY]
[,SNAPSHOT_STANDBY]"

The service role. You can specify one or more roles in a comma-delimited
list.

Use this option to indicate that the service should only be automatically
started upon database open when the Oracle Data Guard database role
matches one of the specified service roles.

Using SRVCTL to manually start a service is not affected by the service
role.

Note: The -role parameter is only used at database startup and by the
Oracle Data Guard Broker. All manual service startup must specify the
name of the service to be started by the user.

Appendix A
SRVCTL Command Reference

A-110

Table A-91 (Cont.) srvctl add service Command Parameters

Parameter Description

-policy {AUTOMATIC |
MANUAL}

Service management policy.

If AUTOMATIC (the default), then the service is automatically started upon
restart of the database, either by a planned restart (with SRVCTL) or after
a failure. Automatic restart is also subject to the service role, however (the
-role parameter).

If MANUAL, then the service is never automatically restarted upon planned
restart of the database (with SRVCTL). A MANUAL setting does not prevent
Oracle Clusterware from monitoring the service when it is running and
restarting it if a failure occurs.

Note: Using CRSCTL to stop and start the Oracle Clusterware restarts
the service in the same way that a failure does.

-notification {TRUE |
FALSE}

Enable Fast Application Notification (FAN) for OCI connections.

-dtp {TRUE | FALSE} Indicates whether Distributed Transaction Processing should be enabled
for this service. This service will be a preferred service on a single node in
an administrator-managed database.

-clbgoal {SHORT |
LONG}

Connection Load Balancing Goal. Use a value of SHORT for this parameter
for run-time load balancing, or if using an integrated connection pool. Use
a value of LONG for this parameter for long running connections, such as
batch jobs, that you want balanced by the number of sessions per node
for the service.

-rlbgoal {NONE |
SMART_CONN |
SERVICE_TIME |
THROUGHPUT}

Runtime Load Balancing Goal (for the Load Balancing Advisory). Set this
parameter to SMART_CONN to enable Smart Connection Rebalance. Set
this parameter to SERVICE_TIME to balance connections by response
time. Set this parameter to THROUGHPUT to balance connections by
throughput.

-resetstate {NONE |
LEVEL1}

Reset state in a session to clean values. If set to NONE, then session state
is not cleaned. If set to LEVEL1, then session states that cannot be
restored are reset.

The session state reset excludes SYS CONTEXT and secure roles.

-failovertype {NONE |
SESSION | SELECT |
TRANSACTION | AUTO}

Set the failover type.

To enable Application Continuity for Java, set this parameter to
TRANSACTION. To enable Transparent Application Continuity, set this
parameter to AUTO.

To enable TAF for OCI, set this parameter to SELECT or SESSION.

Note: If you set -failovertype to TRANSACTION, then you must set -
commit_outcome to TRUE.

-failovermethod {NONE
| BASIC}

TAF failover method (for backward compatibility only).

If the failover type (-failovertype) is set to a value other than NONE,
then you should choose BASIC for this parameter.

Note: This parameter can be used only with Oracle RAC.

-failoverretry
failover_retries

For Application Continuity and TAF, this parameter determines the number
of attempts to connect after an incident.

-failoverdelay
failover_delay

For Application Continuity and TAF, this parameter specifies the time delay
(in seconds) between reconnect attempts per incident at failover.

Appendix A
SRVCTL Command Reference

A-111

Table A-91 (Cont.) srvctl add service Command Parameters

Parameter Description

-failover_restore
{NONE|LEVEL2|LEVEL1|
AUTO}

For Application Continuity, when you set the -failover_restore
parameter, session states are restored before replaying. Use LEVEL2 for
Application Continuity and AUTO for Transparent Application Continuity to
restore session states using database templates.

Use LEVEL1 for Application Continuity or Transparent Application
Continuity to restore session states using the earlier Oracle Database 19c
modifiable parameter transport. Use wallets to allow restoring server-side
session states transparently.
• AUTO: Use this value to enable database templates for Transparent

Application Continuity.
• LEVEL1: Use this value to enable behavior of

FAILOVER_RESTORE=AUTO with client based restore for Oracle
Database 21c and earlier releases.

• LEVEL2: Use this value to enable database templates for Transparent
Application Continuity.

For OCI applications using TAF or Application Continuity, setting -
failover_restore to LEVEL1 restores the current state. If the current
state differs from the initial state, then a TAF callback is required. This
restriction applies only to OCI.

-template_timeout
template_timeout

Specify the time, in seconds, for template timeout. For Application
Continuity, TEMPLATE_TIMEOUT parameter is used with
FAILOVER_RESTORE values LEVEL2 and AUTO in Oracle Database 23ai.
When a template expires, the session is not restored when
FAILOVER_RESTORE is set to AUTO or LEVEL2.

You are recommended to set higher values so your pools are able to
failover following the overnight maintenance. The default value is
RETENTION (1 day).

If TEMPLATE_TIMEOUT is set to 0, then the template timeout is turned off.

-failback {YES | NO} If a service fails over to an available instance after the list of preferred
instances was exhausted, then, if this parameter is set to YES, the service
automatically fails back to a preferred instance when one becomes
available.

-edition edition_name The initial session edition of the service.

When an edition is specified for a service, all subsequent connections that
specify the service use this edition as the initial session edition. However,
if a session connection specifies a different edition, then the edition
specified in the session connection is used for the initial session edition.

SRVCTL does not validate the specified edition name. During connection,
the connect user must have USE privilege on the specified edition. If the
edition does not exist or if the connect user does not have USE privilege
on the specified edition, then an error is raised.

Appendix A
SRVCTL Command Reference

A-112

Table A-91 (Cont.) srvctl add service Command Parameters

Parameter Description

-pdb
pluggable_database

The name of the Pluggable Database (PDB).

You can specify a PDB property when you create or modify a service. The
PDB property associates the service with the specified PDB. You can view
the PDB property for a service by querying the ALL_SERVICES data
dictionary view or, when using the SRVCTL utility, by running the srvctl
config service command.
Note: Starting with Oracle Database 21c, before using the -pdb option
with the srvctl add service command, you must have previously
added the PDB resource to Oracle Clusterware using the srvctl add
pdb command.

-global {TRUE | FALSE} Indicates whether this is a Global Data Services service.

Note: This parameter can only be used with Global Data Services.

-maxlag
maximum_lag_time

Maximum replication lag time in seconds for a global service. Must be a
non-negative integer. The default value is ANY. You must also specify the
-global option.

-
sql_translation_profil
e profile_name

Use this parameter to specify a SQL translation profile for a service that
you are adding after you have migrated applications from a non-Oracle
database to an Oracle database.

This parameter corresponds to the SQL translation profile parameter in
the DBMS_SERVICE service attribute.

Notes:
• Before using the SQL translation feature, you must migrate all server-

side application objects and data to the Oracle database.
• Use the srvctl config service command to display the SQL

translation profile.

-commit_outcome {TRUE
| FALSE}

Enable Transaction Guard; when set to TRUE, the commit outcome for a
transaction is accessible after the transaction's session fails due to a
recoverable outage.

-retention
retention_time

If -commit_outcome is set to TRUE, then this parameter determines the
amount of time (in seconds) that the commit outcome is retained in the
database.

-replay_init_time
replay_initialization_
time

For Application Continuity, this parameter specifies the difference between
the time, in seconds, of original processing of the first operation of a
request and the time that the replay is ready to start after a successful
reconnect. Application Continuity will not replay after the specified amount
of time has passed. This parameter is intended to avoid the unintentional
processing of a transaction when a system is recovered after a long
period. The default is 5 minutes (300). The maximum value is 24 hours
(86400). If the -failover_type parameter is not set to TRANSACTION,
then you cannot use this parameter.

Appendix A
SRVCTL Command Reference

A-113

Table A-91 (Cont.) srvctl add service Command Parameters

Parameter Description

-session_state
{ DYNAMIC | AUTO}

For Application Continuity; this parameter describes how the non-
transactional session state is changed by the application within a request.
Examples of session state are NLS settings, optimizer preferences, event
settings, PL/SQL global variables, and temporary tables. For Transparent
Application Continuity, you can set session_state to AUTO. Session
state is tracked automatically.

This parameter is considered only if -failovertype is set to AUTO or
TRANSACTION for Application Continuity or AUTO for Transparent
Application Continuity.

• If failover_type is set to TRANSACTION, then Oracle recommends
a value of DYNAMIC for session_state.

• If failover_type is set to AUTO, then you can set session_state
to AUTO.

Note:

Use AUTO to enable Transparent Application Failover (TAF)
style cursors with TAC.

• If failover_type is set to any value other than TRANSACTION or
AUTO, then the value of session_state is not set.

If non-transactional values change after the request starts, then set this
parameter to either DYNAMIC or AUTO. Most applications should use
DYNAMIC or AUTO mode.

-gsmflags gsm_flags Set locality and region failover values for a global service. You must also
specify the -global option.

-tablefamilyid
table_family_id

Set table family ID for a service. See "Shared Table Family" for more
information.

-drain_timeout timeout Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

-stopoption {NONE|
IMMEDIATE|
TRANSACTIONAL}

Specify the default method of stopping the service. When set on the
service, this value is used if you do not include the -stopoption
parameter in other SRVCTL commands. If you do not provide a value,
then the default option NONE is used.

• IMMEDIATE permits sessions to drain before the service is stopped.
Sessions that do not drain are terminated when the time limit
specified by -drain_timeout is reached.

• If you specify TRANSACTIONAL, then sessions are terminated as soon
as they commit. The service is stopped when the time limit specified
by -drain_timeout is reached and any remaining sessions are
terminated.

• If you specify NONE, then no sessions are terminated.

Appendix A
SRVCTL Command Reference

A-114

Table A-91 (Cont.) srvctl add service Command Parameters

Parameter Description

-css_critical {yes |
no}

You can add weight to a service by setting this parameter to YES. In the
event of a node failure within the cluster, Oracle Clusterware will evict the
node with the least amount of weight, ensuring that critical services
remain available.

-update {-preferred
new_preferred_instance
| -available
new_available_instance
}

Add a new preferred or available instance to the service configuration. -
preferred specifies the name of the instance to add to the list of
preferred instances for the service. -available specifies the name of the
instance to add to the list of available instances for the service.

-force Force the add operation even though a listener is not configured for a
network.

-verbose Display verbose output.

Usage Notes

This command does not accept placement parameters for Oracle RAC One Node databases.

Examples

Use the following examples to create your services:

Basic Service

$ srvctl add service -db mydb -service MYSERVICE –preferred inst1 -available
inst2
-pdb mypdb -notification TRUE -drain_timeout 300 -stopoption IMMEDIATE -role
PRIMARY

Transparent Application Continuity Service

$ srvctl add service -db mydb -service TACSERVICE -pdb mypdb –preferred inst1
-available inst2
-failover_restore AUTO -commit_outcome TRUE -failovertype AUTO -
replay_init_time 600 -retention 86400
-notification TRUE -drain_timeout 300 -stopoption IMMEDIATE -role PRIMARY

Application Continuity Service

$ srvctl add service -db mydb -service ACSERVICE -pdb mypdb -preferred inst1 -
available inst2
-failover_restore LEVEL1 -commit_outcome TRUE -failovertype TRANSACTION -
session_state dynamic
-replay_init_time 600 -retention 86400 -notification TRUE -drain_timeout 300 -
stopoption IMMEDIATE -role PRIMARY

TAF Select Plus Service

$ srvctl add service -db mydb -service TAFSERVICE -pdb mypdb -preferred inst1
-available inst2

Appendix A
SRVCTL Command Reference

A-115

-failover_restore LEVEL1 -commit_outcome TRUE -failovertype SELECT -
notification TRUE -drain_timeout 300
-stopoption TRANSACTIONAL -role PRIMARY

Service Attribute Validation Matrix

The following table describes service attribute dependency for FAILOVER_TYPE and
COMMIT_OUTCOME driver attributes.

Table A-92 Service Attribute Dependency Validation

Parent Attribute Value Dependent Attribute Valid Value

failover_type AUTO failover_restore AUTO | LEVEL1
failover_type AUTO session_state_consistency AUTO
failover_type AUTO commit_outcome TRUE
failover_type TRANSACTION failover_restore LEVEL1 | NONE | LEVEL2
failover_type TRANSACTION session_state_consistency DYNAMIC
failover_type TRANSACTION commit_outcome TRUE
failover_type SELECT failover_restore LEVEL1 | NONE
failover_type SELECT failover_method BASIC | NONE
failover_type SELECT commit_outcome TRUE | FALSE
failover_type SESSION failover_restore NONE
failover_type SESSION failover_method BASIC | NONE
failover_type SESSION commit_outcome FALSE
failover_type NONE failover_restore NONE
failover_type NONE failover_method NONE
failover_type NONE commit_outcome FALSE | TRUE
commit_outcome FALSE commit_outcome_fastpath FALSE
commit_outcome TRUE commit_outcome_fastpath TRUE | FALSE

Related Topics

• Sharded Table Family

• CREATE_SERVICE Procedure

srvctl config service
Displays the configuration for a service.

