
Oracle® Database
Utilities

23c
F46696-11
March 2024

Oracle Database Utilities, 23c

F46696-11

Copyright © 2002, 2024, Oracle and/or its affiliates.

Primary Author: Douglas Williams

Contributors: Francisco Alavez, William Beauregard, Thirupathi Bhukya, Chi Ching Chui, Michael Cusson,
Yuhong Gu, Martin Gubar, Dana Joly, Rich Phillips, Madhu Ravishankar, Mike Sakayeda, Roy Swonger, Bill
Wright, Qin Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

 Preface

Audience xli

Documentation Accessibility xli

Diversity and Inclusion xlii

Related Documentation xlii

Syntax Diagrams xliii

Conventions xliii

Part I Oracle Data Pump

1 Overview of Oracle Data Pump

1.1 Oracle Data Pump Components 1-2

1.2 How Does Oracle Data Pump Move Data? 1-3

1.2.1 Using Data File Copying to Move Data 1-4

1.2.2 Using Direct Path to Move Data 1-5

1.2.3 Using External Tables to Move Data 1-7

1.2.4 Using Conventional Path to Move Data 1-7

1.2.5 Using Network Link Import to Move Data 1-8

1.2.6 Using a Parameter File (Parfile) with Oracle Data Pump 1-9

1.3 Using Oracle Data Pump With CDBs 1-10

1.3.1 About Using Oracle Data Pump in a Multitenant Environment 1-10

1.3.2 Using Oracle Data Pump to Move Data Into a CDB 1-11

1.3.3 Using Oracle Data Pump to Move PDBs Within or Between CDBs 1-13

1.4 Cloud Premigration Advisor Tool 1-14

1.4.1 What is the Cloud Premigration Advisor Tool (CPAT) 1-14

1.5 Required Roles for Oracle Data Pump Export and Import Operations 1-15

1.6 What Happens During the Processing of an Oracle Data Pump Job? 1-16

1.6.1 Coordination of an Oracle Data Pump Job 1-16

1.6.2 Tracking Progress Within an Oracle Data Pump Job 1-16

1.6.3 Filtering Data and Metadata During an Oracle Data Pump Job 1-17

1.6.4 Transforming Metadata During an Oracle Data Pump Job 1-18

iii

1.6.5 Maximizing Job Performance of Oracle Data Pump 1-18

1.6.6 Loading and Unloading Data with Oracle Data Pump 1-18

1.7 How to Monitor Status of Oracle Data Pump Jobs 1-19

1.8 How to Monitor the Progress of Running Jobs with V$SESSION_LONGOPS 1-20

1.9 File Allocation with Oracle Data Pump 1-20

1.9.1 Understanding File Allocation in Oracle Data Pump 1-21

1.9.2 Specifying Files and Adding Additional Dump Files 1-21

1.9.3 Default Locations for Dump, Log, and SQL Files 1-21

1.9.3.1 Understanding Dump, Log, and SQL File Default Locations 1-22

1.9.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC 1-24

1.9.3.3 Using Directory Objects When Oracle Automatic Storage Management Is
Enabled 1-24

1.9.3.4 The DATA_PUMP_DIR Directory Object and Pluggable Databases 1-25

1.9.4 Using Substitution Variables with Oracle Data Pump Exports 1-25

1.10 Exporting and Importing Between Different Oracle Database Releases 1-26

1.11 Exporting and Importing Blockchain Tables with Oracle Data Pump 1-28

1.12 Managing SecureFiles Large Object Exports with Oracle Data Pump 1-29

1.13 Oracle Data Pump Process Exit Codes 1-30

1.14 How Oracle Data Pump Manages Dump File Blocks 1-30

1.14.1 Dump Files for Exports 1-31

1.14.2 Trailer Block File Layout in Dump Files 1-31

1.14.3 Header Block File Layout in Dump Files 1-33

1.14.4 Types of Dump File Trailer Blocks 1-34

1.15 How to Monitor Oracle Data Pump Jobs with Unified Auditing 1-34

1.16 Encrypted Data Security Warnings for Oracle Data Pump Operations 1-35

1.17 How Does Oracle Data Pump Handle Timestamp Data? 1-35

1.17.1 TIMESTAMP WITH TIMEZONE Restrictions 1-36

1.17.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions 1-36

1.17.1.2 Oracle Data Pump Support for TIMESTAMP WITH TIME ZONE Data 1-36

1.17.1.3 Time Zone File Versions on the Source and Target 1-37

1.17.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions 1-38

1.18 Character Set and Globalization Support Considerations 1-38

1.18.1 Data Definition Language (DDL) 1-38

1.18.2 Single-Byte Character Sets and Export and Import 1-39

1.18.3 Multibyte Character Sets and Export and Import 1-39

1.19 Oracle Data Pump Behavior with Data-Bound Collation 1-40

2 Oracle Data Pump Export

2.1 What Is Oracle Data Pump Export? 2-1

2.2 Starting Oracle Data Pump Export 2-2

2.2.1 Oracle Data Pump Export Interfaces 2-2

iv

2.2.2 Oracle Data Pump Export Modes 2-3

2.2.2.1 Full Export Mode 2-3

2.2.2.2 Schema Mode 2-5

2.2.2.3 Table Mode 2-6

2.2.2.4 Tablespace Mode 2-6

2.2.2.5 Transportable Tablespace Mode 2-7

2.2.3 Network Considerations for Oracle Data Pump Export 2-8

2.3 Filtering During Export Operations 2-9

2.3.1 Oracle Data Pump Export Data Filters 2-9

2.3.2 Oracle Data Pump Metadata Filters 2-9

2.4 Parameters Available in Data Pump Export Command-Line Mode 2-10

2.4.1 About Oracle Data Pump Export Parameters 2-15

2.4.2 ABORT_STEP 2-16

2.4.3 ACCESS_METHOD 2-17

2.4.4 ATTACH 2-18

2.4.5 CHECKSUM 2-19

2.4.6 CHECKSUM_ALGORITM 2-20

2.4.7 CLUSTER 2-21

2.4.8 COMPRESSION 2-22

2.4.9 COMPRESSION_ALGORITHM 2-23

2.4.10 CONTENT 2-24

2.4.11 CREDENTIAL 2-25

2.4.12 DATA_OPTIONS 2-26

2.4.13 DIRECTORY 2-27

2.4.14 DUMPFILE 2-28

2.4.15 ENABLE_SECURE_ROLES 2-31

2.4.16 ENCRYPTION 2-31

2.4.17 ENCRYPTION_ALGORITHM 2-33

2.4.18 ENCRYPTION_MODE 2-34

2.4.19 ENCRYPTION_PASSWORD 2-35

2.4.20 ENCRYPTION_PWD_PROMPT 2-37

2.4.21 ESTIMATE 2-38

2.4.22 ESTIMATE_ONLY 2-39

2.4.23 EXCLUDE 2-40

2.4.24 FILESIZE 2-42

2.4.25 FLASHBACK_SCN 2-43

2.4.26 FLASHBACK_TIME 2-44

2.4.27 FULL 2-45

2.4.28 HELP 2-47

2.4.29 INCLUDE 2-47

2.4.30 JOB_NAME 2-49

v

2.4.31 KEEP_MASTER 2-50

2.4.32 LOGFILE 2-50

2.4.33 LOGTIME 2-52

2.4.34 METRICS 2-53

2.4.35 NETWORK_LINK 2-54

2.4.36 NOLOGFILE 2-56

2.4.37 PARALLEL 2-56

2.4.38 PARALLEL_THRESHOLD 2-58

2.4.39 PARFILE 2-59

2.4.40 QUERY 2-60

2.4.41 REMAP_DATA 2-62

2.4.42 REUSE_DUMPFILES 2-64

2.4.43 SAMPLE 2-64

2.4.44 SCHEMAS 2-65

2.4.45 SERVICE_NAME 2-66

2.4.46 SOURCE_EDITION 2-67

2.4.47 STATUS 2-68

2.4.48 TABLES 2-69

2.4.49 TABLESPACES 2-71

2.4.50 TRANSPORT_DATAFILES_LOG 2-72

2.4.51 TRANSPORT_FULL_CHECK 2-74

2.4.52 TRANSPORT_TABLESPACES 2-75

2.4.53 TRANSPORTABLE 2-76

2.4.54 TTS_CLOSURE_CHECK 2-78

2.4.55 VERSION 2-79

2.4.56 VIEWS_AS_TABLES 2-80

2.5 Commands Available in Data Pump Export Interactive-Command Mode 2-82

2.5.1 About Oracle Data Pump Export Interactive Command Mode 2-83

2.5.2 ADD_FILE 2-84

2.5.3 CONTINUE_CLIENT 2-84

2.5.4 EXIT_CLIENT 2-85

2.5.5 FILESIZE 2-85

2.5.6 HELP 2-86

2.5.7 KILL_JOB 2-86

2.5.8 PARALLEL 2-87

2.5.9 START_JOB 2-88

2.5.10 STATUS 2-88

2.5.11 STOP_JOB 2-89

2.6 Examples of Using Oracle Data Pump Export 2-89

2.6.1 Performing a Table-Mode Export 2-90

2.6.2 Data-Only Unload of Selected Tables and Rows 2-90

vi

2.6.3 Estimating Disk Space Needed in a Table-Mode Export 2-90

2.6.4 Performing a Schema-Mode Export 2-91

2.6.5 Performing a Parallel Full Database Export 2-91

2.6.6 Using Interactive Mode to Stop and Reattach to a Job 2-91

2.7 Syntax Diagrams for Oracle Data Pump Export 2-92

3 Oracle Data Pump Import

3.1 What Is Oracle Data Pump Import? 3-1

3.2 Starting Oracle Data Pump Import 3-1

3.2.1 Oracle Data Pump Import Interfaces 3-2

3.2.2 Oracle Data Pump Import Modes 3-3

3.2.2.1 About Oracle Data Pump Import Modes 3-3

3.2.2.2 Full Import Mode 3-4

3.2.2.3 Schema Mode 3-5

3.2.2.4 Table Mode 3-5

3.2.2.5 Tablespace Mode 3-5

3.2.2.6 Transportable Tablespace Mode 3-6

3.2.3 Network Considerations for Oracle Data Pump Import 3-6

3.3 Filtering During Import Operations 3-7

3.3.1 Oracle Data Pump Import Data Filters 3-8

3.3.2 Oracle Data Pump Import Metadata Filters 3-8

3.4 Parameters Available in Oracle Data Pump Import Command-Line Mode 3-9

3.4.1 About Import Command-Line Mode 3-13

3.4.2 ABORT_STEP 3-15

3.4.3 ACCESS_METHOD 3-16

3.4.4 ATTACH 3-17

3.4.5 CLUSTER 3-18

3.4.6 CONTENT 3-19

3.4.7 CREDENTIAL 3-20

3.4.8 DATA_OPTIONS 3-22

3.4.9 DIRECTORY 3-24

3.4.10 DUMPFILE 3-25

3.4.11 ENABLE_SECURE_ROLES 3-28

3.4.12 ENCRYPTION_PASSWORD 3-29

3.4.13 ENCRYPTION_PWD_PROMPT 3-30

3.4.14 ESTIMATE 3-31

3.4.15 EXCLUDE 3-32

3.4.16 FLASHBACK_SCN 3-35

3.4.17 FLASHBACK_TIME 3-36

3.4.18 FULL 3-37

vii

3.4.19 HELP 3-38

3.4.20 INCLUDE 3-39

3.4.21 JOB_NAME 3-41

3.4.22 KEEP_MASTER 3-42

3.4.23 LOGFILE 3-42

3.4.24 LOGTIME 3-43

3.4.25 MASTER_ONLY 3-44

3.4.26 METRICS 3-45

3.4.27 NETWORK_LINK 3-45

3.4.28 NOLOGFILE 3-47

3.4.29 PARALLEL 3-48

3.4.30 PARALLEL_THRESHOLD 3-50

3.4.31 PARFILE 3-51

3.4.32 PARTITION_OPTIONS 3-53

3.4.33 QUERY 3-54

3.4.34 REMAP_DATA 3-56

3.4.35 REMAP_DATAFILE 3-58

3.4.36 REMAP_DIRECTORY 3-59

3.4.37 REMAP_SCHEMA 3-60

3.4.38 REMAP_TABLE 3-62

3.4.39 REMAP_TABLESPACE 3-63

3.4.40 SCHEMAS 3-64

3.4.41 SERVICE_NAME 3-65

3.4.42 SKIP_UNUSABLE_INDEXES 3-66

3.4.43 SOURCE_EDITION 3-67

3.4.44 SQLFILE 3-68

3.4.45 STATUS 3-69

3.4.46 STREAMS_CONFIGURATION 3-70

3.4.47 TABLE_EXISTS_ACTION 3-70

3.4.48 REUSE_DATAFILES 3-72

3.4.49 TABLES 3-73

3.4.50 TABLESPACES 3-75

3.4.51 TARGET_EDITION 3-76

3.4.52 TRANSFORM 3-77

3.4.53 TRANSPORT_DATAFILES 3-85

3.4.54 TRANSPORT_FULL_CHECK 3-87

3.4.55 TRANSPORT_TABLESPACES 3-88

3.4.56 TRANSPORTABLE 3-90

3.4.57 VERIFY_CHECKSUM 3-92

3.4.58 VERIFY_ONLY 3-93

3.4.59 VERSION 3-94

viii

3.4.60 VIEWS_AS_TABLES (Network Import) 3-95

3.5 Commands Available in Oracle Data Pump Import Interactive-Command Mode 3-97

3.5.1 About Oracle Data Pump Import Interactive Command Mode 3-98

3.5.2 CONTINUE_CLIENT 3-99

3.5.3 EXIT_CLIENT 3-99

3.5.4 HELP 3-100

3.5.5 KILL_JOB 3-100

3.5.6 PARALLEL 3-101

3.5.7 START_JOB 3-101

3.5.8 STATUS 3-102

3.5.9 STOP_JOB 3-103

3.6 Examples of Using Oracle Data Pump Import 3-103

3.6.1 Performing a Data-Only Table-Mode Import 3-104

3.6.2 Performing a Schema-Mode Import 3-104

3.6.3 Performing a Network-Mode Import 3-104

3.6.4 Using Wildcards in URL-Based Dumpfile Names 3-105

3.7 Syntax Diagrams for Oracle Data Pump Import 3-105

4 Oracle Data Pump Legacy Mode

4.1 Oracle Data Pump Legacy Mode Use Cases 4-1

4.2 Parameter Mappings 4-2

4.2.1 Using Original Export Parameters with Oracle Data Pump 4-2

4.2.2 Using Original Import Parameters with Oracle Data Pump 4-6

4.3 Management of File Locations in Oracle Data Pump Legacy Mode 4-10

4.4 Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors 4-12

4.4.1 Log Files 4-13

4.4.2 Error Cases 4-13

4.4.3 Exit Status 4-13

5 Oracle Data Pump Performance

5.1 Data Performance Improvements for Oracle Data Pump Export and Import 5-1

5.2 Tuning Performance 5-2

5.2.1 How To Manage Oracle Data Pump Resource Consumption 5-2

5.2.2 Effect of Compression and Encryption on Performance 5-3

5.2.3 Memory Considerations When Exporting and Importing Statistics 5-3

5.3 Initialization Parameters That Affect Oracle Data Pump Performance 5-3

5.3.1 Performance Guidelines for Oracle Data Pump Parameters 5-4

5.3.2 Setting the Size Of the Buffer Cache In a GoldenGate Replication Environment 5-4

ix

5.3.3 Managing Resource Usage for Multiple User Oracle Data Pump Jobs 5-4

6 Using the Oracle Data Pump API

6.1 How Does the Oracle Data Pump Client Interface API Work? 6-1

6.2 DBMS_DATAPUMP Job States 6-1

6.3 What Are the Basic Steps in Using the Oracle Data Pump API? 6-4

6.4 Examples of Using the Oracle Data Pump API 6-4

6.4.1 Using the Oracle Data Pump API Examples with Your Database 6-5

6.4.2 Performing a Simple Schema Export with Oracle Data Pump 6-5

6.4.3 Performing a Table Mode Export to Object Store with Oracle Data Pump 6-7

6.4.4 Importing a Dump File and Remapping All Schema Objects 6-11

6.4.5 Importing a Table to an Object Store Using Oracle Data Pump 6-13

6.4.6 Using Exception Handling During a Simple Schema Export 6-17

6.4.7 Displaying Dump File Information for Oracle Data Pump Jobs 6-20

Part II SQL*Loader

7 Understanding How to Use SQL*Loader

7.1 SQL*Loader Features 7-2

7.2 SQL*Loader Parameters 7-3

7.3 SQL*Loader Control File 7-4

7.4 Input Data and Data Fields in SQL*Loader 7-4

7.4.1 How SQL*Loader Reads Input Data and Data Files 7-5

7.4.2 Fixed Record Format 7-5

7.4.3 Variable Record Format and SQL*Loader 7-6

7.4.4 Stream Record Format and SQL*Loader 7-7

7.4.5 Logical Records and SQL*Loader 7-8

7.4.6 Data Field Setting and SQL*Loader 7-9

7.5 LOBFILEs and Secondary Data Files (SDFs) 7-9

7.6 Data Conversion and Data Type Specification 7-10

7.7 SQL*Loader Discarded and Rejected Records 7-11

7.7.1 The SQL*Loader Bad File 7-11

7.7.1.1 Records Rejected by SQL*Loader 7-11

7.7.1.2 Records Rejected by Oracle Database During a SQL*Loader Operation 7-11

7.7.2 The SQL*Loader Discard File 7-12

7.8 Log File and Logging Information 7-12

7.9 Conventional Path Loads, Direct Path Loads, and External Table Loads 7-12

7.9.1 Conventional Path Loads 7-13

7.9.2 Direct Path Loads 7-13

x

7.9.3 Parallel Direct Path 7-13

7.9.4 External Table Loads 7-14

7.9.5 Choosing External Tables Versus SQL*Loader 7-14

7.9.6 Behavior Differences Between SQL*Loader and External Tables 7-15

7.9.6.1 Multiple Primary Input Data Files 7-15

7.9.6.2 Syntax and Data Types 7-16

7.9.6.3 Byte-Order Marks 7-16

7.9.6.4 Default Character Sets, Date Masks, and Decimal Separator 7-16

7.9.6.5 Use of the Backslash Escape Character 7-17

7.9.7 Loading Tables Using Data Stored into Object Storage 7-17

7.10 Loading Objects, Collections, and LOBs with SQL*Loader 7-19

7.10.1 Supported Object Types 7-19

7.10.1.1 column objects 7-19

7.10.1.2 row objects 7-19

7.10.2 Supported Collection Types 7-20

7.10.2.1 Nested Tables 7-20

7.10.2.2 VARRAYs 7-20

7.10.3 SODA Collections and SQL*Loader 7-20

7.10.4 Supported LOB Data Types 7-21

7.11 Partitioned Object Support in SQL*Loader 7-22

7.12 Application Development: Direct Path Load API 7-22

7.13 SQL*Loader Case Studies 7-22

7.13.1 How to Access and Use the Oracle SQL*Loader Case Studies 7-23

7.13.2 Case Study Files 7-24

7.13.3 Running the Case Studies 7-24

7.13.4 Case Study Log Files 7-25

7.13.5 Checking the Results of a Case Study 7-25

8 SQL*Loader Command-Line Reference

8.1 Starting SQL*Loader 8-1

8.1.1 Specifying Parameters on the Command Line 8-1

8.1.2 Alternative Ways to Specify SQL*Loader Parameters 8-2

8.1.3 Using SQL*Loader to Load Data Across a Network 8-3

8.2 Command-Line Parameters for SQL*Loader 8-3

8.2.1 BAD 8-7

8.2.2 BINDSIZE 8-8

8.2.3 COLUMNARRAYROWS 8-9

8.2.4 COMPRESS_STREAM 8-10

8.2.5 CONTROL 8-10

8.2.6 CREDENTIAL 8-11

xi

8.2.7 DATA 8-13

8.2.8 DATE_CACHE 8-15

8.2.9 DEFAULTS 8-16

8.2.10 DEGREE_OF_PARALLELISM 8-17

8.2.11 DIRECT 8-18

8.2.12 DIRECT_PATH_LOCK_WAIT 8-19

8.2.13 DISCARD 8-19

8.2.14 DISCARDMAX 8-21

8.2.15 DNFS_ENABLE 8-21

8.2.16 DNFS_READBUFFERS 8-22

8.2.17 EMPTY_LOBS_ARE_NULL 8-23

8.2.18 ERRORS 8-24

8.2.19 EXTERNAL_TABLE 8-25

8.2.20 FILE 8-27

8.2.21 GRANULE_SIZE 8-28

8.2.22 GSM_HOST 8-28

8.2.23 GSM_NAME 8-29

8.2.24 GSM_PORT 8-30

8.2.25 HELP 8-30

8.2.26 LOAD 8-31

8.2.27 LOAD_SHARDS 8-31

8.2.28 LOG 8-32

8.2.29 MULTITHREADING 8-33

8.2.30 NO_INDEX_ERRORS 8-34

8.2.31 OPTIMIZE PARALLEL 8-34

8.2.32 PARALLEL 8-35

8.2.33 PARFILE 8-36

8.2.34 PARTITION_MEMORY 8-36

8.2.35 READER_COUNT 8-37

8.2.36 READSIZE 8-38

8.2.37 RESUMABLE 8-39

8.2.38 RESUMABLE_NAME 8-40

8.2.39 RESUMABLE_TIMEOUT 8-40

8.2.40 ROWS 8-41

8.2.41 SDF_PREFIX 8-42

8.2.42 SILENT 8-43

8.2.43 SKIP 8-44

8.2.44 SKIP_INDEX_MAINTENANCE 8-45

8.2.45 SKIP_UNUSABLE_INDEXES 8-46

8.2.46 STREAMSIZE 8-47

8.2.47 TRIM 8-48

xii

8.2.48 USERID 8-49

8.3 Exit Codes for Inspection and Display 8-50

9 SQL*Loader Control File Reference

9.1 Control File Contents 9-2

9.2 Comments in the Control File 9-4

9.3 Specifying Command-Line Parameters in the Control File 9-4

9.3.1 OPTIONS Clause for Schema Data 9-5

9.3.2 OPTIONS Clause for SODA Collections 9-6

9.3.3 Specifying the Number of Default Expressions to Be Evaluated At One Time 9-7

9.4 Specifying File Names and Object Names 9-7

9.4.1 File Names That Conflict with SQL and SQL*Loader Reserved Words 9-7

9.4.2 Specifying SQL Strings in the SQL*Loader Control File 9-7

9.4.3 Operating Systems and SQL Loader Control File Characters 9-8

9.4.3.1 Specifying a Complete Path 9-8

9.4.3.2 Backslash Escape Character 9-8

9.4.3.3 Nonportable Strings 9-9

9.4.3.4 Using the Backslash as an Escape Character 9-9

9.4.3.5 Escape Character Is Sometimes Disallowed 9-9

9.5 Identifying XMLType Tables 9-10

9.6 Specifying Field Order 9-12

9.7 Specifying Data Files 9-13

9.7.1 Understanding How to Specify Data Files 9-13

9.7.2 Examples of INFILE Syntax 9-14

9.7.3 Specifying Multiple Data Files 9-15

9.8 Specifying CSV Format Files 9-15

9.9 Loading VECTOR Columns from Character Data and fvec Format Files 9-16

9.10 Identifying Data in the Control File with BEGINDATA 9-18

9.11 Specifying Data File Format and Buffering 9-19

9.12 Specifying the Bad File 9-19

9.12.1 Understanding and Specifying the Bad File 9-20

9.12.2 Examples of Specifying a Bad File Name 9-21

9.12.3 How Bad Files Are Handled with LOBFILEs and SDFs 9-21

9.12.4 Criteria for Rejected Records 9-21

9.13 Specifying the Discard File 9-22

9.13.1 Understanding and Specifying the Discard File 9-22

9.13.2 Specifying the Discard File in the Control File 9-23

9.13.3 Limiting the Number of Discard Records 9-24

9.13.4 Examples of Specifying a Discard File Name 9-24

9.13.5 Criteria for Discarded Records 9-24

xiii

9.13.6 How Discard Files Are Handled with LOBFILEs and SDFs 9-25

9.13.7 Specifying the Discard File from the Command Line 9-25

9.14 Specifying a NULLIF Clause At the Table Level 9-25

9.15 Specifying Datetime Formats At the Table Level 9-26

9.16 Handling Different Character Encoding Schemes 9-26

9.16.1 Multibyte (Asian) Character Sets 9-27

9.16.2 Unicode Character Sets 9-27

9.16.3 Database Character Sets 9-28

9.16.4 Data File Character Sets 9-29

9.16.5 Input Character Conversion with SQL*Loader 9-29

9.16.5.1 Options for Converting Character Sets Using SQL*Loader 9-29

9.16.5.2 Considerations When Loading Data into VARRAYs or Primary-Key-
Based REFs 9-30

9.16.5.3 CHARACTERSET Parameter 9-31

9.16.5.4 Control File Character Set 9-32

9.16.5.5 Character-Length Semantics 9-33

9.16.6 Shift-sensitive Character Data 9-34

9.17 Interrupted SQL*Loader Loads 9-34

9.17.1 Understanding Causes of Interrupted SQL*Loader Loads 9-35

9.17.2 Discontinued Conventional Path Loads 9-35

9.17.3 Discontinued Direct Path Loads 9-35

9.17.3.1 Load Discontinued Because of Space Errors 9-36

9.17.3.2 Load Discontinued Because Maximum Number of Errors Exceeded 9-36

9.17.3.3 Load Discontinued Because of Irrecoverable Errors 9-37

9.17.3.4 Load Discontinued Because a Ctrl+C Was Issued 9-37

9.17.4 Status of Tables and Indexes After an Interrupted Load 9-37

9.17.5 Using the Log File to Determine Load Status 9-37

9.17.6 Continuing Single-Table Loads 9-37

9.18 Assembling Logical Records from Physical Records 9-38

9.18.1 Using CONCATENATE to Assemble Logical Records 9-38

9.18.2 Using CONTINUEIF to Assemble Logical Records 9-39

9.19 Loading Logical Records into Tables 9-42

9.19.1 Specifying Table Names 9-43

9.19.2 INTO TABLE Clause 9-43

9.19.3 Table-Specific Loading Method 9-44

9.19.4 Loading Data into Empty Tables with INSERT 9-44

9.19.5 Loading Data into Nonempty Tables 9-45

9.19.5.1 Options for Loading Data Into Nonempty Tables 9-45

9.19.5.2 APPEND 9-46

9.19.5.3 APPEND_PARALLEL 9-46

9.19.5.4 REPLACE 9-46

xiv

9.19.5.5 Updating Existing Rows with REPLACE 9-47

9.19.5.6 TRUNCATE 9-47

9.19.6 Table-Specific OPTIONS Parameter 9-47

9.19.7 Loading Records Based on a Condition 9-47

9.19.8 Using the WHEN Clause with LOBFILEs and SDFs 9-48

9.19.9 Specifying Default Data Delimiters 9-48

9.19.9.1 fields_spec 9-49

9.19.9.2 termination_spec 9-49

9.19.9.3 enclosure_spec 9-49

9.19.10 Handling Records with Missing Specified Fields 9-50

9.19.10.1 SQL*Loader Management of Short Records with Missing Data 9-50

9.19.10.2 TRAILING NULLCOLS Clause 9-51

9.20 Index Options with SQL*Loader 9-51

9.20.1 Understanding the SORTED INDEXES Parameter 9-52

9.20.2 Understanding the SINGLEROW Parameter 9-52

9.21 Benefits of Using Multiple INTO TABLE Clauses 9-52

9.21.1 Understanding the SQL*Loader INTO TABLE Clause 9-53

9.21.2 Distinguishing Different Input Record Formats 9-54

9.21.3 Relative Positioning Based on the POSITION Parameter 9-54

9.21.4 Distinguishing Different Input Row Object Subtypes 9-55

9.21.5 Loading Data into Multiple Tables 9-56

9.21.6 Summary of Using Multiple INTO TABLE Clauses 9-56

9.21.7 Extracting Multiple Logical Records 9-57

9.21.7.1 Example of Extracting Multiple Logical Records From a Physical Record 9-57

9.21.7.2 Example of Relative Positioning Based on Delimiters 9-57

9.22 Bind Arrays and Conventional Path Loads 9-58

9.22.1 Differences Between Bind Arrays and Conventional Path Loads 9-59

9.22.2 Size Requirements for Bind Arrays 9-59

9.22.3 Performance Implications of Bind Arrays 9-59

9.22.4 Specifying Number of Rows Versus Size of Bind Array 9-60

9.22.5 Setting Up SQL*Loader Bind Arrays 9-60

9.22.5.1 Calculations to Determine Bind Array Size 9-61

9.22.5.2 Determining the Size of the Length Indicator 9-62

9.22.5.3 Calculating the Size of Field Buffers 9-63

9.22.6 Minimizing Memory Requirements for Bind Arrays 9-64

9.22.7 Calculating Bind Array Size for Multiple INTO TABLE Clauses 9-65

10

SQL*Loader Field List Reference

10.1 Field List Contents 10-2

10.2 Specifying the Position of a Data Field. 10-3

xv

10.2.1 POSITION 10-3

10.2.2 Using POSITION with Data Containing Tabs 10-4

10.2.3 Using POSITION with Multiple Table Loads 10-4

10.2.4 Examples of Using POSITION in SQL*Loader Specifications 10-5

10.3 Specifying Columns and Fields 10-5

10.3.1 Options for Column and Field Specification 10-6

10.3.2 Specifying Filler Fields 10-6

10.3.3 Specifying the Data Type of a Data Field 10-8

10.4 SQL*Loader Data Types 10-8

10.4.1 Portable and Nonportable Data Type Differences 10-9

10.4.2 Nonportable Data Types 10-9

10.4.2.1 Categories of Nonportable Data Types 10-10

10.4.2.2 INTEGER(n) 10-11

10.4.2.3 SMALLINT 10-11

10.4.2.4 FLOAT 10-12

10.4.2.5 DOUBLE 10-13

10.4.2.6 BYTEINT 10-13

10.4.2.7 ZONED 10-13

10.4.2.8 DECIMAL 10-14

10.4.2.9 VARGRAPHIC 10-15

10.4.2.10 VARCHAR 10-16

10.4.2.11 VARRAW 10-17

10.4.2.12 LONG VARRAW 10-18

10.4.3 Portable Data Types 10-18

10.4.3.1 Categories of Portable Data Types 10-19

10.4.3.2 CHAR 10-20

10.4.3.3 Datetime and Interval 10-21

10.4.3.4 GRAPHIC 10-25

10.4.3.5 GRAPHIC EXTERNAL 10-26

10.4.3.6 Numeric EXTERNAL 10-27

10.4.3.7 RAW 10-28

10.4.3.8 VARCHARC 10-28

10.4.3.9 VARRAWC 10-29

10.4.3.10 Conflicting Native Data Type Field Lengths 10-30

10.4.3.11 Field Lengths for Length-Value Data Types 10-31

10.4.4 SODA Collection Data Types 10-31

10.4.4.1 RAW(*) 10-32

10.4.4.2 CONTENTFILE(soda_filename) 10-33

10.4.5 Data Type Conversions 10-36

10.4.6 Data Type Conversions for Datetime and Interval Data Types 10-37

10.4.7 Specifying Delimiters 10-38

xvi

10.4.7.1 Syntax for Termination and Enclosure Specification 10-38

10.4.7.2 Delimiter Marks in the Data 10-40

10.4.7.3 Maximum Length of Delimited Data 10-40

10.4.7.4 Loading Trailing Blanks with Delimiters 10-41

10.4.8 How Delimited Data Is Processed 10-41

10.4.8.1 Fields Using Only TERMINATED BY 10-41

10.4.8.2 Fields Using ENCLOSED BY Without TERMINATED BY 10-42

10.4.8.3 Fields Using ENCLOSED BY With TERMINATED BY 10-42

10.4.8.4 Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY 10-43

10.4.9 Conflicting Field Lengths for Character Data Types 10-44

10.4.9.1 Predetermined Size Fields 10-44

10.4.9.2 Delimited Fields 10-45

10.4.9.3 Date Field Masks 10-45

10.5 Specifying Field Conditions 10-46

10.5.1 Comparing Fields to BLANKS 10-46

10.5.2 Comparing Fields to Literals 10-46

10.6 Using the WHEN, NULLIF, and DEFAULTIF Clauses 10-47

10.7 Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses 10-49

10.8 Loading Data Across Different Platforms 10-50

10.9 Understanding how SQL*Loader Manages Byte Ordering 10-51

10.9.1 Byte Order Syntax 10-52

10.9.2 Using Byte Order Marks (BOMs) 10-53

10.9.2.1 Suppressing Checks for BOMs 10-54

10.10 Loading All-Blank Fields 10-55

10.11 Trimming Whitespace 10-56

10.11.1 Data Types for Which Whitespace Can Be Trimmed 10-58

10.11.2 Specifying Field Length for Data Types for Which Whitespace Can Be
Trimmed 10-58

10.11.2.1 Predetermined Size Fields 10-58

10.11.2.2 Delimited Fields 10-59

10.11.3 Relative Positioning of Fields 10-59

10.11.3.1 No Start Position Specified for a Field 10-59

10.11.3.2 Previous Field Terminated by a Delimiter 10-60

10.11.3.3 Previous Field Has Both Enclosure and Termination Delimiters 10-60

10.11.4 Leading Whitespace 10-60

10.11.4.1 Previous Field Terminated by Whitespace 10-61

10.11.4.2 Optional Enclosure Delimiters 10-61

10.11.5 Trimming Trailing Whitespace 10-62

10.11.6 Trimming Enclosed Fields 10-62

10.12 How the PRESERVE BLANKS Option Affects Whitespace Trimming 10-62

10.13 How [NO] PRESERVE BLANKS Works with Delimiter Clauses 10-62

xvii

10.14 Applying SQL Operators to Fields 10-63

10.14.1 Referencing Fields 10-65

10.14.2 Common Uses of SQL Operators in Field Specifications 10-67

10.14.3 Combinations of SQL Operators 10-67

10.14.4 Using SQL Strings with a Date Mask 10-67

10.14.5 Interpreting Formatted Fields 10-68

10.14.6 Using SQL Strings to Load the ANYDATA Database Type 10-68

10.15 Using SQL*Loader to Generate Data for Input 10-69

10.15.1 Loading Data Without Files 10-69

10.15.2 CONSTANT Parameter 10-70

10.15.3 EXPRESSION Parameter 10-70

10.15.4 RECNUM Parameter 10-71

10.15.5 SYSDATE Parameter 10-71

10.15.6 SEQUENCE Parameter 10-72

10.15.7 Generating Sequence Numbers for Multiple Tables 10-73

11

Loading Objects, LOBs, and Collections with SQL*Loader

11.1 Loading Column Objects 11-1

11.1.1 Understanding Column Object Attributes 11-2

11.1.2 Loading Column Objects in Stream Record Format 11-2

11.1.3 Loading Column Objects in Variable Record Format 11-3

11.1.4 Loading Nested Column Objects 11-4

11.1.5 Loading Column Objects with a Derived Subtype 11-5

11.1.6 Specifying Null Values for Objects 11-6

11.1.6.1 Specifying Attribute Nulls 11-6

11.1.6.2 Specifying Atomic Nulls 11-7

11.1.7 Loading Column Objects with User-Defined Constructors 11-8

11.2 Loading Object Tables with SQL*Loader 11-11

11.2.1 Examples of Loading Object Tables with SQL*Loader 11-11

11.2.2 Loading Object Tables with Subtypes 11-13

11.3 Loading REF Columns with SQL*Loader 11-14

11.3.1 Specifying Table Names in a REF Clause 11-15

11.3.2 System-Generated OID REF Columns 11-15

11.3.3 Primary Key REF Columns 11-16

11.3.4 Unscoped REF Columns That Allow Primary Keys 11-17

11.4 Loading LOBs with SQL*Loader 11-18

11.4.1 Overview of Loading LOBs with SQL*Loader 11-19

11.4.2 Options for Using SQL*Loader to Load LOBs 11-20

11.4.3 Loading LOB Data from a Primary Data File 11-21

11.4.3.1 LOB Data in Predetermined Size Fields 11-22

xviii

11.4.3.2 LOB Data in Delimited Fields 11-23

11.4.3.3 LOB Data in Length-Value Pair Fields 11-24

11.4.4 Loading LOB Data from LOBFILEs 11-25

11.4.4.1 Overview of Loading LOB Data from LOBFILEs 11-25

11.4.4.2 Dynamic Versus Static LOBFILE Specifications 11-26

11.4.4.3 Examples of Loading LOB Data from LOBFILEs 11-26

11.4.4.4 Considerations When Loading LOBs from LOBFILEs 11-31

11.4.5 Loading Data Files that Contain LLS Fields 11-32

11.5 Loading BFILE Columns with SQL*Loader 11-33

11.6 Loading Collections (Nested Tables and VARRAYs) 11-34

11.6.1 Overview of Loading Collections (Nested Tables and VARRAYS) 11-35

11.6.2 Restrictions in Nested Tables and VARRAYs 11-36

11.6.3 Secondary Data Files (SDFs) 11-37

11.7 Choosing Dynamic or Static SDF Specifications 11-38

11.8 Loading a Parent Table Separately from Its Child Table 11-38

11.8.1 Memory Issues When Loading VARRAY Columns 11-39

11.9 Loading Modes and Options for SODA Collections 11-40

11.9.1 SQL*Loader and SODA_COLLECTION 11-41

11.9.2 Loading Empty SODA Collections Using INSERT 11-42

11.9.3 Loading Empty SODA Collections Using APPEND 11-42

11.9.4 Loading Empty SODA Collections Using REPLACE and TRUNCATE 11-42

11.9.5 Permitted SQL*Loader Command-Line Parameters for SODA Collections 11-43

11.9.6 Examples of Loading SODA Collections 11-44

11.9.6.1 Creating and Loading a Small SODA Collection 11-44

12

Conventional and Direct Path Loads

12.1 Data Loading Methods 12-2

12.2 Loading ROWID Columns 12-2

12.3 Conventional Path Loads 12-2

12.3.1 Conventional Path Load 12-3

12.3.2 When to Use a Conventional Path Load 12-3

12.3.3 Conventional Path Load of a Single Partition 12-4

12.4 Direct Path Loads 12-4

12.4.1 About SQL*Loader Direct Path Load 12-5

12.4.2 Loading into Synonyms 12-5

12.4.3 Field Defaults on the Direct Path 12-5

12.4.4 Integrity Constraints 12-6

12.4.5 When to Use a Direct Path Load 12-6

12.4.6 Restrictions on a Direct Path Load of a Single Partition 12-6

12.4.7 Restrictions on Using Direct Path Loads 12-7

xix

12.4.8 Advantages of a Direct Path Load 12-7

12.4.9 Direct Path Load of a Single Partition or Subpartition 12-8

12.4.10 Direct Path Load of a Partitioned or Subpartitioned Table 12-9

12.4.11 Data Conversion During Direct Path Loads 12-9

12.5 Automatic Parallel Load of Table Data with SQL*Loader 12-10

12.6 Loading Modes and Options for Automatic Parallel Loads 12-12

12.6.1 Loading Modes for Automatic Parallel Loads 12-12

12.6.2 Non-Sharded Automatic Parallel Loading Modes for SQL*Loader 12-13

12.6.3 Sharded Automatic Parallel Loading Modes for SQL*Loader 12-15

12.7 Using Direct Path Load 12-21

12.7.1 Setting Up for Direct Path Loads 12-22

12.7.2 Specifying a Direct Path Load 12-22

12.7.3 Building Indexes 12-22

12.7.3.1 Improving Performance 12-23

12.7.3.2 Calculating Temporary Segment Storage Requirements 12-23

12.7.4 Indexes Left in an Unusable State 12-24

12.7.5 Preventing Data Loss with Data Saves 12-24

12.7.5.1 Using Data Saves to Protect Against Data Loss 12-25

12.7.5.2 Using the ROWS Parameter 12-25

12.7.5.3 Data Save Versus Commit 12-25

12.7.6 Data Recovery During Direct Path Loads 12-26

12.7.6.1 Media Recovery and Direct Path Loads 12-26

12.7.6.2 Instance Recovery and Direct Path Loads 12-26

12.7.7 Loading Long Data Fields 12-27

12.7.8 Loading Data As PIECED 12-27

12.7.9 Auditing SQL*Loader Operations That Use Direct Path Mode 12-28

12.8 Optimizing Performance of Manual Direct Path Loads 12-28

12.8.1 Minimizing Time and Space Required for Direct Path Loads 12-29

12.8.2 Preallocating Storage for Faster Loading 12-29

12.8.3 Presorting Data for Faster Indexing 12-29

12.8.3.1 Advantages of Presorting Data 12-30

12.8.3.2 SORTED INDEXES Clause 12-30

12.8.3.3 Unsorted Data 12-31

12.8.3.4 Multiple-Column Indexes 12-31

12.8.3.5 Choosing the Best Sort Order 12-31

12.8.4 Infrequent Data Saves 12-31

12.8.5 Minimizing Use of the Redo Log 12-32

12.8.5.1 Disabling Archiving 12-32

12.8.5.2 Specifying the SQL*Loader UNRECOVERABLE Clause 12-32

12.8.5.3 Setting the SQL NOLOGGING Parameter 12-33

12.8.6 Specifying the Number of Column Array Rows and Size of Stream Buffers 12-33

xx

12.8.7 Specifying a Value for DATE_CACHE 12-34

12.9 Optimizing Direct Path Loads on Multiple-CPU Systems 12-35

12.10 Avoiding Index Maintenance 12-36

12.11 Direct Path Loads, Integrity Constraints, and Triggers 12-37

12.11.1 Integrity Constraints 12-37

12.11.1.1 Enabled Constraints 12-37

12.11.1.2 Disabled Constraints 12-38

12.11.1.3 Reenable Constraints 12-38

12.11.2 Database Insert Triggers 12-39

12.11.2.1 Replacing Insert Triggers with Integrity Constraints 12-40

12.11.2.2 When Automatic Constraints Cannot Be Used 12-40

12.11.2.3 Preparation of Database Triggers 12-40

12.11.2.4 Using an Update Trigger 12-41

12.11.2.5 Duplicating the Effects of Exception Conditions 12-41

12.11.2.6 Using a Stored Procedure 12-41

12.11.3 Permanently Disabled Triggers and Constraints 12-42

12.11.4 Increasing Performance with Concurrent Conventional Path Loads 12-42

12.12 Optimizing Performance of Direct Path Loads 12-43

12.12.1 Restrictions on Automatic and Manual Parallel Direct Path Loads 12-43

12.12.2 About SQL*Loader Parallel Data Loading Models 12-44

12.12.3 Concurrent Conventional Path Loads 12-44

12.12.4 Intersegment Concurrency with Direct Path 12-45

12.12.5 Intrasegment Concurrency with Direct Path 12-45

12.12.6 Restrictions on Manual Parallel Direct Path Loads 12-45

12.12.7 Initiating Multiple SQL*Loader Sessions Manually 12-46

12.12.8 Parameters for Manual Parallel Direct Path Loads 12-47

12.12.8.1 Using the FILE Parameter to Specify Temporary Segments 12-47

12.12.9 Enabling Constraints After a Parallel Direct Path Load 12-48

12.12.10 PRIMARY KEY and UNIQUE KEY Constraints 12-48

12.13 General Performance Improvement Hints 12-48

13

SQL*Loader Express

13.1 What is SQL*Loader Express Mode? 13-1

13.2 Using SQL*Loader Express Mode 13-1

13.2.1 Starting SQL*Loader in Express Mode 13-2

13.2.2 Default Values Used by SQL*Loader Express Mode 13-3

13.2.3 How SQL*Loader Express Mode Handles Byte Order 13-4

13.3 SQL*Loader Express Mode Parameter Reference 13-4

13.3.1 BAD 13-6

13.3.2 CHARACTERSET 13-7

xxi

13.3.3 CSV 13-9

13.3.4 DATA 13-10

13.3.5 DATE_FORMAT 13-11

13.3.6 DEGREE_OF_PARALLELISM 13-12

13.3.7 DIRECT 13-13

13.3.8 DNFS_ENABLE 13-14

13.3.9 DNFS_READBUFFERS 13-15

13.3.10 ENCLOSED_BY 13-15

13.3.11 EXTERNAL_TABLE 13-16

13.3.12 FIELD_NAMES 13-17

13.3.13 LOAD 13-18

13.3.14 NULLIF 13-19

13.3.15 OPTIONALLY_ENCLOSED_BY 13-19

13.3.16 PARFILE 13-20

13.3.17 SILENT 13-21

13.3.18 TABLE 13-22

13.3.19 TERMINATED_BY 13-22

13.3.20 TIMESTAMP_FORMAT 13-23

13.3.21 TRIM 13-24

13.3.22 USERID 13-25

13.4 SQL*Loader Express Mode Command-Line Parameters for SODA Collections 13-25

13.5 SQL*Loader Express Mode Syntax Diagrams 13-26

Part III External Tables

14

External Tables Concepts

14.1 How Are External Tables Created? 14-1

14.2 CREATE_EXTERNAL_PART_TABLE Procedure 14-4

14.3 Location of Data Files and Output Files 14-11

14.4 Access Parameters for External Tables 14-12

14.5 Data Type Conversion During External Table Use 14-13

15

The ORACLE_LOADER Access Driver

15.1 About the ORACLE_LOADER Access Driver 15-1

15.2 access_parameters Clause 15-2

15.3 record_format_info Clause 15-4

15.3.1 Overview of record_format_info Clause 15-6

15.3.2 FIXED Length 15-8

15.3.3 VARIABLE size 15-9

xxii

15.3.4 DELIMITED BY 15-9

15.3.5 XMLTAG 15-11

15.3.6 CHARACTERSET 15-13

15.3.7 PREPROCESSOR 15-14

15.3.8 PREPROCESSOR_TIMEOUT 15-18

15.3.9 EXTERNAL VARIABLE DATA 15-20

15.3.10 LANGUAGE 15-22

15.3.11 TERRITORY 15-23

15.3.12 DATA IS...ENDIAN 15-23

15.3.13 BYTEORDERMARK [CHECK | NOCHECK] 15-24

15.3.14 STRING SIZES ARE IN 15-25

15.3.15 LOAD WHEN 15-25

15.3.16 BADFILE | NOBADFILE 15-26

15.3.17 DISCARDFILE | NODISCARDFILE 15-27

15.3.18 LOGFILE | NOLOGFILE 15-27

15.3.19 SKIP 15-28

15.3.20 FIELD NAMES 15-28

15.3.21 READSIZE 15-31

15.3.22 DATE_CACHE 15-31

15.3.23 string 15-31

15.3.24 condition_spec 15-32

15.3.25 [directory object name:] [filename] 15-33

15.3.26 condition 15-34

15.3.26.1 range start : range end 15-34

15.3.27 IO_OPTIONS clause 15-35

15.3.28 DNFS_DISABLE | DNFS_ENABLE 15-36

15.3.29 DNFS_READBUFFERS 15-36

15.4 field_definitions Clause 15-37

15.4.1 Overview of field_definitions Clause 15-38

15.4.2 delim_spec 15-42

15.4.2.1 Example: External Table with Terminating Delimiters 15-44

15.4.2.2 Example: External Table with Enclosure and Terminator Delimiters 15-44

15.4.2.3 Example: External Table with Optional Enclosure Delimiters 15-44

15.4.3 trim_spec 15-45

15.4.4 MISSING FIELD VALUES ARE NULL 15-46

15.4.5 field_list 15-47

15.4.6 pos_spec Clause 15-48

15.4.6.1 pos_spec Clause Syntax 15-49

15.4.6.2 start 15-49

15.4.6.3 * 15-49

15.4.6.4 increment 15-49

xxiii

15.4.6.5 end 15-49

15.4.6.6 length 15-50

15.4.7 datatype_spec Clause 15-50

15.4.7.1 datatype_spec Clause Syntax 15-51

15.4.7.2 [UNSIGNED] INTEGER [EXTERNAL] [(len)] 15-52

15.4.7.3 DECIMAL [EXTERNAL] and ZONED [EXTERNAL] 15-53

15.4.7.4 ORACLE_DATE 15-53

15.4.7.5 ORACLE_NUMBER 15-53

15.4.7.6 Floating-Point Numbers 15-54

15.4.7.7 DOUBLE 15-54

15.4.7.8 FLOAT [EXTERNAL] 15-54

15.4.7.9 BINARY_DOUBLE 15-54

15.4.7.10 BINARY_FLOAT 15-55

15.4.7.11 RAW 15-55

15.4.7.12 CHAR 15-55

15.4.7.13 date_format_spec 15-56

15.4.7.14 VARCHAR and VARRAW 15-58

15.4.7.15 VARCHARC and VARRAWC 15-60

15.4.8 init_spec Clause 15-61

15.4.9 LLS Clause 15-61

15.5 column_transforms Clause 15-62

15.5.1 transform 15-63

15.5.1.1 column_name FROM 15-64

15.5.1.2 NULL 15-64

15.5.1.3 CONSTANT 15-64

15.5.1.4 CONCAT 15-64

15.5.1.5 LOBFILE 15-64

15.5.1.6 lobfile_attr_list 15-65

15.5.1.7 STARTOF source_field (length) 15-65

15.6 Parallel Loading Considerations for the ORACLE_LOADER Access Driver 15-67

15.7 Performance Hints When Using the ORACLE_LOADER Access Driver 15-67

15.8 Restrictions When Using the ORACLE_LOADER Access Driver 15-68

15.9 Reserved Words for the ORACLE_LOADER Access Driver 15-69

16

The ORACLE_DATAPUMP Access Driver

16.1 Using the ORACLE_DATAPUMP Access Driver 16-1

16.2 access_parameters Clause 16-2

16.2.1 Comments 16-4

16.2.2 ENCRYPTION 16-4

16.2.3 LOGFILE | NOLOGFILE 16-4

xxiv

16.2.3.1 Log File Naming in Parallel Loads 16-5

16.2.4 COMPRESSION 16-6

16.2.5 VERSION Clause 16-7

16.2.6 HADOOP_TRAILERS Clause 16-7

16.2.7 Effects of Using the SQL ENCRYPT Clause 16-7

16.3 Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver 16-8

16.3.1 Parallel Loading and Unloading 16-11

16.3.2 Combining Dump Files 16-11

16.4 Supported Data Types 16-12

16.5 Unsupported Data Types 16-13

16.5.1 Unloading and Loading BFILE Data Types 16-14

16.5.2 Unloading LONG and LONG RAW Data Types 16-16

16.5.3 Unloading and Loading Columns Containing Final Object Types 16-18

16.5.4 Tables of Final Object Types 16-18

16.6 Performance Hints When Using the ORACLE_DATAPUMP Access Driver 16-20

16.7 Restrictions When Using the ORACLE_DATAPUMP Access Driver 16-20

16.8 Reserved Words for the ORACLE_DATAPUMP Access Driver 16-21

17

ORACLE_HDFS and ORACLE_HIVE Access Drivers

17.1 Syntax Rules for Specifying Properties 17-1

17.2 ORACLE_HDFS Access Parameters 17-2

17.2.1 Default Parameter Settings for ORACLE_HDFS 17-3

17.2.2 Optional Parameter Settings for ORACLE_HDFS 17-3

17.3 ORACLE_HIVE Access Parameters 17-4

17.3.1 Default Parameter Settings for ORACLE_HIVE 17-4

17.3.2 Optional Parameter Settings for ORACLE_HIVE 17-4

17.4 Descriptions of com.oracle.bigdata Parameters 17-5

17.4.1 com.oracle.bigdata.colmap 17-5

17.4.2 com.oracle.bigdata.datamode 17-6

17.4.3 com.oracle.bigdata.erroropt 17-7

17.4.4 com.oracle.bigdata.fields 17-8

17.4.5 com.oracle.bigdata.fileformat 17-10

17.4.6 com.oracle.bigdata.log.exec 17-11

17.4.7 com.oracle.bigdata.log.qc 17-12

17.4.8 com.oracle.bigdata.overflow 17-13

17.4.9 com.oracle.bigdata.rowformat 17-14

17.4.10 com.oracle.bigdata.tablename 17-16

xxv

18

ORACLE_BIGDATA Access Driver

18.1 Using the ORACLE_BIGDATA Access Driver 18-1

18.2 How to Create a Credential for Object Stores 18-1

18.2.1 Creating the Credential Object with
DBMS_CREDENTIAL.CREATE_CREDENTIAL 18-2

18.2.2 Creating the Credential Object with DBMS_CLOUD.CREATE_CREDENTIAL 18-3

18.2.3 How to Define the Location Clause for Object Storage 18-4

18.2.4 Understanding ORACLE_BIGDATA Access Parameters 18-5

18.3 Object Store Access Parameters 18-5

18.3.1 Syntax Rules for Specifying Properties 18-6

18.3.2 com.oracle.bigdata.fileformat 18-7

18.3.3 ORACLE_BIGDATA Access Parameters 18-8

18.3.4 GATHER_EXTERNAL_TABLE_STATS 18-19

19

External Tables Examples

19.1 Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables 19-1

19.2 Using the ORACLE_LOADER Access Driver to Create Partitioned Hybrid Tables 19-4

19.3 Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External
Tables 19-5

19.4 Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables 19-9

19.5 Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables 19-11

19.6 Using the ORA_PARTITION_VALIDATION Function to Validate Partitioned External
Tables 19-16

19.7 Using SQL*Loader for External Tables with Partition Values in File Paths 19-17

19.8 Loading LOBs with External Tables 19-17

19.8.1 Overview of LOBs and External Tables 19-18

19.8.2 Loading LOBs From External Tables with ORACLE_LOADER Access Driver 19-20

19.8.2.1 Loading LOBs from Primary Data Files 19-20

19.8.2.2 Loading LOBs from LOBFILE Files 19-21

19.8.2.3 Loading LOBs from LOB Location Specifiers 19-23

19.8.3 Loading LOBs with ORACLE_DATAPUMP Access Driver 19-25

19.9 Loading CSV Files From External Tables 19-26

Part IV Other Utilities

20

Cloud Premigration Advisor Tool

20.2 Prerequisites for Using the Cloud Premigration Advisor Tool 20-2

20.3 Downloading and Configuring Cloud Premigration Advisor Tool 20-3

20.4 Getting Started with the Cloud Premigration Advisor Tool (CPAT) 20-4

xxvi

20.5 Connection Strings for Cloud Premigration Advisor Tool 20-5

20.6 Required Command-Line Strings for Cloud Premigration Advisor Tool 20-7

20.7 FULL Mode and SCHEMA Mode 20-8

20.8 Interpreting Cloud Premigration Advisor Tool (CPAT) Report Data 20-9

20.12 Best Practices for Using the Premigration Advisor Tool 20-10

20.12.1 Generate Properties File on the Target Database Instance 20-10

20.12.2 Focus the CPAT Analysis 20-11

20.12.3 Reduce the Amount of Data in Reports 20-12

20.12.4 Generate the JSON Report and Save Logs 20-12

20.12.5 Use Output Prefixes to Record Different Migration Scenarios 20-12

20.1 What is the Cloud Premigration Advisor Tool 20-13

20.9 Command-Line Syntax and Properties 20-14

20.9.1 Premigration Advisor Tool Command-Line Syntax 20-15

20.9.2 Premigration Advisor Tool Command-Line Properties 20-16

20.9.2.1 analysisprops 20-17

20.9.2.2 connectstring 20-18

20.9.2.3 excludeschemas 20-19

20.9.2.4 full 20-19

20.9.2.5 gettargetprops 20-20

20.9.2.6 help 20-21

20.9.2.7 logginglevel 20-21

20.9.2.8 maxrelevantobjects 20-22

20.9.2.9 maxtextdatarows 20-23

20.9.2.10 migrationmethod 20-23

20.9.2.11 outdir 20-24

20.9.2.12 outfileprefix 20-25

20.9.2.13 pdbname 20-25

20.9.2.14 reportformat 20-26

20.9.2.15 schemas 20-27

20.9.2.16 sqltext 20-28

20.9.2.17 sysdba 20-29

20.9.2.18 targetcloud 20-29

20.9.2.19 username 20-30

20.9.2.20 version 20-30

20.9.2.21 updatecheck 20-31

20.10 Premigration Advisor Tool Log File Structure 20-32

20.11 List of Checks Performed By the Premigration Advisor Tool 20-35

20.11.1 dp_has_low_streams_pool_size 20-41

20.11.2 gg_enabled_replication 20-42

20.11.3 gg_force_logging 20-43

20.11.4 gg_has_low_streams_pool_size 20-44

xxvii

20.11.5 gg_not_unique_bad_col_no 20-45

20.11.6 gg_not_unique_bad_col_yes 20-46

20.11.7 gg_objects_not_supported 20-47

20.11.8 gg_supplemental_log_data_min 20-48

20.11.9 gg_tables_not_supported 20-48

20.11.10 gg_tables_not_supported 20-49

20.11.11 gg_user_objects_in_ggadmin_schemas 20-50

20.11.12 has_absent_default_tablespace 20-51

20.11.13 has_absent_temp_tablespace 20-52

20.11.14 has_active_data_guard_dedicated 20-53

20.11.15 has_active_data_guard_serverless 20-53

20.11.16 has_basic_file_lobs 20-54

20.11.17 has_clustered_tables 20-55

20.11.18 has_columns_of_rowid_type 20-56

20.11.19 has_columns_with_media_data_types_adb 20-56

20.11.20 has_columns_with_media_data_types_default 20-57

20.11.21 has_columns_with_spatial_data_types 20-58

20.11.22 has_common_objects 20-59

20.11.23 has_compression_disabled_for_objects 20-60

20.11.24 has_csmig_schema 20-61

20.11.25 has_data_in_other_tablespaces_dedicated 20-62

20.11.26 has_data_in_other_tablespaces_serverless 20-63

20.11.27 has_db_link_synonyms 20-64

20.11.28 has_db_links 20-64

20.11.29 has_dbms_credentials 20-65

20.11.30 has_dbms_credentials 20-66

20.11.31 has_directories 20-67

20.11.32 has_enabled_scheduler_jobs 20-67

20.11.33 has_external_tables_dedicated 20-68

20.11.34 has_external_tables_default 20-69

20.11.35 has_external_tables_serverless 20-70

20.11.36 has_fmw_registry_in_system 20-71

20.11.37 has_illegal_characters_in_comments 20-71

20.11.38 has_ilm_ado_policies 20-72

20.11.39 has_incompatible_jobs 20-73

20.11.40 has_index_organized_tables 20-74

20.11.41 has_java_objects 20-74

20.11.42 has_java_source 20-75

20.11.43 has_libraries 20-76

20.11.44 has_logging_off_for_partitions 20-77

20.11.45 has_logging_off_for_subpartitions 20-77

xxviii

20.11.46 has_logging_off_for_tables 20-78

20.11.47 has_low_streams_pool_size 20-79

20.11.48 has_noexport_object_grants 20-80

20.11.49 has_parallel_indexes_enabled 20-80

20.11.50 has_profile_not_default 20-81

20.11.51 has_public_synonyms 20-82

20.11.52 has_refs_to_restricted_packages_dedicated 20-83

20.11.53 has_refs_to_restricted_packages_serverless 20-83

20.11.54 has_refs_to_user_objects_in_sys 20-84

20.11.55 has_role_privileges 20-85

20.11.56 has_sqlt_objects_adb 20-86

20.11.57 has_sqlt_objects_default 20-86

20.11.58 has_sys_privileges 20-87

20.11.59 has_tables_that_fail_with_dblink 20-88

20.11.60 has_tables_with_long_raw_datatype 20-89

20.11.61 has_tables_with_xmltype_column 20-90

20.11.62 has_trusted_server_entries 20-90

20.11.63 has_user_defined_objects_in_sys 20-91

20.11.64 has_users_with_10g_password_version 20-92

20.11.65 has_sys_privileges 20-93

20.11.66 has_tables_that_fail_with_dblink 20-94

20.11.67 has_tables_with_long_raw_datatype 20-95

20.11.68 has_tables_with_xmltype_column 20-96

20.11.69 has_trusted_server_entries 20-96

20.11.70 has_user_defined_objects_in_sys 20-97

20.11.71 has_users_with_10g_password_version 20-98

20.11.72 has_xmlschema_objects 20-99

20.11.73 has_xmltype_tables 20-100

20.11.74 modified_db_parameters_dedicated 20-100

20.11.75 modified_db_parameters_serverless 20-101

20.11.76 nls_character_set_conversion 20-102

20.11.77 nls_national_character_set 20-103

20.11.78 nls_nchar_ora_910 20-104

20.11.79 options_in_use_not_available_dedicated 20-105

20.11.80 options_in_use_not_available_serverless 20-105

20.11.81 standard_traditional_audit_adb 20-106

20.11.82 standard_traditional_audit_default 20-107

20.11.83 timezone_table_compatibility_higher_dedicated 20-108

20.11.84 timezone_table_compatibility_higher_default 20-109

20.11.85 timezone_table_compatibility_higher_serverless 20-109

20.11.86 unified_and_standard_traditional_audit_adb 20-110

xxix

20.11.87 unified_and_standard_traditional_audit_default 20-111

20.11.88 xdb_resource_view_has_entries Check 20-112

21

Oracle SQL Access to Kafka

21.1 About Oracle SQL Access to Kafka Version 2 21-2

21.2 Global Tables and Views for Oracle SQL Access to Kafka 21-4

21.3 Understanding how Oracle SQL Access to Kafka Queries are Performed 21-5

21.4 Streaming Kafka Data Into Oracle Database 21-5

21.5 Querying Kafka Data Records by Timestamp 21-6

21.6 About the Kafka Database Administrator Role 21-7

21.7 Enable Kafka Database Access to Users 21-8

21.8 Data Formats Supported with Oracle SQL Access to Kafka 21-9

21.8.1 JSON Format and Oracle SQL Access to Kafka 21-9

21.8.2 Delimited Text Format and Oracle SQL Access to Kafka 21-10

21.8.3 Avro Formats and Oracle SQL Access to Kafka 21-12

21.8.3.1 About Using Avro Format with Oracle SQL Access to Kafka 21-12

21.8.3.2 Primitive Avro Types Supported with Oracle SQL Access to Kafka 21-13

21.8.3.3 Complex Avro Types Supported with Oracle SQL Access to Kafka 21-14

21.8.3.4 Avro Logical Types Supported with Oracle SQL Access to Kafka 21-16

21.9 Configuring Access to a Kafka Cluster 21-19

21.9.1 Create a Cluster Access Directory 21-19

21.9.2 The Kafka Configuration File (osakafka.properties) 21-20

21.9.2.1 About the Kafka Configuration File 21-20

21.9.2.2 Oracle SQL Access for Kafka Configuration File Properties 21-22

21.9.2.3 Creating the Kafka Access Directory 21-24

21.9.3 Kafka Configuration File Properties 21-25

21.9.4 Security Configuration Files Required for the Cluster Access Directory 21-27

21.9.4.1 SASL_SSL/GSSAPI 21-28

21.9.4.2 SASL_PLAINTEXT/GSSAPI 21-28

21.9.4.3 SASL_PLAINTEXT/SCRAM-SHA-256 21-29

21.9.4.4 SASL_SSL/PLAIN 21-29

21.9.4.5 SSL with Client Authentication 21-30

21.9.4.6 SSL without Client Authentication 21-31

21.10 Creating Oracle SQL Access to Kafka Applications 21-31

21.11 Security for Kafka Cluster Connections 21-32

21.12 Configuring Access to Unsecured Kafka Clusters 21-33

21.13 Configuring Access to Secure Kafka Clusters 21-35

21.14 Administering Oracle SQL Access to Kafka Clusters 21-37

21.14.1 Updating Access to Kafka Clusters 21-37

21.14.2 Disabling or Deleting Access to Kafka Clusters 21-37

xxx

21.15 Guidelines for Using Kafka Data with Oracle SQL Access to Kafka 21-38

21.15.1 Kafka Temporary Tables and Applications 21-38

21.15.2 Sharing Kafka Data with Multiple Applications Using Streaming 21-39

21.15.3 Dropping and Recreating Kafka Tables 21-39

21.16 Choosing a Kafka Cluster Access Mode for Applications 21-40

21.16.1 Configuring Incremental Loads of Kafka Records Into an Oracle Database
Table 21-41

21.16.2 Streaming Access to Kafka Records in Oracle SQL Queries 21-41

21.16.3 Seekable access to Kafka Records in Oracle SQL queries 21-42

21.17 Creating Oracle SQL Access to Kafka Applications 21-43

21.17.1 Creating Load Applications with Oracle SQL Access to Kafka 21-43

21.17.2 Creating Streaming Applications with Oracle SQL Access to Kafka 21-45

21.17.3 Creating Seekable Applications with Oracle SQL Access to Kafka 21-47

21.18 Using Kafka Cluster Access for Applications 21-48

21.18.1 How to Diagnose Oracle SQL Access to Kafka Issues 21-49

21.18.2 Identifying and Resolving Oracle SQL Access to Kafka Issues 21-51

22

ADRCI: ADR Command Interpreter

22.1 About the ADR Command Interpreter (ADRCI) Utility 22-2

22.2 Definitions for Oracle Database ADRC 22-2

22.3 Starting ADRCI and Getting Help 22-5

22.3.1 Using ADRCI in Interactive Mode 22-5

22.3.2 Getting Help 22-6

22.3.3 Using ADRCI in Batch Mode 22-7

22.4 Setting the ADRCI Homepath Before Using ADRCI Commands 22-8

22.5 Viewing the Alert Log 22-9

22.6 Finding Trace Files 22-10

22.7 Viewing Incidents 22-11

22.8 Packaging Incidents 22-12

22.8.1 About Packaging Incidents 22-12

22.8.2 Creating Incident Packages 22-13

22.8.2.1 Creating a Logical Incident Package 22-14

22.8.2.2 Adding Diagnostic Information to a Logical Incident Package 22-16

22.8.2.3 Generating a Physical Incident Package 22-16

22.9 ADRCI Command Reference 22-17

22.9.1 CREATE REPORT 22-19

22.9.2 ECHO 22-21

22.9.3 EXIT 22-21

22.9.4 HOST 22-21

22.9.5 IPS 22-22

xxxi

22.9.5.1 Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands 22-24

22.9.5.2 IPS ADD 22-24

22.9.5.3 IPS ADD FILE 22-26

22.9.5.4 IPS ADD NEW INCIDENTS 22-26

22.9.5.5 IPS COPY IN FILE 22-27

22.9.5.6 IPS COPY OUT FILE 22-28

22.9.5.7 IPS CREATE PACKAGE 22-28

22.9.5.8 IPS DELETE PACKAGE 22-31

22.9.5.9 IPS FINALIZE 22-31

22.9.5.10 IPS GENERATE PACKAGE 22-32

22.9.5.11 IPS GET MANIFEST 22-32

22.9.5.12 IPS GET METADATA 22-33

22.9.5.13 IPS PACK 22-33

22.9.5.14 IPS REMOVE 22-35

22.9.5.15 IPS REMOVE FILE 22-36

22.9.5.16 IPS SET CONFIGURATION 22-37

22.9.5.17 IPS SHOW CONFIGURATION 22-38

22.9.5.18 IPS SHOW FILES 22-41

22.9.5.19 IPS SHOW INCIDENTS 22-42

22.9.5.20 IPS SHOW PACKAGE 22-43

22.9.5.21 IPS UNPACK FILE 22-43

22.9.6 PURGE 22-44

22.9.7 QUIT 22-45

22.9.8 RUN 22-46

22.9.9 SELECT 22-46

22.9.9.1 AVG 22-49

22.9.9.2 CONCAT 22-50

22.9.9.3 COUNT 22-50

22.9.9.4 DECODE 22-51

22.9.9.5 LENGTH 22-52

22.9.9.6 MAX 22-52

22.9.9.7 MIN 22-53

22.9.9.8 NVL 22-53

22.9.9.9 REGEXP_LIKE 22-54

22.9.9.10 SUBSTR 22-54

22.9.9.11 SUM 22-55

22.9.9.12 TIMESTAMP_TO_CHAR 22-55

22.9.9.13 TOLOWER 22-56

22.9.9.14 TOUPPER 22-56

22.9.10 SET BASE 22-57

xxxii

22.9.11 SET BROWSER 22-57

22.9.12 SET CONTROL 22-58

22.9.13 SET ECHO 22-60

22.9.14 SET EDITOR 22-60

22.9.15 SET HOMEPATH 22-60

22.9.16 SET TERMOUT 22-61

22.9.17 SHOW ALERT 22-61

22.9.18 SHOW BASE 22-64

22.9.19 SHOW CONTROL 22-64

22.9.20 SHOW HM_RUN 22-67

22.9.21 SHOW HOMEPATH 22-68

22.9.22 SHOW HOMES 22-68

22.9.23 SHOW INCDIR 22-69

22.9.24 SHOW INCIDENT 22-70

22.9.25 SHOW LOG 22-73

22.9.26 SHOW PROBLEM 22-75

22.9.27 SHOW REPORT 22-76

22.9.28 SHOW TRACEFILE 22-77

22.9.29 SPOOL 22-78

22.10 Troubleshooting ADRCI 22-78

23

DBVERIFY: Offline Database Verification Utility

23.1 Using DBVERIFY to Validate Disk Blocks of a Single Data File 23-1

23.1.1 DBVERIFY Syntax When Validating Blocks of a Single File 23-2

23.1.2 DBVERIFY Parameters When Validating Blocks of a Single File 23-2

23.1.3 Example DBVERIFY Output For a Single Data File 23-3

23.2 Using DBVERIFY to Validate a Segment 23-4

23.2.1 DBVERIFY Syntax When Validating a Segment 23-5

23.2.2 DBVERIFY Parameters When Validating a Single Segment 23-5

23.2.3 Example DBVERIFY Output For a Validated Segment 23-6

24

DBNEWID Utility

24.1 What Is the DBNEWID Utility? 24-1

24.2 Ramifications of Changing the DBID and DBNAME 24-2

24.3 Considerations for Global Database Names 24-3

24.4 Changing Both CDB and PDB DBIDs Using DBNEWID 24-3

24.5 Changing the DBID and DBNAME of a Database 24-4

24.5.1 Changing the DBID and Database Name 24-4

24.5.2 Changing Only the Database ID 24-6

xxxiii

24.5.3 Changing Only the Database Name 24-7

24.5.4 Troubleshooting DBNEWID 24-9

24.6 DBNEWID Syntax 24-10

24.6.1 DBNEWID Parameters 24-10

24.6.2 Restrictions and Usage Notes 24-11

24.6.3 Additional Restrictions for Releases Earlier Than Oracle Database 10g 24-12

25

Using LogMiner to Analyze Redo Log Files

25.1 LogMiner Benefits 25-2

25.2 Introduction to LogMiner 25-3

25.2.1 LogMiner Configuration 25-3

25.2.1.1 Objects in LogMiner Configuration Files 25-3

25.2.1.2 LogMiner Configuration Example 25-4

25.2.1.3 LogMiner Requirements 25-5

25.2.2 Directing LogMiner Operations and Retrieving Data of Interest 25-7

25.3 Using LogMiner in a CDB 25-7

25.3.1 LogMiner V$ Views and DBA Views in a CDB 25-8

25.3.2 The V$LOGMNR_CONTENTS View in a CDB 25-9

25.3.3 Enabling Supplemental Logging in a CDB 25-10

25.4 How to Configure Supplemental Logging for Oracle GoldenGate 25-11

25.4.1 Oracle GoldenGate Integration with Oracle Database for Fine-Grained
Supplemental Logging 25-11

25.4.2 Logical Replication of Tables with LogMiner and Oracle GoldenGate 25-12

25.4.3 Views that Show Tables Enabled for Oracle GoldenGate Automatic Capture 25-13

25.5 LogMiner Dictionary Files and Redo Log Files 25-14

25.5.1 LogMiner Dictionary Options 25-14

25.5.1.1 Using the Online Catalog 25-16

25.5.1.2 Extracting a LogMiner Dictionary to the Redo Log Files 25-16

25.5.1.3 Extracting the LogMiner Dictionary to a Flat File 25-17

25.5.2 Specifying Redo Log Files for Data Mining 25-18

25.6 Starting LogMiner 25-19

25.7 Querying V$LOGMNR_CONTENTS for Redo Data of Interest 25-20

25.7.1 How to Use V$LOGMNR_CONTENTS to Find Redo Data 25-20

25.7.2 How the V$LOGMNR_CONTENTS View Is Populated 25-22

25.7.3 Querying V$LOGMNR_CONTENTS Based on Column Values 25-23

25.7.3.1 Example of Querying V$LOGMNR_CONTENTS Column Values 25-24

25.7.3.2 The Meaning of NULL Values Returned by the MINE_VALUE Function 25-24

25.7.3.3 Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions 25-25

25.7.3.4 Restrictions When Using the MINE_VALUE Function To Get an NCHAR
Value 25-25

25.7.4 Querying V$LOGMNR_CONTENTS Based on XMLType Columns and Tables 25-25

xxxiv

25.7.4.1 How V$LOGMNR_CONTENTS Based on XMLType Columns and
Tables are Queried 25-26

25.7.4.2 Restrictions When Using LogMiner With XMLType Data 25-28

25.7.4.3 Example of a PL/SQL Procedure for Assembling XMLType Data 25-28

25.8 Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS 25-30

25.8.1 Showing Only Committed Transactions 25-31

25.8.2 Skipping Redo Corruptions 25-33

25.8.3 Filtering Data by Time 25-34

25.8.4 Filtering Data by SCN 25-35

25.8.5 Formatting Reconstructed SQL Statements for Reprocessing 25-35

25.8.6 Formatting the Appearance of Returned Data for Readability 25-36

25.9 Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS 25-37

25.10 Calling DBMS_LOGMNR.START_LOGMNR Multiple Times 25-37

25.11 LogMiner and Supplemental Logging 25-38

25.11.1 Understanding Supplemental Logging and LogMiner 25-39

25.11.2 Database-Level Supplemental Logging 25-40

25.11.2.1 Minimal Supplemental Logging 25-40

25.11.2.2 Database-Level Identification Key Logging 25-40

25.11.2.3 Procedural Supplemental Logging 25-42

25.11.3 Disabling Database-Level Supplemental Logging 25-42

25.11.4 Table-Level Supplemental Logging 25-43

25.11.4.1 Table-Level Identification Key Logging 25-43

25.11.4.2 Table-Level User-Defined Supplemental Log Groups 25-44

25.11.4.3 Usage Notes for User-Defined Supplemental Log Groups 25-45

25.11.5 Tracking DDL Statements in the LogMiner Dictionary 25-45

25.11.6 DDL_DICT_TRACKING and Supplemental Logging Settings 25-47

25.11.7 DDL_DICT_TRACKING and Specified Time or SCN Ranges 25-47

25.12 Accessing LogMiner Operational Information in Views 25-48

25.12.1 Options for Viewing LogMiner Operational Information 25-49

25.12.2 Querying V$LOGMNR_LOGS 25-49

25.12.3 Querying Views for Supplemental Logging Settings 25-51

25.12.4 Querying Individual PDBs Using LogMiner 25-52

25.13 Steps in a Typical LogMiner Session 25-53

25.13.1 Understanding How to Run LogMiner Sessions 25-54

25.13.2 Typical LogMiner Session Task 1: Enable Supplemental Logging 25-56

25.13.3 Typical LogMiner Session Task 2: Extract a LogMiner Dictionary 25-56

25.13.4 Typical LogMiner Session Task 3: Specify Redo Log Files for Analysis 25-57

25.13.5 Start LogMiner 25-58

25.13.6 Query V$LOGMNR_CONTENTS 25-59

25.13.7 Typical LogMiner Session Task 6: End the LogMiner Session 25-60

25.14 Examples Using LogMiner 25-61

xxxv

25.14.1 Examples of Mining by Explicitly Specifying the Redo Log Files of Interest 25-61

25.14.1.1 Example 1: Finding All Modifications in the Last Archived Redo Log
File 25-62

25.14.1.2 Example 2: Grouping DML Statements into Committed Transactions 25-65

25.14.1.3 Example 3: Formatting the Reconstructed SQL 25-66

25.14.1.4 Example 4: Using the LogMiner Dictionary in the Redo Log Files 25-69

25.14.1.5 Example 5: Tracking DDL Statements in the Internal Dictionary 25-78

25.14.1.6 Example 6: Filtering Output by Time Range 25-81

25.14.2 LogMiner Use Case Scenarios 25-83

25.14.2.1 Using LogMiner to Track Changes Made by a Specific User 25-84

25.14.2.2 Using LogMiner to Calculate Table Access Statistics 25-85

25.15 Supported Data Types, Storage Attributes, and Database and Redo Log File
Versions 25-87

25.15.1 Supported Data Types and Table Storage Attributes 25-87

25.15.2 Database Compatibility Requirements for LogMiner 25-89

25.15.3 Unsupported Data Types and Table Storage Attributes 25-89

25.15.4 Supported Databases and Redo Log File Versions 25-90

25.15.5 SecureFiles LOB Considerations 25-90

26

Using the Metadata APIs

26.1 Why Use the DBMS_METADATA API? 26-2

26.2 Overview of the DBMS_METADATA API 26-2

26.3 Using the DBMS_METADATA API to Retrieve an Object's Metadata 26-5

26.3.1 How to Use the DBMS_METADATA API to Retrieve Object Metadata 26-5

26.3.2 Typical Steps Used for Basic Metadata Retrieval 26-6

26.3.3 Retrieving Multiple Objects 26-7

26.3.4 Placing Conditions on Transforms 26-8

26.3.5 Accessing Specific Metadata Attributes 26-11

26.4 Using the DBMS_METADATA API to Recreate a Retrieved Object 26-14

26.5 Using the DBMS_METADATA API to Retrieve Collections of Different Object Types 26-16

26.6 Filtering the Return of Heterogeneous Object Types 26-18

26.7 Using the DBMS_METADATA_DIFF API to Compare Object Metadata 26-19

26.8 Performance Tips for the Programmatic Interface of the DBMS_METADATA API 26-28

26.9 Example Usage of the DBMS_METADATA API 26-28

26.9.1 What Does the DBMS_METADATA Example Do? 26-29

26.9.2 Output Generated from the GET_PAYROLL_TABLES Procedure 26-31

26.10 Summary of DBMS_METADATA Procedures 26-33

26.11 Summary of DBMS_METADATA_DIFF Procedures 26-35

xxxvi

27

Original Import

27.1 What Is the Import Utility? 27-3

27.2 Table Objects: Order of Import 27-3

27.3 Before Using Import 27-4

27.3.1 Overview of Import Preparation 27-4

27.3.2 Running catexp.sql or catalog.sql 27-4

27.3.3 Verifying Access Privileges for Import Operations 27-4

27.3.3.1 Importing Objects Into Your Own Schema 27-5

27.3.3.2 Importing Grants 27-6

27.3.3.3 Importing Objects Into Other Schemas 27-6

27.3.3.4 Importing System Objects 27-6

27.3.4 Processing Restrictions 27-7

27.4 Importing into Existing Tables 27-7

27.4.1 Manually Creating Tables Before Importing Data 27-7

27.4.2 Disabling Referential Constraints 27-8

27.4.3 Manually Ordering the Import 27-8

27.5 Effect of Schema and Database Triggers on Import Operations 27-9

27.6 Invoking Import 27-9

27.6.1 Command-Line Entries 27-10

27.6.2 Parameter Files 27-10

27.6.3 Interactive Mode 27-11

27.6.4 Invoking Import As SYSDBA 27-11

27.6.5 Getting Online Help 27-12

27.7 Import Modes 27-12

27.8 Import Parameters 27-15

27.8.1 BUFFER 27-18

27.8.2 COMMIT 27-18

27.8.3 COMPILE 27-19

27.8.4 CONSTRAINTS 27-19

27.8.5 DATA_ONLY 27-20

27.8.6 DATAFILES 27-20

27.8.7 DESTROY 27-21

27.8.8 FEEDBACK 27-21

27.8.9 FILE 27-21

27.8.10 FILESIZE 27-22

27.8.11 FROMUSER 27-22

27.8.12 FULL 27-23

27.8.12.1 Points to Consider for Full Database Exports and Imports 27-23

27.8.13 GRANTS 27-24

27.8.14 HELP 27-24

xxxvii

27.8.15 IGNORE 27-25

27.8.16 INDEXES 27-25

27.8.17 INDEXFILE 27-26

27.8.18 LOG 27-26

27.8.19 PARFILE 27-26

27.8.20 RECORDLENGTH 27-27

27.8.21 RESUMABLE 27-27

27.8.22 RESUMABLE_NAME 27-27

27.8.23 RESUMABLE_TIMEOUT 27-28

27.8.24 ROWS 27-28

27.8.25 SHOW 27-28

27.8.26 SKIP_UNUSABLE_INDEXES 27-29

27.8.27 STATISTICS 27-29

27.8.28 STREAMS_CONFIGURATION 27-30

27.8.29 STREAMS_INSTANTIATION 27-30

27.8.30 TABLES 27-30

27.8.30.1 Table Name Restrictions 27-32

27.8.31 TABLESPACES 27-33

27.8.32 TOID_NOVALIDATE 27-33

27.8.33 TOUSER 27-34

27.8.34 TRANSPORT_TABLESPACE 27-35

27.8.35 TTS_OWNERS 27-35

27.8.36 USERID (username/password) 27-35

27.8.37 VOLSIZE 27-35

27.9 Example Import Sessions 27-36

27.9.1 Example Import of Selected Tables for a Specific User 27-36

27.9.2 Example Import of Tables Exported by Another User 27-36

27.9.3 Example Import of Tables from One User to Another 27-37

27.9.4 Example Import Session Using Partition-Level Import 27-38

27.9.4.1 Example 1: A Partition-Level Import 27-38

27.9.4.2 Example 2: A Partition-Level Import of a Composite Partitioned Table 27-38

27.9.4.3 Example 3: Repartitioning a Table on a Different Column 27-39

27.9.5 Example Import Using Pattern Matching to Import Various Tables 27-41

27.10 Exit Codes for Inspection and Display 27-42

27.11 Error Handling During an Import 27-42

27.11.1 Row Errors 27-42

27.11.1.1 Failed Integrity Constraints 27-43

27.11.1.2 Invalid Data 27-43

27.11.2 Errors Importing Database Objects 27-43

27.11.2.1 Object Already Exists 27-44

27.11.2.2 Sequences 27-44

xxxviii

27.11.2.3 Resource Errors 27-45

27.11.2.4 Domain Index Metadata 27-45

27.12 Table-Level and Partition-Level Import 27-45

27.12.1 Guidelines for Using Table-Level Import 27-45

27.12.2 Guidelines for Using Partition-Level Import 27-46

27.12.3 Migrating Data Across Partitions and Tables 27-46

27.13 Controlling Index Creation and Maintenance 27-47

27.13.1 Delaying Index Creation 27-47

27.13.2 Index Creation and Maintenance Controls 27-48

27.13.2.1 Example of Postponing Index Maintenance 27-48

27.14 Network Considerations for Using Oracle Net with Original Import 27-49

27.15 Character Set and Globalization Support Considerations 27-49

27.15.1 User Data 27-49

27.15.1.1 Effect of Character Set Sorting Order on Conversions 27-50

27.15.2 Data Definition Language (DDL) 27-50

27.15.3 Single-Byte Character Sets 27-51

27.15.4 Multibyte Character Sets 27-51

27.16 Using Instance Affinity 27-51

27.17 Considerations When Importing Database Objects 27-52

27.17.1 Importing Object Identifiers 27-53

27.17.2 Importing Existing Object Tables and Tables That Contain Object Types 27-54

27.17.3 Importing Nested Tables 27-54

27.17.4 Importing REF Data 27-55

27.17.5 Importing BFILE Columns and Directory Aliases 27-55

27.17.6 Importing Foreign Function Libraries 27-56

27.17.7 Importing Stored Procedures, Functions, and Packages 27-56

27.17.8 Importing Java Objects 27-56

27.17.9 Importing External Tables 27-57

27.17.10 Importing Advanced Queue (AQ) Tables 27-57

27.17.11 Importing LONG Columns 27-57

27.17.12 Importing LOB Columns When Triggers Are Present 27-58

27.17.13 Importing Views 27-58

27.17.14 Importing Partitioned Tables 27-59

27.18 Support for Fine-Grained Access Control 27-59

27.19 Snapshots and Snapshot Logs 27-59

27.19.1 Snapshot Log 27-60

27.19.2 Snapshots 27-60

27.19.2.1 Importing a Snapshot 27-60

27.19.2.2 Importing a Snapshot into a Different Schema 27-61

27.20 Transportable Tablespaces 27-61

27.21 Storage Parameters 27-62

xxxix

27.21.1 The OPTIMAL Parameter 27-62

27.21.2 Storage Parameters for OID Indexes and LOB Columns 27-62

27.21.3 Overriding Storage Parameters 27-63

27.22 Read-Only Tablespaces 27-63

27.23 Dropping a Tablespace 27-63

27.24 Reorganizing Tablespaces 27-63

27.25 Importing Statistics 27-64

27.26 Using Export and Import to Partition a Database Migration 27-65

27.26.1 Advantages of Partitioning a Migration 27-65

27.26.2 Disadvantages of Partitioning a Migration 27-65

27.26.3 How to Use Export and Import to Partition a Database Migration 27-65

27.27 Tuning Considerations for Import Operations 27-66

27.27.1 Changing System-Level Options 27-66

27.27.2 Changing Initialization Parameters 27-67

27.27.3 Changing Import Options 27-67

27.27.4 Dealing with Large Amounts of LOB Data 27-67

27.27.5 Dealing with Large Amounts of LONG Data 27-68

27.28 Using Different Releases of Export and Import 27-68

27.28.1 Restrictions When Using Different Releases of Export and Import 27-69

27.28.2 Examples of Using Different Releases of Export and Import 27-69

Part V Appendices

A Instant Client for SQL*Loader, Export, and Import

A.1 What is the Tools Instant Client? A-1

A.2 Choosing Which Instant Client to Install A-2

A.3 Installing Instant Client Tools by Downloading from OTN A-3

A.3.1 Installing Instant Client and Instant Client Tools RPM Packages for Linux A-3

A.3.2 Installing Instant Client and Instant Client Tools from Unix or Windows Zip Files A-4

A.4 Installing Tools Instant Client from the Client Release Media A-5

A.5 List of Oracle Instant Client Tools Files A-5

A.6 Configuring Tools Instant Client Package A-6

A.7 Connecting to a Database with the Tools Instant Client Package A-8

A.8 Uninstalling Tools Instant Client Package and Instant Client A-9

B SQL*Loader Syntax Diagrams

xl

Preface

This document describes how to use Oracle Database utilities for data transfer, data
maintenance, and database administration.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Syntax Diagrams

• Conventions

Audience
The utilities described in this book are intended for database administrators (DBAs),
application programmers, security administrators, system operators, and other Oracle
Database users who perform the following tasks:

• Archive data, back up Oracle Database, or move data between different Oracle
Databases using the Export and Import utilities (both the original versions and the Oracle
Data Pump versions)

• Load data into Oracle Database tables from operating system files, using SQL*Loader

• Load data from external sources, using the external tables feature

• Perform a physical data structure integrity check on an offline database, using the
DBVERIFY utility

• Maintain the internal database identifier (DBID) and the database name (DBNAME) for an
operational database, using the DBNEWID utility

• Extract and manipulate complete representations of the metadata for Oracle Database
objects, using the Metadata API

• Query and analyze redo log files (through a SQL interface), using the LogMiner utility

• Use the Automatic Diagnostic Repository Command Interpreter (ADRCI) utility to manage
Oracle Database diagnostic data

To use this manual, you need a working knowledge of SQL and of Oracle fundamentals. You
can find such information in Oracle Database Concepts. In addition, to use SQL*Loader, you
must know how to use the file management facilities of your operating system.

Documentation Accessibility

xli

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documentation
For more information, refer to the Oracle Database documentation set. In particular,
check the following documents:

• Oracle Database Concepts

• Oracle Database SQL Language Reference

• Oracle Database Administrator’s Guide

• Oracle Database PL/SQL Packages and Types Reference

Also refer to My Oracle Support notes that are relevant to Oracle Data Pump tasks,
and in particular, refer to recommended proactive patches for your release:

Data Pump Recommended Proactive Patches For 19.10 and Above (Doc ID
2819284.1)

Oracle Data Pump patches are not included in Oracle Database release updates, but
instead are provide in bundled patches that contain SQL, PL/SQL packages, and XML
stylesheets for Oracle Data Pump. Oracle recommends that you apply the most recent
Oracle Data Pump bundle patch for your release. Because these patches do not
include Oracle Database binaries, you can apply Oracle Data Pump patches online
while the database is running , so long as Oracle Data Pump is not in use at the time.

Some of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemas for information about how these schemas were created,
and how you can use them yourself.

Preface

xlii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com/rs?type=doc&id=2819284.1
https://support.oracle.com/rs?type=doc&id=2819284.1

Syntax Diagrams
Syntax descriptions are provided in this book for various SQL, PL/SQL, or other command-
line constructs in graphic form or Backus Naur Form (BNF). See Oracle Database SQL
Language Reference for information about how to interpret these descriptions.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xliii

Part I
Oracle Data Pump

Learn about data movement options using Oracle Data Pump Export, Oracle Data Pump
Import, legacy mode, performance, and the Oracle Data Pump API DBMS_DATAPUMP.

• Overview of Oracle Data Pump
Oracle Data Pump technology enables very high-speed movement of data and metadata
from one database to another.

• Oracle Data Pump Export
The Oracle Data Pump Export utility is used to unload data and metadata into a set of
operating system files, which are called a dump file set.

• Oracle Data Pump Import
With Oracle Data Pump Import, you can load an export dump file set into a target
database, or load a target database directly from a source database with no intervening
files.

• Oracle Data Pump Legacy Mode
With Oracle Data Pump legacy mode, you can use original Export and Import parameters
on the Oracle Data Pump Export and Data Pump Import command lines.

• Oracle Data Pump Performance
Learn how Oracle Data Pump Export and Import is better than that of original Export and
Import, and how to enhance performance of export and import operations.

• Using the Oracle Data Pump API
You can automate data movement operations by using the Oracle Data Pump PL/SQL
API DBMS_DATAPUMP.

1
Overview of Oracle Data Pump

Oracle Data Pump technology enables very high-speed movement of data and metadata
from one database to another.

An understanding of the following topics can help you to successfully use Oracle Data Pump
to its fullest advantage:

• Oracle Data Pump Components
Oracle Data Pump is made up of three distinct components: Command-line clients, expdp
and impdp; the DBMS_DATAPUMP PL/SQL package (also known as the Data Pump API);
and the DBMS_METADATA PL/SQL package (also known as the Metadata API).

• How Does Oracle Data Pump Move Data?
There are several Oracle Data Pump methods that you can use to move data in and out
of databases. You can select the method that best fits your use case.

• Using Oracle Data Pump With CDBs
Oracle Data Pump can migrate all, or portions of, a database from a non-CDB into a
PDB, between PDBs within the same or different CDBs, and from a PDB into a non-CDB.

• Cloud Premigration Advisor Tool
The Cloud Premigration Advisor tool can assist you to migrate a database to the Oracle
Cloud.

• Required Roles for Oracle Data Pump Export and Import Operations
The roles DATAPUMP_EXP_FULL_DATABASE and DATAPUMP_IMP_FULL_DATABASE are required
for many Export and Import operations.

• What Happens During the Processing of an Oracle Data Pump Job?
Oracle Data Pump jobs use a Data Pump control job table, a Data Pump control job
process, and worker processes to perform the work and keep track of progress.

• How to Monitor Status of Oracle Data Pump Jobs
The Oracle Data Pump Export and Import client utilities can attach to a job in either
logging mode or interactive-command mode.

• How to Monitor the Progress of Running Jobs with V$SESSION_LONGOPS
To monitor table data transfers, you can use the V$SESSION_LONGOPS dynamic
performance view to monitor Oracle Data Pump jobs.

• File Allocation with Oracle Data Pump
You can modify how Oracle Data Pump allocates and handles files by using commands
in interactive mode.

• Exporting and Importing Between Different Oracle Database Releases
You can use Oracle Data Pump to migrate all or any portion of an Oracle Database
between different releases of the database software.

• Exporting and Importing Blockchain Tables with Oracle Data Pump
To export or import blockchain tables, review these minimum requirements, restrictions,
and guidelines.

1-1

• Managing SecureFiles Large Object Exports with Oracle Data Pump
Exports of SecureFiles large objects (LOBs) are affected by the content type, the
VERSION parameter, and other variables.

• Oracle Data Pump Process Exit Codes
To check the status of your Oracle Data Pump export and import operations,
review the process exit codes in the log file.

• How Oracle Data Pump Manages Dump File Blocks
In releases before Oracle Database 23c, Oracle Data Pump uses Header Blocks.
Starting with Oracle Database 23c, Oracle Data Pump uses Trailer Blocks.

• How to Monitor Oracle Data Pump Jobs with Unified Auditing
To monitor and record specific user database actions, perform auditing on Data
Pump jobs with unified auditing.

• Encrypted Data Security Warnings for Oracle Data Pump Operations
Oracle Data Pump warns you when encrypted data is exported as unencrypted
data.

• How Does Oracle Data Pump Handle Timestamp Data?
Learn about factors that can affect successful completion of export and import jobs
that involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP
WITH LOCAL TIMEZONE.

• Character Set and Globalization Support Considerations
Learn about Globalization support of Oracle Data Pump Export and Import using
character set conversion of user data, and data definition language (DDL).

• Oracle Data Pump Behavior with Data-Bound Collation
Oracle Data Pump supports data-bound collation (DBC).

1.1 Oracle Data Pump Components
Oracle Data Pump is made up of three distinct components: Command-line clients,
expdp and impdp; the DBMS_DATAPUMP PL/SQL package (also known as the Data Pump
API); and the DBMS_METADATA PL/SQL package (also known as the Metadata API).

The Oracle Data Pump clients, expdp and impdp, start the Oracle Data Pump Export
utility and Oracle Data Pump Import utility, respectively.

The expdp and impdp clients use the procedures provided in the DBMS_DATAPUMP
PL/SQL package to execute export and import commands, using the parameters
entered at the command line. These parameters enable the exporting and importing of
data and metadata for a complete database or for subsets of a database.

When metadata is moved, Data Pump uses functionality provided by the
DBMS_METADATA PL/SQL package. The DBMS_METADATA package provides a centralized
facility for the extraction, manipulation, and re-creation of dictionary metadata.

The DBMS_DATAPUMP and DBMS_METADATA PL/SQL packages can be used independently
of the Data Pump clients.

Chapter 1
Oracle Data Pump Components

1-2

Note:

All Oracle Data Pump Export and Import processing, including the reading and
writing of dump files, is done on the system (server) selected by the specified
database connect string. This means that for unprivileged users, the database
administrator (DBA) must create directory objects for the Data Pump files that
are read and written on that server file system. (For security reasons, DBAs
must ensure that only approved users are allowed access to directory objects.) For
privileged users, a default directory object is available.

Starting with Oracle Database 18c, you can include the unified audit trail in either full or
partial export and import operations using Oracle Data Pump. There is no change to the user
interface. When you perform the export or import operations of a database, the unified audit
trail is automatically included in the Oracle Data Pump dump files. See Oracle Database
PL/SQL Packages and Types Reference for a description of the DBMS_DATAPUMP and the
DBMS_METADATA packages. See Oracle Database Security Guide for information about
exporting and importing the unified audit trail using Oracle Data Pump.

Related Topics

• Understanding Dump_ Log_ and SQL File Default Locations

• DBMS_DATAPUMP in Oracle Database PL/SQL Packages and Types Reference

• Exporting and Importing the Unified Audit Trail Using Oracle Data Pump in Oracle
Database Security Guide

1.2 How Does Oracle Data Pump Move Data?
There are several Oracle Data Pump methods that you can use to move data in and out of
databases. You can select the method that best fits your use case.

Note:

The UTL_FILE_DIR desupport in Oracle Database 18c and later releases affects
Oracle Data Pump. This desupport can affect any feature from an earlier release
using symbolic links, including (but not restricted to) Oracle Data Pump, BFILEs,
and External Tables. If you attempt to use an affected feature configured with
symbolic links, then you encounter ORA-29283: invalid file operation: path
traverses a symlink. Oracle recommends that you instead use directory objects
in place of symbolic links.

Data Pump does not load tables with disabled unique indexes. To load data into the
table, the indexes must be either dropped or reenabled.

• Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data.

Chapter 1
How Does Oracle Data Pump Move Data?

1-3

• Using Direct Path to Move Data
After data file copying, direct path is the fastest method of moving data. In this
method, the SQL layer of the database is bypassed and rows are moved to and
from the dump file with only minimal interpretation.

• Using External Tables to Move Data
If you do not select data file copying, and the data cannot be moved using direct
path, you can use the external tables mechanism.

• Using Conventional Path to Move Data
Where there are conflicting table attributes, Oracle Data Pump uses conventional
path to move data.

• Using Network Link Import to Move Data
When the Import NETWORK_LINK parameter is used to specify a network link for an
import operation, the direct path method is used by default. Review supported
database link types.

• Using a Parameter File (Parfile) with Oracle Data Pump
To help to simplify Oracle Data Pump exports and imports, you can create a
parameter file, also known as a parfile.

1.2.1 Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data.

When you copy database data files to the target database with this method, Data
Pump Export is used to unload only structural information (metadata) into the dump
file.

• The TRANSPORT_TABLESPACES parameter is used to specify a transportable
tablespace export. Only metadata for the specified tablespaces is exported.

• The TRANSPORTABLE=ALWAYS parameter is supplied on a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter) or a full mode network import (specified with the FULL and
NETWORK_LINK parameters).

When an export operation uses data file copying, the corresponding import job always
also uses data file copying. During the ensuing import operation, both the data files
and the export dump file must be loaded.

Chapter 1
How Does Oracle Data Pump Move Data?

1-4

Note:

Starting with Oracle Database 21c, transportable jobs are restartable at or near the
point of failure During transportable imports tablespaces are temporarily made read/
write and then set back to read-only. The temporary setting change was introduced
with Oracle Database 12c Release 1 (12.1.0.2) to improve performance. However,
be aware that this behavior also causes the SCNs of the import job data files to
change. Changing the SCNs for data files can cause issues during future
transportable imports of those files.

For example, if a transportable tablespace import fails at any point after the
tablespaces have been made read/write (even if they are now read-only again),
then the data files at that section of the export become corrupt. They cannot be
recovered.

When transportable jobs are performed, it is best practice to keep a copy of the
data files on the source system until the import job has successfully completed on
the target system. If the import job fails for some reason, then keeping copies
ensures that you can have uncorrupted copies of the data files.

When data is moved by using data file copying, there are some limitations regarding
character set compatibility between the source and target databases.

If the source platform and the target platform are of different endianness, then you must
convert the data being transported so that it is in the format of the target platform. You can
use the DBMS_FILE_TRANSFER PL/SQL package or the RMAN CONVERT command to convert the
data.

See Also:

• Oracle Database Backup and Recovery Reference for information about the
RMAN CONVERT command

• Oracle Database Administrator’s Guide for a description and example (including
how to convert the data) of transporting tablespaces between databases

1.2.2 Using Direct Path to Move Data
After data file copying, direct path is the fastest method of moving data. In this method, the
SQL layer of the database is bypassed and rows are moved to and from the dump file with
only minimal interpretation.

Data Pump automatically uses the direct path method for loading and unloading data unless
the structure of a table does not allow it. For example, if a table contains a column of type
BFILE, then direct path cannot be used to load that table and external tables is used instead.

The following sections describe situations in which direct path cannot be used for loading and
unloading.

Chapter 1
How Does Oracle Data Pump Move Data?

1-5

Situations in Which Direct Path Load Is Not Used

If any of the following conditions exist for a table, then Data Pump uses external tables
to load the data for that table, instead of direct path:

• A domain index that is not a CONTEXT type index exists for a LOB column.

• A global index on multipartition tables exists during a single-partition load. This
case includes object tables that are partitioned.

• A table is in a cluster.

• There is an active trigger on a preexisting table.

• Fine-grained access control is enabled in insert mode on a preexisting table.

• A table contains BFILE columns or columns of opaque types.

• A referential integrity constraint is present on a preexisting table.

• A table contains VARRAY columns with an embedded opaque type.

• The table has encrypted columns.

• The table into which data is being imported is a preexisting table and at least one
of the following conditions exists:

– There is an active trigger

– The table is partitioned

– Fine-grained access control is in insert mode

– A referential integrity constraint exists

– A unique index exists

• Supplemental logging is enabled, and the table has at least one LOB column.

• The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP_DATA parameter.

• A table contains a column (including a VARRAY column) with a TIMESTAMP WITH
TIME ZONE data type, and the version of the time zone data file is different between
the export and import systems.

Situations in Which Direct Path Unload Is Not Used

If any of the following conditions exist for a table, then Data Pump uses external tables
rather than direct path to unload the data:

• Fine-grained access control for SELECT is enabled.

• The table is a queue table.

• The table contains one or more columns of type BFILE or opaque, or an object
type containing opaque columns.

• The table contains encrypted columns.

• The table contains a column of an evolved type that needs upgrading.

• The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP_DATA parameter.

Chapter 1
How Does Oracle Data Pump Move Data?

1-6

• Before the unload operation, the table was altered to contain a column that is NOT NULL,
and also has a default value specified.

1.2.3 Using External Tables to Move Data
If you do not select data file copying, and the data cannot be moved using direct path, you
can use the external tables mechanism.

The external tables mechanism creates an external table that maps to the dump file data for
the database table. The SQL engine is then used to move the data. If possible, use the
APPEND hint on import to speed the copying of the data into the database. The representation
of data for direct path data and external table data is the same in a dump file. Because they
are the same, Oracle Data Pump can use the direct path mechanism at export time, but use
external tables when the data is imported into the target database. Similarly, Oracle Data
Pump can use external tables for the export, but use direct path for the import.

In particular, Oracle Data Pump can use external tables in the following situations:

• Loading and unloading very large tables and partitions in situations where it is
advantageous to use parallel SQL capabilities

• Loading tables with global or domain indexes defined on them, including partitioned
object tables

• Loading tables with active triggers or clustered tables

• Loading and unloading tables with encrypted columns

• Loading tables with fine-grained access control enabled for inserts

• Loading a table not created by the import operation (the table exists before the import
starts)

Note:

When Oracle Data Pump uses external tables as the data access mechanism, it
uses the ORACLE_DATAPUMP access driver. However, be aware that the files that
Oracle Data Pump creates when it uses external tables are not compatible with files
created when you manually create an external table using the SQL CREATE
TABLE ... ORGANIZATION EXTERNAL statement.

Related Topics

• The ORACLE_DATAPUMP Access Driver

• APPEND Hint

• Loading LOBs with External Tables

1.2.4 Using Conventional Path to Move Data
Where there are conflicting table attributes, Oracle Data Pump uses conventional path to
move data.

In situations where there are conflicting table attributes, Oracle Data Pump is not able to load
data into a table using either direct path or external tables. In such cases, conventional path
is used, which can affect performance.

Chapter 1
How Does Oracle Data Pump Move Data?

1-7

1.2.5 Using Network Link Import to Move Data
When the Import NETWORK_LINK parameter is used to specify a network link for an
import operation, the direct path method is used by default. Review supported
database link types.

If direct path cannot be used (for example, because one of the columns is a BFILE),
then SQL is used to move the data using an INSERT SELECT statement. (Before Oracle
Database 12c Release 2 (12.2.0.1), the default was to use the INSERT SELECT
statement.) The SELECT clause retrieves the data from the remote database over the
network link. The INSERT clause uses SQL to insert the data into the target database.
There are no dump files involved.

When the Export NETWORK_LINK parameter is used to specify a network link for an
export operation, the data from the remote database is written to dump files on the
target database. (Note that to export from a read-only database, the NETWORK_LINK
parameter is required.)

Because the link can identify a remotely networked database, the terms database link
and network link are used interchangeably.

Supported Link Types

The following types of database links are supported for use with Data Pump Export
and Import:

• Public fixed user

• Public connected user

• Public shared user (only when used by link owner)

• Private shared user (only when used by link owner)

• Private fixed user (only when used by link owner)

Unsupported Link Types

The following types of database links are not supported for use with Data Pump Export
and Import:

• Private connected user

• Current user

• Parallel export or import of metadata for network jobs.

For conventional jobs, if you need parallel metadata import, then use a dumpfile
instead of NETWORK_LINK.

Chapter 1
How Does Oracle Data Pump Move Data?

1-8

See Also:

• The Export NETWORK_LINK parameter for information about performing
exports over a database link

• The Import NETWORK_LINK parameter for information about performing
imports over a database link

• Oracle Database Administrator’s Guide for information about creating database
links and the different types of links

1.2.6 Using a Parameter File (Parfile) with Oracle Data Pump
To help to simplify Oracle Data Pump exports and imports, you can create a parameter file,
also known as a parfile.

Instead of typing in Oracle Data Pump parameters at the command line, when you run an
export or import operation, you can prepare a parameter text file (also known as a parfile,
after the parameter name) that provides the command-line parameters to the Oracle Data
Pump client. You specify that Oracle Data Pump obtains parameters for the command by
entering the PARFILE parameter, and then specifying the parameter name:

PARFILE=[directory_path]file_name

When the Oracle Data Pump Export or Import operation starts, the parameter file is opened
and read by the client. The default location of the parameter file is the user's current directory.

For example:

expdp hr PARFILE=hr.par

When you create a parameter file, it makes it easier for you to reuse that file for multiple
export or import operations, which can simplify these operations, particularly if you perform
them regularly. Creating a parameter file also helps you to avoid typographical errors that can
occur from typing long Oracle Data Pump commands on the command line, especially if you
use parameters whose values require quotation marks that must be placed precisely. On
some systems, if you use a parameter file and the parameter value being specified does not
have quotation marks as the first character in the string (for example, TABLES=scott."Emp"),
then the use of escape characters may not be necessary.

There is no required file name extension, but Oracle examples use .par as the extension.
Oracle recommends that you also use this file extension convention. Using a consistent
parameter file extension makes it easier to identify and use these files.

Note:

The PARFILE parameter cannot be specified within a parameter file.

For more information and examples, see the PARFILE parameters for Oracle Data Pump
Import and Export.

Chapter 1
How Does Oracle Data Pump Move Data?

1-9

Related Topics

• Oracle Data Pump Export PARFILE

• Oracle Data Pump Import PARFILE

1.3 Using Oracle Data Pump With CDBs
Oracle Data Pump can migrate all, or portions of, a database from a non-CDB into a
PDB, between PDBs within the same or different CDBs, and from a PDB into a non-
CDB.

• About Using Oracle Data Pump in a Multitenant Environment
In general, using Oracle Data Pump with PDBs is identical to using Oracle Data
Pump with a non-CDB.

• Using Oracle Data Pump to Move Data Into a CDB
After you create an empty PDB, to move data into the PDB, you can use an Oracle
Data Pump full-mode export and import operation.

• Using Oracle Data Pump to Move PDBs Within or Between CDBs
Learn how to avoid ORA-65094 user schema errors with Oracle Data Pump export
and import operations on PDBs.

1.3.1 About Using Oracle Data Pump in a Multitenant Environment
In general, using Oracle Data Pump with PDBs is identical to using Oracle Data Pump
with a non-CDB.

A multitenant container database (CDB) is an Oracle Database that includes zero,
one, or many user-created pluggable databases (PDBs). A PDB is a portable set of
schemas, schema objects, and non-schema objects that appear to an Oracle Net
client as a non-CDB. A non-CDB is an Oracle Database that is not a CDB. Non-CDB
architecture Oracle Database was deprecated in Oracle Database 12c Release 1
(12.1). Starting with Oracle Database 21c, non-CDB architecture deployments are
desupported.

You can use Oracle Data Pump to migrate all or some of a database in the following
scenarios:

• From a non-CDB into a PDB

• Between PDBs within the same or different CDBs

• From a PDB into an earlier release non-CDB

Note:

Oracle Data Pump does not support any operations across the entire CDB. If
you are connected to the root or seed database of a CDB, then Oracle Data
Pump issues the following warning:

ORA-39357: Warning: Oracle Data Pump operations are not
typically needed when connected to the root or seed of a
container database.

Chapter 1
Using Oracle Data Pump With CDBs

1-10

1.3.2 Using Oracle Data Pump to Move Data Into a CDB
After you create an empty PDB, to move data into the PDB, you can use an Oracle Data
Pump full-mode export and import operation.

You can import data with or without the transportable option. If you use the transportable
option on a full mode export or import, then it is referred to as a full transportable export/
import.

When the transportable option is used, export and import use both transportable tablespace
data movement and conventional data movement; the latter for those tables that reside in
non-transportable tablespaces such as SYSTEM and SYSAUX. Using the transportable option
can reduce the export time, and especially, the import time. With the transportable option,
table data does not need to be unloaded and reloaded, and index structures in user
tablespaces do not need to be recreated.

Note the following requirements when using Oracle Data Pump to move data into a CDB:

• To administer a multitenant environment, you must have the CDB_DBA role.

• Full database exports from Oracle Database 11.2.0.2 and earlier can be imported into
Oracle Database 12c or later (CDB or non-CDB). However, Oracle recommends that you
first upgrade the source database to Oracle Database 11g Release 2 (11.2.0.3 or later),
so that information about registered options and components is included in the export.

• When migrating Oracle Database 11g Release 2 (11.2.0.3 or later) to a CDB (or to a non-
CDB) using either full database export or full transportable database export, you must set
the Oracle Data Pump Export parameter at least to VERSION=12 to generate a dump file
that is ready for import into an Oracle Database 12c or later release. If you do not set
VERSION=12, then the export file that is generated does not contain complete information
about registered database options and components.

• Network-based full transportable imports require use of the FULL=YES,
TRANSPORTABLE=ALWAYS, and TRANSPORT_DATAFILES=datafile_name parameters. When
the source database is Oracle Database 11g Release 11.2.0.3 or later, but earlier than
Oracle Database 12c Release 1 (12.1), the VERSION=12 parameter is also required.

• File-based full transportable imports only require use of the
TRANSPORT_DATAFILES=datafile_name parameter. Data Pump Import infers the presence
of the TRANSPORTABLE=ALWAYS and FULL=YES parameters.

• As of Oracle Database 12c Release 2 (12.2), in a multitenant container database (CDB)
environment, the default Oracle Data Pump directory object, DATA_PUMP_DIR, is defined
as a unique path for each PDB in the CDB. This unique path is defined whether the
PATH_PREFIX clause of the CREATE PLUGGABLE DATABASE statement is defined or is not
defined for relative paths.

• Starting in Oracle Database 19c, the credential parameter of impdp specifies the name
of the credential object that contains the user name and password required to access an
object store bucket. You can also specify a default credential using the PDB property
named DEFAULT_CREDENTIAL. When you run impdb with then default credential, you prefix
the dump file name with DEFAULT_CREDENTIAL: and you do not specify the credential
parameter.

Chapter 1
Using Oracle Data Pump With CDBs

1-11

Example 1-1 Importing a Table into a PDB

To specify a particular PDB for the export/import operation, supply a connect identifier
in the connect string when you start Data Pump. For example, to import data to a PDB
named pdb1, you could enter the following on the Data Pump command line:

impdp hr@pdb1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Example 1-2 Specifying a Credential When Importing Data

This example assumes that you created a credential named HR_CRED using
DBMS_CREDENTIAL.CREATE_CREDENTIAL as follows:

BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'HR_CRED',
 username => 'atpc_user@example.com',
 password => 'password'
);
END;
/

The following command specifies credential HR_CRED, and specifies the file stored in an
object store. The URL of the file is https://example.com/ostore/dnfs/myt.dmp.

impdp hr@pdb1 \
 table_exists_action=replace \
 credential=HR_CRED \
 parallel=16 \
 dumpfile=https://example.com/ostore/dnfs/myt.dmp

Example 1-3 Importing Data Using a Default Credential

1. You create a credential named HR_CRED using
DBMS_CREDENTIAL.CREATE_CREDENTIAL as follows:

BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'HR_CRED',
 username => 'atpc_user@example.com',
 password => 'password'
);
END;
/

2. You set the PDB property DEFAULT_CREDENTIAL as follows:

ALTER DATABASE PROPERTY SET DEFAULT_CREDENTIAL = 'ADMIN.HR_CRED'

Chapter 1
Using Oracle Data Pump With CDBs

1-12

3. The following command specifies the default credential as a prefix to the dump file
location https://example.com/ostore/dnfs/myt.dmp:

impdp hr@pdb1 \
 table_exists_action=replace \
 parallel=16 \
 dumpfile=default_credential:https://example.com/ostore/dnfs/myt.dmp

Note that the credential parameter is not specified.

See Also:

• Oracle Database Security Guide to learn how to configure SSL authentication,
which is necessary for object store access

• Importing a Table to an Object Store Using Oracle Data Pump to learn about
using Oracle Data Pump Import to load files to the object store

1.3.3 Using Oracle Data Pump to Move PDBs Within or Between CDBs
Learn how to avoid ORA-65094 user schema errors with Oracle Data Pump export and import
operations on PDBs.

If you create a common user in a CDB, then a full database or privileged schema export of
that user from within any PDB in the CDB results in a standard CREATE USER C##common name
DDL statement being performed upon import. However, the statement fails because of the
common user prefix C## on the user name. The following error message is returned:

ORA-65094:invalid local user or role name

Example 1-4 Avoiding Invalid Local User Error

In the PDB being exported, if you have created local objects in that user's schema, and you
want to import them, then either make sure a common user of the same name already exists
in the target CDB instance, or use the Oracle Data Pump Import REMAP_SCHEMA parameter on
the impdp command to remap the schema to a valid local user. For example:

REMAP_SCHEMA=C##common name:local user name

Related Topics

• Full Export Mode
You can use Oracle Data Pump to carry out a full database export by using the FULL
parameter.

• Full Import Mode
To specify a full import with Oracle Data Pump, use the FULL parameter.

Chapter 1
Using Oracle Data Pump With CDBs

1-13

1.4 Cloud Premigration Advisor Tool
The Cloud Premigration Advisor tool can assist you to migrate a database to the
Oracle Cloud.

• What is the Cloud Premigration Advisor Tool (CPAT)
To determine if your On Premises Oracle Database data is suitable to migrate to
an Oracle Cloud, you can use Oracle's Cloud Premigration Advisor Tool (CPAT).

1.4.1 What is the Cloud Premigration Advisor Tool (CPAT)
To determine if your On Premises Oracle Database data is suitable to migrate to an
Oracle Cloud, you can use Oracle's Cloud Premigration Advisor Tool (CPAT).

The Cloud Premigration Advisor Tool (CPAT) is a Java application that assists you to
analyze your On Premises Oracle Databases to determine whether you can migrate
some or all of that database to one of the Oracle Cloud platform options, such as
Autonomous Database, or other Cloud database options. The CPAT assists you to
evaluate your specific migration scenario, to identify migration options, and assist you
to prepare your migration plans from source On Premises Oracle Databases to the
target Oracle Cloud database option to which you want to migrate.

How the CPAT Helps You to Avoid Issues

When you use the CPAT tool, and it discovers that there are potential environment
issues with a Cloud migration, you are warned ahead of time of what these issues are.
As a result, you are less likely to encounter an unforeseen issue with your migration. In
addition to warning you about issues, the tool can also provide you with parameters for
migration, including parameters for Oracle Data Pump, or other migration tools. These
parameters are customized for your specific migration case, so that potential migration
issues are either reduced, or avoided entirely.

To identify issues and create customized parameters, CPAT performs several checks
on the source database and schema contents. These checks are guided by the target
Oracle Cloud database option that you select, and the migration approach that you
intend to use. The results of these checks are compiled and presented back to you,
either in a machine-readable format (JSON), or a human readable format (plain text or
HTML), or both. In addition, the CPAT check results are designed so that they can be
used by other Oracle features, such as Oracle Zero Downtime Migration (Oracle ZDM)
or Oracle Enterprise Manager.

Note:

CPAT is not itself a migration tool. It is intended to assist you to prepare for
migrations. It does not suggest whether a particular migration approach
using Oracle GoldenGate or Oracle Data Pump is the best option, but rather
provides you with customized support for the option that you choose.

Chapter 1
Cloud Premigration Advisor Tool

1-14

1.5 Required Roles for Oracle Data Pump Export and Import
Operations

The roles DATAPUMP_EXP_FULL_DATABASE and DATAPUMP_IMP_FULL_DATABASE are required for
many Export and Import operations.

When you run Export or Import operations, the operation can require that the user account
you are using to run the operations is granted either the DATAPUMP_EXP_FULL_DATABASE role,
or the DATAPUMP_IMP_FULL_DATABASE role, or both roles. These roles are automatically
defined for Oracle Database when you run the standard scripts that are part of database
creation. (Note that although the names of these roles contain the word FULL, these roles
actually apply to any privileged operations in any export or import mode, not only Full mode.)

The DATAPUMP_EXP_FULL_DATABASE role affects only export operations. The
DATAPUMP_IMP_FULL_DATABASE role affects import operations and operations that use the
Import SQLFILE parameter. These roles allow users performing exports and imports to do the
following:

• Perform the operation outside the scope of their schema

• Monitor jobs that were initiated by another user

• Export objects (such as tablespace definitions) and import objects (such as directory
definitions) that unprivileged users cannot reference

These are powerful roles. As a database administrator, you should use caution when granting
these roles to users.

Although the SYS schema does not have either of these roles assigned to it, all security
checks performed by Oracle Data Pump that require these roles also grant access to the SYS
schema.

Note:

If you receive an ORA-39181: Only Partial Data Exported Due to Fine Grain
Access Control error message, then see My Oracle Support Note 422480.1 for
information about security during an export of table data with fine-grained access
control policies enabled.:

https://support.oracle.com/rs?type=doc&id=422480.1

Some Oracle roles require authorization. If you need to use these roles with Oracle Data
Pump exports and imports, then you must explicitly enable them by setting the
ENABLE_SECURE_ROLES parameter to YES.

See Also:

Oracle Database Security Guide for more information about predefined roles in an
Oracle Database installation

Chapter 1
Required Roles for Oracle Data Pump Export and Import Operations

1-15

https://support.oracle.com/rs?type=doc&id=422480.1

1.6 What Happens During the Processing of an Oracle Data
Pump Job?

Oracle Data Pump jobs use a Data Pump control job table, a Data Pump control job
process, and worker processes to perform the work and keep track of progress.

• Coordination of an Oracle Data Pump Job
A Data Pump control process is created to coordinate every Oracle Data Pump
Export and Import job.

• Tracking Progress Within an Oracle Data Pump Job
While Oracle Data Pump transfers data and metadata, a Data Pump control job
table is used to track the progress within a job.

• Filtering Data and Metadata During an Oracle Data Pump Job
If you want to filter the types of objects that are exported and imported with Oracle
Data Pump, then you can use the EXCLUDE and INCLUDE parameters.

• Transforming Metadata During an Oracle Data Pump Job
When you move data from one database to another, you can perform
transformations on the metadata by using Oracle Data Pump Import parameters.

• Maximizing Job Performance of Oracle Data Pump
To increase job performance, you can use the Oracle Data Pump PARALLEL
parameter to run multiple worker processes in parallel.

• Loading and Unloading Data with Oracle Data Pump
Learn how Oracle Data Pump child processes operate during data imports and
exports.

1.6.1 Coordination of an Oracle Data Pump Job
A Data Pump control process is created to coordinate every Oracle Data Pump Export
and Import job.

The Data Pump control process controls the entire job, including communicating with
the client processes, creating and controlling a pool of worker processes, and
performing logging operations.

1.6.2 Tracking Progress Within an Oracle Data Pump Job
While Oracle Data Pump transfers data and metadata, a Data Pump control job table
is used to track the progress within a job.

The Data Pump control table is implemented as a user table within the database. The
specific function of the Data Pump control table for export and import jobs is as
follows:

• For export jobs, the Data Pump control job table records the location of database
objects within a dump file set. Export builds and maintains the Data Pump control
table for the duration of the job. At the end of an export job, the content of the Data
Pump control table is written to a file in the dump file set.

Chapter 1
What Happens During the Processing of an Oracle Data Pump Job?

1-16

• For import jobs, the Data Pump control job table is loaded from the dump file set, and is
used to control the sequence of operations for locating objects that need to be imported
into the target database.

The Data Pump control job table is created in the schema of the current user performing the
export or import operation. Therefore, that user must have the CREATE TABLE system privilege
and a sufficient tablespace quota for creation of the Data Pump control job table. The name
of the Data Pump control job table is the same as the name of the job that created it.
Therefore, you cannot explicitly give an Oracle Data Pump job the same name as a
preexisting table or view.

For all operations, the information in the master table is used to restart a job.

The Data Pump control job table is either retained or dropped, depending on the
circumstances, as follows:

• Upon successful job completion, the Data Pump control job table is dropped. You can
override this by setting the Oracle Data Pump KEEP_MASTER=YES parameter for the job.

• The Data Pump control job table is automatically retained for jobs that do not complete
successfully.

• If a job is stopped using the STOP_JOB interactive command, then the Data Pump control
job table is retained for use in restarting the job.

• If a job is killed using the KILL_JOB interactive command, then the Data Pump control job
table is dropped, and the job cannot be restarted.

• If a job terminates unexpectedly, then the Data Pump control job table is retained. You
can delete it if you do not intend to restart the job.

• If a job stops before it starts running (that is, before any database objects have been
copied), then the Data Pump control job table is dropped.

Related Topics

• Oracle Data Pump Export command-line utility JOB_NAME parameter

1.6.3 Filtering Data and Metadata During an Oracle Data Pump Job
If you want to filter the types of objects that are exported and imported with Oracle Data
Pump, then you can use the EXCLUDE and INCLUDE parameters.

Within the Data Pump control job table, specific objects are assigned attributes such as name
or owning schema. Objects also belong to a class of objects (such as TABLE, INDEX, or
DIRECTORY). The class of an object is called its object type. You can use the EXCLUDE and
INCLUDE parameters to restrict the types of objects that are exported and imported. The
objects can be based upon the name of the object, or the name of the schema that owns the
object. You can also specify data-specific filters to restrict the rows that are exported and
imported.

Related Topics

• Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This capability
helps you limit the type of information that is exported.

• Filtering During Import Operations
Oracle Data Pump Import provides data and metadata filtering capability, which can help
you limit the type of information that you import.

Chapter 1
What Happens During the Processing of an Oracle Data Pump Job?

1-17

1.6.4 Transforming Metadata During an Oracle Data Pump Job
When you move data from one database to another, you can perform transformations
on the metadata by using Oracle Data Pump Import parameters.

It is often useful to perform transformations on your metadata, so that you can remap
storage between tablespaces, or redefine the owner of a particular set of objects.
When you move data, you can perform transformations by using the Oracle Data
Pump import parameters REMAP_DATAFILE, REMAP_SCHEMA,
REMAP_TABLE,REMAP_TABLESPACE, TRANSFORM, and PARTITION_OPTIONS.

1.6.5 Maximizing Job Performance of Oracle Data Pump
To increase job performance, you can use the Oracle Data Pump PARALLEL parameter
to run multiple worker processes in parallel.

The PARALLEL parameter enables you to set a degree of parallelism that takes
maximum advantage of current conditions. For example, to limit the effect of a job on a
production system, database administrators can choose to restrict the parallelism. The
degree of parallelism can be reset at any time during a job. For example, during
production hours, you can set PARALLEL to 2, so that you restrict a particular job to only
two degrees of parallelism. During non-production hours, you can reset the degree of
parallelism to 8. The parallelism setting is enforced by the Data Pump control process,
which allocates workloads to worker processes that perform the data and metadata
processing within an operation. These worker processes operate in parallel. For
recommendations on setting the degree of parallelism, refer to the Export PARALLEL
and Import PARALLEL parameter descriptions.

Note:

The ability to adjust the degree of parallelism is available only in the
Enterprise Edition of Oracle Database.

Related Topics

• PARALLEL
The Oracle Data Pump Export command-line utility PARALLEL parameter specifies
the maximum number of processes of active execution operating on behalf of the
export job.

• PARALLEL
The Oracle Data Pump Import command-line mode PARALLEL parameter sets the
maximum number of worker processes that can load in parallel.

1.6.6 Loading and Unloading Data with Oracle Data Pump
Learn how Oracle Data Pump child processes operate during data imports and
exports.

Oracle Data Pump child processes unload and load metadata and table data. For
export, all metadata and data are unloaded in parallel, with the exception of jobs that

Chapter 1
What Happens During the Processing of an Oracle Data Pump Job?

1-18

use transportable tablespace. For import, objects must be created in the correct dependency
order.

If there are enough objects of the same type to make use of multiple child processes, then
the objects are imported by multiple child processes. Some metadata objects have
interdependencies, which require one child process to create them serially to satisfy those
dependencies. Child processes are created as needed until the number of child processes
equals the value supplied for the PARALLEL command-line parameter. The number of active
child processes can be reset throughout the life of a job. Worker processes can be started on
different nodes in an Oracle Real Application Clusters (Oracle RAC) environment.

Note:

The value of PARALLEL is restricted to 1 in the Standard Edition of Oracle Database.

When a child process is assigned the task of loading or unloading a very large table or
partition, to make maximum use of parallel execution, it can make use of the external tables
access method. In such a case, the child process becomes a parallel execution coordinator.
The actual loading and unloading work is divided among some number of parallel input/
output (I/O) execution processes allocated from a pool of available processes in an Oracle
Real Application Clusters (Oracle RAC) environment.

Related Topics

• PARALLEL

• PARALLEL

1.7 How to Monitor Status of Oracle Data Pump Jobs
The Oracle Data Pump Export and Import client utilities can attach to a job in either logging
mode or interactive-command mode.

In logging mode, real-time detailed status about the job is automatically displayed during job
execution. The information displayed can include the job and parameter descriptions, an
estimate of the amount of data to be processed, a description of the current operation or item
being processed, files used during the job, any errors encountered, and the final job state
(Stopped or Completed).

In interactive-command mode, job status can be displayed on request. The information
displayed can include the job description and state, a description of the current operation or
item being processed, files being written, and a cumulative status.

You can also have a log file written during the execution of a job. The log file summarizes the
progress of the job, lists any errors encountered during execution of the job, and records the
completion status of the job.

As an alternative to determine job status or other information about Oracle Data Pump jobs,
you can query the DBA_DATAPUMP_JOBS, USER_DATAPUMP_JOBS, or DBA_DATAPUMP_SESSIONS
views. Refer to Oracle Database Reference for more information.

Related Topics

• Oracle Database Reference

Chapter 1
How to Monitor Status of Oracle Data Pump Jobs

1-19

1.8 How to Monitor the Progress of Running Jobs with
V$SESSION_LONGOPS

To monitor table data transfers, you can use the V$SESSION_LONGOPS dynamic
performance view to monitor Oracle Data Pump jobs.

Oracle Data Pump operations that transfer table data (export and import) maintain an
entry in the V$SESSION_LONGOPS dynamic performance view indicating the job progress
(in megabytes of table data transferred). The entry contains the estimated transfer size
and is periodically updated to reflect the actual amount of data transferred.

Use of the COMPRESSION, ENCRYPTION, ENCRYPTION_ALGORITHM, ENCRYPTION_MODE,
ENCRYPTION_PASSWORD, QUERY, and REMAP_DATA parameters are not reflected in the
determination of estimate values.

The usefulness of the estimate value for export operations depends on the type of
estimation requested when the operation was initiated, and it is updated as required if
exceeded by the actual transfer amount. The estimate value for import operations is
exact.

The V$SESSION_LONGOPS columns that are relevant to a Data Pump job are as follows:

• USERNAME: Job owner

• OPNAME: Job name

• TARGET_DESC: Job operation

• SOFAR: Megabytes transferred thus far during the job

• TOTALWORK Estimated number of megabytes in the job

• UNITS: Megabytes (MB)

• MESSAGE: A formatted status message that uses the following format:

'job_name: operation_name : nnn out of mmm MB done'

1.9 File Allocation with Oracle Data Pump
You can modify how Oracle Data Pump allocates and handles files by using
commands in interactive mode.

• Understanding File Allocation in Oracle Data Pump
Understanding how Oracle Data Pump allocates and handles files helps you to
use Export and Import to their fullest advantage.

• Specifying Files and Adding Additional Dump Files
For export operations, you can either specify dump files at the time you define the
Oracle Data Pump job, or at a later time during the operation.

• Default Locations for Dump, Log, and SQL Files
Learn about default Oracle Data Pump file locations, and how these locations are
affected when you are using Oracle RAC, Oracle Automatic Storage Management,
and multitenant architecture.

Chapter 1
How to Monitor the Progress of Running Jobs with V$SESSION_LONGOPS

1-20

• Using Substitution Variables with Oracle Data Pump Exports
If you want to specify multiple dump files during Oracle Data Pump export operations,
then use the DUMPFILE parameter with a substitution variable in the file name.

1.9.1 Understanding File Allocation in Oracle Data Pump
Understanding how Oracle Data Pump allocates and handles files helps you to use Export
and Import to their fullest advantage.

Oracle Data Pump jobs manage the following types of files:

• Dump files, to contain the data and metadata that is being moved.

• Log files, to record the messages associated with an operation.

• SQL files, to record the output of a SQLFILE operation. A SQLFILE operation is started
using the Oracle Data Pump Import SQLFILE parameter. This operation results in all of the
SQL DDL that Import would execute, based on other parameters, being written to a SQL
file.

• Files specified by the DATA_FILES parameter during a transportable import.

Note:

If your Oracle Data Pump job generates errors related to Network File Storage
(NFS), then consult the installation guide for your platform to determine the correct
NFS mount settings.

1.9.2 Specifying Files and Adding Additional Dump Files
For export operations, you can either specify dump files at the time you define the Oracle
Data Pump job, or at a later time during the operation.

If you discover that space is running low during an export operation, then you can add
additional dump files by using the Oracle Data Pump Export ADD_FILE command in
interactive mode.

For import operations, all dump files must be specified at the time the job is defined.

Log files and SQL files overwrite previously existing files. For dump files, you can use the
Export REUSE_DUMPFILES parameter to specify whether to overwrite a preexisting dump file.

1.9.3 Default Locations for Dump, Log, and SQL Files
Learn about default Oracle Data Pump file locations, and how these locations are affected
when you are using Oracle RAC, Oracle Automatic Storage Management, and multitenant
architecture.

• Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and
SQL files are accessed relative to server-based directory paths.

Chapter 1
File Allocation with Oracle Data Pump

1-21

• Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to ensure that you are making
cluster member nodes available.

• Using Directory Objects When Oracle Automatic Storage Management Is Enabled
If you use Oracle Data Pump Export or Import with Oracle Automatic Storage
Management (Oracle ASM) enabled, then define the directory object used for the
dump file.

• The DATA_PUMP_DIR Directory Object and Pluggable Databases
The default Oracle Data Pump directory object, DATA_PUMP_DIR, is defined as a
unique path for each PDB in the CDB.

1.9.3.1 Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and
SQL files are accessed relative to server-based directory paths.

Oracle Data Pump requires that directory paths are specified as directory objects. A
directory object maps a name to a directory path on the file system. As a database
administrator, you must ensure that only approved users are allowed access to the
directory object associated with the directory path.

The following example shows a SQL statement that creates a directory object named
dpump_dir1 that is mapped to a directory located at /usr/apps/datafiles.

SQL> CREATE DIRECTORY dpump_dir1 AS '/usr/apps/datafiles';

The reason that a directory object is required is to ensure data security and integrity.
For example:

• If you are allowed to specify a directory path location for an input file, then it is
possible that you could be able to read data that the server has access to, but to
which you should not.

• If you are allowed to specify a directory path location for an output file, then it is
possible that you could overwrite a file that normally you do not have privileges to
delete.

On Unix, Linux, and Windows operating systems, a default directory object,
DATA_PUMP_DIR, is created at database creation, or whenever the database dictionary
is upgraded. By default, this directory object is available only to privileged users. (The
user SYSTEM has read and write access to the DATA_PUMP_DIR directory, by default.)
Oracle can change the definition of the DATA_PUMP_DIR directory, either during Oracle
Database upgrades, or when patches are applied.

If you are not a privileged user, then before you can run Oracle Data Pump Export or
Import, a directory object must be created by a database administrator (DBA), or by
any user with the CREATE ANY DIRECTORY privilege.

After a directory is created, the user creating the directory object must grant READ or
WRITE permission on the directory to other users. For example, to allow Oracle

Chapter 1
File Allocation with Oracle Data Pump

1-22

Database to read and write files on behalf of user hr in the directory named by dpump_dir1,
the DBA must run the following command:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir1 TO hr;

Note that READ or WRITE permission to a directory object only means that Oracle Database
can read or write files in the corresponding directory on your behalf. Outside of Oracle
Database, uou are not given direct access to those files, unless you have the appropriate
operating system privileges. Similarly, Oracle Database requires permission from the
operating system to read and write files in the directories.

Oracle Data Pump Export and Import use the following order of precedence to determine a
file's location:

1. If a directory object is specified as part of the file specification, then the location specified
by that directory object is used. (The directory object must be separated from the file
name by a colon.)

2. If a directory object is not specified as part of the file specification, then the directory
object named by the DIRECTORY parameter is used.

3. If a directory object is not specified as part of the file specification, and if no directory
object is named by the DIRECTORY parameter, then the value of the environment variable,
DATA_PUMP_DIR, is used. This environment variable is defined by using operating system
commands on the client system where the Data Pump Export and Import utilities are run.
The value assigned to this client-based environment variable must be the name of a
server-based directory object, which must first be created on the server system by a
DBA. For example, the following SQL statement creates a directory object on the server
system. The name of the directory object is DUMP_FILES1, and it is located at '/usr/apps/
dumpfiles1'.

SQL> CREATE DIRECTORY DUMP_FILES1 AS '/usr/apps/dumpfiles1';

After this statement is run, a user on a Unix-based client system using csh can assign the
value DUMP_FILES1 to the environment variable DATA_PUMP_DIR. The DIRECTORY
parameter can then be omitted from the command line. The dump file employees.dmp,
and the log file export.log, are written to '/usr/apps/dumpfiles1'.

%setenv DATA_PUMP_DIR DUMP_FILES1
%expdp hr TABLES=employees DUMPFILE=employees.dmp

4. If none of the previous three conditions yields a directory object, and you are a privileged
user, then Oracle Data Pump attempts to use the value of the default server-based
directory object, DATA_PUMP_DIR. This directory object is automatically created, either at
database creation, or when the database dictionary is upgraded. To see the path
definition for DATA_PUMP_DIR, you can use the following SQL query:

SQL> SELECT directory_name, directory_path FROM dba_directories
2 WHERE directory_name='DATA_PUMP_DIR';

If you are not a privileged user, then access to the DATA_PUMP_DIR directory object must
have previously been granted to you by a DBA.

Chapter 1
File Allocation with Oracle Data Pump

1-23

Do not confuse the default DATA_PUMP_DIR directory object with the client-based
environment variable of the same name.

1.9.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to ensure that you are making
cluster member nodes available.

• To use Oracle Data Pump or external tables in an Oracle RAC configuration, you
must ensure that the directory object path is on a cluster-wide file system.

The directory object must point to shared physical storage that is visible to, and
accessible from, all instances where Oracle Data Pump or external tables
processes (or both) can run.

• The default Oracle Data Pump behavior is that child processes can run on any
instance in an Oracle RAC configuration. Therefore, child processes on those
Oracle RAC instances must have physical access to the location defined by the
directory object, such as shared storage media. If the configuration does not have
shared storage for this purpose, but you still require parallelism, then you can use
the CLUSTER=NO parameter to constrain all child processes to the instance where
the Oracle Data Pump job was started.

• Under certain circumstances, Oracle Data Pump uses parallel query child
processes to load or unload data. In an Oracle RAC environment, Data Pump
does not control where these child processes run. Therefore, these child
processes can run on other cluster member nodes in the cluster, regardless of
which instance is specified for CLUSTER and SERVICE_NAME for the Oracle Data
Pump job. Controls for parallel query operations are independent of Oracle Data
Pump. When parallel query child processes run on other instances as part of an
Oracle Data Pump job, they also require access to the physical storage of the
dump file set.

1.9.3.3 Using Directory Objects When Oracle Automatic Storage Management
Is Enabled

If you use Oracle Data Pump Export or Import with Oracle Automatic Storage
Management (Oracle ASM) enabled, then define the directory object used for the
dump file.

You must define the directory object used for the dump file so that the Oracle ASM
disk group name is used, instead of an operating system directory path.

For log file, use a separate directory object that points to an operating system directory
path.

For example, you can create a directory object for the Oracle ASM dump file using this
procedure.

SQL> CREATE or REPLACE DIRECTORY dpump_dir as '+DATAFILES/';

Chapter 1
File Allocation with Oracle Data Pump

1-24

After you create the directory object, you then create a separate directory object for the log
file:

SQL> CREATE or REPLACE DIRECTORY dpump_log as '/homedir/user1/';

To enable user hr to have access to these directory objects, you assign the necessary
privileges for that user:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir TO hr;
SQL> GRANT READ, WRITE ON DIRECTORY dpump_log TO hr;

Finally, you then can use use the following Data Pump Export command:

> expdp hr DIRECTORY=dpump_dir DUMPFILE=hr.dmp LOGFILE=dpump_log:hr.log

Before the command executes, you are prompted for the password.

Note:

If you simply want to copy Data Pump dump files between ASM and disk
directories, you can use the DBMS_FILE_TRANSFER PL/SQL package.

Related Topics

• Oracle Database SQL Language Reference

• Oracle Database PL/SQL Packages and Types Reference

1.9.3.4 The DATA_PUMP_DIR Directory Object and Pluggable Databases
The default Oracle Data Pump directory object, DATA_PUMP_DIR, is defined as a unique path
for each PDB in the CDB.

As of Oracle Database 12c Release 2 (12.2), in a multitenant container database (CDB)
environment, the default Oracle Data Pump directory object, DATA_PUMP_DIR, is defined as a
unique path for each PDB in the CDB, whether or not the PATH_PREFIX clause of the CREATE
PLUGGABLE DATABASE statement is defined for relative paths.

1.9.4 Using Substitution Variables with Oracle Data Pump Exports
If you want to specify multiple dump files during Oracle Data Pump export operations, then
use the DUMPFILE parameter with a substitution variable in the file name.

When you use substitution variables with file names, instead of or in addition to listing specific
file names, then those filenames with a substitution variable are called dump file templates.

Chapter 1
File Allocation with Oracle Data Pump

1-25

Note:

In the examples that follow, the substitution variable %U is used to explain
how Oracle Data Pump uses substitution variables. You can view other
available substitution variables under the Import or Export DUMPFILE
parameter reference topics.

When you use dump file templates, new dump files are created as they are needed.
For example, if you are using the substitution variable %U, then new dump files are
created as needed beginning with 01 for %U, and then using 02, 03, and so on. Enough
dump files are created to allow all processes specified by the current setting of the
PARALLEL parameter to be active. If one of the dump files becomes full because its size
has reached the maximum size specified by the FILESIZE parameter, then it is closed,
and a new dump file (with a new generated name) is created to take its place.

If multiple dump file templates are provided, then they are used to generate dump files
in a round-robin fashion. For example, if expa%U, expb%U, and expc%U are all specified
for a job having a parallelism of 6, then the initial dump files created are expa01.dmp,
expb01.dmp, expc01.dmp, expa02.dmp, expb02.dmp, and expc02.dmp.

For import and SQLFILE operations, if dump file specifications expa%U, expb%U, and
expc%U are specified, then the operation begins by attempting to open the dump files
expa01.dmp, expb01.dmp, and expc01.dmp. It is possible for the Data Pump control
export table to span multiple dump files. For this reason, until all pieces of the Data
Pump control table are found, dump files continue to be opened by incrementing the
substitution variable, and looking up the new file names (For example: expa02.dmp,
expb02.dmp, and expc02.dmp). If a dump file does not exist, then the operation stops
incrementing the substitution variable for the dump file specification that was in error.
For example, if expb01.dmp and expb02.dmp are found, but expb03.dmp is not found,
then no more files are searched for using the expb%U specification. After the entire
Data Pump control table is found, it is used to determine whether all dump files in the
dump file set have been located.

Related Topics

• Oracle Data Pump Export command-line utility DUMPFILE parameter

• Oracle Data Pump Import command-line mode DUMPFILE parameter

1.10 Exporting and Importing Between Different Oracle
Database Releases

You can use Oracle Data Pump to migrate all or any portion of an Oracle Database
between different releases of the database software.

Typically, you use the Oracle Data Pump Export VERSION parameter to migrate
between database releases. Using VERSION generates an Oracle Data Pump dump file
set that is compatible with the specified version.

The default value for VERSION is COMPATIBLE. This value indicates that exported
database object definitions are compatible with the release specified for the
COMPATIBLE initialization parameter.

Chapter 1
Exporting and Importing Between Different Oracle Database Releases

1-26

In an upgrade situation, when the target release of an Oracle Data Pump-based migration is
higher than the source, you typically do not have to specify the VERSION parameter. When the
target release is higher then the source, all objects in the source database are compatible
with the higher target release. However, an exception is when an entire Oracle Database 11g
(Release 11.2.0.3 or higher) is exported in preparation for importing into Oracle Database 12c
Release 1 (12.1.0.1) or later. In this case, to include a complete set of Oracle Database
internal component metadata, explicitly specify VERSION=12 with FULL=YES.

In a downgrade situation, when the target release of an Oracle Data Pump-based migration is
lower than the source, set the VERSION parameter value to be the same version as the target.
An exception is when the target release version is the same as the value of the COMPATIBLE
initialization parameter on the source system. In that case, you do not need to specify
VERSION. In general, however, Oracle Data Pump import cannot read dump file sets created
by an Oracle Database release that is newer than the current release, unless you explicitly
specify the VERSION parameter.

Keep the following information in mind when you are exporting and importing between
different database releases:

• On an Oracle Data Pump export, if you specify a database version that is older than the
current database version, then a dump file set is created that you can import into that
older version of the database. For example, if you are running Oracle Database 19c, and
you specify VERSION=12.2 on an export, then the dump file set that is created can be
imported into an Oracle Database 12c (Release 12.2) database.

Note:

– Database privileges that are valid only in Oracle Database 12c Release 1
(12.1.0.2) and later (for example, the READ privilege on tables, views,
materialized views, and synonyms) cannot be imported into Oracle
Database 12c Release 1 (12.1.0.1) or earlier. If an attempt is made to do
so, then Import reports it as an error, and continues the import operation.

– When you export to a release earlier than Oracle Database 12c Release 2
(12.2.0.1), Oracle Data Pump does not filter out object names longer than
30 bytes. The objects are exported. At import time, if you attempt to create
an object with a name longer than 30 bytes, then an error is returned.

• If you specify an Oracle Database release that is older than the current Oracle Database
release, then certain features and data types can be unavailable. For example, specifying
VERSION=10.1 causes an error if data compression is also specified for the job, because
compression was not supported in Oracle Database 10g release 1 (10.1). Another
example: If a user-defined type or Oracle-supplied type in the source Oracle Database
release is a later version than the type in the target Oracle Database release, then that
type is not loaded, because it does not match any version of the type in the target
database.

• Oracle Data Pump Import can always read Oracle Data Pump dump file sets created by
older Oracle Database releases.

• When operating across a network link, Oracle Data Pump requires that the source and
target Oracle Database releases differ by no more than two versions.

For example, if one database is Oracle Database 12c, then the other Oracle Database
release must be 12c, 11g, or 10g. Oracle Data Pump checks only the major version

Chapter 1
Exporting and Importing Between Different Oracle Database Releases

1-27

number (for example, 10g,11g, 12c), not specific Oracle Database release
numbers (for example, 12.2, 12.1, 11.1, 11.2, 10.1, or 10.2).

• Importing Oracle Database 11g dump files that contain table statistics into Oracle
Database 12c Release 1 (12.1) or later Oracle Database releases can result in an
Oracle ORA-39346 error. This error occurs because Oracle Database 11g dump
files contain table statistics as metadata. Oracle Database 12c Release 1 (12.1)
and later releases require table statistics to be presented as table data. The
workaround is to ignore the error during the import operation. After the import
operation completes, regather table statistics.

• All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data
type was provided for backward compatibility with existing applications. In new
applications developed with later releases, Oracle strongly recommends that you
use CLOB and NCLOB data types for large amounts of character data.

Related Topics

• Oracle Data Pump Export command-line utility VERSION parameter

• Oracle Data Pump Import command-line mode VERSION parameter

See Also:

• READ and SELECT Object Privileges in Oracle Database Security
Guide for more information about the READ and READ ANY TABLE
privileges

1.11 Exporting and Importing Blockchain Tables with Oracle
Data Pump

To export or import blockchain tables, review these minimum requirements,
restrictions, and guidelines.

If you use Oracle Data Pump with blockchain tables, then you can use only
CONVENTIONAL access_method.

Blockchain tables are exported only under the following conditions:

• The VERSION parameter for the export is explicitly set to 21.0.0.0.0 or later.

• The VERSION parameter is set to (or defaults to) COMPATIBLE, and the database
compatibility is set to 21.0.0.0.0 or later.

• The VERSION parameter is set to LATEST, and the database release is set to
21.0.0.0.0 or later.

If you attempt to use Oracle Data Pump options that are not supported with blockchain
tables, then you receive errors when you attempt to use those options.

The following options of Oracle Data Pump are not supported with blockchain tables:

• ACCESS_METHOD=[DIRECT_PATH, EXTERNAL_TABLE, INSERT_AS_SELECT]

Chapter 1
Exporting and Importing Blockchain Tables with Oracle Data Pump

1-28

• TABLE_EXISTS_ACTION=[REPLACE | APPEND | TRUNCATE]
These options result in errors when you attempt to use them to import data into an
existing blockchain table.

• CONTENT=DATA_ONLY
This option results in error when you attempt to import data into a blockchain table.

• PARTITION_OPTIONS= [DEPARTITIONING | MERGE]
If you request departitioning using this option with blockchain tables, then the blockchain
tables are skipped during departitioning.

• NETWORK IMPORT
• TRANSPORTABLE
• SAMPLE, QUERY and REMAP_DATA

1.12 Managing SecureFiles Large Object Exports with Oracle
Data Pump

Exports of SecureFiles large objects (LOBs) are affected by the content type, the VERSION
parameter, and other variables.

LOBs are a set of data types that are designed to hold large amounts of data. When you use
Oracle Data Pump Export to export SecureFiles LOBs, the export behavior depends on
several things, including the Export VERSION parameter value, whether a content type
(ContentType) is present, and whether the LOB is archived and data is cached.

The following scenarios cover different combinations of these variables:

• If a table contains SecureFiles LOBs with a ContentType, and the Export VERSION
parameter is set to a value earlier than 11.2.0.0.0, then the ContentType is not
exported.

• If a table contains SecureFiles LOBs with a ContentType, and the Export VERSION
parameter is set to a value of 11.2.0.0.0 or later, then the ContentType is exported and
restored on a subsequent import.

• If a table contains a SecureFiles LOB that is currently archived, the data is cached, and
the Export VERSION parameter is set to a value earlier than 11.2.0.0.0, then the
SecureFiles LOB data is exported and the archive metadata is dropped. In this scenario,
if VERSION is set to 11.1 or later, then the SecureFiles LOB becomes a plain SecureFiles
LOB. But if VERSION is set to a value earlier than 11.1, then the SecureFiles LOB
becomes a BasicFiles LOB.

• If a table contains a SecureFiles LOB that is currently archived, but the data is not
cached, and the Export VERSION parameter is set to a value earlier than 11.2.0.0.0, then
an ORA-45001 error is returned.

• If a table contains a SecureFiles LOB that is currently archived, the data is cached, and
the Export VERSION parameter is set to a value of 11.2.0.0.0 or later, then both the
cached data and the archive metadata is exported.

Refer to Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about SecureFiles LOBs.

Chapter 1
Managing SecureFiles Large Object Exports with Oracle Data Pump

1-29

Related Topics

• Oracle Database SecureFiles and Large Objects Developer's Guide

1.13 Oracle Data Pump Process Exit Codes
To check the status of your Oracle Data Pump export and import operations, review
the process exit codes in the log file.

Oracle Data Pump provides the results of export and import operations immediately
upon completion. In addition to recording the results in a log file, Oracle Data Pump
can also report the outcome in a process exit code. Use the Oracle Data Pump exit
code to check the outcome of an Oracle Data Pump job from the command line or a
script:

Table 1-1 Oracle Data Pump Exit Codes

Exit Code Meaning

EX_SUCC 0 The export or import job completed successfully. No errors are displayed to the
output device or recorded in the log file, if there is one.

EX_SUCC_ERR 5 The export or import job completed successfully, but there were errors
encountered during the job. The errors are displayed to the output device and
recorded in the log file, if there is one.

EX_FAIL 1 The export or import job encountered one or more irrecoverable errors, including
the following:

• Errors on the command line or in command syntax
• Oracle Database errors from which export or import cannot recover
• Operating system errors (such as malloc)

• Invalid parameter values that prevent the job from starting (for example, an
invalid directory object specified in the DIRECTORY parameter)

An irrecoverable error is displayed to the output device but may not be recorded
in the log file. Whether it is recorded in the log file can depend on several factors,
including:

• Was a log file specified at the start of the job?
• Did the processing of the job proceed far enough for a log file to be opened?

1.14 How Oracle Data Pump Manages Dump File Blocks
In releases before Oracle Database 23c, Oracle Data Pump uses Header Blocks.
Starting with Oracle Database 23c, Oracle Data Pump uses Trailer Blocks.

• Dump Files for Exports
Learn about dump file types, annd differences of export dump flies between Oracle
Data Pump and SQL Mode dump files

• Trailer Block File Layout in Dump Files
Starting with Oracle Database 23c, by default both SQL-Mode and Data Pump
Export files use a trailer block format that facilitates use with object stores in
Oracle Cloud Infrastructure.

• Header Block File Layout in Dump Files
In Oracle Database 21c and earlier releases, dump files use Header Blocks.

Chapter 1
Oracle Data Pump Process Exit Codes

1-30

• Types of Dump File Trailer Blocks
There are two types of trailer blocks that are used for Oracle Data Pump and SQL-Mode
dump files.

1.14.1 Dump Files for Exports
Learn about dump file types, annd differences of export dump flies between Oracle Data
Pump and SQL Mode dump files

Export dump files are created when you use either the PL/SQL ORACLE_DATAPUMP
external access driver API, or the Oracle Data Pump Export (expdp) command-line utility.

Types of Export Dump Files

There are two types of dump files that Oracle Data Pump can create during an export
operation:

• Extensible Files are export dump files that are extensible if the file size attribute
specified is null or zero. With extensible files, Data Pump continues to write as much data
to the file as is needed, or until the device runs out of physical space, or until the process
reaches its assigned disk quota.

• Fixed-Size Files are export dump files where the file size attribute specified is greater
than zero. When a file size greater than null or zero is specified, Data Pump only writes
data to the dump file up to the specified file size. If fixed-size files are used, and the size
of the object being exported exceeds the remaining available space specfied for dump
file size, then that object can span over multiple dump files

Note:

It is possible to use both extensible and fixed-size files in an Oracle Data Pump
export operation. However, you can only do this by using the DBMS_DATAPUMP
PL/SQL API. If you use the expdp command line client, then you are permitted to
specify only one file type type for a given export operation.

1.14.2 Trailer Block File Layout in Dump Files
Starting with Oracle Database 23c, by default both SQL-Mode and Data Pump Export files
use a trailer block format that facilitates use with object stores in Oracle Cloud Infrastructure.

In Oracle Database 21c and earlier releases, Header Blocks are the default layout format
used with dump files. Dump files were required to be located on a local file system. In Oracle
Database 23c and later releases, the default format changes from Header Blocks to Trailer
Blocks. This default format change facilitates your ability to write dump files to object stores in
the cloud.

Overview of Trailer Blocks

Unlike Header Blocks, Trailer Blocks are not written until the file is being closed. An initial
Header Block is written with limited information at file create. However, Trailer Blocks are not
written to disk. Instead, the Trailer Block is maintained and updated with the Control Table
until written to disk. After they are written to disk, these Trailer Blocks contain the information
needed to correctly process the data in the files when they are later read.

Chapter 1
How Oracle Data Pump Manages Dump File Blocks

1-31

Note:

Because this feature is new with Oracle Database 23c, if you export dump
files using the trailer block format, then the Data Pump export dump file set
will only be readable by Data Pump servers running Oracle Database 23c or
a later release.

The VERSION parameter value controls the dump file format by specifying
whether the database COMPATIBLE setting is set to Oracle Database 23c, with
this changed default, or if the COMPATIBLE setting is set to an earlier Oracle
Database release, where the default is to use Header Blocks. The credential
used for the object store indicates which API is used (Native|Swift). The
API used is what determines dump file format.

How Trailer Blocks Write to Cloud Object Stores

When Trailer Blocks are enabled, Oracle Data Pump writes and processes the .dmp
files stored in the cloud the same way as it writes and processes .dmp files stored on
local file systems. The procedure flow is as follows:

1. Log in as the user with a credential for the data store. The value for the credential
used to connect to the object store is the name of a credential object owned by the
database user that starts Data Dump export (expdp).

2. If the CREDENTIAL parameter is specified, then the value for the DUMPFILE
parameter is a list of comma-delimited strings that Data Pump treats as separated
strings that the data pump treats as Uniform Resource Identifiers (URIs) in the
cloud storage.

Note:

The Data Pump Export DUMPFILE parameter gives you the option to specify
an optional directory object using directory-object-name:filename.
However, if CREDENTIAL is specified, then this overrides the DUMPFILE
parameter specification.

The log file location is set by the DEFAULT_DIRECTORY parameter. You can choose to
specify directory object names as part of the file names for LOGFILE. If a URI is
specified for a dump file, and the CREDENTIAL the parameter is not specified, then
you will receive an error.

Prerequisite to Storing Dump Files on a Cloud Object Store

Before you can use Oracle Data Pump Export (expdp) to access an object store, you
must first have the credentials for that object store in a wallet pointed to by the
WALLET_LOCATION parameter in the sqlnet.ora file. You must provide a user name and
password to authenticate to the cloud, and you must provide a location for a certificate
for the object store in the wallet. In the following syntax, location is the location of the
wallet, file-for-trusted-certificate is the file name of the certificate, and
walletpassword is the password for the Oracle wallet:

Chapter 1
How Oracle Data Pump Manages Dump File Blocks

1-32

orapki wallet add -wallet location -trusted_cert -cert file-for-trusted-
certificate –pwd walletpassword
The CREDENTIAL parameter contains the name of the credential that Data Pump export uses
to build a key to look up in the wallet. In the preceding example, to you would specify
CREDENTIAL=obm on the expdp command line.

Related Topics

• Using The Secure External Password Store (Doc ID 340559.1)

• Oracle Data Pump Export command-line utility CREDENTIAL parameter

1.14.3 Header Block File Layout in Dump Files
In Oracle Database 21c and earlier releases, dump files use Header Blocks.

Note:

Starting with Oracle Database 23c, Header Blocks are a legacy format.

Dump file layout comes in different forms.

Data Pump Dump File Layout with Header Blocks (Oracle Database Releases 10.1 to
21c Default)

For Data Pump export files from Release 10.1 to Release 21c, the basic dump file layout has
the following components:

1. A file header block containing various fields (for example, dump file version number,
charset ID, offset and length to master table data, if present).

2. One or more blocks that contain system metadata, such as USERS, INDEXES, GRANTS, or
other metadata.

3. One or more blocks that contain table streams for each user table that is being exported.
For example: SCOTT.EMP.

4. One or more blocks that contain the table stream for the export job primary table.

The VERSION Parameter and Dump File Compatibility

The VERSION parameter specifies the version of the database object that are exported. It also
specifies the dump file compatibility. By default, VERSION is set to COMPATIBLE, which
corresponds to the database compatibility level as specified on the COMPATIBLE initialization
parameter.

Starting with Oracle Database 23c, if you update the COMPATIBLE initialization parameter to
23, and then want to export dump files to a database where COMPATIBLE is not set to 23c
(that is, you want to us the legacy Header Block format), you must specify a version earlier
than 23. For example, when VERSION is specified as 19, then Header block (legacy) format is
used for dump files, and the dump file version is 5.1
VERSION=19
For more details, see the Data Pump export (expdp) and impdp) VERSION parameter.

Chapter 1
How Oracle Data Pump Manages Dump File Blocks

1-33

https://support.oracle.com/rs?type=doc&id=340559.1

Related Topics

• Examples Using DataPump VERSION Parameter And Its Relationship To
Database COMPATIBLE Parameter (Doc ID 864582.1)

1.14.4 Types of Dump File Trailer Blocks
There are two types of trailer blocks that are used for Oracle Data Pump and SQL-
Mode dump files.

The type of Export option that you use affects what kind of trailer block type is used for
dump files.

Disk-Based Trailer Blocks

Disk-based trailer blocks are blocks that are written to the actual dump file where
where its corresponding header block and other data reside. SQL-Mode dump files
can only use disk-based trailers.

Table-Based Trailer Blocks

Table-based trailer blocks are trailer blocks that are stored externally to the dump file,
in the export job primary table. Storing the dump file block assists with two purposes:

1. The process that initially creates the dump file (the Primary export process) and
formats the header block is not the same process that later will have to use the
header block as the basis of the file trailer block. Instead, this is done by a Worker
process. Because the Worker process writes sequentially to the trailer block, and
has no need to seek and read the file header block, storing the file trailer block in
the Primary table is simply a place to save the information until a Worker process
can later fetch it and write it to disk, making it a disk-based trailer.

2. For the stream trailer block, storing file information in a table-based trailer block
simplifies size allocation management. All blocks in a dump file are 4K in size. If a
disk-based trailer block was used, then every table being exported would require
adding a trailer block to the file itself, which potentially could result in a substantial
increase in the size of the output dump file set. For user tables, the stream trailer
is always table-based. This is true for all user tables except the primary table,
which uses a disk-based stream trailer block.

Any file or trailer blocks stored in the primary table will be in compressed format. The
4K header and trailer blocks compress to around 200 bytes or less each.

1.15 How to Monitor Oracle Data Pump Jobs with Unified
Auditing

To monitor and record specific user database actions, perform auditing on Data Pump
jobs with unified auditing.

To monitor and record specific user database actions, you can perform auditing on
Oracle Data Pump jobs. Oracle Data Pump uses unified auditing, in which all audit
records are centralized in one place. To set up unified auditing, you create a unified
audit policy, or alter an existing audit policy. An audit policy is a named group of audit
settings that enable you to audit a particular aspect of user behavior in the database.

Chapter 1
How to Monitor Oracle Data Pump Jobs with Unified Auditing

1-34

https://support.oracle.com/rs?type=doc&id=864582.1
https://support.oracle.com/rs?type=doc&id=864582.1

To create the policy, use the SQL CREATE AUDIT POLICY statement. After creating the audit
policy, use the AUDIT SQL statement to enable the policy.

To disable the policy, use the NOAUDIT SQL statement.

See Also:

• Oracle Database SQL Language Reference for more information about the
SQL CREATE AUDIT POLICY,ALTER AUDIT POLICY, AUDIT, and NOAUDIT
statements

• Oracle Database Security Guide for more information about using auditing in an
Oracle database

1.16 Encrypted Data Security Warnings for Oracle Data Pump
Operations

Oracle Data Pump warns you when encrypted data is exported as unencrypted data.

During Oracle Data Pump export operations, you receive an ORA-39173 warning when Oracle
Data Pump encounters encrypted data specified when the export job was started. This
ORA-39173 warning ("ORA-39173: Encrypted data has been stored unencrypted in dump file
set") is also written to the the audit record. You can view the ORA-39173 errors encountered
during the export operation by checking the DP_WARNINGS1 column in the unified audit trail.
Obtain the audit information by running the following SQL statement:

SELECT DP_WARNINGS1 FROM UNIFIED_AUDIT_TRAIL WHERE ACTION_NAME = 'EXPORT'
ORDER BY 1;

1.17 How Does Oracle Data Pump Handle Timestamp Data?
Learn about factors that can affect successful completion of export and import jobs that
involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP WITH LOCAL
TIMEZONE.

Note:

The information in this section applies only to Oracle Data Pump running on Oracle
Database 12c and later.

• TIMESTAMP WITH TIMEZONE Restrictions
Export and import jobs that have TIMESTAMP WITH TIME ZONE data are restricted.

• TIMESTAMP WITH LOCAL TIME ZONE Restrictions
Moving tables using a transportable mode is restricted.

Chapter 1
Encrypted Data Security Warnings for Oracle Data Pump Operations

1-35

1.17.1 TIMESTAMP WITH TIMEZONE Restrictions
Export and import jobs that have TIMESTAMP WITH TIME ZONE data are restricted.

• Understanding TIMESTAMP WITH TIME ZONE Restrictions
Carrying out export and import jobs that have TIMESTAMP WITH TIME ZONE data
requires understanding information about your time zone file data and Oracle
Database release.

• Oracle Data Pump Support for TIMESTAMP WITH TIME ZONE Data
Oracle Data Pump supports TIMESTAMP WITH TIME ZONE data during different
export and import modes.

• Time Zone File Versions on the Source and Target
Successful job completion can depend on whether the source and target time
zone file versions match.

1.17.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions
Carrying out export and import jobs that have TIMESTAMP WITH TIME ZONE data
requires understanding information about your time zone file data and Oracle
Database release.

When you import a dump file, the time zone version of the destination (target)
database must be either the same version, or a more recent (higher) version than the
time zone version of the source database from which the export was taken. Successful
job completion can depend on the following factors:

• The version of the Oracle Database time zone files on the source and target
databases.

• The export/import mode and whether the Data Pump version being used supports
TIMESTAMP WITH TIME ZONE data. (Oracle Data Pump 11.2.0.1 and later releases
provide support for TIMESTAMP WITH TIME ZONE data.)

To identify the time zone file version of a database, you can run the following SQL
statement:

SQL> SELECT VERSION FROM V$TIMEZONE_FILE;

Related Topics

• Choosing a Time Zone File

1.17.1.2 Oracle Data Pump Support for TIMESTAMP WITH TIME ZONE Data
Oracle Data Pump supports TIMESTAMP WITH TIME ZONE data during different export
and import modes.

Oracle Data Pump provides support for TIMESTAMP WITH TIME ZONE data during
different export and import modes when versions of the Oracle Database time zone file
are different on the source and target databases. Supported modes include non-
transportable mode, transportable tablespace and transportable table mode, and full
transportable mode.

Chapter 1
How Does Oracle Data Pump Handle Timestamp Data?

1-36

Non-transportable Modes

• If the dump file is created with a Data Pump version that supports TIMESTAMP WITH TIME
ZONE data (11.2.0.1 or later), then the time zone file version of the export system is
recorded in the dump file. Oracle Data Pump uses that information to determine whether
data conversion is necessary. If the target database knows about the source time zone
version, but is actually using a later version, then the data is converted to the later
version. TIMESTAMP WITH TIME ZONE data cannot be downgraded, so if you attempt to
import to a target that is using an earlier version of the time zone file than the source
used, the import fails.

• If the dump file was created with an Oracle Data Pump version earlier than Oracle
Database 11g release 2 (11.2.0.1), then TIMESTAMP WITH TIME ZONE data is not
supported. No conversion is done, and corruption may occur.

Transportable Tablespace and Transportable Table Modes

• In transportable tablespace and transportable table modes, if the source and target have
different time zone file versions, tables with TIMESTAMP WITH TIME ZONE columns are not
created. A warning is displayed at the beginning of the job that shows the source and
target database time zone file versions. A message is also displayed for each table not
created. This is true even if the Oracle Data Pump version used to create the dump file
supports TIMESTAMP WITH TIME ZONE data. (Release 11.2.0.1 and later support
TIMESTAMP WITH TIMEZONE data.)

• If the source is earlier than Oracle Database 11g release 2 (11.2.0.1), then the time zone
file version must be the same on the source and target database for all transportable
jobs, regardless of whether the transportable set uses TIMESTAMP WITH TIME ZONE
columns.

Full Transportable Mode

Full transportable exports and imports are supported when the source database is at least
Oracle Database 11g release 2 (11.2.0.3) and the target is at least Oracle Database 12c
release 1 (12.1) or later.

Oracle Data Pump 11.2.0.1 and later provide support for TIMESTAMP WITH TIME ZONE data.
Therefore, in full transportable operations, tables with TIMESTAMP WITH TIME ZONE columns
are created. If the source and target database have different time zone file versions, then
TIMESTAMP WITH TIME ZONE columns from the source are converted to the time zone file
version of the target.

Related Topics

• Limitations on Transportable Tablespaces

• Full Export Mode
You can use Oracle Data Pump to carry out a full database export by using the FULL
parameter.

• Full Import Mode
To specify a full import with Oracle Data Pump, use the FULL parameter.

1.17.1.3 Time Zone File Versions on the Source and Target
Successful job completion can depend on whether the source and target time zone file
versions match.

Chapter 1
How Does Oracle Data Pump Handle Timestamp Data?

1-37

• If the Oracle Database time zone file version is the same on the source and target
databases, then conversion of TIMESTAMP WITH TIME ZONE data is not necessary.
The export/import job should complete successfully.

The exception to this is a transportable tablespace or transportable table export
performed using a Data Pump release earlier than 11.2.0.1. In that case, tables in
the dump file that have TIMESTAMP WITH TIME ZONE columns are not created on
import even though the time zone file version is the same on the source and
target.

• If the source time zone file version is not available on the target database, then the
job fails. The version of the time zone file on the source may not be available on
the target because the source may have had its time zone file updated to a later
version but the target has not. For example, if the export is done on Oracle
Database 11g release 2 (11.2.0.2) with a time zone file version of 17, and the
import is done on 11.2.0.2 with only a time zone file of 16 available, then the job
fails.

1.17.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions
Moving tables using a transportable mode is restricted.

If a table is moved using a transportable mode (transportable table, transportable
tablespace, or full transportable), and the following conditions exist, then a warning is
issued and the table is not created:

• The source and target databases have different database time zones.

• The table contains TIMESTAMP WITH LOCAL TIME ZONE data types.

To successfully move a table that was not created because of these conditions, use a
non-transportable export and import mode.

1.18 Character Set and Globalization Support
Considerations

Learn about Globalization support of Oracle Data Pump Export and Import using
character set conversion of user data, and data definition language (DDL).

• Data Definition Language (DDL)
The Export utility writes dump files using the database character set of the export
system.

• Single-Byte Character Sets and Export and Import
Ensure that the export database and the import database use the same character
set.

• Multibyte Character Sets and Export and Import
During an Oracle Data Pump export and import, the character set conversion
depends on the importing Oracle Database character set.

1.18.1 Data Definition Language (DDL)
The Export utility writes dump files using the database character set of the export
system.

Chapter 1
Character Set and Globalization Support Considerations

1-38

When the dump file is imported, a character set conversion is required for DDL only if the
database character set of the import system is different from the database character set of
the export system.

To minimize data loss due to character set conversions, ensure that the import database
character set is a superset of the export database character set.

1.18.2 Single-Byte Character Sets and Export and Import
Ensure that the export database and the import database use the same character set.

If the system on which the import occurs uses a 7-bit character set, and you import an 8-bit
character set dump file, then some 8-bit characters may be converted to 7-bit equivalents. An
indication that this has happened is when accented characters lose the accent mark.

To avoid this unwanted conversion, ensure that the export database and the import database
use the same character set.

1.18.3 Multibyte Character Sets and Export and Import
During an Oracle Data Pump export and import, the character set conversion depends on the
importing Oracle Database character set.

During character set conversion, any characters in the export file that have no equivalent in
the import database character set are replaced with a default character. The import database
character set defines the default character.

If the import system has to use replacement characters while converting DDL, then a warning
message is displayed and the system attempts to load the converted DDL.

If the import system has to use replacement characters while converting user data, then the
default behavior is to load the converted data. However, it is possible to instruct the import
system to reject rows of user data that were converted using replacement characters. See
the Import DATA OPTIONS parameter for details.

To guarantee 100% conversion, the import database character set must be a superset (or
equivalent) of the character set used to generate the export file.

Caution:

When the database character set of the export system differs from that of the import
system, the import system displays informational messages at the start of the job
that show what the database character set is.

When the import database character set is not a superset of the character set used
to generate the export file, the import system displays a warning that possible data
loss may occur due to character set conversions.

Related Topics

• DATA_OPTIONS

Chapter 1
Character Set and Globalization Support Considerations

1-39

1.19 Oracle Data Pump Behavior with Data-Bound Collation
Oracle Data Pump supports data-bound collation (DBC).

Oracle Data Pump Export always includes all available collation metadata into the
created dump file. This includes:

• Current default collations of exported users' schemas

• Current default collations of exported tables, views, materialized views and
PL/SQL units (including user-defined types)

• Declared collations of all table and cluster character data type columns

When importing a dump file exported from an Oracle Database 12c Release 2 (12.2)
database, Oracle Data Pump Import's behavior depends both on the effective value of
the Oracle Data Pump VERSION parameter at the time of import, and on whether the
data-bound collation (DBC) feature is enabled in the target database. The effective
value of the VERSION parameter is determined by how it is specified. You can specify
the parameter using the following:

• VERSION=n, which means the effective value is the specific version number n. For
example: VERSION=19

• VERSION=LATEST, which means the effective value is the currently running
database version

• VERSION=COMPATIBLE, which means the effective value is the same as the value of
the database initialization parameter COMPATIBLE. This is also true if no value is
specified for VERSION.

For the DBC feature to be enabled in a database, the initialization parameter
COMPATIBLE must be set to 12.2 or higher, and the initialization parameter
MAX_STRING_SIZE must be set to EXTENDED.

If the effective value of the Oracle Data Pump Import VERSION parameter is 12.2, and
DBC is enabled in the target database, then Oracle Data Pump Import generates DDL
statements with collation clauses referencing collation metadata from the dump file.
Exported objects are created with the original collation metadata that they had in the
source database.

No collation syntax is generated if DBC is disabled, or if the Oracle Data Pump Import
VERSION parameter is set to a value lower than 12.2.

Chapter 1
Oracle Data Pump Behavior with Data-Bound Collation

1-40

2
Oracle Data Pump Export

The Oracle Data Pump Export utility is used to unload data and metadata into a set of
operating system files, which are called a dump file set.

• What Is Oracle Data Pump Export?
Oracle Data Pump Export is a utility for unloading data and metadata into a set of
operating system files that are called a dump file set.

• Starting Oracle Data Pump Export
Start the Oracle Data Pump Export utility by using the expdp command.

• Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This capability
helps you limit the type of information that is exported.

• Parameters Available in Data Pump Export Command-Line Mode
Use Oracle Data Pump parameters for Export (expdp) to manage your data exports.

• Commands Available in Data Pump Export Interactive-Command Mode
Check which command options are available to you when using Data Pump Export in
interactive mode.

• Examples of Using Oracle Data Pump Export
You can use these common scenario examples to learn how you can use Oracle Data
Pump Export to move your data.

• Syntax Diagrams for Oracle Data Pump Export
You can use syntax diagrams to understand the valid SQL syntax for Oracle Data Pump
Export.

2.1 What Is Oracle Data Pump Export?
Oracle Data Pump Export is a utility for unloading data and metadata into a set of operating
system files that are called a dump file set.

You can import a dump file set only by using the Oracle Data Pump Import utility. You can
import the dump file set on the same system, or import it to another system, and loaded
there.

The dump file set is made up of one or more disk files that contain table data, database
object metadata, and control information. The files are written in a proprietary, binary format.
During an import operation, the Oracle Data Pump Import utility uses these files to locate
each database object in the dump file set.

Because the dump files are written by the server, rather than by the client, you must create
directory objects that define the server locations to which files are written.

Oracle Data Pump Export enables you to specify that you want a job to move a subset of the
data and metadata, as determined by the export mode. This subset selection is done by
using data filters and metadata filters, which are specified through Oracle Data Pump Export
parameters.

2-1

Note:

Several system schemas cannot be exported, because they are not user
schemas; they contain Oracle-managed data and metadata. Examples of
schemas that are not exported include SYS, ORDSYS, and MDSYS.
Secondary objects are also not exported, because the CREATE INDEX at
import time will recreate them.

Related Topics

• Understanding Dump_ Log_ and SQL File Default Locations

• Filtering During Export Operations

• Export Utility (exp or expdp) does not Export DR${name}$% or DR#{name}$%
Secondary Tables of Text Indexes (Doc ID 139388.1)

• Examples of Using Oracle Data Pump Export

2.2 Starting Oracle Data Pump Export
Start the Oracle Data Pump Export utility by using the expdp command.

The characteristics of the Oracle Data Pump export operation are determined by the
Export parameters that you specify. You can specify these parameters either on the
command line, or in a parameter file.

Caution:

Do not start Export as SYSDBA, except at the request of Oracle technical
support. SYSDBA is used internally and has specialized functions; its behavior
is not the same as for general users.

• Oracle Data Pump Export Interfaces
You can interact with Oracle Data Pump Export by using a command line, a
parameter file, or an interactive-command mode.

• Oracle Data Pump Export Modes
Export provides different modes for unloading different portions of Oracle
Database data.

• Network Considerations for Oracle Data Pump Export
Learn how Oracle Data Pump Export utility expdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and
how they are different from export operations using the NETWORK_LINK parameter.

2.2.1 Oracle Data Pump Export Interfaces
You can interact with Oracle Data Pump Export by using a command line, a parameter
file, or an interactive-command mode.

Choose among the three options:

Chapter 2
Starting Oracle Data Pump Export

2-2

https://support.oracle.com/rs?type=doc&id=139388.1
https://support.oracle.com/rs?type=doc&id=139388.1

• Command-Line Interface: Enables you to specify most of the Export parameters directly
on the command line.

• Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFILE parameter, because parameter files
cannot be nested. If you are using parameters whose values require quotation marks,
then Oracle recommends that you use parameter files.

• Interactive-Command Interface: Stops logging to the terminal and displays the Export
prompt, from which you can enter various commands, some of which are specific to
interactive-command mode. This mode is enabled by pressing Ctrl+C during an export
operation started with the command-line interface, or the parameter file interface.
Interactive-command mode is also enabled when you attach to an executing or stopped
job.

2.2.2 Oracle Data Pump Export Modes
Export provides different modes for unloading different portions of Oracle Database data.

Specify export modes on the command line, using the appropriate parameter.

Note:

You cannot export several Oracle-managed system schemas for Oracle Database,
because they are not user schemas; they contain Oracle-managed data and
metadata. Examples of system schemas that are not exported include SYS, ORDSYS,
and MDSYS.

• Full Export Mode
You can use Oracle Data Pump to carry out a full database export by using the FULL
parameter.

• Schema Mode
You can specify a schema export with Data Pump by using the SCHEMAS parameter. A
schema export is the default export mode.

• Table Mode
You can use Oracle Data Pump to carry out a table mode export by specifying the table
using the TABLES parameter.

• Tablespace Mode
You can use Data Pump to carry out a tablespace export by specifying tables using the
TABLESPACES parameter.

• Transportable Tablespace Mode
You can use Oracle Data Pump to carry out a transportable tablespace export by using
the TRANSPORT_TABLESPACES parameter.

2.2.2.1 Full Export Mode
You can use Oracle Data Pump to carry out a full database export by using the FULL
parameter.

In a full database export, the entire database is unloaded. This mode requires that you have
the DATAPUMP_EXP_FULL_DATABASE role.

Chapter 2
Starting Oracle Data Pump Export

2-3

Using the Transportable Option During Full Mode Exports

If you specify the TRANSPORTABLE=ALWAYS parameter along with the FULL parameter,
then Data Pump performs a full transportable export. A full transportable export
exports all objects and data necessary to create a complete copy of the database. A
mix of data movement methods is used:

• Objects residing in transportable tablespaces have only their metadata unloaded
into the dump file set; the data itself is moved when you copy the data files to the
target database. The data files that must be copied are listed at the end of the log
file for the export operation.

• Objects residing in non-transportable tablespaces (for example, SYSTEM and
SYSAUX) have both their metadata and data unloaded into the dump file set, using
direct path unload and external tables.

Restrictions

Performing a full transportable export has the following restrictions:

• The user performing a full transportable export requires the
DATAPUMP_EXP_FULL_DATABASE privilege.

• The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

• If the database being exported contains either encrypted tablespaces or tables
with encrypted columns (either Transparent Data Encryption (TDE) columns or
SecureFiles LOB columns), then the ENCRYPTION_PASSWORD parameter must also
be supplied.

• The source and target databases must be on platforms with the same endianness
if there are encrypted tablespaces in the source database.

• If the source platform and the target platform are of different endianness, then you
must convert the data being transported so that it is in the format of the target
platform. You can use the DBMS_FILE_TRANSFER package or the RMAN CONVERT
command to convert the data.

• All objects with storage that are selected for export must have all of their storage
segments either entirely within administrative, non-transportable tablespaces
(SYSTEM/SYSAUX) or entirely within user-defined, transportable tablespaces.
Storage for a single object cannot straddle the two kinds of tablespaces.

• When transporting a database over the network using full transportable export,
auditing cannot be enabled for tables stored in an administrative tablespace (such
as SYSTEM and SYSAUX) if the audit trail information itself is stored in a user-defined
tablespace.

• If both the source and target databases are running Oracle Database 12c, then to
perform a full transportable export, either the Oracle Data Pump VERSION
parameter must be set to at least 12.0. or the COMPATIBLE database initialization
parameter must be set to at least 12.0 or later.

Full Exports from Oracle Database 11.2.0.3

Full transportable exports are supported from a source database running at least
release 11.2.0.3. To run full transportable exports set the Oracle Data Pump VERSION

Chapter 2
Starting Oracle Data Pump Export

2-4

parameter to at least 12.0, as shown in the following syntax example, where user_name is the
user performing a full transportable export:

> expdp user_name FULL=y DUMPFILE=expdat.dmp DIRECTORY=data_pump_dir
 TRANSPORTABLE=always VERSION=12.0 LOGFILE=export.log

Full Exports and Imports Using Extensibility Filters

In the following example, you use a full export to copy just the audit_trails metadata and
data from the source database to the target database:

> expdp user/pwd directory=mydir full=y include=AUDIT_TRAILS
> impdp user/pwd directory=mydir

If you have completed an export from the source database in Full mode, then you can also
import just the audit trails from the full export:

> expdp user/pwd directory=mydir full=y
> impdp user/pwd directory=mydir include=AUDIT_TRAILS

To obtain a list of valid extensibility tags, use this query:

SELECT OBJECT_PATH FROM DATABASE_EXPORT_PATHS WHERE tag=1 ORDER BY 1;

Related Topics

• CONVERT

• Scenarios for Full Transportable Export/import

2.2.2.2 Schema Mode
You can specify a schema export with Data Pump by using the SCHEMAS parameter. A schema
export is the default export mode.

If you have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify a list of schemas,
optionally including the schema definitions themselves and also system privilege grants to
those schemas. If you do not have the DATAPUMP_EXP_FULL_DATABASE role, then you can
export only your own schema.

The SYS schema cannot be used as a source schema for export jobs.

Cross-schema references are not exported unless the referenced schema is also specified in
the list of schemas to be exported. For example, a trigger defined on a table within one of the
specified schemas, but that resides in a schema not explicitly specified, is not exported. Also,
external type definitions upon which tables in the specified schemas depend are not
exported. In such a case, it is expected that the type definitions already exist in the target
instance at import time.

Related Topics

• SCHEMAS

Chapter 2
Starting Oracle Data Pump Export

2-5

2.2.2.3 Table Mode
You can use Oracle Data Pump to carry out a table mode export by specifying the
table using the TABLES parameter.

In table mode, only a specified set of tables, partitions, and their dependent objects
are unloaded. Any object required to create the table, such as the owning schema, or
types for columns, must already exist.

If you specify the TRANSPORTABLE=ALWAYS parameter with the TABLES parameter, then
only object metadata is unloaded. To move the actual data, you copy the data files to
the target database. This results in quicker export times. If you are moving data files
between releases or platforms, then the data files need to be processed by Oracle
Recovery Manager (RMAN).

You must have the DATAPUMP_EXP_FULL_DATABASE role to specify tables that are not in
your own schema. Note that type definitions for columns are not exported in table
mode. It is expected that the type definitions already exist in the target instance at
import time. Also, as in schema exports, cross-schema references are not exported.

To recover tables and table partitions, you can also use RMAN backups and the
RMAN RECOVER TABLE command. During this process, RMAN creates (and optionally
imports) a Data Pump export dump file that contains the recovered objects. Refer to
Oracle Database Backup and Recovery Guide for more information about transporting
data across platforms.

Carrying out a table mode export has the following restriction:

• When using TRANSPORTABLE=ALWAYS parameter with the TABLES parameter, the
ENCRYPTION_PASSWORD parameter must also be used if the table being exported
contains encrypted columns, either Transparent Data Encryption (TDE) columns or
SecureFiles LOB columns.

Related Topics

• TABLES

• TRANSPORTABLE

• Oracle Database Backup and Recovery User’s Guide

2.2.2.4 Tablespace Mode
You can use Data Pump to carry out a tablespace export by specifying tables using the
TABLESPACES parameter.

In tablespace mode, only the tables contained in a specified set of tablespaces are
unloaded. If a table is unloaded, then its dependent objects are also unloaded. Both
object metadata and data are unloaded. In tablespace mode, if any part of a table
resides in the specified set, then that table and all of its dependent objects are
exported. Privileged users get all tables. Unprivileged users get only the tables in their
own schemas.

Related Topics

• TABLESPACES

Chapter 2
Starting Oracle Data Pump Export

2-6

2.2.2.5 Transportable Tablespace Mode
You can use Oracle Data Pump to carry out a transportable tablespace export by using the
TRANSPORT_TABLESPACES parameter.

In transportable tablespace mode, only the metadata for the tables (and their dependent
objects) within a specified set of tablespaces is exported. The tablespace data files are
copied in a separate operation. Then, a transportable tablespace import is performed to
import the dump file containing the metadata and to specify the data files to use.

Transportable tablespace mode requires that the specified tables be completely self-
contained. That is, all storage segments of all tables (and their indexes) defined within the
tablespace set must also be contained within the set. If there are self-containment violations,
then Export identifies all of the problems without actually performing the export.

Type definitions for columns of tables in the specified tablespaces are exported and imported.
 The schemas owning those types must be present in the target instance.

Starting with Oracle Database 21c, transportable tablespace exports can be done with
degrees of parallelism greater than 1.

Note:

You cannot export transportable tablespaces and then import them into a database
at a lower release level. The target database must be at the same or later release
level as the source database.

Using Oracle Data Pump to carry out a transportable tablespace export has the following
restrictions:

• If any of the tablespaces being exported contains tables with encrypted columns, either
Transparent Data Encryption (TDE) columns or SecureFiles LOB columns, then the
ENCRYPTION_PASSWORD parameter must also be supplied..

• If any of the tablespaces being exported is encrypted, then the use of the
ENCRYPTION_PASSWORD is optional but recommended. If the ENCRYPTION_PASSWORD is
omitted in this case, then the following warning message is displayed:

ORA-39396: Warning: exporting encrypted data using transportable option
without password

This warning points out that in order to successfully import such a transportable
tablespace job, the target database wallet must contain a copy of the same database
access key used in the source database when performing the export. Using the
ENCRYPTION_PASSWORD parameter during the export and import eliminates this
requirement.

Related Topics

• How Does Oracle Data Pump Handle Timestamp Data?

Chapter 2
Starting Oracle Data Pump Export

2-7

2.2.3 Network Considerations for Oracle Data Pump Export
Learn how Oracle Data Pump Export utility expdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and how
they are different from export operations using the NETWORK_LINK parameter.

When you start expdp, you can specify a connect identifier in the connect string that
can be different from the current instance identified by the current Oracle System ID
(SID).

To specify a connect identifier manually by using either an Oracle*Net connect
descriptor, or an Easy Connect identifier, or a net service name (usually defined in the
tnsnames.ora file) that maps to a connect descriptor.

To use a connect identifier, you must have Oracle Net Listener running (to start the
default listener, enter lsnrctl start). The following example shows this type of
connection, in which inst1 is the connect identifier:

expdp hr@inst1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Export then prompts you for a password:

Password: password

To specify an Easy Connect string, the connect string must be an escaped quoted
string. The Easy Connect string in its simplest form consists of a string
database_host[:port][/[service_name]. For example, if the host is inst1, and you
run Export on pdb1, then the Easy Connect string can be:

expdp hr@\"inst1@example.com/pdb1" DIRECTORY=dpump_dir1
DUMPFILE=hr.dmp TABLES=employees

If you prefer to use an unquoted string, then you can specify the Easy Connect
connect string in a parameter file.

The local Export client connects to the database instance defined by the connect
identifier inst1 (a Net service name), retrieves data from inst1, and writes it to the
dump file hr.dmp on inst1.

Specifying a connect identifier when you start the Export utility is different from
performing an export operation using the NETWORK_LINK parameter. When you start an
export operation and specify a connect identifier, the local Export client connects to the
database instance identified by the connect identifier, retrieves data from that
database instance, and writes it to a dump file set on that database instance. By
contrast, when you perform an export using the NETWORK_LINK parameter, the export is
performed using a database link. (A database link is a connection between two
physical database servers that allows a client to access them as one logical
database.)

Related Topics

• NETWORK_LINK

• Database Links

Chapter 2
Starting Oracle Data Pump Export

2-8

• Understanding the Easy Connect Naming Method

2.3 Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This capability
helps you limit the type of information that is exported.

• Oracle Data Pump Export Data Filters
You can specify restrictions on the table rows that you export by using Oracle Data Pump
Data-specific filtering through the QUERY and SAMPLE parameters.

• Oracle Data Pump Metadata Filters
To exclude or include objects in an export operation, use Oracle Data Pump metadata
filters

2.3.1 Oracle Data Pump Export Data Filters
You can specify restrictions on the table rows that you export by using Oracle Data Pump
Data-specific filtering through the QUERY and SAMPLE parameters.

Oracle Data Pump can also implement Data filtering indirectly because of metadata filtering,
which can include or exclude table objects along with any associated row data.

Each data filter can be specified once for each table within a job. If different filters using the
same name are applied to both a particular table and to the whole job, then the filter
parameter supplied for the specific table takes precedence.

2.3.2 Oracle Data Pump Metadata Filters
To exclude or include objects in an export operation, use Oracle Data Pump metadata filters

Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters. Metadata
filters identify a set of objects that you want to be included or excluded from an Export or
Import operation. For example, you can request a full export, but without Package
Specifications or Package Bodies.

To use filters correctly and to obtain the results you expect, remember that dependent objects
of an identified object are processed along with the identified object. For example, if a filter
specifies that you want an index included in an operation, then statistics from that index are
also included. Likewise, if a table is excluded by a filter, then indexes, constraints, grants, and
triggers upon the table are also excluded by the filter.

Starting with Oracle Database 21c, Oracle Data Pump permits you to set both INCLUDE and
EXCLUDE parameters in the same command. When you include both parameters in a
command, Oracle Data Pump processes the INCLUDE parameter first, such that the Oracle
Data Pump job includes only objects identified as included. Then it processes the EXCLUDE
parameters, which can further restrict the objects processed by the job. As the command
runs, any objects specified by the EXCLUDE parameter that are in the list of INCLUDE objects
are removed.

If multiple filters are specified for an object type, then an implicit AND operation is applied to
them. That is, objects pertaining to the job must pass all of the filters applied to their object
types.

You can specify the same metadata filter name multiple times within a job.

Chapter 2
Filtering During Export Operations

2-9

To see a list of valid object types, query the following views:
DATABASE_EXPORT_OBJECTS for full mode, SCHEMA_EXPORT_OBJECTS for schema mode,
and TABLE_EXPORT_OBJECTS for table and tablespace mode. The values listed in the
OBJECT_PATH column are the valid object types. For example, you could perform the
following query:

SQL> SELECT OBJECT_PATH, COMMENTS FROM SCHEMA_EXPORT_OBJECTS
 2 WHERE OBJECT_PATH LIKE '%GRANT' AND OBJECT_PATH NOT LIKE '%/%';

The output of this query looks similar to the following:

OBJECT_PATH

COMMENTS

GRANT
Object grants on the selected tables

OBJECT_GRANT
Object grants on the selected tables

PROCDEPOBJ_GRANT
Grants on instance procedural objects

PROCOBJ_GRANT
Schema procedural object grants in the selected schemas

ROLE_GRANT
Role grants to users associated with the selected schemas

SYSTEM_GRANT
System privileges granted to users associated with the selected schemas

Related Topics

• EXCLUDE

• INCLUDE

• OPEN Function

2.4 Parameters Available in Data Pump Export Command-
Line Mode

Use Oracle Data Pump parameters for Export (expdp) to manage your data exports.

• About Oracle Data Pump Export Parameters
Learn how to use Oracle Data Pump Export parameters in command-line mode,
including case sensitivity, quotation marks, escape characters, and information
about how to use examples.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-10

• ABORT_STEP
The Oracle Data Pump Export command-line utility ABORT_STEP parameter stops the job
after it is initialized.

• ACCESS_METHOD
The Oracle Data Pump Export command-line utility ACCESS_METHOD parameter instructs
Export to use a particular method to unload data.

• ATTACH
The Oracle Data Pump Export command-line utility ATTACH parameter attaches a worker
or client session to an existing export job, and automatically places you in the interactive-
command interface.

• CHECKSUM
The Oracle Data Pump Export command-line utility CHECKSUM parameter enables the
export to perform checksum validations for exports.

• CHECKSUM_ALGORITM
The Oracle Data Pump Export command-line utility CHECKSUM_ALGORITHM parameter
specifies which checksum algorithm to use when calculating checksums.

• CLUSTER
The Oracle Data Pump Export command-line utility CLUSTER parameter determines
whether Data Pump can use Oracle RAC, resources, and start workers on other Oracle
RAC instances.

• COMPRESSION
The Oracle Data Pump Export command-line utility COMPRESSION parameter specifies
which data to compress before writing to the dump file set.

• COMPRESSION_ALGORITHM
The Oracle Data Pump Export command-line utility COMPRESSION_ALGORITHM parameter
specifies the compression algorithm that you want to use when compressing dump file
data.

• CONTENT
The Oracle Data Pump Export command-line utility CONTENT parameter enables you to
filter what Export unloads: data only, metadata only, or both.

• CREDENTIAL
The Oracle Data Pump Export command-line utility CREDENTIAL parameter enables the
export to write data stored into object stores.

• DATA_OPTIONS
The Oracle Data Pump Export command-line utility DATA_OPTIONS parameter designates
how you want certain types of data handled during export operations.

• DIRECTORY
The Oracle Data Pump Export command-line utility DIRECTORY parameter specifies the
default location to which Export can write the dump file set and the log file.

• DUMPFILE
The Oracle Data Pump Export command-line utility DUMPFILE parameter specifies the
names, and optionally, the directory objects of dump files for an export job.

• ENABLE_SECURE_ROLES
The Oracle Data Pump Export command-line utility ENABLE_SECURE_ROLES parameter
prevents inadvertent use of protected roles during exports.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-11

• ENCRYPTION
The Oracle Data Pump Export command-line utility ENCRYPTION parameter
specifies whether to encrypt data before writing it to the dump file set.

• ENCRYPTION_ALGORITHM
The Oracle Data Pump Export command-line utility ENCRYPTION_ALGORITHM
parameter specifies which cryptographic algorithm should be used to perform the
encryption.

• ENCRYPTION_MODE
The Oracle Data Pump Export command-line utility ENCRYPTION_MODE parameter
specifies the type of security to use when encryption and decryption are
performed.

• ENCRYPTION_PASSWORD
The Oracle Data Pump Export command-line utility ENCRYPTION_PASSWORD
parameter prevents unauthorized access to an encrypted dump file set.

• ENCRYPTION_PWD_PROMPT
The Oracle Data Pump Export command-line utility ENCRYPTION_PWD_PROMPT
specifies whether Oracle Data Pump prompts you for the encryption password.

• ESTIMATE
The Oracle Data Pump Export command-line utility ESTIMATE parameter specifies
the method that Export uses to estimate how much disk space each table in the
export job will consume (in bytes).

• ESTIMATE_ONLY
The Oracle Data Pump Export command-line utility ESTIMATE_ONLY parameter
instructs Export to estimate the space that a job consumes, without actually
performing the export operation.

• EXCLUDE
The Oracle Data Pump Export command-line utility EXCLUDE parameter enables
you to filter the metadata that is exported by specifying objects and object types
that you want to exclude from the export operation.

• FILESIZE
The Oracle Data Pump Export command-line utility FILESIZE parameter specifies
the maximum size of each dump file.

• FLASHBACK_SCN
The Oracle Data Pump Export command-line utility FLASHBACK_SCN parameter
specifies the system change number (SCN) that Export uses to enable the
Flashback Query utility.

• FLASHBACK_TIME
The Oracle Data Pump Export command-line utility FLASHBACK_TIME parameter
finds the SCN that most closely matches the specified time.

• FULL
The Oracle Data Pump Export command-line utility FULL parameter specifies that
you want to perform a full database mode export.

• HELP
The Oracle Data Pump Export command-line utility HELP parameter displays online
help for the Export utility.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-12

• INCLUDE
The Oracle Data Pump Export command-line utility INCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types for the current
export mode.

• JOB_NAME
The Oracle Data Pump Export command-line utility JOB_NAME parameter identifies the
export job in subsequent actions, such as when using ATTACH to attach to a job, or to
identify a job using DBA_DATAPUMP_JOBS or USER_DATAPUMP_JOBS views.

• KEEP_MASTER
The Oracle Data Pump Export command-line utility KEEP_MASTER parameter indicates
whether the Data Pump control job table should be deleted or retained at the end of an
Oracle Data Pump job that completes successfully.

• LOGFILE
The Oracle Data Pump Export command-line utility LOGFILE parameter specifies the
name, and optionally, a directory, for the log file of the export job.

• LOGTIME
The Oracle Data Pump Export command-line utility LOGTIME parameter specifies that
messages displayed during export operations are timestamped.

• METRICS
The Data Pump Export command-line utility METRICS parameter indicates whether you
want additional information about the job reported to the Data Pump log file.

• NETWORK_LINK
The Oracle Data Pump Export command-line utility NETWORK_LINK parameter enables an
export from a (source) database identified by a valid database link.

• NOLOGFILE
The Oracle Data Pump Export command-line utility NOLOGFILE parameter specifies
whether to suppress creation of a log file.

• PARALLEL
The Oracle Data Pump Export command-line utility PARALLEL parameter specifies the
maximum number of processes of active execution operating on behalf of the export job.

• PARALLEL_THRESHOLD
The Oracle Data Pump Export command-line utility PARALLEL_THRESHOLD parameter
specifies the size of the divisor that Data Pump uses to calculate potential parallel DML
based on table size

• PARFILE
The Oracle Data Pump Export command-line utility PARFILE parameter specifies the
name of an export parameter file.

• QUERY
The Data Pump Export command-line utility QUERY parameter enables you to specify a
query clause that is used to filter the data that gets exported.

• REMAP_DATA
The Oracle Data Pump Export command-line utility REMAP_DATA parameter enables you to
specify a remap function that takes as a source the original value of the designated
column and returns a remapped value that replaces the original value in the dump file.

• REUSE_DUMPFILES
The Data Pump Export command-line utility xxx parameter specifies whether to overwrite
a preexisting dump file.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-13

• SAMPLE
The Data Pump Export command-line utility SAMPLE parameter specifies a
percentage of the data rows that you want to be sampled and unloaded from the
source database.

• SCHEMAS
The Data Pump Export command-line utility SCHEMAS parameter specifies that you
want to perform a schema-mode export. This is the default mode for Export.

• SERVICE_NAME
The Oracle Data Pump Export command-line utility SERVICE_NAME parameter
specifies a service name that you want to use in conjunction with the CLUSTER
parameter.

• SOURCE_EDITION
The Data Pump Export command-line utility SOURCE_EDITION parameter specifies
the database edition from which objects are exported.

• STATUS
The Data Pump Export command-line utility STATUS parameter specifies the
frequency at which the job status display is updated

• TABLES
The Data Pump Export command-line utility TABLES parameter specifies that you
want to perform a table-mode export.

• TABLESPACES
The Data Pump Export command-line utility TABLESPACES parameter specifies a
list of tablespace names to be exported in tablespace mode.

• TRANSPORT_DATAFILES_LOG
The Oracle Data Pump Export command-line mode TRANSPORT_DATAFILES_LOG
parameter specifies a file into which the list of data files associated with a
transportable export is written.

• TRANSPORT_FULL_CHECK
The Data Pump Export command-line utility TRANSPORT_FULL_CHECK parameter
specifies whether to check for dependencies between those objects inside the
transportable set and those outside the transportable set. This parameter is
applicable only to a transportable-tablespace mode export.

• TRANSPORT_TABLESPACES
The Data Pump Export command-line utility TRANSPORT_TABLESPACES parameter
specifies that you want to perform an export in transportable-tablespace mode

• TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

• TTS_CLOSURE_CHECK
The Data Pump Export command-line mode TTS_CLOSURE_CHECK parameter is
used to indicate the degree of closure checking to be performed as part of a Data
Pump transportable tablespace operation.

• VERSION
The Oracle Data Pump Export command-line utility VERSION parameter specifies
the version of database objects that you want to export.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-14

• VIEWS_AS_TABLES
The Oracle Data Pump Export command-line utility VIEWS_AS_TABLES parameter specifies
that you want one or more views exported as tables.

2.4.1 About Oracle Data Pump Export Parameters
Learn how to use Oracle Data Pump Export parameters in command-line mode, including
case sensitivity, quotation marks, escape characters, and information about how to use
examples.

Use these examples to understand how you can use Oracle Data Pump Export at the
command line.

Specifying Export Parameters

For parameters that can have multiple values specified, you can specify the values by
commas, or by spaces. For example, you can specify TABLES=employees,jobs or
TABLES=employees jobs.

For every parameter you enter, you must enter an equal sign (=), and a value. Data Pump
has no other way of knowing that the previous parameter specification is complete and a new
parameter specification is beginning. For example, in the following command line, even
though NOLOGFILE is a valid parameter, Export interprets the string as another dump file name
for the DUMPFILE parameter:

expdp DIRECTORY=dpumpdir DUMPFILE=test.dmp NOLOGFILE TABLES=employees

This command results in two dump files being created, test.dmp and nologfile.dmp.

To avoid this result, specify either NOLOGFILE=YES or NOLOGFILE=NO.

Case Sensitivity When Specifying Parameter Values

For tablespace names, schema names, table names, and so on, that you enter as parameter
values, Oracle Data Pump by default changes values entered as lowercase or mixed-case
into uppercase. For example, if you enter TABLE=hr.employees, then it is changed to
TABLE=HR.EMPLOYEES. To maintain case, you must enclose the value within quotation marks.
For example, TABLE="hr.employees" would preserve the table name in all lower case. The
name you enter must exactly match the name stored in the database.

Use of Quotation Marks On the Data Pump Command Line

Some operating systems treat quotation marks as special characters. These operating
systems therefore do not pass quotation marks on to an application unless quotation marks
are preceded by an escape character, such as the backslash (\). This requirement is true
both on the command lin, and within parameter files. Some operating systems can require an
additional set of single or double quotation marks on the command line around the entire
parameter value containing the special characters.

The following examples are provided to illustrate these concepts. Note that your particular
operating system can have different requirements. The documentation examples cannot fully
anticipate operating environments, which are unique to each user.

In this example, the TABLES parameter is specified in a parameter file:

TABLES = \"MixedCaseTableName\"

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-15

If you specify that value on the command line, then some operating systems require
that you surround the parameter file name using single quotation marks, as follows:

TABLES = '\"MixedCaseTableName\"'

To avoid having to supply more quotation marks on the command line, Oracle
recommends the use of parameter files. Also, note that if you use a parameter file, and
the parameter value being specified does not have quotation marks as the first
character in the string (for example, TABLES=scott."EmP"), then some operating
systems do not require the use of escape characters.

Using the Export Parameter Examples

If you try running the examples that are provided for each parameter, be aware of the
following:

• After you enter the user name and parameters as shown in the example, Export is
started, and you are prompted for a password. You are required to enter the
password before a database connection is made.

• Most of the examples use the sample schemas of the seed database, which is
installed by default when you install Oracle Database. In particular, the human
resources (hr) schema is often used.

• The examples assume that the directory objects, dpump_dir1 and dpump_dir2,
already exist, and that READ and WRITE privileges are granted to the hr user for
these directory objects.

• Some of the examples require the DATAPUMP_EXP_FULL_DATABASE and
DATAPUMP_IMP_FULL_DATABASE roles. The examples assume that the hr user is
granted these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning
the necessary privileges and roles.

Unless specifically noted, you can also specify these parameters in a parameter file.

Related Topics

• Introduction to Sample Schemas

See Also:

Your operating system-specific documentation for information about how
special and reserved characters are handled on your system

2.4.2 ABORT_STEP
The Oracle Data Pump Export command-line utility ABORT_STEP parameter stops the
job after it is initialized.

Default

Null

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-16

Purpose

Used to stop the job after it is initialized. Stopping a job after it is initialized enables you to
query the Data Pump control job table that you want to query before any data is exported.

Syntax and Description

ABORT_STEP=[n | -1]

The possible values correspond to a process order number in the Data Pump control job
table. The result of using each number is as follows:

• n: If the value is zero or greater, then the export operation is started, and the job is
stopped at the object that is stored in the Data Pump control job table with the
corresponding process order number.

• -1: If the value is negative one (-1), then abort the job after setting it up, but before
exporting any objects or data.

Restrictions

• None

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr ABORT_STEP=-1

2.4.3 ACCESS_METHOD
The Oracle Data Pump Export command-line utility ACCESS_METHOD parameter instructs
Export to use a particular method to unload data.

Default

AUTOMATIC

Purpose

Instructs Export to use a particular method to unload data.

Syntax and Description

ACCESS_METHOD=[AUTOMATIC | DIRECT_PATH | EXTERNAL_TABLE | INSERT_AS_SELECT]

The ACCESS_METHOD parameter is provided so that you can try an alternative method if the
default method does not work for some reason. All methods can be specified for a network
export. If the data for a table cannot be unloaded with the specified access method, then the
data displays an error for the table and continues with the next work item.

The available options are as follows:

• AUTOMATIC — Oracle Data Pump determines the best way to unload data for each table.
Oracle recommends that you use AUTOMATIC whenever possible because it allows Data
Pump to automatically select the most efficient method.

• DIRECT_PATH — Oracle Data Pump uses direct path unload for every table.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-17

• EXTERNAL_TABLE — Oracle Data Pump uses a SQL CREATE TABLE AS SELECT
statement to create an external table using data that is stored in the dump file. The
SELECT clause reads from the table to be unloaded.

• INSERT_AS_SELECT — Oracle Data Pump runs a SQL INSERT AS SELECT statement
to unload data from a remote database. This option is only available for network
mode exports.

Restrictions

• To use the ACCESS_METHOD parameter with network exports, you must be using
Oracle Database 12c Release 2 (12.2.0.1) or later.

• The ACCESS_METHOD parameter for Oracle Data Pump Export is not valid for
transportable tablespace jobs.

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr
ACCESS_METHOD=EXTERNAL_TABLE

2.4.4 ATTACH
The Oracle Data Pump Export command-line utility ATTACH parameter attaches a
worker or client session to an existing export job, and automatically places you in the
interactive-command interface.

Default

The default is the job currently in the user schema, if there is only one.

Purpose

Attaches the worker session to an existing Data Pump control export job, and
automatically places you in the interactive-command interface. Export displays a
description of the job to which you are attached, and also displays the Export prompt.

Syntax and Description

ATTACH [=[schema_name.]job_name]

The schema_name is optional. To specify a schema other than your own, you must have
the DATAPUMP_EXP_FULL_DATABASE role.

The job_name is optional if only one export job is associated with your schema and the
job is active. To attach to a stopped job, you must supply the job name. To see a list of
Data Pump job names, you can query the DBA_DATAPUMP_JOBS view, or the
USER_DATAPUMP_JOBS view.

When you are attached to the job, Export displays a description of the job and then
displays the Export prompt.

Restrictions

• When you specify the ATTACH parameter, the only other Data Pump parameter you
can specify on the command line is ENCRYPTION_PASSWORD.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-18

• If the job to which you are attaching was initially started using an encryption password,
then when you attach to the job, you must again enter the ENCRYPTION_PASSWORD
parameter on the command line to respecify that password. The only exception to this
requirement is if the job was initially started with the
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY parameter. In that case, the encryption password
is not needed when attaching to the job.

• You cannot attach to a job in another schema unless it is already running.

• If the dump file set or Data Pump control table for the job have been deleted, then the
attach operation fails.

• Altering the Data Pump control table in any way leads to unpredictable results.

Example

The following is an example of using the ATTACH parameter. It assumes that the job
hr.export_job is an existing job.

> expdp hr ATTACH=hr.export_job

2.4.5 CHECKSUM
The Oracle Data Pump Export command-line utility CHECKSUM parameter enables the export to
perform checksum validations for exports.

Default

The default value depends upon the combination of checksum-related parameters that are
used. To enable checksums, you must specify either the CHECKSUM or the
CHECKSUM_ALGORITHM parameter.

If you specify only the CHECKSUM_ALGORITHM parameter, then CHECKSUM defaults to YES.

If you specify neither the CHECKSUM nor the CHECKSUM_ALGORITHM parameters, then CHECKSUM
defaults to NO.

Purpose

Specifies whether Oracle Data Pump calculates checksums for the export dump file set.

The checksum is calculated at the end of the job, so the time scales according to the size of
the file. Multiple files can be processed in parallel. You can use this parameter to validate that
a dumpfile is complete and not corrupted after copying it over the network to an object store,
or using it to validate an old dumpfile.

Syntax and Description

CHECKSUM=[YES|NO]

• YES Specifies that Oracle Data Pump calculates a file checksum for each dump file in the
export dump file set.

• NO Specifies that Oacle Data Pump does not calculate file checksums.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-19

Restrictions

To use this checksum feature, the COMPATIBLE initialization parameter must be set to at
least 20.0.

Example

This example performs a schema-mode unload of the HR schema, and generates an
SHA256 (the default CHECKSUM_ALGORITHM) checksum for each dump file in the dump file
set.

expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp CHECKSUM=YES

2.4.6 CHECKSUM_ALGORITM
The Oracle Data Pump Export command-line utility CHECKSUM_ALGORITHM parameter
specifies which checksum algorithm to use when calculating checksums.

Default

The default value depends upon the combination of checksum-related parameters that
are used. To enable checksums, you must specify either the CHECKSUM or the
CHECKSUM_ALGORITHM parameter.

If the CHECKSUM parameter is set to YES, and you have not specified a value for
CHECKSUM_ALGORITHM, then CHECKSUM_ALGORITHM defaults to the SHA256 Secure Hash
Algorithm.

Purpose

Helps to ensure the integrity of the contents of a dump file beyond the header block by
using a cryptographic hash to ensure that there are no unintentional errors in a dump
file, such as can occur with a transmission error. Setting the value specifies whether
Oracle Data Pump calculates checksums for the export dump file set, and which hash
algorithm is used to calculate the checksum.

Syntax and Description

CHECKSUM_ALGORITHM = [CRC32|SHA256|SHA384|SHA512]

• CRC32 Specifies that Oracle Data Pump genrerates a 32-bit checksum.

• SHA256 Specifies that Oracle Data Pump generates a 256-bit checksum.

• SHA384 Specifies that Oracle Data Pump generates a 384-bit checksum.

• SHA512 Specifies that Oracle Data Pump generates a 512-bit checksum.

Restrictions

To use this checksum feature, the COMPATIBLE initialization parameter must be set to at
least 20.0.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-20

Example

This example performs a schema-mode unload of the HR schema, and generates an SHA384
checksum for each dump file in the dump file set that is generated.

expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp CHECKSUM_ALGORITHM=SHA384

2.4.7 CLUSTER
The Oracle Data Pump Export command-line utility CLUSTER parameter determines whether
Data Pump can use Oracle RAC, resources, and start workers on other Oracle RAC
instances.

Default

YES

Purpose

Determines whether Oracle Data Pump can use Oracle Real Application Clusters (Oracle
RAC) resources and start workers on other Oracle RAC instances.

Syntax and Description

CLUSTER=[YES | NO]

To force Oracle Data Pump Export to use only the instance where the job is started and to
replicate pre-Oracle Database 11g release 2 (11.2) behavior, specify CLUSTER=NO.

To specify a specific, existing service, and constrain worker processes to run only on
instances defined for that service, use the SERVICE_NAME parameter with the CLUSTER=YES
parameter.

Use of the CLUSTER parameter can affect performance, because there is some additional
overhead in distributing the export job across Oracle RAC instances. For small jobs, it can be
better to specify CLUSTER=NO to constrain the job to run on the instance where it is started.
Jobs whose performance benefits the most from using the CLUSTER parameter are those
involving large amounts of data.

Example

The following is an example of using the CLUSTER parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_clus%U.dmp CLUSTER=NO PARALLEL=3

This example starts a schema-mode export (the default) of the hr schema. Because
CLUSTER=NO is specified, the job uses only the instance on which it started. (If you do not
specify the CLUSTER parameter, then the default value of Y is used. With that value, if
necessary, workers are started on other instances in the Oracle RAC cluster). The dump files
are written to the location specified for the dpump_dir1 directory object. The job can have up
to 3 parallel processes.

Related Topics

• SERVICE_NAME

• Understanding How to Use Oracle Data Pump with Oracle RAC

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-21

2.4.8 COMPRESSION
The Oracle Data Pump Export command-line utility COMPRESSION parameter specifies
which data to compress before writing to the dump file set.

Default

METADATA_ONLY

Purpose

Specifies which data to compress before writing to the dump file set.

Syntax and Description

COMPRESSION=[ALL | DATA_ONLY | METADATA_ONLY | NONE]

• ALL enables compression for the entire export operation. The ALL option requires
that the Oracle Advanced Compression option is enabled.

• DATA_ONLY results in all data being written to the dump file in compressed format.
The DATA_ONLY option requires that the Oracle Advanced Compression option is
enabled.

• METADATA_ONLY results in all metadata being written to the dump file in compressed
format. This is the default.

• NONE disables compression for the entire export operation.

Restrictions

• To make full use of all these compression options, the COMPATIBLE initialization
parameter must be set to at least 11.0.0.

• The METADATA_ONLY option can be used even if the COMPATIBLE initialization
parameter is set to 10.2.

• Compression of data using ALL or DATA_ONLY is valid only in the Enterprise Edition
of Oracle Database 11g or later, and requires that the Oracle Advanced
Compression option is enabled.

Example

The following is an example of using the COMPRESSION parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_comp.dmp
COMPRESSION=METADATA_ONLY

This command runs a schema-mode export that compresses all metadata before
writing it out to the dump file, hr_comp.dmp. It defaults to a schema-mode export,
because no export mode is specified.

See Oracle Database Licensing Information for information about licensing
requirements for the Oracle Advanced Compression option.

Related Topics

• Oracle Database Options and Their Permitted Features

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-22

2.4.9 COMPRESSION_ALGORITHM
The Oracle Data Pump Export command-line utility COMPRESSION_ALGORITHM parameter
specifies the compression algorithm that you want to use when compressing dump file data.

Default

BASIC

Purpose

Specifies the compression algorithm to be used when compressing dump file data.

Syntax and Description

COMPRESSION_ALGORITHM = [BASIC | LOW | MEDIUM | HIGH]

The parameter options are defined as follows:

• BASIC: Offers a good combination of compression ratios and speed; the algorithm used is
the same as in previous versions of Oracle Data Pump.

• LOW: Least impact on export throughput. This option is suited for environments where
CPU resources are the limiting factor.

• MEDIUM: Recommended for most environments. This option, like the BASIC option,
provides a good combination of compression ratios and speed, but it uses a different
algorithm than BASIC.

• HIGH: Best suited for situations in which dump files are copied over slower networks,
where the limiting factor is network speed.

You characterize the performance of a compression algorithm by its CPU usage, and by the
compression ratio (the size of the compressed output as a percentage of the uncompressed
input). These measures vary, based on the size and type of inputs, as well as the speed of
the compression algorithms used. The compression ratio generally increases from low to
high, with a trade-off of potentially consuming more CPU resources.

Oracle recommends that you run tests with the different compression levels on the data in
your environment. Choosing a compression level based on your environment, workload
characteristics, and size and type of data is the only way to ensure that the exported dump
file set compression level meets your performance and storage requirements.

Restrictions

• To use this feature, database compatibility must be set to 12.0.0 or later.

• This feature requires that you have the Oracle Advanced Compression option enabled.

Example 1

This example performs a schema-mode unload of the HR schema, and compresses only the
table data using a compression algorithm with a low level of compression. Using this
command option can result in fewer CPU resources being used, at the expense of a less than
optimal compression ratio.

 > expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp COMPRESSION=DATA_ONLY
COMPRESSION_ALGORITHM=LOW

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-23

Example 2

This example performs a schema-mode unload of the HR schema, and compresses
both metadata and table data using the basic level of compression. Omitting the
COMPRESSION_ALGORITHM parameter altogether is equivalent to specifying BASIC as the
value.

 > expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp COMPRESSION=ALL
COMPRESSION_ALGORITHM=BASIC

2.4.10 CONTENT
The Oracle Data Pump Export command-line utility CONTENT parameter enables you to
filter what Export unloads: data only, metadata only, or both.

Default

ALL

Purpose

Enables you to filter what Export unloads: data only, metadata only, or both.

Syntax and Description

CONTENT=[ALL | DATA_ONLY | METADATA_ONLY]

• ALL unloads both data and metadata. This option is the default.

• DATA_ONLY unloads only table row data; no database object definitions are
unloaded.

• METADATA_ONLY unloads only database object definitions; no table row data is
unloaded. Be aware that if you specify CONTENT=METADATA_ONLY, then afterward,
when the dump file is imported, any index or table statistics imported from the
dump file are locked after the import.

Restrictions

• The CONTENT=METADATA_ONLY parameter cannot be used with the
TRANSPORT_TABLESPACES (transportable-tablespace mode) parameter or with the
QUERY parameter.

Example

The following is an example of using the CONTENT parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp CONTENT=METADATA_ONLY

This command executes a schema-mode export that unloads only the metadata
associated with the hr schema. It defaults to a schema-mode export of the hr schema,
because no export mode is specified.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-24

2.4.11 CREDENTIAL
The Oracle Data Pump Export command-line utility CREDENTIAL parameter enables the export
to write data stored into object stores.

Default

none.

Purpose

Enables Oracle Data Pump exports to write data files to object stores. For a data file, you can
specify the URI for the data file that you want to be stored on the object store. The
CREDENTIAL values specifies credentials granted to the user starting the export. These
permissions enable the Oracle Data Pump export to access and write to the object store, so
that data files can be written to Oracle Cloud Infrastructure object stores.

Syntax and Description

CREDENTIAL=user-credential

Usage Notes

The CREDENTIAL parameter changes how expdp interprets the text string in DUMPFILE. If the
CREDENTIAL parameter is not specified, then the DUMPFILE parameter can specify an optional
directory object and file name in directory-object-name:file-name format. If the
CREDENTIAL parameter is used, then it provides authentication and authorization for expdp to
write to one or more object storage URIs specified by DUMPFILE.

If you do not specify the CREDENTIAL parameter, then the dumpfile value is not treated as a
URI, but instead treated as a file specification. The dumpfile specification only contains the
file name; it cannot contain a path. As a result, if you do not specify the CREDENTIAL
parameter, then you receive the following errors:

ORA-39001: invalid argument value
ORA-39000: bad dump file specification
ORA-39088: file name cannot contain a path specification

Restrictions

• The credential parameter cannot be an OCI resource principal, Azure service principal,
Amazon Resource Name (ARN), or a Google service account.

• For Cloud systems, UTIL_FILE does not support writing to the cloud. In that case, the
export continues to use the value set by the DEFAULT_DIRECTORY parameter as the
location of the log files. Also, you can specify directory object names as part of the file
names for LOGFILE.

• If you attempt to specify a URI for a dump file, and the CREDENTIAL parameter is not
specified, then you encounter the error ORA-39000 bad dumpfile specification, as
shown in the preceding usage notes.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-25

Examples

The following example provides a credential, "sales-dept" and DUMPFILE specifies an
Object Storage URI in which to export:

expdp hr DUMPFILE=https://objectstorage.example.com/images_basic.dmp
CREDENTIAL=sales-dept

The following example does not specify a credential:

expdp hr DUMPFILE=dir obj:filename

2.4.12 DATA_OPTIONS
The Oracle Data Pump Export command-line utility DATA_OPTIONS parameter
designates how you want certain types of data handled during export operations.

Default: There is no default. If this parameter is not used, then the special data
handling options it provides simply do not take effect.

Purpose

The DATA_OPTIONS parameter designates how certain types of data should be handled
during export operations.

Syntax and Description

• GROUP_PARTITION_TABLE_DATA: Tells Data Pump to unload all table data in one
operation rather than unload each table partition as a separate operation. As a
result, the definition of the table will not matter at import time because Import will
see one partition of data that will be loaded into the entire table.

• VERIFY_STREAM_FORMAT: Validates the format of a data stream before it is written to
the Data Pump dump file. The verification checks for a valid format for the stream
after it is generated but before it is written to disk. This assures that there are no
errors when the dump file is created, which in turn helps to assure that there will
not be errors when the stream is read at import time.

Restrictions

DATA_OPTIONS= [GROUP_PARTITION_TABLE_DATA | VERIFY_STREAM_FORMAT]

• The Export DATA_OPTIONS parameter requires the job version to be set to 11.0.0
or later. See VERSION.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-26

Example

This example shows an export operation in which data for all partitions of a table are
unloaded together instead of the default behavior of unloading the data for each partition
separately.

> expdp hr TABLES=hr.tab1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp VERSION=11.2
GROUP_PARTITION_TABLE_DATA

See Oracle XML DB Developer’s Guide for information specific to exporting and importing
XMLType tables.

Related Topics

• VERSION

2.4.13 DIRECTORY
The Oracle Data Pump Export command-line utility DIRECTORY parameter specifies the default
location to which Export can write the dump file set and the log file.

Default

DATA_PUMP_DIR

Purpose

Specifies the default location to which Export can write the dump file set and the log file.

Syntax and Description

DIRECTORY=directory_object

The directory_object is the name of a database directory object. It is not the file path of an
actual directory. Privileged users have access to a default directory object named
DATA_PUMP_DIR. The definition of the DATA_PUMP_DIR directory can be changed by Oracle
during upgrades, or when patches are applied.

Users with access to the default DATA_PUMP_DIR directory object do not need to use the
DIRECTORY parameter.

A directory object specified on the DUMPFILE or LOGFILE parameter overrides any directory
object that you specify for the DIRECTORY parameter.

Example

The following is an example of using the DIRECTORY parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=employees.dmp CONTENT=METADATA_ONLY

In this example, the dump file, employees.dump is written to the path that is associated with
the directory object dpump_dir1.

Related Topics

• Understanding Dump_ Log_ and SQL File Default Locations

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-27

• Understanding How to Use Oracle Data Pump with Oracle RAC

• Oracle Database SQL Language Reference

2.4.14 DUMPFILE
The Oracle Data Pump Export command-line utility DUMPFILE parameter specifies the
names, and optionally, the directory objects of dump files for an export job.

Default

expdat.dmp

Purpose

Specifies the names, and if you choose to do so, the directory objects of dump files for
an export job.

Syntax and Description

DUMPFILE=[directory_object:]file_name [, ...]

Specifying directory_object is optional if you have already specified the directory
object by using the DIRECTORY parameter. If you supply a value here, then it must be a
directory object that exists, and to which you have access. A database directory object
that is specified as part of the DUMPFILE parameter overrides a value specified by the
DIRECTORY parameter, or by the default directory object.

You can supply multiple file_name specifications as a comma-delimited list, or in
separate DUMPFILE parameter specifications. If no extension is given for the file name,
then Export uses the default file extension of .dmp. The file names can contain a
substitution variable. The following table lists the available substitution variables.

Substitution
Variable

Meaning

%U The substitution variable is expanded in the resulting file names into a 2-digit,
fixed-width, incrementing integer that starts at 01 and ends at 99. If a file
specification contains two substitution variables, then both are incremented at
the same time. For example, exp%Uaa%U.dmp resolves to exp01aa01.dmp,
exp02aa02.dmp, and so forth.

%d, %D Specifies the current day of the month from the Gregorian calendar in format
DD.
Note: This substitution variable cannot be used in an import file name.

%m, %M Specifies the month in the Gregorian calendar in format MM.
Note: This substitution variable cannot be used in an import file name.

%t, %T Specifies the year, month, and day in the Gregorian calendar in this format:
YYYYMMDD.
Note: This substitution variable cannot be used in an import file name.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-28

Substitution
Variable

Meaning

%l, %L Specifies a system-generated unique file name.
The file names can contain a substitution variable (%L), which implies that
multiple files can be generated. The substitution variable is expanded in the
resulting file names into a 2-digit, fixed-width, incrementing integer starting at
01 and ending at 99 which is the same as (%U). In addition, the substitution
variable is expanded in the resulting file names into a 3-digit to 10-digit,
variable-width, incrementing integers starting at 100 and ending at
2147483646. The width field is determined by the number of digits in the
integer.

For example if the current integer is 1, then exp%Laa%L.dmp resolves to:

exp01aa01.dmp
exp02aa02.dmp

and so forth, up until 99. Then, the next file name has 3 digits substituted:

exp100aa100.dmp
exp101aa101.dmp

and so forth, up until 999, where the next file has 4 digits substituted. The
substitutions continue up to the largest number substitution allowed, which is
2147483646.

%y, %Y Specifies the year in this format: YYYY.
Note: This substitution variable cannot be used in an import file name.

If the FILESIZE parameter is specified, then each dump file has a maximum of that size and
be nonextensible. If more space is required for the dump file set, and a template with a
substitution variable was supplied, then a new dump file is automatically created of the size
specified by the FILESIZE parameter, if there is room on the device.

As each file specification or file template containing a substitution variable is defined, it is
instantiated into one fully qualified file name, and Export attempts to create the file. The file
specifications are processed in the order in which they are specified. If the job needs extra
files because the maximum file size is reached, or to keep parallel workers active, then more
files are created if file templates with substitution variables were specified.

Although it is possible to specify multiple files using the DUMPFILE parameter, the export job
can only require a subset of those files to hold the exported data. The dump file set displayed
at the end of the export job shows exactly which files were used. It is this list of files that is
required to perform an import operation using this dump file set. Any files that were not used
can be discarded.

When you specify the DUMPFILE parameter, it is possible to introduce conflicting file names,
regardless of whether substitution variables are used. The following are some examples of

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-29

expdp commands that would produce file name conflicts. For all these examples, an
ORA-27308 created file already exists error is returned:

expdp system/manager directory=dpump_dir schemas=hr
DUMPFILE=foo%U.dmp,foo%U.dmp

expdp system/manager directory=dpump_dir schemas=hr
DUMPFILE=foo%U.dmp,foo%L.dmp

expdp system/manager directory=dpump_dir schemas=hr
DUMPFILE=foo%U.dmp,foo%D.dmp

expdp system/manager directory =dpump_dir schemas=hr
DUMPFILE=foo%tK_%t_%u_%y_P,foo%TK_%T_%U_%Y_P

Restrictions

• Any resulting dump file names that match preexisting dump file names generate
an error, and the preexisting dump files are not overwritten. You can override this
behavior by specifying the Export parameter REUSE_DUMPFILES=YES.

• Dump files created on Oracle Database 11g releases with the Oracle Data Pump
parameter VERSION=12 can only be imported on Oracle Database 12c Release 1
(12.1) and later.

Example

The following is an example of using the DUMPFILE parameter:

> expdp hr SCHEMAS=hr DIRECTORY=dpump_dir1
DUMPFILE=dpump_dir2:exp1.dmp,
 exp2%U.dmp PARALLEL=3

The dump file, exp1.dmp, is written to the path associated with the directory object
dpump_dir2, because dpump_dir2 was specified as part of the dump file name, and
therefore overrides the directory object specified with the DIRECTORY parameter.
Because all three parallel processes are given work to perform during this job, dump
files named exp201.dmp and exp202.dmp is created, based on the specified
substitution variable exp2%U.dmp. Because no directory is specified for them, they are
written to the path associated with the directory object, dpump_dir1, that was specified
with the DIRECTORY parameter.

Related Topics

• Using Substitution Variables with Oracle Data Pump Exports

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-30

2.4.15 ENABLE_SECURE_ROLES
The Oracle Data Pump Export command-line utility ENABLE_SECURE_ROLES parameter
prevents inadvertent use of protected roles during exports.

Default

In Oracle Database 19c and later releases, the default value is NO.

Purpose

Some Oracle roles require authorization. If you need to use these roles with Oracle Data
Pump exports, then you must explicitly enable them by setting the ENABLE_SECURE_ROLES
parameter to YES.

Syntax

ENABLE_SECURE_ROLES=[NO|YES]
• NO Disables Oracle roles that require authorization.

• YES Enables Oracle roles that require authorization.

Example

expdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:exp1.dmp,
 exp2%U.dmp ENABLE_SECURE_ROLES=YES

2.4.16 ENCRYPTION
The Oracle Data Pump Export command-line utility ENCRYPTION parameter specifies whether
to encrypt data before writing it to the dump file set.

Default

The default value depends upon the combination of encryption-related parameters that are
used. To enable encryption, either the ENCRYPTION or ENCRYPTION_PASSWORD parameter, or
both, must be specified.

If only the ENCRYPTION_PASSWORD parameter is specified, then the ENCRYPTION parameter
defaults to ALL.

If only the ENCRYPTION parameter is specified and the Oracle encryption wallet is open, then
the default mode is TRANSPARENT. If only the ENCRYPTION parameter is specified and the wallet
is closed, then an error is returned.

If neither ENCRYPTION nor ENCRYPTION_PASSWORD is specified, then ENCRYPTION defaults to
NONE.

Purpose

Specifies whether to encrypt data before writing it to the dump file set.

Syntax and Description

ENCRYPTION = [ALL | DATA_ONLY | ENCRYPTED_COLUMNS_ONLY | METADATA_ONLY | NONE]

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-31

• ALL enables encryption for all data and metadata in the export operation.

• DATA_ONLY specifies that only data is written to the dump file set in encrypted
format.

• ENCRYPTED_COLUMNS_ONLY specifies that only encrypted columns are written to the
dump file set in encrypted format. This option cannot be used with the
ENCRYPTION_ALGORITHM parameter because the columns already have an assigned
encryption format and by definition, a column can have only one form of
encryption.

To use the ENCRYPTED_COLUMNS_ONLY option, you must also use the
ENCRYPTION_PASSWORD parameter.

To use the ENCRYPTED_COLUMNS_ONLY option, you must have Oracle Advanced
Security Transparent Data Encryption (TDE) enabled. See Oracle Database
Advanced Security Guide for more information about TDE.

• METADATA_ONLY specifies that only metadata is written to the dump file set in
encrypted format.

• NONE specifies that no data is written to the dump file set in encrypted format.

SecureFiles Considerations for Encryption

If the data being exported includes SecureFiles that you want to be encrypted, then
you must specify ENCRYPTION=ALL to encrypt the entire dump file set. Encryption of the
entire dump file set is the only way to achieve encryption security for SecureFiles
during a Data Pump export operation. For more information about SecureFiles, see
Oracle Database SecureFiles and Large Objects Developer’s Guide.

Oracle Database Vault Considerations for Encryption

When an export operation is started, Data Pump determines whether Oracle Database
Vault is enabled. If it is, and dump file encryption has not been specified for the job, a
warning message is returned to alert you that secure data is being written in an
insecure manner (clear text) to the dump file set:

ORA-39327: Oracle Database Vault data is being stored unencrypted in
dump file set

You can stop the current export operation and start a new one, specifying that you
want the output dump file set to be encrypted.

Restrictions

• To specify the ALL, DATA_ONLY, or METADATA_ONLY options, the COMPATIBLE
initialization parameter must be set to at least 11.0.0.

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

• To use the ALL, DATA_ONLY or METADATA_ONLY options without also using an
encryption password, you must have the Oracle Advanced Security option
enabled. See Oracle Database Licensing Information for information about
licensing requirements for the Oracle Advanced Security option.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-32

Example

The following example performs an export operation in which only data is encrypted in the
dump file:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc.dmp JOB_NAME=enc1
ENCRYPTION=data_only ENCRYPTION_PASSWORD=foobar

Related Topics

• Oracle Database Security Guide

• SecureFiles LOB Storage

• Oracle Database Options and Their Permitted Features

2.4.17 ENCRYPTION_ALGORITHM
The Oracle Data Pump Export command-line utility ENCRYPTION_ALGORITHM parameter
specifies which cryptographic algorithm should be used to perform the encryption.

Default

AES256

Purpose

Specifies which cryptographic algorithm should be used to perform the encryption.

Syntax and Description

ENCRYPTION_ALGORITHM = 256

Restrictions

• To use this encryption feature, the COMPATIBLE initialization parameter must be set to at
least 11.0.0.

• The ENCRYPTION_ALGORITHM parameter requires that you also specify either the
ENCRYPTION or ENCRYPTION_PASSWORD parameter; otherwise an error is returned.

• The ENCRYPTION_ALGORITHM parameter cannot be used in conjunction with
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY because columns that are already encrypted
cannot have an additional encryption format assigned to them.

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or later.

• The ENCRYPTION _ALGORITHM parameter does not require that you have the Oracle
Advanced Security enabled, but it can be used in conjunction with other encryption-
related parameters that do require that option. See Oracle Database Licensing
Information for information about licensing requirements for the Oracle Advanced
Security option.

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc3.dmp
ENCRYPTION_PASSWORD=foobar ENCRYPTION_ALGORITHM=AES256

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-33

Related Topics

• About Oracle Database Native Network Encryption and Data Integrity

• Oracle Database Options and Their Permitted Features

2.4.18 ENCRYPTION_MODE
The Oracle Data Pump Export command-line utility ENCRYPTION_MODE parameter
specifies the type of security to use when encryption and decryption are performed.

Default

The default mode depends on which other encryption-related parameters are used. If
only the ENCRYPTION parameter is specified and the Oracle encryption wallet is open,
then the default mode is TRANSPARENT. If only the ENCRYPTION parameter is specified
and the wallet is closed, then an error is returned.

If the ENCRYPTION_PASSWORD parameter is specified and the wallet is open, then the
default is DUAL. If the ENCRYPTION_PASSWORD parameter is specified and the wallet is
closed, then the default is PASSWORD.

Purpose

Specifies the type of security to use when encryption and decryption are performed.

Syntax and Description

ENCRYPTION_MODE = [DUAL | PASSWORD | TRANSPARENT]

DUAL mode creates a dump file set that can later be imported either transparently or by
specifying a password that was used when the dual-mode encrypted dump file set was
created. When you later import the dump file set created in DUAL mode, you can use
either the wallet or the password that was specified with the ENCRYPTION_PASSWORD
parameter. DUAL mode is best suited for cases in which the dump file set will be
imported on-site using the wallet, but which may also need to be imported offsite
where the wallet is not available.

PASSWORD mode requires that you provide a password when creating encrypted dump
file sets. You will need to provide the same password when you import the dump file
set. PASSWORD mode requires that you also specify the ENCRYPTION_PASSWORD
parameter. The PASSWORD mode is best suited for cases in which the dump file set will
be imported into a different or remote database, but which must remain secure in
transit.

TRANSPARENT mode enables you to create an encrypted dump file set without any
intervention from a database administrator (DBA), provided the required wallet is
available. Therefore, the ENCRYPTION_PASSWORD parameter is not required. The
parameter will, in fact, cause an error if it is used in TRANSPARENT mode. This
encryption mode is best suited for cases in which the dump file set is imported into the
same database from which it was exported.

Restrictions

• To use DUAL or TRANSPARENT mode, the COMPATIBLE initialization parameter must
be set to at least 11.0.0.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-34

• When you use the ENCRYPTION_MODE parameter, you must also use either the ENCRYPTION
or ENCRYPTION_PASSWORD parameter. Otherwise, an error is returned.

• When you use the ENCRYPTION=ENCRYPTED_COLUMNS_ONLY, you cannot use the
ENCRYPTION_MODE parameter. Otherwise, an error is returned.

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or later.

• The use of DUAL or TRANSPARENT mode requires that the Oracle Advanced Security option
is enabled. See Oracle Database Licensing Information for information about licensing
requirements for the Oracle Advanced Security option.

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc4.dmp
ENCRYPTION=all ENCRYPTION_PASSWORD=secretwords
ENCRYPTION_ALGORITHM=AES256 ENCRYPTION_MODE=DUAL

Related Topics

• Oracle Database Options and Their Permitted Features

2.4.19 ENCRYPTION_PASSWORD
The Oracle Data Pump Export command-line utility ENCRYPTION_PASSWORD parameter
prevents unauthorized access to an encrypted dump file set.

Default

There is no default; the value is user-provided.

Purpose

Specifies a password for encrypting encrypted column data, metadata, or table data in the
export dump file. Using this parameter prevents unauthorized access to an encrypted dump
file set.

Note:

Oracle Data Pump encryption functionality changed as of Oracle Database 11g
release 1 (11.1). Before release 11.1, the ENCRYPTION_PASSWORD parameter applied
only to encrypted columns. However, as of release 11.1, the new ENCRYPTION
parameter provides options for encrypting other types of data. As a result of this
change, if you now specify ENCRYPTION_PASSWORD without also specifying
ENCRYPTION and a specific option, then all data written to the dump file is encrypted
(equivalent to specifying ENCRYPTION=ALL). To re-encrypt only encrypted columns,
you must now specify ENCRYPTION=ENCRYPTED_COLUMNS_ONLY in addition to
ENCRYPTION_PASSWORD.

Syntax and Description

ENCRYPTION_PASSWORD = password

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-35

The password value that is supplied specifies a key for re-encrypting encrypted table
columns, metadata, or table data so that they are not written as clear text in the dump
file set. If the export operation involves encrypted table columns, but an encryption
password is not supplied, then the encrypted columns are written to the dump file set
as clear text and a warning is issued.

The password that you enter is echoed to the screen. If you do not want the password
shown on the screen as you enter it, then use the ENCRYPTION_PWD_PROMPT parameter.

The maximum length allowed for an encryption password is usually 128 bytes.
However, the limit is 30 bytes if ENCRYPTION=ENCRYPTED_COLUMNS_ONLY and either the
VERSION parameter or database compatibility is set to less than 12.2.

For export operations, this parameter is required if the ENCRYPTION_MODE parameter is
set to either PASSWORD or DUAL.

Note:

There is no connection or dependency between the key specified with the
Oracle Data Pump ENCRYPTION_PASSWORD parameter and the key specified
with the ENCRYPT keyword when the table with encrypted columns was
initially created. For example, suppose that a table is created as follows, with
an encrypted column whose key is xyz:

CREATE TABLE emp (col1 VARCHAR2(256) ENCRYPT IDENTIFIED BY
"xyz");

When you export the emp table, you can supply any arbitrary value for
ENCRYPTION_PASSWORD. It does not have to be xyz.

Restrictions

• This parameter is valid only in Oracle Database Enterprise Edition 11g or later.

• The ENCRYPTION_PASSWORD parameter is required for the transport of encrypted
tablespaces and tablespaces containing tables with encrypted columns in a full
transportable export.

• If ENCRYPTION_PASSWORD is specified but ENCRYPTION_MODE is not specified, then it
is not necessary to have Oracle Advanced Security Transparent Data Encryption
enabled, because ENCRYPTION_MODE defaults to PASSWORD.

• If the requested encryption mode is TRANSPARENT, then the ENCRYPTION_PASSWORD
parameter is not valid.

• If ENCRYPTION_MODE is set to DUAL, then to use the ENCRYPTION_PASSWORD
parameter, you must have Oracle Advanced Security Transparent Data Encryption
(TDE) enabled. See Oracle Database Advanced Security Guide for more
information about TDE.

• For network exports, the ENCRYPTION_PASSWORD parameter in conjunction with
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY is not supported with user-defined external
tables that have encrypted columns. The table is skipped, and an error message is
displayed, but the job continues.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-36

Example

In the following example, an encryption password, 123456, is assigned to the dump file,
dpcd2be1.dmp.

> expdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir1
DUMPFILE=dpcd2be1.dmp ENCRYPTION=ENCRYPTED_COLUMNS_ONLY
ENCRYPTION_PASSWORD=123456

Encrypted columns in the employee_s_encrypt table are not written as clear text in the
dpcd2be1.dmp dump file. Afterward, if you want to import the dpcd2be1.dmp file created by this
example, then you must supply the same encryption password.

Related Topics

• Oracle Database Licensing Information User Manual

• Oracle Database Advanced Security Guide

2.4.20 ENCRYPTION_PWD_PROMPT
The Oracle Data Pump Export command-line utility ENCRYPTION_PWD_PROMPT specifies
whether Oracle Data Pump prompts you for the encryption password.

Default

NO

Purpose

Specifies whether Data Pump should prompt you for the encryption password.

Syntax and Description

ENCRYPTION_PWD_PROMPT=[YES | NO]

Specify ENCRYPTION_PWD_PROMPT=YES on the command line to instruct Data Pump to prompt
you for the encryption password, rather than you entering it on the command line with the
ENCRYPTION_PASSWORD parameter. The advantage to doing this is that the encryption
password is not echoed to the screen when it is entered at the prompt. Whereas, when it is
entered on the command line using the ENCRYPTION_PASSWORD parameter, it appears in plain
text.

The encryption password that you enter at the prompt is subject to the same criteria
described for the ENCRYPTION_PASSWORD parameter.

If you specify an encryption password on the export operation, you must also supply it on the
import operation.

Restrictions

• Concurrent use of the ENCRYPTION_PWD_PROMPT and ENCRYPTION_PASSWORD parameters is
prohibited.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-37

Example

The following syntax example shows Data Pump first prompting for the user password
and then for the encryption password.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp
ENCRYPTION_PWD_PROMPT=YES
.
.
.
Copyright (c) 1982, 2017, Oracle and/or its affiliates. All rights
reserved.

Password:

Connected to: Oracle Database 18c Enterprise Edition Release
18.0.0.0.0 - Production
Version 18.1.0.0.0

Encryption Password:

Starting "HR"."SYS_EXPORT_SCHEMA_01": hr/********
directory=dpump_dir1 dumpfile=hr.dmp encryption_pwd_prompt=Y
.
.
.

2.4.21 ESTIMATE
The Oracle Data Pump Export command-line utility ESTIMATE parameter specifies the
method that Export uses to estimate how much disk space each table in the export job
will consume (in bytes).

Default

STATISTICS

Purpose

Specifies the method that Export will use to estimate how much disk space each table
in the export job will consume (in bytes). The estimate is printed in the log file and
displayed on the client's standard output device. The estimate is for table row data
only; it does not include metadata.

Syntax and Description

ESTIMATE=[BLOCKS | STATISTICS]

• BLOCKS - The estimate is calculated by multiplying the number of database blocks
used by the source objects, times the appropriate block sizes.

• STATISTICS - The estimate is calculated using statistics for each table. For this
method to be as accurate as possible, all tables should have been analyzed
recently. (Table analysis can be done with either the SQL ANALYZE statement or the
DBMS_STATS PL/SQL package.)

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-38

Restrictions

• If the Data Pump export job involves compressed tables, then when you use
ESTIMATE=BLOCKS, the default size estimation given for the compressed table is
inaccurate. This inaccuracy results because the size estimate does not reflect that the
data was stored in a compressed form. To obtain a more accurate size estimate for
compressed tables, use ESTIMATE=STATISTICS.

• If either the QUERY or REMAP_DATA parameter is used, then the estimate can also be
inaccurate.

Example

The following example shows a use of the ESTIMATE parameter in which the estimate is
calculated using statistics for the employees table:

> expdp hr TABLES=employees ESTIMATE=STATISTICS DIRECTORY=dpump_dir1
 DUMPFILE=estimate_stat.dmp

2.4.22 ESTIMATE_ONLY
The Oracle Data Pump Export command-line utility ESTIMATE_ONLY parameter instructs
Export to estimate the space that a job consumes, without actually performing the export
operation.

Default

NO

Purpose

Instructs Export to estimate the space that a job consumes, without actually performing the
export operation.

Syntax and Description

ESTIMATE_ONLY=[YES | NO]

If ESTIMATE_ONLY=YES, then Export estimates the space that would be consumed, but quits
without actually performing the export operation.

Restrictions

• The ESTIMATE_ONLY parameter cannot be used in conjunction with the QUERY parameter.

Example

The following shows an example of using the ESTIMATE_ONLY parameter to determine how
much space an export of the HR schema requires.

> expdp hr ESTIMATE_ONLY=YES NOLOGFILE=YES SCHEMAS=HR

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-39

2.4.23 EXCLUDE
The Oracle Data Pump Export command-line utility EXCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types that you
want to exclude from the export operation.

Default

There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object
types that you want to exclude from the export operation.

Syntax and Description

EXCLUDE=object_type[:name_clause] [, ...]

The object_type specifies the type of object that you want to exclude. To see a list of
valid values for object_type, query the following views: DATABASE_EXPORT_OBJECTS for
full mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for
table and tablespace mode. The values listed in the OBJECT_PATH column are the valid
object types.

All object types for the given mode of export are included in the export, except object
types specified in an EXCLUDE statement. If an object is excluded, then all dependent
objects are also excluded. For example, excluding a table also excludes all indexes
and triggers on the table.

The name_clause is optional. Using this parameter enables selection of specific
objects within an object type. It is a SQL expression used as a filter on the object
names of that type. It consists of a SQL operator, and the values against which you
want to compare the object names of the specified type. The name_clause applies only
to object types whose instances have names (for example, it is applicable to TABLE,
but not to GRANT). It must be separated from the object type with a colon, and enclosed
in double quotation marks, because single quotation marks are required to delimit the
name strings. For example, you can set EXCLUDE=INDEX:"LIKE 'EMP%'" to exclude all
indexes whose names start with EMP.

The name that you supply for the name_clause must exactly match, including upper
and lower casing, an existing object in the database. For example, if the name_clause
you supply is for a table named EMPLOYEES, then there must be an existing table
named EMPLOYEES using all upper case. If you supplied the name_clause as Employees
or employees or any other variation that does not match the existing table, then the
table is not found.

If no name_clause is provided, then all objects of the specified type are excluded.

You can specify more than one EXCLUDE statement.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter can also require that you use escape characters. Oracle

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-40

recommends that you place this parameter in a parameter file, which can reduce the number
of escape characters that otherwise can be needed on the command line.

If the object_type you specify is CONSTRAINT, GRANT, or USER, then be aware of the effects, as
described in the following paragraphs.

Excluding Constraints

The following constraints cannot be explicitly excluded:

• Constraints needed for the table to be created and loaded successfully; for example,
primary key constraints for index-organized tables, or REF SCOPE and WITH ROWID
constraints for tables with REF columns

For example, the following EXCLUDE statements are interpreted as follows:

• EXCLUDE=CONSTRAINT excludes all constraints, except for any constraints needed for
successful table creation and loading.

• EXCLUDE=REF_CONSTRAINT excludes referential integrity (foreign key) constraints.

Excluding Grants and Users

Specifying EXCLUDE=GRANT excludes object grants on all object types and system privilege
grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects contained
within user schemas.

To exclude a specific user and all objects of that user, specify a command such as the
following, where hr is the schema name of the user you want to exclude.

expdp FULL=YES DUMPFILE=expfull.dmp EXCLUDE=SCHEMA:"='HR'"

In this example, the export mode FULL is specified. If no mode is specified, then the default
mode is used. The default mode is SCHEMAS. But if the default mode is used, then in this
example, the default causes an error, because if SCHEMAS is used, then the command
indicates that you want the schema both exported and excluded at the same time.

If you try to exclude a user by using a statement such as EXCLUDE=USER:"='HR'", then only
the information used in CREATE USER hr DDL statements is excluded, and you can obtain
unexpected results.

Starting with Oracle Database 21c, Oracle Data Pump permits you to set both INCLUDE and
EXCLUDE parameters in the same command. When you include both parameters in a
command, Oracle Data Pump processes the INCLUDE parameter first, and includes all objects
identified by the parameter. Then it processes the exclude parameters, eliminating the
excluded objects from the included set.

Restrictions

• Exports of SQL firewall metadata (captures and allow-lists) with the object SQL_FIREWALL
are supported starting with Oracle Database 23c. However, Oracle Data Pump supports
the export or import of all the existing SQL Firewall as a whole. You cannot import or
export a specific capture or a specific allow-list.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-41

Example

The following is an example of using the EXCLUDE statement.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_exclude.dmp EXCLUDE=VIEW,
PACKAGE, FUNCTION

This example results in a schema-mode export (the default export mode) in which all
the hr schema is exported except its views, packages, and functions.

Related Topics

• Oracle Data Pump Export Metadata Filters

• Filtering During Export Operations

• INCLUDE
The Oracle Data Pump Export command-line utility INCLUDE parameter enables
you to filter the metadata that is exported by specifying objects and object types
for the current export mode.

2.4.24 FILESIZE
The Oracle Data Pump Export command-line utility FILESIZE parameter specifies the
maximum size of each dump file.

Default

0 (equivalent to the maximum size of 16 terabytes)

Purpose

Specifies the maximum size of each dump file. If the size is reached for any member
of the dump file set, then that file is closed and an attempt is made to create a new file,
if the file specification contains a substitution variable or if more dump files have been
added to the job.

Syntax and Description

FILESIZE=integer[B | KB | MB | GB | TB]

The integer can be immediately followed (do not insert a space) by B, KB, MB, GB, or TB
(indicating bytes, kilobytes, megabytes, gigabytes, and terabytes respectively). Bytes
is the default. The actual size of the resulting file can be rounded down slightly to
match the size of the internal blocks used in dump files.

Restrictions

• The minimum size for a file is 10 times the default Data Pump block size, which is
4 kilobytes.

• The maximum size for a file is 16 terabytes.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-42

Example

The following example shows setting the size of the dump file to 3 megabytes:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_3m.dmp FILESIZE=3MB

In this scenario, if the 3 megabytes allocated was not sufficient to hold all the exported data,
then the following error results, and displayed and the job stops:

ORA-39095: Dump file space has been exhausted: Unable to allocate 217088
bytes

The actual number of bytes that cannot be allocated can vary. Also, this number does not
represent the amount of space required complete the entire export operation. It indicates only
the size of the current object that was being exported when the job ran out of dump file
space. You can correct this problem by first attaching to the stopped job, adding one or more
files using the ADD_FILE command, and then restarting the operation.

2.4.25 FLASHBACK_SCN
The Oracle Data Pump Export command-line utility FLASHBACK_SCN parameter specifies the
system change number (SCN) that Export uses to enable the Flashback Query utility.

Default: There is no default

Purpose

Specifies the system change number (SCN) that Export will use to enable the Flashback
Query utility.

Syntax and Description

FLASHBACK_SCN=scn_value

The export operation is performed with data that is consistent up to the specified SCN. If the
NETWORK_LINK parameter is specified, then the SCN refers to the SCN of the source
database.

As of Oracle Database 12c release 2 (12.2) and later releases, the SCN value can be a big
SCN (8 bytes). You can also specify a big SCN when you create a dump file for an earlier
version that does not support big SCNs, because actual SCN values are not moved.

Restrictions

• FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

• The FLASHBACK_SCN parameter pertains only to the Flashback Query capability of Oracle
Database. It is not applicable to Flashback Database, Flashback Drop, or Flashback Data
Archive.

• You cannot specify a big SCN for a network export or network import from a version that
does not support big SCNs.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-43

Example

The following example assumes that an existing SCN value of 384632 exists. It exports
the hr schema up to SCN 384632.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_scn.dmp
FLASHBACK_SCN=384632

Note:

If you are on a logical standby system and using a network link to access the
logical standby primary, then the FLASHBACK_SCN parameter is ignored
because SCNs are selected by logical standby. See Oracle Data Guard
Concepts and Administration for information about logical standby
databases.

Related Topics

• Logical Standby Databases

2.4.26 FLASHBACK_TIME
The Oracle Data Pump Export command-line utility FLASHBACK_TIME parameter finds
the SCN that most closely matches the specified time.

Default

Default: There is no default

Purpose

Finds the SCN that most closely matches the specified time. This SCN is used to
enable the Flashback utility. The export operation is performed with data that is
consistent up to this SCN.

Syntax and Description

FLASHBACK_TIME="TO_TIMESTAMP(time-value)"

Because the TO_TIMESTAMP value is enclosed in quotation marks, it is best to put this
parameter in a parameter file.

Alternatively, you can enter the following parameter setting. This setting initiate a
consistent export that is based on current system time:

FLASHBACK_TIME=systimestamp

Restrictions

• FLASHBACK_TIME and FLASHBACK_SCN are mutually exclusive.

• The FLASHBACK_TIME parameter pertains only to the flashback query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-44

Example

You can specify the time in any format that the DBMS_FLASHBACK.ENABLE_AT_TIME procedure
accepts. For example, suppose you have a parameter file, flashback.par, with the following
contents:

DIRECTORY=dpump_dir1
DUMPFILE=hr_time.dmp
FLASHBACK_TIME="TO_TIMESTAMP('27-10-2012 13:16:00', 'DD-MM-YYYY HH24:MI:SS')"

You can then issue the following command:

> expdp hr PARFILE=flashback.par

The export operation is performed with data that is consistent with the SCN that most closely
matches the specified time.

Note:

If you are on a logical standby system and using a network link to access the logical
standby primary, then the FLASHBACK_SCN parameter is ignored, because the logical
standby selects the SCNs. See Oracle Data Guard Concepts and Administration for
information about logical standby databases.

See Oracle Database Development Guide for information about using Flashback
Query.

Related Topics

• Logical Standby Databases

• Using Oracle Flashback Query (SELECT AS OF)

2.4.27 FULL
The Oracle Data Pump Export command-line utility FULL parameter specifies that you want to
perform a full database mode export.

Default

NO

Purpose

Specifies that you want to perform a full database mode export.

Syntax and Description

FULL=[YES | NO]

FULL=YES indicates that all data and metadata are to be exported. To perform a full export,
you must have the DATAPUMP_EXP_FULL_DATABASE role.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-45

Filtering can restrict what is exported using this export mode.

You can perform a full mode export using the transportable option
(TRANSPORTABLE=ALWAYS). This is referred to as a full transportable export, which
exports all objects and data necessary to create a complete copy of the database. See

Note:

Be aware that when you later import a dump file that was created by a full-
mode export, the import operation attempts to copy the password for the SYS
account from the source database. This sometimes fails (for example, if the
password is in a shared password file). If it does fail, then after the import
completes, you must set the password for the SYS account at the target
database to a password of your choice.

Restrictions

• To use the FULL parameter in conjunction with TRANSPORTABLE (a full transportable
export), either the Data Pump VERSION parameter must be set to at least 12.0. or
the COMPATIBLE database initialization parameter must be set to at least 12.0 or
later.

• A full export does not, by default, export system schemas that contain Oracle-
managed data and metadata. Examples of system schemas that are not exported
by default include SYS, ORDSYS, and MDSYS.

• Grants on objects owned by the SYS schema are never exported.

• A full export operation exports objects from only one database edition; by default it
exports the current edition but you can use the Export SOURCE_EDITION parameter
to specify a different edition.

• If you are exporting data that is protected by a realm, then you must have
authorization for that realm.

• The Automatic Workload Repository (AWR) is not moved in a full database export
and import operation. (See Oracle Database Performance Tuning Guide for
information about using Oracle Data Pump to move AWR snapshots.)

• The XDB repository is not moved in a full database export and import operation.
User created XML schemas are moved.

Example

The following is an example of using the FULL parameter. The dump file, expfull.dmp
is written to the dpump_dir2 directory.

> expdp hr DIRECTORY=dpump_dir2 DUMPFILE=expfull.dmp FULL=YES NOLOGFILE=YES

To see a detailed example of how to perform a full transportable export, see Oracle
Database Administrator’s Guide. For information about configuring realms, see Oracle
Database Vault Administrator’s Guide.

Related Topics

• Full Export Mode

• Gathering Database Statistics

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-46

• Transporting Databases

• Configuring Realms

2.4.28 HELP
The Oracle Data Pump Export command-line utility HELP parameter displays online help for
the Export utility.

Default

NO

Purpose

Displays online help for the Export utility.

Syntax and Description

HELP = [YES | NO]

If HELP=YES is specified, then Export displays a summary of all Export command-line
parameters and interactive commands.

Example

> expdp HELP = YES

This example display a brief description of all Export parameters and commands.

2.4.29 INCLUDE
The Oracle Data Pump Export command-line utility INCLUDE parameter enables you to filter
the metadata that is exported by specifying objects and object types for the current export
mode.

Default

There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object types for
the current export mode. The specified objects and all their dependent objects are exported.
Grants on these objects are also exported.

Syntax and Description

INCLUDE = object_type[:name_clause] [, ...]

The object_type specifies the type of object to be included. To see a list of valid values for
object_type, query the following views: DATABASE_EXPORT_OBJECTS for full mode,
SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for table and
tablespace mode. The values listed in the OBJECT_PATH column are the valid object types.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-47

Only object types explicitly specified in INCLUDE statements, and their dependent
objects, are exported. No other object types, including the schema definition
information that is normally part of a schema-mode export when you have the
DATAPUMP_EXP_FULL_DATABASE role, are exported.

The name_clause is optional. It allows fine-grained selection of specific objects within
an object type. It is a SQL expression used as a filter on the object names of the type.
It consists of a SQL operator and the values against which the object names of the
specified type are to be compared. The name_clause applies only to object types
whose instances have names (for example, it is applicable to TABLE, but not to GRANT).
It must be separated from the object type with a colon and enclosed in double
quotation marks, because single quotation marks are required to delimit the name
strings.

The name that you supply for the name_clause must exactly match an existing object
in the database, including upper- and lower- case letters. For example, if the
name_clause you supply is for a table named EMPLOYEES, then there must be an
existing table named EMPLOYEES using all upper-case letters. If the name_clause is
provided as Employees or employees or any other variation, then the table is not found.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter can also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that you otherwise need to enter on the command line.

For example, suppose you have a parameter file named hr.par with the following
content:

SCHEMAS=HR
DUMPFILE=expinclude.dmp
DIRECTORY=dpump_dir1
LOGFILE=expinclude.log
INCLUDE=TABLE:"IN ('EMPLOYEES', 'DEPARTMENTS')"
INCLUDE=PROCEDURE
INCLUDE=INDEX:"LIKE 'EMP%'"

You can then use the hr.par file to start an export operation, without having to enter
any other parameters on the command line. The EMPLOYEES and DEPARTMENTS tables,
all procedures, and all index names with an EMP prefix, are included in the export.

> expdp hr PARFILE=hr.par

Including Constraints

If the object_type that you specify is a CONSTRAINT, then be aware of the effects of
using a constraint..

You cannot include explicitly the following constraints:

• NOT NULL constraints

• Constraints that are required for the table to be created and loaded successfully.
For example: you cannot include primary key constraints for index-organized
tables, or REF SCOPE and WITH ROWID constraints for tables with REF columns.

For example, the following INCLUDE statements are interpreted as follows:

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-48

• INCLUDE=CONSTRAINT includes all (nonreferential) constraints, except for NOT NULL
constraints, and any constraints needed for successful table creation and loading.

• INCLUDE=REF_CONSTRAINT includes referential integrity (foreign key) constraints.

You can set both INCLUDE and EXCLUDE parameters in the same command.

When you include both parameters in a command, Oracle Data Pump processes the INCLUDE
parameter first, and includes all objects identified by the parameter. Then it processes the
exclude parameters. Any objects specified by the EXCLUDE parameter that are in the list of
include objects are removed as the command executes.

Restrictions

• Grants on objects owned by the SYS schema are never exported.

• Exports of SQL firewall metadata (captures and allow-lists) with the object SQL_FIREWALL
are supported starting with Oracle Database 23c. However, Oracle Data Pump supports
the export or import of all the existing SQL Firewall as a whole. You cannot import or
export a specific capture or a specific allow-list.

Example

The following example performs an export of all tables (and their dependent objects) in the hr
schema:

> expdp hr INCLUDE=TABLE DUMPFILE=dpump_dir1:exp_inc.dmp NOLOGFILE=YES

Related Topics

• Oracle Data Pump Metadata Filters

• Parameters Available in Data Pump Export Command-Line Mode

2.4.30 JOB_NAME
The Oracle Data Pump Export command-line utility JOB_NAME parameter identifies the export
job in subsequent actions, such as when using ATTACH to attach to a job, or to identify a job
using DBA_DATAPUMP_JOBS or USER_DATAPUMP_JOBS views.

Default

A system-generated name of the form SYS_EXPORT_<mode>_NN

Purpose

Used to identify the export job in subsequent actions, such as when the ATTACH parameter is
used to attach to a job, or to identify the job using the DBA_DATAPUMP_JOBS or
USER_DATAPUMP_JOBS views.

Syntax and Description

JOB_NAME=jobname_string

The jobname_string specifies a name of up to 128 bytes for this export job. The bytes must
represent printable characters and spaces. If spaces are included, then the name must be

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-49

enclosed in single quotation marks (for example, 'Thursday Export'). The job name is
implicitly qualified by the schema of the user performing the export operation. The job
name is used as the name of the Data Pump control import job table, which controls
the export job.

The default job name is system-generated in the form SYS_EXPORT_mode_NN, where NN
expands to a 2-digit incrementing integer starting at 01. An example of a default name
is 'SYS_EXPORT_TABLESPACE_02'.

Example

The following example shows an export operation that is assigned a job name of
exp_job:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=exp_job.dmp JOB_NAME=exp_job
NOLOGFILE=YES

2.4.31 KEEP_MASTER
The Oracle Data Pump Export command-line utility KEEP_MASTER parameter indicates
whether the Data Pump control job table should be deleted or retained at the end of an
Oracle Data Pump job that completes successfully.

Default

NO

Purpose

Indicates whether the Data Pump control job table should be deleted or retained at the
end of an Oracle Data Pump job that completes successfully. The Data Pump control
job table is automatically retained for jobs that do not complete successfully.

Syntax and Description

KEEP_MASTER=[YES | NO]

Restrictions

• None

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr
KEEP_MASTER=YES

2.4.32 LOGFILE
The Oracle Data Pump Export command-line utility LOGFILE parameter specifies the
name, and optionally, a directory, for the log file of the export job.

Default

export log.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-50

Purpose

Specifies the name, and optionally, a directory, for the log file of the export job.

Syntax and Description

LOGFILE=[directory_object:]file_name

You can specify a database directory_object previously established by the DBA, assuming
that you have access to it. This setting overrides the directory object specified with the
DIRECTORY parameter.

The file_name specifies a name for the log file. The default behavior is to create a file named
export.log in the directory referenced by the directory object specified in the DIRECTORY
parameter.

All messages regarding work in progress, work completed, and errors encountered are
written to the log file. (For a real-time status of the job, use the STATUS command in interactive
mode.)

A log file is always created for an export job unless the NOLOGFILE parameter is specified. As
with the dump file set, the log file is relative to the server and not the client.

An existing file matching the file name is overwritten.

Restrictions

• To perform an Oracle Data Pump Export using Oracle Automatic Storage Management
(Oracle ASM), you must specify a LOGFILE parameter that includes a directory object that
does not include the Oracle ASM + notation. That is, the log file must be written to a disk
file, and not written into the Oracle ASM storage. Alternatively, you can specify
NOLOGFILE=YES. However, if you specify NOLOGFILE=YES, then that setting prevents the
writing of the log file.

Example

The following example shows how to specify a log file name when you do not want to use the
default:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp LOGFILE=hr_export.log

Note:

Oracle Data Pump Export writes the log file using the database character set. If
your client NLS_LANG environment setting sets up a different client character set from
the database character set, then it is possible that table names can be different in
the log file than they are when displayed on the client output screen.

Related Topics

• STATUS
The Data Pump Export command-line utility STATUS parameter specifies the frequency
at which the job status display is updated

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-51

• Using Directory Objects When Oracle Automatic Storage Management Is Enabled

2.4.33 LOGTIME
The Oracle Data Pump Export command-line utility LOGTIME parameter specifies that
messages displayed during export operations are timestamped.

Default

No timestamps are recorded

Purpose

Specifies that messages displayed during export operations are timestamped. You can
use the timestamps to figure out the elapsed time between different phases of a Data
Pump operation. Such information can be helpful in diagnosing performance problems
and estimating the timing of future similar operations.

Syntax and Description

LOGTIME=[NONE | STATUS | LOGFILE | ALL]

The available options are defined as follows:

• NONE: No timestamps on status or log file messages (same as default)

• STATUS: Timestamps on status messages only

• LOGFILE: Timestamps on log file messages only

• ALL: Timestamps on both status and log file messages

Restrictions

None

Example

The following example records timestamps for all status and log file messages that are
displayed during the export operation:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr
LOGTIME=ALL

The output looks similar to the following:

10-JUL-12 10:12:22.300: Starting "HR"."SYS_EXPORT_SCHEMA_01": hr/

directory=dpump_dir1 dumpfile=expdat.dmp schemas=hr logtime=all
10-JUL-12 10:12:22.915: Estimate in progress using BLOCKS method...
10-JUL-12 10:12:24.422: Processing object type SCHEMA_EXPORT/TABLE/
TABLE_DATA
10-JUL-12 10:12:24.498: Total estimation using BLOCKS method: 128 KB
10-JUL-12 10:12:24.822: Processing object type SCHEMA_EXPORT/USER
10-JUL-12 10:12:24.902: Processing object type SCHEMA_EXPORT/
SYSTEM_GRANT

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-52

10-JUL-12 10:12:24.926: Processing object type SCHEMA_EXPORT/ROLE_GRANT
10-JUL-12 10:12:24.948: Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
10-JUL-12 10:12:24.967: Processing object type SCHEMA_EXPORT/TABLESPACE_QUOTA
10-JUL-12 10:12:25.747: Processing object type SCHEMA_EXPORT/PRE_SCHEMA/
PROCACT_SCHEMA
10-JUL-12 10:12:32.762: Processing object type SCHEMA_EXPORT/SEQUENCE/
SEQUENCE
10-JUL-12 10:12:46.631: Processing object type SCHEMA_EXPORT/TABLE/TABLE
10-JUL-12 10:12:58.007: Processing object type SCHEMA_EXPORT/TABLE/GRANT/
OWNER_GRANT/OBJECT_GRANT
10-JUL-12 10:12:58.106: Processing object type SCHEMA_EXPORT/TABLE/COMMENT
10-JUL-12 10:12:58.516: Processing object type SCHEMA_EXPORT/PROCEDURE/
PROCEDURE
10-JUL-12 10:12:58.630: Processing object type SCHEMA_EXPORT/PROCEDURE/
ALTER_PROCEDURE
10-JUL-12 10:12:59.365: Processing object type SCHEMA_EXPORT/TABLE/INDEX/
INDEX
10-JUL-12 10:13:01.066: Processing object type SCHEMA_EXPORT/TABLE/
CONSTRAINT/CONSTRAINT
10-JUL-12 10:13:01.143: Processing object type SCHEMA_EXPORT/TABLE/INDEX/
STATISTICS/INDEX_STATISTICS
10-JUL-12 10:13:02.503: Processing object type SCHEMA_EXPORT/VIEW/VIEW
10-JUL-12 10:13:03.288: Processing object type SCHEMA_EXPORT/TABLE/
CONSTRAINT/REF_CONSTRAINT
10-JUL-12 10:13:04.067: Processing object type SCHEMA_EXPORT/TABLE/TRIGGER
10-JUL-12 10:13:05.251: Processing object type SCHEMA_EXPORT/TABLE/
STATISTICS/TABLE_STATISTICS
10-JUL-12 10:13:06.172: . . exported
"HR"."EMPLOYEES" 17.05 KB 107 rows
10-JUL-12 10:13:06.658: . . exported
"HR"."COUNTRIES" 6.429 KB 25 rows
10-JUL-12 10:13:06.691: . . exported
"HR"."DEPARTMENTS" 7.093 KB 27 rows
10-JUL-12 10:13:06.723: . . exported
"HR"."JOBS" 7.078 KB 19 rows
10-JUL-12 10:13:06.758: . . exported
"HR"."JOB_HISTORY" 7.164 KB 10 rows
10-JUL-12 10:13:06.794: . . exported
"HR"."LOCATIONS" 8.398 KB 23 rows
10-JUL-12 10:13:06.824: . . exported
"HR"."REGIONS" 5.515 KB 4 rows
10-JUL-12 10:13:07.500: Master table "HR"."SYS_EXPORT_SCHEMA_01"
successfully loaded/unloaded
10-JUL-12 10:13:07.503:

*

2.4.34 METRICS
The Data Pump Export command-line utility METRICS parameter indicates whether you want
additional information about the job reported to the Data Pump log file.

Default: NO

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-53

Purpose

Indicates whether additional information about the job should be reported to the Data
Pump log file.

Syntax and Description

METRICS=[YES | NO]

When METRICS=YES is used, the number of objects and the elapsed time are recorded
in the Data Pump log file.

Restrictions

• None

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr
METRICS=YES

2.4.35 NETWORK_LINK
The Oracle Data Pump Export command-line utility NETWORK_LINK parameter enables
an export from a (source) database identified by a valid database link.

Default

There is no default

Purpose

Enables an export from a (source) database identified by a valid database link. The
data from the source database instance is written to a dump file set on the connected
database instance.

Syntax and Description

NETWORK_LINK=source_database_link

The NETWORK_LINK parameter initiates an export using a database link. This export
setting means that the system to which the expdp client is connected contacts the
source database referenced by the source_database_link, retrieves data from it, and
writes the data to a dump file set back on the connected system.

The source_database_link provided must be the name of a database link to an
available database. If the database on that instance does not already have a database
link, then you or your DBA must create one using the SQL CREATE DATABASE LINK
statement.

If the source database is read-only, then the user on the source database must have a
locally managed temporary tablespace assigned as the default temporary tablespace.
Otherwise, the job will fail.

The following types of database links are supported for use with Data Pump Export:

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-54

• Public fixed user

• Public connected user

• Public shared user (only when used by link owner)

• Private shared user (only when used by link owner)

• Private fixed user (only when used by link owner)

Caution:

If an export operation is performed over an unencrypted network link, then all data
is exported as clear text, even if it is encrypted in the database. See Oracle
Database Security Guide on strong authentication for more information about
network security.

Restrictions

• The following types of database links are not supported for use with Data Pump Export:

– Private connected user

– Current user

• When operating across a network link, Data Pump requires that the source and target
databases differ by no more than two versions. For example, if one database is Oracle
Database 12c, then the other database must be 12c, 11g, or 10g. Note that Data Pump
checks only the major version number (for example, 10g,11g, 12c), not specific release
numbers (for example, 12.1, 12.2, 11.1, 11.2, 10.1 or 10.2).

• When transporting a database over the network using full transportable export, auditing
cannot be enabled for tables stored in an administrative tablespace (such as SYSTEM and
SYSAUX) if the audit trail information itself is stored in a user-defined tablespace.

• Metadata cannot be imported in parallel when the NETWORK_LINK parameter is also used

Example

The following is a syntax example of using the NETWORK_LINK parameter. Replace the variable
source_database_link with the name of a valid database link that must already exist.

> expdp hr DIRECTORY=dpump_dir1 NETWORK_LINK=source_database_link
 DUMPFILE=network_export.dmp LOGFILE=network_export.log

Related Topics

• Introduction to Strong Authentication

• Database Links

• CREATE DATABASE LINK

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-55

2.4.36 NOLOGFILE
The Oracle Data Pump Export command-line utility NOLOGFILE parameter specifies
whether to suppress creation of a log file.

Default

NO

Purpose

Specifies whether to suppress creation of a log file.

Syntax and Description

NOLOGFILE=[YES | NO]

Specify NOLOGFILE=YES to suppress the default behavior of creating a log file. Progress
and error information is still written to the standard output device of any attached
clients, including the client that started the original export operation. If there are no
clients attached to a running job, and you specify NOLOGFILE=YES, then you run the risk
of losing important progress and error information.

Example

The following is an example of using the NOLOGFILE parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp NOLOGFILE=YES

This command results in a schema-mode export (the default), in which no log file is
written.

2.4.37 PARALLEL
The Oracle Data Pump Export command-line utility PARALLEL parameter specifies the
maximum number of processes of active execution operating on behalf of the export
job.

Default

1

Purpose

Specifies the maximum number of processes of active execution operating on behalf
of the export job. This execution set consists of a combination of worker processes
and parallel input/output (I/O) server processes. The Data Pump control process and
worker processes acting as query coordinators in parallel query operations do not
count toward this total.

This parameter enables you to make trade-offs between resource consumption and
elapsed time.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-56

Syntax and Description

PARALLEL=integer

The value that you specify for integer should be less than, or equal to, the number of files in
the dump file set (or you should specify either the %U or %L substitution variables in the dump
file specifications). Because each active worker processor I/O server process writes
exclusively to one file at a time, an insufficient number of files can have adverse effects. For
example, some of the worker processes can be idle while waiting for files, thereby degrading
the overall performance of the job. More importantly, if any member of a cooperating group of
parallel I/O server processes cannot obtain a file for output, then the export operation is
stopped with an ORA-39095 error. Both situations can be corrected by attaching to the job
using the Data Pump Export utility, adding more files using the ADD_FILE command while in
interactive mode, and in the case of a stopped job, restarting the job.

To increase or decrease the value of PARALLEL during job execution, use interactive-
command mode. Decreasing parallelism does not result in fewer worker processes
associated with the job; it decreases the number of worker processes that are running at any
given time. Also, any ongoing work must reach an orderly completion point before the
decrease takes effect. Therefore, it can take a while to see any effect from decreasing the
value. Idle worker processes are not deleted until the job exits.

If there is work that can be performed in parallel, then increasing the parallelism takes effect
immediately .

Using PARALLEL During An Export In An Oracle RAC Environment

In an Oracle Real Application Clusters (Oracle RAC) environment, if an export operation has
PARALLEL=1, then all Oracle Data Pump processes reside on the instance where the job is
started. Therefore, the directory object can point to local storage for that instance.

If the export operation has PARALLEL set to a value greater than 1, then Oracle Data Pump
processes can reside on instances other than the one where the job was started. Therefore,
the directory object must point to shared storage that is accessible by all Oracle RAC cluster
members.

Restrictions

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or later.

• To export a table or table partition in parallel (using parallel query, or PQ, worker
processes), you must have the DATAPUMP_EXP_FULL_DATABASE role.

• Transportable tablespace metadata cannot be exported in parallel.

• Metadata cannot be exported in parallel when the NETWORK_LINK parameter is also used.

• The following objects cannot be exported in parallel:

– TRIGGER
– VIEW
– OBJECT_GRANT
– SEQUENCE
– CONSTRAINT

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-57

– REF_CONSTRAINT

Example

The following is an example of using the PARALLEL parameter:

> expdp hr DIRECTORY=dpump_dir1 LOGFILE=parallel_export.log
JOB_NAME=par4_job DUMPFILE=par_exp%u.dmp PARALLEL=4

This results in a schema-mode export (the default) of the hr schema, in which up to
four files can be created in the path pointed to by the directory object, dpump_dir1.

Related Topics

• DUMPFILE
The Oracle Data Pump Export command-line utility DUMPFILE parameter specifies
the names, and optionally, the directory objects of dump files for an export job.

• Performing a Parallel Full Database Export

2.4.38 PARALLEL_THRESHOLD
The Oracle Data Pump Export command-line utility PARALLEL_THRESHOLD parameter
specifies the size of the divisor that Data Pump uses to calculate potential parallel
DML based on table size

Default

250MB

Purpose

PARALLEL_THRESHOLD should only be used with export or import jobs of a single
unpartitioned table, or one partition of a partitioned table. When you specify PARALLEL
in the job, you can specify PARALLEL_THRESHOLD to modify the size of the divisor that
Oracle Data Pump uses to determine if a table should be exported or imported using
parallel data manipulation statements (PDML) during imports and exports. If you
specify a lower value than the default, then it enables a smaller table size to use the
Oracle Data Pump parallel algorithm. For example, if you have a 100MB table and you
want it to use PDML of 5, to break it into five units, then you specify
PARALLEL_THRESHOLD=20M. Note that the database, the optimizer, and the execution
plan produced by the optimizer for the SQL determine the actual degree of parallelism
used to load or unload the object specified in the job.

Syntax and Description

The parameter value specifies the threshold size in bytes:

PARALLEL_THRESHOLD=size-in-bytes

For a single table export or import, if you want a higher degree of parallelism, then you
may want to set PARALLEL_THRESHOLD to lower values, to take advantage of parallelism
for a smaller table or table partition. However, the benefit of this resource allocation
can be limited by the performance of the I/O of the file systems to which you are

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-58

loading or unloading. Also, if the job involves more than one object, for both tables and
metadata objects, then the PQ allocation request specified by PARALLEL with
PARALLEL_THRESHOLD is of limited value. The actual amount of PQ processes allocated to a
table is impacted by how many operations Oracle Data Pump is running concurrently, where
the amount of parallelism has to be shared. The database, the optimizer, and the execution
plan produced by the optimizer for the SQL determine the actual degree of parallelism used
to load or unload the object specified in the job.

You can use this parameter to assist with particular data movement issues. For example:

• When you want to use Oracle Data Pump to load a large table from one database into a
larger table in another database. One possible use case: Uploading weekly sales data
from an OLTP database into a reporting or business analytics data warehouse database.

• When you want to export a single large table, but you have not gathered RDBMS stats
recently. The default size is determined from the table's statistics. However, suppose that
the statistics are old (or have never been run). In that case, the value used by Oracle
Data Pump could underrepresent the table's actual size. To compensate for a case such
as this, you can specify a smaller parallel_threshold value, so that the algorithm for
the degree of parallelism (table size divided by threshold amount) can yield a more
reasonable degree of parallelism value.

Restrictions

PARALLEL_THRESHOLD is used only in conjunction when the PARALLEL parameter is specified
with a value greater than 1.

Example

The following is an example of using the PARALLEL_THRESHOLD parameter to export the table
table_to_use_PDML, where the size of the divisor for PQ processes is set to 1 KB, the
variables user and user-password are the user and password of the user running Export
(expdp), and the job name is parathresh_example.

expdp user/user-password \
 directory=dpump_dir \
 dumpfile=parathresh_example.dmp
 tables=table_to_use_PDML \
 parallel=8 \
 parallel_threshold=1K \
 job_name=parathresh_example

2.4.39 PARFILE
The Oracle Data Pump Export command-line utility PARFILE parameter specifies the name of
an export parameter file.

Default

There is no default

Purpose

Specifies the name of an export parameter file, also known as a parfile.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-59

Syntax and Description

PARFILE=[directory_path]file_name

A parameter file enables you to specify Oracle Data Pump parameters within a file.
You can then specify that file on the command line, instead of entering all of the
individual commands. Using a parameter file can be useful if you use the same
parameter combination many times. The use of parameter files is also highly
recommended when you use parameters whose values require the use of quotation
marks.

A directory object is not specified for the parameter file. You do not specify a directory
object, because the parameter file is opened and read by the expdp client, unlike dump
files, log files, and SQL files which are created and written by the server. The default
location of the parameter file is the user's current directory.

Within a parameter file, a comma is implicit at every newline character so you do not
have to enter commas at the end of each line. If you have a long line that wraps, such
as a long table name, then enter the backslash continuation character (\) at the end of
the current line to continue onto the next line.

The contents of the parameter file are written to the Data Pump log file.

Restrictions

The PARFILE parameter cannot be specified within a parameter file.

Example

Suppose the content of an example parameter file, hr.par, is as follows:

SCHEMAS=HR
DUMPFILE=exp.dmp
DIRECTORY=dpump_dir1
LOGFILE=exp.log

You can then issue the following Export command to specify the parameter file:

> expdp hr PARFILE=hr.par

Related Topics

• About Oracle Data Pump Export Parameters
Learn how to use Oracle Data Pump Export parameters in command-line mode,
including case sensitivity, quotation marks, escape characters, and information
about how to use examples.

2.4.40 QUERY
The Data Pump Export command-line utility QUERY parameter enables you to specify a
query clause that is used to filter the data that gets exported.

Default: There is no default

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-60

Purpose

enables you to specify a query clause that is used to filter the data that gets exported.

Syntax and Description

QUERY = [schema.][table_name:] query_clause

The query_clause is typically a SQL WHERE clause for fine-grained row selection, but could be
any SQL clause. For example, you can use an ORDER BY clause to speed up a migration from
a heap-organized table to an index-organized table. If a schema and table name are not
supplied, then the query is applied to (and must be valid for) all tables in the export job. A
table-specific query overrides a query applied to all tables.

When the query is to be applied to a specific table, a colon must separate the table name
from the query clause. More than one table-specific query can be specified, but only one
query can be specified per table.

If the NETWORK_LINK parameter is specified along with the QUERY parameter, then any objects
specified in the query_clause that are on the remote (source) node must be explicitly
qualified with the NETWORK_LINK value. Otherwise, Data Pump assumes that the object is on
the local (target) node; if it is not, then an error is returned and the import of the table from the
remote (source) system fails.

For example, if you specify NETWORK_LINK=dblink1, then the query_clause of the QUERY
parameter must specify that link, as shown in the following example:

QUERY=(hr.employees:"WHERE last_name IN(SELECT last_name
FROM hr.employees@dblink1)")

Depending on your operating system, when you specify a value for this parameter that the
uses quotation marks, it can also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the number
of escape characters that might otherwise be needed on the command line. .

To specify a schema other than your own in a table-specific query, you must be granted
access to that specific table.

Restrictions

• The QUERY parameter cannot be used with the following parameters:

– CONTENT=METADATA_ONLY
– ESTIMATE_ONLY
– TRANSPORT_TABLESPACES

• When the QUERY parameter is specified for a table, Data Pump uses external tables to
unload the target table. External tables uses a SQL CREATE TABLE AS SELECT statement.
The value of the QUERY parameter is the WHERE clause in the SELECT portion of the CREATE
TABLE statement. If the QUERY parameter includes references to another table with
columns whose names match the table being unloaded, and if those columns are used in
the query, then you will need to use a table alias to distinguish between columns in the
table being unloaded and columns in the SELECT statement with the same name. The
table alias used by Data Pump for the table being unloaded is KU$.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-61

For example, suppose you want to export a subset of the sh.sales table based on
the credit limit for a customer in the sh.customers table. In the following example,
KU$ is used to qualify the cust_id field in the QUERY parameter for unloading
sh.sales. As a result, Data Pump exports only rows for customers whose credit
limit is greater than $10,000.

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
 WHERE cust_credit_limit > 10000 AND ku$.cust_id = c.cust_id)"'

In the following query, KU$ is not used for a table alias. The result is that all rows
are unloaded:

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
 WHERE cust_credit_limit > 10000 AND cust_id = c.cust_id)"'

• The maximum length allowed for a QUERY string is 4000 bytes, which includes
quotation marks. This restriction means that the actual maximum length allowed is
3998 bytes.

Example

The following is an example of using the QUERY parameter:

> expdp hr PARFILE=emp_query.par

The contents of the emp_query.par file are as follows:

QUERY=employees:"WHERE department_id > 10 AND salary > 10000"
NOLOGFILE=YES
DIRECTORY=dpump_dir1
DUMPFILE=exp1.dmp

This example unloads all tables in the hr schema, but only the rows that fit the query
expression. In this case, all rows in all tables (except employees) in the hr schema are
unloaded. For the employees table, only rows that meet the query criteria are
unloaded.

Related Topics

• About Oracle Data Pump Export Parameters

2.4.41 REMAP_DATA
The Oracle Data Pump Export command-line utility REMAP_DATA parameter enables
you to specify a remap function that takes as a source the original value of the
designated column and returns a remapped value that replaces the original value in
the dump file.

Default

There is no default

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-62

Purpose

The REMAP_DATA parameter enables you to specify a remap function that takes as a source
the original value of the designated column, and returns a remapped value that will replace
the original value in the dump file. A common use for this option is to mask data when moving
from a production system to a test system. For example, a column of sensitive customer
data, such as credit card numbers, could be replaced with numbers generated by a
REMAP_DATA function. Replacing the sensitive data with numbers enables the data to retain its
essential formatting and processing characteristics, without exposing private data to
unauthorized personnel.

The same function can be applied to multiple columns being dumped. This function is useful
when you want to guarantee consistency in remapping both the child and parent column in a
referential constraint.

Syntax and Description

REMAP_DATA=[schema.]tablename.column_name:[schema.]pkg.function

The description of each syntax element, in the order in which they appear in the syntax, is as
follows:

schema: the schema containing the table that you want to be remapped. By default, this is
the schema of the user doing the export.

tablename: the table whose column you want to be remapped.

column_name: the column whose data you want to be remapped.

schema : the schema containing the PL/SQL package that you have created that contains the
remapping function. As a default, this is the schema of the user doing the export.

pkg: the name of the PL/SQL package you have created that contains the remapping
function.

function: the name of the function within the PL/SQL that will be called to remap the column
table in each row of the specified table.

Restrictions

• The data types and sizes of the source argument and the returned value must both
match the data type and size of the designated column in the table.

• Remapping functions should not perform commits or rollbacks except in autonomous
transactions.

• The use of synonyms as values for the REMAP_DATA parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, an error would be
returned if you specified regn as part of the REMAP_DATA specification.

• Remapping LOB column data of a remote table is not supported.

• Columns of the following types are not supported byREMAP_DATA: User Defined Types,
attributes of User Defined Types, LONGs, REFs, VARRAYs, Nested Tables, BFILEs, and
XMLtype.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-63

Example

The following example assumes a package named remap has been created that
contains functions named minus10 and plusx. These functions change the values for
employee_id and first_name in the employees table.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=remap1.dmp TABLES=employees
REMAP_DATA=hr.employees.employee_id:hr.remap.minus10
REMAP_DATA=hr.employees.first_name:hr.remap.plusx

2.4.42 REUSE_DUMPFILES
The Data Pump Export command-line utility xxx parameter specifies whether to
overwrite a preexisting dump file.

Default: NO

Purpose

Specifies whether to overwrite a preexisting dump file.

Syntax and Description

REUSE_DUMPFILES=[YES | NO]

Normally, Data Pump Export will return an error if you specify a dump file name that
already exists. The REUSE_DUMPFILES parameter allows you to override that behavior
and reuse a dump file name. For example, if you performed an export and specified
DUMPFILE=hr.dmp and REUSE_DUMPFILES=YES, then hr.dmp is overwritten if it already
exists. Its previous contents are then lost, and it instead contains data for the current
export.

Example

The following export operation creates a dump file named enc1.dmp, even if a dump
file with that name already exists.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=enc1.dmp
TABLES=employees REUSE_DUMPFILES=YES

2.4.43 SAMPLE
The Data Pump Export command-line utility SAMPLE parameter specifies a percentage
of the data rows that you want to be sampled and unloaded from the source database.

Default: There is no default

Purpose

Specifies a percentage of the data rows that you want to be sampled and unloaded
from the source database.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-64

Syntax and Description

SAMPLE=[[schema_name.]table_name:]sample_percent

This parameter allows you to export subsets of data by specifying the percentage of data to
be sampled and exported. The sample_percent indicates the probability that a row will be
selected as part of the sample. It does not mean that the database will retrieve exactly that
amount of rows from the table. The value you supply for sample_percent can be anywhere
from .000001 up to, but not including, 100.

You can apply the sample_percent to specific tables. In the following example, 50% of the
HR.EMPLOYEES table is exported:

SAMPLE="HR"."EMPLOYEES":50

If you specify a schema, then you must also specify a table. However, you can specify a table
without specifying a schema. In that scenario, the current user is assumed. If no table is
specified, then the sample_percent value applies to the entire export job.

You can use this parameter with the Data Pump Import PCTSPACE transform, so that the size
of storage allocations matches the sampled data subset. (See the Import TRANSFORM
parameter).

Restrictions

• The SAMPLE parameter is not valid for network exports.

Example

In the following example, the value 70 for SAMPLE is applied to the entire export job because
no table name is specified.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=sample.dmp SAMPLE=70

Related Topics

• TRANSFORM

2.4.44 SCHEMAS
The Data Pump Export command-line utility SCHEMAS parameter specifies that you want to
perform a schema-mode export. This is the default mode for Export.

Default: current user's schema

Purpose

Specifies that you want to perform a schema-mode export. This is the default mode for
Export.

Syntax and Description

SCHEMAS=schema_name [, ...]

If you have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify a single schema
other than your own or a list of schema names. The DATAPUMP_EXP_FULL_DATABASE role also

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-65

allows you to export additional nonschema object information for each specified
schema so that the schemas can be re-created at import time. This additional
information includes the user definitions themselves and all associated system and
role grants, user password history, and so on. Filtering can further restrict what is
exported using schema mode.

Restrictions

• If you do not have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify
only your own schema.

• The SYS schema cannot be used as a source schema for export jobs.

Example

The following is an example of using the SCHEMAS parameter. Note that user hr is
allowed to specify more than one schema, because the DATAPUMP_EXP_FULL_DATABASE
role was previously assigned to it for the purpose of these examples.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr,sh,oe

This results in a schema-mode export in which the schemas, hr, sh, and oe will be
written to the expdat.dmp dump file located in the dpump_dir1 directory.

Related Topics

• Filtering During Export Operations

2.4.45 SERVICE_NAME
The Oracle Data Pump Export command-line utility SERVICE_NAME parameter specifies
a service name that you want to use in conjunction with the CLUSTER parameter.

Default: There is no default

Purpose

Specifies a service name that you want to use in conjunction with the CLUSTER
parameter.

Syntax and Description

SERVICE_NAME=name

You can use the SERVICE_NAME parameter with the CLUSTER=YES parameter to specify
an existing service associated with a resource group that defines a set of Oracle Real
Application Clusters (Oracle RAC) instances belonging to that resource group.
Typically, the resource group is a subset of all the Oracle RAC instances.

The service name is only used to determine the resource group, and the instances
defined for that resource group. The instance where the job is started is always used,
regardless of whether it is part of the resource group.

If CLUSTER=NO is also specified, then the SERVICE_NAME parameter is ignored

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-66

Suppose you have an Oracle RAC configuration containing instances A, B, C, and D. Also
suppose that a service named my_service exists with a resource group consisting of
instances A, B, and C only. In such a scenario, the following is true:

• If you start an Oracle Data Pump job on instance A, and specify CLUSTER=YES (or accept
the default, which is Y), and you do not specify the SERVICE_NAME parameter, then Oracle
Data Pump creates workers on all instances: A, B, C, and D, depending on the degree of
parallelism specified.

• If you start a Data Pump job on instance A, and specify CLUSTER=YES, and
SERVICE_NAME=my_service, then workers can be started on instances A, B, and C only.

• If you start a Data Pump job on instance D, and specify CLUSTER=YES, and
SERVICE_NAME=my_service, then workers can be started on instances A, B, C, and D.
Even though instance D is not in my_service it is included because it is the instance on
which the job was started.

• If you start a Data Pump job on instance A, and specify CLUSTER=NO, then any
SERVICE_NAME parameter that you specify is ignored. All processes start on instance A.

Example

The following is an example of using the SERVICE_NAME parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_svname2.dmp SERVICE_NAME=sales

This example starts a schema-mode export (the default mode) of the hr schema. Even
though CLUSTER=YES is not specified on the command line, it is the default behavior, so the
job uses all instances in the resource group associated with the service name sales. A dump
file named hr_svname2.dmp is written to the location specified by the dpump_dir1 directory
object.

Related Topics

• CLUSTER

2.4.46 SOURCE_EDITION
The Data Pump Export command-line utility SOURCE_EDITION parameter specifies the
database edition from which objects are exported.

Default: the default database edition on the system

Purpose

Specifies the database edition from which objects are exported.

Syntax and Description

SOURCE_EDITION=edition_name

If SOURCE_EDITION=edition_name is specified, then the objects from that edition are exported.
Data Pump selects all inherited objects that have not changed, and all actual objects that
have changed.

If this parameter is not specified, then the default edition is used. If the specified edition does
not exist or is not usable, then an error message is returned.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-67

Restrictions

• This parameter is only useful if there are two or more versions of the same
versionable objects in the database.

• The job version must be 11.2 or later.

Example

The following is an example of using the SOURCE_EDITION parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=exp_dat.dmp SOURCE_EDITION=exp_edition
EXCLUDE=USER

This example assumes the existence of an edition named exp_edition on the system
from which objects are being exported. Because no export mode is specified, the
default of schema mode will be used. The EXCLUDE=user parameter excludes only the
definitions of users, not the objects contained within users' schemas.

Related Topics

• VERSION

• Oracle Database SQL Language Reference

• Oracle Database Development Guide

See Also:

• Oracle Database SQL Language Reference for information about how
editions are created

• Oracle Database Development Guide for more information about the
editions feature, including inherited and actual objects

2.4.47 STATUS
The Data Pump Export command-line utility STATUS parameter specifies the
frequency at which the job status display is updated

Default: 0

Purpose

Specifies the frequency at which the job status display is updated.

Syntax and Description

STATUS=[integer]

If you supply a value for integer, it specifies how frequently, in seconds, job status
should be displayed in logging mode. If no value is entered or if the default value of 0
is used, then no additional information is displayed beyond information about the
completion of each object type, table, or partition.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-68

This status information is written only to your standard output device, not to the log file (if one
is in effect).

Example

The following is an example of using the STATUS parameter.

> expdp hr DIRECTORY=dpump_dir1 SCHEMAS=hr,sh STATUS=300

This example exports the hr and sh schemas, and displays the status of the export every 5
minutes (60 seconds x 5 = 300 seconds).

2.4.48 TABLES
The Data Pump Export command-line utility TABLES parameter specifies that you want to
perform a table-mode export.

Default: There is no default

Purpose

Specifies that you want to perform a table-mode export.

Syntax and Description

TABLES=[schema_name.]table_name[:partition_name] [, ...]

Filtering can restrict what is exported using this mode. You can filter the data and metadata
that is exported by specifying a comma-delimited list of tables and partitions or subpartitions.
If a partition name is specified, then it must be the name of a partition or subpartition in the
associated table. Only the specified set of tables, partitions, and their dependent objects are
unloaded.

If an entire partitioned table is exported, then it is imported in its entirety as a partitioned
table. The only case in which this is not true is if PARTITION_OPTIONS=DEPARTITION is
specified during import.

The table name that you specify can be preceded by a qualifying schema name. The schema
defaults to that of the current user. To specify a schema other than your own, you must have
the DATAPUMP_EXP_FULL_DATABASE role.

Use of the wildcard character (%) to specify table names and partition names is supported.

The following restrictions apply to table names:

• By default, table names in a database are stored as uppercase. If you have a table name
in mixed-case or lowercase, and you want to preserve case-sensitivity for the table name,
then you must enclose the name in quotation marks. The name must exactly match the
table name stored in the database.

Some operating systems require that quotation marks on the command line are preceded
by an escape character. The following examples show of how case-sensitivity can be
preserved in the different Export modes.

– In command-line mode:

TABLES='\"Emp\"'

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-69

– In parameter file mode:

TABLES='"Emp"'

• Table names specified on the command line cannot include a pound sign (#),
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound sign (#), then the Export utility interprets the
rest of the line as a comment, unless the table name is enclosed in quotation
marks.

For example, if the parameter file contains the following line, then Export interprets
everything on the line after emp# as a comment, and does not export the tables
dept and mydata:

TABLES=(emp#, dept, mydata)

However, if the parameter file contains the following line, then the Export utility
exports all three tables, because emp# is enclosed in quotation marks:

TABLES=('"emp#"', dept, mydata)

Note:

Some operating systems use single quotation marks as escape
characters, rather than double quotation marks, and others the reverse.
See your Oracle operating system-specific documentation. Different
operating systems also have other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a dollar
sign ($) or pound sign (#), or certain other special characters. You must
use escape characters to be able to use such characters in the name
and have them ignored by the shell, and used by Export.

Using the Transportable Option During Table-Mode Export

To use the transportable option during a table-mode export, specify the
TRANSPORTABLE=ALWAYS parameter with the TABLES parameter. Metadata for the
specified tables, partitions, or subpartitions is exported to the dump file. To move the
actual data, you copy the data files to the target database.

If only a subset of a table's partitions are exported and the TRANSPORTABLE=ALWAYS
parameter is used, then on import each partition becomes a non-partitioned table.

Restrictions

• Cross-schema references are not exported. For example, a trigger defined on a
table within one of the specified schemas, but that resides in a schema not
explicitly specified, is not exported.

• Types used by the table are not exported in table mode. This restriction means
that if you subsequently import the dump file, and the type does not already exist
in the destination database, then the table creation fails.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-70

• The use of synonyms as values for the TABLES parameter is not supported. For example,
if the regions table in the hr schema had a synonym of regn, then it is not valid to use
TABLES=regn. If you attempt to use the synonym, then an error is returned.

• The export of tables that include a wildcard character (%) in the table name is not
supported if the table has partitions.

• The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4 MB, unless you are using the NETWORK_LINK parameter to an Oracle
Database release 10.2.0.3 or earlier, or to a read-only database. In such cases, the limit
is 4 KB.

• You can only specify partitions from one table if TRANSPORTABLE=ALWAYS is also set on the
export.

Examples

The following example shows a simple use of the TABLES parameter to export three tables
found in the hr schema: employees, jobs, and departments. Because user hr is exporting
tables found in the hr schema, the schema name is not needed before the table names.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tables.dmp
TABLES=employees,jobs,departments

The following example assumes that user hr has the DATAPUMP_EXP_FULL_DATABASE role. It
shows the use of the TABLES parameter to export partitions.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tables_part.dmp
TABLES=sh.sales:sales_Q1_2012,sh.sales:sales_Q2_2012

This example exports the partitions, sales_Q1_2012 and sales_Q2_2012, from the table sales
in the schema sh.

Related Topics

• Filtering During Export Operations

• TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies whether
the transportable option should be used during a table mode export (specified with the
TABLES parameter) or a full mode export (specified with the FULL parameter).

• REMAP_TABLE
The Oracle Data Pump Import command-line mode REMAP_TABLE parameter enables you
to rename tables during an import operation.

• Using Data File Copying to Move Data

2.4.49 TABLESPACES
The Data Pump Export command-line utility TABLESPACES parameter specifies a list of
tablespace names to be exported in tablespace mode.

Default: There is no default

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-71

Purpose

Specifies a list of tablespace names to be exported in tablespace mode.

Syntax and Description

TABLESPACES=tablespace_name [, ...]

In tablespace mode, only the tables contained in a specified set of tablespaces are
unloaded. If a table is unloaded, then its dependent objects are also unloaded. Both
object metadata and data are unloaded. If any part of a table resides in the specified
set, then that table and all of its dependent objects are exported. Privileged users get
all tables. Unprivileged users obtain only the tables in their own schemas

Filtering can restrict what is exported using this mode.

Restrictions

• The length of the tablespace name list specified for the TABLESPACES parameter is
limited to a maximum of 4 MB, unless you are using the NETWORK_LINK to an
Oracle Database release 10.2.0.3 or earlier, or to a read-only database. In such
cases, the limit is 4 KB.

Example

The following is an example of using the TABLESPACES parameter. The example
assumes that tablespaces tbs_4, tbs_5, and tbs_6 already exist.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tbs.dmp
TABLESPACES=tbs_4, tbs_5, tbs_6

This command results in a tablespace export in which tables (and their dependent
objects) from the specified tablespaces (tbs_4, tbs_5, and tbs_6) is unloaded.

Related Topics

• Filtering During Export Operations

2.4.50 TRANSPORT_DATAFILES_LOG
The Oracle Data Pump Export command-line mode TRANSPORT_DATAFILES_LOG
parameter specifies a file into which the list of data files associated with a
transportable export is written.

Default

None

Purpose

Specifies a file into which the list of data files associated with a transportable export is
written.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-72

Syntax and Description

TRANSPORT_DATAFILES_LOG=[directory_object:]file_name

If you specify a directory_object, then it must be an object that was previously established
in the database and to which you have access. This parameter overrides the directory object
specified with the DIRECTORY parameter. There is no default for the log file file_name. If
specified, the file is created in the directory object specified in the DIRECTORY parameter,
unless you explicitly specify another directory_object. Any existing file that has a name
matching the one specified with this parameter is overwritten.

Usage Notes

The specified file written to as the TRANSPORT_DATAFILES_LOG file is formatted as an Oracle
Data Pump parameter file. You can modify this file to add any other parameters you want to
use, and specify this file as the value of the PARFILE parameter on a subsequent import.

Restrictions

This parameter is valid for transportable mode exports

Example

The following is an example of using the TRANSPORT_DATAFILES_LOG parameter.

 > expdp hr DIRECTORY=dpump_dir DUMPFILE=tts.dmp
TRANSPORT_TABLESPACE=tbs_1, tbs_2 TRANSPORT_DATAFILES_LOG=tts.tdl

The following is an example of a file generated as the output using the
TRANSPORT_DATAFILES_LOG parameter. In the example, target_database_area_path is the
path to the tablespace file::

#

*
The dump file set and data files must be copied to the target database
area.
The data file paths must be updated accordingly before initiating the
Import.

*
#
Dump file set for SYSTEM.SYS_EXPORT_TRANSPORTABLE_01 is:
dpumpdir1:ttbs.dmp
#
Datafiles required for transportable tablespace TBS1:
/oracle/dbs/tbs1.dbf
#
Datafiles required for transportable tablespace TBS2:
/oracle/dbs/tbs2.dbf
#

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-73

#
TRANSPORT_DATAFILES=
'target_database_area_pathtbs1.dbf'
'target_database_area_pathtbs2.dbf'

2.4.51 TRANSPORT_FULL_CHECK
The Data Pump Export command-line utility TRANSPORT_FULL_CHECK parameter
specifies whether to check for dependencies between those objects inside the
transportable set and those outside the transportable set. This parameter is applicable
only to a transportable-tablespace mode export.

Default: NO

Purpose

Specifies whether to check for dependencies between those objects inside the
transportable set and those outside the transportable set. This parameter is applicable
only to a transportable-tablespace mode export.

Syntax and Description

TRANSPORT_FULL_CHECK=[YES | NO]

If TRANSPORT_FULL_CHECK=YES, then Export verifies that there are no dependencies
between those objects inside the transportable set and those outside the transportable
set. The check addresses two-way dependencies. For example, if a table is inside the
transportable set, but its index is not, then a failure is returned, and the export
operation is terminated. Similarly, a failure is also returned if an index is in the
transportable set, but the table is not.

If TRANSPORT_FULL_CHECK=NO then Export verifies only that there are no objects within
the transportable set that are dependent on objects outside the transportable set. This
check addresses a one-way dependency. For example, a table is not dependent on an
index, but an index is dependent on a table, because an index without a table has no
meaning. Therefore, if the transportable set contains a table, but not its index, then this
check succeeds. However, if the transportable set contains an index, but not the table,
then the export operation is terminated.

There are other checks performed as well. For instance, export always verifies that all
storage segments of all tables (and their indexes) defined within the tablespace set
specified by TRANSPORT_TABLESPACES are actually contained within the tablespace set.

There are two current command line parameters that control full closure check:

TTS_FULL_CHECK=[YES|NO]
TRANSPORT_FULL_CHECK=[YES|NO]

[TTS|TRANSPORT]_FULL_CHECK=YES is interpreted as TTS_CLOSURE_CHECK=FULL.[TTS|
TRANSPORT]_FULL_CHECK=NO is interpreted as TTS_CLOSURE_CHECK=ON.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-74

Example

The following is an example of using the TRANSPORT_FULL_CHECK parameter. It assumes that
tablespace tbs_1 exists.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1 TRANSPORT_FULL_CHECK=YES LOGFILE=tts.log

2.4.52 TRANSPORT_TABLESPACES
The Data Pump Export command-line utility TRANSPORT_TABLESPACES parameter specifies that
you want to perform an export in transportable-tablespace mode

Default

There is no default

Purpose

Specifies that you want to perform an export in transportable-tablespace mode.

Syntax and Description

TRANSPORT_TABLESPACES=tablespace_name [, ...]

Use the TRANSPORT_TABLESPACES parameter to specify a list of tablespace names for which
object metadata will be exported from the source database into the target database.

The log file for the export lists the data files that are used in the transportable set, the dump
files, and any containment violations.

The TRANSPORT_TABLESPACES parameter exports metadata for all objects within the specified
tablespaces. If you want to perform a transportable export of only certain tables, partitions, or
subpartitions, then you must use the TABLES parameter with the TRANSPORTABLE=ALWAYS
parameter.

Note:

You cannot export transportable tablespaces and then import them into a database
at a lower release level. The target database must be at the same or later release
level as the source database.

Restrictions

• Transportable tablespace jobs are no longer restricted to a degree of parallelism of 1.

• Transportable tablespace mode requires that you have the DATAPUMP_EXP_FULL_DATABASE
role.

• The default tablespace of the user performing the export must not be set to one of the
tablespaces being transported.

• The SYSTEM and SYSAUX tablespaces are not transportable in transportable tablespace
mode.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-75

• All tablespaces in the transportable set must be set to read-only.

• If the Data Pump Export VERSION parameter is specified along with the
TRANSPORT_TABLESPACES parameter, then the version must be equal to or greater
than the Oracle Database COMPATIBLE initialization parameter.

• The TRANSPORT_TABLESPACES parameter cannot be used in conjunction with the
QUERY parameter.

• Transportable tablespace jobs do not support the ACCESS_METHOD parameter for
Data Pump Export.

Example

The following is an example of using the TRANSPORT_TABLESPACES parameter in a file-
based job (rather than network-based). The tablespace tbs_1 is the tablespace being
moved. This example assumes that tablespace tbs_1 exists and that it has been set to
read-only. This example also assumes that the default tablespace was changed before
this export command was issued.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1 TRANSPORT_FULL_CHECK=YES LOGFILE=tts.log

See Oracle Database Administrator's Guide for detailed information about transporting
tablespaces between databases

Related Topics

• Transportable Tablespace Mode

• Using Data File Copying to Move Data

• How Does Oracle Data Pump Handle Timestamp Data?

• Oracle Database Administrator’s Guide

2.4.53 TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export (specified
with the TABLES parameter) or a full mode export (specified with the FULL parameter).

Default: NEVER

Purpose

Specifies whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

Syntax and Description

TRANSPORTABLE = [ALWAYS | NEVER]

The definitions of the allowed values are as follows:

ALWAYS - Instructs the export job to use the transportable option. If transportable is not
possible, then the job fails.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-76

In a table mode export, using the transportable option results in a transportable tablespace
export in which metadata for only the specified tables, partitions, or subpartitions is exported.

In a full mode export, using the transportable option results in a full transportable export
which exports all objects and data necessary to create a complete copy of the database.

NEVER - Instructs the export job to use either the direct path or external table method to
unload data rather than the transportable option. This is the default.

Note:

To export an entire tablespace in transportable mode, use the
TRANSPORT_TABLESPACES parameter.

• If only a subset of a table's partitions are exported and the TRANSPORTABLE=ALWAYS
parameter is used, then on import each partition becomes a non-partitioned table.

• If only a subset of a table's partitions are exported and the TRANSPORTABLE parameter is
not used at all or is set to NEVER (the default), then on import:

– If PARTITION_OPTIONS=DEPARTITION is used, then each partition included in the dump
file set is created as a non-partitioned table.

– If PARTITION_OPTIONS is not used, then the complete table is created. That is, all the
metadata for the complete table is present, so that the table definition looks the same
on the target system as it did on the source. But only the data that was exported for
the specified partitions is inserted into the table.

Restrictions

• The TRANSPORTABLE parameter is only valid in table mode exports and full mode exports.

• To use the TRANSPORTABLE parameter, the COMPATIBLE initialization parameter must be set
to at least 11.0.0.

• To use the FULL parameter in conjunction with TRANSPORTABLE (to perform a full
transportable export), the Data Pump VERSION parameter must be set to at least 12.0. If
the VERSION parameter is not specified, then the COMPATIBLE database initialization
parameter must be set to at least 12.0 or later.

• The user performing a transportable export requires the DATAPUMP_EXP_FULL_DATABASE
privilege.

• Tablespaces associated with tables, partitions, and subpartitions must be read-only.

• A full transportable export uses a mix of data movement methods. Objects residing in a
transportable tablespace have only their metadata unloaded; data is copied when the
data files are copied from the source system to the target system. The data files that
must be copied are listed at the end of the log file for the export operation. Objects
residing in non-transportable tablespaces (for example, SYSTEM and SYSAUX) have both
their metadata and data unloaded into the dump file set. (See Oracle Database
Administrator's Guide for more information about performing full transportable exports.)

• The default tablespace of the user performing the export must not be set to one of the
tablespaces being transported.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-77

Example

The following example assumes that the sh user has the
DATAPUMP_EXP_FULL_DATABASE role and that table sales2 is partitioned and contained
within tablespace tbs2. (The tbs2 tablespace must be set to read-only in the source
database.)

> expdp sh DIRECTORY=dpump_dir1 DUMPFILE=tto1.dmp
TABLES=sh.sales2 TRANSPORTABLE=ALWAYS

After the export completes successfully, you must copy the data files to the target
database area. You could then perform an import operation using the
PARTITION_OPTIONS and REMAP_SCHEMA parameters to make each of the partitions in
sales2 its own table.

> impdp system PARTITION_OPTIONS=DEPARTITION
TRANSPORT_DATAFILES=oracle/dbs/tbs2 DIRECTORY=dpump_dir1
DUMPFILE=tto1.dmp REMAP_SCHEMA=sh:dp

Related Topics

• Oracle Database Administrator’s Guide

• Full Export Mode

• Using Data File Copying to Move Data

2.4.54 TTS_CLOSURE_CHECK
The Data Pump Export command-line mode TTS_CLOSURE_CHECK parameter is used to
indicate the degree of closure checking to be performed as part of a Data Pump
transportable tablespace operation.

Purpose

Specifies the level of closure check to be performed as part of the transportable export
operation. TTS_CLOSURE_CHECK parameter can also be used to indicate that
tablespaces can remain read-write during a test mode transportable tablespace
operation. This option is used to obtain the timing requirements of the export
operation. It is for testing purposes only. The dump file is unavailable for import.

Syntax and Description

TTS_CLOSURE_CHECK = [ON | OFF | FULL | TEST_MODE]
TTS_CLOSURE_CHECK parameter supports the following options:

• ON - indicates self-containment closure check be performed

• OFF - indicates no closure check be performed

• FULL - indicates full bidirectional closure check be performed

• TEST_MODE - indicates that tablespaces are not required to be in read-only mode

ON,OFF, and FULL options are mutually exclusive. TEST_MODE is a Data Pump Export
option only.

Example 2-1 Example

TTS_CLOSURE_CHECK=FULL

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-78

2.4.55 VERSION
The Oracle Data Pump Export command-line utility VERSION parameter specifies the version
of database objects that you want to export.

Default: COMPATIBLE

Purpose

Specifies the version of database objects that you want to export. Only database objects and
attributes that are compatible with the specified release are exported. You can use the
VERSION parameter to create a dump file set that is compatible with a previous release of
Oracle Database. You cannot use Data Pump Export with releases of Oracle Database
before Oracle Database 10g release 1 (10.1). Data Pump Export only works with Oracle
Database 10g release 1 (10.1) or later. The VERSION parameter simply allows you to identify
the version of objects that you export.

Starting with Oracle Database 23c, if you want to use Header Blocks for dump files, then you
must use VERSION to specify a compatible version Dump files created with VERSION=23 cannot
be imported into an earlier relese. However, Data Pump can continue to import from earlier
releases using Header Blocks into Oracle Database 23c.

On Oracle Database 11g release 2 (11.2.0.3) or later, you can specify the VERSION parameter
as VERSION=12 with FULL=Y to generate a full export dump file that is ready for import into
Oracle Database 12c. The export with the later release target VERSION value includes
information from registered database options and components. The dump file set specifying a
later release version can only be imported into Oracle Database 12c Release 1 (12.1.0.1)
and later. For example, if VERSION=12 is used with FULL=Y and also with
TRANSPORTABLE=ALWAYS, then a full transportable export dump file is generated that is ready
for import into Oracle Database 12c. For more information, refer to the FULL export parameter
option.

Syntax and Description

VERSION=[COMPATIBLE | LATEST | version_string]

The legal values for the VERSION parameter are as follows:

• COMPATIBLE - This value is the default value. The version of the metadata corresponds to
the database compatibility level as specified on the COMPATIBLE initialization parameter.

Note: Database compatibility must be set to 9.2 or later.

• LATEST - The version of the metadata and resulting SQL DDL corresponds to the
database release, regardless of its compatibility level.

• version_string - A specific database release (for example, 11.2.0). In Oracle Database
11g, this value cannot be lower than 9.2.

Database objects or attributes that are incompatible with the release specified for VERSION
are not exported. For example, tables containing new data types that are not supported in the
specified release are not exported. If you attempt to export dump files into an Oracle Cloud
Infrastructure (OCI) Native credential store where VERSION=19, then the export fails, and
you receive the following error:

ORA-39463 "header block format is not supported for object-store URI dump file"

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-79

Restrictions

• Exporting a table with archived LOBs to a database release earlier than 11.2 is not
allowed.

• If the Data Pump Export VERSION parameter is specified with the
TRANSPORT_TABLESPACES parameter, then the value for VERSION must be equal to
or greater than the Oracle Database COMPATIBLE initialization parameter.

• If the Data Pump VERSION parameter is specified as any value earlier than 12.1,
then the Data Pump dump file excludes any tables that contain VARCHAR2 or
NVARCHAR2 columns longer than 4000 bytes, and any RAW columns longer than
2000 bytes.

• Dump files created on Oracle Database 11g releases with the Data Pump
parameter VERSION=12 can only be imported on Oracle Database 12c Release 1
(12.1) and later.

Example

The following example shows an export for which the version of the metadata
corresponds to the database release:

> expdp hr TABLES=hr.employees VERSION=LATEST DIRECTORY=dpump_dir1
DUMPFILE=emp.dmp NOLOGFILE=YES

Related Topics

• Full Export Mode

• Exporting and Importing Between Different Oracle Database Releases

2.4.56 VIEWS_AS_TABLES
The Oracle Data Pump Export command-line utility VIEWS_AS_TABLES parameter
specifies that you want one or more views exported as tables.

Default

There is no default.

Caution:

The VIEWS_AS_TABLES parameter unloads view data in unencrypted format,
and creates an unencrypted table. If you are unloading sensitive data, then
Oracle strongly recommends that you enable encryption on the export
operation, and that you ensure the table is created in an encrypted
tablespace. You can use the REMAP_TABLESPACE parameter to move the table
to such a tablespace.

Purpose

Specifies that you want one or more views exported as tables.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-80

Syntax and Description

VIEWS_AS_TABLES=[schema_name.]view_name[:table_name], ...

Oracle Data Pump exports a table with the same columns as the view, and with row data
obtained from the view. Oracle Data Pump also exports objects dependent on the view, such
as grants and constraints. Dependent objects that do not apply to tables (for example, grants
of the UNDER object privilege) are not exported. You can use the VIEWS_AS_TABLES parameter
by itself, or use it with the TABLES parameter. Either way you use the parameter, Oracle Data
Pump performs a table-mode export.

The syntax elements are defined as follows:

schema_name: The name of the schema in which the view resides. If a schema name is not
supplied, it defaults to the user performing the export.

view_name: The name of the view that you want exported as a table. The view must exist, and
it must be a relational view with only scalar, non-LOB columns. If you specify an invalid or
non-existent view, then the view is skipped, and an error message is returned.

table_name: The name of a table that you want to serve as the source of the metadata for the
exported view. By default, Oracle Data Pump automatically creates a temporary "template
table" with the same columns and data types as the view, but with no rows. If the database is
read-only, then this default creation of a template table fails. In such a case, you can specify a
table name. The table must be in the same schema as the view. It must be a non-partitioned
relational table with heap organization. It cannot be a nested table.

If the export job contains multiple views with explicitly specified template tables, then the
template tables must all be different. For example, in the following job (in which two views use
the same template table) one of the views is skipped:

expdp scott/password directory=dpump_dir dumpfile=a.dmp
views_as_tables=v1:emp,v2:emp

An error message is returned reporting the omitted object.

Template tables are automatically dropped after the export operation is completed. While they
exist, you can perform the following query to view their names (which all begin with KU$VAT):

SQL> SELECT * FROM user_tab_comments WHERE table_name LIKE 'KU$VAT%';
TABLE_NAME TABLE_TYPE
------------------------------ -----------
COMMENTS

KU$VAT_63629 TABLE
Data Pump metadata template table for view SCOTT.EMPV

Restrictions

• The VIEWS_AS_TABLES parameter cannot be used with the TRANSPORTABLE=ALWAYS
parameter.

• Tables created using the VIEWS_AS_TABLES parameter do not contain any hidden or
invisible columns that were part of the specified view.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-81

• The VIEWS_AS_TABLES parameter does not support tables that have columns with a
data type of LONG.

Example

The following example exports the contents of view scott.view1 to a dump file named
scott1.dmp.

> expdp scott/password views_as_tables=view1 directory=data_pump_dir
dumpfile=scott1.dmp

The dump file contains a table named view1 with rows obtained from the view.

2.5 Commands Available in Data Pump Export Interactive-
Command Mode

Check which command options are available to you when using Data Pump Export in
interactive mode.

• About Oracle Data Pump Export Interactive Command Mode
Learn about commands you can use with Oracle Data Pump Export in interactive
command mode while your current job is running.

• ADD_FILE
The Oracle Data Pump Export interactive command mode ADD_FILE parameter
adds additional files or substitution variables to the export dump file set.

• CONTINUE_CLIENT
The Oracle Data Pump Export interactive command mode CONTINUE_CLIENT
parameter changes the Export mode from interactive-command mode to logging
mode.

• EXIT_CLIENT
The Oracle Data Pump Export interactive command mode EXIT_CLIENT parameter
stops the export client session, exits Export, and discontinues logging to the
terminal, but leaves the current job running.

• FILESIZE
The Oracle Data Pump Export interactive command mode FILESIZE parameter
redefines the maximum size of subsequent dump files.

• HELP
The Oracle Data Pump Export interactive command mode HELP parameter
provides information about Data Pump Export commands available in interactive-
command mode.

• KILL_JOB
The Oracle Data Pump Export interactive command mode KILL_JOB parameter
detaches all currently attached worker client sessions, and then terminates the
current job. It exits Export, and returns to the terminal prompt.

• PARALLEL
The Export Interactive-Command Mode PARALLEL parameter enables you to
increase or decrease the number of active processes (child and parallel child
processes) for the current job.

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-82

• START_JOB
The Oracle Data Pump Export interactive command mode START_JOB parameter starts
the current job to which you are attached.

• STATUS
The Oracle Data Pump Export interactive command STATUS parameter displays status
information about the export, and enables you to set the display interval for logging mode
status.

• STOP_JOB
The Oracle Data Pump Export interactive command mode STOP_JOB parameter stops the
current job. It stops the job either immediately, or after an orderly shutdown, and exits
Export.

2.5.1 About Oracle Data Pump Export Interactive Command Mode
Learn about commands you can use with Oracle Data Pump Export in interactive command
mode while your current job is running.

In interactive command mode, the current job continues running, but logging to the terminal is
suspended, and the Export prompt (Export>) is displayed.

To start interactive-command mode, do one of the following:

• From an attached client, press Ctrl+C.

• From a terminal other than the one on which the job is running, specify the ATTACH
parameter in an expdp command to attach to the job. ATTACH is a useful feature in
situations in which you start a job at one location, and need to check on it at a later time
from a different location.

The following table lists the activities that you can perform for the current job from the Data
Pump Export prompt in interactive-command mode.

Table 2-1 Supported Activities in Data Pump Export's Interactive-Command Mode

Activity Command Used

Add additional dump files. ADD_FILE
Exit interactive mode and enter logging mode. CONTINUE_CLIENT
Stop the export client session, but leave the job running. EXIT_CLIENT

Redefine the default size to be used for any subsequent dump
files.

FILESIZE

Display a summary of available commands. HELP

Detach all currently attached client sessions and terminate the
current job.

KILL_JOB

Increase or decrease the number of active worker processes for
the current job. This command is valid only in the Enterprise
Edition of Oracle Database 11g or later.

PARALLEL

Restart a stopped job to which you are attached. START_JOB

Display detailed status for the current job and/or set status interval. STATUS

Stop the current job for later restart. STOP_JOB

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-83

2.5.2 ADD_FILE
The Oracle Data Pump Export interactive command mode ADD_FILE parameter adds
additional files or substitution variables to the export dump file set.

Purpose

Adds additional files or substitution variables to the export dump file set.

Syntax and Description

ADD_FILE=[directory_object:]file_name [,...]

Each file name can have a different directory object. If no directory object is specified,
then the default is assumed.

The file_name must not contain any directory path information. However, it can
include a substitution variable, %U, which indicates that multiple files can be generated
using the specified file name as a template.

The size of the file being added is determined by the setting of the FILESIZE
parameter.

Example

The following example adds two dump files to the dump file set. A directory object is
not specified for the dump file named hr2.dmp, so the default directory object for the
job is assumed. A different directory object, dpump_dir2, is specified for the dump file
named hr3.dmp.

Export> ADD_FILE=hr2.dmp, dpump_dir2:hr3.dmp

Related Topics

• File Allocation with Oracle Data Pump

2.5.3 CONTINUE_CLIENT
The Oracle Data Pump Export interactive command mode CONTINUE_CLIENT
parameter changes the Export mode from interactive-command mode to logging
mode.

Purpose

Changes the Export mode from interactive-command mode to logging mode.

Syntax and Description

CONTINUE_CLIENT

In logging mode, status is continually output to the terminal. If the job is currently
stopped, then CONTINUE_CLIENT also causes the client to attempt to start the job.

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-84

Example

Export> CONTINUE_CLIENT

2.5.4 EXIT_CLIENT
The Oracle Data Pump Export interactive command mode EXIT_CLIENT parameter stops the
export client session, exits Export, and discontinues logging to the terminal, but leaves the
current job running.

Purpose

Stops the export client session, exits Export, and discontinues logging to the terminal, but
leaves the current job running.

Syntax and Description

EXIT_CLIENT

Because EXIT_CLIENT leaves the job running, you can attach to the job at a later time. To see
the status of the job, you can monitor the log file for the job, or you can query the
USER_DATAPUMP_JOBS view, or the V$SESSION_LONGOPS view.

Example

Export> EXIT_CLIENT

2.5.5 FILESIZE
The Oracle Data Pump Export interactive command mode FILESIZE parameter redefines the
maximum size of subsequent dump files.

Purpose

Redefines the maximum size of subsequent dump files. If the size is reached for any member
of the dump file set, then that file is closed and an attempt is made to create a new file, if the
file specification contains a substitution variable or if additional dump files have been added
to the job.

Syntax and Description

FILESIZE=integer[B | KB | MB | GB | TB]

The integer can be immediately followed (do not insert a space) by B, KB, MB, GB, or TB
(indicating bytes, kilobytes, megabytes, gigabytes, and terabytes respectively). Bytes is the
default. The actual size of the resulting file may be rounded down slightly to match the size of
the internal blocks used in dump files.

A file size of 0 is equivalent to the maximum file size of 16 TB.

Restrictions

• The minimum size for a file is ten times the default Oracle Data Pump block size, which is
4 kilobytes.

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-85

• The maximum size for a file is 16 terabytes.

Example

Export> FILESIZE=100MB

2.5.6 HELP
The Oracle Data Pump Export interactive command mode HELP parameter provides
information about Data Pump Export commands available in interactive-command
mode.

Purpose

Provides information about Oracle Data Pump Export commands available in
interactive-command mode.

Syntax and Description

HELP

Displays information about the commands available in interactive-command mode.

Example

Export> HELP

2.5.7 KILL_JOB
The Oracle Data Pump Export interactive command mode KILL_JOB parameter
detaches all currently attached worker client sessions, and then terminates the current
job. It exits Export, and returns to the terminal prompt.

Purpose

Detaches all currently attached child client sessions, and then terminates the current
job. It exits Export and returns to the terminal prompt.

Syntax and Description

KILL_JOB

A job that is terminated using KILL_JOB cannot be restarted. All attached clients,
including the one issuing the KILL_JOB command, receive a warning that the job is
being terminated by the current user and are then detached. After all child clients are
detached, the job's process structure is immediately run down and the Data Pump
control job table and dump files are deleted. Log files are not deleted.

Example

Export> KILL_JOB

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-86

2.5.8 PARALLEL
The Export Interactive-Command Mode PARALLEL parameter enables you to increase or
decrease the number of active processes (child and parallel child processes) for the current
job.

Purpose

Enables you to increase or decrease the number of active processes (child and parallel child
processes) for the current job.

Syntax and Description

PARALLEL=integer

PARALLEL is available as both a command-line parameter, and as an interactive-command
mode parameter. You set it to the desired number of parallel processes (child and parallel
child processes). An increase takes effect immediately if there are sufficient files and
resources. A decrease does not take effect until an existing process finishes its current task.
If the value is decreased, then child processes are idled but not deleted until the job exits.

Restrictions

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or later
releases.

• Transportable tablespace metadata cannot be imported in parallel.

• Metadata cannot be imported in parallel when the NETWORK_LINK parameter is used.

In addition, the following objects cannot be imported in parallel:

• TRIGGER
• VIEW
• OBJECT_GRANT
• SEQUENCE
• CONSTRAINT
• REF_CONSTRAINT

Example

Export> PARALLEL=10

Related Topics

• PARALLEL

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-87

2.5.9 START_JOB
The Oracle Data Pump Export interactive command mode START_JOB parameter starts
the current job to which you are attached.

Purpose

Starts the current job to which you are attached.

Syntax and Description

START_JOB

The START_JOB command restarts the current job to which you are attached. The job
cannot be running at the time that you enter the command. The job is restarted with no
data loss or corruption after an unexpected failure or after you issued a STOP_JOB
command, provided the dump file set and parent job table have not been altered in
any way.

Example

Export> START_JOB

2.5.10 STATUS
The Oracle Data Pump Export interactive command STATUS parameter displays status
information about the export, and enables you to set the display interval for logging
mode status.

Purpose

Displays cumulative status of the job, a description of the current operation, and an
estimated completion percentage. It also allows you to reset the display interval for
logging mode status.

Syntax and Description

STATUS[=integer]

You have the option of specifying how frequently, in seconds, this status should be
displayed in logging mode. If no value is entered, or if the default value of 0 is used,
then the periodic status display is turned off, and status is displayed only once.

This status information is written only to your standard output device, not to the log file
(even if one is in effect).

Example

The following example displays the current job status, and changes the logging mode
display interval to five minutes (300 seconds):

Export> STATUS=300

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-88

2.5.11 STOP_JOB
The Oracle Data Pump Export interactive command mode STOP_JOB parameter stops the
current job. It stops the job either immediately, or after an orderly shutdown, and exits Export.

Purpose

Stops the current job, either immediately, or after an orderly shutdown, and exits Export.

Syntax and Description

STOP_JOB[=IMMEDIATE]

If the Data Pump control job table and dump file set are not disturbed when or after the
STOP_JOB command is issued, then the job can be attached to and restarted at a later time
with the START_JOB command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A warning
requiring confirmation will be issued. An orderly shutdown stops the job after worker
processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning requiring
confirmation will be issued. All attached clients, including the one issuing the STOP_JOB
command, receive a warning that the job is being stopped by the current user and they will be
detached. After all clients are detached, the process structure of the job is immediately run
down. That is, the Data Pump control job process will not wait for the child processes to finish
their current tasks. There is no risk of corruption or data loss when you specify
STOP_JOB=IMMEDIATE. However, some tasks that were incomplete at the time of shutdown
may have to be redone at restart time.

Example

Export> STOP_JOB=IMMEDIATE

2.6 Examples of Using Oracle Data Pump Export
You can use these common scenario examples to learn how you can use Oracle Data Pump
Export to move your data.

• Performing a Table-Mode Export
This example shows a table-mode export, specified using the TABLES parameter.

• Data-Only Unload of Selected Tables and Rows
This example shows data-only unload of selected tables and rows.

• Estimating Disk Space Needed in a Table-Mode Export
This example shows how to estimate the disk space needed in a table-mode export.

• Performing a Schema-Mode Export
This example shows you how to perform a schema-mode export.

• Performing a Parallel Full Database Export
To learn how to perform a parallel full database export, use this example to understand
the syntax.

Chapter 2
Examples of Using Oracle Data Pump Export

2-89

• Using Interactive Mode to Stop and Reattach to a Job
This example shows you how to use interactive mode to stop and reattach to a
job.

2.6.1 Performing a Table-Mode Export
This example shows a table-mode export, specified using the TABLES parameter.

In this example, the Data Pump export command performs a table export of the tables
employees and jobs from the human resources (hr) schema.

Because user hr is exporting tables in his own schema, it is not necessary to specify
the schema name for the tables. The NOLOGFILE=YES parameter indicates that an
Export log file of the operation is not generated.

Example 2-2 Performing a Table-Mode Export

expdp hr TABLES=employees,jobs DUMPFILE=dpump_dir1:table.dmp NOLOGFILE=YES

2.6.2 Data-Only Unload of Selected Tables and Rows
This example shows data-only unload of selected tables and rows.

The example shows the contents of a parameter file (exp.par), which you can use to
perform a data-only unload of all the tables in the human resources (hr) schema,
except for the tables countries and regions. Rows in the employees table are
unloaded that have a department_id other than 50. The rows are ordered by
employee_id.

You can issue the following command to execute the exp.par parameter file:

> expdp hr PARFILE=exp.par

This export performs a schema-mode export (the default mode), but the CONTENT
parameter effectively limits the export to an unload of just the table data. The DBA
previously created the directory object dpump_dir1, which points to the directory on the
server where user hr is authorized to read and write export dump files. The dump file
dataonly.dmp is created in dpump_dir1.

Example 2-3 Data-Only Unload of Selected Tables and Rows

DIRECTORY=dpump_dir1
DUMPFILE=dataonly.dmp
CONTENT=DATA_ONLY
EXCLUDE=TABLE:"IN ('COUNTRIES', 'REGIONS')"
QUERY=employees:"WHERE department_id !=50 ORDER BY employee_id"

2.6.3 Estimating Disk Space Needed in a Table-Mode Export
This example shows how to estimate the disk space needed in a table-mode export.

In this example, the ESTIMATE_ONLY parameter is used to estimate the space that is
consumed in a table-mode export, without actually performing the export operation.
Issue the following command to use the BLOCKS method to estimate the number of

Chapter 2
Examples of Using Oracle Data Pump Export

2-90

bytes required to export the data in the following three tables located in the human resource
(hr) schema: employees, departments, and locations.

The estimate is printed in the log file and displayed on the client's standard output device.
The estimate is for table row data only; it does not include metadata.

Example 2-4 Estimating Disk Space Needed in a Table-Mode Export

> expdp hr DIRECTORY=dpump_dir1 ESTIMATE_ONLY=YES TABLES=employees,
departments, locations LOGFILE=estimate.log

2.6.4 Performing a Schema-Mode Export
This example shows you how to perform a schema-mode export.

The example shows a schema-mode export of the hr schema. In a schema-mode export,
only objects belonging to the corresponding schemas are unloaded. Because schema mode
is the default mode, it is not necessary to specify the SCHEMAS parameter on the command
line, unless you are specifying more than one schema or a schema other than your own.

Example 2-5 Performing a Schema Mode Export

> expdp hr DUMPFILE=dpump_dir1:expschema.dmp LOGFILE=dpump_dir1:expschema.log

2.6.5 Performing a Parallel Full Database Export
To learn how to perform a parallel full database export, use this example to understand the
syntax.

The example shows a full database Export that can use 3 parallel processes (worker or
parallel query worker processes).

Example 2-6 Parallel Full Export

> expdp hr FULL=YES DUMPFILE=dpump_dir1:full1%U.dmp, dpump_dir2:full2%U.dmp
FILESIZE=2G PARALLEL=3 LOGFILE=dpump_dir1:expfull.log JOB_NAME=expfull

Because this export is a full database export, all data and metadata in the database is
exported. Dump files full101.dmp, full201.dmp, full102.dmp, and so on, are created in a
round-robin fashion in the directories pointed to by the dpump_dir1 and dpump_dir2 directory
objects. For best performance, Oracle recommends that you place the dump files on
separate input/output (I/O) channels. Each file is up to 2 gigabytes in size, as necessary.
Initially, up to three files are created. If needed, more files are created. The job and Data
Pump control process table has a name of expfull. The log file is written to expfull.log in
the dpump_dir1 directory.

2.6.6 Using Interactive Mode to Stop and Reattach to a Job
This example shows you how to use interactive mode to stop and reattach to a job.

To start this example, reexecute the parallel full export described here:

Performing a Parallel Full Database Export

Chapter 2
Examples of Using Oracle Data Pump Export

2-91

While the export is running, press Ctrl+C. This keyboard command starts the
interactive-command interface of Data Pump Export. In the interactive interface,
logging to the terminal stops, and the Export prompt is displayed.

After the job status is displayed, you can issue the CONTINUE_CLIENT command to
resume logging mode and restart the expfull job.

Export> CONTINUE_CLIENT

A message is displayed that the job has been reopened, and processing status is
output to the client.

Example 2-7 Stopping and Reattaching to a Job

At the Export prompt, issue the following command to stop the job:

Export> STOP_JOB=IMMEDIATE
Are you sure you wish to stop this job ([y]/n): y

The job is placed in a stopped state, and exits the client.

To reattach to the job you just stopped, enter the following command:

> expdp hr ATTACH=EXPFULL

2.7 Syntax Diagrams for Oracle Data Pump Export
You can use syntax diagrams to understand the valid SQL syntax for Oracle Data
Pump Export.

How to Read Graphic Syntax Diagrams

Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram,
trace it from left to right, in the direction shown by the arrows.

For more information about standard SQL syntax notation, see:

How to Read Syntax Diagrams in Oracle Database SQL Language Reference

ExpInit

expdp

HELP =
YES

NO

username / password

@ connect_identifier AS SYSDBA

ExpStart

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-92

ExpStart

ExpModes ExpOpts ExpFileOpts

ATTACH

=

schema_name .

job_name

ExpEncrypt

ExpModes

FULL =
YES

NO

SCHEMAS = schema_name

,

TABLES =

schema_name .

table_name

: partition_name

,

TABLESPACES = tablespace_name

,

TRANSPORT_TABLESPACES = tablespace_name

, TRANSPORT_FULL_CHECK =
YES

NO

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-93

ExpOpts

CONTENT =

ALL

DATA_ONLY

METADATA_ONLY

ExpCompression

DATA_OPTIONS =
GROUP_PARTITION_TABLE_DATA

VERIFY_STREAM_FORMAT

ESTIMATE =
BLOCKS

STATISTICS

ESTIMATE_ONLY =
YES

NO

ExpEncrypt

ExpFilter

FLASHBACK_SCN = scn_value

FLASHBACK_TIME = timestamp

JOB_NAME = jobname_string

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-94

ExpOpts_Cont

LOGTIME =

NONE

STATUS

LOGFILE

ALL

NETWORK_LINK = database_link

PARALLEL = integer

ExpRacOpt

ExpRemap

SOURCE_EDITION = source_edition_name

STATUS = integer

TRANSPORTABLE =
ALWAYS

NEVER

ExpVersion

VIEWS_AS_TABLES =

schema_object.

view_name

:table_name

,

ExpDiagnostics

ExpCompression

COMPRESSION =

ALL

DATA_ONLY

METADATA_ONLY

NONE

COMPRESSION_ALGORITHM =

BASIC

LOW

MEDIUM

HIGH

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-95

ExpEncrypt

ENCRYPTION =

ALL

DATA_ONLY

METADATA_ONLY

ENCRYPTED_COLUMNS_ONLY

NONE

ENCRYPTION_ALGORITHM =

AES128

AES192

AES256

ENCRYPTION_MODE =

PASSWORD

TRANSPARENT

DUAL

ENCRYPTION_PASSWORD = password

ENCRYPTION_PWD_PROMPT =
YES

NO

ExpFilter

EXCLUDE = object_type

: name_clause

INCLUDE = object_type

: name_clause

QUERY =

schema_name .

table_name :

query_clause

SAMPLE =

schema_name .

table_name :

sample_percent

ExpRacOpt

CLUSTER =

YES

NO

SERVICE_NAME = service_name

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-96

ExpRemap

REMAP_DATA =

schema .

table . column :

schema .

pkg . function

ExpVersion

VERSION =

COMPATIBLE

LATEST

version_string

ExpFileOpts

DIRECTORY = directory_object

DUMPFILE =

directory_object :

file_name

,

FILESIZE = number_of_bytes

LOGFILE =

directory_object :

file_name

NOLOGFILE =
YES

NO

PARFILE =

directory_path

file_name

REUSE_DUMPFILES =
YES

NO

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-97

ExpDynOpts

ADD_FILE =

directory_object :

file_name

,

CONTINUE_CLIENT

EXIT_CLIENT

FILESIZE = number_of_bytes

HELP

KILL_JOB

PARALLEL = integer

START_JOB

= SKIP_CURRENT =
YES

NO

STATUS

= integer

STOP_JOB

= IMMEDIATE

ExpDiagnostics

ABORT_STEP = integer

ACCESS_METHOD =

AUTOMATIC

EXTERNAL_TABLE

DIRECT_PATH

INSERT_AS_SELECT

KEEP_MASTER =
YES

NO

METRICS =
YES

NO

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-98

3
Oracle Data Pump Import

With Oracle Data Pump Import, you can load an export dump file set into a target database,
or load a target database directly from a source database with no intervening files.

• What Is Oracle Data Pump Import?
Oracle Data Pump Import is a utility for loading an Oracle export dump file set into a
target system.

• Starting Oracle Data Pump Import
Start the Oracle Data Pump Import utility by using the impdp command.

• Filtering During Import Operations
Oracle Data Pump Import provides data and metadata filtering capability, which can help
you limit the type of information that you import.

• Parameters Available in Oracle Data Pump Import Command-Line Mode
Use Oracle Data Pump parameters for Import (impdp) to manage your data imports.

• Commands Available in Oracle Data Pump Import Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended, and the Import prompt (Import>) is displayed.

• Examples of Using Oracle Data Pump Import
You can use these common scenario examples to learn how you can use Oracle Data
Pump Import to move your data.

• Syntax Diagrams for Oracle Data Pump Import
You can use syntax diagrams to understand the valid SQL syntax for Oracle Data Pump
Import.

3.1 What Is Oracle Data Pump Import?
Oracle Data Pump Import is a utility for loading an Oracle export dump file set into a target
system.

An export dump file set is made up of one or more disk files that contain table data, database
object metadata, and control information. The files are written in a proprietary, binary format.
During an Oracle Data Pump import operation, the Import utility uses these files to locate
each database object in the dump file set.

You can also use Import to load a target database directly from a source database with no
intervening dump files. This type of import is called a network import.

Import enables you to specify whether a job should move a subset of the data and metadata
from the dump file set or the source database (in the case of a network import), as
determined by the import mode. This is done by using data filters and metadata filters, which
are implemented through Import commands.

3.2 Starting Oracle Data Pump Import
Start the Oracle Data Pump Import utility by using the impdp command.

3-1

The characteristics of the import operation are determined by the import parameters
you specify. These parameters can be specified either on the command line or in a
parameter file.

Note:

• Do not start Import as SYSDBA, except at the request of Oracle technical
support. SYSDBA is used internally and has specialized functions; its
behavior is not the same as for general users.

• Be aware that if you are performing a Data Pump Import into a table or
tablespace created with the NOLOGGING clause enabled, then a redo log
file may still be generated. The redo that is generated in such a case is
generally for maintenance of the Data Pump control table, or related to
underlying recursive space transactions, data dictionary changes, and
index maintenance for indices on the table that require logging.

• If the timezone version used by the export database is older than the
version used by the import database, then loading columns with data
type TIMESTAMP WITH TIMEZONE takes longer than it would otherwise.
This additional time is required because the database must check to
determine if the new timezone rules change the values being loaded.

• Oracle Data Pump Import Interfaces
You can interact with Oracle Data Pump Import by using a command line, a
parameter file, or an interactive-command mode.

• Oracle Data Pump Import Modes
The import mode that you use for Oracle Data Pump determines what is imported.

• Network Considerations for Oracle Data Pump Import
Learn how Oracle Data Pump Import utility impdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and
how they are different from import operations using the NETWORK_LINK parameter.

3.2.1 Oracle Data Pump Import Interfaces
You can interact with Oracle Data Pump Import by using a command line, a parameter
file, or an interactive-command mode.

• Command-Line Interface: Enables you to specify the Import parameters directly on
the command line. For a complete description of the parameters available in the
command-line interface.

• Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFILE parameter because parameter
files cannot be nested. The use of parameter files is recommended if you are
using parameters whose values require quotation marks.

• Interactive-Command Interface: Stops logging to the terminal and displays the
Import prompt, from which you can enter various commands, some of which are
specific to interactive-command mode. This mode is enabled by pressing Ctrl+C
during an import operation started with the command-line interface or the

Chapter 3
Starting Oracle Data Pump Import

3-2

parameter file interface. Interactive-command mode is also enabled when you attach to
an executing or stopped job.

Related Topics

• Parameters Available in Import's Command-Line Mode

• Commands Available in Import's Interactive-Command Mode

3.2.2 Oracle Data Pump Import Modes
The import mode that you use for Oracle Data Pump determines what is imported.

• About Oracle Data Pump Import Modes
Learn how Oracle Data Pump Import modes operate during the import.

• Full Import Mode
To specify a full import with Oracle Data Pump, use the FULL parameter.

• Schema Mode
To specify a schema import with Oracle Data Pump, use the SCHEMAS parameter.

• Table Mode
To specify a table mode import with Oracle Data Pump, use the TABLES parameter.

• Tablespace Mode
To specify a tablespace mode import with Oracle Data Pump, use the TABLESPACES
parameter.

• Transportable Tablespace Mode
To specify a transportable tablespace mode import with Oracle Data Pump, use the
TRANSPORT_TABLESPACES parameter.

3.2.2.1 About Oracle Data Pump Import Modes
Learn how Oracle Data Pump Import modes operate during the import.

The Oracle Data Pump import mode that you specify for the import applies to the source of
the operation. If you specify the NETWORK_LINK parameter, then that source is either a dump
file set, or another database.

When the source of the import operation is a dump file set, specifying a mode is optional. If
you do not specify a mode, then Import attempts to load the entire dump file set in the mode
in which the export operation was run.

The mode is specified on the command line, using the appropriate parameter.

Note:

When you import a dump file that was created by a full-mode export, the import
operation attempts to copy the password for the SYS account from the source
database. This copy sometimes fails (For example, if the password is in a shared
password file). If it does fail, then after the import completes, you must set the
password for the SYS account at the target database to a password of your choice.

Chapter 3
Starting Oracle Data Pump Import

3-3

3.2.2.2 Full Import Mode
To specify a full import with Oracle Data Pump, use the FULL parameter.

In full import mode, the entire content of the source (dump file set or another
database) is loaded into the target database. This mode is the default for file-based
imports. If the source is another database containing schemas other than your own,
then you must have the DATAPUMP_IMP_FULL_DATABASE role.

Cross-schema references are not imported for non-privileged users. For example, a
trigger defined on a table within the schema of the importing user, but residing in
another user schema, is not imported.

The DATAPUMP_IMP_FULL_DATABASE role is required on the target database. If the
NETWORK_LINK parameter is used for a full import, then the
DATAPUMP_EXP_FULL_DATABASE role is required on the source database

A full export does not export triggers owned by schema SYS. You must manually
recreate SYS triggers either before or after the full import. Oracle recommends that you
recreate them after the import in case they define actions that would impede progress
of the import.

Using the Transportable Option During Full Mode Imports

You can use the transportable option during a full-mode import to perform a full
transportable import.

Network-based full transportable imports require use of the FULL=YES,
TRANSPORTABLE=ALWAYS, and TRANSPORT_DATAFILES=datafile_name parameters.

File-based full transportable imports only require use of the
TRANSPORT_DATAFILES=datafile_name parameter. Data Pump Import infers the
presence of the TRANSPORTABLE=ALWAYS and FULL=Y parameters.

There are several requirements when performing a full transportable import:

• Either you must also specify the NETWORK_LINK parameter, or the dump file set
being imported must have been created using the transportable option during
export.

• If you are using a network link, then the database specified on the NETWORK_LINK
parameter must be Oracle Database 11g release 2 (11.2.0.3) or later, and the
Oracle Data Pump VERSION parameter must be set to at least 12. (In a non-
network import, VERSION=12 is implicitly determined from the dump file.)

• If the source platform and the target platform are of different endianness, then you
must convert the data being transported so that it is in the format of the target
platform. To convert the data, you can use either the DBMS_FILE_TRANSFER
package or the RMAN CONVERT command.

• If the source and target platforms do not have the same endianness, then a full
transportable import of encrypted tablespaces is not supported in network mode or
in dump file mode

For a detailed example of performing a full transportable import, see Oracle Database
Administrator’s Guide.

Chapter 3
Starting Oracle Data Pump Import

3-4

Related Topics

• FULL

• TRANSPORTABLE

• Transporting Tablespaces Between Databases in Oracle Database Administrator’s Guide

3.2.2.3 Schema Mode
To specify a schema import with Oracle Data Pump, use the SCHEMAS parameter.

In a schema import, only objects owned by the specified schemas are loaded. The source
can be a full, table, tablespace, or a schema-mode export dump file set, or another database.
If you have the DATAPUMP_IMP_FULL_DATABASE role, then you can specify a list of schemas,
and the schemas themselves (including system privilege grants) are created in the database
in addition to the objects contained within those schemas.

Cross-schema references are not imported for non-privileged users unless the other schema
is remapped to the current schema. For example, a trigger defined on a table within the
importing user's schema, but residing in another user's schema, is not imported.

Related Topics

• SCHEMAS

3.2.2.4 Table Mode
To specify a table mode import with Oracle Data Pump, use the TABLES parameter.

A table-mode import is specified using the TABLES parameter. In table mode, only the
specified set of tables, partitions, and their dependent objects are loaded. The source can be
a full, schema, tablespace, or table-mode export dump file set, or another database. You
must have the DATAPUMP_IMP_FULL_DATABASE role to specify tables that are not in your own
schema.

You can use the transportable option during a table-mode import by specifying the
TRANPORTABLE=ALWAYS parameter with the TABLES parameter. If you use this option, then you
must also use the NETWORK_LINK parameter.

To recover tables and table partitions, you can also use RMAN backups, and the RMAN RECOVER
TABLE command. During this process, RMAN creates (and optionally imports) an Oracle Data
Pump export dump file that contains the recovered objects.

Related Topics

• TABLES

• TRANSPORTABLE

• Oracle Database Backup and Recovery User’s Guide

3.2.2.5 Tablespace Mode
To specify a tablespace mode import with Oracle Data Pump, use the TABLESPACES
parameter.

A tablespace-mode import is specified using the TABLESPACES parameter. In tablespace
mode, all objects contained within the specified set of tablespaces are loaded, along with the
dependent objects. The source can be a full, schema, tablespace, or table-mode export

Chapter 3
Starting Oracle Data Pump Import

3-5

dump file set, or another database. For unprivileged users, objects not remapped to
the current schema will not be processed.

Related Topics

• TABLESPACES

3.2.2.6 Transportable Tablespace Mode
To specify a transportable tablespace mode import with Oracle Data Pump, use the
TRANSPORT_TABLESPACES parameter.

In transportable tablespace mode, the metadata from another database is loaded by
using either a database link (specified with the NETWORK_LINK parameter), or by
specifying a dump file that contains the metadata. The actual data files, specified by
the TRANSPORT_DATAFILES parameter, must be made available from the source system
for use in the target database, typically by copying them over to the target system.

When transportable jobs are performed, Oracle recommends that you keep a copy of
the data files on the source system until the import job has successfully completed on
the target system. With a copy of the data files, if the import job should fail for some
reason, then you still have uncorrupted copies of the data files.

Using this mode requires the DATAPUMP_IMP_FULL_DATABASE role.

Note:

You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database must be at the same
or later release level as the source database.

Related Topics

• How Does Oracle Data Pump Handle Timestamp Data?

• Using Data File Copying to Move Data

3.2.3 Network Considerations for Oracle Data Pump Import
Learn how Oracle Data Pump Import utility impdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and how
they are different from import operations using the NETWORK_LINK parameter.

When you start impdp, you can specify a connect identifier in the connect string that
can be different from the current instance identified by the current Oracle System ID
(SID).

You can specify a connect identifier by using either an Oracle*Net connect descriptor,
or by using a net service name (usually defined in the tnsnames.ora file) that maps to
a connect descriptor. Use of a connect identifier requires that you have Oracle Net
Listener running (to start the default listener, enter lsnrctl start).

Chapter 3
Starting Oracle Data Pump Import

3-6

The following example shows this type of connection, in which inst1 is the connect identifier:

impdp hr@inst1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Import then prompts you for a password:

Password: password

To specify an Easy Connect string, the connect string must be an escaped quoted string. The
Easy Connect string in its simplest form consists of a string database_host[:port][/
[service_name]. For example, if the host is inst1, and you run Export on pdb1, then the
Easy Connect string can be:

impdp hr@\"inst1@example.com/pdb1" DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp
TABLES=employees

If you prefer to use an unquoted string, then you can specify the Easy Connect connect string
in a parameter file.

The local Import client connects to the database instance identified by the connect identifier
inst1 (a net service name), and imports the data from the dump file hr.dmp to inst1.

Specifying a connect identifier when you start the Import utility is different from performing an
import operation using the NETWORK_LINK parameter. When you start an import operation and
specify a connect identifier, the local Import client connects to the database instance
identified by the connect identifier and imports the data from the dump file named on the
command line to that database instance.

By contrast, when you perform an import using the NETWORK_LINK parameter, the import is
performed using a database link, and there is no dump file involved. (A database link is a
connection between two physical database servers that allows a client to access them as one
logical database.)

Related Topics

• NETWORK_LINK

• Database Links

• Understanding the Easy Connect Naming Method

3.3 Filtering During Import Operations
Oracle Data Pump Import provides data and metadata filtering capability, which can help you
limit the type of information that you import.

• Oracle Data Pump Import Data Filters
You can specify restrictions on the table rows that you import by using Oracle Data Pump
Data-specific filtering through the QUERY and SAMPLE parameters.

• Oracle Data Pump Import Metadata Filters
To exclude or include objects in an import operation, use Oracle Data Pump metadata
filters.

Chapter 3
Filtering During Import Operations

3-7

3.3.1 Oracle Data Pump Import Data Filters
You can specify restrictions on the table rows that you import by using Oracle Data
Pump Data-specific filtering through the QUERY and SAMPLE parameters.

Oracle Data Pump can also implement Data filtering indirectly because of metadata
filtering, which can include or exclude table objects along with any associated row
data.

Each data filter can be specified once for each table within a job. If different filters
using the same name are applied to both a particular table and to the whole job, then
the filter parameter supplied for the specific table takes precedence.

3.3.2 Oracle Data Pump Import Metadata Filters
To exclude or include objects in an import operation, use Oracle Data Pump metadata
filters.

Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters.
Metadata filters identify a set of objects that you want to be included or excluded from
an Oracle Data Pump operation. For example: You can request a full import, but
without Package Specifications or Package Bodies. Oracle Data Pump Import
provides much greater metadata filtering capability than was provided by the original
Import utility.

To use filters correctly, and to obtain the results that you expect, remember that
dependent objects of an identified object are processed along with the identified
object.

For example, if a filter specifies that a package is to be included in an operation, then
grants upon that package will also be included. Likewise, if a table is excluded by a
filter, then indexes, constraints, grants, and triggers upon the table will also be
excluded by the filter.

Starting with Oracle Database 21c, Oracle Data Pump permits you to set both INCLUDE
and EXCLUDE parameters in the same command. When you include both parameters in
a command, Oracle Data Pump processes the INCLUDE parameter first, and includes
all objects identified by the parameter. Then it processes the exclude parameters.
Specifically, the EXCLUDE_PATH_EXPR, EXCLUDE_PATH_LIST and EXCLUDE_TABLE
parameters are processed last.. Any objects specified by the EXCLUDE parameter that
are in the list of include objects are removed as the command executes.

If multiple filters are specified for an object type, then an implicit AND operation is
applied to them. That is, objects participating in the job must pass all of the filters
applied to their object types.

The same filter name can be specified multiple times within a job.

To see a list of valid object types, query the following views:
DATABASE_EXPORT_OBJECTS for full mode, SCHEMA_EXPORT_OBJECTS for schema mode,
and TABLE_EXPORT_OBJECTS for table and tablespace mode. The values listed in the
OBJECT_PATH column are the valid object types. Note that full object path names are
determined by the export mode, not by the import mode.