Syntax

srvctl config service {-db db_unique_name [-service service_name | -pdb
pdb_name [-brief]]
 | [-db db_unique_name]} [-verbose]

Appendix A
SRVCTL Command Reference

A-116

Parameters

Table A-93 srvctl config service Command Parameters

Parameter Description

-db db_unique_name Unique name for the database.

-service service_name Optionally, you can specify the name of a service.

If you do not use this parameter, then SRVCTL displays the configuration information for
all services configured for the database.

-pdb pdb_name Name of the PDB for which you want to show configured services.

-verbose Displays verbose output.

Usage Notes

The srvctl config service command shows exactly the string value you specified for the
edition using the srvctl add | modify service commands. If you specified the edition in
upper case, then srvctl config service displays upper case. If it is surrounded by double
quotation marks (""), then the command displays the double quotation marks. Otherwise, the
command displays an empty string.

Examples

This command returns information similar to the following for a database:

$ srvctl config service -db crm -service webapps
Service name: webapps
Service is enabled
Cardinality: 1
Disconnect: false
Service role: PRIMARY
Management policy: AUTOMATIC
DTP transaction: false
AQ HA notifications: false
Failover type: NONE
Failover method: NONE
TAF failover retries: 0
TAF failover delay: 0
Connection Load Balancing Goal: LONG
Runtime Load Balancing Goal: NONE
TAF policy specification: NONE
Preferred instances: crm_1
Available instances:
Edition: "my Edition"

Service configuration for administrator-managed Oracle RAC One Node databases displays
the one instance as preferred.

srvctl disable service
Disables a service.
Disabling an entire service affects all of the instances, disabling each one. If the entire service
is already disabled, then running this command on the entire service returns an error. This

Appendix A
SRVCTL Command Reference

A-117

means that you cannot always use the entire set of service operations to manipulate the
service indicators for each instance.

Syntax

srvctl disable service -db db_unique_name -services "service_name_list"
 [-instance instance_name]

Parameters

Table A-94 srvctl disable service Command Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database for which you want to disable the
service.

-services
"service_name_list"

Specify a comma-delimited list of service names enclosed in double
quotation marks (""), or a single service name, that you want to disable.

-instance
instance_name

Optionally, you can specify the name of the instance for which you want to
disable the service.

Notes:
• Use this parameter with administrator-managed databases.
• You can only use this parameter with Oracle Clusterware and Oracle

RAC.

Examples

The following example globally disables two services for the CRM database:

$ srvctl disable service -db crm -service "crm,marketing"

The following example disables a service for the CRM database that is running on the CRM1
instance, resulting in the service still being available for the database, but on one less instance:

$ srvctl disable service -db crm -service crm -instance crm1

srvctl enable service
Enables a service for Oracle Clusterware.
Enabling an entire service also affects the enabling of the service over all of the instances by
enabling the service on each one. If the entire service is already enabled, then running this
command does not affect all of the instances and enable them but, instead, returns an error.
Therefore, you cannot always use the entire set of service operations to manipulate the service
indicators for each instance.

Syntax

srvctl enable service -db db_unique_name -service "service_name_list"
 [-instance instance_name | -node node_name]

Appendix A
SRVCTL Command Reference

A-118

Parameters

Table A-95 srvctl enable service Command Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database for which you want to enable the
service.

-service
"service_name_list"

Specify a single service name or a comma-delimited list of service names
enclosed in double quotation marks ("") that you want to enable.

-instance
instance_name

Optionally, you can use this parameter to specify the name of the
database instance where you want the service to run.

Notes:
• Use this parameter for administrator-managed databases.
• You can only use this parameter with Oracle Clusterware and Oracle

RAC.

Examples

The following example globally enables a service:

$ srvctl enable service -db crm -service crm

The following example enables a service to use a preferred instance:

$srvctl enable service -db crm -service crm -instance crm1

srvctl modify service
Modifies a service configuration.

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

This command supports some online modifications to the service, such as:

• Moving a service member from one instance to another

• Performing online changes to service attributes from DBMS_SERVICE (for example, failover
delay, runtime load balancing goal, and so on)

• Adding a new preferred or available instance

• Removing preferred or available instances for a service

Appendix A
SRVCTL Command Reference

A-119

Caution:

Oracle recommends that you limit configuration changes to the minimum requirement
and that you not perform other service operations while the online service
modification is in progress.

Syntax and Parameters

Use one of the following forms of the srvctl modify service command, depending on the
task you want to perform, with the specified syntax:

To move a service from one instance to another:

srvctl modify service -db db_unique_name -service service_name
 -oldinst old_instance_name -newinst new_instance_name [-force]

Note:

This form of the command is only available with Oracle Clusterware.

Table A-96 srvctl modify service Parameters for Moving a Service

Parameter Description

-db db_unique_name Specify the unique name for the database.

-service service_name Specify a service name. If you do not specify a service name, then
SRVCTL moves all services.

-oldinst
old_instance_name

Specify the name of the instance from which you want to move the
service.

-newinst
new_instance_name

Specify the name of the instance to which you want to move the service.

-force Force the modify operation, stopping the service on some nodes, as
necessary.

To change an available instance to a preferred instance for a service:

srvctl modify service -db db_unique_name -service service_name
 -available avail_inst_name [-failback {YES|NO}] -toprefer [-force]

Note:

This form of the command is only available with Oracle Clusterware and does not
accept placement parameters for Oracle RAC One Node databases. This command
also does not move or otherwise disconnect the service but only modifies the service
attributes.

Appendix A
SRVCTL Command Reference

A-120

Table A-97 srvctl modify service Parameters for Changing to a Preferred Instance

Parameter Description

-db db_unique_name Specify the unique name for the database.

-service service_name Specify the name of the service you want to modify.

-available
available_inst_name

Specify the name of the available instance you want to change.

-failback {YES|NO} If a service fails over to an available instance after the list of preferred
instances was exhausted, then, if this parameter is set to YES, then the
service automatically fails back to a preferred instance when one
becomes available.

-toprefer Specify this parameter to change the instance status to preferred.

-force Force the modify operation. For planned operations, the user experience
is best if using an Oracle Connection Pool with FAN. The FAN planned
event causes the Oracle pool to drain the requests with no interruption to
the users.

To change the available and preferred status for multiple instances:

srvctl modify service -db db_unique_name -service service_name
 -modifyconfig -preferred "preferred_list" [-available "available_list"]
 [-force]

Note:

This form of the command is only available with Oracle Clusterware and does not
accept placement parameters for Oracle RAC One Node databases. This command
also does not move or otherwise disconnect the service but only modifies the service
attributes.

Table A-98 srvctl modify service Parameters for Changing Status of Multiple Instances

Parameter Description

-db db_unique_name Specify the unique name for the database.

-service service_name Specify the name of the service you want to modify.

-modifyconfig This parameter directs SRVCTL to use only the instances named for this
service (unnamed instances already assigned to the service are
removed).

-preferred
"preferred_instance_li
st"

Specify a comma-delimited list of preferred instances enclosed within
double quotation marks ("").

-available
"available_instance_li
st"

Specify a comma-delimited list of available instances enclosed within
double quotation marks ("").

-force Force the modify operation. For planned operations, the user experience
is best if using an Oracle Connection Pool with FAN. The FAN planned
event causes the connection pool to drain the requests with no
interruption to the users.

Appendix A
SRVCTL Command Reference

A-121

To modify other service attributes or to modify a service for Oracle Clusterware:

srvctl modify service -db db_unique_name -service service_name
 [-true_cache_service true_cache_service_list] [-pqservice pqsvc_name]
 [-cardinality {UNIFORM|SINGLETON|DUPLEX}] [-tafpolicy {BASIC|NONE}]
 [-role "[PRIMARY][,PHYSICAL_STANDBY][,LOGICAL_STANDBY][,SNAPSHOT_STANDBY]"]
 [-policy {AUTOMATIC|MANUAL}] [-notification {TRUE|FALSE}] [-dtp {TRUE|FALSE}]
 [-clbgoal {SHORT|LONG}] [-rlbgoal {NONE | SMART_CONN | SERVICE_TIME |
THROUGHPUT}]
 [-resetstate {NONE|LEVEL1}] [-failovertype {NONE|SESSION|SELECT|TRANSACTION|
AUTO}]
 [-failoverretry failover_retries] [-failoverdelay failover_delay]
 [-failover_restore [NONE|LEVEL2|LEVEL1|AUTO]] [-template_timeout
template_timeout] [-failback {YES|NO}]
 [-edition edition_name] [-pdb pluggable_database]
 [-sql_translation_profile profile_name] [-commit_outcome {TRUE|FALSE}]
 [-retention retention_time] [-replay_init_time replay_initiation_time]
 [-session_state {DYNAMIC|AUTO}] [-maxlag max_lag_time]
 [-gsmflags gsm_flags] [-tablefamilyid table_family_id]
 [-drain_timeout timeout] [-stopoption {NONE|IMMEDIATE|TRANSACTIONAL}]
 [-global_override] [-css_critical {YES | NO}] -hubsvc <hub_service>]} [-
verbose] [-force]

Table A-99 srvctl modify service Parameters

Parameter Description

-db db_unique_name The unique name for the database.

-service service_name The name of the service you want to modify.

-true_cache_service
true_cache_service_lis
t

Specify this parameter to associate a primary service with the True Cache
service.

-pqservice pqsvc_name A comma-delimited list of parallel query service names.

-cardinality {UNIFORM|
SINGLETON|DUPLEX}

The cardinality of the service, which can be one of the following:

• UNIFORM – offered on all instances or PDBs in the database

• SINGLETON – runs on only one instance or PDB at a time

• DUPLEX – runs on two instances or PDBs at a time

Note:

This parameter can be used only with
Oracle RAC.

-tafpolicy {BASIC|
NONE}

Transparent Application Failover (TAF) policy specification.

-role "[PRIMARY]
[,PHYSICAL_STANDBY]
[,LOGICAL_STANDBY]
[,SNAPSHOT_STANDBY]"

The database modes for which the service should be started
automatically. You can specify one or more roles in a comma-delimited
list.

Note: The -role parameter is only used at database startup and by the
Oracle Data Guard Broker. All manual service startup must specify the
name of the service to be started by the user.

Appendix A
SRVCTL Command Reference

A-122

Table A-99 (Cont.) srvctl modify service Parameters

Parameter Description

-policy {AUTOMATIC|
MANUAL}

The service management policy.

If AUTOMATIC (the default), then the service is automatically started upon
restart of the database, either by a planned restart (with SRVCTL) or after
a failure. Automatic restart is also subject to the service role, however (the
-role parameter).

If MANUAL, then the service is never automatically restarted upon planned
restart of the database (with SRVCTL). A MANUAL setting does not prevent
Oracle Clusterware from monitoring the service when it is running and
restarting it if a failure occurs.

-notification {TRUE|
FALSE}

Use TRUE to enable Fast Application Notification (FAN) for Oracle Call
Interface (OCI) connections.

-dtp {TRUE|FALSE} Use TRUE to enable Distributed Transaction Processing for this service.
This ensures that the service is offered at exactly one instance at a time
for XA affinity.

Note: This parameter can be used only with Oracle RAC.

-clbgoal {SHORT|LONG} Connection Load Balancing Goal. Set to SHORT if using runtime load
balancing, or set to LONG for long running connections, such as batch
jobs, that you want balanced by the number of sessions per node for the
service.

-rlbgoal {NONE |
SMART_CONN |
SERVICE_TIME |
THROUGHPUT}

Runtime Load Balancing Goal (for the Load Balancing Advisory). Set this
parameter to SMART_CONN to enable Smart Connection Rebalance. Set
this parameter to SERVICE_TIME to balance connections by response
time. Set this parameter to THROUGHPUT to balance connections by
throughput.

-resetstate {NONE |
LEVEL1}

Reset state in a session to clean values. If set to NONE, then session state
is not cleaned. If set to LEVEL1, then session states for PL/SQL,
temporary tables, session duration jobs, and cursors in FETCH are
cleaned at the end of the request. Use RESET_STATE for pooled
applications to prevent session state leaking to later re-usages.