Chapter 3
Filtering During Import Operations

3-8

Related Topics

• EXCLUDE

• INCLUDE

3.4 Parameters Available in Oracle Data Pump Import
Command-Line Mode

Use Oracle Data Pump parameters for Import (impdp) to manage your data imports.

• About Import Command-Line Mode
Learn how to use Oracle Data Pump Import parameters in command-line mode, including
case sensitivity, quotation marks, escape characters, and information about how to use
examples.

• ABORT_STEP
The Oracle Data Pump Import command-line mode ABORT_STEP parameter stops the job
after it is initialized. Stopping the job enables the Data Pump control job table to be
queried before any data is imported.

• ACCESS_METHOD
The Orale Data Pump Import command-line mode ACCESS_METHOD parameter instructs
Import to use a particular method to load data

• ATTACH
The Oracle Data Pump Import command-line mode ATTACH parameter attaches a worker
session to an existing Data Pump control import job, and automatically places you in
interactive-command mode.

• CLUSTER
The Oracle Data Pump Import command-line mode CLUSTER parameter determines
whether Data Pump can use Oracle Real Application Clusters (Oracle RAC) resources,
and start workers on other Oracle RAC instances.

• CONTENT
The Oracle Data Pump Import command-line mode CONTENT parameter enables you to
filter what is loaded during the import operation.

• CREDENTIAL
The Oracle Data Pump Import command-line mode CREDENTIAL parameter specifies the
credential object name owned by the database user that Import uses to process files in
the dump file set imported into cloud storage.

• DATA_OPTIONS

• DIRECTORY
The Oracle Data Pump Import command-line mode DIRECTORY parameter specifies the
default location in which the import job can find the dump file set, and create log and SQL
files.

• DUMPFILE
The Oracle Data Pump Import command-line mode DUMPFILE parameter specifies the
names, and optionally, the directory objects of the dump file set that Export created.

• ENABLE_SECURE_ROLES
The Oracle Data Pump Import command-line utility ENABLE_SECURE_ROLES parameter
prevents inadvertent use of protected roles during exports.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-9

• ENCRYPTION_PASSWORD
The Oracle Data Pump Import command-line mode ENCRYPTION_PASSWORD
parameter specifies a password for accessing encrypted column data in the dump
file set.

• ENCRYPTION_PWD_PROMPT
The Oracle Data Pump Import command-line mode ENCRYPTION_PWD_PROMPT
parameter specifies whether Data Pump should prompt you for the encryption
password.

• ESTIMATE
The Oracle Data Pump Import command-line mode ESTIMATE parameter instructs
the source system in a network import operation to estimate how much data is
generated during the import.

• EXCLUDE
The Oracle Data Pump Import command-line mode EXCLUDE parameter enables
you to filter the metadata that is imported by specifying objects and object types to
exclude from the import job.

• FLASHBACK_SCN
The Oracle Data Pump Import command-line mode FLASHBACK_SCN specifies the
system change number (SCN) that Import uses to enable the Flashback utility.

• FLASHBACK_TIME
The Oracle Data Pump Import command-line mode FLASHBACK_TIME parameter
specifies the system change number (SCN) that Import uses to enable the
Flashback utility.

• FULL
The Oracle Data Pump Import command-line mode FULL parameter specifies that
you want to perform a full database import.

• HELP
The Oracle Data Pump Import command-line mode HELP parameter displays
online help for the Import utility.

• INCLUDE
The Oracle Data Pump Import command-line mode INCLUDE parameter enables
you to filter the metadata that is imported by specifying objects and object types
for the current import mode.

• JOB_NAME
The Oracle Data Pump Import command-line mode JOB_NAME parameter is used to
identify the import job in subsequent actions.

• KEEP_MASTER
The Oracle Data Pump Import command-line mode KEEP_MASTER parameter
indicates whether the Data Pump control job table should be deleted or retained at
the end of an Oracle Data Pump job that completes successfully.

• LOGFILE
The Oracle Data Pump Import command-line mode LOGFILE parameter specifies
the name, and optionally, a directory object, for the log file of the import job.

• LOGTIME
The Oracle Data Pump Import command-line mode LOGTIME parameter specifies
that you want to have messages displayed with timestamps during import.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-10

• MASTER_ONLY
The Oracle Data Pump Import command-line mode MASTER_ONLY parameter indicates
whether to import just the Data Pump control job table, and then stop the job so that the
contents of the Data Pump control job table can be examined.

• METRICS
The Oracle Data Pump Import command-line mode METRICS parameter indicates whether
additional information about the job should be reported to the log file.

• NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK_LINK parameter enables an
import from a source database identified by a valid database link.

• NOLOGFILE
The Oracle Data Pump Import command-line mode NOLOGFILE parameter specifies
whether to suppress the default behavior of creating a log file.

• PARALLEL
The Oracle Data Pump Import command-line mode PARALLEL parameter sets the
maximum number of worker processes that can load in parallel.

• PARALLEL_THRESHOLD
The Oracle Data Pump Import command-line utility PARALLEL_THRESHOLD parameter
specifies the size of the divisor that Data Pump uses to calculate potential parallel DML
based on table size.

• PARFILE
The Oracle Data Pump Import command-line mode PARFILE parameter specifies the
name of an import parameter file.

• PARTITION_OPTIONS
The Oracle Data Pump Import command-line mode PARTITION_OPTIONS parameter
specifies how you want table partitions created during an import operation.

• QUERY
The Oracle Data Pump Import command-line mode QUERY parameter enables you to
specify a query clause that filters the data that is imported.

• REMAP_DATA
The Oracle Data Pump Import command-line mode REMAP_DATA parameter enables you
to remap data as it is being inserted into a new database.

• REMAP_DATAFILE
The Oracle Data Pump Import command-line mode REMAP_DATAFILE parameter changes
the name of the source data file to the target data file name in all SQL statements where
the source data file is referenced.

• REMAP_DIRECTORY
The Oracle Data Pump Import command-line mode REMAP_DIRECTORY parameter lets you
remap directories when you move databases between platforms.

• REMAP_SCHEMA
The Oracle Data Pump Import command-line mode REMAP_SCHEMA parameter loads all
objects from the source schema into a target schema.

• REMAP_TABLE
The Oracle Data Pump Import command-line mode REMAP_TABLE parameter enables you
to rename tables during an import operation.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-11

• REMAP_TABLESPACE
The Oracle Data Pump Import command-line mode REMAP_TABLESPACE parameter
remaps all objects selected for import with persistent data in the source tablespace
to be created in the target tablespace.

• SCHEMAS
The Oracle Data Pump Import command-line mode SCHEMAS parameter specifies
that you want a schema-mode import to be performed.

• SERVICE_NAME
The Oracle Data Pump Import command-line mode SERVICE_NAME parameter
specifies a service name that you want to use in conjunction with the CLUSTER
parameter.

• SKIP_UNUSABLE_INDEXES
The Oracle Data Pump Import command-line mode SKIP_UNUSABLE_INDEXES
parameter specifies whether Import skips loading tables that have indexes that
were set to the Index Unusable state (by either the system or the user).

• SOURCE_EDITION
The Oracle Data Pump Import command-line mode SOURCE_EDITION parameter
specifies the database edition on the remote node from which objects are fetched.

• SQLFILE
The Oracle Data Pump Import command-line mode SQLFILE parameter specifies a
file into which all the SQL DDL that Import prepares to execute is written, based on
other Import parameters selected.

• STATUS
The Oracle Data Pump Import command-line mode STATUS parameter specifies
the frequency at which the job status is displayed.

• STREAMS_CONFIGURATION
The Oracle Data Pump Import command-line mode STREAMS_CONFIGURATION
parameter specifies whether to import any GoldenGate Replication metadata that
may be present in the export dump file.

• TABLE_EXISTS_ACTION
The Oracle Data Pump Import command-line mode TABLE_EXISTS_ACTION
parameter specifies for Import what to do if the table it is trying to create already
exists.

• REUSE_DATAFILES
The Oracle Data Pump Import command-line mode REUSE_DATAFILES parameter
specifies whether you want the import job to reuse existing data files for
tablespace creation.

• TABLES
The Oracle Data Pump Import command-line mode TABLES parameter specifies
that you want to perform a table-mode import.

• TABLESPACES
The Oracle Data Pump Import command-line mode TABLESPACES parameter
specifies that you want to perform a tablespace-mode import.

• TARGET_EDITION
The Oracle Data Pump Import command-line mode TARGET_EDITION parameter
specifies the database edition into which you want objects imported.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-12

• TRANSFORM
The Oracle Data Pump Import command-line mode TRANSFORM parameter enables you to
alter object creation DDL for objects being imported.

• TRANSPORT_DATAFILES
The Oracle Data Pump Import command-line mode TRANSPORT_DATAFILES parameter
specifies a list of data files that are imported into the target database when
TRANSPORTABLE=ALWAYS is set during the export.

• TRANSPORT_FULL_CHECK
The Oracle Data Pump Import command-line mode TRANSPORT_FULL_CHECK parameter
specifies whether to verify that the specified transportable tablespace set is being
referenced by objects in other tablespaces.

• TRANSPORT_TABLESPACES
The Oracle Data Pump Import command-line mode TRANSPORT_TABLESPACES parameter
specifies that you want to perform an import in transportable-tablespace mode over a
database link.

• TRANSPORTABLE
The optional Oracle Data Pump Import command-line mode TRANSPORTABLE parameter
specifies either that transportable tables are imported with KEEP_READ_ONLY, or
NO_BITMAP_REBUILD.

• VERIFY_CHECKSUM
The Oracle Data Pump Import command-line utility VERIFY_CHECKSUM parameter specifies
whether to verify dump file checksums.

• VERIFY_ONLY
The Oracle Data Pump Import command-line utility VERIFY_ONLY parameter enables you
to verify the checksum for the dump file.

• VERSION
The Oracle Data Pump Import command-line mode VERSION parameter specifies the
version of database objects that you want to import.

• VIEWS_AS_TABLES (Network Import)
The Oracle Data Pump Import command-line mode VIEWS_AS_TABLES (Network Import)
parameter specifies that you want one or more views to be imported as tables.

3.4.1 About Import Command-Line Mode
Learn how to use Oracle Data Pump Import parameters in command-line mode, including
case sensitivity, quotation marks, escape characters, and information about how to use
examples.

Before using Oracle Data Pump import parameters, read the following sections:

• Specifying Import Parameter

• Use of Quotation Marks On the Data Pump Command Line

Many of the descriptions include an example of how to use the parameter. For background
information on setting up the necessary environment to run the examples, see:

• Using the Import Parameter Examples

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-13

Specifying Import Parameters

For parameters that can have multiple values specified, the values can be separated
by commas or by spaces. For example, you could specify TABLES=employees,jobs or
TABLES=employees jobs.

For every parameter you enter, you must enter an equal sign (=) and a value. Data
Pump has no other way of knowing that the previous parameter specification is
complete and a new parameter specification is beginning. For example, in the
following command line, even though NOLOGFILE is a valid parameter, it would be
interpreted as another dump file name for the DUMPFILE parameter:

impdp DIRECTORY=dpumpdir DUMPFILE=test.dmp NOLOGFILE TABLES=employees

This would result in two dump files being created, test.dmp and nologfile.dmp.

To avoid this, specify either NOLOGFILE=YES or NOLOGFILE=NO.

Case Sensitivity When Specifying Parameter Values

For tablespace names, schema names, table names, and so on that you enter as
parameter values, Oracle Data Pump by default changes values entered as lowercase
or mixed-case into uppercase. For example, if you enter TABLE=hr.employees, then it
is changed to TABLE=HR.EMPLOYEES. To maintain case, you must enclose the value
within quotation marks. For example, TABLE="hr.employees" would preserve the table
name in all lower case. The name you enter must exactly match the name stored in
the database.

Use of Quotation Marks On the Data Pump Command Line

Some operating systems treat quotation marks as special characters and will therefore
not pass them to an application unless they are preceded by an escape character,
such as the backslash (\). This is true both on the command line and within parameter
files. Some operating systems may require an additional set of single or double
quotation marks on the command line around the entire parameter value containing
the special characters.

The following examples are provided to illustrate these concepts. Be aware that they
may not apply to your particular operating system and that this documentation cannot
anticipate the operating environments unique to each user.

Suppose you specify the TABLES parameter in a parameter file, as follows:

TABLES = \"MixedCaseTableName\"

If you were to specify that on the command line, then some operating systems would
require that it be surrounded by single quotation marks, as follows:

TABLES = '\"MixedCaseTableName\"'

To avoid having to supply additional quotation marks on the command line, Oracle
recommends the use of parameter files. Also, note that if you use a parameter file and
the parameter value being specified does not have quotation marks as the first
character in the string (for example, TABLES=scott."EmP"), then the use of escape
characters may not be necessary on some systems.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-14

Using the Import Parameter Examples

If you try running the examples that are provided for each parameter, then be aware of the
following:

• After you enter the username and parameters as shown in the example, Import is started
and you are prompted for a password. You must supply a password before a database
connection is made.

• Most of the examples use the sample schemas of the seed database, which is installed
by default when you install Oracle Database. In particular, the human resources (hr)
schema is often used.

• Examples that specify a dump file to import assume that the dump file exists. Wherever
possible, the examples use dump files that are generated when you run the Export
examples.

• The examples assume that the directory objects, dpump_dir1 and dpump_dir2, already
exist and that READ and WRITE privileges have been granted to the hr user for these
directory objects.

• Some of the examples require the DATAPUMP_EXP_FULL_DATABASE and
DATAPUMP_IMP_FULL_DATABASE roles. The examples assume that the hr user has been
granted these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning the
necessary privileges and roles.

Unless specifically noted, these parameters can also be specified in a parameter file.

See Also:

Oracle Database Sample Schemas

Your Oracle operating system-specific documentation for information about how
special and reserved characters are handled on your system.

3.4.2 ABORT_STEP
The Oracle Data Pump Import command-line mode ABORT_STEP parameter stops the job after
it is initialized. Stopping the job enables the Data Pump control job table to be queried before
any data is imported.

Default

Null

Purpose

Stops the job after it is initialized. Stopping the job enables the Data Pump control job table to
be queried before any data is imported.

Syntax and Description

ABORT_STEP=[n | -1]

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-15

The possible values correspond to a process order number in the Data Pump control
job table. The result of using each number is as follows:

• n: If the value is zero or greater, then the import operation is started. The job is
stopped at the object that is stored in the Data Pump control job table with the
corresponding process order number.

• -1 The import job uses a NETWORK_LINK: Abort the job after setting it up but before
importing any objects.

• -1 The import job does not use NETWORK_LINK: Abort the job after loading the
master table and applying filters.

Restrictions

• None

Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp ABORT_STEP=-1

3.4.3 ACCESS_METHOD
The Orale Data Pump Import command-line mode ACCESS_METHOD parameter instructs
Import to use a particular method to load data

Default

AUTOMATIC

Purpose

Instructs Import to use a particular method to load data.

Syntax and Description

ACCESS_METHOD=[AUTOMATIC | DIRECT_PATH | EXTERNAL_TABLE | CONVENTIONAL_PATH |
INSERT_AS_SELECT]

The ACCESS_METHOD parameter is provided so that you can try an alternative method if
the default method does not work for some reason. If the data for a table cannot be
loaded with the specified access method, then the data displays an error for the table
and continues with the next work item.

The available options are:

• AUTOMATIC: This access method is the default. Data Pump determines the best
way to load data for each table. Oracle recommends that you use AUTOMATIC
whenever possible, because it enables Data Pump to automatically select the
most efficient method.

• DIRECT_PATH: Data Pump uses direct path load for every table.

• EXTERNAL_TABLE: Data Pump creates an external table over the data stored in the
dump file, and uses a SQL INSERT AS SELECT statement to load the data into the
table. Data Pump applies the APPEND hint to the INSERT statement.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-16

• CONVENTIONAL_PATH: Data Pump creates an external table over the data stored in the
dump file and reads rows from the external table one at a time. Every time it reads a row,
Data Pump executes an insert statement that loads that row into the target table. This
method takes a long time to load data, but it is the only way to load data that cannot be
loaded by direct path and external tables.

• INSERT_AS_SELECT: Data Pump loads tables by executing a SQL INSERT AS SELECT
statement that selects data from the remote database and inserts it into the target table.
This option is available only for network mode imports. It is used to disable use of
DIRECT_PATH when data is moved over the network.

Restrictions

• The valid options for network mode import are AUTOMATIC, DIRECT_PATH and
INSERT_AS_SELECT .

• The only valid options when importing from a dump file are AUTOMATIC, DIRECT_PATH,
EXTERNAL_TABLE and CONVENTIONAL_PATH

• To use the ACCESS_METHOD parameter with network imports, you must be using Oracle
Database 12c Release 2 (12.2.0.1) or later

• The ACCESS_METHOD parameter for Oracle Data Pump Import is not valid for transportable
tablespace jobs.

Example

The following example enables Oracle Data Pump to load data for multiple partitions of the
pre-existing table SALES at the same time.

impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp ACCESS_METHOD=CONVENTIONAL

3.4.4 ATTACH
The Oracle Data Pump Import command-line mode ATTACH parameter attaches a worker
session to an existing Data Pump control import job, and automatically places you in
interactive-command mode.

Default

If there is only one running job, then the current job in user's schema.

Purpose

This command attaches the client worker session to an existing import job, and automatically
places you in interactive-command mode.

Syntax and Description

ATTACH [=[schema_name.]job_name]

Specify a schema_name if the schema to which you are attaching is not your own. To do this,
you must have the DATAPUMP_IMP_FULL_DATABASE role.

A job_name does not have to be specified if only one running job is associated with your
schema, and if the job is active. If the job you are attaching to is stopped, then you must

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-17

supply the job name. To see a list of Oracle Data Pump job names, you can query the
DBA_DATAPUMP_JOBS view or the USER_DATAPUMP_JOBS view.

When you are attached to the job, Import displays a description of the job, and then
displays the Import prompt.

Restrictions

• When you specify the ATTACH parameter, the only other Oracle Data Pump
parameter you can specify on the command line is ENCRYPTION_PASSWORD.

• If the job you are attaching to was initially started using an encryption password,
then when you attach to the job, you must again enter the ENCRYPTION_PASSWORD
parameter on the command line to re-specify that password.

• You cannot attach to a job in another schema unless it is already running.

• If the dump file set or master table for the job have been deleted, then the attach
operation fails.

• Altering the Data Pump control table in any way can lead to unpredictable results.

Example

The following is an example of using the ATTACH parameter.

> impdp hr ATTACH=import_job

This example assumes that a job named import_job exists in the hr schema.

Related Topics

• Commands Available in Oracle Data Pump Import Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended, and the Import prompt (Import>) is displayed.

3.4.5 CLUSTER
The Oracle Data Pump Import command-line mode CLUSTER parameter determines
whether Data Pump can use Oracle Real Application Clusters (Oracle RAC)
resources, and start workers on other Oracle RAC instances.

Default

YES

Purpose

Determines whether Oracle Data Pump can use Oracle Real Application Clusters
(Oracle RAC) resources, and start workers on other Oracle RAC instances.

Syntax and Description

CLUSTER=[YES | NO]

To force Data Pump Import to use only the instance where the job is started and to
replicate pre-Oracle Database 11g Release 2 (11.2) behavior, specify CLUSTER=NO.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-18

To specify a specific, existing service, and constrain worker processes to run only on
instances defined for that service, use the SERVICE_NAME parameter with the CLUSTER=YES
parameter.

Using the CLUSTER parameter can affect performance, because there is some additional
overhead in distributing the import job across Oracle RAC instances. For small jobs, it can be
better to specify CLUSTER=NO, so that the job is constrained to run on the instance where it is
started. Jobs that obtain the most performance benefits from using the CLUSTER parameter
are those involving large amounts of data.

Example

> impdp hr DIRECTORY=dpump_dir1 SCHEMAS=hr CLUSTER=NO PARALLEL=3
NETWORK_LINK=dbs1

This example performs a schema-mode import of the hr schema. Because CLUSTER=NO is
used, the job uses only the instance where it is started. Up to 3 parallel processes can be
used. The NETWORK_LINK value of dbs1 would be replaced with the name of the source
database from which you were importing data. (Note that there is no dump file generated,
because this is a network import.)

In this example, the NETWORK_LINK parameter is only used as part of the example. It is not
required when using the CLUSTER parameter.

Related Topics

• SERVICE_NAME
The Oracle Data Pump Import command-line mode SERVICE_NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

• Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to ensure that you are making cluster
member nodes available.

3.4.6 CONTENT
The Oracle Data Pump Import command-line mode CONTENT parameter enables you to filter
what is loaded during the import operation.

Default

ALL

Purpose

Enables you to filter what is loaded during the import operation.

Syntax and Description

CONTENT=[ALL | DATA_ONLY | METADATA_ONLY]

• ALL: loads any data and metadata contained in the source. This is the default.

• DATA_ONLY: loads only table row data into existing tables; no database objects are
created.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-19

• METADATA_ONLY: loads only database object definitions. It does not load table row
data. Be aware that if you specify CONTENT=METADATA_ONLY, then any index or table
statistics imported from the dump file are locked after the import operation is
complete.

Restrictions

• The CONTENT=METADATA_ONLY parameter and value cannot be used in conjunction
with the TRANSPORT_TABLESPACES (transportable-tablespace mode) parameter or
the QUERY parameter.

• The CONTENT=ALL and CONTENT=DATA_ONLY parameter and values cannot be used
in conjunction with the SQLFILE parameter.

Example

The following is an example of using the CONTENT parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
CONTENT=METADATA_ONLY

This command runs a full import that loads only the metadata in the expfull.dmp
dump file. It runs a full import, because a full import is the default for file-based imports
in which no import mode is specified.

Related Topics

• FULL
The Oracle Data Pump Export command-line utility FULL parameter specifies that
you want to perform a full database mode export.

3.4.7 CREDENTIAL
The Oracle Data Pump Import command-line mode CREDENTIAL parameter specifies
the credential object name owned by the database user that Import uses to process
files in the dump file set imported into cloud storage.

Default

none.

Purpose

Specifies the credential object name owned by the database user that Import uses to
process files in the dump file set imported into Oracle Cloud Infrastructure cloud
storage.

Syntax and Description

CREDENTIAL=credential_object_name
The import operation reads and processes files in the dump file set stored in the cloud
the same as files stored on local file systems.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-20

If the CREDENTIAL parameter is specified, then the value for the DUMPFILE parameter is a list of
comma-delimited strings that Import treats as URI values. Starting with Oracle Database 19c,
the URI files in the dump file set can include templates that contain the Data Pump
substitution variables, such as %U, %L, and so on. For example: urlpathexp%U.dmp.

Note:

Substitution variables are only allowed in the filename portion of the URI.

The DUMPFILE parameter enables you to specify an optional directory object, using the format
directory_object _name:file_name. However, if you specify the CREDENTIAL parameter,
then Import does not attempt to look for a directory object name in the strings passed for
DUMPFILE. Instead, the strings are treated as URI strings.

The DIRECTORY parameter is still used as the location of log files and SQL files. Also, you can
still specify directory object names as part of the file names for LOGFILE and SQLFILE.

Oracle Data Pump import is no longer constrained to using the default_credential value in
Oracle Autonomous Database. The Import CREDENTIAL parameter now accepts any Oracle
Cloud Infrastructure (OCI) Object Storage credential created in the Oracle Autonomous
Database that is added to the database using the DBMS_CLOUD.CREATE_CREDENTIAL()
procedure. Oracle Data Pump validates if the credential exists, and if the user has access to
read the credential. Any errors are returned back to the impdp client.

Starting with Oracle Database 21c, Oracle Data Pump Import and Export support use of
Object Storage URIs for the DUMPFILE parameter. To use this feature for exports or imports
from an object store, the CREDENTIAL parameter must be set to the Object Storage URI.
This feature eases migration to and from Oracle Cloud, because it relieves you of the extra
step of transferring a dumpfile to or from the object store. Note that export and import
performance is slower when accessing the object store, compared to local disk access, but
the process is simpler. In addition, the process should be faster than running two separate
export operations from Oracle Cloud, and transferring the dumpfile from the object store to an
on premises location, or transferring the dumpfile from on premises to the object store, and
then importing into Oracle Cloud.

Restrictions

The credential parameter cannot be an OCI resource principal, Azure service principal,
Amazon Resource Name (ARN), or a Google service account.

Example: Using the Import CREDENTIAL Parameter

The following is an example of using the Import CREDENTIAL parameter. You can create the
dump files used in this example by running the example provided for the Export DUMPFILE
parameter, and then uploading the dump files into your cloud storage.

> impdp hr/your_password DIRECTORY=dpump_dir1
CREDENTIAL=user_accessible_credential
 DUMPFILE=’https://objectstorage.example.com/exp1.dmp’,
 ’https://objectstorage.example.com/exp201.dmp’,
 ’https://objectstorage.example.com/exp202.dmp’

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-21

The import job looks in the specified cloud storage for the dump files. The log file is
written to the path associated with the directory object, dpump_dir1, that was specified
with the DIRECTORY parameter.

Example: Specifying a User-Defined Credential

The following example creates a new user-defined credential in the Oracle
Autonomous Database, and uses the same credential in an impdp command:

 BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => ‘MY_CRED_NAME’,
 username => 'adwc_user@example.com’,
 password => ‘Auth token'); END;

 > impdp admin/password@ADWC1_high
 directory=data_pump_dir
 credential=MY_cred_name …

Example: Importing Into Autonomous Data Warehouse Using an Object Store
Credential

impdp admin/password@ADWC1_high \
 directory=data_pump_dir \
 credential=def_cred_name \
 dumpfile= https://objectstorage.us-ashburn-1.oraclecloud.com/n/
namespace-string/b/bucketname/o/export%u.dmp \
 parallel=16 \
 encryption_pwd_prompt=yes \
 partition_options=merge \
 transform=segment_attributes:n \
 transform=dwcs_cvt_iots:y
transform=constraint_use_default_index:y \

exclude=index,cluster,indextype,materialized_view,materialized_view_log
,materialized_zonemap,db_link

3.4.8 DATA_OPTIONS
Default: There is no default. If this parameter is not used, then the special data
handling options it provides simply do not take effect.

Purpose

The DATA_OPTIONS parameter designates how certain types of data should be handled
during import operations.

Syntax and Description

DATA_OPTIONS = [DISABLE_APPEND_HINT | SKIP_CONSTRAINT_ERRORS |
REJECT_ROWS_WITH_REPL_CHAR | TRUST_EXISTING_TABLE_PARTITIONS |
VALIDATE_TABLE_DATA | ENABLE_NETWORK_COMPRESSION |
CONTINUE_LOAD_ON_FORMAT_ERROR]

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-22

• DISABLE_APPEND_HINT — Specifies that you do not want the import operation to use the
APPEND hint while loading the data object. Disabling the APPEND hint can be useful if there
is a small set of data objects to load that already exist in the database and some other
application may be concurrently accessing one or more of the data objects.

If DISABLE_APPEND_HINT is not set, then the default behavior is to use the APPEND hint for
loading data objects.

• SKIP_CONSTRAINT_ERRORS — Affects how non-deferred constraint violations are handled
while a data object (table, partition, or subpartition) is being loaded. It has no effect on the
load if deferred constraint violations are encountered. Deferred constraint violations
always cause the entire load to be rolled back.

The SKIP_CONSTRAINT_ERRORS option specifies that you want the import operation to
proceed even if non-deferred constraint violations are encountered. It logs any rows that
cause non-deferred constraint violations, but does not stop the load for the data object
experiencing the violation.

If SKIP_CONSTRAINT_ERRORS is not set, then the default behavior is to roll back the entire
load of the data object on which non-deferred constraint violations are encountered.

• REJECT_ROWS_WITH_REPL_CHAR — Specifies that you want the import operation to reject
any rows that experience data loss because the default replacement character was used
during character set conversion.

If REJECT_ROWS_WITH_REPL_CHAR is not set, then the default behavior is to load the
converted rows with replacement characters.

• TRUST_EXISTING_TABLE_PARTITIONS — Tells Data Pump to load partition data in parallel
into existing tables. You should use this option when you are using Data Pump to create
the table from the definition in the export database before the table data import is started.
This is done as part of a migration when the metadata is static and can be moved before
the databases are taken off line in order to migrate the data. Moving the metadata
separately minimizes downtime. If you use this option and if other attributes of the
database are the same (for example, character set), then the data from the export
database goes to the same partitions in the import database.

You can create the table outside of the data pump but the partition attributes and partition
names must be identical to the export database.

• VALIDATE_TABLE_DATA — Directs Data Pump to validate the number and date data types
in table data columns. An ORA-39376 error is written to the .log file if invalid data is
encountered. The error text includes the column name. The default is to do no validation.
Use this option if the source of the Data Pump dump file is not trusted.

• ENABLE_NETWORK_COMPRESSION — Used for network imports in which the Data Pump
ACCESS_METHOD parameter is set to DIRECT_PATH to load remote table data. When
ENABLE_NETWORK_COMPRESSION is specified, Data Pump compresses data on the remote
node before it is sent over the network to the target database, where it is decompressed.
This option is useful if the network connection between the remote and local database is
slow because it reduces the amount of data sent over the network.

If ACCESS_METHOD=AUTOMATIC and Data Pump decides to use DIRECT_PATH for a network
import, then ENABLE_NETWORK_COMPRESSION would also apply.

The ENABLE_NETWORK_COMPRESSION option is ignored if Data Pump is importing data from
a dump file, if the remote data base is earlier than Oracle Database 12c Release 2 (12.2),
or if an INSERT_AS_SELECT statement is being used to load data from the remote
database.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-23

• CONTINUE_LOAD_ON_FORMAT_ERROR — Directs Data Pump to skip forward to the
start of the next granule if a stream format error is encountered while loading table
data. Most stream format errors are caused by corrupt dump files. The option
CONTINUE_LOAD_ON_FORMAT_ERROR can be used if Data Pump encounters a stream
format error and the original export database is not available to export the table
data again. If Data Pump skips over data, not all data from the source database is
imported potentially skipping hundreds or thousands of rows.

Restrictions

• If DISABLE_APPEND_HINT is used, then it can take longer for data objects to load.

• If SKIP_CONSTRAINT_ERRORS is used and if a data object has unique indexes or
constraints defined on it at the time of the load, then the APPEND hint will not be
used for loading that data object. Therefore, loading such data objects will take
longer when the SKIP_CONSTRAINT_ERRORS option is used.

• Even if SKIP_CONSTRAINT_ERRORS is specified, it is not used unless a data object is
being loaded using the external table access method.

Example

This example shows a data-only table mode import with SKIP_CONSTRAINT_ERRORS
enabled:

> impdp hr TABLES=employees CONTENT=DATA_ONLY
DUMPFILE=dpump_dir1:table.dmp DATA_OPTIONS=skip_constraint_errors

If any non-deferred constraint violations are encountered during this import operation,
then they will be logged and the import will continue on to completion.

3.4.9 DIRECTORY
The Oracle Data Pump Import command-line mode DIRECTORY parameter specifies the
default location in which the import job can find the dump file set, and create log and
SQL files.

Default

DATA_PUMP_DIR

Purpose

Specifies the default location in which the import job can find the dump file set and
where it should create log and SQL files.

Syntax and Description

DIRECTORY=directory_object
The directory_object is the name of a database directory object. It is not the file path
of an actual directory. Privileged users have access to a default directory object named
DATA_PUMP_DIR. The definition of the DATA_PUMP_DIR directory can be changed by
Oracle during upgrades, or when patches are applied.

Users with access to the default DATA_PUMP_DIR directory object do not need to use the
DIRECTORY parameter.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-24

A directory object specified on the DUMPFILE, LOGFILE, or SQLFILE parameter overrides any
directory object that you specify for the DIRECTORY parameter. You must have Read access to
the directory used for the dump file set. You must have Write access to the directory used to
create the log and SQL files.

Example

The following is an example of using the DIRECTORY parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the Export
FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
LOGFILE=dpump_dir2:expfull.log

This command results in the import job looking for the expfull.dmp dump file in the directory
pointed to by the dpump_dir1 directory object. The dpump_dir2 directory object specified on
the LOGFILE parameter overrides the DIRECTORY parameter so that the log file is written to
dpump_dir2. Refer to Oracle Database SQL Language Reference for more information about
the CREATE DIRECTORY command.

Related Topics

• Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and
SQL files are accessed relative to server-based directory paths.

• Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to ensure that you are making cluster
member nodes available.

• CREATE DIRECTORY in Oracle Database SQL Language Reference

3.4.10 DUMPFILE
The Oracle Data Pump Import command-line mode DUMPFILE parameter specifies the names,
and optionally, the directory objects of the dump file set that Export created.

Default

expdat.dmp

Purpose

Specifies the names, and, if you choose, the directory objects or default credential of the
dump file set that was created by Export.

Syntax and Description

DUMPFILE=[directory_object:]file_name [, ...]

Or

DUMPFILE=[DEFAULT_CREDENTIAL:]URI_file [, ...]

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-25

The directory_object is optional if one is already established by the DIRECTORY
parameter. If you do supply a value, then it must be a directory object that already
exists, and to which you have access. A database directory object that is specified as
part of the DUMPFILE parameter overrides a value specified by the DIRECTORY
parameter.

The file_name is the name of a file in the dump file set. The file names can also be
templates that contain the substitution variable %U. The Import process checks each
file that matches the template to locate all files that are part of the dump file set, until
no match is found. Sufficient information is contained within the files for Import to
locate the entire set, provided that the file specifications defined in the DUMPFILE
parameter encompass the entire set. The files are not required to have the same
names, locations, or order used at export time.

The possible substitution variables are described in the following table.

Substitution Variable Description

%U If %U is used, then the%U expands to a 2-digit incrementing
integer starting with 01.

%l, %L Specifies a system-generated unique file name.
The file names can contain a substitution variable (%L), which
implies that multiple files may be generated. The substitution
variable is expanded in the resulting file names into a 2-digit,
fixed-width, incrementing integer starting at 01 and ending at
99 which is the same as (%U). In addition, the substitution
variable is expanded in the resulting file names into a 3-digit to
10-digit, variable-width, incrementing integers starting at 100
and ending at 2147483646. The width field is determined by
the number of digits in the integer.

For example if the current integer is 1, then exp%Laa%L.dmp
resolves to the following sequence order

exp01aa01.dmp
exp02aa02.dmp

The 2-digit increment continues increasing, up to 99. Then, the
next file names substitute a 3-digit increment:

exp100aa100.dmp
exp101aa101.dmp

The 3-digit increments continue up until 999. Then, the next file
names substitute a 4-digit increment. The substitutions
continue up to the largest number substitution allowed, which
is 2147483646.

Restrictions

• Dump files created on Oracle Database 11g releases with the Oracle Data Pump
parameter VERSION=12 can only be imported on Oracle Database 12c Release 1
(12.1) and later.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-26

Example of Using the Import DUMPFILE Parameter

You can create the dump files used in this example by running the example provided for the
Export DUMPFILE parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:exp1.dmp, exp2%U.dmp

Because a directory object (dpump_dir2) is specified for the exp1.dmp dump file, the import
job looks there for the file. It also looks in dpump_dir1 for dump files of the form exp2nn.dmp.
The log file is written to dpump_dir1.

If you use the alternative DEFAULT_CREDENTIAL keyword syntax for the Import DUMPFILE
parameter, then a default credential with user access must already exist. The import
operation uses the default credential to read and process files in the dump file set that is
stored in the cloud at the specified URI_file location.

The variable URI_file represents the name of a URI file in the dump file set. The file name
cannot be the same as templates that contain the Data Pump substitution variables, such as
%U, %L, and so on.

The DUMPFILE parameter DEFAULT_CREDENTIAL keyword syntax is mutually exclusive to the
directory_object syntax. Only one form can be used in the same command line.

Example of Using the Import DUMPFILE with User-Defined Credentials

This example specifies the default location in which the import job can find the dump file set,
and create log and SQL files, and specifies the credential object name owned by the
database user that Import uses to process files in the dump file set that were previously
imported into cloud storage.

> impdp admin/password@ADWC1_high
 directory=data_pump_dir
 credential=MY_cred_name …

Example of Using the Import DUMPFILE parameter with DEFAULT_CREDENTIAL
Keywords.

You can create the dump files used in this example by running the example provided for the
Export DUMPFILE parameter.

> impdp hr/your_password DIRECTORY=dpump_dir1
 DUMPFILE=’DEFAULT_CREDENTIAL:https://objectstorage.example.com/
exp1.dmp’,
 ’DEFAULT_CREDENTIAL:https://objectstorage.example.com/exp201.dmp’,
 ’DEFAULT_CREDENTIAL:https://objectstorage.example.com/exp202.dmp’

The import job looks in the specified URI_file location for the dump files using the default
credential which has already been setup for the user. The log file is written to the path
associated with the directory object, dpump_dir1 that was specified with the DIRECTORY
parameter.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-27

Example of Using the Import DUMPFILE parameter with User-Defined
Credentials

This example specifies the default location in which the import job can find the dump
file set, and create log and SQL files, and specifies the credential object name owned
by the database user that Import uses to process files in the dump file set that were
previously imported into cloud storage.

> impdp impdp admin/password@ADWC1_high DIRECTORY=data_pump_dir
 DUMPFILE=’MY_cred_name:https://objectstorage.example.com/
exp1.dmp’,
 ’MY_cred_name:https://objectstorage.example.com/exp201.dmp’,
 ’MY_cred_name:https://objectstorage.example.com/exp202.dmp’

Related Topics

• DUMPFILE

• File Allocation with Oracle Data Pump

• Performing a Data-Only Table-Mode Import

3.4.11 ENABLE_SECURE_ROLES
The Oracle Data Pump Import command-line utility ENABLE_SECURE_ROLES parameter
prevents inadvertent use of protected roles during exports.

Default

In Oracle Database 19c and later releases, the default value is NO.

Purpose

Some Oracle roles require authorization. If you need to use these roles with Oracle
Data Pump imports, then you must explicitly enable them by setting the
ENABLE_SECURE_ROLES parameter to YES.

Syntax

ENABLE_SECURE_ROLES=[NO|YES]
• NO Disables Oracle roles that require authorization.

• YES Enables Oracle roles that require authorization.

Example

impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:imp1.dmp,
 imp2%U.dmp ENABLE_SECURE_ROLES=YES

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-28

3.4.12 ENCRYPTION_PASSWORD
The Oracle Data Pump Import command-line mode ENCRYPTION_PASSWORD parameter
specifies a password for accessing encrypted column data in the dump file set.

Default

There is no default; the value is user-supplied.

Purpose

Specifies a password for accessing encrypted column data in the dump file set. Using
passwords prevents unauthorized access to an encrypted dump file set.

This parameter is also required for the transport of keys associated with encrypted
tablespaces, and transporting tables with encrypted columns during a full transportable
export or import operation.

The password that you enter is echoed to the screen. If you do not want the password shown
on the screen as you enter it, then use the ENCRYPTION_PWD_PROMPT parameter.

Syntax and Description

ENCRYPTION_PASSWORD = password

If an encryption password was specified on the export operation, then this parameter is
required on an import operation. The password that is specified must be the same one that
was specified on the export operation.

Restrictions

• The export operation using this parameter requires the Enterprise Edition release of
Oracle Database 11g or later, It is not possible to use ENCRYPTION_PASSWORD for an export
from Standard Edition, so you cannot use this this parameter for a migration from
Standard Edition to Enterprise Edition. You can use this parameter for migrations from
Enterprise Edition to Standard Edition.

• Oracle Data Pump encryption features require that you have the Oracle Advanced
Security option enabled. Refer to Oracle Database Licensing Information for information
about licensing requirements for the Oracle Advanced Security option.

• The ENCRYPTION_PASSWORD parameter is not valid if the dump file set was created using
the transparent mode of encryption.

• The ENCRYPTION_PASSWORD parameter is required for network-based full transportable
imports where the source database has encrypted tablespaces or tables with encrypted
columns.

• If the source table and target tables have different column encryption attributes, then
import can fail to load the source table rows into the target table. If this issue occurs, then
an error indicating a difference in column encryption properties is raised.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-29

Example

In the following example, the encryption password, 123456, must be specified,
because it was specified when the dpcd2be1.dmp dump file was created.

> impdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir
 DUMPFILE=dpcd2be1.dmp ENCRYPTION_PASSWORD=123456

During the import operation, any columns in the employee_s_encrypt table encrypted
during the export operation are decrypted before being imported.

Related Topics

• Oracle Database Options and Their Permitted Features

3.4.13 ENCRYPTION_PWD_PROMPT
The Oracle Data Pump Import command-line mode ENCRYPTION_PWD_PROMPT
parameter specifies whether Data Pump should prompt you for the encryption
password.

Default

NO

Purpose

Specifies whether Oracle Data Pump should prompt you for the encryption password.

Syntax and Description

ENCRYPTION_PWD_PROMPT=[YES | NO]

Specify ENCRYPTION_PWD_PROMPT=YES on the command line to instruct Oracle Data
Pump to prompt you for the encryption password. If you do not specify the value to
YES, then you must enter the encryption password on the command line with the
ENCRYPTION_PASSWORD parameter. The advantage to setting the parameter to YES is
that the encryption password is not echoed to the screen when it is entered at the
prompt. By contrast, if you enter the password on the command line using the
ENCRYPTION_PASSWORD parameter, then the password appears in plain text.

The encryption password that you enter at the prompt is subject to the same criteria
described for the ENCRYPTION_PASSWORD parameter.

If you specify an encryption password on the export operation, then you must also
supply it on the import operation.

Restrictions

Concurrent use of the ENCRYPTION_PWD_PROMPT and ENCRYPTION_PASSWORD parameters
is prohibited.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-30

Example

The following example shows Oracle Data Pump first prompting for the user password, and
then for the encryption password.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp ENCRYPTION_PWD_PROMPT=YES
.
.
.
Copyright (c) 1982, 2017, Oracle and/or its affiliates. All rights reserved.

Password:

Connected to: Oracle Database 18c Enterprise Edition Release 18.0.0.0.0 -
Development
Version 18.1.0.0.0

Encryption Password:

Master table "HR"."SYS_IMPORT_FULL_01" successfully loaded/unloaded
Starting "HR"."SYS_IMPORT_FULL_01": hr/******** directory=dpump_dir1
dumpfile=hr.dmp encryption_pwd_prompt=Y
.
.
.

3.4.14 ESTIMATE
The Oracle Data Pump Import command-line mode ESTIMATE parameter instructs the source
system in a network import operation to estimate how much data is generated during the
import.

Default

STATISTICS

Purpose

Instructs the source system in a network import operation to estimate how much data is
generated during the import.

Syntax and Description

ESTIMATE=[BLOCKS | STATISTICS]

The valid choices for the ESTIMATE parameter are as follows:

• BLOCKS: The estimate is calculated by multiplying the number of database blocks used by
the source objects times the appropriate block sizes.

• STATISTICS: The estimate is calculated using statistics for each table. For this method to
be as accurate as possible, all tables should have been analyzed recently. (Table
analysis can be done with either the SQL ANALYZE statement or the DBMS_STATS PL/SQL
package.)

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-31

You can use the estimate that is generated to determine a percentage of the import job
that is completed throughout the import.

Restrictions

• The Import ESTIMATE parameter is valid only if the NETWORK_LINK parameter is also
specified.

• When the import source is a dump file set, the amount of data to be loaded is
already known, so the percentage complete is automatically calculated.

• The estimate may be inaccurate if either the QUERY or REMAP_DATA parameter is
used.

Example

In the following syntax example, you replace the variable source_database_link with
the name of a valid link to the source database.

> impdp hr TABLES=job_history NETWORK_LINK=source_database_link
 DIRECTORY=dpump_dir1 ESTIMATE=STATISTICS

The job_history table in the hr schema is imported from the source database. A log
file is created by default and written to the directory pointed to by the dpump_dir1
directory object. When the job begins, an estimate for the job is calculated based on
table statistics.

3.4.15 EXCLUDE
The Oracle Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to exclude
from the import job.

Default

There is no default.

Purpose

Enables you to filter the metadata that is imported by specifying objects and object
types to exclude from the import job.

Syntax and Description

EXCLUDE=object_type[:name_clause] [, ...]

The object_type specifies the type of object to be excluded. To see a list of valid
values for object_type, query the following views: DATABASE_EXPORT_OBJECTS for full
mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for
table and tablespace mode. The values listed in the OBJECT_PATH column are the valid
object types.

For the given mode of import, all object types contained within the source (and their
dependents) are included, except those specified in an EXCLUDE statement. If an object
is excluded, then all of its dependent objects are also excluded. For example,
excluding a table will also exclude all indexes and triggers on the table.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-32

The name_clause is optional. It allows fine-grained selection of specific objects within an
object type. It is a SQL expression used as a filter on the object names of the type. It consists
of a SQL operator and the values against which the object names of the specified type are to
be compared. The name_clause applies only to object types whose instances have names
(for example, it is applicable to TABLE and VIEW, but not to GRANT). It must be separated from
the object type with a colon and enclosed in double quotation marks, because single
quotation marks are required to delimit the name strings. For example, you could set
EXCLUDE=INDEX:"LIKE 'DEPT%'" to exclude all indexes whose names start with dept.

The name that you supply for the name_clause must exactly match, including upper and lower
casing, an existing object in the database. For example, if the name_clause you supply is for
a table named EMPLOYEES, then there must be an existing table named EMPLOYEES using all
upper case. If the name_clause were supplied as Employees or employees or any other
variation, then the table would not be found.

More than one EXCLUDE statement can be specified.

Depending on your operating system, the use of quotation marks when you specify a value
for this parameter may also require that you use escape characters. Oracle recommends that
you place this parameter in a parameter file, which can reduce the number of escape
characters that might otherwise be needed on the command line.

As explained in the following sections, you should be aware of the effects of specifying
certain objects for exclusion, in particular, CONSTRAINT, GRANT, and USER.

Excluding Constraints

The following constraints cannot be excluded:

• Constraints needed for the table to be created and loaded successfully (for example,
primary key constraints for index-organized tables or REF SCOPE and WITH ROWID
constraints for tables with REF columns).

This means that the following EXCLUDE statements will be interpreted as follows:

• EXCLUDE=CONSTRAINT excludes all constraints, except for any constraints needed for
successful table creation and loading.

• EXCLUDE=REF_CONSTRAINT excludes referential integrity (foreign key) constraints.

Excluding Grants and Users

Specifying EXCLUDE=GRANT excludes object grants on all object types and system privilege
grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects contained
within users' schemas.

To exclude a specific user and all objects of that user, specify a command such as the
following, where hr is the schema name of the user you want to exclude.

impdp FULL=YES DUMPFILE=expfull.dmp EXCLUDE=SCHEMA:"='HR'"

Note that in this example, the FULL import mode is specified. If no mode is specified, then
SCHEMAS is used, because that is the default mode. However, with this example, if you do not
specify FULL, and instead use SCHEMAS, followed by the EXCLUDE=SCHEMA argument, then that

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-33

causes an error, because in that case you are indicating that you want the schema
both to be imported and excluded at the same time.

If you try to exclude a user by using a statement such as EXCLUDE=USER:"= 'HR'",
then only CREATE USER hr DDL statements are excluded, which can return unexpected
results.

Starting with Oracle Database 21c, Oracle Data Pump permits you to set both INCLUDE
and EXCLUDE parameters in the same command. When you include both parameters in
a command, Oracle Data Pump processes the INCLUDE parameter first, and include all
objects identified by the parameter. Then it processes the exclude parameters. Any
objects specified by the EXCLUDE parameter that are in the list of include objects are
removed as the command executes.

Restrictions

• Exports of SQL firewall metadata (captures and allow-lists) with the object
SQL_FIREWALL are supported starting with Oracle Database 23c. However, Oracle
Data Pump supports the export or import of all the existing SQL Firewall as a
whole. You cannot import or export a specific capture or a specific allow-list.

Example

Assume the following is in a parameter file, exclude.par, being used by a DBA or
some other user with the DATAPUMP_IMP_FULL_DATABASE role. (To run the example, you
must first create this file.)

EXCLUDE=FUNCTION
EXCLUDE=PROCEDURE
EXCLUDE=PACKAGE
EXCLUDE=INDEX:"LIKE 'EMP%' "

You then issue the following command:

> impdp system DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
PARFILE=exclude.par

You can create the expfull.dmp dump file used in this command by running the
example provided for the Export FULL parameter. in the FULL reference topic. All data
from the expfull.dmp dump file is loaded, except for functions, procedures, packages,
and indexes whose names start with emp.

Related Topics

• FULL

• Oracle Data Pump Import Metadata Filters

• Filtering During Import Operations

• About Import Command-Line Mode

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-34

3.4.16 FLASHBACK_SCN
The Oracle Data Pump Import command-line mode FLASHBACK_SCN specifies the system
change number (SCN) that Import uses to enable the Flashback utility.

Default

There is no default

Purpose

Specifies the system change number (SCN) that Import will use to enable the Flashback
utility.

Syntax and Description

FLASHBACK_SCN=scn_number

The import operation is performed with data that is consistent up to the specified scn_number.

Starting with Oracle Database 12c Release 2 (12.2), the SCN value can be a big SCN (8
bytes). See the following restrictions for more information about using big SCNs.

Restrictions

• The FLASHBACK_SCN parameter is valid only when the NETWORK_LINK parameter is also
specified.

• The FLASHBACK_SCN parameter pertains only to the Flashback Query capability of Oracle
Database. It is not applicable to Flashback Database, Flashback Drop, or Flashback Data
Archive.

• FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

• You cannot specify a big SCN for a network export or network import from a version that
does not support big SCNs.

Example

The following is a syntax example of using the FLASHBACK_SCN parameter.

> impdp hr DIRECTORY=dpump_dir1 FLASHBACK_SCN=123456
NETWORK_LINK=source_database_link

When using this command, replace the variables 123456 and source_database_link with the
SCN and the name of a source database from which you are importing data.

Note:

If you are on a logical standby system, then the FLASHBACK_SCN parameter is
ignored, because SCNs are selected by logical standby. See Oracle Data Guard
Concepts and Administration for information about logical standby databases.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-35

Related Topics

• Logical Standby Databases in Oracle Data Guard Concepts and Administration

3.4.17 FLASHBACK_TIME
The Oracle Data Pump Import command-line mode FLASHBACK_TIME parameter
specifies the system change number (SCN) that Import uses to enable the Flashback
utility.

Default

There is no default

Purpose

Specifies the system change number (SCN) that Import will use to enable the
Flashback utility.

Syntax and Description

FLASHBACK_TIME="TO_TIMESTAMP()"

The SCN that most closely matches the specified time is found, and this SCN is used
to enable the Flashback utility. The import operation is performed with data that is
consistent up to this SCN. Because the TO_TIMESTAMP value is enclosed in quotation
marks, it would be best to put this parameter in a parameter file.

Note:

If you are on a logical standby system, then the FLASHBACK_TIME parameter
is ignored because SCNs are selected by logical standby. See Oracle Data
Guard Concepts and Administration for information about logical standby
databases.

Restrictions

• This parameter is valid only when the NETWORK_LINK parameter is also specified.

• The FLASHBACK_TIME parameter pertains only to the flashback query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

• FLASHBACK_TIME and FLASHBACK_SCN are mutually exclusive.

Example

You can specify the time in any format that the DBMS_FLASHBACK.ENABLE_AT_TIME
procedure accepts,. For example, suppose you have a parameter file,
flashback_imp.par, that contains the following:

FLASHBACK_TIME="TO_TIMESTAMP('27-10-2012 13:40:00', 'DD-MM-YYYY HH24:MI:SS')"

You could then issue the following command:

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-36

> impdp hr DIRECTORY=dpump_dir1 PARFILE=flashback_imp.par
NETWORK_LINK=source_database_link

The import operation will be performed with data that is consistent with the SCN that most
closely matches the specified time.

Note:

See Oracle Database Development Guide for information about using flashback

Related Topics

• About Import Command-Line Mode
Learn how to use Oracle Data Pump Import parameters in command-line mode, including
case sensitivity, quotation marks, escape characters, and information about how to use
examples.

• Logical Standby Databases in Oracle Data Guard Concepts and Administration

• Using Oracle Flashback Query (SELECT AS OF) in Oracle Database Development
Guide

3.4.18 FULL
The Oracle Data Pump Import command-line mode FULL parameter specifies that you want to
perform a full database import.

Default

YES

Purpose

Specifies that you want to perform a full database import.

Syntax and Description

FULL=YES

A value of FULL=YES indicates that all data and metadata from the source is imported. The
source can be a dump file set for a file-based import or it can be another database, specified
with the NETWORK_LINK parameter, for a network import.

If you are importing from a file and do not have the DATAPUMP_IMP_FULL_DATABASE role, then
only schemas that map to your own schema are imported.

If the NETWORK_LINK parameter is used and the user executing the import job has the
DATAPUMP_IMP_FULL_DATABASE role on the target database, then that user must also have the
DATAPUMP_EXP_FULL_DATABASE role on the source database.

Filtering can restrict what is imported using this import mode.

FULL is the default mode, and does not need to be specified on the command line when you
are performing a file-based import, but if you are performing a network-based full import then
you must specify FULL=Y on the command line.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-37

You can use the transportable option during a full-mode import to perform a full
transportable import.

Restrictions

• The Automatic Workload Repository (AWR) is not moved in a full database export
and import operation. (See Oracle Database Performance Tuning Guide for
information about using Data Pump to move AWR snapshots.)

• The XDB repository is not moved in a full database export and import operation.
User created XML schemas are moved.

• If the target is Oracle Database 12c Release 1 (12.1.0.1) or later, and the source is
Oracle Database 11g Release 2 (11.2.0.3) or later, then Full imports performed
over a network link require that you set VERSION=12

Example

The following is an example of using the FULL parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter.

> impdp hr DUMPFILE=dpump_dir1:expfull.dmp FULL=YES
LOGFILE=dpump_dir2:full_imp.log

This example imports everything from the expfull.dmp dump file. In this example, a
DIRECTORY parameter is not provided. Therefore, a directory object must be provided
on both the DUMPFILE parameter and the LOGFILE parameter. The directory objects can
be different, as shown in this example.

Related Topics

• Transporting Automatic Workload Repository Data in Oracle Database
Performance Tuning Guide

• Transporting Databases in Oracle Database Administrator’s Guide

• FULL

3.4.19 HELP
The Oracle Data Pump Import command-line mode HELP parameter displays online
help for the Import utility.

Default

NO

Purpose

Displays online help for the Import utility.

Syntax and Description

HELP=YES

If HELP=YES is specified, then Import displays a summary of all Import command-line
parameters and interactive commands.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-38

Example

This example displays a brief description of all Import parameters and commands.

> impdp HELP = YES

3.4.20 INCLUDE
The Oracle Data Pump Import command-line mode INCLUDE parameter enables you to filter
the metadata that is imported by specifying objects and object types for the current import
mode.

Default

There is no default.

Purpose

Enables you to filter the metadata that is imported by specifying objects and object types for
the current import mode.

Syntax and Description

INCLUDE = object_type[:name_clause] [, ...]

The variable object_type in the syntax specifies the type of object that you want to include.
To see a list of valid values for object_type, query the following views:

• Full mode: DATABASE_EXPORT_OBJECTS
• Schema mode: SCHEMA_EXPORT_OBJECTS
• Table and Tablespace mode: TABLE_EXPORT_OBJECTS
In the query result, the values listed in the OBJECT_PATH column are the valid object types.
(See "Metadata Filters" for an example of how to perform such a query.)

Only object types in the source (and their dependents) that you explicitly specify in the
INCLUDE statement are imported.

The variable name_clause in the syntax is optional. It enables you to perform fine-grained
selection of specific objects within an object type. It is a SQL expression used as a filter on
the object names of the type. It consists of a SQL operator, and the values against which the
object names of the specified type are to be compared. The name_clause applies only to
object types whose instances have names (for example, it is applicable to TABLE, but not to
GRANT). It must be separated from the object type with a colon, and enclosed in double
quotation marks. You must use double quotation marks, because single quotation marks are
required to delimit the name strings.

The name string that you supply for the name_clause must exactly match an existing object in
the database, including upper and lower case. For example, if the name_clause that you
supply is for a table named EMPLOYEES, then there must be an existing table named
EMPLOYEES, using all upper case characters. If the name_clause is supplied as Employees, or
employees, or uses any other variation from the existing table names string, then the table is
not found.

You can specify more than one INCLUDE statement.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-39

Depending on your operating system, when you specify a value for this parameter with
the use of quotation marks, you can also be required to use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that you otherwise must use in the command line..

To see a list of valid paths for use with the INCLUDE parameter, query the following
views:

• Full mode: DATABASE_EXPORT_OBJECTS
• Schema mode: SCHEMA_EXPORT_OBJECTS
• Table and Tablespace mode: TABLE_EXPORT_OBJECTS
Starting with Oracle Database 21c, the following additional enhancements are
available:

• You can set both INCLUDE and EXCLUDE parameters in the same command.

When you include both parameters in a command, Oracle Data Pump processes
the INCLUDE parameter first, and includes all objects identified by the parameter.
Then it processes the exclude parameters. Any objects specified by the EXCLUDE
parameter that are in the list of include objects are removed as the command
executes.

Restrictions

• Grants on objects owned by the SYS schema are never imported.

• Exports of SQL firewall metadata (captures and allow-lists) with the object
SQL_FIREWALL are supported starting with Oracle Database 23c. However, Oracle
Data Pump supports the export or import of all the existing SQL Firewall as a
whole. You cannot import or export a specific capture or a specific allow-list.

Example

Assume the following is in a parameter file named imp_include.par. This parameter
file is being used by a DBA or some other user that is granted the role
DATAPUMP_IMP_FULL_DATABASE:

INCLUDE=FUNCTION
INCLUDE=PROCEDURE
INCLUDE=PACKAGE
INCLUDE=INDEX:"LIKE 'EMP%' "

With the aid of this parameter file, you can then issue the following command:

> impdp system SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
PARFILE=imp_include.par

You can create the expfull.dmp dump file used in this example by running the
example provided for the Export FULL parameter.

The Import operation will load only functions, procedures, and packages from the hr
schema and indexes whose names start with EMP. Although this is a privileged-mode
import (the user must have the DATAPUMP_IMP_FULL_DATABASE role), the schema

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-40

definition is not imported, because the USER object type was not specified in an INCLUDE
statement.

Related Topics

• Oracle Data Pump Metadata Filters

• About Import Command-Line Mode

• FULL

3.4.21 JOB_NAME
The Oracle Data Pump Import command-line mode JOB_NAME parameter is used to identify
the import job in subsequent actions.

Default

A system-generated name of the form SYS_IMPORT or SQLFILE_mode_NN

Purpose

Use the JOB_NAME parameter when you want to identify the import job in subsequent actions.
For example, when you want to use the ATTACH parameter to attach to a job, you use the
JOB_NAME parameter to identify the job that you want to attach. You can also use JOB_NAME to
identify the job by using the views DBA_DATAPUMP_JOBS or USER_DATAPUMP_JOBS.

Syntax and Description

JOB_NAME=jobname_string

The variable jobname_string specifies a name of up to 128 bytes for the import job. The
bytes must represent printable characters and spaces. If the string includes spaces, then the
name must be enclosed in single quotation marks (for example, 'Thursday Import'). The
job name is implicitly qualified by the schema of the user performing the import operation.
The job name is used as the name of the Data Pump control import job table, which controls
the export job.

The default job name is system-generated in the form SYS_IMPORT_mode_NN or
SYS_SQLFILE_mode_NN, where NN expands to a 2-digit incrementing integer, starting at 01. For
example, SYS_IMPORT_TABLESPACE_02' is a default job name.

Example

The following is an example of using the JOB_NAME parameter. You can create the
expfull.dmp dump file that is used in this example by running the example provided in the
Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp JOB_NAME=impjob01

Related Topics

• FULL

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-41

3.4.22 KEEP_MASTER
The Oracle Data Pump Import command-line mode KEEP_MASTER parameter indicates
whether the Data Pump control job table should be deleted or retained at the end of an
Oracle Data Pump job that completes successfully.

Default

NO

Purpose

Indicates whether the Data Pump control job table should be deleted or retained at the
end of an Oracle Data Pump job that completes successfully. The Data Pump control
job table is automatically retained for jobs that do not complete successfully.

Syntax and Description

KEEP_MASTER=[YES | NO]

Restrictions

• None

Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp KEEP_MASTER=YES

3.4.23 LOGFILE
The Oracle Data Pump Import command-line mode LOGFILE parameter specifies the
name, and optionally, a directory object, for the log file of the import job.

Default

import.log

Purpose

Specifies the name, and optionally, a directory object, for the log file of the import job.

Syntax and Description

LOGFILE=[directory_object:]file_name

If you specify a directory_object, then it must be one that was previously established
by the DBA, and to which you have access. This parameter overrides the directory
object specified with the DIRECTORY parameter. The default behavior is to create
import.log in the directory referenced by the directory object specified in the
DIRECTORY parameter.

If the file_name you specify already exists, then it is overwritten.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-42

All messages regarding work in progress, work completed, and errors encountered are
written to the log file. (For a real-time status of the job, use the STATUS command in interactive
mode.)

A log file is always created, unless you specify the NOLOGFILE parameter. As with the dump
file set, the log file is relative to the server, and not the client.

Note:

Oracle Data Pump Import writes the log file using the database character set. If
your client NLS_LANG environment sets up a different client character set from the
database character set, then it is possible that table names can be different in the
log file than they are when displayed on the client output screen.

Restrictions

• To perform an Oracle Data Pump Import using Oracle Automatic Storage Management
(Oracle ASM), you must specify a LOGFILE parameter that includes a directory object that
does not include the Oracle ASM + notation. That is, the log file must be written to a disk
file, and not written into the Oracle ASM storage. Alternatively, you can specify
NOLOGFILE=YES. However, this prevents the writing of the log file.

Example

The following is an example of using the LOGFILE parameter. You can create the expfull.dmp
dump file used in this example by running the example provided for the Export FULL
parameter.

> impdp hr SCHEMAS=HR DIRECTORY=dpump_dir2 LOGFILE=imp.log
 DUMPFILE=dpump_dir1:expfull.dmp

Because no directory object is specified on the LOGFILE parameter, the log file is written to
the directory object specified on the DIRECTORY parameter.

Related Topics

• STATUS

• Using Directory Objects When Oracle Automatic Storage Management Is Enabled

• FULL

3.4.24 LOGTIME
The Oracle Data Pump Import command-line mode LOGTIME parameter specifies that you
want to have messages displayed with timestamps during import.

Default

No timestamps are recorded

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-43

Purpose

Specifies that you want to have messages displayed with timestamps during import..
You can use the timestamps to figure out the elapsed time between different phases of
a Data Pump operation. Such information can be helpful in diagnosing performance
problems and estimating the timing of future similar operations.

Syntax and Description

LOGTIME=[NONE | STATUS | LOGFILE | ALL]

The available options are defined as follows:

• NONE: No timestamps on status or log file messages (same as default)

• STATUS: Timestamps on status messages only

• LOGFILE: Timestamps on log file messages only

• ALL: Timestamps on both status and log file messages

Restrictions

• None

Example

The following example records timestamps for all status and log file messages that are
displayed during the import operation:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr LOGTIME=ALL
TABLE_EXISTS_ACTION=REPLACE

For an example of what the LOGTIME output looks like, see the Export LOGTIME
parameter.

Related Topics

• LOGTIME

3.4.25 MASTER_ONLY
The Oracle Data Pump Import command-line mode MASTER_ONLY parameter indicates
whether to import just the Data Pump control job table, and then stop the job so that
the contents of the Data Pump control job table can be examined.

Default

NO

Purpose

Indicates whether to import just the Data Pump control job table and then stop the job
so that the contents of the Data Pump control job table can be examined.

Syntax and Description

MASTER_ONLY=[YES | NO]

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-44

Restrictions

• If the NETWORK_LINK parameter is also specified, then MASTER_ONLY=YES is not supported.

Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp MASTER_ONLY=YES

3.4.26 METRICS
The Oracle Data Pump Import command-line mode METRICS parameter indicates whether
additional information about the job should be reported to the log file.

Default

NO

Purpose

Indicates whether additional information about the job should be reported to the Oracle Data
Pump log file.

Syntax and Description

METRICS=[YES | NO]

When METRICS=YES is used, the number of objects and the elapsed time are recorded in the
Oracle Data Pump log file.

Restrictions

• None

Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp METRICS=YES

3.4.27 NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK_LINK parameter enables an
import from a source database identified by a valid database link.

Default:

There is no default

Purpose

Enables an import from a source database identified by a valid database link. The data from
the source database instance is written directly back to the connected database instance.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-45

Syntax and Description

NETWORK_LINK=source_database_link

The NETWORK_LINK parameter initiates an import using a database link. This means
that the system to which the impdp client is connected contacts the source database
referenced by the source_database_link, retrieves data from it, and writes the data
directly to the database on the connected instance. There are no dump files involved.

The source_database_link provided must be the name of a database link to an
available database. If the database on that instance does not already have a database
link, then you or your DBA must create one using the SQL CREATE DATABASE LINK
statement.

When you perform a network import using the transportable method, you must copy
the source data files to the target database before you start the import.

If the source database is read-only, then the connected user must have a locally
managed tablespace assigned as the default temporary tablespace on the source
database. Otherwise, the job will fail.

This parameter is required when any of the following parameters are specified:
FLASHBACK_SCN, FLASHBACK_TIME, ESTIMATE, TRANSPORT_TABLESPACES, or
TRANSPORTABLE.

The following types of database links are supported for use with Oracle Data Pump
Import:

• Public fixed user

• Public connected user

• Public shared user (only when used by link owner)

• Private shared user (only when used by link owner)

• Private fixed user (only when used by link owner)

Caution:

If an import operation is performed over an unencrypted network link, then all
data is imported as clear text even if it is encrypted in the database. See
Oracle Database Security Guide for more information about network security.

Restrictions

• The following types of database links are not supported for use with Oracle Data
Pump Import:

– Private connected user

– Current user

• The Import NETWORK_LINK parameter is not supported for tables containing
SecureFiles that have ContentType set, or that are currently stored outside of the
SecureFiles segment through Oracle Database File System Links.

• Network imports do not support the use of evolved types.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-46

• When operating across a network link, Data Pump requires that the source and target
databases differ by no more than two versions. For example, if one database is Oracle
Database 12c, then the other database must be 12c, 11g, or 10g. Note that Oracle Data
Pump checks only the major version number (for example, 10g, 11g, 12c), not specific
release numbers (for example, 12.1, 12.2, 11.1, 11.2, 10.1, or 10.2).

• If the USERID that is executing the import job has the DATAPUMP_IMP_FULL_DATABASE role
on the target database, then that user must also have the DATAPUMP_EXP_FULL_DATABASE
role on the source database.

• Network mode import does not use parallel query (PQ) child processes.

• Metadata cannot be imported in parallel when the NETWORK_LINK parameter is also used

• When transporting a database over the network using full transportable import, auditing
cannot be enabled for tables stored in an administrative tablespace (such as SYSTEM and
SYSAUX) if the audit trail information itself is stored in a user-defined tablespace.

Example

In the following syntax example, replace source_database_link with the name of a valid
database link.

> impdp hr TABLES=employees DIRECTORY=dpump_dir1
NETWORK_LINK=source_database_link EXCLUDE=CONSTRAINT

This example results in an import of the employees table (excluding constraints) from the
source database. The log file is written to dpump_dir1, specified on the DIRECTORY parameter.

Related Topics

• PARALLEL

See Also:

• Oracle Database Administrator’s Guide for more information about database
links

• Oracle Database SQL Language Reference for more information about the
CREATE DATABASE LINK statement

• Oracle Database Administrator’s Guide for more information about locally
managed tablespaces

3.4.28 NOLOGFILE
The Oracle Data Pump Import command-line mode NOLOGFILE parameter specifies whether
to suppress the default behavior of creating a log file.

Default

NO

Purpose

Specifies whether to suppress the default behavior of creating a log file.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-47

Syntax and Description

NOLOGFILE=[YES | NO]

If you specify NOLOGFILE=YES to suppress creation of a log file, then progress and error
information is still written to the standard output device of any attached clients,
including the client that started the original export operation. If there are no clients
attached to a running job, and you specify NOLOGFILE=YES, then you run the risk of
losing important progress and error information.

Example

The following is an example of using the NOLOGFILE parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp NOLOGFILE=YES

This command results in a full mode import (the default for file-based imports) of the
expfull.dmp dump file. No log file is written, because NOLOGFILE is set to YES.

3.4.29 PARALLEL
The Oracle Data Pump Import command-line mode PARALLEL parameter sets the
maximum number of worker processes that can load in parallel.

Default

1

Purpose

Specifies the maximum number of worker processes of active execution operating on
behalf of the Data Pump control import job.

Syntax and Description

PARALLEL=integer

The value that you specify for integer specifies the maximum number of processes of
active execution operating on behalf of the import job. This execution set consists of a
combination of worker processes and parallel input/output (I/O) server processes. The
Data Pump control process, idle worker processes, and worker processes acting as
parallel execution coordinators in parallel I/O operations do not count toward this total.
This parameter enables you to make trade-offs between resource consumption and
elapsed time.

If the source of the import is a dump file set consisting of files, then multiple processes
can read from the same file, but performance can be limited by I/O contention.

To increase or decrease the value of PARALLEL during job execution, use interactive-
command mode.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-48

Using PARALLEL During a Network Mode Import

During a network mode import, the PARALLEL parameter defines the maximum number of
worker processes that can be assigned to the job. To understand the effect of the PARALLEL
parameter during a network import mode, it is important to understand the concept of
"table_data objects" as defined by Oracle Data Pump. When Oracle Data Pump moves
data, it considers the following items to be individual "table_data objects:"

• a complete table (one that is not partitioned or subpartitioned)

• partitions, if the table is partitioned but not subpartitioned

• subpartitions, if the table is subpartitioned

For example:

• A nonpartitioned table, scott.non_part_table, has one table_data object:

scott.non_part_table
• A partitioned table, scott.part_table (having partition p1 and partition p2), has two

table_data objects:

scott.part_table:p1
scott.part_table:p2

• A subpartitioned table, scott.sub_part_table (having partition p1 and p2, and
subpartitions p1s1, p1s2, p2s1, and p2s2) has four table_data objects:

scott.sub_part_table:p1s1
scott.sub_part_table:p1s2
scott.sub_part_table:p2s1
scott.sub_part_table:p2s2

During a network mode import, each table_data object is assigned its own worker process,
up to the value specified for the PARALLEL parameter. No parallel query (PQ) worker
processes are assigned because network mode import does not use parallel query (PQ)
worker processes. Multiple table_data objects can be unloaded at the same time. However,
each table_data object is unloaded using a single process.

Using PARALLEL During An Import In An Oracle RAC Environment

In an Oracle Real Application Clusters (Oracle RAC) environment, if an import operation has
PARALLEL=1, then all Oracle Data Pump processes reside on the instance where the job is
started. Therefore, the directory object can point to local storage for that instance.

If the import operation has PARALLEL set to a value greater than 1, then Oracle Data Pump
processes can reside on instances other than the one where the job was started. Therefore,
the directory object must point to shared storage that is accessible by all Oracle RAC cluster
member nodes.

Restrictions

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or later.

• Transportable tablespace metadata cannot be imported in parallel.

• To import a table or table partition in parallel (using parallel query worker processes), you
must have the DATAPUMP_IMP_FULL_DATABASE role.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-49

• In addition, the following objects cannot be imported in parallel:

– TRIGGER
– VIEW
– OBJECT_GRANT
– SEQUENCE
– CONSTRAINT
– REF_CONSTRAINT

Example

The following is an example of using the PARALLEL parameter.

> impdp hr DIRECTORY=dpump_dir1 LOGFILE=parallel_import.log
JOB_NAME=imp_par3 DUMPFILE=par_exp%U.dmp PARALLEL=3

This command imports the dump file set that is created when you run the example for
the Export PARALLEL parameter) The names of the dump files are par_exp01.dmp,
par_exp02.dmp, and par_exp03.dmp.

Related Topics

• PARALLEL

3.4.30 PARALLEL_THRESHOLD
The Oracle Data Pump Import command-line utility PARALLEL_THRESHOLD parameter
specifies the size of the divisor that Data Pump uses to calculate potential parallel
DML based on table size.

Default

250MB

Purpose

PARALLEL_THRESHOLD should only be used with export or import jobs of a single
unpartitioned table, or one partition of a partitioned table. When you specify PARALLEL
in the job, you can specify PARALLEL_THRESHOLD to modify the size of the divisor that
Oracle Data Pump uses to determine if a table should be exported or imported using
parallel data manipulation statements (PDML) during imports and exports. If you
specify a lower value than the default, then it enables a smaller table size to use the
Oracle Data Pump parallel algorithm. For example, if you have a 100MB table and you
want it to use PDML of 5, to break it into five units, then you specify
PARALLEL_THRESHOLD=20M

Syntax and Description

The parameter value specifies the threshold size in bytes:

PARALLEL_THRESHOLD=size-in-bytes

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-50

For a single table export or import, if you want a higher degree of parallelism, then you may
want to set PARALLEL_THRESHOLD to lower values, to take advantage of parallelism for a
smaller table or table partition. However, the benefit of this resource allocation can be limited
by the performance of the I/O of the file systems to which you are loading or unloading. Also,
if the job involves more than one object, for both tables and metadata objects, then the PQ
allocation request specified by PARALLEL with PARALLEL_THRESHOLD is of limited value. The
actual amount of PQ processes allocated to a table is impacted by how many operations
Oracle Data Pump is running concurrently, where the amount of parallelism has to be shared.
The database, the optimizer, and the execution plan produced by the optimizer for the SQL
determine the actual degree of parallelism used to load or unload the object specified in the
job.

One use case for this parameter: Using Oracle Data Pump to load a large table from one
database into a larger table in another database. For example: Uploading weekly sales data
from an OLTP database into a reporting or business analytics data warehouse database.

Restrictions

PARALLEL_THRESHOLD is used only in conjunction when the PARALLEL parameter is specified
with a value greater than 1.

Example

The following is an example of using the PARALLEL_THRESHOLD parameter to export the table
table_to_use_PDML, where the size of the divisor for PQ processes is set to 1 KB, the
variables user and user-password are the user and password of the user running Import
(impdp), and the job name is parathresh_example.

impdp user/user-password \
 directory=dpump_dir \
 dumpfile=parathresh_example.dmp
 tables=table_to_use_PDML \
 parallel=8 \
 parallel_threshold=1K \
 job_name=parathresh_example

3.4.31 PARFILE
The Oracle Data Pump Import command-line mode PARFILE parameter specifies the name of
an import parameter file.

Default

There is no default

Purpose

Specifies the name of an import parameter file, also known as a parfile.

Syntax and Description

PARFILE=[directory_path]file_name

A parameter file allows you to specify Oracle Data Pump parameters within a file. Whe you
create a parameter file, that file can be specified on the command line instead of entering all

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-51

the individual commands. This option can be useful if you use the same parameter
combination many times. The use of parameter files is also highly recommended if you
are using parameters whose values require the use of quotation marks.

A directory object is not specified for the parameter file because unlike dump files, log
files, and SQL files which are created and written by the server, the parameter file is
opened and read by the impdp client. The default location of the parameter file is the
user's current directory.

Within a parameter file, a comma is implicit at every newline character so you do not
have to enter commas at the end of each line. If you have a long line that wraps, such
as a long table name, enter the backslash continuation character (\) at the end of the
current line to continue onto the next line.

The contents of the parameter file are written to the Oracle Data Pump log file.

Restrictions

• The PARFILE parameter cannot be specified within a parameter file.

Example

Suppose the content of an example parameter file, hr_imp.par, are as follows:

TABLES= countries, locations, regions
DUMPFILE=dpump_dir2:exp1.dmp,exp2%U.dmp
DIRECTORY=dpump_dir1
PARALLEL=3

You can then issue the following command to execute the parameter file:

> impdp hr PARFILE=hr_imp.par

As a result of the command, the tables named countries, locations, and regions are
imported from the dump file set that is created when you run the example for the
Export DUMPFILE parameter. (See the Export DUMPFILE parameter.) The import job
looks for the exp1.dmp file in the location pointed to by dpump_dir2. It looks for any
dump files of the form exp2nn.dmp in the location pointed to by dpump_dir1. The log file
for the job is also written to dpump_dir1.

Related Topics

• DUMPFILE

• About Import Command-Line Mode

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-52

3.4.32 PARTITION_OPTIONS
The Oracle Data Pump Import command-line mode PARTITION_OPTIONS parameter specifies
how you want table partitions created during an import operation.

Default

The default is departition when partition names are specified on the TABLES parameter and
TRANPORTABLE=ALWAYS is set (whether on the import operation or during the export).
Otherwise, the default is none.

Purpose

Specifies how you want table partitions created during an import operation.

Syntax and Description

PARTITION_OPTIONS=[NONE | DEPARTITION | MERGE]

A value of NONE creates tables as they existed on the system from which the export operation
was performed. If the export was performed with the transportable method, with a partition or
subpartition filter, then you cannot use either the NONE option or the MERGE option. In that case,
you must use the DEPARTITION option.

A value of DEPARTITION promotes each partition or subpartition to a new individual table. The
default name of the new table is the concatenation of the table and partition name, or the
table and subpartition name, as appropriate.

A value of MERGE combines all partitions and subpartitions into one table.

Parallel processing during import of partitioned tables is subject to the following:

• If a partitioned table is imported into an existing partitioned table, then Data Pump only
processes one partition or subpartition at a time, regardless of any value specified with
the PARALLEL parameter.

• If the table into which you are importing does not already exist, and Data Pump has to
create it, then the import runs in parallel up to the parallelism specified on the PARALLEL
parameter when the import is started.

Restrictions

• You use departitioning to create and populate tables that are based on the source tables
partitions.

To avoid naming conflicts, when the value for PARTITION_OPTIONS is set to DEPARTITION,
then the dependent objects, such as constraints and indexes, are not created along with
these tables. This error message is included in the log file if any tables are affected by
this restriction: ORA-39427: Dependent objects of partitioned tables will not be
imported. To suppress this message, you can use the EXCLUDE parameter to exclude
dependent objects from the import.

• When the value for PARTITION_OPTIONS is set to MERGE, domain indexes are not created
with these tables. If this event occurs, then the error is reported in the log file: ORA-39426:
Domain indexes of partitioned tables will not be imported. To suppress this

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-53

message, you can use the EXCLUDE parameter to exclude the indexes:
EXCLUDE=DOMAIN_INDEX.

• If the export operation that created the dump file was performed with the
transportable method, and if a partition or subpartition was specified, then the
import operation must use the DEPARTITION option.

• If the export operation that created the dump file was performed with the
transportable method, then the import operation cannot use
PARTITION_OPTIONS=MERGE.

• If there are any grants on objects being departitioned, then an error message is
generated, and the objects are not loaded.

Example

The following example assumes that the sh.sales table has been exported into a
dump file named sales.dmp. It uses the merge option to merge all the partitions in
sh.sales into one non-partitioned table in scott schema.

> impdp system TABLES=sh.sales PARTITION_OPTIONS=MERGE
DIRECTORY=dpump_dir1 DUMPFILE=sales.dmp REMAP_SCHEMA=sh:scott

Related Topics

• TRANSPORTABLE

See Also:

The Export TRANSPORTABLE parameter for an example of performing an
import operation using PARTITION_OPTIONS=DEPARTITION

3.4.33 QUERY
The Oracle Data Pump Import command-line mode QUERY parameter enables you to
specify a query clause that filters the data that is imported.

Default

There is no default

Purpose

Enables you to specify a query clause that filters the data that is imported.

Syntax and Description

QUERY=[[schema_name.]table_name:]query_clause

The query_clause typically is a SQL WHERE clause for fine-grained row selection.
However, it can be any SQL clause. For example, you can use an ORDER BY clause to
speed up a migration from a heap-organized table to an index-organized table. If a
schema and table name are not supplied, then the query is applied to (and must be

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-54

valid for) all tables in the source dump file set or database. A table-specific query overrides a
query applied to all tables.

When you want to apply the query to a specific table, you must separate the table name from
the query cause with a colon (:). You can specify more than one table-specific query , but only
one query can be specified per table.

If the NETWORK_LINK parameter is specified along with the QUERY parameter, then any objects
specified in the query_clause that are on the remote (source) node must be explicitly
qualified with the NETWORK_LINK value. Otherwise, Data Pump assumes that the object is on
the local (target) node; if it is not, then an error is returned and the import of the table from the
remote (source) system fails.

For example, if you specify NETWORK_LINK=dblink1, then the query_clause of the QUERY
parameter must specify that link, as shown in the following example:

QUERY=(hr.employees:"WHERE last_name IN(SELECT last_name
FROM hr.employees@dblink1)")

Depending on your operating system, the use of quotation marks when you specify a value
for this parameter may also require that you use escape characters. Oracle recommends that
you place this parameter in a parameter file, which can reduce the number of escape
characters that might otherwise be needed on the command line. See ”About Import
Command-Line Mode."

If you use the QUERY parameter , then the external tables method (rather than the direct path
method) is used for data access.

To specify a schema other than your own in a table-specific query, you must be granted
access to that specific table.

Restrictions

• When trying to select a subset of rows stored in the export dump file, the QUERY
parameter cannot contain references to virtual columns for import

The reason for this restriction is that virtual column values are only present in a table in
the database. Such a table does not contain the virtual column data in an Oracle Data
Pump export file, so having a reference to a virtual column in an import QUERY parameter
does not match any known column in the source table in the dump file. However, you can
include the virtual column in an import QUERY parameter if you use a network import link
(NETWORK_LINK=dblink to source db) that imports directly from the source table in the
remote database.

• You cannot use the QUERY parameter with the following parameters:

– CONTENT=METADATA_ONLY
– SQLFILE
– TRANSPORT_DATAFILES

• When the QUERY parameter is specified for a table, Oracle Data Pump uses external
tables to load the target table. External tables uses a SQL INSERT statement with a
SELECT clause. The value of the QUERY parameter is included in the WHERE clause of the
SELECT portion of the INSERT statement. If the QUERY parameter includes references to
another table with columns whose names match the table being loaded, and if those
columns are used in the query, then you must use a table alias to distinguish between

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-55

columns in the table being loaded, and columns in the SELECT statement with the
same name.

For example, suppose you are importing a subset of the sh.sales table based on
the credit limit for a customer in the sh.customers table. In the following example,
the table alias used by Data Pump for the table being loaded is KU$. KU$ is used to
qualify the cust_id field in the QUERY parameter for loading sh.sales. As a result,
Data Pump imports only rows for customers whose credit limit is greater
than $10,000.

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
WHERE cust_credit_limit > 10000 AND ku$.cust_id = c.cust_id)"'

If KU$ is not used for a table alias, then all rows are loaded:

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
WHERE cust_credit_limit > 10000 AND cust_id = c.cust_id)"'

• The maximum length allowed for a QUERY string is 4000 bytes, including quotation
marks, which means that the actual maximum length allowed is 3998 bytes.

Example

The following is an example of using the QUERY parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See the Export FULL parameter. Because the QUERY value uses
quotation marks, Oracle recommends that you use a parameter file.

Suppose you have a parameter file, query_imp.par, that contains the following:

QUERY=departments:"WHERE department_id < 120"

You can then enter the following command:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
 PARFILE=query_imp.par NOLOGFILE=YES

All tables in expfull.dmp are imported, but for the departments table, only data that
meets the criteria specified in the QUERY parameter is imported.

Related Topics

• About Import Command-Line Mode

• FULL

3.4.34 REMAP_DATA
The Oracle Data Pump Import command-line mode REMAP_DATA parameter enables
you to remap data as it is being inserted into a new database.

Default

There is no default

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-56

Purpose

The REMAP_DATA parameter enables you to remap data as it is being inserted into a new
database. A common use is to regenerate primary keys to avoid conflict when importing a
table into a pre-existing table on the target database.

You can specify a remap function that takes as a source the value of the designated column
from either the dump file or a remote database. The remap function then returns a remapped
value that replaces the original value in the target database.

The same function can be applied to multiple columns being dumped. This function is useful
when you want to guarantee consistency in remapping both the child and parent column in a
referential constraint.

Syntax and Description

REMAP_DATA=[schema.]tablename.column_name:[schema.]pkg.function

The following is a list of each syntax element, in the order in which they appear in the syntax:

schema: the schema containing the table that you want remapped. By default, this schema is
the schema of the user doing the import.

tablename: the table whose column is remapped.

column_name: the column whose data is to be remapped.

schema: the schema containing the PL/SQL package you created that contains the remapping
function. As a default, this is the schema of the user doing the import.

pkg: the name of the PL/SQL package you created that contains the remapping function.

function: the name of the function within the PL/SQL that is called to remap the column table
in each row of the specified table.

Restrictions

• The data types and sizes of the source argument and the returned value must both
match the data type and size of the designated column in the table.

• Remapping functions should not perform commits or rollbacks except in autonomous
transactions.

• The use of synonyms as values for the REMAP_DATA parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, an error would be
returned if you specified regn as part of the REMPA_DATA specification.

• Remapping LOB column data of a remote table is not supported.

• REMAP_DATA does not support columns of the following types: User-Defined Types,
attributes of User-Defined Types, LONG, REF, VARRAY, Nested Tables, BFILE, and XMLtype.

Example

The following example assumes a package named remap has been created that contains a
function named plusx that changes the values for first_name in the employees table.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_DATA=hr.employees.first_name:hr.remap.plusx

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-57

3.4.35 REMAP_DATAFILE
The Oracle Data Pump Import command-line mode REMAP_DATAFILE parameter
changes the name of the source data file to the target data file name in all SQL
statements where the source data file is referenced.

Default

There is no default

Purpose

Changes the name of the source data file to the target data file name in all SQL
statements where the source data file is referenced: CREATE TABLESPACE, CREATE
LIBRARY, and CREATE DIRECTORY.

Syntax and Description

REMAP_DATAFILE=source_datafile:target_datafile

Remapping data files is useful when you move databases between platforms that have
different file naming conventions. The source_datafile and target_datafile names
should be exactly as you want them to appear in the SQL statements where they are
referenced. Oracle recommends that you enclose data file names in quotation marks
to eliminate ambiguity on platforms for which a colon is a valid file specification
character.

Depending on your operating system, escape characters can be required if you use
quotation marks when you specify a value for this parameter. Oracle recommends that
you place this parameter in a parameter file, which can reduce the number of escape
characters that you otherwise would require on the command line.

You must have the DATAPUMP_IMP_FULL_DATABASE role to specify this parameter.

Example

Suppose you had a parameter file, payroll.par, with the following content:

DIRECTORY=dpump_dir1
FULL=YES
DUMPFILE=db_full.dmp
REMAP_DATAFILE="'DB1$:[HRDATA.PAYROLL]tbs6.dbf':'/db1/hrdata/payroll/
tbs6.dbf'"

You can then issue the following command:

> impdp hr PARFILE=payroll.par

This example remaps a VMS file specification (DR1$:[HRDATA.PAYROLL]tbs6.dbf) to a
Unix file specification, (/db1/hrdata/payroll/tbs6.dbf) for all SQL DDL statements
during the import. The dump file, db_full.dmp, is located by the directory object,
dpump_dir1.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-58

Related Topics

• About Import Command-Line Mode

3.4.36 REMAP_DIRECTORY
The Oracle Data Pump Import command-line mode REMAP_DIRECTORY parameter lets you
remap directories when you move databases between platforms.

Default

There is no default.

Purpose

The REMAP_DIRECTORY parameter changes the source directory string to the target directory
string in all SQL statements where the source directory is the left-most portion of a full file or
directory specification: CREATE TABLESPACE, CREATE LIBRARY, and CREATE DIRECTORY.

Syntax and Description

REMAP_DIRECTORY=source_directory_string:target_directory_string

Remapping a directory is useful when you move databases between platforms that have
different directory file naming conventions. This provides an easy way to remap multiple data
files in a directory when you only want to change the directory file specification while
preserving the original data file names.

The source_directory_string and target_directory_string should be exactly as you
want them to appear in the SQL statements where they are referenced. In addition, Oracle
recommends that the directory be properly terminated with the directory file terminator for the
respective source and target platform. Oracle recommends that you enclose the directory
names in quotation marks to eliminate ambiguity on platforms for which a colon is a valid
directory file specification character.

Depending on your operating system, escape characters can be required if you use quotation
marks when you specify a value for this parameter. Oracle recommends that you place this
parameter in a parameter file, which can reduce the number of escape characters that you
otherwise would require on the command line.

You must have the DATAPUMP_IMP_FULL_DATABASE role to specify this parameter.

Restrictions

• The REMAP_DIRECTORY and REMAP_DATAFILE parameters are mutually exclusive.

Example

Suppose you want to remap the following data files:

DB1$:[HRDATA.PAYROLL]tbs5.dbf
DB1$:[HRDATA.PAYROLL]tbs6.dbf

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-59

In addition, you have a parameter file, payroll.par, with the following content:

DIRECTORY=dpump_dir1
FULL=YES
DUMPFILE=db_full.dmp
REMAP_DIRECTORY="'DB1$:[HRDATA.PAYROLL]':'/db1/hrdata/payroll/'"

You can issue the following command:

> impdp hr PARFILE=payroll.par

This example remaps the VMS file specifications (DB1$:[HRDATA.PAYROLL]tbs5.dbf,
and DB1$:[HRDATA.PAYROLL]tbs6.dbf) to UNIX file specifications, (/db1/hrdata/
payroll/tbs5.dbf, and /db1/hrdata/payroll/tbs6.dbf) for all SQL DDL statements
during the import. The dump file, db_full.dmp, is located by the directory object,
dpump_dir1.

3.4.37 REMAP_SCHEMA
The Oracle Data Pump Import command-line mode REMAP_SCHEMA parameter loads all
objects from the source schema into a target schema.

Default

There is no default

Purpose

Loads all objects from the source schema into a target schema.

Syntax and Description

REMAP_SCHEMA=source_schema:target_schema

Multiple REMAP_SCHEMA lines can be specified, but the source schema must be different
for each one. However, different source schemas can map to the same target schema.
The mapping can be incomplete; see the Restrictions section in this topic.

If the schema you are remapping to does not exist before the import, then the import
operation can create it, except in the case of REMAP_SCHEMA for the SYSTEM user. The
target schema of the REMAP_SCHEMA must exist before the import. To create the
schema, the dump file set must contain the necessary CREATE USER metadata for the
source schema, and you must be carrying out the import with enough privileges. For
example, the following Export commands create dump file sets with the necessary
metadata to create a schema, because the user SYSTEM has the necessary privileges:

> expdp system SCHEMAS=hr
Password: password

> expdp system FULL=YES
Password: password

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-60

If your dump file set does not contain the metadata necessary to create a schema, or if you
do not have privileges, then the target schema must be created before the import operation is
performed. You must have the target schema created before the import, because the
unprivileged dump files do not contain the necessary information for the import to create the
schema automatically.

For Oracle Database releases earlier than Oracle Database 11g, if the import operation does
create the schema, then after the import is complete, you must assign it a valid password to
connect to it. You can then use the following SQL statement to assign the password; note that
you require privileges:

SQL> ALTER USER schema_name IDENTIFIED BY new_password

In Oracle Database releases after Oracle Database 11g Release 1 (11.1.0.1), it is no longer
necessary to reset the schema password; the original password remains valid.

Restrictions

• Unprivileged users can perform schema remaps only if their schema is the target schema
of the remap. (Privileged users can perform unrestricted schema remaps.) For example,
SCOTT can remap his BLAKE's objects to SCOTT, but SCOTT cannot remap SCOTT's objects to
BLAKE.

• The mapping can be incomplete, because there are certain schema references that
Import is not capable of finding. For example, Import does not find schema references
embedded within the body of definitions of types, views, procedures, and packages.

• For triggers, REMAP_SCHEMA affects only the trigger owner.

• If any table in the schema being remapped contains user-defined object types, and that
table changes between the time it is exported and the time you attempt to import it, then
the import of that table fails. However, the import operation itself continues.

• By default, if schema objects on the source database have object identifiers (OIDs), then
they are imported to the target database with those same OIDs. If an object is imported
back into the same database from which it was exported, but into a different schema,
then the OID of the new (imported) object is the same as that of the existing object and
the import fails. For the import to succeed, you must also specify the TRANSFORM=OID:N
parameter on the import. The transform OID:N causes a new OID to be created for the
new object, which allows the import to succeed.

Example

Suppose that, as user SYSTEM, you run the following Export and Import commands to remap
the hr schema into the scott schema:

> expdp system SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp

> impdp system DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp REMAP_SCHEMA=hr:scott

In this example, if user scott already exists before the import, then the Import REMAP_SCHEMA
command adds objects from the hr schema into the existing scott schema. You can connect
to the scott schema after the import by using the existing password (without resetting it).

If user scott does not exist before you execute the import operation, then Import
automatically creates it with an unusable password. This action is possible because the dump

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-61

file, hr.dmp, was created by SYSTEM, which has the privileges necessary to create a
dump file that contains the metadata needed to create a schema. However, you
cannot connect to scott on completion of the import, unless you reset the password
for scott on the target database after the import completes.

3.4.38 REMAP_TABLE
The Oracle Data Pump Import command-line mode REMAP_TABLE parameter enables
you to rename tables during an import operation.

Default

There is no default

Purpose

Enables you to rename tables during an import operation.

Syntax and Description

You can use either of the following syntaxes (see the Usage Notes):

REMAP_TABLE=[schema.]old_tablename[.partition]:new_tablename

OR

REMAP_TABLE=[schema.]old_tablename[:partition]:new_tablename

If the table is being departitioned, then you can use the REMAP_TABLE parameter to
rename entire tables, or to rename table partitions (See PARTITION_OPTIONS).

You can also use REMAP_TABLE to override the automatic naming of exported table
partitions.

Usage Notes

With the first syntax, if you specify REMAP_TABLE=A.B:C, then Import assumes that A is
a schema name, B is the old table name, and C is the new table name. To use the first
syntax to rename a partition that is being promoted to a nonpartitioned table, you must
specify a schema name.

To use the second syntax to rename a partition being promoted to a nonpartitioned
table, you qualify it with the old table name. No schema name is required.

Restrictions

• The REMAP_TABLE parameter only handles user-created tables. Data Pump does
not have enough information for any dependent tables created internally.
Therefore, the REMAP_TABLE parameter cannot remap internally created tables.

• Only objects created by the Import are remapped. In particular, pre-existing tables
are not remapped.

• If the table being remapped has named constraints in the same schema, and the
constraints must be created when the table is created, then REMAP_TABLE
parameter does not work

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-62

Example

The following is an example of using the REMAP_TABLE parameter to rename the employees
table to a new name of emps:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_TABLE=hr.employees:emps

Related Topics

• PARTITION_OPTIONS

3.4.39 REMAP_TABLESPACE
The Oracle Data Pump Import command-line mode REMAP_TABLESPACE parameter remaps all
objects selected for import with persistent data in the source tablespace to be created in the
target tablespace.

Default

There is no default

Purpose

Remaps all objects selected for import with persistent data in the source tablespace to be
created in the target tablespace.

Syntax and Description

REMAP_TABLESPACE=source_tablespace:target_tablespace

Multiple REMAP_TABLESPACE parameters can be specified, but no two can have the same
source tablespace. The target schema must have sufficient quota in the target tablespace.

REMAP_TABLESPACE is the only way to remap a tablespace in Data Pump Import.

The Data Pump Import method of using the REMAP_TABLESPACE parameter works for all
objects, including the CREATE USER statement.

Restrictions

• Oracle Data Pump Import can only remap tablespaces for transportable imports in
databases where the compatibility level is set to 10.1 or later.

• Only objects created by the Import are remapped. In particular, if TABLE_EXISTS_ACTION is
set to SKIP, TRUNCATE, or APPEND, then the tablespaces for pre-existing tables are not
remapped.

• You cannot use REMAP_TABLESPACE with domain indexes to exclude the storage clause of
the source metadata. If you customized the tablespace using storage clauses, then
REMAP_TABLESPACE does not apply to those storage clauses. If you used a default
tablespace without storage clauses, then REMAP_TABLESPACE should work for that
tablespace.

• If the index preferences have customized tablespaces in the storage clauses at the
source table, then you must recreate those customized tablespaces on the target before

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-63

attempting to import those tablespaces. If you do not recreate the customized
tablespaces on the target database, then the Text index rebuild will fail.

Example

The following is an example of using the REMAP_TABLESPACE parameter.

> impdp hr REMAP_TABLESPACE=tbs_1:tbs_6 DIRECTORY=dpump_dir1
 DUMPFILE=employees.dmp

3.4.40 SCHEMAS
The Oracle Data Pump Import command-line mode SCHEMAS parameter specifies that
you want a schema-mode import to be performed.

Default

There is no default

Purpose

Specifies that you want a schema-mode import to be performed.

Syntax and Description

SCHEMAS=schema_name [,...]

If you have the DATAPUMP_IMP_FULL_DATABASE role, then you can use this parameter to
perform a schema-mode import by specifying a list of schemas to import. First, the
user definitions are imported (if they do not already exist), including system and role
grants, password history, and so on. Then all objects contained within the schemas are
imported. Unprivileged users can specify only their own schemas, or schemas
remapped to their own schemas. In that case, no information about the schema
definition is imported, only the objects contained within it.

To restrict what is imported by using this import mode, you can use filtering.

Schema mode is the default mode when you are performing a network-based import.

Example

The following is an example of using the SCHEMAS parameter. You can create the
expdat.dmp file used in this example by running the example provided for the Export
SCHEMAS parameter.

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp

The hr schema is imported from the expdat.dmp file. The log file, schemas.log, is
written to dpump_dir1.

Related Topics

• Filtering During Import Operations

• SCHEMAS

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-64

3.4.41 SERVICE_NAME
The Oracle Data Pump Import command-line mode SERVICE_NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

Default

There is no default

Purpose

Used to specify a service name to be used with the CLUSTER parameter.

Syntax and Description

SERVICE_NAME=name

The SERVICE_NAME parameter can be used with the CLUSTER=YES parameter to specify an
existing service associated with a resource group that defines a set of Oracle Real
Application Clusters (Oracle RAC) instances belonging to that resource group, typically a
subset of all the Oracle RAC instances.

The service name is only used to determine the resource group and instances defined for
that resource group. The instance where the job is started is always used, regardless of
whether it is part of the resource group.

The SERVICE_NAME parameter is ignored whenCLUSTER=NO is also specified.

Suppose you have an Oracle RAC configuration containing instances A, B, C, and D. Also
suppose that a service named my_service exists with a resource group consisting of
instances A, B, and C only. In such a scenario, the following would be true:

• If you start an Oracle Data Pump job on instance A, and specify CLUSTER=YES (or accept
the default, which is YES), and you do not specify the SERVICE_NAME parameter, then
Oracle Data Pump creates workers on all instances: A, B, C, and D, depending on the
degree of parallelism specified.

• If you start an Oracle Data Pump job on instance A, and specify CLUSTER=YES and
SERVICE_NAME=my_service, then workers can be started on instances A, B, and C only.

• If you start an Oracle Data Pump job on instance D, and specify CLUSTER=YES and
SERVICE_NAME=my_service, then workers can be started on instances A, B, C, and D.
Even though instance D is not in my_service it is included because it is the instance on
which the job was started.

• If you start an Oracle Data Pump job on instance A, and specify CLUSTER=NO, then any
SERVICE_NAME parameter that you specify is ignored, and all processes start on instance
A.

Example

> impdp system DIRECTORY=dpump_dir1 SCHEMAS=hr
 SERVICE_NAME=sales NETWORK_LINK=dbs1

This example starts a schema-mode network import of the hr schema. Even though
CLUSTER=YES is not specified on the command line, it is the default behavior, so the job uses

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-65

all instances in the resource group associated with the service name sales. The
NETWORK_LINK value of dbs1 is replaced with the name of the source database from
which you are importing data. (Note that there is no dump file generated with a
network import.)

The NETWORK_LINK parameter is simply being used as part of the example. It is not
required when using the SERVICE_NAME parameter.

Related Topics

• CLUSTER

3.4.42 SKIP_UNUSABLE_INDEXES
The Oracle Data Pump Import command-line mode SKIP_UNUSABLE_INDEXES
parameter specifies whether Import skips loading tables that have indexes that were
set to the Index Unusable state (by either the system or the user).

Default

The value of the Oracle Database configuration parameter, SKIP_UNUSABLE_INDEXES.

Purpose

Specifies whether Import skips loading tables that have indexes that were set to the
Index Unusable state (by either the system or the user).

Syntax and Description

SKIP_UNUSABLE_INDEXES=[YES | NO]

If SKIP_UNUSABLE_INDEXES is set to YES, and a table or partition with an index in the
Unusable state is encountered, then the load of that table or partition proceeds
anyway, as if the unusable index did not exist.

If SKIP_UNUSABLE_INDEXES is set to NO, and a table or partition with an index in the
Unusable state is encountered, then that table or partition is not loaded. Other tables,
with indexes not previously set Unusable, continue to be updated as rows are inserted.

If the SKIP_UNUSABLE_INDEXES parameter is not specified, then the setting of the
Oracle Database configuration parameter, SKIP_UNUSABLE_INDEXES is used to
determine how to handle unusable indexes. The default value for that parameter is y).

If indexes used to enforce constraints are marked unusable, then the data is not
imported into that table.

Note:

SKIP_UNUSABLE_INDEXES is useful only when importing data into an existing
table. It has no practical effect when a table is created as part of an import. In
that case, the table and indexes are newly created, and are not marked
unusable.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-66

Example

The following is an example of using the SKIP_UNUSABLE_INDEXES parameter. You can create
the expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp LOGFILE=skip.log
SKIP_UNUSABLE_INDEXES=YES

Related Topics

• FULL

3.4.43 SOURCE_EDITION
The Oracle Data Pump Import command-line mode SOURCE_EDITION parameter specifies the
database edition on the remote node from which objects are fetched.

Default

The default database edition on the remote node from which objects are fetched.

Purpose

Specifies the database edition on the remote node from which objects are e fetched.

Syntax and Description

SOURCE_EDITION=edition_name

If SOURCE_EDITION=edition_name is specified, then the objects from that edition are imported.
Oracle Data Pump selects all inherited objects that have not changed, and all actual objects
that have changed.

If this parameter is not specified, then the default edition is used. If the specified edition does
not exist or is not usable, then an error message is returned.

Restrictions

• The SOURCE_EDITION parameter is valid on an import operation only when the
NETWORK_LINK parameter is also specified.

• This parameter is only useful if there are two or more versions of the same versionable
objects in the database.

• The job version must be set to 11.2 or later.

Example

The following is an example of using the import SOURCE_EDITION parameter:

> impdp hr DIRECTORY=dpump_dir1 SOURCE_EDITION=exp_edition
NETWORK_LINK=source_database_link EXCLUDE=USER

In this example, we assume the existence of an edition named exp_edition on the system
from which objects are being imported. Because no import mode is specified, the default,
which is schema mode, is used. Replace source_database_link with the name of the source

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-67

database from which you are importing data. The EXCLUDE=USER parameter excludes
only the definitions of users, not the objects contained within user schemas. No dump
file is generated, because this is a network import.

Related Topics

• NETWORK_LINK

• VERSION

See Also:

• CREATE EDITION in Oracle Database SQL Language Reference for
information about how editions are created

• Editions in Oracle Database Development Guide for more information
about the editions feature, including inherited and actual objects

3.4.44 SQLFILE
The Oracle Data Pump Import command-line mode SQLFILE parameter specifies a file
into which all the SQL DDL that Import prepares to execute is written, based on other
Import parameters selected.

Default

There is no default

Purpose

Specifies a file into which all the SQL DDL that Import prepares to execute is written,
based on other Import parameters selected.

Syntax and Description

SQLFILE=[directory_object:]file_name

The file_name specifies where the import job writes the DDL that is prepared to run
during the job. The SQL is not actually run, and the target system remains unchanged.
The file is written to the directory object specified in the DIRECTORY parameter, unless
you explicitly specify another directory object. Any existing file that has a name
matching the one specified with this parameter is overwritten.

Note that passwords are not included in the SQL file. For example, if a CONNECT
statement is part of the DDL that was run, then it is replaced by a comment with only
the schema name shown. In the following example, the dashes (--) indicate that a
comment follows. The hr schema name is shown, but not the password.

-- CONNECT hr

Therefore, before you can run the SQL file, you must edit it by removing the dashes
indicating a comment, and adding the password for the hr schema.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-68

Oracle Data Pump places any ALTER SESSION statements at the top of the SQL file created
by the Oracle Data Pump import. If the import operation has different connection statements,
then you must manually copy each of the ALTER SESSION statements, and paste them after
the appropriate CONNECT statements.

For some Oracle Database options, anonymous PL/SQL blocks can appear within the
SQLFILE output. Do not run these PL/SQL blocks directly.

Restrictions

• If SQLFILE is specified, then the CONTENT parameter is ignored if it is set to either ALL or
DATA_ONLY.

• To perform an Oracle Data Pump Import to a SQL file using Oracle Automatic Storage
Management (Oracle ASM), the SQLFILE parameter that you specify must include a
directory object that does not use the Oracle ASM + notation. That is, the SQL file must be
written to a disk file, not into the Oracle ASM storage.

• You cannot use the SQLFILE parameter in conjunction with the QUERY parameter.

Example

The following is an example of using the SQLFILE parameter. You can create the expfull.dmp
dump file used in this example by running the example provided for the Export FULL
parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
SQLFILE=dpump_dir2:expfull.sql

A SQL file named expfull.sql is written to dpump_dir2.

Related Topics

• FULL

3.4.45 STATUS
The Oracle Data Pump Import command-line mode STATUS parameter specifies the frequency
at which the job status is displayed.

Default

0

Purpose

Specifies the frequency at which the job status is displayed.

Syntax and Description

STATUS[=integer]

If you supply a value for integer, then it specifies how frequently, in seconds, job status
should be displayed in logging mode. If no value is entered, or if the default value of 0 is
used, then no additional information is displayed beyond information about the completion of
each object type, table, or partition.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-69

This status information is written only to your standard output device, not to the log file
(if one is in effect).

Example

The following is an example of using the STATUS parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter..

> impdp hr NOLOGFILE=YES STATUS=120 DIRECTORY=dpump_dir1
DUMPFILE=expfull.dmp

In this example, the status is shown every two minutes (120 seconds).

Related Topics

• FULL

3.4.46 STREAMS_CONFIGURATION
The Oracle Data Pump Import command-line mode STREAMS_CONFIGURATION
parameter specifies whether to import any GoldenGate Replication metadata that may
be present in the export dump file.

Default

YES

Purpose

Specifies whether to import any GoldenGate Replication metadata that can be present
in the export dump file.

Syntax and Description

STREAMS_CONFIGURATION=[YES | NO]

Example

The following is an example of using the STREAMS_CONFIGURATION parameter. You can
create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
STREAMS_CONFIGURATION=NO

3.4.47 TABLE_EXISTS_ACTION
The Oracle Data Pump Import command-line mode TABLE_EXISTS_ACTION parameter
specifies for Import what to do if the table it is trying to create already exists.

Default

SKIP

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-70

Note:

If CONTENT=DATA_ONLY is specified, then the default is APPEND, not SKIP.

Purpose

Specifies for Import what to do if the table it is trying to create already exists.

Syntax and Description

TABLE_EXISTS_ACTION=[SKIP | APPEND | TRUNCATE | REPLACE]

The possible values have the following effects:

• SKIP leaves the table as is, and moves on to the next object. This option is not valid when
the CONTENT parameter is set to DATA_ONLY.

• APPEND loads rows from the source and leaves existing rows unchanged.

• TRUNCATE deletes existing rows and then loads rows from the source.

• REPLACE drops the existing table, and then creates and loads it from the source. This
option is not valid when the CONTENT parameter is set to DATA_ONLY.

When you are using these options, be aware of the following:

• When you use TRUNCATE or REPLACE, ensure that rows in the affected tables are not
targets of any referential constraints.

• When you use SKIP, APPEND, or TRUNCATE, existing table-dependent objects in the source,
such as indexes, grants, triggers, and constraints, are not modified. For REPLACE, the
dependent objects are dropped and recreated from the source, if they are not explicitly or
implicitly excluded (using EXCLUDE) and if they exist in the source dump file or system.

• When you use APPEND or TRUNCATE, Import checks that rows from the source are
compatible with the existing table before performing any action.

If the existing table has active constraints and triggers, then it is loaded using the external
tables access method. If any row violates an active constraint, then the load fails and no
data is loaded. You can override this behavior by specifying
DATA_OPTIONS=SKIP_CONSTRAINT_ERRORS on the Import command line.

If you have data that must be loaded, but that can cause constraint violations, then
consider disabling the constraints, loading the data, and then deleting the problem rows
before re-enabling the constraints.

• When you use APPEND, the data is always loaded into new space; existing space, even if
available, is not reused. For this reason, you may want to compress your data after the
load.

• If you use parallel processing, then review the description of the Import
PARTITION_OPTIONS parameter for information about how parallel processing of
partitioned tables is affected, depending on whether the target table already exists or not.

• If you are importing into an existing table (TABLE_EXISTS_ACTION=REPLACE or TRUNCATE),
then follow these guidelines, depending on the table partitioning scheme:

– If the partitioning scheme matches between the source and target, then use
DATA_OPTIONS=TRUST_EXISTING_TABLE_PARTITIONS on import.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-71

– If the partitioning scheme differs between source and target, then use
DATA_OPTIONS=GROUP_PARTITION_TABLE_DATA on export.

Note:

When Oracle Data Pump detects that the source table and target table do
not match (the two tables do not have the same number of columns or the
target table has a column name that is not present in the source table), it
then compares column names between the two tables. If the tables have at
least one column in common, then the data for the common columns is
imported into the table (assuming the data types are compatible). The
following restrictions apply:

• This behavior is not supported for network imports.

• The following types of columns cannot be dropped: object columns,
object attributes, nested table columns, and ref columns based on a
primary key.

Restrictions

• TRUNCATE cannot be used on clustered tables.

Example

The following is an example of using the TABLE_EXISTS_ACTION parameter. You can
create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter.

> impdp hr TABLES=employees DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
TABLE_EXISTS_ACTION=REPLACE

Related Topics

• PARTITION_OPTIONS

• FULL

3.4.48 REUSE_DATAFILES
The Oracle Data Pump Import command-line mode REUSE_DATAFILES parameter
specifies whether you want the import job to reuse existing data files for tablespace
creation.

Default

NO

Purpose

Specifies whether you want the import job to reuse existing data files for tablespace
creation.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-72

Syntax and Description

REUSE_DATAFILES=[YES | NO]

If you use the default (n), and the data files specified in CREATE TABLESPACE statements
already exist, then an error message from the failing CREATE TABLESPACE statement is issued,
but the import job continues.

If this parameter is specified as y, then the existing data files are reinitialized.

Caution:

Specifying REUSE_DATAFILES=YES can result in a loss of data.

Example

The following is an example of using the REUSE_DATAFILES parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the Export
FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp LOGFILE=reuse.log
REUSE_DATAFILES=YES

This example reinitializes data files referenced by CREATE TABLESPACE statements in the
expfull.dmp file.

Related Topics

• FULL

3.4.49 TABLES
The Oracle Data Pump Import command-line mode TABLES parameter specifies that you want
to perform a table-mode import.

Default

There is no default.

Purpose

Specifies that you want to perform a table-mode import.

Syntax and Description

TABLES=[schema_name.]table_name[:partition_name]

In a table-mode import, you can filter the data that is imported from the source by specifying a
comma-delimited list of tables and partitions or subpartitions.

If you do not supply a schema_name, then it defaults to that of the current user. To specify a
schema other than your own, you must either have the DATAPUMP_IMP_FULL_DATABASE role or
remap the schema to the current user.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-73

If you want to restrict what is imported, you can use filtering with this import mode.

If you specify partition_name, then it must be the name of a partition or subpartition in
the associated table.

You can specify table names and partition names by using the wildcard character %.

The following restrictions apply to table names:

• By default, table names in a database are stored as uppercase characters. If you
have a table name in mixed-case or lowercase characters, and you want to
preserve case sensitivity for the table name, then you must enclose the name in
quotation marks. The name must exactly match the table name stored in the
database.

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how case-
sensitivity can be preserved in the different Import modes.

– In command-line mode:

TABLES='\"Emp\"'
– In parameter file mode:

TABLES='"Emp"'
• Table names specified on the command line cannot include a pound sign (#),

unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound sign (#), then unless the table name is
enclosed in quotation marks, the Import utility interprets the rest of the line as a
comment.

For example, if the parameter file contains the following line, then Import interprets
everything on the line after emp# as a comment, and does not import the tables
dept and mydata:
TABLES=(emp#, dept, mydata)

However, if the parameter file contains the following line, then the Import utility
imports all three tables because emp# is enclosed in quotation marks:

TABLES=('"emp#"', dept, mydata)

Note:

Some operating systems require single quotation marks rather than
double quotation marks, or the reverse; see your operating system
documentation. Different operating systems also have other restrictions
on table naming.

For example, the Unix C shell attaches a special meaning to a dollar sign
($) or pound sign (#), or certain other special characters. You must use
escape characters to use these special characters in the names so that
the operating system shell ignores them, and they can be used with
Import.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-74

Restrictions

• The use of synonyms as values for the TABLES parameter is not supported. For example,
if the regions table in the hr schema had a synonym of regn, then it would not be valid to
use TABLES=regn. An error would be returned.

• You can only specify partitions from one table if PARTITION_OPTIONS=DEPARTITION is also
specified on the import.

• If you specify TRANSPORTABLE=ALWAYS, then all partitions specified on the TABLES
parameter must be in the same table.

• The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4 MB, unless you are using the NETWORK_LINK parameter to an Oracle
Database release 10.2.0.3 or earlier or to a read-only database. In such cases, the limit is
4 KB.

Example

The following example shows a simple use of the TABLES parameter to import only the
employees and jobs tables from the expfull.dmp file. You can create the expfull.dmp dump
file used in this example by running the example provided for the Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp TABLES=employees,jobs

The following example is a command to import partitions using the TABLES:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp
TABLES=sh.sales:sales_Q1_2012,sh.sales:sales_Q2_2012

This example imports the partitions sales_Q1_2012 and sales_Q2_2012 for the table sales in
the schema sh.

Related Topics

• Filtering During Import Operations

• FULL

3.4.50 TABLESPACES
The Oracle Data Pump Import command-line mode TABLESPACES parameter specifies that
you want to perform a tablespace-mode import.

Default

There is no default

Purpose

Specifies that you want to perform a tablespace-mode import.

Syntax and Description

TABLESPACES=tablespace_name [, ...]

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-75

Use TABLESPACES to specify a list of tablespace names whose tables and dependent
objects are to be imported from the source (full, schema, tablespace, or table-mode
export dump file set or another database).

During the following import situations, Data Pump automatically creates the
tablespaces into which the data will be imported:

• The import is being done in FULL or TRANSPORT_TABLESPACES mode

• The import is being done in table mode with TRANSPORTABLE=ALWAYS
In all other cases, the tablespaces for the selected objects must already exist on the
import database. You could also use the Import REMAP_TABLESPACE parameter to map
the tablespace name to an existing tablespace on the import database.

If you want to restrict what is imported, you can use filtering with this import mode.

Restrictions

• The length of the list of tablespace names specified for the TABLESPACES
parameter is limited to a maximum of 4 MB, unless you are using the
NETWORK_LINK parameter to a 10.2.0.3 or earlier database or to a read-only
database. In such cases, the limit is 4 KB.

Example

The following is an example of using the TABLESPACES parameter. It assumes that the
tablespaces already exist. You can create the expfull.dmp dump file used in this
example by running the example provided for the Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
TABLESPACES=tbs_1,tbs_2,tbs_3,tbs_4

This example imports all tables that have data in tablespaces tbs_1, tbs_2, tbs_3, and
tbs_4.

Related Topics

• Filtering During Import Operations

• FULL

3.4.51 TARGET_EDITION
The Oracle Data Pump Import command-line mode TARGET_EDITION parameter
specifies the database edition into which you want objects imported.

Default

The default database edition on the system.

Purpose

Specifies the database edition into which you want objects imported.

Syntax and Description

TARGET_EDITION=name

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-76

If you specify TARGET_EDITION=name, then Data Pump Import creates all of the objects found
in the dump file. Objects that are not editionable are created in all editions.

For example, tables are not editionable, so if there is a table in the dump file, then the table is
created, and all editions see it. Objects in the dump file that are editionable, such as
procedures, are created only in the specified target edition.

If this parameter is not specified, then Import uses the default edition on the target database,
even if an edition was specified in the export job. If the specified edition does not exist, or is
not usable, then an error message is returned.

Restrictions

• This parameter is only useful if there are two or more versions of the same versionable
objects in the database.

• The job version must be 11.2 or later.

Example

The following is an example of using the TARGET_EDITION parameter:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=exp_dat.dmp
TARGET_EDITION=exp_edition

This example assumes the existence of an edition named exp_edition on the system to
which objects are being imported. Because no import mode is specified, the default of
schema mode will be used.

See Oracle Database SQL Language Reference for information about how editions are
created. See Oracle Database Development Guide for more information about the editions
features.

Related Topics

• VERSION

• CREATE EDITION in Oracle Database SQL Language Reference

• Editions in Oracle Database Development Guide

3.4.52 TRANSFORM
The Oracle Data Pump Import command-line mode TRANSFORM parameter enables you to
alter object creation DDL for objects being imported.

Default

There is no default

Purpose

Enables you to alter object creation DDL for objects being imported.

Syntax and Description

TRANSFORM = transform_name:value[:object_type]

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-77

The transform_name specifies the name of the transform.

Specifying object_type is optional. If supplied, this parameter designates the object
type to which the transform is applied. If no object type is specified, then the transform
applies to all valid object types.

The available transforms are as follows, in alphabetical order:

• CONSTRAINT_NAME_FROM_INDEX: [Y | N]
This transform is valid for the following object types:TABLE and CONSTRAINT object
types.

This transform parameter affects the generation of the pk or fk constraint which
reference user created indexes. If set to Y, then it forces the name of the constraint
to match the name of the index.

If set to N (the default), then the constraint is created as named on the source
database.

• CONSTRAINT_USE_DEFAULT_INDEX: [Y | N]
This transform is valid for the following object types:TABLE and CONSTRAINT object
types.

This transform parameter affects the generation of index relating to the pk or fk
constraint. If set to Y, then the transform parameter forces the name of an index
automatically created to enforce the constraint to be identical to the constraint
name. In addition, the index is created using the default constraint definition for the
target database, and will not use any special characteristics that might have been
defined in the source database.

Default Indexes are not allowed unless they use standard schema integrity
constraints, such as UNIQUE, PRIMARY KEY, or FOREIGN KEY. Accordingly, if you run
an Oracle Data Pump import from a system where no restrictions exist, and you
have additional constraints in the source index (for example, user generated
constraints, such as a hash-partitioned index), then these additional constraints
are removed during the import.

If set to N (the default), then the index is created as named on the source
database.

• DISABLE_ARCHIVE_LOGGING:[Y | N]
This transform is valid for the following object types: INDEX and TABLE.

If set to Y, then the logging attributes for the specified object types (TABLE and/or
INDEX) are disabled before the data is imported. If set to N (the default), then
archive logging is not disabled during import. After the data has been loaded, the
logging attributes for the objects are restored to their original settings. If no object
type is specified, then the DISABLE_ARCHIVE_LOGGING behavior is applied to both
TABLE and INDEX object types. This transform works for both file mode imports and
network mode imports. It does not apply to transportable tablespace imports.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-78

Note:

If the database is in FORCE LOGGING mode, then the DISABLE_ARCHIVE_LOGGING
option does not disable logging when indexes and tables are created.

• DWCS_CVT_IOTS: [Y | N]
This transform is valid for TABLE object types.

If set to Y, it directs Oracle Data Pump to transform Index Organized tables to heap
organized tables by suppressing the ORGANIZATION INDEX clause when creating the
table.

If set to N (the default), the generated DDL retains the table characteristics of the source
object.

• DWCS_CVT_CONSTRAINTS: [Y | N]
This transform is valid for the following object types:TABLE and CONSTRAINT object types.

If set to Y, it directs Oracle Data Pump to create pk, fk, or uk constraints as disabled.

If set to N (the default), it directs Oracle Data Pump to createpk, fk, or uk constraints
based on the source database status.

• OMIT_ACDR_METADATA:[Y | N]
The default value is N. When set to Y (true), Oracle Data Pump Import excludes invisible
columns from importing replicated tables deletes tombstone tables, and deletes all the
automatic conflict detection and resolution (ACDR) instance procedural actions.

• INDEX_COMPRESSION_CLAUSE [NONE | compression_clause]
This transform is valid for the object type INDEX. As with TABLE_COMPRESSION_CLAUSE,
using INDEX_COMPRESSION_CLAUSE enables you to control index compression on import.

If NONE is specified, then the index compression clause is omitted (and the index is given
the default compression for the tablespace). However, if you use compression, then
Oracle recommends that you use COMPRESS ADVANCED LOW). Indexes are created with the
specified compression. See Oracle Database SQL Language Reference for information
about valid table compression syntax.

If the index compression clause is more than one word, then it must be contained in
single or double quotation marks. Also, your operating system can require you to enclose
the clause in escape characters, such as the backslash character. For example:

TRANSFORM=INDEX_COMPRESSION_CLAUSE:\"COMPRESS ADVANCED LOW\"

Specifying this transform changes the type of compression for all indexes in the job.

• INCLUDE_SHARDING_CLAUSES: [Y|N]
The default for this transform is N. When set to Y, get_ddl() generates shard syntax, if
the dictionary values in the imported document contain the shard syntax.

• INMEMORY:[Y|N]
This transform is valid for the following object types: TABLE and TABLESPACE
The INMEMORY transform is related to the In-Memory Column Store (IM column store). The
IM column store is an optional portion of the system global area (SGA) that stores copies

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-79

of tables, table partitions, and other database objects. In the IM column store, data
is populated by column rather than row as it is in other parts of the SGA, and data
is optimized for rapid scans. The IM column store does not replace the buffer
cache, but acts as a supplement so that both memory areas can store the same
data in different formats. The IM column store is included with the Oracle
Database In-Memory option.

If Y (the default value) is specified on import, then Data Pump keeps the IM column
store clause for all objects that have one. When those objects are recreated at
import time, Data Pump generates the IM column store clause that matches the
setting for those objects at export time.

If N is specified on import, then Data Pump drops the IM column store clause from
all objects that have one. If there is no IM column store clause for an object that is
stored in a tablespace, then the object inherits the IM column store clause from the
tablespace. So if you are migrating a database, and you want the new database to
use IM column store features, then you can pre-create the tablespaces with the
appropriate IM column store clause and then use TRANSFORM=INMEMORY:N on the
import command. The object then inherits the IM column store clause from the
new pre-created tablespace.

If you do not use the INMEMORY transform, then you must individually alter every
object to add the appropriate IM column store clause.

Note:

The INMEMORY transform is available only in Oracle Database 12c
Release 1 (12.1.0.2) or later releases.

See Oracle Database Administrator’s Guide for information about using
the In-Memory Column Store (IM column store).

• INMEMORY_CLAUSE:"string with a valid in-memory parameter”
This transform is valid for the following object types: TABLE and TABLESPACE.

The INMEMORY_CLAUSE transform is related to the In-Memory Column Store (IM
column store). The IM column store is an optional portion of the system global
area (SGA) that stores copies of tables, table partitions, and other database
objects. In the IM column store, data is populated by column rather than row as it
is in other parts of the SGA, and data is optimized for rapid scans. The IM column
store does not replace the buffer cache, but acts as a supplement so that both
memory areas can store the same data in different formats. The IM column store
is included with the Oracle Database In-Memory option.

When you specify this transform, Data Pump uses the contents of the string as the
INMEMORY_CLAUSE for all objects being imported that have an IM column store
clause in their DDL. This transform is useful when you want to override the IM
column store clause for an object in the dump file.

The string that you supply must be enclosed in double quotation marks. If you are
entering the command on the command line, be aware that some operating
systems can strip out the quotation marks during parsing of the command, which

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-80

causes an error. You can avoid this error by using backslash escape characters (\). For
example:

transform=inmemory_clause:\"INMEMORY MEMCOMPRESS FOR DML PRIORITY
CRITICAL\"

Alternatively you can put parameters in a parameter file. Quotation marks in the
parameter file are maintained during processing.

Note:

The INMEMORY_CLAUSE transform is available only with Oracle Database 12c
Release 1 (12.1.0.2) or later releases.

See Oracle Database Administrator's Guide for information about using the In-
Memory Column Store (IM column store). See Oracle Database Reference for
a listing and description of parameters that can be specified in an IM column
store clause

• LOB_STORAGE:[SECUREFILE | BASICFILE | DEFAULT | NO_CHANGE]
This transform is valid for the object type TABLE.

LOB segments are created with the storage data type that you specify, either SECUREFILE
or BASICFILE. (Note that Oracle recommends that you migrate all legacy binary data
types to SecureFile LOBs.) If the value is NO_CHANGE (the default), then the LOB
segments are created with the same storage that they had in the source database. If the
value is DEFAULT, then the keyword (SECUREFILE or BASICFILE) is omitted, and the LOB
segment is created with the default storage.

Specifying this transform changes LOB storage for all tables in the job, including tables
that provide storage for materialized views.

The LOB_STORAGE transform is not valid in transportable import jobs.

• OID:[Y | N]
This transform is valid for the following object types: INC_TYPE, TABLE, and TYPE.

If Y (the default value) is specified on import, then the exported OIDs are assigned to new
object tables and types. Data Pump also performs OID checking when looking for an
existing matching type on the target database.

If N is specified on import, then:

– The assignment of the exported OID during the creation of new object tables and
types is inhibited. Instead, a new OID is assigned. Inhibiting assignment of exported
OIDs can be useful for cloning schemas, but does not affect referenced objects.

– Before loading data for a table associated with a type, Data Pump skips normal type
OID checking when looking for an existing matching type on the target database.
Other checks using a hash code for a type, version number, and type name are still
performed.

• OMIT_ENCRYPTION_CLAUSE: [Y | N]
This transform is valid for TABLE object types.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-81

If set to Y, it directs Oracle Data Pump to suppress column encryption clauses.
Columns which were encrypted in the source database are not encrypted in
imported tables.

If set to N (the default), it directs Oracle Data Pump to create column encryption
clauses, as in the source database.

• PCTSPACE:some_number_greater_than_zero
This transform is valid for the following object types: CLUSTER, CONSTRAINT, INDEX,
ROLLBACK_SEGMENT, TABLE, and TABLESPACE.

The value supplied for this transform must be a number greater than zero. It
represents the percentage multiplier used to alter extent allocations and the size of
data files.

You can use the PCTSPACE transform with the Data Pump Export SAMPLE parameter
so that the size of storage allocations matches the sampled data subset. (See the
SAMPLE export parameter.)

• SEGMENT_ATTRIBUTES:[Y | N]
This transform is valid for the following object types: CLUSTER, CONSTRAINT, INDEX,
ROLLBACK_SEGMENT, TABLE, and TABLESPACE.

If the value is specified as Y, then segment attributes (physical attributes, storage
attributes, tablespaces, and logging) are included, with appropriate DDL. The
default is Y.

• SEGMENT_CREATION:[Y | N]
This transform is valid for the object type TABLE.

If set to Y (the default), then this transform causes the SQL SEGMENT CREATION
clause to be added to the CREATE TABLE statement. That is, the CREATE TABLE
statement explicitly says either SEGMENT CREATION DEFERRED or SEGMENT CREATION
IMMEDIATE. If the value is N, then the SEGMENT CREATION clause is omitted from the
CREATE TABLE statement. Set this parameter to N to use the default segment
creation attributes for the tables being loaded. This functionality is available with
Oracle Database 11g release 2 (11.2.0.2) and later releases.

• STORAGE:[Y | N]
This transform is valid for the following object types: CLUSTER, CONSTRAINT, INDEX,
ROLLBACK_SEGMENT, and TABLE.

If the value is specified as Y, then the storage clauses are included, with
appropriate DDL. The default is Y. This parameter is ignored if
SEGMENT_ATTRIBUTES=N.

• TABLE_COMPRESSION_CLAUSE:[NONE | compression_clause]
This transform is valid for the object type TABLE.

If NONE is specified, then the table compression clause is omitted (and the table is
given the default compression for the tablespace). Otherwise, the value is a valid
table compression clause (for example, NOCOMPRESS, COMPRESS BASIC, and so on).
Tables are created with the specified compression. See Oracle Database SQL
Language Reference for information about valid table compression syntax.

If the table compression clause is more than one word, then it must be contained
in single or double quotation marks. Also, your operating system can require you

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-82

to enclose the clause in escape characters, such as the backslash character. For
example:

TRANSFORM=TABLE_COMPRESSION_CLAUSE:\"COLUMN STORE COMPRESS FOR QUERY
HIGH\"

Specifying this transform changes the type of compression for all tables in the job,
including tables that provide storage for materialized views.

• TBX_CLAUSE:[TBX|CSX|NONE]
To provide sharding support, and greater scalability, the Transportable Binary XML (TBX)
storage type transform is available beginning with Oracle Database 23c for XML
documents. The TBX_CLAUSE transform supports XMLType stored as Transportable Binary
XML (TBX), which has many of the same capabilities as XMLType stored as Compact
Schema-Aware XML (CSX), without requiring central token tables and schema registries.

The default is NONE.

If set to TBX, then it forces the TRANSPORTABLE clause to be present in table creation DDLs
for Binary XML data. If set to CSX, then it forces the NOT TRANSPORTABLE clause to be
present in table creation DDLs for Binary XML data. If set to NONE, then the NOT
TRANSPORTABLE clauses remain as is. When tables with Binary XML data have neither
TRANSPORTABLE nor NOT TRANSPORTABLE clauses, the default is NOT TRANSPORTABLE, and
the XMLType column remains stored as CSX.

Restrictions

• You cannot use TRANSFORM with domain indexes to exclude the storage clause of the
source metadata.

• You cannot use REMAP_TABLESPACE or TRANSFORM ATTRIBUTE with Oracle Text indexes.

Example

For the following example, assume that you have exported the employees table in the hr
schema. The SQL CREATE TABLE statement that results when you then import the table is
similar to the following:

CREATE TABLE "HR"."EMPLOYEES"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL ENABLE,
 "EMAIL" VARCHAR2(25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 10240 NEXT 16384 MINEXTENTS 1 MAXEXTENTS 121
 PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "SYSTEM" ;

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-83

If you do not want to retain the STORAGE clause or TABLESPACE clause, then you can
remove them from the CREATE STATEMENT by using the Import TRANSFORM parameter.
Specify the value of SEGMENT_ATTRIBUTES as N. This results in the exclusion of
segment attributes (both storage and tablespace) from the table.

> impdp hr TABLES=hr.employees DIRECTORY=dpump_dir1 DUMPFILE=hr_emp.dmp
 TRANSFORM=SEGMENT_ATTRIBUTES:N:table

The resulting CREATE TABLE statement for the employees table then looks similar to the
following. It does not contain a STORAGE or TABLESPACE clause; the attributes for the
default tablespace for the HR schema are used instead.

CREATE TABLE "HR"."EMPLOYEES"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL
ENABLE,
 "EMAIL" VARCHAR2(25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
);

As shown in the previous example, the SEGMENT_ATTRIBUTES transform applies to both
storage and tablespace attributes. To omit only the STORAGE clause and retain the
TABLESPACE clause, you can use the STORAGE transform, as follows:

> impdp hr TABLES=hr.employees DIRECTORY=dpump_dir1 DUMPFILE=hr_emp.dmp
 TRANSFORM=STORAGE:N:table

The SEGMENT_ATTRIBUTES and STORAGE transforms can be applied to all applicable
table and index objects by not specifying the object type on the TRANSFORM parameter,
as shown in the following command:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp SCHEMAS=hr
TRANSFORM=SEGMENT_ATTRIBUTES:N

Related Topics

• CREATE INDEX in Oracle Database Administrator’s Guide

• Improved Analytics Using the In-Memory Column Store in Oracle Database Data
Warehousing Guide

• SAMPLE
The Data Pump Export command-line utility SAMPLE parameter specifies a
percentage of the data rows that you want to be sampled and unloaded from the
source database.

• CREATE TABLE in Oracle Database SQL Language Reference

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-84

3.4.53 TRANSPORT_DATAFILES
The Oracle Data Pump Import command-line mode TRANSPORT_DATAFILES parameter
specifies a list of data files that are imported into the target database when
TRANSPORTABLE=ALWAYS is set during the export.

Default

There is no default

Purpose

Specifies a list of data files that are imported into the target database by a transportable-
tablespace mode import, or by a table-mode or full-mode import, when
TRANSPORTABLE=ALWAYSis set during the export. The data files must already exist on the target
database system.

Syntax and Description

TRANSPORT_DATAFILES=datafile_name

The datafile_name must include an absolute directory path specification (not a directory
object name) that is valid on the system where the target database resides.

The datafile_name can also use wildcards in the file name portion of an absolute path
specification. An Asterisk (*) matches 0 to N characters. A question mark (?) matches exactly
one character. You cannot use wildcards in the directory portions of the absolute path
specification. If a wildcard is used, then all matching files must be part of the transport set. If
any files are found that are not part of the transport set, then an error is displayed, and the
import job terminates.

At some point before the import operation, you must copy the data files from the source
system to the target system. You can copy the data files by using any copy method supported
by your operating system. If desired, you can rename the files when you copy them to the
target system. See Example 2.

If you already have a dump file set generated by any transportable mode export, then you
can perform a transportable-mode import of that dump file by specifying the dump file (which
contains the metadata) and the TRANSPORT_DATAFILES parameter. The presence of the
TRANSPORT_DATAFILES parameter tells import that it is a transportable-mode import and where
to get the actual data.

Depending on your operating system, the use of quotation marks when you specify a value
for this parameter can also require that you use escape characters. Oracle recommends that
you place this parameter in a parameter file, which can reduce the number of escape
characters that you would otherwise be required to use on the command line.

Restrictions

• You cannot use the TRANSPORT_DATAFILES parameter in conjunction with the QUERY
parameter.

• The TRANSPORT_DATAFILES directory portion of the absolute file path cannot contain
wildcards. However, the file name portion of the absolute file path can contain wildcards

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-85

Example 1

The following is an example of using the TRANSPORT_DATAFILES parameter. Assume
you have a parameter file, trans_datafiles.par, with the following content:

DIRECTORY=dpump_dir1
DUMPFILE=tts.dmp
TRANSPORT_DATAFILES='/user01/data/tbs1.dbf'

You can then issue the following command:

> impdp hr PARFILE=trans_datafiles.par

Example 2

This example illustrates the renaming of data files as part of a transportable
tablespace export and import operation. Assume that you have a data file named
employees.dat on your source system.

1. Using a method supported by your operating system, manually copy the data file
named employees.dat from your source system to the system where your target
database resides. As part of the copy operation, rename it to workers.dat.

2. Perform a transportable tablespace export of tablespace tbs_1.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1

The metadata only (no data) for tbs_1 is exported to a dump file named tts.dmp.
The actual data was copied over to the target database in step 1.

3. Perform a transportable tablespace import, specifying an absolute directory path
for the data file named workers.dat:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_DATAFILES='/user01/data/workers.dat'

The metadata contained in tts.dmp is imported and Data Pump then assigns the
information in the workers.dat file to the correct place in the database.

Example 3

This example illustrates use of the asterisk (*) wildcard character in the file name
when used with the TRANSPORT_DATAFILES parameter.

TRANSPORT_DATAFILES='/db1/hrdata/payroll/emp*.dbf'

This parameter use results in Oracle Data Pump validating that all files in the
directory /db1/hrdata/payroll/ of type .dbf whose names begin with emp are part of
the transport set.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-86

Example 4

This example illustrates use of the question mark (?) wildcard character in the file name when
used with the TRANSPORT_DATAFILES parameter.

TRANSPORT_DATAFILES='/db1/hrdata/payroll/m?emp.dbf'

This parameter use results in Oracle Data Pump validating that all files in the directory /db1/
hrdata/payroll/ of type .dbf whose name begins with m, followed by any other single
character, and ending in emp are part of the transport set. For example, a file named
myemp.dbf is included, but memp.dbf is not included.

Related Topics

• About Import Command-Line Mode

3.4.54 TRANSPORT_FULL_CHECK
The Oracle Data Pump Import command-line mode TRANSPORT_FULL_CHECK parameter
specifies whether to verify that the specified transportable tablespace set is being referenced
by objects in other tablespaces.

Default

NO

Purpose

Specifies whether to verify that the specified transportable tablespace set is being referenced
by objects in other tablespaces.

Syntax and Description

TRANSPORT_FULL_CHECK=[YES | NO]

If TRANSPORT_FULL_CHECK=YES, then Import verifies that there are no dependencies between
those objects inside the transportable set and those outside the transportable set. The check
addresses two-way dependencies. For example, if a table is inside the transportable set but
its index is not, then a failure is returned and the import operation is terminated. Similarly, a
failure is also returned if an index is in the transportable set but the table is not.

If TRANSPORT_FULL_CHECK=NO, then Import verifies only that there are no objects within the
transportable set that are dependent on objects outside the transportable set. This check
addresses a one-way dependency. For example, a table is not dependent on an index, but an
index is dependent on a table, because an index without a table has no meaning. Therefore,
if the transportable set contains a table, but not its index, then this check succeeds. However,
if the transportable set contains an index, but not the table, then the import operation is
terminated.

In addition to this check, Import always verifies that all storage segments of all tables (and
their indexes) defined within the tablespace set specified by TRANSPORT_TABLESPACES are
actually contained within the tablespace set.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-87

Restrictions

• This parameter is valid for transportable mode (or table mode or full mode when
TRANSPORTABLE=ALWAYS was specified on the export) only when the NETWORK_LINK
parameter is specified.

Example

In the following example, source_database_link would be replaced with the name of
a valid database link. The example also assumes that a data file named tbs6.dbf
already exists.

Assume you have a parameter file, full_check.par, with the following content:

DIRECTORY=dpump_dir1
TRANSPORT_TABLESPACES=tbs_6
NETWORK_LINK=source_database_link
TRANSPORT_FULL_CHECK=YES
TRANSPORT_DATAFILES='/wkdir/data/tbs6.dbf'

You can then issue the following command:

> impdp hr PARFILE=full_check.par

3.4.55 TRANSPORT_TABLESPACES
The Oracle Data Pump Import command-line mode TRANSPORT_TABLESPACES
parameter specifies that you want to perform an import in transportable-tablespace
mode over a database link.

Default

There is no default.

Purpose

Specifies that you want to perform an import in transportable-tablespace mode over a
database link (as specified with the NETWORK_LINK parameter.)

Syntax and Description

TRANSPORT_TABLESPACES=tablespace_name [, ...]

Use the TRANSPORT_TABLESPACES parameter to specify a list of tablespace names for
which object metadata are imported from the source database into the target
database.

Because this import is a transportable-mode import, the tablespaces into which the
data is imported are automatically created by Data Pump.You do not need to pre-
create them. However, copy the data files to the target database before starting the
import.

When you specify TRANSPORT_TABLESPACES on the import command line, you must also
use the NETWORK_LINK parameter to specify a database link. A database link is a
connection between two physical database servers that allows a client to access them

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-88

as one logical database. Therefore, the NETWORK_LINK parameter is required, because the
object metadata is exported from the source (the database being pointed to by
NETWORK_LINK) and then imported directly into the target (database from which the impdp
command is issued), using that database link. There are no dump files involved in this
situation. If you copied the actual data to the target in a separate operation using some other
means, then specify the TRANSPORT_DATAFILES parameter and indicate where the data is
located.

Note:

If you already have a dump file set generated by a transportable-tablespace mode
export, then you can perform a transportable-mode import of that dump file, but in
this case you do not specify TRANSPORT_TABLESPACES or NETWORK_LINK. Doing so
would result in an error. Rather, you specify the dump file (which contains the
metadata) and the TRANSPORT_DATAFILES parameter. The presence of the
TRANSPORT_DATAFILES parameter tells import that it's a transportable-mode import
and where to get the actual data.

When transportable jobs are performed, it is best practice to keep a copy of the data files on
the source system until the import job has successfully completed on the target system. If the
import job fails, then you still have uncorrupted copies of the data files.

Restrictions

• You cannot export transportable tablespaces and then import them into a database at a
lower release level. The target database into which you are importing must be at the
same or later release level as the source database.

• The TRANSPORT_TABLESPACES parameter is valid only when the NETWORK_LINK parameter
is also specified.

• To use the TRANSPORT_TABLESPACES parameter to perform a transportable tablespace
import, the COMPATIBLE initialization parameter must be set to at least 11.0.0.

• Depending on your operating system, the use of quotation marks when you specify a
value for this parameter can also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file. If you use a parameter
file, then that can reduce the number of escape characters that you have to use on a
command line.

• Transportable tablespace jobs do not support the ACCESS_METHOD parameter for Data
Pump Import.

Example

In the following example, the source_database_link would be replaced with the name of a
valid database link. The example also assumes that a data file named tbs6.dbf has already
been copied from the source database to the local system. Suppose you have a parameter
file, tablespaces.par, with the following content:

DIRECTORY=dpump_dir1
NETWORK_LINK=source_database_link
TRANSPORT_TABLESPACES=tbs_6

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-89

TRANSPORT_FULL_CHECK=NO
TRANSPORT_DATAFILES='user01/data/tbs6.dbf'

You can then issue the following command:

> impdp hr PARFILE=tablespaces.par

Related Topics

• Database Links in Oracle Database Administrator’s Guide

• Using Data File Copying to Move Data

• How Does Oracle Data Pump Handle Timestamp Data?

• About Import Command-Line Mode

3.4.56 TRANSPORTABLE
The optional Oracle Data Pump Import command-line mode TRANSPORTABLE parameter
specifies either that transportable tables are imported with KEEP_READ_ONLY, or
NO_BITMAP_REBUILD.

Default

None.

Purpose

This optional parameter enables you to specify two values to control how transportable
table imports are managed: KEEP_READ_ONLY and NO_BITMAP_REBUILD.There is no
default value for the TRANSPORTABLE parameter.

Syntax and Description

TRANSPORTABLE = [ALWAYS|NEVER|KEEP_READ_ONLY|NO_BITMAP_REBUILD]

The definitions of the allowed values are as follows:

• ALWAYS (valid for Full and Table Export) indicates a transportable export. If
specified, then only the metadata is exported, and data files are plugged into the
target database during the import.

• NEVER indicates that only a traditional data export is enabled.

• KEEP_READ_ONLY: Valid with transportable mode imports (table, tablespace, full). If
specified, then tablespaces and data files remain in read-only mode. Keeping
tablespaces and data files in read-only mode enables the transportable data file
set to be available to be plugged in to multiple target databases. When data files
are in read-only mode, this disables updating tables containing TSTZ column data,
if that data needs to be updated, to avoid issues with different TSTZ versions. For
this reason, tables with TSTZ columns are dropped from the transportable import.
Placing data files in read-only mode also disables rebuilding of tablespace storage
bitmaps to reclaim segments.

• NO_BITMAP_REBUILD: Indicates that you do not want Oracle Data Pump to reclaim
storage segments by rebuilding tablespace storage bitmaps during the

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-90

transportable import. Not rebuilding the bitmaps can speed up the import. You can
reclaim segments at a later time by using the
DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_BITMAPS() procedure.

APIs or Classes

You can set the TRANSPORTABLE parameter value by using the existing procedure
DBMS_DATAPUMP.SET_PARAMETER.

Restrictions

• The Import TRANSPORTABLE parameter is valid only if the NETWORK_LINK parameter is also
specified.

• The TRANSPORTABLE parameter is only valid in table mode imports and full mode imports.

• The user performing a transportable import requires both the
DATAPUMP_EXP_FULL_DATABASE role on the source database, and the
DATAPUMP_IMP_FULL_DATABASE role on the target database.

• All objects with storage that are selected for network import must have all of their storage
segments on the source system either entirely within administrative, non-transportable
tablespaces (SYSTEM / SYSAUX), or entirely within user-defined, transportable tablespaces.
Storage for a single object cannot straddle the two kinds of tablespaces.

• To use the TRANSPORTABLE parameter to perform a network-based full transportable
import, the Data Pump VERSION parameter must be set to at least 12.0 if the source
database is release 11.2.0.3. If the source database is release 12.1 or later, then the
VERSION parameter is not required, but the COMPATIBLE database initialization parameter
must be set to 12.0.0 or later.

Example of a Network Link Import

The following example shows the use of the TRANSPORTABLE parameter during a network link
import, where datafile_name is the data file that you want to import.

> impdp system TABLES=hr.sales TRANSPORTABLE=ALWAYS
 DIRECTORY=dpump_dir1 NETWORK_LINK=dbs1 PARTITION_OPTIONS=DEPARTITION
 TRANSPORT_DATAFILES=datafile_name

Example of a Full Transportable Import

The following example shows the use of the TRANSPORTABLE parameter when performing a full
transportable import over the database link dbs1. The import specifies a password for the
tables with encrypted columns.

> impdp import_admin FULL=Y TRANSPORTABLE=ALWAYS VERSION=12 NETWORK_LINK=dbs1
 ENCRYPTION_PASSWORD=password TRANSPORT_DATAFILES=datafile_name
 LOGFILE=dpump_dir1:fullnet.log

Example of Setting NEVER or ALWAYS

Setting the TRANSPORTABLE parameter with string values is limited to NEVER or ALWAYS values:

SYS.DBMS_DATAPUMP.SET_PARAMETER(jobhdl, ‘TRANSPORTABLE’,’ALWAYS’);
SYS.DBMS_DATAPUMP.SET_PARAMETER(jobhdl, ‘TRANSPORTABLE’,’NEVER’);

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-91

The new TRANSPORTABLE parameter options are set using the new numeric bitmask
values:

DBMS_DATAPUMP.KU$_TTS_NEVER is the value 1
DBMS_DATAPUMP.KU$_TTS_ALWAYS is the value 2
DBMS_DATAPUMP.KU$_TTS_KEEP_READ_ONLY is the value 4
DBMS_DATAPUMP.KU$_TTS_NO_BITMAP_REBUILD is the value 8

SYS.DBMS_DATAPUMP.SET_PARAMETER(jobhdl, ‘TRANSPORTABLE’,
DBMS_DATAPUMP.KU$_TTS_ALWAYS+DBMS_DATAPUMP.KU$_TTS_KEEP_READ_ONLY);

Example of a File-Based Transportable Tablespace Import

The following example shows the use of the TRANSPORTABLE parameter during a file-
based transportable tablespace import. The specified KEEP_READ_ONLY option indicates
that the data file remains in read–only access throughout the import operation. The
required data files are reported by the transportable tablespace export.

impdp system DIRECTORY=dpump_dir DUMPFILE=dumpfile_name
TRANSPORT_DATAFILES=datafile_name TRANSPORTABLE=KEEP_READ_ONLY

Related Topics

• About Import Command-Line Mode

• Using Data File Copying to Move Data

3.4.57 VERIFY_CHECKSUM
The Oracle Data Pump Import command-line utility VERIFY_CHECKSUM parameter
specifies whether to verify dump file checksums.

Default

If checksums were generated when the export dump files were first produced, then the
default value is YES.

Purpose

Specifies whether Oracle Data Pump verifies dump file checksums before proceeding
with the import operation.

Syntax and Description

VERIFY_CHECKSUM=[YES|NO]

• YES Specifies that Oracle Data Pump performs file checksum verification for each
dump file in the export dump file set.

• NO Specifies that Oacle Data Pump does not perform checksum verification for the
dump file set.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-92

Restrictions

• To use this checksum feature, the COMPATIBLE initialization parameter must be set to at
least 20.0.

• The VERIFY_CHECKSUM and VERIFY_ONLY parameters are mutually exclusive.

Example

This example performs a schema-mode load of the HR schema. Checksum verification of the
dump files is performed before the actual import operation begins.

impdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp VERIFY_CHECKSUM=YES

3.4.58 VERIFY_ONLY
The Oracle Data Pump Import command-line utility VERIFY_ONLY parameter enables you to
verify the checksum for the dump file.

Default

NO

Purpose

Specifies whether Oracle Data Pump verifies the dump file checksums.

Syntax and Description

VERIFY_ONLY=[YES|NO]

When set to YES, Oracle Data Pump verifies the checksum. If there are no errors, then you
can issue another import command for the dump file set.

Restrictions

• When you set the VERIFY_ONLY parameter to YES, no actual import operation is
performed. The Oracle Data Pump Import job only completes the listed verification
checks.

• The VERIFY_CHECKSUM and VERIFY_ONLY parameters are mutually exclusive.

Example

This example performs a verification check of the hr.dmp dump file. Beyond the verification
checks, no actual import of data is performed.

impdp system directory=dpump_dir1 dumpfile=hr.dmp verify_checksum=yes

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-93

3.4.59 VERSION
The Oracle Data Pump Import command-line mode VERSION parameter specifies the
version of database objects that you want to import.

Default

You should rarely have to specify the VERSION parameter on an import operation.
Oracle Data Pump uses whichever of the following is earlier:

• The version associated with the dump file, or source database in the case of
network imports

• The version specified by the COMPATIBLE initialization parameter on the target
database

Purpose

Specifies the version of database objects that you want to be imported (that is, only
database objects and attributes that are compatible with the specified release will be
imported). Note that this does not mean that Oracle Data Pump Import can be used
with releases of Oracle Database earlier than 10.1. Oracle Data Pump Import only
works with Oracle Database 10g release 1 (10.1) or later. The VERSION parameter
simply allows you to identify the version of the objects being imported.

Syntax and Description

VERSION=[COMPATIBLE | LATEST | version_string]

This parameter can be used to load a target system whose Oracle Database is at an
earlier compatibility release than that of the source system. When the VERSION
parameter is set, database objects or attributes on the source system that are
incompatible with the specified release are not moved to the target. For example,
tables containing new data types that are not supported in the specified release are
not imported. Legal values for this parameter are as follows:

• COMPATIBLE - This is the default value. The version of the metadata corresponds to
the database compatibility level. Database compatibility must be set to 9.2.0 or
later.

• LATEST - The version of the metadata corresponds to the database release.
Specifying VERSION=LATEST on an import job has no effect when the target
database's actual version is later than the version specified in its COMPATIBLE
initialization parameter.

• version_string - A specific database release (for example, 12.2.0).

Restrictions

• If the Oracle Data Pump VERSION parameter is specified as any value earlier than
12.1, then the Oracle Data Pump dump file excludes any tables that contain
VARCHAR2 or NVARCHAR2 columns longer than 4000 bytes and any RAW columns
longer than 2000 bytes.

• Full imports performed over a network link require that you set VERSION=12 if the
target is Oracle Database 12c Release 1 (12.1.0.1) or later and the source is
Oracle Database 11g Release 2 (11.2.0.3) or later.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-94

• Dump files created on Oracle Database 11g releases with the Oracle Data Pump
parameter VERSION=12 can only be imported on Oracle Database 12c Release 1 (12.1)
and later.

• The value of the VERSION parameter affects the import differently depending on whether
data-bound collation (DBC) is enabled.

Note:

Database objects or attributes that are incompatible with the release specified for
VERSION are not exported. For example, tables containing new data types that are
not supported in the specified release are not exported. If you attempt to export
dump files into an Oracle Cloud Infrastructure (OCI) Native credential store where
VERSION=19, then the export fails, and you receive the following error:

ORA-39463 "header block format is not supported for object-store URI
dump file"

Example

In the following example, assume that the target is an Oracle Database 12c Release 1
(12.1.0.1) database and the source is an Oracle Database 11g Release 2 (11.2.0.3)
database. In that situation, you must set VERSION=12 for network-based imports. Also note
that even though full is the default import mode, you must specify it on the command line
when the NETWORK_LINK parameter is being used.

> impdp hr FULL=Y DIRECTORY=dpump_dir1
 NETWORK_LINK=source_database_link VERSION=12

Related Topics

• Oracle Data Pump Behavior with Data-Bound Collation

• Exporting and Importing Between Different Oracle Database Releases

3.4.60 VIEWS_AS_TABLES (Network Import)
The Oracle Data Pump Import command-line mode VIEWS_AS_TABLES (Network Import)
parameter specifies that you want one or more views to be imported as tables.

Default

There is no default.

Note:

This description of VIEWS_AS_TABLES is applicable during network imports, meaning
that you supply a value for the Data Pump Import NETWORK_LINK parameter.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-95

Purpose

Specifies that you want one or more views to be imported as tables.

Syntax and Description

VIEWS_AS_TABLES=[schema_name.]view_name[:table_name], ...

Oracle Data Pump imports a table with the same columns as the view and with row
data fetched from the view. Oracle Data Pump also imports objects dependent on the
view, such as grants and constraints. Dependent objects that do not apply to tables
(for example, grants of the UNDER object privilege) are not imported. You can use the
VIEWS_AS_TABLES parameter by itself, or along with the TABLES parameter. If either is
used, then Oracle Data Pump performs a table-mode import.

The syntax elements are defined as follows:

schema_name: The name of the schema in which the view resides. If a schema name is
not supplied, it defaults to the user performing the import.

view_name: The name of the view to be imported as a table. The view must exist and it
must be a relational view with only scalar, non-LOB columns. If you specify an invalid
or non-existent view, the view is skipped and an error message is returned.

table_name: The name of a table that you want to serve as the source of the metadata
for the imported view. By default, Oracle Data Pump automatically creates a temporary
"template table" with the same columns and data types as the view, but no rows. If the
database is read-only, then this default creation of a template table fails. In such a
case, you can specify a table name. The table must be in the same schema as the
view. It must be a non-partitioned relational table with heap organization. It cannot be a
nested table.

If the import job contains multiple views with explicitly specified template tables, then
the template tables must all be different. For example, in the following job (in which two
views use the same template table), one of the views is skipped:

impdp hr DIRECTORY=dpump_dir NETWORK_LINK=dblink1
VIEWS_AS_TABLES=v1:employees,v2:employees

An error message is returned reporting the omitted object.

Template tables are automatically dropped after the import operation is completed.
While they exist, you can perform the following query to view their names (which all
begin with KU$VAT):

SQL> SELECT * FROM user_tab_comments WHERE table_name LIKE 'KU$VAT%';
TABLE_NAME TABLE_TYPE
------------------------------ -----------
COMMENTS

KU$VAT_63629 TABLE
Data Pump metadata template table for view HR.EMPLOYEESV

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-96

Restrictions

• The VIEWS_AS_TABLES parameter cannot be used with the TRANSPORTABLE=ALWAYS
parameter.

• Tables created using the VIEWS_AS_TABLES parameter do not contain any hidden columns
that were part of the specified view.

• The VIEWS_AS_TABLES parameter does not support tables that have columns with a data
type of LONG.

Example

The following example performs a network import to import the contents of the view hr.v1
from a read-only database. The hr schema on the source database must contain a template
table with the same geometry as the view view1 (call this table view1_tab). The
VIEWS_AS_TABLES parameter lists the view name and the table name separated by a colon:

> impdp hr VIEWS_AS_TABLES=view1:view1_tab NETWORK_LINK=dblink1

The view is imported as a table named view1 with rows fetched from the view. The metadata
for the table is copied from the template table view1_tab.

3.5 Commands Available in Oracle Data Pump Import
Interactive-Command Mode

In interactive-command mode, the current job continues running, but logging to the terminal is
suspended, and the Import prompt (Import>) is displayed.

• About Oracle Data Pump Import Interactive Command Mode
Learn how to run Oracle Data Pump commands from an attached client, or from a
terminal other than the one on which the job is running.

• CONTINUE_CLIENT
The Oracle Data Pump Import interactive command mode CONTINUE_CLIENT parameter
changes the mode from interactive-command mode to logging mode.

• EXIT_CLIENT
The Oracle Data Pump Import interactive command mode EXIT_CLIENT parameter stops
the import client session, exits Import, and discontinues logging to the terminal, but
leaves the current job running.

• HELP
The Oracle Data Pump Import interactive command mode HELP parameter provides
information about Import commands available in interactive-command mode.

• KILL_JOB
The Oracle Data Pump Import interactive command mode KILL_JOB parameter detaches
all currently attached client sessions and then terminates the current job. It exits Import
and returns to the terminal prompt.

• PARALLEL
The Oracle Data Pump Import interactive command mode PARALLEL parameter enables
you to increase or decrease the number of active child processes, PQ child processes, or
both, for the current job.

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-97

• START_JOB
The Oracle Data Pump Import interactive command mode START_JOB parameter
starts the current job to which you are attached.

• STATUS
The Oracle Data Pump Import interactive command STATUS parameter displays job
status, and enables update of the display intervals for logging mode status.

• STOP_JOB
The Oracle Data Pump Import interactive command mode STOP_JOB parameter
stops the current job, either immediately or after an orderly shutdown, and exits
Import.

3.5.1 About Oracle Data Pump Import Interactive Command Mode
Learn how to run Oracle Data Pump commands from an attached client, or from a
terminal other than the one on which the job is running.

To start interactive-command mode, do one of the following:

• From an attached client, press Ctrl+C.

• From a terminal other than the one on which the job is running, use the ATTACH
parameter to attach to the job. This feature is useful in situations in which you start
a job at one location, and must check it at a later time from a different location.

Commands for Oracle Data Pump Interactive Mode

The following table lists the activities that you can perform for the current job from the
Oracle Data Pump Import prompt in interactive-command mode.

Table 3-1 Supported Activities in Oracle Data Pump Import's Interactive-
Command Mode

Activity Command Used

Exit interactive-command mode. CONTINUE_CLIENT
Stop the import client session, but leave the current job
running.

EXIT_CLIENT

Display a summary of available commands. HELP
Detach all currently attached client sessions and terminate the
current job.

KILL_JOB

Increase or decrease the number of active worker processes
for the current job. This command is valid only in Oracle
Database Enterprise Edition.

PARALLEL

Restart a stopped job to which you are attached. START_JOB
Display detailed status for the current job. STATUS
Stop the current job. STOP_JOB

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-98

3.5.2 CONTINUE_CLIENT
The Oracle Data Pump Import interactive command mode CONTINUE_CLIENT parameter
changes the mode from interactive-command mode to logging mode.

Purpose

Changes the mode from interactive-command mode to logging mode.

Syntax and Description

CONTINUE_CLIENT

In logging mode, the job status is continually output to the terminal. If the job is currently
stopped, then CONTINUE_CLIENT also causes the client to attempt to start the job.

Example

Import> CONTINUE_CLIENT

3.5.3 EXIT_CLIENT
The Oracle Data Pump Import interactive command mode EXIT_CLIENT parameter stops the
import client session, exits Import, and discontinues logging to the terminal, but leaves the
current job running.

Purpose

Stops the import client session, exits Import, and discontinues logging to the terminal, but
leaves the current job running.

Syntax and Description

EXIT_CLIENT

Because EXIT_CLIENT leaves the job running, you can attach to the job at a later time if the
job is still running, or if the job is in a stopped state. To see the status of the job, you can
monitor the log file for the job, or you can query the USER_DATAPUMP_JOBS view or the
V$SESSION_LONGOPS view.

Example

Import> EXIT_CLIENT

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-99

3.5.4 HELP
The Oracle Data Pump Import interactive command mode HELP parameter provides
information about Import commands available in interactive-command mode.

Purpose

Provides information about Oracle Data Pump Import commands available in
interactive-command mode.

Syntax and Description

HELP

Displays information about the commands available in interactive-command mode.

Example

Import> HELP

3.5.5 KILL_JOB
The Oracle Data Pump Import interactive command mode KILL_JOB parameter
detaches all currently attached client sessions and then terminates the current job. It
exits Import and returns to the terminal prompt.

Purpose

Detaches all currently attached client sessions and then terminates the current job. It
exits Import and returns to the terminal prompt.

Syntax and Description

KILL_JOB

A job that is terminated using KILL_JOB cannot be restarted. All attached clients,
including the one issuing the KILL_JOB command, receive a warning that the job is
being terminated by the current user, and are then detached. After all clients are
detached, the job process structure is immediately run down, and the Data Pump
control job table is deleted. Log files are not deleted.

Example

Import> KILL_JOB

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-100

3.5.6 PARALLEL
The Oracle Data Pump Import interactive command mode PARALLEL parameter enables you
to increase or decrease the number of active child processes, PQ child processes, or both,
for the current job.

Purpose

Enables you to increase or decrease the number of active child processes, parallel query
(PQ) child processes, or both, for the current job.

Syntax and Description

PARALLEL=integer

PARALLEL is available as both a command-line parameter and an interactive-mode parameter.
You set it to the desired number of parallel processes. An increase takes effect immediately if
there are enough resources, and if there is enough work requiring parallelization. A decrease
does not take effect until an existing process finishes its current task. If the integer value is
decreased, then child processes are idled but not deleted until the job exits.

Restrictions

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or later
releases.

• Transportable tablespace metadata cannot be imported in parallel.

• Metadata cannot be imported in parallel when the NETWORK_LINK parameter is also used

• The following objects cannot be imported in parallel:

– TRIGGER
– VIEW
– OBJECT_GRANT
– SEQUENCE
– CONSTRAINT
– REF_CONSTRAINT

Example

Import> PARALLEL=10

3.5.7 START_JOB
The Oracle Data Pump Import interactive command mode START_JOB parameter starts the
current job to which you are attached.

Purpose

Starts the current job to which you are attached.

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-101

Syntax and Description

START_JOB[=SKIP_CURRENT=YES]

The START_JOB command restarts the job to which you are currently attached (the job
cannot be currently running). The job is restarted with no data loss or corruption after
an unexpected failure, or after you issue a STOP_JOB command, provided the dump file
set and Data Pump control job table remain undisturbed.

The SKIP_CURRENT option enables you to restart a job that previously failed, or that is
hung or performing slowly on a particular object. The failing statement or current object
being processed is skipped, and the job is restarted from the next work item. For
parallel jobs, this option causes each worker to skip whatever it is currently working on
and to move on to the next item at restart.

You cannot restart SQLFILE jobs.

Example

Import> START_JOB

3.5.8 STATUS
The Oracle Data Pump Import interactive command STATUS parameter displays job
status, and enables update of the display intervals for logging mode status.

Purpose

Displays cumulative status of the job, a description of the current operation, and an
estimated completion percentage. It also allows you to reset the display interval for
logging mode status.

Syntax and Description

STATUS[=integer]

You have the option of specifying how frequently, in seconds, this status should be
displayed in logging mode. If no value is entered or if the default value of 0 is used,
then the periodic status display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log file
(even if one is in effect).

Example

The following example displays the current job status, and changes the logging mode
display interval to two minutes (120 seconds).

Import> STATUS=120

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-102

3.5.9 STOP_JOB
The Oracle Data Pump Import interactive command mode STOP_JOB parameter stops the
current job, either immediately or after an orderly shutdown, and exits Import.

Purpose

Stops the current job, either immediately or after an orderly shutdown, and exits Import.

Syntax and Description

STOP_JOB[=IMMEDIATE]

After you run STOP_JOB, you can attach and restart jobs later with START_JOB. To attach and
restart jobs, the master table and dump file set must not be disturbed, either when you issue
the command, or after you issue the command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A warning
requiring confirmation is then issued. An orderly shutdown stops the job after worker
processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning requiring
confirmation is then issued. All attached clients, including the one issuing the STOP_JOB
command, receive a warning that the current user is stopping the job. They are then
detached. After all clients are detached, the process structure of the job is immediately run
down. That is, the Data Pump control job process does not wait for the worker processes to
finish their current tasks. When you specify STOP_JOB=IMMEDIATE, there is no risk of
corruption or data loss. However, you can be required to redo some tasks that were
incomplete at the time of shutdown at restart time.

Example

Import> STOP_JOB=IMMEDIATE

3.6 Examples of Using Oracle Data Pump Import
You can use these common scenario examples to learn how you can use Oracle Data Pump
Import to move your data.

• Performing a Data-Only Table-Mode Import
See how to use Oracle Data Pump to perform a data-only table-mode import.

• Performing a Schema-Mode Import
See how to use Oracle Data Pump to perform a schema-mode import.

• Performing a Network-Mode Import
See how to use Oracle Data Pump to perform a network-mode import.

• Using Wildcards in URL-Based Dumpfile Names
Oracle Data Pump simplifies importing multiple dump files into Oracle Autonomous
Database from the Oracle Object Store Service by allowing wildcards for URL-based
dumpfile names.

Chapter 3
Examples of Using Oracle Data Pump Import

3-103

3.6.1 Performing a Data-Only Table-Mode Import
See how to use Oracle Data Pump to perform a data-only table-mode import.

In the example, the table is named employees. It uses the dump file created in
"Performing a Table-Mode Export.".

The CONTENT=DATA_ONLY parameter filters out any database object definitions
(metadata). Only table row data is loaded.

Example 3-1 Performing a Data-Only Table-Mode Import

> impdp hr TABLES=employees CONTENT=DATA_ONLY
DUMPFILE=dpump_dir1:table.dmp
NOLOGFILE=YES

Related Topics

• Performing a Table-Mode Export

3.6.2 Performing a Schema-Mode Import
See how to use Oracle Data Pump to perform a schema-mode import.

The example is a schema-mode import of the dump file set created in "Performing a
Schema-Mode Export".

Example 3-2 Performing a Schema-Mode Import

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
 EXCLUDE=CONSTRAINT,REF_CONSTRAINT,INDEX TABLE_EXISTS_ACTION=REPLACE

The EXCLUDE parameter filters the metadata that is imported. For the given mode of
import, all the objects contained within the source, and all their dependent objects, are
included except those specified in an EXCLUDE statement. If an object is excluded, then
all of its dependent objects are also excluded. The TABLE_EXISTS_ACTION=REPLACE
parameter tells Import to drop the table if it already exists and to then re-create and
load it using the dump file contents.

Related Topics

• Performing a Schema-Mode Export

3.6.3 Performing a Network-Mode Import
See how to use Oracle Data Pump to perform a network-mode import.

The network-mode import uses as its source the database specified by the
NETWORK_LINK parameter.

Example 3-3 Network-Mode Import of Schemas

> impdp hr TABLES=employees REMAP_SCHEMA=hr:scott DIRECTORY=dpump_dir1
NETWORK_LINK=dblink

Chapter 3
Examples of Using Oracle Data Pump Import

3-104

This example imports the employees table from the hr schema into the scott schema. The
dblink references a source database that is different than the target database.

To remap the schema, user hr must have the DATAPUMP_IMP_FULL_DATABASE role on the local
database and the DATAPUMP_EXP_FULL_DATABASE role on the source database.

REMAP_SCHEMA loads all the objects from the source schema into the target schema.

Related Topics

• NETWORK_LINK

3.6.4 Using Wildcards in URL-Based Dumpfile Names
Oracle Data Pump simplifies importing multiple dump files into Oracle Autonomous Database
from the Oracle Object Store Service by allowing wildcards for URL-based dumpfile names.

Example 3-4 Wildcards Used in a URL-based Filename

This example shows how to use wildcards in the file name for importing multiple dump files
into Oracle Autonomous Database from the Oracle Object Store Service.

> impdp admin/password@ATPC1_high
 directory=data_pump_dir credential=my_cred_name
 dumpfile= https://objectstorage.example.com/v1/atpc/atpc_user/exp%u.dmp"

Note:

You cannot use wildcard characters in the bucket-name component of the URL.

3.7 Syntax Diagrams for Oracle Data Pump Import
You can use syntax diagrams to understand the valid SQL syntax for Oracle Data Pump
Import.

How to Read Graphic Syntax Diagrams

Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram, trace it
from left to right, in the direction shown by the arrows.

For more information about standard SQL syntax notation, see:

How to Read Syntax Diagrams in Oracle Database SQL Language Reference

ImpInit

impdp

HELP =
YES

NO

username / password

@ connect_identifier AS SYSDBA

ImpStart

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

3-105

ImpStart

ImpModes ImpOpts ImpFileOpts

ATTACH

=

schema_name .

job_name

ImpEncrypt

ImpModes

FULL =
YES

NO

SCHEMAS = schema_name

,

TABLES =

schema_name .

table_name

: partition_name

,

TABLESPACES = tablespace_name

,

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

3-106

ImpOpts

ImpContent

DATA_OPTIONS =

DISABLE_APPEND_HINT

SKIP_CONSTRAINT_ERRORS

REJECT_ROWS_WITH_REPL_CHAR

TRUST_EXISTING_TABLE_PARTITIONS

VALIDATE_TABLE_DATA

ENABLE_NETWORK_COMPRESSION

CONTINUE_LOAD_ON_FORMAT_ERROR

ImpEncrypt

ImpFilter

JOB_NAME = jobname_string

LOGTIME =

NONE

STATUS

LOGFILE

ALL

PARALLEL = integer

ImpRemap

REUSE_DATAFILES =
YES

NO

ImpPartitioning

ImpRacOpt

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

3-107

ImpOpts_Cont

SKIP_UNUSABLE_INDEXES =
YES

NO

STATUS = integer

STREAMS_CONFIGURATION =
YES

NO

TABLE_EXISTS_ACTION =

SKIP

APPEND

TRUNCATE

REPLACE

TARGET_EDITION = target_edition_name

ImpTransforms

ImpVersion

VIEWS_AS_TABLES =

schema_object.

view_name

:table_name

,

schema_object.

view_name

,

ImpDiagnostics

ImpContent

CONTENT =

ALL

DATA_ONLY

METADATA_ONLY

ImpEncrypt

ENCRYPTION_PASSWORD = password

ENCRYPTION_PWD_PROMPT =
YES

NO

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

3-108

ImpFilter

EXCLUDE = object_type

: name_clause

INCLUDE = object_type

: name_clause

QUERY =

schema_name .

table_name :

query_clause

ImpPartitioning

PARTITION_OPTIONS =

NONE

DEPARTITION

EXCHANGE

MERGE

ImpRacOpt

CLUSTER =

YES

NO

SERVICE_NAME = service_name

ImpRemap

REMAP_DATA =

schema .

table . column :

schema .

pkg . function

REMAP_DATAFILE = source_datafile : target_datafile

REMAP_DIRECTORY = source_directory_string : target_directory_string

REMAP_SCHEMA = source_schema : target_schema

REMAP_TABLE =

schema_name .

old_table_name

: partition

: new_tablename

REMAP_TABLESPACE = source_tablespace : target_tablespace

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

3-109

Note: The REMAP_DATAFILE and REMAP_DIRECTORY parameters are mutually exclusive.

ImpFileOpts

DIRECTORY = directory_object

NETWORK_LINK = database_link ImpNetworkOpts

DUMPFILE =

directory_object :

file_name

,

LOGFILE =

directory_object :

file_name

NOLOGFILE =
YES

NO

PARFILE =

directory_path

file_name

SQLFILE =

directory_object :

file_name

ImpNetworkOpts

ESTIMATE =
BLOCKS

STATISTICS

FLASHBACK_SCN = SCN_number

FLASHBACK_TIME = timestamp

TRANSPORTABLE =
ALWAYS

NEVER

TRANSPORT_TABLESPACES = tablespace_name

,

TRANSPORT_DATAFILES = datafile_name

,

TRANSPORT_FULL_CHECK =
YES

NO

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

3-110

ImpDynOpts

CONTINUE_CLIENT

EXIT_CLIENT

HELP

KILL_JOB

PARALLEL = integer

START_JOB

= SKIP_CURRENT =
YES

NO

STATUS

= integer

STOP_JOB

= IMMEDIATE

ImpTransforms

TRANSFORM =

SEGMENT_ATTRIBUTES

STORAGE

OID

PARTITION

PCTSPACE

DISABLE_ARCHIVE_LOGGING

LOB_STORAGE

TABLE_COMPRESSION_CLAUSE

: value

: object_type

ImpVersion

VERSION =

COMPATIBLE

LATEST

version_string

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

3-111

ImpDiagnostics

ABORT_STEP = integer

ACCESS_METHOD =

AUTOMATIC

EXTERNAL_TABLE

DIRECT_PATH

CONVENTIONAL

INSERT_AS_SELECT

KEEP_MASTER =
YES

NO

MASTER_ONLY =
YES

NO

METRICS =
YES

NO

Chapter 3
Syntax Diagrams for Oracle Data Pump Import

3-112

4
Oracle Data Pump Legacy Mode

With Oracle Data Pump legacy mode, you can use original Export and Import parameters on
the Oracle Data Pump Export and Data Pump Import command lines.

• Oracle Data Pump Legacy Mode Use Cases
Oracle Data Pump enters legacy mode when it encounters legacy export or import
parameters, so that you can continue using existing scripts.

• Parameter Mappings
You can use original Oracle Export and Import parameters when they map to Oracle Data
Pump Export and Import parameters that supply similar functionality.

• Management of File Locations in Oracle Data Pump Legacy Mode
Original Export and Import and Oracle Data Pump Export and Import differ on where
dump files and log files can be written to and read from, because the original version is
client-based, and Data Pump is server-based.

• Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors
When you use Oracle Data Pump in legacy mode, you must review and update your
existing scripts written for original Export and Import

4.1 Oracle Data Pump Legacy Mode Use Cases
Oracle Data Pump enters legacy mode when it encounters legacy export or import
parameters, so that you can continue using existing scripts.

If you previously used original Export (exp) and Import (imp), then you probably have scripts
that you have been using for many years. Oracle Data Pump provides a legacy mode, which
allows you to continue to use your existing scripts with Oracle Data Pump.

Oracle Data Pump enters legacy mode when it determines that a parameter unique to
original Export or Import is present, either on the command line, or in a script. As Oracle Data
Pump processes the parameter, the analogous Oracle Data Pump Export or Oracle Data
Pump Import parameter is displayed. Oracle strongly recommends that you view the new
syntax, and make script changes as time permits.

Note:

The Oracle Data Pump Export and Import utilities created and read dump files and
log files in Oracle Data Pump format only. They never create or read dump files
compatible with original Export or Import. If you have a dump file created with
original Export, then you must use original Import (imp) to import the data into the
database. The original Export utility (exp) can no longer be used.

4-1

4.2 Parameter Mappings
You can use original Oracle Export and Import parameters when they map to Oracle
Data Pump Export and Import parameters that supply similar functionality.

• Using Original Export Parameters with Oracle Data Pump
Oracle Data Pump Export accepts original Export parameters when they map to a
corresponding Oracle Data Pump parameter.

• Using Original Import Parameters with Oracle Data Pump
Oracle Data Pump Import accepts original Import parameters when they map to a
corresponding Oracle Data Pump parameter.

4.2.1 Using Original Export Parameters with Oracle Data Pump
Oracle Data Pump Export accepts original Export parameters when they map to a
corresponding Oracle Data Pump parameter.

Oracle Data Pump Interpretation of Original Export Parameters

Note:

Original Export was desupported for general use as of Oracle Database 11g.

To see how Oracle Data Pump Export interprets original Export parameters, refer to
the table for comparisons. Parameters that have the same name and functionality in
both original Export and Oracle Data Pump Export are not included in this table.

Table 4-1 How Oracle Data Pump Export Handles Original Export Parameters

Original Export Parameter Action Taken by Data Pump Export
Parameter

BUFFER This parameter is ignored.

COMPRESS This parameter is ignored. In original Export,
the COMPRESS parameter affected how the
initial extent was managed. Setting
COMPRESS=n caused original Export to use
current storage parameters for the initial and
next extent.

The Oracle Data Pump Export COMPRESSION
parameter is used to specify how data is
compressed in the dump file, and is not related
to the original Export COMPRESS parameter.

CONSISTENT Oracle Data Pump Export determines the
current time, and uses FLASHBACK_TIME.

CONSTRAINTS If original Export used CONSTRAINTS=n, then
Oracle Data Pump Export uses
EXCLUDE=CONSTRAINTS.

The default behavior is to include constraints
as part of the export.

Chapter 4
Parameter Mappings

4-2

Table 4-1 (Cont.) How Oracle Data Pump Export Handles Original Export
Parameters

Original Export Parameter Action Taken by Data Pump Export
Parameter

DIRECT This parameter is ignored. Oracle Data Pump
Export automatically chooses the best export
method.

FEEDBACK The Oracle Data Pump Export STATUS=30
command is used. Note that this is not a direct
mapping because the STATUS command
returns the status of the export job, as well as
the rows being processed.

In original Export, feedback was given after a
certain number of rows, as specified with the
FEEDBACK command. In Oracle Data Pump
Export, the status is given every so many
seconds, as specified by STATUS.

FILE Oracle Data Pump Export attempts to
determine the path that was specified or
defaulted to for the FILE parameter, and also
to determine whether a directory object exists
to which the schema has read and write
access. Original Export and Import and Data
Pump Export and Import differ on where dump
files and log files can be written to and read
from, because the original version is client-
based, and Oracle Data Pump is server-
based.

GRANTS If original Export used GRANTS=n, then Data
Pump Export uses EXCLUDE=GRANT.

If original Export used GRANTS=y, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data
Pump Export default behavior.

INDEXES If original Export used INDEXES=n, then
Oracle Data Pump Export uses the
EXCLUDE=INDEX parameter.

If original Export used INDEXES=y, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data
Pump Export default behavior.

Chapter 4
Parameter Mappings

4-3

Table 4-1 (Cont.) How Oracle Data Pump Export Handles Original Export
Parameters

Original Export Parameter Action Taken by Data Pump Export
Parameter

LOG Oracle Data Pump Export attempts to
determine the path that was specified or
defaulted to for the LOG parameter, and also to
determine whether a directory object exists to
which the schema has read and write access.

Original Export and Import and Data Pump
Export and Import differ on where dump files
and log files can be written to and read from,
because the original version is client-based,
and Oracle Data Pump is server-based.

The contents of the log file will be those of an
Oracle Data Pump Export operation.

OBJECT_CONSISTENT This parameter is ignored, because Oracle
Data Pump Export processing ensures that
each object is in a consistent state when being
exported.

OWNER The Oracle Data Pump SCHEMAS parameter is
used.

RECORDLENGTH This parameter is ignored, because Oracle
Data Pump Export automatically takes care of
buffer sizing.

RESUMABLE This parameter is ignored, because Oracle
Data Pump Export automatically provides this
functionality to users who have been granted
the EXP_FULL_DATABASE role.

RESUMABLE_NAME This parameter is ignored, because Oracle
Data Pump Export automatically provides this
functionality to users who have been granted
the EXP_FULL_DATABASE role.

RESUMABLE_TIMEOUT This parameter is ignored, because Oracle
Data Pump Export automatically provides this
functionality to users who have been granted
the EXP_FULL_DATABASE role.

ROWS If original Export used ROWS=y, then Oracle
Data Pump Export uses the CONTENT=ALL
parameter.

If original Export used ROWS=n, then Oracle
Data Pump Export uses the
CONTENT=METADATA_ONLY parameter.

STATISTICS This parameter is ignored, because statistics
are always saved for tables as part of an
Oracle Data Pump export operation.

Chapter 4
Parameter Mappings

4-4

Table 4-1 (Cont.) How Oracle Data Pump Export Handles Original Export
Parameters

Original Export Parameter Action Taken by Data Pump Export
Parameter

TABLESPACES If original Export also specified
TRANSPORT_TABLESPACE=n, then Oracle Data
Pump Export ignores the TABLESPACES
parameter.

If original Export also specified
TRANSPORT_TABLESPACE=y, then Oracle Data
Pump Export takes the names listed for the
TABLESPACES parameter and uses them on
the Oracle Data Pump Export
TRANSPORT_TABLESPACES parameter.

TRANSPORT_TABLESPACE If original Export used
TRANSPORT_TABLESPACE=n (the default), then
Oracle Data Pump Export uses the
TABLESPACES parameter.

If original Export used
TRANSPORT_TABLESPACE=y, then Oracle Data
Pump Export uses the
TRANSPORT_TABLESPACES parameter, and
only the metadata is exported.

TRIGGERS If original Export used TRIGGERS=n, then
Oracle Data Pump Export uses the
EXCLUDE=TRIGGER parameter.

If original Export used TRIGGERS=y, then the
parameter is ignored. The parameter does not
need to be remapped, because that is the
Oracle Data Pump Export default behavior.

TTS_FULL_CHECK If original Export used TTS_FULL_CHECK=y,
then Oracle Data Pump Export uses the
TRANSPORT_FULL_CHECK parameter.

If original Export used TTS_FULL_CHECK=y,
then the parameter is ignored. The parameter
does not need to be remapped, because that
is the Oracle Data Pump Export default
behavior.

VOLSIZE When the original Export VOLSIZE parameter
is used, it means the location specified for the
dump file is a tape device. The Oracle Data
Pump Export dump file format does not
support tape devices. Therefore, this operation
terminates with an error.

Chapter 4
Parameter Mappings

4-5

4.2.2 Using Original Import Parameters with Oracle Data Pump
Oracle Data Pump Import accepts original Import parameters when they map to a
corresponding Oracle Data Pump parameter.

To see how Oracle Data Pump Import interprets original Export parameters, refer to
the table for comparisons. Parameters that have the same name and functionality in
both original Import and Oracle Data Pump Import are not included in this table.

Table 4-2 How Oracle Data Pump Import Handles Original Import Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter

BUFFER This parameter is ignored.

CHARSET This parameter was desupported several
releases ago, and should no longer be used.
Attempting to use this desupported parameter
causes the Oracle Data Pump Import
operation to stop.

COMMIT This parameter is ignored. Oracle Data Pump
Import automatically performs a commit after
each table is processed.

COMPILE This parameter is ignored. Oracle Data Pump
Import compiles procedures after they are
created. If necessary for dependencies, a
recompile can be run.

CONSTRAINTS If original Import used CONSTRAINTS=n, then
Oracle Data Pump Import uses the
EXCLUDE=CONSTRAINT parameter.

If original Import used CONSTRAINTS=y, then
the parameter is ignored. The parameter does
not need to be remapped, because that is the
Oracle Data Pump Import default behavior.

DATAFILES The Oracle Data Pump Import
TRANSPORT_DATAFILES parameter is used.

DESTROY If original Import used DESTROY=y, then
Oracle Data Pump Import uses the
REUSE_DATAFILES=y parameter.

If original Import used DESTROY=n, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data
Pump Import default behavior.

FEEDBACK The Oracle Data Pump Import STATUS=30
command is used. Note that this is not a direct
mapping, because the STATUS command
returns the status of the import job, as well as
the rows being processed.

In original Import, feedback was given after a
certain number of rows, as specified with the
FEEDBACK command. In Oracle Data Pump
Import, the status is given every so many
seconds, as specified by STATUS.

Chapter 4
Parameter Mappings

4-6

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import
Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter

FILE Oracle Data Pump Import attempts to
determine the path that was specified or
defaulted to for the FILE parameter, and also
to determine whether a directory object exists
to which the schema has read and write
access.

Original Export and Import and Data Pump
Export and Import differ on where dump files
and log files can be written to and read from
because the original version is client-based
and Data Pump is server-based.

FILESIZE This parameter is ignored, because the
information is already contained in the Oracle
Data Pump dump file set.

FROMUSER The Oracle Data Pump Import SCHEMAS
parameter is used. If FROMUSER was used
without TOUSER also being used, then import
schemas that have the IMP_FULL_DATABASE
role cause Oracle Data Pump Import to
attempt to create the schema and then import
that schema's objects. Import schemas that do
not have the IMP_FULL_DATABASE role can
only import their own schema from the dump
file set.

GRANTS If original Import used GRANTS=n, then Oracle
Data Pump Import uses the
EXCLUDE=OBJECT_GRANT parameter.

If original Import used GRANTS=y, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data
Pump Import default behavior.

IGNORE If original Import used IGNORE=y, then Oracle
Data Pump Import uses the
TABLE_EXISTS_ACTION=APPEND parameter.
This causes the processing of table data to
continue.

If original Import used IGNORE=n, then the
parameter is ignored and does not need to be
remapped, because that is the Oracle Data
Pump Import default behavior.

INDEXES If original Import used INDEXES=n, then
Oracle Data Pump Import uses the
EXCLUDE=INDEX parameter.

If original Import used INDEXES=y, then the
parameter is ignored and does not need to be
remapped, because that is the Oracle Data
Pump Import default behavior.

Chapter 4
Parameter Mappings

4-7

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import
Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter

INDEXFILE The Oracle Data Pump Import
SQLFILE={directory-object:}filename
and INCLUDE=INDEX parameters are used.

The same method and attempts made when
looking for a directory object described for the
FILE parameter also take place for the
INDEXFILE parameter.

If no directory object was specified on the
original Import, then Oracle Data Pump Import
uses the directory object specified with the
DIRECTORY parameter.

LOG Oracle Data Pump Import attempts to
determine the path that was specified or
defaulted to for the LOG parameter, and also to
determine whether a directory object exists to
which the schema has read and write access.

The contents of the log file will be those of an
Oracle Data Pump Import operation.

RECORDLENGTH This parameter is ignored, because Oracle
Data Pump handles issues about record
length internally.

RESUMABLE This parameter is ignored, because this
functionality is automatically provided for users
who have been granted the
IMP_FULL_DATABASE role.

RESUMABLE_NAME This parameter is ignored, because this
functionality is automatically provided for users
who have been granted the
IMP_FULL_DATABASE role.

RESUMABLE_TIMEOUT This parameter is ignored, because this
functionality is automatically provided for users
who have been granted the
IMP_FULL_DATABASE role.

ROWS=N If original Import used ROWS=n, then Oracle
Data Pump Import uses the
CONTENT=METADATA_ONLY parameter.

If original Import used ROWS=y, then Oracle
Data Pump Import uses the CONTENT=ALL
parameter.

Chapter 4
Parameter Mappings

4-8

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import
Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter

SHOW If SHOW=y is specified, then the Oracle Data
Pump Import parameter
SQLFILE=[directory_object:]file_name
is used to write the DDL for the import
operation to a file. Only the DDL (not the entire
contents of the dump file) is written to the
specified file. (Note that the output is not
shown on the screen, as it was in original
Import.)

The file name given is the file name specified
on the DUMPFILE parameter (or on the original
Import FILE parameter, which is remapped to
DUMPFILE). If multiple dump file names are
listed, then the first file name in the list is used.
The file is placed in the directory object
location specified on the DIRECTORY
parameter, or the directory object included on
the DUMPFILE parameter. (Directory objects
specified on the DUMPFILE parameter take
precedence.)

STATISTICS This parameter is ignored, because statistics
are always saved for tables as part of an
Oracle Data Pump Import operation.

STREAMS_CONFIGURATION This parameter is ignored, because Oracle
Data Pump Import automatically determines it;
it does not need to be specified.

STREAMS_INSTANTIATION This parameter is ignored, because Oracle
Data Pump Import automatically determines it;
it does not need to be specified

TABLESPACES If original Import also specified
TRANSPORT_TABLESPACE=n (the default), then
Oracle Data Pump Import ignores the
TABLESPACES parameter.

If original Import also specified
TRANSPORT_TABLESPACE=y, then Oracle Data
Pump Import takes the names supplied for this
TABLESPACES parameter and applies them to
the Oracle Data Pump Import
TRANSPORT_TABLESPACES parameter.

TOID_NOVALIDATE This parameter is ignored. OIDs are no longer
used for type validation.

Chapter 4
Parameter Mappings

4-9

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import
Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter

TOUSER The Oracle Data Pump Import REMAP_SCHEMA
parameter is used. There can be more objects
imported than with original Import. Also,
Oracle Data Pump Import can create the
target schema, if it does not already exist.

The FROMUSER parameter must also have
been specified in original Import. If FROMUSER
was not originally specified, then the operation
fails.

TRANSPORT_TABLESPACE The TRANSPORT_TABLESPACE parameter is
ignored, but if you also specified the
DATAFILES parameter, then the import job
continues to load the metadata. If the
DATAFILES parameter is not specified, then an
ORA-39002:invalid operation error
message is returned.

TTS_OWNERS This parameter is ignored because this
information is automatically stored in the
Oracle Data Pump dump file set.

VOLSIZE When the original Import VOLSIZE parameter
is used, it means the location specified for the
dump file is a tape device. The Oracle Data
Pump Import dump file format does not
support tape devices. Therefore, this operation
terminates with an error.

4.3 Management of File Locations in Oracle Data Pump
Legacy Mode

Original Export and Import and Oracle Data Pump Export and Import differ on where
dump files and log files can be written to and read from, because the original version is
client-based, and Data Pump is server-based.

Original Export and Import used the FILE and LOG parameters to specify dump file and
log file names, respectively. These file names always refer to files local to the client
system. They can also contain a path specification.

Oracle Data Pump Export and Import used the DUMPFILE and LOGFILE parameters to
specify dump file and log file names, respectively. These file names always refer to
files local to the server system, and cannot contain any path information. Instead, a
directory object is used to indirectly specify path information. The path value defined
by the directory object must be accessible to the server. The directory object is
specified for an Oracle Data Pump job through the DIRECTORY parameter. It is also
possible to prepend a directory object to the file names passed to the DUMPFILE and
LOGFILE parameters. For privileged users, Oracle Data Pump supports the use of a
default directory object if one is not specified on the command line. This default
directory object, DATA_PUMP_DIR, is set up at installation time.

Chapter 4
Management of File Locations in Oracle Data Pump Legacy Mode

4-10

If Oracle Data Pump legacy mode is enabled, and if the original Export FILE=filespec
parameter and/or LOG=filespec parameter are present on the command line, then the
following rules of precedence are used to determine file location:

• If the FILE parameter and LOG parameter are both present on the command line, then the
rules of precedence are applied separately to each parameter.

• If a mix of original Export/Import and Oracle Data Pump Export/Import parameters are
used, then separate rules apply to them.

For example, suppose you have the following command:

expdp system FILE=/user/disk/foo.dmp LOGFILE=foo.log DIRECTORY=dpump_dir

In this case, the Oracle Data Pump legacy mode file management rules, as explained in
this section, apply to the FILE parameter. The normal (that is, non-legacy mode) Oracle
Data Pump file management rules for default locations of Dump, Log, and SQL files
locations apply to the LOGFILE parameter.

Example 4-1 Oracle Data Pump Legacy Mode File Management Rules Applied

File management proceeds in the following sequence:

1. If you specify a path location as part of the file specification, then Oracle Data Pump
attempts to look for a directory object accessible to the schema running the export job
whose path location matches the path location of the file specification. If such a directory
object cannot be found, then an error is returned. For example, suppose that you defined
a server-based directory object named USER_DUMP_FILES with a path value of '/disk1/
user1/dumpfiles/', and that read and write access to this directory object has been
granted to the hr schema. The following command causes Oracle Data Pump to look for
a server-based directory object whose path value contains '/disk1/user1/dumpfiles/'
and to which the hr schema has been granted read and write access:

expdp hr FILE=/disk1/user1/dumpfiles/hrdata.dmp

In this case, Oracle Data Pump uses the directory object USER_DUMP_FILES. The path
value, in this example '/disk1/user1/dumpfiles/', must refer to a path on the server
system that is accessible to Oracle Database.

If a path location is specified as part of the file specification, then any directory object
provided using the DIRECTORY parameter is ignored. For example, if you issue the
following command, then Oracle Data Pump does not use the DPUMP_DIR directory object
for the file parameter, but instead looks for a server-based directory object whose path
value contains '/disk1/user1/dumpfiles/' and to which the hr schema has been
granted read and write access:

expdp hr FILE=/disk1/user1/dumpfiles/hrdata.dmp DIRECTORY=dpump_dir

2. If you have not specified a path location as part of the file specification, then the directory
object named by the DIRECTORY parameter is used. For example, if you issue the
following command, then Oracle Data Pump applies the path location defined for the
DPUMP_DIR directory object to the hrdata.dmp file:

expdp hr FILE=hrdata.dmp DIRECTORY=dpump_dir

Chapter 4
Management of File Locations in Oracle Data Pump Legacy Mode

4-11

3. If you specify no path location as part of the file specification, and no directory
object is named by the DIRECTORY parameter, then Oracle Data Pump does the
following, in the order shown:

a. Oracle Data Pump looks for the existence of a directory object of the form
DATA_PUMP_DIR_schema_name, where schema_name is the schema that is
running the Oracle Data Pump job. For example, if you issued the following
command, then it would cause Oracle Data Pump to look for the existence of a
server-based directory object named DATA_PUMP_DIR_HR:

expdp hr FILE=hrdata.dmp

The hr schema also must have been granted read and write access to this
directory object. If such a directory object does not exist, then the process
moves to step b.

b. Oracle Data Pump looks for the existence of the client-based environment
variable DATA_PUMP_DIR. For instance, suppose that a server-based directory
object named DUMP_FILES1 has been defined, and the hr schema has been
granted read and write access to it. Then on the client system, you can set the
environment variable DATA_PUMP_DIR to point to DUMP_FILES1 as follows:

setenv DATA_PUMP_DIR DUMP_FILES1
expdp hr FILE=hrdata.dmp

Oracle Data Pump then uses the served-based directory object DUMP_FILES1
for the hrdata.dmp file.

If a client-based environment variable DATA_PUMP_DIR does not exist, then the
process moves to step c.

c. If the schema that is running the Oracle Data Pump job has DBA privileges,
then the default Oracle Data Pump directory object, DATA_PUMP_DIR, is used.
This default directory object is established at installation time. For example,
the following command causes Oracle Data Pump to attempt to use the
default DATA_PUMP_DIR directory object, assuming that system has DBA
privileges:

expdp system FILE=hrdata.dmp

Related Topics

• Understanding Dump, Log, and SQL File Default Locations

4.4 Adjusting Existing Scripts for Oracle Data Pump Log
Files and Errors

When you use Oracle Data Pump in legacy mode, you must review and update your
existing scripts written for original Export and Import

Oracle Data Pump legacy mode requires that you make adjustments to existing
scripts, because of differences in file format and error reporting.

Chapter 4
Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors

4-12

• Log Files
Oracle Data Pump Export and Import do not generate log files in the same format as
those created by original Export and Import.

• Error Cases
The errors that Oracle Data Pump Export and Import generate can be different from the
errors generated by original Export and Import.

• Exit Status
Oracle Data Pump Export and Import have enhanced exit status values to enable scripts
to better determine the success or failure of export and import jobs.

4.4.1 Log Files
Oracle Data Pump Export and Import do not generate log files in the same format as those
created by original Export and Import.

You must update any scripts you have that parse the output of original Export and Import, so
that they handle the log file format used by Oracle Data Pump Export and Import. For
example, the message Successfully Terminated does not appear in Oracle Data Pump log
files.

4.4.2 Error Cases
The errors that Oracle Data Pump Export and Import generate can be different from the
errors generated by original Export and Import.

For example, suppose that a parameter that is ignored by Oracle Data Pump Export would
have generated an out-of-range value in original Export. In that case, an informational
message is written to the log file stating that the parameter is being ignored. However, no
value checking is performed, so no error message is generated.

4.4.3 Exit Status
Oracle Data Pump Export and Import have enhanced exit status values to enable scripts to
better determine the success or failure of export and import jobs.

Because Oracle Data Pump Export and Import can have different exit status values, Oracle
recommends that you review, and if necessary, update, any scripts that look at the exit status.

Chapter 4
Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors

4-13

5
Oracle Data Pump Performance

Learn how Oracle Data Pump Export and Import is better than that of original Export and
Import, and how to enhance performance of export and import operations.

The Oracle Data Pump Export and Import utilities are designed especially for very large
databases. If you have large quantities of data versus metadata, then you should experience
increased data performance compared to the original Export and Import utilities.
(Performance of metadata extraction and database object creation in Data Pump Export and
Import remains essentially equivalent to that of the original Export and Import utilities.)

• Data Performance Improvements for Oracle Data Pump Export and Import
Oracle Data Pump Export (expdp) and Import (impdp) contain many features that improve
performance compared to legacy Export (exp) and Import (imp).

• Tuning Performance
Oracle Data Pump is designed to fully use all available resources to maximize
throughput, and minimize elapsed job time.

• Initialization Parameters That Affect Oracle Data Pump Performance
Learn what you can do to obtain the best performance from your Oracle Data Pump
exports and imports.

5.1 Data Performance Improvements for Oracle Data Pump
Export and Import

Oracle Data Pump Export (expdp) and Import (impdp) contain many features that improve
performance compared to legacy Export (exp) and Import (imp).

The improved performance of the Data Pump Export and Import utilities is attributable to
several factors, including the following:

• Multiple worker processes can perform intertable and interpartition parallelism to load and
unload tables in multiple, parallel, direct-path streams.

• For very large tables and partitions, single worker processes can choose intrapartition
parallelism through multiple parallel queries and parallel DML I/O server processes when
the external tables method is used to access data.

• Oracle Data Pump uses parallelism to build indexes and load package bodies.

• Because Dump files are read and written directly by the server, they do not require any
data movement to the client.

• The dump file storage format is the internal stream format of the direct path API. This
format is very similar to the format stored in Oracle Database data files inside of
tablespaces. Therefore, no client-side conversion to INSERT statement bind variables is
performed.

• The supported data access methods, direct path and external tables, are faster than
conventional SQL. The direct path API provides the fastest single-stream performance.

5-1

The external tables feature makes efficient use of the parallel queries and parallel
DML capabilities of Oracle Database.

• Metadata and data extraction can be overlapped during export.

5.2 Tuning Performance
Oracle Data Pump is designed to fully use all available resources to maximize
throughput, and minimize elapsed job time.

To maximize available resources, a system must be well-balanced across CPU,
memory, and I/O. In addition, standard performance tuning principles apply. For
example, for maximum performance, ensure that the files that are members of a dump
file set reside on separate disks, because the dump files are written and read in
parallel. Also, the disks should not be the same ones on which the source or target
tablespaces reside.

Any performance tuning activity involves making trade-offs between performance and
resource consumption.

• How To Manage Oracle Data Pump Resource Consumption
With the PARALLEL parameter, you cab dynamically increase and decrease Oracle
Data Pump Export and Import resource consumption for each job.

• Effect of Compression and Encryption on Performance
You can improve performance by using Oracle Data Pump parameters related to
compression and encryption, particularly in the case of jobs performed in network
mode.

• Memory Considerations When Exporting and Importing Statistics
When you use Oracle Data Pump Export dump files created with a release prior to
12.1, and that contain large amounts of statistics data, this can cause large
memory demands during an import operation.

5.2.1 How To Manage Oracle Data Pump Resource Consumption
With the PARALLEL parameter, you cab dynamically increase and decrease Oracle
Data Pump Export and Import resource consumption for each job.

You can manage resource allocations for Oracle Data Pump by using the PARALLEL
parameter to specify a degree of parallelism for the Oracle Data Pump job. For
maximum throughput, do not set PARALLEL to much more than twice the number of
CPUs (two workers for each CPU).

As you increase the degree of parallelism, CPU usage, memory consumption, and I/O
bandwidth usage also increase. You must ensure that adequate amounts of these
resources are available. If necessary, to obtain the needed I/O bandwidth, you can
distribute files across different disk devices or channels.

To maximize parallelism, you must supply at least one file for each degree of
parallelism. The simplest way of doing this is to use substitution variables in your file
names (for example, file%u.dmp). However, if your disk setup could creat contention
issues (for example, with simple, non-striped disks), you can prefr not to put all dump
files on one device. In this case, Oracle recommends that you specify multiple file
names using substitution variables, with each file in a separate directory resolving to a
separate disk. Even with fast CPUs and fast disks, the path between the CPU and the

Chapter 5
Tuning Performance

5-2

disk can be the constraining factor in the degree of parallelism that your system can sustain.

The Oracle Data Pump PARALLEL parameter is valid only in Oracle Database Enterprise
Edition 11g or later.

5.2.2 Effect of Compression and Encryption on Performance
You can improve performance by using Oracle Data Pump parameters related to
compression and encryption, particularly in the case of jobs performed in network mode.

When you attempt to tune performance, keep in mind your resource availability. Performance
can be affected negatively with compression and encryption, because of the additional CPU
resources required to perform transformations on the raw data. There are trade-offs on both
sides.

5.2.3 Memory Considerations When Exporting and Importing Statistics
When you use Oracle Data Pump Export dump files created with a release prior to 12.1, and
that contain large amounts of statistics data, this can cause large memory demands during
an import operation.

To avoid running out of memory during the import operation, be sure to allocate enough
memory before beginning the import. The exact amount of memory needed depends on how
much data you are importing, the platform you are using, and other variables unique to your
configuration.

One way to avoid this problem altogether is to set the Data Pump EXCLUDE=STATISTICS
parameter on either the export or import operation. To regenerate the statistics on the target
database, you can use the DBMS_STATS PL/SQL package after the import has completed.

Related Topics

• EXCLUDE

• EXCLUDE

• Oracle Database SQL Tuning Guide

5.3 Initialization Parameters That Affect Oracle Data Pump
Performance

Learn what you can do to obtain the best performance from your Oracle Data Pump exports
and imports.

• Performance Guidelines for Oracle Data Pump Parameters
To obtain optimal performance with exports and imports, review and test initialization
parameter settings that can improve performance.

• Setting the Size Of the Buffer Cache In a GoldenGate Replication Environment
Oracle Data Pump uses GoldenGate Replication functionality to communicate between
processes.

• Managing Resource Usage for Multiple User Oracle Data Pump Jobs
To obtain more control over resource use when you have multiple users performing data
pump jobs in the same database environment, use the MAX_DATAPUMP_JOBS_PER_PDB and
MAX_DATAPUMP_PARALLEL_PER_JOB initialization parameters .

Chapter 5
Initialization Parameters That Affect Oracle Data Pump Performance

5-3

5.3.1 Performance Guidelines for Oracle Data Pump Parameters
To obtain optimal performance with exports and imports, review and test initialization
parameter settings that can improve performance.

The settings for certain Oracle Database initialization parameters can affect the
performance of Data Pump Export and Import.

In particular, you can try using the following settings to improve performance, although
the effect may not be the same on all platforms.

• DISK_ASYNCH_IO=TRUE
• DB_BLOCK_CHECKING=FALSE
• DB_BLOCK_CHECKSUM=FALSE
The following initialization parameters must have values set high enough to allow for
maximum parallelism:

• PROCESSES
• SESSIONS
• PARALLEL_MAX_SERVERS
Additionally, the SHARED_POOL_SIZE and UNDO_TABLESPACE initialization parameters
should be generously sized. The exact values depend upon the size of your database.

5.3.2 Setting the Size Of the Buffer Cache In a GoldenGate
Replication Environment

Oracle Data Pump uses GoldenGate Replication functionality to communicate
between processes.

If the SGA_TARGET initialization parameter is set, then the STREAMS_POOL_SIZE
initialization parameter is automatically set to a reasonable value.

If the SGA_TARGET initialization parameter is not set and the STREAMS_POOL_SIZE
initialization parameter is not defined, then the size of the streams pool automatically
defaults to 10% of the size of the shared pool.

When the streams pool is created, the required SGA memory is taken from memory
allocated to the buffer cache, reducing the size of the cache to less than what was
specified by the DB_CACHE_SIZE initialization parameter. This means that if the buffer
cache was configured with only the minimal required SGA, then Data Pump operations
may not work properly. A minimum size of 10 MB is recommended for
STREAMS_POOL_SIZE to ensure successful Data Pump operations.

5.3.3 Managing Resource Usage for Multiple User Oracle Data Pump
Jobs

To obtain more control over resource use when you have multiple users performing
data pump jobs in the same database environment, use the
MAX_DATAPUMP_JOBS_PER_PDB and MAX_DATAPUMP_PARALLEL_PER_JOB initialization
parameters .

Chapter 5
Initialization Parameters That Affect Oracle Data Pump Performance

5-4

The initialization parameter MAX_DATAPUMP_JOBS_PER_PDB determines the maximum number
of concurrent Oracle Data Pump jobs for each pluggable database (PDB). With Oracle
Database 19c and later releases, you can set the parameter to AUTO. This setting means that
Oracle Data Pump derives the actual value of MAX_DATAPUMP_JOBS_PER_PDB to be 50 percent
(50%) of the value of the SESSIONS initialization parameter. If you do not set the value to AUTO,
then the default value is 100. You can set the value from 0 to 250.

Oracle Database Release 19c and later releases contain the initialization parameter
MAX_DATAPUMP_PARALLEL_PER_JOB. When you have multiple users performing data pump jobs
at the same time in a given database environment, you can use this parameter to obtain
more control over resource utilization. The parameter MAX_DATAPUMP_PARALLEL_PER_JOB
specifies the maximum number of parallel processes that are made available for each Oracle
Data Pump job. You can specify a specific maximum number of processes, or you can select
AUTO. If you choose to specify a set value, then this maximum number can be from1 to 1024
(the default is 1024). If you choose to specify AUTO, then Oracle Data Pump derives the
actual value of the parameter MAX_DATAPUMP_PARALLEL_PER_JOB to be 25 percent (25%) of the
value of the SESSIONS initialization parameter.

Related Topics

• MAX_DATAPUMP_JOBS_PER_PDB Oracle Database Reference

• MAX_DATAPUMP_PARALLEL_PER_JOB Oracle Database Reference

Chapter 5
Initialization Parameters That Affect Oracle Data Pump Performance

5-5

6
Using the Oracle Data Pump API

You can automate data movement operations by using the Oracle Data Pump PL/SQL API
DBMS_DATAPUMP.

The Oracle Data Pump API DBMS_DATAPUMP provides a high-speed mechanism that you can
use to move all or part of the data and metadata for a site from one Oracle Database to
another. The Oracle Data Pump Export and Oracle Data Pump Import utilities are based on
the Oracle Data Pump API.

Oracle Database PL/SQL Packages and Types Reference

• How Does the Oracle Data Pump Client Interface API Work?
The main structure used in the client interface is a job handle, which appears to the caller
as an integer.

• DBMS_DATAPUMP Job States
Use Oracle Data Pump DBMS_DATAPUMP job states show to know which stage your data
movement job is performing, and what options are available at each stage.

• What Are the Basic Steps in Using the Oracle Data Pump API?
To use the Oracle Data Pump API, you use the procedures provided in the
DBMS_DATAPUMP package.

• Examples of Using the Oracle Data Pump API
To get started using the Oracle Data Pump API, review examples that show what you can
do with Oracle Data Pump exports and imports.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

6.1 How Does the Oracle Data Pump Client Interface API Work?
The main structure used in the client interface is a job handle, which appears to the caller as
an integer.

Handles are created using the DBMS_DATAPUMP.OPEN or DBMS_DATAPUMP.ATTACH function.
Other sessions can attach to a job to monitor and control its progress. Handles are session
specific. The same job can create different handles in different sessions. As a DBA, the
benefit of this feature is that you can start up a job before departing from work, and then
watch the progress of the job from home.

6.2 DBMS_DATAPUMP Job States
Use Oracle Data Pump DBMS_DATAPUMP job states show to know which stage your data
movement job is performing, and what options are available at each stage.

Job State Definitions

Each phase of a job is associated with a state:

6-1

• Undefined — before a handle is created

• Defining — when the handle is first created

• Executing — when the DBMS_DATAPUMP.START_JOB procedure is running

• Completing — when the job has finished its work and the Oracle Data Pump
processes are ending

• Completed — when the job is completed

• Stop Pending — when an orderly job shutdown has been requested

• Stopping — when the job is stopping

• Idling — the period between the time that a DBMS_DATAPUMP.ATTACH is run to
attach to a stopped job, and the time that a DBMS_DATAPUMP.START_JOB is run to
restart that job

• Not Running — when a Data Pump control job table exists for a job that is not
running (has no Oracle Data Pump processes associated with it)

Usage Notes

Performing DBMS_DATAPUMP.START_JOB on a job in an Idling state returns that job to an
Executing state.

If all users run DBMS_DATAPUMP.DETACH to detach from a job in the Defining state, then
the job is totally removed from the database.

If a job terminates unexpectedly, or if an instance running the job is shut down, and the
job was previously in an Executing or Idling state, then the job is placed in the Not
Running state. You can then restart the job.

The Oracle Data Pump control job process is active in the Defining, Idling,
Executing, Stopping, Stop Pending, and Completing states. It is also active briefly
in the Stopped and Completed states. The Data Pump control table for the job exists
in all states except the Undefined state. Child processes are only active in the
Executing and Stop Pending states, and briefly in the Defining state for import jobs.

Detaching while a job is in the Executing state does not halt the job. You can reattach
to a running job at any time to resume obtaining status information about the job.

A Detach can occur explicitly, when the DBMS_DATAPUMP.DETACH procedure is run, or it
can occur implicitly when an Oracle Data Pump API session is run down, when the
Oracle Data Pump API is unable to communicate with an Oracle Data Pump job, or
when the DBMS_DATAPUMP.STOP_JOB procedure is run.

The Not Running state indicates that a Data Pump control job table exists outside the
context of a running job. This state occurs if a job is stopped (and likely can restart
later), or if a job has terminated in an unusual way. You can also see this state
momentarily during job state transitions at the beginning of a job, and at the end of a
job before the Oracle Data Pump control job table is dropped. Note that the Not
Running state is shown only in the views DBA_DATAPUMP_JOBS and
USER_DATAPUMP_JOBS. It is never returned by the GET_STATUS procedure.

The following table shows the valid job states in which DBMS_DATAPUMP procedures can
be run. The states listed are valid for both export and import jobs, unless otherwise
noted.

Chapter 6
DBMS_DATAPUMP Job States

6-2

Table 6-1 Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Run

Procedure Name Valid States Description

ADD_FILE Defining (valid for both export
and import jobs)

Executing and Idling (valid only
for specifying dump files for
export jobs)

Specifies a file for the dump file
set, the log file, or the SQLFILE
output.

ATTACH Defining, Executing, Idling,
Stopped, Completed,
Completing, Not Running

Enables a user session to
monitor a job, or to restart a
stopped job. If the dump file set
or Data Pump control job table
for the job have been deleted or
altered in any way, then the
attach fails.

DATA_FILTER Defining Restricts data processed by a
job.

DETACH All Disconnects a user session from
a job.

GET_DUMPFILE_INFO All Retrieves dump file header
information.

GET_STATUS All, except Completed, Not
Running, Stopped, and
Undefined

Obtains the status of a job.

LOG_ENTRY Defining, Executing, Idling,
Stop Pending, Completing

Adds an entry to the log file.

METADATA_FILTER Defining Restricts metadata processed by
a job.

METADATA_REMAP Defining Remaps metadata processed by
a job.

METADATA_TRANSFORM Defining Alters metadata processed by a
job.

OPEN Undefined Creates a new job.

SET_PARALLEL Defining, Executing, Idling Specifies parallelism for a job.

SET_PARAMETER Defining
Note: You can enter the
ENCRYPTION_PASSWORD
parameter during the Defining
and Idling states.

Alters default processing by a
job.

START_JOB Defining, Idling Begins or resumes execution of
a job.

STOP_JOB Defining, Executing, Idling,
Stop Pending

Initiates shutdown of a job.

WAIT_FOR_JOB All, except Completed, Not
Running, Stopped, and
Undefined

Waits for a job to end.

Chapter 6
DBMS_DATAPUMP Job States

6-3

6.3 What Are the Basic Steps in Using the Oracle Data
Pump API?

To use the Oracle Data Pump API, you use the procedures provided in the
DBMS_DATAPUMP package.

The following steps list the basic activities involved in using the Data Pump API,
including the point in running an Oracle Data Pump job in which you can perform
optional steps. The steps are presented in the order in which you would generally
perform the activities.

1. To create an Oracle Data Pump job and its infrastructure, run the
DBMS_DATAPUMP.OPEN procedure.

When you run the procedure, the Oracle Data Pump job is started.

2. Define any parameters for the job.

3. Start the job.

4. (Optional) Monitor the job until it completes.

5. (Optional) Detach from the job, and reattach at a later time.

6. (Optional) Stop the job.

7. (Optional) Restart the job, if desired.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

6.4 Examples of Using the Oracle Data Pump API
To get started using the Oracle Data Pump API, review examples that show what you
can do with Oracle Data Pump exports and imports.

• Using the Oracle Data Pump API Examples with Your Database
If you want to copy these scripts and run them, then you must complete setup
tasks on your database before you run the scripts.

• Performing a Simple Schema Export with Oracle Data Pump
See an example of how you can create, start, and monitor an Oracle Data Pump
job to perform a schema export.

• Performing a Table Mode Export to Object Store with Oracle Data Pump
See an example of how you can use DBMS_DATAPUMP.ADD_FILE to perform a table
mode export.

• Importing a Dump File and Remapping All Schema Objects
See an example of how you can create, start, and monitor an Oracle Data Pump
job to import a dump file.

• Importing a Table to an Object Store Using Oracle Data Pump
See an example of how you can create, start, and monitor an Oracle Data Pump
job to import a table from an object store.

Chapter 6
What Are the Basic Steps in Using the Oracle Data Pump API?

6-4

• Using Exception Handling During a Simple Schema Export
See an example of how you can create, start, and monitor an Oracle Data Pump job to
perform a schema export.

• Displaying Dump File Information for Oracle Data Pump Jobs
See an example of how you can display information about a Data Pump dump file outside
the context of any Data Pump job.

6.4.1 Using the Oracle Data Pump API Examples with Your Database
If you want to copy these scripts and run them, then you must complete setup tasks on your
database before you run the scripts.

The Oracle Data Pump API examples are in the form of PL/SQL scripts. To run these
example scripts on your own database, You have to ensure that you have the required
directory objects. permissions, roles, and display settings configured.

Example 6-1 Create a Directory Object and Grant READ AND WRITE Access

In this example, you create a directory object named dmpdir to which you have access, and
then replace user with your username.

SQL> CREATE DIRECTORY dmpdir AS '/rdbms/work';
SQL> GRANT READ, WRITE ON DIRECTORY dmpdir TO user;

Example 6-2 Ensure You Have EXP_FULL_DATABASE and IMP_FULL_DATABASE Roles

To see a list of all roles assigned to you within your security domain, enter the following
statement:

SQL> SELECT * FROM SESSION_ROLES;

Review the roles that you see displayed. If you do not have the EXP_FULL_DATABASE and
IMP_FULL_DATABASE roles assigned to you, then contact your database administrator for help.

Example 6-3 Turn on Server Display Output

To see output display on your screen, ensure that server output is turned on. To do this, enter
the following command:

SQL> SET SERVEROUTPUT ON

If server display output is not turned on, then output is not displayed to your screen. You must
set the display output to ON in the same session in which you run the example. If you exit
SQL*Plus, then this setting is lost and must be reset when you begin a new session. If you
connect to the database using a different user name, then you must also reset SERVEROUTPUT
to ON for that user.

6.4.2 Performing a Simple Schema Export with Oracle Data Pump
See an example of how you can create, start, and monitor an Oracle Data Pump job to
perform a schema export.

The PL/SQL script in this example shows how to use the Oracle Data Pump API to perform a
simple schema export of the HR schema. The example shows how to create a job, start it, and

Chapter 6
Examples of Using the Oracle Data Pump API

6-5

monitor it. Additional information about the example is contained in the comments
within the script. To keep the example simple, exceptions from any of the API calls will
not be trapped. However, in a production environment, Oracle recommends that you
define exception handlers and call GET_STATUS to retrieve more detailed error
information when a failure occurs.

Connect as user SYSTEM to use this script.

DECLARE
 ind NUMBER; -- Loop index
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.

 h1 := DBMS_DATAPUMP.OPEN('EXPORT','SCHEMA',NULL,'EXAMPLE1','LATEST');

-- Specify a single dump file for the job (using the handle just
returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.

 DBMS_DATAPUMP.ADD_FILE(h1,'example1.dmp','DMPDIR');

-- A metadata filter is used to specify the schema that will be
exported.

 DBMS_DATAPUMP.METADATA_FILTER(h1,'SCHEMA_EXPR','IN (''HR'')');

-- Start the job. An exception will be generated if something is not
set up
-- properly.

 DBMS_DATAPUMP.START_JOB(h1);

-- The export job should now be running. In the following loop, the job
-- is monitored until it completes. In the meantime, progress
information is
-- displayed.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

Chapter 6
Examples of Using the Oracle Data Pump API

6-6

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- If any work-in-progress (WIP) or error messages were received for the job,
-- display them.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);
END;
/

6.4.3 Performing a Table Mode Export to Object Store with Oracle Data
Pump

See an example of how you can use DBMS_DATAPUMP.ADD_FILE to perform a table mode
export.

In this PL/SQL script, the Oracle Data Pump DBMS_DATAPUMP API uses the ADD_FILE call to
specify the object-store URI, credential and filetype in a table export. It shows how to create a
job, start it, and monitor it. Additional information about the example is contained in the
comments within the script. To keep the example simple, exceptions from any of the API calls
will not be trapped. However, in a production environment, Oracle recommends that you

Chapter 6
Examples of Using the Oracle Data Pump API

6-7

define exception handlers and call GET_STATUS to retrieve more detailed error
information when a failure occurs.

Note:

All credential, object-store, and network ACLS setup, and so on, are
presumed to be in place, and therefore are not included in the scripts.

In comparison to an Oracle Data Pump script to perform an expert for an on oremises
system, note the differences in the script in the call:

dbms_datapump.add_file(hdl, dumpFile, credName, '3MB', dumpType, 1);

Where the procedure parameter filename (dumpFile) contains the object store URI,
directory (credName) contains the credential, and filetype (dumpType) contains a new
filetype keyword

Note the following calls:

DBMS_DATAPUMP.ADD_FILE (handle IN NUMBER, filename IN VARCHAR2,
directory IN VARCHAR2, filesize IN VARCHAR2 DEFAULT NULL, filetype IN
NUMBER DEFAULT
DBMS_DATAPUMP.KU$_FILE_TYPE_DUMP_FILE, reusefile IN NUMBER DEFAULT
NULL);

And note the object store definitions in the script:

dumpFile VARCHAR2(1024) := 'https://example.oraclecloud.com/test/
den02ten_foo3b_split_%u.dat';
 dumpType NUMBER :=
dbms_datapump.ku$_file_type_uridump_file;

Example 6-4 Table Mode Export to Object Store

This table mode export example assumes that object store credentials, network ACLs,
the database account and object-store information is already set up.

Rem
Rem
Rem tkdpose.sql
Rem
Rem NAME
Rem tkdpose.sql - <one-line expansion of the name>
Rem
Rem DESCRIPTION
Rem Performs a table mode export to the object store.
Rem
Rem NOTES
Rem Assumes that credentials, network ACLs, database account and
Rem object-store information already been setup.
Rem

Chapter 6
Examples of Using the Oracle Data Pump API

6-8

connect test/mypwd@CDB1_PDB1

SET SERVEROUTPUT ON
SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100

DECLARE
 hdl NUMBER; -- Datapump handle
 ind NUMBER; -- Loop index
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
 jobState VARCHAR2(30); -- To keep track of job state
 dumpType NUMBER := dbms_datapump.ku$_file_type_uridump_file;
 dumpFile VARCHAR2(1024) := 'https://example.oraclecloud.com/test/
den02ten_foo3b_split_%u.dat';
 dumpType NUMBER := dbms_datapump.ku$_file_type_uridump_file;
 credName VARCHAR2(1024) := 'BMCTEST';
 logFile VARCHAR2(1024) := 'tkopc_export3b_cdb2.log';
 logDir VARCHAR2(9) := 'WORK';
 logType NUMBER := dbms_datapump.ku$_file_type_log_file;

BEGIN

 --
 -- Open a schema-based export job and perform defining-phase
initialization.
 --
 hdl := dbms_datapump.open('EXPORT', 'TABLE');
 dbms_datapump.set_parameter(hdl, 'COMPRESSION', 'ALL');
 dbms_datapump.set_parameter(hdl, 'CHECKSUM', 1);
 dbms_datapump.add_file(hdl, logfile, logdir, null, logType);
 dbms_datapump.add_file(hdl, dumpFile, credName, '3MB', dumpType, 1);
 dbms_datapump.data_filter(hdl, 'INCLUDE_ROWS', 1);
 dbms_datapump.metadata_filter(hdl, 'TABLE_FILTER', 'FOO', '');
 --
 -- Start the job.
 --
 dbms_datapump.start_job(hdl);

 --
 -- Now grab output from the job and write to standard out.
 --
 jobState := 'UNDEFINED';
 WHILE (jobState != 'COMPLETED') AND (jobState != 'STOPPED')
 LOOP
 dbms_datapump.get_status(hdl,
 dbms_datapump.ku$_status_job_error +

Chapter 6
Examples of Using the Oracle Data Pump API

6-9

 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip, -1, jobState,sts);
 js := sts.job_status;

 --
 -- If we received any WIP or Error messages for the job, display
them.
 --
 IF (BITAND(sts.mask,dbms_datapump.ku$_status_wip) != 0) THEN
 le := sts.wip;
 ELSE
 IF (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
THEN
 le := sts.error;
 ELSE
 le := NULL;
 END IF;
 END IF;

 IF le IS NOT NULL THEN
 ind := le.FIRST;
 WHILE ind IS NOT NULL LOOP
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 END LOOP;
 END IF;
 END LOOP;

 --
 -- Detach from job.
 --
 dbms_datapump.detach(hdl);

 --
 -- Any exceptions that propagated to this point will be captured.
 -- The details are retrieved from get_status and displayed.
 --
 EXCEPTION
 WHEN OTHERS THEN
 BEGIN
 dbms_datapump.get_status(hdl,
dbms_datapump.ku$_status_job_error, 0,
 jobState, sts);
 IF (BITAND(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
THEN
 le := sts.error;
 IF le IS NOT NULL THEN
 ind := le.FIRST;
 WHILE ind IS NOT NULL LOOP
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 END LOOP;
 END IF;
 END IF;

Chapter 6
Examples of Using the Oracle Data Pump API

6-10

 BEGIN
 dbms_datapump.stop_job (hdl, 1, 0, 0);
 EXCEPTION
 WHEN OTHERS THEN NULL;
 END;

 EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('Unexpected exception while in exception ' ||
 'handler. sqlcode = ' || TO_CHAR(SQLCODE));
 END;
END;
/
EXIT;

The log reports the following information:

Starting "TEST"."SYS_EXPORT_TABLE_01":
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
Processing object type TABLE_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/MARKER
Processing object type TABLE_EXPORT/TABLE/TABLE
. . exported "TEST"."FOO" 147.8 KB 70000
rows
Master table "TEST"."SYS_EXPORT_TABLE_01" successfully loaded/unloaded
Generating checksums for dump file set

*
Dump file set for TEST.SYS_EXPORT_TABLE_01 is:
 https://example.oraclecloud.com/test/den02ten_foo3b_split_01.dat
Job "TEST"."SYS_EXPORT_TABLE_01" successfully completed at Sun Dec 13
22:22:30 2020 elapsed 0 00:00:22

6.4.4 Importing a Dump File and Remapping All Schema Objects
See an example of how you can create, start, and monitor an Oracle Data Pump job to import
a dump file.

The script in this example imports the dump file created in the Oracle Data Pump API
example "Performing a Simple Schema Export with Oracle Data Pump" (an export of the hr
schema). All schema objects are remapped from the hr schema to the blake schema. To
keep the example simple, exceptions from any of the API calls will not be trapped. However,
in a production environment, Oracle recommends that you define exception handlers and call
GET_STATUS to retrieve more detailed error information when a failure occurs.

Connect as user SYSTEM to use this script.

DECLARE
 ind NUMBER; -- Loop index
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages

Chapter 6
Examples of Using the Oracle Data Pump API

6-11

 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a "full" import
(everything
-- in the dump file without filtering).

 h1 := DBMS_DATAPUMP.OPEN('IMPORT','FULL',NULL,'EXAMPLE2');

-- Specify the single dump file for the job (using the handle just
returned)
-- and directory object, which must already be defined and accessible
-- to the user running this procedure. This is the dump file created by
-- the export operation in the first example.

 DBMS_DATAPUMP.ADD_FILE(h1,'example1.dmp','DMPDIR');

-- A metadata remap will map all schema objects from HR to BLAKE.

 DBMS_DATAPUMP.METADATA_REMAP(h1,'REMAP_SCHEMA','HR','BLAKE');

-- If a table already exists in the destination schema, skip it (leave
-- the preexisting table alone). This is the default, but it does not
hurt
-- to specify it explicitly.

 DBMS_DATAPUMP.SET_PARAMETER(h1,'TABLE_EXISTS_ACTION','SKIP');

-- Start the job. An exception is returned if something is not set up
properly.

 DBMS_DATAPUMP.START_JOB(h1);

-- The import job should now be running. In the following loop, the
job is
-- monitored until it completes. In the meantime, progress information
is
-- displayed. Note: this is identical to the export example.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||

Chapter 6
Examples of Using the Oracle Data Pump API

6-12

 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- If any work-in-progress (WIP) or Error messages were received for the job,
-- display them.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and gracefully detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);
END;
/

6.4.5 Importing a Table to an Object Store Using Oracle Data Pump
See an example of how you can create, start, and monitor an Oracle Data Pump job to import
a table from an object store.

In this PL/SQL script, the Oracle Data Pump DBMS_DATAPUMP API uses the ADD_FILE
call to specify the object-store URI, credential and filetype in a table export. It shows how to
create a job, start it, and monitor it. Additional information about the example is contained in
the comments within the script. To keep the example simple, exceptions from any of the API
calls will not be trapped. However, in a production environment, Oracle recommends that you
define exception handlers and call GET_STATUS to retrieve more detailed error information
when a failure occurs.

Chapter 6
Examples of Using the Oracle Data Pump API

6-13

Note:

All credential, object-store, and network ACLS setup, and so on, are
presumed to be in place, and therefore are not included in the scripts.

Example 6-5 Table Mode Import to Object Store

This table mode import example assumes that object store credentials, network ACLs,
the database account and object-store information is already set up.

Rem NAME
Rem tkdposi.sql
Rem
Rem DESCRIPTION
Rem Performs a table mode import from the object-store.
Rem

connect test/mypwd@CDB1_PDB1

SET SERVEROUTPUT ON
SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100

DECLARE
 hdl NUMBER; -- Datapump handle
 ind NUMBER; -- Loop index
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by
get_status
 jobState VARCHAR2(30); -- To keep track of job state
 dumpFile VARCHAR2(1024) := 'https://example.oraclecloud.com/
test/den02ten_foo3b_split_%u.dat';
 dumpType NUMBER :=
dbms_datapump.ku$_file_type_uridump_file;
 credName VARCHAR2(1024) := 'BMCTEST';
 logFile VARCHAR2(1024) := 'tkopc_import3b_cdb2.log';
 logDir VARCHAR2(9) := 'WORK';
 logType NUMBER := dbms_datapump.ku$_file_type_log_file;

BEGIN

 --
 -- Open a schema-based export job and perform defining-phase
initialization.
 --

Chapter 6
Examples of Using the Oracle Data Pump API

6-14

 hdl := dbms_datapump.open('IMPORT', 'TABLE', NULL, 'OSI');
 dbms_datapump.add_file(hdl, logfile, logdir, null, logType);
 dbms_datapump.add_file(hdl, dumpFile, credName, null, dumpType);
 dbms_datapump.metadata_filter(hdl, 'TABLE_FILTER', 'FOO', '');
 dbms_datapump.set_parameter(hdl, 'TABLE_EXISTS_ACTION', 'REPLACE');
 dbms_datapump.set_parameter(hdl, 'VERIFY_CHECKSUM', 1);

 --
 -- Start the job.
 --
 dbms_datapump.start_job(hdl);

 --
 -- Now grab output from the job and write to standard out.
 --
 jobState := 'UNDEFINED';
 WHILE (jobState != 'COMPLETED') AND (jobState != 'STOPPED')
 LOOP
 dbms_datapump.get_status(hdl,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip, -1, jobState,sts);
 js := sts.job_status;

 --
 -- If we received any WIP or Error messages for the job, display them.
 --
 IF (BITAND(sts.mask,dbms_datapump.ku$_status_wip) != 0) THEN
 le := sts.wip;
 ELSE
 IF (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0) THEN
 le := sts.error;
 ELSE
 le := NULL;
 END IF;
 END IF;

 IF le IS NOT NULL THEN
 ind := le.FIRST;
 WHILE ind IS NOT NULL LOOP
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 END LOOP;
 END IF;
 END LOOP;

 --
 -- Detach from job.
 --
 dbms_datapump.detach(hdl);

 --
 -- Any exceptions that propagated to this point will be captured.
 -- The details are retrieved from get_status and displayed.
 --

Chapter 6
Examples of Using the Oracle Data Pump API

6-15

 EXCEPTION
 WHEN OTHERS THEN
 BEGIN
 dbms_datapump.get_status(hdl,
dbms_datapump.ku$_status_job_error, 0,
 jobState, sts);
 IF (BITAND(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
THEN
 le := sts.error;
 IF le IS NOT NULL THEN
 ind := le.FIRST;
 WHILE ind IS NOT NULL LOOP
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 END LOOP;
 END IF;
 END IF;

 BEGIN
 dbms_datapump.stop_job (hdl, 1, 0, 0);
 EXCEPTION
 WHEN OTHERS THEN NULL;
 END;

 EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('Unexpected exception while in exception
' ||
 'handler. sqlcode = ' ||
TO_CHAR(SQLCODE));
 END;
END;
/
EXIT;

The log file reports the following information:

Verifying dump file checksums
Master table "TEST"."OSI" successfully loaded/unloaded
Starting "TEST"."OSI":
Processing object type TABLE_EXPORT/TABLE/TABLE
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
. . imported "TEST"."FOO" 147.8 KB
70000 rows
Processing object type TABLE_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/MARKER
;;; Ext Tbl Query Coord.: worker id 1 for "SYS"."IMPDP_STATS"
;;; Ext Tbl Query Coord.: worker id 1 for "SYS"."IMPDP_STATS"
;;; Ext Tbl Shadow: worker id 1 for "SYS"."IMPDP_STATS"
Job "TEST"."OSI" successfully completed at Sun Dec 13 22:24:16 2020
elapsed 0 00:00:40

Chapter 6
Examples of Using the Oracle Data Pump API

6-16

6.4.6 Using Exception Handling During a Simple Schema Export
See an example of how you can create, start, and monitor an Oracle Data Pump job to
perform a schema export.

The script in this example shows a simple schema export using the Data Pump API. It
extends the example shown in "Performing a Simple Schema Export with Oracle Data Pump"
to show how to use exception handling to catch the SUCCESS_WITH_INFO case, and how to
use the GET_STATUS procedure to retrieve additional information about errors. To obtain
exception information about a DBMS_DATAPUMP.OPEN or DBMS_DATAPUMP.ATTACH failure, call
DBMS_DATAPUMP.GET_STATUS with a DBMS_DATAPUMP.KU$_STATUS_JOB_ERROR information mask
and a NULL job handle to retrieve the error details.

Connect as user SYSTEM to use this script.

DECLARE
 ind NUMBER; -- Loop index
 spos NUMBER; -- String starting position
 slen NUMBER; -- String length for output
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.

 h1 := dbms_datapump.open('EXPORT','SCHEMA',NULL,'EXAMPLE3','LATEST');

-- Specify a single dump file for the job (using the handle just returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.

 dbms_datapump.add_file(h1,'example3.dmp','DMPDIR');

-- A metadata filter is used to specify the schema that will be exported.

 dbms_datapump.metadata_filter(h1,'SCHEMA_EXPR','IN (''HR'')');

-- Start the job. An exception will be returned if something is not set up
-- properly.One possible exception that will be handled differently is the
-- success_with_info exception. success_with_info means the job started
-- successfully, but more information is available through get_status about
-- conditions around the start_job that the user might want to be aware of.

 begin
 dbms_datapump.start_job(h1);
 dbms_output.put_line('Data Pump job started successfully');
 exception
 when others then
 if sqlcode = dbms_datapump.success_with_info_num

Chapter 6
Examples of Using the Oracle Data Pump API

6-17

 then
 dbms_output.put_line('Data Pump job started with info
available:');
 dbms_datapump.get_status(h1,

dbms_datapump.ku$_status_job_error,0,
 job_state,sts);
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end if;
 else
 raise;
 end if;
 end;

-- The export job should now be running. In the following loop,
-- the job is monitored until it completes. In the meantime, progress
information -- is displayed.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- Display any work-in-progress (WIP) or error messages that were
received for
-- the job.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)

Chapter 6
Examples of Using the Oracle Data Pump API

6-18

 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);

-- Any exceptions that propagated to this point will be captured. The
-- details will be retrieved from get_status and displayed.

 exception
 when others then
 dbms_output.put_line('Exception in Data Pump job');
 dbms_datapump.get_status(h1,dbms_datapump.ku$_status_job_error,0,
 job_state,sts);
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 spos := 1;
 slen := length(le(ind).LogText);
 if slen > 255
 then
 slen := 255;
 end if;
 while slen > 0 loop
 dbms_output.put_line(substr(le(ind).LogText,spos,slen));
 spos := spos + 255;
 slen := length(le(ind).LogText) + 1 - spos;
 end loop;
 ind := le.NEXT(ind);
 end loop;
 end if;
 end if;
END;
/

Chapter 6
Examples of Using the Oracle Data Pump API

6-19

6.4.7 Displaying Dump File Information for Oracle Data Pump Jobs
See an example of how you can display information about a Data Pump dump file
outside the context of any Data Pump job.

The PL/SQL script in this example shows how to use the Oracle Data Pump API
procedure DBMS_DATAPUMP.GET_DUMPFILE_INFO to display information about a Data
Pump dump file at any point, not just when you are running the job. This example
displays information contained in the dump file example1.dmp dump file created by the
example PL/SQL script in "Performing a Simple Schema Export with Oracle Data
Pump."

You can also use this PL/SQL script to display information for dump files created by
original Export (the exp utility), as well as by the ORACLE_DATAPUMP external tables
access driver.

Connect as user SYSTEM to use this script.

SET VERIFY OFF
SET FEEDBACK OFF

DECLARE
 ind NUMBER;
 fileType NUMBER;
 value VARCHAR2(2048);
 infoTab KU$_DUMPFILE_INFO := KU$_DUMPFILE_INFO();

BEGIN
 --
 -- Get the information about the dump file into the infoTab.
 --
 BEGIN

DBMS_DATAPUMP.GET_DUMPFILE_INFO('example1.dmp','DMPDIR',infoTab,fileTyp
e);

DBMS_OUTPUT.PUT_LINE('---');
 DBMS_OUTPUT.PUT_LINE('Information for file: example1.dmp');

 --
 -- Determine what type of file is being looked at.
 --
 CASE fileType
 WHEN 1 THEN
 DBMS_OUTPUT.PUT_LINE('example1.dmp is a Data Pump dump file');
 WHEN 2 THEN
 DBMS_OUTPUT.PUT_LINE('example1.dmp is an Original Export dump
file');
 WHEN 3 THEN
 DBMS_OUTPUT.PUT_LINE('example1.dmp is an External Table dump
file');
 ELSE
 DBMS_OUTPUT.PUT_LINE('example1.dmp is not a dump file');

Chapter 6
Examples of Using the Oracle Data Pump API

6-20

DBMS_OUTPUT.PUT_LINE('---');
 END CASE;

 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('---');
 DBMS_OUTPUT.PUT_LINE('Error retrieving information for file: ' ||
 'example1.dmp');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('---');
 fileType := 0;
 END;

 --
 -- If a valid file type was returned, then loop through the infoTab and
 -- display each item code and value returned.
 --
 IF fileType > 0
 THEN
 DBMS_OUTPUT.PUT_LINE('The information table has ' ||
 TO_CHAR(infoTab.COUNT) || ' entries');
 DBMS_OUTPUT.PUT_LINE('---');

 ind := infoTab.FIRST;
 WHILE ind IS NOT NULL
 LOOP
 --
 -- The following item codes return boolean values in the form
 -- of a '1' or a '0'. Display them as 'Yes' or 'No'.
 --
 value := NVL(infoTab(ind).value, 'NULL');
 IF infoTab(ind).item_code IN
 (DBMS_DATAPUMP.KU$_DFHDR_MASTER_PRESENT,
 DBMS_DATAPUMP.KU$_DFHDR_DIRPATH,
 DBMS_DATAPUMP.KU$_DFHDR_METADATA_COMPRESSED,
 DBMS_DATAPUMP.KU$_DFHDR_DATA_COMPRESSED,
 DBMS_DATAPUMP.KU$_DFHDR_METADATA_ENCRYPTED,
 DBMS_DATAPUMP.KU$_DFHDR_DATA_ENCRYPTED,
 DBMS_DATAPUMP.KU$_DFHDR_COLUMNS_ENCRYPTED)
 THEN
 CASE value
 WHEN '1' THEN value := 'Yes';
 WHEN '0' THEN value := 'No';
 END CASE;
 END IF;

 --
 -- Display each item code with an appropriate name followed by
 -- its value.
 --
 CASE infoTab(ind).item_code
 --
 -- The following item codes have been available since Oracle
 -- Database 10g, Release 10.2.
 --

Chapter 6
Examples of Using the Oracle Data Pump API

6-21

 WHEN DBMS_DATAPUMP.KU$_DFHDR_FILE_VERSION THEN
 DBMS_OUTPUT.PUT_LINE('Dump File Version: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_MASTER_PRESENT THEN
 DBMS_OUTPUT.PUT_LINE('Master Table Present: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_GUID THEN
 DBMS_OUTPUT.PUT_LINE('Job Guid: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_FILE_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE('Dump File Number: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CHARSET_ID THEN
 DBMS_OUTPUT.PUT_LINE('Character Set ID: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CREATION_DATE THEN
 DBMS_OUTPUT.PUT_LINE('Creation Date: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_FLAGS THEN
 DBMS_OUTPUT.PUT_LINE('Internal Dump Flags: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_JOB_NAME THEN
 DBMS_OUTPUT.PUT_LINE('Job Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_PLATFORM THEN
 DBMS_OUTPUT.PUT_LINE('Platform Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_INSTANCE THEN
 DBMS_OUTPUT.PUT_LINE('Instance Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_LANGUAGE THEN
 DBMS_OUTPUT.PUT_LINE('Language Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_BLOCKSIZE THEN
 DBMS_OUTPUT.PUT_LINE('Dump File Block Size: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DIRPATH THEN
 DBMS_OUTPUT.PUT_LINE('Direct Path Mode: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_METADATA_COMPRESSED THEN
 DBMS_OUTPUT.PUT_LINE('Metadata Compressed: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DB_VERSION THEN
 DBMS_OUTPUT.PUT_LINE('Database Version: ' || value);

 --
 -- The following item codes were introduced in Oracle Database
11g
 -- Release 11.1
 --

 WHEN DBMS_DATAPUMP.KU$_DFHDR_MASTER_PIECE_COUNT THEN
 DBMS_OUTPUT.PUT_LINE('Master Table Piece Count: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_MASTER_PIECE_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE('Master Table Piece Number: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DATA_COMPRESSED THEN
 DBMS_OUTPUT.PUT_LINE('Table Data Compressed: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_METADATA_ENCRYPTED THEN
 DBMS_OUTPUT.PUT_LINE('Metadata Encrypted: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DATA_ENCRYPTED THEN
 DBMS_OUTPUT.PUT_LINE('Table Data Encrypted: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_COLUMNS_ENCRYPTED THEN
 DBMS_OUTPUT.PUT_LINE('TDE Columns Encrypted: ' || value);

 --
 -- For the DBMS_DATAPUMP.KU$_DFHDR_ENCRYPTION_MODE item code a
 -- numeric value is returned. So examine that numeric value
 -- and display an appropriate name value for it.
 --

Chapter 6
Examples of Using the Oracle Data Pump API

6-22

 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCRYPTION_MODE THEN
 CASE TO_NUMBER(value)
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_NONE THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: None');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_PASSWORD THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: Password');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_DUAL THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: Dual');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_TRANS THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: Transparent');
 END CASE;

 --
 -- The following item codes were introduced in Oracle Database 12c
 -- Release 12.1
 --

 --
 -- For the DBMS_DATAPUMP.KU$_DFHDR_COMPRESSION_ALG item code a
 -- numeric value is returned. So examine that numeric value and
 -- display an appropriate name value for it.
 --
 WHEN DBMS_DATAPUMP.KU$_DFHDR_COMPRESSION_ALG THEN
 CASE TO_NUMBER(value)
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_NONE THEN
 DBMS_OUTPUT.PUT_LINE('Compression Algorithm: None');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_BASIC THEN
 DBMS_OUTPUT.PUT_LINE('Compression Algorithm: Basic');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_LOW THEN
 DBMS_OUTPUT.PUT_LINE('Compression Algorithm: Low');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_MEDIUM THEN
 DBMS_OUTPUT.PUT_LINE('Compression Algorithm: Medium');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_HIGH THEN
 DBMS_OUTPUT.PUT_LINE('Compression Algorithm: High');
 END CASE;
 ELSE NULL; -- Ignore other, unrecognized dump file attributes.
 END CASE;
 ind := infoTab.NEXT(ind);
 END LOOP;
 END IF;
END;
/

Chapter 6
Examples of Using the Oracle Data Pump API

6-23

Part II
SQL*Loader

Learn about SQL*Loader and its features, as well as data loading concepts, including object
support.

• Understanding How to Use SQL*Loader
Learn about the basic concepts you should understand before loading data into an
Oracle Database using SQL*Loader.

• SQL*Loader Command-Line Reference
To start regular SQL*Loader, use the command-line parameters.

• SQL*Loader Control File Reference
The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions for a SQL*Loader job.

• SQL*Loader Field List Reference
The field-list portion of a SQL*Loader control file provides information about fields being
loaded, such as position, data type, conditions, and delimiters.

• Loading Objects, LOBs, and Collections with SQL*Loader
You can use SQL*Loader to load column objects in various formats and to load object
tables, REF columns, LOBs, vectors, and collections.

• Conventional and Direct Path Loads
SQL*Loader provides the option to load data using a conventional path load method, and
a direct path load method.

• SQL*Loader Express
SQL*Loader express mode allows you to quickly and easily use SQL*Loader to load
simple data types.

7
Understanding How to Use SQL*Loader

Learn about the basic concepts you should understand before loading data into an Oracle
Database using SQL*Loader.

• SQL*Loader Features
SQL*Loader loads data from external files into Oracle Database tables.

• SQL*Loader Parameters
SQL*Loader is started either when you specify the sqlldr command, or when you
specify parameters that establish various characteristics of the load operation.

• SQL*Loader Control File
The control file is a text file written in a language that SQL*Loader understands.

• Input Data and Data Fields in SQL*Loader
Learn how SQL*Loader loads data and identifies record fields.

• LOBFILEs and Secondary Data Files (SDFs)
Large Object (LOB) data can be lengthy enough that it makes sense to load it from a
LOBFILE.

• Data Conversion and Data Type Specification
During a conventional path load, data fields in the data file are converted into columns in
the database (direct path loads are conceptually similar, but the implementation is
different).

• SQL*Loader Discarded and Rejected Records
SQL*Loader can reject or discard some records read from the input file, either because of
issues with the files, or because you have selected to filter the records out of the load.

• Log File and Logging Information
When SQL*Loader begins processing, it creates a log file.

• Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides several methods to load data.

• Loading Objects, Collections, and LOBs with SQL*Loader
You can bulk-load the column, row, LOB, and JSON database objects that you need to
model real-world entities, such as customers and purchase orders.

• Partitioned Object Support in SQL*Loader
Partitioned database objects enable you to manage sections of data, either collectively or
individually. SQL*Loader supports loading partitioned objects.

• Application Development: Direct Path Load API
Direct path loads enable you to load data from external files into tables and
partitions.Oracle provides a direct path load API for application developers.

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case studies
that Oracle provides.

7-1

7.1 SQL*Loader Features
SQL*Loader loads data from external files into Oracle Database tables.

SQL*Loader has a powerful data parsing engine that puts few limitations on the format
of the data in the data file. You can use SQL*Loader to do the following:

• Load data across a network, if your data files are on a different system than the
database.

• Load data from multiple data files during the same load session.

• Load data into multiple tables during the same load session.

• Load data from large tables using automatic parallel loading, for both direct path
and conventional path loading, and for both single tables and sharded tables.

• Specify the character set of the data.

• Selectively load data (you can load records based on the records' values).

• Manipulate the data before loading it, using SQL functions.

• Generate unique sequential key values in specified columns.

• Use the operating system's file system to access the data files.

• Load data from disk, tape, or named pipe.

• Generate sophisticated error reports, which greatly aid troubleshooting.

• Load arbitrarily complex object-relational data.

• Use secondary data files for loading Large Objects (LOBs) and collections.

• Use conventional, direct path, or external table loads.

LOBs are used to hold large amounts of data inside Oracle Database. SQL*Loader
and external tables use LOBFILEs. Data for a LOB can be very large, and not fit in line
in a SQL*Loader data file. Also, if the file contains binary data, then it can’t be in line.
Instead, the data file has the name of a file containing the data for the LOB field. In
that case, SQL*Loader and the external table code open the LOBFILE, and load the
contents into the LOB column for the current row. The data is then passed to the
server, just as with data for any other column type.

JSON columns can be loaded using the same methods used to load scalars and LOBs

You can use SQL*Loader in two ways: with or without a control file. A control file
controls the behavior of SQL*Loader and one or more data files used in the load.
Using a control file gives you more control over the load operation, which might be
desirable for more complicated load situations. But for simple loads, you can use
SQL*Loader without specifying a control file; this is referred to as SQL*Loader express
mode.

The output of SQL*Loader is an Oracle Database database (where the data is loaded),
a log file, a bad file if there are rejected records, and potentially, a discard file.

The following figure shows an example of the flow of a typical SQL*Loader session
that uses a control file.

Chapter 7
SQL*Loader Features

7-2

Figure 7-1 SQL*Loader Overview

D
is

c
a
rd

F

il
e

s

B
a
d

F

il
e
s

D
a
ta

b
a
s
e

S
Q

L
*L

o
a
d

e
r

L
o

a
d

e
r

C
o

n
tr

o
l

F
il

e

B
a
d

F

il
e

s
L

o
g

F

il
e

D
is

c
a
rd

F

il
e
s

B
a
d

F

il
e
s

In
p

u
t

D
a
ta

fi
le

s

T
a

b
le

T
a

b
le

In
d

e
x
e

s

T
a

b
le

T
a
b

le
T

a
b

le
s

Related Topics

• Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides several methods to load data.

• SQL*Loader Express
SQL*Loader express mode allows you to quickly and easily use SQL*Loader to load
simple data types.

7.2 SQL*Loader Parameters
SQL*Loader is started either when you specify the sqlldr command, or when you specify
parameters that establish various characteristics of the load operation.

In situations where you always use the same parameters for which the values seldom
change, it can be more efficient to specify parameters by using the following methods, rather
than on the command line:

• You can group parameters together in a parameter file. You can then specify the name of
the parameter file on the command line by using the PARFILE parameter.

• You can specify some parameters within the SQL*Loader control file by using the
OPTIONS clause.

Parameters specified on the command line override any parameter values specified in a
parameter file or OPTIONS clause.

Related Topics

• SQL*Loader Command-Line Reference
To start regular SQL*Loader, use the command-line parameters.

• PARFILE
The PARFILE SQL*Loader command-line parameter specifies the name of a file that
contains commonly used command-line parameters.

Chapter 7
SQL*Loader Parameters

7-3

• OPTIONS Clause for Schema Data
The following SQL*Loader command-line parameters can be specified using the
OPTIONS clause.

7.3 SQL*Loader Control File
The control file is a text file written in a language that SQL*Loader understands.

The control file tells SQL*Loader where to find the data, how to parse and interpret the
data, where to insert the data, and more.

In general, the control file has three main sections, in the following order:

• Session-wide information

• Table and field-list information

• Input data (optional section)

Some control file syntax considerations to keep in mind are:

• The syntax is free-format (statements can extend over multiple lines).

• The syntax is case-insensitive; however, strings enclosed in single or double
quotation marks are taken literally, including case.

• In control file syntax, comments extend from the two hyphens (--) that mark the
beginning of the comment to the end of the line. The optional third section of the
control file is interpreted as data rather than as control file syntax; consequently,
comments in this section are not supported.

• The keywords CONSTANT and ZONE have special meaning to SQL*Loader and are
therefore reserved. To avoid potential conflicts, Oracle recommends that you do
not use either CONSTANT or ZONE as a name for any tables or columns.

Related Topics

• SQL*Loader Control File Reference
The SQL*Loader control file is a text file that contains data definition language
(DDL) instructions for a SQL*Loader job.

7.4 Input Data and Data Fields in SQL*Loader
Learn how SQL*Loader loads data and identifies record fields.

• How SQL*Loader Reads Input Data and Data Files
SQL*Loader reads data from one or more data files (or operating system
equivalents of files) specified in the control file.

• Fixed Record Format
A file is in fixed record format when all records in a data file are the same byte
length.

• Variable Record Format and SQL*Loader
A file is in variable record format when the length of each record in a character
field is included at the beginning of each record in the data file.

• Stream Record Format and SQL*Loader
A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator.

Chapter 7
SQL*Loader Control File

7-4

• Logical Records and SQL*Loader
SQL*Loader organizes input data into physical records, according to the specified record
format. By default, a physical record is a logical record.

• Data Field Setting and SQL*Loader
Learn how SQL*Loader determines the field setting on the logical record after a logical
record is formed.

7.4.1 How SQL*Loader Reads Input Data and Data Files
SQL*Loader reads data from one or more data files (or operating system equivalents of files)
specified in the control file.

From SQL*Loader's perspective, the data in the data file is organized as records. A particular
data file can be in fixed record format, variable record format, or stream record format. The
record format can be specified in the control file with the INFILE parameter. If no record
format is specified, then the default is stream record format.

Note:

If data is specified inside the control file (that is, INFILE * was specified in the
control file), then the data is interpreted in the stream record format with the default
record terminator.

7.4.2 Fixed Record Format
A file is in fixed record format when all records in a data file are the same byte length.

Although the fixed record format is the least flexible format, using it results in better
performance than variable or stream format. Fixed format is also simple to specify. For
example:

INFILE datafile_name "fix n"

This example specifies that SQL*Loader should interpret the particular data file as being in
fixed record format where every record is n bytes long.

The following example shows a control file that specifies a data file (example1.dat) to be
interpreted in the fixed record format. The data file in the example contains five physical
records; each record has fields that contain the number and name of an employee. Each of
the five records is 11 bytes long, including spaces. For the purposes of explaining this
example, periods are used to represent spaces in the records, but in the actual records there
would be no periods. With that in mind, the first physical record is 396,...ty,. which is
exactly eleven bytes (assuming a single-byte character set). The second record is
4922,beth, followed by the newline character (\n) which is the eleventh byte, and so on.
(Newline characters are not required with the fixed record format; it is simply used here to
illustrate that if used, it counts as a byte in the record length.)

Chapter 7
Input Data and Data Fields in SQL*Loader

7-5

Example 7-1 Loading Data in Fixed Record Format

Loading data:

load data
infile 'example1.dat' "fix 11"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1, col2)

Contents of example1.dat:

396,...ty,.4922,beth,\n
68773,ben,.
1,.."dave",
5455,mike,.

Note that the length is always interpreted in bytes, even if character-length semantics
are in effect for the file. This is necessary because the file can contain a mix of fields.
Some are processed with character-length semantics, and others are processed with
byte-length semantics.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

7.4.3 Variable Record Format and SQL*Loader
A file is in variable record format when the length of each record in a character field is
included at the beginning of each record in the data file.

This format provides some added flexibility over the fixed record format and a
performance advantage over the stream record format. For example, you can specify
a data file that is to be interpreted as being in variable record format as follows:

INFILE "datafile_name" "var n"

In this example, n specifies the number of bytes in the record length field. If n is not
specified, then SQL*Loader assumes a length of 5 bytes. Specifying n larger than 40
results in an error.

The following example shows a control file specification that tells SQL*Loader to look
for data in the data file example2.dat and to expect variable record format where the
record's first three bytes indicate the length of the field. The example2.dat data file
consists of three physical records. The first is specified to be 009 (9) bytes long, the
second is 010 (10) bytes long (plus a 1-byte newline), and the third is 012 (12) bytes
long (plus a 1-byte newline). Note that newline characters are not required with the
variable record format. This example also assumes a single-byte character set for the
data file. For the purposes of this example, periods in example2.dat represent spaces;
the fields do not contain actual periods.

Chapter 7
Input Data and Data Fields in SQL*Loader

7-6

Example 7-2 Loading Data in Variable Record Format

Loading data:

load data
infile 'example2.dat' "var 3"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
 col2 char(7))

Contents of example2.dat:

009.396,.ty,0104922,beth,01268773,benji,

Note that the lengths are always interpreted in bytes, even if character-length semantics are
in effect for the file. This is necessary because the file can contain a mix of fields, some
processed with character-length semantics and others processed with byte-length semantics.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

7.4.4 Stream Record Format and SQL*Loader
A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator.

Stream record format is the most flexible format, but using it can result in a negative effect on
performance. The specification of a data file to be interpreted as being in stream record
format looks similar to the following:

INFILE datafile_name ["str terminator_string"]

In the preceding example, str indicates that the file is in stream record format. The
terminator_string is specified as either 'char_string' or X'hex_string' where:

• 'char_string' is a string of characters enclosed in single or double quotation marks

• X'hex_string' is a byte string in hexadecimal format

When the terminator_string contains special (nonprintable) characters, it should be
specified as a X'hex_string' byte string. However, you can specify some nonprintable
characters as ('char_string') by using a backslash. For example:

• \n indicates a line feed

• \t indicates a horizontal tab

• \f indicates a form feed

• \v indicates a vertical tab

• \r indicates a carriage return

Chapter 7
Input Data and Data Fields in SQL*Loader

7-7

If the character set specified with the NLS_LANG initialization parameter for your session
is different from the character set of the data file, then character strings are converted
to the character set of the data file. This is done before SQL*Loader checks for the
default record terminator.

Hexadecimal strings are assumed to be in the character set of the data file, so no
conversion is performed.

On UNIX-based platforms, if no terminator_string is specified, then SQL*Loader
defaults to the line feed character, \n.

On Windows-based platforms, if no terminator_string is specified, then SQL*Loader
uses either \n or \r\n as the record terminator, depending on which one it finds first in
the data file. This means that if you know that one or more records in your data file has
\n embedded in a field, but you want \r\n to be used as the record terminator, then
you must specify it.

The following example illustrates loading data in stream record format where the
terminator string is specified using a character string, '|\n'. The use of the backslash
character allows the character string to specify the nonprintable line feed character.

See Also:

• Oracle Database Globalization Support Guide for information about
using the Language and Character Set File Scanner (LCSSCAN) utility
to determine the language and character set for unknown file text

Example 7-3 Loading Data in Stream Record Format

Loading data:

load data
infile 'example3.dat' "str '|\n'"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
 col2 char(7))

example3.dat

396,ty,|
4922,beth,|

7.4.5 Logical Records and SQL*Loader
SQL*Loader organizes input data into physical records, according to the specified
record format. By default, a physical record is a logical record.

For added flexibility, SQL*Loader can be instructed to combine several physical
records into a logical record.

Chapter 7
Input Data and Data Fields in SQL*Loader

7-8

SQL*Loader can be instructed to follow one of the following logical record-forming strategies:

• Combine a fixed number of physical records to form each logical record.

• Combine physical records into logical records while a certain condition is true.

Related Topics

• Assembling Logical Records from Physical Records
This section describes assembling logical records from physical records.

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case studies
that Oracle provides.

7.4.6 Data Field Setting and SQL*Loader
Learn how SQL*Loader determines the field setting on the logical record after a logical record
is formed.

Field setting is a process in which SQL*Loader uses control-file field specifications to
determine which parts of logical record data correspond to which control-file fields. It is
possible for two or more field specifications to claim the same data. Also, it is possible for a
logical record to contain data that is not claimed by any control-file field specification.

Most control-file field specifications claim a particular part of the logical record. This mapping
takes the following forms:

• The byte position of the data field's beginning, end, or both, can be specified. This
specification form is not the most flexible, but it provides high field-setting performance.

• The strings delimiting (enclosing, terminating, or both) a particular data field can be
specified. A delimited data field is assumed to start where the last data field ended,
unless the byte position of the start of the data field is specified.

• You can specify the byte offset, the length of the data field, or both. This way each field
starts a specified number of bytes from where the last one ended and continues for a
specified length.

• Length-value data types can be used. In this case, the first n number of bytes of the data
field contain information about how long the rest of the data field is.

Starting with Oracle Database 23c, you can use SQL*Loader to load schemaless documents
(documents that lack a fixed data structure, such as JSON or XML-based application data)
into Oracle Database as SODA collections.

Related Topics

• SODA Collections and SQL*Loader
SQL*Loader enables you to load external documents into SODA collections using the
SQL*Loader utility in both control file and express modes.

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

7.5 LOBFILEs and Secondary Data Files (SDFs)
Large Object (LOB) data can be lengthy enough that it makes sense to load it from a
LOBFILE.

Chapter 7
LOBFILEs and Secondary Data Files (SDFs)

7-9

With LOBFILEs, LOB data instances are still considered to be in fields (predetermined
size, delimited, length-value). However, these fields are not organized into records (the
concept of a record does not exist within LOBFILEs). Therefore, the processing
overhead of dealing with records is avoided. This type of organization of data is ideal
for LOB loading.

For example, suppose you have a table that stores employee names, IDs, and their
resumes. When loading this table, you can read the employee names and IDs from the
main data files and you can read the resumes, which can be quite lengthy, from
LOBFILEs.

You can also use LOBFILEs to facilitate the loading of XML data. You can use XML
columns to hold data that models structured and semistructured data. Such data can
be quite lengthy.

Secondary data files (SDFs) are similar in concept to primary data files. As with
primary data files, SDFs are a collection of records, and each record is made up of
fields. The SDFs are specified as needed for a control file field. Only a
collection_fld_spec can name an SDF as its data source.

You specify SDFs by using the SDF parameter. You can enter a value for the SDF
parameter either by using the file specification string, or by using a FILLER field that is
mapped to a data field containing one or more file specification strings.

Related Topics

• Loading LOB Data from LOBFILEs
To load large LOB data files, consider using a LOBFILE with SQL*Loader.

• Secondary Data Files (SDFs)
When you need to load large nested tables and VARRAYs, you can use secondary
data files (SDFs). They are similar in concept to primary data files.

7.6 Data Conversion and Data Type Specification
During a conventional path load, data fields in the data file are converted into columns
in the database (direct path loads are conceptually similar, but the implementation is
different).

There are two conversion steps:

1. SQL*Loader uses the field specifications in the control file to interpret the format of
the data file, parse the input data, and populate the bind arrays that correspond to
a SQL INSERT statement using that data. A bind array is an area in memory where
SQL*Loader stores data that is to be loaded. When the bind array is full, the data
is transmitted to the database. The bind array size is controlled by the SQL*Loader
BINDSIZE and READSIZE parameters.

2. The database accepts the data and executes the INSERT statement to store the
data in the database.

Oracle Database uses the data type of the column to convert the data into its final,
stored form. Keep in mind the distinction between a field in a data file and a column in
the database. Remember also that the field data types defined in a SQL*Loader
control file are not the same as the column data types.

Chapter 7
Data Conversion and Data Type Specification

7-10

See Also:

• BINDSIZE

• READSIZE

7.7 SQL*Loader Discarded and Rejected Records
SQL*Loader can reject or discard some records read from the input file, either because of
issues with the files, or because you have selected to filter the records out of the load.

Rejected records are placed in a bad file, and discarded records are placed in a discard file.

• The SQL*Loader Bad File
The bad file contains records that were rejected, either by SQL*Loader or by Oracle
Database.

• The SQL*Loader Discard File
As SQL*Loader runs, it can filter some records out of the load, and create a file called the
discard file.

7.7.1 The SQL*Loader Bad File
The bad file contains records that were rejected, either by SQL*Loader or by Oracle
Database.

If you do not specify a bad file, and there are rejected records, then SQL*Loader
automatically creates one. A rejected record has the same name as the data file, with a .bad
extension. There can be several causes for rejections.

• Records Rejected by SQL*Loader
Data file records are rejected by SQL*Loader when the input format is invalid.

• Records Rejected by Oracle Database During a SQL*Loader Operation
After a data file record is accepted for processing by SQL*Loader, it is sent to the
database for insertion into a table as a row.

7.7.1.1 Records Rejected by SQL*Loader
Data file records are rejected by SQL*Loader when the input format is invalid.

For example, if the second enclosure delimiter is missing, or if a delimited field exceeds its
maximum length, then SQL*Loader rejects the record. Rejected records are placed in the bad
file.

7.7.1.2 Records Rejected by Oracle Database During a SQL*Loader Operation
After a data file record is accepted for processing by SQL*Loader, it is sent to the database
for insertion into a table as a row.

If the database determines that the row is valid, then the row is inserted into the table. If the
row is determined to be invalid, then the record is rejected and SQL*Loader puts it in the bad
file. The row may be invalid, for example, because a key is not unique, because a required
field is null, or because the field contains invalid data for the Oracle data type.

Chapter 7
SQL*Loader Discarded and Rejected Records

7-11

7.7.2 The SQL*Loader Discard File
As SQL*Loader runs, it can filter some records out of the load, and create a file called
the discard file.

A discard file is created only when it is needed, and only if you have specified that a
discard file should be enabled. The discard file contains records that were filtered out
of the load because they did not match any record-selection criteria specified in the
control file.

Because the discard file contains record filtered out of the load, the contents of the
discard file are records that were not inserted into any table in the database. You can
specify the maximum number of such records that the discard file can accept. Data
written to any database table is not written to the discard file.

7.8 Log File and Logging Information
When SQL*Loader begins processing, it creates a log file.

If SQL*Loader cannot create a log file, then processing terminates. The log file
contains a detailed summary of the load, including a description of any errors that
occurred during the load.

7.9 Conventional Path Loads, Direct Path Loads, and
External Table Loads

SQL*Loader provides several methods to load data.

• Conventional Path Loads
During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array (an
area in memory where SQL*Loader stores data to be loaded).

• Direct Path Loads
A direct path load parses the input records according to the field specifications,
converts the input field data to the column data type, and builds a column array.

• Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently
load the same data segments (allows intrasegment parallelism).

• External Table Loads
External tables are defined as tables that do not reside in the database, and can
be in any format for which an access driver is provided.

• Choosing External Tables Versus SQL*Loader
Learn which method can provide the best load performance for your data load
situations.

• Behavior Differences Between SQL*Loader and External Tables
Oracle recommends that you review the differences between loading data with
external tables, using the ORACLE_LOADER access driver, and loading data with
SQL*Loader conventional and direct path loads.

Chapter 7
Log File and Logging Information

7-12

• Loading Tables Using Data Stored into Object Storage
Learn how to load your data from Object Storage into standard Oracle Database tables
using SQL*Loader.

7.9.1 Conventional Path Loads
During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array (an area in
memory where SQL*Loader stores data to be loaded).

When the bind array is full (or no more data is left to read), an array insert operation is
performed.

SQL*Loader stores LOB fields after a bind array insert is done. Thus, if there are any errors
in processing the LOB field (for example, the LOBFILE could not be found), then the LOB
field is left empty. Note also that because LOB data is loaded after the array insert has been
performed, BEFORE and AFTER row triggers may not work as expected for LOB columns. This
is because the triggers fire before SQL*Loader has a chance to load the LOB contents into
the column. For instance, suppose you are loading a LOB column, C1, with data and you want
a BEFORE row trigger to examine the contents of this LOB column and derive a value to be
loaded for some other column, C2, based on its examination. This is not possible because the
LOB contents will not have been loaded at the time the trigger fires.

See Also:

• Data Loading Methods

• Bind Arrays and Conventional Path Loads

7.9.2 Direct Path Loads
A direct path load parses the input records according to the field specifications, converts the
input field data to the column data type, and builds a column array.

The column array is passed to a block formatter, which creates data blocks in Oracle
database block format. The newly formatted database blocks are written directly to the
database, bypassing much of the data processing that normally takes place. Direct path load
is much faster than conventional path load, but entails several restrictions.

7.9.3 Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently load the
same data segments (allows intrasegment parallelism).

Parallel direct path is more restrictive than direct path.

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

7-13

See Also:

Parallel Data Loading Models

Direct Path Load

7.9.4 External Table Loads
External tables are defined as tables that do not reside in the database, and can be in
any format for which an access driver is provided.

Oracle Database provides two access drivers: ORACLE_LOADER, and ORACLE_DATAPUMP.
By providing the database with metadata describing an external table, the database is
able to expose the data in the external table as if it were data residing in a regular
database table.

An external table load creates an external table for data that is contained in an
external data file. The load runs INSERT statements to insert the data from the data file
into the target table.

The advantages of using external table loads over conventional path and direct path
loads are as follows:

• If a data file is big enough, then an external table load attempts to load that file in
parallel.

• An external table load allows modification of the data being loaded by using SQL
functions and PL/SQL functions as part of the INSERT statement that is used to
create the external table.

Note:

An external table load is not supported using a named pipe on Windows
operating systems.

Related Topics

• The ORACLE_LOADER Access Driver
Learn how to control the way external tables are accessed by using the
ORACLE_LOADER access driver parameters to modify the default behavior of the
access driver.

• The ORACLE_DATAPUMP Access Driver
The ORACLE_DATAPUMP access driver provides a set of access parameters that are
unique to external tables of the type ORACLE_DATAPUMP.

• Managing External Tables in Oracle Database Administrator’s Guide

7.9.5 Choosing External Tables Versus SQL*Loader
Learn which method can provide the best load performance for your data load
situations.

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

7-14

The record parsing of external tables and SQL*Loader is very similar, so normally there is not
a major performance difference for the same record format. However, due to the different
architecture of external tables and SQL*Loader, there are situations in which one method
may be more appropriate than the other.

Use external tables for the best load performance in the following situations:

• You want to transform the data as it is being loaded into the database

• You want to use transparent parallel processing without having to split the external data
first

Use SQL*Loader for the best load performance in the following situations:

• You want to load data remotely

• Transformations are not required on the data, and the data does not need to be loaded in
parallel

• You want to load data, and additional indexing of the staging table is required

7.9.6 Behavior Differences Between SQL*Loader and External Tables
Oracle recommends that you review the differences between loading data with external
tables, using the ORACLE_LOADER access driver, and loading data with SQL*Loader
conventional and direct path loads.

The information in this section does not apply to the ORACLE_DATAPUMP access driver.

• Multiple Primary Input Data Files
If there are multiple primary input data files with SQL*Loader loads, then a bad file and a
discard file are created for each input data file.

• Syntax and Data Types
With external table loads, you cannot use SQL*Loader to load unsupported syntax and
data types.

• Byte-Order Marks
With SQL*Loader, whether the byte-order mark is written depends on the character set or
on the table load.

• Default Character Sets, Date Masks, and Decimal Separator
The display of NLS character sets are controlled by different settings for SQL*Loader and
external tables.

• Use of the Backslash Escape Character
SQL*Loader and external tables use different conventions to identify single quotation
marks as an enclosure character.

7.9.6.1 Multiple Primary Input Data Files
If there are multiple primary input data files with SQL*Loader loads, then a bad file and a
discard file are created for each input data file.

With external table loads, there is only one bad file and one discard file for all input data files.
If parallel access drivers are used for the external table load, then each access driver has its
own bad file and discard file.

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

7-15

7.9.6.2 Syntax and Data Types
With external table loads, you cannot use SQL*Loader to load unsupported syntax and
data types.

As part of your data migration plan, do not attempt to use SQL*Loader with
unsupported syntax or data types. Resolve issues before your migration. You cannot
use the following syntax or data types:

• Use of CONTINUEIF or CONCATENATE to combine multiple physical records into a
single logical record.

• Loading of the following SQL*Loader data types: GRAPHIC, GRAPHIC EXTERNAL, and
VARGRAPHIC

• Use of the following database column types: LONG, nested table, VARRAY, REF,
primary key REF, and SID

Note:

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW)
were deprecated in Oracle8i Release 8.1.6. For succeeding releases, the
LONG data type was provided for backward compatibility with existing
applications. In new applications developed with later releases, Oracle
strongly recommends that you use CLOB and NCLOB data types for large
amounts of character data.

7.9.6.3 Byte-Order Marks
With SQL*Loader, whether the byte-order mark is written depends on the character set
or on the table load.

If a primary data file uses a Unicode character set (UTF8 or UTF16), and it also contains
a byte-order mark (BOM), then the byte-order mark is written at the beginning of the
corresponding bad and discard files.

With external table loads, the byte-order mark is not written at the beginning of the bad
and discard files.

7.9.6.4 Default Character Sets, Date Masks, and Decimal Separator
The display of NLS character sets are controlled by different settings for SQL*Loader
and external tables.

With SQL*Loader, the default character set, date mask, and decimal separator are
determined by the settings of NLS environment variables on the client.

For fields in external tables, the database settings of the NLS parameters determine
the default character set, date masks, and decimal separator.

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

7-16

7.9.6.5 Use of the Backslash Escape Character
SQL*Loader and external tables use different conventions to identify single quotation marks
as an enclosure character.

With SQL*Loader, to identify a single quotation mark as the enclosure character, you can use
the backslash (\) escape character. For example

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\''

In external tables, the use of the backslash escape character within a string raises an error.
The workaround is to use double quotation marks to identify a single quotation mark as the
enclosure character. For example:

TERMINATED BY ',' ENCLOSED BY "'"

7.9.7 Loading Tables Using Data Stored into Object Storage
Learn how to load your data from Object Storage into standard Oracle Database tables using
SQL*Loader.

Starting with Oracle Database 21c, you can use the SQL*Loader parameter CREDENTIAL to
provide credentials to enable read access to object stores. Parallel loading from the object
store is supported.

For a data file, you can specify the URI for the data file that you want to read on the object
store. The CREDENTIAL values specify credentials granted to the user running SQL*Loader.
These permissions enable SQL*Loader to access the object.

Note:

Mixing local files with object store files is not supported.

In the following example, you have a table (T) into which you are loading data:

SQL> create table t (x int, y int);

You have a data file that you want to load to this table, named file1.txt. The contents are
as follows:

X,Y
1,2
4,5

To load this table into an object store, complete the following procedure:

1. Install the libraries required to enable object store input/output (I/O):

% cd $ORACLE_HOME/rdbms/lib
% make -f ins_rdbms.mk opc_on

2. Upload the file file1.txt to the bucket in Object Storage.

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

7-17

The easiest way to upload file to object storage is to upload the file from the
Oracle Cloud console:

a. Open the Oracle Cloud console.

b. Select the Object Storage tile.

c. If not already created, create a bucket.

d. Click Upload, and select the file file1.txt to upload it into the bucket.

3. In Oracle Database, create the wallet and the credentials.

For example:

$ orapki wallet create -wallet /home/oracle/wallets -pwd
mypassword-auto_login
$ mkstore -wrl /home/oracle/wallets -createEntry
oracle.sqlldr.credential.myfedcredential.username
oracleidentitycloudservice/myuseracct@example.com
$ mkstore -wrl /home/oracle/wallets -createEntry
oracle.sqlldr.credential.myfedcredential.password "MhAVCDfW+-
ReskK4:Ho-zH"

This example shows the use of a federated user account (myfedcredential). The
password is automatically generated, as described in Oracle Cloud Infrastructure
Documentation. "Managing Credentials," in the section "To create an auth token."

Note:

The mkstore wallet management command line tool is deprecated with
Oracle Database 23c, and can be removed in a future release.

To manage wallets, Oracle recommends that you use the orapki
command line tool.

4. After creating the wallet, add the location in the sqlnet.ora file in the
directory $ORACLE_HOME/network/admin directory.
For example:

vi test.ctl
LOAD DATA
INFILE 'https://objectstorage.eu-frankfurt-1.oraclecloud.com/n/
dbcloudoci/b/myobjectstore/o/file1.txt'
truncate
INTO TABLE T
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(X,Y)

5. Run SQL*Loader to load the data into the object store.

For example:

sqlldr test/mypassword@pdb1 /home/oracle/test.ctl
credential=myfedcredentiallog=test.log external_table=not_used

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

7-18

Related Topics

• "Managing Credentials: To create an auth token," Oracle Cloud Infrastructure
Documentation

• Using the Console, Oracle Cloud Infrastructure Documentation

7.10 Loading Objects, Collections, and LOBs with SQL*Loader
You can bulk-load the column, row, LOB, and JSON database objects that you need to model
real-world entities, such as customers and purchase orders.

• Supported Object Types
SQL*Loader supports loading of the column and row object types.

• Supported Collection Types
SQL*Loader supports loading of nested tables and VARRAY collection types.

• SODA Collections and SQL*Loader
SQL*Loader enables you to load external documents into SODA collections using the
SQL*Loader utility in both control file and express modes.

• Supported LOB Data Types
SQL*Loader supports multiple large object types (LOBs).

7.10.1 Supported Object Types
SQL*Loader supports loading of the column and row object types.

• column objects
When a column of a table is of some object type, the objects in that column are referred
to as column objects.

• row objects
These objects are stored in tables, known as object tables, that have columns
corresponding to the attributes of the object.

7.10.1.1 column objects
When a column of a table is of some object type, the objects in that column are referred to as
column objects.

Conceptually such objects are stored in their entirety in a single column position in a row.
These objects do not have object identifiers and cannot be referenced.

If the object type of the column object is declared to be nonfinal, then SQL*Loader allows a
derived type (or subtype) to be loaded into the column object.

7.10.1.2 row objects
These objects are stored in tables, known as object tables, that have columns corresponding
to the attributes of the object.

The object tables have an additional system-generated column, called SYS_NC_OID$, that
stores system-generated unique identifiers (OIDs) for each of the objects in the table.
Columns in other tables can refer to these objects by using the OIDs.

Chapter 7
Loading Objects, Collections, and LOBs with SQL*Loader

7-19

https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#three?intcmp=sutildw0421
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#three?intcmp=sutildw0421
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/console.htm?intcmp=sutildw0421

If the object type of the object table is declared to be nonfinal, then SQL*Loader allows
a derived type (or subtype) to be loaded into the row object.

See Also:

• Loading Column Objects

• Loading Object Tables

7.10.2 Supported Collection Types
SQL*Loader supports loading of nested tables and VARRAY collection types.

• Nested Tables
A nested table is a table that appears as a column in another table.

• VARRAYs
A VARRAY is a variable sized arrays.

7.10.2.1 Nested Tables
A nested table is a table that appears as a column in another table.

All operations that can be performed on other tables can also be performed on nested
tables.

7.10.2.2 VARRAYs
A VARRAY is a variable sized arrays.

An array is an ordered set of built-in types or objects, called elements. Each array
element is of the same type and has an index, which is a number corresponding to the
element's position in the VARRAY.
When you create a VARRAY type, you must specify the maximum size. Once you have
declared a VARRAY type, it can be used as the data type of a column of a relational
table, as an object type attribute, or as a PL/SQL variable.

See Also:

Loading Collections (Nested Tables and VARRAYs) for details on using
SQL*Loader control file data definition language to load these collection
types

7.10.3 SODA Collections and SQL*Loader
SQL*Loader enables you to load external documents into SODA collections using the
SQL*Loader utility in both control file and express modes.

Chapter 7
Loading Objects, Collections, and LOBs with SQL*Loader

7-20

Starting with Oracle Database 23c, you can use SQL*Loader to load schemaless documents
(documents that lack a fixed data structure, such as JSON or XML-based application data)
into Oracle Database as SODA collections. A SODA (Simple Oracle Document Access)
collection is a set of documents that is backed by an Oracle Database table or view. A
document is stored in Oracle Database as a row in a table or view, with each component in
its own column.

When you create a SODA document collection, the following is created in Oracle Database:

• Persistent default collection metadata.

• A table for storing the collection.

You can insert, append, and replace external documents into SODA collections in Oracle
Database applications

To load a SODA collection, you supply one to three pieces of information to the SQL*Loader
utility:

• $CONTENT: The content that you want to load (Required).

This field can be an actual text document, or a secondary data file containing one or
more documents. There are two types of content that you can specify:

– RAW(*): Use the RAW(*) data field either when text documents are stored directly in
the control or data file, or when the documents are specified in the INFILE clause.

– CONTENTFILE(soda_filename): use the CONTENTFILE name to specify an
secondary data file name (soda_filename) from which you want SQL*Loader to load
the data. One or more documents can be contained in the secondary data file that
you specify.

• $KEY: A key to identify the document (Optional)

In a collection, each document must have a document key, which is unique for the
collection. However, you do not need to provide a key if the SODA collection
automatically generates keys. If $KEY is specified, then there is a one-to-one relationship
between the key and the content.

• $MEDIA: A media type to describe the type of the content (Optional)
$MEDIA is not required if the SODA collection is defined to hold documents of one media
type. The default media type is JSON but this can be modified using the SODA_MEDIA
keyword.

7.10.4 Supported LOB Data Types
SQL*Loader supports multiple large object types (LOBs).

This release of SQL*Loader supports loading of four LOB data types:

• BLOB: a LOB containing unstructured binary data

• CLOB: a LOB containing character data

• NCLOB: a LOB containing characters in a database national character set

• BFILE: a BLOB stored outside of the database tablespaces in a server-side operating
system file

LOBs can be column data types, and except for NCLOB, they can be an object's attribute data
types. LOBs can have an actual value, they can be null, or they can be "empty."

Chapter 7
Loading Objects, Collections, and LOBs with SQL*Loader

7-21

JSON columns can be loaded using the same methods used to load scalars and LOBs

See Also:

Loading LOBs for details on using SQL*Loader control file data definition
language to load these LOB types

7.11 Partitioned Object Support in SQL*Loader
Partitioned database objects enable you to manage sections of data, either collectively
or individually. SQL*Loader supports loading partitioned objects.

A partitioned object in Oracle Database instances is a table or index consisting of
partitions (pieces) that have been grouped, typically by common logical attributes. For
example, sales data for a particular year might be partitioned by month. The data for
each month is stored in a separate partition of the sales table. Each partition is stored
in a separate segment of the database, and can have different physical attributes.

SQL*Loader partitioned object support enables SQL*Loader to load the following:

• A single partition of a partitioned table

• All partitions of a partitioned table

• A nonpartitioned table

7.12 Application Development: Direct Path Load API
Direct path loads enable you to load data from external files into tables and
partitions.Oracle provides a direct path load API for application developers.

Related Topics

• Oracle Call Interface Developer's Guide

7.13 SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case studies
that Oracle provides.

• How to Access and Use the Oracle SQL*Loader Case Studies
Oracle provides 11 case studies that illustrate features of SQL*Loader

• Case Study Files
Each of the SQL*Loader case study files has a set of files required to use that
case study

• Running the Case Studies
The typical steps for running SQL*Loader case studies is similar for all of the
cases.

• Case Study Log Files
Log files for the case studies are not provided in the $ORACLE_HOME/rdbms/demo
directory.

Chapter 7
Partitioned Object Support in SQL*Loader

7-22

• Checking the Results of a Case Study
To check the results of running a case study, start SQL*Plus and perform a select
operation from the table that was loaded in the case study.

7.13.1 How to Access and Use the Oracle SQL*Loader Case Studies
Oracle provides 11 case studies that illustrate features of SQL*Loader

The case studies are based upon the Oracle demonstration database tables, emp and dept,
owned by the user scott. (In some case studies, additional columns have been added.) The
case studies are numbered 1 through 11, starting with the simplest scenario and progressing
in complexity.

Note:

Files for use in the case studies are located in the $ORACLE_HOME/rdbms/demo
directory. These files are installed when you install the Oracle Database Examples
(formerly Companion) media.

The following is a summary of the case studies:

• Case Study 1: Loading Variable-Length Data - Loads stream format records in which the
fields are terminated by commas and may be enclosed by quotation marks. The data is
found at the end of the control file.

• Case Study 2: Loading Fixed-Format Fields - Loads data from a separate data file.

• Case Study 3: Loading a Delimited, Free-Format File - Loads data from stream format
records with delimited fields and sequence numbers. The data is found at the end of the
control file.

• Case Study 4: Loading Combined Physical Records - Combines multiple physical records
into one logical record corresponding to one database row.

• Case Study 5: Loading Data into Multiple Tables - Loads data into multiple tables in one
run.

• Case Study 6: Loading Data Using the Direct Path Load Method - Loads data using the
direct path load method.

• Case Study 7: Extracting Data from a Formatted Report - Extracts data from a formatted
report.

• Case Study 8: Loading Partitioned Tables - Loads partitioned tables.

• Case Study 9: Loading LOBFILEs (CLOBs) - Adds a CLOB column called resume to the
table emp, uses a FILLER field (res_file), and loads multiple LOBFILEs into the emp
table.

• Case Study 10: REF Fields and VARRAYs - Loads a customer table that has a primary
key as its OID and stores order items in a VARRAY. Loads an order table that has a
reference to the customer table and the order items in a VARRAY.

• Case Study 11: Loading Data in the Unicode Character Set - Loads data in the Unicode
character set, UTF16, in little-endian byte order. This case study uses character-length
semantics.

Chapter 7
SQL*Loader Case Studies

7-23

7.13.2 Case Study Files
Each of the SQL*Loader case study files has a set of files required to use that case
study

Usage Notes

Generally, each case study is comprised of the following types of files:

• Control files (for example, ulcase5.ctl)

• Data files (for example, ulcase5.dat)

• Setup files (for example, ulcase5.sql)

These files are installed when you install the Oracle Database Examples (formerly
Companion) media. They are installed in the directory $ORACLE_HOME/rdbms/demo.

If the example data for the case study is contained within the control file, then there is
no .dat file for that case.

Case study 2 does not require any special set up, so there is no .sql script for that
case. Case study 7 requires that you run both a starting (setup) script and an ending
(cleanup) script.

The following table lists the files associated with each case:

Table 7-1 Case Studies and Their Related Files

Case .ctl .dat .sql
1 ulcase1.ctl N/A ulcase1.sql

2 ulcase2.ctl ulcase2.dat N/A

3 ulcase3.ctl N/A ulcase3.sql

4 ulcase4.ctl ulcase4.dat ulcase4.sql

5 ulcase5.ctl ulcase5.dat ulcase5.sql

6 ulcase6.ctl ulcase6.dat ulcase6.sql

7 ulcase7.ctl ulcase7.dat ulcase7s.sql

ulcase7e.sql

8 ulcase8.ctl ulcase8.dat ulcase8.sql

9 ulcase9.ctl ulcase9.dat ulcase9.sql

10 ulcase10.ctl N/A ulcase10.sql

11 ulcase11.ctl ulcase11.dat ulcase11.sql

7.13.3 Running the Case Studies
The typical steps for running SQL*Loader case studies is similar for all of the cases.

Be sure you are in the $ORACLE_HOME/rdbms/demo directory, which is where the case
study files are located.

Also, be sure to read the control file for each case study before you run it. The
beginning of the control file contains information about what is being demonstrated in

Chapter 7
SQL*Loader Case Studies

7-24

the case study, and any other special information you need to know. For example, case study
6 requires that you add DIRECT=TRUE to the SQL*Loader command line.

1. At the system prompt, type sqlplus and press Enter to start SQL*Plus. At the user-name
prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for the case study. :

For example, to execute the SQL script for case study 1, enter the following command:

SQL> @ulcase1

This command prepares and populates tables for the case study and then returns you to
the system prompt.

3. At the system prompt, start SQL*Loader and run the case study.

For example, to run case 1, enter the following command:

sqlldr USERID=scott CONTROL=ulcase1.ctl LOG=ulcase1.log

Substitute the appropriate control file name and log file name for the CONTROL and LOG
parameters, and press Enter. When you are prompted for a password, type tiger and
then press Enter.

7.13.4 Case Study Log Files
Log files for the case studies are not provided in the $ORACLE_HOME/rdbms/demo directory.

This is because the log file for each case study is produced when you execute the case
study, provided that you use the LOG parameter. If you do not want to produce a log file, then
omit the LOG parameter from the command line.

7.13.5 Checking the Results of a Case Study
To check the results of running a case study, start SQL*Plus and perform a select operation
from the table that was loaded in the case study.

1. At the system prompt, type sqlplus and press Enter to start SQL*Plus. At the user-name
prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

2. At the SQL prompt, use the SELECT statement to select all rows from the table that the
case study loaded.

For example, if you load the table emp, then enter the following statement:

SQL> SELECT * FROM emp;

The contents of each row in the emp table are displayed.

Chapter 7
SQL*Loader Case Studies

7-25

8
SQL*Loader Command-Line Reference

To start regular SQL*Loader, use the command-line parameters.

Note:

Regular SQL*Loader and SQL*Loader Express mode share some of the same
parameters, but the behavior of these parameters can be different for each utility.
The parameter descriptions described here are for regular SQL*Loader. For
SQL*Loader Express options, refer to the SQL*Loader Express parameters.

• Starting SQL*Loader
Learn how to start SQL*Loader, and how to specify parameters that manage how the
load is run.

• Command-Line Parameters for SQL*Loader
Manage SQL*Loader by using the command-line parameters.

• Exit Codes for Inspection and Display
Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon
completion.

8.1 Starting SQL*Loader
Learn how to start SQL*Loader, and how to specify parameters that manage how the load is
run.

To display a help screen that lists all SQL*Loader parameters, enter sqlldr at the prompt.
and press Enter. The output shows each parameter, including default values for parameters,
and a brief description of each parameter.

• Specifying Parameters on the Command Line
When you start SQL*Loader, you specify parameters to establish various characteristics
of the load operation.

• Alternative Ways to Specify SQL*Loader Parameters
Learn how you can move some command-line parameters into the control file, or place
commonly used parameters in a parameter file.

• Using SQL*Loader to Load Data Across a Network
To use SQL*Loader to load data across a network connection, you can specify a connect
identifier in the connect string when you start the SQL*Loader utility.

8.1.1 Specifying Parameters on the Command Line
When you start SQL*Loader, you specify parameters to establish various characteristics of
the load operation.

To see how to specify SQL*Loader parameters, refer to the following examples:

8-1

You can separate the parameters by commas. However, it is not required to delimit
parameters by commas:

> sqlldr CONTROL=ulcase1.ctl LOG=ulcase1.log
Username: scott
Password: password

Specifying by position means that you enter a value, but not the parameter name. In
the following example, the username scott is provided, and then the name of the
control file, ulcase1.ctl. You are prompted for the password:

> sqlldr scott ulcase1.ctl
Password: password

After a parameter name is used, you must supply parameter names for all subsequent
specifications. No further positional specification is allowed. For example, in the
following command, the CONTROL parameter is used to specify the control file name,
but then the log file name is supplied without the LOG parameter, even though the LOG
parameter was previously specified. Submitting this command now results in an error,
even though the position of ulcase1.log is correct:

> sqlldr scott CONTROL=ulcase1.ctl ulcase1.log

For the command to run, you must enter the command with the LOG parameter
specifically specified:

> sqlldr scott CONTROL=ulcase1.ctl LOG=ulcase1.log

8.1.2 Alternative Ways to Specify SQL*Loader Parameters
Learn how you can move some command-line parameters into the control file, or place
commonly used parameters in a parameter file.

If the length of the command line exceeds the maximum line size for your system, then
you can put certain command-line parameters in the control file by using the OPTIONS
clause.

You can also group parameters together in a parameter file. You specify the name of
this file on the command line using the PARFILE parameter when you start
SQL*Loader.

These alternative ways of specifying parameters are useful when you often use the
same parameters with the same values.

Parameter values specified on the command line override parameter values specified
in either a parameter file or in the OPTIONS clause.

Chapter 8
Starting SQL*Loader

8-2

Related Topics

• OPTIONS Clause for Schema Data
The following SQL*Loader command-line parameters can be specified using the OPTIONS
clause.

• PARFILE
The PARFILE SQL*Loader command-line parameter specifies the name of a file that
contains commonly used command-line parameters.

8.1.3 Using SQL*Loader to Load Data Across a Network
To use SQL*Loader to load data across a network connection, you can specify a connect
identifier in the connect string when you start the SQL*Loader utility.

This identifier can specify a database instance that is different from the current instance
identified by the setting of the ORACLE_SID environment variable for the current user. The
connect identifier can be an Oracle Net connect descriptor or a net service name (usually
defined in the tnsnames.ora file) that maps to a connect descriptor. Use of a connect
identifier requires that you have Oracle Net Listener running (to start the default listener, enter
lsnrctl start). The following example starts SQL*Loader for user scott using the connect
identifier inst1:

> sqlldr CONTROL=ulcase1.ctl
Username: scott@inst1
Password: password

The local SQL*Loader client connects to the database instance defined by the connect
identifier inst1 (a net service name), and loads the data, as specified in the ulcase1.ctl
control file.

Note:

To load data into a pluggable database (PDB), simply specify its connect identifier
on the connect string when you start SQL*Loader.

See Also:

• Oracle Database Net Services Administrator's Guide for more information about
connect identifiers and Oracle Net Listener

• Oracle Database Concepts for more information about PDBs

8.2 Command-Line Parameters for SQL*Loader
Manage SQL*Loader by using the command-line parameters.

Chapter 8
Command-Line Parameters for SQL*Loader

8-3

The defaults and maximum values listed for these parameters are for Linux and Unix-
based systems. They can be different on your operating system. Refer to your
operating system documentation for more information.

• BAD
The BAD command-line parameter for SQL*Loader specifies the name or location,
or both, of the bad file associated with the first data file specification.

• BINDSIZE
The BINDSIZE command-line parameter for SQL*Loader specifies the maximum
size (in bytes) of the bind array.

• COLUMNARRAYROWS
The COLUMNARRAYROWS command-line parameter for SQL*Loader specifies the
number of rows to allocate for direct path column arrays.

• COMPRESS_STREAM
The COMPRESS_STREAM SQL*Loader command-line parameter specifies Direct Path
API stream data sent from the client to servers should be compressed.

• CONTROL
The CONTROL command-line parameter for SQL*Loader specifies the name of the
SQL*Loader control file that describes how to load the data.

• CREDENTIAL
The CREDENTIAL command-line parameter for SQL*Loader enables reading data
stored in object stores.

• DATA
The DATA command-line parameter for SQL*Loader specifies the names of the
data files containing the data that you want to load.

• DATE_CACHE
The DATE_CACHE command-line parameter for SQL*Loader specifies the date
cache size (in entries).

• DEFAULTS
The DEFAULTS command-line parameter for SQL*Loader controls evaluation and
loading of default expressions.

• DEGREE_OF_PARALLELISM
The DEGREE_OF_PARALLELISM command-line parameter for SQL*Loader specifies
the degree of parallelism to use during the load operation.

• DIRECT
The DIRECT command-line parameter for SQL*Loader specifies the load method to
use, either conventional path or direct path.

• DIRECT_PATH_LOCK_WAIT
The DIRECT_PATH_LOCK_WAIT command-line parameter for SQL*Loader
controls direct path load behavior when waiting for table locks.

• DISCARD
The DISCARD command-line parameter for SQL*Loader lets you optionally specify
a discard file to store records that are neither inserted into a table nor rejected.

• DISCARDMAX
The DISCARDMAX command-line parameter for SQL*Loader specifies the number of
discard records to allow before data loading is terminated.

Chapter 8
Command-Line Parameters for SQL*Loader

8-4

• DNFS_ENABLE
The DNFS_ENABLE SQL*Loader command-line parameter lets you enable and disable use
of the Direct NFS Client on input data files during a SQL*Loader operation.

• DNFS_READBUFFERS
The DNFS_READBUFFERS SQL*Loader command-line parameter lets you control the
number of read buffers used by the Direct NFS Client.

• EMPTY_LOBS_ARE_NULL
The EMPTY_LOBS_ARE_NULL SQL*Loader command-line parameter specifies that any LOB
column for which there is no data available is set to NULL, rather than to an empty LOB.

• ERRORS
The ERRORS SQL*Loader command line parameter specifies the maximum number of
allowed insert errors.

• EXTERNAL_TABLE
The EXTERNAL_TABLE parameter instructs SQL*Loader whether to load data using the
external tables option.

• FILE
The FILE SQL*Loader command-line parameter specifies the database file from which
the extents are allocated.

• GRANULE_SIZE
The GRANULE_SIZE SQL*Loader command-line parameter specifies a size for granules of
data for automatic parallel loading.

• GSM_HOST
The GSM_HOST SQL*Loader command-line parameter specifies the host on which the
Global Service Manager is located, which is required for loading shards in parallel.

• GSM_NAME
The GSM_NAME SQL*Loader command-line parameter specifies the Global Service
Manager name, which is required for loading shards in parallel.

• GSM_PORT
The GSM_PORT SQL*Loader command-line parameter specifies the listener port number
for the Global Service Manager, which is required for loading shards in parallel.

• HELP
The HELP SQL*Loader command-line parameter displays online help for the SQL*Loader
utility.

• LOAD
The LOAD SQL*Loader command-line parameter specifies the maximum number of
records to load.

• LOAD_SHARDS
The LOAD_SHARDS SQL*Loader command-line parameter specifies a specific list of shards
to load from a sharded table.

• LOG
The LOG SQL*Loader command-line parameter specifies a directory path, or file name, or
both for the log file where SQL*Loader stores logging information about the loading
process.

• MULTITHREADING
The MULTITHREADING SQL*Loader command-line parameter enables stream building on
the client system to be done in parallel with stream loading on the server system.

Chapter 8
Command-Line Parameters for SQL*Loader

8-5

• NO_INDEX_ERRORS
The NO_INDEX_ERRORS SQL*Loader command-line parameter specifies whether
indexing errors are tolerated during a direct path load.

• OPTIMIZE PARALLEL
The SQL*Loader OPTIMIZE_PARALLEL parameter specifies whether automatic
parallel loads should enable SQL*Loader to choose the optimal parallel loading
option.

• PARALLEL
The SQL*Loader PARALLEL parameter specifies whether loads that use direct path
can operate in multiple concurrent sessions to load data into the same table.

• PARFILE
The PARFILE SQL*Loader command-line parameter specifies the name of a file
that contains commonly used command-line parameters.

• PARTITION_MEMORY
The PARFILE SQL*Loader command-line parameter specifies the amount of
memory that you want to have used when you are loading many partitions.

• READER_COUNT
The READER_COUNT SQL*Loader command-line parameter specifies the number of
input data file reader threads for automatic parallel loads.

• READSIZE
The READSIZE SQL*Loader command-line parameter specifies (in bytes) the size
of the read buffer, if you choose not to use the default.

• RESUMABLE
The RESUMABLE SQL*Loader command-line parameter enables and disables
resumable space allocation.

• RESUMABLE_NAME
The RESUMABLE_NAME SQL*Loader command-line parameter identifies a statement
that is resumable.

• RESUMABLE_TIMEOUT
The RESUMABLE_TIMEOUT SQL*Loader command-line parameter specifies the time
period, in seconds, during which an error must be fixed.

• ROWS
For conventional path loads, the ROWS SQL*Loader command-line parameter
specifies the number of rows in the bind array, and in direct path loads, the
number of rows to read from data files before a save.

• SDF_PREFIX
The SDF_PREFIX SQL*Loader command-line parameter specifies a directory prefix,
which is added to file names of LOBFILEs and secondary data files (SDFs) that
are opened as part of a load operation.

• SILENT
The SILENT SQL*Loader command-line parameter suppresses some of the
content that is written to the screen during a SQL*Loader operation.

• SKIP
The SKIP SQL*Loader command-line parameter specifies the number of logical
records from the beginning of the file that should not be loaded.

Chapter 8
Command-Line Parameters for SQL*Loader

8-6

• SKIP_INDEX_MAINTENANCE
The SKIP_INDEX_MAINTENANCE SQL*Loader command-line parameter specifies whether
to stop index maintenance for direct path loads.

• SKIP_UNUSABLE_INDEXES
The SKIP_UNUSABLE_INDEXES SQL*Loader command-line parameter specifies whether to
skip an index encountered in an Index Unusable state and continue the load operation.

• STREAMSIZE
The STREAMSIZE SQL*Loader command-line parameter specifies the size (in bytes) of the
data stream sent from the client to the server.

• TRIM
The TRIM SQL*Loader command-line parameter specifies whether you want spaces
trimmed from the beginning of a text field, the end of a text field, both, or neither.

• USERID
The USERID SQL*Loader command-line parameter provides your Oracle username and
password for SQL*Loader.

8.2.1 BAD
The BAD command-line parameter for SQL*Loader specifies the name or location, or both, of
the bad file associated with the first data file specification.

Default

The name of the data file, with an extension of .bad.

Purpose

Specifies the name or location, or both, of the bad file associated with the first data file
specification.

Syntax and Description

BAD=[directory/][filename]

The bad file stores records that cause errors during insert, or that are improperly formatted. If
you specify the BAD parameter, then you must supply either a directory, or file name, or both.
If there are rejected records, and you have not specified a name for the bad file, then the
name defaults to the name of the data file with an extension or file type of .bad.

The value you provide for directory specifies the directory where you want the bad file to be
written. The specification can include the name of a device or network node. The value of
directory is determined as follows:

• If the BAD parameter is not specified at all, and a bad file is needed, then the default
directory is the one in which the SQL*Loader control file resides.

• If the BAD parameter is specified with a file name, but without a directory, then the
directory defaults to the current directory.

• If the BAD parameter is specified with a directory, but without a file name, then the
specified directory is used, and the name defaults to the name of the data file, with an
extension or file type of .bad.

Chapter 8
Command-Line Parameters for SQL*Loader

8-7

The value you provide for filename specifies a file name that is recognized as valid on
your platform. You must specify only a name (and extension, if you want to use one
other than .bad). Any spaces or punctuation marks in the file name must be enclosed
within single quotation marks.

A bad file specified on the command line becomes the bad file associated with the first
INFILE statement (if there is one) in the control file. You can also specify the of the bad
file in the SQL*Loader control file by using the BADFILE clause. If the bad file is
specified in both the control file and by command line, then the command-line value is
used. If a bad file with that name already exists, then it is either overwritten, or a new
version is created, depending on your operating system.

Example

The following specification creates a bad file named emp1.bad in the current directory:

BAD=emp1

Related Topics

• Understanding and Specifying the Bad File
When SQL*Loader executes, it can create a file called a bad file, or reject file, in
which it places records that were rejected because of formatting errors or because
they caused Oracle errors.

8.2.2 BINDSIZE
The BINDSIZE command-line parameter for SQL*Loader specifies the maximum size
(in bytes) of the bind array.

Default

256000

Purpose

Specifies the maximum size (in bytes) of the bind array.

Syntax and Description

BINDSIZE=n

A bind array is an area in memory where SQL*Loader stores data that is to be
loaded. When the bind array is full, the data is transmitted to the database. The bind
array size is controlled by the parameters BINDSIZE and READSIZE.

The size of the bind array given by BINDSIZE overrides the default size (which is
system dependent) and any size determined by ROWS.

Restrictions

• The BINDSIZE parameter is used only for conventional path loads.

Chapter 8
Command-Line Parameters for SQL*Loader

8-8

Example

The following BINDSIZE specification limits the maximum size of the bind array to 356,000
bytes.

BINDSIZE=356000

Related Topics

• Differences Between Bind Arrays and Conventional Path Loads
With bind arrays, you can use SQL*Loader to load an entire array of records in one
operation.

• READSIZE
The READSIZE SQL*Loader command-line parameter specifies (in bytes) the size of the
read buffer, if you choose not to use the default.

• ROWS
For conventional path loads, the ROWS SQL*Loader command-line parameter specifies the
number of rows in the bind array, and in direct path loads, the number of rows to read
from data files before a save.

8.2.3 COLUMNARRAYROWS
The COLUMNARRAYROWS command-line parameter for SQL*Loader specifies the number of rows
to allocate for direct path column arrays.

Default

5000

Purpose

Specifies the number of rows that you want to allocate for direct path column arrays.

Syntax and Description

COLUMNARRARYROWS=n

The value for this parameter is not calculated by SQL*Loader. You must either specify it or
accept the default.

Example

The following example specifies that you want to allocate 1000 rows for direct path column
arrays.

COLUMNARRAYROWS=1000

Related Topics

• Using CONCATENATE to Assemble Logical Records
Use CONCATENATE when you want SQL*Loader to always combine the same number of
physical records to form one logical record.

Chapter 8
Command-Line Parameters for SQL*Loader

8-9

• Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before
the stream buffer is built.

8.2.4 COMPRESS_STREAM
The COMPRESS_STREAM SQL*Loader command-line parameter specifies Direct Path API
stream data sent from the client to servers should be compressed.

Default

FALSE

Syntax and Description

COMPRESS_STREAM=[TRUE|FALSE]

The COMPRESS_STREAM parameter is used with automatic parallel loads, starting with
Oracle Database 23c. It enables you to specify that you want Direct Path API stream
data to be compressed when it is sent from the client to servers. Setting this parameter
to TRUE can improve performance when loading distant servers.

If you are loading files remotely from a client to a server, you can use this parameter to
see if load performance is improved. If you use this parameter, then it can override the
value you specify with the STREAMSIZE parameter.

Restrictions

• This parameter can only be used in direct path loading.

• Setting MULTITHREADING=TRUE disables this option. To obtain the potential
performance benefits from COMPRESS_STREAM, ensure that multithreading is set to
FALSE.

Example

The following example specifies to compress Direct Path API stream data:

COMPRESS_STREAM=TRUE

8.2.5 CONTROL
The CONTROL command-line parameter for SQL*Loader specifies the name of the
SQL*Loader control file that describes how to load the data.

Default

There is no default.

Purpose

Specifies the name of the SQL*Loader control file that describes how to load the data.

Chapter 8
Command-Line Parameters for SQL*Loader

8-10

Syntax and Description

CONTROL=control_file_name

If you do not specify a file extension or file type, then it defaults to .ctl. If the CONTROL
parameter is not specified, then SQL*Loader prompts you for it.

If the name of your SQL*Loader control file contains special characters, then your operating
system can require that you enter the control file name preceded by an escape character.
Also, if your operating system uses backslashes in its file system paths, then you can be
required to use multiple escape characters, or you can be required to enclose the path in
quotation marks. Refer to your operating system documentation for more information about
how to use special characters.

Example

The following example specifies a control file named emp1. It is automatically given the default
extension of .ctl.

CONTROL=emp1

Related Topics

• SQL*Loader Control File Reference
The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions for a SQL*Loader job.

8.2.6 CREDENTIAL
The CREDENTIAL command-line parameter for SQL*Loader enables reading data stored in
object stores.

Default

none.

Purpose

Enables SQL*Loader to read object stores. For a data file, you can specify the URI for the
data file that you want to read on the object store. The CREDENTIAL values specify credentials
granted to the user running SQL*Loader. These permissions enable SQL*Loader to access
the object store.

Syntax and Description

In the following syntax, the variable user-credential is the user credential (user name or
password) that you specify SQL*Loader to use:

oracle.sqlldr.credential.user-credential.username
oracle.sqlldr.credential.user-credential.password

Chapter 8
Command-Line Parameters for SQL*Loader

8-11

Usage Notes

If you specify the CREDENTIAL parameter, then SQL*Loader uses the values you
provide for the keys as the username and password for the object store. Before you
use CREDENTIAL, you must previously have created a valid credential by using
orapki, or using the mkstore command.

Note:

The mkstore wallet management command line tool is deprecated with
Oracle Database 23c, and can be removed in a future release.

To manage wallets, Oracle recommends that you use the orapki command
line tool.

Restrictions

If you specify CREDENTIAL, and one of the following conditions are true, then you
receive an error:

• One or both keys cannot be found in the Oracle Wallet

• The files specified for the DATA parameter are not a URI.

• The files specified for the INFILE clause in the control file are not URIs.

If a URI is specified for a data file, and the CREDENTIAL parameter is not specified, then
you receive an error.

Example

To use the CREDENTAL parameter with SQL*Loader, you create a wallet, and define an
access credential for the wallet for the target where you want to load data. Then you
identify that credential with a user for whom you want to grant permissions to load
data. After that task is complete, you can use the wallet credential to load data into the
target database.

For example:

1. Where your wallet path is /u01/app/oracle/product/wallets, and the password
is cloud-pw-example use the orapki utility to create a wallet:

% orapki wallet create -wallet /u01/app/oracle/product/wallets -
pwd cloud-pw-example -auto_login
Oracle PKI Tool Release 20.0.0.0.0 - Production

Version 21.0.0.0.0

Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.

Operation is successfully completed.

Chapter 8
Command-Line Parameters for SQL*Loader

8-12

Note:

For an actual password, always ensure that you follow industry-standard
practices for secure passwords.

2. Create the SQL*Loader credential "obm_scott" user. To do this, use the mkstore utility to
define the database connection string (oracle.sqlldr.credential.obm_scott that can
be used with the user ID some_user, with the password some_password:

% mkstore -wrl /u01/app/oracle/product/wallets -createEntry \
oracle.sqlldr.credential.obm_scott.username some_username

% mkstore -wrl wallet_location_directory -createEntry
oracle.sqlldr.credential.obm_scott.password \
some_password

Note:

For each credential, there can be only one user and password pair.

For both the mkstore commands, you are prompted to provide the password for the
externally stored obm_scott credential, which in this example is cloud-pw-example.

3. Finally, you use SQL*Loader to load the data into the database, using the credential that
you have created. For example:

% sqlldr sqlldr/cdb1_pdb6 dept.ctl credential=obm_scott log=dept.log \
external_table=not_used proxy=https://www.example.com:80

You then load data, which in this example is dept.csv:

LOAD DATA
INFILE 'https://publickeyinfrastorage.example.com/v1/pkistore/dept.csv'
truncate
INTO TABLE DEPTOS
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(DEPTNO, DNAME, LOC)

8.2.7 DATA
The DATA command-line parameter for SQL*Loader specifies the names of the data files
containing the data that you want to load.

Default

The same name as the control file, but with an extension of .dat.

Chapter 8
Command-Line Parameters for SQL*Loader

8-13

Purpose

The DATA parameter specifies the name of the data file containing the data that you
want to load.

Syntax and Description

DATA=data_file_name

If you do not specify a file extension, then the default is .dat.

The file specification can contain wildcards (only in the file name and file extension,
not in a device or directory name). An asterisk (*) represents multiple characters and a
question mark (?) represents a single character. For example:

DATA='emp*.dat'

DATA='m?emp.dat'

To list multiple data file specifications (each of which can contain wild cards), the file
names must be separated by commas.

If the file name contains any special characters (for example, spaces, *, ?,), then the
entire name must be enclosed within single quotation marks.

The following are three examples of possible valid uses of the DATA parameter (the
single quotation marks would only be necessary if the file name contained special
characters):

DATA='file1','file2','file3','file4','file5','file6'
DATA='file1','file2'
DATA='file3,'file4','file5'
DATA='file6'

Caution:

If multiple data files are being loaded and you are also specifying the BAD
parameter, it is recommended that you specify only a directory for the bad
file, not a file name. If you specify a file name, and a file with that name
already exists, then it is either overwritten or a new version is created,
depending on your operating system.

If you specify data files on the command line with the DATA parameter and also specify
data files in the control file with the INFILE clause, then the first INFILE specification in
the control file is ignored. All other data files specified on the command line and in the
control file are processed.

If you specify a file processing option along with the DATA parameter when loading data
from the control file, then a warning message is issued.

Chapter 8
Command-Line Parameters for SQL*Loader

8-14

Example

The following example specifies that a data file named employees.dat is to be loaded.
The .dat extension is assumed as the default because no extension is provided.

DATA=employees

8.2.8 DATE_CACHE
The DATE_CACHE command-line parameter for SQL*Loader specifies the date cache size (in
entries).

Default

Enabled (for 1000 elements). To completely disable the date cache feature, set it to 0 (zero).

Purpose

Specifies the date cache size (in entries).

The date cache is used to store the results of conversions from text strings to internal date
format. The cache is useful, because the cost of looking up dates is much less than
converting from text format to date format. If the same dates occur repeatedly in the date file,
then using the date cache can improve the speed of a direct path load.

Syntax and Description

DATE_CACHE=n

Every table has its own date cache, if one is needed. A date cache is created only if at least
one date or timestamp value is loaded that requires data type conversion before it can be
stored in the table.

The date cache feature is enabled by default. The default date cache size is 1000 elements.
If the default size is used, and if the number of unique input values loaded exceeds 1000,
then the date cache feature is automatically disabled for that table. However, if you override
the default, and you specify a nonzero date cache size, and that size is exceeded, then the
cache is not disabled.

To tune the size of the cache for future similar loads, use the date cache statistics (entries,
hits, and misses) contained in the log file.

Restrictions

• The date cache feature is only available for direct path and external tables loads.

Example

The following specification completely disables the date cache feature.

DATE_CACHE=0

Chapter 8
Command-Line Parameters for SQL*Loader

8-15

Related Topics

• Specifying a Value for DATE_CACHE
To improve performance where the same date or timestamp is used many times
during a direct path load, you can use the SQL*Loader date cache.

8.2.9 DEFAULTS
The DEFAULTS command-line parameter for SQL*Loader controls evaluation and
loading of default expressions.

Default

EVALUATE_ONCE, unless a sequence is involved. If a sequence is involved, then the
default is EVALUATE_EVERY_ROW.

Purpose

Controls evaluation and loading of default expressions.

The DEFAULTS parameter is only applicable to direct path loads.

Syntax and Description

DEFAULTS={IGNORE | IGNORE_UNSUPPORTED_EVALUATE_ONCE |
IGNORE_UNSUPPORTED_EVALUATE_EVERY_ROW |
EVALUATE_ONCE | EVALUATE_EVERY_ROW}

The behavior of each of the options is as follows:

• IGNORE: Default clauses on columns are ignored.

• IGNORE_UNSUPPORTED_EVALUATE_ONCE: Evaluate default expressions once at the
start of the load. Unsupported default expressions are ignored. If the DEFAULTS
parameter is not used, then default expressions are evaluated once, unless the
default expression references a sequence, in which case every row is evaluated.

• IGNORE_UNSUPPORTED_EVALUATE_EVERY_ROW: Evaluate default expressions in every
row, ignoring unsupported default clauses.

• EVALUATE_ONCE: Evaluate default expressions once at the start of the load. If the
DEFAULTS parameter is not used, then default expressions are evaluated once,
unless the default references a sequence, in which case every row is evaluated.
An error is issued for unsupported default expression clauses. (This is the default
option for this parameter.)

• EVALUATE_EVERY_ROW: Evaluate default expressions in every row, and issue an
error for unsupported defaults.

Example

This example shows that a table is created with the name test, and a SQL*Loader
control file named test.ctl:

create table test
(
 c0 varchar2(10),

Chapter 8
Command-Line Parameters for SQL*Loader

8-16

 c1 number default '100'
)
;

test.ctl:

load data
infile *
truncate
into table test
fields terminated by ','
trailing nullcols
(
 c0 char
)
begindata
1,

To then load a NULL into c1, issue the following statement:

sqlldr scott/password t.ctl direct=true defaults=ignore

To load the default value of 100 into c1, issue the following statement:

sqlldr scott/password t.ctl direct=true

8.2.10 DEGREE_OF_PARALLELISM
The DEGREE_OF_PARALLELISM command-line parameter for SQL*Loader specifies the degree
of parallelism to use during the load operation.

Default

NONE

Purpose

The DEGREE_OF_PARALLELISM parameter specifies the degree of parallelism to use during the
load operation.

Syntax and Description

DEGREE_OF_PARALLELISM=[degree-num|DEFAULT|AUTO|NONE]

If a degree-num is specified, then it must be a whole number value from 1 to n.

If DEFAULT is specified, then the default parallelism of the database (not the default parameter
value of AUTO) is used.

If AUTO is used, then Oracle Database automatically sets the degree of parallelism for the
load.

Chapter 8
Command-Line Parameters for SQL*Loader

8-17

If NONE is specified, then the load is not performed in parallel.

Note:

If AUTO or DEFAULT are used for conventional and direct path loads, then this
results in no parallelism.

To optimize parallel reading and loading, Oracle recommends that you start by setting
the parameters DEGREE_OF_PARALLELISM and READER_COUNT to a small value (for
example, 4) and increase by a small amount to see if performance improves. The best
value will depend on the client and server configuration. Too large a value can result in
reduced performance. You should see a larger performance improvement when more
work is required on the server (for example, if compression is being used).

For shard loading, Oracle recommends that you let SQL*Loader set
DEGREE_OF_PARALLELISM. By default, that value by default is equal to the number of
shards. If you have a large number of shards resulting in too many threads for the
client to handle, then you can reduce the DEGREE_OF_PARALLELISM, resulting in multiple
passes over the data.

Restrictions

• Automatic parallel loading is supported for a single table only. Multiple INTO
clauses are not supported.

• Non-shard parallel loading of many partitions, especially with only a few rows per
partition, may not perform well. The DEGREE_OF_PARALLELISM parameter should not
be used for this case.

Example

The following example sets the degree of parallelism for the load to 4.

DEGREE_OF_PARALLELISM=4

Related Topics

• Parallel Execution Concepts in Oracle Database VLDB and Partitioning Guide

8.2.11 DIRECT
The DIRECT command-line parameter for SQL*Loader specifies the load method to
use, either conventional path or direct path.

Default

FALSE

Purpose

The DIRECT parameter specifies the load method to use, either conventional path or
direct path.

Chapter 8
Command-Line Parameters for SQL*Loader

8-18

Syntax and Description

DIRECT=[TRUE | FALSE]

A value of TRUE specifies a direct path load. A value of FALSE specifies a conventional path
load.

See Also:

Conventional and Direct Path Loads

Example

The following example specifies that the load be performed using conventional path mode.

DIRECT=FALSE

8.2.12 DIRECT_PATH_LOCK_WAIT
The DIRECT_PATH_LOCK_WAIT command-line parameter for SQL*Loader controls direct
path load behavior when waiting for table locks.

Default

FALSE

Purpose

Controls direct path load behavior when waiting for table locks. Direct path loads must lock
the table before the load can proceed. The DIRECT_PATH_LOCK_WAIT command controls the
direct path API behavior while waiting for a lock.

Syntax and Description

DIRECT_PATH_LOCK_WAIT = {TRUE | FALSE}

• TRUE: Direct path waits until it can get a lock on the table before proceeding with the load.

• FALSE: (Default). When set to FALSE, the direct path API tries to lock the table multiple
times and waits one second between attempts. The maximum number of attempts made
is 30. If the table cannot be locked after 30 attempts, then the direct path API returns the
error that was generated when trying to lock the table.

8.2.13 DISCARD
The DISCARD command-line parameter for SQL*Loader lets you optionally specify a discard
file to store records that are neither inserted into a table nor rejected.

Default

The same file name as the data file, but with an extension of .dsc.

Chapter 8
Command-Line Parameters for SQL*Loader

8-19

Purpose

The DISCARD parameter lets you optionally specify a discard file to store records that
are neither inserted into a table nor rejected. They are not bad records, they simply did
not match any record-selection criteria specified in the control file, such as a WHEN
clause for example.

Syntax and Description

DISCARD=[directory/][filename]

If you specify the DISCARD parameter, then you must supply either a directory or file
name, or both.

The directory parameter specifies a directory to which the discard file will be written.
The specification can include the name of a device or network node. The value of
directory is determined as follows:

• If the DISCARD parameter is not specified at all, but the DISCARDMAX parameter is,
then the default directory is the one in which the SQL*Loader control file resides.

• If the DISCARD parameter is specified with a file name but no directory, then the
directory defaults to the current directory.

• If the DISCARD parameter is specified with a directory but no file name, then the
specified directory is used and the default is used for the name and the extension.

The filename parameter specifies a file name recognized as valid on your platform.
You must specify only a name (and extension, if one other than .dsc is desired). Any
spaces or punctuation marks in the file name must be enclosed in single quotation
marks.

If neither the DISCARD parameter nor the DISCARDMAX parameter is specified, then a
discard file is not created even if there are discarded records.

If the DISCARD parameter is not specified, but the DISCARDMAX parameter is, and there
are discarded records, then the discard file is created using the default name and the
file is written to the same directory in which the SQL*Loader control file resides.

Caution:

If multiple data files are being loaded and you are also specifying the
DISCARD parameter, it is recommended that you specify only a directory for
the discard file, not a file name. If you specify a file name, and a file with that
name already exists, then it is either overwritten or a new version is created,
depending on your operating system.

A discard file specified on the command line becomes the discard file associated with
the first INFILE statement (if there is one) in the control file. If the discard file is also
specified in the control file, then the command-line value overrides it. If a discard file
with that name already exists, then it is either overwritten or a new version is created,
depending on your operating system.

Chapter 8
Command-Line Parameters for SQL*Loader

8-20

See Also:

Discarded and Rejected Records for information about the format of discard files

Example

Assume that you are loading a data file named employees.dat. The following example
supplies only a directory name so the name of the discard file will be employees.dsc and it
will be created in the mydir directory.

DISCARD=mydir/

8.2.14 DISCARDMAX
The DISCARDMAX command-line parameter for SQL*Loader specifies the number of discard
records to allow before data loading is terminated.

Default

ALL

Purpose

The DISCARDMAX parameter specifies the number of discard records to allow before data
loading is terminated.

Syntax and Description

DISCARDMAX=n

To stop on the first discarded record, specify a value of 0.

If DISCARDMAX is specified, but the DISCARD parameter is not, then the name of the discard file
is the name of the data file with an extension of .dsc.

Example

The following example allows 25 records to be discarded during the load before it is
terminated.

DISCARDMAX=25

8.2.15 DNFS_ENABLE
The DNFS_ENABLE SQL*Loader command-line parameter lets you enable and disable use of
the Direct NFS Client on input data files during a SQL*Loader operation.

Default

TRUE

Chapter 8
Command-Line Parameters for SQL*Loader

8-21

Purpose

The DNFS_ENABLE parameter lets you enable and disable use of the Direct NFS Client
on input data files during a SQL*Loader operation.

Syntax and Description

DNFS_ENABLE=[TRUE|FALSE]

The Direct NFS Client is an API that can be implemented by file servers to allow
improved performance when an Oracle database accesses files on those servers.

SQL*Loader uses the Direct NFS Client interfaces by default when it reads data files
over 1 GB. For smaller files, the operating system input/output (I/O) interfaces are
used. To use the Direct NFS Client on all input data files, use DNFS_ENABLE=TRUE.

To disable use of the Direct NFS Client for all data files, specify DNFS_ENABLE=FALSE.

The DNFS_READBUFFERS parameter can be used to specify the number of read buffers
used by the Direct NFS Client; the default is 4.

See Also:

• Oracle Grid Infrastructure Installation Guide for your platform for more
information about enabling the Direct NFS Client

Example

The following example disables use of the Direct NFS Client on input data files during
the load.

DNFS_ENABLE=FALSE

8.2.16 DNFS_READBUFFERS
The DNFS_READBUFFERS SQL*Loader command-line parameter lets you control the
number of read buffers used by the Direct NFS Client.

Default

4

Purpose

The DNFS_READBUFFERS parameter lets you control the number of read buffers used by
the Direct NFS Client. The Direct NFS Client is an API that can be implemented by file
servers to allow improved performance when an Oracle database accesses files on
those servers.

Chapter 8
Command-Line Parameters for SQL*Loader

8-22

Syntax and Description

DNFS_READBUFFERS=n

The value for n is the number of read buffers you specify. It is possible that you can
compensate for inconsistent input/output (I/O) from the Direct NFS Client file server by
increasing the number of read buffers. However, using larger values can result in increased
memory usage.

Restrictions

• To use this parameter without also specifying the DNFS_ENABLE parameter, the input file
must be larger than 1 GB.

Example

The following example specifies 10 read buffers for use by the Direct NFS Client.

DNFS_READBUFFERS=10

Related Topics

• Oracle Grid Infrastructure Installation Guide for your platform

8.2.17 EMPTY_LOBS_ARE_NULL
The EMPTY_LOBS_ARE_NULL SQL*Loader command-line parameter specifies that any LOB
column for which there is no data available is set to NULL, rather than to an empty LOB.

Default

FALSE

Purpose

If the SQL*Loader EMPTY_LOBS_ARE_NULL parameter is specified, then any Large Object
(LOB) columns for which there is no data available are set to NULL, rather than to an empty
LOB. Setting LOB columns for which there is no data available to NULL negates the need to
make that change through post-processing after the data is loaded.

Syntax and Description

EMPTY_LOBS_ARE_NULL = {TRUE | FALSE}

You can specify the EMPTY_LOBS_ARE_NULL parameter on the SQL*Loader command line, and
also on the OPTIONS clause in a SQL*Loader control file.

Restrictions

None.

Chapter 8
Command-Line Parameters for SQL*Loader

8-23

Example

In the following example, as a result of setting empty_lobs_are_null=true, the LOB
columns in c1 are set to NULL instead of to an empty LOB.

create table t
(
 c0 varchar2(10),
 c1 clob
)
;

sqlldr control file:

options (empty_lobs_are_null=true)
load data
infile *
truncate
into table t
fields terminated by ','
trailing nullcols
(
 c0 char,
 c1 char
)
begindata
1,,

8.2.18 ERRORS
The ERRORS SQL*Loader command line parameter specifies the maximum number
of allowed insert errors.

Default

50

Purpose

The ERRORS parameter specifies the maximum number of insert errors to allow.

Syntax and Description

ERRORS=n

If the number of errors exceeds the value specified for ERRORS, then SQL*Loader
terminates the load. Any data inserted up to that point is committed.

To permit no errors at all, set ERRORS=0. To specify that all errors be allowed, use a
very high number.

SQL*Loader maintains the consistency of records across all tables. Therefore,
multitable loads do not terminate immediately if errors exceed the error limit. When
SQL*Loader encounters the maximum number of errors for a multitable load, it

Chapter 8
Command-Line Parameters for SQL*Loader

8-24

continues to load rows to ensure that valid rows previously loaded into tables are loaded into
all tables and rejected rows are filtered out of all tables.

In all cases, SQL*Loader writes erroneous records to the bad file.

Example

The following example specifies a maximum of 25 insert errors for the load. After that, the
load is terminated.

ERRORS=25

8.2.19 EXTERNAL_TABLE
The EXTERNAL_TABLE parameter instructs SQL*Loader whether to load data using the external
tables option.

Default

NOT_USED

Syntax and Description

EXTERNAL_TABLE=[NOT_USED | GENERATE_ONLY | EXECUTE]

The possible values are as follows:

• NOT_USED - the default value. It means the load is performed using either conventional or
direct path mode.

• GENERATE_ONLY - places all the SQL statements needed to do the load using external
tables, as described in the control file, in the SQL*Loader log file. These SQL statements
can be edited and customized. The actual load can be done later without the use of
SQL*Loader by executing these statements in SQL*Plus.

• EXECUTE - attempts to execute the SQL statements that are needed to do the load using
external tables. However, if any of the SQL statements returns an error, then the attempt
to load stops. Statements are placed in the log file as they are executed. This means that
if a SQL statement returns an error, then the remaining SQL statements required for the
load will not be placed in the log file.

If you use EXTERNAL_TABLE=EXECUTE and also use the SEQUENCE parameter in your
SQL*Loader control file, then SQL*Loader creates a database sequence, loads the table
using that sequence, and then deletes the sequence. The results of doing the load this
way will be different than if the load were done with conventional or direct path. (For more
information about creating sequences, see CREATE SEQUENCE in Oracle Database SQL
Language Reference.)

Note:

When the EXTERNAL_TABLE parameter is specified, any datetime data types (for
example, TIMESTAMP) in a SQL*Loader control file are automatically converted to a
CHAR data type and use the external tables date_format_spec clause. See
date_format_spec.

Chapter 8
Command-Line Parameters for SQL*Loader

8-25

Note that the external table option uses directory objects in the database to indicate
where all input data files are stored and to indicate where output files, such as bad
files and discard files, are created. You must have READ access to the directory objects
containing the data files, and you must have WRITE access to the directory objects
where the output files are created. If there are no existing directory objects for the
location of a data file or output file, then SQL*Loader will generate the SQL statement
to create one. Therefore, when the EXECUTE option is specified, you must have the
CREATE ANY DIRECTORY privilege. If you want the directory object to be deleted at the
end of the load, then you must also have the DROP ANY DIRECCTORY privilege.

Note:

The EXTERNAL_TABLE=EXECUTE qualifier tells SQL*Loader to create an
external table that can be used to load data and then executes the INSERT
statement to load the data. All files in the external table must be identified as
being in a directory object. SQL*Loader attempts to use directory objects that
already exist and that you have privileges to access. However, if SQL*Loader
does not find the matching directory object, then it attempts to create a
temporary directory object. If you do not have privileges to create new
directory objects, then the operation fails.

To work around this, use EXTERNAL_TABLE=GENERATE_ONLY to create the SQL
statements that SQL*Loader would try to execute. Extract those SQL
statements and change references to directory objects to be the directory
object that you have privileges to access. Then, execute those SQL
statements.

When using a multi-table load, SQL*Loader does the following:

1. Creates a table in the database that describes all fields in the input data file that
will be loaded into any table.

2. Creates an INSERT statement to load this table from an external table description
of the data.

3. Executes one INSERT statement for every table in the control file.

To see an example of this, run case study 5, but add the
EXTERNAL_TABLE=GENERATE_ONLY parameter. To guarantee unique names in the
external table, SQL*Loader uses generated names for all fields. This is because the
field names may not be unique across the different tables in the control file.

See Also:

• "SQL*Loader Case Studies" for information on how to access case
studies

• External Tables Concepts

• The ORACLE_LOADER Access Driver

Chapter 8
Command-Line Parameters for SQL*Loader

8-26

Restrictions

• Julian dates cannot be used when you insert data into a database table from an external
table through SQL*Loader. To work around this, use TO_DATE and TO_CHAR to convert the
Julian date format, as shown in the following example:

TO_CHAR(TO_DATE(:COL1, 'MM-DD-YYYY'), 'J')

• Built-in functions and SQL strings cannot be used for object elements when you insert
data into a database table from an external table.

Example

EXTERNAL_TABLE=EXECUTE

8.2.20 FILE
The FILE SQL*Loader command-line parameter specifies the database file from which the
extents are allocated.

Default

There is no default.

Purpose

The FILE parameter specifies the database file from which the extents are allocated.

See Also:

Parallel Data Loading Models

Syntax and Description

FILE=tablespace_file

By varying the value of the FILE parameter for different SQL*Loader processes, data can be
loaded onto a system with minimal disk contention.

Restrictions

• The FILE parameter is used only for direct path parallel loads.

Chapter 8
Command-Line Parameters for SQL*Loader

8-27

8.2.21 GRANULE_SIZE
The GRANULE_SIZE SQL*Loader command-line parameter specifies a size for granules
of data for automatic parallel loading.

Default

If you do not specify a granule size, then SQL*Loader calculates the optimal default
granule size for each file, depending on the number of readers, and their size.

Syntax and Description

GRANULE_SIZE=n

The GRANULE_SIZE parameter is used with automatic parallel loads, starting with
Oracle Database 23c. It enables you to specify the maximum size, in bytes, of data
granules. For data file formats that can support being divided into multiple granules of
data, such as csv files, SQL*Loader divides data files for parallel reading and loading
using an optimal granule size for the file. Oracle recommends that you accept this
default. However, you can specify a specific granule size to see if that improves load
performance.

Note:

The granule size should be greater than or equal to the READSIZE parameter.

Restrictions

The GRANULE_SIZE parameter is ignored when a file cannot be split into granules.

Example

The following example specifies a granule size of 16000000 bytes:

GRANULE_SIZE=16000000

8.2.22 GSM_HOST
The GSM_HOST SQL*Loader command-line parameter specifies the host on which the
Global Service Manager is located, which is required for loading shards in parallel.

Default

There is no default.

Purpose

The GSM_HOST parameter specifies the host on which the Global Service Manager is
located. This hostname is required for loading shards in parallel. Global Data Service
clients use the Global Service Manager to perform all GDS configuration and client
connection operations to sharded tables.

Chapter 8
Command-Line Parameters for SQL*Loader

8-28

See Also:

Parallel Data Loading Models

Syntax and Description

GSM_HOST=name-of-host

Example

The host on which the Global Service Manager resides, myhost1, is specified in this
SQL*Loader command line by the GSM_HOST parameter:

sqlldr scott/tiger t.ctl gsm_name=shdsrv.shpool.oradbcloud gsm_host=myhost1
gsm_port=4338

8.2.23 GSM_NAME
The GSM_NAME SQL*Loader command-line parameter specifies the Global Service Manager
name, which is required for loading shards in parallel.

Default

There is no default.

Purpose

The GSM_NAME parameter specifies the Global Service Manager name, which is required for
loading shards in parallel. Global Data Service clients use the Global Service Manager to
perform all GDS configuration and client connection operations to sharded tables.

See Also:

Parallel Data Loading Models

Syntax and Description

GSM_NAME=name-of-gsm-manager

Example

The Global Service Manager name shdsrv.shpool.oradbcloud is specified in this
SQL*Loader command line by the GSM_HOST parameter:

sqlldr scott/tiger t.ctl gsm_name=shdsrv.shpool.oradbcloud gsm_host=myhost1
gsm_port=4338

Chapter 8
Command-Line Parameters for SQL*Loader

8-29

8.2.24 GSM_PORT
The GSM_PORT SQL*Loader command-line parameter specifies the listener port number
for the Global Service Manager, which is required for loading shards in parallel.

Default

There is no default.

Purpose

The GSM_PORT parameter specifies the Global Service Manager Listener port, which is
required for loading shards in parallel. Global Data Service clients use the Global
Service Manager to perform all GDS configuration and client connection operations to
sharded tables.

See Also:

Parallel Data Loading Models

Syntax and Description

GSM_PORT=gsm-manager-port-number

Example

The Global Service Manager Listener port, 4338, is specified in this SQL*Loader
command line by the GSM_PORT parameter:

sqlldr scott/tiger t.ctl gsm_name=shdsrv.shpool.oradbcloud
gsm_host=myhost1 gsm_port=4338

8.2.25 HELP
The HELP SQL*Loader command-line parameter displays online help for the
SQL*Loader utility.

Default

FALSE

Syntax and Description

HELP = [TRUE | FALSE]

If HELP=TRUE is specified, then SQL*Loader displays a summary of all SQL*Loader
command-line parameters.

You can also display a summary of all SQL*Loader command-line parameters by
entering sqlldr -help on the command line.

Chapter 8
Command-Line Parameters for SQL*Loader

8-30

8.2.26 LOAD
The LOAD SQL*Loader command-line parameter specifies the maximum number of records to
load.

Default

All records are loaded.

Purpose

Specifies the maximum number of records to load.

Syntax and Description

LOAD=n

To test that all parameters you have specified for the load are set correctly, use the LOAD
parameter to specify a limited number of records rather than loading all records. No error
occurs if fewer than the maximum number of records are found.

Example

The following example specifies that a maximum of 10 records be loaded.

LOAD=10

For external tables method loads, only successfully loaded records are counted toward the
total. So if there are 15 records in the input data file and records 2 and 4 are bad, then the
following records are loaded into the table, for a total of 10 records: 1, 3, 5, 6, 7, 8, 9, 10, 11,
and 12.

For conventional and direct path loads, both successful and unsuccessful load attempts are
counted toward the total. So if there are 15 records in the input data file, and records 2 and 4
are bad, then only the following 8 records are actually loaded into the table: 1, 3, 5, 6, 7, 8, 9,
and 10.

8.2.27 LOAD_SHARDS
The LOAD_SHARDS SQL*Loader command-line parameter specifies a specific list of shards to
load from a sharded table.

Default

If no list of shards is specified, then all shards are loaded.

Purpose

The LOAD_SHARDS parameter specifies a comma-delimited list of shard identifiers (shard
names). If you do not specify a list, then SQL*LOADER loads all shards.

For sharded tables, use this parameter after attempting automatic parallel loading where
some shards failed to load. To resolve the issue, you can perform an automatic parallel load,
and use the LOAD_SHARDS parameter to provide a list to SQL*Loader of any shards that failed

Chapter 8
Command-Line Parameters for SQL*Loader

8-31

to load in the previous load attempt. SQL*Loader will ignore the shards that you do not
list with LOAD_SHARDS.

See Also:

Parallel Data Loading Models

Syntax and Description

LOAD_SHARDS=shard1,shard2,shard3 . . .

Example

In this SQL*Loader command line, the LOAD_SHARDS parameter specifies to load only
the dbs7 and dbs23 shards:

sqlldr scott/tiger t.ctl gsm_name=shdsrv.shpool.oradbcloud
gsm_host=example1 gsm_port=4338 load_shards=dbs7,dbs23

8.2.28 LOG
The LOG SQL*Loader command-line parameter specifies a directory path, or file name,
or both for the log file where SQL*Loader stores logging information about the loading
process.

Default

The current directory, if no value is specified.

Purpose

Specifies a directory path, or file name, or both for the log file that SQL*Loader uses to
store logging information about the loading process.

Syntax and Description

LOG=[[directory/][log_file_name]]

If you specify the LOG parameter, then you must supply a directory name, or a file
name, or both.

If no directory name is specified, it defaults to the current directory.

If a directory name is specified without a file name, then the default log file name is
used.

Example

The following example creates a log file named emp1.log in the current directory. The
extension .log is used even though it is not specified, because it is the default.

LOG=emp1

Chapter 8
Command-Line Parameters for SQL*Loader

8-32

8.2.29 MULTITHREADING
The MULTITHREADING SQL*Loader command-line parameter enables stream building on the
client system to be done in parallel with stream loading on the server system.

Default

TRUE on multiple-CPU systems, FALSE on single-CPU systems

Syntax and Description

MULTITHREADING=[TRUE | FALSE]

By default, the multithreading option is always enabled (set to TRUE) on multiple-CPU
systems. In this case, the definition of a multiple-CPU system is a single system that has
more than one CPU.

On single-CPU systems, multithreading is set to FALSE by default. To use multithreading
between two single-CPU systems, you must enable multithreading; it will not be on by
default.

Restrictions

Note:

This option is normally disabled for automatic parallel loading. If enabled, it is
possible that it can improve performance, but be aware that this option adds an
additional thread for each direct path parallel loading thread.

• The MULTITHREADING parameter is available only for direct path loads.

• Multithreading functionality is operating system-dependent. Not all operating systems
support multithreading.

Example

The following example enables multithreading on a single-CPU system. On a multiple-CPU
system it is enabled by default.

MULTITHREADING=TRUE

Related Topics

• Optimizing Direct Path Loads on Multiple-CPU Systems
If you are performing direct path loads on a multiple-CPU system, then SQL*Loader uses
multithreading by default. A multiple-CPU system in this case is defined as a single
system that has two or more CPUs.

Chapter 8
Command-Line Parameters for SQL*Loader

8-33

8.2.30 NO_INDEX_ERRORS
The NO_INDEX_ERRORS SQL*Loader command-line parameter specifies whether
indexing errors are tolerated during a direct path load.

Default

FALSE

Syntax and Description

NO_INDEX_ERRORS=[TRUE | FALSE]

A setting of NO_INDEX_ERRORS=FALSE means that if a direct path load results in an
index becoming unusable, then the rows are loaded, and the index is left in an
unusable state. This is the default behavior.

A setting of NO_INDEX_ERRORS=TRUE means that if a direct path load results in any
indexing errors, then the load is stopped. No rows are loaded, and the indexes are left
as they were.

Restrictions

The NO_INDEX_ERRORS parameter is valid only for direct path loads. If it is specified for
conventional path loads, then it is ignored.

Example

NO_INDEX_ERRORS=TRUE

8.2.31 OPTIMIZE PARALLEL
The SQL*Loader OPTIMIZE_PARALLEL parameter specifies whether automatic parallel
loads should enable SQL*Loader to choose the optimal parallel loading option.

Default

TRUE

Purpose

Specifies whether you want to enable SQL*Loader to choose the fastest parallel load
option available to your data automatically, or if you want to specify a particular
automatic parallel load mode. Oracle recommends that you accept the default.

Syntax and Description

OPTIMIZE_PARALLEL=[TRUE|FALSE]

Starting with Oracle Database 23c, SQL*Loader can perform parallel loads
automatically, and select the fastest mode available for your tables, depending on
whether they are non-sharded or sharded tables. This is the default option for
automatic parallel loading. Oracle recommends that you accept the default. However,

Chapter 8
Command-Line Parameters for SQL*Loader

8-34

you can use this parameter to override SQL*Loader selecting the parallel loading mode, so
that you can try an alternate client parallel mode to see if it can run faster.

Example

The following example specifies that SQL*Loader will not select the optimal parallel load
option on its own, and instead let you specify the load option.

OPTIMIZE_PARALLEL=FALSE

Related Topics

• Loading Modes for Automatic Parallel Loads

8.2.32 PARALLEL
The SQL*Loader PARALLEL parameter specifies whether loads that use direct path can
operate in multiple concurrent sessions to load data into the same table.

Default

FALSE

Purpose

Specifies whether loads that use direct path can operate in multiple concurrent sessions to
load data into the same table.

Note:

The default for PARALLEL is FALSE, but if you use direct path automatic parallel
loading and set the parameter DEGREE_OF_PARALLELISM, then PARALLEL is
automatically set to TRUE for direct path if parallelism can be implemented, so you
do not need to specify PARALLEL.

Syntax and Description

PARALLEL=[TRUE | FALSE]

Restrictions

• The PARALLEL parameter is not valid in conventional path loads.

Example

The following example specifies that the load will be performed in parallel.

PARALLEL=TRUE

Chapter 8
Command-Line Parameters for SQL*Loader

8-35

Related Topics

• About SQL*Loader Parallel Data Loading Models
There are three basic models of concurrency that you can use to minimize the
elapsed time required for data loading.

8.2.33 PARFILE
The PARFILE SQL*Loader command-line parameter specifies the name of a file that
contains commonly used command-line parameters.

Default

There is no default.

Syntax and Description

PARFILE=file_name

Instead of specifying each parameter on the command line, you can simply specify the
name of the parameter file. For example, a parameter file named daily_report.par
might have the following contents:

USERID=scott
CONTROL=daily_report.ctl
ERRORS=9999
LOG=daily_report.log

For security reasons, do not include your USERID password in a parameter file. After
you specify the parameter file at the command line, SQL*Loader prompts you for the
password. For example:

sqlldr PARFILE=daily_report.par
Password: password

Restrictions

• On some systems it can be necessary to have no spaces around the equal sign
(=) in the parameter specifications.

Example

See the example in the Syntax and Description section.

8.2.34 PARTITION_MEMORY
The PARFILE SQL*Loader command-line parameter specifies the amount of memory
that you want to have used when you are loading many partitions.

Default

0 (zero) This setting limits memory use based on the value of the
PGA_AGGREGATE_TARGET initialization parameter. When memory use approaches that
value, loading of some partitions is delayed.

Chapter 8
Command-Line Parameters for SQL*Loader

8-36

Purpose

Specifies the amount of memory that you want to have used when you are loading many
partitions. This parameter is helpful in situations in which the number of partitions you are
loading use up large amounts of memory, perhaps even exceeding available memory. (This
scenario can occur, especially when the data is compressed).

After the specified limit is reached, loading of some partition rows is delayed until memory
use falls below the limit.

Syntax and Description

PARTITION_MEMORY=n

The parameter value n is in kilobytes.

If n is set to 0 (the default), then SQL*Loader uses a value that is a function of the
PGA_AGGREGATE_TARGET initialization parameter.

If n is set to -1 (minus 1), then SQL*Loader makes no attempt to use less memory when
loading many partitions.

Restrictions

• This parameter is only valid for direct path loads.

• This parameter is available only in Oracle Database 12c Release 1 (12.1.0.2) and later
releases.

Example

The following example limits memory use to 1 GB.

> sqlldr hr CONTROL=t.ctl DIRECT=true PARTITION_MEMORY=1000000

8.2.35 READER_COUNT
The READER_COUNT SQL*Loader command-line parameter specifies the number of input data
file reader threads for automatic parallel loads.

Default

1

Syntax and Description

READER_COUNT=n

The use case for the READER_COUNT parameter depends on the mode of automatic parallel
loading that you use.

For non-sharded tables, Mode One parallel loading is the fastest option. The READER_COUNT
parameter is ignored with this mode, because SQL*Loader automatically divides up data files
into granules of data, and the threads parse and load these granules.

Chapter 8
Command-Line Parameters for SQL*Loader

8-37

When using Mode Two parallel loading, DEGREE_OF_PARALLELISM determines the
number of loader threads. This is the fastest mode that you can use when loading
sharded tables in parallel. When loading non-sharded tables, however, this is the non-
optimized mode. In Mode Two, reader and loader threads appear separately in the log
file, either as reader or as loader threads.

When using Mode Three automatic parallel loads, SQL*Loader Reader/Loaders read
all files (no granules) for sharded tables.

The READER_COUNT parameter determines the number of readers available to read files.

Restrictions

Example

The following example sets the number of reader threads to five.

READER_COUNT=5

Related Topics

• Loading Modes for Automatic Parallel Loads

8.2.36 READSIZE
The READSIZE SQL*Loader command-line parameter specifies (in bytes) the size of the
read buffer, if you choose not to use the default.

Default

1048576

Syntax and Description

READSIZE=n

In the conventional path method, the bind array is limited by the size of the read buffer.
Therefore, the advantage of a larger read buffer is that more data can be read before a
commit operation is required.

For example, setting READSIZE to 1000000 enables SQL*Loader to perform reads from
the data file in chunks of 1,000,000 bytes before a commit is required.

Note:

If the READSIZE value specified is smaller than the BINDSIZE value, then the
READSIZE value is increased.

For automatic parallel loading, to increase the read buffer when loading shards, you
can use the READSIZE parameter to set a higher buffer value.

Chapter 8
Command-Line Parameters for SQL*Loader

8-38

Restrictions

• The READSIZE parameter is used only when reading data from data files. When reading
records from a control file, a value of 64 kilobytes (KB) is always used as the READSIZE.

• The READSIZE parameter has no effect on Large Objects (LOBs). The size of the LOB
read buffer is fixed at 64 kilobytes (KB).

• The maximum size allowed is platform-dependent.

Example

The following example sets the size of the read buffer to 500,000 bytes, which means that
commit operations will be required more often than if the default or a value larger than the
default were used.

READSIZE=500000

Related Topics

• BINDSIZE

8.2.37 RESUMABLE
The RESUMABLE SQL*Loader command-line parameter enables and disables resumable space
allocation.

Default

FALSE

Purpose

Enables and disables resumable space allocation.

Syntax and Description

RESUMABLE=[TRUE | FALSE]

See Also:

Oracle Database Administrator's Guide for more information about resumable
space allocation.

Restrictions

• Because this parameter is disabled by default, you must set RESUMABLE=TRUE to use its
associated parameters, RESUMABLE_NAME and RESUMABLE_TIMEOUT.

Chapter 8
Command-Line Parameters for SQL*Loader

8-39

Example

The following example enables resumable space allocation:

RESUMABLE=TRUE

8.2.38 RESUMABLE_NAME
The RESUMABLE_NAME SQL*Loader command-line parameter identifies a statement that
is resumable.

Default

'User USERNAME(USERID), Session SESSIONID, Instance INSTANCEID'

Syntax and Description

RESUMABLE_NAME='text_string'

This value is a user-defined text string that is inserted in either the USER_RESUMABLE or
DBA_RESUMABLE view to help you identify a specific resumable statement that has been
suspended.

Restrictions

• This parameter is ignored unless the RESUMABLE parameter is set to TRUE to enable
resumable space allocation.

Example

RESUMABLE_NAME='my resumable sql'

8.2.39 RESUMABLE_TIMEOUT
The RESUMABLE_TIMEOUT SQL*Loader command-line parameter specifies the time
period, in seconds, during which an error must be fixed.

Default

7200 seconds (2 hours)

Syntax and Description

RESUMABLE_TIMEOUT=n

If the error is not fixed within the timeout period, then execution of the statement is
terminated, without finishing.

Restrictions

• This parameter is ignored unless the RESUMABLE parameter is set to TRUE to enable
resumable space allocation.

Chapter 8
Command-Line Parameters for SQL*Loader

8-40

Example

The following example specifies that errors must be fixed within ten minutes (600 seconds).

RESUMABLE_TIMEOUT=600

8.2.40 ROWS
For conventional path loads, the ROWS SQL*Loader command-line parameter specifies the
number of rows in the bind array, and in direct path loads, the number of rows to read from
data files before a save.

Default

Specifies the number of rows in the bind array. The Conventional path default is 64. Direct
path default is all rows.

Purpose

For conventional path loads the ROWS parameter specifies the number of rows in the bind
array.For direct path loads, the ROWS parameter specifies the number of rows that
SQL*Loader reads from the data files before a data save.

Syntax

ROWS=n

Conventional Path Loads Description

In conventional path loads only, the ROWS parameter specifies the number of rows in the bind
array. The maximum number of rows is 65534.

Direct Path Loads Description

In direct path loads only, the ROWS parameter identifies the number of rows that you want to
read from the data file before a data save. The default is to read all rows and save data once
at the end of the load. The actual number of rows loaded into a table on a save is
approximately the value of ROWS minus the number of discarded and rejected records since
the last save.

Note:

If you specify a low value for ROWS, and then attempt to compress data using table
compression, then the compression ratio probably will be degraded. When
compressing the data, Oracle recommends that you either specify a high value, or
accept the default value.

Restrictions

• The ROWS parameter is ignored for direct path loads when data is loaded into an Index
Organized Table (IOT), or into a table containing VARRAY types, XML columns, or Large
Objects (LOBs). This means that the load still takes place, but no save points are done.

Chapter 8
Command-Line Parameters for SQL*Loader

8-41

• For direct path loads, because LONG VARCHAR data type data are stored as LOBs,
you cannot use the ROWS parameter. If you attempt to use the ROWS parameter with
LONG VARCHAR data in direct path loads, then you receive an ORA-39777 error
(Data saves are not allowed when loading LOB columns).

Example

In a conventional path load, the following example would result in an error because the
specified value exceeds the allowable maximum of 65534 rows.

ROWS=65900

Related Topics

• Using Data Saves to Protect Against Data Loss
When you have a savepoint, if you encounter an instance failure during a
SQL*Loader load, then use the SKIP parameter to continue the load.

8.2.41 SDF_PREFIX
The SDF_PREFIX SQL*Loader command-line parameter specifies a directory prefix,
which is added to file names of LOBFILEs and secondary data files (SDFs) that are
opened as part of a load operation.

Default

There is no default.

Purpose

Specifies a directory prefix, which is added to file names of LOBFILEs and secondary
data files (SDFs) that are opened as part of a load operation.

Note:

The SDF_PREFIX parameter can also be specified in the OPTIONS clause in the
SQL Loader control file.

Syntax and Description

SDF_PREFIX=string

If SDF_PREFIX is specified, then the string value must be specified as well. There is no
validation or verification of the string. The value of SDF_PREFIX is prepended to the
filenames used for all LOBFILEs and SDFs opened during the load. If the resulting
string is not the name of as valid file, then the attempt to open that file fails and an
error is reported.

If SDF_PREFIX is not specified, then file names for LOBFILEs and SDFs are assumed
to be relative to the current working directory. Using SDF_PREFIX allows those files
names to be relative to a different directory.

Chapter 8
Command-Line Parameters for SQL*Loader

8-42

Quotation marks are only required around the string if it contains characters that would
confuse the command line parser (for example, a space).

The file names that are built by prepending SDF_PREFIX to the file names found in the record
are passed to the operating system to open the file. The prefix can be relative to the current
working directory from which SQL*Loader is being executed or it can be the start of an
absolute path.

Restrictions

• The SDF_PREFIX parameter should not be used if the file specifications for the LOBFILEs
or SDFs contain full file names.

Example

The following SQL*Loader command looks for LOB files in the lobdir subdirectory of the
current directory

sqlldr control=picts.ctl log=picts.log sdf_prefix=lobdir/

8.2.42 SILENT
The SILENT SQL*Loader command-line parameter suppresses some of the content that is
written to the screen during a SQL*Loader operation.

Default

There is no default.

Syntax and Description

SILENT=[HEADER | FEEDBACK | ERRORS | DISCARDS | PARTITIONS | ALL]

Use the appropriate values to suppress one or more of the following (if more than one option
is specified, they must be separated by commas):

• HEADER: Suppresses the SQL*Loader header messages that normally appear on the
screen. Header messages still appear in the log file.

• FEEDBACK: Suppresses the "commit point reached" messages and the status messages
for the load that normally appear on the screen. But "XX Rows successfully loaded."
even prints on the screen.

• ERRORS: Suppresses the data error messages in the log file that occur when a record
generates an Oracle error that causes it to be written to the bad file. A count of rejected
records still appears.

• DISCARDS: Suppresses the messages in the log file for each record written to the discard
file.

• PARTITIONS: Disables writing the per-partition statistics to the log file during a direct load
of a partitioned table.

• ALL: Implements all of the suppression values: HEADER, FEEDBACK, ERRORS, DISCARDS,
and PARTITIONS. But "XX Rows successfully loaded." even prints on the screen.

Chapter 8
Command-Line Parameters for SQL*Loader

8-43

Example

You can suppress the header and feedback messages that normally appear on the
screen with the following command-line argument:

SILENT=HEADER, FEEDBACK

But "XX Rows successfully loaded." even prints on the screen.

8.2.43 SKIP
The SKIP SQL*Loader command-line parameter specifies the number of logical
records from the beginning of the file that should not be loaded.

Default

0 (No records are skipped.)

Purpose

Specifies the number of logical records from the beginning of the file that should not be
loaded. Using this specification enables you to continue loads that have been
interrupted for some reason, without loading records that have already been
processed.