-failovertype {NONE|
SESSION|SELECT|
TRANSACTION|AUTO}

Use this parameter to set the failover type.

To enable Application Continuity, set this parameter to TRANSACTION. To
enable Transparent Application Continuity, set this parameter to AUTO.

To enable TAF, set this parameter to SELECT or SESSION.

-template_timeout
template_timeout

Specify the time, in seconds, for template timeout. For Application
Continuity, TEMPLATE_TIMEOUT parameter is used with
FAILOVER_RESTORE values LEVEL2 and AUTO in Oracle Database 23ai.
When a template expires, the session is not restored when
FAILOVER_RESTORE is set to AUTO or LEVEL2.

If TEMPLATE_TIMEOUT is set to 0, then the template timeout is turned off.

-failoverretry
failover_retries

For Application Continuity and TAF, specify the number of attempts to
connect after an incident.

-failoverdelay
failover_delay

For Application Continuity and TAF, specify the time delay (in seconds)
between reconnect attempts per incident at failover.

Appendix A
SRVCTL Command Reference

A-123

Table A-99 (Cont.) srvctl modify service Parameters

Parameter Description

-failover_restore
{NONE|LEVEL2|LEVEL1|
AUTO}

For Application Continuity, when you set the -failover_restore
parameter, session states are restored before replaying. Use LEVEL2 for
ODP.NET and Java with Application Continuity to restore the initial state.

Set this parameter to LEVEL1 or AUTO to enable Transparent Application
Continuity to restore session states.
• AUTO: Use this value to enable database templates for Application

Continuity.
• LEVEL1: Use this value to enable behavior of

FAILOVER_RESTORE=AUTO with client based restore for Oracle
Database 21c and earlier releases.

For OCI applications using TAF or Application Continuity, setting -
failover_restore to LEVEL1 restores the current state. If the current
state differs from the initial state, then a TAF callback is required. This
restriction applies only to OCI.

-failback {YES | NO} If a service fails over to an available instance after the list of preferred
instances was exhausted, then, if this parameter is set to YES, the service
automatically fails back to a preferred instance when one becomes
available.

-edition edition_name The initial session edition of the service.

When an edition is specified for a service, all subsequent connections that
specify the service use this edition as the initial session edition. However,
if a session connection specifies a different edition, then the edition
specified in the session connection is used for the initial session edition.

SRVCTL does not validate the specified edition name. During connection,
the connect user must have USE privilege on the specified edition. If the
edition does not exist or if the connect user does not have USE privilege
on the specified edition, then an error is raised.

-pdb
pluggable_database

The name of a Pluggable Database (PDB).

Note: You can specify a PDB property when you create or modify a
service. The PDB property associates the service with the specified PDB.
You can view the PDB property for a service by querying the
ALL_SERVICES data dictionary view or, when using the SRVCTL utility,
by running the srvctl config service command.

When create or modify a service with the specified PDB, SRVCTL does
not check if the PDB exists. Before running this command, you must
ensure that the PDB exists.

-
sql_translation_profil
e profile_name

Use this parameter to specify a SQL translation profile for a service that
you are modifying after you have migrated applications from a non-Oracle
database to an Oracle database.

If you want to set the SQL translation profile to a NULL value, then you
must enter an empty string after the -p flag.

Note: Before using the SQL translation feature, you must migrate all
server-side application objects and data to the Oracle database.

-commit_outcome {TRUE|
FALSE}

Enable Transaction Guard; when set to TRUE, the commit outcome for a
transaction is accessible after the transaction's session fails due to a
recoverable outage.

-retention
retention_time

For Transaction Guard (with the -commit_outcome parameter set to
TRUE); this parameter determines the amount of time (in seconds) that the
commit outcome is retained in the database.

Appendix A
SRVCTL Command Reference

A-124

Table A-99 (Cont.) srvctl modify service Parameters

Parameter Description

-replay_init_time
replay_initiation_time

For Application Continuity; this parameter specifies the time, in seconds,
from when the original request started. Application Continuity will not
replay after the specified amount of time has passed. This attribute avoids
the unintentional replay of a request when a system is recovered after a
long period. The default value is 300 (5 minutes).

-session_state
{DYNAMIC|AUTO}

For Application Continuity; this parameter describes how the non-
transactional session state is changed by the application within a request.
Examples of session state are NLS settings, optimizer preferences, event
settings, PL/SQL global variables, and temporary tables. For Transparent
Application Continuity, you can set session_state to AUTO. Session
state is tracked automatically.

This parameter is considered only if -failovertype is set to AUTO or
TRANSACTION for Application Continuity or AUTO for Transparent
Application Continuity.

• If failover_type is set to TRANSACTION, then Oracle recommends
a value of DYNAMIC for session_state.

• If failover_type is set to AUTO, then you can set session_state
to AUTO.

Note:

Use AUTO to enable Transparent Application Failover (TAF)
style cursors with TAC.

• If failover_type is set to any value other than TRANSACTION or
AUTO, then the value of session_state is not set.

Oracle recommends a value of AUTO or DYNAMIC for most applications. If
you are unsure which value to use, or if you can customize the
application, then use DYNAMIC.

-maxlag
maximum_lag_time

Maximum replication lag time in seconds for a global service. Must be a
non-negative integer. The default value is ANY. You must also specify the
-global option.

-gsmflags gsm_flags Set locality and region failover values for a global service. You must also
specify the -global option.

-tablefamilyid
table_family_id

Set table family ID for a service. See Sharded Table Family for more
information.

-drain_timeout timeout Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

Appendix A
SRVCTL Command Reference

A-125

Table A-99 (Cont.) srvctl modify service Parameters

Parameter Description

-stopoption {NONE|
IMMEDIATE|
TRANSACTIONAL}

Specify the method of stopping the service. If this attribute was previously
set for the service, then that value is used as the default value if you do
not include the -stopoption parameter in your command. Otherwise,
the default is NONE.

• IMMEDIATE permits sessions to drain before the service is stopped.
Sessions that do not drain are terminated when the time limit
specified by -drain_timeout is reached.

• If you specify TRANSACTIONAL, then sessions are terminated as soon
as they commit. The service is stopped when the time limit specified
by -drain_timeout is reached and any remaining sessions are
terminated.

• If you specify NONE, then no sessions are terminated.

Note: You must use the -stopoption parameter with the -force
parameter.

-global_override Override value to modify the global service attributes.

Use this parameter with the -role, -policy, -notification, -
failovertype, -failovermethod, -failoverdelay, -
failoverretry and -edition parameters.

-css_critical {yes |
no}

You can add weight to a service by setting this parameter to YES. In the
event of a node failure within the cluster, Oracle Clusterware will evict the
node with the least amount of weight, ensuring that critical services
remain available.

–verbose Display verbose output.

-force Force the modify operation, stopping the service on some nodes as
necessary.

Usage Notes

• When performing online changes to service attributes (for example, failover delay, Runtime
Load Balancing Goal, and so on), the changes take effect only when the service is next
(re)started.

• When a service configuration is modified so that a new preferred or available instance is
added, the running state of the existing service is not affected. However, the newly added
instances will not automatically provide the service, until a srvctl start service
command is issued.

• When there are available instances for the service, and the service configuration is
modified so that a preferred or available instance is removed, the running state of the
service may change unpredictably:

– The service is stopped and then removed on some instances according to the new
service configuration.

– The service may be running on some instances that are being removed from the
service configuration.

– These services will be relocated to the next free instance in the new service
configuration.

Because of these considerations, when the online service is being modified, users may
experience a brief service outage on some instances even if the instances are not being

Appendix A
SRVCTL Command Reference

A-126

removed. Or users may experience a brief service outage on instances that are being removed
from the service.

Examples

An example of moving a service member from one instance to another is:

$ srvctl modify service -db crm -service crm -oldinst crm1 -newinst crm2

An example of changing an available instance to a preferred instance is:

$ srvctl modify service -db crm -service crm -available crm1 -toprefer

The following command exchanges a preferred and available instance:

$ srvctl modify service -db crm -service crm -modifyconfig -preferred "crm1" \
-available "crm2"

Related Topics

• Oracle Data Guard Broker

• Oracle Database SQL Translation and Migration Guide

srvctl predict service
Predicts the consequences of service failure.

Syntax

srvctl predict service -db db_unique_name -service service_name [-verbose]

Parameters

Table A-100 srvctl predict service Command Parameters

Parameter Description

-db db_unique_name Specify the unique name for the database on which the service operates
that you want to check.

-service service_name Specify a single service name or a comma-delimited list of service names
enclosed in double quotation marks ("") that you want to check.

–verbose Optionally, you can use this parameter to display detailed output.

srvctl relocate service
Temporarily relocates the specified service names from one specified instance to another
specified instance.

This command works on only one source instance and one target instance at a time, relocating
a service or all services from a single source instance to a single target instance.

Appendix A
SRVCTL Command Reference

A-127

Syntax

To relocate a service from one instance to another instance or from one node to another node:

srvctl relocate service -db db_unique_name [-service service_name | -pdb
pluggable_database]
 {-oldinst old_inst_name [-newinst new_inst_name] | -currentnode
current_node [-targetnode target_node]}
 [-drain_timeout timeout] [-wait {YES | NO}] [-pq] [-force [-noreplay]] [-
stopoption stop_option]] [-eval] [-verbose]

Parameters

Table A-101 srvctl relocate service Command Parameters

Parameter Description

-db db_unique_name The unique name for the database on which the service currently runs.

-service service_name The name of the service you want to relocate. If you do not specify any
services, then all services that can be relocated, are relocated. Those that
cannot be relocated remain in place.

-pdb
pluggable_database

The name of the Pluggable Database in which the service you want to
relocate is currently running.

-oldinst old_inst_name The name of the instance from which you are relocating the service.

-newinst new_inst_name The name of the instance to which you are relocating the service. This
parameter is optional. If you do not specify an instance, then Oracle
Clusterware chooses a new one.

The policy-managed database deployment option is desupported in
Oracle Database 23ai.

-currentnode
source_node

Name of the node where the service is currently running.

-targetnode
target_node

Name of node where the service is to be relocated. If you do not specify a
target node, then Oracle Clusterware chooses a new location.

The policy-managed database deployment option is desupported in
Oracle Database 23ai.

-drain_timeout timeout Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

Note:

If -drain_timeout value is not specified,
then the maximum configured drain timeout
of all the running services of the database
on the specified nodes is used.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

Appendix A
SRVCTL Command Reference

A-128

Table A-101 (Cont.) srvctl relocate service Command Parameters

Parameter Description

-wait YES | NO Choose YES to wait until service draining is completed on the node from
which you are relocating the service.

-stopoption option Specify the method of stopping the service. If this attribute was previously
set for the service, then that value is used as the default value if you do
not include the -stopoption parameter in your command. Otherwise,
the default is NONE.

• IMMEDIATE permits sessions to drain before the service is stopped.
Sessions that do not drain are terminated when the time limit
specified by -drain_timeout is reached.

• If you specify TRANSACTIONAL, then sessions are terminated as soon
as they commit. The service is stopped when the time limit specified
by -drain_timeout is reached and any remaining sessions are
terminated.

• If you specify NONE, then no sessions are terminated.

Note: You must use the -stopoption parameter with the -force
parameter.

–pq Performs the action on a parallel query service.

–force [-noreplay] Disconnect all sessions during stop or relocate service operations.

Optionally, you can specify the -noreplay parameter if you do not want
Application Continuity to replay in-flight transactions after a session is
terminated during relocate service operations.

–eval Use this parameter to hypothetically evaluate the impact of the command
on the system.

–verbose Verbose output.

Example

To temporarily relocate a named service member for the crm service from the database
instance crm1 to the database instance crm3:

$ srvctl relocate service -db crm -service crm -oldinst crm1 -newinst crm3

Related Topics

• Database Shutdown

srvctl remove service
Removes the service from Oracle Clusterware management.

Syntax

srvctl remove service -db db_unique_name {-service service_name |
 -pdb pdb_name}[-global_override] [-force]

Appendix A
SRVCTL Command Reference

A-129

Parameters

Table A-102 srvctl remove service Command Parameters

Parameter Description

-db db_unique_name The unique name of the database or Container Database (CDB).

-service service_name The name of the service you want to remove. You must specify either the
service name or the Pluggable Database (PDB) name.

-pdb pdb_name The name of the PDB that offers the service. You must specify either the
service name or the PDB name.

-global_override Indicates you are modifying global services. SRVCTL ignores this
parameter for a non-global service.