Syntax and Description

SKIP=n

You can use the SKIP parameter for all conventional loads, for single-table direct path
loads, and for multiple-table direct path loads when the same number of records was
loaded into each table. You cannot use SKIP for multiple-table direct path loads when a
different number of records was loaded into each table.

If a WHEN clause is also present, and the load involves secondary data, then the
secondary data is skipped only if the WHEN clause succeeds for the record in the
primary data file.

Restrictions

• The SKIP parameter cannot be used for external table loads.

Example

The following example skips the first 500 logical records in the data files before
proceeding with the load:

SKIP=500

Related Topics

• Interrupted SQL*Loader Loads
Learn about common scenarios in which SQL*Loader loads are interrupted or
discontinued, and what you can do to correct these issues.

Chapter 8
Command-Line Parameters for SQL*Loader

8-44

8.2.44 SKIP_INDEX_MAINTENANCE
The SKIP_INDEX_MAINTENANCE SQL*Loader command-line parameter specifies whether to
stop index maintenance for direct path loads.

Default

FALSE

Purpose

Specifies whether to stop index maintenance for direct path loads.

Syntax and Description

SKIP_INDEX_MAINTENANCE=[TRUE | FALSE]

If set to TRUE, this parameter causes the index partitions that would have had index keys
added to them to instead be marked Index Unusable because the index segment is
inconsistent with respect to the data it indexes. Index segments that are unaffected by the
load retain the state they had before the load.

The SKIP_INDEX_MAINTENANCE parameter:

• Applies to both local and global indexes

• Can be used (with the PARALLEL parameter) to perform parallel loads on an object that
has indexes

• Can be used (with the PARTITION parameter on the INTO TABLE clause) to do a single
partition load to a table that has global indexes

• Records a list (in the SQL*Loader log file) of the indexes and index partitions that the
load set to an Index Unusable state

Restrictions

• The SKIP_INDEX_MAINTENANCE parameter does not apply to conventional path loads.

• Indexes that are unique and marked Unusable are not allowed to skip index
maintenance. This rule is enforced by DML operations, and enforced by the direct path
load to be consistent with DML.

Example

The following example stops index maintenance from taking place during a direct path load
operation:

SKIP_INDEX_MAINTENANCE=TRUE

Chapter 8
Command-Line Parameters for SQL*Loader

8-45

8.2.45 SKIP_UNUSABLE_INDEXES
The SKIP_UNUSABLE_INDEXES SQL*Loader command-line parameter specifies whether
to skip an index encountered in an Index Unusable state and continue the load
operation.

Default

The value of the Oracle Database configuration parameter, SKIP_UNUSABLE_INDEXES,
as specified in the initialization parameter file. The default database setting is TRUE.

Purpose

Specifies whether to skip an index encountered in an Index Unusable state and
continue the load operation.

Syntax and Description

SKIP_UNUSABLE_INDEXES=[TRUE | FALSE]

A value of TRUE for SKIP_UNUSABLE_INDEXES means that if an index in an Index
Unusable state is encountered, it is skipped and the load operation continues. This
allows SQL*Loader to load a table with indexes that are in an Unusable state before
the beginning of the load. Indexes that are not in an Unusable state at load time will be
maintained by SQL*Loader. Indexes that are in an Unusable state at load time will not
be maintained, but instead will remain in an Unusable state at load completion.

Both SQL*Loader and Oracle Database provide a SKIP_UNUSABLE_INDEXES parameter.
The SQL*Loader SKIP_UNUSABLE_INDEXES parameter is specified at the SQL*Loader
command line. The Oracle Database SKIP_UNUSABLE_INDEXES parameter is specified
as a configuration parameter in the initialization parameter file. It is important to
understand how they affect each other.

If you specify a value for SKIP_UNUSABLE_INDEXES at the SQL*Loader command line,
then it overrides the value of the SKIP_UNUSABLE_INDEXES configuration parameter in
the initialization parameter file.

If you do not specify a value for SKIP_UNUSABLE_INDEXES at the SQL*Loader command
line, then SQL*Loader uses the Oracle Database setting for the
SKIP_UNUSABLE_INDEXES configuration parameter, as specified in the initialization
parameter file. If the initialization parameter file does not specify a setting for
SKIP_UNUSABLE_INDEXES, then the default setting is TRUE.

The SKIP_UNUSABLE_INDEXES parameter applies to both conventional and direct path
loads.

Restrictions

• Indexes that are unique and marked Unusable are not allowed to skip index
maintenance. This rule is enforced by DML operations, and enforced by the direct
path load to be consistent with DML.

Chapter 8
Command-Line Parameters for SQL*Loader

8-46

Example

If the Oracle Database initialization parameter has a value of SKIP_UNUSABLE_INDEXES=FALSE,
then setting SKIP_UNUSABLE_INDEXES=TRUE on the SQL*Loader command line overrides it.
Therefore, if an index in an Index Unusable state is encountered after this parameter is set,
then it is skipped, and the load operation continues.

SKIP_UNUSABLE_INDEXES=TRUE

8.2.46 STREAMSIZE
The STREAMSIZE SQL*Loader command-line parameter specifies the size (in bytes) of the
data stream sent from the client to the server.

Default

256000

Purpose

Specifies the size (in bytes) of the data stream sent from the client to the server.

Syntax and Description

STREAMSIZE=n

The STREAMSIZE parameter specifies the size of the direct path stream buffer. The number of
column array rows (specified with the COLUMNARRAYROWS parameter) determines the number of
rows loaded before the stream buffer is built. The optimal values for these parameters vary,
depending on the system, input data types, and Oracle column data types used. When you
are using optimal values for your particular configuration, the elapsed time in the SQL*Loader
log file should go down.

Restrictions

• The STREAMSIZE parameter applies only to direct path loads.

• The minimum value for STREAMSIZE is 65536. If a value lower than 65536 is specified,
then 65536 is used instead.

Example

The following example specifies a direct path stream buffer size of 300,000 bytes.

STREAMSIZE=300000

Related Topics

• Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before the
stream buffer is built.

Chapter 8
Command-Line Parameters for SQL*Loader

8-47

8.2.47 TRIM
The TRIM SQL*Loader command-line parameter specifies whether you want spaces
trimmed from the beginning of a text field, the end of a text field, both, or neither.

Default

LDRTRIM

Purpose

Specifies that spaces should be trimmed from the beginning of a text field, the end of a
text field, both, or neither. Spaces include blanks and other nonprinting characters,
such as tabs, line feeds, and carriage returns.

Syntax and Description

TRIM=[LRTRIM | NOTRIM | LTRIM | RTRIM | LDRTRIM]

The valid values for the TRIM parameter are as follows:

• NOTRIM indicates that you want no characters trimmed from the field. This setting
generally yields the fastest performance.

• LRTRIM indicates that you want both leading and trailing spaces trimmed from the
field.

• LTRIM indicates that you want leading spaces trimmed from the field

• RTRIM indicates that you want trailing spaces trimmed from the field.

• LDRTRIM is the same as NOTRIM except in the following cases:

– If the field is not a delimited field, then spaces are trimmed from the right.

– If the field is a delimited field with OPTIONALLY ENCLOSED BY specified, and the
optional enclosures are missing for a particular instance, then spaces are
trimmed from the left.

Note:

If trimming is specified for a field that consists only of spaces, then the field is
set to NULL.

Restrictions

• The TRIM parameter is valid only when the external table load method is used.

Chapter 8
Command-Line Parameters for SQL*Loader

8-48

Example

The following example specifies a load operation for which no characters are trimmed from
any fields:

TRIM=NOTRIM

8.2.48 USERID
The USERID SQL*Loader command-line parameter provides your Oracle username and
password for SQL*Loader.

Default

There is no default.

Purpose

Provides your Oracle user name and password for SQL*Loader, so that you are not prompted
to provide them. If it is omitted, then you are prompted for them. If you provide as the value a
slash (/), then USERID defaults to your operating system login.

Syntax and Description

USERID=[username | / | SYS]

Specify a user name. For security reasons, Oracle recommends that you specify only the
user name on the command line. SQL*Loader then prompts you for a password.

If you do not specify the USERID parameter, then you are prompted for it. If you use a forward
slash (virgule), then USERID defaults to your operating system login.

If you connect as user SYS, then you must also specify AS SYSDBA in the connect string.

Restrictions

• Because the string AS SYSDBA, contains a blank, some operating systems can require
that you place the entire connect string inside quotation marks, or marked as a literal by
some other method. Some operating systems also require that quotation marks on the
command line are preceded by an escape character, such as backslashes.

Refer to your operating system-specific documentation for information about special and
reserved characters on your system.

Example

The following example specifies a user name of hr. SQL*Loader then prompts for a
password. Because it is the first and only parameter specified, you do not need to include the
parameter name USERID:

> sqlldr hr
Password:

Chapter 8
Command-Line Parameters for SQL*Loader

8-49

Related Topics

• Specifying Parameters on the Command Line
When you start SQL*Loader, you specify parameters to establish various
characteristics of the load operation.

8.3 Exit Codes for Inspection and Display
Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon
completion.

Usage Notes

In addition to recording the results in a log file, SQL*Loader may also report the
outcome in a process exit code. This Oracle SQL*Loader functionality allows for
checking the outcome of a SQL*Loader invocation from the command line or a script.
The following table shows the exit codes for various results:

Table 8-1 Exit Codes for SQL*Loader

Result Exit Code

All rows loaded successfully EX_SUCC
All or some rows rejected EX_WARN
All or some rows discarded EX_WARN
Discontinued load EX_WARN
Command-line or syntax errors EX_FAIL
Oracle errors nonrecoverable for SQL*Loader EX_FAIL
Operating system errors (such as file open/close and malloc) EX_FTL

Examples

For Linux and Unix operating systems, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1
EX_WARN 2
EX_FTL 3

For Windows operating systems, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1
EX_WARN 2
EX_FTL 4

If SQL*Loader returns any exit code other than zero, then consult your system log files
and SQL*Loader log files for more detailed diagnostic information.

On Unix platforms, you can check the exit code from the shell to determine the
outcome of a load.

Chapter 8
Exit Codes for Inspection and Display

8-50

9
SQL*Loader Control File Reference

The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions for a SQL*Loader job.

Note:

You can also use SQL*Loader without a control file; this is known as SQL*Loader
express mode. See SQL*Loader Express for more information.

• Control File Contents
The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions.

• Comments in the Control File
Comments can appear anywhere in the parameter section of the file, but they should not
appear within the data.

• Specifying Command-Line Parameters in the Control File
You can specify command-line parameters in the SQL*Loader control file using the
OPTIONS clause.

• Specifying File Names and Object Names
In general, SQL*Loader follows the SQL standard for specifying object names (for
example, table and column names).

• Identifying XMLType Tables
You can identify and select XML type tables to load by using the XMLTYPE clause in a
SQL*Loader control file.

• Specifying Field Order
You can use the FIELD NAMES clause in the SQL*Loader control file to specify field order.

• Specifying Data Files
Learn how you can use the SQL*Loader control file to specify how data files are loaded.

• Specifying CSV Format Files
To direct SQL*Loader to access the data files as comma-separated-values format files,
use the CSV clause.

• Loading VECTOR Columns from Character Data and fvec Format Files
To direct SQL*Loader to to load VECTOR columns from character data and binary floating
point fvec files, load them into a table with this procedure.

• Identifying Data in the Control File with BEGINDATA
Specify the BEGINDATA statement before the first data record.

• Specifying Data File Format and Buffering
You can specify an operating system-dependent file processing specifications string
option using os_file_proc_clause.

9-1

• Specifying the Bad File
Learn what SQL*Loader bad files are, and how to specify them.

• Specifying the Discard File
Learn what SQL*Loader discard files are, what they contain, and how to specify
them.

• Specifying a NULLIF Clause At the Table Level
To load a table character field as NULL when it contains certain character strings
or hex strings, you can use a NULLIF clause at the table level with SQL*Loader.

• Specifying Datetime Formats At the Table Level
You can specify certain datetime formats in a SQL*Loader control file at the table
level, or override a table level format by specifying a mask at the field level.

• Handling Different Character Encoding Schemes
SQL*Loader supports different character encoding schemes (called character
sets, or code pages).

• Interrupted SQL*Loader Loads
Learn about common scenarios in which SQL*Loader loads are interrupted or
discontinued, and what you can do to correct these issues.

• Assembling Logical Records from Physical Records
This section describes assembling logical records from physical records.

• Loading Logical Records into Tables
Learn about the different methods and available to you to load logical records into
tables with SQL*Loader.

• Index Options with SQL*Loader
To control how SQL*Loader creates index entries, you can set SORTED INDEXES
and SINGLEROW clauses.

• Benefits of Using Multiple INTO TABLE Clauses
Learn from examples how you can use multiple INTO TABLE clauses for specific
SQL*Loader use cases

• Bind Arrays and Conventional Path Loads
With the SQL*Loader array-interface option, multiple table rows are read at one
time, and stored in a bind array.

Related Topics

• SQL*Loader Express
SQL*Loader express mode allows you to quickly and easily use SQL*Loader to
load simple data types.

9.1 Control File Contents
The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions.

DDL is used to control the following aspects of a SQL*Loader session:

• Where SQL*Loader will find the data to load

• How SQL*Loader expects that data to be formatted

• How SQL*Loader will be configured (memory management, rejecting records,
interrupted load handling, and so on) as it loads the data

Chapter 9
Control File Contents

9-2

• How SQL*Loader will manipulate the data being loaded

See SQL*Loader Syntax Diagrams for syntax diagrams of the SQL*Loader DDL.

To create the SQL*Loader control file, use a text editor, such as vi or xemacs.

In general, the control file has three main sections, in the following order:

• Session-wide information

• Table and field-list information

• Input data (optional section)

The following is an example of a control file.

Example 9-1 Control File

1 -- This is an example control file
2 LOAD DATA
3 INFILE 'sample.dat'
4 BADFILE 'sample.bad'
5 DISCARDFILE 'sample.dsc'
6 APPEND
7 INTO TABLE emp
8 WHEN (57) = '.'
9 TRAILING NULLCOLS
10 (hiredate SYSDATE,
 deptno POSITION(1:2) INTEGER EXTERNAL(2)
 NULLIF deptno=BLANKS,
 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
 NULLIF job=BLANKS "UPPER(:job)",
 mgr POSITION(28:31) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR
 TERMINATED BY WHITESPACE "UPPER(:ename)",
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE
 "TO_NUMBER(:sal,'$99,999.99')",
 comm INTEGER EXTERNAL ENCLOSED BY '(' AND '%'
 ":comm * 100"
)

The numbers that appear to the left in this In this control file example would not appear in a
real control file. They are keyed in this sample to the explanatory notes in the following list:

1. This comment prefacing the entries in the control file is an example of how to enter
comments in a control file. See Comments in the Control File.

2. The LOAD DATA statement tells SQL*Loader that this is the beginning of a new data load.
See SQL*Loader Syntax Diagrams for syntax information.

3. The INFILE clause specifies the name of a data file containing the data you want to load.
See Specifying Data Files.

4. The BADFILE clause specifies the name of a file into which rejected records are placed.
See Specifying the Bad File.

5. The DISCARDFILE clause specifies the name of a file into which discarded records are
placed. See Specifying the Discard File.

Chapter 9
Control File Contents

9-3

6. The APPEND clause is one of the options that you can use when loading data into a
table that is not empty. See Loading Data into Nonempty Tables.

To load data into a table that is empty, use the INSERT clause. See Loading Data
into Empty Tables.

7. The INTO TABLE clause enables you to identify tables, fields, and data types. It
defines the relationship between records in the data file, and tables in the
database. See Specifying Table Names.

8. The WHEN clause specifies one or more field conditions. SQL*Loader decides
whether to load the data based on these field conditions. See Loading Records
Based on a Condition.

9. The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively positioned
columns that are not present in the record as null columns. See Handling Short
Records with Missing Data.

10. The remainder of the control file contains the field list, which provides information
about column formats in the table being loaded. See SQL*Loader Field List
Reference for information about that section of the control file.

9.2 Comments in the Control File
Comments can appear anywhere in the parameter section of the file, but they should
not appear within the data.

Precede any comment with two hyphens, for example:

--This is a comment

All text to the right of the double hyphen is ignored, until the end of the line.

9.3 Specifying Command-Line Parameters in the Control
File

You can specify command-line parameters in the SQL*Loader control file using the
OPTIONS clause.

This can be useful if you often use a control file with the same set of options. The
OPTIONS clause precedes the LOAD DATA statement.

• OPTIONS Clause for Schema Data
The following SQL*Loader command-line parameters can be specified using the
OPTIONS clause.

• OPTIONS Clause for SODA Collections
A subset o f SQL*Loader command-line parameters can be specified using the
OPTIONS clause with SODA collections.

• Specifying the Number of Default Expressions to Be Evaluated At One Time
Use the SQL*Loader DEFAULT EXPRESSION CACHE n clause to specify how many
default expressions are evaluated at a time by the direct path load. The default
value is 100.

Chapter 9
Comments in the Control File

9-4

9.3.1 OPTIONS Clause for Schema Data
The following SQL*Loader command-line parameters can be specified using the OPTIONS
clause.

Note:

These parameters are described in greater detail in the section "SQL*Loader
Command-Line Reference"

BINDSIZE = n
COLUMNARRAYROWS = n
DATE_CACHE = n
DEGREE_OF_PARALLELISM= [degree-num|DEFAULT|AUTO|NONE]
DIRECT = [TRUE | FALSE]
EMPTY_LOBS_ARE_NULL = [TRUE | FALSE]
ERRORS = n
EXTERNAL_TABLE = [NOT_USED | GENERATE_ONLY | EXECUTE]
FILE = tablespace file
LOAD = n
MULTITHREADING = {TRUE | FALSE]
PARALLEL = [TRUE | FALSE]
READSIZE = n
RESUMABLE = [TRUE | FALSE]
RESUMABLE_NAME = 'text string'
RESUMABLE_TIMEOUT = n
ROWS = n
SDF_PREFIX = string
SILENT = [HEADER | FEEDBACK | ERRORS | DISCARDS | PARTITIONS | ALL]
SKIP = n
SKIP_INDEX_MAINTENANCE = [TRUE | FALSE]
SKIP_UNUSABLE_INDEXES = [TRUE | FALSE]
STREAMSIZE = n
TRIM= [LRTRIM|NOTRIM|LTRIM|RTRIM|LDRTRIM]

The following is an example use of the OPTIONS clause that you could use in a SQL*Loader
control file:

OPTIONS (BINDSIZE=100000, SILENT=(ERRORS, FEEDBACK))

Note:

Parameter values specified on the command line override parameter values
specified in the control file OPTIONS clause.

Related Topics

• SQL*Loader Command-Line Reference

Chapter 9
Specifying Command-Line Parameters in the Control File

9-5

9.3.2 OPTIONS Clause for SODA Collections
A subset o f SQL*Loader command-line parameters can be specified using the
OPTIONS clause with SODA collections.

Command line parameters can appear inside a control file using an OPTIONS clause.
The command-line parameters that can be used with SODA collections are a subset of
the SQL*Loader command-line parameters.

Note:

The SQL*Loader command-line parameters that you can use with SODA
collections are described in the section "Permitted SQL*Loader Command-
Line Parameters for SODA Collections"

If you attempt to use any command line parameters not listed below to load SODA
collections with SQL*Loader, then you will encounter an error.

BINDSIZE
EMPTY_LOBS_ARE_NULL
ERRORS
LOAD
READSIZE
RESUMABLE
RESUMABLE_NAME
RESUMABLE_TIMEOUT
ROWS
SDF_PREFIX
SILENT
SKIP
TRIM

The following is an example use of the OPTIONS clause that you could use in a
SQL*Loader control file:

OPTIONS (BINDSIZE=100000, SILENT=(ERRORS, FEEDBACK))

Note:

Parameter values specified on the command line override parameter values
specified in the control file OPTIONS clause.

Related Topics

• Permitted SQL*Loader Command-Line Parameters for SODA Collections

• SQL*Loader Command-Line Reference

Chapter 9
Specifying Command-Line Parameters in the Control File

9-6

9.3.3 Specifying the Number of Default Expressions to Be Evaluated At
One Time

Use the SQL*Loader DEFAULT EXPRESSION CACHE n clause to specify how many default
expressions are evaluated at a time by the direct path load. The default value is 100.

Using the DEFAULT EXPRESSION CACHE clause can significantly improve performance when
default column expressions that include sequences are evaluated.

At the end of the load there may be sequence numbers left in the cache that never get used.
This can happen when the number of rows to load is not a multiple of n. If you require no loss
of sequence numbers, then specify a value of 1 for this clause.

9.4 Specifying File Names and Object Names
In general, SQL*Loader follows the SQL standard for specifying object names (for example,
table and column names).

• File Names That Conflict with SQL and SQL*Loader Reserved Words
SQL and SQL*Loader reserved words, and words with special characters or case-
sensitivity, must be enclosed in quotation marks.

• Specifying SQL Strings in the SQL*Loader Control File
When you apply SQL operators to field data with the SQL string, you must specify SQL
strings within double quotation marks.

• Operating Systems and SQL Loader Control File Characters
The characters that you use in control files are affected by operating system reserved
characters, escape characters, and special characters.

9.4.1 File Names That Conflict with SQL and SQL*Loader Reserved Words
SQL and SQL*Loader reserved words, and words with special characters or case-sensitivity,
must be enclosed in quotation marks.

SQL and SQL*Loader reserved words must be specified within double quotation marks.

The only SQL*Loader reserved word is CONSTANT.

You must use double quotation marks if the object name contains special characters other
than those recognized by SQL ($, #, _), or if the name is case-sensitive.

Related Topics

• Oracle SQL Reserved Words and Keywords in Oracle Database SQL Language
Reference

9.4.2 Specifying SQL Strings in the SQL*Loader Control File
When you apply SQL operators to field data with the SQL string, you must specify SQL
strings within double quotation marks.

Chapter 9
Specifying File Names and Object Names

9-7

See Also:

Applying SQL Operators to Fields

9.4.3 Operating Systems and SQL Loader Control File Characters
The characters that you use in control files are affected by operating system reserved
characters, escape characters, and special characters.

Learn how the the operating system that you are using affects the characters you can
use in your SQL*Loader Control file.

• Specifying a Complete Path
Specifying the path name within single quotation marks prevents errors.

• Backslash Escape Character
In DDL syntax, you can place a double quotation mark inside a string delimited by
double quotation marks by preceding it with the backslash escape character (\), if
the escape character is allowed on your operating system.

• Nonportable Strings
There are two kinds of character strings in a SQL*Loader control file that are not
portable between operating systems: filename and file processing option strings.

• Using the Backslash as an Escape Character
To separate directories in a path name, use the backslash character if both your
operating system and database implements the backslash escape character.

• Escape Character Is Sometimes Disallowed
Your operating system can disallow the use of escape characters for nonportable
strings in Oracle Database.

9.4.3.1 Specifying a Complete Path
Specifying the path name within single quotation marks prevents errors.

If you encounter problems when trying to specify a complete path name, it may be due
to an operating system-specific incompatibility caused by special characters in the
specification.

9.4.3.2 Backslash Escape Character
In DDL syntax, you can place a double quotation mark inside a string delimited by
double quotation marks by preceding it with the backslash escape character (\), if the
escape character is allowed on your operating system.

The same rule applies when single quotation marks are required in a string delimited
by single quotation marks.

For example, homedir\data"norm\mydata contains a double quotation mark.
Preceding the double quotation mark with a backslash indicates that the double
quotation mark is to be taken literally:

INFILE 'homedir\data\"norm\mydata'

You can also put the escape character itself into a string by entering it twice.

Chapter 9
Specifying File Names and Object Names

9-8

For example:

"so'\"far" or 'so\'"far' is parsed as so'"far
"'so\\far'" or '\'so\\far\'' is parsed as 'so\far'
"so\\\\far" or 'so\\\\far' is parsed as so\\far

Note:

A double quotation mark in the initial position cannot be preceded by an escape
character. Therefore, you should avoid creating strings with an initial quotation
mark.

9.4.3.3 Nonportable Strings
There are two kinds of character strings in a SQL*Loader control file that are not portable
between operating systems: filename and file processing option strings.

When you convert to a different operating system, you will probably need to modify these
strings. All other strings in a SQL*Loader control file should be portable between operating
systems.

9.4.3.4 Using the Backslash as an Escape Character
To separate directories in a path name, use the backslash character if both your operating
system and database implements the backslash escape character.

If your operating system uses the backslash character to separate directories in a path name,
and if the Oracle Database release running on your operating system implements the
backslash escape character for file names and other nonportable strings, then you must
specify double backslashes in your path names, and use single quotation marks.

9.4.3.5 Escape Character Is Sometimes Disallowed
Your operating system can disallow the use of escape characters for nonportable strings in
Oracle Database.

When the operating sytem disallows the use of the backslash character (\) as an escape
character, a backslash is treated as a normal character, rather than as an escape character.
The backslash character is still usable in all other strings. As a result of this operating system
restriction, path names such as the following can be specified normally:

INFILE 'topdir\mydir\myfile'

Double backslashes are not needed.

Because the backslash is not recognized as an escape character, strings within single
quotation marks cannot be embedded inside another string delimited by single quotation
marks. This rule also applies to the use of double quotation marks. A string within double
quotation marks cannot be embedded inside another string delimited by double quotation
marks.

Chapter 9
Specifying File Names and Object Names

9-9

9.5 Identifying XMLType Tables
You can identify and select XML type tables to load by using the XMLTYPE clause in a
SQL*Loader control file.

As of Oracle Database 10g, the XMLTYPE clause is available for use in a SQL*Loader
control file. This clause is of the format XMLTYPE(field name). You can use this clause
to identify XMLType tables, so that the correct SQL statement can be constructed. You
can use the XMLTYPE clause in a SQL*Loader control file to load data into a schema-
based XMLType table.

Example 9-2 Identifying XMLType Tables in the SQL*Loader Control File

The XML schema definition is as follows. It registers the XML schema, xdb_user.xsd,
in the Oracle XML DB, and then creates the table, xdb_tab5.

begin dbms_xmlschema.registerSchema('xdb_user.xsd',
'<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:element name = "Employee"
 xdb:defaultTable="EMP31B_TAB">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "EmployeeId" type = "xs:positiveInteger"/>
 <xs:element name = "Name" type = "xs:string"/>
 <xs:element name = "Salary" type = "xs:positiveInteger"/>
 <xs:element name = "DeptId" type = "xs:positiveInteger"
 xdb:SQLName="DEPTID"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>',
TRUE, TRUE, FALSE); end;
/

The table is defined as follows:

CREATE TABLE xdb_tab5 OF XMLTYPE XMLSCHEMA "xdb_user.xsd" ELEMENT
"Employee";

In this next example, the control file used to load data into the table, xdb_tab5, loads
XMLType data by using the registered XML schema, xdb_user.xsd. The XMLTYPE
clause is used to identify this table as an XMLType table. To load the data into the table,
you can use either direct path mode, or conventional mode.

LOAD DATA
INFILE *
INTO TABLE xdb_tab5 TRUNCATE
xmltype(xmldata)
(
 xmldata char(4000)
)

Chapter 9
Identifying XMLType Tables

9-10

BEGINDATA
<Employee><EmployeeId>111</EmployeeId><Name>Ravi</Name><Salary>100000</
Salary><DeptId>12</DeptId></Employee>
<Employee><EmployeeId>112</EmployeeId><Name>John</Name><Salary>150000</
Salary><DeptId>12</DeptId></Employee>
<Employee><EmployeeId>113</EmployeeId><Name>Michael</Name><Salary>75000</
Salary><DeptId>12</DeptId></Employee>
<Employee><EmployeeId>114</EmployeeId><Name>Mark</Name><Salary>125000</
Salary><DeptId>16</DeptId></Employee>
<Employee><EmployeeId>115</EmployeeId><Name>Aaron</Name><Salary>600000</
Salary><DeptId>16</DeptId></Employee>

Example 9-3 Transforming XMLType Data to Transportable Binary XML (TBX) Storage
Type

To provide sharding support, and greater scalability, the Transportable Binary XML (TBX)
storage type transform is available beginning with Oracle Database 23c for XML documents.
Oracle recommends that you migrate XMLType columns stored as Compact Schema-Aware
XML (CSX) and other legacy storage types (CLOB, or Object-Relational) to XMLType
columns stored as Transportable Binary XML (TBX). The XMLType stored as TBX has many of
the same capabilities as the XMLType stored as CSX, without requiring central token tables
and schema registries.

To migrate legacy storage options to TBX, Oracle recommends that you use Online
Redefinition, because it incurs no application downtime. For example suppose you create
table p with the following specifications:

Create table p of xmltype xmltype store as binary XML;
create table int_p of xmltype xmltype store as transportable binary XML;
insert into p values (
xmltype('<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:noNamespaceSchemaLocation="orx2.xsd">
 <Reference>ABSENT_LINES</Reference>
 <Requestor>Michael L. Allen</Requestor>
 <User>ALLEN</User>
 <CostCenter>S30</CostCenter>
</PurchaseOrder>'));
commit;

You can then migrate table p using Online Redefinition:

declare
 error_count pls_integer;
begin
 DBMS_REDEFINITION.CAN_REDEF_TABLE('SCOTT', 'P',
DBMS_REDEFINITION.CONS_USE_ROWID);
 DBMS_REDEFINITION.START_REDEF_TABLE('SCOTT', 'P', 'INT_P', options_flag
=>DBMS_REDEFINITION.CONS_USE_ROWID);
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS('SCOTT', 'P', 'INT_P', 1, true,
true, true, true, error_count, true);
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE('SCOTT', 'P', 'INT_P');
 DBMS_REDEFINITION.FINISH_REDEF_TABLE('SCOTT', 'P', 'INT_P');

Chapter 9
Identifying XMLType Tables

9-11

end;
/

You can also use Online Redefinition migration with TBX for the following migration
tasks:

• Move tables to different tablespaces

• Add, modify, or drop table columns

• Move table partitions or subpartitions to different tablespaces

• Partition non-partitioned tables, or unpartition tables that are partitioned.

• Change partition structure (for example, change the partition structure from hash
partition to range partition)

Related Topics

• Identifying XMLType Tables
You can identify and select XML type tables to load by using the XMLTYPE clause in
a SQL*Loader control file.

9.6 Specifying Field Order
You can use the FIELD NAMES clause in the SQL*Loader control file to specify field
order.

The syntax is as follows:

FIELD NAMES {FIRST FILE|FIRST FILE IGNORE|ALL FILES|ALL FILES IGNORE|NONE}

The FIELD NAMES options are:

• FIRST FILE: Indicates that the first data file contains a list of field names for the
data in the first record. This list uses the same delimiter as the data in the data file.
The record is read for setting up the mapping between the fields in the data file
and the columns in the target table. The record is skipped when the data is
processed. This can be useful if the order of the fields in the data file is different
from the order of the columns in the table, or if the number of fields in the data file
is different from the number of columns in the target table

• FIRST FILE IGNORE: Indicates that the first data file contains a list of field names for
the data in the first record, but that the information should be ignored. The record
will be skipped when the data is processed, but it will not be used for setting up the
fields.

• ALL FILES: Indicates that all data files contain a list of field names for the data in
the first record. The first record is skipped in each data file when the data is
processed. The fields can be in a different order in each data file. SQL*Loader
sets up the load based on the order of the fields in each data file.

• ALL FILES IGNORE: Indicates that all data files contain a list of field names for the
data in the first record, but that the information should be ignored. The record is
skipped when the data is processed in every data file, but it will not be used for
setting up the fields.

• NONE: Indicates that the data file contains normal data in the first record. This is the
default.

Chapter 9
Specifying Field Order

9-12

The FIELD NAMES clause cannot be used for complex column types such as column objects,
nested tables, or VARRAYs.

9.7 Specifying Data Files
Learn how you can use the SQL*Loader control file to specify how data files are loaded.

• Understanding How to Specify Data Files
To load data files with SQL*Loader, you can specify data files in the control file using the
INFILE keyword.

• Examples of INFILE Syntax
The following list shows different ways you can specify INFILE syntax.

• Specifying Multiple Data Files
To load data from multiple data files in one SQL*Loader run, use an INFILE clause for
each data file.

9.7.1 Understanding How to Specify Data Files
To load data files with SQL*Loader, you can specify data files in the control file using the
INFILE keyword.

To specify a data file that contains the data that you want to load, use the INFILE keyword,
followed by the file name, and the optional file processing options string.

You can specify multiple single files by using multiple INFILE keywords. You can also use
wildcards in the file names (an asterisk (*) for multiple characters and a question mark (?) for
a single character).

Note:

You can also specify the data file from the command line by using the DATA
parameter. Refer to the available command-line parameters for SQL*Loader. A file
name specified on the command line overrides the first INFILE clause in the control
file.

If no file name is specified, then the file name defaults to the control file name with an
extension or file type of .dat.

If the control file itself contains the data that you want loaded, then specify an asterisk (*).
This specification is described in the topic "Identifying Data in the Control File with
BEGINDATA. .

Note:

The information in this section applies only to primary data files. It does not apply to
LOBFILEs or SDFs.

The syntax for INFILE is as follows:

Chapter 9
Specifying Data Files

9-13

INFILE
*

input_filename

os_file_proc_clause

The following table describes the parameters for the INFILE keyword.

Table 9-1 Parameters for the INFILE Keyword

Parameter Description

INFILE Specifies that a data file specification follows.

input_filename Name of the file containing the data. The file name can contain
wildcards. An asterisk (*) represents multiple characters, and a
question mark (?) represents a single character. For example:

INFILE 'emp*.dat'
INFILE 'm?emp.dat'

Any spaces or punctuation marks in the file name must be
enclosed within single quotation marks.

* If your data is in the control file itself, then use an asterisk instead
of the file name. If you have data in the control file and in data
files, then for the data to be read, you must specify the asterisk
first.

os_file_proc_clause This is the file-processing options string. It specifies the data file
format. It also optimizes data file reads. The syntax used for this
string is specific to your operating system.

Related Topics

• Identifying Data in the Control File with BEGINDATA
Specify the BEGINDATA statement before the first data record.

• Specifying File Names and Object Names
In general, SQL*Loader follows the SQL standard for specifying object names (for
example, table and column names).

• Specifying Data File Format and Buffering
You can specify an operating system-dependent file processing specifications
string option using os_file_proc_clause.

9.7.2 Examples of INFILE Syntax
The following list shows different ways you can specify INFILE syntax.

• Data contained in the control file itself:

INFILE *
• Data contained in a file named sample with a default extension of .dat:

INFILE sample
• Data contained in a file named datafile.dat with a full path specified:

INFILE 'c:/topdir/subdir/datafile.dat'

Chapter 9
Specifying Data Files

9-14

Note:

File names that include spaces or punctuation marks must be enclosed in
single quotation marks.

• Data contained in any file of type .dat whose name begins with emp:

INFILE 'emp*.dat'
• Data contained in any file of type .dat whose name begins with m, followed by any other

single character, and ending in emp. For example, a file named myemp.dat would be
included in the following:

INFILE 'm?emp.dat'

9.7.3 Specifying Multiple Data Files
To load data from multiple data files in one SQL*Loader run, use an INFILE clause for each
data file.

Data files need not have the same file processing options, although the layout of the records
must be identical. For example, two files could be specified with completely different file
processing options strings, and a third could consist of data in the control file.

You can also specify a separate discard file and bad file for each data file. In such a case, the
separate bad files and discard files must be declared immediately after each data file name.
For example, the following excerpt from a control file specifies four data files with separate
bad and discard files:

INFILE mydat1.dat BADFILE mydat1.bad DISCARDFILE mydat1.dis
INFILE mydat2.dat
INFILE mydat3.dat DISCARDFILE mydat3.dis
INFILE mydat4.dat DISCARDMAX 10 0

• For mydat1.dat, both a bad file and discard file are explicitly specified. Therefore both
files are created, as needed.

• For mydat2.dat, neither a bad file nor a discard file is specified. Therefore, only the bad
file is created, as needed. If created, the bad file has the default file name and extension
mydat2.bad. The discard file is not created, even if rows are discarded.

• For mydat3.dat, the default bad file is created, if needed. A discard file with the specified
name (mydat3.dis) is created, as needed.

• For mydat4.dat, the default bad file is created, if needed. Because the DISCARDMAX
option is used, SQL*Loader assumes that a discard file is required and creates it with the
default name mydat4.dsc.

9.8 Specifying CSV Format Files
To direct SQL*Loader to access the data files as comma-separated-values format files, use
the CSV clause.

This assumes that the file is a stream record format file with the normal carriage return string
(for example, \n on UNIX or Linux operating systems and either \n or \r\n on Windows

Chapter 9
Specifying CSV Format Files

9-15

operating systems). Record terminators can be included (embedded) in data values.
The syntax for the CSV clause is as follows:

FIELDS CSV [WITH EMBEDDED|WITHOUT EMBEDDED] [FIELDS TERMINATED BY ',']
[OPTIONALLY ENCLOSED BY '"']

The following are key points regarding the FIELDS CSV clause:

• The SQL*Loader default is to not use the FIELDS CSV clause.

• The WITH EMBEDDED and WITHOUT EMBEDDED options specify whether record
terminators are included (embedded) within any fields in the data.

• If WITH EMBEDDED is used, then embedded record terminators must be enclosed,
and intra-datafile parallelism is disabled for external table loads.

• The TERMINATED BY ',' and OPTIONALLY ENCLOSED BY '"' options are the
defaults and do not have to be specified. You can override them with different
termination and enclosure characters.

• When the CSV clause is used, only delimitable data types are allowed as control
file fields. Delimitable data types include CHAR, datetime, interval, and numeric
EXTERNAL.

• The TERMINATED BY and ENCLOSED BY clauses cannot be used at the field level
when the CSV clause is specified.

• When the CSV clause is specified, normal SQL*Loader blank trimming is done by
default. You can specify PRESERVE BLANKS to avoid trimming of spaces. Or, you can
use the SQL functions LTRIM and RTRIM in the field specification to remove left
and/or right spaces.

• When the CSV clause is specified, the INFILE * clause in not allowed. This means
that there cannot be any data included in the SQL*Loader control file.

The following sample SQL*Loader control file uses the FIELDS CSV clause with the
default delimiters:

LOAD DATA
INFILE "mydata.dat"
TRUNCATE
INTO TABLE mytable
FIELDS CSV WITH EMBEDDED
TRAILING NULLCOLS
(
 c0 char,
 c1 char,
 c2 char,
)

9.9 Loading VECTOR Columns from Character Data and
fvec Format Files

To direct SQL*Loader to to load VECTOR columns from character data and binary
floating point fvec files, load them into a table with this procedure.

Floating-point vector (fvec) format files are used for loading large arrays of floating
point numbers, which can be used with machine learning and scientific data
processing.

Chapter 9
Loading VECTOR Columns from Character Data and fvec Format Files

9-16

SQL*Loader supports loading VECTOR columns from character data and binary floating point
array fvec files. The format for fvec files is that each binary 32 bit floating point array is
preceded by a four (4) byte value, which is the number of elements in the vector. There can
be multiple vectors in the file, possibly with different dimensions.

Vector Columns from Character Data

You can load VECTOR columns from character data, including LOBFILE files. Binary floating
point data (fvec files) can only be loaded by using LOBFILE support. To load correctly, the
fvec files should have the extension .fvecs.

Vector Columns from fvec Files

To load binary data fvec files, use the new format fvecs in the control file syntax (format
"fvecs"). This format indicates the datafile contains binary floating point (float32) data.

For binary fvec files, they must be defined as follows:

• You must specify LOBFILE.

• You must specify the syntax format fvecs to indicate that the dafafile contains binary
dimensions.

• You must specify that the datafile contains raw binary data (raw).

The format is number of dimensions followed by that many floats (both number of dimensions
and float values are in binary). This format can be repeated any number of times in the file.

Example 9-4 Loading VECTOR column from Character Data fvec File

The following is an example of loading from character data:

CREATE TABLE t(
 c0 number,
 c1 vector
)
;

recoverable
load data
infile *
truncate
into table t
fields terminated by ':'
trailing nullcols
(
 c0 char,
 c1 char
)
begindata
1:[1.0,2.0,3.0]:
2:[100.0]:
.
.
.

Chapter 9
Loading VECTOR Columns from Character Data and fvec Format Files

9-17

Example 9-5 Loading VECTOR Columns from Binary fvec File

The following is an example of a control file used to load VECTOR columns from
binary floating point arrays, which uses the control file syntax format "fvecs":

load data
infile *
truncate
into table t
fields terminated by ','
trailing nullcols
(
 c0 position(1) char,
 c1 char lobfile (constant 't.fvecs' format "fvecs") raw
)
begindata
1,
2,
3,
4,
5

9.10 Identifying Data in the Control File with BEGINDATA
Specify the BEGINDATA statement before the first data record.

If the data is included in the control file itself, then the INFILE clause is followed by an
asterisk rather than a file name. The actual data is placed in the control file after the
load configuration specifications.

The syntax is:

BEGINDATA
first_data_record

Keep the following points in mind when using the BEGINDATA statement:

• If you omit the BEGINDATA statement but include data in the control file, then
SQL*Loader tries to interpret your data as control information and issues an error
message. If your data is in a separate file, then do not use the BEGINDATA
statement.

• Do not use spaces or other characters on the same line as the BEGINDATA
statement, or the line containing BEGINDATA will be interpreted as the first line of
data.

• Do not put comments after BEGINDATA, or they will also be interpreted as data.

Related Topics

• Examples of INFILE Syntax
The following list shows different ways you can specify INFILE syntax.

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

Chapter 9
Identifying Data in the Control File with BEGINDATA

9-18

9.11 Specifying Data File Format and Buffering
You can specify an operating system-dependent file processing specifications string option
using os_file_proc_clause.

When configuring SQL*Loader, you can specify an operating system-dependent file
processing options string (os_file_proc_clause) in the control file to specify file format and
buffering.

For example, suppose that your operating system has the following option-string syntax:

RECSIZE integer BUFFERS integer

In this syntax, RECSIZE is the size of a fixed-length record, and BUFFERS is the number of
buffers to use for asynchronous I/O.

To declare a file named mydata.dat as a file that contains 80-byte records and instruct
SQL*Loader to use 8 I/O buffers, you would use the following control file entry:

INFILE 'mydata.dat' "RECSIZE 80 BUFFERS 8"

Note:

This example uses the recommended convention of single quotation marks for file
names, and double quotation marks for everything else.

Related Topics

• Windows Processing Options in Oracle Database Administrator’s Reference for Microsoft
Windows

9.12 Specifying the Bad File
Learn what SQL*Loader bad files are, and how to specify them.

• Understanding and Specifying the Bad File
When SQL*Loader executes, it can create a file called a bad file, or reject file, in which it
places records that were rejected because of formatting errors or because they caused
Oracle errors.

• Examples of Specifying a Bad File Name
See how you can specify a bad file in a SQL*Loader control file by file name, file name
and extension, or by directory.

• How Bad Files Are Handled with LOBFILEs and SDFs
SQL*Loader manages errors differently for LOBFILE and SDF data.

• Criteria for Rejected Records
Learn about the criteria SQL*Loader applies for rejecting records in conventional path
loads and direct path loads.

Chapter 9
Specifying Data File Format and Buffering

9-19

9.12.1 Understanding and Specifying the Bad File
When SQL*Loader executes, it can create a file called a bad file, or reject file, in which
it places records that were rejected because of formatting errors or because they
caused Oracle errors.

If you have specified that you want a bad file to be created, then the following
processes occur:

• If one or more records are rejected, then the bad file is created and the rejected
records are logged.

• If no records are rejected, then the bad file is not created.

• If the bad file is created, then it overwrites any existing file with the same name;
ensure that you do not overwrite a file you want to retain.

Note:

On some systems, a new version of the file can be created if a file with
the same name already exists.

To specify the name of the bad file, use the BADFILE clause. You can also specify the
bad file from the command line by using the BAD parameter.

A file name specified on the command line is associated with the first INFILE clause in
the control file. If present, then this association overrides any bad file previously
specified as part of that clause.

The bad file is created in the same record and file format as the data file, so that you
can reload the data after you correct it. For data files in stream record format, the
record terminator that is found in the data file is also used in the bad file.

The syntax for the BADFILE clause is as follows:

BADFILE

directory_path filename

The BADFILE clause specifies that a directory path or file name, or both, for the bad file
follows. If you specify BADFILE, then you must supply either a directory path or a file
name, or both.

The directory parameter specifies a directory path to which the bad file will be
written.

The filename parameter specifies a valid file name specification for your platform. Any
spaces or punctuation marks in the file name must be enclosed in single quotation
marks. If you do not specify a name for the bad file, then the name defaults to the
name of the data file with an extension or file type of .bad.

Chapter 9
Specifying the Bad File

9-20

Related Topics

• Command-Line Parameters for SQL*Loader
Manage SQL*Loader by using the command-line parameters.

9.12.2 Examples of Specifying a Bad File Name
See how you can specify a bad file in a SQL*Loader control file by file name, file name and
extension, or by directory.

To specify a bad file with file name sample and default file extension or file type of .bad, enter
the following in the control file:

BADFILE sample

To specify only a directory name, enter the following in the control file:

BADFILE '/mydisk/bad_dir/'

To specify a bad file with file name bad0001 and file extension or file type of .rej, enter either
of the following lines in the control file:

BADFILE bad0001.rej
BADFILE '/REJECT_DIR/bad0001.rej'

9.12.3 How Bad Files Are Handled with LOBFILEs and SDFs
SQL*Loader manages errors differently for LOBFILE and SDF data.

When there are rejected rows, SQL*Loader does not write LOBFILE and SDF data to a bad
file.

If SQL*Loader encounters an error loading a large object (LOB), then the row is not rejected.
Instead, the LOB column is left empty (not null with a length of zero (0) bytes). However,
when the LOBFILE is being used to load an XML column, and there is an error loading this
LOB data, then the XML column is left as null.

9.12.4 Criteria for Rejected Records
Learn about the criteria SQL*Loader applies for rejecting records in conventional path loads
and direct path loads.

SQL*Loader can reject a record for the following reasons:

1. Upon insertion, the record causes an Oracle error (such as invalid data for a given data
type).

2. The record is formatted incorrectly, so that SQL*Loader cannot find field boundaries.

3. The record violates a constraint, or tries to make a unique index non-unique.

If the data can be evaluated according to the WHEN clause criteria (even with unbalanced
delimiters), then it is either inserted or rejected.

Neither a conventional path nor a direct path load will write a row to any table if it is rejected
because of reason number 2 in the list of reasons.

Chapter 9
Specifying the Bad File

9-21

A conventional path load will not write a row to any tables if reason number 1 or 3 in
the previous list is violated for any one table. The row is rejected for that table and
written to the reject file.

In a conventional path load, if the data file has a record that is being loaded into
multiple tables and that record is rejected from at least one of the tables, then that
record is not loaded into any of the tables.

The log file indicates the Oracle error for each rejected record. Case study 4 in
"SQL*Loader Case Studies" demonstrates rejected records.

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

9.13 Specifying the Discard File
Learn what SQL*Loader discard files are, what they contain, and how to specify them.

• Understanding and Specifying the Discard File
During processing of records, SQL*Loader can create a discard file for records
that do not meet any of the loading criteria.

• Specifying the Discard File in the Control File
To specify the name of the file, use the DISCARDFILE clause, followed by a
directory path and/or file name.

• Limiting the Number of Discard Records
To limit the number of records that are discarded for each data file, specify an
integer value for either the DISCARDS or DISCARDMAX parameter.

• Examples of Specifying a Discard File Name
The list shows different ways that you can specify a name for the discard file from
within the control file.

• Criteria for Discarded Records
If there is no INTO TABLE clause specified for a record, then the record is
discarded.

• How Discard Files Are Handled with LOBFILEs and SDFs
When there are discarded rows, SQL*Loader does not write data from large
objects (LOB) data LOBFILEs and Secondary Data File (SDF) files to a discard
file.

• Specifying the Discard File from the Command Line
To specify a discard file at the time you run SQL*Loader from the command line,
use the DISCARD command-line parameter for SQL*Loader

9.13.1 Understanding and Specifying the Discard File
During processing of records, SQL*Loader can create a discard file for records that do
not meet any of the loading criteria.

The records that are contained in the discard file are called discarded records.
Discarded records do not satisfy any of the WHEN clauses specified in the control file.

Chapter 9
Specifying the Discard File

9-22

These records differ from rejected records. Discarded records do not necessarily have any
bad data. No insert is attempted on a discarded record.

A discard file is created according to the following rules:

• You have specified a discard file name and one or more records fail to satisfy all of the
WHEN clauses specified in the control file. (Be aware that if the discard file is created, then
it overwrites any existing file with the same name.)

• If no records are discarded, then a discard file is not created.

You can specify the discard file from within the control file either by specifying its directory, or
name, or both, or by specifying the maximum number of discards. Any of the following
clauses result in a discard file being created, if necessary:

• DISCARDFILE=[[directory/][filename]]
• DISCARDS
• DISCARDMAX
The discard file is created in the same record and file format as the data file. For data files in
stream record format, the same record terminator that is found in the data file is also used in
the discard file.

You can also create a discard file from the command line by specifying either the DISCARD or
DISCARDMAX parameter.

If no discard clauses are included in the control file or on the command line, then a discard
file is not created even if there are discarded records (that is, records that fail to satisfy all of
the WHEN clauses specified in the control file).

Related Topics

• SQL*Loader Command-Line Reference
To start regular SQL*Loader, use the command-line parameters.

9.13.2 Specifying the Discard File in the Control File
To specify the name of the file, use the DISCARDFILE clause, followed by a directory path
and/or file name.

DISCARDFILE

directory_path filename
DISCARDS

DISCARDMAX
integer

The DISCARDFILE clause specifies that a discard directory path and/or file name follows.
Neither the directory_path nor the filename is required. However, you must specify at least
one.

The directory parameter specifies a directory to which the discard file will be written.

The filename parameter specifies a valid file name specification for your platform. Any
spaces or punctuation marks in the file name must be enclosed in single quotation marks.

The default file name is the name of the data file, and the default file extension or file type
is .dsc. A discard file name specified on the command line overrides one specified in the

Chapter 9
Specifying the Discard File

9-23

control file. If a discard file with that name already exists, then it is either overwritten or
a new version is created, depending on your operating system.

9.13.3 Limiting the Number of Discard Records
To limit the number of records that are discarded for each data file, specify an integer
value for either the DISCARDS or DISCARDMAX parameter.

The integer that you specify for either the DISCARDS or DISCARDMAX keyword is the
numerical maximum number of discard records. If you do not specify a maximum
number discard records, then SQL*Loader will continue to discard records. Otherwise,
when the discard limit is reached, processing of the data file terminates, and continues
with the next data file, if one exists.
You can choose to specify a different number of discards for each data file. Or, if you
specify the number of discards only once, then the maximum number of discards
specified applies to all files.

If you specify a maximum number of discards, but no discard file name, then
SQL*Loader creates a discard file with the default file name (named after the process
that creates it), and the default file extension or file type (dsc). For example, The file is
named after the process that creates it. For example: finance.dsc.

The following example allows 25 records to be discarded during the load before it is
terminated.

DISCARDMAX=25

9.13.4 Examples of Specifying a Discard File Name
The list shows different ways that you can specify a name for the discard file from
within the control file.

• To specify a discard file with file name circular and default file extension or file
type of .dsc:

DISCARDFILE circular
• To specify a discard file named notappl with the file extension or file type of .may:

DISCARDFILE notappl.may
• To specify a full path to the discard file forget.me:

DISCARDFILE '/discard_dir/forget.me'

9.13.5 Criteria for Discarded Records
If there is no INTO TABLE clause specified for a record, then the record is discarded.

This situation occurs when every INTO TABLE clause in the SQL*Loader control file has
a WHEN clause and, either the record fails to match any of them, or all fields are null.

No records are discarded if an INTO TABLE clause is specified without a WHEN clause.
An attempt is made to insert every record into such a table. Therefore, records may be
rejected, but none are discarded.

Chapter 9
Specifying the Discard File

9-24

Case study 7, Extracting Data from a Formatted Report, provides an example of using a
discard file. (See SQL*Loader Case Studies for information on how to access case studies.)

9.13.6 How Discard Files Are Handled with LOBFILEs and SDFs
When there are discarded rows, SQL*Loader does not write data from large objects (LOB)
data LOBFILEs and Secondary Data File (SDF) files to a discard file.

9.13.7 Specifying the Discard File from the Command Line
To specify a discard file at the time you run SQL*Loader from the command line, use the
DISCARD command-line parameter for SQL*Loader

The DISCARD parameter gives you the option to provide a specification at the command line to
identify a discard file where you can store records that are neither inserted into a table nor
rejected.

When you specify a file name on the command line, this specification overrides any discard
file name that you may have specified in the control file.

Related Topics

• DISCARD
The DISCARD command-line parameter for SQL*Loader lets you optionally specify a
discard file to store records that are neither inserted into a table nor rejected.

9.14 Specifying a NULLIF Clause At the Table Level
To load a table character field as NULL when it contains certain character strings or hex
strings, you can use a NULLIF clause at the table level with SQL*Loader.

The NULLIF syntax in the SQL*Loader control file is as follows:

NULLIF {=|!=}{"char_string"|x'hex_string'|BLANKS}

The char_string and hex_string values must be enclosed in either single quotation marks
or double quotation marks.

This specification is used for each mapped character field unless a NULLIF clause is specified
at the field level. A NULLIF clause specified at the field level overrides a NULLIF clause
specified at the table level.

SQL*Loader checks the specified value against the value of the field in the record. If there is
a match using the equal or not equal specification, then the field is set to NULL for that row.
Any field that has a length of 0 after blank trimming is also set to NULL.

If you do not want the default NULLIF or any other NULLIF clause applied to a field, then you
can specify NO NULLIF at the field level.

Related Topics

• Using the WHEN, NULLIF, and DEFAULTIF Clauses
Learn how SQL*Loader processes the WHEN, NULLIF, andDEFAULTIF clauses with scalar
fields.

Chapter 9
Specifying a NULLIF Clause At the Table Level

9-25

9.15 Specifying Datetime Formats At the Table Level
You can specify certain datetime formats in a SQL*Loader control file at the table level,
or override a table level format by specifying a mask at the field level.

You can specify certain datetime data type (datetime) formats at the table level in a
SQL*Loader control file.

The syntax for each datetime format that you can specify at the table level is as
follows:

DATE FORMAT mask
TIMESTAMP FORMAT mask
TIMESTAMP WITH TIME ZONE mask
TIMESTAMP WITH LOCAL TIME ZONE mask

This datetime specification is used for every date or timestamp field, unless a different
mask is specified at the field level. A mask specified at the field level overrides a mask
specified at the table level.

The following is an example of using the DATE FORMAT clause in a SQL*Loader control
file. The DATE FORMAT clause is overridden by DATE at the field level for the hiredate
and entrydate fields:

LOAD DATA
 INFILE myfile.dat
 APPEND
 INTO TABLE EMP
 FIELDS TERMINATED BY ","
 DATE FORMAT "DD-Month-YYYY"
 (empno,
 ename,
 job,
 mgr,
 hiredate DATE,
 sal,
 comm,
 deptno,
 entrydate DATE)

Related Topics

• Categories of Datetime and Interval Data Types
The SQL*Loader portable value datetime records date and time fields, and the
interval data types record time intervals.

9.16 Handling Different Character Encoding Schemes
SQL*Loader supports different character encoding schemes (called character sets, or
code pages).

SQL*Loader uses features of Oracle's globalization support technology to handle the
various single-byte and multibyte character encoding schemes available today.

Chapter 9
Specifying Datetime Formats At the Table Level

9-26

See Also:

Oracle Database Globalization Support Guide

The following sections provide a brief introduction to some of the supported character
encoding schemes.

• Multibyte (Asian) Character Sets
Multibyte character sets support Asian languages.

• Unicode Character Sets
SQL*Loader supports loading data that is in a Unicode character set.

• Database Character Sets
The character sets that you can use with Oracle Database to store data in SQL must
meet specific specifications.

• Data File Character Sets
By default, the data file is in the character set defined by the NLS_LANG parameter.

• Input Character Conversion with SQL*Loader
When you import data files, you can use the default character set, or you can change the
character set.

• Shift-sensitive Character Data
In general, loading shift-sensitive character data can be much slower than loading simple
ASCII or EBCDIC data.

9.16.1 Multibyte (Asian) Character Sets
Multibyte character sets support Asian languages.

Data can be loaded in multibyte format, and database object names (fields, tables, and so
on) can be specified with multibyte characters. In the control file, comments and object
names can also use multibyte characters.

9.16.2 Unicode Character Sets
SQL*Loader supports loading data that is in a Unicode character set.

Unicode is a universal encoded character set that supports storage of information from most
languages in a single character set. Unicode provides a unique code value for every
character, regardless of the platform, program, or language. There are two different
encodings for Unicode, UTF-16 and UTF-8.

Chapter 9
Handling Different Character Encoding Schemes

9-27

Note:

• In this manual, you will see the terms UTF-16 and UTF16 both used. The
term UTF-16 is a general reference to UTF-16 encoding for Unicode.
The term UTF16 (no hyphen) is the specific name of the character set
and is what you should specify for the CHARACTERSET parameter when
you want to use UTF-16 encoding. This also applies to UTF-8 and UTF8.

The UTF-16 Unicode encoding is a fixed-width multibyte encoding in
which the character codes 0x0000 through 0x007F have the same
meaning as the single-byte ASCII codes 0x00 through 0x7F.

The UTF-8 Unicode encoding is a variable-width multibyte encoding in
which the character codes 0x00 through 0x7F have the same meaning
as ASCII. A character in UTF-8 can be 1 byte, 2 bytes, or 3 bytes long.

• Oracle recommends using AL32UTF8 as the database character set.
AL32UTF8 is the proper implementation of the Unicode encoding UTF-8.
Starting with Oracle Database 12c Release 2, AL32UTF8 is used as the
default database character set while creating a database using Oracle
Universal Installer (OUI) as well as Oracle Database Configuration
Assistant (DBCA).

• Do not use UTF8 as the database character set as it is not a proper
implementation of the Unicode encoding UTF-8. If the UTF8 character
set is used where UTF-8 processing is expected, then data loss and
security issues may occur. This is especially true for Web related data,
such as XML and URL addresses.

• AL32UTF8 and UTF8 character sets are not compatible with each other
as they have different maximum character widths (four versus three
bytes per character).

See Also:

• Case study 11, Loading Data in the Unicode Character Set (see
SQL*Loader Case Studies for information on how to access case
studies)

• Oracle Database Globalization Support Guide for more information about
Unicode encoding

9.16.3 Database Character Sets
The character sets that you can use with Oracle Database to store data in SQL must
meet specific specifications.

Oracle Database uses the database character set for data stored in SQL CHAR data
types (CHAR, VARCHAR2, CLOB, and LONG), for identifiers such as table names, and for
SQL statements and PL/SQL source code.

Chapter 9
Handling Different Character Encoding Schemes

9-28

Only single-byte character sets and varying-width character sets that include either ASCII or
EBCDIC characters are supported as database character sets. Multibyte fixed-width
character sets (for example, AL16UTF16) are not supported as the database character set.

An alternative character set can be used in the database for data stored in SQL NCHAR data
types (NCHAR, NVARCHAR2, and NCLOB). This alternative character set is called the database
national character set. Only Unicode character sets are supported as the database national
character set.

9.16.4 Data File Character Sets
By default, the data file is in the character set defined by the NLS_LANG parameter.

The data file character sets supported with NLS_LANG are the same as those supported as
database character sets. SQL*Loader supports all Oracle-supported character sets in the
data file (even those not supported as database character sets).

For example, SQL*Loader supports multibyte fixed-width character sets (such as AL16UTF16
and JA16EUCFIXED) in the data file. SQL*Loader also supports UTF-16 encoding with little-
endian byte ordering. However, the Oracle database supports only UTF-16 encoding with big-
endian byte ordering (AL16UTF16) and only as a database national character set, not as a
database character set.

The character set of the data file can be set up by using the NLS_LANG parameter or by
specifying a SQL*Loader CHARACTERSET parameter.

9.16.5 Input Character Conversion with SQL*Loader
When you import data files, you can use the default character set, or you can change the
character set.

• Options for Converting Character Sets Using SQL*Loader
When you load data into another database with SQL*Loader, you can change the data
character set.

• Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs
If you load data into VARRAY or into a primary-key-based REF, then issues can occur when
the data uses a different character set than the database or client.

• CHARACTERSET Parameter
Specifying the CHARACTERSET parameter tells SQL*Loader the character set of the input
data file.

• Control File Character Set
The SQL*Loader control file itself is assumed to be in the character set specified for your
session by the NLS_LANG parameter.

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

9.16.5.1 Options for Converting Character Sets Using SQL*Loader
When you load data into another database with SQL*Loader, you can change the data
character set.

Chapter 9
Handling Different Character Encoding Schemes

9-29

If you don't specify a character set using the CHARACTERSET parameter, then the default
character set for all data files is the session character set defined by the NLS_LANG
parameter. However, you can chose to change the character set used in input data
files by specifying the CHARACTERSET parameter.

If the input data file character set is different from the data file character set and the
database character set or the database national character set, then SQL*Loader can
automatically convert the data file character set.

When you require data character set conversion, the target character set should be a
superset of the source data file character set. Otherwise, characters that have no
equivalent in the target character set are converted to replacement characters, often a
default character such as a question mark (?). This conversion to replacement
characters causes loss of data.

You can specify sizes of the database character types CHAR and VARCHAR2, either in
bytes (byte-length semantics), or in characters (character-length semantics). If they
are specified in bytes, and data character set conversion is required, then the
converted values can require more bytes than the source values if the target character
set uses more bytes than the source character set for any character that is converted.
This conversion results in the following error message being reported if the larger
target value exceeds the size of the database column:

ORA-01401: inserted value too large for column

You can avoid this problem by specifying the database column size in characters, and
also by using character sizes in the control file to describe the data. Another way to
avoid this problem is to ensure that the maximum column size is large enough, in
bytes, to hold the converted value.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

• Oracle Database Globalization Support Guide

9.16.5.2 Considerations When Loading Data into VARRAYs or Primary-Key-
Based REFs

If you load data into VARRAY or into a primary-key-based REF, then issues can occur
when the data uses a different character set than the database or client.

If you use SQL*Loader conventional path or the Oracle Call Interface (OCI) to load
data into VARRAYs or into primary-key-based REFs, and the data being loaded is in a
different character set than the database character set, then problems such as the
following might occur:

• Rows can be rejected because a field is too large for the database column, but in
reality the field is not too large.

• A load can be terminated atypically, without any rows being loaded, when only the
field that really was too large should have been rejected.

• Rows can be reported as loaded correctly, but the primary-key-based REF columns
are returned as blank when they are selected with SQL*Plus.

Chapter 9
Handling Different Character Encoding Schemes

9-30

• When you specify a column datatype is a CHAR, SQL*Loader attempts to provide blank
padding up to the length of the field.

To avoid these problems, set the client character set (using the NLS_LANG environment
variable) to the database character set before you load the data.

9.16.5.3 CHARACTERSET Parameter
Specifying the CHARACTERSET parameter tells SQL*Loader the character set of the input data
file.

The default character set for all data files, if the CHARACTERSET parameter is not specified, is
the session character set defined by the NLS_LANG parameter. Only character data (fields in
the SQL*Loader data types CHAR, VARCHAR, VARCHARC, numeric EXTERNAL, and the datetime
and interval data types) is affected by the character set of the data file.

The CHARACTERSET syntax is as follows:

CHARACTERSET char_set_name

The char_set_name variable specifies the character set name. Normally, the specified name
must be the name of an Oracle-supported character set.

For UTF-16 Unicode encoding, use the name UTF16 rather than AL16UTF16. AL16UTF16,
which is the supported Oracle character set name for UTF-16 encoded data, is only for
UTF-16 data that is in big-endian byte order. However, because you are allowed to set up
data using the byte order of the system where you create the data file, the data in the data file
can be either big-endian or little-endian. Therefore, a different character set name (UTF16) is
used. The character set name AL16UTF16 is also supported. But if you specify AL16UTF16
for a data file that has little-endian byte order, then SQL*Loader issues a warning message
and processes the data file as little-endian.

The CHARACTERSET parameter can be specified for primary data files and also for LOBFILEs
and SDFs. All primary data files are assumed to be in the same character set. A
CHARACTERSET parameter specified before the INFILE parameter applies to the entire list of
primary data files. If the CHARACTERSET parameter is specified for primary data files, then the
specified value will also be used as the default for LOBFILEs and SDFs. This default setting
can be overridden by specifying the CHARACTERSET parameter with the LOBFILE or SDF
specification.

The character set specified with the CHARACTERSET parameter does not apply to data specified
with the INFILE clause in the control file. The control file is always processed using the
character set specified for your session by the NLS_LANG parameter. Therefore, to load data in
a character set other than the one specified for your session by the NLS_LANG parameter, you
must place the data in a separate data file.

Chapter 9
Handling Different Character Encoding Schemes

9-31

See Also:

• Byte Ordering

• Oracle Database Globalization Support Guide for more information about
the names of the supported character sets

• Control File Character Set

• Case study 11, Loading Data in the Unicode Character Set, for an
example of loading a data file that contains little-endian UTF-16 encoded
data. (See SQL*Loader Case Studies for information on how to access
case studies.)

9.16.5.4 Control File Character Set
The SQL*Loader control file itself is assumed to be in the character set specified for
your session by the NLS_LANG parameter.

If the control file character set is different from the data file character set, then keep the
following issue in mind. Delimiters and comparison clause values specified in the
SQL*Loader control file as character strings are converted from the control file
character set to the data file character set before any comparisons are made. To
ensure that the specifications are correct, you may prefer to specify hexadecimal
strings, rather than character string values.

If hexadecimal strings are used with a data file in the UTF-16 Unicode encoding, then
the byte order is different on a big-endian versus a little-endian system. For example,
"," (comma) in UTF-16 on a big-endian system is X'002c'. On a little-endian system it is
X'2c00'. SQL*Loader requires that you always specify hexadecimal strings in big-
endian format. If necessary, SQL*Loader swaps the bytes before making comparisons.
This allows the same syntax to be used in the control file on both a big-endian and a
little-endian system.

Record terminators for data files that are in stream format in the UTF-16 Unicode
encoding default to "\n" in UTF-16 (that is, 0x000A on a big-endian system and
0x0A00 on a little-endian system). You can override these default settings by using the
"STR 'char_str'" or the "STR x'hex_str'" specification on the INFILE line. For
example, you could use either of the following to specify that 'ab' is to be used as the
record terminator, instead of '\n'.

INFILE myfile.dat "STR 'ab'"

INFILE myfile.dat "STR x'00410042'"

Any data included after the BEGINDATA statement is also assumed to be in the
character set specified for your session by the NLS_LANG parameter.

For the SQL*Loader data types (CHAR, VARCHAR, VARCHARC, DATE, and EXTERNAL
numerics), SQL*Loader supports lengths of character fields that are specified in either
bytes (byte-length semantics) or characters (character-length semantics). For
example, the specification CHAR(10) in the control file can mean 10 bytes or 10
characters. These are equivalent if the data file uses a single-byte character set.
However, they are often different if the data file uses a multibyte character set.

Chapter 9
Handling Different Character Encoding Schemes

9-32

To avoid insertion errors caused by expansion of character strings during character set
conversion, use character-length semantics in both the data file and the target database
columns.

9.16.5.5 Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

To override the default you can specify CHAR or CHARACTER, as shown in the following syntax:

LENGTH

SEMANTICS
BYTE

CHAR

CHARACTER

The LENGTH parameter is placed after the CHARACTERSET parameter in the SQL*Loader control
file. The LENGTH parameter applies to the syntax specification for primary data files and also
to LOBFILEs and secondary data files (SDFs). A LENGTH specification before the INFILE
parameters applies to the entire list of primary data files. The LENGTH specification specified
for the primary data file is used as the default for LOBFILEs and SDFs. You can override that
default by specifying LENGTH with the LOBFILE or SDF specification. Unlike the CHARACTERSET
parameter, the LENGTH parameter can also apply to data contained within the control file itself
(that is, INFILE * syntax).

You can specify CHARACTER instead of CHAR for the LENGTH parameter.

If character-length semantics are being used for a SQL*Loader data file, then the following
SQL*Loader data types will use character-length semantics:

• CHAR
• VARCHAR
• VARCHARC
• DATE
• EXTERNAL numerics (INTEGER, FLOAT, DECIMAL, and ZONED)

For the VARCHAR data type, the length subfield is still a binary SMALLINT length subfield, but its
value indicates the length of the character string in characters.

The following data types use byte-length semantics even if character-length semantics are
being used for the data file, because the data is binary, or is in a special binary-encoded form
in the case of ZONED and DECIMAL:

• INTEGER
• SMALLINT
• FLOAT
• DOUBLE
• BYTEINT

Chapter 9
Handling Different Character Encoding Schemes

9-33

• ZONED
• DECIMAL
• RAW
• VARRAW
• VARRAWC
• GRAPHIC
• GRAPHIC EXTERNAL
• VARGRAPHIC
The start and end arguments to the POSITION parameter are interpreted in bytes, even
if character-length semantics are in use in a data file. This is necessary to handle data
files that have a mix of data of different data types, some of which use character-length
semantics, and some of which use byte-length semantics. It is also needed to handle
position with the VARCHAR data type, which has a SMALLINT length field and then the
character data. The SMALLINT length field takes up a certain number of bytes
depending on the system (usually 2 bytes), but its value indicates the length of the
character string in characters.

Character-length semantics in the data file can be used independent of whether
character-length semantics are used for the database columns. Therefore, the data file
and the database columns can use either the same or different length semantics.

9.16.6 Shift-sensitive Character Data
In general, loading shift-sensitive character data can be much slower than loading
simple ASCII or EBCDIC data.

The fastest way to load shift-sensitive character data is to use fixed-position fields
without delimiters. To improve performance, remember the following points:

• The field data must have an equal number of shift-out/shift-in bytes.

• The field must start and end in single-byte mode.

• It is acceptable for the first byte to be shift-out and the last byte to be shift-in.

• The first and last characters cannot be multibyte.

• If blanks are not preserved and multibyte-blank-checking is required, then a slower
path is used. This can happen when the shift-in byte is the last byte of a field after
single-byte blank stripping is performed.

9.17 Interrupted SQL*Loader Loads
Learn about common scenarios in which SQL*Loader loads are interrupted or
discontinued, and what you can do to correct these issues.

• Understanding Causes of Interrupted SQL*Loader Loads
A load can be interrupted due to space errors, or other errors related to loading
data into the target Oracle Database.

• Discontinued Conventional Path Loads
In conventional path loads, if only part of the data is loaded before the data is
discontinued, then only data processed up to the time of the last commit is loaded.

Chapter 9
Interrupted SQL*Loader Loads

9-34

• Discontinued Direct Path Loads
In a direct path load, the behavior of a discontinued load varies depending on the reason
the load was discontinued.

• Status of Tables and Indexes After an Interrupted Load
When a load is discontinued, any data already loaded remains in the tables, and the
tables are left in a valid state.

• Using the Log File to Determine Load Status
The SQL*Loader log file tells you the state of the tables and indexes and the number of
logical records already read from the input data file.

• Continuing Single-Table Loads
To continue a discontinued SQL*Loader load, you can use the SKIP parameter.

9.17.1 Understanding Causes of Interrupted SQL*Loader Loads
A load can be interrupted due to space errors, or other errors related to loading data into the
target Oracle Database.

Space errors are a primary reason for database load errors. In space errors, SQL*Loader
runs out of space for data rows or index entries. A load also can be discontinued because the
maximum number of errors was exceeded, an unexpected error was returned to SQL*Loader
from the server, a record was too long in the data file, or a Ctrl+C was executed.

The behavior of SQL*Loader when a load is discontinued varies depending on whether it is a
conventional path load or a direct path load, and on the reason the load was interrupted.
Additionally, when an interrupted load is continued, the use and value of the SKIP parameter
can vary depending on the particular case.

Related Topics

• SKIP
The SKIP SQL*Loader command-line parameter specifies the number of logical records
from the beginning of the file that should not be loaded.

9.17.2 Discontinued Conventional Path Loads
In conventional path loads, if only part of the data is loaded before the data is discontinued,
then only data processed up to the time of the last commit is loaded.

In a conventional path load, data is committed after all data in the bind array is loaded into all
tables.

If the load is discontinued, then only the rows that were processed up to the time of the last
commit operation are loaded. There is no partial commit of data.

9.17.3 Discontinued Direct Path Loads
In a direct path load, the behavior of a discontinued load varies depending on the reason the
load was discontinued.

These sections describe the reasons why a load was discontinued:

• Load Discontinued Because of Space Errors
If a load is discontinued because of space errors, then the behavior of SQL*Loader
depends on whether you are loading data into multiple subpartitions.

Chapter 9
Interrupted SQL*Loader Loads

9-35

• Load Discontinued Because Maximum Number of Errors Exceeded
If the maximum number of errors is exceeded, then SQL*Loader stops loading
records into any table and the work done to that point is committed.

• Load Discontinued Because of Irrecoverable Errors
If an irrecoverable error is encountered, then the load is stopped and no data is
saved unless ROWS was specified at the beginning of the load.

• Load Discontinued Because a Ctrl+C Was Issued
If SQL*Loader is in the middle of saving data when a Ctrl+C is issued, then it
continues to do the save and then stops the load after the save completes.

9.17.3.1 Load Discontinued Because of Space Errors
If a load is discontinued because of space errors, then the behavior of SQL*Loader
depends on whether you are loading data into multiple subpartitions.

• Space errors when loading data into multiple subpartitions (that is, loading
into a partitioned table, a composite partitioned table, or one partition of a
composite partitioned table):

If space errors occur when loading into multiple subpartitions, then the load is
discontinued and no data is saved unless ROWS has been specified (in which case,
all data that was previously committed will be saved). The reason for this behavior
is that it is possible rows might be loaded out of order. This is because each row is
assigned (not necessarily in order) to a partition and each partition is loaded
separately. If the load discontinues before all rows assigned to partitions are
loaded, then the row for record "n" may have been loaded, but not the row for
record "n-1". Therefore, the load cannot be continued by simply using SKIP=N.

• Space errors when loading data into an unpartitioned table, one partition of
a partitioned table, or one subpartition of a composite partitioned table:

If there is one INTO TABLE statement in the control file, then SQL*Loader commits
as many rows as were loaded before the error occurred.

If there are multiple INTO TABLE statements in the control file, then SQL*Loader
loads data already read from the data file into other tables and then commits the
data.

In either case, this behavior is independent of whether the ROWS parameter was
specified. When you continue the load, you can use the SKIP parameter to skip
rows that have already been loaded. In the case of multiple INTO TABLE
statements, a different number of rows could have been loaded into each table, so
to continue the load you would need to specify a different value for the SKIP
parameter for every table. SQL*Loader only reports the value for the SKIP
parameter if it is the same for all tables.

9.17.3.2 Load Discontinued Because Maximum Number of Errors Exceeded
If the maximum number of errors is exceeded, then SQL*Loader stops loading records
into any table and the work done to that point is committed.

This means that when you continue the load, the value you specify for the SKIP
parameter may be different for different tables. SQL*Loader reports the value for the
SKIP parameter only if it is the same for all tables.

Chapter 9
Interrupted SQL*Loader Loads

9-36

9.17.3.3 Load Discontinued Because of Irrecoverable Errors
If an irrecoverable error is encountered, then the load is stopped and no data is saved unless
ROWS was specified at the beginning of the load.

In that case, all data that was previously committed is saved. SQL*Loader reports the value
for the SKIP parameter only if it is the same for all tables.

9.17.3.4 Load Discontinued Because a Ctrl+C Was Issued
If SQL*Loader is in the middle of saving data when a Ctrl+C is issued, then it continues to do
the save and then stops the load after the save completes.

Otherwise, SQL*Loader stops the load without committing any work that was not committed
already. This means that the value of the SKIP parameter will be the same for all tables.

9.17.4 Status of Tables and Indexes After an Interrupted Load
When a load is discontinued, any data already loaded remains in the tables, and the tables
are left in a valid state.

If the conventional path is used, then all indexes are left in a valid state.

If the direct path load method is used, then any indexes on the table are left in an unusable
state. You can either rebuild or re-create the indexes before continuing, or after the load is
restarted and completes.

Other indexes are valid if no other errors occurred. See Indexes Left in an Unusable State for
other reasons why an index might be left in an unusable state.

9.17.5 Using the Log File to Determine Load Status
The SQL*Loader log file tells you the state of the tables and indexes and the number of
logical records already read from the input data file.

Use this information to resume the load where it left off.

9.17.6 Continuing Single-Table Loads
To continue a discontinued SQL*Loader load, you can use the SKIP parameter.

When SQL*Loader must discontinue a direct path or conventional path load before it is
finished, some rows probably already are committed, or marked with savepoints.

To continue the discontinued load, use the SKIP parameter to specify the number of logical
records that have already been processed by the previous load. At the time the load is
discontinued, the value for SKIP is written to the log file in a message similar to the following:

Specify SKIP=1001 when continuing the load.

This message specifying the value of the SKIP parameter is preceded by a message
indicating why the load was discontinued.

Chapter 9
Interrupted SQL*Loader Loads

9-37

Note that for multiple-table loads, the value of the SKIP parameter is displayed only if it
is the same for all tables.

Related Topics

• SKIP
The SKIP SQL*Loader command-line parameter specifies the number of logical
records from the beginning of the file that should not be loaded.

9.18 Assembling Logical Records from Physical Records
This section describes assembling logical records from physical records.

To combine multiple physical records into one logical record, you can use one of the
following clauses, depending on your data:

• CONCATENATE
• CONTINUEIF
• Using CONCATENATE to Assemble Logical Records

Use CONCATENATE when you want SQL*Loader to always combine the same
number of physical records to form one logical record.

• Using CONTINUEIF to Assemble Logical Records
If the number of physical records to be combined varies, then use CONTINUEIF with
SQL*Loader.

9.18.1 Using CONCATENATE to Assemble Logical Records
Use CONCATENATE when you want SQL*Loader to always combine the same number of
physical records to form one logical record.

In the following example, integer specifies the number of physical records to
combine.

CONCATENATE integer

The integer value specified for CONCATENATE determines the number of physical
record structures that SQL*Loader allocates for each row in the column array. In direct
path loads, the default value for COLUMNARRAYROWS is large, so if you also specify a
large value for CONCATENATE, then excessive memory allocation can occur. If this
happens, you can improve performance by reducing the value of the COLUMNARRAYROWS
parameter to lower the number of rows in a column array.

See Also:

• COLUMNARRAYROWS

• Specifying the Number of Column Array Rows and Size of Stream
Buffers

Chapter 9
Assembling Logical Records from Physical Records

9-38

9.18.2 Using CONTINUEIF to Assemble Logical Records
If the number of physical records to be combined varies, then use CONTINUEIF with
SQL*Loader.

The CONTINUEIF clause is followed by a condition that is evaluated for each physical record,
as it is read. For example, two records can be combined if a pound sign (#) is in byte position
80 of the first record. If any other character was there, then the second record would not be
added to the first.

The full syntax for CONTINUEIF adds even more flexibility:

CONTINUEIF

THIS

NEXT PRESERVE (

pos_spec

LAST

PRESERVE (operator
str

X’hex_str’

)

The following table describes the parameters for the CONTINUEIF clause.

Table 9-2 Parameters for the CONTINUEIF Clause

Parameter Description

THIS If the condition is true in the current record, then the next physical record
is read and concatenated to the current physical record, continuing until
the condition is false. If the condition is false, then the current physical
record becomes the last physical record of the current logical record.
THIS is the default.

NEXT If the condition is true in the next record, then the current physical record
is concatenated to the current logical record, continuing until the
condition is false.

operator The supported operators are equal (=) and not equal (!= or <>).

For the equal operator, the field and comparison string must match
exactly for the condition to be true. For the not equal operator, they can
differ in any character.

LAST This test is similar to THIS, but the test is always against the last
nonblank character. If the last nonblank character in the current physical
record meets the test, then the next physical record is read and
concatenated to the current physical record, continuing until the condition
is false. If the condition is false in the current record, then the current
physical record is the last physical record of the current logical record.

LAST allows only a single character-continuation field (as opposed to
THIS and NEXT, which allow multiple character-continuation fields).

Chapter 9
Assembling Logical Records from Physical Records

9-39

Table 9-2 (Cont.) Parameters for the CONTINUEIF Clause

Parameter Description

pos_spec Specifies the starting and ending column numbers in the physical record.

Column numbers start with 1. Either a hyphen or a colon is acceptable
(start-end or start:end).

If you omit end, then the length of the continuation field is the length of
the byte string or character string. If you use end, and the length of the
resulting continuation field is not the same as that of the byte string or the
character string, then the shorter one is padded. Character strings are
padded with blanks, hexadecimal strings with zeros.

str A string of characters that you want to be compared to the continuation
field, defined by start and end, according to the operator. The string must
be enclosed in double- or single-quotation marks. The comparison is
made character by character, blank padding on the right if necessary.

X'hex-str' A string of bytes in hexadecimal format used in the same way as
str.X'1FB033' would represent the three bytes with values 1F, B0, and
33 (hexadecimal).

PRESERVE Includes ''char_string' or X 'hex_string' in the logical record. The
default is to exclude them.

The positions in the CONTINUEIF clause refer to positions in each physical record. This
is the only time you refer to positions in physical records. All other references are to
logical records.

For CONTINUEIF THIS and CONTINUEIF LAST, if the PRESERVE parameter is not
specified, then the continuation field is removed from all physical records when the
logical record is assembled. That is, data values are allowed to span the records with
no extra characters (continuation characters) in the middle. For example, if CONTINUEIF
THIS(3:5)='***' is specified, then positions 3 through 5 are removed from all records.
This means that the continuation characters are removed if they are in positions 3
through 5 of the record. It also means that the characters in positions 3 through 5 are
removed from the record even if the continuation characters are not in positions 3
through 5.

For CONTINUEIF THIS and CONTINUEIF LAST, if the PRESERVE parameter is used, then
the continuation field is kept in all physical records when the logical record is
assembled.

CONTINUEIF LAST differs from CONTINUEIF THIS and CONTINUEIF NEXT. For
CONTINUEIF LAST, where the positions of the continuation field vary from record to
record, the continuation field is never removed, even if PRESERVE is not specified.

Example 9-6 through Example 9-9 show the use of CONTINUEIF THIS and CONTINUEIF
NEXT, with and without the PRESERVE parameter.

Example 9-6 CONTINUEIF THIS Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long, and that a period represents a
space:

 %%aaaaaaaa....
 %%bbbbbbbb....
 ..cccccccc....

Chapter 9
Assembling Logical Records from Physical Records

9-40

 %%dddddddddd..
 %%eeeeeeeeee..
 ..ffffffffff..

In this example, the CONTINUEIF THIS clause does not use the PRESERVE parameter:

CONTINUEIF THIS (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 aaaaaaaa....bbbbbbbb....cccccccc....
 dddddddddd..eeeeeeeeee..ffffffffff..

Note that columns 1 and 2 (for example, %% in physical record 1) are removed from the
physical records when the logical records are assembled.

Example 9-7 CONTINUEIF THIS with the PRESERVE Parameter

Assume that you have the same physical records as in the preceding example.

In this next example, the CONTINUEIF THIS clause uses the PRESERVE parameter:

CONTINUEIF THIS PRESERVE (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 %%aaaaaaaa....%%bbbbbbbb......cccccccc....
 %%dddddddddd..%%eeeeeeeeee....ffffffffff..

Note that columns 1 and 2 are not removed from the physical records when the logical
records are assembled.

Example 9-8 CONTINUEIF NEXT Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a space:

 ..aaaaaaaa....
 %%bbbbbbbb....
 %%cccccccc....
 ..dddddddddd..
 %%eeeeeeeeee..
 %%ffffffffff..

In this example, the CONTINUEIF NEXT clause does not use the PRESERVE parameter:

CONTINUEIF NEXT (1:2) = '%%'

Therefore, the logical records are assembled as follows (the same results as for
Example 9-6).

 aaaaaaaa....bbbbbbbb....cccccccc....
 dddddddddd..eeeeeeeeee..ffffffffff..

Example 9-9 CONTINUEIF NEXT with the PRESERVE Parameter

Assume that you have the same physical records as in the preceding example.

In this next example, the CONTINUEIF NEXT clause uses the PRESERVE parameter:

CONTINUEIF NEXT PRESERVE (1:2) = '%%'

Therefore, the logical records are assembled as follows:

Chapter 9
Assembling Logical Records from Physical Records

9-41

 ..aaaaaaaa....%%bbbbbbbb....%%cccccccc....
 ..dddddddddd..%%eeeeeeeeee..%%ffffffffff..

See Also:

Case study 4, Loading Combined Physical Records, for an example of the
CONTINUEIF clause. (See SQL*Loader Case Studies for information on how
to access case studies.)

9.19 Loading Logical Records into Tables
Learn about the different methods and available to you to load logical records into
tables with SQL*Loader.

You can use SQL*Loader options to choose from a variety of methods to control:

• Which tables you want to load

• Which records you want to load into tables

• What are the default data delimiters for records

• What options you can use to handle short records with missing data

• Specifying Table Names
The INTO TABLE clause of the LOAD DATA statement enables you to identify tables,
fields, and data types.

• INTO TABLE Clause
Among its many functions, the SQL*Loader INTO TABLE clause enables you to
specify the table into which you load data.

• Table-Specific Loading Method
When you are loading a table, you can use the INTO TABLE clause to specify a
table-specific loading method (INSERT, APPEND, REPLACE, or TRUNCATE) that applies
only to that table.

• Loading Data into Empty Tables with INSERT
To load data into empty tables, use the INSERT option.

• Loading Data into Nonempty Tables
When you use SQL*Loader to load data into nonempty tables, you can append to,
replace, or truncate the existing table.

• Table-Specific OPTIONS Parameter
The OPTIONS parameter can be specified for individual tables in a parallel load. (It
is valid only for a parallel load.)

• Loading Records Based on a Condition
You can choose to load or discard a logical record by using the WHEN clause to test
a condition in the record.

• Using the WHEN Clause with LOBFILEs and SDFs
See how to use the WHEN clause with LOBFILEs and SDFs.

Chapter 9
Loading Logical Records into Tables

9-42

• Specifying Default Data Delimiters
If all data fields are terminated similarly in the data file, then you can use the FIELDS
clause to indicate the default termination and enclosure delimiters.

• Handling Records with Missing Specified Fields
When records are loaded that are missing fields specified in the SQL*Loader control file,
SQL*Loader can either specify those fields as null, or report an error.

9.19.1 Specifying Table Names
The INTO TABLE clause of the LOAD DATA statement enables you to identify tables, fields, and
data types.

It defines the relationship between records in the data file and tables in the database. The
specification of fields and data types is described in later sections.

9.19.2 INTO TABLE Clause
Among its many functions, the SQL*Loader INTO TABLE clause enables you to specify the
table into which you load data.

Purpose

Specifies the table into which you load data, and controls how that data is loaded.

To load multiple tables, you include one INTO TABLE clause for each table you want to load.

To begin an INTO TABLE clause, use the keywords INTO TABLE followed by the name of the
Oracle Database table that you want to receive the data.

Syntax

The syntax is as follows:

Usage Notes

If data already exists in the table, then SQL*Loader appends the new rows to it. If data does
not already exist, then the new rows are simply loaded.

To use the APPEND option, you must have the SELECT privilege.

INSERT is the default method for SQL*Loader to load data into tables. To use this method, the
table must be empty before loading. If you run SQL*Loader to load a table for which you have
the INSERT privilege, but for which you do not have the SELECT privilege, then INSERT mode
fails with the error ORA-1031: Insufficient Privileges While Connecting As SYSDBA.
However, using APPEND mode will succeed..

Chapter 9
Loading Logical Records into Tables

9-43

Restrictions

The table that you specify as the table into which you want to load data must already
exist. If the table name is the same as any SQL or SQL*Loader reserved keyword, or if
it contains any special characters, or if it is case sensitive, then you should enclose the
table name in double quotation marks. For example:

INTO TABLE scott."CONSTANT"
INTO TABLE scott."Constant"
INTO TABLE scott."-CONSTANT"

The user must have INSERT privileges for the table being loaded. If the table is not in
the user's schema, then the user must either use a synonym to reference the table, or
include the schema name as part of the table name (for example, scott.emp refers to
the table emp in the scott schema).

Note:

SQL*Loader considers the default schema to be whatever schema is current
after your connection to the database is complete. This means that if there
are logon triggers present that are run during connection to a database, then
the default schema to which you are connected is not necessarily the
schema that you specified in the connect string.

If you have a logon trigger that changes your current schema to a different
one when you connect to a certain database, then SQL*Loader uses that
new schema as the default.

9.19.3 Table-Specific Loading Method
When you are loading a table, you can use the INTO TABLE clause to specify a table-
specific loading method (INSERT, APPEND, REPLACE, or TRUNCATE) that applies only to
that table.

That method overrides the global table-loading method. The global table-loading
method is INSERT, by default, unless a different method was specified before any INTO
TABLE clauses. The following sections discuss using these options to load data into
empty and nonempty tables.

9.19.4 Loading Data into Empty Tables with INSERT
To load data into empty tables, use the INSERT option.

If the tables you are loading into are empty, then use the INSERT option. The INSERT
option is the default method for SQL*Loader. To use INSERT, the table into which you
want to load data must be empty before you load it. If the table into which you attempt
to load data contains rows, then SQL*Loader terminates with an error. Case study 1,
Loading Variable-Length Data, provides an example. (See SQL*Loader Case Studies
for information on how to access case studies.)

Chapter 9
Loading Logical Records into Tables

9-44

SQL*Loader checks the table into which you insert data to ensure that it is empty. For this
reason, the user with which you run INSERT must be granted both the SELECT and the INSERT
privilege.

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case studies
that Oracle provides.

9.19.5 Loading Data into Nonempty Tables
When you use SQL*Loader to load data into nonempty tables, you can append to, replace, or
truncate the existing table.

Note:

To avoid loading of any rows on field setting, conversion and most load errors, also
use errors=0 and optimize_parallel=false.

• Options for Loading Data Into Nonempty Tables
To load data into nonempty tables with SQL*Loader, you must select how that data is
loaded

• APPEND
You use the APPEND clause of INTO TABLE to append rows to tables with SQL*Loader.

• APPEND_PARALLEL
With parallel load requests, you must specify the APPEND_PARALLEL clause of INTO TABLE
with SQL*Loader.

• REPLACE
You use the REPLACE clause of INTO TABLE to replace table rows or tables using
SQL*Loader.

• Updating Existing Rows with REPLACE
To update existing rows in tables using SQL*Loader, use this procedure.

• TRUNCATE
To truncate all rows from tables or clusters with SQL*Loader, you use the TRUNCATE
clause

9.19.5.1 Options for Loading Data Into Nonempty Tables
To load data into nonempty tables with SQL*Loader, you must select how that data is loaded

If the tables you are loading into already contain data, then you have three options:

• APPEND
• REPLACE
• TRUNCATE

Chapter 9
Loading Logical Records into Tables

9-45

Caution:

When you specify REPLACE or TRUNCATE, the entire table is replaced, not
just individual rows. After the rows are successfully deleted, a COMMIT
statement is issued. You cannot recover the data that was in the table
before the load, unless it was saved with Export, or a comparable utility.

9.19.5.2 APPEND
You use the APPEND clause of INTO TABLE to append rows to tables with SQL*Loader.

If data already exists in the table, then SQL*Loader appends the new rows to it. If data
does not already exist, then the new rows are simply loaded. You must have SELECT
privilege to use the APPEND option. "Case study 3, Loading a Delimited Free-Format
File" provides an example. (See "SQL*Loader Case Studies" for information about
how to access case studies.)

Related Topics

• SQL*Loader Case Studies

9.19.5.3 APPEND_PARALLEL
With parallel load requests, you must specify the APPEND_PARALLEL clause of INTO
TABLE with SQL*Loader.

If a parallel load requests append semantics, then you must also specify
APPEND_PARALLEL. Automatic parallel loads cannot use skip=n to continue loads,
because the order of record loading differs from run to run. Consider this when loading
a table in parallel, especially when loading into a nonempty table.

9.19.5.4 REPLACE
You use the REPLACE clause of INTO TABLE to replace table rows or tables using
SQL*Loader.

The REPLACE option runs a SQL DELETE FROM TABLE statement. All rows in the table
are deleted and the new data is loaded. The table must be in your schema, or you
must have DELETE privilege on the table. "Case study 4, Loading Combined Physical
Records" provides an example. (See "SQL*Loader Case Studies" for information
about how to access case studies.)

The row deletes cause any delete triggers defined on the table to fire. If DELETE
CASCADE has been specified for the table, then the cascaded deletes are carried out.
For more information about cascaded deletes, see "Parent Key Modifications and
Foreign Keys" in Oracle Database Concepts.

Related Topics

• SQL*Loader Case Studies

• Parent Key Modifications and Foreign Keys

Chapter 9
Loading Logical Records into Tables

9-46

9.19.5.5 Updating Existing Rows with REPLACE
To update existing rows in tables using SQL*Loader, use this procedure.

The REPLACE method is a table replacement, not a replacement of individual rows.
SQL*Loader does not update existing records, even if they have null columns. To update
existing rows, use the following procedure:

1. Load your data into a work table.

2. Use the SQL UPDATE statement with correlated subqueries.

3. Drop the work table.

9.19.5.6 TRUNCATE
To truncate all rows from tables or clusters with SQL*Loader, you use the TRUNCATE clause

The TRUNCATE option runs a SQL TRUNCATE TABLE table_name REUSE STORAGE statement,
which means that the extents of the table specified by table_name will be reused. The
TRUNCATE option quickly and efficiently deletes all rows from a table or cluster, to achieve the
best possible performance. For the TRUNCATE statement to operate, the table's referential
integrity constraints must first be disabled. If they have not been disabled, then SQL*Loader
returns an error.

After the integrity constraints have been disabled, DELETE CASCADE is no longer defined for
the table. If the DELETE CASCADE functionality is needed, then the contents of the table must
be manually deleted before the load begins.

To use this option, either the table must be in your schema, or you must have the DROP ANY
TABLE privilege.

9.19.6 Table-Specific OPTIONS Parameter
The OPTIONS parameter can be specified for individual tables in a parallel load. (It is valid only
for a parallel load.)

The syntax for the OPTIONS parameter is as follows:

OPTIONS (FILE=database_filename)

See Also:

Parameters for Parallel Direct Path Loads

9.19.7 Loading Records Based on a Condition
You can choose to load or discard a logical record by using the WHEN clause to test a condition
in the record.

Chapter 9
Loading Logical Records into Tables

9-47

The WHEN clause appears after the table name and is followed by one or more field
conditions. The syntax for field_condition is as follows:

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

For example, the following clause indicates that any record with the value "q" in the
fifth column position should be loaded:

WHEN (5) = 'q'

A WHEN clause can contain several comparisons, provided each is preceded by AND.
Parentheses are optional, but should be used for clarity with multiple comparisons
joined by AND. For example:

WHEN (deptno = '10') AND (job = 'SALES')

See Also:

• Using the WHEN_ NULLIF_ and DEFAULTIF Clauses for information
about how SQL*Loader evaluates WHEN clauses, as opposed to NULLIF
and DEFAULTIF clauses

• Case study 5, Loading Data into Multiple Tables, for an example of using
the WHEN clause (see "SQL*Loader Case Studies" for information on how
to access case studies)

9.19.8 Using the WHEN Clause with LOBFILEs and SDFs
See how to use the WHEN clause with LOBFILEs and SDFs.

If a record with a LOBFILE or SDF is discarded, then SQL*Loader does not skip the
corresponding data in that LOBFILE or SDF.

9.19.9 Specifying Default Data Delimiters
If all data fields are terminated similarly in the data file, then you can use the FIELDS
clause to indicate the default termination and enclosure delimiters.

• fields_spec
Use fields_spec to specify fields for default termination and enclosure delimiters.

• termination_spec
Use termination_spec to specify default termination and enclosure delimiters.

Chapter 9
Loading Logical Records into Tables

9-48

• enclosure_spec
Use enclosure_spec to specify default enclosure delimiters.

9.19.9.1 fields_spec
Use fields_spec to specify fields for default termination and enclosure delimiters.

fields_spec Syntax

FIELDS

csv_clause
enclosure_spec

termination_spec

OPTIONALLY

enclosure_spec

Related Topics

• Specifying CSV Format Files
To direct SQL*Loader to access the data files as comma-separated-values format files,
use the CSV clause.

9.19.9.2 termination_spec
Use termination_spec to specify default termination and enclosure delimiters.

termination_spec Syntax

TERMINATED

BY

WHITESPACE

X’hexstr’

’string’

EOF

Note:

Terminator strings can contain one or more characters. Also, TERMINATED BY EOF
applies only to loading LOBs from a LOBFILE.

9.19.9.3 enclosure_spec
Use enclosure_spec to specify default enclosure delimiters.

enclosure_spec Syntax

ENCLOSED

BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

Chapter 9
Loading Logical Records into Tables

9-49

Note:

Enclosure strings can contain one or more characters.

You can override the delimiter for any given column by specifying it after the column
name. You can see an example of this usage in Case study 3, Loading a Delimited
Free-Format File. See the topic See "SQL*Loader Case Studies" for information about
how to load and use case studies.

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

• Loading LOB Data from LOBFILEs
To load large LOB data files, consider using a LOBFILE with SQL*Loader.

9.19.10 Handling Records with Missing Specified Fields
When records are loaded that are missing fields specified in the SQL*Loader control
file, SQL*Loader can either specify those fields as null, or report an error.

• SQL*Loader Management of Short Records with Missing Data
Learn how SQL*Loader handles cases where the control file defines more fields
for a record than are present in the record.

• TRAILING NULLCOLS Clause
You can use the TRAILING NULLCOLS clause to configure SQL*Loader to treat
missing columns as null columns.

9.19.10.1 SQL*Loader Management of Short Records with Missing Data
Learn how SQL*Loader handles cases where the control file defines more fields for a
record than are present in the record.

When the control file definition specifies more fields for a record than are present in
the record, SQL*Loader must determine if the remaining (specified) columns should be
considered null, or if it should generate an error.

If the control file definition explicitly states that a field's starting position is beyond the
end of the logical record, then SQL*Loader always defines the field as null. If a field is
defined with a relative position (such as dname and loc in the following example), and
the record ends before the field is found, then SQL*Loader can either treat the field as
null, or generate an error. SQL*Loader uses the presence or absence of the TRAILING
NULLCOLS clause (shown in the following syntax diagram) to determine the course of
action.

Chapter 9
Loading Logical Records into Tables

9-50

OID_spec

SID_spec FIELDS

delim_spec

TRAILING

NULLCOLS

TREAT AS typename

9.19.10.2 TRAILING NULLCOLS Clause
You can use the TRAILING NULLCOLS clause to configure SQL*Loader to treat missing
columns as null columns.

The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively positioned columns
that are not present in the record as null columns.

For example, consider the following data:

10 Accounting

Assume that the preceding data is read with the following control file and the record ends
after dname:

INTO TABLE dept
 TRAILING NULLCOLS
(deptno CHAR TERMINATED BY " ",
 dname CHAR TERMINATED BY WHITESPACE,
 loc CHAR TERMINATED BY WHITESPACE
)

In this case, the remaining loc field is set to null. Without the TRAILING NULLCOLS clause, an
error would be generated due to missing data.

See Also:

Case study 7, Extracting Data from a Formatted Report, for an example of using
TRAILING NULLCOLS (see SQL*Loader Case Studies for information on how to
access case studies)

9.20 Index Options with SQL*Loader
To control how SQL*Loader creates index entries, you can set SORTED INDEXES and
SINGLEROW clauses.

• Understanding the SORTED INDEXES Parameter
To optimize performance with SQL*Loader direct path loads, consider using the SORTED
INDEX control file parameter.

Chapter 9
Index Options with SQL*Loader

9-51

• Understanding the SINGLEROW Parameter
When using SQL*Loader for direct path loads for small loads, or on systems with
limited memory, consider using the SINGLEROW control file parameter.

9.20.1 Understanding the SORTED INDEXES Parameter
To optimize performance with SQL*Loader direct path loads, consider using the
SORTED INDEX control file parameter.

The SORTED INDEX clause applies to direct path loads. It tells SQL*Loader that the
incoming data has already been sorted on the specified indexes. Specifying sorted
indexes enables SQL*Loader to optimize performance.

Related Topics

• SORTED INDEXES Clause
The SORTED INDEXES clause identifies the indexes on which the data is presorted.

9.20.2 Understanding the SINGLEROW Parameter
When using SQL*Loader for direct path loads for small loads, or on systems with
limited memory, consider using the SINGLEROW control file parameter.

The SINGLEROW option is intended for use during a direct path load with APPEND on
systems with limited memory, or when loading a small number of records into a large
table. This option inserts each index entry directly into the index, one record at a time.

By default, SQL*Loader does not use SINGLEROW to append records to a table. Instead,
index entries are put into a separate, temporary storage area, and merged with the
original index at the end of the load. This method achieves better performance and
produces an optimal index, but it requires extra storage space. During the merge
operation, the original index, the new index, and the space for new entries all
simultaneously occupy storage space.

With the SINGLEROW option, storage space is not required for new index entries or for a
new index. It is possible that the index that results is not as optimal as a freshly sorted
one. However, this index takes less space to produce. It also takes more time to
produce, because additional UNDO information is generated for each index insert.
Oracle recommends that you consider using this option when either of the following
situations exists:

• Available storage is limited.

• The number of records that you want to load is small compared to the size of the
table. Oracle recommends this option when the number of records compared to
the size of the table is a ratio of 1:20 or less.

9.21 Benefits of Using Multiple INTO TABLE Clauses
Learn from examples how you can use multiple INTO TABLE clauses for specific
SQL*Loader use cases

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-52

• Understanding the SQL*Loader INTO TABLE Clause
Among other uses, the INTO TABLE control file parameter is useful for loading multiple
tables, loading data into more than one table, and extracting multiple logical records.

• Distinguishing Different Input Record Formats
If you have a variety of formats of data in a single data file, you can use the SQL*Loader
INTO TABLE clause to distinguish between formats.

• Relative Positioning Based on the POSITION Parameter
If you have a variety of formats of data in a single data file, you can use the SQL*Loader
POSITION parameter with the INTO TABLE clause to load the records as delimited data.

• Distinguishing Different Input Row Object Subtypes
A single data file may contain records made up of row objects inherited from the same
base row object type.

• Loading Data into Multiple Tables
By using the POSITION parameter with multiple INTO TABLE clauses, data from a single
record can be loaded into multiple normalized tables.

• Summary of Using Multiple INTO TABLE Clauses
Multiple INTO TABLE clauses allow you to extract multiple logical records from a single
input record and recognize different record formats in the same file.

• Extracting Multiple Logical Records
When the data records are short, you can use SQL*Loader INTO TABLE claus to store
more than one data record in a single, physical record to use the storage space
efficiently.

9.21.1 Understanding the SQL*Loader INTO TABLE Clause
Among other uses, the INTO TABLE control file parameter is useful for loading multiple tables,
loading data into more than one table, and extracting multiple logical records.

Multiple INTO TABLE clauses enable you to:

• Load data into different tables

• Extract multiple logical records from a single input record

• Distinguish different input record formats

• Distinguish different input row object subtypes

In the first case, it is common for the INTO TABLE clauses to refer to the same table. To learn
about the different ways that you can use multiple INTO TABLE clauses, and how to use the
POSITION parameter, refer to the examples.

Note:

A key point when using multiple INTO TABLE clauses is that field scanning continues
from where it left off when a new INTO TABLE clause is processed. Refer to the
examples to understand some of the details about how you can to make use of this
behavior. Also learn how you can use alternative ways of using fixed field locations,
or the POSITION parameter.

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-53

9.21.2 Distinguishing Different Input Record Formats
If you have a variety of formats of data in a single data file, you can use the
SQL*Loader INTO TABLE clause to distinguish between formats.

Consider the following data, in which emp and dept records are intermixed:

1 50 Manufacturing — DEPT record
2 1119 Smith 50 — EMP record
2 1120 Snyder 50
1 60 Shipping
2 1121 Stevens 60

A record ID field distinguishes between the two formats. Department records have a 1
in the first column, while employee records have a 2. The following control file uses
exact positioning to load this data:

INTO TABLE dept
 WHEN recid = 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 deptno POSITION(3:4) INTEGER EXTERNAL,
 dname POSITION(8:21) CHAR)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 empno POSITION(3:6) INTEGER EXTERNAL,
 ename POSITION(8:17) CHAR,
 deptno POSITION(19:20) INTEGER EXTERNAL)

9.21.3 Relative Positioning Based on the POSITION Parameter
If you have a variety of formats of data in a single data file, you can use the
SQL*Loader POSITION parameter with the INTO TABLE clause to load the records as
delimited data.

Again, consider data, in which emp and dept records are intermixed. In this case,
however, we can use the POSITION parameter to load the data into delimited records,
as shown in this control file example:

INTO TABLE dept
 WHEN recid = 1
 (recid FILLER INTEGER EXTERNAL TERMINATED BY WHITESPACE,
 deptno INTEGER EXTERNAL TERMINATED BY WHITESPACE,
 dname CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1) INTEGER EXTERNAL TERMINATED BY ' ',
 empno INTEGER EXTERNAL TERMINATED BY ' '
 ename CHAR TERMINATED BY WHITESPACE,
 deptno INTEGER EXTERNAL TERMINATED BY ' ')

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-54

To load this data correctly, the POSITION parameter in the second INTO TABLE clause is
necessary. It causes field scanning to start over at column 1 when checking for data that
matches the second format. Without the POSITION parameter, SQL*Loader would look for
the recid field after dname.

9.21.4 Distinguishing Different Input Row Object Subtypes
A single data file may contain records made up of row objects inherited from the same base
row object type.

For example, consider the following simple object type and object table definitions, in which a
nonfinal base object type is defined along with two object subtypes that inherit their row
objects from the base type:

CREATE TYPE person_t AS OBJECT
 (name VARCHAR2(30),
 age NUMBER(3)) not final;

CREATE TYPE employee_t UNDER person_t
 (empid NUMBER(5),
 deptno NUMBER(4),
 dept VARCHAR2(30)) not final;

CREATE TYPE student_t UNDER person_t
 (stdid NUMBER(5),
 major VARCHAR2(20)) not final;

CREATE TABLE persons OF person_t;

The following input data file contains a mixture of these row objects subtypes. A type ID field
distinguishes between the three subtypes. person_t objects have a P in the first column,
employee_t objects have an E, and student_t objects have an S.

P,James,31,
P,Thomas,22,
E,Pat,38,93645,1122,Engineering,
P,Bill,19,
P,Scott,55,
S,Judy,45,27316,English,
S,Karen,34,80356,History,
E,Karen,61,90056,1323,Manufacturing,
S,Pat,29,98625,Spanish,
S,Cody,22,99743,Math,
P,Ted,43,
E,Judy,44,87616,1544,Accounting,
E,Bob,50,63421,1314,Shipping,
S,Bob,32,67420,Psychology,
E,Cody,33,25143,1002,Human Resources,

The following control file uses relative positioning based on the POSITION parameter to load
this data. Note the use of the TREAT AS clause with a specific object type name. This informs
SQL*Loader that all input row objects for the object table will conform to the definition of the
named object type.

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-55

Note:

Multiple subtypes cannot be loaded with the same INTO TABLE statement.
Instead, you must use multiple INTO TABLE statements and have each one
load a different subtype.

INTO TABLE persons
REPLACE
WHEN typid = 'P' TREAT AS person_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR)

INTO TABLE persons
REPLACE
WHEN typid = 'E' TREAT AS employee_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR,
 empid CHAR,
 deptno CHAR,
 dept CHAR)

INTO TABLE persons
REPLACE
WHEN typid = 'S' TREAT AS student_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR,
 stdid CHAR,
 major CHAR)

See Also:

Loading Column Objects for more information about loading object types

9.21.5 Loading Data into Multiple Tables
By using the POSITION parameter with multiple INTO TABLE clauses, data from a single
record can be loaded into multiple normalized tables.

See case study 5, Loading Data into Multiple Tables, for an example. (See
SQL*Loader Case Studies for information about how to access case studies.).

9.21.6 Summary of Using Multiple INTO TABLE Clauses
Multiple INTO TABLE clauses allow you to extract multiple logical records from a single
input record and recognize different record formats in the same file.

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-56

For delimited data, proper use of the POSITION parameter is essential for achieving the
expected results.

When the POSITION parameter is not used, multiple INTO TABLE clauses process different
parts of the same (delimited data) input record, allowing multiple tables to be loaded from one
record. When the POSITION parameter is used, multiple INTO TABLE clauses can process the
same record in different ways, allowing multiple formats to be recognized in one input file.

9.21.7 Extracting Multiple Logical Records
When the data records are short, you can use SQL*Loader INTO TABLE claus to store more
than one data record in a single, physical record to use the storage space efficiently.

• Example of Extracting Multiple Logical Records From a Physical Record
In this example, you create two logical records from a single physical record using the
SQL*Loader INTO TABLE clause in the control file.

• Example of Relative Positioning Based on Delimiters
In this example, you load the same record using relative positioning with the SQL*Loader
INTO TABLE clause in the control file.

9.21.7.1 Example of Extracting Multiple Logical Records From a Physical Record
In this example, you create two logical records from a single physical record using the
SQL*Loader INTO TABLE clause in the control file.

Some data storage and transfer media have fixed-length physical records.

In this example, SQL*Loader treats a single physical record in the input file as two logical
records and uses two INTO TABLE clauses to load the data into the emp table. For example,
assume the data is as follows:

1119 Smith 1120 Yvonne
1121 Albert 1130 Thomas

The following control file extracts the logical records:

INTO TABLE emp
 (empno POSITION(1:4) INTEGER EXTERNAL,
 ename POSITION(6:15) CHAR)
INTO TABLE emp
 (empno POSITION(17:20) INTEGER EXTERNAL,
 ename POSITION(21:30) CHAR)

9.21.7.2 Example of Relative Positioning Based on Delimiters
In this example, you load the same record using relative positioning with the SQL*Loader
INTO TABLE clause in the control file.

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-57

The following control file uses relative positioning instead of fixed positioning. It
specifies that each field is delimited by a single blank (" ") or with an undetermined
number of blanks and tabs (WHITESPACE):

INTO TABLE emp
 (empno INTEGER EXTERNAL TERMINATED BY " ",
 ename CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
 (empno INTEGER EXTERNAL TERMINATED BY " ",
 ename CHAR) TERMINATED BY WHITESPACE)

The important point in this example is that the second empno field is found immediately
after the first ename, although it is in a separate INTO TABLE clause. Field scanning
does not start over from the beginning of the record for a new INTO TABLE clause.
Instead, scanning continues where it left off.

To force record scanning to start in a specific location, you use the POSITION
parameter.

Related Topics

• Distinguishing Different Input Record Formats
If you have a variety of formats of data in a single data file, you can use the
SQL*Loader INTO TABLE clause to distinguish between formats.

• Loading Data into Multiple Tables
By using the POSITION parameter with multiple INTO TABLE clauses, data from a
single record can be loaded into multiple normalized tables.

9.22 Bind Arrays and Conventional Path Loads
With the SQL*Loader array-interface option, multiple table rows are read at one time,
and stored in a bind array.

• Differences Between Bind Arrays and Conventional Path Loads
With bind arrays, you can use SQL*Loader to load an entire array of records in
one operation.

• Size Requirements for Bind Arrays
When you use a bind array with SQL*Loader, the bind array must be large enough
to contain a single row.

• Performance Implications of Bind Arrays
Large bind arrays minimize the number of calls to the Oracle database and
maximize performance.

• Specifying Number of Rows Versus Size of Bind Array
When you specify a bind array size using the command-line parameter BINDSIZE
or the OPTIONS clause in the control file, you impose an upper limit on the bind
array.

• Setting Up SQL*Loader Bind Arrays
To set up bind arrays, you calculate the array size you need, determine the size of
the length indicator, and calculate the size of the field buffers.

Chapter 9
Bind Arrays and Conventional Path Loads

9-58

• Minimizing Memory Requirements for Bind Arrays
Pay particular attention to the default sizes allocated for VARCHAR, VARGRAPHIC, and the
delimited forms of CHAR, DATE, and numeric EXTERNAL fields.

• Calculating Bind Array Size for Multiple INTO TABLE Clauses
When calculating a bind array size for a control file that has multiple INTO TABLE clauses,
calculate as if the INTO TABLE clauses were not present.

9.22.1 Differences Between Bind Arrays and Conventional Path Loads
With bind arrays, you can use SQL*Loader to load an entire array of records in one
operation.

When you use bind arrays, SQL*Loader uses the SQL array-interface option to transfer data
to the database. When SQL*Loader sends the Oracle database an INSERT command, the
entire array is inserted at one time. After the rows in the bind array are inserted, a COMMIT
statement is issued.

The determination of bind array size pertains to SQL*Loader's conventional path option. In
general, it does not apply to the direct path load method, because a direct path load uses the
direct path API. However, the bind array can be used for special cases of direct path load
where data conversion is necessary. Refer to "Direct Path Load Interface" for more
information about how direct path loading operates.

Related Topics

• Direct Path Load Interface

9.22.2 Size Requirements for Bind Arrays
When you use a bind array with SQL*Loader, the bind array must be large enough to contain
a single row.

If the maximum row length exceeds the size of the bind array, as specified by the BINDSIZE
parameter, then SQL*Loader generates an error. Otherwise, the bind array contains as many
rows as can fit within it, up to the limit set by the value of the ROWS parameter. (The maximum
value for ROWS in a conventional path load is 65534.)

Although the entire bind array need not be in contiguous memory, the buffer for each field in
the bind array must occupy contiguous memory. If the operating system cannot supply
enough contiguous memory to store a field, then SQL*Loader generates an error.

Related Topics

• BINDSIZE
The BINDSIZE command-line parameter for SQL*Loader specifies the maximum size (in
bytes) of the bind array.

• ROWS
For conventional path loads, the ROWS SQL*Loader command-line parameter specifies the
number of rows in the bind array, and in direct path loads, the number of rows to read
from data files before a save.

9.22.3 Performance Implications of Bind Arrays
Large bind arrays minimize the number of calls to the Oracle database and maximize
performance.

Chapter 9
Bind Arrays and Conventional Path Loads

9-59

In general, you gain large improvements in performance with each increase in the bind
array size up to 100 rows. Increasing the bind array size to be greater than 100 rows
generally delivers more modest improvements in performance. The size (in bytes) of
100 rows is typically a good value to use.

In general, any reasonably large size permits SQL*Loader to operate effectively. It is
not usually necessary to perform the detailed calculations described in this section.
Read this section when you need maximum performance or an explanation of memory
usage.

9.22.4 Specifying Number of Rows Versus Size of Bind Array
When you specify a bind array size using the command-line parameter BINDSIZE or
the OPTIONS clause in the control file, you impose an upper limit on the bind array.

The bind array never exceeds that maximum.

As part of its initialization, SQL*Loader determines the size in bytes required to load a
single row. If that size is too large to fit within the specified maximum, then the load
terminates with an error.

SQL*Loader then multiplies that size by the number of rows for the load, whether that
value was specified with the command-line parameter ROWS or the OPTIONS clause in
the control file.

If that size fits within the bind array maximum, then the load continues - SQL*Loader
does not try to expand the number of rows to reach the maximum bind array size. If
the number of rows and the maximum bind array size are both specified, then
SQL*Loader always uses the smaller value for the bind array.

If the maximum bind array size is too small to accommodate the initial number of rows,
then SQL*Loader uses a smaller number of rows that fits within the maximum.

9.22.5 Setting Up SQL*Loader Bind Arrays
To set up bind arrays, you calculate the array size you need, determine the size of the
length indicator, and calculate the size of the field buffers.

• Calculations to Determine Bind Array Size
The bind array's size is equivalent to the number of rows it contains times the
maximum length of each row.

• Determining the Size of the Length Indicator
When you set up a bind array, use the SQL*Loader control file to determine the
size of the length indicator.

• Calculating the Size of Field Buffers
Use these tables to determine the field size buffers for each SQL*Loader data
type, from fixed-length fields, nongraphic fields and graphic fields, through variable
length fields.

Chapter 9
Bind Arrays and Conventional Path Loads

9-60

9.22.5.1 Calculations to Determine Bind Array Size
The bind array's size is equivalent to the number of rows it contains times the maximum
length of each row.

To determine the size of a bind array, the maximum length of a row equals the sum of the
maximum field lengths, plus overhead.

Example 9-10 Determining Bind Array Size

bind array size =
 (number of rows) * (SUM(fixed field lengths)
 + SUM(maximum varying field lengths)
 + ((number of varying length fields)
 * (size of length indicator))
)

Example 9-11 Differences Between Fixed Length and Variable Fields

Many fields do not vary in size. These fixed-length fields are the same for each loaded row.
For these fields, the maximum length of the field is the field size, in bytes. There is no
overhead for these fields.

The fields that can vary in size from row to row are:

• CHAR
• DATE
• INTERVAL DAY TO SECOND
• INTERVAL DAY TO YEAR
• LONG VARRAW
• numeric EXTERNAL
• TIME
• TIMESTAMP
• TIME WITH TIME ZONE
• TIMESTAMP WITH TIME ZONE
• VARCHAR
• VARCHARC
• VARGRAPHIC
• VARRAW
• VARRAWC
The maximum lengths of variable data types describe the number of bytes that the fields can
occupy in the input data record. That length also describes the amount of storage that each
field occupies in the bind array, but the bind array includes additional overhead for fields that
can vary in size.

When the character data types (CHAR, DATE, and numeric EXTERNAL) are specified with
delimiters, any lengths specified for these fields are maximum lengths. When specified

Chapter 9
Bind Arrays and Conventional Path Loads

9-61

without delimiters, the size in the record is fixed, but the size of the inserted field may
still vary, due to whitespace trimming. So internally, these data types are always
treated as varying-length fields—even when they are fixed-length fields.

A length indicator is included for each of these fields in the bind array. The space
reserved for the field in the bind array is large enough to hold the longest possible
value of the field. The length indicator gives the actual length of the field for each row.

Note:

In conventional path loads, LOBFILEs are not included when allocating the
size of a bind array.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW)
were deprecated in Oracle8i Release 8.1.6. For succeeding releases, the
LONG data type was provided for backward compatibility with existing
applications. In new applications developed with later releases, Oracle
strongly recommends that you use CLOB and NCLOB data types for large
amounts of character data.

For information about both fixed and variable data types, refere to "SQL*Loader Data
Types."

Related Topics

• SQL*Loader Data Types
SQL*Loader data types can be grouped into portable and nonportable data types.

9.22.5.2 Determining the Size of the Length Indicator
When you set up a bind array, use the SQL*Loader control file to determine the size of
the length indicator.

On most systems, the size of the length indicator is 2 bytes. On a few systems, it is 3
bytes.

Example 9-12 Determining the Length Indicator Size

The following example shows how to determine a length indicator size with a
SQL*Loader control file:

OPTIONS (ROWS=1)
LOAD DATA
INFILE *
APPEND
INTO TABLE DEPT
(deptno POSITION(1:1) CHAR(1))
BEGINDATA
a

This control file loads a 1-byte CHAR using a 1-row bind array. In this example, no data
is actually loaded, because a conversion error occurs when the character a is loaded
into a numeric column (deptno). The bind array size shown in the log file, minus one
(the length of the character field) is the value of the length indicator.

Chapter 9
Bind Arrays and Conventional Path Loads

9-62

Note:

You can use a similar technique to determine bind array size without doing any
calculations. To determine the memory requirements for a single row of data, run
your control file without any data, and with ROWS=1. Then determine the bind array
size by multiplying by the number of rows that you want in the bind array.

9.22.5.3 Calculating the Size of Field Buffers
Use these tables to determine the field size buffers for each SQL*Loader data type, from
fixed-length fields, nongraphic fields and graphic fields, through variable length fields.

How to Use These Tables

Each table summarizes the memory requirements for each data type. "L" is the length
specified in the control file. "P" is precision. "S" is the size of the length indicator. For more
information about these values, refer to "SQL*Loader Data Types."

Table 9-3 Fixed-Length Fields

Data Type Size in Bytes (Operating System-Dependent)

INTEGER The size of the INT data type, in C

INTEGER(N) N bytes

SMALLINT The size of SHORT INT data type, in C

FLOAT The size of the FLOAT data type, in C

DOUBLE The size of the DOUBLE data type, in C

BYTEINT The size of UNSIGNED CHAR, in C

VARRAW The size of UNSIGNED SHORT, plus 4096 bytes or whatever is
specified as max_length

LONG VARRAW The size of UNSIGNED INT, plus 4096 bytes or whatever is specified
as max_length

VARCHARC Composed of 2 numbers. The first specifies length, and the second
(which is optional) specifies max_length (default is 4096 bytes).

VARRAWC This data type is for RAW data. It is composed of 2 numbers. The first
specifies length, and the second (which is optional) specifies
max_length (default is 4096 bytes).

Table 9-4 Nongraphic Fields

Data Type Default Size Specified Size

(packed) DECIMAL None (N+1)/2, rounded up

ZONED None P

RAW None L

CHAR (no delimiters) 1 L + S

datetime and interval (no delimiters) None L + S

Chapter 9
Bind Arrays and Conventional Path Loads

9-63

Table 9-4 (Cont.) Nongraphic Fields

Data Type Default Size Specified Size

numeric EXTERNAL (no delimiters) None L + S

Table 9-5 Graphic Fields

Data Type Default Size Length Specified with
POSITION

Length Specified with
DATA TYPE

GRAPHIC None L 2*L

GRAPHIC EXTERNAL None L - 2 2*(L-2)

VARGRAPHIC 4KB*2 L+S (2*L)+S

Table 9-6 Variable-Length Fields

Data Type Default Size Maximum Length Specified
(L)

VARCHAR 4 KB L+S

CHAR (delimited) 255 L+S

datetime and interval (delimited) 255 L+S

numeric EXTERNAL (delimited) 255 L+S

Related Topics

• SQL*Loader Data Types
SQL*Loader data types can be grouped into portable and nonportable data types.

9.22.6 Minimizing Memory Requirements for Bind Arrays
Pay particular attention to the default sizes allocated for VARCHAR, VARGRAPHIC, and the
delimited forms of CHAR, DATE, and numeric EXTERNAL fields.

They can consume enormous amounts of memory - especially when multiplied by the
number of rows in the bind array. It is best to specify the smallest possible maximum
length for these fields. Consider the following example:

CHAR(10) TERMINATED BY ","

With byte-length semantics, this example uses (10 + 2) * 64 = 768 bytes in the bind
array, assuming that the length indicator is 2 bytes long and that 64 rows are loaded at
a time.

With character-length semantics, the same example uses ((10 * s) + 2) * 64 bytes in
the bind array, where "s" is the maximum size in bytes of a character in the data file
character set.

Now consider the following example:

CHAR TERMINATED BY ","

Chapter 9
Bind Arrays and Conventional Path Loads

9-64

Regardless of whether byte-length semantics or character-length semantics are used, this
example uses (255 + 2) * 64 = 16,448 bytes, because the default maximum size for a
delimited field is 255 bytes. This can make a considerable difference in the number of rows
that fit into the bind array.

9.22.7 Calculating Bind Array Size for Multiple INTO TABLE Clauses
When calculating a bind array size for a control file that has multiple INTO TABLE clauses,
calculate as if the INTO TABLE clauses were not present.

Imagine all of the fields listed in the control file as one, long data structure—that is, the format
of a single row in the bind array.

If the same field in the data record is mentioned in multiple INTO TABLE clauses, then
additional space in the bind array is required each time it is mentioned. It is especially
important to minimize the buffer allocations for such fields.

Note:

Generated data is produced by the SQL*Loader functions CONSTANT, EXPRESSION,
RECNUM, SYSDATE, and SEQUENCE. Such generated data does not require any space in
the bind array.

Chapter 9
Bind Arrays and Conventional Path Loads

9-65

10
SQL*Loader Field List Reference

The field-list portion of a SQL*Loader control file provides information about fields being
loaded, such as position, data type, conditions, and delimiters.

• Field List Contents
The field-list portion of a SQL*Loader control file provides information about fields being
loaded.

• Specifying the Position of a Data Field.
Learn how to specify positions in a logical data field by using the SQL*Loader POSITION
clause.

• Specifying Columns and Fields
Learn how to specify columns and fields in SQL*Loader specifications.

• SQL*Loader Data Types
SQL*Loader data types can be grouped into portable and nonportable data types.

• Specifying Field Conditions
A field condition is a statement about a field in a logical record that evaluates as true or
false.

• Using the WHEN, NULLIF, and DEFAULTIF Clauses
Learn how SQL*Loader processes the WHEN, NULLIF, andDEFAULTIF clauses with scalar
fields.

• Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses
These examples explain results for different situations in which you can use the WHEN,
NULLIF, and DEFAULTIF clauses.

• Loading Data Across Different Platforms
When a data file created on one platform is to be loaded on a different platform, the data
must be written in a form that the target system can read.

• Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose byte
ordering is different from the byte ordering on the system where SQL*Loader is running,
even if the data file contains certain nonportable data types.

• Loading All-Blank Fields
Fields that are totally blank cause the record to be rejected. To load one of these fields as
NULL, use the NULLIF clause with the BLANKS parameter.

• Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line feeds)
constitute whitespace.

• How the PRESERVE BLANKS Option Affects Whitespace Trimming
To prevent whitespace trimming in all CHAR, DATE, and numeric EXTERNAL fields, you
specify PRESERVE BLANKS as part of the LOAD statement in the control file.

• How [NO] PRESERVE BLANKS Works with Delimiter Clauses
The PRESERVE BLANKS option is affected by the presence of delimiter clauses

10-1

• Applying SQL Operators to Fields
This section describes applying SQL operators to fields.

• Using SQL*Loader to Generate Data for Input
The parameters described in this section provide the means for SQL*Loader to
generate the data stored in the database record, rather than reading it from a data
file.

10.1 Field List Contents
The field-list portion of a SQL*Loader control file provides information about fields
being loaded.

The field-list control file fields are position, data type, conditions, and delimiters.

The following example shows the field list section of the example control file that was
introduced in the topic SQL*Loader Control File Reference

Example 10-1 Field List Section of Sample Control File

.

.

.
1 (hiredate SYSDATE,
2 deptno POSITION(1:2) INTEGER EXTERNAL(2)
 NULLIF deptno=BLANKS,
3 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
 NULLIF job=BLANKS "UPPER(:job)",
 mgr POSITION(28:31) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR
 TERMINATED BY WHITESPACE "UPPER(:ename)",
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE
 "TO_NUMBER(:sal,'$99,999.99')",
4 comm INTEGER EXTERNAL ENCLOSED BY '(' AND '%'
 ":comm * 100"
)

In this example control file, the numbers that appear to the left would not appear in a
real control file. They are callouts that correspond to the following notes:

1. SYSDATE sets the column to the current system date, which can be either the host
system date, or the system date set for the PDB. See SYSDATE Parameter.

2. POSITION specifies the position of a data field.

INTEGER EXTERNAL is the data type for the field. See Specifying the Data Type of a
Data Field and Numeric EXTERNAL.

The NULLIF clause is one of the clauses that you can use to specify field
conditions. See Using the WHEN_ NULLIF_ and DEFAULTIF Clauses.

In this sample, the field is being compared to blanks, using the BLANKS parameter.
See Comparing Fields to BLANKS.

Chapter 10
Field List Contents

10-2

3. The TERMINATED BY WHITESPACE clause is one of the delimiters you can specify for a
field. See Specifying Delimiters.

4. The ENCLOSED BY clause is another possible field delimiter. See Specifying Delimiters.

10.2 Specifying the Position of a Data Field.
Learn how to specify positions in a logical data field by using the SQL*Loader POSITION
clause.

• POSITION
To load data from the data file, SQL*Loader must know the length and location of the
field. The POSITION parametete defines this information.

• Using POSITION with Data Containing Tabs
When you are determining field positions, be alert for tabs in the data file.

• Using POSITION with Multiple Table Loads
This section describes using POSITION with multiple table loads.

• Examples of Using POSITION in SQL*Loader Specifications
See examples of using POSITION with a simple column specification, and with a more
complex column specification.

10.2.1 POSITION
To load data from the data file, SQL*Loader must know the length and location of the field.
The POSITION parametete defines this information.

Purpose

To specify the position of a field in the logical record, use the POSITION clause in the column
specification. You cn either state the position explicitly or state it relative to the preceding
field. Arguments to POSITION must be enclosed in parentheses. The start, end, and integer
values are always in bytes, even if character-length semantics are used for a data file.

You can omit POSITION entirely. If you do omit POSITION, then the position specification for the
data field is the same as if POSITION(*) had been used.

Syntax

The syntax for the position specification (pos_spec) clause is as follows:

(

start

*

+integer

:

–
end

)

Parameters

The following table describes the parameters for the position specification clause.

Chapter 10
Specifying the Position of a Data Field.

10-3

Table 10-1 Parameters for the Position Specification Clause

Parameter Description

start The starting column of the data field in the logical record. The
first byte position in a logical record is 1.

end The ending position of the data field in the logical record. Either
start-end or start:end is acceptable. If you omit end, then the
length of the field is derived from the data type in the data file.
Note that CHAR data specified without start or end, and without a
length specification (CHAR(n)), is assumed to have a length of 1.
If it is impossible to derive a length from the data type, then an
error message is issued.

* Specifies that the data field follows immediately after the previous
field. If you use * for the first data field in the control file, then that
field is assumed to be at the beginning of the logical record.
When you use * to specify position, the length of the field is
derived from the data type.

+integer You can use an offset, specified as +integer, to offset the
current field from the next position after the end of the previous
field. A number of bytes, as specified by +integer, are skipped
before reading the value for the current field.

10.2.2 Using POSITION with Data Containing Tabs
When you are determining field positions, be alert for tabs in the data file.

Suppose you use the SQL*Loader advanced SQL string capabilities to load data from
a formatted report. You would probably first look at a printed copy of the report,
carefully measure all character positions, and then create your control file. In such a
situation, it is highly likely that when you attempt to load the data, the load will fail with
multiple "invalid number" and "missing field" errors.

These kinds of errors occur when the data contains tabs. When printed, each tab
expands to consume several columns on the paper. In the data file, however, each tab
is still only one character. As a result, when SQL*Loader reads the data file, the
POSITION specifications are wrong.

To fix the problem, inspect the data file for tabs and adjust the POSITION specifications,
or else use delimited fields.

Related Topics

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

10.2.3 Using POSITION with Multiple Table Loads
This section describes using POSITION with multiple table loads.

In a multiple table load, you specify multiple INTO TABLE clauses. When you specify
POSITION(*) for the first column of the first table, the position is calculated relative to
the beginning of the logical record. When you specify POSITION(*) for the first column

Chapter 10
Specifying the Position of a Data Field.

10-4

of subsequent tables, the position is calculated relative to the last column of the last table
loaded.

Thus, when a subsequent INTO TABLE clause begins, the position is not set to the beginning
of the logical record automatically. This allows multiple INTO TABLE clauses to process
different parts of the same physical record. For an example, see Extracting Multiple Logical
Records.

A logical record might contain data for one of two tables, but not both. In this case, you would
reset POSITION. Instead of omitting the position specification or using POSITION(*+n) for the
first field in the INTO TABLE clause, use POSITION(1) or POSITION(n).

10.2.4 Examples of Using POSITION in SQL*Loader Specifications
See examples of using POSITION with a simple column specification, and with a more
complex column specification.

The following example shows two column specifications using POSITION:

siteid POSITION (*) SMALLINT
siteloc POSITION (*) INTEGER

Suppose that these are the first two column specifications. In that case, siteid begins in
column 1, and siteloc begins in the column immediately following.

Now, consider these column specifications:

ename POSITION (1:20) CHAR
empno POSITION (22-26) INTEGER EXTERNAL
allow POSITION (*+2) INTEGER EXTERNAL TERMINATED BY "/"

Column ename is character data in positions 1 through 20, followed by column empno, which is
presumably numeric data in columns 22 through 26. Column allow is offset from the next
position (27) after the end of empno by +2, so it starts in column 29 and continues until a slash
is encountered.

10.3 Specifying Columns and Fields
Learn how to specify columns and fields in SQL*Loader specifications.

• Options for Column and Field Specification
When you specify columns and fields for SQL*Loader, be aware of the restrictions and
practices to follow.

• Specifying Filler Fields
A filler field, specified by BOUNDFILLER or FILLER is a data file mapped field that does not
correspond to a database column.

• Specifying the Data Type of a Data Field
The data type specification of a field tells SQL*Loader how to interpret the data in the
field.

Chapter 10
Specifying Columns and Fields

10-5

10.3.1 Options for Column and Field Specification
When you specify columns and fields for SQL*Loader, be aware of the restrictions and
practices to follow.

You can load any number of a table's columns. Columns defined in the database, but
not specified in the control file, are assigned null values.

A column specification is the name of the column, followed by a specification for the
value to be put in that column. The list of columns is enclosed by parentheses and
separated with commas as follows:

(columnspec,columnspec, ...)

Each column name (unless it is marked FILLER) must correspond to a column of the
table named in the INTO TABLE clause. If a column name uses a SQL or SQL*Loader
reserved word, or contains special characters, or is case-sensitive, then the name
must be enclosed in quotation marks.

If SQL*Loader generates the column value, then the specification includes the RECNUM,
SEQUENCE, or CONSTANT parameter. Refer to "Using SQL*Loader to Generate Data for
Input."

If the column's value is read from the data file, then the data field that contains the
column's value is specified. In this case, the column specification includes a column
name that identifies a column in the database table, and a field specification that
describes a field in a data record. The field specification includes position, data type,
null restrictions, and defaults.

It is not necessary to specify all attributes when loading column objects. Any missing
attributes will be set to NULL.

Related Topics

• Using SQL*Loader to Generate Data for Input
The parameters described in this section provide the means for SQL*Loader to
generate the data stored in the database record, rather than reading it from a data
file.

10.3.2 Specifying Filler Fields
A filler field, specified by BOUNDFILLER or FILLER is a data file mapped field that does
not correspond to a database column.

Filler fields are assigned values from the data fields to which they are mapped.

Keep the following in mind regarding filler fields:

• The syntax for a filler field is same as that for a column-based field, except that a
filler field's name is followed by FILLER.

• Filler fields have names, but they are not loaded into the table.

• Filler fields can be used as arguments to init_specs (for example, NULLIF and
DEFAULTIF).

Chapter 10
Specifying Columns and Fields

10-6

• Filler fields can be used as arguments to directives (for example, SID, OID, REF, and
BFILE).

To avoid ambiguity, if a Filler field is referenced in a directive, such as BFILE, and that
field is declared in the control file inside of a column object, then the field name must be
qualified with the name of the column object. This is illustrated in the following example:

LOAD DATA
INFILE *
INTO TABLE BFILE1O_TBL REPLACE
FIELDS TERMINATED BY ','
(
 emp_number char,
 emp_info_b column object
 (
 bfile_name FILLER char(12),
 emp_b BFILE(constant "SQLOP_DIR", emp_info_b.bfile_name) NULLIF
 emp_info_b.bfile_name = 'NULL'
)
)
BEGINDATA
00001,bfile1.dat,
00002,bfile2.dat,
00003,bfile3.dat,

• Filler fields can be used in field condition specifications in NULLIF, DEFAULTIF, and WHEN
clauses. However, they cannot be used in SQL strings.

• Filler field specifications cannot contain a NULLIF or DEFAULTIF clause.

• Filler fields are initialized to NULL if TRAILING NULLCOLS is specified and applicable. If
another field references a nullified filler field, then an error is generated.

• Filler fields can occur anyplace in the data file, including inside the field list for an object
or inside the definition of a VARRAY.

• SQL strings cannot be specified as part of a filler field specification, because no space is
allocated for fillers in the bind array.

Note:

The information in this section also applies to specifying bound fillers by using
BOUNDFILLER. The only exception is that with bound fillers, SQL strings can be
specified as part of the field, because space is allocated for them in the bind
array.

Example 10-2 Filler Field Specification

A Filler field specification looks as follows:

 field_1_count FILLER char,
 field_1 varray count(field_1_count)
 (
 filler_field1 char(2),
 field_1 column object
 (
 attr1 char(2),
 filler_field2 char(2),
 attr2 char(2),

Chapter 10
Specifying Columns and Fields

10-7

)
 filler_field3 char(3),
)
 filler_field4 char(6)

10.3.3 Specifying the Data Type of a Data Field
The data type specification of a field tells SQL*Loader how to interpret the data in the
field.

For example, a data type of INTEGER specifies binary data, while INTEGER EXTERNAL
specifies character data that represents a number. A CHAR field can contain any
character data.

Only one data type can be specified for each field; if a data type is not specified, then
CHAR is assumed.

Before you specify the data type, you must specify the position of the field.

To find out how SQL*Loader data types are converted into Oracle data types, and
obtain detailed information about each SQL*Loader data type, refer to "SQL*Loader
Data Types."

Related Topics

• SQL*Loader Data Types
SQL*Loader data types can be grouped into portable and nonportable data types.

10.4 SQL*Loader Data Types
SQL*Loader data types can be grouped into portable and nonportable data types.

• Portable and Nonportable Data Type Differences
In SQL*Loader, portable data types are platform-independent. Nonportable data
types can have several different dependencies that affect portability.

• Nonportable Data Types
Use this reference to understand how to use the nonportable data types with
SQL*Loader.

• Portable Data Types
Use this reference to understand how to use the portable data types with
SQL*Loader.

• SODA Collection Data Types
Learn how to supply the information required to add data to Oracle Database as a
SODA collection using SQL*Loader.

• Data Type Conversions
SQL*Loader can perform most data type conversions automatically, but to avoid
errors, you need to understand conversion rules.

• Data Type Conversions for Datetime and Interval Data Types
Learn which conversions between Oracle Database data types and SQL*Loader
control file datetime and interval data types are supported, and which are not.

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

Chapter 10
SQL*Loader Data Types

10-8

• How Delimited Data Is Processed
To specify delimiters, field definitions can use various combinations of the TERMINATED
BY, ENCLOSED BY, and OPTIONALLY ENCLOSED BY clauses.

• Conflicting Field Lengths for Character Data Types
A control file can specify multiple lengths for the character-data fields CHAR, DATE, and
numeric EXTERNAL.

10.4.1 Portable and Nonportable Data Type Differences
In SQL*Loader, portable data types are platform-independent. Nonportable data types can
have several different dependencies that affect portability.

For each SQL*Loader data tupe, the data types are subgrouped into value data types and
length-value data types.

The terms portable data type and nonportable data type refer to whether the data type is
platform-dependent. Platform dependency can exist for several reasons, including differences
in the byte ordering schemes of different platforms (big-endian versus little-endian),
differences in the number of bits in a platform (16-bit, 32-bit, 64-bit), differences in signed
number representation schemes (2's complement versus 1's complement), and so on. In
some cases, such as with byte-ordering schemes and platform word length, SQL*Loader
provides mechanisms to help overcome platform dependencies. These mechanisms are
discussed in the descriptions of the appropriate data types.

Both portable and nonportable data types can be values or length-values. Value data types
assume that a data field has a single part. Length-value data types require that the data field
consist of two subfields where the length subfield specifies how long the value subfield can
be.

Note:

With Oracle Database 12c Release 1 (12.1) and later releases, the maximum size
of the Oracle Database VARCHAR2, NVARCHAR2, and RAW data types is 32 KB. To
obtain this size, the COMPATIBLE initialization parameter must be set to 12.0 or later,
and the MAX_STRING_SIZE initialization parameter must be set to EXTENDED.
SQL*Loader supports this maximum size.

10.4.2 Nonportable Data Types
Use this reference to understand how to use the nonportable data types with SQL*Loader.

• Categories of Nonportable Data Types
Nonportable data types are grouped into two categories: value data types, and length-
value data types.

• INTEGER(n)
The SQL*Loader nonportable value data type INTEGER(n) is a length-specific integer
field.

• SMALLINT
The SQL*Loader nonportable value data type SMALLINT is a half-word binary integer.

Chapter 10
SQL*Loader Data Types

10-9

• FLOAT
The SQL*Loader nonportable value data type FLOAT is a single-precision, floating-
point, binary number

• DOUBLE
The SQL*Loader nonportable value data type DOUBLE is a double-precision
floating-point binary number.

• BYTEINT
The SQL*Loader nonportable value data type BYTEINT loads the decimal value of
the binary representation of the byte.

• ZONED
The SQL*Loader nonportable value data type ZONED is in zoned decimal format.

• DECIMAL
The SQL*Loader nonportable value data type DECIMAL is in packed decimal
format.

• VARGRAPHIC
The SQL*Loader nonportable length-value data type VARGRAPHIC is a varying-
length, double-byte character set (DBCS).

• VARCHAR
The SQL*Loader nonportable length-value data type VARCHAR is a binary length
subfield followed by a character string of the specified length.

• VARRAW
The SQL*Loader nonportable length-value data type VARROW is a 2-byte binary
length subfield, and a RAW string value subfield.

• LONG VARRAW
The SQL*Loader nonportable length-value data type LONG VARRAW is a VARRAW with
a 4-byte length subfield.

10.4.2.1 Categories of Nonportable Data Types
Nonportable data types are grouped into two categories: value data types, and
length-value data types.

The nonportable value data types are:

• INTEGER(n)
• SMALLINT
• FLOAT
• DOUBLE
• BYTEINT
• ZONED
• (packed) DECIMAL
The nonportable length-value data types are:

• VARGRAPHIC
• VARCHAR
• VARRAW

Chapter 10
SQL*Loader Data Types

10-10

• LONG VARRAW
To better understand the syntax for nonportable data types, refer to the syntax diagram for
datatype_spec.

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called railroad
diagrams or DDL diagrams).

10.4.2.2 INTEGER(n)
The SQL*Loader nonportable value data type INTEGER(n) is a length-specific integer field.

Definition

The data is a full-word binary integer, where n is an optionally supplied length of 1, 2, 4, or 8.
If no length specification is given, then the length, in bytes, is based on the size of a LONG INT
in the C programming language on your particular platform.

Usage Notes

INTEGERs are not portable because their byte size, their byte order, and the representation of
signed values can be different between systems. However, if the representation of signed
values is the same between systems, then it is possible that SQL*Loader can access
INTEGER data with correct results. If INTEGER is specified with a length specification (n), and
the appropriate technique is used (if necessary) to indicate the byte order of the data, then
SQL*Loader can access the data with correct results between systems. If INTEGER is
specified without a length specification, then SQL*Loader can access the data with correct
results only if the size of a LONG INT in the C programming language is the same length in
bytes on both systems. In that case, the appropriate technique must still be used (if
necessary) to indicate the byte order of the data.

Specifying an explicit length for binary integers is useful in situations where the input data
was created on a platform whose word length differs from that on which SQL*Loader is
running. For instance, input data containing binary integers might be created on a 64-bit
platform and loaded into a database using SQL*Loader on a 32-bit platform. In this case, use
INTEGER(8) to instruct SQL*Loader to process the integers as 8-byte quantities, not as 4-byte
quantities.

By default, INTEGER is treated as a SIGNED quantity. If you want SQL*Loader to treat it as an
unsigned quantity, then specify UNSIGNED. To return to the default behavior, specify SIGNED.

Related Topics

• Loading Data Across Different Platforms
When a data file created on one platform is to be loaded on a different platform, the data
must be written in a form that the target system can read.

10.4.2.3 SMALLINT
The SQL*Loader nonportable value data type SMALLINT is a half-word binary integer.

Definition

The length of a SMALLINT field is the length of a half-word integer on your system.

Chapter 10
SQL*Loader Data Types

10-11

Usage Notes

By default, SMALLINT data is treated as a SIGNED quantity. If you want SQL*Loader to
treat it as an unsigned quantity, then specify UNSIGNED. To return to the default
behavior, specify SIGNED.

You can load SMALLINT data with correct results only between systems where a SHORT
INT has the same length in bytes. If the byte order is different between the systems,
then use the appropriate technique to indicate the byte order of the data.

Note:

This is the SHORT INT data type in the C programming language. One way to
determine its length is to make a small control file with no data, and look at
the resulting log file. This length cannot be overridden in the control file.

Related Topics

• Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

10.4.2.4 FLOAT
The SQL*Loader nonportable value data type FLOAT is a single-precision, floating-
point, binary number

Definition

With FLOAT data, the length of the field is the length of a single-precision, floating-
point binary number on your system. (The data type is FLOAT in C.) This length cannot
be overridden in the control file. If you specify end in the POSITION clause, then end is
ignored.

Usage Notes

You can load FLOAT with correct results only between systems where the
representation of FLOAT is compatible, and of the same length. If the byte order is
different between the two systems, then use the appropriate technique to indicate the
byte order of the data.

Related Topics

• Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

Chapter 10
SQL*Loader Data Types

10-12

10.4.2.5 DOUBLE
The SQL*Loader nonportable value data type DOUBLE is a double-precision floating-point
binary number.

Definition

The length of the DOUBLE field is the length of a double-precision, floating-point binary number
on your system. (The data type is DOUBLE or LONG FLOAT in C.) This length cannot be
overridden in the control file. If you specify end in the POSITION clause, then end is ignored.

Usage Notes

You can load DOUBLE with correct results only between systems where the representation of
DOUBLE is compatible and of the same length. If the byte order is different between the two
systems, then use the appropriate technique to indicate the byte order of the data.

Related Topics

• Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose byte
ordering is different from the byte ordering on the system where SQL*Loader is running,
even if the data file contains certain nonportable data types.

10.4.2.6 BYTEINT
The SQL*Loader nonportable value data type BYTEINT loads the decimal value of the binary
representation of the byte.

Definition

The decimal value of the binary representation of the byte is loaded. For example, the input
character x"1C" is loaded as 28. The length of a BYTEINT field is always 1 byte. If you specify
POSITION (start:end) then end is ignored. (The data type is UNSIGNED CHAR in C.)

Example

An example of the syntax for this data type is:

(column1 position(1) BYTEINT,
column2 BYTEINT,
...
)

10.4.2.7 ZONED
The SQL*Loader nonportable value data type ZONED is in zoned decimal format.

Definition

ZONED data is in zoned decimal format: a string of decimal digits, one per byte, with the sign
included in the last byte. (In COBOL, this is a SIGN TRAILING field.) The length of this field
equals the precision (number of digits) that you specify.

Chapter 10
SQL*Loader Data Types

10-13

Syntax

The syntax for the ZONED data type is as follows:

ZONED (precision

, scale

)

In this syntax, precision is the number of digits in the number, and scale (if given) is
the number of digits to the right of the (implied) decimal point.

Example

The following example specifies an 8-digit integer starting at position 32:

sal POSITION(32) ZONED(8),

When the zoned data is generated on an ASCII-based platform, Oracle Database uses
the VAX/VMS zoned decimal format. It is also possible to load zoned decimal data that
is generated on an EBCDIC-based platform. In this case, Oracle Database uses the
IBM format,as specified in the manual ESA/390 Principles of Operations, version 8.1.
The format that is used depends on the character set encoding of the input data file.

Related Topics

• CHARACTERSET Parameter
Specifying the CHARACTERSET parameter tells SQL*Loader the character set of the
input data file.

10.4.2.8 DECIMAL
The SQL*Loader nonportable value data type DECIMAL is in packed decimal format.

Definition

DECIMAL data is in packed decimal format: two digits per byte, except for the last byte,
which contains a digit and sign. DECIMAL fields allow the specification of an implied
decimal point, so fractional values can be represented.

Syntax

The syntax for the DECIMAL data type is as follows:

DECIMAL (precision

, scale

)

The precision parameter is the number of digits in a value. The length of the field in
bytes, as computed from digits, is (N+1)/2 rounded up.

Chapter 10
SQL*Loader Data Types

10-14

The scale parameter is the scaling factor, or number of digits to the right of the decimal point.
The default is zero (indicating an integer). The scaling factor can be greater than the number
of digits but cannot be negative.

Example

The following example loads a number equivalent to +12345.67

sal DECIMAL (7,2)

In the data record, this field would take up 4 bytes. (The byte length of a DECIMAL field is
equivalent to (N+1)/2, rounded up, where N is the number of digits in the value, and 1 is
added for the sign.)

10.4.2.9 VARGRAPHIC
The SQL*Loader nonportable length-value data type VARGRAPHIC is a varying-length,
double-byte character set (DBCS).

Definition

VARGRAPHIC data consists of a length subfield followed by a string of double-byte
characters. Oracle Database does not support double-byte character sets; however,
SQL*Loader reads them as single bytes, and loads them as RAW data. As with RAW data,
VARGRAPHIC fields are stored without modification in whichever column you specify.

Note:

The size of the length subfield is the size of the SQL*Loader SMALLINT data type on
your system (C type SHORT INT).

Syntax

The syntax for the VARGRAPHIC data type is:

VARGRAPHIC

(max_length)

Usage Notes

You can load VARGRAPHIC data with correct results only between systems where a SHORT INT
has the same length in bytes. If the byte order is different between the systems, then use the
appropriate technique to indicate the byte order of the length subfield.

The length of the current field is given in the first 2 bytes. A maximum length specified for the
VARGRAPHIC data type does not include the size of the length subfield. The maximum length
specifies the number of graphic (double-byte) characters. It is multiplied by 2 to determine the
maximum length of the field in bytes.

The default maximum field length is 2 KB graphic characters, or 4 KB (2 times 2KB). To
minimize memory requirements, specify a maximum length for such fields whenever possible.

Chapter 10
SQL*Loader Data Types

10-15

If a position specification is specified (using pos_spec) before the VARGRAPHIC
statement, then it provides the location of the length subfield, not of the first graphic
character. If you specify pos_spec(start:end), then the end location determines a
maximum length for the field. Both start and end identify single-character (byte)
positions in the file. Start is subtracted from (end + 1) to give the length of the field in
bytes. If a maximum length is specified, then it overrides any maximum length
calculated from the position specification.

If a VARGRAPHIC field is truncated by the end of the logical record before its full length is
read, then a warning is issued. Because the length of a VARGRAPHIC field is embedded
in every occurrence of the input data for that field, it is assumed to be accurate.

VARGRAPHIC data cannot be delimited.

Related Topics

• Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

10.4.2.10 VARCHAR
The SQL*Loader nonportable length-value data type VARCHAR is a binary length
subfield followed by a character string of the specified length.

Definition

A VARCHAR field is a length-value data type. It consists of a binary length subfield
followed by a character string of the specified length. The length is in bytes unless
character-length semantics are used for the data file. In that case, the length is in
characters.

Note:

The size of the length subfield is the size of the SQL*Loader SMALLINT data
type on your system (C type SHORT INT).

Syntax

The syntax for the VARCHAR data type is:

VARCHAR

(max_length)

Usage Notes

VARCHAR fields can be loaded with correct results only between systems where a SHORT
data field INT has the same length in bytes. If the byte order is different between the
systems, or if the VARCHAR field contains data in the UTF16 character set, then use the
appropriate technique to indicate the byte order of the length subfield and of the data.
The byte order of the data is only an issue for the UTF16 character set.

Chapter 10
SQL*Loader Data Types

10-16

A maximum length specified in the control file does not include the size of the length subfield.
If you specify the optional maximum length for a VARCHAR data type, then a buffer of that size,
in bytes, is allocated for these fields. However, if character-length semantics are used for the
data file, then the buffer size in bytes is the max_length times the size in bytes of the largest
possible character in the character set.

The default maximum size is 4 KB. Specifying the smallest maximum length that is needed to
load your data can minimize SQL*Loader's memory requirements, especially if you have
many VARCHAR fields.

The POSITION clause, if used, gives the location, in bytes, of the length subfield, not of the
first text character. If you specify POSITION(start:end), then the end location determines a
maximum length for the field. Start is subtracted from (end + 1) to give the length of the
field in bytes. If a maximum length is specified, then it overrides any length calculated from
POSITION.

If a VARCHAR field is truncated by the end of the logical record before its full length is read,
then a warning is issued. Because the length of a VARCHAR field is embedded in every
occurrence of the input data for that field, it is assumed to be accurate.

VARCHAR data cannot be delimited.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

• Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose byte
ordering is different from the byte ordering on the system where SQL*Loader is running,
even if the data file contains certain nonportable data types.

10.4.2.11 VARRAW
The SQL*Loader nonportable length-value data type VARROW is a 2-byte binary length
subfield, and a RAW string value subfield.

Definition

VARRAW is made up of a 2-byte binary length subfield followed by a RAW string value subfield.

VARRAW results in a VARRAW with a 2-byte length subfield and a maximum size of 4 KB (that is,
the default). VARRAW(65000) results in a VARRAW with a length subfield of 2 bytes and a
maximum size of 65000 bytes.

Usage Notes

You can load VARRAW fields between systems with different byte orders if the appropriate
technique is used to indicate the byte order of the length subfield.

Related Topics

• Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose byte
ordering is different from the byte ordering on the system where SQL*Loader is running,
even if the data file contains certain nonportable data types.

Chapter 10
SQL*Loader Data Types

10-17

10.4.2.12 LONG VARRAW
The SQL*Loader nonportable length-value data type LONG VARRAW is a VARRAW with a
4-byte length subfield.

Definition

LONG VARRAW is a VARRAW with a 4-byte length subfield, instead of a 2-byte length
subfield.

LONG VARRAW results in a VARRAW with 4-byte length subfield and a maximum size of 4
KB (that is, the default). LONG VARRAW(300000) results in a VARRAW with a length
subfield of 4 bytes and a maximum size of 300000 bytes.

Usage Notes

Caution:

This feature is deprecated, and can be desupported in a future release.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

LONG VARRAW fields can be loaded between systems with different byte orders if the
appropriate technique is used to indicate the byte order of the length subfield.

Related Topics

• Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

10.4.3 Portable Data Types
Use this reference to understand how to use the portable data types with SQL*Loader.

The portable data types are grouped into value data types and length-value data
types. The portable value data types are CHAR, Datetime and Interval, GRAPHIC,
GRAPHIC EXTERNAL, Numeric EXTERNAL (INTEGER, FLOAT, DECIMAL, ZONE), and RAW.

The portable length-value data types are VARCHARC and VARRAWC.

The syntax for these data types is shown in the diagram for datatype_spec.

• Categories of Portable Data Types
Portable data types are grouped into value data types, length-value data types,
and character data types.

• CHAR
The SQL*Loader portable value data type CHAR contains character data.

Chapter 10
SQL*Loader Data Types

10-18

• Datetime and Interval
The SQL*Loader portable value datatime data types (datetime) and interval data types
(intervals) are fields that record dates and time intervals.

• GRAPHIC
The SQL*Loader portable value data type GRAPHIC has the data in the form of a double-
byte character set (DBCS).

• GRAPHIC EXTERNAL
The SQL*Loader portable value data type GRAPHIC EXTERNAL specifies graphic data
loaded from external tables.

• Numeric EXTERNAL
The SQL*Loader portable value numeric EXTERNAL data types are human-readable,
character form data.

• RAW
The SQL*Loader portable value RAW specifies a load of raw binary data.

• VARCHARC
The portable length-value data type VARCHARC specifies character string lengths and sizes

• VARRAWC
The portable length-value data type VARRAWC consists of a RAW string value subfield.

• Conflicting Native Data Type Field Lengths
If you are loading different data types, then learn what rules SQL*Loader follows to
manage conflicts in field length specifications.

• Field Lengths for Length-Value Data Types
The field lengths for length-value SQL*Loader portable data types such as VARCHAR,
VARCHARC, VARGRAPHIC, VARRAW, and VARRAWC is in bytes or characters.

10.4.3.1 Categories of Portable Data Types
Portable data types are grouped into value data types, length-value data types, and
character data types.

The portable value data types are:

• CHAR
• Datetime and Interval

• GRAPHIC
• GRAPHIC EXTERNAL
• Numeric EXTERNAL (INTEGER, FLOAT, DECIMAL, ZONE)
• RAW
The portable length-value data types are:

• VARCHARC
• VARRAWC
The character data types are:

• CHAR
• DATE

Chapter 10
SQL*Loader Data Types

10-19

• numeric EXTERNAL
These fields can be delimited, and can have lengths (or maximum lengths) specified in
the control file.

To better understand the syntax for nonportable data types, refer to the syntax diagram
for datatype_spec.

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

10.4.3.2 CHAR
The SQL*Loader portable value data type CHAR contains character data.

Definition

The data field contains character data. The length, which is optional, is a maximum
length. Note the following regarding length:

Syntax

The syntax for the CHAR data type is:

CHAR

(length) delim–spec

Usage Notes

• If you do not specify a CHAR field length, then the CHAR field length is derived from
the POSITION specification.

• If you specify a CHAR field length, then it overrides the length in the POSITION
specification.

• If you neither specify a CHAR field length, nor have a POSITION specification, then
CHAR data is assumed to have a length of 1, unless the field is delimited:

– For a delimited CHAR field, if a length is specified, then that length is used as a
maximum.

– For a delimited CHAR field for which no length is specified, the default is 255
bytes.

– For a delimited CHAR field that is greater than 255 bytes, you must specify a
maximum length. Otherwise you will receive an error stating that the field in
the data file exceeds maximum length.

Related Topics

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

Chapter 10
SQL*Loader Data Types

10-20

10.4.3.3 Datetime and Interval
The SQL*Loader portable value datatime data types (datetime) and interval data types
(intervals) are fields that record dates and time intervals.

• Categories of Datetime and Interval Data Types
The SQL*Loader portable value datetime records date and time fields, and the interval
data types record time intervals.

• DATE
The SQL*Loader datetime data type DATE field contains character data defining a
specified date.

• TIME
The SQL*Loader datetime data type TIME stores hour, minute, and second values.

• TIME WITH TIME ZONE
The SQL*Loader datetime data type TIME WITH TIME ZONE is a variant of TIME that
includes a time zone displacement in its value.

• TIMESTAMP
The SQL*Loader datetime data type TIMESTAMP is an extension of the DATE data type.

• TIMESTAMP WITH TIME ZONE
The SQL*Loader datetime data type TIMESTAMP WITH TIME ZONE is a variant of
TIMESTAMP that includes a time zone displacement in its value.

• TIMESTAMP WITH LOCAL TIME ZONE
The SQL*Loader datetime data type TIMESTAMP WITH LOCAL TIME ZONEis another variant
of TIMESTAMP that includes a time zone offset in its value.

• INTERVAL YEAR TO MONTH
The SQL*Loader interval data type INTERVAL YEAR TO MONTH stores a period of time.

• INTERVAL DAY TO SECOND
The SQL*Loader interval data type INTERVAL DAY TO SECOND stores a period of time
using the DAY and SECOND datetime fields.

10.4.3.3.1 Categories of Datetime and Interval Data Types
The SQL*Loader portable value datetime records date and time fields, and the interval data
types record time intervals.

Definition

Both datetimes and intervals are made up of fields. The values of these fields determine the
value of the data type.

The datetime data types are:

• DATE
• TIME
• TIME WITH TIME ZONE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE

Chapter 10
SQL*Loader Data Types

10-21

The interval data types are:

• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND

Usage Notes

Values of datetime data types are sometimes called datetimes. Except for DATE, you
are allowed to optionally specify a value for fractional_second_precision. The
fractional_second_precision specifies the number of digits stored in the fractional
part of the SECOND datetime field. When you create a column of this data type, the
value can be a number in the range 0 to 9. The default is 6.

Values of interval data types are sometimes called intervals. The INTERVAL YEAR TO
MONTH data type gives you the option to specify a value for year_precision. The
year_precision value is the number of digits in the YEAR datetime field. The default
value is 2.

The INTERVAL DAY TO SECOND data type gives you the option to specify values for
day_precision and fractional_second_precision. The day_precision is the
number of digits in the DAY datetime field. Accepted values are 0 to 9. The default is 2.
The fractional_second_precision specifies the number of digits stored in the
fractional part of the SECOND datetime field. When you create a column of this data
type, the value can be a number in the range 0 to 9. The default is 6.

Related Topics

• Specifying Datetime Formats At the Table Level
You can specify certain datetime formats in a SQL*Loader control file at the table
level, or override a table level format by specifying a mask at the field level.

• Numeric Precedence

10.4.3.3.2 DATE
The SQL*Loader datetime data type DATE field contains character data defining a
specified date.

Syntax

DATE

(length) mask delim_spec

Usage Notes

The DATE field contains character data that should be converted to an Oracle date
using the specified date mask.

The length specification is optional, unless a varying-length date mask is specified.
The length is in bytes unless character-length semantics are used for the data file. In
that case, the length is in characters.

If an explicit length is not specified, then it can be derived from the POSITION clause.
Oracle recommends that you specify the length whenever you use a mask, unless you

Chapter 10
SQL*Loader Data Types

10-22

are absolutely sure that the length of the data is less than, or equal to, the length of the mask.

An explicit length specification, if present, overrides the length in the POSITION clause. Either
of these specifications overrides the length derived from the mask. The mask can be any
valid Oracle date mask. If you omit the mask, then the default Oracle date mask of "dd-mon-
yy" is used.

The length must be enclosed in parentheses, and the mask in quotation marks.

You can also specify a field of data type DATE using delimiters.

Example

LOAD DATA
INTO TABLE dates (col_a POSITION (1:15) DATE "DD-Mon-YYYY")
BEGINDATA
1-Jan-2012
1-Apr-2012 28-Feb-2012

Unless delimiters are present, whitespace is ignored and dates are parsed from left to right.
(A DATE field that consists entirely of whitespace is loaded as a NULL field.)

In the preceding example, the date mask, "DD-Mon-YYYY" contains 11 bytes, with byte-length
semantics. Therefore, SQL*Loader expects a maximum of 11 bytes in the field, so the
specification works properly. But, suppose a specification such as the following is given:

DATE "Month dd, YYYY"

In this case, the date mask contains 14 bytes. If a value with a length longer than 14 bytes is
specified, such as "September 30, 2012", then a length must be specified.

Similarly, a length is required for any Julian dates (date mask "J"). A field length is required
any time the length of the date string could exceed the length of the mask (that is, the count
of bytes in the mask).

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

10.4.3.3.3 TIME
The SQL*Loader datetime data type TIME stores hour, minute, and second values.

Syntax

TIME [(fractional_second_precision)]

Chapter 10
SQL*Loader Data Types

10-23

10.4.3.3.4 TIME WITH TIME ZONE
The SQL*Loader datetime data type TIME WITH TIME ZONE is a variant of TIME that
includes a time zone displacement in its value.

Definition

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (coordinated universal time, formerly Greenwich mean time).

Syntax

TIME [(fractional_second_precision)] WITH [LOCAL] TIME ZONE

If the LOCAL option is specified, then data stored in the database is normalized to the
database time zone, and time zone displacement is not stored as part of the column
data. When the data is retrieved, it is returned in the user's local session time zone.

10.4.3.3.5 TIMESTAMP
The SQL*Loader datetime data type TIMESTAMP is an extension of the DATE data type.

Definition

It stores the year, month, and day of the DATE data type, plus the hour, minute, and
second values of the TIME data type.

Syntax

TIMESTAMP [(fractional_second_precision)]

If you specify a date value without a time component, then the default time is 12:00:00
a.m. (midnight).

10.4.3.3.6 TIMESTAMP WITH TIME ZONE
The SQL*Loader datetime data type TIMESTAMP WITH TIME ZONE is a variant of
TIMESTAMP that includes a time zone displacement in its value.

Definition

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (coordinated universal time, formerly Greenwich mean time).

Syntax

TIMESTAMP [(fractional_second_precision)] WITH TIME ZONE

Chapter 10
SQL*Loader Data Types

10-24

10.4.3.3.7 TIMESTAMP WITH LOCAL TIME ZONE
The SQL*Loader datetime data type TIMESTAMP WITH LOCAL TIME ZONEis another variant of
TIMESTAMP that includes a time zone offset in its value.

Definition

Data stored in the database is normalized to the database time zone, and time zone
displacement is not stored as part of the column data. When the data is retrieved, it is
returned in the user's local session time zone.

Syntax

It is specified as follows:

TIMESTAMP [(fractional_second_precision)] WITH LOCAL TIME ZONE

10.4.3.3.8 INTERVAL YEAR TO MONTH
The SQL*Loader interval data type INTERVAL YEAR TO MONTH stores a period of time.

Definintion

INTERVAL YEAR TO MONTH stores a period of time by using the YEAR and MONTH datetime fields.

Syntax

INTERVAL YEAR [(year_precision)] TO MONTH

10.4.3.3.9 INTERVAL DAY TO SECOND
The SQL*Loader interval data type INTERVAL DAY TO SECOND stores a period of time using
the DAY and SECOND datetime fields.

Definition

The INTERVAL DAY TO SECOND data type stores a period of time using the DAY and SECOND
datetime fields.

Syntax

INTERVAL DAY [(day_precision)] TO SECOND [(fractional_second_precision)]

10.4.3.4 GRAPHIC
The SQL*Loader portable value data type GRAPHIC has the data in the form of a double-byte
character set (DBCS).

Definition

the GRAPHIC data type specifies graphic data:

Chapter 10
SQL*Loader Data Types

10-25

GRAPHIC

(graphic_char_length)

Usage Notes

The data in GRAPHIC is in the form of a double-byte character set (DBCS). Oracle
Database does not support double-byte character sets; however, SQL*Loader reads
them as single bytes. As with RAW data, GRAPHIC fields are stored without modification
in whichever column you specify.

For GRAPHIC and GRAPHIC EXTERNAL, specifying POSITION (start:end) gives the
exact location of the field in the logical record.

If you specify a length for the GRAPHIC (EXTERNAL) data type, however, then you give
the number of double-byte graphic characters. That value is multiplied by 2 to find the
length of the field in bytes. If the number of graphic characters is specified, then any
length derived from POSITION is ignored. No delimited data field specification is
allowed with GRAPHIC data type specification.

10.4.3.5 GRAPHIC EXTERNAL
The SQL*Loader portable value data type GRAPHIC EXTERNAL specifies graphic data
loaded from external tables.

Description

GRAPHIC indicates that the data is double-byte characters (DBCA). EXTERNAL indicates
that the first and last characters are ignored.

If the DBCS field is surrounded by shift-in and shift-out characters, then use GRAPHIC
EXTERNAL. This is identical to GRAPHIC, except that the first and last characters (the
shift-in and shift-out) are not loaded.

Syntax

GRAPHIC_EXTERNAL

(graphic_char_length)

GRAPHIC indicates that the data is double-byte characters. EXTERNAL indicates that the
first and last characters are ignored. The graphic_char_length value specifies the
length in DBCS.

Example

To see how GRAPHIC EXTERNAL works, let [] represent shift-in and shift-out
characters, and let # represent any double-byte character.

To describe ####, use POSITION(1:4) GRAPHIC or POSITION(1) GRAPHIC(2).

To describe [####], use POSITION(1:6) GRAPHIC EXTERNAL or POSITION(1) GRAPHIC
EXTERNAL(2).

Chapter 10
SQL*Loader Data Types

10-26

Related Topics

• GRAPHIC
The SQL*Loader portable value data type GRAPHIC has the data in the form of a double-
byte character set (DBCS).

10.4.3.6 Numeric EXTERNAL
The SQL*Loader portable value numeric EXTERNAL data types are human-readable, character
form data.

Definition

The numeric EXTERNAL data types are the numeric data types (INTEGER, FLOAT, DECIMAL,
and ZONED) specified as EXTERNAL, with optional length and delimiter specifications. The
length is in bytes unless character-length semantics are used for the data file. In that case,
the length is in characters.

These data types are the human-readable, character form of numeric data. The same rules
that apply to CHAR data regarding length, position, and delimiters apply to numeric EXTERNAL
data. Refer to CHAR for a complete description of these rules.

The syntax for the numeric EXTERNAL data types is shown as part of the datatype_spec
SQL*Loader data syntax.

FLOAT EXTERNAL data can be given in either scientific or regular notation. Both "5.33" and
"533E-2" are valid representations of the same value.

Note:

The data is a number in character form, not binary representation. Therefore, these
data types are identical to CHAR and are treated identically, except for the use of
DEFAULTIF. If you want the default to be null, then use CHAR; if you want it to be
zero, then use EXTERNAL.

Related Topics

• Using the WHEN, NULLIF, and DEFAULTIF Clauses
Learn how SQL*Loader processes the WHEN, NULLIF, andDEFAULTIF clauses with scalar
fields.

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

• CHAR
The SQL*Loader portable value data type CHAR contains character data.

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called railroad
diagrams or DDL diagrams).

Chapter 10
SQL*Loader Data Types

10-27

10.4.3.7 RAW
The SQL*Loader portable value RAW specifies a load of raw binary data.

Description

When raw, binary data is loaded "as is" into a RAW database column, it is not converted
when it is place into Oracle Database files.
If the data is loaded into a CHAR column, then Oracle Database converts it to
hexadecimal. It cannot be loaded into a DATE or number column.

Syntax

RAW

(length)

The length of this field is the number of bytes specified in the control file. This length is
limited only by the length of the target column in the database and by memory
resources. The length is always in bytes, even if character-length semantics are used
for the data file. RAW data fields cannot be delimited.

10.4.3.8 VARCHARC
The portable length-value data type VARCHARC specifies character string lengths and
sizes

Description

The SQL*Loader data type VARCHARC consists of a character length subfield followed
by a character string value-subfield.

Syntax

VARCHARC(character_length,character_string)

Usage Notes

The declaration for VARCHARC specifies the length of the length subfield, optionally
followed by the maximum size of any string. If byte-length semantics are in use for the
data file, then the length and the maximum size are both in bytes. If character-length
semantics are in use for the data file, then the length and maximum size are in
characters. If a maximum size is not specified, then 4 KB is the default regardless of
whether byte-length semantics or character-length semantics are in use.

For example:

• VARCHARC results in an error because you must at least specify a value for the
length subfield.

• VARCHARC(7) results in a VARCHARC whose length subfield is 7 bytes long and
whose maximum size is 4 KB (the default) if byte-length semantics are used for
the data file. If character-length semantics are used, then it results in a VARCHARC

Chapter 10
SQL*Loader Data Types

10-28

with a length subfield that is 7 characters long and a maximum size of 4 KB (the default).
Remember that when a maximum size is not specified, the default of 4 KB is always
used, regardless of whether byte-length or character-length semantics are in use.

• VARCHARC(3,500) results in a VARCHARC whose length subfield is 3 bytes long and whose
maximum size is 500 bytes if byte-length semantics are used for the data file. If
character-length semantics are used, then it results in a VARCHARC with a length subfield
that is 3 characters long and a maximum size of 500 characters.

Example

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW (2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS (first_name VARCHARC(5,12),
 last_name VARCHARC(2,20),
 resume VARCHARC(4,10000),
 picture VARRAWC(4,100000)))
 LOCATION ('info.dat'));

00007William05Ricca0035Resume for William Ricca is missing0000

Related Topics

• VARCHARC and VARRAWC
The datatype_spec clause VARCHARC data type defines character data, and the
VARRAWC data type defines binary data.

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

10.4.3.9 VARRAWC
The portable length-value data type VARRAWC consists of a RAW string value subfield.

Description

The VARRAWC data type has a character count field, followed by binary data.

Syntax

VARRAWC(character_length,binary_data)

Usage Notes

• VARRAWC results in an error.

• VARRAWC(7) results in a VARRAWC whose length subfield is 7 bytes long and whose
maximum size is 4 KB (that is, the default).

Chapter 10
SQL*Loader Data Types

10-29

• VARRAWC(3,500) results in a VARRAWC whose length subfield is 3 bytes long and
whose maximum size is 500 bytes.

Example

In the following example, VARRAWC. The length of the picture field is 0, which means
the field is set to NULL.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW (2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS (first_name VARCHARC(5,12),
 last_name VARCHARC(2,20),
 resume VARCHARC(4,10000),
 picture VARRAWC(4,100000)))
 LOCATION ('info.dat'));

00007William05Ricca0035Resume for William Ricca is missing0000

Related Topics

• VARCHARC and VARRAWC
The datatype_spec clause VARCHARC data type defines character data, and the
VARRAWC data type defines binary data.

10.4.3.10 Conflicting Native Data Type Field Lengths
If you are loading different data types, then learn what rules SQL*Loader follows to
manage conflicts in field length specifications.

There are several ways to specify a length for a field. If multiple lengths are specified
and they conflict, then one of the lengths takes precedence. A warning is issued when
a conflict exists. The following rules determine which field length is used:

1. The size of SMALLINT, FLOAT, and DOUBLE data is fixed, regardless of the number of
bytes specified in the POSITION clause.

2. If the length (or precision) specified for a DECIMAL, INTEGER, ZONED, GRAPHIC,
GRAPHIC EXTERNAL, or RAW field conflicts with the size calculated from a
POSITION(start:end) specification, then the specified length (or precision) is
used.

3. If the maximum size specified for a character or VARGRAPHIC field conflicts with the
size calculated from a POSITION(start:end) specification, then the specified
maximum is used.

For example, assume that the native data type INTEGER is 4 bytes long and the
following field specification is given:

column1 POSITION(1:6) INTEGER

Chapter 10
SQL*Loader Data Types

10-30

In this case, a warning is issued, and the proper length (4) is used. The log file shows the
actual length used under the heading "Len" in the column table:

Column Name Position Len Term Encl Data Type
----------------------- --------- ----- ---- ---- ---------
COLUMN1 1:6 4 INTEGER

10.4.3.11 Field Lengths for Length-Value Data Types
The field lengths for length-value SQL*Loader portable data types such as VARCHAR,
VARCHARC, VARGRAPHIC, VARRAW, and VARRAWC is in bytes or characters.

A control file can specify a maximum length for the following length-value data types:
VARCHAR, VARCHARC, VARGRAPHIC, VARRAW, and VARRAWC. The specified maximum length is in
bytes if byte-length semantics are used for the field, and in characters if character-length
semantics are used for the field. If no length is specified, then the maximum length defaults to
4096 bytes. If the length of the field exceeds the maximum length, then the record is rejected
with the following error:

Variable length field exceed maximum length

10.4.4 SODA Collection Data Types
Learn how to supply the information required to add data to Oracle Database as a SODA
collection using SQL*Loader.

Starting with Oracle Database 23c, you can load SODA (Simple Oracle Document Access)
collections to Oracle Database using SQL*Loader. To add SODA collection you supply from
one to three pieces of information:

• The content that you want to load.

$CONTENT is a required field. This field can be an actual text document, or a secondary
data file

containing one or more documents.

• A key to identify the document.

$KEY is not required if the SODA collection automatically generates keys. If $KEY is
specified, then there is a one-to-one relationship between the key and the content.

• A media type to describe the type of the content. $MEDIA is not required if the SODA
collection is defined to hold documents of one media type. The default media type is
JSON but this can be modified using the SODA_MEDIA keyword.

• RAW(*)
The SQL*Loader SODA collection data type RAW(*) specifies for SQL*Loader to read a
record as a single document from the current position in the record.

• CONTENTFILE(soda_filename)
The SQL*Loader SODA collection data type CONTENTFILE(soda_filename) specifies for
SQL*Loader to read one or more documents that are contained in a secondary data file.

Chapter 10
SQL*Loader Data Types

10-31

10.4.4.1 RAW(*)
The SQL*Loader SODA collection data type RAW(*) specifies for SQL*Loader to read
a record as a single document from the current position in the record.

Description

You can use RAW(*) either when text documents are stored directly in the control or
data file, or when the documents are specified in the INFILE clause. RAW(*) specifies
that SQL*Loader reads from the current point in the record to the end of the record
marker as a single document. Because the read begins from the point where RAW(*) is
specified, $CONTENT must be the last field specification in the record.

When documents are stored directly in the control or data file, the expectation is that
the document is a text document, that it is reasonably short, and that it is a single
document.

You can also use RAW(*) in the case where the content files are specified in the
INFILE. For example, specifying INFILE ‘*.json’ would load all JSON files, and
INFILE ‘*.pdf” would load all PDF files.

Syntax

$content raw(*)

Restrictions

The RAW(*) data type cannot be used with SQL*Loader Express.

Examples

Loading a Control File SODA Collection with $KEY and $MEDIA Specified

In the following example, the control file example1.ctl is loaded, with the following
characteristics:

• $key and $media are specified in the first and second fields of the record

• $content is specified in the third field of the record, which specifies a read of the
entire document.

• $content with raw(*) is the last field specified.

Note:

When you use raw(*), $content must be the last field specified, because
raw(*) causes SQL*Loader to begin to read from the current position in the
record to the record terminator.

LOAD DATA
 INFILE *
 INTO SODA_COLLECTION sample_collection
 (

Chapter 10
SQL*Loader Data Types

10-32

 $key char(50),
 $media char(30),
 $content raw(*)
)
BEGINDATA
Key1, application/json, {"Name:"Ralph", "Job":"Bus Driver"},
Key2, application/json, {"Name:"Ruth", "Job":"Counsellor "},
Key3, application/json, {"Name:"Ursula", "Job":"Author"}

In this example, all three SODA collection fields are specified in the control file. All the values
for the fields, including the actual document, are also included in the control file.

The control file mode is as follows:

$ sqlldr scott/tiger control=example1.ctl log=example1.log

Loading a Control File with $KEY and $MEDIA Not Specified

In the next example, the control file example2.ctl is loaded, with the following characteristics:

• $key is not specified. In this case, the SODA collection generates a key automatically.

• $media is not specified, and SODA_MEDIA is not specified. In this case, the value for $media
defaults to application/json.

• $content is the only field specification in the record, which indicates a read of the entire
document.

LOAD DATA
 INFILE *
 INTO SODA_COLLECTION sample_collection
 (
 $content raw(*)
)
BEGINDATA
{"Name:"Ralph", "Job":"Bus Driver"},
{"Name:"Ruth", "Job":"Counsellor "},
{"Name:"Ursula", "Job":"Author"}

The control file mode is as follows:

$ sqlldr scott/tiger control=example2.ctl log=example2.log

10.4.4.2 CONTENTFILE(soda_filename)
The SQL*Loader SODA collection data type CONTENTFILE(soda_filename) specifies for
SQL*Loader to read one or more documents that are contained in a secondary data file.

Description

The CONTENTFILE(soda_filename) data type specifies that the SODA collection should be
loaded with data from one or more documents that are contained in the file or files that you
specify (soda_filename). The CONTENTFILE data type is only valid on the $CONTENT field when
you are loading text documents.

Chapter 10
SQL*Loader Data Types

10-33

You can specify data filenames CONTENTFILE either statically (the name of the files is in
the control file), or dynamically using a Filler field. For example:
soda_filenameVARCHAR(80). The Filler field must be large enough to hold the name of
any secondary data file being loaded.

CONTENTFILE can contain a single document. If the documents are text documents,
then it can contain multiple documents. However, predetermined size and length-value
pairs are not supported with CONTENTFILE.

Syntax

$content contentfile(soda_filename)

Examples

Loading a SODA Collection Using a Dynamic Filename

In this example, the data file contains the names of secondary data files, using the
TERMINATED BY clause so that each of the secondary data files can contain one or
more documents. The SODA collection performs automatic key generation. Because
no media type is provided, it defaults to application/json.

The control file is example3.ctl, with the following data specifications:

• With the use of TERMINATED BY, each file can contain multiple documents,
delimited by the terminator.

• $key is not specified, so the SODA collection generates a key automatically.

• $media is not specified, and SODA_MEDIA is not specified. In this case, the value
for $media defaults to application/json.

• The filename is specified dynamically as soda_fname, using a FILLER column, and
specified in the only field of the record.

LOAD DATA
 INFILE 'ctl_data3.dat'
 INTO SODA_COLLECTION sample_collection
 (
 soda_fname FILLER CHAR(80),
 $content CONTENTFILE(soda_fname) TERMINATED BY “<endlob>\n”
)

In this example, all three SODA collection fields are specified in the control file. All the
values for the fields, including the actual document, are also included in the control file.

The control file mode is as follows

$ sqlldr scott/tiger control=example3.ctl log=example3.log

The contents of ctl_data3.dat consist of two records of one field each (the name of a
secondary data file):

/docs/application/alpha.json
/docs/application/beta.json

Chapter 10
SQL*Loader Data Types

10-34

Note:

You cannot use SQL*Loader Express to do this kind of load, because the load uses
secondary data files that require the use of a filler column.

Loading a SODA Collection Using a Dynamic Filename

In this example, multiple data files are specified, and each contains the names of secondary
data files. The control files contain a $MEDIA field, so that documents of various media types
can be loaded at once.

The control file is example4.ctl, with the following data specifications:

• $key is not specified, so the SODA collection generates a key automatically.

• $media is specified in the first field of the record.

• The filename is specified dynamically as soda_fname, using a FILLER column, and
specified in the third field of the record.

LOAD DATA
 INFILE 'data4_1.dat'
 INFILE ‘data4_2.dat’
 INTO SODA_COLLECTION example_collection
 (
 $media char(30),
 soda_fname FILLER CHAR(80),
 $content CONTENTFILE(soda_fname))
)

The control file mode is as follows

$ sqlldr scott/tiger control=example4.ctl log=example4.log

The contents of ctl_data4_1.dat consist of two records with two fields: the media type, and
a secondary data file name:

application/json, /docs/application/json/alpha.json,
application/xml, /docs/application/xml/beta.xml

The contents of ctl_data4_2.dat consist of two records with two fields: the media type, and
a secondary data file name:

application/pdf, /docs/text/application/pdf/gamma.pdf
application/pdf, /docs/application/pdf/delta.pdf

Because the media type is specified for each record, documents of different media types can
be loaded at one time. This includes the mixing of text and binary data.

Chapter 10
SQL*Loader Data Types

10-35

Note:

You cannot use SQL*Loader Express to do this kind of load, because the
load uses secondary data files that require the use of a filler column.

10.4.5 Data Type Conversions
SQL*Loader can perform most data type conversions automatically, but to avoid
errors, you need to understand conversion rules.

The data type specifications in the control file tell SQL*Loader how to interpret the
information in the data file. The server defines the data types for the columns in the
database. The link between these two is the column name specified in the control file.

SQL*Loader extracts data from a field in the input file, guided by the data type
specification in the control file. SQL*Loader then sends the field to the server to be
stored in the appropriate column (as part of an array of row inserts).

SQL*Loader or the server does any necessary data conversion to store the data in the
proper internal format. This includes converting data from the data file character set to
the database character set when they differ.

Note:

When you use SQL*Loader conventional path to load character data from
the data file into a LONG RAW column, the character data is interpreted has a
HEX string. SQL converts the HEX string into its binary representation. Be
aware that any string longer than 4000 bytes exceeds the byte limit for the
SQL HEXTORAW conversion operator. If a string is longer than the byte limit,
then an error is returned. SQL*Loader rejects the row with an error, and
continues loading.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW)
were deprecated in Oracle8i Release 8.1.6. For succeeding releases, the
LONG data type was provided for backward compatibility with existing
applications. In new applications developed with later releases, Oracle
strongly recommends that you use CLOB and NCLOB data types for large
amounts of character data.

The data type of the data in the file does not need to be the same as the data type of
the column in the Oracle Database table. Oracle Database automatically performs
conversions. However, you need to ensure that the conversion makes sense, and
does not generate errors. For instance, when a data file field with data type CHAR is
loaded into a database column with data type NUMBER, you must ensure that the
contents of the character field represent a valid number.

Chapter 10
SQL*Loader Data Types

10-36

Note:

SQL*Loader does not contain data type specifications for Oracle internal data
types, such as NUMBER or VARCHAR2. The SQL*Loader data types describe data that
can be produced with text editors (character data types) and with standard
programming languages (native data types). However, although SQL*Loader does
not recognize data types such as NUMBER and VARCHAR2, any data that Oracle
Database can convert can be loaded into these or other database columns.

10.4.6 Data Type Conversions for Datetime and Interval Data Types
Learn which conversions between Oracle Database data types and SQL*Loader control file
datetime and interval data types are supported, and which are not.

How to Read the Data Type Conversions for Datetime and Interval Data Types

In the table, the abbreviations for the Oracle Database data types are as follows:

• N = NUMBER
• C = CHAR or VARCHAR2
• D = DATE
• T = TIME and TIME WITH TIME ZONE
• TS = TIMESTAMP and TIMESTAMP WITH TIME ZONE
• YM = INTERVAL YEAR TO MONTH
• DS = INTERVAL DAY TO SECOND
For the SQL*Loader data types, the definitions for the abbreviations in the table are the same
for D, T, TS, YM, and DS. SQL*Loader does not contain data type specifications for Oracle
Database internal data types, such as NUMBER, CHAR, and VARCHAR2. However, any data that
Oracle database can convert can be loaded into these or into other database columns.

For an example of how to read this table, look at the row for the SQL*Loader data type DATE
(abbreviated as D). Reading across the row, you can see that data type conversion is
supported for the Oracle database data types of CHAR, VARCHAR2, DATE, TIMESTAMP, and
TIMESTAMP WITH TIME ZONE data types. However, conversion is not supported for the Oracle
Database data types NUMBER, TIME, TIME WITH TIME ZONE, INTERVAL YEAR TO MONTH, or
INTERVAL DAY TO SECOND data types.

Table 10-2 Data Type Conversions for Datetime and Interval Data Types

SQL*Loader Data Type Oracle Database Data Type (Conversion Support)

N N (Yes), C (Yes), D (No), T (No), TS (No), YM (No), DS (No)

C N (Yes), C (Yes), D (Yes), T (Yes), TS (Yes), YM (Yes), DS (Yes)

D N (No), C (Yes), D (Yes), T (No), TS (Yes), YM (No), DS (No)

T N (No), C (Yes), D (No), T (Yes), TS (Yes), YM (No), DS (No)

TS N (No), C (Yes), D (Yes), T (Yes), TS (Yes), YM (No), DS (No)

YM N (No), C (Yes), D (No), T (No), TS (No), YM (Yes), DS (No)

Chapter 10
SQL*Loader Data Types

10-37

Table 10-2 (Cont.) Data Type Conversions for Datetime and Interval Data Types

SQL*Loader Data Type Oracle Database Data Type (Conversion Support)

DS N (No), C (Yes), D (No), T (No), TS (No), YM (No), DS (Yes)

10.4.7 Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

The delimiter characters are specified using various combinations of the TERMINATED
BY, ENCLOSED BY, and OPTIONALLY ENCLOSED BY clauses (the TERMINATED BY clause, if
used, must come first). The delimiter specification comes after the data type
specification.

For a description of how data is processed when various combinations of delimiter
clauses are used, see How Delimited Data Is Processed.

Note:

The RAW data type can also be marked by delimiters, but only if it is in an
input LOBFILE, and only if the delimiter is TERMINATED BY EOF (end of file).

• Syntax for Termination and Enclosure Specification
The syntax for termination and enclosure specifications is described here.

• Delimiter Marks in the Data
Sometimes the punctuation mark that is a delimiter must also be included in the
data.

• Maximum Length of Delimited Data
Delimited fields can require significant amounts of storage for the bind array.

• Loading Trailing Blanks with Delimiters
You can load trailing blanks by specifying PRESERVE BLANKS, or you can declare
data fields with delimiters, and add delimiters to the data files.

10.4.7.1 Syntax for Termination and Enclosure Specification
The syntax for termination and enclosure specifications is described here.

Purpose

Specifying delimiter characters in the input data record.

Syntax

The following diagram shows the syntax for termination_spec.

Chapter 10
SQL*Loader Data Types

10-38

TERMINATED

BY

WHITESPACE

X’hexstr’

’string’

EOF

The following diagram shows the syntax for enclosure_spec.

ENCLOSED

BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

The following table describes the syntax for the termination and enclosure specifications used
to specify delimiters.

Parameters

Table 10-3 Parameters Used for Specifying Delimiters

Parameter Description

TERMINATED Data is read until the first occurrence of a delimiter.

BY An optional word to increase readability.

WHITESPACE Delimiter is any whitespace character including spaces, tabs, blanks,
line feeds, form feeds, or carriage returns. (Only used with
TERMINATED, not with ENCLOSED.)

OPTIONALLY Data can be enclosed by the specified character. If SQL*Loader finds
a first occurrence of the character, then it reads the data value until it
finds the second occurrence. If the data is not enclosed, then the data
is read as a terminated field. If you specify an optional enclosure, then
you must specify a TERMINATED BY clause (either locally in the field
definition or globally in the FIELDS clause).

ENCLOSED The data is enclosed between two delimiters.

string The delimiter is a string.

X'hexstr' The delimiter is a string that has the value specified by X'hexstr' in
the character encoding scheme, such as X'1F' (equivalent to 31
decimal). "X" can be either lowercase or uppercase.

AND Specifies a trailing enclosure delimiter that may be different from the
initial enclosure delimiter. If AND is not present, then the initial and
trailing delimiters are assumed to be the same.

EOF Indicates that the entire file has been loaded into the LOB. This is valid
only when data is loaded from a LOB file. Fields terminated by EOF
cannot be enclosed.

Chapter 10
SQL*Loader Data Types

10-39

Examples

The following is a set of examples of terminations and enclosures, with examples of
the data that they describe:

TERMINATED BY ',' a data string,
ENCLOSED BY '"' "a data string"
TERMINATED BY ',' ENCLOSED BY '"' "a data string",
ENCLOSED BY '(' AND ')' (a data string)

10.4.7.2 Delimiter Marks in the Data
Sometimes the punctuation mark that is a delimiter must also be included in the data.

To make that possible, two adjacent delimiter characters are interpreted as a single
occurrence of the character, and this character is included in the data. For example,
this data:

(The delimiters are left parentheses, (, and right parentheses,)).)

with this field specification:

ENCLOSED BY "(" AND ")"

puts the following string into the database:

The delimiters are left parentheses, (, and right parentheses,).

For this reason, problems can arise when adjacent fields use the same delimiters. For
example, with the following specification:

field1 TERMINATED BY "/"
field2 ENCLOSED by "/"

the following data will be interpreted properly:

This is the first string/ /This is the second string/

But if field1 and field2 were adjacent, then the results would be incorrect, because

This is the first string//This is the second string/

would be interpreted as a single character string with a "/" in the middle, and that string
would belong to field1.

10.4.7.3 Maximum Length of Delimited Data
Delimited fields can require significant amounts of storage for the bind array.

The default maximum length of delimited data is 255 bytes. Therefore, delimited fields
can require significant amounts of storage for the bind array. A good policy is to specify
the smallest possible maximum value if the fields are shorter than 255 bytes. If the
fields are longer than 255 bytes, then you must specify a maximum length for the field,
either with a length specifier or with the POSITION clause.

For example, if you have a string literal that is longer than 255 bytes, then in addition
to using SUBSTR(), use CHAR() to specify the longest string in any record for the field.

Chapter 10
SQL*Loader Data Types

10-40

An example of how this would look is as follows, assuming that 600 bytes is the longest string
in any record for field1:

field1 CHAR(600) SUBSTR(:field, 1, 240)

10.4.7.4 Loading Trailing Blanks with Delimiters
You can load trailing blanks by specifying PRESERVE BLANKS, or you can declare data fields
with delimiters, and add delimiters to the data files.

By default, trailing blanks in nondelimited data types are not loaded unless you specify
PRESERVE BLANKS in the control file.

If a data field is 9 characters long, and contains the value DANIELbbb, where bbb is three
blanks, then it is loaded into Oracle Database as "DANIEL"" if declared as CHAR(9), without a
delimiter.

To include the trailing blanks with a delimiter, declare the data field as CHAR(9) TERMINATED
BY ':', and add a colon to the data file, so that the field is DANIELbbb:. As a result of this
change, the field is loaded as "DANIEL ", with the trailing blanks included. The same results
are possible if you specify PRESERVE BLANKS without the TERMINATED BY clause.

Related Topics

• Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line feeds)
constitute whitespace.

• How the PRESERVE BLANKS Option Affects Whitespace Trimming
To prevent whitespace trimming in all CHAR, DATE, and numeric EXTERNAL fields, you
specify PRESERVE BLANKS as part of the LOAD statement in the control file.

10.4.8 How Delimited Data Is Processed
To specify delimiters, field definitions can use various combinations of the TERMINATED BY,
ENCLOSED BY, and OPTIONALLY ENCLOSED BY clauses.

Review these topics to understand how SQL*Loader processes each case of these field
definitions.

• Fields Using Only TERMINATED BY
Data fields that use only TERMINATED BY are affected by the location of the delimiter.

• Fields Using ENCLOSED BY Without TERMINATED BY
When data fields use ENCLOSED BY without TERMINATED BY, there is a sequence of
processing that SQL*Loader uses for those fields.

• Fields Using ENCLOSED BY With TERMINATED BY
When data fields use ENCLOSED BY with TERMINATED BY, there is a sequence of
processing that SQL*Loader uses for those fields.

• Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY
When data fields use OPTIONALLY ENCLOSED BY with TERMINATED BY, there is a sequence
of processing that SQL*Loader uses for those fields.

10.4.8.1 Fields Using Only TERMINATED BY
Data fields that use only TERMINATED BY are affected by the location of the delimiter.

Chapter 10
SQL*Loader Data Types

10-41

If TERMINATED BY is specified for a field without ENCLOSED BY, then the data for the field
is read from the starting position of the field up to, but not including, the first
occurrence of the TERMINATED BY delimiter. If the terminator delimiter is found in the
first column position of a field, then the field is null. If the end of the record is found
before the TERMINATED BY delimiter, then all data up to the end of the record is
considered part of the field.

If TERMINATED BY WHITESPACE is specified, then data is read until the first occurrence
of a whitespace character (spaces, tabs, blanks, line feeds, form feeds, or carriage
returns). Then the current position is advanced until no more adjacent whitespace
characters are found. This processing behavior enables field values to be delimited by
varying amounts of whitespace.

However, unlike non-whitespace terminators, if the first column position of a field is
known, and a whitespace terminator is found there, then the field is not treated as null.
This processing can result in record rejection, or in fields loaded into incorrect
columns.

10.4.8.2 Fields Using ENCLOSED BY Without TERMINATED BY
When data fields use ENCLOSED BY without TERMINATED BY, there is a sequence of
processing that SQL*Loader uses for those fields.

The following steps take place when a field uses an ENCLOSED BY clause without also
using a TERMINATED BY clause.

1. Any whitespace at the beginning of the field is skipped.

2. The first non-whitespace character found must be the start of a string that matches
the first ENCLOSED BY delimiter. If it is not, then the row is rejected.

3. If the first ENCLOSED BY delimiter is found, then the search for the second ENCLOSED
BY delimiter begins.

4. If two of the second ENCLOSED BY delimiters are found adjacent to each other, then
they are interpreted as a single occurrence of the delimiter, and included as part of
the data for the field. The search then continues for another instance of the second
ENCLOSED BY delimiter.

5. If the end of the record is found before the second ENCLOSED BY delimiter is found,
then the row is rejected.

10.4.8.3 Fields Using ENCLOSED BY With TERMINATED BY
When data fields use ENCLOSED BY with TERMINATED BY, there is a sequence of
processing that SQL*Loader uses for those fields.

The following steps take place when a field uses an ENCLOSED BY clause and also uses
a TERMINATED BY clause.

1. Any whitespace at the beginning of the field is skipped.

2. The first non-whitespace character found must be the start of a string that matches
the first ENCLOSED BY delimiter. If it is not, then the row is rejected.

3. If the first ENCLOSED BY delimiter is found, then the search for the second ENCLOSED
BY delimiter begins.

Chapter 10
SQL*Loader Data Types

10-42

4. If two of the second ENCLOSED BY delimiters are found adjacent to each other, then they
are interpreted as a single occurrence of the delimiter and included as part of the data for
the field. The search then continues for the second instance of the ENCLOSED BY delimiter.

5. If the end of the record is found before the second ENCLOSED BY delimiter is found, then
the row is rejected.

6. If the second ENCLOSED BY delimiter is found, then the parser looks for the TERMINATED BY
delimiter. If the TERMINATED BY delimiter is anything other than WHITESPACE, then
whitespace found between the end of the second ENCLOSED BY delimiter and the
TERMINATED BY delimiter is skipped over.

Caution:

Only WHITESPACE is allowed between the second ENCLOSED BY delimiter and the
TERMINATED BY delimiter. Any other characters will cause an error.

7. The row is not rejected if the end of the record is found before the TERMINATED BY
delimiter is found.

10.4.8.4 Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY
When data fields use OPTIONALLY ENCLOSED BY with TERMINATED BY, there is a sequence of
processing that SQL*Loader uses for those fields.

The following steps take place when a field uses an OPTIONALLY ENCLOSED BY clause and a
TERMINATED BY clause.

1. Any whitespace at the beginning of the field is skipped.

2. The parser checks to see if the first non-whitespace character found is the start of a
string that matches the first OPTIONALLY ENCLOSED BY delimiter. If it is not, and the
OPTIONALLY ENCLOSED BY delimiters are not present in the data, then the data for the field
is read from the current position of the field up to, but not including, the first occurrence of
the TERMINATED BY delimiter. If the TERMINATED BY delimiter is found in the first column
position, then the field is null. If the end of the record is found before the TERMINATED BY
delimiter, then all data up to the end of the record is considered part of the field.

3. If the first OPTIONALLY ENCLOSED BY delimiter is found, then the search for the second
OPTIONALLY ENCLOSED BY delimiter begins.

4. If two of the second OPTIONALLY ENCLOSED BY delimiters are found adjacent to each
other, then they are interpreted as a single occurrence of the delimiter and included as
part of the data for the field. The search then continues for the second OPTIONALLY
ENCLOSED BY delimiter.

5. If the end of the record is found before the second OPTIONALLY ENCLOSED BY delimiter is
found, then the row is rejected.

6. If the OPTIONALLY ENCLOSED BY delimiter is present in the data, then the parser looks for
the TERMINATED BY delimiter. If the TERMINATED BY delimiter is anything other than
WHITESPACE, then whitespace found between the end of the second OPTIONALLY
ENCLOSED BY delimiter and the TERMINATED BY delimiter is skipped over.

7. The row is not rejected if the end of record is found before the TERMINATED BY delimiter is
found.

Chapter 10
SQL*Loader Data Types

10-43

Caution:

Be careful when you specify whitespace characters as the TERMINATED BY
delimiter and are also using OPTIONALLY ENCLOSED BY. SQL*Loader strips off
leading whitespace when looking for an OPTIONALLY ENCLOSED BY delimiter.
If the data contains two adjacent TERMINATED BY delimiters in the middle of a
record (usually done to set a field in the record to NULL), then the
whitespace for the first TERMINATED BY delimiter will be used to terminate a
field, but the remaining whitespace will be considered as leading whitespace
for the next field rather than the TERMINATED BY delimiter for the next field. To
load a NULL value, you must include the ENCLOSED BY delimiters in the data.

10.4.9 Conflicting Field Lengths for Character Data Types
A control file can specify multiple lengths for the character-data fields CHAR, DATE, and
numeric EXTERNAL.

If conflicting lengths are specified, then one of the lengths takes precedence. A
warning is also issued when a conflict exists. This section explains which length is
used.

• Predetermined Size Fields
With predetermined size fields, the lengths of fields are determined by the values
you specify. If there is a conflict in specifications, then the field length specification
is used.

• Delimited Fields
With delimited fields, the lengths of fields are determined by field semantics and
position specifications.

• Date Field Masks
The length of DATE data type fields depends on the format pattern specified in the
mask, but can be overridden by position specifications or length specifications.

10.4.9.1 Predetermined Size Fields
With predetermined size fields, the lengths of fields are determined by the values you
specify. If there is a conflict in specifications, then the field length specification is used.

If you specify a starting position and ending position for a predetermined field, then the
length of the field is determined by the specifications you provide for the data type. If
you specify a length as part of the data type, and do not give an ending position, then
the field has the given length.

If starting position, ending position, and length are all specified, and the lengths differ,
then the length given as part of the data type specification is used for the length of the
field. For example:

POSITION(1:10) CHAR(15)

In this example, the length of the field is 15.

Chapter 10
SQL*Loader Data Types

10-44

10.4.9.2 Delimited Fields
With delimited fields, the lengths of fields are determined by field semantics and position
specifications.

If a delimited field is specified with a length, or if a length can be calculated from the starting
and ending positions, then that length is the maximum length of the field. The specified
maximum length is in bytes if byte-length semantics are used for the field, and in characters if
character-length semantics are used for the field. If no length is specified, or the length can
be calculated from the start and end positions, then the maximum length defaults to 255
bytes. The actual length can vary up to that maximum, based on the presence of the
delimiter.

If delimiters and also starting and ending positions are specified for the field, then only the
position specification has any effect. Any enclosure or termination delimiters are ignored.

If the expected delimiter is absent, then the end of record terminates the field. If TRAILING
NULLCOLS is specified, then SQL*Loader treats any relatively positioned columns that are not
present in the record as null columns, so the remaining fields are null. If either the delimiter or
the end of record produces a field that is longer than the maximum, then SQL*Loader rejects
the record and returns an error.

Related Topics

• TRAILING NULLCOLS Clause
You can use the TRAILING NULLCOLS clause to configure SQL*Loader to treat missing
columns as null columns.

10.4.9.3 Date Field Masks
The length of DATE data type fields depends on the format pattern specified in the mask, but
can be overridden by position specifications or length specifications.

The length of a date field depends on the mask, if a mask is specified. The mask provides a
format pattern, telling SQL*Loader how to interpret the data in the record. For example,
assume the mask is specified as follows:

"Month dd, yyyy"

Then "May 3, 2012" would occupy 11 bytes in the record (with byte-length semantics), while
"January 31, 2012" would occupy 16.

If starting and ending positions are specified, however, then the length calculated from the
position specification overrides a length derived from the mask. A specified length such as
DATE(12) overrides either of those. If the date field is also specified with terminating or
enclosing delimiters, then the length specified in the control file is interpreted as a maximum
length for the field.

Related Topics

• Categories of Datetime and Interval Data Types
The SQL*Loader portable value datetime records date and time fields, and the interval
data types record time intervals.

Chapter 10
SQL*Loader Data Types

10-45

10.5 Specifying Field Conditions
A field condition is a statement about a field in a logical record that evaluates as true
or false.

• Comparing Fields to BLANKS
The BLANKS parameter makes it possible to determine if a field of unknown length
is blank.

• Comparing Fields to Literals
Data fields that are compared to literal strings can have blank padding to the
string.

10.5.1 Comparing Fields to BLANKS
The BLANKS parameter makes it possible to determine if a field of unknown length is
blank.

For example, use the following clause to load a blank field as null:

full_fieldname ... NULLIF column_name=BLANKS

The BLANKS parameter recognizes only blanks, not tabs. It can be used in place of a
literal string in any field comparison. The condition is true whenever the column is
entirely blank.

The BLANKS parameter also works for fixed-length fields. Using it is the same as
specifying an appropriately sized literal string of blanks. For example, the following
specifications are equivalent:

fixed_field CHAR(2) NULLIF fixed_field=BLANKS
fixed_field CHAR(2) NULLIF fixed_field=" "

There can be more than one blank in a multibyte character set. It is a good idea to use
the BLANKS parameter with these character sets instead of specifying a string of blank
characters.

The character string will match only a specific sequence of blank characters, while the
BLANKS parameter will match combinations of different blank characters. For more
information about multibyte character sets, see Multibyte (Asian) Character Sets.

10.5.2 Comparing Fields to Literals
Data fields that are compared to literal strings can have blank padding to the string.

When a data field is compared to a literal string that is shorter than the data field, the
string is padded. Character strings are padded with blanks. For example:

NULLIF (1:4)=" "

This example compares the data in position 1:4 with 4 blanks. If position 1:4 contains 4
blanks, then the clause evaluates as true.

Hexadecimal strings are padded with hexadecimal zeros, as in the following clause:

NULLIF (1:4)=X'FF'

Chapter 10
Specifying Field Conditions

10-46

This clause compares position 1:4 to hexadecimal 'FF000000'.

10.6 Using the WHEN, NULLIF, and DEFAULTIF Clauses
Learn how SQL*Loader processes the WHEN, NULLIF, andDEFAULTIF clauses with scalar fields.

The following information applies to scalar fields. For nonscalar fields (column objects, LOBs,
and collections), the WHEN, NULLIF, and DEFAULTIF clauses are processed differently because
nonscalar fields are more complex.

The results of a WHEN, NULLIF, or DEFAULTIF clause can be different depending on whether
the clause specifies a field name or a position.

• If the WHEN, NULLIF, or DEFAULTIF clause specifies a field name, then SQL*Loader
compares the clause to the evaluated value of the field. The evaluated value takes
trimmed whitespace into consideration. For information about trimming blanks and
spaces, see:

Trimming Whitespace

• If the WHEN, NULLIF, or DEFAULTIF clause specifies a position, then SQL*Loader compares
the clause to the original logical record in the data file. No whitespace trimming is done
on the logical record in that case.

Different results are more likely if the field has whitespace that is trimmed, or if the WHEN,
NULLIF, or DEFAULTIF clause contains blanks or tabs or uses the BLANKS parameter. If you
require the same results for a field specified by name and for the same field specified by
position, then use the PRESERVE BLANKS option. The PRESERVE BLANKS option instructs
SQL*Loader not to trim whitespace when it evaluates the values of the fields.

The results of a WHEN, NULLIF, or DEFAULTIF clause are also affected by the order in which
SQL*Loader operates, as described in the following steps. SQL*Loader performs these steps
in order, but it does not always perform all of them. Once a field is set, any remaining steps in
the process are ignored. For example, if the field is set in Step 5, then SQL*Loader does not
move on to Step 6.

1. SQL*Loader evaluates the value of each field for the input record and trims any
whitespace that should be trimmed (according to existing guidelines for trimming blanks
and tabs).

2. For each record, SQL*Loader evaluates any WHEN clauses for the table.

3. If the record satisfies the WHEN clauses for the table, or no WHEN clauses are specified,
then SQL*Loader checks each field for a NULLIF clause.

4. If a NULLIF clause exists, then SQL*Loader evaluates it.

5. If the NULLIF clause is satisfied, then SQL*Loader sets the field to NULL.

6. If the NULLIF clause is not satisfied, or if there is no NULLIF clause, then SQL*Loader
checks the length of the field from field evaluation. If the field has a length of 0 from field
evaluation (for example, it was a null field, or whitespace trimming resulted in a null field),
then SQL*Loader sets the field to NULL. In this case, any DEFAULTIF clause specified for
the field is not evaluated.

7. If any specified NULLIF clause is false or there is no NULLIF clause, and if the field does
not have a length of 0 from field evaluation, then SQL*Loader checks the field for a
DEFAULTIF clause.

8. If a DEFAULTIF clause exists, then SQL*Loader evaluates it.

Chapter 10
Using the WHEN, NULLIF, and DEFAULTIF Clauses

10-47

9. If the DEFAULTIF clause is satisfied, then the field is set to 0 if the field in the data
file is a numeric field. It is set to NULL if the field is not a numeric field. The
following fields are numeric fields and will be set to 0 if they satisfy the DEFAULTIF
clause:

• BYTEINT
• SMALLINT
• INTEGER
• FLOAT
• DOUBLE
• ZONED
• (packed) DECIMAL
• Numeric EXTERNAL (INTEGER, FLOAT, DECIMAL, and ZONED)

10. If the DEFAULTIF clause is not satisfied, or if there is no DEFAULTIF clause, then
SQL*Loader sets the field with the evaluated value from Step 1.

The order in which SQL*Loader operates could cause results that you do not expect.
For example, the DEFAULTIF clause may look like it is setting a numeric field to NULL
rather than to 0.

Note:

As demonstrated in these steps, the presence of NULLIF and DEFAULTIF
clauses results in extra processing that SQL*Loader must perform. This can
affect performance. Note that during Step 1, SQL*Loader will set a field to
NULL if its evaluated length is zero. To improve performance, consider
whether you can change your data to take advantage of this processing
sequence. NULL detection as part of Step 1 occurs much more quickly than
the processing of a NULLIF or DEFAULTIF clause.

For example, a CHAR(5) will have zero length if it falls off the end of the
logical record, or if it contains all blanks, and blank trimming is in effect. A
delimited field will have zero length if there are no characters between the
start of the field and the terminator.

Also, for character fields, NULLIF is usually faster to process than DEFAULTIF
(the default for character fields is NULL).

Related Topics

• Specifying a NULLIF Clause At the Table Level
To load a table character field as NULL when it contains certain character strings
or hex strings, you can use a NULLIF clause at the table level with SQL*Loader.

Chapter 10
Using the WHEN, NULLIF, and DEFAULTIF Clauses

10-48

10.7 Examples of Using the WHEN, NULLIF, and DEFAULTIF
Clauses

These examples explain results for different situations in which you can use the WHEN,
NULLIF, and DEFAULTIF clauses.

In the examples, a blank or space is indicated with a period (.). Assume that col1 and col2
are VARCHAR2(5) columns in the database.

Example 10-3 DEFAULTIF Clause Is Not Evaluated

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION (6:8) CHAR INTEGER EXTERNAL DEFAULTIF col1 = 'aname')

The data file contains:

aname...

In this example, col1 for the row evaluates to aname. col2 evaluates to NULL with a length of 0
(it is ... but the trailing blanks are trimmed for a positional field).

When SQL*Loader determines the final loaded value for col2, it finds no WHEN clause and no
NULLIF clause. It then checks the length of the field, which is 0 from field evaluation.
Therefore, SQL*Loader sets the final value for col2 to NULL. The DEFAULTIF clause is not
evaluated, and the row is loaded as aname for col1 and NULL for col2.

Example 10-4 DEFAULTIF Clause Is Evaluated

The control file specifies:

.

.

.
PRESERVE BLANKS
.
.
.
(col1 POSITION (1:5),
 col2 POSITION (6:8) INTEGER EXTERNAL DEFAULTIF col1 = 'aname'

The data file contains:

aname...

In this example, col1 for the row again evaluates to aname. col2 evaluates to '...' because
trailing blanks are not trimmed when PRESERVE BLANKS is specified.

When SQL*Loader determines the final loaded value for col2, it finds no WHEN clause and no
NULLIF clause. It then checks the length of the field from field evaluation, which is 3, not 0.

Then SQL*Loader evaluates the DEFAULTIF clause, which evaluates to true because col1 is
aname, which is the same as aname.

Because col2 is a numeric field, SQL*Loader sets the final value for col2 to 0. The row is
loaded as aname for col1 and as 0 for col2.

Chapter 10
Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses

10-49

Example 10-5 DEFAULTIF Clause Specifies a Position

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION (6:8) INTEGER EXTERNAL DEFAULTIF (1:5) = BLANKS)

The data file contains:

.....123

In this example, col1 for the row evaluates to NULL with a length of 0 (it is but
the trailing blanks are trimmed). col2 evaluates to 123.

When SQL*Loader sets the final loaded value for col2, it finds no WHEN clause and no
NULLIF clause. It then checks the length of the field from field evaluation, which is 3,
not 0.

Then SQL*Loader evaluates the DEFAULTIF clause. It compares (1:5) which is
to BLANKS, which evaluates to true. Therefore, because col2 is a numeric field
(integer EXTERNAL is numeric), SQL*Loader sets the final value for col2 to 0. The row
is loaded as NULL for col1 and 0 for col2.

Example 10-6 DEFAULTIF Clause Specifies a Field Name

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION(6:8) INTEGER EXTERNAL DEFAULTIF col1 = BLANKS)

The data file contains:

.....123

In this example, col1 for the row evaluates to NULL with a length of 0 (it is but
the trailing blanks are trimmed). col2 evaluates to 123.

When SQL*Loader determines the final value for col2, it finds no WHEN clause and no
NULLIF clause. It then checks the length of the field from field evaluation, which is 3,
not 0.

Then SQL*Loader evaluates the DEFAULTIF clause. As part of the evaluation, it checks
to see that col1 is NULL from field evaluation. It is NULL, so the DEFAULTIF clause
evaluates to false. Therefore, SQL*Loader sets the final value for col2 to 123, its
original value from field evaluation. The row is loaded as NULL for col1 and 123 for
col2.

10.8 Loading Data Across Different Platforms
When a data file created on one platform is to be loaded on a different platform, the
data must be written in a form that the target system can read.

For example, if the source system has a native, floating-point representation that uses
16 bytes, and the target system's floating-point numbers are 12 bytes, then the target
system cannot directly read data generated on the source system.

The best solution is to load data across an Oracle Net database link, taking advantage
of the automatic conversion of data types. This is the recommended approach,
whenever feasible, and means that SQL*Loader must be run on the source system.

Chapter 10
Loading Data Across Different Platforms

10-50

Problems with interplatform loads typically occur with native data types. In some situations, it
is possible to avoid problems by lengthening a field by padding it with zeros, or to read only
part of the field to shorten it (for example, when an 8-byte integer is to be read on a system
that uses 4-byte integers, or the reverse). Note, however, that incompatible data type
implementation may prevent this.

If you cannot use an Oracle Net database link and the data file must be accessed by
SQL*Loader running on the target system, then it is advisable to use only the portable
SQL*Loader data types (for example, CHAR, DATE, VARCHARC, and numeric EXTERNAL). Data
files written using these data types may be longer than those written with native data types.
They may take more time to load, but they transport more readily across platforms.

If you know in advance that the byte ordering schemes or native integer lengths differ
between the platform on which the input data will be created and the platform on which
SQL*loader will be run, then investigate the possible use of the appropriate technique to
indicate the byte order of the data or the length of the native integer. Possible techniques for
indicating the byte order are to use the BYTEORDER parameter or to place a byte-order mark
(BOM) in the file. Both methods are described in Byte Ordering. It may then be possible to
eliminate the incompatibilities and achieve a successful cross-platform data load. If the byte
order is different from the SQL*Loader default, then you must indicate a byte order.

10.9 Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose byte ordering
is different from the byte ordering on the system where SQL*Loader is running, even if the
data file contains certain nonportable data types.

By default, SQL*Loader uses the byte order of the system where it is running as the byte
order for all data files. For example, on an Oracle Solaris system, SQL*Loader uses big-
endian byte order. On an Intel or an Intel-compatible PC, SQL*Loader uses little-endian byte
order.

Byte order affects the results when data is written and read an even number of bytes at a
time (typically 2 bytes, 4 bytes, or 8 bytes). The following are some examples of this:

• The 2-byte integer value 1 is written as 0x0001 on a big-endian system and as 0x0100 on
a little-endian system.

• The 4-byte integer 66051 is written as 0x00010203 on a big-endian system and as
0x03020100 on a little-endian system.

Byte order also affects character data in the UTF16 character set if it is written and read as 2-
byte entities. For example, the character 'a' (0x61 in ASCII) is written as 0x0061 in UTF16 on
a big-endian system, but as 0x6100 on a little-endian system.

All character sets that Oracle supports, except UTF16, are written one byte at a time. So,
even for multibyte character sets such as UTF8, the characters are written and read the
same way on all systems, regardless of the byte order of the system. Therefore, data in the
UTF16 character set is nonportable, because it is byte-order dependent. Data in all other
Oracle-supported character sets is portable.

Byte order in a data file is only an issue if the data file that contains the byte-order-dependent
data is created on a system that has a different byte order from the system on which
SQL*Loader is running. If SQL*Loader can identify the byte order of the data, then it swaps
the bytes as necessary to ensure that the data is loaded correctly in the target database.
Byte-swapping means that data in big-endian format is converted to little-endian format, or
the reverse.

Chapter 10
Understanding how SQL*Loader Manages Byte Ordering

10-51

To indicate byte order of the data to SQL*Loader, you can use the BYTEORDER
parameter, or you can place a byte-order mark (BOM) in the file. If you do not use one
of these techniques, then SQL*Loader will not correctly load the data into the data file.

• Byte Order Syntax
Use the syntax diagrams for BYTEORDER to see how to specify byte order of data
with SQL*Loader.

• Using Byte Order Marks (BOMs)
This section describes using byte order marks.

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

See Also:

SQL*Loader Case Study 11, Loading Data in the Unicode Character Set, for
an example of how SQL*Loader handles byte-swapping.

10.9.1 Byte Order Syntax
Use the syntax diagrams for BYTEORDER to see how to specify byte order of data with
SQL*Loader.

Purpose

To specify the byte order of data in the input data files

Syntax

use the following syntax in the SQL*Loader control file:

BYTEORDER

BIG

LITTLE

ENDIAN

Usage Notes

The BYTEORDER parameter has the following characteristics:

• BYTEORDER is placed after the LENGTH parameter in the SQL*Loader control file.

• It is possible to specify a different byte order for different data files. However, the
BYTEORDER specification before the INFILE parameters applies to the entire list of
primary data files.

• The BYTEORDER specification for the primary data files is also used as the default
for LOBFILE and SDF data. To override this default, specify BYTEORDER with the
LOBFILE or SDF specification.

Chapter 10
Understanding how SQL*Loader Manages Byte Ordering

10-52

• The BYTEORDER parameter is not applicable to data contained within the control file itself.

• The BYTEORDER parameter applies to the following:

– Binary INTEGER and SMALLINT data

– Binary lengths in varying-length fields (that is, for the VARCHAR, VARGRAPHIC, VARRAW,
and LONG VARRAW data types)

– Character data for data files in the UTF16 character set

– FLOAT and DOUBLE data types, if the system where the data was written has a
compatible floating-point representation with that on the system where SQL*Loader is
running

• The BYTEORDER parameter does not apply to any of the following:

– Raw data types (RAW, VARRAW, or VARRAWC)

– Graphic data types (GRAPHIC, VARGRAPHIC, or GRAPHIC EXTERNAL)

– Character data for data files in any character set other than UTF16

– ZONED or (packed) DECIMAL data types

10.9.2 Using Byte Order Marks (BOMs)
This section describes using byte order marks.

Data files that use a Unicode encoding (UTF-16 or UTF-8) may contain a byte-order mark
(BOM) in the first few bytes of the file. For a data file that uses the character set UTF16, the
values {0xFE,0xFF} in the first two bytes of the file are the BOM indicating that the file
contains big-endian data. The values {0xFF,0xFE} are the BOM indicating that the file
contains little-endian data.

If the first primary data file uses the UTF16 character set and it also begins with a BOM, then
that mark is read and interpreted to determine the byte order for all primary data files.
SQL*Loader reads and interprets the BOM, skips it, and begins processing data with the byte
immediately after the BOM. The BOM setting overrides any BYTEORDER specification for the
first primary data file. BOMs in data files other than the first primary data file are read and
used for checking for byte-order conflicts only. They do not change the byte-order setting that
SQL*Loader uses in processing the data file.

In summary, the precedence of the byte-order indicators for the first primary data file is as
follows:

• BOM in the first primary data file, if the data file uses a Unicode character set that is byte-
order dependent (UTF16) and a BOM is present

• BYTEORDER parameter value, if specified before the INFILE parameters

• The byte order of the system where SQL*Loader is running

For a data file that uses a UTF8 character set, a BOM of {0xEF,0xBB,0xBF} in the first 3
bytes indicates that the file contains UTF8 data. It does not indicate the byte order of the
data, because data in UTF8 is not byte-order dependent. If SQL*Loader detects a UTF8
BOM, then it skips it but does not change any byte-order settings for processing the data
files.

SQL*Loader first establishes a byte-order setting for the first primary data file using the
precedence order just defined. This byte-order setting is used for all primary data files. If
another primary data file uses the character set UTF16 and also contains a BOM, then the

Chapter 10
Understanding how SQL*Loader Manages Byte Ordering

10-53

BOM value is compared to the byte-order setting established for the first primary data
file. If the BOM value matches the byte-order setting of the first primary data file, then
SQL*Loader skips the BOM, and uses that byte-order setting to begin processing data
with the byte immediately after the BOM. If the BOM value does not match the byte-
order setting established for the first primary data file, then SQL*Loader issues an
error message and stops processing.

If any LOBFILEs or secondary data files are specified in the control file, then
SQL*Loader establishes a byte-order setting for each LOBFILE and secondary data
file (SDF) when it is ready to process the file. The default byte-order setting for
LOBFILEs and SDFs is the byte-order setting established for the first primary data file.
This is overridden if the BYTEORDER parameter is specified with a LOBFILE or SDF. In
either case, if the LOBFILE or SDF uses the UTF16 character set and contains a
BOM, the BOM value is compared to the byte-order setting for the file. If the BOM
value matches the byte-order setting for the file, then SQL*Loader skips the BOM, and
uses that byte-order setting to begin processing data with the byte immediately after
the BOM. If the BOM value does not match, then SQL*Loader issues an error
message and stops processing.

In summary, the precedence of the byte-order indicators for LOBFILEs and SDFs is as
follows:

• BYTEORDER parameter value specified with the LOBFILE or SDF

• The byte-order setting established for the first primary data file

Note:

If the character set of your data file is a unicode character set and there
is a byte-order mark in the first few bytes of the file, then do not use the
SKIP parameter. If you do, then the byte-order mark will not be read and
interpreted as a byte-order mark.

• Suppressing Checks for BOMs
This section describes suppressing checks for BOMs.

10.9.2.1 Suppressing Checks for BOMs
This section describes suppressing checks for BOMs.

A data file in a Unicode character set may contain binary data that matches the BOM
in the first bytes of the file. For example the integer(2) value 0xFEFF = 65279 decimal
matches the big-endian BOM in UTF16. In that case, you can tell SQL*Loader to read
the first bytes of the data file as data and not check for a BOM by specifying the
BYTEORDERMARK parameter with the value NOCHECK. The syntax for the BYTEORDERMARK
parameter is:

BYTEORDERMARK

CHECK

NOCHECK

Chapter 10
Understanding how SQL*Loader Manages Byte Ordering

10-54

BYTEORDERMARK NOCHECK indicates that SQL*Loader should not check for a BOM and should
read all the data in the data file as data.

BYTEORDERMARK CHECK tells SQL*Loader to check for a BOM. This is the default behavior for a
data file in a Unicode character set. But this specification may be used in the control file for
clarification. It is an error to specify BYTEORDERMARK CHECK for a data file that uses a non-
Unicode character set.

The BYTEORDERMARK parameter has the following characteristics:

• It is placed after the optional BYTEORDER parameter in the SQL*Loader control file.

• It applies to the syntax specification for primary data files, and also to LOBFILEs and
secondary data files (SDFs).

• It is possible to specify a different BYTEORDERMARK value for different data files; however,
the BYTEORDERMARK specification before the INFILE parameters applies to the entire list of
primary data files.

• The BYTEORDERMARK specification for the primary data files is also used as the default for
LOBFILEs and SDFs, except that the value CHECK is ignored in this case if the LOBFILE
or SDF uses a non-Unicode character set. This default setting for LOBFILEs and
secondary data files can be overridden by specifying BYTEORDERMARK with the LOBFILE or
SDF specification.

10.10 Loading All-Blank Fields
Fields that are totally blank cause the record to be rejected. To load one of these fields as
NULL, use the NULLIF clause with the BLANKS parameter.

If an all-blank CHAR field is surrounded by enclosure delimiters, then the blanks within the
enclosures are loaded. Otherwise, the field is loaded as NULL.

A DATE or numeric field that consists entirely of blanks is loaded as a NULL field.

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case studies
that Oracle provides.

• Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line feeds)
constitute whitespace.

• How the PRESERVE BLANKS Option Affects Whitespace Trimming
To prevent whitespace trimming in all CHAR, DATE, and numeric EXTERNAL fields, you
specify PRESERVE BLANKS as part of the LOAD statement in the control file.

See Also:

Case study 6, Loading Data Using the Direct Path Load Method, for an example of
how to load all-blank fields as NULL with the NULLIF clause, in SQL*Loader Case
Studies

Chapter 10
Loading All-Blank Fields

10-55

10.11 Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line
feeds) constitute whitespace.

Leading whitespace occurs at the beginning of a field. Trailing whitespace occurs at
the end of a field. Depending on how the field is specified, whitespace may or may not
be included when the field is inserted into the database. This is illustrated in the figure
"Example of Field Conversion, where two CHAR fields are defined for a data record.

The field specifications are contained in the control file. The control file CHAR
specification is not the same as the database CHAR specification. A data field defined
as CHAR in the control file simply tells SQL*Loader how to create the row insert. The
data could then be inserted into a CHAR, VARCHAR2, NCHAR, NVARCHAR2, or even a NUMBER
or DATE column in the database, with the Oracle database handling any necessary
conversions.

By default, SQL*Loader removes trailing spaces from CHAR data before passing it to
the database. So, in the figure "Example of Field Conversion,” both Field 1 and Field 2
are passed to the database as 3-byte fields. However, when the data is inserted into
the table, there is a difference.

Figure 10-1 Example of Field Conversion

D
A

T
A

F
IL

E

 R
O

W

IN
S

E
R

T

D
A

T
A

B
A

S
E

S
Q

L
*L

o
a

d
e

r

S
E

R
V

E
R

F
ie

ld
 1

a
a

a
b

b
b

C
o

lu
m

n
 1

C
o

lu
m

n
 2

T
a

b
le

C
H

A
R

 (
5

)
V

A
R

C
H

A
R

 (
5

)
C

o
lu

m
n

 D
a

ta
ty

p
e

s

C
H

A
R

 (
5

)
C

H
A

R
 (

5
)

C
o

n
tr

o
l

F
il

e
 S

p
e

c
if

ic
a

ti
o

n
s

a
a

a
_

_
b

b
b

a
a

a

b

b
b

F
ie

ld
 2

Column 1 is defined in the database as a fixed-length CHAR column of length 5. So the
data (aaa) is left-justified in that column, which remains 5 bytes wide. The extra space
on the right is padded with blanks. Column 2, however, is defined as a varying-length

Chapter 10
Trimming Whitespace

10-56

field with a maximum length of 5 bytes. The data for that column (bbb) is left-justified as well,
but the length remains 3 bytes.

The table "Behavior Summary for Trimming Whitespace" summarizes when and how
whitespace is removed from input data fields when PRESERVE BLANKS is not specified. See
How the PRESERVE BLANKS Option Affects Whitespace Trimming for details about how to
prevent whitespace trimming.

Table 10-4 Behavior Summary for Trimming Whitespace

Specification Data Result Leading
Whitespace
Present (When an
all-blank field is
trimmed, its value
is NULL.

Trailing Whitespace
Present (When an
all-blank field is
trimmed, its value is
NULL.)

Predetermined size __aa__ __aa Yes No

Terminated __aa__, __aa__ Yes Yes, except for fields
that are terminated by
whitespace.

Enclosed "__aa__" __aa__ Yes Yes

Terminated and
enclosed

"__aa__", __aa__ Yes Yes

Optional enclosure
(present)

"__aa__", __aa__ Yes Yes

Optional enclosure
(absent)

__aa__, aa__ No Yes

Previous field
terminated by
whitespace

__aa__ aa (Presence of
trailing whitespace
depends on the
current field's
specification, as
shown by the other
entries in the table.)

No Presence of trailing
whitespace depends
on the current field's
specification, as
shown by the other
entries in the table.

The rest of this section discusses the following topics with regard to trimming whitespace:

• Data Types for Which Whitespace Can Be Trimmed
The information in this section applies only to fields specified with one of the character-
data data types.

• Specifying Field Length for Data Types for Which Whitespace Can Be Trimmed
This section describes specifying field length.

• Relative Positioning of Fields
This section describes the relative positioning of fields.

• Leading Whitespace
This section describes leading whitespace.

• Trimming Trailing Whitespace
Trailing whitespace is always trimmed from character-data fields that have a
predetermined size.

• Trimming Enclosed Fields
This section describes trimming enclosed fields.

Chapter 10
Trimming Whitespace

10-57

10.11.1 Data Types for Which Whitespace Can Be Trimmed
The information in this section applies only to fields specified with one of the character-
data data types.

• CHAR data type

• Datetime and interval data types

• Numeric EXTERNAL data types:

– INTEGER EXTERNAL
– FLOAT EXTERNAL
– (packed) DECIMAL EXTERNAL
– ZONED (decimal) EXTERNAL

Note:

Although VARCHAR and VARCHARC fields also contain character data,
these fields are never trimmed. These fields include all whitespace
that is part of the field in the data file.

10.11.2 Specifying Field Length for Data Types for Which Whitespace
Can Be Trimmed

This section describes specifying field length.

There are two ways to specify field length. If a field has a constant length that is
defined in the control file with a position specification or the data type and length, then
it has a predetermined size. If a field's length is not known in advance, but depends on
indicators in the record, then the field is delimited, using either enclosure or
termination delimiters.

If a position specification with start and end values is defined for a field that also has
enclosure or termination delimiters defined, then only the position specification has
any effect. The enclosure and termination delimiters are ignored.

• Predetermined Size Fields
Fields that have a predetermined size are specified with a starting position and
ending position, or with a length.

• Delimited Fields
Delimiters are characters that demarcate field boundaries.

10.11.2.1 Predetermined Size Fields
Fields that have a predetermined size are specified with a starting position and ending
position, or with a length.

For example:

Chapter 10
Trimming Whitespace

10-58

loc POSITION(19:31)
loc CHAR(14)

In the second case, even though the exact position of the field is not specified, the length of
the field is predetermined.

10.11.2.2 Delimited Fields
Delimiters are characters that demarcate field boundaries.

Enclosure delimiters surround a field, like the quotation marks in the following example,
where "__" represents blanks or tabs:

"__aa__"

Termination delimiters signal the end of a field, like the comma in the following example:

__aa__,

Delimiters are specified with the control clauses TERMINATED BY and ENCLOSED BY, as shown in
the following example:

loc TERMINATED BY "." OPTIONALLY ENCLOSED BY '|'

10.11.3 Relative Positioning of Fields
This section describes the relative positioning of fields.

SQL*Loader determines the starting position of a field in the following situations:

• No Start Position Specified for a Field
When a starting position is not specified for a field, it begins immediately after the end of
the previous field.

• Previous Field Terminated by a Delimiter
If the previous field (Field 1) is terminated by a delimiter, then the next field begins
immediately after the delimiter.

• Previous Field Has Both Enclosure and Termination Delimiters
When a field is specified with both enclosure delimiters and a termination delimiter, then
the next field starts after the termination delimiter.

10.11.3.1 No Start Position Specified for a Field
When a starting position is not specified for a field, it begins immediately after the end of the
previous field.

The following figure illustrates this situation when the previous field (Field 1) has a
predetermined size.

Figure 10-2 Relative Positioning After a Fixed Field

F
ie

ld
 1

 C
H

A
R

(9
)

a

a
a

a

b

b
b

b
,

F
ie

ld
 2

 T
E

R
M

IN
A

T
E

D
 B

Y
 "

,"

Chapter 10
Trimming Whitespace

10-59

10.11.3.2 Previous Field Terminated by a Delimiter
If the previous field (Field 1) is terminated by a delimiter, then the next field begins
immediately after the delimiter.

For example:Figure 10-3.

Figure 10-3 Relative Positioning After a Delimited Field

a

a
a

a
,

b

b
b

b
,

F
ie

ld
 2

 T
E

R
M

IN
A

T
E

D
 B

Y
 "

,"
F

ie
ld

 1
 T

E
R

M
IN

A
T

E
D

 B
Y

 "
,"

10.11.3.3 Previous Field Has Both Enclosure and Termination Delimiters
When a field is specified with both enclosure delimiters and a termination delimiter,
then the next field starts after the termination delimiter.

For example:Figure 10-4. If a nonwhitespace character is found after the enclosure
delimiter, but before the terminator, then SQL*Loader generates an error.

Figure 10-4 Relative Positioning After Enclosure Delimiters

"

a

a
a

a
"

,

b
b

b
b

,

F
ie

ld
 2

 T
E

R
M

IN
A

T
E

D
 B

Y
 "

,"

F
ie

ld
 1

 T
E

R
M

IN
A

T
E

D
 B

Y
 "

,"

E
N

C
L
O

S
E

D
 B

Y
 '
 "

 '

10.11.4 Leading Whitespace
This section describes leading whitespace.

In Figure 10-4, both fields are stored with leading whitespace. Fields do not include
leading whitespace in the following cases:

• When the previous field is terminated by whitespace, and no starting position is
specified for the current field

• When optional enclosure delimiters are specified for the field, and the enclosure
delimiters are not present

These cases are illustrated in the following sections.

• Previous Field Terminated by Whitespace
If the previous field is TERMINATED BY WHITESPACE, then all whitespace after the
field acts as the delimiter.

• Optional Enclosure Delimiters
Leading whitespace is also removed from a field when optional enclosure
delimiters are specified but not present.

Chapter 10
Trimming Whitespace

10-60

10.11.4.1 Previous Field Terminated by Whitespace
If the previous field is TERMINATED BY WHITESPACE, then all whitespace after the field acts as
the delimiter.

The next field starts at the next nonwhitespace character. Figure 10-5 illustrates this case.

Figure 10-5 Fields Terminated by Whitespace

a
a

a
a

b
b

b
b

F
ie

ld
 2

 T
E

R
M

IN
A

T
E

D

B
Y

 W
H

IT
E

S
P

A
C

E

F
ie

ld
 1

 T
E

R
M

IN
A

T
E

D

B
Y

 W
H

IT
E

S
P

A
C

E

This situation occurs when the previous field is explicitly specified with the TERMINATED BY
WHITESPACE clause, as shown in the example. It also occurs when you use the global FIELDS
TERMINATED BY WHITESPACE clause.

10.11.4.2 Optional Enclosure Delimiters
Leading whitespace is also removed from a field when optional enclosure delimiters are
specified but not present.

Whenever optional enclosure delimiters are specified, SQL*Loader scans forward, looking for
the first enclosure delimiter. If an enclosure delimiter is not found, then SQL*Loader skips
over whitespace, eliminating it from the field. The first nonwhitespace character signals the
start of the field. This situation is shown in Field 2 in Figure 10-6. (In Field 1 the whitespace is
included because SQL*Loader found enclosure delimiters for the field.)

Figure 10-6 Fields Terminated by Optional Enclosure Delimiters

"

a
a

a
a

"
,

b

b
b

b
,

F
ie

ld
 2

 T
E

R
M

IN
A

T
E

D
 B

Y
 "

 ,
 "

O
P

T
IO

N
A

L
L
Y

 E
N

C
L
O

S
E

D
 B

Y
 '
 "

 '

F
ie

ld
 1

 T
E

R
M

IN
A

T
E

D
 B

Y
 "

 ,
 "

O
P

T
IO

N
A

L
L
Y

 E
N

C
L
O

S
E

D
 B

Y
 '
 "

 '

Unlike the case when the previous field is TERMINATED BY WHITESPACE, this specification
removes leading whitespace even when a starting position is specified for the current field.

Note:

If enclosure delimiters are present, then leading whitespace after the initial
enclosure delimiter is kept, but whitespace before this delimiter is discarded. See
the first quotation mark in Field 1, Figure 10-6.

Chapter 10
Trimming Whitespace

10-61

10.11.5 Trimming Trailing Whitespace
Trailing whitespace is always trimmed from character-data fields that have a
predetermined size.

These are the only fields for which trailing whitespace is always trimmed.

10.11.6 Trimming Enclosed Fields
This section describes trimming enclosed fields.

If a field is enclosed, or terminated and enclosed, like the first field shown in
Figure 10-6, then any whitespace outside the enclosure delimiters is not part of the
field. Any whitespace between the enclosure delimiters belongs to the field, whether it
is leading or trailing whitespace.

10.12 How the PRESERVE BLANKS Option Affects
Whitespace Trimming

To prevent whitespace trimming in all CHAR, DATE, and numeric EXTERNAL fields, you
specify PRESERVE BLANKS as part of the LOAD statement in the control file.

However, there may be times when you do not want to preserve blanks for all CHAR,
DATE, and numeric EXTERNAL fields. Therefore, SQL*Loader also enables you to specify
PRESERVE BLANKS as part of the data type specification for individual fields, rather than
specifying it globally as part of the LOAD statement.

In the following example, assume that PRESERVE BLANKS has not been specified as part
of the LOAD statement, but you want the c1 field to default to zero when blanks are
present. You can achieve this by specifying PRESERVE BLANKS on the individual field.
Only that field is affected; blanks will still be removed on other fields.

c1 INTEGER EXTERNAL(10) PRESERVE BLANKS DEFAULTIF c1=BLANKS

In this example, if PRESERVE BLANKS were not specified for the field, then it would result
in the field being improperly loaded as NULL (instead of as 0).

There may be times when you want to specify PRESERVE BLANKS as an option to the
LOAD statement and have it apply to most CHAR, DATE, and numeric EXTERNAL fields.
You can override it for an individual field by specifying NO PRESERVE BLANKS as part of
the data type specification for that field, as follows:

c1 INTEGER EXTERNAL(10) NO PRESERVE BLANKS

10.13 How [NO] PRESERVE BLANKS Works with Delimiter
Clauses

The PRESERVE BLANKS option is affected by the presence of delimiter clauses

Delimiter clauses affect PRESERVE BLANKS in the following cases:

Chapter 10
How the PRESERVE BLANKS Option Affects Whitespace Trimming

10-62

• Leading whitespace is left intact when optional enclosure delimiters are not present

• Trailing whitespace is left intact when fields are specified with a predetermined size

For example, consider the following field, where underscores represent blanks:

__aa__,

Suppose this field is loaded with the following delimiter clause:

TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

In such a case, if PRESERVE BLANKS is specified, then both the leading whitespace and the
trailing whitespace are retained. If PRESERVE BLANKS is not specified, then the leading
whitespace is trimmed.

Now suppose the field is loaded with the following clause:

TERMINATED BY WHITESPACE

In such a case, if PRESERVE BLANKS is specified, then it does not retain the space at the
beginning of the next field, unless that field is specified with a POSITION clause that includes
some of the whitespace. Otherwise, SQL*Loader scans past all whitespace at the end of the
previous field until it finds a nonblank, nontab character.

Related Topics

• Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line feeds)
constitute whitespace.

10.14 Applying SQL Operators to Fields
This section describes applying SQL operators to fields.

A wide variety of SQL operators can be applied to field data with the SQL string. This string
can contain any combination of SQL expressions that are recognized by Oracle Database as
valid for the VALUES clause of an INSERT statement. In general, any SQL function that returns
a single value that is compatible with the target column's data type can be used. SQL strings
can be applied to simple scalar column types, and also to user-defined complex types, such
as column objects and collections.

The column name and the name of the column in a SQL string bind variable must, with the
interpretation of SQL identifier rules, correspond to the same column. But the two names are
not required to be written exactly the same way, as in the following example:

LOAD DATA
INFILE *
APPEND INTO TABLE XXX
("Last" position(1:7) char "UPPER(:\"Last\")"
 first position(8:15) char "UPPER(:first || :FIRST || :\"FIRST\")"
)
BEGINDATA
Grant Phil
Taylor Jason

Note the following about the preceding example:

Chapter 10
Applying SQL Operators to Fields

10-63

• If, during table creation, a column identifier is declared using double quotation
marks because it contains lowercase, or special-case letters, or both (as in the
column named "Last" above), then the column name in the bind variable must
exactly match the column name used in the CREATE TABLE statement.

• If a column identifier is declared without double quotation marks during table
creation (as in the column name first above), then because first, FIRST, and
"FIRST" all resolve to FIRST after upper casing is done, any of these written
formats in a SQL string bind variable would be acceptable.

Note the following when you are using SQL strings:

• Running SQL strings is not considered to be part of field setting. Instead, when the
SQL string is run, it uses the result of any field setting and NULLIF or DEFAULTIF
clauses. So, the evaluation order is as follows (steps 1 and 2 are a summary of the
steps described in "Using the WHEN_NULLIF_ and DEFAULTIF Clauses."):

1. Field setting is done.

2. Any NULLIF or DEFAULTIF clauses are applied (and that may change the field
setting results for the fields that have such clauses). When NULLIF and
DEFAULTIF clauses are used with a SQL expression, they affect the field
setting results, not the final column results.

3. Any SQL expressions are evaluated using the field results obtained after
completion of Steps 1 and 2. The results are assigned to the corresponding
columns that have the SQL expressions. (If there is no SQL expression
present, then the result obtained from Steps 1 and 2 is assigned to the
column.)

• If your control file specifies character input that has an associated SQL string, then
SQL*Loader makes no attempt to modify the data. This is because SQL*Loader
assumes that character input data that is modified using a SQL operator will yield
results that are correct for database insertion.

• The SQL string must appear after any other specifications for a given column.

• The SQL string must be enclosed in double quotation marks.

• To enclose a column name in quotation marks within a SQL string, you must use
escape characters.

In the preceding example, Last is enclosed in double quotation marks to preserve
the mixed case, and the double quotation marks require the use of the backslash
(escape) character.

• If a SQL string contains a column name that references a column object attribute,
then the full object attribute name must be used in the bind variable. Each attribute
name in the full name is an individual identifier. Each identifier is subject to the
SQL identifier quoting rules, independent of the other identifiers in the full name.
For example, suppose you have a column object named CHILD with an attribute
name of "HEIGHT_%TILE". (Note that the attribute name is in double quotation
marks.) To use the full object attribute name in a bind variable, any one of the
following formats would work:

– :CHILD.\"HEIGHT_%TILE\"
– :child.\"HEIGHT_%TILE\"
Enclosing the full name (:\"CHILD.HEIGHT_%TILE\") generates a warning
message that the quoting rule on an object attribute name used in a bind variable

Chapter 10
Applying SQL Operators to Fields

10-64

has changed. The warning is only to suggest to you that the bind variable should be
written correctly. It does not indicate that the load will fail. The quoting rule was changed,
because enclosing the full name in quotation marks would cause SQL to interpret the
name as one identifier, instead of a full column object attribute name consisting of
multiple identifiers.

• The SQL string is evaluated after any NULLIF or DEFAULTIF clauses, but before a date
mask.

• If the Oracle database does not recognize the string, then the load terminates in error. If
the string is recognized, but causes a database error, then the row that caused the error
is rejected.

• SQL strings are required when using the EXPRESSION parameter in a field specification.

• The SQL string cannot reference fields that are loaded using OID, SID, REF, or BFILE.
Also, the SQL string cannot reference filler fields, or other fields that use SQL strings.

• In direct path mode, a SQL string cannot reference a VARRAY, nested table, or LOB
column. This restriction also applies to a VARRAY, nested table, or LOB column that is an
attribute of a column object.

• The SQL string cannot be used on RECNUM, SEQUENCE, CONSTANT, or SYSDATE fields.

• The SQL string cannot be used on LOBs, BFILEs, XML columns, or a file that is an
element of a collection.

• In direct path mode, the final result that is returned after evaluation of the expression in
the SQL string must be a scalar data type. That is, the expression cannot return an object
or collection data type when performing a direct path load.

• Referencing Fields
To refer to fields in the record, precede the field name with a colon (:).

• Common Uses of SQL Operators in Field Specifications
If you want to load external data with an implied decimal point, or truncate long fields,
then SQL operators in field specifications can help you to manage your data.

• Combinations of SQL Operators
See how you can combine SQL operators in SQL*Loader to perform multiple steps in
data loads.

• Using SQL Strings with a Date Mask
When you use SQL*Loader with a SQL string with a date mask, the date mask is
evaluated after the SQL string.

• Interpreting Formatted Fields
If you want to store formatted dates and numbers with SQL*Loader, you can use the
TO_CHAR field operator.

• Using SQL Strings to Load the ANYDATA Database Type
The ANYDATA database type can contain data of different types.

Related Topics

• Using the WHEN_ NULLIF_ and DEFAULTIF Clauses

10.14.1 Referencing Fields
To refer to fields in the record, precede the field name with a colon (:).

Chapter 10
Applying SQL Operators to Fields

10-65

Field values from the current record are substituted. A field name preceded by a colon
(:) in a SQL string is also referred to as a bind variable. Note that bind variables
enclosed in single quotation marks are treated as text literals, not as bind variables.

The following example illustrates how a reference is made to both the current field and
to other fields in the control file. It also illustrates how enclosing bind variables in single
quotation marks causes them to be treated as text literals. Be sure to read the notes
following this example to help you fully understand the concepts it illustrates.

LOAD DATA
INFILE *
APPEND INTO TABLE YYY
(
 field1 POSITION(1:6) CHAR "LOWER(:field1)"
 field2 CHAR TERMINATED BY ','
 NULLIF ((1) = 'a') DEFAULTIF ((1)= 'b')
 "RTRIM(:field2)",
 field3 CHAR(7) "TRANSLATE(:field3, ':field1', ':1')",
 field4 COLUMN OBJECT
 (
 attr1 CHAR(3) NULLIF field4.attr2='ZZ' "UPPER(:field4.attr3)",
 attr2 CHAR(2),
 attr3 CHAR(3) ":field4.attr1 + 1"
),
 field5 EXPRESSION "MYFUNC(:FIELD4, SYSDATE)"
)
BEGINDATA
ABCDEF1234511 ,:field1500YYabc
abcDEF67890 ,:field2600ZZghl

Notes About This Example:

• In the following line, :field1 is not enclosed in single quotation marks and is
therefore interpreted as a bind variable:

field1 POSITION(1:6) CHAR "LOWER(:field1)"
• In the following line, ':field1' and ':1' are enclosed in single quotation marks

and are therefore treated as text literals and passed unchanged to the TRANSLATE
function:

field3 CHAR(7) "TRANSLATE(:field3, ':field1', ':1')"
For more information about the use of quotation marks inside quoted strings, see
Specifying File Names and Object Names.

• For each input record read, the value of the field referenced by the bind variable
will be substituted for the bind variable. For example, the value ABCDEF in the first
record is mapped to the first field :field1. This value is then passed as an
argument to the LOWER function.

• A bind variable in a SQL string need not reference the current field. In the
preceding example, the bind variable in the SQL string for the field4.attr1 field
references the field4.attr3 field. The field4.attr1 field is still mapped to the
values 500 and NULL (because the NULLIF field4.attr2='ZZ' clause is TRUE for
the second record) in the input records, but the final values stored in its
corresponding columns are ABC and GHL.

The field4.attr3 field is mapped to the values ABC and GHL in the input
records, but the final values stored in its corresponding columns are 500 + 1 = 501

Chapter 10
Applying SQL Operators to Fields

10-66

and NULL because the SQL expression references field4.attr1. (Adding 1 to a NULL
field still results in a NULL field.)

• The field5 field is not mapped to any field in the input record. The value that is stored in
the target column is the result of executing the MYFUNC PL/SQL function, which takes two
arguments. The use of the EXPRESSION parameter requires that a SQL string be used to
compute the final value of the column because no input data is mapped to the field.

10.14.2 Common Uses of SQL Operators in Field Specifications
If you want to load external data with an implied decimal point, or truncate long fields, then
SQL operators in field specifications can help you to manage your data.

SQL operators are commonly used for the following tasks:

• Loading external data with an implied decimal point:

 field1 POSITION(1:9) DECIMAL EXTERNAL(8) ":field1/1000"

• Truncating fields that could be too long:

 field1 CHAR TERMINATED BY "," "SUBSTR(:field1, 1, 10)"

10.14.3 Combinations of SQL Operators
See how you can combine SQL operators in SQL*Loader to perform multiple steps in data
loads.

The following examples show how you can apply multiple SQL operators in field
specifications with SQL*Loader:

field1 POSITION(*+3) INTEGER EXTERNAL
 "TRUNC(RPAD(:field1,6,'0'), -2)"
field1 POSITION(1:8) INTEGER EXTERNAL
 "TRANSLATE(RTRIM(:field1),'N/A', '0')"
field1 CHAR(10)
 "NVL(LTRIM(RTRIM(:field1)), 'unknown')"

10.14.4 Using SQL Strings with a Date Mask
When you use SQL*Loader with a SQL string with a date mask, the date mask is evaluated
after the SQL string.

Consider a field specified as follows:

field1 DATE "dd-mon-yy" "RTRIM(:field1)"

SQL*Loader internally generates and inserts the following:

TO_DATE(RTRIM(field1_value), 'dd-mon-yyyy')

Note that when using the DATE field data type with a SQL string, a date mask is required. This
is because SQL*Loader assumes that the first quoted string it finds after the DATE parameter
is a date mask. For instance, the following field specification would result in an error
(ORA-01821: date format not recognized):

field1 DATE "RTRIM(TO_DATE(:field1, 'dd-mon-yyyy'))"

In this case, a simple workaround is to use the CHAR data type.

Chapter 10
Applying SQL Operators to Fields

10-67

10.14.5 Interpreting Formatted Fields
If you want to store formatted dates and numbers with SQL*Loader, you can use the
TO_CHAR field operator.

The following is an example of how you can use the TO_CHAR field operator:

field1 ... "TO_CHAR(:field1, '$09999.99')"

You can follow this example to store numeric input data in formatted form, where
field1 is a character column in the database. Data loaded with this operator is then
stored with the formatting characters (dollar sign, period, and so on) already in place.

You have even more flexibility, however, if you store such values as numeric quantities
or dates. You can then apply arithmetic functions to the values in the database, and
still select formatted values for your reports.

An example of using the SQL string to load data from a formatted report is shown in
case study 7, Extracting Data from a Formatted Report, in "SQL*Loader Case
Studies".

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

10.14.6 Using SQL Strings to Load the ANYDATA Database Type
The ANYDATA database type can contain data of different types.

To load the ANYDATA type using SQL*loader, it must be explicitly constructed by using a
function call. The function is called using support for SQL strings as has been
described in this section.

For example, suppose you have a table with a column named miscellaneous which is
of type ANYDATA. You can load the column by doing the following, which creates an
ANYDATA type containing a number.

LOAD DATA
INFILE *
APPEND INTO TABLE ORDERS
(
miscellaneous CHAR "SYS.ANYDATA.CONVERTNUMBER(:miscellaneous)"
)
BEGINDATA
4

There can also be more complex situations in which you create an ANYDATA type that
contains a different type, depending on the values in the record. To do this, you can
write your own PL/SQL function that determines what type should be in the ANYDATA
type, based on the value in the record, and then call the appropriate
ANYDATA.Convert*(). function to create it.

Related Topics

• ANYDATA

Chapter 10
Applying SQL Operators to Fields

10-68

• ANYDATA TYPE

10.15 Using SQL*Loader to Generate Data for Input
The parameters described in this section provide the means for SQL*Loader to generate the
data stored in the database record, rather than reading it from a data file.

• Loading Data Without Files
To optimize record inserts, you can use SQL*Loader to generate data by specifying only
sequences, record numbers, system dates, constants, and SQL string expressions as
field specifications.

• CONSTANT Parameter
The CONSTANT command-line parameter for SQL*Loader enables you to set a column to a
constant value.

• EXPRESSION Parameter
The EXPRESSION command-line parameter for SQL*Loader enables you to set that
column to the value returned by a SQL operator, or specially-written PL/SQL function.

• RECNUM Parameter
The RECNUM command-line parameter for SQL*Loader enables you to set that column to
the number of the logical record from which that record was loaded.

• SYSDATE Parameter
The SYSDATE command-line parameter for SQL*Loader specifies the database date. The
combination of column name and the SYSDATE parameter is a complete column
specification.

• SEQUENCE Parameter
The CONSTANT command-line parameter for SQL*Loader enables you to ensure a unique
value for a particular column.

• Generating Sequence Numbers for Multiple Tables
Because a unique sequence number is generated for each logical input record, rather
than for each table insert, the same sequence number can be used when inserting data
into multiple tables.

10.15.1 Loading Data Without Files
To optimize record inserts, you can use SQL*Loader to generate data by specifying only
sequences, record numbers, system dates, constants, and SQL string expressions as field
specifications.

SQL*Loader inserts as many records as are specified by the LOAD statement. The SKIP
parameter is not permitted in this situation.

When you specify to insert records specified in the LOAD statement, SQL*Loader is
optimized to limit read input/outputs (read I/O). Whenever SQL*Loader detects that only
generated specifications are used, it ignores any specified data file. No read I/O is performed.

In addition, no memory is required for a bind array. If there are any WHEN clauses in the control
file, then SQL*Loader assumes that data evaluation is necessary, and input records are read.

Chapter 10
Using SQL*Loader to Generate Data for Input

10-69

10.15.2 CONSTANT Parameter
The CONSTANT command-line parameter for SQL*Loader enables you to set a column
to a constant value.

Purpose

Setting a column to a constant value is the simplest form of generated data. It does not
vary either during loads, or between loads.

CONSTANT data is interpreted by SQL*Loader as character input. It is converted, as
necessary, to the database column type.

Caution:

Ensure that you specify a legal value for the target column. If the value is
bad, then every record is rejected.

Syntax and Description

To set a column to a constant value, use CONSTANT followed by a value:

CONSTANT value

You can enclose the value within quotation marks. If the value contains whitespace or
reserved words, then you must enclose the value with quotation marks.

Numeric values larger than 2^32 - 1 (4,294,967,295) must be enclosed in quotation
marks.

Note:

Do not use the CONSTANT parameter to set a column to null. To set a column
to null, do not specify that column at all. Oracle automatically sets that
column to null when loading the record. The combination of CONSTANT and a
value is a complete column specification.

10.15.3 EXPRESSION Parameter
The EXPRESSION command-line parameter for SQL*Loader enables you to set that
column to the value returned by a SQL operator, or specially-written PL/SQL function.

Purpose

The operator or function is indicated in a SQL string that follows the EXPRESSION
parameter. Any arbitrary expression can be used in this context, provided that any
parameters required for the operator or function are correctly specified, and that the
result returned by the operator or function is compatible with the data type of the
column being loaded.

Chapter 10
Using SQL*Loader to Generate Data for Input

10-70

Syntax and Description

The combination of column name, EXPRESSION parameter, and a SQL string is a complete
field specification:

column_name EXPRESSION "SQL string"

In both conventional path mode and direct path mode, the EXPRESSION parameter can be
used to load the default value into column_name:

column_name EXPRESSION "DEFAULT"

Note:

If DEFAULT is used, and the mode is direct path, then use of a sequence as a default
will not work.

10.15.4 RECNUM Parameter
The RECNUM command-line parameter for SQL*Loader enables you to set that column to the
number of the logical record from which that record was loaded.

Purpose

Use the RECNUM parameter after a column name to set that column to the number of the
logical record from which that record was loaded. The combination of column name and
RECNUM is a complete column specification.

Syntax and Description

column_name RECNUM

Records are counted sequentially from the beginning of the first data file, starting with record
1. RECNUM is incremented as each logical record is assembled. Thus it increments for records
that are discarded, skipped, rejected, or loaded. If you use the option SKIP=10, then the first
record loaded has a RECNUM of 11.

10.15.5 SYSDATE Parameter
The SYSDATE command-line parameter for SQL*Loader specifies the database date. The
combination of column name and the SYSDATE parameter is a complete column specification.

Purpose

A column specified with SYSDATE is given the current system date for the database. By
default, that system date is set to the value of the host system. However, starting with Oracle
Database 23c, SYSDATE can also return the timezone of individual PDBs on which the
database resides, if the PDB initialization parameter current_time_at_dbtimezonestart is
set to TRUE before starting the PDB. This option enables PDB system time to be managed
individually within container databases (CDBs). All user-visible operations and internal
functions (for example, Oracle Scheduler or Oracle Flashback technology) adhere to this
setting.

Chapter 10
Using SQL*Loader to Generate Data for Input

10-71

If you want the database to use the host system time, then set SYSTIMESTAMP to return
system time by setting the initialization parameter current_time_at_dbtimezonestart
to FALSE and restarting the database.

When used after a column name, a new system date/time is used for each array of
records inserted in a conventional path load, and for each block of records loaded
during a direct path load.

Syntax and Description

column_name SYSDATE

The combination of column name and the SYSDATE parameter is a complete column
specification.

The database column must be of type CHAR or DATE. If the column is of type CHAR, then
the date is loaded in the form 'dd-mon-yy'. After the load, the date can be loaded only
in that form. If the system date is loaded into a DATE column, then it can be loaded in a
variety of forms that include the time and the date.

When you load arrays of records or blocks of records into a PDB using a direct path
load, or each array of records inserted into the PDB using a conventional path load, a
new system date/time is used.

Starting with Oracle Database 23c, both SYSDATE and SYSTIMESTAMP reflect the PDB
timezone, which can be different from the host system timezone. Refer to the DATE
data type, and SYSDATE in Oracle Database SQL Language Reference

Related Topics

• SYSDATE

• DATE Data Type

10.15.6 SEQUENCE Parameter
The CONSTANT command-line parameter for SQL*Loader enables you to ensure a
unique value for a particular column.

Purpose

Enables you to ensure a unique value for a particular column. SEQUENCE increments for
each record that is loaded or rejected. It does not increment for records that are
discarded or skipped.

Syntax

The combination of column name and the SEQUENCE parameter is a complete column
specification.

column_name SEQUENCE (

COUNT

MAX

integer

, incr

)

Chapter 10
Using SQL*Loader to Generate Data for Input

10-72

The following table describes the parameters used for column specification.

Table 10-5 Parameters Used for Column Specification

Parameter Description

column_name The name of the column in the database to which to assign the
sequence.

SEQUENCE Use the SEQUENCE parameter to specify the value for a column.

COUNT The sequence starts with the number of records already in the table
plus the increment.

MAX The sequence starts with the current maximum value for the column
plus the increment.

integer Specifies the specific sequence number to begin with.

incr The value that the sequence number is to increment after a record is
loaded or rejected. This is optional. The default is 1.

If a record is rejected (that is, it has a format error or causes an Oracle error), then the
generated sequence numbers are not reshuffled to mask the rejected record. For example, if
four rows are assigned sequence numbers 10, 12, 14, and 16 in a particular column, and the
row with 12 is rejected, then the three rows inserted are numbered 10, 14, and 16, not 10, 12,
and 14. This behavior allows the sequence of inserts to be preserved, despite data errors.
When you correct the rejected data and reinsert it, you can manually set the columns to
agree with the sequence.

Case study 3, Loading a Delimited Free-Format File, provides an example of using the
SEQUENCE parameter. (See " SQL*Loader Case Studies" for information on how to access
case studies.)

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case studies
that Oracle provides.

10.15.7 Generating Sequence Numbers for Multiple Tables
Because a unique sequence number is generated for each logical input record, rather than
for each table insert, the same sequence number can be used when inserting data into
multiple tables.

Using the same sequence number for data inserted into multiple tables is frequently useful.

Sometimes, however, you might want to generate different sequence numbers for each INTO
TABLE clause. For example, your data format might define three logical records in every input
record. In that case, you can use three INTO TABLE clauses, each of which inserts a different
part of the record into the same table. When you use SEQUENCE(MAX), SQL*Loader will use
the maximum from each table, which can lead to inconsistencies in sequence numbers.

To generate sequence numbers for these records, you must generate unique numbers for
each of the three inserts. Use the number of table-inserts per record as the sequence
increment, and start the sequence numbers for each insert with successive numbers.

Chapter 10
Using SQL*Loader to Generate Data for Input

10-73

Example 10-7 Generating Different Sequence Numbers for Each Insert

Suppose you want to load the following department names into the dept table. Each
input record contains three department names, and you want to generate the
department numbers automatically.

Accounting Personnel Manufacturing
Shipping Purchasing Maintenance
...

You can use the following control file entries to generate unique department numbers:

INTO TABLE dept
(deptno SEQUENCE(1, 3),
 dname POSITION(1:14) CHAR)
INTO TABLE dept
(deptno SEQUENCE(2, 3),
 dname POSITION(16:29) CHAR)
INTO TABLE dept
(deptno SEQUENCE(3, 3),
 dname POSITION(31:44) CHAR)

The first INTO TABLE clause generates department number 1, the second number 2,
and the third number 3. They all use 3 as the sequence increment (the number of
department names in each record). This control file loads Accounting as department
number 1, Personnel as 2, and Manufacturing as 3.

The sequence numbers are then incremented for the next record, so Shipping loads
as 4, Purchasing as 5, and so on.

Chapter 10
Using SQL*Loader to Generate Data for Input

10-74

11
Loading Objects, LOBs, and Collections with
SQL*Loader

You can use SQL*Loader to load column objects in various formats and to load object tables,
REF columns, LOBs, vectors, and collections.

• Loading Column Objects
You can use SQL*Loader to load obects of a specific object type. An object column is a
column that is based on an object type.

• Loading Object Tables with SQL*Loader
Learn how to load and manage object tables in Oracle Database instances using object
identifiers (OIDs).

• Loading REF Columns with SQL*Loader
SQL*Loader can load system-generated OID REF columns, primary-key-based REF
columns, and unscoped REF columns that allow primary keys.

• Loading LOBs with SQL*Loader
Find out which large object types (LOBs) SQL*Loader can load, and see examples of
how to load LOB Data.

• Loading BFILE Columns with SQL*Loader
The BFILE data type stores unstructured binary data in operating system files.

• Loading Collections (Nested Tables and VARRAYs)
With collections, you can load a set of nested tables, or a VARRAY with an ordered set of
elements using SQL*Loader.

• Choosing Dynamic or Static SDF Specifications
With SQL*Loader, you can specify SDFs either statically (specifying the actual name of
the file), or dynamically (using a FILLER field as the source of the file name).

• Loading a Parent Table Separately from Its Child Table
When you load a table that contains a nested table column, it may be possible to load the
parent table separately from the child table.

• Loading Modes and Options for SODA Collections
Learn about the loading modes and options for loading schemaless data using SODA
collections

11.1 Loading Column Objects
You can use SQL*Loader to load obects of a specific object type. An object column is a
column that is based on an object type.

• Understanding Column Object Attributes
Column objects in the SQL*Loader control file are described in terms of their attributes.
An object type can have many attributes.

11-1

• Loading Column Objects in Stream Record Format
With stream record formats, you can use SQL*Loader to load records with multi-
line fields by specifying a delimitor on column objects.

• Loading Column Objects in Variable Record Format
You can load column objects in variable record format.

• Loading Nested Column Objects
You can load nested column objects.

• Loading Column Objects with a Derived Subtype
You can load column objects with a derived subtype.

• Specifying Null Values for Objects
You can specify null values for objects.

• Loading Column Objects with User-Defined Constructors
You can load column objects with user-defined constructors.

11.1.1 Understanding Column Object Attributes
Column objects in the SQL*Loader control file are described in terms of their
attributes. An object type can have many attributes.

If you declare that the object type on which the column object is based is nonfinal, then
the column object in the control file can be described in terms of the attributes, both
derived and declared, of any subtype derived from the base object type. In the data
file, the data corresponding to each of the attributes of a column object is in a data
field similar to that corresponding to a simple relational column.

Note:

With SQL*Loader support for complex data types such as column objects,
the possibility arises that two identical field names could exist in the control
file, one corresponding to a column, the other corresponding to a column
object's attribute. Certain clauses can refer to fields (for example, WHEN,
NULLIF, DEFAULTIF, SID, OID, REF, BFILE, and so on), which can cause a
naming conflict if identically named fields exist in the control file.

Therefore, if you use clauses that refer to fields, then you must specify the
full name. For example, if field fld1 is specified to be a COLUMN OBJECT, and
it contains field fld2, then when you specify fld2 in a clause such as
NULLIF, you must use the full field name fld1.fld2.

11.1.2 Loading Column Objects in Stream Record Format
With stream record formats, you can use SQL*Loader to load records with multi-line
fields by specifying a delimitor on column objects.

In stream record format, SQL*Loader forms records by scanning for the record
terminator. To show how to use stream record formats, consider the following example,
in which the data is in predetermined size fields. The newline character marks the end
of a physical record. You can also mark the end of a physical record by using a custom
record separator in the operating system file-processing clause
(os_file_proc_clause).

Chapter 11
Loading Column Objects

11-2

Example 11-1 Loading Column Objects in Stream Record Format

Control File Contents

LOAD DATA
INFILE 'example.dat'
INTO TABLE departments
 (dept_no POSITION(01:03) CHAR,
 dept_name POSITION(05:15) CHAR,
1 dept_mgr COLUMN OBJECT
 (name POSITION(17:33) CHAR,
 age POSITION(35:37) INTEGER EXTERNAL,
 emp_id POSITION(40:46) INTEGER EXTERNAL))

Data File (example.dat)

101 Mathematics Johnny Quest 30 1024
237 Physics Albert Einstein 65 0000

In the example, note the callout 1 at dept_mgr COLUMN OBJECT. You can apply this type of
column object specification recursively to describe nested column objects.

11.1.3 Loading Column Objects in Variable Record Format
You can load column objects in variable record format.

Example 11-2 shows a case in which the data is in delimited fields.

Example 11-2 Loading Column Objects in Variable Record Format

Control File Contents

LOAD DATA
1 INFILE 'sample.dat' "var 6"
INTO TABLE departments
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
2 (dept_no
 dept_name,
 dept_mgr COLUMN OBJECT
 (name CHAR(30),
 age INTEGER EXTERNAL(5),
 emp_id INTEGER EXTERNAL(5)))

Data File (sample.dat)

3 000034101,Mathematics,Johny Q.,30,1024,
 000039237,Physics,"Albert Einstein",65,0000,

Chapter 11
Loading Column Objects

11-3

Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. The "var" string includes the number of bytes in the length field at the
beginning of each record (in this example, the number is 6). If no value is
specified, then the default is 5 bytes. The maximum size of a variable
record is 2^32-1. Specifying larger values will result in an error.

2. Although no positional specifications are given, the general syntax
remains the same (the column object's name followed by the list of its
attributes enclosed in parentheses). Also note that an omitted type
specification defaults to CHAR of length 255.

3. The first 6 bytes (italicized) specify the length of the forthcoming record.
These length specifications include the newline characters, which are
ignored thanks to the terminators after the emp_id field.

11.1.4 Loading Nested Column Objects
You can load nested column objects.

Example 11-3 shows a control file describing nested column objects (one column
object nested in another column object).

Example 11-3 Loading Nested Column Objects

Control File Contents

LOAD DATA
INFILE `sample.dat'
INTO TABLE departments_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
 dept_mgr COLUMN OBJECT
 (name CHAR(30),
 age INTEGER EXTERNAL(3),
 emp_id INTEGER EXTERNAL(7),
1 em_contact COLUMN OBJECT
 (name CHAR(30),
 phone_num CHAR(20))))

Data File (sample.dat)

101,Mathematics,Johny Q.,30,1024,"Barbie",650-251-0010,
237,Physics,"Albert Einstein",65,0000,Wife Einstein,654-3210,

Note:

The callout, in bold, to the left of the example corresponds to the following
note:

1. This entry specifies a column object nested within a column object.

Chapter 11
Loading Column Objects

11-4

11.1.5 Loading Column Objects with a Derived Subtype
You can load column objects with a derived subtype.

Example 11-4 shows a case in which a nonfinal base object type has been extended to
create a new derived subtype. Although the column object in the table definition is declared to
be of the base object type, SQL*Loader allows any subtype to be loaded into the column
object, provided that the subtype is derived from the base object type.

Example 11-4 Loading Column Objects with a Subtype

Object Type Definitions

CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5));

CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 person person_type);

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE personnel
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
1 person COLUMN OBJECT TREAT AS employee_type
 (name CHAR,
 ssn INTEGER EXTERNAL(9),
2 empid INTEGER EXTERNAL(5)))

Data File (sample.dat)

101,Mathematics,Johny Q.,301189453,10249,
237,Physics,"Albert Einstein",128606590,10030,

Note:

The callouts, in bold, to the left of the example correspond to the following notes:

1. The TREAT AS clause indicates that SQL*Loader should treat the column object
person as if it were declared to be of the derived type employee_type, instead
of its actual declared type, person_type.

2. The empid attribute is allowed here because it is an attribute of the
employee_type. If the TREAT AS clause had not been specified, then this
attribute would have resulted in an error, because it is not an attribute of the
column's declared type.

Chapter 11
Loading Column Objects

11-5

11.1.6 Specifying Null Values for Objects
You can specify null values for objects.

Specifying null values for nonscalar data types is somewhat more complex than for
scalar data types. An object can have a subset of its attributes be null, it can have all
of its attributes be null (an attributively null object), or it can be null itself (an atomically
null object).

• Specifying Attribute Nulls
You can specify attribute nulls.

• Specifying Atomic Nulls
You can specify atomic nulls.

11.1.6.1 Specifying Attribute Nulls
You can specify attribute nulls.

In fields corresponding to column objects, you can use the NULLIF clause to specify
the field conditions under which a particular attribute should be initialized to NULL.
Example 11-5 demonstrates this.

Example 11-5 Specifying Attribute Nulls Using the NULLIF Clause

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments
 (dept_no POSITION(01:03) CHAR,
 dept_name POSITION(05:15) CHAR NULLIF dept_name=BLANKS,
 dept_mgr COLUMN OBJECT
1 (name POSITION(17:33) CHAR NULLIF dept_mgr.name=BLANKS,
1 age POSITION(35:37) INTEGER EXTERNAL NULLIF dept_mgr.age=BLANKS,
1 emp_id POSITION(40:46) INTEGER EXTERNAL NULLIF
dept_mgr.empid=BLANKS))

Data File (sample.dat)

2 101 Johny Quest 1024
 237 Physics Albert Einstein 65 0000

Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. The NULLIF clause corresponding to each attribute states the condition
under which the attribute value should be NULL

2. The age attribute of the dept_mgr value is null. The dept_name value is
also null.

Chapter 11
Loading Column Objects

11-6

11.1.6.2 Specifying Atomic Nulls
You can specify atomic nulls.

To specify in the control file the condition under which a particular object should take a null
value (atomic null), you must follow that object's name with a NULLIF clause based on a
logical combination of any of the mapped fields (for example, in Example 11-5, the named
mapped fields would be dept_no, dept_name, name, age, emp_id, but dept_mgr would not be a
named mapped field because it does not correspond (is not mapped) to any field in the data
file).

Although the preceding is workable, it is not ideal when the condition under which an object
should take the value of null is independent of any of the mapped fields. In such situations,
you can use filler fields.

You can map a filler field to the field in the data file (indicating if a particular object is
atomically null or not) and use the filler field in the field condition of the NULLIF clause of the
particular object. This is shown in Example 11-6.

Example 11-6 Loading Data Using Filler Fields

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
1 is_null FILLER CHAR,
2 dept_mgr COLUMN OBJECT NULLIF is_null=BLANKS
 (name CHAR(30) NULLIF dept_mgr.name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF dept_mgr.age=BLANKS,
 emp_id INTEGER EXTERNAL(7)
 NULLIF dept_mgr.emp_id=BLANKS,
 em_contact COLUMN OBJECT NULLIF is_null2=BLANKS
 (name CHAR(30)
 NULLIF dept_mgr.em_contact.name=BLANKS,
 phone_num CHAR(20)
 NULLIF dept_mgr.em_contact.phone_num=BLANKS)),
1 is_null2 FILLER CHAR)

Data File (sample.dat)

101,Mathematics,n,Johny Q.,,1024,"Barbie",608-251-0010,,
237,Physics,,"Albert Einstein",65,0000,,650-654-3210,n,

Note:

The callouts, in bold, to the left of the example correspond to the following notes:

1. The filler field (data file mapped; no corresponding column) is of type CHAR
(because it is a delimited field, the CHAR defaults to CHAR(255)). Note that the
NULLIF clause is not applicable to the filler field itself

2. Gets the value of null (atomic null) if the is_null field is blank.

Chapter 11
Loading Column Objects

11-7

11.1.7 Loading Column Objects with User-Defined Constructors
You can load column objects with user-defined constructors.

The Oracle database automatically supplies a default constructor for every object type.
This constructor requires that all attributes of the type be specified as arguments in a
call to the constructor. When a new instance of the object is created, its attributes take
on the corresponding values in the argument list. This constructor is known as the
attribute-value constructor. SQL*Loader uses the attribute-value constructor by default
when loading column objects.

It is possible to override the attribute-value constructor by creating one or more user-
defined constructors. When you create a user-defined constructor, you must supply a
type body that performs the user-defined logic whenever a new instance of the object
is created. A user-defined constructor may have the same argument list as the
attribute-value constructor but differ in the logic that its type body implements.

When the argument list of a user-defined constructor function matches the argument
list of the attribute-value constructor, there is a difference in behavior between
conventional and direct path SQL*Loader. Conventional path mode results in a call to
the user-defined constructor. Direct path mode results in a call to the attribute-value
constructor. Example 11-7 illustrates this difference.

Example 11-7 Loading a Column Object with Constructors That Match

Object Type Definitions

CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

 CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5),
 -- User-defined constructor that looks like an attribute-value constructor
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER, empid NUMBER)
 RETURN SELF AS RESULT);

 CREATE TYPE BODY employee_type AS
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER, empid NUMBER)
 RETURN SELF AS RESULT AS
 --User-defined constructor makes sure that the name attribute is uppercase.
 BEGIN
 SELF.name := UPPER(name);
 SELF.ssn := ssn;
 SELF.empid := empid;
 RETURN;
 END;

 CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 employee employee_type);

Control File Contents

LOAD DATA
 INFILE *

Chapter 11
Loading Column Objects

11-8

 REPLACE
 INTO TABLE personnel
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
 employee COLUMN OBJECT
 (name CHAR,
 ssn INTEGER EXTERNAL(9),
 empid INTEGER EXTERNAL(5)))

 BEGINDATA
1 101,Mathematics,Johny Q.,301189453,10249,
 237,Physics,"Albert Einstein",128606590,10030,

Note:

The callout, in bold, to the left of the example corresponds to the following note:

1. When this control file is run in conventional path mode, the name fields, Johny
Q. and Albert Einstein, are both loaded in uppercase. This is because the
user-defined constructor is called in this mode. In contrast, when this control file
is run in direct path mode, the name fields are loaded exactly as they appear in
the input data. This is because the attribute-value constructor is called in this
mode.

It is possible to create a user-defined constructor whose argument list does not
match that of the attribute-value constructor. In this case, both conventional and
direct path modes will result in a call to the attribute-value constructor. Consider the
definitions in Example 11-8.

Example 11-8 Loading a Column Object with Constructors That Do Not Match

Object Type Definitions

CREATE SEQUENCE employee_ids
 START WITH 1000
 INCREMENT BY 1;

 CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

 CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5),
 -- User-defined constructor that does not look like an attribute-value
 -- constructor
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER)
 RETURN SELF AS RESULT);

 CREATE TYPE BODY employee_type AS
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER)
 RETURN SELF AS RESULT AS
 -- This user-defined constructor makes sure that the name attribute is in
 -- lowercase and assigns the employee identifier based on a sequence.
 nextid NUMBER;

Chapter 11
Loading Column Objects

11-9

 stmt VARCHAR2(64);
 BEGIN

 stmt := 'SELECT employee_ids.nextval FROM DUAL';
 EXECUTE IMMEDIATE stmt INTO nextid;

 SELF.name := LOWER(name);
 SELF.ssn := ssn;
 SELF.empid := nextid;
 RETURN;
 END;

 CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 employee employee_type);

If the control file described in Example 11-7 is used with these definitions, then the
name fields are loaded exactly as they appear in the input data (that is, in mixed case).
This is because the attribute-value constructor is called in both conventional and direct
path modes.

It is still possible to load this table using conventional path mode by explicitly making
reference to the user-defined constructor in a SQL expression. Example 11-9 shows
how this can be done.

Example 11-9 Using SQL to Load Column Objects When Constructors Do Not
Match

Control File Contents

LOAD DATA
 INFILE *
 REPLACE
 INTO TABLE personnel
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
 name BOUNDFILLER CHAR,
 ssn BOUNDFILLER INTEGER EXTERNAL(9),
1 employee EXPRESSION "employee_type(:NAME, :SSN)")

 BEGINDATA
1 101,Mathematics,Johny Q.,301189453,
 237,Physics,"Albert Einstein",128606590,

Note:

The callouts, in bold, to the left of the example correspond to the following
note:

1. When this control file is run in conventional path mode, the name fields,
Johny Q. and Albert Einstein, are both loaded in uppercase. This is
because the user-defined constructor is called in this mode. In contrast,
when this control file is run in direct path mode, the name fields are
loaded exactly as they appear in the input data. This is because the
attribute-value constructor is called in this mode.

Chapter 11
Loading Column Objects

11-10

If the control file in Example 11-9 is used in direct path mode, then the following error is
reported:

SQL*Loader-951: Error calling once/load initialization
ORA-26052: Unsupported type 121 for SQL expression on column EMPLOYEE.

11.2 Loading Object Tables with SQL*Loader
Learn how to load and manage object tables in Oracle Database instances using object
identifiers (OIDs).

• Examples of Loading Object Tables with SQL*Loader
See how you can load object tables with primary-key-based object identifiers (OIDs) and
row-based OIDs.

• Loading Object Tables with Subtypes
If an object table's row object is based on a nonfinal type, then SQL*Loader allows for
any derived subtype to be loaded into the object table.

11.2.1 Examples of Loading Object Tables with SQL*Loader
See how you can load object tables with primary-key-based object identifiers (OIDs) and row-
based OIDs.

The control file syntax required to load an object table is nearly identical to that used to load a
typical relational table.

Example 11-10 Loading an Object Table with Primary Key OIDs

The following examples show the control file and data file used for a primary key OID load,
and demonstrates loading an object table with primary-key-based object identifiers (OIDs).

Control File Contents

LOAD DATA
INFILE 'sample.dat'
DISCARDFILE 'sample.dsc'
BADFILE 'sample.bad'
REPLACE
INTO TABLE employees
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (name CHAR(30) NULLIF name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF age=BLANKS,
 emp_id INTEGER EXTERNAL(5))

Data File (sample.dat)

Johny Quest, 18, 007,
Speed Racer, 16, 000,

By looking only at the preceding control file, it can be difficult to determine if the table being
loaded was an object table with system-generated OIDs, an object table with primary-key-
based OIDs, or a relational table.

Chapter 11
Loading Object Tables with SQL*Loader

11-11

If you want to load data that already contains system-generated OIDs, and to specify
that instead of generating new OIDs, then use the existing OIDs in the data file. To use
the existing OIDs, you add the OID clause after the INTO TABLE clause. For example:

OID (fieldname)

In this clause, fieldname is the name of one of the fields (typically a filler field) from
the field specification list that is mapped to a data field that contains the system-
generated OIDs. The SQL*Loader processing assumes that the OIDs provided are in
the correct format, and that they preserve OID global uniqueness. Therefore, to ensure
uniqueness, Oracle recommends that you use the Oracle OID generator to generate
the OIDs that you want to load.

Note:

You can only use the OID clause for system-generated OIDs, not primary-
key-based OIDs.

Example 11-11 Loading OIDs

In this example, the control file and data file demonstrate how to load system-
generated OIDs with the row objects. Note the callouts in bold:

Control File Contents

 LOAD DATA
 INFILE 'sample.dat'
 INTO TABLE employees_v2
1 OID (s_oid)
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (name CHAR(30) NULLIF name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF age=BLANKS,
 emp_id INTEGER EXTERNAL(5),
2 s_oid FILLER CHAR(32))

Data File (sample.dat)

3 Johny Quest, 18, 007, 21E978406D3E41FCE03400400B403BC3,
 Speed Racer, 16, 000, 21E978406D4441FCE03400400B403BC3,

Chapter 11
Loading Object Tables with SQL*Loader

11-12

Note:

The callouts in bold, to the left of the example, correspond to the following notes:

1. The OID clause specifies that the s_oid loader field contains the OID. The
parentheses are required.

2. If s_oid does not contain a valid hexadecimal number, then the particular
record is rejected.

3. The OID in the data file is a character string. This string is interpreted as a 32-
digit hexadecimal number. The 32-digit hexadecimal number is later converted
into a 16-byte RAW OID, and stored in the object table.

11.2.2 Loading Object Tables with Subtypes
If an object table's row object is based on a nonfinal type, then SQL*Loader allows for any
derived subtype to be loaded into the object table.

The syntax required to load an object table with a derived subtype is almost identical to that
used for a typical relational table. However, in this case, the actual subtype to be used must
be named, so that SQL*Loader can determine if it is a valid subtype for the object table. Use
these examples to understand the differences.

Example 11-12 Loading an Object Table with a Subtype

Review the object type definitions, and review the callouts (in bold) to understand how the
control file is configured.

Object Type Definitions

CREATE TYPE employees_type AS OBJECT
 (name VARCHAR2(30),
 age NUMBER(3),
 emp_id NUMBER(5)) not final;

CREATE TYPE hourly_emps_type UNDER employees_type
 (hours NUMBER(3));

CREATE TABLE employees_v3 of employees_type;

Control File Contents

 LOAD DATA

 INFILE 'sample.dat'
 INTO TABLE employees_v3
1 TREAT AS hourly_emps_type
 FIELDS TERMINATED BY ','
 (name CHAR(30),
 age INTEGER EXTERNAL(3),
 emp_id INTEGER EXTERNAL(5),
2 hours INTEGER EXTERNAL(2))

Chapter 11
Loading Object Tables with SQL*Loader

11-13

Data File (sample.dat)

 Johny Quest, 18, 007, 32,
 Speed Racer, 16, 000, 20,

Note:

The callouts in bold, to the left of the example, correspond to the following
notes:

1. The TREAT AS clause directs SQL*Loader to treat the object table as if it
was declared to be of type hourly_emps_type, instead of its actual
declared type, employee_type.

2. The hours attribute is allowed here, because it is an attribute of the
hourly_emps_type. If the TREAT AS clause is not specified, then using
this attribute results in an error, because it is not an attribute of the object
table's declared type.

11.3 Loading REF Columns with SQL*Loader
SQL*Loader can load system-generated OID REF columns, primary-key-based REF
columns, and unscoped REF columns that allow primary keys.

A REF is an Oracle built-in data type that is a logical "pointer" to an object in an object
table. For each of these types of REF columns, you must specify table names correctly
for the type.

• Specifying Table Names in a REF Clause
Use these examples to see how to describe REF clauses in the SQL*Loader
control file, and understand case sensitivity.

• System-Generated OID REF Columns
When you load system-generated REF columns, SQL*Loader assumes that the
actual OIDs from which the REF columns are constructed are in the data file, with
the data.

• Primary Key REF Columns
To load a primary key REF column, the SQL*Loader control-file field description
must provide the column name followed by a REF clause.

• Unscoped REF Columns That Allow Primary Keys
An unscoped REF column that allows primary keys can reference both system-
generated and primary key REFs.

Chapter 11
Loading REF Columns with SQL*Loader

11-14

11.3.1 Specifying Table Names in a REF Clause
Use these examples to see how to describe REF clauses in the SQL*Loader control file, and
understand case sensitivity.

Note:

The information in this section applies only to environments in which the release of
both SQL*Loader and Oracle Database are 11g release 1 (11.1) or later. It does not
apply to environments in which either SQL*Loader, Oracle Database, or both, are at
an earlier release.

Example 11-13 REF Clause descriptions in the SQL*Loader Control file

In the SQL*Loader control file, the description of the field corresponding to a REF column
consists of the column name, followed by a REF clause. The REF clause takes as arguments
the table name and any attributes applicable to the type of REF column being loaded. The
table names can either be specified dynamically (using filler fields), or as constants. The table
name can also be specified with or without the schema name.

Whether you specify the table name in the REF clause as a constant, or you specify it by
using a filler field, SQL*Loader interprets this specification as interpreted as case-sensitive. If
you do not keep this in mind, then the following issues can occur:

• If user SCOTT creates a table named table2 in lowercase without quotation marks around
the table name, then it can be used in a REF clause in any of the following ways:

– REF(constant 'TABLE2', ...)
– REF(constant '"TABLE2"', ...)
– REF(constant 'SCOTT.TABLE2', ...)

• If user SCOTT creates a table named "Table2" using quotation marks around a mixed-
case name, then it can be used in a REF clause in any of the following ways:

– REF(constant 'Table2', ...)
– REF(constant '"Table2"', ...)
– REF(constant 'SCOTT.Table2', ...)

In both of those situations, if constant is replaced with a filler field, then the same values as
shown in the examples will also work if they are placed in the data section.

11.3.2 System-Generated OID REF Columns
When you load system-generated REF columns, SQL*Loader assumes that the actual OIDs
from which the REF columns are constructed are in the data file, with the data.

The description of the field corresponding to a REF column consists of the column name
followed by the REF clause.

Chapter 11
Loading REF Columns with SQL*Loader

11-15

The REF clause takes as arguments the table name and an OID. Note that the
arguments can be specified either as constants or dynamically (using filler fields).
Refer to the ref_spec SQL*Loader syntax for details.

Example 11-14 Loading System-Generated REF Columns

The following example shows how to load system-generated OID REF columns; note
the callouts in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_alt_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
1 dept_mgr REF(t_name, s_oid),
 s_oid FILLER CHAR(32),
 t_name FILLER CHAR(30))

Data File (sample.dat)

22345, QuestWorld, 21E978406D3E41FCE03400400B403BC3, EMPLOYEES_V2,
23423, Geography, 21E978406D4441FCE03400400B403BC3, EMPLOYEES_V2,

Note:

The callout in bold, to the left of the example, corresponds to the following
note:

1. If the specified table does not exist, then the record is rejected. The
dept_mgr field itself does not map to any field in the data file.

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

11.3.3 Primary Key REF Columns
To load a primary key REF column, the SQL*Loader control-file field description must
provide the column name followed by a REF clause.

The REF clause takes for arguments a comma-delimited list of field names and
constant values. The first argument is the table name, followed by arguments that
specify the primary key OID on which the REF column to be loaded is based. Refer to
the SQL*Loader syntax for ref_spec for details.

SQL*Loader assumes that the ordering of the arguments matches the relative ordering
of the columns making up the primary key OID in the referenced table.

Chapter 11
Loading REF Columns with SQL*Loader

11-16

Example 11-15 Loading Primary Key REF Columns

The following example demonstrates loading primary key REF columns:

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_alt
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
 dept_mgr REF(CONSTANT 'EMPLOYEES', emp_id),
 emp_id FILLER CHAR(32))

Data File (sample.dat)

22345, QuestWorld, 007,
23423, Geography, 000,

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called railroad
diagrams or DDL diagrams).

11.3.4 Unscoped REF Columns That Allow Primary Keys
An unscoped REF column that allows primary keys can reference both system-generated and
primary key REFs.

The syntax for loading data into an unscoped REF column is the same syntax you use when
loading data into a system-generated OID REF column, or into a primary-key-based REF
column.

The following restrictions apply when loading into an unscoped REF column that allows
primary keys:

• Only one type of REF can be referenced by this column during a single-table load, either
system-generated or primary key, but not both. If you try to reference both types, then the
data row will be rejected with an error message indicating that the referenced table name
is invalid.

• If you are loading unscoped primary key REFs to this column, then only one object table
can be referenced during a single-table load. That is, to load unscoped primary key REFs,
some pointing to object table X and some pointing to object table Y, you must do one of
the following:

– Perform two single-table loads.

– Perform a single load using multiple INTO TABLE clauses for which the WHEN clause
keys off some aspect of the data, such as the object table name for the unscoped
primary key REF.

If you do not use either of these methods, then the data row is rejected with an error
message indicating that the referenced table name is invalid.

Chapter 11
Loading REF Columns with SQL*Loader

11-17

• SQL*Loader does not support unscoped primary key REFs in collections.

• If you are loading system-generated REFs into this REF column, then any limitations
that apply to system-generated OID REF columns also apply.

• If you are loading primary key REFs into this REF column, then any limitations that
apply to primary key REF columns also apply.

Note:

For an unscoped REF column that allows primary keys, SQL*Loader
takes the first valid object table parsed (either from the REF directive or
from the data rows). SQL*Loader then uses that object table's OID type
to determine the REF type that can be referenced in that single-table
load.

Example 11-16 Single Load Using Multiple INTO TABLE Clause Method

In this example, the WHEN clauses key off the "CUSTOMERS_PK" data specified by object
table names for the unscoped primary key REF tables cust_tbl and cust_no:

LOAD DATA
INFILE 'data.dat'

INTO TABLE orders_apk
APPEND
when CUST_TBL = "CUSTOMERS_PK"
fields terminated by ","
(
 order_no position(1) char,
 cust_tbl FILLER char,
 cust_no FILLER char,
 cust REF (cust_tbl, cust_no) NULLIF order_no='0'
)

INTO TABLE orders_apk
APPEND
when CUST_TBL = "CUSTOMERS_PK2"
fields terminated by ","
(
 order_no position(1) char,
 cust_tbl FILLER char,
 cust_no FILLER char,
 cust REF (cust_tbl, cust_no) NULLIF order_no='0'
)

11.4 Loading LOBs with SQL*Loader
Find out which large object types (LOBs) SQL*Loader can load, and see examples of
how to load LOB Data.

Chapter 11
Loading LOBs with SQL*Loader

11-18

• Overview of Loading LOBs with SQL*Loader
Learn what formats of large object types (LOBs) you can load with SQL*Loader, and what
restrictions apply.

• Options for Using SQL*Loader to Load LOBs
Learn about conventional and direct-path loads, when Oracle recommends that you use
direct-path loads, and what rules and guidelines you should follow to avoid issues.

• Loading LOB Data from a Primary Data File
You can load internal LOBs (BLOBs, CLOBs, NCLOBs) or XML columns from a primary data
file.

• Loading LOB Data from LOBFILEs
To load large LOB data files, consider using a LOBFILE with SQL*Loader.

• Loading Data Files that Contain LLS Fields
If a field in a data file is a LOB location Specifier (LLS) field, then you can indicate this by
using the LLS clause.

11.4.1 Overview of Loading LOBs with SQL*Loader
Learn what formats of large object types (LOBs) you can load with SQL*Loader, and what
restrictions apply.

A LOB is a large object type. SQL*Loader supports the following types of LOBs:

• BLOB: an internal LOB containing unstructured binary data

• CLOB: an internal LOB containing character data

• NCLOB: an internal LOB containing characters from a national character set

• BFILE: a BLOB stored outside of the database tablespaces in a server-side operating
system file

LOBs can be column data types, and except for NCLOB, they can be an object's attribute data
types. LOBs can have actual values, they can be null, or they can be empty. SQL*Loader
creates an empty LOB when there is a 0-length field to store in the LOB. (Note that this is
different than other data types where SQL*Loader sets the column to NULL for any 0-length
string.) This means that the only way to load NULL values into a LOB column is to use the
NULLIF clause.

XML columns are columns declared to be of type SYS.XMLTYPE. SQL*Loader treats XML
columns as if they were CLOBs. All of the methods for loading LOB data from the primary data
file or from LOBFILEs are applicable to loading XML columns.

Note:

You cannot specify a SQL string for LOB fields. This is true even if you specify
LOBFILE_spec.

Because LOBs can be quite large, SQL*Loader can load LOB data from either a primary data
file (in line with the rest of the data), or from LOBFILEs.

Related Topics

• Large Object (LOB) Data Types

Chapter 11
Loading LOBs with SQL*Loader

11-19

11.4.2 Options for Using SQL*Loader to Load LOBs
Learn about conventional and direct-path loads, when Oracle recommends that you
use direct-path loads, and what rules and guidelines you should follow to avoid issues.

There are two options for loading large object (LOB) data:

A conventional path load executes SQL INSERT statements to populate tables in an
Oracle Database.

A direct-path load eliminates much of the Oracle Database overhead by formatting
Oracle data blocks, and writing the data blocks directly to the database files.
Additionally, a direct-path load does not compete with other users for database
resources, so it can usually load data at near disk speed. Be aware that there are also
other restrictions, security, and backup implications for direct path loads, which you
should review.

For each of these options of loading large object data (LOBs), you can use the
following techniques to load data into LOBs:

• Loading LOB data from primary data files.

When you load data from a primary data file, the data for the LOB column is part of
the record in the file that you are loading.

• Loading LOB data from a secondary data file using LOB files.

When you load data from a secondary data file, the data for a LOB column is in a
different file from the primary data file. Instead of the data itself, the primary data
file contains information about the location of the content of the LOB data in other
files.

Recommendations for Using Direct-Path or Conventional Path Loads for XML
Data

Oracle recommends that you use LOB files when you want to load columns containing
XML data in CLOB or XMLType columns. Consider the following validation criteria for
XML documents in determining whether to use direct-path load or conventional path
load with SQL*Loader:

• If the XML document must be validated upon loading, then use conventional path
load.

• If you do not need to ensure that the XML document is valid, or if you can safely
assume that the XML document is valid, then you can perform a direct-path load.
Direct-path loads are faster, because you avoid the overhead of XML validation.

Recommendations and Requirements for Using SQL*Loader to Load LOBs

To avoid issues, when you want to load LOBs using SQL*Loader, Oracle recommends
that you follow these guidelines and rules:

• Tables that you want to load must already exist in the database. SQL*Loader
never creates tables. It loads existing tables that either contain data, or are empty.

• When you load data from LOB files, specify the maximum length of the field
corresponding to a LOB-type column. If the maximum length is specified, then
SQL*Loader uses this length as a hint to help optimize memory usage. You should

Chapter 11
Loading LOBs with SQL*Loader

11-20

ensure that the maximum length you specify does not underestimate the true maximum
length.

• If you use conventional path loads, then be aware that failure to load a particular LOB
does not result in the rejection of the record containing that LOB; instead, the record ends
up containing an empty LOB.

• If you use direct-path loads, then be aware that loading LOBs can take up substantial
memory. If the message SQL*Loader 700 (out of memory) appears when loading LOBs,
then internal code is probably batching up more rows in each load call than can be
supported by your operating system and process memory. One way to work around this
problem is to use the ROWS option to read a smaller number of rows in each data save.

Only use direct path loads to load XML documents that are known to be valid into
XMLtype columns that are stored as CLOBS. Direct path load does not validate the
format of XML documents as the are loaded as CLOBs.

With direct-path loads, errors can be critical. In direct-path loads, the LOB could be
empty or truncated. LOBs are sent in pieces to the server for loading. If there is an error,
then the LOB piece with the error is discarded and the rest of that LOB is not loaded. As
a result, if the entire LOB with the error is contained in the first piece, then that LOB
column is either empty or truncated.

You can also use the Direct Path API to load LOBs.

Privileges Required for Using SQL*Loader to Load LOBs

The following privileges are required for using SQL*Loader to load LOBs:

• You must have INSERT privileges on the table that you want to load.

• You must have DELETE privileges on the table that you want to load, if you want to use the
REPLACE or TRUNCATE option to empty out the old data before loading the new data in its
place.

Related Topics

• Oracle Call Interface Direct Path Load Interface

• Loading Objects, LOBs, and Collections with SQL*Loader

11.4.3 Loading LOB Data from a Primary Data File
You can load internal LOBs (BLOBs, CLOBs, NCLOBs) or XML columns from a primary data file.

To load internal LOBs or XML columns from a primary data file, you can use the following
standard SQL*Loader formats:

• Predetermined size fields

• Delimited fields

• Length-value pair fields

• LOB Data in Predetermined Size Fields
See how loading LOBs into predetermined size fields is a very fast and conceptually
simple format in which to load LOBs.

• LOB Data in Delimited Fields
Consider using delimited fields when you want to load LOBs of different sizes within the
same column (data file field) with SQL*Loader.

Chapter 11
Loading LOBs with SQL*Loader

11-21

• LOB Data in Length-Value Pair Fields
To load LOB data organized in length-value pair fields, you can use VARCHAR,
VARCHARC, or VARRAW data types.

11.4.3.1 LOB Data in Predetermined Size Fields
See how loading LOBs into predetermined size fields is a very fast and conceptually
simple format in which to load LOBs.

Note:

Because the LOBs you are loading can be of different sizes, you can use
whitespace to pad the LOB data to make the LOBs all of equal length within
a particular data field.

To load LOBs using predetermined size fields, you should use either CHAR or RAW as
the loading data type.

Example 11-17 Loading LOB Data in Predetermined Size Fields

bold
Control File Contents

LOAD DATA
INFILE 'sample.dat' "fix 501"
INTO TABLE person_table
 (name POSITION(01:21) CHAR,
1 "RESUME" POSITION(23:500) CHAR DEFAULTIF "RESUME"=BLANKS)

Data File (sample.dat)

Julia Nayer Julia Nayer
 500 Example Parkway
 jnayer@us.example.com ...

Note:

The callout in bold, to the left of the example, corresponds to the following
note:

1. Because the DEFAULTIF clause is used, if the data field containing the
resume is empty, then the result is an empty LOB rather than a null LOB.
However, if a NULLIF clause had been used instead of DEFAULTIF, then
the empty data field would be null.

You can use SQL*Loader data types other than CHAR to load LOBs. For
example, when loading BLOBs, you would probably want to use the RAW
data type.

Chapter 11
Loading LOBs with SQL*Loader

11-22

11.4.3.2 LOB Data in Delimited Fields
Consider using delimited fields when you want to load LOBs of different sizes within the same
column (data file field) with SQL*Loader.

The delimited field format handles LOBs of different sizes within the same column (data file
field) without a problem. However, this added flexibility can affect performance, because
SQL*Loader must scan through the data, looking for the delimiter string.

As with single-character delimiters, when you specify string delimiters, you should consider
the character set of the data file. When the character set of the data file is different than that
of the control file, you can specify the delimiters in hexadecimal notation (that is,
X'hexadecimal string'). If the delimiters are specified in hexadecimal notation, then the
specification must consist of characters that are valid in the character set of the input data
file. In contrast, if hexadecimal notation is not used, then the delimiter specification is
considered to be in the client's (that is, the control file's) character set. In this case, the
delimiter is converted into the data file's character set before SQL*Loader searches for the
delimiter in the data file.

Note the following:

• Stutter syntax is supported with string delimiters (that is, the closing enclosure delimiter
can be stuttered).

• Leading whitespaces in the initial multicharacter enclosure delimiter are not allowed.

• If a field is terminated by WHITESPACE, then the leading whitespaces are trimmed.

Note:

SQL*Loader defaults to 255 bytes when moving CLOB data, but a value of up to
2 gigabytes can be specified. For a delimited field, if a length is specified, then
that length is used as a maximum. If no maximum is specified, then it defaults
to 255 bytes. For a CHAR field that is delimited and is also greater than 255
bytes, you must specify a maximum length. See CHAR for more information
about the CHAR data type.

Example 11-18 Loading LOB Data in Delimited Fields

Review this example to see how to load LOB data in delimited fields. Note the callouts in
bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat' "str '|'"
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(25),
1 "RESUME" CHAR(507) ENCLOSED BY '<startlob>' AND '<endlob>')

Chapter 11
Loading LOBs with SQL*Loader

11-23

Data File (sample.dat)

Julia Nayer,<startlob> Julia Nayer
 500 Example Parkway
 jnayer@example.com ... <endlob>
2 |Bruce Ernst,

Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. <startlob> and <endlob> are the enclosure strings. With the default
byte-length semantics, the maximum length for a LOB that can be read
using CHAR(507) is 507 bytes. If character-length semantics were used,
then the maximum would be 507 characters. For more information, refer
to character-length semantics.

2. If the record separator '|' had been placed right after <endlob> and
followed with the newline character, then the newline would have been
interpreted as part of the next record. An alternative would be to make
the newline part of the record separator (for example, '|\n' or, in
hexadecimal notation, X'7C0A').

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

11.4.3.3 LOB Data in Length-Value Pair Fields
To load LOB data organized in length-value pair fields, you can use VARCHAR,
VARCHARC, or VARRAW data types.

Loading data with length-value pair fields provides better performance than using
delimited fields. However, this method can reduce flexibility (for example, you must
know the LOB length for each LOB before loading).

Example 11-19 Loading LOB Data in Length-Value Pair Fields

bold
Control File Contents

 LOAD DATA
1 INFILE 'sample.dat' "str '<endrec>\n'"
 INTO TABLE person_table
 FIELDS TERMINATED BY ','
 (name CHAR(25),
2 "RESUME" VARCHARC(3,500))

Chapter 11
Loading LOBs with SQL*Loader

11-24

Data File (sample.dat)

Julia Nayer,479 Julia Nayer
500 Example Parkway
jnayer@us.example.com... <endrec>
3 Bruce Ernst,000<endrec>

Note:

The callouts in bold, to the left of the example, correspond to the following notes:

1. If the backslash escape character is not supported, then the string used as a
record separator in the example could be expressed in hexadecimal notation.

2. "RESUME" is a field that corresponds to a CLOB column. In the control file, it is a
VARCHARC, whose length field is 3 bytes long and whose maximum size is 500
bytes (with byte-length semantics). If character-length semantics were used,
then the length would be 3 characters and the maximum size would be 500
characters. See Character-Length Semantics.

3. The length subfield of the VARCHARC is 0 (the value subfield is empty).
Consequently, the LOB instance is initialized to empty.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

11.4.4 Loading LOB Data from LOBFILEs
To load large LOB data files, consider using a LOBFILE with SQL*Loader.

• Overview of Loading LOB Data from LOBFILEs
Large object type (LOB) data can be lengthy enough so that it makes sense to load it
from a LOBFILE instead of from a primary data file.

• Dynamic Versus Static LOBFILE Specifications
You can specify LOBFILEs either statically (the name of the file is specified in the control
file) or dynamically (a FILLER field is used as the source of the file name).

• Examples of Loading LOB Data from LOBFILEs
This section contains examples of loading data from different types of fields in LOBFILEs.

• Considerations When Loading LOBs from LOBFILEs
Be aware of the restrictions and guidelines that apply when you load large object types
(LOBs) from LOBFILES with SQL*Loader.

11.4.4.1 Overview of Loading LOB Data from LOBFILEs
Large object type (LOB) data can be lengthy enough so that it makes sense to load it from a
LOBFILE instead of from a primary data file.

In LOBFILEs, LOB data instances are still considered to be in fields (predetermined size,
delimited, length-value), but these fields are not organized into records (the concept of a

Chapter 11
Loading LOBs with SQL*Loader

11-25

record does not exist within LOBFILEs). Therefore, the processing overhead of dealing
with records is avoided. This type of organization of data is ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fits in memory. SQL*Loader
reads LOBFILEs in 64 KB chunks.

In LOBFILEs, the data can be in any of the following types of fields:

• A single LOB field, into which the entire contents of a file can be read

• Predetermined size fields (fixed-length fields)

• Delimited fields (that is, fields delimited with TERMINATED BY or ENCLOSED BY)

The clause PRESERVE BLANKS is not applicable to fields read from a

LOBFILE

.

• Length-value pair fields (variable-length fields)

To load data from this type of field, use the VARRAW, VARCHAR, or VARCHARC
SQL*Loader data types.

Refer to lobfile_spec for LOBFILE syntax.

See lobfile_spec for informatio about LOBFILE syntax in SQL*Loader.

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

11.4.4.2 Dynamic Versus Static LOBFILE Specifications
You can specify LOBFILEs either statically (the name of the file is specified in the
control file) or dynamically (a FILLER field is used as the source of the file name).

In either case, if the LOBFILE is not terminated by EOF, then when the end of the
LOBFILE is reached, the file is closed and further attempts to read data from that file
produce results equivalent to reading data from an empty field.

However, if you have a LOBFILE that is terminated by EOF, then the entire file is
always returned on each attempt to read data from that file.

You should not specify the same LOBFILE as the source of two different fields. If you
do, then the two fields typically read the data independently.

11.4.4.3 Examples of Loading LOB Data from LOBFILEs
This section contains examples of loading data from different types of fields in
LOBFILEs.

• One LOB for Each File
When you load large object type (LOB) data, each LOBFILE is the source of a
single LOB.

Chapter 11
Loading LOBs with SQL*Loader

11-26

• Predetermined Size LOBs
With predetermined size large object types (LOBs), the SQL*Loader parser can perform
optimally.

• Delimited LOBs
When you have different sized large object types (LOBs), so you can't use predetermined
size LOBs, consider using delimited LOBs with SQL*Loader.

• Length-Value Pair Specified LOBs
You can obtain better performance by loading large object types (LOBs) with length-value
pair specification, but you lose some flexibility.

11.4.4.3.1 One LOB for Each File
When you load large object type (LOB) data, each LOBFILE is the source of a single LOB.

Use this example to see how you can load LOB data that is organized so that each LOBFILE
is the source of a single LOB.

Example 11-20 Loading LOB Data with One LOB per LOBFILE

In this example, note that the column or field name is followed by the LOBFILE data type
specifications. Note the callouts in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat'
 INTO TABLE person_table
 FIELDS TERMINATED BY ','
 (name CHAR(20),
1 ext_fname FILLER CHAR(40),
2 "RESUME" LOBFILE(ext_fname) TERMINATED BY EOF)

Data File (sample.dat)

Johny Quest,jqresume.txt,
Speed Racer,'/private/sracer/srresume.txt',

Secondary Data File (jqresume.txt)

Johny Quest 500 Oracle Parkway ...
Secondary Data File (srresume.txt)

 Speed Racer
 400 Oracle Parkway
 ...

Chapter 11
Loading LOBs with SQL*Loader

11-27

Note:

The callouts in bold, to the left of the example, correspond to the following
notes:

1. The filler field is mapped to the 40-byte data field, which is read using the
SQL*Loader CHAR data type. This assumes the use of default byte-length
semantics. If character-length semantics were used, then the field would
be mapped to a 40-character data field

2. SQL*Loader gets the LOBFILE name from the ext_fname filler field. It
then loads the data from the LOBFILE (using the CHAR data type) from
the first byte to the EOF character. If no existing LOBFILE is specified,
then the "RESUME" field is initialized to empty.

11.4.4.3.2 Predetermined Size LOBs
With predetermined size large object types (LOBs), the SQL*Loader parser can
perform optimally.

When you load LOB data using predetermined size LOBs, you specify the size of the
LOBs to be loaded into a particular column in the control file. During the load,
SQL*Loader assumes that any LOB data loaded into that particular column is of the
specified size. The predetermined size of the fields allows the data-parser to perform
optimally. However, it is often difficult to guarantee that all LOBs are the same size.

Example 11-21 Loading LOB Data Using Predetermined Size LOBs

In this example, note the callouts in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT '/usr/private/jquest/jqresume.txt')
 CHAR(2000))

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ...
 Speed Racer
 400 Oracle Parkway
 ...

Chapter 11
Loading LOBs with SQL*Loader

11-28

Note:

The callout, in bold, to the left of the example corresponds to the following note:

1. This entry specifies that SQL*Loader load 2000 bytes of data from the
jqresume.txt LOBFILE, using the CHAR data type, starting with the byte following
the byte loaded last during the current loading session. This assumes the use
of the default byte-length semantics. If you use character-length semantics,
then SQL*Loader loads 2000 characters of data, starting from the first character
after the last-loaded character.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

11.4.4.3.3 Delimited LOBs
When you have different sized large object types (LOBs), so you can't use predetermined
size LOBs, consider using delimited LOBs with SQL*Loader.

When you load LOB data instances that are delimited, loading different size LOBs into the
same column is not a problem. However, this added flexibility can affect performance,
because SQL*Loader must scan through the data, looking for the delimiter string.

Example 11-22 Loading LOB Data Using Delimited LOBs

In this example, note the callouts in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT 'jqresume') CHAR(2000)
 TERMINATED BY "<endlob>\n")

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ... <endlob>
 Speed Racer
 400 Oracle Parkway
 ... <endlob>

Chapter 11
Loading LOBs with SQL*Loader

11-29

Note:

The callout, in bold, to the left of the example corresponds to the following
note:

1. Because a maximum length of 2000 is specified for CHAR, SQL*Loader
knows what to expect as the maximum length of the field, which can
result in memory usage optimization. If you choose to specify a
maximum length, then you should be sure not to underestimate its value.
The TERMINATED BY clause specifies the string that terminates the LOBs.
Alternatively, you can use the ENCLOSED BY clause. The ENCLOSED BY
clause allows a bit more flexibility with the relative positioning of the
LOBs in the LOBFILE, because the LOBs in the LOBFILE do not need to
be sequential.

11.4.4.3.4 Length-Value Pair Specified LOBs
You can obtain better performance by loading large object types (LOBs) with length-
value pair specification, but you lose some flexibility.

With length-value pair specified LOBs, each LOB in the LOBFILE is preceded by its
length. To load LOB data organized in this way, you can use VARCHAR, VARCHARC, or
VARRAW data types.

This method of loading can provide better performance over delimited LOBs, but at the
expense of some flexibility (for example, you must know the LOB length for each LOB
before loading).

Example 11-23 Loading LOB Data Using Length-Value Pair Specified LOBs

Control File Contents

In the following example, note the callouts in bold:

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT 'jqresume') VARCHARC(4,2000))

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

2 0501Johny Quest
 500 Oracle Parkway
 ...
3 0000

Chapter 11
Loading LOBs with SQL*Loader

11-30

Note:

The callouts, in bold, to the left of the example correspond to the following notes:

1. The entry VARCHARC(4,2000) tells SQL*Loader that the LOBs in the LOBFILE
are in length-value pair format and that the first 4 bytes should be interpreted as
the length. The value of 2000 tells SQL*Loader that the maximum size of the
field is 2000 bytes. This assumes the use of the default byte-length semantics.
If character-length semantics were used, then the first 4 characters would be
interpreted as the length in characters. The maximum size of the field would be
2000 characters. See Character-Length Semantics.

2. The entry 0501 preceding Johny Quest tells SQL*Loader that the LOB consists
of the next 501 characters.

3. This entry specifies an empty (not null) LOB.

11.4.4.4 Considerations When Loading LOBs from LOBFILEs
Be aware of the restrictions and guidelines that apply when you load large object types
(LOBs) from LOBFILES with SQL*Loader.

When you load data using LOBFILEs, be aware of the following:

• Only LOBs and XML columns can be loaded from LOBFILEs.

• The failure to load a particular LOB does not result in the rejection of the record
containing that LOB. Instead, the result is a record that contains an empty LOB. In the
case of an XML column, if there is a failure loading the LOB. then a null value is inserted.

• It is not necessary to specify the maximum length of a field corresponding to a LOB
column. If a maximum length is specified, then SQL*Loader uses it as a hint to optimize
memory usage. Therefore, it is important that the maximum length specification does not
understate the true maximum length.

• You cannot supply a position specification (pos_spec) when loading data from a
LOBFILE.

• NULLIF or DEFAULTIF field conditions cannot be based on fields read from LOBFILEs.

• If a nonexistent LOBFILE is specified as a data source for a particular field, then that field
is initialized to empty. If the concept of empty does not apply to the particular field type,
then the field is initialized to null.

• Table-level delimiters are not inherited by fields that are read from a LOBFILE.

• When loading an XML column or referencing a LOB column in a SQL expression in
conventional path mode, SQL*Loader must process the LOB data as a temporary LOB.
To ensure the best load performance possible in these cases, refer to the guidelines for
temporary LOB performance.

Related Topics

• Temporary LOB Performance Guidelines

Chapter 11
Loading LOBs with SQL*Loader

11-31

11.4.5 Loading Data Files that Contain LLS Fields
If a field in a data file is a LOB location Specifier (LLS) field, then you can indicate this
by using the LLS clause.

Purpose

An LLS field contains the file name, offset, and length of the LOB data in the data file.
SQL*Loader uses this information to read data for the LOB column.

Syntax

The syntax for the LLS clause is as follows:

lob_column_name

init_spec

LLS

" sql_string "

Usage Notes

The LOB can be loaded in part or in whole and it can start from an arbitrary position
and for an arbitrary length. SQL Loader expects the expects the contents of the LLS
field to be filename.ext.nnn.mmm/ where each element is defined as follows:

• filename.ext is the name of the file that contains the LOB.

• nnn is the offset in bytes of the LOB within the file.

• mmm is the length of the LOB in bytes. A value of -1 means the LOB is NULL. A
value of 0 means the LOB exists, but is empty.

• The forward slash (/) terminates the field

If the SQL*Loader parameter, SDF_PREFIX, is specified, then SQL*Loader looks for the
files in the directory specified by SDF_PREFIX. Otherwise, SQL*Loader looks in the
same directory as the data file.

An error is reported and the row is rejected if any of the following are true:

• The file name contains a relative or absolute path specification.

• The file is not found, the offset is invalid, or the length extends beyond the end of
the file.

• The contents of the field do not match the expected format.

• The data type for the column associated with an LLS field is not a CLOB, BLOB, or
NCLOB.

Restrictions

• If an LLS field is referenced by a clause for any other field (for example a NULLIF
clause) in the control file, then the value used for evaluating the clause is the string
in the data file, not the data in the file pointed to by that string.

• The character set for the data in the file pointed to by the LLS clause is assumed to
be the same character set as the data file.

Chapter 11
Loading LOBs with SQL*Loader

11-32

• The user running SQL*Loader must have read access to the data files.

Example Specification of an LLS Clause

The following is an example of a SQL*Loader control file that contains an LLS clause. Note
that a data type is not needed on the column specification because the column must be of
type LOB.

LOAD DATA
INFILE *
TRUNCATE
INTO TABLE tklglls
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' TRAILING NULLCOLS
(col1 , col2 NULLIF col1 = '1' LLS)
BEGINDATA
1,"tklglls1.dat.1.11/"

11.5 Loading BFILE Columns with SQL*Loader
The BFILE data type stores unstructured binary data in operating system files.

The Oracle BFILE data type is an Oracle LOB data type that contains a reference to binary
data. Its maximum size is four (4) gigabytes.

A BFILE column or attribute stores a file locator that points to the external file containing the
data. The file that you want to load as a BFILE does not have to exist at the time of loading; it
can be created later. To use BFILEs, you must perform some database administration tasks.
There are also restrictions on directory objects and BFILE objects. These restrictions include
requirements for how you configure the operating system file, and the operating system
directory path. With Oracle Database 18c and later releases, symbolic links are not allowed in
directory object path names used with BFILE data types. SQL*Loader assumes that the
necessary directory objects are already created (a logical alias name for a physical directory
on the server's file system).

A control file field corresponding to a BFILE column consists of a column name, followed by
the BFILE clause. The BFILE clause takes as arguments a directory object (the
server_directory alias) name, followed by a BFILE name. You can provide both arguments
as string constants, or these arguments can be dynamically loaded through some other field.

In the following examples of loading BFILEs, the first example has only the file name specified
dynamically, while the second example demonstrates specifying both the BFILE and the
directory object dynamically:

Example 11-24 Loading Data Using BFILEs: Only File Name Specified Dynamically

The following are the control file contents. The directory name, scott_dir1, is in quotation
marks; therefore, the string is used as is, and is not capitalized.

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ','
 (pl_id CHAR(3),
 pl_name CHAR(20),

Chapter 11
Loading BFILE Columns with SQL*Loader

11-33

 fname FILLER CHAR(30),
 pl_pict BFILE(CONSTANT "scott_dir1", fname))

The following are the contents of the data file, sample.dat.

1,Mercury,mercury.jpeg,
2,Venus,venus.jpeg,
3,Earth,earth.jpeg,

Example 11-25 Loading Data Using BFILEs: File Name and Directory Specified
Dynamically

The following are the control file contents. Note that dname is mapped to the data file
field containing the directory name that corresponds to the file being loaded.

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (pl_id NUMBER(4),
 pl_name CHAR(20),
 fname FILLER CHAR(30),
 dname FILLER CHAR(20),
 pl_pict BFILE(dname, fname))

The following are the contents of the data file, sample.dat.

1, Mercury, mercury.jpeg, scott_dir1,
2, Venus, venus.jpeg, scott_dir1,
3, Earth, earth.jpeg, scott_dir2,

Related Topics

• Oracle Database SecureFiles and Large Objects Developer's Guide

• Oracle Database SQL Language Reference

11.6 Loading Collections (Nested Tables and VARRAYs)
With collections, you can load a set of nested tables, or a VARRAY with an ordered set
of elements using SQL*Loader.

• Overview of Loading Collections (Nested Tables and VARRAYS)
Review methods for identifying when the data belonging to a particular collection
instance has ended, and how to specify collections in SQL*Loader control files.

• Restrictions in Nested Tables and VARRAYs
There are restrictions for nested tables and VARRAYs.

• Secondary Data Files (SDFs)
When you need to load large nested tables and VARRAYs, you can use secondary
data files (SDFs). They are similar in concept to primary data files.

Chapter 11
Loading Collections (Nested Tables and VARRAYs)

11-34

11.6.1 Overview of Loading Collections (Nested Tables and VARRAYS)
Review methods for identifying when the data belonging to a particular collection instance
has ended, and how to specify collections in SQL*Loader control files.

As with large object types (LOBs), you can load collections either from a primary data file
(data inline), or from secondary data files (data out of line).

When you load collection data, a mechanism must exist by which SQL*Loader can tell when
the data belonging to a particular collection instance has ended. You can achieve this in two
ways:

• To specify the number of rows or elements that are to be loaded into each nested table or
VARRAY instance, use the DDL COUNT function. The value specified for COUNT must either
be a number or a character string containing a number, and it must be previously
described in the control file before the COUNT clause itself. This positional dependency is
specific to the COUNT clause. COUNT(0) or COUNT(cnt_field), where cnt_field is 0 for
the current row, results in a empty collection (not null), unless overridden by a NULLIF
clause. Refer to the SQL*Loader count_spec syntax.

If the COUNT clause specifies a field in a control file and if that field is set to null for the
current row, then the collection that uses that count will be set to empty for the current
row as well.

• Use the TERMINATED BY and ENCLOSED BY clauses to specify a unique collection delimiter.
Note that if you use an SDF clause, then you can't use this method.

In the control file, collections are described similarly to column objects. There are some
differences:

• Collection descriptions employ the two mechanisms discussed in the preceding list.

• Collection descriptions can include a secondary data file (SDF) specification.

• A NULLIF or DEFAULTIF clause cannot refer to a field in an SDF unless the clause is on a
field in the same SDF.

• Clauses that take field names as arguments cannot use a field name that is in a
collection unless the DDL specification is for a field in the same collection.

• The field list must contain only one nonfiller field and any number of filler fields. If the
VARRAY is a VARRAY of column objects, then the attributes of each column object will be in
a nested field list.

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called railroad
diagrams or DDL diagrams).

• Secondary Data Files (SDFs)
When you need to load large nested tables and VARRAYs, you can use secondary data
files (SDFs). They are similar in concept to primary data files.

• Understanding Column Object Attributes
Column objects in the SQL*Loader control file are described in terms of their attributes.
An object type can have many attributes.

Chapter 11
Loading Collections (Nested Tables and VARRAYs)

11-35

11.6.2 Restrictions in Nested Tables and VARRAYs
There are restrictions for nested tables and VARRAYs.

The following restrictions exist for nested tables and VARRAYs:

• A field_list cannot contain a collection_fld_spec.

• A col_obj_spec nested within a VARRAY cannot contain a collection_fld_spec.

• The column_name specified as part of the field_list must be the same as the
column_name preceding the VARRAY parameter.

Also, be aware that if you are loading into a table containing nested tables, then
SQL*Loader will not automatically split the load into multiple loads and generate a set
ID.

Example 11-26 demonstrates loading a VARRAY and a nested table.

Example 11-26 Loading a VARRAY and a Nested Table

Control File Contents

 LOAD DATA
 INFILE 'sample.dat' "str '\n' "
 INTO TABLE dept
 REPLACE
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (
 dept_no CHAR(3),
 dname CHAR(25) NULLIF dname=BLANKS,
1 emps VARRAY TERMINATED BY ':'
 (
 emps COLUMN OBJECT
 (
 name CHAR(30),
 age INTEGER EXTERNAL(3),
2 emp_id CHAR(7) NULLIF emps.emps.emp_id=BLANKS
)
),
3 proj_cnt FILLER CHAR(3),
4 projects NESTED TABLE SDF (CONSTANT "pr.txt" "fix 57") COUNT (proj_cnt)
 (
 projects COLUMN OBJECT
 (
 project_id POSITION (1:5) INTEGER EXTERNAL(5),
 project_name POSITION (7:30) CHAR
 NULLIF projects.projects.project_name = BLANKS
)
)
)

Data File (sample.dat)

 101,MATH,"Napier",28,2828,"Euclid", 123,9999:0
 210,"Topological Transforms",:2

Secondary Data File (SDF) (pr.txt)

21034 Topological Transforms
77777 Impossible Proof

Chapter 11
Loading Collections (Nested Tables and VARRAYs)

11-36

Note:

The callouts, in bold, to the left of the example correspond to the following notes:

1. The TERMINATED BY clause specifies the VARRAY instance terminator (note that
no COUNT clause is used).

2. Full name field references (using dot notation) resolve the field name conflict
created by the presence of this filler field.

3. proj_cnt is a filler field used as an argument to the COUNT clause.

4. This entry specifies the following:

• An SDF called pr.txt as the source of data. It also specifies a fixed-record
format within the SDF.

• If COUNT is 0, then the collection is initialized to empty. Another way to
initialize a collection to empty is to use a DEFAULTIF clause. The main field
name corresponding to the nested table field description is the same as the
field name of its nested nonfiller-field, specifically, the name of the column
object field description.

11.6.3 Secondary Data Files (SDFs)
When you need to load large nested tables and VARRAYs, you can use secondary data files
(SDFs). They are similar in concept to primary data files.

As with primary data files, SDFs are a collection of records, and each record is made up of
fields. The SDFs are specified on a per control-file-field basis. They are useful when you load
large nested tables and VARRAYs.

Note:

Only a collection_fld_spec can name an SDF as its data source.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by either the
file specification string, or a FILLER field that is mapped to a data field containing one or more
file specification strings.

As for a primary data file, the following can be specified for each SDF:

• The record format (fixed, stream, or variable). Also, if stream record format is used, then
you can specify the record separator.

• The record size.

• The character set for an SDF can be specified using the CHARACTERSET clause (see
Handling Different Character Encoding Schemes).

• A default delimiter (using the delimiter specification) for the fields that inherit a particular
SDF specification (all member fields or attributes of the collection that contain the SDF
specification, with exception of the fields containing their own LOBFILE specification).

Also note the following regarding SDFs:

Chapter 11
Loading Collections (Nested Tables and VARRAYs)

11-37

• If a nonexistent SDF is specified as a data source for a particular field, then that
field is initialized to empty. If the concept of empty does not apply to the particular
field type, then the field is initialized to null.

• Table-level delimiters are not inherited by fields that are read from an SDF.

• To load SDFs larger than 64 KB, you must use the READSIZE parameter to specify
a larger physical record size. You can specify the READSIZE parameter either from
the command line or as part of an OPTIONS clause.

See Also:

– READSIZE

– OPTIONS Clause

– sdf_spec

11.7 Choosing Dynamic or Static SDF Specifications
With SQL*Loader, you can specify SDFs either statically (specifying the actual name
of the file), or dynamically (using a FILLER field as the source of the file name).

With either dynamic or static SDF specification, when the end-of-file (EOF) of an SDF
is reached, the file is closed. Further attempts to reading data from that particular file
produce results equivalent to reading data from an empty field.

In a dynamic secondary file specification, this behavior is slightly different. When the
specification changes to reference a new file, the old file is closed, and the data is read
from the beginning of the newly referenced file.

Fynamic switching of the data source files has a resetting effect. For example, when
SQL*Loader switches from the current file to a previously opened file, the previously
opened file is reopened, and the data is read from the beginning of the file.

You should not specify the same SDF as the source of two different fields. If you do,
then the two fields typically read the data independently.

11.8 Loading a Parent Table Separately from Its Child Table
When you load a table that contains a nested table column, it may be possible to load
the parent table separately from the child table.

You can load the parent and child tables independently if the SIDs (system-generated
or user-defined) are already known at the time of the load (that is, the SIDs are in the
data file with the data).

The following examples illustrate how to load parent and child tables with user-
provided SIDs.

Example 11-27 Loading a Parent Table with User-Provided SIDs

Control File Contents

 LOAD DATA
 INFILE 'sample.dat' "str '|\n' "

Chapter 11
Choosing Dynamic or Static SDF Specifications

11-38

 INTO TABLE dept
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (dept_no CHAR(3),
 dname CHAR(20) NULLIF dname=BLANKS ,
 mysid FILLER CHAR(32),
1 projects SID(mysid))

Data File (sample.dat)

101,Math,21E978407D4441FCE03400400B403BC3,|
210,"Topology",21E978408D4441FCE03400400B403BC3,|

Note:

The callout, in bold, to the left of the example corresponds to the following note:

1. mysid is a filler field that is mapped to a data file field containing the actual set
IDs and is supplied as an argument to the SID clause.

Example 11-28 Loading a Child Table with User-Provided SIDs

Control File Contents

 LOAD DATA
 INFILE 'sample.dat'
 INTO TABLE dept
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
1 SID(sidsrc)
 (project_id INTEGER EXTERNAL(5),
 project_name CHAR(20) NULLIF project_name=BLANKS,
 sidsrc FILLER CHAR(32))

Data File (sample.dat)

21034, "Topological Transforms", 21E978407D4441FCE03400400B403BC3,
77777, "Impossible Proof", 21E978408D4441FCE03400400B403BC3,

Note:

The callout, in bold, to the left of the example corresponds to the following note:

1. The table-level SID clause tells SQL*Loader that it is loading the storage table
for nested tables. sidsrc is the filler field name that is the source of the real set
IDs.

• Memory Issues When Loading VARRAY Columns
There are some memory issues when you load VARRAY columns.

11.8.1 Memory Issues When Loading VARRAY Columns
There are some memory issues when you load VARRAY columns.

Chapter 11
Loading a Parent Table Separately from Its Child Table

11-39

The following list describes some issues to keep in mind when you load VARRAY
columns:

• VARRAYs are created in the client's memory before they are loaded into the
database. Each element of a VARRAY requires 4 bytes of client memory before it
can be loaded into the database. Therefore, when you load a VARRAY with a
thousand elements, you will require at least 4000 bytes of client memory for each
VARRAY instance before you can load the VARRAYs into the database. In many
cases, SQL*Loader requires two to three times that amount of memory to
successfully construct and load a VARRAY.

• The BINDSIZE parameter specifies the amount of memory allocated by
SQL*Loader for loading records. Given the value specified for BINDSIZE,
SQL*Loader takes into consideration the size of each field being loaded, and
determines the number of rows it can load in one transaction. The larger the
number of rows, the fewer transactions, resulting in better performance. But if the
amount of memory on your system is limited, then at the expense of performance,
you can specify a lower value for ROWS than SQL*Loader calculated.

• Loading very large VARRAYs or a large number of smaller VARRAYs could cause you
to run out of memory during the load. If this happens, then specify a smaller value
for BINDSIZE or ROWS and retry the load.

11.9 Loading Modes and Options for SODA Collections
Learn about the loading modes and options for loading schemaless data using SODA
collections

• SQL*Loader and SODA_COLLECTION
To load SODA collections into Oracle Database, you use the
SODA_COLLECTION keyword and parameter to indicate the name of the
collection that you want to load.

• Loading Empty SODA Collections Using INSERT
INSERT is the default mode SQL*Loader uses to load SODA collections. If no
mode is specified in the control file, then SQL*Loader runs in INSERT mode.

• Loading Empty SODA Collections Using APPEND
If you want to load data into an existing SODA collection, and you do not want to
modify the existing content, then you should use the APPEND mode for
SQL*Loader.

• Loading Empty SODA Collections Using REPLACE and TRUNCATE
If you want to load data into an existing SODA collection, and you want to modify
or replace the existing content, then you should use the REPLACE and TRUNCATE
modes for SQL*Loader.

• Permitted SQL*Loader Command-Line Parameters for SODA Collections
Learn which SQL*Loader command-line parameters you can use to load SODA
collections.

• Examples of Loading SODA Collections
Use these examples as models to understand how you can load your own SODA
collections

Chapter 11
Loading Modes and Options for SODA Collections

11-40

11.9.1 SQL*Loader and SODA_COLLECTION
To load SODA collections into Oracle Database, you use the SODA_COLLECTION keyword
and parameter to indicate the name of the collection that you want to load.

The syntax associated with SODA_COLLECTION identifies the content that is being loaded is
schemaless data being added to a SODA collection, rather than a database table, or other
content using a schema. SODA_COLLECTION uses three system defined field names and
keyword/command line parametersto make it easier to load documents into a SODA
collection.

In control file mode, the SODA_COLLECTION is part of the INTO SODA COLLECTION clause that
specifies the name of a SODA collection to load. This clause operates similarly to using an
INTO TABLE clause with schema data. However, instead of specifying the name of a table, it
specifies the name of a SODA collection.

In SQL*Loader Express mode, the SODA_COLLECTION parameter operates similarly to the
TABLE command line parameter. Again, the difference is that the value it specifies is a
collection name instead of a table name.

In both control file and Express modes, not all options that are available to INTO TABLE are
available to INTO SODA_COLLECTION.

Every SODA_COLLECTION has associated with it between one and three of the following field
names $KEY, $MEDIA and $CONTENT.
A SODA_COLLECTION can also use one or more user-defined filler fields.

$CONTENT

$CONTENT is a required field name. The value of the $CONTENT field is a document that you
want to be loaded into the Oracle Database.

When loading text documents, the value of $CONTENT can be either the actual text of the
document, or the name of a secondary data file that contains one or more documents. Both
the text document and the name of a secondary data file can be specified either in the control
file or a data file.

When loading binary documents, the value of the $CONTENT field must be a secondary data
file name. Each secondary data file must contain only one document. The media type of the
documents must be specified either with $MEDIA at the record level, or with SODA_MEDIA. The
name of the secondary data file can be specified either in the control file or a data file.

$KEY

$KEY is an optional field name for a user defined key that identifies a document.

If $KEY is present in the control file, the key value has a one to one relationship with the
document in the $CONTENT field. If $KEY is not present in the control file, it is assumed the
collection is defined to automatically generate keys. If this assumption is incorrect it is
expected the SODA API will return an error which SQL*Loader will return to the user.

$MEDIA

$MEDIA is an optional field name for a string that identifies the media type of a document.

Chapter 11
Loading Modes and Options for SODA Collections

11-41

If $MEDIA is present in the control file, its value is associated with all of the documents
contained in a file in the $CONTENT field. Binary files contain only one document so this
is a one to one relationship. Text files may contain multiple documents so this
relationship may be one to many.

If $MEDIA is not present in the control file, then SQL*Loader uses the value of the
SODA_MEDIA keyword as a default media type. If neither is in the control file the media
type defaults to application/json.

SODA_MEDIA

SODA_MEDIA is a new keyword and parameter that indicates the default media type for
all the documents being loaded. Using this parameter enables you to specify the
media type for the entire SODA collection, instead of specifying the media type for
every row being added.

If SODA_MEDIA is not specified in the control file, and the records do not contain
a $MEDIA field, then the media type defaults to application/json. You should only use
SODA_MEDIA if you want to have a default for the SODA collection media type that is
not JSON.

In control file mode, SODA_MEDIA is part of the LOAD SODA_COLLECTION clause.

In Express mode, SODA_MEDIA is a command line parameter.

11.9.2 Loading Empty SODA Collections Using INSERT
INSERT is the default mode SQL*Loader uses to load SODA collections. If no mode is
specified in the control file, then SQL*Loader runs in INSERT mode.

To use INSERT mode, the SODA collection to be empty at the start of the load.
SQL*Loader uses a call to OCISodaDocCount to obtain the number of documents in a
collection. If the SODA collection is not empty, then an error is returned.

11.9.3 Loading Empty SODA Collections Using APPEND
If you want to load data into an existing SODA collection, and you do not want to
modify the existing content, then you should use the APPEND mode for SQL*Loader.

APPEND removes the requirement that the SODA collection is empty. In APPEND mode,
documents are simply loaded into the SODA collection.

11.9.4 Loading Empty SODA Collections Using REPLACE and
TRUNCATE

If you want to load data into an existing SODA collection, and you want to modify or
replace the existing content, then you should use the REPLACE and TRUNCATE modes for
SQL*Loader.

When SQL*Loader loads a collection, the REPLACE and TRUNCATE modes behave the
same: They first empty the collection, and then insert the new records. The operations
differ on how the collection is emptied.

Chapter 11
Loading Modes and Options for SODA Collections

11-42

REPLACE empties the collection with a call to OCISodaRemove with no options specified. This
mode deletes all documents from the collection. After the collection is empty, the load
proceeds as if it were running in INSERT mode.

TRUNCATE empties the collection with a call to OCISodaCollTruncatewhich removes all
documents from the collection by truncating the collection. After the collection is empty, the
load proceeds as if it were running in INSERT mode.

11.9.5 Permitted SQL*Loader Command-Line Parameters for SODA
Collections

Learn which SQL*Loader command-line parameters you can use to load SODA collections.

Many of the command-line parameters used when loading database tables are also used
when loading SODA collections.

Some command line parameters, such as DIRECT and SKIP_INDEX_MAINTENANCE are not
supported, because they have no meaning when loading SODA collections.

Command line parameters can also appear inside a control file using an OPTIONS clause. The
command-line parameters that can be used with the OPTIONS clause are listed in
"OPTIONS Clause for SODA Collections."

Parameters Supported for Use with SODA Collections

If you attempt to use any command line parameters not listed below to load SODA collections
with SQL*Loader, then you will encounter an error.

BAD
BINDSIZE
CONTROL
DATA
DISCARD
DISCARDMAX
DNFS_ENABLE
DNFS_READBUFFERS
EMPTY_LOBS_ARE_NULL
ERRORS
HELP
LOAD
LOG
PARFILE
READSIZE
RESUMABLE
RESUMABLE_NAME
RESUMABLE_TIMEOUT
ROWS
SDF_PREFIX
SILENT
SKIP
TRIM
USERID

Control File Options Supported for Use with SODA Collections

Command line parameters can also appear inside a control file using an OPTIONS clause.

Chapter 11
Loading Modes and Options for SODA Collections

11-43

If you attempt to use any command line parameters not listed below to load SODA
collections with SQL*Loader, then you will encounter an error.

Related Topics

• OPTIONS Clause for SODA Collections

• Command-Line Parameters for SQL*Loader

11.9.6 Examples of Loading SODA Collections
Use these examples as models to understand how you can load your own SODA
collections

• Creating and Loading a Small SODA Collection
Use this example to see how SQL*Loader can load SODA data into Oracle
Database.

11.9.6.1 Creating and Loading a Small SODA Collection
Use this example to see how SQL*Loader can load SODA data into Oracle Database.

In this example, four lines of character data are loaded into a SODA collection.

Rem Create SODA collection
connect sodauser/test

SET SERVEROUTPUT ON;
DECLARE
 status NUMBER := 0;
BEGIN
 status := DBMS_SODA.drop_collection('C1');
END;
/
DECLARE
 l_collection SODA_COLLECTION_T;
BEGIN
 l_collection := DBMS_SODA.create_collection('C1');
 IF l_collection IS NOT NULL THEN
 DBMS_OUTPUT.put_line('Collection ID = ' ||
l_collection.get_name());
 ELSE
 DBMS_OUTPUT.put_line('Collection does not exist.');
 END IF;
END;
/
SQL*Loader control file:
-- $CONTENT and $MEDIA use default datatype and length, CHAR(255)
LOAD DATA
INFILE*
TRUNCATE
INTO COLLECTION C1
FIELDS TERMINATED BY "|"
($CONTENT, $MEDIA)
BEGINDATA

Chapter 11
Loading Modes and Options for SODA Collections

11-44

{"group":"1", "name":"Hercule Poirot", "job":"Tinker"}|application/json
{"group":"1", "name":"Jane Marple", "job":"Tailor"}|application/json
{"group":"1", "name":"Endeavour Morse", "job":"Soldier"}|application/json
{"group":"1", "name":"Sherlock Holmes", "job":"Spy"}|application/json
Run SQL*Loader:
% sqlldr sodauser/test silent=testing control=tklg_soda_dt1.ctl
SQL*Loader log file:
% cat tklg_soda_dt1.log
Control File: TKLG_SODA_DT1.CTL
Data File: TKLG_SODA_DT1.CTL
 Bad File: TKLG_SODA_DT1.CTL
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: Test mode - (O/S dependent) default bindsize.
Continuation: none specified
Path used: SODA Collection

SODA Collection C1, loaded from every logical record.
Insert option in effect for this SODA collection: TRUNCATE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ----

$CONTENT FIRST * |
CHARACTER
$MEDIA NEXT * |
CHARACTER

SODA Collection C1:
 4 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Total logical records skipped: 0
Total logical records read: 4
Total logical records rejected: 0
Total logical records discarded: 0

Chapter 11
Loading Modes and Options for SODA Collections

11-45

12
Conventional and Direct Path Loads

SQL*Loader provides the option to load data using a conventional path load method, and a
direct path load method.

• Data Loading Methods
SQL*Loader can load data by using either a convention path load, or a direct path load.

• Loading ROWID Columns
In both conventional path and direct path, you can specify a text value for a ROWID
column.

• Conventional Path Loads
Learn what a SQL*Loader conventional path load is, when and how to use it to pass
data, and what restrictions apply to this feature.

• Direct Path Loads
Learn what a SQL*Loader direct path load is, when and how to use it to pass data, and
what restrictions apply to this feature.

• Automatic Parallel Load of Table Data with SQL*Loader

• Loading Modes and Options for Automatic Parallel Loads
Learn about the loading modes and options for automatic parallel loads of sharded and
non sharded tables for both conventional and direct path loads using SQL*Loader.

• Using Direct Path Load
Learn how you can use the SQL*Loader direct path load method for loading data.

• Optimizing Performance of Manual Direct Path Loads
If you choose to configure direct path loads manually, then learn how to enable your
SQL*Loader direct path loads to run faster, and to use less space.

• Optimizing Direct Path Loads on Multiple-CPU Systems
If you are performing direct path loads on a multiple-CPU system, then SQL*Loader uses
multithreading by default. A multiple-CPU system in this case is defined as a single
system that has two or more CPUs.

• Avoiding Index Maintenance
For both the conventional path and the direct path, SQL*Loader maintains all existing
indexes for a table.

• Direct Path Loads, Integrity Constraints, and Triggers
There can be differences between how you set triggers with direct path loads, compared
to conventional path loads

• Optimizing Performance of Direct Path Loads
Learn how to enable your SQL*Loader direct path loads to run faster, and to use less
space.

• General Performance Improvement Hints
Learn how to enable general performance improvements when using SQL*Loader with
parallel data loading.

12-1

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

12.1 Data Loading Methods
SQL*Loader can load data by using either a convention path load, or a direct path
load.

A conventional path load runs SQL INSERT statements to populate tables in Oracle
Database. A direct path load eliminates much of the Oracle Database overhead by
formatting Oracle data blocks, and then writing the data blocks directly to the database
files. A direct load does not compete with other users for database resources, so it can
usually load data at near disk speed.

The tables that you want to be loaded must already exist in the database. SQL*Loader
never creates tables. It loads existing tables that either already contain data, or that
are empty.

The following privileges are required for a load:

• You must have INSERT privileges on the table to be loaded.

• You must have DELETE privileges on the table that you want to be loaded, when
using the REPLACE or TRUNCATE option to empty old data from the table before
loading the new data in its place.

Related Topics

• Conventional Path Load
With conventional path load (the default), SQL*Loader uses the SQL INSERT
statement and a bind array buffer to load data into database tables.

• Direct Path Loads
Learn what a SQL*Loader direct path load is, when and how to use it to pass data,
and what restrictions apply to this feature.

12.2 Loading ROWID Columns
In both conventional path and direct path, you can specify a text value for a ROWID
column.

This is the same text you get when you perform a SELECT ROWID FROM table_name
operation. The character string interpretation of the ROWID is converted into the ROWID
type for a column in a table.

12.3 Conventional Path Loads
Learn what a SQL*Loader conventional path load is, when and how to use it to pass
data, and what restrictions apply to this feature.

• Conventional Path Load
With conventional path load (the default), SQL*Loader uses the SQL INSERT
statement and a bind array buffer to load data into database tables.

Chapter 12
Data Loading Methods

12-2

• When to Use a Conventional Path Load
To determine when you should use conventional path load instead of direct path load,
review the options for your use case scenario.

• Conventional Path Load of a Single Partition
SQL*Loader uses the partition-extended syntax of the INSERT statement.

12.3.1 Conventional Path Load
With conventional path load (the default), SQL*Loader uses the SQL INSERT statement and a
bind array buffer to load data into database tables.

When SQL*Loader performs a conventional path load, it competes equally with all other
processes for buffer resources. Using this method can slow the load significantly. Extra
overhead is added as SQL statements are generated, passed to Oracle Database, and
executed.

Oracle Database looks for partially filled blocks and attempts to fill them on each insert.
Although appropriate during normal use, this method can slow bulk loads dramatically.

Related Topics

• Discontinued Conventional Path Loads
In conventional path loads, if only part of the data is loaded before the data is
discontinued, then only data processed up to the time of the last commit is loaded.

12.3.2 When to Use a Conventional Path Load
To determine when you should use conventional path load instead of direct path load, review
the options for your use case scenario.

If load speed is most important to you, then you should use direct path load because it is
faster than conventional path load. However, certain restrictions on direct path loads can
require you to use a conventional path load. You should use a conventional path load in the
following situations:

• When accessing an indexed table concurrently with the load, or when applying inserts or
updates to a nonindexed table concurrently with the load

Note: To use a direct path load (except for parallel loads), SQL*Loader must have
exclusive write access to the table and exclusive read/write access to any indexes.

• When loading data into a clustered table

Reason: A direct path load does not support loading of clustered tables.

• When loading a relatively small number of rows into a large indexed table

Reason: During a direct path load, the existing index is copied when it is merged with the
new index keys. If the existing index is very large and the number of new keys is very
small, then the index copy time can offset the time saved by a direct path load.

• When loading a relatively small number of rows into a large table with referential and
column-check integrity constraints

Reason: Because these constraints cannot be applied to rows loaded on the direct path,
they are disabled for the duration of the load. Then they are applied to the whole table
when the load completes. The costs could outweigh the savings for a very large table and
a small number of new rows.

Chapter 12
Conventional Path Loads

12-3

• When loading records, and you want to ensure that a record is rejected under any
of the following circumstances:

– If the record causes an Oracle error upon insertion

– If the record is formatted incorrectly, so that SQL*Loader cannot find field
boundaries

– If the record violates a constraint, or a record tries to make a unique index
non-unique

12.3.3 Conventional Path Load of a Single Partition
SQL*Loader uses the partition-extended syntax of the INSERT statement.

By definition, a conventional path load uses SQL INSERT statements. During a
conventional path load of a single partition, SQL*Loader uses the partition-extended
syntax of the INSERT statement, which has the following form:

INSERT INTO TABLE T PARTITION (P) VALUES ...

The SQL layer of the Oracle kernel determines if the row being inserted maps to the
specified partition. If the row does not map to the partition, then the row is rejected,
and the SQL*Loader log file records an appropriate error message.

12.4 Direct Path Loads
Learn what a SQL*Loader direct path load is, when and how to use it to pass data,
and what restrictions apply to this feature.

• About SQL*Loader Direct Path Load
The SQL*Loader direct path load option uses the direct path API to pass the data
to be loaded to the load engine in the server.

• Loading into Synonyms
You can use SQL*Loader to load data into a synonym for a table during a direct
path load, but the synonym must point directly either to a table, or to a view on a
simple table.

• Field Defaults on the Direct Path
Default column specifications defined in the database are not available when you
use direct path loading.

• Integrity Constraints
All integrity constraints are enforced during direct path loads, although not
necessarily at the same time.

• When to Use a Direct Path Load
Learn under what circumstances you should run SQL*Loader with direct path load.

• Restrictions on a Direct Path Load of a Single Partition
When you want to use a direct path load of a single partition, the partition that you
specify for direct path load must meet additional requirements.

• Restrictions on Using Direct Path Loads
To use the direct path load method, your tables and segments must meet certain
requirements. Some features are not available with Direct Path Loads.

Chapter 12
Direct Path Loads

12-4

• Advantages of a Direct Path Load
Direct path loads typically are faster than using conventional path loads.

• Direct Path Load of a Single Partition or Subpartition
During a direct path load of a single partition, SQL*Loader uses the partition-extended
syntax of the LOAD statement.

• Direct Path Load of a Partitioned or Subpartitioned Table
When loading a partitioned or subpartitioned table, SQL*Loader partitions the rows and
maintains indexes (which can also be partitioned).

• Data Conversion During Direct Path Loads
During a SQL*Loader direct path load, data conversion occurs on the client side, rather
than on the server side.

12.4.1 About SQL*Loader Direct Path Load
The SQL*Loader direct path load option uses the direct path API to pass the data to be
loaded to the load engine in the server.

When you use the direct path load feature of SQL*Loader, then instead of filling a bind array
buffer and passing it to Oracle Database with a SQL INSERT statement, a direct path load
uses the direct path API to pass the data to be loaded to the load engine in the server. The
load engine builds a column array structure from the data passed to it.

The direct path load engine uses the column array structure to format Oracle Database data
blocks, and to build index keys. The newly formatted database blocks are written directly to
the database (multiple blocks per I/O request using asynchronous writes if the host platform
supports asynchronous I/O).

Internally, multiple buffers are used for the formatted blocks. While one buffer is being filled,
one or more buffers are being written if asynchronous I/O is available on the host platform.
Overlapping computation with I/O increases load performance.

Related Topics

• Discontinued Direct Path Loads
In a direct path load, the behavior of a discontinued load varies depending on the reason
the load was discontinued.

12.4.2 Loading into Synonyms
You can use SQL*Loader to load data into a synonym for a table during a direct path load,
but the synonym must point directly either to a table, or to a view on a simple table.

Note the following restrictions:

• Direct path mode cannot be used if the view is on a table that has either user-defined
types, or XML data.

• In direct path mode, a view cannot be loaded using a SQL*Loader control file that
contains SQL expressions.

12.4.3 Field Defaults on the Direct Path
Default column specifications defined in the database are not available when you use direct
path loading.

Chapter 12
Direct Path Loads

12-5

Fields for which default values are desired must be specified with the DEFAULTIF
clause. If a DEFAULTIF clause is not specified and the field is NULL, then a null value is
inserted into the database.

12.4.4 Integrity Constraints
All integrity constraints are enforced during direct path loads, although not necessarily
at the same time.

NOT NULL constraints are enforced during the SQL*Loader load. Records that fail these
constraints are rejected.

UNIQUE constraints are enforced both during and after the load. A record that violates a
UNIQUE constraint is not rejected (the record is not available in memory when the
constraint violation is detected).

Integrity constraints that depend on other rows or tables, such as referential
constraints, are disabled before the direct path load and must be reenabled
afterwards. If REENABLE is specified, then SQL*Loader can reenable them automatically
at the end of the load. When the constraints are reenabled, the entire table is checked.
Any rows that fail this check are reported in the specified error log.

Related Topics

• Direct Path Loads, Integrity Constraints, and Triggers
There can be differences between how you set triggers with direct path loads,
compared to conventional path loads

12.4.5 When to Use a Direct Path Load
Learn under what circumstances you should run SQL*Loader with direct path load.

If you are not restricted by views, field defaults, or integrity constraints, then then you
should use a direct path load in the following circumstances:

• You have a large amount of data to load quickly. A direct path load can quickly
load and index large amounts of data. It can also load data into either an empty or
nonempty table.

• You want to load data in parallel for maximum performance.

12.4.6 Restrictions on a Direct Path Load of a Single Partition
When you want to use a direct path load of a single partition, the partition that you
specify for direct path load must meet additional requirements.

In addition to the previously listed restrictions, loading a single partition has the
following restrictions:

• The table that the partition is a member of cannot have any global indexes defined
on it.

• Enabled referential and check constraints on the table that the partition is a
member of are not allowed.

• Enabled triggers are not allowed.

Chapter 12
Direct Path Loads

12-6

12.4.7 Restrictions on Using Direct Path Loads
To use the direct path load method, your tables and segments must meet certain
requirements. Some features are not available with Direct Path Loads.

The following conditions must be satisfied for you to use the direct path load method:

• Tables that you want to load cannot be clustered.

• Tables that you want to load cannot have Oracle Virtual Private Database (VPD) policies
active on INSERT.

• Segments that you want to load cannot have any active transactions pending.

To check for active transactions, use the Oracle Enterprise Manager command MONITOR
TABLE to find the object ID for the tables that you want to load. Then use the command
MONITOR LOCK to see if there are any locks on the tables.

• For Oracle Database releases earlier than Oracle9i, you can perform a SQL*Loader
direct path load only when the client and server are the same release. This restriction
also means that you cannot perform a direct path load of Oracle9i data into an earlier
Oracle Database release. For example, you cannot use direct path load to load data from
Oracle Database 9i Release 1 (9.0.1) into an Oracle 8i (8.1.7) Oracle Database.

Beginning with Oracle Database 9i, you can perform a SQL*Loader direct path load when
the client and server are different releases. However, both releases must be at least
Oracle Database 9i Release 1 (9.0.1), and the client release must be the same as or
lower than the server release. For example, you can perform a direct path load from an
Oracle Database 9i Release 1 (9.0.1) database into Oracle Database 9i Release 2 (9.2).
However, you cannot use direct path load to load data from Oracle Database 10g into an
Oracle Database 9i release.

The following features are not available with direct path load:

• Loading BFILE columns

• Use of CREATE SEQUENCE during the load. This is because in direct path loads there is no
SQL being generated to fetch the next value, because direct path does not generate
INSERT statements.

12.4.8 Advantages of a Direct Path Load
Direct path loads typically are faster than using conventional path loads.

A direct path load is faster than the conventional path for the following reasons:

• Partial blocks are not used, so no reads are needed to find them, and fewer writes are
performed.

• SQL*Loader does not need to run any SQL INSERT statements; therefore, the processing
load on Oracle Database is reduced.

• A direct path load calls on Oracle Database to lock tables and indexes at the start of the
load, and release those locks when the load is finished. A conventional path load issues
an Oracle Database call once for each array of rows to process a SQL INSERT statement.