-force Ignore any dependencies when removing the service.

Usage Notes

If you use the -pdb option with this command, then SRVCTL removes all service resources for
the specified PDB, but does not remove the PDB resource. If you specify the PDB service
name using the -service option, then you do not have to also include the -pdb option because
the PDB service name is unique within the Container Database (CDB).

Examples

This following example removes the sales service from all instances of the clustered database
named crm:

$ srvctl remove service -db crm -service sales

The following example removes the services from the crmeast PDB:

$ srvctl remove service -db crm -pdb crmeast

srvctl start service
Starts a service or multiple services on a database, Pluggable Database (PDB) , or instance.

Syntax

srvctl start service [-db db_unique_name] [-service "service_name_list" [-pq]
[-rf] | -pdb pluggable_database]
 [-instance instance_name] [-global_override] [-role] [-startoption
start_options] [-eval] [-verbose]

Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database.

Appendix A
SRVCTL Command Reference

A-130

Parameter Description

-service
"service_list"

Specify a service name or a comma-delimited list of service names
enclosed in double quotation marks ("").

If you do not include this parameter, then SRVCTL starts all of the
services for the specified database.

Note: All manual service startup must specify the name of the service to
be started by the user.

-pq Specify this parameter to restrict the start action to a parallel query
service.

-rf Specify this parameter to perform the start action on reader farm service.

-pdb
pluggable_database

Specify the name of a Pluggable Database. Optionally, you can specify
either the name of a node or the name of an instance to restrict the
starting of services to that particular object on the Pluggable Database.

-instance
instance_name

Specify the name of an instance where the services reside that you want
to start. Use this parameter for administrator-managed databases.

-global_override Override value to operate on a global service. Use this parameter only
with global services; this parameter is ignored if specified for a non-global
service.

-startoption
start_options

Specify startup options used when service startup requires starting a
database instance. Options include OPEN, MOUNT, and NOMOUNT.

Note: For multi-word startup options, such as read only and read
write, separate the words with a space and enclose in double quotation
marks (""). For example, "read only".

-role Start services for the local database role.

–verbose Display verbose output.

Usage Notes

• The srvctl start service command will fail if you attempt to start a service that is
already running.

• The srvctl start service command will fail if you attempt to start a service on an
instance, if that service is already running on its maximum number of instances, that is, its
number of preferred instances.

• The srvctl start service without the -role parameter or a list of services, will start all
the services configured for the database, regardless of the actual database role.

• You can move a service or change the status of a service on an instance with the srvctl
modify service and srvctl relocate service commands.

Examples

The following example starts all services on a specific database:

$ srvctl start service -db myDB

The following examples start a list of services (optionally restricted to a parallel query services
in the latter example) regardless of the Pluggable Database on which they may reside:

$ srvctl start service -db myDB -service "myServ01,myServ02"
$ srvctl start service -db myDB -service "myServ01,myServ02" -pq

Appendix A
SRVCTL Command Reference

A-131

The following examples start all services on a given Pluggable Database, optionally restricted
to a single node or a single instance in the latter two examples, repectively:

$ srvctl start service -db myDB -pdb myPDB1
$ srvctl start service -db myDB -pdb myPDB1 -node myRACNode01
$ srvctl start service -db myDB -pdb myPDB1 -instance myDB01

The following example starts all services, for a given database, on a given instance (for all
Pluggable Databases):

$ srvctl start service -db myDB -instance myDB01

The following example start all services for a given database on a given node (for all Pluggable
Databases):

$ srvctl start service -db myDB -node myRACNode01

The following examples start a list of services on a given node or given instance:

$ srvctl start service -db myDB -service "myService01,myService02" -node
myRACNode01
$ srvctl start service -db myDB -service "myService01,myService02" -instance
myDB01

srvctl status service
Displays the status of a service.
For Oracle RAC One Node databases, if there is an online database relocation in process,
then this command displays the source and destination nodes and the status of the relocation,
whether it is active or failed.

Syntax

srvctl status service {-db db_unique_name [-service "service_name_list" | -
pdb pdb_name]
 | [-db db_unique_name]} [-force] [-verbose]

Parameters

Optionally, you can use this parameter to include disabled applications.

Table A-103 srvctl status service Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database on which the service operates
for which you want to check the status.

-pdb pdb_name Specify the name of the PDB on which the service operates for which you
want to check the status.

Appendix A
SRVCTL Command Reference

A-132

Table A-103 (Cont.) srvctl status service Command Parameters

Parameter Description

-service
"service_name_list"

Optionally, you can specify a comma-delimited list of service names for
which you want to check status.

If you do not use this parameter, then SRVCTL lists the status of all
services for the specified database.

–force Optionally, you can use this parameter to include disabled applications.

–verbose Optionally, you can use this parameter to display detailed output.

srvctl stop service
Stops one or more services globally across the cluster database, or on the specified instance.

Syntax

To stop services for a particular node in the cluster:

srvctl stop service -node node_name [-relocate] [-stopoption IMMEDIATE|
TRANSACTIONAL|NONE]
 [-drain_timeout timeout] [-wait {YES | NO}] [-force] [-noreplay]
 [-global_override] [-verbose]

To stop services for a database:

srvctl stop service -db db_unique_name [-pdb pluggable_database |
 -service "service_list" [-eval]] [-node node_name | -instance
instance_name |
 [-relocate] [-stopoption IMMEDIATE|TRANSACTIONAL|NONE]
 [-drain_timeout timeout] [-wait {YES | NO}] [-force [-noreplay]
 [-global_override] [-verbose]

Parameters

Note:

The policy-managed database deployment option is desupported in Oracle Database
23ai.

Table A-104 srvctl stop service Command Parameters

Parameter Description

-node node_name Optionally, you can specify the name of the node on which you want to
stop services. Use this parameter without the –db parameter to stop all
services on a specific node. If you use the –db parameter, then only the
services on the specified node for that database are stopped.

-db db_unique_name Specify a unique name for the database.

Appendix A
SRVCTL Command Reference

A-133

Table A-104 (Cont.) srvctl stop service Command Parameters

Parameter Description

-pdb
pluggable_database

Alternatively, use this parameter to stop services running on a specific
Pluggable Database.

-service
"service_list"

Specify a particular service or a comma-delimited list of service names
enclosed in double quotation marks ("") you want to stop.

If you do not provide a service name list, then SRVCTL stops all services
on the database or on a specific instance.

-instance
instance_name

Optionally, you can specify the name of the instance for which you want to
stop services.

-eval Use this parameter to hypothetically evaluate the impact of the command
on the system.

-relocate Optionally, you can use this parameter to relocate the service.

Note: You must use the -node node_name parameter with the -
relocate parameter.

-stopoption IMMEDIATE|
TRANSACTIONAL|NONE

Specify the method of stopping the service. If this attribute was previously
set for the service, then that value is used as the default value if you do
not include the -stopoption parameter in your command. Otherwise,
the default is NONE.

• IMMEDIATE permits sessions to drain before the service is stopped.
Sessions that do not drain are terminated when the time limit
specified by -drain_timeout is reached.

• If you specify TRANSACTIONAL, then sessions are terminated as soon
as they commit. The service is stopped when the time limit specified
by -drain_timeout is reached and any remaining sessions are
terminated.

• If you specify NONE, then no sessions are terminated.

Note: You must use the -stopoption parameter with the -force
parameter.

-drain_timeout timeout Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

-wait {YES | NO} Choose YES to wait until service draining is completed on the node to stop
the service.

Appendix A
SRVCTL Command Reference

A-134

Table A-104 (Cont.) srvctl stop service Command Parameters

Parameter Description

-force [-noreplay] Force SRVCTL to stop the service; this causes SRVCTL to disconnect all
of the sessions using the stop option you specify (IMMEDIATE or
TRANSACTIONAL), requiring the sessions using the service to reconnect
and then connect to another instance.

Notes:
• If you do not specify the -force parameter, then sessions already

connected to this service stay connected, but new sessions cannot
be established to the service.

• Optionally, you can specify the -noreplay parameter if you do not
want Application Continuity to replay in-flight transactions after a
session is terminated.

The -noreplay parameter is not limited to use with -force.
However, if you do not want to replay in-flight transactions after you
force the service to stop, then -force requires -noreplay.

-global_override Override value to operate on a global service. SRVCTL ignores this
parameter if the service is not a global service.

-verbose Use this parameter to display verbose output.

Examples

The following example command stops services running on the crmeast PDB in the crm
database on instance crm1 using the IMMEDIATE method, allowing 60 seconds for services to
transfer to another node:

$ srvctl stop service -db crm -pdb crmeast -instance crm1 -drain_timeout 60 -
force
- stopoption immediate -verbose

The following example command stops all services running on the node node1 that are
managed by Oracle Clusterware using the default stop option specified for each service and
waiting until all sessions have drained from that node.

$ srvctl stop service -node node1 -wait yes

vip Commands
Use commands with the vip keyword to add, manage environment variables for, list the
configuration of, enable, disable, start, stop, obtain the status of, and remove a VIP.

• srvctl add vip
Adds a virtual IP address (VIP) to a node.

• srvctl config vip
Displays all VIPs on all networks in the cluster except for user VIPs.

• srvctl disable vip

• srvctl enable vip

• srvctl getenv vip

Appendix A
SRVCTL Command Reference

A-135

• srvctl modify vip
Modifies IP address type but you can also use it to modify only the IP address.

• srvctl predict vip

• srvctl relocate vip

• srvctl remove vip
Removes the specified VIPs.

• srvctl setenv vip

• srvctl start vip

• srvctl status vip

• srvctl stop vip

• srvctl unsetenv vip

srvctl add vip
Adds a virtual IP address (VIP) to a node.

Syntax

srvctl add vip -node node_name -address {VIP_name|ip}/netmask/if1
 -netnum network_number [-skip] [-verbose]

Parameters

Table A-105 srvctl add vip Command Parameters

Parameter Description

-node node_name The name of the node on which you are adding the VIP.

-address {VIP_name|ip}/
netmask/if1

This specification creates a traditional VIP node application on the specified node.

You can specify one VIP_name or address, along with an IPv4 netmask or IPv6 prefix
length.

-netnum network_number The network number from which VIPs are obtained. The default network number is 1.

-skip Specify this parameter to skip checking the reachability of the VIP address.

-verbose Verbose output

Note:

Usage Notes

• You cannot have multiple VIPs on the same net number (subnet or interface pair) on the
same node.

• This command is only available with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-136

Example

An example of this command is:

srvctl add network -netnum 2 -subnet 192.168.16.0/255.255.255.0
srvctl add vip -node node7 -address 192.168.16.17/255.255.255.0 -netnum 2

The first command creates a network number, 2, and the second command adds a VIP to this
network. You can specify the network number after the -netnum parameter in other SRVCTL
commands.

srvctl config vip
Displays all VIPs on all networks in the cluster except for user VIPs.

Syntax

srvctl config vip {-node node_name | -vip vip_name}

Parameters

Table A-106 srvctl config vip Command Parameters

Parameter Description

-node node_name Specify the node name.

-vip vip_name Alternatively, you can specify the VIP name.

Usage Notes

This command is only available with Oracle Clusterware.

Example

This command returns output similar to the following:

$ srvctl config vip -node crmnode1

VIP exists: ipv4, ipv6, network number 1, hosting node adc2100252

srvctl disable vip
Disables a specific VIP.

Syntax

srvctl disable vip -vip vip_name [-verbose]

Usage Notes

• This command is only available with Oracle Clusterware.

• Specify the name of the VIP you want to disable.

Appendix A
SRVCTL Command Reference

A-137

• Optionally, you can use the –verbose parameter to display detailed output.

Example

The following command disables a VIP:

$ srvctl disable vip -vip vip1 -verbose

srvctl enable vip
Enables a specific VIP.

Syntax

srvctl enable vip -vip vip_name [-verbose]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Specify the name of the VIP you want to enable.

• Optionally, you can use the –verbose parameter to display detailed output.

Example

The following example enables a VIP named crm1-vip:

$ srvctl enable vip -vip crm1-vip -verbose

srvctl getenv vip
Obtains the values of environment variables for a specific VIP.

Syntax

srvctl getenv vip -vip vip_name [-envs "name_list"] [-verbose]

Parameters

Table A-107 srvctl getenv vip Command Parameters

Parameter Description

-vip vip_name Specify the name of the VIP for which you want to obtain the values of the
environment variables.

-envs "name_list" Optionally, you can specify a comma-delimited list of the names of specific
environment variables. If you do not use this parameter, then SRVCTL
displays the values of all environment variables associated with the VIP.

Usage Notes

You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-138

Example

The following example lists all environment variables for the specified VIP:

$ srvctl getenv vip -vip node1-vip

srvctl modify vip
Modifies IP address type but you can also use it to modify only the IP address.

Syntax

srvctl modify vip -node node_name -address {VIP_name|ip}/netmask/if1
 [-netnum network_number] [-verbose]

Parameters

Table A-108 srvctl modify vip Command Parameters

Parameter Description

-node node_name Specify the name of the node on which you are changing the VIP.

-address {VIP_name|
ip}/netmask/if1

Use this parameter to change the configuration of an existing VIP. If the
VIP has an IPv4 address and the address you specify is IPv6, and the IP
address type is set to both and the network type is set to static, then
SRVCTL adds the IPv6 address to the existing IPv4 address of that
resource.

You can specify one VIP_name or IP address, along with an IPv4 netmask
or IPv6 prefix length.

-netnum network_number Optionally, you can specify the network number from which VIPs are
obtained. If you do not use this parameter, then SRVCTL obtains the VIPs
from the same default network from which the nodeapps VIP is obtained.

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

• You can only use this command with Oracle Clusterware.

• You cannot have multiple VIPs on the same net number (subnet or interface pair) on the
same node.

Example

The following example adds an IPv4 address to a VIP, if one does not already exist. If the VIP
has an IPv4 address, then it is replaced with the new network specification.

srvctl modify vip -node node7 -address 192.168.16.17/255.255.255.0 -netnum 2

srvctl predict vip
Predicts the consequences of VIP failure.

Appendix A
SRVCTL Command Reference

A-139

Syntax

srvctl predict vip [-vip vip_name] [-verbose]

Usage Notes

• Optionally, you can specify the name of a VIP for which you want to evaluate the
consequences of failure.

• Optionally, you can use the –verbose parameter to display detailed output.

srvctl relocate vip
Relocates a specific VIP from its current hosting node to another node within the cluster.

Syntax

srvctl relocate vip -vip vip_name [-node node_name] [-force] [-verbose]

Parameters

Table A-109 srvctl relocate vip Command Parameters

Parameter Description

-vip vip_name Specify the name of the VIP you want to relocate.

-node node_name Optionally, you can specify the name of the target node where you want to
relocate the VIP.

–force Optionally, you can use this parameter to force the relocation of the VIP
regardless of any dependencies.

–verbose Optionally, you can use this parameter to display detailed output.

Example

The following example relocates a VIP to a different node in the cluster:

$ srvctl relocate vip -vip vip1 -node node3

srvctl remove vip
Removes the specified VIPs.

Syntax

srvctl remove vip -vip "vip_name_list" [-force] [-noprompt] [-verbose]

Appendix A
SRVCTL Command Reference

A-140

Parameters

Table A-110 srvctl remove vip Command Parameters

Parameter Description

-vip "vip_name_list" Specify a comma-delimited list of VIP names that you want to remove
surrounded by double quotation marks ("").

–force Optionally, you can use this parameter to remove a VIP regardless of any
dependencies.

-noprompt Optionally, you can use this parameter to suppress prompts.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example removes several VIPs from the system:

srvctl remove vip -vip "vip1,vip2,vip3" -force -noprompt -verbose

srvctl setenv vip
Administers cluster VIP environment configurations.

Syntax

srvctl setenv vip -vip vip_name {-envs "name=val[,...]" | -env "name=val"}
 [-verbose]

Parameters

Table A-111 srvctl setenv vip Command Parameters

Parameter Description

-vip vip_name Specify the name of the VIP for which you want to set environment
variables.

-envs "name=val[,...]" Specify a comma-delimited list of name-value pairs of environment
variables enclosed in double quotation marks ("") that you want to set.

-env "name=val" Alternative to a list of environment variables, you can use this parameter
to set a single environment variable to a value that contains commas or
other special characters enclosed in double quotation marks ("").

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-141

Example

The following example sets the language environment configuration for a cluster VIP:

$ srvctl setenv vip -vip crm1-vip -env "LANG=en"

srvctl start vip
Starts a specific VIP or a VIP on a specific node.

Syntax

srvctl start vip {-node node_name | -vip vip_name} [-verbose]

Parameters

Table A-112 srvctl start vip Command Parameters

Parameter Description

-node node_name Specify the name of the node on which the VIP resides that you want to
start.

-vip vip_name Alternative to specifying a node, you can specify a VIP that you want to
start.

-verbose Optionally, you can use this parameter to display detailed ouptut.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example starts a specific VIP:

$ srvctl start vip -vip crm1-vip -verbose

srvctl status vip
Displays status for a specific VIP or a VIP on a specific node.

Syntax

srvctl status vip {-node node_name | -vip vip_name} [-verbose]

Parameters

Table A-113 srvctl status vip Command Parameters

Parameter Description

-node node_name Specify the name of the node on which the VIP resides that you want to
check the status.

Appendix A
SRVCTL Command Reference

A-142

Table A-113 (Cont.) srvctl status vip Command Parameters

Parameter Description

-vip vip_name Alternative to specifying a node, you can specify a VIP that you want to
check the status.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

srvctl stop vip
Stops a specific VIP or all VIPs on a specific node, including any VIPs that were relocated due
to a failover.

Syntax

srvctl stop vip {-node node_name | -vip vip_name} [-force] [-relocate] [-
verbose]

Parameters

Table A-114 srvctl stop vip Command Parameters

Parameter Description

-node node_name Specify the name of a node on which a VIP resides that you want to stop.
If you use this parameter, then SRVCTL stops all VIPs on the specific
node, including failed-over VIPs.

-vip vip_name Alternative to specifying a node, you can specify a VIP that you want to
stop.

-force Optionally, you can use this parameter to stop the VIP regardless of any
dependencies.

-relocate Optionally, you can use this parameter to relocate the VIP.

Note: You must use the -node node_name parameter with the -
relocate parameter.

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example stops all the VIPs on mynode1, including any failed-over VIPs:

$ srvctl stop vip -node mynode1 -verbose

Appendix A
SRVCTL Command Reference

A-143

srvctl unsetenv vip
Unsets the environment configuration for the specified cluster VIP.

Syntax

srvctl unsetenv vip -vip "vip_name_list" -envs "name_list" [-verbose]

Parameters

Table A-115 srvctl unsetenv vip Command Parameters

Parameter Description

-vip "vip_name_list" Specify a comma-delimited list of VIP names enclosed in double quotation
marks ("").

-envs "name_list" Specify a comma-delimited list of environment variable names enclosed in
double quotation marks ("") that you want to unset.

–verbose Optionally, you can use this parameter to display detailed output.

Example

The following example unsets the CLASSPATH environment variable for a cluster VIP:

$ srvctl unsetenv vip -vip "crm2-vip" -envs "CLASSPATH"

volume Commands
Use commands with the volume keyword to list the configuration of, enable, disable, start, stop,
obtain the status of, and remove an Oracle ACFS volume.

Note:

The volume commands work only on the platforms on which Oracle ACFS is
supported.

• srvctl config volume
Displays the configuration for a specific volume or all volumes.

• srvctl disable volume

• srvctl enable volume

• srvctl remove volume

• srvctl start volume

• srvctl status volume

• srvctl stop volume

Appendix A
SRVCTL Command Reference

A-144

srvctl config volume
Displays the configuration for a specific volume or all volumes.

Syntax

srvctl config volume [-volume volume_name] [-diskgroup disk_group_name]
 [-device volume_device]

Parameters

Table A-116 srvctl config volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume for which you want to view the configuration.

-diskgroup disk_group_name Specify the name of the disk group in which the volume resides for which you want
to display the configuration.

-device volume_device Specify the path to the volume device for which you want to display the
configuration.

Usage Notes

• If you do not specify any of the optional parameters, then SRVCTL displays the
configuration information for all volumes.

• If you specify only the -volume parameter, then SRVCTL displays the configuration for all
volumes with that name, regardless of the diskgroup.

• If you specify only the -diskgroup parameter, then SRVCTL displays the configuration
information for the volumes that reside in the disk group that you specify.

• If you specify only the -device parameter, then SRVCTL displays the configuration
information for the volume matching that device specifier.

• If you specify the -diskgroup and -device parameters, then SRVCTL displays the
configuration information for the volume device that resides in the disk group that you
specify.

• This command is only available with Oracle Clusterware.

Examples

This command returns information similar to the following:

$ srvctl config volume -device /dev/asm/volume1-123

Diskgroup Name: DG1
Volume Name : VOL1
Volume Device : /dev/asm/volume1-123
Volume is enabled.
Volume is enabled on nodes:
Volume is disabled on nodes:

Appendix A
SRVCTL Command Reference

A-145

If you do not specify any parameters, then SRVCTL returns configuration information for all
volumes, similar to the following:

$ srvctl config volume

Diskgroup name: DG1
Volume name: VOL1
Volume device: /dev/asm/volume1-123
Volume is enabled.
Volume is enabled on nodes:
Volume is disabled on nodes:
Diskgroup name: DG1
Volume name: VOL2
Volume device: /dev/asm/volume2-456
Volume is enabled.
Volume is enabled on nodes:
Volume is disabled on nodes:

srvctl disable volume
Disables Oracle Clusterware management for a specific volume or all volumes.
This command allows a volume device to be stopped by operating on the Oracle Clusterware
resource for the volume. This command does not stop volume device.

Syntax

srvctl disable volume {-volume volume_name -diskgroup disk_group_name |
 -device volume_device}

Parameters

Table A-117 srvctl disable volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume that you want to disable.

-diskgroup
disk_group_name

Specify the name of the disk group in which the volume that you want to
disable resides.

-device volume_device Alternative to using the –diskgroup parameter, you can specify the path
to the volume device that you want to disable.

Usage Notes

• You can only use this command with Oracle Clusterware.

• You must specify a particular volume that you want to disable. You can specify a volume
that resides in either a particular disk group or on a particular volume device.

Example

The following example disables a volume named VOLUME1 that resides in a disk group named
DATA:

$ srvctl disable volume -volume VOLUME1 -diskgroup DATA

Appendix A
SRVCTL Command Reference

A-146

srvctl enable volume
Enables Oracle Clusterware management for a specific volume or all volumes.
This command allows a volume device to be started by operating on the Oracle Clusterware
resource for the volume. This command does not start the volume device, and is different from
the SQL command ALTER DISKGROUP ENABLE VOLUME or the ASMCMD command volenable,
because these two commands bring the volume device online, in a running state, making the
volume device accessible.

Syntax

srvctl enable volume {-volume volume_name -diskgroup disk_group_name |
 -device volume_device}

Parameters

Table A-118 srvctl enable volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume that you want to enable.

-diskgroup
disk_group_name

Specify the name of the disk group in which the volume that you want to
enable resides.

-device volume_device Alternative to using the –diskgroup parameter, you can specify the path
to the volume device that you want to enable.

Usage Notes

• You can only use this command with Oracle Clusterware.

• You must specify a particular volume that you want to enable. You can specify a volume
that resides in either a particular disk group or on a particular volume device.

Example

The following example enables a volume named VOLUME1 that resides in a disk group named
DATA:

$ srvctl enable volume -volume VOLUME1 -diskgroup DATA

srvctl remove volume
Removes a specific volume.

Syntax

Use this command with one of the following syntax models:

srvctl remove volume -volume volume_name -diskgroup disk_group_name [-force]

srvctl remove volume -device volume_device [-force]

Appendix A
SRVCTL Command Reference

A-147

Parameters

Table A-119 srvctl remove volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume that you want to remove.

-diskgroup
disk_group_name

Specify the name of the disk group in which the volume that you want to
remove resides.

-device volume_device Specify the path to the file system resource in which the volume that you
want to remove resides.

–force You can use this parameter to remove the volume even if it is running.

Usage Notes

• You can only use this command with Oracle Clusterware.

• The volume gets created when you create volumes in Oracle ASM.

• You must specify a particular volume that you want to remove. You can specify a volume
that resides in either a particular disk group or on a particular volume device.

Example

The following example removes a volume named VOLUME1 that resides in a disk group named
DATA:

$ srvctl remove volume -volume VOLUME1 -diskgroup DATA

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

srvctl start volume
Starts a specific, enabled volume.

Syntax

srvctl start volume {-volume volume_name -diskgroup disk_group_name |
 -device volume_device} [-node node_list]

Parameters

Table A-120 srvctl start volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume that you want to start.

-diskgroup
disk_group_name

Specify the name of the disk group in which the volume that you want to
start resides.