• A direct path load uses multiblock asynchronous I/O for writes to the database files.

Chapter 12
Direct Path Loads

12-7

• During a direct path load, processes perform their own write I/O, instead of using
the Oracle Database buffer cache. This process method minimizes contention with
other Oracle Database users.

• The sorted indexes option available during direct path loads enables you to presort
data using high-performance sort routines that are native to your system or
installation.

• When a table that you specify to load is empty, the presorting option eliminates the
sort and merge phases of index-building. The index is filled in as data arrives.

• Protection against instance failure does not require redo log file entries during
direct path loads. Therefore, no time is required to log the load when:

– Oracle Database has the SQL NOARCHIVELOG parameter enabled

– The SQL*Loader UNRECOVERABLE clause is enabled

– The object being loaded has the SQL NOLOGGING parameter set

Related Topics

• Instance Recovery and Direct Path Loads
Because SQL*Loader writes directly to the database files, all rows inserted up to
the last data save will automatically be present in the database files if the instance
is restarted.

12.4.9 Direct Path Load of a Single Partition or Subpartition
During a direct path load of a single partition, SQL*Loader uses the partition-extended
syntax of the LOAD statement.

When loading a single partition of a partitioned or subpartitioned table, SQL*Loader
partitions the rows, and rejects any rows that do not map to the partition or subpartition
specified in the SQL*Loader control file. Local index partitions that correspond to the
data partition or subpartition being loaded are maintained by SQL*Loader. Global
indexes are not maintained on single partition or subpartition direct path loads. During
a direct path load of a single partition, SQL*Loader uses the partition-extended syntax
of the LOAD statement, which has either of the following forms:

LOAD INTO TABLE T PARTITION (P) VALUES ...

LOAD INTO TABLE T SUBPARTITION (P) VALUES ...

While you are loading a partition of a partitioned or subpartitioned table, you are also
allowed to perform DML operations on, and direct path loads of, other partitions in the
table.

Although a direct path load minimizes database processing, to initialize and then finish
the load, several calls to Oracle Database are required at the beginning and end of the
load. Also, certain DML locks are required during load initialization. When the load
completes, these DML locks are released. The following operations occur during the
load:

• Index keys are built and put into a sort

• Space management routines are used to obtain new extents, when needed, and to
adjust the upper boundary (high-water mark) for a data savepoint.

For more information about protecting data, see "Using Data Saves to Protect Against
Data Loss.

Chapter 12
Direct Path Loads

12-8

Related Topics

• Using Data Saves to Protect Against Data Loss
When you have a savepoint, if you encounter an instance failure during a SQL*Loader
load, then use the SKIP parameter to continue the load.

12.4.10 Direct Path Load of a Partitioned or Subpartitioned Table
When loading a partitioned or subpartitioned table, SQL*Loader partitions the rows and
maintains indexes (which can also be partitioned).

Note that a direct path load of a partitioned or subpartitioned table can be quite resource-
intensive for tables with many partitions or subpartitions.

Note:

If you are performing a direct path load into multiple partitions and a space error
occurs, then the load is rolled back to the last commit point. If there was no commit
point, then the entire load is rolled back. This ensures that no data encountered
after the space error is written out to a different partition.

You can use the ROWS parameter to specify the frequency of the commit points. If
the ROWS parameter is not specified, then the entire load is rolled back.

12.4.11 Data Conversion During Direct Path Loads
During a SQL*Loader direct path load, data conversion occurs on the client side, rather than
on the server side.

As an implication of client side data conversion, this means that NLS parameters in the
database initialization parameter file (server-side language handle) will not be used. To
override this behavior, you can specify a format mask in the SQL*Loader control file that is
equivalent to the setting of the NLS parameter in the initialization parameter file, or you can
set the appropriate environment variable. For example, to specify a date format for a field,
you can either set the date format in the SQL*Loader control file, as shown in "Setting the
Date Format in the SQL*Loader Control File"), or you can set an NLS_DATE_FORMAT
environment variable, as shown in "Setting an NLS_DATE_FORMAT Environment Variable." .

Example 12-1 Setting the Date Format in the SQL*Loader Control File

LOAD DATA
INFILE 'data.dat'
INSERT INTO TABLE emp
FIELDS TERMINATED BY "|"
(
EMPNO NUMBER(4) NOT NULL,
ENAME CHAR(10),
JOB CHAR(9),
MGR NUMBER(4),
HIREDATE DATE 'YYYYMMDD',
SAL NUMBER(7,2),
COMM NUMBER(7,2),
DEPTNO NUMBER(2)
)

Chapter 12
Direct Path Loads

12-9

Example 12-2 Setting an NLS_DATE_FORMAT Environment Variable

On Unix Bourne or Korn shell:

% NLS_DATE_FORMAT='YYYYMMDD'
% export NLS_DATE_FORMAT

On Unix C shell (csh):

%setenv NLS_DATE_FORMAT='YYYYMMDD'

12.5 Automatic Parallel Load of Table Data with SQL*Loader
Starting with Oracle Database 23c, you no longer need to divide data files into multiple
smaller files for SQL*Loader direct path or conventional parallel loading. The
SQL*Loader client can perform parallel loading automatically.
Loading data from large tables in parallel can save you time and effort. Depending on
the distance from your source and target databases, and the system resources you
are able to leverage with parallel threads, the load times for tables can be significantly
improved with parallel loads.

In releases before Oracle Database 23c, enabling parallel loads with SQL*Loader
(sqlldr) of large tables to reduce load times required you to break up a large table into
separate parts, and then run SQL*Loader multiple times for each section of the table
you wanted to load, using the PARALLEL=TRUE command option each time.

Automatic parallel loads simplify this process. Instead of preparing your tables
manually for parallel loads and setting the PARALLEL parameter, you can perform the
same task automatically by running SQL*Loader with just one command, setting the
degree of parallelism using the DEGREE_OF_PARALLELISM parameter. The
DEGREE_OF_PARALLELISM parameter sets the number of sqlldr client loader threads.

Also, you can use the SQL*Loader Instant Client for Oracle Database 23c to perform
the same automatic parallel loads to earlier releases of Oracle Database, which makes
this same Oracle Database 23c capability available through the SQL*Loader client to
your earlier release databases. Automatic parallel loading is supported for a single
table only. Multiple INTO clauses are not supported.

To enable parallel loading of tables with SQL*Loader, set the SQL*Loader parameter
DEGREE_OF_PARALLELISM to a numeric value to set the degree of parallel threads. For
data file formats that can support being divided into multiple granules of data, such as
csv files, the files will be divided for parallel reading and loading. If a large file cannot
be split into multiple granules, but instead must be read by one reader, then that
reader assigns records to multiple loaders for parallel loading. For example, it may not
be possible to split a terabyte-size file that has a complex character set into multiple
granules, so that file is read by one reader. However, that reader assigns records to
multiple loaders, so the file is loaded in parallel. If files with complex character sets are
manually divided into input multiple files, then they can be processed in parallel. Each
file will be treated as one granule.

If you load a sharded table with SQL*Loader, then multiple threads are used to read
input data files and load each record into the table on the appropriate shard.

When loading sharded tables in parallel, the SQL*Loader client automatically
determines the correct shard to load for each input record, and assigns each record to
the appropriate target loader thread. Both conventional and direct path can be used to
load shards. If there are no indexes present on the table, then each sharded table can

Chapter 12
Automatic Parallel Load of Table Data with SQL*Loader

12-10

also be loaded using direct path with the existing PARALLEL option. For sharded tables,
Oracle recommends that you let SQL*Loader set DEGREE_OF_PARALLELISM. Direct path can be
used if no indexes are present, and DEGREE_OF_PARALLELISM is greater then the number of
shards.

Example 12-3 Automatic Parallel Loading of a Single Table

Suppose you have a 30 GB data file, called t.dat that you want to load more quickly by
using a direct path load with parallelism enabled.

In the following command, user scott starts SQL*Loader using the DIRECT=TRUE parameter
option, and sets the number of parallel threads to 5 using DEGREE_OF_PARALLELISM=5:

 sqlldr scott/tiger t.ctl direct=true degree_of_parallelism=5

The command starts five reader/loader threads, and the table input file is split into five
granules for parallel reading and loading.

Example 12-4 Automatic Parallel Loading of a Sharded Table

Suppose you have a sharded table and you want to load a data file named t.dat.

The following is an example where the number of loader threads will default to the number of
shards:

sqlldr scott/tiger t.ctl gsm_name=shdsrv.shpool.oradbcloud gsm_host=example
gsm_port=4338

If the value of DEGREE_OF_PARALLELISM is greater than the number of shards, then each shard
is loaded using multiple loader threads. If PARALLEL=FALSE, then the number of loader threads
used will be trimmed to the number of shards.

Assuming the number of shards is 100, the following command results in SQL*Loader using
4 passes over data files to load all of the shards (this assumes the three required gsm
parameters have been specified in the control file options clause):

 sqlldr scott/tiger t.ctl degree_of_parallelism=25

Assuming the number of shards is 10, the following command results in SQL*Loader using 2
threads for each shard’s table, where the GSM host name (gsm_host) is example, the GSM
name is shdsrv.shpool.oradbcloud, and the GSM port number (gsm_port) is example-port-
number

sqlldr scott/tiger t.ctl degree_of_parallelism=20
gsm_name=shdsrv.shpool.oradbcloud
gsm_host=example gsm_port=example-port-number

To increase the read buffer when loading shards, you can use the SQL*Loader READSIZE
parameter to set a higher buffer value.

Chapter 12
Automatic Parallel Load of Table Data with SQL*Loader

12-11

Note:

When you run SQL*Loader with PARALLEL set to TRUE for sharded tables,
index maintenance is not supported. The default is to support local index
maintenance, in which case only 1 thread will be used per shard.

12.6 Loading Modes and Options for Automatic Parallel
Loads

Learn about the loading modes and options for automatic parallel loads of sharded
and non sharded tables for both conventional and direct path loads using SQL*Loader.

• Loading Modes for Automatic Parallel Loads
Starting with Oracle Database 23c, SQL*Loader uses three modes for parallel
loads of data files.

• Non-Sharded Automatic Parallel Loading Modes for SQL*Loader
Learn about how SQL*Loader processes non-sharded tables to obtain the fastest
loads automatically for your data files.

• Sharded Automatic Parallel Loading Modes for SQL*Loader
Automatic SQL*Loader parallel loads of sharded tables are performed
automatically using the modes described here.

12.6.1 Loading Modes for Automatic Parallel Loads
Starting with Oracle Database 23c, SQL*Loader uses three modes for parallel loads of
data files.

In an automatic parallel direct path load, SQL*Loader automatically divides data files
into granules, similar to the way that network traffic is divided into packets.
SQL*Loader automatically divides input files into smaller granules for parallel loading,
when possible, using parallel readers and loaders. SQL*Loader tracks each granule of
data, and optimizes the transmission of that data from the source to the target system,
based on the number of readers and the number of loaders, and the loading options
available for the table data. The SQL*Loader log file records which modes are used,
and how the readers performed the parallel loads. To use this feature, you only need
to set the SQL Loader parameters in accordance with the characteristics of the tables
that you want to load.

You can use the SQL*Loader parameter CREDENTIAL to provide credentials to
enable read access to object stores. Parallel loading from the object store is
supported.

The DEGREE_OF_PARALLELISM parameter sets the number of sqlldr client loader
threads.

SQL*Loader by default assumes OPTIMIZE_PARALLEL=TRUE. SQL*Loader defaults to
the fastest possible mode for automatic parallel loads. The available modes also
depend on whether the data are loaded to non-sharded or sharded tables.

The three modes of operation SQL*Loader uses are as follows:

Chapter 12
Loading Modes and Options for Automatic Parallel Loads

12-12

• Mode One: Each thread of the SQL*Loader client is a reader and a loader. This mode is
not available for sharded tables.

• Mode Two: One or more SQL*Loader readers assign records to loaders. When there are
multiple readers, each data file is split into granules, and each granule is handled by a
reader thread, which assigns the records to the appropriate loader thread. If it is not
possible to break the file into multiple granules to read the file in parallel, then files are
treated as one granule only. Records from each granule are loaded by multiple loader
threads.

• Mode Three: Data files are not divided into granules. Instead, all threads read all the
data, but only load selected records. When it is not possible to use one of the faster
methods, SQL*Loader defaults to Mode Three.

12.6.2 Non-Sharded Automatic Parallel Loading Modes for SQL*Loader
Learn about how SQL*Loader processes non-sharded tables to obtain the fastest loads
automatically for your data files.

Note:

Performance of automatic parallel loading should be similar to the previous method
of manually splitting up files and issuing multiple concurrent direct path loads with
parallel=true.

Mode One: Readers/Loaders (with granules)

With non-Sharded tables, when OPTIMIZE_PARALLEL is set to TRUE, each thread of the
SQL*Loader client is a reader and a loader. SQL*Loader divides up data files into granules of
data , and the threads parse and load these granules. This is the fastest method for parallel
loading of non-sharded tables.

DEGREE_OF_PARALLELISM determines the number of reader/loader threads. The log file
records these threads as reader/loader threads. READER_COUNT is ignored in this mode.

Mode Two: Readers/Loaders (with granules)

For non-sharded tables, when you set OPTIMIZE_PARALLEL to TRUE, but Mode One cannot be
used, the default is Mode Two. In Mode Two, there are m readers and n loaders. The value of
m is determined by READER_COUNT, and the value of n is determined by the value for
DEGREE_OF_PARALLELISM. Degree of parallelism is required to be specified only for non-
sharded tables.

DEGREE_OF_PARALLELISM determines the number of loader threads. READER_COUNT determines
the number of readers. This is the fastest mode when loading sharded tables in parallel.

In Mode Two, reader and loader threads appear separately in the log file, either as reader or
as loader threads. When loading non-sharded tables, this is the non-optimized mode.

If the statistics in the log file show excess time for loaders waiting for readers, then increasing
the reader count may speed up the load. If excess time for readers waiting for loaders,
increasing the number of loaders may speed up the load. Increasing READSIZE may also
improve mode 2 performance.

Chapter 12
Loading Modes and Options for Automatic Parallel Loads

12-13

Mode Three Reader/Loaders reading all files (no granules)

If Mode One or Mode Two cannot be used, then SQL*Loader defaults to Mode Three.
In this mode, reader/loader threads must read through and analyze all data files, and
load records as required for the parallel load. This the least optimized mode of parallel
processing. This mode is required when loading delimited LOBs, because SQL*Loader
must track the position within the LOBFILES as it is processing records.

Example 12-5 Mode Two Nonsharded Parallel Load Log File

SQL*Loader: Release 23.0.0.0.0 - Development on Thu Sep 22 11:54:31
2022 Version 23.1.0.0.0

Copyright (c) 1982, 2022, Oracle and/or its affiliates. All rights
reserved.

Control File: fact_page.ctl
Data File: /scratch/fact_page.dat
 Bad File: fact_page.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Continuation: none specified
Path used: Direct - with parallel option.

Load is UNRECOVERABLE; invalidation redo is produced.

Table L_FACT_PAGE, loaded from every logical record.
Insert option in effect for this table: APPEND TRAILING NULLCOLS
option in effect

Column Name Position Len Term Encl Datatype
-------------------- ---------- ----- ---- ----

PAGE_ID FIRST 50 | CHARACTER
SESSION_ID NEXT 50 | CHARACTER
IP_ID NEXT 50 | CHARACTER
DATE_ID NEXT * | DATE YYYY-MM-DD
SECOND_ID NEXT 50 | CHARACTER
LOCATION_ID NEXT 50 | CHARACTER
SERVER_ID NEXT 50 | CHARACTER
REF_PAGE_ID NEXT 50 | CHARACTER
RET_CODE_ID NEXT 50 | CHARACTER
PAGE_KEY_ID NEXT 50 | CHARACTER
PAGE_NAME NEXT 50 | CHARACTER
REFER_PAGE_NAME NEXT 50 | CHARACTER
REFER_URL NEXT 250 | CHARACTER
COUNT_1 NEXT 50 | CHARACTER
NUM_BYTES NEXT 50 | CHARACTER
ENTRY_EXIT_FLAG NEXT 50 | CHARACTER

Chapter 12
Loading Modes and Options for Automatic Parallel Loads

12-14

MEMBER_FLAG NEXT 50 | CHARACTER
QUERY_ID NEXT 100 | CHARACTER

 3 Total granules for all files to be loaded.

Table L_FACT_PAGE:
Reader/Loader: Thread 1
Granules/Files Assigned: 1
Rows Assigned: 3353354
Elapsed time reading input data: 00:00:00.14
Elapsed time loading stream data: 00:00:03.32
Average stream buffer size: 497121
Total number of stream buffers loaded: 675

 3353354 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

 Date cache:
 Max Size: 1000
 Entries : 1
 Hits : 3353353
 Misses : 0

CPU time was: 00:00:10.03

Elapsed time loading stream data for this thread: 00:00:03.32

12.6.3 Sharded Automatic Parallel Loading Modes for SQL*Loader
Automatic SQL*Loader parallel loads of sharded tables are performed automatically using the
modes described here.

Note:

Mode One is not available for sharded tables.

When loading shards, you must specify all three of the Oracle Global Service Manager shard
director (gsm) parameters (gsm_name, gsm_host and gsm_port). The DEGREE_OF_PARALLELISM
parameter is set automatically to the number of shards that are to be loaded. The default is to
load all shards. If SQL*Loader encounters a load problem with any individual shard,
SQL*Loader will continue to load the other shards. You can then review the log file to see
which shards loaded successfully, and which shards failed, and resolve the issue. You can
then use the LOAD_SHARDS parameter to load any shards that failed to load. SQL*Loader will
ignore the shards that you do not list with LOAD_SHARDS. Setting COMPRESS_STREAM=TRUE can
help speed up shard loading. For sharded tables, Oracle recommends that you let
SQL*Loader set DEGREE_OF_PARALLELISM. Direct path can be used if no indexes are present,
and DEGREE_OF_PARALLELISM is greater then the number of shards.

Chapter 12
Loading Modes and Options for Automatic Parallel Loads

12-15

Mode Two: Reader/Loaders (with granules) for sharded tables

When OPTIMIZE_PARALLEL is set to TRUE, Mode Two is used. This is the fastest mode
when loading sharded tables in parallel.

DEGREE_OF_PARALLELISM determines the number of loader threads. This option is set
automatically to the number of shards that are to be loaded. The default is all shards.
READER_COUNT determines the number of readers. The reader and loader threads
appear separately in the log file, as reader or loader threads. When loading shards,
you must specify gsm_name, gsm_host and gsm_port. If you set
DEGREE_OF_PARALLELISM to a value lower than the number of shards, then SQL*Loader
will perform multiple passes over the input data, until all shards are loaded. You can
choose this option if the SQL*Loader client system cannot efficiently process a large
number of threads.

If the statistics in the log file show excess time for loaders waiting for readers, then
increasing the value of READER_COUNT may increase the load performance. If excess
time for readers waiting for loaders, then increasing the number of loaders may
increase the load performance. Increasing READSIZE may also improve Mode Two
performance.

Mode Three Reader/Loaders reading all files (no granules) for sharded tables

If Mode Two cannot be used, then SQL*Loader defaults to Mode Three. In Mode
Three, all reader/loader threads must read through and process all data files, and
load records as required for the parallel load. This is the least optimized mode of
parallel processing. This mode is required when loading delimited LOBs.

Example 12-6 Mode Two Sharded Parallel Load Log File

SQL*Loader: Release 23.0.0.0.0 - Development on Thu Jan 12 16:53:28
2023 Version 23.1.0.0.0

Copyright (c) 1982, 2023, Oracle and/or its affiliates. All rights
reserved.

Control File: fact_page_shard.ctl
Data File: /scratch/rphillip/fact_page.dat
 Bad File: fact_page.bad
 Discard File: none specified

 (Allow all discards)

Number to load: 1234
Number to skip: 0
Errors allowed: 50
Continuation: none specified
Path used: Direct

Table L_FACT_PAGE, loaded from every logical record.
Insert option in effect for this table: TRUNCATE TRAILING NULLCOLS
option in effect

Column Name Position Len Term Encl Datatype
-------------------- ---------- ----- ---- ----

Chapter 12
Loading Modes and Options for Automatic Parallel Loads

12-16

PAGE_ID FIRST 50 | CHARACTER
SESSION_ID NEXT 50 | CHARACTER
IP_ID NEXT 50 | CHARACTER
DATE_ID NEXT * | DATE YYYY-MM-DD
SECOND_ID NEXT 50 | CHARACTER
LOCATION_ID NEXT 50 | CHARACTER
SERVER_ID NEXT 50 | CHARACTER
REF_PAGE_ID NEXT 50 | CHARACTER
RET_CODE_ID NEXT 50 | CHARACTER
PAGE_KEY_ID NEXT 50 | CHARACTER
PAGE_NAME NEXT 50 | CHARACTER
REFER_PAGE_NAME NEXT 50 | CHARACTER
REFER_URL NEXT 250 | CHARACTER
COUNT_1 NEXT 50 | CHARACTER
NUM_BYTES NEXT 50 | CHARACTER
ENTRY_EXIT_FLAG NEXT 50 | CHARACTER
MEMBER_FLAG NEXT 50 | CHARACTER
QUERY_ID NEXT 100 | CHARACTER

 4 Total granules for all files to be loaded.

Loading the following shards (all):
shpool%1
shpool%11
shpool%21
shpool%31
shpool%41

Table L_FACT_PAGE:
Reader: Thread 2
Granules/Files Assigned: 1
Rows Assigned: 231
Elapsed time reading input data: 00:00:00.04

 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

CPU time was: 00:00:00.03

Table L_FACT_PAGE:
Reader: Thread 1
Granules/Files Assigned: 1
Rows Assigned: 825
Elapsed time reading input data: 00:00:00.04

 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

CPU time was: 00:00:00.05

Chapter 12
Loading Modes and Options for Automatic Parallel Loads

12-17

Table L_FACT_PAGE:
Reader: Thread 4
Granules/Files Assigned: 1
Rows Assigned: 0
Elapsed time reading input data: 00:00:00.01

 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

CPU time was: 00:00:00.03

Table L_FACT_PAGE:
Reader: Thread 3
Granules/Files Assigned: 1
Rows Assigned: 178
Elapsed time reading input data: 00:00:00.02

 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

CPU time was: 00:00:00.03

Table L_FACT_PAGE:
Load Thread For Shard: shpool%41
 206 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

 Date cache:
 Max Size: 1000
 Entries : 1
 Hits : 205
 Misses : 0

 Partition L_FACT_PAGE_P11: 104 Rows loaded.
 Partition L_FACT_PAGE_P12: 102 Rows loaded.

CPU time was: 00:00:00.02

Elapsed time loading stream data for this thread: 00:00:00.01
Average stream buffer size: 19969
Total number of stream buffers loaded: 1

Table L_FACT_PAGE:
Load Thread For Shard: shpool%21
 198 Rows successfully loaded.
 0 Rows not loaded due to data errors.

Chapter 12
Loading Modes and Options for Automatic Parallel Loads

12-18

 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

 Date cache:
 Max Size: 1000
 Entries : 1
 Hits : 197
 Misses : 0

 Partition L_FACT_PAGE_P7: 91 Rows loaded.
 Partition L_FACT_PAGE_P8: 107 Rows loaded.

CPU time was: 00:00:00.02

Elapsed time loading stream data for this thread: 00:00:00.01
Average stream buffer size: 19077
Total number of stream buffers loaded: 1

Table L_FACT_PAGE:
Load Thread For Shard: shpool%1
 284 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

 Date cache:
 Max Size: 1000
 Entries : 1
 Hits : 283
 Misses : 0

 Partition L_FACT_PAGE_P1: 87 Rows loaded.
 Partition L_FACT_PAGE_P2: 104 Rows loaded.
 Partition L_FACT_PAGE_P3: 93 Rows loaded.

CPU time was: 00:00:00.02

Elapsed time loading stream data for this thread: 00:00:00.01
Average stream buffer size: 27499
Total number of stream buffers loaded: 1

Table L_FACT_PAGE:
Load Thread For Shard: shpool%31
 203 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

 Date cache:
 Max Size: 1000
 Entries : 1
 Hits : 202
 Misses : 0

Chapter 12
Loading Modes and Options for Automatic Parallel Loads

12-19

 Partition L_FACT_PAGE_P10: 109 Rows loaded.
 Partition L_FACT_PAGE_P9: 94 Rows loaded.

CPU time was: 00:00:00.02

Elapsed time loading stream data for this thread: 00:00:00.00
Average stream buffer size: 19714
Total number of stream buffers loaded: 1

Table L_FACT_PAGE:
Load Thread For Shard: shpool%11
 343 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

 Date cache:
 Max Size: 1000
 Entries : 1
 Hits : 342
 Misses : 0

 Partition L_FACT_PAGE_P4: 102 Rows loaded.
 Partition L_FACT_PAGE_P5: 127 Rows loaded.
 Partition L_FACT_PAGE_P6: 114 Rows loaded.

CPU time was: 00:00:00.02

Elapsed time loading stream data for this thread: 00:00:00.00
Average stream buffer size: 33089
Total number of stream buffers loaded: 1

Table L_FACT_PAGE:
Main Thread
Total Granules/Files Assigned: 4
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

1234 Total rows for all shards successfully loaded.

Bind array size not used in direct path.
Column array rows : 5000
Stream buffer bytes: 512000
Read buffer bytes:41943040

Total logical records skipped: 0
Total logical records read: 1234
Total logical records rejected: 0
Total logical records discarded: 0
Direct path multithreading optimization is disabled

Chapter 12
Loading Modes and Options for Automatic Parallel Loads

12-20

Run began on Thu Jan 12 16:53:28 2023
Run ended on Thu Jan 12 16:53:38 2023

Elapsed time was: 00:00:09.76
CPU time was: 00:00:00.30

Elapsed time for loader threads waiting for records: 00:00:00.30
Elapsed time for reader threads waiting for loaders: 00:00:00.30
Elapsed time reading input data: 00:00:00.11
Elapsed time loading stream data: 00:00:00.03
Average stream buffer size: 23869
Total number of stream buffers loaded: 5

The following shards were successfully loaded:
Load successful for shard: shpool%1
Load successful for shard: shpool%11
Load successful for shard: shpool%21
Load successful for shard: shpool%31
Load successful for shard: shpool%41

Related Topics

• Using Oracle Data Pump to Migrate to a Sharded Database

12.7 Using Direct Path Load
Learn how you can use the SQL*Loader direct path load method for loading data.

• Setting Up for Direct Path Loads
To create the necessary views required to prepare the database for direct path loads, you
must run the setup script catldr.sql.

• Specifying a Direct Path Load
To start SQL*Loader in direct path load mode, set the DIRECT parameter to TRUE on the
command line, or in the parameter file.

• Building Indexes
You can improve performance of direct path loads by using temporary storage. After each
block is formatted, the new index keys are put in a sort (temporary) segment.

• Indexes Left in an Unusable State
SQL*Loader leaves indexes in an Index Unusable state when the data segment being
loaded becomes more up-to-date than the index segments that index it.

• Preventing Data Loss with Data Saves
You can use data saves to protect against loss of data due to instance failure.

• Data Recovery During Direct Path Loads
SQL*Loader provides full support for data recovery when using the direct path load
method.

Chapter 12
Using Direct Path Load

12-21

• Loading Long Data Fields
You can load data that is longer than SQL*Loader's maximum buffer size can load
on the direct path by using large object types (LOBs).

• Loading Data As PIECED
The PIECED parameter can be used to load data in sections, if the data is in the
last column of the logical record.

• Auditing SQL*Loader Operations That Use Direct Path Mode
You can perform auditing on SQL*Loader direct path loads to monitor and record
selected user database actions.

12.7.1 Setting Up for Direct Path Loads
To create the necessary views required to prepare the database for direct path loads,
you must run the setup script catldr.sql.

You only need to run catldr.sql once for each database to which you plan to run
direct loads. You can run this script during database installation if you know then that
you will be doing direct loads.

12.7.2 Specifying a Direct Path Load
To start SQL*Loader in direct path load mode, set the DIRECT parameter to TRUE on the
command line, or in the parameter file.

For example, to configure the parameter file to start SQL*Loader in direct path load
mode, include the following line in the parameter file:

DIRECT=TRUE

Related Topics

• Minimizing Time and Space Required for Direct Path Loads
You can control the time and temporary storage used during direct path loads.

• Optimizing Direct Path Loads on Multiple-CPU Systems
If you are performing direct path loads on a multiple-CPU system, then
SQL*Loader uses multithreading by default. A multiple-CPU system in this case is
defined as a single system that has two or more CPUs.

12.7.3 Building Indexes
You can improve performance of direct path loads by using temporary storage. After
each block is formatted, the new index keys are put in a sort (temporary) segment.

The old index and the new keys are merged at load finish time to create the new
index. The old index, sort (temporary) segment, and new index segment all require
storage until the merge is complete. Then the old index and temporary segment are
removed.

During a conventional path load, every time a row is inserted the index is updated.
This method does not require temporary storage space, but it does add processing
time.

• Improving Performance
To improve performance of SQL*Loader direct loads on systems with limited
memory, use the SINGLEROW parameter.

Chapter 12
Using Direct Path Load

12-22

• Calculating Temporary Segment Storage Requirements
To estimate the amount of temporary segment space needed during direct path loads for
storing new index keys, use this formula.

12.7.3.1 Improving Performance
To improve performance of SQL*Loader direct loads on systems with limited memory, use the
SINGLEROW parameter.

Note:

If, during a direct load, you have specified that you want the data to be presorted,
and the existing index is empty, then a temporary segment is not required, and no
merge occurs—the keys are put directly into the index.

See Optimizing Performance of Direct Path Loads

When multiple indexes are built, the temporary segments corresponding to each index exist
simultaneously, in addition to the old indexes. The new keys are then merged with the old
indexes, one index at a time. As each new index is created, the old index and the
corresponding temporary segment are removed.

Related Topics

• Understanding the SINGLEROW Parameter
When using SQL*Loader for direct path loads for small loads, or on systems with limited
memory, consider using the SINGLEROW control file parameter.

• Estimate Index Size and Set Storage Parameters

• Automatic Parallel Load of Table Data with SQL*Loader

12.7.3.2 Calculating Temporary Segment Storage Requirements
To estimate the amount of temporary segment space needed during direct path loads for
storing new index keys, use this formula.

To estimate the amount of temporary segment space needed for storing the new index keys
(in bytes), use the following formula:

1.3 * key_storage

In this formula, key storage is defined as follows, where number_rows is the number of rows,
sum_of_column_sizes is the sum of the column sizes, and number_of_columns is the number
of columns in the index:

key_storage = (number_rows) *
(10 + sum_of_column_sizes + number_of_columns)

The columns included in this formula are the columns in the index. There is one length byte
per column, and 10 bytes per row are used for a ROWID, and additional overhead.

The constant, 1.3, reflects the average amount of extra space needed for sorting. This value
is appropriate for most randomly ordered data. If the data arrives in exactly opposite order,
then twice the key-storage space is required for sorting, and the value of this constant would
be 2.0. That is the worst case.

Chapter 12
Using Direct Path Load

12-23

If the data is fully sorted, then only enough space to store the index entries is required,
and the value of this constant would be 1.0.

Related Topics

• Presorting Data for Faster Indexing
You can improve the performance of SQL*Loader direct path loads by presorting
your data on indexed columns.

12.7.4 Indexes Left in an Unusable State
SQL*Loader leaves indexes in an Index Unusable state when the data segment being
loaded becomes more up-to-date than the index segments that index it.

Any SQL statement that tries to use an index that is in an Index Unusable state returns
an error. The following conditions cause a direct path load to leave an index or a
partition of a partitioned index in an Index Unusable state:

• SQL*Loader runs out of space for the index and cannot update the index.

• The data is not in the order specified by the SORTED INDEXES clause.

• There is an instance failure, or the Oracle shadow process fails while building the
index.

• There are duplicate keys in a unique index.

• Data savepoints are being used, and the load fails or is terminated by a keyboard
interrupt after a data savepoint occurred.

To determine if an index is in an Index Unusable state, you can execute a simple
query:

SELECT INDEX_NAME, STATUS
 FROM USER_INDEXES
 WHERE TABLE_NAME = 'tablename';

If you are not the owner of the table, then search ALL_INDEXES or DBA_INDEXES instead
of USER_INDEXES.

To determine if an index partition is in an unusable state, you can execute the following
query:

SELECT INDEX_NAME,
 PARTITION_NAME,
 STATUS FROM USER_IND_PARTITIONS
 WHERE STATUS != 'VALID';

If you are not the owner of the table, then search ALL_IND_PARTITIONS and
DBA_IND_PARTITIONS instead of USER_IND_PARTITIONS.

12.7.5 Preventing Data Loss with Data Saves
You can use data saves to protect against loss of data due to instance failure.

• Using Data Saves to Protect Against Data Loss
When you have a savepoint, if you encounter an instance failure during a
SQL*Loader load, then use the SKIP parameter to continue the load.

Chapter 12
Using Direct Path Load

12-24

• Using the ROWS Parameter
The ROWS parameter determines when data saves occur during a direct path load.

• Data Save Versus Commit
In a conventional load, ROWS is the number of rows to read before a commit operation. A
direct load data save is similar to a conventional load commit, but it is not identical.

12.7.5.1 Using Data Saves to Protect Against Data Loss
When you have a savepoint, if you encounter an instance failure during a SQL*Loader load,
then use the SKIP parameter to continue the load.

All data loaded up to the last savepoint is protected against instance failure.

To continue the load after an instance failure, determine how many rows from the input file
were processed before the failure, then use the SKIP parameter to skip those processed
rows.

If there are any indexes on the table, then before you continue the load, drop those indexes,
and then recreate them after the load. See "Data Recovery During Direct Path Loads" for
more information about media and instance recovery.

Note:

Indexes are not protected by a data save, because SQL*Loader does not build
indexes until after data loading completes. (The only time indexes are built during
the load is when presorted data is loaded into an empty table, but these indexes are
also unprotected.)

Related Topics

• Data Recovery During Direct Path Loads
SQL*Loader provides full support for data recovery when using the direct path load
method.

12.7.5.2 Using the ROWS Parameter
The ROWS parameter determines when data saves occur during a direct path load.

The value you specify for ROWS is the number of rows you want SQL*Loader to read from the
input file before saving inserts in the database.

A data save is an expensive operation. The value for ROWS should be set high enough so that
a data save occurs once every 15 minutes or longer. The intent is to provide an upper
boundary (high-water mark) on the amount of work that is lost when an instance failure
occurs during a long-running direct path load. Setting the value of ROWS to a small number
adversely affects performance and data block space utilization.

12.7.5.3 Data Save Versus Commit
In a conventional load, ROWS is the number of rows to read before a commit operation. A
direct load data save is similar to a conventional load commit, but it is not identical.

The similarities are as follows:

Chapter 12
Using Direct Path Load

12-25

• A data save will make the rows visible to other users.

• Rows cannot be rolled back after a data save.

The major difference is that in a direct path load data save, the indexes will be
unusable (in Index Unusable state) until the load completes.

12.7.6 Data Recovery During Direct Path Loads
SQL*Loader provides full support for data recovery when using the direct path load
method.

There are two main types of recovery:

• Media - recovery from the loss of a database file. You must be operating in
ARCHIVELOG mode to recover after you lose a database file.

• Instance - recovery from a system failure in which in-memory data was changed
but lost due to the failure before it was written to disk. The Oracle database can
always recover from instance failures, even when redo logs are not archived.

• Media Recovery and Direct Path Loads
If redo log file archiving is enabled (you are operating in ARCHIVELOG mode), then
SQL*Loader logs loaded data when using the direct path, making media recovery
possible.

• Instance Recovery and Direct Path Loads
Because SQL*Loader writes directly to the database files, all rows inserted up to
the last data save will automatically be present in the database files if the instance
is restarted.

12.7.6.1 Media Recovery and Direct Path Loads
If redo log file archiving is enabled (you are operating in ARCHIVELOG mode), then
SQL*Loader logs loaded data when using the direct path, making media recovery
possible.

If redo log archiving is not enabled (you are operating in NOARCHIVELOG mode), then
media recovery is not possible.

To recover a database file that was lost while it was being loaded, use the same
method that you use to recover data loaded with the conventional path:

1. Restore the most recent backup of the affected database file.

2. Recover the tablespace using the RMAN RECOVER command.

Related Topics

• Performing Complete Recovery of a Tablespace in Oracle Database Backup and
Recovery User’s Guide

12.7.6.2 Instance Recovery and Direct Path Loads
Because SQL*Loader writes directly to the database files, all rows inserted up to the
last data save will automatically be present in the database files if the instance is
restarted.

Chapter 12
Using Direct Path Load

12-26

Changes do not need to be recorded in the redo log file to make instance recovery possible.

If an instance failure occurs, then the indexes being built may be left in an Index Unusable
state. Indexes that are Unusable must be rebuilt before you can use the table or partition.
See "Indexes Left in an Unusable State" for information about how to determine if an index
has been left in Index Unusable state.

Related Topics

• Indexes Left in an Unusable State
SQL*Loader leaves indexes in an Index Unusable state when the data segment being
loaded becomes more up-to-date than the index segments that index it.

12.7.7 Loading Long Data Fields
You can load data that is longer than SQL*Loader's maximum buffer size can load on the
direct path by using large object types (LOBs).

In considering how to load long data fields, note the following:

• To improve performance for loading long data fields as LOBs, Oracle recommends that
you use a large STREAMSIZE value.

• As an alternative to LOBs, you can also load data that is longer than the maximum buffer
size by using the PIECED parameter. However, for this scenario, Oracle highly
recommends that you use LOBs instad of PIECED.

Related Topics

• Loading LOBs with SQL*Loader
Find out which large object types (LOBs) SQL*Loader can load, and see examples of
how to load LOB Data.

• Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before the
stream buffer is built.

12.7.8 Loading Data As PIECED
The PIECED parameter can be used to load data in sections, if the data is in the last column of
the logical record.

Declaring a column as PIECED informs the direct path loader that a LONG field might be split
across multiple physical records (pieces). In such cases, SQL*Loader processes each piece
of the LONG field as it is found in the physical record. All the pieces are read before the record
is processed. SQL*Loader makes no attempt to materialize the LONG field before storing it;
however, all the pieces are read before the record is processed.

The following restrictions apply when you declare a column as PIECED:

• This option is only valid on the direct path.

• Only one field per table may be PIECED.

• The PIECED field must be the last field in the logical record.

• The PIECED field may not be used in any WHEN, NULLIF, or DEFAULTIF clauses.

• The PIECED field's region in the logical record must not overlap with any other field's
region.

Chapter 12
Using Direct Path Load

12-27

• The PIECED corresponding database column may not be part of the index.

• It may not be possible to load a rejected record from the bad file if it contains a
PIECED field.

For example, a PIECED field could span three records. SQL*Loader loads the piece
from the first record and then reuses the buffer for the second buffer. After loading
the second piece, the buffer is reused for the third record. If an error is discovered,
then only the third record is placed in the bad file because the first two records no
longer exist in the buffer. As a result, the record in the bad file would not be valid.

12.7.9 Auditing SQL*Loader Operations That Use Direct Path Mode
You can perform auditing on SQL*Loader direct path loads to monitor and record
selected user database actions.

SQL*Loader uses unified auditing, in which all audit records are centralized in one
place.

To set up unified auditing you create a unified audit policy, or alter an existing policy.
An audit policy is a named group of audit settings that enable you to audit a particular
aspect of user behavior in the database. To create the policy, use the SQL CREATE
AUDIT POLICY statement.

After creating the audit policy, use the AUDIT and NOAUDIT SQL statements to,
respectively, enable and disable the policy.

Related Topics

• CREATE AUDIT POLICY (Unified Auditing)

• Auditing Oracle SQL*Loader Direct Load Path Events

12.8 Optimizing Performance of Manual Direct Path Loads
If you choose to configure direct path loads manually, then learn how to enable your
SQL*Loader direct path loads to run faster, and to use less space.

• Minimizing Time and Space Required for Direct Path Loads
You can control the time and temporary storage used during direct path loads.

• Preallocating Storage for Faster Loading
SQL*Loader automatically adds extents to the table if necessary, but this process
takes time. For faster loads into a new table, allocate the required extents when
the table is created.

• Presorting Data for Faster Indexing
You can improve the performance of SQL*Loader direct path loads by presorting
your data on indexed columns.

• Infrequent Data Saves
Frequent data saves resulting from a small ROWS value adversely affect the
performance of a direct path load.

• Minimizing Use of the Redo Log
One way to speed a direct load dramatically is to minimize use of the redo log.

Chapter 12
Optimizing Performance of Manual Direct Path Loads

12-28

• Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before the
stream buffer is built.

• Specifying a Value for DATE_CACHE
To improve performance where the same date or timestamp is used many times during a
direct path load, you can use the SQL*Loader date cache.

12.8.1 Minimizing Time and Space Required for Direct Path Loads
You can control the time and temporary storage used during direct path loads.

To minimize time:

• Preallocate storage space

• Presort the data

• Perform infrequent data saves

• Minimize use of the redo log

• Specify the number of column array rows and the size of the stream buffer

• Specify a date cache value

• Set DB_UNRECOVERABLE_SCN_TRACKING=FALSE. Unrecoverable (nologging) direct writes are
tracked in the control file by periodically storing the SCN and Time of the last direct write.
If these updates to the control file are adversely affecting performance, then setting the
DB_UNRECOVERABLE_SCN_TRACKING parameter to FALSE may improve performance.

To minimize space:

• When sorting data before the load, sort data on the index that requires the most
temporary storage space

• Avoid index maintenance during the load

12.8.2 Preallocating Storage for Faster Loading
SQL*Loader automatically adds extents to the table if necessary, but this process takes time.
For faster loads into a new table, allocate the required extents when the table is created.

To calculate the space required by a table, see the information about managing database
files in the Oracle Database Administrator's Guide. Then use the INITIAL or MINEXTENTS
clause in the SQL CREATE TABLE statement to allocate the required space.

Another approach is to size extents large enough so that extent allocation is infrequent.

12.8.3 Presorting Data for Faster Indexing
You can improve the performance of SQL*Loader direct path loads by presorting your data on
indexed columns.

• Advantages of Presorting Data
Learn about how presorting enables you to increase load performance with SQL*Loader

• SORTED INDEXES Clause
The SORTED INDEXES clause identifies the indexes on which the data is presorted.

Chapter 12
Optimizing Performance of Manual Direct Path Loads

12-29

• Unsorted Data
If you specify an index in the SORTED INDEXES clause, and the data is not sorted for
that index, then the index is left in an Index Unusable state at the end of the load.

• Multiple-Column Indexes
If you specify a multiple-column index in the SORTED INDEXES clause, then the data
should be sorted so that it is ordered first on the first column in the index, next on
the second column in the index, and so on.

• Choosing the Best Sort Order
For the best overall performance of direct path loads, you should presort the data
based on the index that requires the most temporary segment space.

12.8.3.1 Advantages of Presorting Data
Learn about how presorting enables you to increase load performance with
SQL*Loader

Presorting minimizes temporary storage requirements during the load. Presorting also
enables you to take advantage of high-performance sorting routines that are optimized
for your operating system or application.

If the data is presorted, and the existing index is not empty, then presorting minimizes
the amount of temporary segment space needed for the new keys. The sort routine
appends each new key to the key list. Instead of requiring extra space for sorting, only
space for the keys is needed. To calculate the amount of storage needed, use a sort
factor of 1.0 instead of 1.3. For more information about estimating storage
requirements, refer to "Temporary Segment Storage Requirements."

If presorting is specified, and the existing index is empty, then maximum efficiency is
achieved. The new keys are simply inserted into the index. Instead of having a
temporary segment and new index existing simultaneously with the empty, old index,
only the new index exists. As a result, temporary storage is not required during the
load, and time is saved.

Related Topics

• Calculating Temporary Segment Storage Requirements
To estimate the amount of temporary segment space needed during direct path
loads for storing new index keys, use this formula.

12.8.3.2 SORTED INDEXES Clause
The SORTED INDEXES clause identifies the indexes on which the data is presorted.

This clause is allowed only for direct path loads. See case study 6, Loading Data
Using the Direct Path Load Method, for an example. (See SQL*Loader Case Studies
for information on how to access case studies.)

Generally, you specify only one index in the SORTED INDEXES clause, because data that
is sorted for one index is not usually in the right order for another index. When the data
is in the same order for multiple indexes, however, all indexes can be specified at
once.

All indexes listed in the SORTED INDEXES clause must be created before you start the
direct path load.

Chapter 12
Optimizing Performance of Manual Direct Path Loads

12-30

12.8.3.3 Unsorted Data
If you specify an index in the SORTED INDEXES clause, and the data is not sorted for that index,
then the index is left in an Index Unusable state at the end of the load.

The data is present, but any attempt to use the index results in an error. Any index that is left
in an Index Unusable state must be rebuilt after the load.

12.8.3.4 Multiple-Column Indexes
If you specify a multiple-column index in the SORTED INDEXES clause, then the data should be
sorted so that it is ordered first on the first column in the index, next on the second column in
the index, and so on.

For example, if the first column of the index is city, and the second column is last name; then
the data should be ordered by name within each city, as in the following list:

Albuquerque Adams
Albuquerque Hartstein
Albuquerque Klein
... ...
Boston Andrews
Boston Bobrowski
Boston Heigham
... ...

12.8.3.5 Choosing the Best Sort Order
For the best overall performance of direct path loads, you should presort the data based on
the index that requires the most temporary segment space.

For example, if the primary key is one numeric column, and the secondary key consists of
three text columns, then you can minimize both sort time and storage requirements by
presorting on the secondary key.

To determine the index that requires the most storage space, use the following procedure:

1. For each index, add up the widths of all columns in that index.

2. For a single-table load, pick the index with the largest overall width.

3. For each table in a multiple-table load, identify the index with the largest overall width. If
the same number of rows are to be loaded into each table, then again pick the index with
the largest overall width. Usually, the same number of rows are loaded into each table.

4. If a different number of rows are to be loaded into the indexed tables in a multiple-table
load, then multiply the width of each index identified in Step 3 by the number of rows that
are to be loaded into that index, and pick the index with the largest result.

12.8.4 Infrequent Data Saves
Frequent data saves resulting from a small ROWS value adversely affect the performance of a
direct path load.

A small ROWS value can also result in wasted data block space because the last data block is
not written to after a save, even if the data block is not full.

Chapter 12
Optimizing Performance of Manual Direct Path Loads

12-31

Because direct path loads can be many times faster than conventional loads, the value
of ROWS should be considerably higher for a direct load than it would be for a
conventional load.

During a data save, loading stops until all of SQL*Loader's buffers are successfully
written. You should select the largest value for ROWS that is consistent with safety. It is a
good idea to determine the average time to load a row by loading a few thousand
rows. Then you can use that value to select a good value for ROWS.

For example, if you can load 20,000 rows per minute, and you do not want to repeat
more than 10 minutes of work after an interruption, then set ROWS to be 200,000
(20,000 rows/minute * 10 minutes).

12.8.5 Minimizing Use of the Redo Log
One way to speed a direct load dramatically is to minimize use of the redo log.

There are three ways to do this. You can disable archiving, you can specify that the
load is unrecoverable, or you can set the SQL NOLOGGING parameter for the objects
being loaded. This section discusses all methods.

• Disabling Archiving
If archiving is disabled, then direct path loads do not generate full image redo.

• Specifying the SQL*Loader UNRECOVERABLE Clause
To save time and space in the redo log file, use the SQL*Loader UNRECOVERABLE
clause in the control file when you load data.

• Setting the SQL NOLOGGING Parameter
If a data or index segment has the SQL NOLOGGING parameter set, then full image
redo logging is disabled for that segment (invalidation redo is generated).

12.8.5.1 Disabling Archiving
If archiving is disabled, then direct path loads do not generate full image redo.

Use the SQL ARCHIVELOG and NOARCHIVELOG parameters to set the archiving mode.

Related Topics

• Managing Archived Redo Log Files in Oracle Database Administrator’s Guide

12.8.5.2 Specifying the SQL*Loader UNRECOVERABLE Clause
To save time and space in the redo log file, use the SQL*Loader UNRECOVERABLE
clause in the control file when you load data.

An unrecoverable load does not record loaded data in the redo log file; instead, it
generates invalidation redo.

The UNRECOVERABLE clause applies to all objects loaded during the load session (both
data and index segments). Therefore, media recovery is disabled for the loaded table,
although database changes by other users may continue to be logged.

Chapter 12
Optimizing Performance of Manual Direct Path Loads

12-32

Note:

Because the data load is not logged, you may want to make a backup of the data
after loading.

If media recovery becomes necessary on data that was loaded with the UNRECOVERABLE
clause, then the data blocks that were loaded are marked as logically corrupted.

To recover the data, drop and re-create the data. It is a good idea to do backups immediately
after the load to preserve the otherwise unrecoverable data.

By default, a direct path load is RECOVERABLE.

The following is an example of specifying the UNRECOVERABLE clause in the control file:

UNRECOVERABLE
LOAD DATA
INFILE 'sample.dat'
INTO TABLE emp
(ename VARCHAR2(10), empno NUMBER(4));

12.8.5.3 Setting the SQL NOLOGGING Parameter
If a data or index segment has the SQL NOLOGGING parameter set, then full image redo
logging is disabled for that segment (invalidation redo is generated).

Use of the NOLOGGING parameter allows a finer degree of control over the objects that are not
logged.

12.8.6 Specifying the Number of Column Array Rows and Size of Stream
Buffers

The number of column array rows determines the number of rows loaded before the stream
buffer is built.

The STREAMSIZE parameter specifies the size (in bytes) of the data stream sent from the client
to the server.

Use the COLUMNARRAYROWS parameter to specify a value for the number of column array rows.
Note that when VARRAYs are loaded using direct path, the COLUMNARRAYROWS parameter
defaults to 100 to avoid client object cache thrashing.

Use the STREAMSIZE parameter to specify the size for direct path stream buffers.

The optimal values for these parameters vary, depending on the system, input data types,
and Oracle column data types used. When you are using optimal values for your particular
configuration, the elapsed time in the SQL*Loader log file should go down.

Chapter 12
Optimizing Performance of Manual Direct Path Loads

12-33

Note:

You should monitor process paging activity, because if paging becomes
excessive, then performance can be significantly degraded. You may need to
lower the values for READSIZE, STREAMSIZE, and COLUMNARRAYROWS to avoid
excessive paging.

It can be particularly useful to specify the number of column array rows and size of the
stream buffer when you perform direct path loads on multiple CPU systems.

Related Topics

• Optimizing Direct Path Loads on Multiple-CPU Systems
If you are performing direct path loads on a multiple-CPU system, then
SQL*Loader uses multithreading by default. A multiple-CPU system in this case is
defined as a single system that has two or more CPUs.

• COLUMNARRAYROWS
The COLUMNARRAYROWS command-line parameter for SQL*Loader specifies the
number of rows to allocate for direct path column arrays.

• STREAMSIZE
The STREAMSIZE SQL*Loader command-line parameter specifies the size (in
bytes) of the data stream sent from the client to the server.

12.8.7 Specifying a Value for DATE_CACHE
To improve performance where the same date or timestamp is used many times during
a direct path load, you can use the SQL*Loader date cache.

If you are performing a direct path load in which the same date or timestamp values
are loaded many times, then a large percentage of total load time can end up being
used for converting date and timestamp data. This is especially true if multiple date
columns are being loaded. In such a case, it may be possible to improve performance
by using the SQL*Loader date cache.

The date cache reduces the number of date conversions done when many duplicate
values are present in the input data. It enables you to specify the number of unique
dates anticipated during the load.

The date cache is enabled by default. To completely disable the date cache, set it to 0.

The default date cache size is 1000 elements. If the default is used and the number of
unique input values loaded exceeds 1000, then the date cache is automatically
disabled for that table. This prevents excessive and unnecessary lookup times that
could affect performance. However, if instead of using the default, you specify a
nonzero value for the date cache and it is exceeded, then the date cache is not
disabled. Instead, any input data that exceeded the maximum is explicitly converted
using the appropriate conversion routines.

The date cache can be associated with only one table. No date cache sharing can
take place across tables. A date cache is created for a table only if all of the following
conditions are true:

• The DATE_CACHE parameter is not set to 0

Chapter 12
Optimizing Performance of Manual Direct Path Loads

12-34

• One or more date values, timestamp values, or both are being loaded that require data
type conversion in order to be stored in the table

• The load is a direct path load

Date cache statistics are written to the log file. You can use those statistics to improve direct
path load performance as follows:

• If the number of cache entries is less than the cache size and there are no cache misses,
then the cache size could safely be set to a smaller value.

• If the number of cache hits (entries for which there are duplicate values) is small and the
number of cache misses is large, then the cache size should be increased. Be aware that
if the cache size is increased too much, then it may cause other problems, such as
excessive paging or too much memory usage.

• If most of the input date values are unique, then the date cache will not enhance
performance and therefore should not be used.

Note:

Date cache statistics are not written to the SQL*Loader log file if the cache was
active by default and disabled because the maximum was exceeded.

If increasing the cache size does not improve performance, then revert to the default
behavior or set the cache size to 0. The overall performance improvement also depends on
the data types of the other columns being loaded. Improvement will be greater for cases in
which the total number of date columns loaded is large compared to other types of data
loaded.

Related Topics

• DATE_CACHE
The DATE_CACHE command-line parameter for SQL*Loader specifies the date cache size
(in entries).

12.9 Optimizing Direct Path Loads on Multiple-CPU Systems
If you are performing direct path loads on a multiple-CPU system, then SQL*Loader uses
multithreading by default. A multiple-CPU system in this case is defined as a single system
that has two or more CPUs.

Multithreaded loading means that, when possible, conversion of the column arrays to stream
buffers and stream buffer loading are performed in parallel. This optimization works best
when:

• Column arrays are large enough to generate multiple direct path stream buffers for loads

• Data conversions are required from input field data types to Oracle column data types

The conversions are performed in parallel with stream buffer loading.

The status of this process is recorded in the SQL*Loader log file, as shown in the following
log portion example:

Total stream buffers loaded by SQL*Loader main thread: 47
Total stream buffers loaded by SQL*Loader load thread: 180

Chapter 12
Optimizing Direct Path Loads on Multiple-CPU Systems

12-35

Column array rows: 1000
Stream buffer bytes: 256000

In this example, the SQL*Loader load thread has offloaded the SQL*Loader main
thread, allowing the main thread to build the next stream buffer while the load thread
loads the current stream on the server.

The goal is to have the load thread perform as many stream buffer loads as possible.
This can be accomplished by increasing the number of column array rows, decreasing
the stream buffer size, or both. You can monitor the elapsed time in the SQL*Loader
log file to determine whether your changes are having the desired effect. For more
information, see "Specifying the Number of Column Array Rows and Size of Stream
Buffers". See Specifying the Number of Column Array Rows and Size of Stream
Buffers for more information.

On single-CPU systems, optimization is turned off by default. When the server is on
another system, performance may improve if you manually turn on multithreading.

To turn the multithreading option on or off, use the MULTITHREADING parameter at the
SQL*Loader command line or specify it in your SQL*Loader control file.

Related Topics

• Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before
the stream buffer is built.

• Direct Path Load Interface

12.10 Avoiding Index Maintenance
For both the conventional path and the direct path, SQL*Loader maintains all existing
indexes for a table.

To avoid index maintenance, use one of the following methods:

• Drop the indexes before beginning of the load.

• Mark selected indexes or index partitions as Index Unusable before beginning the
load and use the SKIP_UNUSABLE_INDEXES parameter.

• Use the SKIP_INDEX_MAINTENANCE parameter (direct path only, use with caution).

By avoiding index maintenance, you minimize the amount of space required during a
direct path load, in the following ways:

• You can build indexes one at a time, reducing the amount of sort (temporary)
segment space that would otherwise be needed for each index.

• Only one index segment exists when an index is built, instead of the three
segments that temporarily exist when the new keys are merged into the old index
to make the new index.

Avoiding index maintenance is quite reasonable when the number of rows to be
loaded is large compared to the size of the table. But if relatively few rows are added
to a large table, then the time required to resort the indexes may be excessive. In such
cases, it is usually better to use the conventional path load method, or to use the
SINGLEROW parameter of SQL*Loader. For more information, see SINGLEROW Option.

Chapter 12
Avoiding Index Maintenance

12-36

12.11 Direct Path Loads, Integrity Constraints, and Triggers
There can be differences between how you set triggers with direct path loads, compared to
conventional path loads

With the conventional path load method, arrays of rows are inserted with standard SQL
INSERT statements; integrity constraints and insert triggers are automatically applied. But
when you load data with the direct path, SQL*Loader disables some integrity constraints and
all database triggers.

• Integrity Constraints
During a direct path load with SQL*Loader, some integrity constraints are automatically
disabled, while others are not.

• Database Insert Triggers
Table insert triggers are also disabled when a direct path load begins.

• Permanently Disabled Triggers and Constraints
SQL*Loader needs to acquire several locks on the table to be loaded to disable triggers
and constraints.

• Increasing Performance with Concurrent Conventional Path Loads
If triggers or integrity constraints pose a problem, but you want faster loading, then you
should consider using concurrent conventional path loads.

12.11.1 Integrity Constraints
During a direct path load with SQL*Loader, some integrity constraints are automatically
disabled, while others are not.

To better understand the concepts behind how integrity constraints enforce the business rules
associated with a database, and to understand the different techniques you can use to
prevent the entry of invalid information into tables, refer to "Data Integrity."

• Enabled Constraints
During direct path load, some constraints remain enabled.

• Disabled Constraints
During a direct path load, some constraints are disabled.

• Reenable Constraints
When a SQL*Loader load completes, the integrity constraints will be reenabled
automatically if the REENABLE clause is specified.

Related Topics

• Data Integrity

12.11.1.1 Enabled Constraints
During direct path load, some constraints remain enabled.

During a direct path load, the constraints that remain enabled are as follows:

• NOT NULL
• UNIQUE
• PRIMARY KEY (unique-constraints on not-null columns)

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-37

NOT NULL constraints are checked at column array build time. Any row that violates the
NOT NULL constraint is rejected.

Even though UNIQUE constraints remain enabled during direct path loads, any rows
that violate those constraints are loaded anyway (this is different than in conventional
path in which such rows would be rejected). When indexes are rebuilt at the end of the
direct path load, UNIQUE constraints are verified and if a violation is detected, then the
index will be left in an Index Unusable state. See Indexes Left in an Unusable State.

12.11.1.2 Disabled Constraints
During a direct path load, some constraints are disabled.

During a direct path load, the following constraints are automatically disabled by
default:

• CHECK constraints

• Referential constraints (FOREIGN KEY)

You can override the automatic disabling of CHECK constraints by specifying the
EVALUATE CHECK_CONSTRAINTS clause. SQL*Loader will then evaluate CHECK
constraints during a direct path load. Any row that violates the CHECK constraint is
rejected. The following example shows the use of the EVALUATE CHECK_CONSTRAINTS
clause in a SQL*Loader control file:

LOAD DATA
INFILE *
APPEND
INTO TABLE emp
EVALUATE CHECK_CONSTRAINTS
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(c1 CHAR(10) ,c2)
BEGINDATA
Jones,10
Smith,20
Brown,30
Taylor,40

12.11.1.3 Reenable Constraints
When a SQL*Loader load completes, the integrity constraints will be reenabled
automatically if the REENABLE clause is specified.

The syntax for the REENABLE clause is as follows:

EVALUATE CHECK_CONSTRAINTS REENABLE DISABLED_CONSTRAINTS

EXCEPTIONS table WHEN field_condition

The optional parameter DISABLED_CONSTRAINTS is provided for readability. If the
EXCEPTIONS clause is included, then the exceptions table (default name: EXCEPTIONS)
must already exist, and you must be able to insert into it. This table contains the ROWID

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-38

values for all rows that violated one of the integrity constraints. It also contains the name of
the constraint that was violated.

For instructions on how to create the exceptions table, see exceptions_clause under
constraint in Oracle Database SQL Language Reference.

The SQL*Loader log file describes the constraints that were disabled, the ones that were
reenabled, and what error, if any, prevented reenabling or validating of each constraint. It also
contains the name of the exceptions table specified for each loaded table.

If the REENABLE clause is not used, then the constraints must be reenabled manually, at which
time all rows in the table are verified. If the Oracle database finds any errors in the new data,
then error messages are produced. The names of violated constraints and the ROWIDs of
the bad data are placed in an exceptions table, if one is specified.

If the REENABLE clause is used, then SQL*Loader automatically reenables the constraint and
verifies all new rows. If no errors are found in the new data, then SQL*Loader automatically
marks the constraint as validated. If any errors are found in the new data, then error
messages are written to the log file and SQL*Loader marks the status of the constraint as
ENABLE NOVALIDATE. The names of violated constraints and the ROWIDs of the bad data are
placed in an exceptions table, if one is specified.

Note:

Normally, when a table constraint is left in an ENABLE NOVALIDATE state, new data
can be inserted into the table but no new invalid data may be inserted. However,
SQL*Loader direct path load does not enforce this rule. Thus, if subsequent direct
path loads are performed with invalid data, then the invalid data will be inserted but
the same error reporting and exception table processing as described previously
will take place. In this scenario the exception table may contain duplicate entries if it
is not cleared out before each load. Duplicate entries can easily be filtered out by
performing a query such as the following:

SELECT UNIQUE * FROM exceptions_table;

Note:

Because referential integrity must be reverified for the entire table, performance
may be improved by using the conventional path, instead of the direct path, when a
small number of rows are to be loaded into a very large table.

Related Topics

• constraint in Oracle Database SQL Language Reference

12.11.2 Database Insert Triggers
Table insert triggers are also disabled when a direct path load begins.

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-39

After the rows are loaded and indexes rebuilt, any triggers that were disabled are
automatically reenabled. The log file lists all triggers that were disabled for the load.
There should not be any errors reenabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table when
they are enabled. As a result, insert triggers do not fire for any rows loaded on the
direct path. When using the direct path, the application must ensure that any behavior
associated with insert triggers is carried out for the new rows.

• Replacing Insert Triggers with Integrity Constraints
Applications commonly use insert triggers to implement integrity constraints.

• When Automatic Constraints Cannot Be Used
Sometimes an insert trigger cannot be replaced with Oracle's automatic integrity
constraints.

• Preparation of Database Triggers
Before you can use either the insert triggers or automatic constraints method, you
must prepare the Oracle Database table

• Using an Update Trigger
Generally, you can use a database update trigger to duplicate the effects of an
insert trigger.

• Duplicating the Effects of Exception Conditions
If the insert trigger can raise an exception, then more work is required to duplicate
its effects.

• Using a Stored Procedure
If using an insert trigger raises exceptions, then consider using a stored procedure
to duplicate the effects of an insert trigger.

12.11.2.1 Replacing Insert Triggers with Integrity Constraints
Applications commonly use insert triggers to implement integrity constraints.

Most of the triggers that these application insert are simple enough that they can be
replaced with Oracle's automatic integrity constraints.

12.11.2.2 When Automatic Constraints Cannot Be Used
Sometimes an insert trigger cannot be replaced with Oracle's automatic integrity
constraints.

For example, if an integrity check is implemented with a table lookup in an insert
trigger, then automatic check constraints cannot be used, because the automatic
constraints can only reference constants and columns in the current row. This section
describes two methods for duplicating the effects of such a trigger.

12.11.2.3 Preparation of Database Triggers
Before you can use either the insert triggers or automatic constraints method, you
must prepare the Oracle Database table

Use the following general guidelines to prepare the table:

1. Before the load, add a 1-byte or 1-character column to the table that marks rows
as "old data" or "new data."

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-40

2. Let the value of null for this column signify "old data" because null columns do not take
up space.

3. When loading, flag all loaded rows as "new data" with SQL*Loader's CONSTANT
parameter.

After following this procedure, all newly loaded rows are identified, making it possible to
operate on the new data without affecting the old rows.

12.11.2.4 Using an Update Trigger
Generally, you can use a database update trigger to duplicate the effects of an insert trigger.

This method is the simplest. It can be used whenever the insert trigger does not raise any
exceptions.

1. Create an update trigger that duplicates the effects of the insert trigger.

Copy the trigger. Change all occurrences of "new.column_name" to "old.column_name".

2. Replace the current update trigger, if it exists, with the new one.

3. Update the table, changing the "new data" flag to null, thereby firing the update trigger.

4. Restore the original update trigger, if there was one.

Depending on the behavior of the trigger, it may be necessary to have exclusive update
access to the table during this operation, so that other users do not inadvertently apply the
trigger to rows they modify.

12.11.2.5 Duplicating the Effects of Exception Conditions
If the insert trigger can raise an exception, then more work is required to duplicate its effects.

Raising an exception would prevent the row from being inserted into the table. To duplicate
that effect with an update trigger, it is necessary to mark the loaded row for deletion.

The "new data" column cannot be used as a delete flag, because an update trigger cannot
modify the columns that caused it to fire. So another column must be added to the table. This
column marks the row for deletion. A null value means the row is valid. Whenever the insert
trigger would raise an exception, the update trigger can mark the row as invalid by setting a
flag in the additional column.

In summary, when an insert trigger can raise an exception condition, its effects can be
duplicated by an update trigger, provided:

• Two columns (which are usually null) are added to the table

• The table can be updated exclusively (if necessary)

12.11.2.6 Using a Stored Procedure
If using an insert trigger raises exceptions, then consider using a stored procedure to
duplicate the effects of an insert trigger.

The following procedure always works, but it is more complex to implement. It can be used
when the insert trigger raises exceptions. It does not require a second additional column;
and, because it does not replace the update trigger, it can be used without exclusive access
to the table.

1. Create a stored procedure that duplicates the effects of the insert trigger:

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-41

a. Declare a cursor for the table, selecting all new rows.

b. Open the cursor and fetch rows, one at a time, in a processing loop.

c. Perform the operations contained in the insert trigger.

d. If the operations succeed, then change the "new data" flag to null.

e. If the operations fail, then change the "new data" flag to "bad data."

2. Run the stored procedure using an administration tool, such as SQL*Plus.

3. After running the procedure, check the table for any rows marked "bad data."

4. Update or remove the bad rows.

5. Reenable the insert trigger.

12.11.3 Permanently Disabled Triggers and Constraints
SQL*Loader needs to acquire several locks on the table to be loaded to disable
triggers and constraints.

If a competing process is enabling triggers or constraints at the same time that
SQL*Loader is trying to disable them for that table, then SQL*Loader may not be able
to acquire exclusive access to the table.

SQL*Loader attempts to handle this situation as gracefully as possible. It attempts to
reenable disabled triggers and constraints before exiting. However, the same table-
locking problem that made it impossible for SQL*Loader to continue may also have
made it impossible for SQL*Loader to finish enabling triggers and constraints. In such
cases, triggers and constraints will remain disabled until they are manually enabled.

Although such a situation is unlikely, it is possible. The best way to prevent it is to
ensure that no applications are running that could enable triggers or constraints for the
table while the direct load is in progress.

If a direct load is terminated due to failure to acquire the proper locks, then carefully
check the log. It will show every trigger and constraint that was disabled, and each
attempt to reenable them. Any triggers or constraints that were not reenabled by
SQL*Loader should be manually enabled with the ENABLE clause of the ALTER TABLE
statement described in Oracle Database SQL Language Reference.

12.11.4 Increasing Performance with Concurrent Conventional Path
Loads

If triggers or integrity constraints pose a problem, but you want faster loading, then you
should consider using concurrent conventional path loads.

That is, use multiple load sessions executing concurrently on a multiple-CPU system.
Split the input data files into separate files on logical record boundaries, and then load
each such input data file with a conventional path load session. The resulting load has
the following attributes:

• It is faster than a single conventional load on a multiple-CPU system, but probably
not as fast as a direct load.

• Triggers fire, integrity constraints are applied to the loaded rows, and indexes are
maintained using the standard DML execution logic.

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-42

12.12 Optimizing Performance of Direct Path Loads
Learn how to enable your SQL*Loader direct path loads to run faster, and to use less space.

• Restrictions on Automatic and Manual Parallel Direct Path Loads
When you use the SQL*Loader client to perform direct path loads in parallel manually, be
aware of the restrictions listed here.

• About SQL*Loader Parallel Data Loading Models
There are three basic models of concurrency that you can use to minimize the elapsed
time required for data loading.

• Concurrent Conventional Path Loads
This topic describes using concurrent conventional path loads.

• Intersegment Concurrency with Direct Path
Intersegment concurrency can be used for concurrent loading of different objects.

• Intrasegment Concurrency with Direct Path
SQL*Loader permits multiple, concurrent sessions to perform a direct path load into the
same table, or into the same partition of a partitioned table.

• Restrictions on Manual Parallel Direct Path Loads
When you configure parallel direct path loads manually, review and be aware of the
restrictions enforced on manual parallel direct path loads.

• Initiating Multiple SQL*Loader Sessions Manually
If you choose to initiate direct path parallel loads of data manually, then for all sessions
executing a direct load on the same table, you must set PARALLEL to TRUE.

• Parameters for Manual Parallel Direct Path Loads
When you perform parallel direct path loads manually, there are options available for
specifying attributes of the temporary segment that the loader allocates.

• Enabling Constraints After a Parallel Direct Path Load
Constraints and triggers must be enabled manually after all data loading is complete.

• PRIMARY KEY and UNIQUE KEY Constraints
This topic describes using the PRIMARY KEY and UNIQUE KEY constraints.

12.12.1 Restrictions on Automatic and Manual Parallel Direct Path Loads
When you use the SQL*Loader client to perform direct path loads in parallel manually, be
aware of the restrictions listed here.

Note:

Starting with the SQL*Loader client for Oracle Database 23c, the SQL*Loader client
can support direct path loads from any Oracle Database release starting with
Oracle Database 12c Release 2 (12.2). This capability is available in the
SQL*Loader Instant Client for Release 23c. Generally speaking, you should use the
automatic parallel direct path load procedure. Except where noted, the restrictions
listed here apply to both manual and automatic parallel loading.

Chapter 12
Optimizing Performance of Direct Path Loads

12-43

If you intend to perform parallel direct path loads, then the following restrictions are
enforced:

• Global indexes are not maintained by the load. By default, local indexes are
maintained.

• You cannot specify ROWS for the parallel load. If you attempt to do so, then
SQL*Loader returns the error " SQL*Loader-826: ROWS parameter is not
supported for parallel direct path loading using degree_of_parallelism
parameter".

• Primary Key values in tables cannot be specified as NULL.

Note:

If you use Automatic Parallel Direct Path Loading, then can use the TRUNCATE
or REPLACE load options, which will be performed at the start of the load.

SQL*Loader automatically disables the following restraints and triggers before the load
begins and re-enables them after the load completes:

• Referential integrity constraints

• Triggers

• CHECK constraints, unless the ENABLE_CHECK_CONSTRAINTS control file option is
used

12.12.2 About SQL*Loader Parallel Data Loading Models
There are three basic models of concurrency that you can use to minimize the elapsed
time required for data loading.

The concurrency models are:

• Concurrent conventional path loads

• Intersegment concurrency with the direct path load method

• Intrasegment concurrency with the direct path load method

Starting with Oracle Database 21c, you can use the SQL*Loader parameter
CREDENTIAL to provide credentials to enable read access to object stores. Parallel
loading from the object store is supported.

In addition, starting with Oracle Database 23c, you can enable automatic parallel loads
of sharded and non-sharded tables for both conventional and direct path loads using
SQL*Loader.

Related Topics

• Automatic Parallel Load of Table Data with SQL*Loader

12.12.3 Concurrent Conventional Path Loads
This topic describes using concurrent conventional path loads.

Chapter 12
Optimizing Performance of Direct Path Loads

12-44

Using multiple conventional path load sessions executing concurrently is discussed in
Increasing Performance with Concurrent Conventional Path Loads, you can use this
technique to load the same or different objects concurrently with no restrictions.

12.12.4 Intersegment Concurrency with Direct Path
Intersegment concurrency can be used for concurrent loading of different objects.

You can apply this technique to concurrent direct path loading of different tables, or to
concurrent direct path loading of different partitions of the same table.

When you direct path load a single partition, consider the following items:

• Local indexes can be maintained by the load.

• Global indexes cannot be maintained by the load.

• Referential integrity and CHECK constraints must be disabled.

• Triggers must be disabled.

• The input data should be partitioned (otherwise many records will be rejected, which
adversely affects performance).

12.12.5 Intrasegment Concurrency with Direct Path
SQL*Loader permits multiple, concurrent sessions to perform a direct path load into the same
table, or into the same partition of a partitioned table.

Multiple SQL*Loader sessions improve the performance of a direct path load given the
available resources on your system.

This method of data loading is enabled by setting both the DIRECT and the PARALLEL
parameters to TRUE, and is often referred to as a parallel direct path load.

It is important to realize that parallelism is user managed. Setting the PARALLEL parameter to
TRUE only allows multiple concurrent direct path load sessions.

12.12.6 Restrictions on Manual Parallel Direct Path Loads
When you configure parallel direct path loads manually, review and be aware of the
restrictions enforced on manual parallel direct path loads.

The following restrictions are enforced on manual parallel direct path loads:

• Neither local nor global indexes can be maintained by the load.

• Rows can only be appended. REPLACE, TRUNCATE, and INSERT cannot be used (this is due
to the individual loads not being coordinated in manual parallel direct path loads). If you
must truncate a table before a parallel load, then you must do it manually.

Additionally, the following objects must be disabled on parallel direct path loads. You do not
have to take any action to disable them. SQL*Loader disables them before the load begins
and re-enables them after the load completes:

• Referential integrity constraints

• Triggers

• CHECK constraints, unless the ENABLE_CHECK_CONSTRAINTS control file option is used

Chapter 12
Optimizing Performance of Direct Path Loads

12-45

If a manual parallel direct path load is being applied to a single partition, then you
should partition the data first (otherwise, the overhead of record rejection due to a
partition mismatch slows down the load).

12.12.7 Initiating Multiple SQL*Loader Sessions Manually
If you choose to initiate direct path parallel loads of data manually, then for all sessions
executing a direct load on the same table, you must set PARALLEL to TRUE.

Syntax

When you set PARALLEL to TRUE, each SQL*Loader session takes a different data file
as input. Syntax:

PARALLEL =

TRUE

FALSE

PARALLEL can be specified either on the command line, or in a parameter file. It can
also be specified in the control file with the OPTIONS clause.

For example, to start three SQL*Loader direct path load sessions on the same table,
you would execute each of the following commands at the operating system prompt.
After entering each command, you will be prompted for a password.

sqlldr USERID=scott CONTROL=load1.ctl DIRECT=TRUE PARALLEL=TRUE
sqlldr USERID=scott CONTROL=load2.ctl DIRECT=TRUE PARALLEL=TRUE
sqlldr USERID=scott CONTROL=load3.ctl DIRECT=TRUE PARALLEL=TRUE

The previous commands must be executed in separate sessions, or if permitted on
your operating system, as separate background jobs. Note the use of multiple control
files. For manual parallel direct path loads, using multiple control files enables you to
be flexible in specifying the files that you want to use for the direct path load.

Note:

Indexes are not maintained during a parallel load. Any indexes must be
created or re-created manually after the load completes. You can use the
parallel index creation or parallel index rebuild feature to speed the building
of large indexes after a parallel load.

When you perform a manual parallel load, SQL*Loader creates temporary segments
for each concurrent session, and then merges the segments upon completion of the
load. The segment created from the merge is then added to the existing segment in
the database above the segment's high-water mark. The last extent used of each
segment for each loader session is trimmed of any free space before being combined
with the other extents of the SQL*Loader session.

Chapter 12
Optimizing Performance of Direct Path Loads

12-46

12.12.8 Parameters for Manual Parallel Direct Path Loads
When you perform parallel direct path loads manually, there are options available for
specifying attributes of the temporary segment that the loader allocates.

The loader options are specified with the FILE and STORAGE parameters. These parameters
are valid only for manual parallel loads.

• Using the FILE Parameter to Specify Temporary Segments
To allow for maximum I/O throughput, Oracle recommends that each concurrent direct
path load session use files located on different disks.

12.12.8.1 Using the FILE Parameter to Specify Temporary Segments
To allow for maximum I/O throughput, Oracle recommends that each concurrent direct path
load session use files located on different disks.

In the SQL*Loader control file, use the FILE parameter of the OPTIONS clause to specify the
file name of any valid data file in the tablespace of the object (table or partition) being loaded.

For example:

LOAD DATA
INFILE 'load1.dat'
INSERT INTO TABLE emp
OPTIONS(FILE='/dat/data1.dat')
(empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS
...

You could also specify the FILE parameter on the command line of each concurrent
SQL*Loader session, but then it would apply globally to all objects being loaded with that
session.

• Using the FILE Parameter
This topic describes using the FILE parameter.

• Using the STORAGE Parameter
You can use the STORAGE parameter to specify the storage attributes of the temporary
segments allocated for a parallel direct path load.

12.12.8.1.1 Using the FILE Parameter
This topic describes using the FILE parameter.

The FILE parameter in the Oracle database has the following restrictions for parallel direct
path loads:

• For nonpartitioned tables: The specified file must be in the tablespace of the table
being loaded.

• For partitioned tables, single-partition load: The specified file must be in the
tablespace of the partition being loaded.

• For partitioned tables, full-table load: The specified file must be in the tablespace of all
partitions being loaded; that is, all partitions must be in the same tablespace.

Chapter 12
Optimizing Performance of Direct Path Loads

12-47

12.12.8.1.2 Using the STORAGE Parameter
You can use the STORAGE parameter to specify the storage attributes of the temporary
segments allocated for a parallel direct path load.

If the STORAGE parameter is not used, then the storage attributes of the segment
containing the object (table, partition) being loaded are used. Also, when the STORAGE
parameter is not specified, SQL*Loader uses a default of 2 KB for EXTENTS.

For example, the following OPTIONS clause could be used to specify STORAGE
parameters:

OPTIONS (STORAGE=(INITIAL 100M NEXT 100M PCTINCREASE 0))

You can use the STORAGE parameter only in the SQL*Loader control file, and not on the
command line. Use of the STORAGE parameter to specify anything other than
PCTINCREASE of 0, and INITIAL or NEXT values is strongly discouraged and may be
silently ignored.

12.12.9 Enabling Constraints After a Parallel Direct Path Load
Constraints and triggers must be enabled manually after all data loading is complete.

Because each SQL*Loader session can attempt to reenable constraints on a table
after a direct path load, there is a danger that one session may attempt to reenable a
constraint before another session is finished loading data. In this case, the first session
to complete the load will be unable to enable the constraint because the remaining
sessions possess share locks on the table.

Because there is a danger that some constraints might not be reenabled after a direct
path load, you should check the status of the constraint after completing the load to
ensure that it was enabled properly.

12.12.10 PRIMARY KEY and UNIQUE KEY Constraints
This topic describes using the PRIMARY KEY and UNIQUE KEY constraints.

PRIMARY KEY and UNIQUE KEY constraints create indexes on a table when they are
enabled, and subsequently can take a significantly long time to enable after a direct
path loading session if the table is very large. You should consider enabling these
constraints manually after a load (and not specifying the automatic enable feature).
This enables you to manually create the required indexes in parallel to save time
before enabling the constraint.

12.13 General Performance Improvement Hints
Learn how to enable general performance improvements when using SQL*Loader with
parallel data loading.

If you have control over the format of the data to be loaded, then you can use the
following hints to improve load performance:

• Make logical record processing efficient.

Chapter 12
General Performance Improvement Hints

12-48

– Use one-to-one mapping of physical records to logical records (avoid using
CONTINUEIF and CONCATENATE).

– Make it easy for the software to identify physical record boundaries. Use the file
processing option string "FIX nnn" or "VAR". If you use the default (stream mode),
then on most platforms (for example, UNIX and NT) the loader must scan each
physical record for the record terminator (newline character).

• Make field setting efficient.

Field setting is the process of mapping fields in the data file to their corresponding
columns in the table being loaded. The mapping function is controlled by the description
of the fields in the control file. Field setting (along with data conversion) is the biggest
consumer of CPU cycles for most loads.

– Avoid delimited fields; use positional fields. If you use delimited fields, then the loader
must scan the input data to find the delimiters. If you use positional fields, then field
setting becomes simple pointer arithmetic (very fast).

– Do not trim whitespace if you do not need to (use PRESERVE BLANKS).

• Make conversions efficient.

SQL*Loader performs character set conversion and data type conversion for you. Of
course, the quickest conversion is no conversion.

– Use single-byte character sets if you can.

– Avoid character set conversions if you can. SQL*Loader supports four character sets:

* Client character set (NLS_LANG of the client sqlldr process)

* Data file character set (usually the same as the client character set)

* Database character set

* Database national character set

Performance is optimized if all character sets are the same. For direct path loads, it is
best if the data file character set and the database character set are the same. If the
character sets are the same, then character set conversion buffers are not allocated.

• Use direct path loads.

• Use the SORTED INDEXES clause.

• Avoid unnecessary NULLIF and DEFAULTIF clauses. Each clause must be evaluated on
each column that has a clause associated with it for every row loaded.

• Use parallel direct path loads and parallel index creation when you can.

• Be aware of the effect on performance when you have large values for both the
CONCATENATE clause and the COLUMNARRAYROWS clause.

Related Topics

• Using CONCATENATE to Assemble Logical Records

Chapter 12
General Performance Improvement Hints

12-49

13
SQL*Loader Express

SQL*Loader express mode allows you to quickly and easily use SQL*Loader to load simple
data types.

• What is SQL*Loader Express Mode?
SQL*Loader express mode lets you quickly perform a load by specifying only a table
name when the table columns are all character, number, or datetime data types, and the
input data files contain only delimited character data.

• Using SQL*Loader Express Mode
Learn how to start and manage SQL*Loader using the express mode feature.

• SQL*Loader Express Mode Parameter Reference
This section provides descriptions of the parameters available in SQL*Loader express
mode.

• SQL*Loader Express Mode Command-Line Parameters for SODA Collections
Learn which SQL*Loader Express Mode command-line parameters you can use to load
SODA collections.

• SQL*Loader Express Mode Syntax Diagrams
To understand SQL*Loader express mode options, refer to these graphic form syntax
guides (sometimes called railroad diagrams or DDL diagrams).

13.1 What is SQL*Loader Express Mode?
SQL*Loader express mode lets you quickly perform a load by specifying only a table name
when the table columns are all character, number, or datetime data types, and the input data
files contain only delimited character data.

In express mode, a SQL*Loader control file is not used. Instead, SQL*Loader uses the table
column definitions found in the ALL_TAB_COLUMNS view to determine the input field order and
data types. For most other settings, it assumes default values which you can override with
command-line parameters.

Note:

The only valid parameters for use with SQL*Loader express mode are those
described in this chapter. Any other parameters will be ignored or may result in an
error.

13.2 Using SQL*Loader Express Mode
Learn how to start and manage SQL*Loader using the express mode feature.

13-1

• Starting SQL*Loader in Express Mode
To activate SQL*Loader express mode, you can simply specify your user name
and a table name.

• Default Values Used by SQL*Loader Express Mode
Learn how SQL*Loader express loads tables, what defaults it uses, and under
what conditions the defaults are changed.

• How SQL*Loader Express Mode Handles Byte Order
The type of character set used with your data file affects the byte order used with
SQL*Loader express.

13.2.1 Starting SQL*Loader in Express Mode
To activate SQL*Loader express mode, you can simply specify your user name and a
table name.

SQL*Loader prompts you for a password. For example:

Example 13-1 Starting SQL Loader in Express Mode

> sqlldr username TABLE=employees
Password:
.
.
.

SQL*Loader: Release 21.0.0.0.0 - Production on Mon Oct 16 127:19:39
2020
Version 21.0.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.

Express Mode Load, Table: EMPLOYEES
.
.
.

If you activate SQL*Loader express mode by specifying only the TABLE parameter,
then SQL*Loader uses default settings for a number of other parameters. You can
override most of the default values by specifying additional parameters on the
command line.

SQL*Loader express mode generates a log file that includes a SQL*Loader control
file. The log file also contains SQL scripts for creating the external table and
performing the load using a SQL INSERT AS SELECT statement. Neither the control file
nor the SQL scripts are used by SQL*Loader express mode. They are made available
to you in case you want to use them as a starting point to perform operations using
regular SQL*Loader or standalone external tables; the control file is for use with
SQL*Loader, whereas the SQL scripts are for use with standalone external tables
operations.

Chapter 13
Using SQL*Loader Express Mode

13-2

Related Topics

• SQL*Loader Control File Reference
The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions for a SQL*Loader job.

13.2.2 Default Values Used by SQL*Loader Express Mode
Learn how SQL*Loader express loads tables, what defaults it uses, and under what
conditions the defaults are changed.

By default, a load done using SQL*Loader express mode assumes the following, unless you
specify otherwise:

• If no data file is specified, then it looks for a file named table-name.dat in the current
directory.

• By default, SQL*Loader express uses the external tables load method. However, for
some errors, SQL*Loader express mode automatically switches from the default external
tables load method to direct path load. An example of when this can occur is if a privilege
violation caused the CREATE DIRECTORY SQL command to fail.

• SQL*Loader express fields are set up as follows:

– Names, from table column names (the order of the fields matches the table column
order)

– Types, based on table column types

– Newline, as the record delimiter

– Commas, as field delimiters

– No enclosure

– Left-right trimming

• The DEGREE_OF_PARALLELISM parameter is set to AUTO.

• Date and timestamp format use the NLS settings.

• The NLS client character set is used.

• If a table already has data in it, then new data is appended to the table.

• If you do not specify a data file, then the data, log, and bad files take the following default
names (note the %p is replaced with the process ID of the Oracle Database child
process):

– table-name.dat for the data file

– table-name.log for the SQL*Loader log file

– table-name_%p.log_xt for Oracle Database log files (for example,
emp_17228.log_xt)

– table-name_%p.bad for bad files

• If you specify one or more data files, using the DATA parameter, then the log and bad files
take the following default names (note the %p is replaced with the process ID of the server
child process.):

– table-name.log for the SQL*Loader log file

– table-name_%p.log_xt for the Oracle Database log files

Chapter 13
Using SQL*Loader Express Mode

13-3

– first-data-file_%p.bad for the bad files

Related Topics

• DATA
The SQL*Loader express mode DATA parameter specifies names of data files
containing the data that you want to load.

13.2.3 How SQL*Loader Express Mode Handles Byte Order
The type of character set used with your data file affects the byte order used with
SQL*Loader express.

In general, SQL*Loader express mode handles byte order marks in the same way that
a load performed using a SQL*Loader control file does.

In summary:

• For data files with a Unicode character set, SQL*Loader express mode checks for
a byte order mark at the beginning of the file.

• For a UTF16 data file, if a byte order mark is found, the byte order mark sets the
byte order for the data file. If no byte order mark is found, the byte order of the
system where SQL*Loader is executing is used for the data file.

• A UTF16 data file can be loaded regardless of whether or not the byte order
(endianness) is the same byte order as the system on which SQL*Loader express
is running.

• For UTF8 data files, any byte order marks found are skipped.

• A load is terminated if multiple data files are involved and they use different byte
ordering.

Related Topics

• Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

13.3 SQL*Loader Express Mode Parameter Reference
This section provides descriptions of the parameters available in SQL*Loader express
mode.

Some of the parameter names are the same as parameters used by regular
SQL*Loader, but there may be behavior differences. Be sure to read the descriptions
so you know what behavior to expect.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-4

Note:

If parameter values include quotation marks, then it is recommended that you
specify them in a parameter file. See "Use of Quotation Marks on the Data Pump
Command Line” in Parameters Available in Data Pump Export Command-Line
Mode - the issues discussed there are also pertinent to SQL*Loader express mode.

• BAD
The SQL*Loader express mode BAD parameter specifies the location and name of the
bad file.

• CHARACTERSET
The SQL*Loader express mode CHARACTERSET parameter specifies a character set you
want to use for the load.

• CSV
The SQL*Loader express mode CSV parameter lets you you specify if CSV format files
contain fields with embedded record terminators.

• DATA
The SQL*Loader express mode DATA parameter specifies names of data files containing
the data that you want to load.

• DATE_FORMAT
The SQL*Loader express mode DATE_FORMAT parameter specifies a date format that
overrides the default value for all date fields.

• DEGREE_OF_PARALLELISM
The SQL*Loader express mode DEGREE_OF_PARALLELISM parameter specifies the degree
of parallelism to use for the load.

• DIRECT
The SQL*Loader express mode DIRECT parameter specifies the load method to use,
either conventional path or direct path.

• DNFS_ENABLE
The SQL*Loader express mode DNFS_ENABLE parameter lets you enable and disable use
of the Direct NFS Client on input data files during a SQL*Loader operation.

• DNFS_READBUFFERS
The SQL*Loader express mode DNFS_READBUFFERS parameter lets you control the
number of read buffers used by the Direct NFS Client.

• ENCLOSED_BY
The SQL*Loader express mode ENCLOSED_BY parameter specifies a field enclosure string.

• EXTERNAL_TABLE
The SQL*Loader express mode EXTERNAL_TABLE parameter determines whether to load
data using the external tables option.

• FIELD_NAMES
The SQL*Loader express mode FIELD_NAMES parameter overrides the fields being in the
order of the columns in the database table.

• LOAD
The SQL*Loader express mode LOAD specifies the number of records that you want to be
loaded.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-5

• NULLIF
The SQL*Loader express mode NULLIF parameter specifies a value that is used to
determine whether a field is loaded as a NULL column.

• OPTIONALLY_ENCLOSED_BY
The SQL*Loader express mode OPTIONALLY_ENCLOSED_BY specifies an optional
field enclosure string.

• PARFILE
The SQL*Loader express mode PARFILE parameter specifies the name of a file
that contains commonly used command-line parameters.

• SILENT
The SQL*Loader express mode SILENT parameter suppresses some content that
is written to the screen during a SQL*Loader operation.

• TABLE
The SQL*Loader express mode TABLE parameter activates SQL*Loader express
mode.

• TERMINATED_BY
The SQL*Loader express mode TERMINATED_BY specifies a field terminator that
overrides the default.

• TIMESTAMP_FORMAT
The TIMESTAMP_FORMAT parameter specifies a timestamp format that you want to
use for the load.

• TRIM
The SQL*Loader express mode TRIM parameter specifies the type of field trimming
that you want to use during the load.

• USERID
The SQL*Loader express mode USERID enables you to provide provide your
Oracle username and password, so that you are not prompted for it.

13.3.1 BAD
The SQL*Loader express mode BAD parameter specifies the location and name of the
bad file.

Default

The default depends on whether any data files are specified, using the DATA
parameter.

Purpose

The BAD parameter specifies the location and name of the bad file.

Syntax

BAD=[directory/][filename]

Usage Notes

The bad file stores records that cause errors during insert or that are improperly
formatted. If you specify the BAD parameter, then you must supply either a directory or

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-6

file name, or both. If you do not specify the BAD parameter, and there are rejected records,
then the default file name is used.

The directory variable specifies a directory to which the bad file is written. The specification
can include the name of a device or a network node.

The filename variable specifies a file name recognized as valid on your platform. You must
specify only a name (and extension, if you want to use one other than .bad). Any spaces or
punctuation marks in the file name must be enclosed in single quotation marks.

The values of directory and filename are determined as follows:

• If you specify the BAD parameter with a file name, but no directory, then the directory
defaults to the current directory.

• If you specify the BAD parameter with a directory, but no file name, then the specified
directory is used, and the default is used for the file name and the extension.

The BAD parameter applies to all the files that match the specified DATA parameter, if you
specify the DATA parameter. If you do not specify the DATA parameter, then the BAD
parameter applies to the one data file (table-name.dat)

Caution:

• If the file name (either the default or one you specify) already exists, then that
file name either is overwritten, or a new version is created, depending on your
operating system.

• If multiple data files are being loaded, then Oracle recommends that you either
not specify the BAD parameter, or that you specify it with only a directory for the
bad file.

Example

The following specification creates a bad file named emp1.bad in the current directory:

> sqlldr hr TABLE=employees BAD=emp1

13.3.2 CHARACTERSET
The SQL*Loader express mode CHARACTERSET parameter specifies a character set you want
to use for the load.

Default

The NLS client character set as specified in the NLS_LANG environment variable

Purpose

The CHARACTERSET parameter specifies a character set, other than the default, to use for the
load.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-7

Syntax

CHARACTERSET=character_set_name

The character_set_name variable specifies the character set name. Normally, the
specified name must be the name of a character set that is supported by Oracle
Database.

Usage Notes

The CHARACTERSET parameter specifies the character set of the SQL*Loader input data
files. If the CHARACTERSET parameter is not specified, then the default character set for
all data files is the session character set, which is defined by the NLS_LANG
environment variable. Only character data (fields of the SQL*Loader data types CHAR,
VARCHAR, VARCHARC, numeric EXTERNAL, and the datetime and interval data types) is
affected by the character set of the data file.

For UTF-16 Unicode encoding, use the name UTF16 rather than AL16UTF16.
AL16UTF16, which is the supported character set name for UTF-16 encoded data, is
only for UTF-16 data that is in big-endian byte order. However, because you are
allowed to set up data using the byte order of the system where you create the data
file, the data in the data file can be either big-endian or little-endian. Therefore, a
different character set name (UTF16) is used. The character set name AL16UTF16 is
also supported. But if you specify AL16UTF16 for a data file that has little-endian byte
order, then SQL*Loader issues a warning message and processes the data file as
little-endian.

The CHARACTERSET parameter value is assumed to the be same for all data files.

Note:

The term UTF-16 is a general reference to UTF-16 encoding for Unicode.
The term UTF16 (no hyphen) is the specific name of the character set and is
what you should specify for the CHARACTERSET parameter when you want to
use UTF-16 encoding. This also applies to UTF-8 and UTF8.

Restrictions

None.

Example

The following example specifies the UTF-8 character set:

> sqlldr hr TABLE=employees CHARACTERSETNAME=utf8

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-8

13.3.3 CSV
The SQL*Loader express mode CSV parameter lets you you specify if CSV format files
contain fields with embedded record terminators.

Default

If the CSV parameter is not specified on the command line, then SQL*Loader express
assumes that the CSV file being loaded contains data that has no embedded characters and
no enclosures.

If CSV=WITHOUT_EMBEDDED is specified on the command line, then SQL*Loader express
assumes that the CSV file being loaded contains data that has no embedded characters and
that is optionally enclosed by '"'.

Purpose

The CSV parameter provides options that let you specify whether the comma-separated value
(CSV) format file being loaded contains fields in which record terminators are embedded.

Syntax

CSV=[WITH_EMBEDDED | WITHOUT_EMBEDDED]

• WITH_EMBEDDED — This option means that there can be record terminators included
(embedded) in a field in the record. The record terminator is newline. The default
delimiters are TERMINTATED by "," and OPTIONALLY_ENCLOSED_BY '"'. Embedded
record terminators must be enclosed.

• WITHOUT_EMBEDDED — This option means that there are no record terminators included
(embedded) in a field in the record. The record terminator is newline. The default
delimiters are TERMINATED BY "," and OPTIONALLY_ENCLOSED_BY ' " '.

Usage Notes

If the CSV file contains many embedded record terminators, then it is possible that
performance can be adversely affected by this parameter.

Restrictions

• Normally a file can be processed in parallel (split up and processed by more than one
execution server at a time). But in the case of CSV format files with embedded record
terminators, the file must be processed by only one execution server. Therefore, parallel
processing within a data file is disabled when you set the CSV parameter to
CSV=WITH_EMBEDDED.

Example

The following example processes the data files as CSV format files with embedded record
terminators.

> sqlldr hr TABLE=employees CSV=WITH_EMBEDDED

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-9

13.3.4 DATA
The SQL*Loader express mode DATA parameter specifies names of data files
containing the data that you want to load.

Default

The same name as the table name, but with an extension of .dat.

Purpose

The DATA parameter specifies names of data files containing the data that you want to
load.

Syntax

DATA=data-file-name

If you do not specify a file extension, then the default is .dat.

Usage Notes

The file specification can contain wildcards, but only in the file name and file extension,
not in a device or directory name. An asterisk (*) represents multiple characters. A
question mark (?) represents a single character. For example:

DATA='emp*.dat'

DATA='m?emp.dat'

To list multiple data file specifications (each of which can contain wild cards), you must
separate the file names by commas.

If the file name contains any special characters (for example, spaces, *, or ?), then the
entire name must be enclosed within single quotation marks.

The following are three examples of possible valid uses of the DATA parameter (the
single quotation marks would only be necessary if the file name contained special
characters):

DATA='file1','file2','file3','file4','file5','file6'

DATA='file1','file2'
DATA='file3,'file4','file5'
DATA='file6'

DATA='file1'
DATA='file2'
DATA='file3'
DATA='file4'

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-10

DATA='file5'
DATA='file6'

Caution:

If multiple data files are being loaded, and you also specify the BAD parameter, then
Oracle recommends that you specify only a directory for the bad file, not a file
name. If you specify a file name, and a file with that name already exists, then that
file either is overwritten, or a new version is created, depending on your operating
system.

Example

Assume that the current directory contains data files with the names emp1.dat, emp2.dat,
m1emp.dat, and m2emp.dat and you issue the following command:

> sqlldr hr TABLE=employees DATA='emp*','m1emp'

The command loads the emp1.dat, emp2.dat, and m1emp.dat files. The m2emp.dat file is not
loaded because it did not match any of the wildcard criteria.

13.3.5 DATE_FORMAT
The SQL*Loader express mode DATE_FORMAT parameter specifies a date format that
overrides the default value for all date fields.

Default

If the DATE_FORMAT parameter is not specified, then the NLS_DATE_FORMAT, NLS_LANGUAGE, or
NLS_DATE_LANGUAGE environment variable settings (if defined for the SQL*Loader session) are
used. If the NLS_DATE_FORMAT is not defined, then dates are assumed to be in the default
format defined by the NLS_TERRITORY setting.

Purpose

The DATE_FORMAT parameter specifies a date format that overrides the default value for all
date fields.

Syntax

DATE_FORMAT=mask

The mask is a date format mask, which normally is enclosed in double quotation marks.

Example

If the date in the data file was June 25, 2019, then the date format would be specified in the
following format:

> sqlldr hr TABLE=employees DATE_FORMAT="DD-Month-YYYY"

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-11

13.3.6 DEGREE_OF_PARALLELISM
The SQL*Loader express mode DEGREE_OF_PARALLELISM parameter specifies the
degree of parallelism to use for the load.

Default

NONE

Purpose

The DEGREE_OF_PARALLELISM parameter specifies the degree of parallelism to use
during the load operation.

Syntax and Description

DEGREE_OF_PARALLELISM=[degree-num|DEFAULT|AUTO|NONE]

If a degree-num is specified, then it must be a whole number value from 1 to n.

If DEFAULT is specified, then the default parallelism of the database (not the default
parameter value of AUTO) is used.

If AUTO is used, then Oracle Database automatically sets the degree of parallelism for
the load.

If NONE is specified, then the load is not performed in parallel.

Note:

If AUTO or DEFAULT are used for conventional and direct path loads, then this
results in no parallelism.

To optimize parallel reading and loading, Oracle recommends that you start by setting
the parameters DEGREE_OF_PARALLELISM and READER_COUNT to a small value (for
example, 4) and increase by a small amount to see if performance improves. The best
value will depend on the client and server configuration. Too large a value can result in
reduced performance. You should see a larger performance improvement when more
work is required on the server (for example, if compression is being used).

For shard loading, Oracle recommends that you let SQL*Loader set
DEGREE_OF_PARALLELISM. By default, that value by default is equal to the number of
shards. If you have a large number of shards resulting in too many threads for the
client to handle, then you can reduce the DEGREE_OF_PARALLELISM, resulting in multiple
passes over the data.

Restrictions

• Automatic parallel loading is supported for a single table only. Multiple INTO
clauses are not supported.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-12

• Non-shard parallel loading of many partitions, especially with only a few rows per
partition, may not perform well. The DEGREE_OF_PARALLELISM parameter should not be
used for this case.

Example

The following example sets the degree of parallelism for the load to 4.

DEGREE_OF_PARALLELISM=4

Related Topics

• Parallel Execution Concepts

13.3.7 DIRECT
The SQL*Loader express mode DIRECT parameter specifies the load method to use, either
conventional path or direct path.

Default

No default.

Purpose

The DIRECT parameter specifies the load method to use, either conventional path or direct
path.

Syntax

DIRECT=[TRUE|FALSE]

A value of TRUE specifies a direct path load. A value of FALSE specifies a conventional path
load.

Usage Notes

This parameter overrides the SQL*Loader express mode default load method of external
tables.

For some errors, SQL*Loader express mode automatically switches from the default external
tables load method to direct path load. An example of when this can occur is if a privilege
violation caused the CREATE DIRECTORY SQL command to fail.

If you use the DIRECT parameter to specify a conventional or direct path load, then the
following regular SQL*Loader parameters are valid to use in express mode:

• BINDSIZE
• COLUMNARRAYROWS (direct path loads only)

• DATE_CACHE
• ERRORS
• MULTITHREADING (direct path loads only)

• NO_INDEX_ERRORS (direct path loads only)

• RESUMABLE

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-13

• RESUMABLE_NAME
• RESUMABLE_TIMEOUT
• ROWS
• SKIP
• STREAMSIZE

Example

In the following example, SQL*Loader uses the direct path load method for the load
instead of external tables:

> sqlldr hr TABLE=employees DIRECT=TRUE

13.3.8 DNFS_ENABLE
The SQL*Loader express mode DNFS_ENABLE parameter lets you enable and disable
use of the Direct NFS Client on input data files during a SQL*Loader operation.

Default

TRUE

Purpose

The DNFS_ENABLE parameter lets you enable and disable use of the Direct NFS Client
on input data files during a SQL*Loader operation.

The Direct NFS Client is an API that can be implemented by file servers to allow
improved performance when Oracle accesses files on those servers.

Syntax

The syntax is as follows:

DNFS_ENABLE=[TRUE|FALSE]

Usage Notes

SQL*Loader uses the Direct NFS Client interfaces by default when it reads data files
over 1 GB. For smaller files, the operating system's I/O interfaces are used. To use the
Direct NFS Client on all input data files, use DNFS_ENABLE=TRUE.

To disable use of the Direct NFS Client for all data files, specify DNFS_ENABLE=FALSE.

The DNFS_ENABLE parameter can be used in conjunction with the DNFS_READBUFFERS
parameter, which can specify the number of read buffers used by the Direct NFS
Client.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-14

13.3.9 DNFS_READBUFFERS
The SQL*Loader express mode DNFS_READBUFFERS parameter lets you control the number of
read buffers used by the Direct NFS Client.

Default

4

Purpose

The DNFS_READBUFFERS parameter lets you control the number of read buffers used by the
Direct NFS Client. The Direct NFS Client is an API that can be implemented by file servers to
allow improved performance when Oracle accesses files on those servers.

Syntax

The syntax is as follows:

DNFS_READBUFFERS = n

Usage Notes

Using values larger than the default can compensate for inconsistent I/O from the Direct NFS
Client file server, but using larger values can also result in increased memory usage.

To use this parameter without also specifying the DNFS_ENABLE parameter, the input file must
be larger than 1 GB.

13.3.10 ENCLOSED_BY
The SQL*Loader express mode ENCLOSED_BY parameter specifies a field enclosure string.

Default

The default is that there is no enclosure character.

Purpose

The ENCLOSED_BY parameter specifies a field enclosure string.

Syntax

ENCLOSED_BY=['string'|x'hex-string']

The enclosure character must be a string or a hexadecimal string.

Usage Notes

The same string must be used to signify both the beginning and the ending of the enclosure.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-15

Example

In the following example, the field data is enclosed by the '/' character (forward slash).

> sqlldr hr TABLE=employees ENCLOSED_BY='/'

13.3.11 EXTERNAL_TABLE
The SQL*Loader express mode EXTERNAL_TABLE parameter determines whether to
load data using the external tables option.

Default

EXECUTE

Purpose

The EXTERNAL_TABLE parameter instructs SQL*Loader whether to load data using the
external tables option.

Syntax

EXTERNAL_TABLE=[NOT_USED | GENERATE_ONLY | EXECUTE]

There are three possible values:

• NOT_USED — It means the load is performed using either conventional or direct
path mode.

• GENERATE_ONLY — places all the SQL statements needed to do the load using
external tables in the SQL*Loader log file. These SQL statements can be edited
and customized. The actual load can be done later without the use of SQL*Loader
by executing these statements in SQL*Plus.

• EXECUTE — the default value in SQL*Loader express mode. Attempts to execute
the SQL statements that are needed to do the load using external tables.
However, if any of the SQL statements returns an error, then the attempt to load
stops. Statements are placed in the log file as they are executed. This means that
if a SQL statement returns an error, then the remaining SQL statements required
for the load will not be placed in the log file.

Usage Notes

The external table option uses directory objects in the database to indicate where all
data files are stored, and to indicate where output files, such as bad files and discard
files, are created. You must have READ access to the directory objects containing the
data files, and you must have WRITE access to the directory objects where the output
files are created. If there are no existing directory objects for the location of a data file
or output file, then SQL*Loader will generate the SQL statement to create one.
Therefore, when the EXECUTE option is specified, you must have the CREATE ANY
DIRECTORY privilege. If you want the directory object to be deleted at the end of the
load, then you must also have the DROP ANY DIRECTORY privilege.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-16

Note:

The EXTERNAL_TABLE=EXECUTE qualifier tells SQL*Loader to create an external table
that can be used to load data, and then execute the INSERT statement to load the
data. All files in the external table must be identified as being in a directory object.
SQL*Loader attempts to use directory objects that already exist, and that you have
privileges to access. However, if SQL*Loader does not find the matching directory
object, then it attempts to create a temporary directory object. If you do not have
privileges to create new directory objects, then the operation fails.

To work around this issue, use EXTERNAL_TABLE=GENERATE_ONLY to create the SQL
statements that SQL*Loader would try to execute. Extract those SQL statements
and change references to directory objects to be the directory object that you have
privileges to access. Then, execute those SQL statements.

Example

sqlldr hr TABLE=employees EXTERNAL_TABLE=NOT_USED

13.3.12 FIELD_NAMES
The SQL*Loader express mode FIELD_NAMES parameter overrides the fields being in the
order of the columns in the database table.

Default

NONE

Purpose

The FIELD_NAMES parameter is used to override the fields being in the order of the columns in
the database table. (By default, SQL*Loader Express uses the table column definitions found
in the ALL_TAB_COLUMNS view to determine the input field order and data types.)

An example of when this parameter could be useful is when the data in the input file is not in
the same order as the columns in the table. In such a case, you can include a field name
record (similar to a column header row for a table) in the data file and use the FIELD_NAMES
parameter to notify SQL*Loader to process the field names in the first record to determine the
order of the fields.

Syntax

FIELD_NAMES=[ALL | ALL_IGNORE | FIRST | FIRST_IGNORE | NONE]

The valid options for this parameter are as follows:

• ALL — The field name record is processed for every data file.

• ALL_IGNORE — Ignore the first (field names) record in all the data files and process the
data records normally.

• FIRST — In the first data file, process the first (field names) record. For all other data files,
there is no field names record, so the data file is processed normally.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-17

• FIRST_IGNORE — In the first data file, ignore the first (field names) record and use
table column order for the field order.

• NONE — There are no field names records in any data file, so the data files are
processed normally. This is the default.

Usage Notes

• If any field name has mixed case or special characters (for example, spaces), then
you must use either the OPTIONALLY_ENCLOSED_BY parameter, or the ENCLOSED_BY
parameter to indicate that case should be preserved, and that special characters
should be included as part of the field name.

Example

If you are loading a CSV file that contains column headers into a table, and the fields
in each row in the input file are in the same order as the columns in the table, then you
could use the following:

> sqlldr hr TABLE=employees CSV=WITHOUT_EMBEDDED
FIELD_NAMES=FIRST_IGNORE

13.3.13 LOAD
The SQL*Loader express mode LOAD specifies the number of records that you want to
be loaded.

Default

All records are loaded.

Purpose

The LOAD parameter specifies the number of records that you want to be loaded.

Syntax

LOAD=n

Usage Notes

To test that all parameters you have specified for the load are set correctly, use the
LOAD parameter to specify a limited number of records rather than loading all records.
No error occurs if fewer than the maximum number of records are found.

Example

The following example specifies that a maximum of 10 records be loaded:

> sqlldr hr TABLE=employees LOAD=10

For external tables method loads (the default load method for express mode), only
successfully loaded records are counted toward the total. So if there are 15 records in
the file and records 2 and 4 are bad, then the following records are loaded into the
table, for a total of 10 records - 1, 3, 5, 6, 7, 8, 9, 10, 11, and 12.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-18

For conventional and direct path loads, both successful and unsuccessful load attempts are
counted toward the total. So if there are 15 records in the file and records 2 and 4 are bad,
then only the following 8 records are actually loaded into the table - 1, 3, 5, 6, 7, 8, 9, and 10.

13.3.14 NULLIF
The SQL*Loader express mode NULLIF parameter specifies a value that is used to determine
whether a field is loaded as a NULL column.

Default

The default is that no NULLIF checking is done.

Syntax

NULLIF = "string"

Or:

NULLIF != "string"

Usage Notes

SQL*Loader checks the specified value against the value of the field in the record. If there is
a match using the equal (=) or not equal (!=) specification, then the field is set to NULL for that
row. Any field that has a length of 0 after blank trimming is also set to NULL.

Example

In the following example, if there are any fields whose value is a period, then those fields are
set to NULL in their respective rows.

> sqlldr hr TABLE=employees NULLIF="."

13.3.15 OPTIONALLY_ENCLOSED_BY
The SQL*Loader express mode OPTIONALLY_ENCLOSED_BY specifies an optional field
enclosure string.

Default

The default is that there is no optional field enclosure character.

Purpose

The OPTIONALLY_ENCLOSED_BY parameter specifies an optional field enclosure string.

Syntax

OPTIONALLY_ENCLOSED_BY=['string'| x'hex-string']

The enclosure character is a string or a hexadecimal string.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-19

Usage Notes

You must use the same string to signify both the beginning and the ending of the
enclosure.

Examples

The following example specifies the optional enclosure character as a double
quotation mark ("):

> sqlldr hr TABLE=employees OPTIONALLY_ENCLOSED_BY='"'

The following example specifies the optional enclosure character in hexadecimal
format:

> sqlldr hr TABLE=employees OPTIONALLY_ENCLOSED_BY=x'22'

13.3.16 PARFILE
The SQL*Loader express mode PARFILE parameter specifies the name of a file that
contains commonly used command-line parameters.

Default

There is no default

Syntax

PARFILE=parameter_file_name

Usage Notes

If any parameter values contain quotation marks, then Oracle recommends that you
use a parameter file.

Note:

Although it is not usually important, on some systems it can be necessary to
have no spaces around the equal sign (=) in the parameter specifications.

Restrictions

• For security reasons, Oracle recommends that you do not include your USERID
password in a parameter file. After you specify the parameter file at the command
line, SQL*Loader prompts you for the password. For example:

> sqlldr hr TABLE=employees PARFILE=daily_report.par
Password:

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-20

Example

Suppose you have the following parameter file, test.par:

table=employees
data='mydata*.dat'
enclosed_by='"'

When you run the following command, any fields enclosed by double quotation marks, in any
data files that match mydata*.dat, are loaded into table employees:

> sqlldr hr PARFILE=test.par
Password:

13.3.17 SILENT
The SQL*Loader express mode SILENT parameter suppresses some content that is written to
the screen during a SQL*Loader operation.

Default

\\If this parameter is not specified, then no content is suppressed.

Purpose

The SILENT parameter suppresses some of the content that is written to the screen during a
SQL*Loader operation.

Syntax

The syntax is as follows:

SILENT={HEADER | FEEDBACK | ERRORS | DISCARDS | PARTITIONS | ALL}
Use the appropriate values to suppress one or more of the following (if more than one option
is specified, they must be separated by commas):

• HEADER — Suppresses the SQL*Loader header messages that normally appear on the
screen. Header messages still appear in the log file.

• FEEDBACK — Suppresses the "commit point reached" messages and the status messages
for the load that normally appear on the screen.

• ERRORS — Suppresses the data error messages in the log file that occur when a record
generates an Oracle error that causes it to be written to the bad file. A count of rejected
records still appears.

• DISCARDS — Suppresses the messages in the log file for each record written to the
discard file. This option is ignored in express mode.

• PARTITIONS — Disables writing the per-partition statistics to the log file during a direct
load of a partitioned table. This option is meaningful only in a forced direct path operation.

• ALL — Implements all of the suppression options.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-21

Example

For example, you can suppress the header and feedback messages that normally
appear on the screen with the following command-line argument:

> sqlldr hr TABLE=employees SILENT=HEADER, FEEDBACK

13.3.18 TABLE
The SQL*Loader express mode TABLE parameter activates SQL*Loader express
mode.

Default

There is no default.

Syntax

TABLE=[schema-name.]table-name

Usage Notes

If the schema name or table name includes lower case characters, spaces, or other
special characters, then the names must be enclosed in double quotation marks and
that entire string enclosed within single quotation marks. For example:

TABLE='"hr.Employees"'

Restrictions

The TABLE parameter is valid only in SQL*Loader express mode.

Example

The following example loads the table employees in express mode:

> sqlldr hr TABLE=employees

13.3.19 TERMINATED_BY
The SQL*Loader express mode TERMINATED_BY specifies a field terminator that
overrides the default.

Default

By default, comma is the field terminator.

Purpose

The TERMINATED_BY parameter specifies a field terminator that overrides the default.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-22

Syntax

TERMINATED_BY=['string'| x'hex-string' | WHITESPACE]

The field terminator must be a string or a hexadecimal string.

Usage Notes

If you specify TERMINATED_BY=WHITESPACE, then data is read until the first occurrence of a
whitespace character (spaces, tabs, blanks, line feeds, form feeds, or carriage returns). Then
the current position is advanced until no more adjacent whitespace characters are found.
This method allows field values to be delimited by varying amounts of whitespace.

If you specify TERMINATED_BY=WHITESPACE, then null fields cannot contain just blanks or other
whitespace, because the blanks and whitespace are skipped, which can result in an error
being reported. With this option, if you have null fields in the data, then consider using
another string to indicate the null field, and use the NULLIF parameter to indicate the NULLIF
string. For example, you can use the string "NoData" to indicate a null field, and then insert
the string "NoData" in the data to indicate a null field. Specify NULLIF="NoData" to tell
SQL*Loader to set fields with the string "NoData" to NULL.

Example

In the following example, fields are terminated by the | character.

> sqlldr hr TABLE=employees TERMINATED_BY="|"

13.3.20 TIMESTAMP_FORMAT
The TIMESTAMP_FORMAT parameter specifies a timestamp format that you want to use for the
load.

Default

The default is taken from the value of the NLS_TIMESTAMP_FORMAT environment variable. If
NLS_TIMESTAMP_FORMAT is not set up, then timestamps use the default format defined in the
NLS_TERRITORY environment variable, with 6 digits of fractional precision.

Syntax

TIMESTAMP_FORMAT="timestamp_format"

Example

The following is an example of specifying a timestamp format:

> sqlldr hr TABLE=employees TIMESTAMP_FORMAT="MON-DD-YYYY HH:MI:SSXFF AM"

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-23

13.3.21 TRIM
The SQL*Loader express mode TRIM parameter specifies the type of field trimming
that you want to use during the load.

Default

The default for conventional and direct path loads is LDRTRIM. The default for external
tables loads is LRTRIM.

Purpose

The TRIM parameter specifies the type of field trimming that you want to use during the
load. Use TRIM to specify that you want spaces trimmed from the beginning of a text
field, or the end of a text field, or both. Spaces include blanks and other nonprinting
characters, such as tabs, line feeds, and carriage returns.

Syntax

TRIM=[LRTRIM | NOTRIM | LTRIM | RTRIM |LDRTRIM]

Options:

• LRTRIM specifies that you want both leading and trailing spaces trimmed.

• NOTRIM specifies that you want no characters trimmed from the field. This setting
generally yields the fastest performance.

• LTRIM specifies that you want leading spaces trimmed.

• RTRIM specifies that you want trailing spaces trimmed.

• LDRTRIM is the same as NOTRIMunless the field is a delimited field with
OPTIONALLY_ENCLOSED_BY specified, and the optional enclosures are missing for a
particular instance. In that case spaces are trimmed from the left.

Usage Notes

If you specify trimming for a field that is all spaces, then the field is set to NULL.

Restrictions

• Only LDRTRIM is supported for forced conventional path and forced direct path
loads. Any time you specify the TRIM parameter, for any value, you receive a
message reminding you of this.

• If the load is a default external tables load and an error occurs that causes
SQL*Loader express mode to use direct path load instead, then LDRTRM is used as
the trimming method, even if you specified a different method or had accepted the
external tables default of LRTRIM. A message is displayed alerting you to this
change.

To use NOTRIM, use a control file with the PRESERVE BLANKS clause.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-24

Example

The following example reads the fields, trimming all spaces on the right (trailing spaces).

> sqlldr hr TABLE=employees TRIM=RTRIM

13.3.22 USERID
The SQL*Loader express mode USERID enables you to provide provide your Oracle
username and password, so that you are not prompted for it.

Default

None.

Purpose

The USERID parameter enables you to to provide your Oracle username and password.

Syntax

USERID = [username | / | SYS]

Usage Notes

If you do not specify the USERID parameter, then you are prompted for it. If only a slash is
used, then USERID defaults to your operating system login.

If you connect as user SYS, then you must also specify AS SYSDBA in the connect string.

Restrictions

• Because the string, AS SYSDBA, contains a blank, some operating systems can require
that you place the entire connect string in quotation marks, or marked as a literal by some
other method. Some operating systems also require that you precede quotation marks on
the command line using an escape character, such as backslashes.

Refer to your operating system documentation for information about special and reserved
characters on your system.

Example

The following example starts the job for user hr:

> sqlldr USERID=hr TABLE=employees
 Password:

13.4 SQL*Loader Express Mode Command-Line Parameters for
SODA Collections

Learn which SQL*Loader Express Mode command-line parameters you can use to load
SODA collections.

Chapter 13
SQL*Loader Express Mode Command-Line Parameters for SODA Collections

13-25

SQL*Loader Express mode is a way to load simple files with no control file. When the
SODA_COLLECTION parameter is included on the command line, SQL*Loader does not
read a control file. Instead, all options to customize the load are specified through
other command line parameters.

The Express mode parameters used to load SODA collections are a subset of the
Express mode command-line parameters. Many of the command-line parameters
used when loading database tables in Express mode are also used when loading
SODA collections.

Some command line parameters, such as DIRECT and SKIP_INDEX_MAINTENANCE are
not supported, because they have no meaning when loading SODA collections.

Express Mode Parameters Supported for Use with SODA Collections

If you attempt to use any command line parameters not listed below to load SODA
collections with SQL*Loader, then you will encounter an error.

BAD
CHARACTERSET
CSV
DATA
DNFS_ENABLE
DNFS_READBUFFERS
ENCLOSED_BY
FIELD_NAMES
LOAD
NULLIF
OPTIONALLY_ENCLOSED_BY
PARFILE
SILENT
TERMINATED_BY
TRIM
USERID

Control File Options Supported for Use with SODA Collections

Command line parameters can also appear inside a control file using an OPTIONS
clause.

If you attempt to use any command line parameters not listed below to load SODA
collections with SQL*Loader, then you will encounter an error.

13.5 SQL*Loader Express Mode Syntax Diagrams
To understand SQL*Loader express mode options, refer to these graphic form syntax
guides (sometimes called railroad diagrams or DDL diagrams).

Understanding Graphic Syntax Notation

For information about the syntax notation used, see:

How to Read Syntax Diagrams

Chapter 13
SQL*Loader Express Mode Syntax Diagrams

13-26

express_init

sqlldr USERID TABLE = tablename

PARFILE = filename express_options

The following syntax diagrams show the parameters included in express_options in the
previous syntax diagram. SQL*Loader express mode parameters shown in the following
syntax diagrams are all optional and can appear in any order on the SQL*Loader command
line. Therefore, they are presented in simple alphabetical order.

Chapter 13
SQL*Loader Express Mode Syntax Diagrams

13-27

express_options

BAD = filename

CHARACTERSET = character_set_name

CSV =
WITH_EMBEDDED

WITHOUT_EMBEDDED

DATA = filename

,

DATE_FORMAT = mask

DEGREE_OF_PARALLELISM =

degree_num

DEFAULT

AUTO

NONE

DIRECT =
TRUE

FALSE

DNFS_ENABLE =
TRUE

FALSE

DNFS_READBUFFERS =
TRUE

FALSE

ENCLOSED_BY =
’char’

X’hex–char’

EXTERNAL_TABLE =

NOT_USED

GENERATE_ONLY

EXECUTE

FIELD_NAMES =

ALL

ALL_IGNORE

FIRST

FIRST_IGNORE

NONE

Chapter 13
SQL*Loader Express Mode Syntax Diagrams

13-28

express_options_cont

NULLIF

=

!=

" char_string "

X’hexstr’

BLANKS

OPTIONALLY_ENCLOSED_BY =
’char’

X’hex–char’

SILENT =

HEADER

FEEDBACK

ERRORS

DISCARDS

PARTITIONS

ALL

,

TERMINATED_BY =

WHITESPACE

X’hex–char’

’char’

TIMESTAMP_FORMAT = timestamp_format

TRIM =

LRTRIM

NOTRIM

LTRIM

RTRIM

LDRTRIM

Chapter 13
SQL*Loader Express Mode Syntax Diagrams

13-29

Part III
External Tables

To use external tables successfully, find out about external table concepts, and see examples
of what options are available to you to use external tables with Oracle Database.

• External Tables Concepts
The external tables feature is a complement to existing SQL*Loader functionality. It
enables you to access data in external sources as if it were in a table in the database.

• The ORACLE_LOADER Access Driver
Learn how to control the way external tables are accessed by using the
ORACLE_LOADER access driver parameters to modify the default behavior of the
access driver.

• The ORACLE_DATAPUMP Access Driver
The ORACLE_DATAPUMP access driver provides a set of access parameters that are unique
to external tables of the type ORACLE_DATAPUMP.

• ORACLE_HDFS and ORACLE_HIVE Access Drivers
With external tables, you can access data stored in HDFS and Hive tables on Hadoop
and Hive clients as if that data was stored in tables in an Oracle Database.

• ORACLE_BIGDATA Access Driver
With the ORACLE_BIGDATA access driver, you can access data stored in object stores as if
that data was stored in tables in an Oracle Database.

• External Tables Examples
Learn from these examples how to use the ORACLE_LOADER,
ORACLE_DATAPUMP,ORACLE_HDFS, and ORACLE_HIVE access drivers to query data in Oracle
Database and Big Data.

14
External Tables Concepts

The external tables feature is a complement to existing SQL*Loader functionality. It enables
you to access data in external sources as if it were in a table in the database.

• How Are External Tables Created?
External tables are created using the SQL CREATE TABLE...ORGANIZATION EXTERNAL
statement.

• CREATE_EXTERNAL_PART_TABLE Procedure
This procedure creates an external partitioned table on files in the Cloud. This procedure
enables you to run queries on external data in Oracle Autonomous Database, using the
ORACLE_BIGDATA driver.

• Location of Data Files and Output Files
Data files and output files must be located on the server. You must have a directory
object that specifies the location from which to read and write files.

• Access Parameters for External Tables
To modify the default behavior of the access driver for external tables, specify access
parameters.

• Data Type Conversion During External Table Use
If source and target data types do not match, then conversion errors can occur when
Oracle Database reads from external tables, and when it writes to external tables.

14.1 How Are External Tables Created?
External tables are created using the SQL CREATE TABLE...ORGANIZATION EXTERNAL
statement.

Note that SQL*Loader may be the better choice in data loading situations that require
additional indexing of the staging table. See "Behavior Differences Between SQL*Loader and
External Tables" for more information about how load behavior differs between SQL*Loader
and external tables.

Starting with Oracle Database 23c, you can load the source file name as a field in a data file
for both external tables and SQL*Loader.

As of Oracle Database 12c Release 2 (12.2.0.1), you can partition data contained in external
tables, which allows you to take advantage of the same performance improvements provided
when you partition tables stored in a database (for example, partition pruning).

Note:

External tables can be used as inline external tables in SQL statements, thus
eliminating the need to create an external table as a persistent database object in
the data dictionary. For additional information, see Oracle Database SQL Language
Reference.

14-1

When you create an external table, you specify the following attributes:

• TYPE — specifies the type of external table. Each type of external table is
supported by its own access driver.

– ORACLE_LOADER — this is the default access driver. It loads data from external
tables to internal tables. The data must come from text data files. (The
ORACLE_LOADER access driver cannot perform unloads; that is, it cannot move
data from an internal table to an external table.)

– ORACLE_DATAPUMP — this access driver can perform both loads and unloads.
The data must come from binary dump files. Loads to internal tables from
external tables are done by fetching from the binary dump files. Unloads from
internal tables to external tables are done by populating the binary dump files
of the external table. The ORACLE_DATAPUMP access driver can write dump files
only as part of creating an external table with the SQL CREATE TABLE AS
SELECT statement. After the dump file is created, it can be read any number of
times, but it cannot be modified (that is, no DML operations can be
performed).

– ORACLE_HDFS — extracts data stored in a Hadoop Distributed File System
(HDFS).

– ORACLE_HIVE — extracts data stored in Apache HIVE.

• DEFAULT DIRECTORY — specifies the default directory to use for all input and output
files that do not explicitly name a directory object. The location is specified with a
directory object, not a directory path. You must create the directory object before
you create the external table; otherwise, an error is generated. See Location of
Data Files and Output Files for more information.

• ACCESS PARAMETERS — describe the external data source and implement the type
of external table that was specified. Each type of external table has its own access
driver that provides access parameters unique to that type of external table.
Access parameters are optional. See Access Parameters.

• LOCATION — specifies the data files for the external table.

– For ORACLE_LOADER and ORACLE_DATAPUMP, the files are named in the form
directory:file. The directory portion is optional. If it is missing, then the
default directory is used as the directory for the file. If you are using the
ORACLE_LOADER access driver, then you can use wildcards in the file name: an
asterisk (*) signifies multiple characters, a question mark (?) signifies a single
character.

– For ORACLE_HDFS, the LOCATION clause is a list of Uniform Resource Identifiers
(URIs) for a directory or for a file. There is no directory object associated with
a URI.

– For ORACLE_HIVE, the LOCATION clause is not used. Instead, the Hadoop
HCatalog table is read to obtain information about the location of the data
source (which could be a file or another database).

The following examples briefly show the use of attributes for each of the access
drivers.

Chapter 14
How Are External Tables Created?

14-2

Example 14-1 Specifying Attributes for the ORACLE_LOADER Access Driver

The following example uses the ORACLE_LOADER access driver to show the use of each of
these attributes (it assumes that the default directory def_dir1 already exists):

SQL> CREATE TABLE emp_load
 2 (employee_number CHAR(5),
 3 employee_dob CHAR(20),
 4 employee_last_name CHAR(20),
 5 employee_first_name CHAR(15),
 6 employee_middle_name CHAR(15),
 7 employee_hire_date DATE)
 8 ORGANIZATION EXTERNAL
 9 (TYPE ORACLE_LOADER
 10 DEFAULT DIRECTORY def_dir1
 11 ACCESS PARAMETERS
 12 (RECORDS DELIMITED BY NEWLINE
 13 FIELDS (employee_number CHAR(2),
 14 employee_dob CHAR(20),
 15 employee_last_name CHAR(18),
 16 employee_first_name CHAR(11),
 17 employee_middle_name CHAR(11),
 18 employee_hire_date CHAR(10) date_format DATE mask
"mm/dd/yyyy"
 19)
 20)
 21 LOCATION ('info.dat')
 22);

Table created.

The information you provide through the access driver ensures that data from the data source
is processed so that it matches the definition of the external table. The fields listed after
CREATE TABLE emp_load are actually defining the metadata for the data in the info.dat
source file.

Example 14-2 Specifying Attributes for the ORACLE_DATAPUMP Access Driver

This example creates an external table named inventories_xt and populates the dump file
for the external table with the data from table inventories in the oe sample schema.

SQL> CREATE TABLE inventories_xt
2 ORGANIZATION EXTERNAL
3 (
4 TYPE ORACLE_DATAPUMP
5 DEFAULT DIRECTORY def_dir1
6 LOCATION ('inv_xt.dmp')
7)
8 AS SELECT * FROM inventories;
Table created.

Chapter 14
How Are External Tables Created?

14-3

Example 14-3 Specifying Attributes for the ORACLE_HDFS Access Driver

CREATE TABLE sales_external
(time_id DATE NOT NULL, …
 amount_sold NUMBER(10,2)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_HDFS
 ACCESS PARAMETERS (com.oracle.bigdata.cluster=hadoop1)
 LOCATION (“hdfs:/usr/sales_1.csv”, “hdfs:/usr/my_sales_*.csv”)
)

Example 14-4 Specifying Attributes for the ORACLE_HIVE Access Driver

CREATE TABLE sales_external
(time_id DATE NOT NULL, …
 amount_sold NUMBER(10,2)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_HIVE
 ACCESS PARAMETERS (com.oracle.bigdata.cluster=hadoop1

com.oracle.bigdata.tablename=default.ratings_hive_table)
);

Related Topics

• Behavior Differences Between SQL*Loader and External Tables
Oracle recommends that you review the differences between loading data with
external tables, using the ORACLE_LOADER access driver, and loading data with
SQL*Loader conventional and direct path loads.

• Oracle Database Administrator’s Guide Managing External Tables

14.2 CREATE_EXTERNAL_PART_TABLE Procedure
This procedure creates an external partitioned table on files in the Cloud. This
procedure enables you to run queries on external data in Oracle Autonomous
Database, using the ORACLE_BIGDATA driver.

Use Case

Starting with Oracle Database 23c, when you are using the ORACLE_BIGDATA driver
with object stores, you are now able to select column values from a path in external
tables. This feature enables you to query and load files in object storage that are
partitioned, which represent the partition columns for the table.

Syntax

DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE (
 table_name IN VARCHAR2,
 credential_name IN VARCHAR2,
 partitioning_clause IN CLOB,
 column_list IN CLOB,

Chapter 14
CREATE_EXTERNAL_PART_TABLE Procedure

14-4

 field_list IN CLOB DEFAULT,
 format IN CLOB DEFAULT);

Parameters

Parameter Description

table_name The name of the external table. For example: 'mysales'
credential_name The name of the credential to access the Cloud Object Storage. When

resource principal is enabled, you can use
'OCI$RESOURCE_PRINCIPAL' as the credential_name

partitioning_clause Specifies the complete partitioning clause, including the location
information for individual partitions.

If you use the partitioning_clause parameter, then the
file_url_list parameter is not allowed.

file_uri_list There are two options for the file_uri_list parameter:

• A comma-delimited list of individual file URIs without wildcards.
• A single file URI with wildcards. The wildcards can only be after

the last slash "/".

If you use the parameter file_url_list, then the
partitioning_clause parameter is not allowed. The specification
should be the root folder in a nested path, where are multiple files
within a folder structure that have the same schema. For example:

https://objectstorage.us-phoenix-1.oraclecloud.com/n/
namespace-string/b/mybucket/0/sales/month=jan2022.csv
https://objectstorage.us-phoenix-1.oraclecloud.com/n/
namespace-string/b/mybucket/0/sales/month=feb2022.csv
In this case, the root folder for the sales table is /0/sales

column_list Comma-delimited list of column names and data types for the external
table. This parameter has the following requirements, depending on the
type of the data files specified with the file_url_list parameter:

• The column_list parameter is required with unstructured files.
Using unstructured files, for example with CSV text files, the
column_list parameter must specify all the column names and
data types inside the data file as well as the partition columns
derived from the object name.

• The column_list parameter is optional with structured files. For
example, with Avro, ORC, or Parquet data files, the column_list
is not required. When the column_list is not included, the
format parameter partition_columns option must include
specifications for both column names (name) and data types
(type).

For example:

'product varchar2(100), units number, country
varchar2(100), year number, month varchar2(2)',

field_list Identifies the fields in the source files and their data types. The default
value is NULL, meaning the fields and their data types are determined
by the column_list parameter. This argument's syntax is the same as
the field_list clause in regular Oracle Database external tables.

The field_list is not required for structured files, such as Apache
Parquet files..

Chapter 14
CREATE_EXTERNAL_PART_TABLE Procedure

14-5

Parameter Description

format The format option partition_columns specifies the
DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE column names and
data types of partition columns when the partition columns are derived
from the file path, depending on the type of data file, structured or
unstructured:

• When the DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE
includes the column_list parameter and the data files are
unstructured, such as with CSV text files, partition_columns
does not include the data type. For example, use a format such as
the following for this type of partition_columns specification:

'"partition_columns":["state","zipcode"]'

The data type is not required because it is specified in the
DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE column_list
parameter.

• When the DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE does
not include the column_list parameter and the data files are
structured, such as Avro, ORC, or Parquet files, the
partition_columns option includes both the column name,
name sub-clause, and the data type, type sub-clause. For
example, the following shows a partition_columns
specification:

'"partition_columns":[
 {"name":"country",
"type":"varchar2(10)"},
 {"name":"year", "type":"number"},
 {"name":"month",
"type":"varchar2(10)"}]'

If the data files are unstructured and the type sub-clause is specified
with partition_columns, the type sub-clause is ignored.

For object names that are not based on hive format, the order of the
partition_columns specified columns must match the order as they
appear in the object name in the file path specified in the
file_url_list parameter.

Usage Notes

• You cannot call this procedure with both partitioning_clause and
file_url_list parameters.

• Specifying the column_list parameter is optional with structured data files,
including Avro, Parquet, or ORC data files. If column_list is not specified, the
format parameter partition_columns option must include both name and type.

• The column_list parameter is required with unstructured data files, such as CSV
text files.

• The procedure DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE supports external
partitioned files in the supported cloud object storage services, including:

– Oracle Cloud Infrastructure Object Storage

Chapter 14
CREATE_EXTERNAL_PART_TABLE Procedure

14-6

– Azure Blob Storage

– Amazon S3-Compatible, including: Oracle Cloud Infrastructure Object Storage,
Google Cloud Storage, and Wasabi Hot Cloud storage.

– GitHub Repository

• When you call DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE with the file_url_list
parameter, the types for columns specified in the Cloud Object Store file name must be
one of the following types:

VARCHAR2(n)
NUMBER(n)
NUMBER(p,s)
NUMBER
DATE
TIMESTAMP(9)

• The default record delimiter is detected newline. With detected newline, DBMS_CLOUD
tries to automatically find the correct newline character to use as the record delimiter.
DBMS_CLOUD first searches for the Windows newline character \r\n. If it finds the Windows
newline character, this is used as the record delimiter for all files in the procedure. If a
Windows newline character is not found, DBMS_CLOUD searches for the UNIX/Linux
newline character \n, and if it finds one it uses \n as the record delimiter for all files in the
procedure. If the source files use a combination of different record delimiters, you may
encounter an error such as, "KUP-04020: found record longer than buffer size
supported". In this case, you need to either modify the source files to use the same
record delimiter or only specify the source files that use the same record delimiter.

• The external partitioned tables that you create with
DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE include two invisible columns, file$path and
file$name. These columns help identify which file a record is coming from.

– file$path: Specifies the file path text up to the beginning of the object name.

– file$name: Specifies the object name, including all the text that follows the bucket
name.

Examples

Example using the partitioning_clause parameter:

BEGIN
 DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE(
 table_name =>'PET1',
 credential_name =>'OBJ_STORE_CRED',
 format => json_object('delimiter' value ',', 'recorddelimiter' value
'newline', 'characterset' value 'us7ascii'),
 column_list => 'col1 number, col2 number, col3 number',
 partitioning_clause => 'partition by range (col1)
 (partition p1 values less than (1000)
location
 (''&base_URL//file_11.txt'')
 ,
 partition p2 values less than (2000)
location
 (''&base_URL/file_21.txt'')

Chapter 14
CREATE_EXTERNAL_PART_TABLE Procedure

14-7

 ,
 partition p3 values less than (3000)
location
 (''&base_URL/file_31.txt'')
)'
);
 END;
/

Example using the file_uri_list and column_list parameters with unstructured
data files:

BEGIN
 DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE(
 table_name => 'MYSALES',
 credential_name => 'DEF_CRED_NAME',
 file_uri_list => 'https://objectstorage.us-phoenix-1.oraclecloud.com/n/
namespace-string/b/bucketname/o/*.csv',
 column_list => 'product varchar2(100), units number, country varchar2(100),
year number, month varchar2(2)',
 field_list => 'product, units', --[Because country, year and month are not
in the file, they are not listed in the field list]
 format => '{"type":"csv", "partition_columns":
["country","year","month"]}');
END;
/

Example using the file_uri_list without the column_list parameter with structured
data files:

BEGIN
 DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE(
 table_name => 'MYSALES',
 credential_name => 'DEF_CRED_NAME',
 DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE(
 table_name => 'MYSALES',
 credential_name => 'DEF_CRED_NAME',
 file_uri_list => 'https://objectstorage.us-phoenix-1.oraclecloud.com/n/
namespace-string/b/bucketname/o/*.parquet',
 format =>
 json_object('type' value 'parquet', 'schema' value 'first',
 'partition_columns' value
 json_array(
 json_object('name' value 'country', 'type' value
'varchar2(100)'),
 json_object('name' value 'year', 'type' value
'number'),
 json_object('name' value 'month', 'type' value
'varchar2(2)')
)
)
);

Chapter 14
CREATE_EXTERNAL_PART_TABLE Procedure

14-8

END;
/

Example with a partitioned Apache Parquet source. You can run this example, because the
data is public.

In this case, data is organized into months. The resource principal was enabled, as shown
below. However, because this is a public data source, it is not required.

Note:

The list of columns is not required, because it is derived from the Parquet source.
You do need to specify the data type for month, because there is no column list.

BEGIN
 DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE(
 credential_name => 'OCI$RESOURCE_PRINCIPAL',
 table_name => 'sales',
 file_uri_list => 'https://objectstorage.us-ashburn-1.oraclecloud.com/n/
c4u04/b/moviestream_gold/o/custsales/*.parquet',
 format => '{"type":"parquet","partition_columns":
[{name:"month","type":"varchar2(20)"}]}'
);
END;
/
mgubar: Finally, here is the generated ddl:
CREATE TABLE sales
 ("DAY_ID" TIMESTAMP (6),
 "GENRE_ID" NUMBER(19,0),
 "MOVIE_ID" NUMBER(19,0),
 "CUST_ID" NUMBER(19,0),
 "APP" VARCHAR2(4000 BYTE),
 "DEVICE" VARCHAR2(4000 BYTE),
 "OS" VARCHAR2(4000 BYTE),
 "PAYMENT_METHOD" VARCHAR2(4000 BYTE),
 "LIST_PRICE" BINARY_DOUBLE,
 "DISCOUNT_TYPE" VARCHAR2(4000 BYTE),
 "DISCOUNT_PERCENT" BINARY_DOUBLE,
 "ACTUAL_PRICE" BINARY_DOUBLE,
 "MONTH" VARCHAR2(20 BYTE)
)
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_BIGDATA
 DEFAULT DIRECTORY "DATA_PUMP_DIR"
 ACCESS PARAMETERS
 (com.oracle.bigdata.fileformat=parquet
com.oracle.bigdata.filename.columns=["month"]
com.oracle.bigdata.file_uri_list="https://objectstorage.us-
ashburn-1.oraclecloud.com/n/c4u04/b/moviestream_gold/o/custsales/*.parquet"
com.oracle.bigdata.credential.schema="ADMIN"
com.oracle.bigdata.credential.name="OCI$RESOURCE_PRINCIPAL"
com.oracle.bigdata.trimspaces=notrim

Chapter 14
CREATE_EXTERNAL_PART_TABLE Procedure

14-9

)
)
 REJECT LIMIT 0
 PARTITION BY LIST ("MONTH")
 (PARTITION "P1" VALUES (('2019-01'))
 LOCATION
 ('https://objectstorage.us-ashburn-1.oraclecloud.com/n/c4u04/b/
moviestream_gold/o/custsales/month=2019-01/*.parquet'
),
 PARTITION "P2" VALUES (('2019-02'))
 LOCATION
 ('https://objectstorage.us-ashburn-1.oraclecloud.com/n/c4u04/b/
moviestream_gold/o/custsales/month=2019-02/*.parquet'
),
 PARTITION "P3" VALUES (('2019-03'))
 LOCATION
 ('https://objectstorage.us-ashburn-1.oraclecloud.com/n/c4u04/b/
moviestream_gold/o/custsales/month=2019-03/*.parquet'
),
 PARTITION "P4" VALUES (('2019-04'))
 LOCATION
 ('https://objectstorage.us-ashburn-1.oraclecloud.com/n/c4u04/b/
moviestream_gold/o/custsales/month=2019-04/*.parquet'
),
 ...
 PARTITION "P24" VALUES (('2020-12'))
 LOCATION
 ('https://objectstorage.us-ashburn-1.oraclecloud.com/n/c4u04/b/
moviestream_gold/o/custsales/month=2020-12/*.parquet'
))
 PARALLEL ;

Example of not requiring a field list. Parquet is a structured file. Because the file is
Parquet, the field list is derived from the structured file.

CREATE TABLE ADMIN.EXT_CUSTSALES
 (DAY_ID TIMESTAMP (6),
 GENRE_ID NUMBER(19,0),
 MOVIE_ID NUMBER(19,0),
 CUST_ID NUMBER(19,0),
 APP VARCHAR2(4000 BYTE),
 DEVICE VARCHAR2(4000 BYTE),
 OS VARCHAR2(4000 BYTE),
 PAYMENT_METHOD VARCHAR2(4000 BYTE),
 LIST_PRICE BINARY_DOUBLE,
 DISCOUNT_TYPE VARCHAR2(4000 BYTE),
 DISCOUNT_PERCENT BINARY_DOUBLE,
 ACTUAL_PRICE BINARY_DOUBLE
) DEFAULT COLLATION USING_NLS_COMP
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_BIGDATA
 DEFAULT DIRECTORY DATA_PUMP_DIR
 ACCESS PARAMETERS
 (com.oracle.bigdata.fileformat=parquet

Chapter 14
CREATE_EXTERNAL_PART_TABLE Procedure

14-10

com.oracle.bigdata.trimspaces=notrim
)
 LOCATION
 ('https://objectstorage.us-ashburn-1.oraclecloud.com/n/c4u04/b/
moviestream_landing/o/sales_sample/*.parquet'
)
)
 REJECT LIMIT UNLIMITED
 PARALLEL ;

Related Topics

• field_list

• DBMS_CLOUD Package File URI Formats

14.3 Location of Data Files and Output Files
Data files and output files must be located on the server. You must have a directory object
that specifies the location from which to read and write files.

Note:

The information in this section about directory objects does not apply to data files
for the ORACLE_HDFS access driver or ORACLE_HIVE access driver. With the
ORACLE_HDFS driver, the location of data is specified with a list of URIs for a directory
or for a file, and there is no directory object associated with a URI. The ORACLE_HIVE
driver does not specify a data source location; it reads the Hive metastore table to
get that information, so no directory object is needed.

The access driver runs inside the database server. This behavior is different from
SQL*Loader, which is a client program that sends the data to be loaded over to the server.
This difference has the following implications:

• The server requires access to files that the access driver can load.

• The server must create and write the output files created by the access driver: the log file,
bad file, discard file, and also any dump files created by the ORACLE_DATAPUMP access
driver.

To specify the location from which to read and write files, the access driver requires that you
use a directory object. A directory object maps a name to a directory name on the file system.
For example, the following statement creates a directory object named ext_tab_dir that is
mapped to a directory located at /usr/apps/datafiles.

CREATE DIRECTORY ext_tab_dir AS '/usr/apps/datafiles';

DBAs or any user can create directory objects with the CREATE ANY DIRECTORY privilege.

Chapter 14
Location of Data Files and Output Files

14-11

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/file-uri-formats.html#GUID-5D3E1614-ADF2-4DB5-B2B2-D5613F10E4FA

Note:

To use external tables in an Oracle Real Applications Cluster (Oracle RAC)
configuration, you must ensure that the directory object path is on a cluster-
wide file system.

After a directory is created, the user creating the directory object must grant READ and
WRITE privileges on the directory to other users. These privileges must be explicitly
granted, rather than assigned by using roles. For example, to allow the server to read
files on behalf of user scott in the directory named by ext_tab_dir, the user who
created the directory object must execute the following command:

GRANT READ ON DIRECTORY ext_tab_dir TO scott;

The Oracle Database SYS user is the only user that can own directory objects, but the
SYS user can grant other Oracle Database users the privilege to create directory
objects.READ or WRITE permission to a directory object means that only Oracle
Database reads or writes that file on your behalf. You are not given direct access to
those files outside of Oracle Database, unless you have the appropriate operating
system privileges. Similarly, Oracle Database requires permission from the operating
system to read and write files in the directories.

14.4 Access Parameters for External Tables
To modify the default behavior of the access driver for external tables, specify access
parameters.

When you create an external table of a particular type, you can specify access
parameters to modify the default behavior of the access driver. Each access driver has
its own syntax for access parameters. Oracle provides the following access drivers for
use with external tables: ORACLE_LOADER , ORACLE_DATAPUMP, ORACLE_HDFS, and
ORACLE_HIVE.

Note:

These access parameters are collectively referred to as the
opaque_format_spec in the SQL CREATE TABLE...ORGANIZATION EXTERNAL
statement. The ACCESS parameter clause allows SQL comments.

Chapter 14
Access Parameters for External Tables

14-12

See Also:

• The ORACLE_LOADER Access Driver

• The ORACLE_DATAPUMP Access Driver

• ORACLE_HDFS and ORACLE_HIVE Access Drivers

• Oracle Database SQL Language Reference for information about specifying
opaque_format_spec when using the SQL CREATE TABLE statement

14.5 Data Type Conversion During External Table Use
If source and target data types do not match, then conversion errors can occur when Oracle
Database reads from external tables, and when it writes to external tables.

Conversion Errors When Reading External Tables

When you select rows from an external table, the access driver performs any transformations
necessary to make the data from the data source match the data type of the corresponding
column in the external table. Depending on the data and the types of transformations
required, the transformation can encounter errors.

To illustrate the types of data conversion problems that can occur when reading from an
external table, suppose you create the following external table, KV_TAB_XT, with two columns:
KEY, whose data type is VARCHAR2(4), and VAL, whose data type is NUMBER.

SQL> CREATE TABLE KV_TAB_XT (KEY VARCHAR2(4), VAL NUMBER)
2 ORGANIZATION EXTERNAL
3 (DEFAULT DIRECTORY DEF_DIR1 LOCATION (‘key_val.csv’));

The external table KV_TAB_XT uses default values for the access parameters. The following is
therefore true:

• Records are delimited by new lines.

• The data file and the database have the same character set.

• The fields in the data file have the same name and are in the same order as the columns
in the external table.

• The data type of the field is CHAR(255).

• Data for each field is terminated by a comma.

The records in the data file for the KV_TAB_XT external table should have the following:

• A string, up to 4 bytes long. If the string is empty, then the value for the field is NULL.

• A terminating comma.

• A string of numeric characters. If the string is empty, then the value for this field is NULL.

• An optional terminating comma.

Chapter 14
Data Type Conversion During External Table Use

14-13

When the access driver reads a record from the data file, it verifies that the length of
the value of the KEY field in the data file is less than or equal to 4, and it attempts to
convert the value of the VAL field in the data file to an Oracle Database number.

If the length of the value of the KEY field is greater than 4, or if there is a non-numeric
character in the value for VAL, then the ORACLE_LOADER access driver rejects the row.
The result is that a copy of the row is written to the bad file, and an error message is
written to the log file.

All access drivers must handle conversion from the data type of fields in the source for
the external table and the data type for the columns of the external tables. The
following are some examples of the types of conversions and checks that access
drivers perform:

• Convert character data from character set used by the source data to the
character set used by the database.

• Convert from character data to numeric data.

• Convert from numeric data to character data.

• Convert from character data to a date or timestamp.

• Convert from a date or timestamp to character data.

• Convert from character data to an interval data type.

• Convert from an interval data type to a character data.

• Verify that the length of data value for a character column does not exceed the
length limits of that column.

When the access driver encounters an error doing the required conversion or
verification, it can decide how to handle the error. When the ORACLE_LOADER and
ORACLE_DATAPUMP access drivers encounter errors, they reject the record, and write an
error message to the log file. In that event it is as if that record were not in the data
source. When the ORACLE_HDFS and ORACLE_HIVE access drivers encounter errors, the
value of the field in which the error is encountered is set to NULL. This action is
consistent with the behavior of how Hive handles errors in Hadoop.

Even after the access driver has converted the data from the data source to match the
data type of the external table columns, the SQL statement that is accessing the
external table could require additional data type conversions. If any of these additional
conversions encounter an error, then the entire statement fails. (The exception to this
is if you use the DML error logging feature in the SQL statement to handle these
errors.) These conversions are the same as any that typically can be required when
running a SQL statement. For example, suppose you change the definition of the
KV_TAB_XT external table to only have columns with character data types, and then you
run an INSERT statement to load data from the external table into another table that
has a NUMBER data type for column VAL:

SQL> CREATE TABLE KV_TAB_XT (KEY VARCHAR2(20), VAL VARCHAR2(20))
2 ORGANIZATION EXTERNAL
3 (DEFAULT DIRECTORY DEF_DIR1 LOCATION (‘key_val.csv’));
4 CREATE TABLE KV_TAB (KEY VARCHAR2(4), VAL NUMBER);
5 INSERT INTO KV_TAB SELECT * FROM KV_TAB_XT;

In this example, the access driver will not reject a record if the data for VAL contains a
non-numeric character, because the data type of VAL in the external table is now

Chapter 14
Data Type Conversion During External Table Use

14-14

VARCHAR2 (instead of NUMBER). However, SQL processing now must handle the conversion
from character data type in KV_TAB_XT to number data type in KV_TAB. If there is a non-
numeric character in the value for VAL in the external table, then SQL raises a conversion
error, and rolls back any rows that were inserted. To avoid conversion errors in SQL Oracle
recommends that you make the data types of the columns in the external table match the
data types expected by other tables or functions that will be using the values of those
columns.

Conversion Errors When Writing to External Tables

The ORACLE_DATAPUMP access driver allows you to use a CREATE TABLE AS SELECT statement
to unload data into an external table. Data conversion occurs if the data type of a column in
the SELECT expression does not match the data type of the column in the external table. If
SQL encounters an error while converting the data type, then SQL stops the statement, and
the data file will not be readable.

To avoid problems with conversion errors that cause the operation to fail, the data type of the
column in the external table should match the data type of the column in the source table or
expression used to write to the external table. This is not always possible, because external
tables do not support all data types. In these cases, the unsupported data types in the source
table must be converted into a data type that the external table can support. The following
CREATE TABLE statement shows an example of this conversion:

CREATE TABLE LONG_TAB_XT (LONG_COL CLOB)
ORGANIZATION EXTERNAL...SELECT TO_LOB(LONG_COL) FROM LONG_TAB;

The source table named LONG_TAB has a LONG column. Because of that, the corresponding
column in the external table being created, LONG_TAB_XT, must be a CLOB, and the SELECT
subquery that is used to populate the external table must use the TO_LOB operator to load the
column.

Note:

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new
applications developed with later releases, Oracle strongly recommends that you
use CLOB and NCLOB data types for large amounts of character data.

Chapter 14
Data Type Conversion During External Table Use

14-15

15
The ORACLE_LOADER Access Driver

Learn how to control the way external tables are accessed by using the ORACLE_LOADER
access driver parameters to modify the default behavior of the access driver.

• About the ORACLE_LOADER Access Driver
The ORACLE_LOADER access driver provides a set of access parameters unique to external
tables of the type ORACLE_LOADER.

• access_parameters Clause
The access_parameters clause contains comments, record formatting, and field
formatting information.

• record_format_info Clause
Learn how to parse, label and manage record information with the record_format_info
clause and its subclauses.

• field_definitions Clause
Learn how to name the fields in the data file and specify how to find them in records
using the field_definitions clause.

• column_transforms Clause
The optional ORACLE_LOADER access drive COLUMN TRANSFORMS clause provides
transforms that you can use to describe how to load columns in the external table that do
not map directly to columns in the data file.

• Parallel Loading Considerations for the ORACLE_LOADER Access Driver
The ORACLE_LOADER access driver attempts to divide large data files into chunks that can
be processed separately.

• Performance Hints When Using the ORACLE_LOADER Access Driver
This topic describes some performance hints when using the ORACLE_LOADER access
driver.

• Restrictions When Using the ORACLE_LOADER Access Driver
This section lists restrictions to be aware of when you use the ORACLE_LOADER access
driver.

• Reserved Words for the ORACLE_LOADER Access Driver
When identifiers (for example, column or table names) are specified in the external table
access parameters, certain values are considered to be reserved words by the access
parameter parser.

15.1 About the ORACLE_LOADER Access Driver
The ORACLE_LOADER access driver provides a set of access parameters unique to external
tables of the type ORACLE_LOADER.

You can use the access parameters to modify the default behavior of the access driver. The
information you provide through the access driver ensures that data from the data source is
processed so that it matches the definition of the external table.

15-1

To use the external table management features that the ORACLE_LOADER access
parameters provide, you must have some knowledge of the file format and record
format (including character sets and field data types) of the data files on your platform.
You must also know enough about SQL to be able to create an external table, and to
perform queries against it.

You can find it helpful to use the EXTERNAL_TABLE=GENERATE_ONLY parameter in
SQL*Loader to obtain the proper access parameters for a given SQL*Loader control
file. When you specify GENERATE_ONLY, all the SQL statements needed to do the load
using external tables, as described in the control file, are placed in the SQL*Loader log
file. You can edit and customize these SQL statements. You can perform the actual
load later without the use of SQL*Loader by executing these statements in SQL*Plus.

Note:

• It is sometimes difficult to understand ORACLE_LOADER access driver
parameter syntax without reference to other ORACLE_LOADER access
driver parameters. If you have difficulty understanding the syntax of a
particular parameter, then refer to it in context with other referenced
parameters.

• Be aware that in ORACLE_LOADER access driver parameter examples
that show a CREATE TABLE...ORGANIZATION EXTERNAL statement,
followed by an example of contents of the data file for the external table,
the contents of the data file in the example are not part of the CREATE
TABLE statement. They are present in the example only to help complete
the example.

• When identifiers (for example, column or table names) are specified in
the external table access parameters, certain values are considered to
be reserved words by the access parameter parser. If a reserved word is
used as an identifier, then it must be enclosed in double quotation marks.

Related Topics

• EXTERNAL_TABLE
The EXTERNAL_TABLE parameter instructs SQL*Loader whether to load data using
the external tables option.

• Reserved Words for the ORACLE_LOADER Access Driver
When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by
the access parameter parser.

• Oracle Database Administrator’s Guide

15.2 access_parameters Clause
The access_parameters clause contains comments, record formatting, and field
formatting information.

Default

None.

Chapter 15
access_parameters Clause

15-2

Syntax

The syntax for the access_parameters clause is as follows:

comments record_format_info field_definitions column_transforms

Purpose

The description of the data in the data source is separate from the definition of the external
table. This means that:

• The source file can contain more or fewer fields than there are columns in the external
table

• The data types for fields in the data source can be different from the columns in the
external table

The access driver ensures that data from the data source is processed so that it matches the
definition of the external table.

Note:

These access parameters are collectively referred to as the opaque_format_spec in
the SQL CREATE TABLE...ORGANIZATION EXTERNAL statement.

See Also:

Oracle Database SQL Language Reference for information about specifying
opaque_format_spec when using the SQL CREATE TABLE...ORGANIZATION
EXTERNAL statement

comments

Comments are lines that begin with two hyphens followed by text. Comments must be placed
before any access parameters, for example:

--This is a comment.
--This is another comment.
RECORDS DELIMITED BY NEWLINE

All text to the right of the double hyphen is ignored, until the end of the line.

record_format_info

The record_format_info clause is an optional clause that contains information about the
record, such as its format, the character set of the data, and what rules are used to exclude
records from being loaded. For a full description of the syntax, see record_format_info
Clause.

Chapter 15
access_parameters Clause

15-3

field_definitions

The field_definitions clause is used to describe the fields in the data file. If a data
file field has the same name as a column in the external table, then the data from the
field is used for that column. For a full description of the syntax, see field_definitions
Clause.

column_transforms

The column_transforms clause is an optional clause used to describe how to load
columns in the external table that do not map directly to columns in the data file. This
is done using the following transforms: NULL, CONSTANT, CONCAT, and LOBFILE. For a full
description of the syntax, see column_transforms Clause.

15.3 record_format_info Clause
Learn how to parse, label and manage record information with the
record_format_info clause and its subclauses.

• Overview of record_format_info Clause
The record_format_info clause contains information about the record, such as its
format, the character set of the data, and what rules are used to exclude records
from being loaded.

• FIXED Length
Use the record_format_info FIXED clause to identify the records in external
tables as all having a fixed size of length bytes.

• VARIABLE size
Use the record_format_info VARIABLE clause to indicate that the records have a
variable length

• DELIMITED BY
Use the record_format_info DELIMITED BY clause to delimit the end-of-record
character.

• XMLTAG
Use the record_format_info XMLTAG clause to specify XML tags that are used to
load subdocuments from an XML document.

• CHARACTERSET
Use the record_format_info CHARACTERSET clause to specify the character set of
the data file.

• PREPROCESSOR
To specify your own preprocessor program that you want to run for every data file,
use the record_format_info PREPROCESSOR clause.

• PREPROCESSOR_TIMEOUT
To extend the timeout period for preprocessor programs, use the
record_format_info PREPROCESSOR_TIMEOUT clause.

• EXTERNAL VARIABLE DATA
To load dump files into the Oracle SQL Connector for HDFS that are generated
with the ORACLE_DATAPUMP access driver, use the EXTERNAL VARIABLE DATA clause.

Chapter 15
record_format_info Clause

15-4

• LANGUAGE
The LANGUAGE clause allows you to specify a language name (for example, FRENCH), from
which locale-sensitive information about the data can be derived.

• TERRITORY
The TERRITORY clause allows you to specify a territory name to further determine input
data characteristics.

• DATA IS...ENDIAN
The DATA IS...ENDIAN clause indicates the endianness of data whose byte order may
vary, depending on the platform that generated the data file.

• BYTEORDERMARK [CHECK | NOCHECK]
Use the record_format_info BYTEORDERMARK clause to specify whether the data file
should be checked for the presence of a byte-order mark (BOM).

• STRING SIZES ARE IN
Use the record_format_info STRING SIZES ARE IN clause to indicate whether the
lengths specified for character strings are in bytes or characters.

• LOAD WHEN
Use the record_format_info LOAD WHEN clause to identify the records that should be
passed to the database.

• BADFILE | NOBADFILE
Use the record_format_info BADFILE clause to name the file to which records are
written when they cannot be loaded because of errors.

• DISCARDFILE | NODISCARDFILE
Use the record_format_info DISCARDFILE clause to name the file to which records are
written that fail the condition in the LOAD WHEN clause.

• LOGFILE | NOLOGFILE
Use the record_format_info LOGFILE clause to name the file that contains messages
generated by the external tables utility while it was accessing data in the data file.

• SKIP
Use the record_format_info SKIP clause to skip the specified number of records in the
data file before loading.

• FIELD NAMES
Use the record_format_info FIELD NAMES clause to specify field order in data files.

• READSIZE
The READSIZE parameter specifies the size of the read buffer used to process records.

• DATE_CACHE

• string
A string is a quoted series of characters or hexadecimal digits.

• condition_spec
The condition_spec specifies one or more conditions that are joined by Boolean
operators.

• [directory object name:] [filename]
The [directory object name:] [filename] clause is used to specify the name of an
output file (BADFILE, DISCARDFILE, or LOGFILE).

• condition
To compare a range of bytes or a field from the record against a constant string, you can
use the ORACLE_LOADER condition clause

Chapter 15
record_format_info Clause

15-5

• IO_OPTIONS clause
To specify whether the operating system uses direct input/output to read data files
from disk, or uses a cache for reading the data files, use the ORACLE_LOADER
records clause IO_OPTIONS.

• DNFS_DISABLE | DNFS_ENABLE
To disable and enable use of the Direct NFS Client on input data files during an
external tables operation, use DNFS_DISABLE or DNFS_ENABLE.

• DNFS_READBUFFERS
The DNFS_READBUFFERS parameter of the record_format_info clause is used to
control the number of read buffers used by the Direct NFS Client.

15.3.1 Overview of record_format_info Clause
The record_format_info clause contains information about the record, such as its
format, the character set of the data, and what rules are used to exclude records from
being loaded.

The PREPROCESSOR clause allows you to optionally specify the name of a user-supplied
program that will run and modify the contents of a data file so that the ORACLE_LOADER
access driver can parse it.

The record_format_info clause is optional. The syntax for the record_format_info
clause is as follows:

RECORDS

FIXED

VARIABLE
integer

DELIMITED BY

DETECTED

NEWLINE

string

XMLTAG string

et_record_spec_options

The et_record_spec_options clause allows you to optionally specify additional
formatting information. You can specify as many of the formatting options as you want,
in any order. The syntax of the options is as follows:

Chapter 15
record_format_info Clause

15-6

CHARACTERSET string

PREPROCESSOR

directory_spec :

file_spec

LANGUAGE

TERRITORY
string

DATA IS
LITTLE

BIG
ENDIAN

BYTEORDERMARK
CHECK

NOCHECK

STRING SIZES ARE IN
BYTES

CHARACTERS

LOAD WHEN condition_spec

et_output_files

READSIZE integer

DISABLE_DIRECTORY_LINK_CHECK

DATE_CACHE

SKIP
integer

FIELD_NAMES

FIRST FILE

IGNORE

ALL FILES

IGNORE

NONE

IO_OPTIONS (
DIRECTIO

NODIRECTIO
)

DNFS_ENABLE

DNFS_DISABLE

DNFS_READBUFFERS integer

The following et_output_files diagram shows the options for specifying the bad, discard,
and log files. For each of these clauses, you must supply either a directory object name or a
file name, or both.

Chapter 15
record_format_info Clause

15-7

NOBADFILE

BADFILE

directory object name : filename

NODISCARDFILE

DISCARDFILE

directory object name : filename

NOLOGFILE

LOGFILE

directory object name : filename

15.3.2 FIXED Length
Use the record_format_info FIXED clause to identify the records in external tables as
all having a fixed size of length bytes.

Default

None.

Purpose

Enables you to identify the records in external tables as all having a fixed size of
length bytes.

Usage Notes

The size specified for FIXED records must include any record termination characters,
such as newlines. Compared to other record types, fixed-length fields in fixed-length
records are the easiest field and record formats for the access driver to process.

Example

The following is an example of using FIXED records. In this example, we assume that
there is a 1-byte newline character at the end of each record in the data file. After the
create table command using FIXED, you see an example of the data file that you can
load with it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS FIXED 20 FIELDS (first_name
CHAR(7),
 last_name CHAR(8),
 year_of_birth
CHAR(4)))
 LOCATION ('info.dat'));

Alvin Tolliver1976
KennethBaer 1963
Mary Dube 1973

Chapter 15
record_format_info Clause

15-8

15.3.3 VARIABLE size
Use the record_format_info VARIABLE clause to indicate that the records have a variable
length

Default

None.

Purpose

Use the VARIABLE clause to indicate that the records have a variable length, and that each
record is preceded by a character string containing a number with the count of bytes for the
record. The length of the character string containing the count field is the size argument that
follows the VARIABLE parameter. Note that size indicates a count of bytes, not characters. The
count at the beginning of the record must include any record termination characters, but it
does not include the size of the count field itself. The number of bytes in the record
termination characters can vary depending on how the file is created and on what platform it
is created.

Example

In the following example of using VARIABLE records, there is a 1-byte newline character at the
end of each record in the data file. After the SQL example, you see an example of a data file
that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS VARIABLE 2 FIELDS TERMINATED BY ','
 (first_name CHAR(7),
 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('info.dat'));

21Alvin,Tolliver,1976,
19Kenneth,Baer,1963,
16Mary,Dube,1973,

15.3.4 DELIMITED BY
Use the record_format_info DELIMITED BY clause to delimit the end-of-record character.

Default

None

Purpose

The DELIMITED BY clause is used to indicate the character that identifies the end of a record.

If you specify DELIMITED BY NEWLINE then the actual value used is platform-specific. On Unix
or Linux operating systems, NEWLINE is assumed to be '\n'. On Microsoft Windows operating
systems, NEWLINE is assumed to be '\r\n'.

Chapter 15
record_format_info Clause

15-9

If you are unsure what record delimiter was used when a data file was created, then
running an external table query with DELIMITED BY NEWLINE can result in files that are
incorrectly loaded. The query can be run without identifying what record delimiter was
used when the data file was created. For example, you can work on a Unix or Linux
operating system and use a file that was created in Windows format. If you specify
RECORDS DELIMITED BY NEWLINE on the UNIX or Linux operating system, the delimiter
is automatically assumed to be '\n'. However, because the file was created in
Windows format, in which the records are delimited by '\r\n', the file is incorrectly
uploaded to the UNIX or Linux operating system.

To resolve problems of different record delimiters, use this syntax:

RECORDS DELIMITED BY DETECTED NEWLINE

With this syntax, the ORACLE_LOADER access driver scans the data looking first for a
Windows delimiter ('\r\n'). If a Windows delimiter is not found, then the access driver
looks for a Unix or Linux delimiter ('\n'). The first delimiter found is the one used as the
record delimiter.

After a record delimiter is found, the access driver identifies that delimiter as the end of
the record. For this reason, if the data contains an embedded delimiter character in a
field before the end of the record, then you cannot use the DETECTED keyword. This is
because the ORACLE_LOADER access driver incorrectly assumes that the delimiter in the
field denotes the end of the record. As a result, the current and all subsequent records
in the file cannot parse correctly.

You cannot mix newline delimiters in the same file. When the ORACLE_LOADER access
driver finds the first delimiter, then that is the delimiter that it identifies for the records in
the file. The access driver then processes all subsequent records in the file by using
the same newline character as the delimiter..

If you specify DELIMITED BY string, then string can be either text or a series of
hexadecimal digits enclosed within quotation marks and prefixed by OX or X. If the
string is text, then the text is converted to the character set of the data file, and the
result is used for identifying record boundaries.

If the following conditions are true, then you must use hexadecimal digits to identify the
delimiter:

• The character set of the access parameters is different from the character set of
the data file.

• Some characters in the delimiter string cannot be translated into the character set
of the data file.

The hexadecimal digits are converted into bytes, and there is no character set
translation performed on the hexadecimal string.

If the end of the file is found before the record terminator, then the access driver
proceeds as if a terminator was found, and all unprocessed data up to the end of the
file is considered part of the record.

Chapter 15
record_format_info Clause

15-10

Note:

Do not include any binary data, including binary counts for VARCHAR and VARRAW, in a
record that has delimiters. Doing so could cause errors or corruption, because the
binary data will be interpreted as characters during the search for the delimiter.

Example

The following is an example of using DELIMITED BY records.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS DELIMITED BY '|' FIELDS TERMINATED BY
','
 (first_name CHAR(7),
 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('info.dat'));

Alvin,Tolliver,1976|Kenneth,Baer,1963|Mary,Dube,1973

Related Topics

• string
A string is a quoted series of characters or hexadecimal digits.

15.3.5 XMLTAG
Use the record_format_info XMLTAG clause to specify XML tags that are used to load
subdocuments from an XML document.

Default

None

Purpose

You can use the XMLTAG clause of the ORACLE_LOADER access driver to specify XML tags that
are used to load subdocuments from an XML document. The access driver searches the data
file for documents enclosed by the tags you identify with the clause, and loads those
documents as separate rows in the external table.

The XMLTAG clause accepts a list of one or more strings. The strings are used to build tags
that ORACLE_LOADER uses to search for subdocuments in the data file. The tags specified in
the access parameters do not include the "<" and ">" delimiters.

The ORACLE_LOADER access driver starts at the beginning of the file, and looks for the first
occurrence of any of the tags listed in the XMLTAG clause. When it finds a match, it then
searches for the corresponding closing tag. For example, if the tag is "ORDER_ITEM”, then
ORACLE_LOADER looks for the text string “<ORDER_ITEM>”, starting at the beginning of the file.
When it finds an occurrence of “<ORDER_ITEM>” it then looks for “</ORDER_ITEM>”. Everything
found between the <ORDER_ITEM> and </ORDER_ITEM> tags is part of the document

Chapter 15
record_format_info Clause

15-11

loaded for the row. ORACLE_LOADER then searches for the next occurrence of any of the
tags, starting from the first character after the closing tag.

The ORACLE_LOADER access driver is not parsing the XML document to the elements
that match the tag names; it is only doing a string search through a text file. If the
external table is being accessed in parallel, then ORACLE_LOADER splits large files up so
that different sections are read independently. When it starts reading a section of the
data file, it starts looking for one of the tags specified by XMLTAG. If it reaches the end
of a section and is still looking for a matching end tag, then ORACLE_LOADER continues
reading into the next section until the matching end tag is found.

Restrictions When Using XMLTAG

• The XMLTAG clause cannot be used to load data files that have elements nested
inside of documents of the same element. For example, if a data file being loaded
with XMLTAG(‘FOO’) contains the following data:

<FOO><BAR><FOO></FOO></BAR></FOO>

then ORACLE_LOADER extracts everything between the first <FOO> and the first </
FOO> as a document, which does not constitute a valid document.

Similarly, if XMLTAG(“FOO”,”BAR”) is specified and the data file contains the
following:

<FOO><BAR></BAR></FOO>

then <BAR> and </BAR> are loaded, but as the document for "FOO".

• The limit on how large an extracted sub-document can be is determined by the
READSIZE access parameter. If the ORACLE_LOADER access driver sees a
subdocument larger than READSIZE, then it returns an error.

Example Use of the XMLTAG Clause

Suppose you create an external table T_XT as follows:

CREATE TABLE "T_XT"
(
 "C0" VARCHAR2(2000)
)
ORGANIZATION external
(
 TYPE oracle_loader
 DEFAULT DIRECTORY DMPDIR
 ACCESS PARAMETERS
 (
 RECORDS
 XMLTAG ("home address", "work address"," home phone ")
 READSIZE 1024
 SKIP 0
 FIELDS NOTRIM
 MISSING FIELD VALUES ARE NULL
 (
 "C0" (1:2000) CHAR(2000)

Chapter 15
record_format_info Clause

15-12

)
)
 location
 (
 't.dat'
)
)REJECT LIMIT UNLIMITED
/
exit;

Assume the contents of the data file are as follows:

<first name>Lionel</first name><home address>23 Oak St, Tripoli, CT</home
address><last name>Rice</last name>

You could then perform the following SQL query:

SQL> SELECT C0 FROM T_XT;

C0
--
<home address>23 Oak St, Tripoli, CT</home address>

15.3.6 CHARACTERSET
Use the record_format_info CHARACTERSET clause to specify the character set of the data
file.

Default

None.

Purpose

The CHARACTERSET string clause identifies the character set of the data file. If a character
set is not specified, then the data is assumed to be in the default character set for the
database.

Note:

The settings of NLS environment variables on the client have no effect on the
character set used for the database.

Related Topics

• string
A string is a quoted series of characters or hexadecimal digits.

• Oracle Database Globalization Support Guide

Chapter 15
record_format_info Clause

15-13

15.3.7 PREPROCESSOR
To specify your own preprocessor program that you want to run for every data file, use
the record_format_info PREPROCESSOR clause.

Default

None.

Purpose

Caution:

There are security implications to consider when using the PREPROCESSOR
clause.

If the file you want to load contains data records that are not in a format supported by
the ORACLE_LOADER access driver, then use the PREPROCESSOR clause to specify a user-
supplied preprocessor program that will execute for every data file. Note that the
program specification must be enclosed in a shell script if it uses arguments (see the
description of file_spec).

The preprocessor program converts the data to a record format supported by the
access driver and then writes the converted record data to standard output (stdout),
which the access driver reads as input.

Syntax

The syntax of the PREPROCESSOR clause is as follows:

PREPROCESSOR

directory_spec :

file_spec

directory_spec

Specifies the directory object containing the name of the preprocessor program to
execute for every data file. The user accessing the external table must have the
EXECUTE privilege for the directory object that is used. If directory_spec is omitted,
then the default directory specified for the external table is used.

Caution:

For security reasons, to store preprocessor programs, Oracle strongly
recommends that you use a separate directory. Do not use the default
directory. Do not store any other files in the directory in which preprocessor
programs are stored.

Chapter 15
record_format_info Clause

15-14

To maintain security, the preprocessor program must reside in a directory object, so that
access to it can be controlled . Your operating system administrator must create a directory
corresponding to the directory object, and and must verify that the operating system Oracle
user for the database has access to that directory. Database administrators then must ensure
that only approved users are granted permissions to the directory object associated with the
directory path. Although multiple database users can have access to a directory object, only
those with the EXECUTE privilege can run a preprocessor in that directory. No existing
database user with read-write privileges to a directory object will be able to use the
preprocessing feature. As a DBA, you can prevent preprocessors from ever being used by
never granting the EXECUTE privilege to anyone for a directory object. Refer to Oracle
Database SQL Language Reference for information about how to grant the EXECUTE
privilege.

file_spec

The name of the preprocessor program. It is appended to the path name associated with the
directory object that is being used (either the directory_spec or the default directory for the
external table). The file_spec cannot contain an absolute or relative directory path.

If the preprocessor program requires any arguments (for example, gunzip -c), then you must
specify the program name and its arguments in an executable shell script (or on Microsoft
Windows operating systems, in a batch (.bat) file). Shell scripts and batch files have certain
requirements, as discussed in the following sections.

It is important to verify that the correct version of the preprocessor program is in the operating
system directory.

The following is an example of specifying the PREPROCESSOR clause without using a shell or
batch file:

SQL> CREATE TABLE xtab (recno varchar2(2000))
 2 ORGANIZATION EXTERNAL (
 3 TYPE ORACLE_LOADER
 4 DEFAULT DIRECTORY data_dir
 5 ACCESS PARAMETERS (
 6 RECORDS DELIMITED BY NEWLINE
 7 PREPROCESSOR execdir:'zcat'
 8 FIELDS (recno char(2000)))
 9 LOCATION ('foo.dat.gz'))
 10 REJECT LIMIT UNLIMITED;
Table created.