-device volume_device Alternative to using the –diskgroup parameter, you can specify the path
to the volume device that you want to start.

Appendix A
SRVCTL Command Reference

A-148

Table A-120 (Cont.) srvctl start volume Command Parameters

Parameter Description

-node node_list Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") where volumes that you want to
start reside.

Usage Notes

• You can only use this command with Oracle Clusterware.

• The srvctl start volume command does not create a volume service. Provided that the
volume already exists and the volume resource is enabled, SRVCTL attempts to start it. If
the volume exists but the resource is disabled, then srvctl start volume returns an error.

Example

The following example starts a volume named VOLUME1 that resides in a disk group named
DATA:

$ srvctl start volume -volume VOLUME1 -diskgroup DATA

srvctl status volume
Displays the status of a specific volume or all volumes.

Syntax

srvctl status volume [-device volume_device] [-volume volume_name]
 [-diskgroup disk_group_name] [-node "node_list"]

Parameters

Table A-121 srvctl status volume Command Parameters

Parameter Description

-device volume_device Optionally, you can specify the path to the volume device for which you
want to display the status.

-volume volume_name Optionally, you can specify the name of the volume for which you want to
view the status.

-diskgroup
disk_group_name

Optionally, you can specify the name of the disk group in which the
volume resides for which you want to display the status.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") where volumes for which you
want to view the status reside.

Usage Notes

• You can only use this command with Oracle Clusterware.

• If you do not specify any of the optional parameters, then SRVCTL displays the status for
all volumes.

Appendix A
SRVCTL Command Reference

A-149

• If you specify only the -volume parameter, then SRVCTL displays the status for the volume
that you specify.

• If you specify only the -diskgroup parameter, then SRVCTL displays the status for the
volumes that reside in the disk group that you specify.

• If you specify only the -device parameter, then SRVCTL displays the status for the volume
device that you specify.

• If you specify the -diskgroup and -device parameters, then SRVCTL displays the status
for the volume device in the disk group that you specify.

• If you specify the -node parameter, then SRVCTL displays the status of the volumes that
reside on the nodes you list.

Examples

This command displays information similar to the following:

$ srvctl status volume –volume vol1
Volume vol1 of diskgroup diskgrp1 for device volume_device_path1 is enabled
Volume vol1 of diskgroup diskgrp1 for device volume_device_path1 is running

In the preceding example, SRVCTL performs a status query on all nodes because the -node
parameter is not specified.

$ srvctl status volume
Volume vol1 of diskgroup diskgrp for device volume_device_path1 is enabled
Volume vol1 of diskgroup diskgrp for device volume_device_path1 is running
Volume vol2 of diskgroup diskgrp for device volume_device_path2 is enabled
Volume vol2 of diskgroup diskgrp for device volume_device_path2 is running

In the preceding example, SRVCTL displays the status of all registered volumes because the
no parameter is specified.

srvctl stop volume
Stops a specific, running volume.

Syntax

srvctl stop volume {-volume volume_name -diskgroup disk_group_name |
 -device volume_device} [-node "node_list"]

Parameters

Table A-122 srvctl stop volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume you want to stop.

-diskgroup
disk_group_name

Specify the name of the disk group in which the volume you want to stop
resides.

-device volume_device Alternative to using the –diskgroup parameter, you can specify the path
to the volume device that you want to stop.

Appendix A
SRVCTL Command Reference

A-150

Table A-122 (Cont.) srvctl stop volume Command Parameters

Parameter Description

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") where volumes that you want to
stop reside.

Usage Notes

• You can only use this command with Oracle Clusterware.

• The srvctl stop volume command attempts to stop (disable) the volume but it does not
disable the resource or remove the volume from Oracle ASM.

Example

The following example stops a volume named VOLUME1 that resides in a disk group named
DATA:

$ srvctl stop volume -volume VOLUME1 -diskgroup DATA

Appendix A
SRVCTL Command Reference

A-151

B
Troubleshooting Oracle RAC

This appendix explains how diagnose problems for Oracle Real Application Clusters (Oracle
RAC) components using trace and log files.

Note:

Trace and log files, similar to those generated for Oracle Database with Oracle RAC,
are also available for the Oracle Clusterware components. For Oracle Clusterware,
Oracle Database stores these under a unified directory log structure.

• Where to Find Files for Analyzing Errors
Oracle Database records information about important events that occur in your Oracle
RAC environment in trace files.

• Managing Diagnostic Data in Oracle RAC
Problems that span Oracle RAC instances can be the most difficult types of problems to
diagnose.

• Using Instance-Specific Alert Files in Oracle RAC
Each instance in an Oracle RAC database has one alert file.

• Enabling Tracing for Java-Based Tools and Utilities in Oracle RAC
All Java-based tools and utilities that are available in Oracle RAC are called by processing
scripts of the same name as the tool or utility.

• Resolving Pending Shutdown Issues
In some situations a SHUTDOWN IMMEDIATE may be pending and Oracle Database will not
quickly respond to repeated shutdown requests.

• How to Determine If Oracle RAC Instances Are Using the Private Network
This topic describes how to manually determine if Oracle RAC instances are using the
private network.

Where to Find Files for Analyzing Errors
Oracle Database records information about important events that occur in your Oracle RAC
environment in trace files.

The trace files for Oracle RAC are the same as those in noncluster Oracle databases. As a
best practice, monitor and back up trace files regularly for all instances to preserve their
content for future troubleshooting.

Information about ORA-600 errors appear in the alert_SID.log file for each instance where SID
is the instance identifier.

B-1

The alert log and all trace files for background and server processes are written to the
Automatic Diagnostic Repository, the location of which you can specify with the
DIAGNOSTIC_DEST initialization parameter. For example:

$ORACLE_BASE/diag/rdbms/$DBNAME/$SID_NAME/trace

Oracle Database creates a different trace file for each background thread. Oracle RAC
background threads use trace files to record database operations and database errors. These
trace logs help troubleshoot and also enable Oracle Support to more efficiently debug cluster
database configuration problems. The names of trace files are operating system specific, but
each file usually includes the name of the process writing the file (such as LGWR and RECO).
For Linux, UNIX, and Windows systems, trace files for the background processes are named
SID_process_name_process_identifier.trc.

Trace files are also created for user processes if you set the DIAGNOSTIC_DEST initialization
parameter. User process trace file names have the format SID_ora_process_identifier/
thread_identifier.trc, where process_identifier is a 5-digit number indicating the
process identifier (PID) on Linux and UNIX systems, and thread_identifier is the thread
identifier on Windows systems.

Related Topics

• Troubleshooting Oracle Clusterware

• Monitoring the Database

Managing Diagnostic Data in Oracle RAC
Problems that span Oracle RAC instances can be the most difficult types of problems to
diagnose.

For example, you may need to correlate the trace files from across multiple instances, and
merge the trace files. Oracle Database includes an advanced fault diagnosability infrastructure
for collecting and managing diagnostic data, and uses the Automatic Diagnostic Repository
(ADR) file-based repository for storing the database diagnostic data. When you create the ADR
base on a shared disk, you can place ADR homes for all instances of the same Oracle RAC
database under the same ADR Base. With shared storage:

• You can use the ADRCI command-line tool to correlate diagnostics across all instances.

ADRCI is a command-line tool that enables you to view diagnostic data in the ADR and
package incident and problem information into a zip file for transmission to Oracle Support.
The diagnostic data includes incident and problem descriptions, trace files, dumps, health
monitor reports, alert log entries, and so on.

• You can use the Data Recovery Advisor to help diagnose and repair corrupted data blocks,
corrupted or missing files, and other data failures.

The Data Recovery Advisor is an Oracle Database infrastructure that automatically
diagnoses persistent data failures, presents repair options, and repairs problems at your
request.

Related Topics

• ADRCI: ADR Command Interpreter

• Diagnosing and Resolving Problems

Appendix B
Managing Diagnostic Data in Oracle RAC

B-2

Using Instance-Specific Alert Files in Oracle RAC
Each instance in an Oracle RAC database has one alert file.

The alert file for each instance, alert_SID.log, contains important information about error
messages and exceptions that occur during database operations. Information is appended to
the alert file each time you start the instance. All process threads can write to the alert file for
the instance.

The alert_SID.log file is in the directory specified by the DIAGNOSTIC_DEST initialization
parameter.

Enabling Tracing for Java-Based Tools and Utilities in Oracle
RAC

All Java-based tools and utilities that are available in Oracle RAC are called by processing
scripts of the same name as the tool or utility.

This includes the Configuration Verification Utility (CVU), Oracle Database Configuration
Assistant (Oracle DBCA), the Net Configuration Assistant (NETCA), and the Server Control
Utility (SRVCTL). For example, to run Oracle DBCA, enter the command dbca.

By default, Oracle Database enables traces for Oracle DBCA and the Database Upgrade
Assistant (DBUA). For the CVU, and SRVCTL, you can set the SRVM_TRACE environment
variable to TRUE to make Oracle Database generate traces. Oracle Database writes traces to
log files. For example, Oracle Database writes traces to log files in Oracle_base/cfgtoollogs/
dbca and Oracle_base/cfgtoollogs/dbua for Oracle DBCA and Oracle DBUA, respectively.

Resolving Pending Shutdown Issues
In some situations a SHUTDOWN IMMEDIATE may be pending and Oracle Database will not
quickly respond to repeated shutdown requests.

This is because Oracle Clusterware may be processing a current shutdown request. In such
cases, issue a SHUTDOWN ABORT using SQL*Plus for subsequent shutdown requests.

How to Determine If Oracle RAC Instances Are Using the Private
Network

This topic describes how to manually determine if Oracle RAC instances are using the private
network.

However, the best practice for this task is to use the Oracle Enterprise Manager Cloud Control
graphical user interface (GUI) to check the interconnect.

With most network protocols, you can issue the oradebug ipc command to see the
interconnects that the database is using. For example:

oradebug setmypid
oradebug ipc

Appendix B
Using Instance-Specific Alert Files in Oracle RAC

B-3

These commands dump a trace file to the location specified by the DIAGNOSTIC_DEST
initialization parameter. The output may look similar to the following:

SSKGXPT 0x1a2932c flags SSKGXPT_READPENDING info for network 0
 socket no 10 IP 172.16.193.1 UDP 43749
 sflags SSKGXPT_WRITESSKGXPT_UP info for network 1
 socket no 0 IP 0.0.0.0 UDP 0...

In the example, you can see the database is using IP 172.16.193.1 with a User Datagram
Protocol (UDP) protocol. Also, you can issue the oradebug tracefile_name command to print
the trace location where the output is written.

Additionally, you can query the V$CLUSTER_INTERCONNECTS view to see information about the
private interconnect. For example:

SQL> SELECT * FROM V$CLUSTER_INTERCONNECTS;

NAME IP_ADDRESS IS_ SOURCE
----- -------------------------- --- -------------------------------
eth0 138.2.236.114 NO Oracle Cluster Repository

Appendix B
How to Determine If Oracle RAC Instances Are Using the Private Network

B-4

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Set Up Java Access Bridge to Implement Java Accessibility
	Command Syntax
	Conventions

	1 Introduction to Oracle RAC
	Overview of Oracle RAC
	Overview of Oracle Multitenant with Oracle RAC
	Overview of Installing Oracle RAC
	Understanding Compatibility in Oracle RAC Environments
	Oracle RAC Database Installation
	Oracle RAC Database Creation
	Overview of Extending Oracle RAC Clusters

	Overview of Oracle Real Application Clusters One Node
	Overview of Oracle Clusterware for Oracle RAC
	Guidelines for Using Oracle Clusterware
	Overview of Temporary Tablespaces
	Parallel Execution Support for Cursor-Duration Temporary Tablespaces
	Temporary Tablespace Organization
	Temporary Tablespace Hierarchy
	Temporary Tablespace Features
	Metadata Management of Temporary Files
	DDL Support for Temporary Tablespaces
	Temporary Tablespace for Users
	Atomicity Requirement for Commands
	Temporary Tablespace and Dictionary Views

	Overview of Oracle RAC Architecture and Processing
	Understanding Cluster-Aware Storage Solutions
	Oracle RAC and Network Connectivity
	Overview of Using Dynamic Database Services to Connect to Oracle Databases
	Overview of Virtual IP Addresses
	Restricted Service Registration in Oracle RAC
	About Oracle RAC Software Components
	About Oracle RAC Background Processes

	Overview of Automatic Workload Management with Dynamic Database Services
	Overview of Blocker Resolver
	Overview of Database In-Memory and Oracle RAC
	Overview of Managing Oracle RAC Environments
	About Designing and Deploying Oracle RAC Environments
	About Administrative Tools for Oracle RAC Environments
	About Monitoring Oracle RAC Environments
	About Evaluating Performance in Oracle RAC Environments

	2 Administering Storage in Oracle RAC
	About Oracle ASM
	Overview of Storage Management for Oracle RAC
	Data File Access in Oracle RAC
	NFS Server for Storage
	Redo Log File Storage in Oracle RAC
	Automatic Undo Management in Oracle RAC
	Oracle Automatic Storage Management with Oracle RAC
	Storage Management in Oracle RAC
	Modifying Disk Group Configurations for Oracle ASM
	Oracle ASM Disk Group Management
	Configuring Preferred Mirror Read Disks in Extended Distance Clusters
	Converting Nonclustered Oracle ASM to Clustered Oracle ASM
	Administering Oracle ASM Instances with SRVCTL in Oracle RAC

	3 Administering Database Instances and Cluster Databases
	Overview of Oracle RAC Database Administration
	Required Privileges for Oracle RAC Database Administration
	Oracle RAC Database Deployment Models

	Tools for Administering Oracle RAC
	Administering Oracle RAC with SRVCTL
	Administering Oracle RAC with Oracle Enterprise Manager
	Administering Oracle RAC with SQL*Plus
	How SQL*Plus Commands Affect Instances

	Starting and Stopping Instances and Oracle RAC Databases
	Starting One or More Instances and Oracle RAC Databases Using SRVCTL
	Stopping One or More Instances and Oracle RAC Databases Using SRVCTL
	Stopping All Databases and Instances Using CRSCTL
	Starting and Stopping Individual Instances Using SQL*Plus

	Starting and Stopping PDBs in Oracle RAC
	Local Rolling Database Maintenance
	About Local Rolling Database Maintenance
	Requirements for Using Local Rolling Maintenance
	Patching Oracle RAC Database in Local Rolling Mode
	How to Recover from a Failed Transfer in Local Rolling Mode

	Pluggable Database Rank
	Pluggable Database Placement
	Example of Creating a Pluggable Database with Cardinality and Rank
	Reducing Downtime During Database and Instance Outages
	Oracle RAC High Availability Best Practices
	Oracle RAC Two-Stage Rolling Updates
	Smooth Reconfiguration of Oracle RAC Instances
	Ordered Sequence Optimizations in Oracle RAC

	Verifying That Instances are Running
	Using SRVCTL to Verify That Instances are Running
	Using SQL*Plus to Verify That Instances are Running

	Terminating Sessions On a Specific Cluster Instance
	Overview of Initialization Parameter Files in Oracle RAC
	About Creating an SPFILE for Oracle RAC
	Setting SPFILE Parameter Values for Oracle RAC
	Parameter File Search Order in Oracle RAC
	Backing Up the Server Parameter File

	Initialization Parameter Use in Oracle RAC
	Initialization Parameters Specific to Oracle RAC
	Parameters That Must Have Identical Settings on All Instances
	Parameters That Should Have Identical Settings on All Instances

	Quiescing Oracle RAC Databases
	Administering Multiple Cluster Interconnects on Linux and UNIX Platforms
	Use Cases for Setting the CLUSTER_INTERCONNECTS Parameter

	Customizing How Oracle Clusterware Manages Oracle RAC Databases
	Advanced Oracle Enterprise Manager Administration
	Using Oracle Enterprise Manager Cloud Control to Discover Nodes and Instances
	Other Oracle Enterprise Manager Capabilities
	Administering Jobs and Alerts in Oracle RAC
	Administering Jobs in Oracle RAC
	Administering Alerts in Oracle RAC with Oracle Enterprise Manager
	Using Defined Suspensions in Oracle Enterprise Manager

	4 Administering Oracle RAC One Node
	Creating an Oracle RAC One Node Database
	Converting Databases
	Converting a Database from Oracle RAC to Oracle RAC One Node
	Converting a Database from Oracle RAC One Node to Oracle RAC

	Online Database Relocation

	5 Workload Management with Dynamic Database Services
	Connection Load-Balancing
	About Connection Load-Balancing
	Server-Side Load Balancing
	Generic Database Clients
	Client-Side Connection Configuration for Older Clients
	About Client-Side Connection Configuration for Older Clients
	JDBC Thin Clients
	OCI Clients

	Client-Side Load Balancing
	Smart Connection Rebalance

	Load Balancing Advisory
	Overview of the Load Balancing Advisory
	Configuring Your Environment to Use the Load Balancing Advisory
	Load Balancing Advisory FAN Events
	Monitoring Load Balancing Advisory FAN Events

	Enabling Clients for Oracle RAC
	Overview of Oracle Integrated Clients and FAN
	Enabling JDBC-Thin Clients for Fast Connection Failover
	About Fast Connection Failover and JDBC-Thin Clients
	Oracle Notification Service for JDBC-Thin Clients
	Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients

	Enabling JDBC Clients for Run-time Connection Load Balancing
	Configuring JDBC-Thin Clients for Application Continuity for Java
	Configuring JDBC-Thin Clients for Transaction Guard
	Enabling OCI Clients for Fast Connection Failover
	Enabling OCI Clients for Run-time Connection Load Balancing
	Configuring OCI Clients to use Transaction Guard
	Enabling ODP.NET Clients to Receive FAN High Availability Events
	Enabling ODP.NET Clients to Receive FAN Load Balancing Advisory Events
	Configuring ODP.NET Clients to use Transaction Guard

	Distributed Transaction Processing in Oracle RAC
	Overview of XA Transactions and Oracle RAC
	Using Global Transactions and XA Affinity for XA Transactions
	Using Services with XA Transactions on Oracle RAC
	Configuring Services for XA Applications
	Relocating Services in Administrator-Managed Databases

	Oracle RAC Sharding
	Automatic Workload Repository
	Measuring Performance by Service Using the Automatic Workload Repository
	Automatic Workload Repository Service Thresholds and Alerts
	About Automatic Workload Repository Service Thresholds and Alerts
	Example of Services and Thresholds Alerts
	Enable Service, Module, and Action Monitoring

	Using Oracle Services
	Service Deployment Options
	Service Usage in an Oracle RAC Database
	Oracle Clusterware Resources for a Service
	Database Resource Manager Consumer Group Mappings for Services
	Performance Monitoring by Service with AWR
	Parallel Operations and Services
	Oracle GoldenGate and Oracle RAC

	Service Characteristics
	Service Name
	Service Edition
	Service Management Policy
	Database Role for a Service
	Instance Preference
	Service Co-location
	Load Balancing Advisory Goal for Run-time Connection Load Balancing
	Connection Load Balancing Goal
	Distributed Transaction Processing

	Default Service Connections
	Restricted Service Registration

	Administering Services
	Overview of Service Administration
	Administering Services with Oracle Enterprise Manager
	Administering Services with SRVCTL
	Creating Services with SRVCTL
	Creating Services for Application Continuity and Transaction Guard
	Starting and Stopping Services with SRVCTL
	Enabling and Disabling Services with SRVCTL
	Relocating Services with SRVCTL
	Obtaining the Status of Services with SRVCTL
	Obtaining the Configuration of Services with SRVCTL

	Global Services
	Service-Oriented Buffer Cache Access
	Connecting to a Service: An Example

	6 Ensuring Application Continuity
	Understanding Application Continuity
	About Application Continuity
	Key Concepts for Application Continuity
	How Application Continuity Works for Applications
	Support for Oracle Application Continuity and Transparent Application Continuity
	Restrictions and Other Considerations for Application Continuity
	Application Continuity for Various Applications
	Applications That Use Containers with Request Boundaries
	Applications that are Database Agnostic

	Transparent Application Continuity
	About Transparent Application Continuity
	Deciding on Transparent Application Continuity
	Using Transparent Application Continuity in Oracle Cloud Environments

	Configuring Application Continuity
	Overview of Application Continuity Configuration Tasks
	Configuring Connections for High Availability and Application Continuity
	Configuring Oracle Database for Application Continuity
	Establishing the Initial State Before Application Continuity Replays
	Checking Initial States for Application Continuity
	FAILOVER_RESTORE
	States Restored with FAILOVER_RESTORE
	Full FAILOVER_RESTORE with Database Templates
	FAILOVER_RESTORE with Database Templates
	Configuring a Keystore using WALLET_ROOT for FAILOVER_RESTORE
	Configuring a Keystore using SQLNET.ORA for FAILOVER_RESTORE
	FAILOVER_RESTORE = NONE and No Callback
	Connection Labeling
	Connection Initialization Callback

	Potential Side Effects of Application Continuity

	Administering Application Continuity Operation and Usage
	Using Application Continuity for Planned Maintenance
	Administering Restoring Original Function Results
	Restoring Original Oracle Function Values and Application Continuity
	Checking Your Keep Permissions
	Granting and Revoking Keep Permissions for Restoring Original Oracle Function Values
	Granting Permission to Keep Restoring Original Oracle Function Values for Oracle Sequences
	Rules for Grants on Restoring Original Oracle Function Values

	Protection-Level Statistics
	Session State Consistency
	About Session State Consistency
	Auto Session State Consistency
	Dynamic Session State Consistency

	Application Continuity Statistics
	Application Continuity Protection Check
	About Application Continuity Protection Check
	Enabling and Disabling Application Continuity Protection Check
	Generating an Application Continuity Protection Check Report
	Filtering Statistics and Events
	Cleaning Up ACCHK Collected Information

	Delaying the Reconnection in Application Continuity
	Understanding How to Wait for the Service to be Ready for Application Continuity
	Creating Services on Oracle RAC with Application Continuity
	Modifying Services on Single-instance Databases to use Application Continuity

	Running Without Application Continuity
	Disabling Replay in Application Continuity
	Understanding Enabling and Disabling Replay in Application Continuity
	Application Calls Autonomous Transactions, External PL/SQL, or Java Actions that Should Not Be Repeated
	Application Synchronizes Independent Sessions
	Application Uses Time at the Middle Tier in the Processing Logic
	Application Assumes that ROWIds Do Not Change
	Application Assumes that Location Values Do Not Change

	Terminating or Disconnecting a Session Without Replay

	Fast Application Notification (FAN)
	Overview of Fast Application Notification (FAN)
	The Importance of Using Fast Application Notification
	How FAN is Used with Oracle Database and Applications
	Requirements for Using FAN
	FAN Callouts
	Fast Application Notification High Availability Events
	Subscription to High Availability Events
	Using Fast Application Notification Callouts

	Configure for Unplanned Outages
	Managing Planned Maintenance
	About Planned Maintenance Management
	Planned Maintenance Without User Interruption
	Managing a Group of Services for Maintenance
	Stopping a Group of Services Example
	Starting Services
	Pluggable Database-Level Operations
	Relocating Services
	Stopping Services

	Server Draining Ahead of Planned Maintenance
	Planned Failover with Application Continuity

	Transaction Guard for Improving Client Failover
	About Transaction Guard
	Database Native Transaction Guard
	Transaction Guard Support During Major Database Version Upgrades
	Transaction Guard Configuration Checklist
	Configuring Services for Transaction Guard

	Application Continuity During Major Database Version Upgrades with DBMS_ROLLING
	Reset Database Session State

	7 Configuring Recovery Manager and Archiving
	Overview of Configuring RMAN for Oracle RAC
	Archiving Mode in Oracle RAC
	Configuring the RMAN Snapshot Control File Location
	Configuring RMAN to Automatically Backup the Control File and SPFILE
	Crosschecking on Multiple Oracle RAC Nodes
	Configuring Channels for RMAN in Oracle RAC
	Configuring Channels to Use Automatic Load Balancing

	Managing Archived Redo Logs Using RMAN in Oracle RAC
	Archived Redo Log File Conventions in Oracle RAC
	RMAN Archiving Configuration Scenarios
	Oracle Advanced Cluster File System Archiving Scheme
	Advantages of the Cluster File System Archiving Scheme
	Initialization Parameter Settings for the Cluster File System Archiving Scheme
	Location of Archived Logs for the Cluster File System Archiving Scheme

	Noncluster File System Local Archiving Scheme
	Considerations for Using Noncluster File System Local Archiving
	Initialization Parameter Settings for Non-Cluster File System Local Archiving
	Location of Archived Logs for Noncluster File System Local Archiving
	File System Configuration for Noncluster File System Local Archiving

	Monitoring the Archiver Processes

	8 Managing Backup and Recovery
	Managing Backup and Recovery in Clusters
	RMAN Backup Scenario for Noncluster File System Backups
	RMAN Restore Scenarios for Oracle RAC
	Restoring Backups from a Cluster File System
	Restoring Backups from a Noncluster File System
	Using RMAN or Oracle Enterprise Manager to Restore the Server Parameter File (SPFILE)

	Instance Recovery in Oracle RAC
	Single Node Failure in Oracle RAC
	Multiple-Node Failures in Oracle RAC
	Using RMAN to Create Backups in Oracle RAC
	Channel Connections to Cluster Instances with RMAN
	Node Affinity Awareness of Fast Connections
	Deleting Archived Redo Logs after a Successful Backup
	Autolocation for Backup and Restore Commands

	Media Recovery in Oracle RAC
	Parallel Recovery in Oracle RAC
	Parallel Recovery with RMAN
	Disabling Parallel Recovery
	Disabling Instance and Crash Recovery Parallelism
	Disabling Media Recovery Parallelism

	Using a Fast Recovery Area in Oracle RAC

	9 Cloning Oracle RAC to Nodes in a New Cluster
	Introduction to Cloning Oracle RAC
	Preparing to Clone Oracle RAC
	Deploying Oracle RAC Clones to Nodes in a Cluster
	Locating and Viewing Log Files Generated During Cloning

	10 Using Cloning to Extend Oracle RAC to Nodes in the Same Cluster
	About Adding Nodes Using Cloning in Oracle RAC Environments
	Cloning Local Oracle Homes on Linux and UNIX Systems
	Cloning Shared Oracle Homes on Linux and UNIX Systems
	Cloning Oracle Homes on Windows Systems

	11 Adding and Deleting Oracle RAC from Nodes on Linux and Unix Systems
	About Adding and Deleting Nodes
	Adding Oracle RAC to Nodes with Oracle Grid Infrastructure Installed
	Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes
	About Adding Administrator-Managed Oracle RAC Database Instances
	Using Oracle DBCA in Interactive Mode to Add Database Instances to Target Nodes
	Using Oracle DBCA in Silent Mode to Add Database Instances to Target Nodes

	Deleting Oracle RAC from a Cluster Node
	Deleting Instances from Oracle RAC Databases
	Using Oracle DBCA in Interactive Mode to Delete Instances from Nodes
	Using Oracle DBCA in Silent Mode to Delete Instances from Nodes

	Removing Oracle RAC
	Deleting Nodes from A Cluster

	12 Adding and Deleting Oracle RAC from Nodes on Windows Systems
	Adding Oracle RAC to Nodes with Oracle Grid Infrastructure Installed
	Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes
	About Using Oracle DBCA to Add Oracle RAC Instances
	Using Oracle DBCA in Interactive Mode to Add Database Instances to Target Nodes
	Using Oracle DBCA in Silent Mode to Add Database Instances to Target Nodes

	Deleting Oracle RAC from a Cluster Node
	Deleting Instances from Administrator-Managed Databases
	Using Oracle DBCA in Silent Mode to Delete Instances from Nodes
	Using Oracle DBCA in Interactive Mode to Delete Instances from Nodes
	Removing Oracle RAC
	Deleting Nodes from the Cluster

	13 Design and Deployment Techniques
	Deploying Oracle RAC for High Availability
	About Designing High Availability Systems
	Best Practices for Deploying Oracle RAC in High Availability Environments
	Consolidating Multiple Applications in Cluster Databases
	Managing Capacity During Consolidation
	Managing the Global Cache Service Processes During Consolidation
	Using Oracle Database Cloud for Consolidation

	Scalability of Oracle RAC

	General Design Considerations for Oracle RAC
	General Database Deployment Topics for Oracle RAC
	Tablespace Use in Oracle RAC
	Object Creation and Performance in Oracle RAC
	Node Addition and Deletion and the SYSAUX Tablespace in Oracle RAC
	Distributed Transactions and Oracle RAC
	Deploying OLTP Applications in Oracle RAC
	Flexible Implementation with Cache Fusion
	Deploying Data Warehouse Applications in Oracle RAC
	Parallelism for Data Warehouse Applications on Oracle RAC
	Parallel Processing in Data Warehouse Systems and Oracle RAC

	Data Security Considerations in Oracle RAC
	Transparent Data Encryption and Keystores
	Windows Firewall Considerations
	Securely Run ONS Clients Using Wallets

	Introduction to Blocker Resolver
	Blocker Resolver Architecture
	Optional Configuration for Blocker Resolver
	Blocker Resolver Diagnostics and Logging

	14 Monitoring Performance
	Monitoring and Tuning Oracle RAC Databases
	Overview of Monitoring Oracle RAC and Oracle Clusterware
	Monitoring Oracle RAC and Oracle Clusterware with Oracle Enterprise Manager
	The Cluster Database Home Page
	The Interconnects Page
	The Cluster Database Performance Page

	Tuning Oracle RAC Databases
	Database Reliability Framework

	Verifying the Interconnect Settings for Oracle RAC
	Influencing Interconnect Processing
	Performance Views in Oracle RAC
	Creating Oracle RAC Data Dictionary Views with CATCLUST.SQL
	Oracle RAC Performance Statistics
	Automatic Workload Repository in Oracle RAC Environments
	Active Session History Reports for Oracle RAC
	Overview of ASH Reports for Oracle RAC
	ASH Report for Oracle RAC: Top Cluster Events
	ASH Report for Oracle RAC: Top Remote Instance

	Monitoring Oracle RAC Statistics and Wait Events
	Oracle RAC Statistics and Events in AWR and Statspack Reports
	Oracle RAC Wait Events
	Monitoring Performance by Analyzing GCS and GES Statistics
	Analyzing the Effect of Cache Fusion in Oracle RAC
	Analyzing Performance Using GCS and GES Statistics

	Analyzing Cache Fusion Transfer Impact Using GCS Statistics
	Analyzing Response Times Based on Wait Events
	Understanding Normal and Problem Wait Event Response Times
	Block-Related Wait Events
	Message-Related Wait Events
	Contention-Related Wait Events
	Load-Related Wait Events

	15 Converting Single-Instance Oracle Databases to Oracle RAC and Oracle RAC One Node
	Converting to Oracle RAC and Oracle RAC One Node Using Oracle DBCA
	Overview of Converting Databases to Oracle RAC Using Oracle DBCA
	Converting Oracle Database Installations to Oracle RAC Using Oracle DBCA
	Use Oracle DBCA to Create an Image of the Single-Instance Database
	Perform the Oracle Grid Infrastructure Installation
	Validate the Cluster
	Copy the Preconfigured Database Image
	Install the New Oracle Database Software with Oracle RAC

	Converting Single Instance on a Cluster to Oracle RAC One Node Using Oracle DBCA
	Converting Single Instance on a Cluster to Oracle RAC Using Oracle DBCA
	Scenarios for Converting Single Instance on a Cluster to Oracle RAC
	Single-Instance Database on a Cluster Running from an Oracle RAC-Enabled Home
	Setting up the Cluster to Convert a Single-Instance Database on a Cluster
	Automated Conversion Procedure Using Oracle DBCA
	Manual Conversion Procedure

	Single-Instance Database on a Cluster Running from an Oracle RAC-Disabled Home

	Converting Single Instance on a Single Server to Oracle RAC One Node Using Oracle DBCA

	Preparing to Convert with rconfig and Oracle Enterprise Manager
	Prerequisites for Converting to Oracle RAC Databases
	Configuration Changes During Oracle RAC Conversion Using rconfig
	Converting Databases to Oracle RAC Using rconfig or Oracle Enterprise Manager
	Converting Databases to Oracle RAC Using Oracle Enterprise Manager

	Converting Databases to Oracle RAC Using rconfig
	Example of rconfig XML Input Files for ConvertToRAC
	Postconversion Steps

	A Server Control Utility Reference
	SRVCTL Usage Information
	Specifying Command Parameters as Keywords Instead of Single Letters
	Character Set and Case Sensitivity of SRVCTL Object Values
	Summary of Tasks for Which SRVCTL Is Used
	Using SRVCTL Help
	SRVCTL Privileges and Security
	Additional SRVCTL Topics
	Deprecated SRVCTL Subprograms or Commands
	Single Character Parameters Deprecated for all SRVCTL Commands
	Miscellaneous SRVCTL Commands and Parameters

	SRVCTL Command Reference
	About Using SRVCTL Commands
	database Commands
	srvctl add database
	srvctl config database
	srvctl convert database
	srvctl disable database
	srvctl downgrade database
	srvctl enable database
	srvctl getenv database
	srvctl modify database
	srvctl predict database
	srvctl relocate database
	srvctl remove database
	srvctl setenv database
	srvctl start database
	srvctl status database
	srvctl stop database
	srvctl unsetenv database
	srvctl update database
	srvctl upgrade database

	diskgroup Commands
	srvctl disable diskgroup
	srvctl enable diskgroup
	srvctl predict diskgroup
	srvctl remove diskgroup
	srvctl start diskgroup
	srvctl status diskgroup
	srvctl stop diskgroup

	home Commands
	srvctl start home
	srvctl status home
	srvctl stop home

	instance Commands
	srvctl add instance
	srvctl disable instance
	srvctl enable instance
	srvctl modify instance
	srvctl remove instance
	srvctl start instance
	srvctl status instance
	srvctl stop instance
	srvctl transfer instance
	srvctl update instance

	listener Commands
	srvctl add listener
	srvctl config listener
	srvctl disable listener
	srvctl enable listener
	srvctl getenv listener
	srvctl modify listener
	srvctl predict listener
	srvctl remove listener
	srvctl setenv listener
	srvctl start listener
	srvctl status listener
	srvctl stop listener
	srvctl unsetenv listener
	srvctl update listener

	network Commands
	srvctl add network
	srvctl config network
	srvctl modify network
	srvctl predict network
	srvctl remove network

	nodeapps Commands
	srvctl add nodeapps
	srvctl config nodeapps
	srvctl disable nodeapps
	srvctl enable nodeapps
	srvctl getenv nodeapps
	srvctl modify nodeapps
	srvctl remove nodeapps
	srvctl setenv nodeapps
	srvctl start nodeapps
	srvctl status nodeapps
	srvctl stop nodeapps
	srvctl unsetenv nodeapps

	ons Commands
	srvctl add ons
	srvctl config ons
	srvctl disable ons
	srvctl enable ons
	srvctl export ons
	srvctl modify ons
	srvctl remove ons
	srvctl start ons
	srvctl status ons
	srvctl stop ons

	pdb Commands
	srvctl add pdb
	srvctl config pdb
	srvctl disable pdb
	srvctl enable pdb
	srvctl modify pdb
	srvctl remove pdb
	srvctl start pdb
	srvctl status pdb
	srvctl stop pdb

	scan Commands
	srvctl add scan
	srvctl config scan
	srvctl disable scan
	srvctl enable scan
	srvctl modify scan
	srvctl predict scan
	srvctl relocate scan
	srvctl remove scan
	srvctl start scan
	srvctl status scan
	srvctl stop scan

	scan_listener Commands
	srvctl add scan_listener
	srvctl config scan_listener
	srvctl disable scan_listener
	srvctl enable scan_listener
	srvctl export scan_listener
	srvctl modify scan_listener
	srvctl predict scan_listener
	srvctl relocate scan_listener
	srvctl remove scan_listener
	srvctl start scan_listener
	srvctl status scan_listener
	srvctl stop scan_listener
	srvctl update scan_listener

	service Commands
	srvctl add service
	srvctl config service
	srvctl disable service
	srvctl enable service
	srvctl modify service
	srvctl predict service
	srvctl relocate service
	srvctl remove service
	srvctl start service
	srvctl status service
	srvctl stop service

	vip Commands
	srvctl add vip
	srvctl config vip
	srvctl disable vip
	srvctl enable vip
	srvctl getenv vip
	srvctl modify vip
	srvctl predict vip
	srvctl relocate vip
	srvctl remove vip
	srvctl setenv vip
	srvctl start vip
	srvctl status vip
	srvctl stop vip
	srvctl unsetenv vip

	volume Commands
	srvctl config volume
	srvctl disable volume
	srvctl enable volume
	srvctl remove volume
	srvctl start volume
	srvctl status volume
	srvctl stop volume

	B Troubleshooting Oracle RAC
	Where to Find Files for Analyzing Errors
	Managing Diagnostic Data in Oracle RAC
	Using Instance-Specific Alert Files in Oracle RAC
	Enabling Tracing for Java-Based Tools and Utilities in Oracle RAC
	Resolving Pending Shutdown Issues
	How to Determine If Oracle RAC Instances Are Using the Private Network