Using Shell Scripts With the PREPROCESSOR Clause on Linux Operating Systems

To use shell scripts on Linux, the following conditions must be true:

• The shell script must reside in directory_spec.

• The full path name must be specified for system commands such as gunzip.

• The preprocessor shell script must have EXECUTE permissions.

• The data file listed in the external table LOCATION clause should be referred to by $1.

Chapter 15
record_format_info Clause

15-15

The following example shows how to specify a shell script on the PREPROCESSOR clause
when creating an external table.

SQL> CREATE TABLE xtab (recno varchar2(2000))
 2 ORGANIZATION EXTERNAL (
 3 TYPE ORACLE_LOADER
 4 DEFAULT DIRECTORY data_dir
 5 ACCESS PARAMETERS (
 6 RECORDS DELIMITED BY NEWLINE
 7 PREPROCESSOR execdir:'uncompress.sh'
 8 FIELDS (recno char(2000)))
 9 LOCATION ('foo.dat.gz'))
 10 REJECT LIMIT UNLIMITED;
Table created.

Using Batch Files With The PREPROCESSOR Clause on Windows Operating
Systems

To use shell scripts on Microsoft Windows, the following conditions must be true:

• The batch file must reside in directory_spec.

• The full path name must be specified for system commands such as gunzip.

• The preprocessor batch file must have EXECUTE permissions.

• The first line of the batch file should contain @echo off. The reason for this
requirement is that when the batch file is run, the default is to display the
commands being executed, which has the unintended side-effect of the echoed
commands being treated as input to the external table access driver.

• To represent the input from the location clause, %1 should be used. (Note that this
differs from Unix and Linux-style shell scripts where the location clause is
referenced by $1.)

• A full path should be specified to any executables in the batch file (sed.exe in the
following example). Note also that the MKS Toolkit may not exist on all Microsoft
Windows installations, so commands such as sed.exe may not be available.

The batch file used on Microsoft Windows must have either a .bat or .cmd
extension. Failure to do so (for example, trying to specify the preprocessor script
as sed.sh) results in the following error:

SQL> select * from foo ;
select * from foo
*
ERROR at line 1:

ORA-29913: error in executing ODCIEXTTABLEFETCH callout
ORA-29400: data cartridge error
KUP-04095: preprocessor command
C:/Temp\sed.sh encountered error
"CreateProcess Failure for Preprocessor:
C:/Temp\sed.sh, errorcode: 193

Chapter 15
record_format_info Clause

15-16

The following is a simple example of using a batch file with the external table PREPROCESSOR
option on Windows. In this example a batch file uses the stream editor (sed.exe) utility to
perform a simple transformation of the input data.

SQL> create table deptXT (deptno char(2),
 2 dname char(14),
 3 loc char(13)
 4)
 5 organization external
 6 (
 7 type ORACLE_LOADER
 8 default directory def_dir1
 9 access parameters
 10 (
 11 records delimited by newline
 12 badfile 'deptXT.bad'
 13 logfile 'deptXT.log'
 14 preprocessor exec_dir:'sed.bat'
 15 fields terminated by ','
 16 missing field values are null
 17)
 18 location ('deptXT.dat')
 19)
 20 reject limit unlimited ;

Table created.

select * from deptxt ;

Where deptxt.dat contains:

20,RESEARCH,DALLAS
30,SALES,CHICAGO
40,OPERATIONS,BOSTON
51,OPERATIONS,BOSTON

The preprocessor program sed.bat has the following content:

@echo off
c:/mksnt/mksnt/sed.exe -e 's/BOSTON/CALIFORNIA/' %1

The PREPROCESSOR option passes the input data (deptxt.dat) to sed.bat. If you then select
from the deptxt table, the results show that the LOC column in the last two rows, which used
to be BOSTON, is now CALIFORNIA.

SQL> select * from deptxt ;

DE DNAME LOC
-- -------------- -------------
20 RESEARCH, DALLAS
30 SALES CHICAGO
40 OPERATIONS CALIFORNIA
51 OPERATIONS CALIFORNIA

Chapter 15
record_format_info Clause

15-17

4 rows selected.

Usage Notes for Parallel Processing with the PREPROCESSOR Clause

External tables treat each data file specified on the LOCATION clause as a single
granule. To make the best use of parallel processing with the PREPROCESSOR clause,
Oracle recommends that the data that you want to load is split into multiple files
(granules). Note that external tables limits the degree of parallelism to the number of
data files present. For example, if you specify a degree of parallelism of 16, but have
only 10 data files, then in effect the degree of parallelism is 10; this is because 10 child
processes are busy, and 6 are idle. To process data more efficiently, avoid idle child
processes. If you do specify a degree of parallelism, then try to ensure that the degree
of parallelism you specify is no larger than the number of data files, so that all child
processes are kept busy. Refer to Oracle Database VLDB and Partitioning Guide for
more information about granules of parallelism.

Also note that you cannot use the same preprocessor script that you use for file
system files to process object store data. If you want to use the preprocessor for object
store data, then you must write a preprocessor script that can access the object store
data, and modify the data. For example, on Linux or Unix systems, in this case, $1
represents a source such as https://www.yoururl.example.com/yourdata:

@echo off
#!/bin/sh/
your_script_or_plsql_function_to_display_objectstore_contents($1) |
sed -e 's/BOSTON/CALIFORNIA/'

With this syntax, the preprocessor obtains your data, and sends it to stdout, and pipes
it for the access driver to read.

Restrictions When Using the PREPROCESSOR Clause

• The PREPROCESSOR clause is not available on databases that use the Oracle
Database Vault feature.

• The PREPROCESSOR clause does not work in conjunction with the COLUMN
TRANSFORMS clause.

Related Topics

• Guidelines for Securing the ORACLE_LOADER Access Driver

• Oracle Database SQL Language Reference GRANT

15.3.8 PREPROCESSOR_TIMEOUT
To extend the timeout period for preprocessor programs, use the record_format_info
PREPROCESSOR_TIMEOUT clause.

Default

None.

Chapter 15
record_format_info Clause

15-18

Purpose

If you encounter a timeout when running your preprocessor, and you think that the
preprocessor requires additional time to run, than you can specify a value (in seconds) for
PREPROCESSOR_TIMEOUT to wait for your preprocessor to begin producing output to the access
driver.

Syntax

The syntax of the PREPROCESSOR_TIMEOUT clause is as follows, where seconds is a numeric
value indicating the number of seconds before a timeout is triggered:

PREPROCESSOR_TIMEOUT seconds

Example

The following is a scenario of how you can use the PREPROCESSOR clause with the
PREPROCESSOR_TIMEOUT clause to extend the timeout limit for a preprocessor:

Suppose you have a preprocessor whose purpose is to convert data from lowercase to
uppercase:

#!/bin/sh
 /bin/cat $1 | /bin/tr '[:lower:]''[:upper:]'

Next, suppose you have a department data file with the following content:

10,accounting,new yorK
20,research,dallas
30,sales,chicago
40,operations,boston

Then you create this data file as an external table:

SQL> create table deptXT (deptno char(2),
 2 dname char(14),
 3 loc char(13)
 4)
 5 organization external
 6 (
 7 type ORACLE_LOADER
 8 default directory def_dir1
 9 access parameters
 10 (
 11 records delimited by newline
 12 badfile 'deptXT.bad'
 13 logfile 'deptXT.log'
 14 preprocessor exec_dir:'tr.sh'
 15 fields terminated by ','
 16 missing field values are null
 17)
 18 location ('deptxt.dat')
 19)
 20 reject limit unlimited ;

Table created.

SQL>
SQL> set echo on

Chapter 15
record_format_info Clause

15-19

SQL> set feedback on
SQL> select * from deptXT ;

DE DNAME LOC
-- -------------- -------------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

4 rows selected.

Note that the department name (DNAME) and location (LOC) data are changed from
lowercase to uppercase.

Suppose that as you add data to the department table, the script takes longer to
process, and you encounter timeout errors. To resolve this issue, you can add
PREPROCESSOR_TIMEOUT to the CREATE TABLE statement. In the following example,
PREPROCESSOR_TIMEOUT (in bold font) is set to 300 seconds:

create table deptXT_1
(
deptno char(2),
dname char(14),
loc char(13)
)
organization external (
type oracle_loader
default directory DEF_DIR1
access parameters (
records delimited by newline
PREPROCESSOR DEF_DIR1:'tr.sh'
PREPROCESSOR_TIMEOUT 300
fields terminated by ','
missing field values are null
)
LOCATION
 (
 'deptxt.dat'
)
) PARALLEL REJECT LIMIT UNLIMITED;

15.3.9 EXTERNAL VARIABLE DATA
To load dump files into the Oracle SQL Connector for HDFS that are generated with
the ORACLE_DATAPUMP access driver, use the EXTERNAL VARIABLE DATA clause.

Default

None.

Purpose

When you specify the EXTERNAL VARIABLE DATA clause, the ORACLE_LOADER access
driver is used to load dump files that were generated with the ORACLE_DATAPUMP access
driver.

Chapter 15
record_format_info Clause

15-20

Note:

The EXTERNAL VARIABLE DATA clause is valid only for use with the Oracle SQL
Connector for Hadoop Distributed File System (HDFS). See Oracle Big Data
Connectors User's Guide for more information about the Oracle SQL Connector for
HDFS.

Syntax and Description

EXTERNAL VARIABLE DATA

LOGFILE

NOLOGFILE

READSIZE

PREPROCESSOR

You can only use the following access parameters with the EXTERNAL VARIABLE DATA clause:

• LOGFILE | NOLOGFILE

• READSIZE

• PREPROCESSOR

Note:

The parameter DISABLE_DIRECTORY_LINK_CHECK is desupported.

Example

In the following example of using the EXTERNAL VARIABLE DATA clause, the following scenario
is true:

• The deptxt1.dmp dump file was previously generated by the ORACLE_DATAPUMP access
driver.

• The tkexcat program specified by the PREPROCESSOR parameter is a user-supplied
program used to manipulate the input data.

CREATE TABLE deptxt1
(
 deptno number(2),
 dname varchar2(14),
 loc varchar2(13)
)
ORGANIZATION EXTERNAL
(
 TYPE ORACLE_LOADER

Chapter 15
record_format_info Clause

15-21

 DEFAULT DIRECTORY dpump_dir
 ACCESS PARAMETERS
 (
 EXTERNAL VARIABLE DATA
 LOGFILE 'deptxt1.log'
 READSIZE=10000
 PREPROCESSOR tkexcat
)
 LOCATION ('deptxt1.dmp')
)
REJECT LIMIT UNLIMITED
;

Related Topics

• LOGFILE | NOLOGFILE
Use the record_format_info LOGFILE clause to name the file that contains
messages generated by the external tables utility while it was accessing data in
the data file.

• READSIZE
The READSIZE parameter specifies the size of the read buffer used to process
records.

• PREPROCESSOR
To specify your own preprocessor program that you want to run for every data file,
use the record_format_info PREPROCESSOR clause.

15.3.10 LANGUAGE
The LANGUAGE clause allows you to specify a language name (for example, FRENCH),
from which locale-sensitive information about the data can be derived.

The following are some examples of the type of information that can be derived from
the language name:

• Day and month names and their abbreviations

• Symbols for equivalent expressions for A.M., P.M., A.D., and B.C.

• Default sorting sequence for character data when the ORDER BY SQL clause is
specified

• Writing direction (right to left or left to right)

• Affirmative and negative response strings (for example, YES and NO)

See Also:

Oracle Database Globalization Support Guide for a listing of Oracle-
supported languages

Chapter 15
record_format_info Clause

15-22

15.3.11 TERRITORY
The TERRITORY clause allows you to specify a territory name to further determine input data
characteristics.

For example, in some countries a decimal point is used in numbers rather than a comma (for
example, 531.298 instead of 531,298).

See Also:

Oracle Database Globalization Support Guide for a listing of Oracle-supported
territories

15.3.12 DATA IS...ENDIAN
The DATA IS...ENDIAN clause indicates the endianness of data whose byte order may vary,
depending on the platform that generated the data file.

Purpose

Indicates the endianness of data whose byte order may vary depending on the platform that
generated the data file.

Usage Notes

Fields of the following types are affected by this clause:

• INTEGER
• UNSIGNED INTEGER
• FLOAT
• BINARY_FLOAT
• DOUBLE
• BINARY_DOUBLE
• VARCHAR (numeric count only)

• VARRAW (numeric count only)

• Any character data type in the UTF16 character set

• Any string specified by RECORDS DELIMITED BY string, and in the UTF16 character set

Microsoft Windows-based platforms generate little-endian data. Big-endian platforms include
Oracle Solaris and IBM zSeries Based Linux. If the DATA IS...ENDIAN clause is not specified,
then the data is assumed to have the same endianness as the platform where the access
driver is running. UTF-16 data files can have a mark at the beginning of the file indicating the
endianness of the data. If present, then this mark overrides the DATA IS...ENDIAN clause.

Chapter 15
record_format_info Clause

15-23

15.3.13 BYTEORDERMARK [CHECK | NOCHECK]
Use the record_format_info BYTEORDERMARK clause to specify whether the data file
should be checked for the presence of a byte-order mark (BOM).

Default

CHECK

Syntax

BYTEORDERMARK [CHECK | NOCHECK]

Purpose

The BYTEORDERMARK clause is used to specify whether the data file should be checked
for the presence of a byte-order mark (BOM). This clause is meaningful only when the
character set is Unicode.

BYTEORDERMARK NOCHECK indicates that the data file should not be checked for a BOM
and that all the data in the data file should be read as data.

BYTEORDERMARK CHECK indicates that the data file should be checked for a BOM. This is
the default behavior for a data file in a Unicode character set.

Usage Notes

The following are examples of some possible scenarios:

• If the data is specified as being little or big-endian, and CHECK is specified, and it is
determined that the specified endianness does not match the data file, then an
error is returned. For example, suppose you specify the following:

DATA IS LITTLE ENDIAN
BYTEORDERMARK CHECK

If the BOM is checked in the Unicode data file, and the data is actually big-endian,
then an error is returned because you specified little-endian.

• If a BOM is not found, and no endianness is specified with the DATA IS...ENDIAN
parameter, then the endianness of the platform is used.

• If BYTE ORDER MARK NOCHECK is specified, and the DATA IS...ENDIAN parameter
specified an endianness, then that endian value is used. Otherwise, the
endianness of the platform is used.

Related Topics

• Understanding how SQL*Loader Manages Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

Chapter 15
record_format_info Clause

15-24

15.3.14 STRING SIZES ARE IN
Use the record_format_info STRING SIZES ARE IN clause to indicate whether the lengths
specified for character strings are in bytes or characters.

Default

None.

Syntax

STRING SIZES ARE IN [BYTES | CHARACTERS]

Purpose

The STRING SIZES ARE IN clause is used to indicate whether the lengths specified for
character strings are in bytes or characters. If this clause is not specified, then the access
driver uses the mode that the database uses. Character types with embedded lengths (such
as VARCHAR) are also affected by this clause. If this clause is specified, then the embedded
lengths are a character count, not a byte count. Specifying STRING SIZES ARE IN
CHARACTERS is needed only when loading multibyte character sets, such as UTF16.

15.3.15 LOAD WHEN
Use the record_format_info LOAD WHEN clause to identify the records that should be passed
to the database.

Default

Syntax

The syntax of the LOAD WHEN clause is as follows, where condition_spec are condition
specifications:

LOAD WHEN condition_spec

Purpose

The LOAD WHEN condition_spec clause is used to identify the records that should be passed
to the database. The evaluation method varies:

• If the condition_spec references a field in the record, then the clause is evaluated only
after all fields have been parsed from the record, but before any NULLIF or DEFAULTIF
clauses have been evaluated.

• If the condition specification references only ranges (and no field names), then the clause
is evaluated before the fields are parsed. This use case is helpful where the records in
the file that you do not want to be loaded cannot be parsed into the current record
definition without errors.

Example

The following is an examples of using LOAD WHEN:

LOAD WHEN (empid != BLANKS)
LOAD WHEN ((dept_id = "SPORTING GOODS" OR dept_id = "SHOES") AND total_sales != 0)

Chapter 15
record_format_info Clause

15-25

Related Topics

• condition_spec
The condition_spec specifies one or more conditions that are joined by Boolean
operators.

15.3.16 BADFILE | NOBADFILE
Use the record_format_info BADFILE clause to name the file to which records are
written when they cannot be loaded because of errors.

Default

Create a bad file with default name. See Purpose for details.

Syntax

BADFILE name | NOBADFILE

Purpose

The BADFILE clause names the file to which records are written when they cannot be
loaded because of errors. For example, a record would be written to the bad file if a
field in the data file could not be converted to the data type of a column in the external
table. The purpose of the bad file is to have one file where all rejected data can be
examined and fixed so that it can be loaded. If you do not intend to fix the data, then
you can use the NOBADFILE option to prevent creation of a bad file, even if there are
bad records.

If you specify the BADFILE clause, then you must supply either a directory object name
or file name, or both. See [directory object name:] [filename].

If you specify NOBADFILE, then a bad file is not created.

If neither BADFILE nor NOBADFILE is specified, then the default is to create a bad file if
at least one record is rejected. The name of the file is the table name followed by _%p,
where %p is replaced with the PID of the process creating the file. The file is given an
extension of .bad. If the table name contains any characters that could be interpreted
as directory navigation (for example, %, /, or *), then those characters are not included
in the output file name.

Records that fail the LOAD WHEN clause are not written to the bad file, but instead are
written to the discard file. Also, any errors in using a record from an external table
(such as a constraint violation when using INSERT INTO...AS SELECT... from an
external table) will not cause the record to be written to the bad file.

Related Topics

• [directory object name:] [filename]
The [directory object name:] [filename] clause is used to specify the name
of an output file (BADFILE, DISCARDFILE, or LOGFILE).

Chapter 15
record_format_info Clause

15-26

15.3.17 DISCARDFILE | NODISCARDFILE
Use the record_format_info DISCARDFILE clause to name the file to which records are
written that fail the condition in the LOAD WHEN clause.

Default

Create a discard file with default name. See Purpose for details.

Syntax

DISCARDFILE name | NODISCARDFILE

Purpose

The DISCARDFILE clause names the file to which records are written that fail the condition in
the LOAD WHEN clause. The discard file is created when the first record for discard is
encountered. If the same external table is accessed multiple times, then the discard file is
rewritten each time. If there is no need to save the discarded records in a separate file, then
use NODISCARDFILE.

If you specify DISCARDFILE, then you must supply either a directory object name or file name,
or both. See [directory object name:] [filename].

If you specify NODISCARDFILE, then a discard file is not created.

If neither DISCARDFILE nor NODISCARDFILE is specified, then the default is to create a discard
file if at least one record fails the LOAD WHEN clause. The name of the file is the table name
followed by _%p, where %p is replaced with the PID of the process creating the file. The file is
given an extension of .dcs. If the table name contains any characters that could be
interpreted as directory navigation (for example, %, /, or *), then those characters are not
included in the file name.

Related Topics

• [directory object name:] [filename]
The [directory object name:] [filename] clause is used to specify the name of an
output file (BADFILE, DISCARDFILE, or LOGFILE).

15.3.18 LOGFILE | NOLOGFILE
Use the record_format_info LOGFILE clause to name the file that contains messages
generated by the external tables utility while it was accessing data in the data file.

Default

Use an existing file, or create a log file with default name. See Purpose for details.

Syntax

LOGFILE name | NOLOGFILE

Purpose

The LOGFILE clause names the file that contains messages generated by the external tables
utility while it was accessing data in the data file. If a log file already exists by the same

Chapter 15
record_format_info Clause

15-27

name, then the access driver reopens that log file and appends new log information to
the end. This is different from bad files and discard files, which overwrite any existing
file. The NOLOGFILE clause is used to prevent creation of a log file.

If you specify LOGFILE, then you must supply either a directory object name or file
name, or both. See [directory object name:] [filename].

If you specify NOLOGFILE, then a log file is not created.

If neither LOGFILE nor NOLOGFILE is specified, then the default is to create a log file.
The name of the file is the table name followed by _%p, where %p is replaced with the
PID of the process creating the file. The file is given an extension of .log. If the table
name contains any characters that could be interpreted as directory navigation (for
example, %, /, or *), then those characters are not included in the file name.

Related Topics

• [directory object name:] [filename]
The [directory object name:] [filename] clause is used to specify the name
of an output file (BADFILE, DISCARDFILE, or LOGFILE).

15.3.19 SKIP
Use the record_format_info SKIP clause to skip the specified number of records in
the data file before loading.

Default

None (0)

Syntax

The syntax is as follows, where num is the number of records to skip (Default 0).

SKIP = num

Purpose

The SKIP clause skips the specified number of records in the data file before loading.
You can specify this clause only when nonparallel access is being made to the data. If
there is more than one data file in the same location for the same table, then the SKIP
clause causes the ORACLE_LOADER driver to skip the specified number of records in the
first data file only.

15.3.20 FIELD NAMES
Use the record_format_info FIELD NAMES clause to specify field order in data files.

Default

NONE

Syntax

FIELD NAMES {FIRST FILE | FIRST IGNORE | ALL FILES | ALL IGNORE| NONE}

The FIELD NAMES options are:

Chapter 15
record_format_info Clause

15-28

• FIRST FILE — Indicates that the first data file contains a list of field names for the data in
the first record. This list uses the same delimiter as the data in the data file. This record is
read and used to set up the mapping between the fields in the data file and the columns
in the target table. This record is skipped when the data is processed. This option can be
useful if the order of the fields in the data file is different from the order of the columns in
the table.

• FIRST IGNORE — Indicates that the first data file contains a list of field names for the data
in the first record, but that the information should be ignored. This record is skipped when
the data is processed, but is not used for setting up the fields.

• ALL FILES — Indicates that all data files contain a list of field names for the data in the
first record. The ordering of the fields in the datafiles can be in any order. The order is
specified by the first row in each file, which specifies to the access driver that the fields
are in a different order than the columns in the external table.

• ALL IGNORE — Indicates that all data files contain a list of field names for the data in the
first record, but that the information should be ignored. This record is skipped when the
data is processed in every data file, but it is not used for setting up the fields.

• NONE — Indicates that the data file contains normal data in the first record. This is the
default option.

Purpose

Use the FIELD NAMES clause to specify the field order of data files for the first row of the data
file using one of the options. For example, if FIELD NAMES FIRST FILE is specified, then only
the first data file has the row header. If FIELD NAMES ALL FILES is specified, then all data
files will have the row header.

Restrictions

• The FIELD NAMES clause does not trim whitespace between field names in data files.

For example, if a data file has field names deptno, dname, loc (with whitespace
between field names) then specifying FIELD NAMES can fail with "KUP-04117: Field name
LOC was not found in the access parameter field list or table."

• Field names in data files cannot use quotations. For example, the following column field
names are not supported:

deptno,"dname",loc
• Embedded delimiters are not supported in the first column header row.

Example

Typically fields in a data file where you want to generate a table with columns (COL1, COL2,
COL3) are in the same order in the data file as they will be in the table. However, in the
following example, the ordering of data file fields is diffferent in deptxt1.dat and
deptxt2.dat. Specifying FIELD NAMES ALL FILES enables data fields in differing field name
order in one or more datafiles to be queried correctly:

[admin@example]$ cat /tmp/deptxt1.dat
deptno,dname,loc
10,ACCOUNTING,NEW YORK
20,RESEARCH,DALLAS
30,SALES,CHICAGO
40,OPERATIONS,BOSTON

Chapter 15
record_format_info Clause

15-29

[admin@example]$ cat /tmp/deptxt2.dat
dNamE,lOc,DEPTNO
ACCOUNTING,NEW YORK,11
RESEARCH,DALLAS,21
SALES,CHICAGO,31
OPERATIONS,BOSTON,41

[admin@example]$ sql @xt

Connected.

Directory created.

SQL> create table deptXT
 2 (
 3 deptno number(2),
 4 dname varchar2(14),
 5 loc varchar2(13)
 6)
 7 organization external
 8 (
 9 type ORACLE_LOADER
 10 DEFAULT DIRECTORY DATA_DIR
 11 access parameters
 12 (
 13 records delimited by newline
 14 field names all files
 15 logfile 'deptxt.log'
 16 badfile 'deptxt.bad'
 17 fields terminated by ','
 18 missing field values are null
 19)
 20 location ('deptxt?.dat')
 21)
 22 reject limit unlimited
 23 ;

Table created.

SQL> Rem returns all 8 rows
SQL> select deptno, dname, loc from deptxt order by deptno;

DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 11 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 21 RESEARCH DALLAS
 30 SALES CHICAGO
 31 SALES CHICAGO
 40 OPERATIONS BOSTON
 41 OPERATIONS BOSTON

Chapter 15
record_format_info Clause

15-30

15.3.21 READSIZE
The READSIZE parameter specifies the size of the read buffer used to process records.

The size of the read buffer must be at least as big as the largest input record the access
driver will encounter. The size is specified with an integer indicating the number of bytes. The
default value is 512 KB (524288 bytes). You must specify a larger value if any of the records
in the data file are larger than 512 KB. There is no limit on how large READSIZE can be, but
practically, it is limited by the largest amount of memory that can be allocated by the access
driver.

The amount of memory available for allocation is another limit because additional buffers
might be allocated. The additional buffer is used to correctly complete the processing of any
records that may have been split (either in the data; at the delimiter; or if multi character/byte
delimiters are used, in the delimiter itself).

15.3.22 DATE_CACHE
By default, the date cache feature is enabled (for 1000 elements). To completely disable the
date cache feature, set it to 0.

DATE_CACHE specifies the date cache size (in entries). For example, DATE_CACHE=5000
specifies that each date cache created can contain a maximum of 5000 unique date entries.
Every table has its own date cache, if one is needed. A date cache is created only if at least
one date or timestamp value is loaded that requires data type conversion in order to be
stored in the table.

The date cache feature is enabled by default. The default date cache size is 1000 elements.
If the default size is used and the number of unique input values loaded exceeds 1000, then
the date cache feature is automatically disabled for that table. However, if you override the
default and specify a nonzero date cache size and that size is exceeded, then the cache is
not disabled.

You can use the date cache statistics (entries, hits, and misses) contained in the log file to
tune the size of the cache for future similar loads.

See Also:

Specifying a Value for the Date Cache

15.3.23 string
A string is a quoted series of characters or hexadecimal digits.

Syntax

The syntax for a string is as follows:

Chapter 15
record_format_info Clause

15-31

" text "

’ text ’

X

0X

" hex digit hex digit "

’ hex digit hex digit ’

Purpose

If it is a series of characters, then those characters will be converted into the character
set of the data file. If it is a series of hexadecimal digits, then there must be an even
number of hexadecimal digits. The hexadecimal digits are converted into their binary
translation, and the translation is treated as a character string in the character set of
the data file. This means that once the hexadecimal digits have been converted into
their binary translation, there is no other character set translation that occurs.

15.3.24 condition_spec
The condition_spec specifies one or more conditions that are joined by Boolean
operators.

This clause is an expression that evaluates to either true or false. The conditions and
Boolean operators are evaluated from left to right. (Boolean operators are applied after
the conditions are evaluated.) To override the default order of evaluation of Boolean
operators, you can use parentheses. The evaluation of condition_spec clauses slows
record processing, so these clauses should be used sparingly. The syntax for
condition_spec is as follows:

condition

condition_spec
AND

OR
condition_spec

(

condition

condition_spec
AND

OR
condition_spec

)

Note that if the condition specification contains any conditions that reference field
names, then the condition specifications are evaluated only after all fields have been
found in the record, and after blank trimming has been done. It is not useful to
compare a field to BLANKS if blanks have been trimmed from the field.

The following are some examples of using condition_spec:

empid = BLANKS OR last_name = BLANKS
(dept_id = SPORTING GOODS OR dept_id = SHOES) AND total_sales != 0

Chapter 15
record_format_info Clause

15-32

See Also:

condition

15.3.25 [directory object name:] [filename]
The [directory object name:] [filename] clause is used to specify the name of an output
file (BADFILE, DISCARDFILE, or LOGFILE).

Syntax

[directory object name:] [filename]

• directory object name: The alias for the operating system directory on the database
server for reading and writing files.

• filename: The name of the file that you want to create in the directory object.

To help make file names unique in parallel loads, the access driver does some symbol
substitution. The symbol substitutions supported for the Linux, Unix, and Microsoft Windows
operating systems are as follows (other platforms can have different symbols):

• %p is replaced by the process ID of the current process.

For example, if the process ID of the access driver is 12345, then a filename specified as
exttab_%p.log becomes exttab_12345.log.

• %a is replaced by the agent number of the current process. The agent number is the
unique number assigned to each parallel process accessing the external table. This
number is padded to the left with zeros to fill three characters.

For example, if the third parallel agent is creating a file and you specify bad_data_%a.bad
as the file name, then the agent creates a file named bad_data_003.bad.

• %% is replaced by %. If there is a need to have a percent sign in the file name, then this
symbol substitution is used.

If the % character is encountered followed by anything other than one of the preceding
characters, then an error is returned.

Purpose

Specifies the name of an output file (BADFILE, DISCARDFILE, or LOGFILE).

Usage Notes

To use this clause, you must supply either a directory object name or file name, or both. The
directory object name is the name of a directory object where the user accessing the external
table has privileges to write. If the directory object name is omitted, then the value specified
for the DEFAULT DIRECTORY clause in the CREATE TABLE...ORGANIZATION EXTERNAL statement
is used.

If %p or %a is not used to create unique file names for output files, and an external table is
being accessed in parallel, then it is possible that output files can be corrupted, or that agents
may be unable to write to the files.

Chapter 15
record_format_info Clause

15-33

If you do not specify BADFILE (or DISCARDFILE or LOGFILE), then the SQL_LOADER
access driver uses the name of the table, followed by _%p as the name of the file. If no
extension is supplied for the file, then a default extension is used. For bad files, the
default extension is .bad; for discard files, the default is .dsc; and for log files, the
default is .log.

15.3.26 condition
To compare a range of bytes or a field from the record against a constant string, you
can use the ORACLE_LOADER condition clause

Purpose

Compares a range of bytes or a field from the record against a constant string. The
source of the comparison can be either a field in the record, or a byte range in the
record. The comparison is done on a byte-by-byte basis. If a string is specified as the
target of the comparison, then it is translated into the character set of the data file. If
the field has a noncharacter data type, then no data type conversion is performed on
either the field value, or the string.

Syntax

• range start : range end
The (range start:range end) clause of condition describes a range of bytes or
characters in the record, which you want to use for a condition.

15.3.26.1 range start : range end
The (range start:range end) clause of condition describes a range of bytes or
characters in the record, which you want to use for a condition.

Purpose

Describes a range of bytes or characters in the record that you want to want to use to
create a condition.

Syntax

(range start:range end)

• range start: The starting byte or character offsets into the record.

• range end: The ending byte or character offsets into the record.

Chapter 15
record_format_info Clause

15-34

Usage Notes

The value that you enter for the STRING SIZES ARE clause determines whether the range
refers to bytes, or refers to characters.

The value that you provide for range start must be less than or equal to the value for range
end. Finding ranges of characters is faster for data in fixed-width character sets than it is for
data in varying-width character sets. If the range refers to parts of the record that do not exist,
then the record is rejected when an attempt is made to reference the range. The range
start:range end clause must be enclosed in parentheses. For example: (10:13).

Note:

In your data file, Oracle recommends that you do not mix binary data (including data
types with binary counts, such as VARCHAR) and character data that is in a varying-
width character set, or more than one byte wide. When binary and character data
with these characteristics are mixed, it is possible that the access driver may not
find the correct start for the field, because it treats the binary data as character data
when trying to find the start.

The following is an example of using condition with a range clause:

LOAD WHEN empid != BLANKS
LOAD WHEN (10:13) = 0x'00000830'
LOAD WHEN PRODUCT_COUNT = "MISSING"

15.3.27 IO_OPTIONS clause
To specify whether the operating system uses direct input/output to read data files from disk,
or uses a cache for reading the data files, use the ORACLE_LOADER records clause
IO_OPTIONS.

Default

If not otherwise specified, then the default IO_OPTIONS setting is DIRECTIO.

Purpose

Enables you to specify the input and output (I/O) options that the operating system uses for
reading the data files, either by reading files directly from storage, or by reading data files
from cache. The only options available for specification are DIRECTIO (the default), and
NODIRECTIO.

Syntax

io_options (directio|nodirectio)

Usage Notes

When set to DIRECTIO, an attempt is made to open the data file and read it directly from
storage. If successful, then the operating system and NFS server (if the file is on an NFS

Chapter 15
record_format_info Clause

15-35

server) do not cache the data read from the file. Accessing data without cacheing it
can improve the read performance for the data file, especially if the file is large. If
direct I/O is not supported for the data file being read, then the file is opened and read,
but the DIRECTIO option is ignored.

If the IO_OPTIONS clause is specified with the NODIRECTIO option, then direct I/O is not
used to read the data files, and instead Oracle Database reads files from the operating
system cache.

If the IO_OPTIONS clause is not specified at all, then the default DIRECTIO option is
used.

The following is an example of specifying that the operating system should use direct
input/output writes to storage:

(
records delimited by newline io_options (directio)
logfile
.
.
.)

Related Topics

• When to Separate Files

15.3.28 DNFS_DISABLE | DNFS_ENABLE
To disable and enable use of the Direct NFS Client on input data files during an
external tables operation, use DNFS_DISABLE or DNFS_ENABLE.

Purpose

Use these parameters to enable and disable use of the Direct NFS Client on input data
files during an external tables operation.

Usage Notes

The Direct NFS Client is an API that can be implemented by file servers to enable
improved performance when Oracle Database accesses files on those servers.

By default, external tables use the Direct NFS Client interfaces when they read data
files over 1 gigabyte in size. For smaller files, the operating system I/O interfaces are
used. To use the Direct NFS Client on all input data files, specify DNFS_ENABLE.
To disable use of the Direct NFS Client for all data files, specify DNFS_DISABLE.

15.3.29 DNFS_READBUFFERS
The DNFS_READBUFFERS parameter of the record_format_info clause is used to
control the number of read buffers used by the Direct NFS Client.

Default

The default value for DNFS_READBUFFERS is 4.

Chapter 15
record_format_info Clause

15-36

Purpose

Controls the number of read buffers used by the Direct NFS Client.

The Direct NFS Client is an API that can be implemented by file servers to allow improved
performance when Oracle accesses files on those servers.

Usage Notes

It is possible that using larger values for DNFS_READBUFFERS can compensate for inconsistent
input and output from the Direct NFS Client file server. However, using larger values can
result in increased memory usage.

15.4 field_definitions Clause
Learn how to name the fields in the data file and specify how to find them in records using the
field_definitions clause.

• Overview of field_definitions Clause
In the field_definitions clause, you use the FIELDS parameter to name the fields in the
data file, and specify how to find fields in records.

• delim_spec
The delim_spec clause is used to find the end (and if ENCLOSED BY is specified, the start)
of a field.

• trim_spec
The trim_spec clause is used to specify that spaces should be trimmed from the
beginning of a text field, the end of a text field, or both.

• MISSING FIELD VALUES ARE NULL
The effect of MISSING FIELD VALUES ARE NULL depends on whether POSITION is used to
explicitly state field positions.

• field_list
The field_definitions field_list clause identifies the fields in the data file and their
data types.

• pos_spec Clause
The ORACLE_LOADER pos_spec clause indicates the position of the column within the
record.

• datatype_spec Clause
The ORACLE_LOADER datatype_spec clause describes the data type of a field in the data
file if the data type is different than the default.

• init_spec Clause
The init_spec clause for external tables is used to specify when a field should be set to
NULL, or when it should be set to a default value.

• LLS Clause
If a field in a data file is a LOB location Specifier (LLS) field, then you can indicate this by
using the LLS clause.

Chapter 15
field_definitions Clause

15-37

15.4.1 Overview of field_definitions Clause
In the field_definitions clause, you use the FIELDS parameter to name the fields in
the data file, and specify how to find fields in records.

Default

If the field_definitions clause is omitted, then the following is assumed:

• The fields are delimited by ','

• The fields are of data type CHAR
• The maximum length of the field is 255

• The order of the fields in the data file is the order in which the fields were defined
in the external table

• No blanks are trimmed from the field

Syntax

The syntax for the field_definitions clause is as follows:

FIELDS

IGNORE_CHARS_AFTER_EOR

CSV

WITH

WITHOUT
EMBEDDED

delim_spec

trim_spec

ALL FIELDS OVERRIDE THESE FIELDS

MISSING FIELD VALUES ARE NULL

REJECT ROWS WITH ALL NULL FIELDS

DATE_FORMAT

DATE

TIMESTAMP

MASK string

NULLIF

NONULLIF

field_list

Example 15-1 External Table Created Without Access Parameters (Default)

In this example, an external table is created without any access parameters. It is
followed by a sample data file, info.dat, that can be used to load the table.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir LOCATION
('info.dat'));

Alvin,Tolliver,1976
Kenneth,Baer,1963

Chapter 15
field_definitions Clause

15-38

Parameters to Specify Fields with field_definition

The sections that follow provide an overview of the field definitions that you can specify with
the field_definition clause, and some examples of how to use these clauses.

IGNORE_CHARS_AFTER_EOR

This optional parameter specifies that if extraneous characters are found after the last end-
of-record, but before the end of the file that do not satisfy the record definition, then they
are ignored.

Error messages are written to the external tables log file if all four of the following conditions
apply:

• The IGNORE_CHARS_AFTER_EOR parameter is set, or the field allows free formatting. (Free
formatting means either that the field is variable length, or the field is specified by a
delimiter or enclosure characters, and is also variable length).

• Characters remain after the last end-of-record in the file.

• The access parameter MISSING FIELD VALUES ARE NULL is not set.

• The field does not have absolute positioning.

The error messages that are written to the external tables log file are as follows:

KUP-04021: field formatting error for field Col1
KUP-04023: field start is after end of record
KUP-04101: record 2 rejected in file /home/oracle/datafiles/example.dat

CSV

To direct external tables to access the data files as comma-separated-values format files, use
the FIELDS CSV clause. To use this clause, the file should be a stream record format file with
the normal carriage return string (for example, \n on Unix or Linux operating systems, and
either \n or \r\n on Microsoft Windows operating systems). Record terminators can be
included (embedded) in data values. The syntax for the FIELDS CSV clause is as follows:

FIELDS CSV [WITH EMBEDDED | WITHOUT EMBEDDED] [TERMINATED BY ',']
[OPTIONALLY ENCLOSED BY '"']

When using the FIELDS CSV clause, note the following:

• The default is to not use the FIELDS CSV clause.

• The WITH EMBEDDED and WITHOUT EMBEDDED options specify whether record terminators
are included (embedded) in the data. The WITH EMBEDDED option is the default.

• If WITH EMBEDDED is used, then embedded record terminators must be enclosed, and
intra-datafile parallelism is disabled for external table loads.

• The TERMINATED BY ',' and OPTIONALLY ENCLOSED BY '"' options are the defaults.
They do not have to be specified. You can override them with different termination and
enclosure characters.

• When the CSV clause is used, a delimiter specification is not allowed at the field level and
only delimitable data types are allowed. Delimitable data types include CHAR, datetime,
interval, and numeric EXTERNAL.

Chapter 15
field_definitions Clause

15-39

• The TERMINATED BY and ENCLOSED BY clauses cannot be used at the field level
when the CSV clause is specified.

• When the CSV clause is specified, the default trimming behavior is LDRTRIM. You
can override this default by specifying one of the other external table trim options
(NOTRIM, LRTRIM, LTRIM, or RTRIM).

• The CSV clause must be specified after the IGNORE_CHARS_AFTER_EOR clause, and
before the delim_spec clause.

delim_spec Clause

The delim_spec clause is used to identify how all fields are terminated in the record.
The delim_spec specified for all fields can be overridden for a particular field as part of
the field_list clause. For a full description of the syntax, refer to the delim_spec
clause description.

trim_spec Clause

The trim_spec clause specifies the type of whitespace trimming to be performed by
default on all character fields. The trim_spec clause specified for all fields can be
overridden for individual fields by specifying a trim_spec clause for those fields. For a
full description of the syntax, refer to the trim_spec clause description.

ALL FIELDS OVERRIDE

The ALL FIELDS OVERRIDE clause specifies to the access driver that all fields are
present, and that they are in the same order as the columns in the external table. You
only need to specify fields that have a special definition. This clause must be specified
after the optional trim_spec clause, and before the optional MISSING FIELD VALUES
ARE NULL clause.

The following is a sample use of the ALL FIELDS OVERRIDE clause. The only field in
this example that requires specification is HIREDATE, which requires data format mask.
All the other fields take default values.

FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"' LDRTRIM
ALL FIELDS OVERRIDE
REJECT ROWS WITH ALL NULL FIELDS
(
 HIREDATE CHAR(20) DATE_FORMAT DATE MASK "DD-Month-YYYY"
)

MISSING FIELD VALUES ARE NULL

MISSING FIELD VALUES ARE NULL sets to null any fields for which position is not
explicitly stated and there is not enough data to fill them. For a full description the
description for MISSING FIELD VALUES ARE NULL.

REJECT ROWS WITH ALL NULL FIELDS

REJECT ROWS WITH ALL NULL FIELDS indicates that a row will not be loaded into the
external table if all referenced fields in the row are null. If this parameter is not
specified, then the default value is to accept rows with all null fields. The setting of this
parameter is written to the log file either as "reject rows with all null fields" or as "rows
with all null fields are accepted."

Chapter 15
field_definitions Clause

15-40

DATE_FORMAT

The DATE_FORMAT clause enables you to specify a datetime format mask once at the fields
level, and then have that format apply to all fields of that type that do not have their own mask
specified. The datetime format mask must be specified after the optional REJECT ROWS WITH
ALL NULL FIELDS clause, and before the fields_list clause.

The DATE_FORMAT can be specified for the following datetime types:

• DATE
• TIME
• TIME
• WITH TIME ZONE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
The following example shows a sample use of the DATE_FORMAT clause that applies a date
mask of DD-Month-YYYY to any DATE type fields:

FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"' LDRTRIM
REJECT ROWS WITH ALL NULL FIELDS
DATE_FORMAT DATE MASK "DD-Month-YYYY"

 (
 EMPNO,
 ENAME,
 JOB,
 MGR,
 HIREDATE CHAR(20),
 SAL,
 COMM,
 DEPTNO,
 PROJNO,
 ENTRYDATE CHAR(20)
)

NULLIF | NO NULLIF

The NULLIF clause applies to all character fields (for example, CHAR, VARCHAR, VARCHARC,
external NUMBER, and datetime).

The syntax is as follows:

NULLIF {=|!=}{"char_string"|x'hex_string'|BLANKS}

If there is a match using the equal or not equal specification for a field, then the field is set to
NULL for that row.

The char_string and hex_string must be enclosed in single- or double-quotation marks.

If a NULLIF specification is specified at the field level, then it overrides this NULLIF clause.

Chapter 15
field_definitions Clause

15-41

If there is a field to which you do not want the NULLIF clause to apply, then you can
specify NO NULLIF at the field level.

The NULLIF clause must be specified after the optional REJECT ROWS WITH ALL NULL
FIELDS clause and before the fields_list clause.

The following is an example of using the NULLIF clause in which you specify a field to
which you do not want the NULLIF clause to apply. The MGR field is set to NO NULLIF,
which means that the NULLIF="NONE" clause does not apply to that field.

FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"' LDRTRIM
REJECT ROWS WITH ALL NULL FIELDS
NULLIF = "NONE"
(
 EMPNO,
 ENAME,
 JOB,
 MGR
)

field_list Clause

The field_list clause identifies the fields in the data file and their data types. For a
full description of the syntax, see the description of the field_list clause.

15.4.2 delim_spec
The delim_spec clause is used to find the end (and if ENCLOSED BY is specified, the
start) of a field.

Syntax

ENCLOSED BY string

AND string

TERMINATED BY
string

WHITESPACE

OPTIONALLY

ENCLOSED BY string

AND string

Usage Notes

If you specify ENCLOSED BY, then the ORACLE_LOADER access driver starts at the current
position in the record, and skips over all whitespace looking for the first delimiter. All
whitespace between the current position and the first delimiter is ignored. Next, the
access driver looks for the second enclosure delimiter (or looks for the first one again if
a second one is not specified). Everything between those two delimiters is considered
part of the field.

If TERMINATED BY string is specified with the ENCLOSED BY clause, then the terminator
string must immediately follow the second enclosure delimiter. Any whitespace
between the second enclosure delimiter and the terminating delimiter is skipped. If
anything other than whitespace is found between the two delimiters, then the row is
rejected for being incorrectly formatted.

Chapter 15
field_definitions Clause

15-42

If TERMINATED BY is specified without the ENCLOSED BY clause, then everything between the
current position in the record and the next occurrence of the termination string is considered
part of the field.

If OPTIONALLY is specified, then TERMINATED BY must also be specified. The OPTIONALLY
parameter means the ENCLOSED BY delimiters can either both be present or both be absent.
The terminating delimiter must be present, regardless of whether the ENCLOSED BY delimiters
are present. If OPTIONALLY is specified, then the access driver skips over all whitespace,
looking for the first non-blank character. After the first non-blank character is found, the
access driver checks to see if the current position contains the first enclosure delimiter. If it
does, then the access driver finds the second enclosure string. Everything between the first
and second enclosure delimiters is considered part of the field. The terminating delimiter
must immediately follow the second enclosure delimiter (with optional whitespace allowed
between the second enclosure delimiter and the terminating delimiter). If the first enclosure
string is not found at the first non-blank character, then the access driver looks for the
terminating delimiter. In this case, leading blanks are trimmed.

After the delimiters have been found, the current position in the record is set to the spot after
the last delimiter for the field. If TERMINATED BY WHITESPACE was specified, then the current
position in the record is set to after all whitespace following the field.

To find out more about the access driver's default trimming behavior, refer to "Trimming
Whitespace." You can override this behavior by using with LTRIM and RTRIM.

A missing terminator for the last field in the record is not an error. The access driver proceeds
as if the terminator was found. It is an error if the second enclosure delimiter is missing.

The string used for the second enclosure can be included in the data field by including the
second enclosure twice. For example, if a field is enclosed by single quotation marks, then it
could contain a single quotation mark by specifying two single quotation marks in a row, as
shown in the word don't in the following example:

'I don''t like green eggs and ham'

There is no way to quote a terminator string in the field data without using enclosing
delimiters. Because the field parser does not look for the terminating delimiter until after it has
found the enclosing delimiters, the field can contain the terminating delimiter.

In general, specifying single characters for the strings is faster than multiple characters. Also,
searching data in fixed-width character sets is usually faster than searching data in varying-
width character sets.

Note:

The use of the backslash character (\) within strings is not supported in external
tables.

• Example: External Table with Terminating Delimiters
See how to create an external table that uses terminating delimiters, and a data file with
terminating delimiters.

• Example: External Table with Enclosure and Terminator Delimiters
See how to create an external table that uses both enclosure and terminator delimiters.

Chapter 15
field_definitions Clause

15-43

• Example: External Table with Optional Enclosure Delimiters
See how to create an external table that uses optional enclosure delimiters.

Related Topics

• Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line
feeds) constitute whitespace.

15.4.2.1 Example: External Table with Terminating Delimiters
See how to create an external table that uses terminating delimiters, and a data file
with terminating delimiters.

This table is created to use terminating delimiters. It is followed by an example of a
data file that can be used to load the table.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY WHITESPACE)
 LOCATION ('info.dat'));

Alvin Tolliver 1976
Kenneth Baer 1963
Mary Dube 1973

15.4.2.2 Example: External Table with Enclosure and Terminator Delimiters
See how to create an external table that uses both enclosure and terminator
delimiters.

The following is an example of an external table that uses both enclosure and
terminator delimiters. Remember that all whitespace between a terminating string and
the first enclosure string is ignored, as is all whitespace between a second enclosing
delimiter and the terminator. The example is followed by a sample of the data file that
can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY "," ENCLOSED BY "(" AND ")")
 LOCATION ('info.dat'));

(Alvin) , (Tolliver),(1976)
(Kenneth), (Baer) ,(1963)
(Mary),(Dube) , (1973)

15.4.2.3 Example: External Table with Optional Enclosure Delimiters
See how to create an external table that uses optional enclosure delimiters.

This table is an external table that is created to use optional enclosure delimiters. Note
that LRTRIM is used to trim leading and trailing blanks from fields. The example is
followed by an examplle of a data file that can be used to load the table.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '(' and ')'
 LRTRIM)

Chapter 15
field_definitions Clause

15-44

 LOCATION ('info.dat'));

Alvin , Tolliver , 1976
(Kenneth), (Baer), (1963)
(Mary), Dube , (1973)

15.4.3 trim_spec
The trim_spec clause is used to specify that spaces should be trimmed from the beginning of
a text field, the end of a text field, or both.

Description

Directs the ORACLE_LOADER access driver to trim spaces from the beginning of a text field, the
end of a text field, or both. Spaces include blanks and other non-printing characters, such as
tabs, line feeds, and carriage returns.

Default

The default is LDRTRIM. Specifying NOTRIM yields the fastest performance.

Syntax

LRTRIM

NOTRIM

LTRIM

RTRIM

LDRTRIM

Options

• NOTRIM Indicates that you want no characters trimmed from the field.

• LRTRIM Indicates that you want both leading and trailing spaces trimmed.

• LTRIM Indicates that you want leading spaces trimmed.

• RTRIM Indicates that you want trailing spaces trimmed.

• LDRTRIM Provides compatibility with SQL*Loader trim features. It is the same as NOTRIM
except in the following cases:

– If the field is not a delimited field, then spaces will be trimmed from the right.

– If the field is a delimited field with OPTIONALLY ENCLOSED BY specified, and the
optional enclosures are missing for a particular instance, then spaces are trimmed
from the left.

Usage Notes

The trim_spec clause can be specified before the field list to set the default trimming for all
fields. If trim_spec is omitted before the field list, then LDRTRIM is the default trim setting. The
default trimming can be overridden for an individual field as part of the datatype_spec.

Chapter 15
field_definitions Clause

15-45

If trimming is specified for a field that is all spaces, then the field will be set to NULL.

In the following example, all data is fixed-length; however, the character data will not
be loaded with leading spaces. The example is followed by a sample of the data file
that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20),
year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS LTRIM)
 LOCATION ('info.dat'));

Alvin, Tolliver,1976
Kenneth, Baer, 1963
Mary, Dube, 1973

15.4.4 MISSING FIELD VALUES ARE NULL
The effect of MISSING FIELD VALUES ARE NULL depends on whether POSITION is used
to explicitly state field positions.

For example:

• The default behavior is that if field position is not explicitly stated and there is not
enough data in a record for all fields, then the record is rejected. You can override
this behavior by using MISSING FIELD VALUES ARE NULL to define as NULL any
fields for which there is no data available.

• If field position is explicitly stated, then fields for which there are no values are
always defined as NULL, regardless of whether MISSING FIELD VALUES ARE NULL
is used.

In the following example, the second record is stored with a NULL set for the
year_of_birth column, even though the data for the year of birth is missing from the
data file. If the MISSING FIELD VALUES ARE NULL clause were omitted from the access
parameters, then the second row would be rejected because it did not have a value for
the year_of_birth column. The example is followed by a sample of the data file that
can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth INT)
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY ","
 MISSING FIELD VALUES ARE NULL)
 LOCATION ('info.dat'));

Alvin,Tolliver,1976
Baer,Kenneth
Mary,Dube,1973

Chapter 15
field_definitions Clause

15-46

15.4.5 field_list
The field_definitions field_list clause identifies the fields in the data file and their data
types.

Syntax

The syntax for the field_list clause is as follows:

(field_name

pos_spec datatype_spec init_spec LLS_clause

,

)

The field list clauses are as follows:

• field_name: A string identifying the name of a field in the data file. If the string is not
within quotation marks, then the name is uppercased when matching field names with
column names in the external table.

If field_name matches the name of a column in the external table that is referenced in
the query, then the field value is used for the value of that external table column. If the
name does not match any referenced name in the external table, then the field is not
loaded but can be used for clause evaluation (for example WHEN or NULLIF).

• pos_spec: Indicates the position of the column within the record. For a full description of
the syntax, see pos_spec Clause.

• datatype_spec: Indicates the data type of the field. If datatype_spec is omitted, then the
access driver assumes the data type is CHAR(255). For a full description of the syntax,
see datatype_spec Clause.

• init_spec: Indicates when a field is NULL or has a default value. For a full description of
the syntax, see init_spec Clause.

• LLS: When LLS is specified for a field, ORACLE_LOADER does not load the value of the field
into the corresponding column. Instead, it use the information in the value to determine
where to find the value of the field. See LLS Clause.

Purpose

The field_list clause identifies the fields in the data file and their data types. Evaluation
criteria for the field_list clause are as follows:

• If no data type is specified for a field, then it is assumed to be CHAR(1) for a nondelimited
field, and CHAR(255)for a delimited field.

• If no field list is specified, then the fields in the data file are assumed to be in the same
order as the fields in the external table. The data type for all fields is CHAR(255) unless
the column in the database is CHAR or VARCHAR. If the column in the database is CHAR or
VARCHAR, then the data type for the field is still CHAR but the length is either 255 or the
length of the column, whichever is greater.

• If no field list is specified and no delim_spec clause is specified, then the fields in the
data file are assumed to be in the same order as fields in the external table. All fields are
assumed to be CHAR(255) and terminated by a comma.

Chapter 15
field_definitions Clause

15-47

Example

This example shows the definition for an external table with no field_list and a
delim_spec. It is followed by a sample of the data file that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth INT)
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY "|")
 LOCATION ('info.dat'));

Alvin|Tolliver|1976
Kenneth|Baer|1963
Mary|Dube|1973

15.4.6 pos_spec Clause
The ORACLE_LOADER pos_spec clause indicates the position of the column within the
record.

The setting of the STRING SIZES ARE IN clause determines whether pos_spec refers to
byte positions or character positions. Using character positions with varying-width
character sets takes significantly longer than using character positions with fixed-width
character sets. Binary and multibyte character data should not be present in the same
data file when pos_spec is used for character positions. If they are, then the results are
unpredictable.

• pos_spec Clause Syntax
The syntax for the ORACLE_LOADER pos_spec clause is as follows.

• start
The pos_spec clause start parameter indicates the number of bytes from the
beginning of the record to where the field begins.

• *
The pos_spec clause * parameter indicates that the field begins at the first byte
after the end of the previous field.

• increment
The pos_spec clause increment parameter positions the start of the field is a fixed
number of bytes from the end of the previous field.

• end
The pos_spec clause end parameter indicates the absolute byte offset into the
record for the last byte of the field.

• length
The pos_spec clause length parameter value indicates that the end of the field is
a fixed number of bytes from the start.

Chapter 15
field_definitions Clause

15-48

15.4.6.1 pos_spec Clause Syntax
The syntax for the ORACLE_LOADER pos_spec clause is as follows.

15.4.6.2 start
The pos_spec clause start parameter indicates the number of bytes from the beginning of
the record to where the field begins.

The start parameter enables you to position the start of the field at an absolute spot in the
record, rather than relative to the position of the previous field.

15.4.6.3 *
The pos_spec clause * parameter indicates that the field begins at the first byte after the end
of the previous field.

The * parameter is useful with ORACLE_LOADER where you have a varying-length field followed
by a fixed-length field. This option cannot be used for the first field in the record.

15.4.6.4 increment
The pos_spec clause increment parameter positions the start of the field is a fixed number of
bytes from the end of the previous field.

The increment parameter positions the start of the field at a fixed number of bytes from the
end of the previous field. Use *-increment to indicate that the start of the field starts before
the current position in the record (this is a costly operation for multibyte character sets). To
move the start after the current position, use *+increment

15.4.6.5 end
The pos_spec clause end parameter indicates the absolute byte offset into the record for the
last byte of the field.

Use the end parameter to set the absolute byte offset into the record for the last byte of the
field. If start is specified along with end, then end cannot be less than start. If * or
increment is specified along with end, and the start evaluates to an offset larger than the
end for a particular record, then that record will be rejected.

Chapter 15
field_definitions Clause

15-49

15.4.6.6 length
The pos_spec clause length parameter value indicates that the end of the field is a
fixed number of bytes from the start.

Use the length parameter when you want to set fixed-length fields when the start is
specified with *. The following example shows various ways of using pos_spec. It is
followed by an example of a data file that you can use to load it.

CREATE TABLE emp_load (first_name CHAR(15),
 last_name CHAR(20),
 year_of_birth INT,
 phone CHAR(12),
 area_code CHAR(3),
 exchange CHAR(3),
 extension CHAR(4))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (RECORDS CHARACTERSET we8iso8859p1
 FIELDS RTRIM
 (first_name (1:15) CHAR(15),
 last_name (*:+20),
 year_of_birth (36:39),
 phone (40:52),
 area_code (*-12: +3),
 exchange (*+1: +3),
 extension (*+1: +4)))
 LOCATION ('info.dat'));

Alvin Tolliver 1976415-922-1982
Kenneth Baer 1963212-341-7912
Mary Dube 1973309-672-2341

In this example, the declared RECORDS CHARACTERSET, we8iso8859p1, is not a multi-
byte character set. It is guaranteed that every character is represented as single byte.
The POSITION clause calculations to determine where the data field starts and ends
(including the * and + operators) are based on bytes rather than characters (that is,
characters must only require 1 byte to represent them, such as the Oracle character
set WE8ISO8859P1). If you use a variable length character set (for example, Unicode
variants, JIS X 0208-1990, or other multibyte character sets, where the field data
contains one or more multibyte characters), then the calculations will be incorrect.

15.4.7 datatype_spec Clause
The ORACLE_LOADER datatype_spec clause describes the data type of a field in the
data file if the data type is different than the default.

The data type of the field can be different than the data type of a corresponding
column in the external table. The access driver handles the necessary conversions.

Chapter 15
field_definitions Clause

15-50

• datatype_spec Clause Syntax
The syntax for the ORACLE_LOADER datatype_spec clause is as follows:

• [UNSIGNED] INTEGER [EXTERNAL] [(len)]
The datatype_spec clause [UNSIGNED] INTEGER [EXTERNAL] [(len)] defines a field as
an integer.

• DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
The DECIMAL clause is used to indicate that the field is a packed decimal number. The
ZONED clause is used to indicate that the field is a zoned decimal number.

• ORACLE_DATE
ORACLE_DATE is a field containing a date in the Oracle binary date format.

• ORACLE_NUMBER
ORACLE_NUMBER is a field containing a number in the Oracle number format.

• Floating-Point Numbers
The following four data types, DOUBLE, FLOAT, BINARY_DOUBLE, and BINARY_FLOAT are
floating-point numbers.

• DOUBLE
The DOUBLE clause indicates that the field is the same format as the C language DOUBLE
data type on the platform where the access driver is executing.

• FLOAT [EXTERNAL]
The FLOAT clause indicates that the field is the same format as the C language FLOAT
data type on the platform where the access driver is executing.

• BINARY_DOUBLE
The datatype_spec clause value BINARY_DOUBLE is a 64-bit, double-precision, floating-
point number data type.

• BINARY_FLOAT
The datatype_spec clause value BINARY_FLOAT is a 32-bit, single-precision, floating-point
number data type.

• RAW
The RAW clause is used to indicate that the source data is binary data.

• CHAR
The datatype_spec clause data type CHAR clause is used to indicate that a field is a
character data type.

• date_format_spec
The date_format_spec clause is used to indicate that a character string field contains
date data, time data, or both, in a specific format.

• VARCHAR and VARRAW
The datatype_spec clause VARCHAR data type defines character data, and the VARRAW
data type defines binary data.

• VARCHARC and VARRAWC
The datatype_spec clause VARCHARC data type defines character data, and the
VARRAWC data type defines binary data.

15.4.7.1 datatype_spec Clause Syntax
The syntax for the ORACLE_LOADER datatype_spec clause is as follows:

Chapter 15
field_definitions Clause

15-51

UNSIGNED

INTEGER

EXTERNAL (len) delim_spec

DECIMAL

ZONED

EXTERNAL

(len) delim_spec

(precision

, scale

)

ORACLE_DATE

ORACLE_NUMBER

COUNTED

FLOAT

EXTERNAL (len) delim_spec

DOUBLE

BINARY_FLOAT

EXTERNAL (len) delim_spec

BINARY_DOUBLE

RAW

(len)

CHAR

(len) delim_spec trim_spec date_format_spec

VARCHAR

VARRAW

VARCHARC

VARRAWC

(

length_of_length ,

max_len)

If the number of bytes or characters in any field is 0, then the field is assumed to be
NULL. The optional DEFAULTIF clause specifies when the field is set to its default value.
Also, the optional NULLIF clause specifies other conditions for when the column
associated with the field is set to NULL. If the DEFAULTIF or NULLIF clause is TRUE, then
the actions of those clauses override whatever values are read from the data file.

Related Topics

• init_spec Clause
The init_spec clause for external tables is used to specify when a field should be
set to NULL, or when it should be set to a default value.

• Oracle Database SQL Language Reference

15.4.7.2 [UNSIGNED] INTEGER [EXTERNAL] [(len)]
The datatype_spec clause [UNSIGNED] INTEGER [EXTERNAL] [(len)] defines a field
as an integer.

This clause defines a field as an integer. If EXTERNAL is specified, then the number is a
character string. If EXTERNAL is not specified, then the number is a binary field. The
valid values for len in binary integer fields are 1, 2, 4, and 8. If len is omitted for binary

Chapter 15
field_definitions Clause

15-52

integers, then the default value is whatever the value of sizeof(int) is on the platform where
the access driver is running. Use of the DATA IS {BIG|LITTLE} ENDIAN clause may cause
the data to be byte-swapped before it is stored.

If EXTERNAL is specified, then the value of len is the number of bytes or characters in the
number (depending on the setting of the STRING SIZES ARE IN BYTES or CHARACTERS clause).
If no length is specified, then the default value is 255.

The default value of the [UNSIGNED] INTEGER [EXTERNAL] [(len)] data type is determined
as follows:

• If no length specified, then the default length is 1.

• If no length is specified and the field is delimited with a DELIMITED BY NEWLINE clause,
then the default length is 1.

• If no length is specified and the field is delimited with a DELIMITED BY clause, then the
default length is 255 (unless the delimiter is NEWLINE, as stated above).

15.4.7.3 DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
The DECIMAL clause is used to indicate that the field is a packed decimal number. The ZONED
clause is used to indicate that the field is a zoned decimal number.

The precision field indicates the number of digits in the number. The scale field is used to
specify the location of the decimal point in the number. It is the number of digits to the right of
the decimal point. If scale is omitted, then a value of 0 is assumed.

Note that there are different encoding formats of zoned decimal numbers depending on
whether the character set being used is EBCDIC-based or ASCII-based. If the language of
the source data is EBCDIC, then the zoned decimal numbers in that file must match the
EBCDIC encoding. If the language is ASCII-based, then the numbers must match the ASCII
encoding.

If the EXTERNAL parameter is specified, then the data field is a character string whose length
matches the precision of the field.

15.4.7.4 ORACLE_DATE
ORACLE_DATE is a field containing a date in the Oracle binary date format.

This is the format used by the DTYDAT data type in Oracle Call Interface (OCI) programs. The
field is a fixed length of 7.

15.4.7.5 ORACLE_NUMBER
ORACLE_NUMBER is a field containing a number in the Oracle number format.

The field is a fixed length (the maximum size of an Oracle number field) unless COUNTED is
specified, in which case the first byte of the field contains the number of bytes in the rest of
the field.

ORACLE_NUMBER is a fixed-length 22-byte field. The length of an ORACLE_NUMBER COUNTED field
is one for the count byte, plus the number of bytes specified in the count byte.

Chapter 15
field_definitions Clause

15-53

15.4.7.6 Floating-Point Numbers
The following four data types, DOUBLE, FLOAT, BINARY_DOUBLE, and BINARY_FLOAT are
floating-point numbers.

The following four data types, DOUBLE, FLOAT, BINARY_DOUBLE, and BINARY_FLOAT are
floating-point numbers.

DOUBLE and FLOAT are the floating-point formats used natively on the platform in use.
They are the same data types used by default for the DOUBLE and FLOAT data types in a
C program on that platform. BINARY_FLOAT and BINARY_DOUBLE are floating-point
numbers that conform substantially with the Institute for Electrical and Electronics
Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard
754-1985. Because most platforms use the IEEE standard as their native floating-point
format, FLOAT and BINARY_FLOAT are the same on those platforms and DOUBLE and
BINARY_DOUBLE are also the same.

Note:

See Oracle Database SQL Language Reference for more information about
floating-point numbers

15.4.7.7 DOUBLE
The DOUBLE clause indicates that the field is the same format as the C language
DOUBLE data type on the platform where the access driver is executing.

Use of the DATA IS {BIG | LITTLE} ENDIAN clause may cause the data to be byte-
swapped before it is stored. This data type may not be portable between certain
platforms.

15.4.7.8 FLOAT [EXTERNAL]
The FLOAT clause indicates that the field is the same format as the C language FLOAT
data type on the platform where the access driver is executing.

The FLOAT clause indicates that the field is the same format as the C language FLOAT
data type on the platform where the access driver is executing. Use of the DATA IS
{BIG | LITTLE} ENDIAN clause may cause the data to be byte-swapped before it is
stored. This data type may not be portable between certain platforms.

If the EXTERNAL parameter is specified, then the field is a character string whose
maximum length is 255.

15.4.7.9 BINARY_DOUBLE
The datatype_spec clause value BINARY_DOUBLE is a 64-bit, double-precision, floating-
point number data type.

Each BINARY_DOUBLE value requires 9 bytes, including a length byte. See the
information in the note provided for the FLOAT data type for more details about floating-
point numbers.

Chapter 15
field_definitions Clause

15-54

15.4.7.10 BINARY_FLOAT
The datatype_spec clause value BINARY_FLOAT is a 32-bit, single-precision, floating-point
number data type.

Each BINARY_FLOAT value requires 5 bytes, including a length byte. See the information in the
note provided for the FLOAT data type for more details about floating-point numbers.

15.4.7.11 RAW
The RAW clause is used to indicate that the source data is binary data.

The len for RAW fields is always in number of bytes. When a RAW field is loaded in a character
column, the data that is written into the column is the hexadecimal representation of the bytes
in the RAW field.

15.4.7.12 CHAR
The datatype_spec clause data type CHAR clause is used to indicate that a field is a character
data type.

The length (len) for CHAR fields specifies the largest number of bytes or characters in the
field. The len is in bytes or characters, depending on the setting of the STRING SIZES ARE IN
clause.

If no length is specified for a field of data type CHAR, then the size of the field is assumed to be
1, unless the field is delimited:

• For a delimited CHAR field, if a length is specified, then that length is used as a maximum.

• For a delimited CHAR field for which no length is specified, the default is 255 bytes.

• For a delimited CHAR field that is greater than 255 bytes, you must specify a maximum
length. Otherwise, you receive an error stating that the field in the data file exceeds
maximum length.

The following example shows the use of the CHAR clause.

SQL> CREATE TABLE emp_load
 2 (employee_number CHAR(5),
 3 employee_dob CHAR(20),
 4 employee_last_name CHAR(20),
 5 employee_first_name CHAR(15),
 6 employee_middle_name CHAR(15),
 7 employee_hire_date DATE)
 8 ORGANIZATION EXTERNAL
 9 (TYPE ORACLE_LOADER
 10 DEFAULT DIRECTORY def_dir1
 11 ACCESS PARAMETERS
 12 (RECORDS DELIMITED BY NEWLINE
 13 FIELDS (employee_number CHAR(2),
 14 employee_dob CHAR(20),
 15 employee_last_name CHAR(18),
 16 employee_first_name CHAR(11),
 17 employee_middle_name CHAR(11),

Chapter 15
field_definitions Clause

15-55

 18 employee_hire_date CHAR(10) date_format DATE mask
"mm/dd/yyyy"
 19)
 20)
 21 LOCATION ('info.dat')
 22);

Table created.

15.4.7.13 date_format_spec
The date_format_spec clause is used to indicate that a character string field contains
date data, time data, or both, in a specific format.

This information is used only when a character field is converted to a date or time data
type and only when a character string field is mapped into a date column.

The syntax for the date_format_spec clause is as follows:

DATE_FORMAT

DATE

TIMESTAMP

WITH

LOCAL

TIME ZONE

MASK " date/time mask "

INTERVAL

YEAR_TO_MONTH

DAY_TO_SECOND

For detailed information about the correct way to specify date and time formats, see
Oracle Database SQL Reference.

• DATE
The DATE clause indicates that the string contains a date.

• MASK
The MASK clause is used to override the default globalization format mask for the
data type.

• TIMESTAMP
The TIMESTAMP clause indicates that a field contains a formatted timestamp.

• INTERVAL
The INTERVAL clause indicates that a field contains a formatted interval.

Related Topics

• Oracle Database SQL Language Reference

15.4.7.13.1 DATE
The DATE clause indicates that the string contains a date.

Chapter 15
field_definitions Clause

15-56

unilink:SQLRF00200

15.4.7.13.2 MASK
The MASK clause is used to override the default globalization format mask for the data type.

If a date mask is not specified, then the settings of NLS parameters for the database (not the
session settings) for the appropriate globalization parameter for the data type are used. The
NLS_DATABASE_PARAMETERS view shows these settings.

• NLS_DATE_FORMAT for DATE data types

• NLS_TIMESTAMP_FORMAT for TIMESTAMP data types

• NLS_TIMESTAMP_TZ_FORMAT for TIMESTAMP WITH TIME ZONE data types

Note the following:

• The database setting for the NLS_NUMERIC_CHARACTERS initialization parameter (that is,
from the NLS_DATABASE_PARAMETERS view) governs the decimal separator for implicit
conversion from character to numeric data types.

• A group separator is not allowed in the default format.

15.4.7.13.3 TIMESTAMP
The TIMESTAMP clause indicates that a field contains a formatted timestamp.

15.4.7.13.4 INTERVAL
The INTERVAL clause indicates that a field contains a formatted interval.

The INTERVAL clause indicates that a field contains a formatted interval. The type of interval
can be either YEAR TO MONTH or DAY TO SECOND.

The following example shows a sample use of a complex DATE character string and a
TIMESTAMP character string. It is followed by a sample of the data file that can be used to load
it.

SQL> CREATE TABLE emp_load
 2 (employee_number CHAR(5),
 3 employee_dob CHAR(20),
 4 employee_last_name CHAR(20),
 5 employee_first_name CHAR(15),
 6 employee_middle_name CHAR(15),
 7 employee_hire_date DATE,
 8 rec_creation_date TIMESTAMP WITH TIME ZONE)
 9 ORGANIZATION EXTERNAL
 10 (TYPE ORACLE_LOADER
 11 DEFAULT DIRECTORY def_dir1
 12 ACCESS PARAMETERS
 13 (RECORDS DELIMITED BY NEWLINE
 14 FIELDS (employee_number CHAR(2),
 15 employee_dob CHAR(20),
 16 employee_last_name CHAR(18),
 17 employee_first_name CHAR(11),
 18 employee_middle_name CHAR(11),
 19 employee_hire_date CHAR(22) date_format DATE mask "mm/dd/yyyy hh:mi:ss

Chapter 15
field_definitions Clause

15-57

AM",
 20 rec_creation_date CHAR(35) date_format TIMESTAMP WITH TIME ZONE
mask "DD-MON-RR HH.MI.SSXFF AM TZH:TZM"
 21)
 22)
 23 LOCATION ('infoc.dat')
 24);

Table created.

SQL> SELECT * FROM emp_load;

EMPLO EMPLOYEE_DOB EMPLOYEE_LAST_NAME EMPLOYEE_FIRST_ EMPLOYEE_MIDDLE
----- -------------------- -------------------- --------------- ---------------
EMPLOYEE_

REC_CREATION_DATE

56 november, 15, 1980 baker mary alice
01-SEP-04
01-DEC-04 11.22.03.034567 AM -08:00

87 december, 20, 1970 roper lisa marie
01-JAN-02
01-DEC-02 02.03.00.678573 AM -08:00

2 rows selected.

The info.dat file looks like the following. Note that this is 2 long records. There is one
space between the data fields (09/01/2004, 01/01/2002) and the time field that
follows.

56november, 15, 1980 baker mary alice 09/01/2004 08:23:01
AM01-DEC-04 11.22.03.034567 AM -08:00
87december, 20, 1970 roper lisa marie 01/01/2002 02:44:55
PM01-DEC-02 02.03.00.678573 AM -08:00

15.4.7.14 VARCHAR and VARRAW
The datatype_spec clause VARCHAR data type defines character data, and the VARRAW
data type defines binary data.

The VARCHAR data type has a binary count field followed by character data. The value
in the binary count field is either the number of bytes in the field or the number of
characters. See STRING SIZES ARE IN for information about how to specify whether
the count is interpreted as a count of characters or count of bytes.

The VARRAW data type has a binary count field followed by binary data. The value in the
binary count field is the number of bytes of binary data. The data in the VARRAW field is
not affected by the DATA IS...ENDIANclause.

Chapter 15
field_definitions Clause

15-58

The VARIABLE 2 clause in the ACCESS PARAMETERS clause specifies the size of the binary field
that contains the length.

The optional length_of_length field in the specification is the number of bytes in the count
field. Valid values for length_of_length for VARCHAR are 1, 2, 4, and 8. If length_of_length
is not specified, then a value of 2 is used. The count field has the same endianness as
specified by the DATA IS...ENDIAN clause.

The max_len field is used to indicate the largest size of any instance of the field in the data
file. For VARRAW fields, max_len is number of bytes. For VARCHAR fields, max_len is either
number of characters, or number of bytes, depending on the STRING SIZES ARE IN clause.

The following example shows various uses of VARCHAR and VARRAW. The content of the data
file, info.dat, is shown following the example.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW(2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (RECORDS
 VARIABLE 2
 DATA IS BIG ENDIAN
 CHARACTERSET US7ASCII
 FIELDS (first_name VARCHAR(2,12),
 last_name VARCHAR(2,20),
 resume VARCHAR(4,10000),
 picture VARRAW(4,100000)))
 LOCATION ('info.dat'));

Contents of info.dat Data File

The contents of the data file used in the example are as follows:.

0005Alvin0008Tolliver0000001DAlvin Tolliver's Resume etc.
0000001013f4690a30bc29d7e40023ab4599ffff

It is important to understand that, for the purposes of readable documentation, the binary
values for the count bytes and the values for the raw data are shown in the data file in italics,
with 2 characters per binary byte. The values in an actual data file would be in binary format,
not ASCII. Therefore, if you attempt to use this example by cutting and pasting, then you will
receive an error.

Related Topics

• STRING SIZES ARE IN
Use the record_format_info STRING SIZES ARE IN clause to indicate whether the
lengths specified for character strings are in bytes or characters.

Chapter 15
field_definitions Clause

15-59

15.4.7.15 VARCHARC and VARRAWC
The datatype_spec clause VARCHARC data type defines character data, and the
VARRAWC data type defines binary data.

The VARCHARC data type has a character count field followed by character data. The
value in the count field is either the number of bytes in the field or the number of
characters. See STRING SIZES ARE IN for information about how to specify whether
the count is interpreted as a count of characters, or acount of bytes. The optional
length_of_length is either the number of bytes, or the number of characters in the
count field for VARCHARC, depending on whether lengths are being interpreted as
characters or bytes.

The maximum value for length_of_lengths for VARCHARC is 10 if string sizes are in
characters, and 20 if string sizes are in bytes. The default value for length_of_length
is 5.

The VARRAWC data type has a character count field followed by binary data. The value
in the count field is the number of bytes of binary data. The length_of_length is the
number of bytes in the count field.

The max_len field is used to indicate the largest size of any instance of the field in the
data file. For VARRAWC fields, max_len is number of bytes. For VARCHARC fields, max_len
is either number of characters or number of bytes depending on the STRING SIZES ARE
IN clause.

The following example shows various uses of VARCHARC and VARRAWC. The length of the
picture field is 0, which means the field is set to NULL.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW (2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS (first_name VARCHARC(5,12),
 last_name VARCHARC(2,20),
 resume VARCHARC(4,10000),
 picture VARRAWC(4,100000)))
 LOCATION ('info.dat'));

00007William05Ricca0035Resume for William Ricca is missing0000

Related Topics

• STRING SIZES ARE IN
Use the record_format_info STRING SIZES ARE IN clause to indicate whether
the lengths specified for character strings are in bytes or characters.

Chapter 15
field_definitions Clause

15-60

15.4.8 init_spec Clause
The init_spec clause for external tables is used to specify when a field should be set to
NULL, or when it should be set to a default value.

The syntax for the init_spec clause is as follows:

DEFAULTIF

NULLIF

condition_spec

Only one NULLIF clause and only one DEFAULTIF clause can be specified for any field. These
clauses behave as follows:

• If NULLIF condition_spec is specified and it evaluates to TRUE, then the field is set to
NULL.

• If DEFAULTIF condition_spec is specified and it evaluates to TRUE, then the value of the
field is set to a default value. The default value depends on the data type of the field, as
follows:

– For a character data type, the default value is an empty string.

– For a numeric data type, the default value is a 0.

– For a date data type, the default value is NULL.

• If a NULLIF clause and a DEFAULTIF clause are both specified for a field, then the NULLIF
clause is evaluated first, and the DEFAULTIF clause is evaluated only if the NULLIF clause
evaluates to FALSE.

15.4.9 LLS Clause
If a field in a data file is a LOB location Specifier (LLS) field, then you can indicate this by
using the LLS clause.

If a field in a data file is a LOB location Specifier (LLS) field, then you can indicate this by
using the LLS clause. An LLS field contains the file name, offset, and length of the LOB data
in the data file. SQL*Loader uses this information to read data for the LOB column. The LLS
clause for ORACLE_LOADER has the following syntax:

LLS

directory object name

When the LLS clause is used, ORACLE_LOADER does not load the value of the field into the
corresponding column. Instead, it uses the information in the value to determine where to find
the value of the field. The LOB can be loaded in part or in whole and it can start from an
arbitrary position and for an arbitrary length. ORACLE_LOADER expects the contents of the field
to be filename.ext.nnn.mmm/ where each element is defined as follows:

Chapter 15
field_definitions Clause

15-61

• filename.ext is the name of the file that contains the LOB

• nnn is the offset in bytes of the LOB within the file

• mmm is the length of the LOB in bytes A value of -1 means the LOB is NULL. A
value of 0 means the lob exists, but is empty.

• The forward slash (/) terminates the field

The LLS clause has an optional DIRECTORY clause which specifies an Oracle directory
object:

• If DIRECTORY is specified, then the file must exist there and you must have READ
access to that directory object.

• If DIRECTORY is not specified, then the file must exist in the same directory as the
data file.

An error is returned and the row rejected if any of the following are true:

• The file name contains a relative or absolute path specification.

• The file is not found, the offset is invalid, or the length extends beyond the end of
the file.

• The contents of the field do not match the expected format.

• The data type for the column associated with an LLS field is not a CLOB, BLOB or
NCLOB.

If an LLS field is referenced by a clause for any other field (for example a NULLIF
clause), then in the access parameters, the value used for evaluating the clause is the
string in the data file, not the data in the file pointed to by that string.

The character set for the data in the file pointed to by the LLS clause is assumed to be
the same character set as the data file.

15.5 column_transforms Clause
The optional ORACLE_LOADER access drive COLUMN TRANSFORMS clause provides
transforms that you can use to describe how to load columns in the external table that
do not map directly to columns in the data file.

Syntax

The syntax for the column_transforms clause is as follows:

COLUMN TRANSFORMS (transform

,

)

Note:

The COLUMN TRANSFORMS clause does not work in conjunction with the
PREPROCESSOR clause.

Chapter 15
column_transforms Clause

15-62

• transform
Each transform specified in the transform clause identifies a column in the external table
and then a specifies how to calculate the value of the column.

15.5.1 transform
Each transform specified in the transform clause identifies a column in the external table and
then a specifies how to calculate the value of the column.

The syntax is as follows:

column_name FROM

NULL

CONSTANT string

CONCAT (
field_name

CONSTANT string

,

)

LOBFILE (
fieldname

CONSTANT string :

,

)

lobfile_attr_list

STARTOF source_field (length)

The NULL transform is used to set the external table column to NULL in every row. The
CONSTANT transform is used to set the external table column to the same value in every row.
The CONCAT transform is used to set the external table column to the concatenation of
constant strings and/or fields in the current record from the data file. The LOBFILE transform is
used to load data into a field for a record from another data file. Each of these transforms is
explained further in the following sections.

• column_name FROM
The column_name uniquely identifies a column in the external table that you want to be
loaded.

• NULL
When the NULL transform is specified, every value of the field is set to NULL for every
record.

• CONSTANT
The CONSTANT clause transform uses the value of the string specified as the value of the
column in the record.

• CONCAT
The CONCAT transform concatenates constant strings and fields in the data file together to
form one string.

• LOBFILE
The LOBFILE transform is used to identify a file whose contents are to be used as the
value for a column in the external table.

• lobfile_attr_list
The lobfile_attr_list lists additional attributes of the LOBFILE.

Chapter 15
column_transforms Clause

15-63

• STARTOF source_field (length)
The STARTOF keyword allows you to create an external table in which a column can
be a substring of the data in the source field.

15.5.1.1 column_name FROM
The column_name uniquely identifies a column in the external table that you want to be
loaded.

Note that if the name of a column is mentioned in the transform clause, then that
name cannot be specified in the FIELDS clause as a field in the data file.

15.5.1.2 NULL
When the NULL transform is specified, every value of the field is set to NULL for every
record.

15.5.1.3 CONSTANT
The CONSTANT clause transform uses the value of the string specified as the value of
the column in the record.

If the column in the external table is not a character string type, then the constant
string will be converted to the data type of the column. This conversion will be done for
every row.

The character set of the string used for data type conversions is the character set of
the database.

15.5.1.4 CONCAT
The CONCAT transform concatenates constant strings and fields in the data file together
to form one string.

Only fields that are character data types and that are listed in the fields clause can
be used as part of the concatenation. Other column transforms cannot be specified as
part of the concatenation.

15.5.1.5 LOBFILE
The LOBFILE transform is used to identify a file whose contents are to be used as the
value for a column in the external table.

All LOBFILEs are identified by an optional directory object and a file name in the form
directory object:filename. The following rules apply to use of the LOBFILE
transform:

• Both the directory object and the file name can be either a constant string or the
name of a field in the field clause.

• If a constant string is specified, then that string is used to find the LOBFILE for
every row in the table.

• If a field name is specified, then the value of that field in the data file is used to find
the LOBFILE.

Chapter 15
column_transforms Clause

15-64

• If a field name is specified for either the directory object or the file name and if the value
of that field is NULL, then the column being loaded by the LOBFILE is also set to NULL.

• If the directory object is not specified, then the default directory specified for the external
table is used.

• If a field name is specified for the directory object, then the FROM clause also needs to be
specified.

Note that the entire file is used as the value of the LOB column. If the same file is referenced
in multiple rows, then that file is reopened and reread in order to populate each column.

15.5.1.6 lobfile_attr_list
The lobfile_attr_list lists additional attributes of the LOBFILE.

The syntax is as follows:

FROM (directory object name

,

)

CLOB

BLOB

CHARACTERSET = character set name

The FROM clause lists the names of all directory objects that will be used for LOBFILEs. It is
used only when a field name is specified for the directory object of the name of the LOBFILE.
The purpose of the FROM clause is to determine the type of access allowed to the named
directory objects during initialization. If directory object in the value of field is not a directory
object in this list, then the row will be rejected.

The CLOB attribute indicates that the data in the LOBFILE is character data (as opposed to RAW
data). Character data may need to be translated into the character set used to store the LOB
in the database.

The CHARACTERSET attribute contains the name of the character set for the data in the
LOBFILEs.

The BLOB attribute indicates that the data in the LOBFILE is raw data.

If neither CLOB nor BLOB is specified, then CLOB is assumed. If no character set is specified for
character LOBFILEs, then the character set of the data file is assumed.

15.5.1.7 STARTOF source_field (length)
The STARTOF keyword allows you to create an external table in which a column can be a
substring of the data in the source field.

The length is the length of the substring, beginning with the first byte. It is assumed that
length refers to a byte count and that the external table column(s) being transformed use byte
length and not character length semantics. (Character length semantics might give
unexpected results.)

Chapter 15
column_transforms Clause

15-65

Only complete character encodings are moved; characters are never split. So if a
substring ends in the middle of a multibyte character, then the resulting string will be
shortened. For example, if a length of 10 is specified, but the 10th byte is the first byte
of a multibyte character, then only the first 9 bytes are returned.

The following example shows how you could use the STARTOF keyword if you only
wanted the first 4 bytes of the department name (dname) field:

SQL> CREATE TABLE dept (deptno NUMBER(2),
 2 dname VARCHAR2(14),
 3 loc VARCHAR2(13)
 4)
 5 ORGANIZATION EXTERNAL
 6 (
 7 DEFAULT DIRECTORY def_dir1
 8 ACCESS PARAMETERS
 9 (
 10 RECORDS DELIMITED BY NEWLINE
 11 FIELDS TERMINATED BY ','
 12 (
 13 deptno CHAR(2),
 14 dname_source CHAR(14),
 15 loc CHAR(13)
 16)
 17 column transforms
 18 (
 19 dname FROM STARTOF dname_source (4)
 20)
 21)
 22 LOCATION ('dept.dat')
 23);

Table created.

If you now perform a SELECT operation from the dept table, only the first four bytes of
the dname field are returned:

SQL> SELECT * FROM dept;

 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCO NEW YORK
 20 RESE DALLAS
 30 SALE CHICAGO
 40 OPER BOSTON

4 rows selected.

Chapter 15
column_transforms Clause

15-66

15.6 Parallel Loading Considerations for the ORACLE_LOADER
Access Driver

The ORACLE_LOADER access driver attempts to divide large data files into chunks that can be
processed separately.

The following file, record, and data characteristics make it impossible for a file to be
processed in parallel:

• Sequential data sources (such as a tape drive or pipe)

• Data in any multibyte character set whose character boundaries cannot be determined
starting at an arbitrary byte in the middle of a string

This restriction does not apply to any data file with a fixed number of bytes per record.

• Records with the VAR format

Specifying a PARALLEL clause is of value only when large amounts of data are involved.

15.7 Performance Hints When Using the ORACLE_LOADER
Access Driver

This topic describes some performance hints when using the ORACLE_LOADER access driver.

When you monitor performance, the most important measurement is the elapsed time for a
load. Other important measurements are CPU usage, memory usage, and I/O rates.

You can alter performance by increasing or decreasing the degree of parallelism. The degree
of parallelism indicates the number of access drivers that can be started to process the data
files. The degree of parallelism enables you to choose on a scale between slower load with
little resource usage and faster load with all resources utilized. The access driver cannot
automatically tune itself, because it cannot determine how many resources you want to
dedicate to the access driver.

An additional consideration is that the access drivers use large I/O buffers for better
performance (you can use the READSIZE clause in the access parameters to specify the size
of the buffers). On databases with shared servers, all memory used by the access drivers
comes out of the system global area (SGA). For this reason, you should be careful when
using external tables on shared servers.

Performance can also sometimes be increased with use of date cache functionality. By using
the date cache to specify the number of unique dates anticipated during the load, you can
reduce the number of date conversions done when many duplicate date or timestamp values
are present in the input data. The date cache functionality provided by external tables is
identical to the date cache functionality provided by SQL*Loader. See DATE_CACHE for a
detailed description.

In addition to changing the degree of parallelism and using the date cache to improve
performance, consider the following information:

• Fixed-length records are processed faster than records terminated by a string.

• Fixed-length fields are processed faster than delimited fields.

• Single-byte character sets are the fastest to process.

Chapter 15
Parallel Loading Considerations for the ORACLE_LOADER Access Driver

15-67

• Fixed-width character sets are faster to process than varying-width character sets.

• Byte-length semantics for varying-width character sets are faster to process than
character-length semantics.

• Single-character delimiters for record terminators and field delimiters are faster to
process than multicharacter delimiters.

• Having the character set in the data file match the character set of the database is
faster than a character set conversion.

• Having data types in the data file match the data types in the database is faster
than data type conversion.

• Not writing rejected rows to a reject file is faster because of the reduced overhead.

• Condition clauses (including WHEN, NULLIF, and DEFAULTIF) slow down processing.

• The access driver takes advantage of multithreading to streamline the work as
much as possible.

15.8 Restrictions When Using the ORACLE_LOADER
Access Driver

This section lists restrictions to be aware of when you use the ORACLE_LOADER access
driver.

Specifically:

• Exporting and importing of external tables with encrypted columns is not
supported.

• Column processing: By default, the external tables feature fetches all columns
defined for an external table. This guarantees a consistent result set for all
queries. However, for performance reasons you can decide to process only the
referenced columns of an external table, thus minimizing the amount of data
conversion and data handling required to execute a query. In this case, a row that
is rejected because a column in the row causes a data type conversion error will
not get rejected in a different query if the query does not reference that column.
You can change this column-processing behavior with the ALTER TABLE command.

• An external table cannot load data into a LONG column.

• SQL strings cannot be specified in access parameters for the ORACLE_LOADER
access driver. As a workaround, you can use the DECODE clause in the SELECT
clause of the statement that is reading the external table. Alternatively, you can
create a view of the external table that uses the DECODE clause and select from that
view rather than the external table.

• The use of the backslash character (\) within strings is not supported in external
tables. See Use of the Backslash Escape Character.

• When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by
the access parameter parser. If a reserved word is used as an identifier, then it
must be enclosed in double quotation marks.

Chapter 15
Restrictions When Using the ORACLE_LOADER Access Driver

15-68

15.9 Reserved Words for the ORACLE_LOADER Access Driver
When identifiers (for example, column or table names) are specified in the external table
access parameters, certain values are considered to be reserved words by the access
parameter parser.

If a reserved word is used as an identifier, then it must be enclosed in double quotation
marks. The following are the reserved words for the ORACLE_LOADER access driver:

• ALL

• AND

• ARE

• ASTERISK

• AT

• ATSIGN

• BADFILE

• BADFILENAME

• BACKSLASH

• BENDIAN

• BIG

• BLANKS

• BY

• BYTES

• BYTESTR

• CHAR

• CHARACTERS

• CHARACTERSET

• CHARSET

• CHARSTR

• CHECK

• CLOB

• COLLENGTH

• COLON

• COLUMN

• COMMA

• CONCAT

• CONSTANT

• COUNTED

• DATA

Chapter 15
Reserved Words for the ORACLE_LOADER Access Driver

15-69

• DATE

• DATE_CACHE

• DATE_FORMAT

• DATEMASK

• DAY

• DEBUG

• DECIMAL

• DEFAULTIF

• DELIMITBY

• DELIMITED

• DISCARDFILE

• DNFS_ENABLE

• DNFS_DISABLE

• DNFS_READBUFFERS

• DOT

• DOUBLE

• DOUBLETYPE

• DQSTRING

• DQUOTE

• DSCFILENAME

• ENCLOSED

• ENDIAN

• ENDPOS

• EOF

• EQUAL

• EXIT

• EXTENDED_IO_PARAMETERS

• EXTERNAL

• EXTERNALKW

• EXTPARM

• FIELD

• FIELDS

• FILE

• FILEDIR

• FILENAME

• FIXED

• FLOAT

Chapter 15
Reserved Words for the ORACLE_LOADER Access Driver

15-70

• FLOATTYPE

• FOR

• FROM

• HASH

• HEXPREFIX

• IN

• INTEGER

• INTERVAL

• LANGUAGE

• IS

• LEFTCB

• LEFTTXTDELIM

• LEFTP

• LENDIAN

• LDRTRIM

• LITTLE

• LOAD

• LOBFILE

• LOBPC

• LOBPCCONST

• LOCAL

• LOCALTZONE

• LOGFILE

• LOGFILENAME

• LRTRIM

• LTRIM

• MAKE_REF

• MASK

• MINUSSIGN

• MISSING

• MISSINGFLD

• MONTH

• NEWLINE

• NO

• NOCHECK

• NOT

• NOBADFILE

Chapter 15
Reserved Words for the ORACLE_LOADER Access Driver

15-71

• NODISCARDFILE

• NOLOGFILE

• NOTEQUAL

• NOTERMBY

• NOTRIM

• NULL

• NULLIF

• OID

• OPTENCLOSE

• OPTIONALLY

• OPTIONS

• OR

• ORACLE_DATE

• ORACLE_NUMBER

• PLUSSIGN

• POSITION

• PROCESSING

• QUOTE

• RAW

• READSIZE

• RECNUM

• RECORDS

• REJECT

• RIGHTCB

• RIGHTTXTDELIM

• RIGHTP

• ROW

• ROWS

• RTRIM

• SCALE

• SECOND

• SEMI

• SETID

• SIGN

• SIZES

• SKIP

• STRING

Chapter 15
Reserved Words for the ORACLE_LOADER Access Driver

15-72

• TERMBY

• TERMEOF

• TERMINATED

• TERMWS

• TERRITORY

• TIME

• TIMESTAMP

• TIMEZONE

• TO

• TRANSFORMS

• UNDERSCORE

• UINTEGER

• UNSIGNED

• VALUES

• VARCHAR

• VARCHARC

• VARIABLE

• VARRAW

• VARRAWC

• VLENELN

• VMAXLEN

• WHEN

• WHITESPACE

• WITH

• YEAR

• ZONED

Chapter 15
Reserved Words for the ORACLE_LOADER Access Driver

15-73

16
The ORACLE_DATAPUMP Access Driver

The ORACLE_DATAPUMP access driver provides a set of access parameters that are unique to
external tables of the type ORACLE_DATAPUMP.

• Using the ORACLE_DATAPUMP Access Driver
To modify the default behavior of the access driver, use ORACLE_DATAPUMP access
parameters.

• access_parameters Clause
When you create the ORACLE_DATAPUMP access driver external table, you can specify
certain parameters in an access_parameters clause.

• Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver
As part of creating an external table with a SQL CREATE TABLE AS SELECT statement, the
ORACLE_DATAPUMP access driver can write data to a dump file.

• Supported Data Types
The ORACLE_DATAPUMP access driver resolves many data types automatically during loads
and unloads.

• Unsupported Data Types
You can use the ORACLE_DATAPUMP access driver to unload and reload data for some of
the unsupported data types

• Performance Hints When Using the ORACLE_DATAPUMP Access Driver
Learn how to improve ORACLE_DATAPUMP access driver performance.

• Restrictions When Using the ORACLE_DATAPUMP Access Driver
Be aware of restrictions that apply to accessing external tables with the ORACLE_DATAPUMP
access driver.

• Reserved Words for the ORACLE_DATAPUMP Access Driver
If you use words in identifiers that are reserved by the ORACLE_DATAPUMP access driver,
then they must be enclosed in double quotation marks.

16.1 Using the ORACLE_DATAPUMP Access Driver
To modify the default behavior of the access driver, use ORACLE_DATAPUMP access
parameters.

The information that you provide through the ORACLE_DATAPUMP access driver ensures that
data from the data source is processed, so that it matches the definition of the external table.

To use the ORACLE_DATAPUMP access driver successfully, you must know a little about the file
format and record format of the data files on your platform, including character sets and field
data types. You must also be able to use SQL to create an external table, and to perform
queries against the table that you create.

16-1

Note:

• It is sometimes difficult to describe syntax without using other syntax that
is documented in other topics. If it is not clear what some syntax is
supposed to do, then read about that particular element by checking the
topic navigation tree.

• When identifiers (for example, column or table names) are specified in
the external table access parameters, certain values are considered to
be reserved words by the access parameter parser. If a reserved word is
used as an identifier, then it must be enclosed in double quotation marks.

• Starting with Oracle Database 21c, the ORACLE_DATAPUMP access driver
in SQL mode can write Object Storage URIs.

Related Topics

• Reserved Words for the ORACLE_DATAPUMP Access Driver
If you use words in identifiers that are reserved by the ORACLE_DATAPUMP access
driver, then they must be enclosed in double quotation marks.

16.2 access_parameters Clause
When you create the ORACLE_DATAPUMP access driver external table, you can specify
certain parameters in an access_parameters clause.

This clause is optional, as are its individual parameters. For example, you can specify
LOGFILE, but not VERSION, or vice versa. The syntax for the access_parameters clause
is as follows.

Note:

These access parameters are collectively referred to as the
opaque_format_spec in the SQL CREATE TABLE...ORGANIZATION EXTERNAL
statement.

Chapter 16
access_parameters Clause

16-2

comments

ENCRYPTION
ENABLED

DISABLED

NOLOGFILE

LOGFILE

directory object name :

file name

COMPRESSION

ENABLED

BASIC

LOW

MEDIUM

HIGH

DISABLED

HADOOP_TRAILERS
ENABLED

DISABLED

VERSION

COMPATIBLE

LATEST

version number

• Comments

• ENCRYPTION

• LOGFILE | NOLOGFILE

• COMPRESSION

• VERSION Clause
The VERSION clause is used to specify the minimum release of Oracle Database that will
be reading the dump file.

• HADOOP_TRAILERS Clause
The ORACLE_DATAPUMP access driver provides a HADOOP_TRAILERS clause, which can be
set to ENABLED or DISABLED (the default).

• Effects of Using the SQL ENCRYPT Clause
Review the requirements and guidelines for external tables when you encrypt columns
using the ORACLE_DATAPUMP access driver ENCRYPT clause.

Related Topics

• CREATE TABLE

See Also:

Oracle Database SQL Language Reference CREATE TABLE for information about
specifying opaque_format_spec when using the SQL CREATE
TABLE...ORGANIZATION EXTERNAL statement.

Chapter 16
access_parameters Clause

16-3

16.2.1 Comments

Comments are lines that begin with two hyphens followed by text.
Comments must be placed before any access parameters. For example:

--This is a comment.
--This is another comment.
NOLOG

All text to the right of the double hyphen is ignored, until the end of the line.

16.2.2 ENCRYPTION
Default

DISABLED

Purpose

Specifies whether to encrypt data before it is written to the dump file set.

Syntax and Description

ENCRYPTION [ENABLED | DISABLED]

If ENABLED is specified, then all data is written to the dump file set in encrypted format.

If DISABLED is specified, then no data is written to the dump file set in encrypted format.

Restrictions

This parameter is used only for export operations.

Example

In the following example, the ENCRYPTION parameter is set to ENABLED. Therefore, all
data written to the dept.dmp file will be in encrypted format.

CREATE TABLE deptXTec3
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1
 ACCESS PARAMETERS (ENCRYPTION ENABLED) LOCATION ('dept.dmp'));

16.2.3 LOGFILE | NOLOGFILE
Default: If LOGFILE is not specified, then a log file is created in the default directory and
the name of the log file is generated from the table name and the process ID with an
extension of .log. If a log file already exists by the same name, then the access driver
reopens that log file and appends the new log information to the end.

Chapter 16
access_parameters Clause

16-4

Purpose

LOGFILE specifies the name of the log file that contains any messages generated while the
dump file was being accessed. NOLOGFILE prevents the creation of a log file.

Syntax and Description

NOLOGFILE

or

LOGFILE [directory_object:]logfile_name

If a directory object is not specified as part of the log file name, then the directory object
specified by the DEFAULT DIRECTORY attribute is used. If a directory object is not specified and
no default directory was specified, then an error is returned. See File Names for LOGFILE for
information about using substitution variables to create unique file names during parallel
loads or unloads.

Example

In the following example, the dump file, dept_dmp, is in the directory identified by the directory
object, load_dir, but the log file, deptxt.log, is in the directory identified by the directory
object, log_dir.

CREATE TABLE dept_xt (dept_no INT, dept_name CHAR(20), location CHAR(20))
ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY load_dir
ACCESS PARAMETERS (LOGFILE log_dir:deptxt) LOCATION ('dept_dmp'));

• Log File Naming in Parallel Loads

16.2.3.1 Log File Naming in Parallel Loads
The access driver does some symbol substitution to help make file names unique in the case
of parallel loads. The symbol substitutions supported are as follows:

• %p is replaced by the process ID of the current process. For example, if the process ID of
the access driver is 12345, then exttab_%p.log becomes exttab_12345.log.

• %a is replaced by the agent number of the current process. The agent number is the
unique number assigned to each parallel process accessing the external table. This
number is padded to the left with zeros to fill three characters. For example, if the third
parallel agent is creating a file and exttab_%a.log was specified as the file name, then
the agent would create a file named exttab_003.log.

• %% is replaced by %. If there is a need to have a percent sign in the file name, then this
symbol substitution must be used.

If the % character is followed by anything other than one of the characters in the preceding
list, then an error is returned.

If %p or %a is not used to create unique file names for output files and an external table is
being accessed in parallel, then output files may be corrupted or agents may be unable to
write to the files.

If no extension is supplied for the file, then a default extension of .log is used. If the name
generated is not a valid file name, then an error is returned and no data is loaded or
unloaded.

Chapter 16
access_parameters Clause

16-5

16.2.4 COMPRESSION
Default: DISABLED

Purpose

Specifies whether to compress data (and optionally, which compression algorithm to
use) before the data is written to the dump file set.

Syntax and Description

COMPRESSION [ENABLED {BASIC | LOW| MEDIUM | HIGH} | DISABLED]

• If ENABLED is specified, then all data is compressed for the entire unload operation.
You can additionally specify one of the following compression options:

– BASIC - Offers a good combination of compression ratios and speed; the
algorithm used is the same as in previous versions of Oracle Data Pump.

– LOW - Least impact on unload throughput and suited for environments where
CPU resources are the limiting factor.

– MEDIUM - Recommended for most environments. This option, like the BASIC
option, provides a good combination of compression ratios and speed, but it
uses a different algorithm than BASIC.

– HIGH - Best suited for unloads over slower networks where the limiting factor is
network speed.

Note:

To use these compression algorithms, the COMPATIBLE initialization
parameter must be set to at least 12.0.0. This feature requires that the
Oracle Advanced Compression option be enabled.

The performance of a compression algorithm is characterized by its CPU usage
and by the compression ratio (the size of the compressed output as a percentage
of the uncompressed input). These measures vary on the size and type of inputs
as well as the speed of the compression algorithms used. The compression ratio
generally increases from low to high, with a trade-off of potentially consuming
more CPU resources.

It is recommended that you run tests with the different compression levels on the
data in your environment. Choosing a compression level based on your
environment, workload characteristics, and size and type of data is the only way to
ensure that the exported dump file set compression level meets your performance
and storage requirements.

• If DISABLED is specified, then no data is compressed for the upload operation.

Example

In the following example, the COMPRESSION parameter is set to ENABLED. Therefore, all
data written to the dept.dmp dump file will be in compressed format.

Chapter 16
access_parameters Clause

16-6

CREATE TABLE deptXTec3
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1
 ACCESS PARAMETERS (COMPRESSION ENABLED) LOCATION ('dept.dmp'));

16.2.5 VERSION Clause
The VERSION clause is used to specify the minimum release of Oracle Database that will be
reading the dump file.

For example, if you specify 11.1, then both Oracle Database 11g release 1 (11.1 and 11.2)
databases can read the dump file. If you specify 11.2, then only Oracle Database 11g release
2 (11.2) databases can read the dump file.

The default value is COMPATIBLE.

16.2.6 HADOOP_TRAILERS Clause
The ORACLE_DATAPUMP access driver provides a HADOOP_TRAILERS clause, which can be set to
ENABLED or DISABLED (the default).

When the HADOOP_TRAILERS clause is enabled, Hadoop trailers are written to the dump file.
Hadoop trailers include information about locations and sizes of different parts of the file. The
information is written in a dump trailer block at the end of the file, and at the end of the stream
data, instead of at the beginning.

16.2.7 Effects of Using the SQL ENCRYPT Clause
Review the requirements and guidelines for external tables when you encrypt columns using
the ORACLE_DATAPUMP access driver ENCRYPT clause.

If you specify the SQL ENCRYPT clause when you create an external table, then keep the
following in mind:

• The columns for which you specify the ENCRYPT clause will be encrypted before being
written into the dump file.

• If you move the dump file to another database, then the same encryption password must
be used for both the encrypted columns in the dump file, and for the external table used
to read the dump file.

• If you do not specify a password for the correct encrypted columns in the external table
on the second database, then an error is returned. If you do not specify the correct
password, then garbage data is written to the dump file.

• The dump file that is produced must be at release 10.2 or higher. Otherwise, an error is
returned.

Related Topics

• Oracle Database SQL Language Reference CREATE TABLE

Chapter 16
access_parameters Clause

16-7

See Also:

Oracle Database SQL Language Reference for more information about using
the ENCRYPT clause on a CREATE TABLE statement

16.3 Unloading and Loading Data with the
ORACLE_DATAPUMP Access Driver

As part of creating an external table with a SQL CREATE TABLE AS SELECT statement,
the ORACLE_DATAPUMP access driver can write data to a dump file.

The data in the file is written in a binary format that can only be read by the
ORACLE_DATAPUMP access driver. Once the dump file is created, it cannot be modified
(that is, no data manipulation language (DML) operations can be performed on it).
However, the file can be read any number of times and used as the dump file for
another external table in the same database or in a different database.

The following steps use the sample schema, oe, to show an extended example of how
you can use the ORACLE_DATAPUMP access driver to unload and load data. (The
example assumes that the directory object def_dir1 already exists, and that user oe
has read and write access to it.)

1. An external table will populate a file with data only as part of creating the external
table with the AS SELECT clause. The following example creates an external table
named inventories_xt and populates the dump file for the external table with the
data from table inventories in the oe schema.

SQL> CREATE TABLE inventories_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt.dmp')
 7)
 8 AS SELECT * FROM inventories;

Table created.
2. Describe both inventories and the new external table, as follows. They should

both match.

SQL> DESCRIBE inventories
 Name Null? Type
 -- --------- ----------------
 PRODUCT_ID NOT NULL NUMBER(6)
 WAREHOUSE_ID NOT NULL NUMBER(3)
 QUANTITY_ON_HAND NOT NULL NUMBER(8)

SQL> DESCRIBE inventories_xt
 Name Null? Type
 --- -------- -----------------
 PRODUCT_ID NOT NULL NUMBER(6)
 WAREHOUSE_ID NOT NULL NUMBER(3)
 QUANTITY_ON_HAND NOT NULL NUMBER(8)

Chapter 16
Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

16-8

3. Now that the external table is created, it can be queried just like any other table. For
example, select the count of records in the external table, as follows:

SQL> SELECT COUNT(*) FROM inventories_xt;

 COUNT(*)

 1112

4. Compare the data in the external table against the data in inventories. There should be
no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt;

no rows selected
5. After an external table has been created and the dump file populated by the CREATE

TABLE AS SELECT statement, no rows may be added, updated, or deleted from the external
table. Any attempt to modify the data in the external table will fail with an error.

The following example shows an attempt to use data manipulation language (DML) on an
existing external table. This will return an error, as shown.

SQL> DELETE FROM inventories_xt WHERE warehouse_id = 5;
DELETE FROM inventories_xt WHERE warehouse_id = 5
 *
ERROR at line 1:
ORA-30657: operation not supported on external organized table

6. The dump file created for the external table can now be moved and used as the dump file
for another external table in the same database or different database. Note that when you
create an external table that uses an existing file, there is no AS SELECT clause for the
CREATE TABLE statement.

SQL> CREATE TABLE inventories_xt2
 2 (
 3 product_id NUMBER(6),
 4 warehouse_id NUMBER(3),
 5 quantity_on_hand NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_xt.dmp')
 12);

Table created.
7. Compare the data for the new external table against the data in the inventories table.

The product_id field will be converted to a compatible data type before the comparison
is done. There should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt2;

no rows selected
8. Create an external table with three dump files and with a degree of parallelism of three.

SQL> CREATE TABLE inventories_xt3
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP

Chapter 16
Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

16-9

 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt1.dmp', 'inv_xt2.dmp', 'inv_xt3.dmp')
 7)
 8 PARALLEL 3
 9 AS SELECT * FROM inventories;

Table created.
9. Compare the data unload against inventories. There should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt3;

no rows selected
10. Create an external table containing some rows from table inventories.

SQL> CREATE TABLE inv_part_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p1_xt.dmp')
 7)
 8 AS SELECT * FROM inventories WHERE warehouse_id < 5;

Table created.

11. Create another external table containing the rest of the rows from inventories.

SQL> drop table inv_part_xt;

Table dropped.

SQL>
SQL> CREATE TABLE inv_part_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p2_xt.dmp')
 7)
 8 AS SELECT * FROM inventories WHERE warehouse_id >= 5;

Table created.

12. Create an external table that uses the two dump files created in Steps 10 and 11.

SQL> CREATE TABLE inv_part_all_xt
 2 (
 3 product_id NUMBER(6),
 4 warehouse_id NUMBER(3),
 5 quantity_on_hand NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_p1_xt.dmp','inv_p2_xt.dmp')
 12);

Table created.

13. Compare the new external table to the inventories table. There should be no
differences. This is because the two dump files used to create the external table

Chapter 16
Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

16-10

have the same metadata (for example, the same table name inv_part_xt and the same
column information).

SQL> SELECT * FROM inventories MINUS SELECT * FROM inv_part_all_xt;

no rows selected

• Parallel Loading and Unloading
This topic describes parallel loading and unloading.

• Combining Dump Files
Dump files populated by different external tables can all be specified in the LOCATION
clause of another external table.

16.3.1 Parallel Loading and Unloading
This topic describes parallel loading and unloading.

The dump file must be on a disk big enough to hold all the data being written. If there is
insufficient space for all of the data, then an error is returned for the CREATE TABLE AS SELECT
statement. One way to alleviate the problem is to create multiple files in multiple directory
objects (assuming those directories are on different disks) when executing the CREATE TABLE
AS SELECT statement. Multiple files can be created by specifying multiple locations in the form
directory:file in the LOCATION clause and by specifying the PARALLEL clause. Each parallel
I/O server process that is created to populate the external table writes to its own file. The
number of files in the LOCATION clause should match the degree of parallelization because
each I/O server process requires its own files. Any extra files that are specified will be
ignored. If there are not enough files for the degree of parallelization specified, then the
degree of parallelization is lowered to match the number of files in the LOCATION clause.

Here is an example of unloading the inventories table into three files.

SQL> CREATE TABLE inventories_XT_3
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt1.dmp', 'inv_xt2.dmp', 'inv_xt3.dmp')
 7)
 8 PARALLEL 3
 9 AS SELECT * FROM oe.inventories;

Table created.

When the ORACLE_DATAPUMP access driver is used to load data, parallel processes can read
multiple dump files or even chunks of the same dump file concurrently. Thus, data can be
loaded in parallel even if there is only one dump file, as long as that file is large enough to
contain multiple file offsets. The degree of parallelization is not tied to the number of files in
the LOCATION clause when reading from ORACLE_DATAPUMP external tables.

16.3.2 Combining Dump Files
Dump files populated by different external tables can all be specified in the LOCATION clause
of another external table.

For example, data from different production databases can be unloaded into separate files,
and then those files can all be included in an external table defined in a data warehouse. This

Chapter 16
Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

16-11

provides an easy way of aggregating data from multiple sources. The only restriction is
that the metadata for all of the external tables be exactly the same. This means that
the character set, time zone, schema name, table name, and column names must all
match. Also, the columns must be defined in the same order, and their data types must
be exactly alike. This means that after you create the first external table you must drop
it so that you can use the same table name for the second external table. This ensures
that the metadata listed in the two dump files is the same and they can be used
together to create the same external table.

SQL> CREATE TABLE inv_part_1_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p1_xt.dmp')
 7)
 8 AS SELECT * FROM oe.inventories WHERE warehouse_id < 5;

Table created.

SQL> DROP TABLE inv_part_1_xt;

SQL> CREATE TABLE inv_part_1_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT directory def_dir1
 6 LOCATION ('inv_p2_xt.dmp')
 7)
 8 AS SELECT * FROM oe.inventories WHERE warehouse_id >= 5;

Table created.

SQL> CREATE TABLE inv_part_all_xt
 2 (
 3 PRODUCT_ID NUMBER(6),
 4 WAREHOUSE_ID NUMBER(3),
 5 QUANTITY_ON_HAND NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_p1_xt.dmp','inv_p2_xt.dmp')
 12);

Table created.

SQL> SELECT * FROM inv_part_all_xt MINUS SELECT * FROM oe.inventories;

no rows selected

16.4 Supported Data Types
The ORACLE_DATAPUMP access driver resolves many data types automatically during
loads and unloads.

When you use external tables to move data between databases, you may encounter
the following situations:

Chapter 16
Supported Data Types

16-12

• The database character set and the database national character set may be different
between the two platforms.

• The endianness of the platforms for the two databases may be different.

The ORACLE_DATAPUMP access driver automatically resolves some of these situations.

The following data types are automatically converted during loads and unloads:

• Character (CHAR, NCHAR, VARCHAR2, NVARCHAR2)

• RAW
• NUMBER
• Date/Time

• BLOB
• CLOB and NCLOB
• ROWID and UROWID
If you attempt to use a data type that is not supported for external tables, then you receive an
error. This is demonstrated in the following example, in which the unsupported data type,
LONG, is used:

SQL> CREATE TABLE bad_datatype_xt
 2 (
 3 product_id NUMBER(6),
 4 language_id VARCHAR2(3),
 5 translated_name NVARCHAR2(50),
 6 translated_description LONG
 7)
 8 ORGANIZATION EXTERNAL
 9 (
 10 TYPE ORACLE_DATAPUMP
 11 DEFAULT DIRECTORY def_dir1
 12 LOCATION ('proddesc.dmp')
 13);
 translated_description LONG
 *
ERROR at line 6:
ORA-30656: column type not supported on external organized table

Note:

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new
applications developed with later releases, Oracle strongly recommends that you
use CLOB and NCLOB data types for large amounts of character data.

16.5 Unsupported Data Types
You can use the ORACLE_DATAPUMP access driver to unload and reload data for some of the
unsupported data types

Chapter 16
Unsupported Data Types

16-13

An external table supports a subset of all possible data types for columns. In particular,
it supports character data types (except LONG), the RAW data type, all numeric data
types, and all date, timestamp, and interval data types.

The unsupported data types for which you can use the ORACLE_DATAPUMP access driver
to unload and reload data include the following:

• BFILE
• LONG and LONG RAW
• Final object types

• Tables of final object types

Note:

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW)
were deprecated in Oracle8i Release 8.1.6. For succeeding releases, the
LONG data type was provided for backward compatibility with existing
applications. In new applications developed with later releases, Oracle
strongly recommends that you use CLOB and NCLOB data types for large
amounts of character data.

• Unloading and Loading BFILE Data Types
The BFILE data type has two pieces of information stored in it: the directory object
for the file and the name of the file within that directory object.

• Unloading LONG and LONG RAW Data Types
You can use the ORACLE_DATAPUMP access driver can be used to unload LONG and
LONG RAW columns, but that data can only be loaded back into LOB fields.

• Unloading and Loading Columns Containing Final Object Types
Final column objects are populated into an external table by moving each attribute
in the object type into a column in the external table.

• Tables of Final Object Types
Object tables have an object identifier that uniquely identifies every row in the
table.

16.5.1 Unloading and Loading BFILE Data Types
The BFILE data type has two pieces of information stored in it: the directory object for
the file and the name of the file within that directory object.

You can unload BFILE columns using the ORACLE_DATAPUMP access driver by storing
the directory object name and the file name in two columns in the external table. The
procedure DBMS_LOB.FILEGETNAME will return both parts of the name. However,
because this is a procedure, it cannot be used in a SELECT statement. Instead, two
functions are needed. The first will return the name of the directory object, and the
second will return the name of the file.

The steps in the following extended example demonstrate the unloading and loading
of BFILE data types.

Chapter 16
Unsupported Data Types

16-14

1. Create a function to extract the directory object for a BFILE column. Note that if the
column is NULL, then NULL is returned.

SQL> CREATE FUNCTION get_dir_name (bf BFILE) RETURN VARCHAR2 IS
 2 DIR_ALIAS VARCHAR2(255);
 3 FILE_NAME VARCHAR2(255);
 4 BEGIN
 5 IF bf is NULL
 6 THEN
 7 RETURN NULL;
 8 ELSE
 9 DBMS_LOB.FILEGETNAME (bf, dir_alias, file_name);
 10 RETURN dir_alias;
 11 END IF;
 12 END;
 13 /

Function created.
2. Create a function to extract the file name for a BFILE column.

SQL> CREATE FUNCTION get_file_name (bf BFILE) RETURN VARCHAR2 is
 2 dir_alias VARCHAR2(255);
 3 file_name VARCHAR2(255);
 4 BEGIN
 5 IF bf is NULL
 6 THEN
 7 RETURN NULL;
 8 ELSE
 9 DBMS_LOB.FILEGETNAME (bf, dir_alias, file_name);
 10 RETURN file_name;
 11 END IF;
 12 END;
 13 /

Function created.
3. You can then add a row with a NULL value for the BFILE column, as follows:

SQL> INSERT INTO PRINT_MEDIA (product_id, ad_id, ad_graphic)
 2 VALUES (3515, 12001, NULL);

1 row created.

You can use the newly created functions to populate an external table. Note that the
functions should set columns ad_graphic_dir and ad_graphic_file to NULL if the BFILE
column is NULL.

4. Create an external table to contain the data from the print_media table. Use the
get_dir_name and get_file_name functions to get the components of the BFILE column.

SQL> CREATE TABLE print_media_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE oracle_datapump
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('pm_xt.dmp')
 7) AS
 8 SELECT product_id, ad_id,
 9 get_dir_name (ad_graphic) ad_graphic_dir,
 10 get_file_name(ad_graphic) ad_graphic_file
 11 FROM print_media;

Chapter 16
Unsupported Data Types

16-15

Table created.
5. Create a function to load a BFILE column from the data that is in the external table.

This function will return NULL if the ad_graphic_dir column in the external table is
NULL.

SQL> CREATE FUNCTION get_bfile (dir VARCHAR2, file VARCHAR2) RETURN
BFILE is
 2 bf BFILE;
 3 BEGIN
 4 IF dir IS NULL
 5 THEN
 6 RETURN NULL;
 7 ELSE
 8 RETURN BFILENAME(dir,file);
 9 END IF;
 10 END;
 11 /

Function created.
6. The get_bfile function can be used to populate a new table containing a BFILE

column.

SQL> CREATE TABLE print_media_int AS
 2 SELECT product_id, ad_id,
 3 get_bfile (ad_graphic_dir, ad_graphic_file) ad_graphic
 4 FROM print_media_xt;

Table created.
7. The data in the columns of the newly loaded table should match the data in the

columns of the print_media table.

SQL> SELECT product_id, ad_id,
 2 get_dir_name(ad_graphic),
 3 get_file_name(ad_graphic)
 4 FROM print_media_int
 5 MINUS
 6 SELECT product_id, ad_id,
 7 get_dir_name(ad_graphic),
 8 get_file_name(ad_graphic)
 9 FROM print_media;

no rows selected

16.5.2 Unloading LONG and LONG RAW Data Types
You can use the ORACLE_DATAPUMP access driver can be used to unload LONG and LONG
RAW columns, but that data can only be loaded back into LOB fields.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

The steps in the following extended example demonstrate the unloading of LONG and
LONG RAW data types.

Chapter 16
Unsupported Data Types

16-16

1. If a table that you want to unload contains a LONG or LONG RAW column, then define the
corresponding columns in the external table as CLOB for LONG columns or BLOB for LONG
RAW columns.

For example:

SQL> CREATE TABLE long_tab
 2 (
 3 key SMALLINT,
 4 description LONG
 5);

Table created.

SQL> INSERT INTO long_tab VALUES (1, 'Description Text');

1 row created.

2. Create an external table that contains a CLOB column to contain the data from the LONG
column. Note that when loading the external table, the TO_LOB operator is used to convert
the LONG column into a CLOB.

For example:

SQL> CREATE TABLE long_tab_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('long_tab_xt.dmp')
 7)
 8 AS SELECT key, TO_LOB(description) description FROM long_tab;

Table created.

3. The data in the external table can be used to create another table exactly like the one
that was unloaded. However, the new table now contain a LOB column instead of a LONG
column.

For example:

SQL> CREATE TABLE lob_tab
 2 AS SELECT * from long_tab_xt;

Table created.
4. Verify that the table was created correctly.

For example:

SQL> SELECT * FROM lob_tab;

 KEY DESCRIPTION
--
 1 Description Text

Chapter 16
Unsupported Data Types

16-17

16.5.3 Unloading and Loading Columns Containing Final Object Types
Final column objects are populated into an external table by moving each attribute in
the object type into a column in the external table.

In addition, the external table needs a new column to track whether the column object
is atomically NULL. The following steps demonstrate the unloading and loading of
columns containing final object types.

1. In the following example, the warehouse column in the external table is used to
track whether the warehouse column in the source table is atomically NULL.

SQL> CREATE TABLE inventories_obj_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_obj_xt.dmp')
 7)
 8 AS
 9 SELECT oi.product_id,
 10 DECODE (oi.warehouse, NULL, 0, 1) warehouse,
 11 oi.warehouse.location_id location_id,
 12 oi.warehouse.warehouse_id warehouse_id,
 13 oi.warehouse.warehouse_name warehouse_name,
 14 oi.quantity_on_hand
 15 FROM oc_inventories oi;

Table created.

The columns in the external table containing the attributes of the object type can
now be used as arguments to the type constructor function when loading a column
of that type. Note that the warehouse column in the external table is used to
determine whether to call the constructor function for the object or set the column
to NULL.

2. Load a new internal table that looks exactly like the oc_inventories view. (The
use of the WHERE 1=0 clause creates a new table that looks exactly like the old
table but does not copy any data from the old table into the new table.)

SQL> CREATE TABLE oc_inventories_2 AS SELECT * FROM oc_inventories
WHERE 1 = 0;

Table created.

SQL> INSERT INTO oc_inventories_2
 2 SELECT product_id,
 3 DECODE (warehouse, 0, NULL,
 4 warehouse_typ(warehouse_id, warehouse_name,
 5 location_id)), quantity_on_hand
 6 FROM inventories_obj_xt;

1112 rows created.

16.5.4 Tables of Final Object Types
Object tables have an object identifier that uniquely identifies every row in the table.

Chapter 16
Unsupported Data Types

16-18

The following situations can occur:

• If there is no need to unload and reload the object identifier, then the external table only
needs to contain fields for the attributes of the type for the object table.

• If the object identifier (OID) needs to be unloaded and reloaded and the OID for the table
is one or more fields in the table, (also known as primary-key-based OIDs), then the
external table has one column for every attribute of the type for the table.

• If the OID needs to be unloaded and the OID for the table is system-generated, then the
procedure is more complicated. In addition to the attributes of the type, another column
needs to be created to hold the system-generated OID.

The steps in the following example demonstrate this last situation.

1. Create a table of a type with system-generated OIDs:

SQL> CREATE TYPE person AS OBJECT (name varchar2(20)) NOT FINAL
 2 /

Type created.

SQL> CREATE TABLE people OF person;

Table created.

SQL> INSERT INTO people VALUES ('Euclid');

1 row created.
2. Create an external table in which the column OID is used to hold the column containing

the system-generated OID.

SQL> CREATE TABLE people_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('people.dmp')
 7)
 8 AS SELECT SYS_NC_OID$ oid, name FROM people;

Table created.
3. Create another table of the same type with system-generated OIDs. Then, execute an

INSERT statement to load the new table with data unloaded from the old table.

SQL> CREATE TABLE people2 OF person;

Table created.

SQL>
SQL> INSERT INTO people2 (SYS_NC_OID$, SYS_NC_ROWINFO$)
 2 SELECT oid, person(name) FROM people_xt;

1 row created.

SQL>
SQL> SELECT SYS_NC_OID$, name FROM people
 2 MINUS
 3 SELECT SYS_NC_OID$, name FROM people2;

no rows selected

Chapter 16
Unsupported Data Types

16-19

16.6 Performance Hints When Using the
ORACLE_DATAPUMP Access Driver

Learn how to improve ORACLE_DATAPUMP access driver performance.

When you monitor performance, the most important measurement is the elapsed time
for a load. Other important measurements are CPU usage, memory usage, and I/O
rates.

You can alter performance by increasing or decreasing the degree of parallelism. The
degree of parallelism indicates the number of access drivers that can be started to
process the data files. The degree of parallelism enables you to choose on a scale
between slower load with little resource usage and faster load with all resources
utilized. The access driver cannot automatically tune itself, because it cannot
determine how many resources you want to dedicate to the access driver.

An additional consideration is that the access drivers use large I/O buffers for better
performance. On databases with shared servers, all memory used by the access
drivers comes out of the system global area (SGA). For this reason, you should be
careful when using external tables on shared servers.

16.7 Restrictions When Using the ORACLE_DATAPUMP
Access Driver

Be aware of restrictions that apply to accessing external tables with the
ORACLE_DATAPUMP access driver.

The restrictions that apply to using the ORACLE_DATAPUMP access driver with external
tables includes the following:

• Encrypted columns: Exporting and importing of external tables with encrypted
columns is not supported.

• Column processing: By default, the external tables feature fetches all columns
defined for an external table. This guarantees a consistent result set for all
queries. However, for performance reasons you can decide to process only the
referenced columns of an external table, thus minimizing the amount of data
conversion and data handling required to execute a query. In this case, a row that
is rejected because a column in the row causes a data type conversion error will
not get rejected in a different query if the query does not reference that column.
You can change this column-processing behavior with the ALTER TABLE command.

• LONG columns: An external table cannot load data into a LONG column.

• Handling of byte-order marks during a load: In an external table load for which the
data file character set is UTF8 or UTF16, it is not possible to suppress checking
for byte-order marks. Suppression of byte-order mark checking is necessary only if
the beginning of the data file contains binary data that matches the byte-order
mark encoding. (It is possible to suppress byte-order mark checking with
SQL*Loader loads.) Note that checking for a byte-order mark does not mean that
a byte-order mark must be present in the data file. If no byte-order mark is present,
then the byte order of the server platform is used.

Chapter 16
Performance Hints When Using the ORACLE_DATAPUMP Access Driver

16-20

• Backslash escape characters: The external tables feature does not support the use of the
backslash (\) escape character within strings.

• Reserved words: When identifiers (for example, column or table names) are specified in
the external table access parameters, certain values are considered to be reserved
words by the access parameter parser. If a reserved word is used as an identifier, then it
must be enclosed in double quotation marks.

Note:

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new
applications developed with later releases, Oracle strongly recommends that you
use CLOB and NCLOB data types for large amounts of character data.

Related Topics

• Use of the Backslash Escape Character
SQL*Loader and external tables use different conventions to identify single quotation
marks as an enclosure character.

16.8 Reserved Words for the ORACLE_DATAPUMP Access
Driver

If you use words in identifiers that are reserved by the ORACLE_DATAPUMP access driver, then
they must be enclosed in double quotation marks.

When identifiers (for example, column or table names) are specified in the external table
access parameters, certain values are considered to be reserved words by the access
parameter parser. If a reserved word is used as an identifier, then it must be enclosed in
double quotation marks. The following are the reserved words for the ORACLE_DATAPUMP
access driver:

• BADFILE
• COMPATIBLE
• COMPRESSION
• DATAPUMP
• DEBUG
• ENCRYPTION
• INTERNAL
• JOB
• LATEST
• LOGFILE
• NOBADFILE
• NOLOGFILE

Chapter 16
Reserved Words for the ORACLE_DATAPUMP Access Driver

16-21

• PARALLEL
• TABLE
• VERSION
• WORKERID

Chapter 16
Reserved Words for the ORACLE_DATAPUMP Access Driver

16-22

17
ORACLE_HDFS and ORACLE_HIVE Access
Drivers

With external tables, you can access data stored in HDFS and Hive tables on Hadoop and
Hive clients as if that data was stored in tables in an Oracle Database.

The properties used to create an external table that uses the ORACLE_HDFS or ORACLE_HIVE
access drivers are specified in a SQL CREATE TABLE ORGANIZATION EXTERNAL statement, in
the opaque_format_spec clause of ACCESS PARAMETERS.

• Syntax Rules for Specifying Properties
The properties are set using keyword-value pairs in the SQL CREATE TABLE ACCESS
PARAMETERS clause and in the configuration files.

• ORACLE_HDFS Access Parameters
The access parameters for the ORACLE_HDFS access driver provide the metadata needed
to locate the data in HDFS and generate a Hive table over it.

• ORACLE_HIVE Access Parameters
ORACLE_HIVE retrieves metadata about external data sources from the Hive catalog.

• Descriptions of com.oracle.bigdata Parameters
The com.oracle.bigdata parameters are used by the ORACLE_HIVE, ORACLE_HDFS, and
ORACLE_BIGDATA access drivers.

Related Topics

• External Tables Examples
Learn from these examples how to use the ORACLE_LOADER,
ORACLE_DATAPUMP,ORACLE_HDFS, and ORACLE_HIVE access drivers to query data in Oracle
Database and Big Data.

17.1 Syntax Rules for Specifying Properties
The properties are set using keyword-value pairs in the SQL CREATE TABLE ACCESS
PARAMETERS clause and in the configuration files.

The syntax must obey these rules:

• The format of each keyword-value pair is a keyword, a colon or equal sign, and a value.
The following are valid keyword-value pairs:

keyword=value
keyword:value

The value is everything from the first non-whitespace character after the separator to the
end of the line. Whitespace between the separator and the value is ignored. Trailing
whitespace for the value is retained.

• A property definition can be on one line or multiple lines.

17-1

• A line terminator is a line feed, a carriage return, or a carriage return followed by
line feeds.

• When a property definition spans multiple lines, then precede the line terminators
with a backslash (escape character), except on the last line. In this example, the
value of the Keyword1 property is Value part 1 Value part 2 Value part 3.

Keyword1= Value part 1 \
 Value part 2 \
 Value part 3

• You can create a logical line by stripping each physical line of leading whitespace
and concatenating the lines. The parser extracts the property names and values
from the logical line.

• You can embed special characters in a property name or property value by
preceding a character with a backslash (escape character), indicating the
substitution. The following table describes the special characters.

Table 17-1 Special Characters in Properties

Escape Sequence Character

\b Backspace (\u0008)

\t Horizontal tab (\u0009)

\n Line feed (\u000a)
\f Form feed (\u000c)

\r Carriage return (\u000d)

\" Double quote (\u0022)

\' Single quote (\u0027)

\\ Backslash (\u005c)

When multiple backslashes are at the end of the line, the parser
continues the value to the next line only for an odd number of
backslashes.

\uxxxx 2-byte, big-endian, Unicode code point.

When a character requires two code points (4 bytes), the parser expects
\u for the second code point.

17.2 ORACLE_HDFS Access Parameters
The access parameters for the ORACLE_HDFS access driver provide the metadata
needed to locate the data in HDFS and generate a Hive table over it.

• Default Parameter Settings for ORACLE_HDFS
Describes default parameter settings for ORACLE_HDFS.

• Optional Parameter Settings for ORACLE_HDFS
ORACLE_HDFS supports optional com.oracle.bigdata parameters, which you can
specify in the opaque_format_spec clause.

Chapter 17
ORACLE_HDFS Access Parameters

17-2

17.2.1 Default Parameter Settings for ORACLE_HDFS
Describes default parameter settings for ORACLE_HDFS.

If you omit all access parameters from the CREATE TABLE statement, then ORACLE_HDFS uses
the following default values:

com.oracle.bigdata.rowformat=DELIMITED
com.oracle.bigdata.fileformat=TEXTFILE
com.oracle.bigdata.overflow={"action":"error"}
com.oracle.bigdata.erroropt={"action":"setnull"}

17.2.2 Optional Parameter Settings for ORACLE_HDFS
ORACLE_HDFS supports optional com.oracle.bigdata parameters, which you can specify in
the opaque_format_spec clause.

Specifically:

• com.oracle.bigdata.colmap
• com.oracle.bigdata.erroropt
• com.oracle.bigdata.fields
• com.oracle.bigdata.fileformat
• com.oracle.bigdata.log.exec
• com.oracle.bigdata.log.qc
• com.oracle.bigdata.overflow
• com.oracle.bigdata.rowformat
The following example shows a CREATE TABLE statement in which multiple access parameters
are set.

Example 17-1 Setting Multiple Access Parameters for ORACLE_HDFS

CREATE TABLE ORDER (CUST_NUM VARCHAR2(10),
 ORDER_NUM VARCHAR2(20),
 ORDER_DATE DATE,
 ITEM_CNT NUMBER,
 DESCRIPTION VARCHAR2(100),
 ORDER_TOTAL (NUMBER8,2)) ORGANIZATION EXTERNAL
 (TYPE ORACLE_HDFS
 ACCESS PARAMETERS (
 com.oracle.bigdata.fields: (CUST_NUM, \
 ORDER_NUM, \
 ORDER_DATE, \
 ORDER_LINE_ITEM_COUNT, \
 DESCRIPTION, \
 ORDER_TOTAL)
 com.oracle.bigdata.colMap: {"col":"item_cnt", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"TRUNCATE", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.errorOpt: [{"action":"replace", \
 "value":"INVALID NUM", \
 "col":["CUST_NUM","ORDER_NUM"]} , \

Chapter 17
ORACLE_HDFS Access Parameters

17-3

 {"action":"reject", \
 "col":"ORDER_TOTAL}]
)
 LOCATION ("hdfs:/usr/cust/summary/*"));

17.3 ORACLE_HIVE Access Parameters
ORACLE_HIVE retrieves metadata about external data sources from the Hive catalog.

The default mapping of Hive data to columns in the external table are usually
appropriate. However, some circumstances require special parameter settings, or you
might want to override the default values for reasons of your own.

• Default Parameter Settings for ORACLE_HIVE
Describes the default parameter settings for ORACLE_HIVE.

• Optional Parameter Settings for ORACLE_HIVE
ORACLE_HIVE supports optional com.oracle.bigdata parameters, which you can
specify in the opaque_format_spec clause.

17.3.1 Default Parameter Settings for ORACLE_HIVE
Describes the default parameter settings for ORACLE_HIVE.

If you omit all access parameters from the CREATE TABLE statement, then ORACLE_HIVE
uses the following default values:

com.oracle.bigdata.tablename=name of external table
com.oracle.bigdata.overflow={"action":"error"}
com.oracle.bigdata.erroropt={"action":"setnull"}

17.3.2 Optional Parameter Settings for ORACLE_HIVE
ORACLE_HIVE supports optional com.oracle.bigdata parameters, which you can
specify in the opaque_format_spec clause.

Specifically:

• com.oracle.bigdata.colmap
• com.oracle.bigdata.erroropt
• com.oracle.bigdata.log.exec
• com.oracle.bigdata.log.qc
• com.oracle.bigdata.overflow
• com.oracle.bigdata.tablename
The following example shows a CREATE TABLE statement in which multiple access
parameters are set.

Example 17-2 Setting Multiple Access Parameters for ORACLE_HIVE

CREATE TABLE ORDER (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_date DATE,
 item_cnt NUMBER,
 description VARCHAR2(100),

Chapter 17
ORACLE_HIVE Access Parameters

17-4

 order_total (NUMBER8,2)) ORGANIZATION EXTERNAL
(TYPE oracle_hive
 ACCESS PARAMETERS (
 com.oracle.bigdata.tableName: order_db.order_summary
 com.oracle.bigdata.colMap: {"col":"ITEM_CNT", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"ERROR", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.errorOpt: [{"action":"replace", \
 "value":"INV_NUM" , \
 "col":["CUST_NUM","ORDER_NUM"]} ,\
 {"action":"reject", \
 "col":"ORDER_TOTAL}]
));

17.4 Descriptions of com.oracle.bigdata Parameters
The com.oracle.bigdata parameters are used by the ORACLE_HIVE, ORACLE_HDFS, and
ORACLE_BIGDATA access drivers.

• com.oracle.bigdata.colmap
Maps a column in the source data to a column in the Oracle external table.

• com.oracle.bigdata.datamode
Specifies the method that SmartScan uses to scan a Hadoop data source.

• com.oracle.bigdata.erroropt
Describes how to handle errors that occur while the value of a column is calculated.

• com.oracle.bigdata.fields
Lists the field names and data types of the data source.

• com.oracle.bigdata.fileformat
Describes the row format of the data source, based on the ROW FORMAT clause for a Hive
table generated by ORACLE_HDFS.

• com.oracle.bigdata.log.exec
Specifies how the access driver generates log files generated by the C code for a query,
when it is running as parallel processes on CDH.

• com.oracle.bigdata.log.qc
Specifies how the access driver generates log files for a query.

• com.oracle.bigdata.overflow
Describes how to handle string data that is too long for the columns in the external table.

• com.oracle.bigdata.rowformat
Provides the information the access driver needs to extract fields from the records in a
file.

• com.oracle.bigdata.tablename
Identifies the name of the table that contains the source data.

17.4.1 com.oracle.bigdata.colmap
Maps a column in the source data to a column in the Oracle external table.

You can define one or multiple pairs of column mappings. Use this property when the source
field names exceed the maximum length of Oracle column names, or when you want to use
different column names in the external table.

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-5

Default Value

A column in the external table with the same name as the Hive column

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

colmap ::=

com.oracle.bigdata.colmap
=

:

colmap_entry

[colmap_entry

,

]

colmap_entry ::=

{ "col" : name , "field" : name }

Semantics

"col":name
"col": The keyword must be lowercase and enclosed in quotation marks.

name: The name of a column in the Oracle external table. It is case sensitive and must
be enclosed in quotation marks.

"field":name
"field": The keyword must be lowercase and enclosed in quotation marks.

name: The name of a field in the data source. The name is not case-sensitive, but it
must be enclosed in quotation marks. See Syntax Rules for Specifying Properties.

Examples

This example maps a Hive column named ORDER_LINE_ITEM_COUNT to an Oracle
column named ITEM_CNT:

com.oracle.bigdata.colMap={"col":"ITEM_CNT", \
 "field":"order_line_item_count"}

The following example shows the mapping of multiple columns.

com.oracle.bigdata.colmap:[{"col":"KOL1", "field":"PROJECT_NAME"},
{ "col":"KOL2","field":"wsdl_name"},{"col":"KOL3", "field":"method"}]

17.4.2 com.oracle.bigdata.datamode
Specifies the method that SmartScan uses to scan a Hadoop data source.

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-6

The method that you select for SmartScan can make a significant difference in performance.

Default Value

automatic

Syntax

A JSON document with the keyword-value pairs shown in the following diagram:

datamode ::=

com.oracle.bigdata.datamode
=

:

c

java

automatic

Semantics

automatic
Automatically selects the appropriate mode, based on the metadata. It selects c mode if
possible, or java mode if the data contains formats that are not supported by c mode.

c

Uses Java to read the file buffers, but C code to process the data and convert it to Oracle
format. Specify this mode for delimited data.

If the data contains formats that the C code does not support, then it returns an error.

java
Uses the Java SerDes and InputFormats to process the data, and convert it to Oracle format.
Specify this mode for Parquet, RCFile, and other data formats that require a SerDe.

17.4.3 com.oracle.bigdata.erroropt
Describes how to handle errors that occur while the value of a column is calculated.

Default Value

{"action":"setnull"}

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

erroropt ::=

com.oracle.bigdata.erroropt
=

:

error_element

[error_element

,

]

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-7

error_element ::=

{ "action" :

"reject"

"setnull"

"replace" , "value" : string

, "col" :

name

[name

,

]

}

Semantics

The "action", "reject", "setnull", "replace", "value", and "col" keywords must
be lowercase and enclosed in quotation marks. See Syntax Rules for Specifying
Properties.

"action":value
value: One of these keywords:

• "reject": Does not load any rows.

• "setnull": Sets the column to NULL.

• "replace": Sets the column to the specified value.

"value":string
string: Replaces a bad value in the external table. It must be enclosed in quotation
marks.

"col":name
name: Identifies a column in an external table. The column name is case sensitive,
must be enclosed in quotation marks, and can be listed only once.

Example

This example sets the value of the CUST_NUM or ORDER_NUM columns to INVALID if the
Hive value causes an error. For any other columns, an error just causes the Hive value
to be rejected.

com.oracle.bigdata.errorOpt: {"action":"replace",\
 "value":"INVALID", \
 "col":["CUST_NUM","ORDER_NUM"]

17.4.4 com.oracle.bigdata.fields
Lists the field names and data types of the data source.

Default Value

Not defined

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

fields ::=

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-8

com.oracle.bigdata.fields
=

:
(field_name data_type

COMMENT col_comment

,

)

data_type ::=

primitive_type

ARRAY < data_type >

MAP < primitive_type , data_type >

STRUCT < field_name data_type

COMMENT col_comment

,

>

UNIONTYPE < data_type

,

>

primitive_type ::=

TINYINT

SMALLINT

INT

BIGINT

BOOLEAN

FLOAT

DOUBLE

STRING

BINARY

TIMESTAMP

DECIMAL

Semantics

The syntax is the same as a field list for a Hive table. If you split the field list across multiple
lines, you must use a backslash to escape the new line characters.

field_name
The name of the Hive field. Use only alphanumeric characters and underscores (_). The
maximum length is 128 characters. Field names are case-insensitive.

data_type

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-9

(Optional) The data type of the Hive field. The default is STRING. The character set
must be UTF8.

The data type can be complex or primitive:

Hive Complex Data Types

• ARRAY: Indexable list

• MAP: Key-value tuples

• STRUCT: List of elements

• UNIONTYPE: Multiple data types

Hive Primitive Data Types

• INT: 4 byte integer

• BIGINT: 8 byte integer

• SMALLINT: 2 byte integer

• TINYINT: 1 byte integer

• BOOLEAN: TRUE or FALSE
• FLOAT: single precision

• DOUBLE: double precision

• STRING: character sequence

See Also:

"Data Types" in the Apache Hive Language Manual at

https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+Types

COMMENT col_comment
A string literal enclosed in single quotation marks, which is stored as metadata for the
Hive table (comment property of TBLPROPERTIES).

17.4.5 com.oracle.bigdata.fileformat
Describes the row format of the data source, based on the ROW FORMAT clause for a
Hive table generated by ORACLE_HDFS.

Default Value

TEXTFILE

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram.

fileformat::=

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-10

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types

com.oracle.bigdata.fileformat
=

:

SEQUENCEFILE

TEXTFILE

RCFILE

ORC

PARQUET

INPUTFORMAT input_class OUTPUTFORMAT output_class

Semantics

ORC
Optimized row columnar file format

PARQUET
Column-oriented, binary file format

RCFILE
Record columnar file format

SEQUENCEFILE
Compressed file format

TEXTFILE
Plain text file format

INPUTFORMAT
Identifies a Java class that can extract records from the data file.

OUTPUTFORMAT
Identifies a Java class that can format the output records in the desired format

17.4.6 com.oracle.bigdata.log.exec
Specifies how the access driver generates log files generated by the C code for a query,
when it is running as parallel processes on CDH.

The access driver does not create or write log files when executing on a Hadoop cluster
node; the parallel query processes write them. The log files from the Java code are controlled
by log4j properties, which are specified in the configuration file or the access parameters.

See Also:

bigdata-log4j.properties to see more about how to define the logging behavior
of queries against external tables in the Java code.

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-11

Default Value

Not defined (no logging)

Syntax

[directory_object:]file_name_template

Semantics

directory_object

The Oracle directory object for the HDFS path on the Hadoop cluster where the log file
is created.

file_name_template

A string used to generate file names. This table describes the optional variables that
you can use in the template.

Table 17-2 Variables for com.oracle.bigdata.log.exec

Variable Value

%p Operating system process identifier (PID)

%a A number that uniquely identifies the process.

%% A percent sign (%)

Example

The following example generates log file names that include the PID and a unique
number, such as xtlogp_hive14_3413_57:

com.oracle.bigdata.log.exec= xtlogp_hive14_%p_%a

17.4.7 com.oracle.bigdata.log.qc
Specifies how the access driver generates log files for a query.

Default Value

Not defined (no logging)

Syntax

[directory_object:]file_name_template

Semantics

directory_object

Name of an Oracle directory object that points to the path where the log files are
written. If this value is omitted, then the logs are written to the default directory for the
external table.

file_name_template

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-12

A string used to generate file names. Table 17-3 describes the optional variables that you can
use in the string.

Table 17-3 Variables for com.oracle.bigdata.log.qc

Variable Value

%p Operating system process identifier (PID)

%% A percent sign (%)

Example

This example creates log file names that include the PID and a percent sign, such as
xtlogp_hive213459_%:

com.oracle.bigdata.log.qc= xtlogp_hive21%p_%%

17.4.8 com.oracle.bigdata.overflow
Describes how to handle string data that is too long for the columns in the external table.

The data source can be character or binary. For Hive, the data source can also be STRUCT,
UNIONTYPES, MAP, or ARRAY.

Default Value

{"action":"error"}

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

overflow ::=

com.oracle.bigdata.overflow
=

:

overflow_element

[overflow_element

,

]

overflow_element ::=

{ "action" :

"truncate"

"error"

, "col" :

name

[name

,

]

}

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-13

Semantics

The "action", "truncate", "error", and "col" tags must be lowercase and enclosed
in quotation marks. See Syntax Rules for Specifying Properties.

"action":value
The value of "action" can be one of the following keywords:

• truncate: Shortens the data to fit the column.

• error: Throws an error. The property com.oracle.bigdata.erroropt controls the result of
the error.

"col":name
name: Identifies a column in the external table. The name is case sensitive and must be
enclosed in quotation marks.

Example

This example truncates the source data for the DESCRIPTION column, if it exceeds the
column width:

com.oracle.bigdata.overflow={"action":"truncate", \
 "col":"DESCRIPTION"}

17.4.9 com.oracle.bigdata.rowformat
Provides the information the access driver needs to extract fields from the records in a
file.

Caution:

Do not use this attribute value. The com.oracle.bigdata.rowformat is
unrelated to the access parameter syntax of traditional external tables that
use "type ORACLE_LOADER." There are keywords, such as FIELDS,
TERMINATED, and others that appear in both clauses, but the commonality in
naming is coincidental, and does not imply common functionality. The
com.oracle.bigdata.rowformat access parameter is passed without
change to the default Hive SerDe. The Hive SerDe that is used to extract
columns from rows is deliberately limited. Complex cases are handled by
using a specialized SerDe.

Default Value

DELIMITED

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram.

rowformat ::=

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-14

DELIMITED

FIELDS TERMINATED BY char

ESCAPED BY char

COLLECTION ITEMS TERMINATED BY char

MAP KEYS TERMINATED BY char

LINES TERMINATED BY char

NULL DEFINED AS char

SERDE serde_name

WITH SERDEPROPERTIES (prop_list)

Semantics

DELIMITED
Describes the characters used to delimit the fields in a record:

• FIELDS TERMINATED BY: The character that delimits every field in the record. The optional
ESCAPED BY character precedes the delimit character when it appears within a field
value.

• COLLECTION ITEMS TERMINATED BY: The character that marks the end of an array
element. Used when a column is a collection or a nested record. In this case the resulting
value will be a JSON array.

• MAP KEYS TERMINATED BY: The character that marks the end of an entry in a MAP field.
Used when a column is a collection or a nested record. The resulting value is a JSON
object.

• LINES TERMINATED BY: The character that marks the end of a record.

• NULL DEFINED AS: The character that indicates a null value.

SERDE
Identifies a Serializer/Deserializer (SerDe) that can parse the data and any properties of the
SerDe that the access driver might need.

Example

This example specifies a SerDe for an Avro container file:

com.oracle.bigdata.rowformat:
 SERDE'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

The next example specifies a SerDe for a file containing regular expressions:

com.oracle.bigdata.rowformat=\
 SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' \
 WITH SERDEPROPERTIES \
 ("input.regex" = "(\\\\d{6}) (\\\\d{5}) (.{29}) .*")

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-15

17.4.10 com.oracle.bigdata.tablename
Identifies the name of the table that contains the source data.

Default Value

DEFAULT.external_table_name

Syntax

[hive_database_name.]table_name

Semantics

The maximum length of hive_database_name and table_name is 128 UTF-8
characters (512 bytes).

hive_database_name: The Hive database where the source data resides. DEFAULT is
the name of the initial Hive database.

table_name: The Hive table with the data. If you omit table_name, then ORACLE_HIVE
searches for a Hive table with the same name as the external table. Table names are
case-insensitive.

Example

This setting indicates that the source data is in a table named ORDER_SUMMARY in the
Hive ORDER_DB database:

com.oracle.bigdata.tablename ORDER_DB.ORDER_SUMMARY

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-16

18
ORACLE_BIGDATA Access Driver

With the ORACLE_BIGDATA access driver, you can access data stored in object stores as if that
data was stored in tables in an Oracle Database.

ORACLE_BIGDATA currently supports access to Oracle Object Store, Amazon S3, and Azure
Blob Storage. You can also use this driver to query local data, which is useful for testing and
smaller data sets.

• Using the ORACLE_BIGDATA Access Driver
You can use the ORACLE_BIGDATA driver to access data located in external object stores.

• How to Create a Credential for Object Stores
Credential objects enable you to access an external object store.

• Object Store Access Parameters
You can use these access parameters to specify properties about the files residing in
object stores.

18.1 Using the ORACLE_BIGDATA Access Driver
You can use the ORACLE_BIGDATA driver to access data located in external object stores.

There are two steps required to access data in an object store:

• Create a credential object (not required for public buckets).
A credential object stores object store credentials in an encrypted format. The identity
specified by the credential must have access to the underlying data in the object store.

• In-line external tables are supported. These external tables are simply expressed as part
of a query.
Create an external table or query using an in-line external table. The access driver type
must be ORACLE_BIGDATA. The CREATE TABLE statement must reference the credential
object, which provides authentication to access the object store. The table you create
also requires a LOCATION clause, which provides the URI to the files within the object
store.

For public buckets, the CREDENTIAL is not required.

18.2 How to Create a Credential for Object Stores
Credential objects enable you to access an external object store.

To create your credential object, use either the DBMS_CREDENTIAL.CREATE_CREDENTIAL or
DBMS_CLOUD.CREATE_CREDENTIAL. This object contains the username and password
information needed to access the object store. This credential password must match the
authentication token (auth token) created for the username in your cloud service.

18-1

Note:

You must have the DBMS_CLOUD package installed.

• Creating the Credential Object with
DBMS_CREDENTIAL.CREATE_CREDENTIAL
The DBMS_CLOUD subprogram DBMS_CREDENTIAL.CREATE_CREDENTIAL enables you
to authenticate access to an external object store.

• Creating the Credential Object with DBMS_CLOUD.CREATE_CREDENTIAL
The DBMS_CLOUD subprogram DBMS_CLOUD.CREATE_CREDENTIAL enables you to
authenticate access to an external object store.

• How to Define the Location Clause for Object Storage
Use these examples to see how you can specify the object store URI, depending
on its source.

• Understanding ORACLE_BIGDATA Access Parameters
To use ORACLE_BIGDATA, you provide information in an access parameter to
indicate how to access and parse the data.

Related Topics

• My Oracle Support Note 2748362.1

18.2.1 Creating the Credential Object with
DBMS_CREDENTIAL.CREATE_CREDENTIAL

The DBMS_CLOUD subprogram DBMS_CREDENTIAL.CREATE_CREDENTIAL enables you to
authenticate access to an external object store.

These examples show how to use DBMS_CREDENTIAL.CREATE_CREDENTIAL.

Example 18-1 Cloud Service Credentials

In the following example, my_credential is the Oracle Cloud Infrastructure user name,
username is the account username, password is the Oracle Cloud Infrastructure auth
token:

execute dbms_credential.create_credential(
 credential_name => 'my_credential',
 username => 'username',
 password => 'password'
);

Example 18-2 Native Oracle Cloud Infrastructure Credentials

In the following example, my_credential is the Oracle Cloud Infrastructure user name,
user_ocid is the Oracle Cloud Identifier (OCID), tenancy_ocid is the Oracle Cloud
tenancy identifier, private_key is the SSH private key, and fingerprint is the public
key fingerprint:

execute dbms_credential.create_credential(
 credential_name => 'my_credential',

Chapter 18
How to Create a Credential for Object Stores

18-2

https://support.oracle.com/rs?type=doc&id=2748362.1

 username => 'user_ocid',
 password => '',
 key =>
'{"tenancy_ocid":"tenancy_ocid","private_key":"private_key","fingerprint":"fi
ngerprint"}');

After you create the credential, specify the credential object name in the parameter
com.oracle.bigdata.credential.name, At the time of this release, the credential must
be in the same schema as the table

Related Topics

• CREATE_CREDENTIAL Procedure

18.2.2 Creating the Credential Object with
DBMS_CLOUD.CREATE_CREDENTIAL

The DBMS_CLOUD subprogram DBMS_CLOUD.CREATE_CREDENTIAL enables you to authenticate
access to an external object store.

These examples show how to use DBMS_CLOUD.CREATE_CREDENTIAL.

Note:

The credential parameter cannot be an OCI resource principal, Azure service
principal, Amazon Resource Name (ARN), or a Google service account.

Example 18-3 Native Oracle Cloud Infrastructure Credentials

In the following example, my_credential is the Oracle Cloud Infrastructure user name,
password is the Oracle Cloud Infrastructure auth token, user_ocid is the Oracle Cloud
Identifier (OCID), tenancy_ocid is the Oracle Cloud tenancy identifier, private_key is the
SSH private key, and fingerprint is the public key fingerprint:

execute dbms_cloud.create_credential DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'my_credential',
 username => 'user_ocid@example.com',
 password => 'password'
 key =>
'{"tenancy_ocid":"tenancy_ocid","private_key":"private_key","fingerprint":"fi
ngerprint"}');

After you create the credential, specify the credential object name in the parameter
com.oracle.bigdata.credential.name. At the time of this release, the credential must
be in the same schema as the table.

Related Topics

• CREATE_CREDENTIAL Procedure

Chapter 18
How to Create a Credential for Object Stores

18-3

18.2.3 How to Define the Location Clause for Object Storage
Use these examples to see how you can specify the object store URI, depending on its
source.

LOCATION is a URI pointing to data in the object store. Currently supported object
stores are Oracle Object Store, Amazon S3 and Azure Blob Storage.

In the examples, the following variables are used:

• region – tenancy region

• host – a server host name

• port – a port number assigned to the service, listening on a host

• container – name of a container resource

• namespace – namespace in a region

• bucket – a globally unique name for a resource

• objectname – a unique identifier for an object in a bucket

• filename – object store filename

Note the following prerequisites for defining the location:

• The credential object is required for private object store access. If the credential
parameter is omitted, then the object must be in a public bucket.

The user ID associated with this credential must have access to read the data
from object storage.

• If you are testing access for data in object storage using local storage, then you
must specify an Oracle directory object in the location, similar to what you do for
ORACLE_LOADER data sources.

Example 18-4 Native Oracle Cloud Infrastructure Object Storage

location ('https://objectstorage.region.oraclecloud.com/n/namespace/b/
bucket/o/objectname')

Example 18-5 Oracle Cloud Infrastructure Object Storage

location ('https://swiftobjectstorage.region.oraclecloud.com/v1/
namespace/bucket/filename'

Example 18-6 Hosted-Style URI format

location ('https://bucket.host/objectname')

Example 18-7 Path-style URI Format

location ('https://host/bucket/objectname')

Chapter 18
How to Create a Credential for Object Stores

18-4

For example, an Amazon path style URI can take the following format:

location ('https://s3-us-west-2.amazonaws.com/adwc/filename')

Example 18-8 Azure BLOB Storage Location Format

location ('https://host:port/container/blob')

For example, an Azure path style URI can take the following format:

location ('https://exampleacount.blob.core.windows.net/examplecontainer/
exampleblob')

18.2.4 Understanding ORACLE_BIGDATA Access Parameters
To use ORACLE_BIGDATA, you provide information in an access parameter to indicate how to
access and parse the data.

To access the external object store, you define the file format type in the access parameter
com.oracle.bigdata.fileformat, using one of the following values: csv, textfile,
avro, parquet, or orc:

com.oracle.bigdata.fileformat=[csv|textfile|avro|parquet|orc]

You can also use ORACLE_BIGDATA to access local files for testing, or for simple querying. In
this case, the LOCATION field value is the same as what you would use for ORACLE_LOADER.
You can use an Oracle directory object followed by the name of the file in the LOCATION field.
For local files, a credential object is not required. However, you must have privileges over on
the directory object in order to access the file.

Related Topics

• ORACLE_BIGDATA Access Parameters in Oracle Big Data SQL User's Guide

18.3 Object Store Access Parameters
You can use these access parameters to specify properties about the files residing in object
stores.

• Syntax Rules for Specifying Properties
The properties are set using keyword-value pairs in the SQL CREATE TABLE ACCESS
PARAMETERS clause and in the configuration files.

• com.oracle.bigdata.fileformat
Describes the row format of the data source, based on the ROW FORMAT clause for a Hive
table generated by ORACLE_HDFS.

• ORACLE_BIGDATA Access Parameters
There is a set of access parameters that are common to all file formats. There are also
parameters that are unique to a specific file format.

Chapter 18
Object Store Access Parameters

18-5

• GATHER_EXTERNAL_TABLE_STATS
This is the PL/SQL interface for manually gathering statistics on external tables
(ORACLE_HDFS, ORACLE_HIVE, ORACLE_BIGDATA).

18.3.1 Syntax Rules for Specifying Properties
The properties are set using keyword-value pairs in the SQL CREATE TABLE ACCESS
PARAMETERS clause and in the configuration files.

The syntax must obey these rules:

• The format of each keyword-value pair is a keyword, a colon or equal sign, and a
value. The following are valid keyword-value pairs:

keyword=value
keyword:value

The value is everything from the first non-whitespace character after the separator
to the end of the line. Whitespace between the separator and the value is ignored.
Trailing whitespace for the value is retained.

• A property definition can be on one line or multiple lines.

• A line terminator is a line feed, a carriage return, or a carriage return followed by
line feeds.

• When a property definition spans multiple lines, then precede the line terminators
with a backslash (escape character), except on the last line. In this example, the
value of the Keyword1 property is Value part 1 Value part 2 Value part 3.

Keyword1= Value part 1 \
 Value part 2 \
 Value part 3

• You can create a logical line by stripping each physical line of leading whitespace
and concatenating the lines. The parser extracts the property names and values
from the logical line.

• You can embed special characters in a property name or property value by
preceding a character with a backslash (escape character), indicating the
substitution. The following table describes the special characters.

Table 18-1 Special Characters in Properties

Escape Sequence Character

\b Backspace (\u0008)

\t Horizontal tab (\u0009)

\n Line feed (\u000a)
\f Form feed (\u000c)

\r Carriage return (\u000d)

\" Double quote (\u0022)

\' Single quote (\u0027)

Chapter 18
Object Store Access Parameters

18-6

Table 18-1 (Cont.) Special Characters in Properties

Escape Sequence Character

\\ Backslash (\u005c)

When multiple backslashes are at the end of the line, the parser
continues the value to the next line only for an odd number of
backslashes.

\uxxxx 2-byte, big-endian, Unicode code point.

When a character requires two code points (4 bytes), the parser expects
\u for the second code point.

18.3.2 com.oracle.bigdata.fileformat
Describes the row format of the data source, based on the ROW FORMAT clause for a Hive table
generated by ORACLE_HDFS.

Default Value

TEXTFILE

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram.

fileformat::=

com.oracle.bigdata.fileformat
=

:

SEQUENCEFILE

TEXTFILE

RCFILE

ORC

PARQUET

INPUTFORMAT input_class OUTPUTFORMAT output_class

Semantics

ORC
Optimized row columnar file format

PARQUET
Column-oriented, binary file format

RCFILE
Record columnar file format

SEQUENCEFILE
Compressed file format

Chapter 18
Object Store Access Parameters

18-7

TEXTFILE
Plain text file format

INPUTFORMAT
Identifies a Java class that can extract records from the data file.

OUTPUTFORMAT
Identifies a Java class that can format the output records in the desired format

18.3.3 ORACLE_BIGDATA Access Parameters
There is a set of access parameters that are common to all file formats. There are also
parameters that are unique to a specific file format.

Common Access Parameters

The following table lists parameters that are common to all file formats accessed
through ORACLE_BIGDATA. The first column identifies each access parameter common
to all data file types. The second column describes each parameter.

Table 18-2 Common Access Parameters

Common Access
Parameter

Description

com.oracle.bigda
ta.credential.na
me

Specifies the credential object to use when accessing data files in an
object store.

This access parameter is required for object store access. It is not
needed for access to files through a directory object or for data stored in
public buckets.

The name specified for the credential must be the name of a credential
object in the same schema as the owner of the table. Granting a user
SELECT or READ access to this table means that credential will be used
to access the table.

Use DBMS_CREDENTIAL.CREATE_CREDENTIAL in the
DBMS_CREDENTIAL PL/SQL package to create the credential object:

exec
dbms_credential.create_credential(credential_name =>
'MY_CRED',username =>'<username>', password =>
'<password>');

In the CREATE TABLE statement, set the value of the credential
parameter to the name of the credential object.

com.oracle.bigdata.credential.name=MY_CRED

Chapter 18
Object Store Access Parameters

18-8

Table 18-2 (Cont.) Common Access Parameters

Common Access
Parameter

Description

com.oracle.bigda
ta.fileformat

Specifies the format of the file. The value of this parameter identifies the
reader that processes the file. Each reader can support additional
access parameters that may or may not be supported by other readers.

Valid values: parquet, orc, textfile, avro, csv, jsondoc,
jsontable
• parquet - file uses Parquet data file format

• orc - file uses ORC columnar storage file format

• textfile - file uses text file format

• avro - file uses Avro file format

• csv - file uses CSV text file format

• jsondoc - reads a JSON file. The JSON values are mapped to a
single JSON column that may be queried using SQL/JSON.

• jsontable - reads a JSON file. The JSON values are assumed to
be JSON objects and the top-level attributes of the object are
mapped to specific columns based on the column name.

Default: parquet
com.oracle.bigda
ta.log.opt

Specifies whether log messages should be written to a log file. When
none is specified, then no log file is created. If the value is normal, then
log file is created when the file reader decides to write a message. It is
up to the file reader to decide what is written to the log file.

Valid values: normal, none
Default: none.

com.oracle.bigda
ta.log.qc

Specifies the name of the log file created by the parallel query
coordinator. This parameter is used only when
com.oracle.bigdata.log.opt is set to normal. The valid values are
the same as specified for com.oracle.bigdata.log.qc in
ORACLE_HIVE and ORACLE_HDFS.

com.oracle.bigda
ta.log.exec

Specifies the name of the log file created during query execution. This
value is used (and is required) only when
com.oracle.bigdata.log.exec is set to normal. The valid values
are the same as specified for in ORACLE_HIVE and ORACLE_HDFS.

Valid values: normal, none
Default: none.

Avro-Specific Access Parameters

In addition to common access parameters, there are some that are only valid for the Avro file
format. The first column in this table identifies the access parameters specific to the Avro file
format and the second column describes the parameter. There is only one Avro-specific
parameter at this time.

Chapter 18
Object Store Access Parameters

18-9

Table 18-3 Avro-Specific Access Parameters

Avro-Specific Parameter Description

com.oracle.bigdata.avro.decimaltpe Specifies the representation of a decimal
stored in the byte array.

Valid values: int, integer, str, string
Default: If this parameter is not used, an Avro
decimal column is read assuming byte arrays
store the numerical representation of the
values (that is default to int) as the Avro
specification defines.

Parquet-Specific Access Parameters

Some access parameters are only valid for the Parquet file format. The first column in
this table identifies the access parameters specific to the Parquet file format and the
second column describes the parameter.

Table 18-4 Parquet-Specific Access Parameters

Parquet-Specific Access Parameter Description

com.oracle.bigdata.prq.binary_as_str
ing

This is a Boolean property that specifies if the
binary is stored as a string.

Valid values: true, t, yes, y, l, false, f,
no, n, 0
Default: true

com.oracle.bigdata.prq.int96_as_time
stamp

This is a Boolean property that specifies if
int96 represents a timestamp.

Valid values: true, t, yes, y, l, false, f,
no, n, 0
Default: true

Textfile and CSV-Specific Access Parameters

The text file and comma-separated value (csv) file formats are similar to the hive text
file format. It reads text and csv data from delimited files. ORACLE_BIGDATA
automatically detects the line terminator (either \n, \r, or \r\n). By default, it assumes
the fields in the file are separated by commas, and the order of the fields in the file
match the order of the columns in the external table.

Example 18-9 CSV Data File

This is a simple csv example. The data file has comma-separated values, with optional
enclosing quotes.

–----Source csv data in t.dat
t.dat:

Chapter 18
Object Store Access Parameters

18-10

1,"abc",
2,xyx,

–---------Create an external table over the csv source data in t.dat
CREATE TABLE t
(
 c0 number,
 c1 varchar2(20)
)
ORGANIZATION external
(
 TYPE oracle_bigdata
 DEFAULT DIRECTORY DMPDIR
 ACCESS PARAMETERS
 (
 com.oracle.bigdata.fileformat=csv
)
 location
 (
 't.dat'
)
)REJECT LIMIT 1
;

–------Select data from external table
select c0, c1 from t;

 C0 C1
---- -----
 1 abc
 2 xyz

Example 18-10 CSV Data File

This example shows how to create an external table over a csv data source, which has '|' as
the field separator, the data file compressed with gzip, blanks as null, and a date format.

–----The source csv data in t.dat
t.dat:

 1| |
 2|Apr-99-30|

–------Create an external table over the csv data source in t.dat
CREATE TABLE t(
 c0 number,
 c1 date
)
ORGANIZATION external
(
 TYPE oracle_bigdata
 DEFAULT DIRECTORY DMPDIR

Chapter 18
Object Store Access Parameters

18-11

 ACCESS PARAMETERS
 (
 com.oracle.bigdata.fileformat=textfile
 com.oracle.bigdata.compressiontype=gzip
 com.oracle.bigdata.csv.rowformat.separatorcharacter='|'
 com.oracle.bigdata.blankasnull=true
 com.oracle.bigdata.dateformat="MON-RR-DD HH:MI:SS"
)
 location
 (
 't.dat.gz'
)
)REJECT LIMIT 1
;

--Select csv data from external table
QL> select c0, c1 from t;

 C0 C1
------ ---------
 1
 2 30-APR-99

Example 18-11 JSON Data File - Map JSON values to columns

This approach works well for simple JSON documents. The expectation is that the
rows will primarily consist of a single object with multiple key/value pairs. Like ordinary
tables, the column data type has to match the data type of the value found in the file.
In cases where the document contains values with nesting, that is complex values, the
parser will output the value as a JSON document. However, this is stored as a string.
User specifies this mapping strategy via access parameter
com.oracle.bigdata.fileformat=jsontable.

As an example of this mapping scheme, consider the following UC1 file:

{"ts":1603802918441,"level":"DEBUG1","component":"resp","cell-
id":"cloudsql-v1-12"}
{"ts":1603802918442,"level":"DEBUG2","component":[{"tst":1},{"tst":2},
{"tst":3}],"cellid":"cloudsql-v1-12"}
{"ts":1603802918443,"level":"DEBUG3","component":"resp","cell-
id":"cloudsql-v1-12"}
{"ts":1603802918444,"level":"DEBUG4","component":"resp","cell-
id":"cloudsql-v1-12"}

We could create the following external table:

CREATE TABLE logs(
 ts number(20),
 lvl varchar(35)
 component varchar(50),
 cellid varchar2(20)
) ORGANIZATION EXTERNAL
 (TYPE ORACLE_BIGDATA

Chapter 18
Object Store Access Parameters

18-12

 DEFAULT DIRECTORY default_dir
 ACCESS PARAMETERS
 (com.oracle.bigdata.fileformat = jsontable)
 location ('nested.json'));

Then, we can query the table as follows:

SQL> Select * from logs;
TS LVL COMPONENT CELLID
---------- --------- -------------------------------- -----------------
1.6038E+12 DEBUG1 resp cloudsql-v1-12
1.6038E+12 DEBUG2 [{"tst":1},{"tst":2},{"tst":3}] cloudsql-v1-12
1.6038E+12 DEBUG3 resp cloudsql-v1-12
1.6038E+12 DEBUG4 resp cloudsql-v1-12

4 rows selected.

Note, that the value of component column in row 2 is represented as a JSON doc. As already
mentioned, this is stored as a varchar in v1. In general, the datatype mapping strategy relies
on the datatypes defined at table DDL. When there is a datatype mismatch, the value is
rejected and processing continues. For example, consider the following scenario:

{"Customer ID", 123456}
{"Customer ID", "123456"}
{"Customer ID", true}

If the table column was defined as a number, row 3 from above will produce a conversion
error and reject the value. However, it will be resilient to the enquoted value of row 2.

Example 18-12 JSON Data File - Entire row is mapped to a single column.

In this mapping strategy, the entire JSON document is mapped to a single column of type
JSON. User specifies this mapping strategy via access parameter
com.oracle.bigdata.fileformat=jsondoc.

As an example of this mapping scheme, consider the following UC1 file:

{"ts":1603802918441,"level":"DEBUG1","component":"resp","cell-id":"cloudsql-
v1-12"}
{"ts":1603802918442,"level":"DEBUG2","component":[{"tst":1},{"tst":2},
{"tst":3}],"cellid":"cloudsql-v1-12"}
{"ts":1603802918443,"level":"DEBUG3","component":"resp","cell-id":"cloudsql-
v1-12"}
{"ts":1603802918444,"level":"DEBUG4","component":"resp","cell-id":"cloudsql-
v1-12"}

We could create the following external table:

CREATE TABLE logs (data JSON)
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_BIGDATA
 DEFAULT DIRECTORY default_dir
 ACCESS PARAMETERS

Chapter 18
Object Store Access Parameters

18-13

 (com.oracle.bigdata.fileformat = jsondoc)
 location ('nested.json'));

Then, we can query the external table:

SQL> select l.doc.cell-id, l.doc.component[1].tst
 from logs l
 where l.doc.ts = 1603802918442;
 cell-id tst

cloudsql-v1-12 2

In the example above, we selected the component and cell-id value of the second row
(TS = 1603802918442). Notice that the component value of row 2 is an array. We
then, proceeded by querying the second item of the array, i.e. COMPONENT[1]).

Example 18-13 JSON Data File

This is a JSON file where each row is a JSON document. The external table reaches
each row. Queries use Oracle SQL JSON functions to parse the data.

{"id":"72","name":"George","lat":40.76727216,"lon":-73.99392888,"segmen
ts":["wealthy","middle-aged"],"age":45}
{"id":"79","name":"Lucy","lat":40.71911552,"lon":-74.00666661,"segments
":["married","yes"],"age":33}

— Create the external table over Json source
CREATE TABLE people (
 data json
)
ORGANIZATION EXTERNAL (
 TYPE ORACLE_BIGDATA
 ACCESS PARAMETERS(
 com.oracle.bigdata.fileformat=jsondoc
)
 LOCATION ('https://swftobjectstorage.us-ashburn-1.oraclecloud.com/n/
mytenant/b/people/o/data.json')
)
REJECT LIMIT UNLIMITED;

–---Select data from external table
select s.data.id,
 s.data.name,
 s.data.segments[0]
from people s;

id Name segments[0]
–--- –---- –-----------------------------------
 72 George wealthy
 79 Lucy married

Chapter 18
Object Store Access Parameters

18-14

Textfile, CSV-Specific and JSON-Specific Access Parameters

Table 18-5 Textfile and CSV-Specific Access Parameters

Textfile-Specific Access Parameter Description

com.oracle.bigdata.buffersize Specifies the size of the input/output (I/O) buffer
used for reading the file. The value is the size of
the buffer in kilobytes. Note that the buffer size is
also the largest size that a record can be. If a
format reader encounters a record larger than this
value, then it will return an error.

Default: 1024
com.oracle.bigdata.blankasnull When set to true, loads fields consisting of

spaces as null.

Valid values: true, false
Default: false
Example:
com.oracle.bigdata.blankasnull=true

com.oracle.bigdata.characterset Specifies the character set of source files.

Valid values: UTF-8
Default: UTF-8
Example:
com.oracle.bigdata.characterset=UTF-8

com.oracle.bigdata.compressiontype If this parameter is specified, then the code tries to
decompress the data according to the
compression scheme specified.
Valid values: gzip, bzip2 , zlib, detect
Default: no compression

If detect is specified, then the format reader tries
to determine which of the supported compression
methods was used to compress the file.

com.oracle.bigdata.conversionerrors If a row has data type conversion
errors, then the related columns are
stored as null, or the row is rejected.
Valid values: reject_record, store_null
Default: store_null
Example:
com.oracle.bigdata.conversionerrors=rej
ect_record

com.oracle.bigdata.csv.rowformat.nullde
finedas

Specifies the character used to indicate the value
of a field is NULL. If the parameter is not specified,
then there is no value.

com.oracle.bigdata.csv.rowformat.fields
.terminator

Specifies the character used to separate the field
values. The character value must be wrapped in
single-quotes. Example: '|'.

Default: ','
com.oracle.bigdata.csv.rowformat.fields
.escapedby

Specifies the character used to escape any
embedded field terminators or line terminators in
the value for fields. The character value must be
wrapped in single quotes. Example: '\'.

Chapter 18
Object Store Access Parameters

18-15

Table 18-5 (Cont.) Textfile and CSV-Specific Access Parameters

Textfile-Specific Access Parameter Description

com.oracle.bigdata.dateformat Specifies the date format in the source file. The
format option Auto checks for the following
formats:

J, MM-DD-YYYYBC, MM-DD-YYYY, YYYYMMDD
HHMISS, YYMMDD HHMISS, YYYY.DDD, YYYY-MM-
DD
Default: yyyy-mm-dd hh24:mi:ss
Example: com.oracle.bigdata.dateformat=
"MON-RR-DDHH:MI:SS"

com.oracle.bigdata.fields Specifies the order of fields in the data file. The
values are the same as for
com.oracle.bigdata.fields in ORACLE_HDFS,
with one exception – in this case, the data type is
optional. Because the data file is text, the text file
reader ignores the data types for the fields, and
assumes all fields are text. Because the data type
is optional, this parameter can be a list of field
names.

com.oracle.bigdata.ignoreblanklines Blank lines are ignored when set to true.

Valid values: true, false
Default: false
Example:
com.oracle.bigdata.ignoreblanklines=tru
e

com.oracle.bigdata.ignoremissingcolumns Missing columns are stored as null.

Valid values: true
Default: true
Example:
com.oracle.bigdata.ignoremissingcolumns
=true

com.oracle.bigdata.json.ejson Specifies whether to enable extended JSON.

Valid values: true, t, yes, y, 1, false, f, no, n,
0
Default: true
Example:
com.oracle.bigdata.jason.ejson=yes

com.oracle.bigdata.json.path A JSON path expression which identifies a
sequence of nested JSON values which will be
mapped to table rows.

Valid values: String property

Default: null
Example: '$.data[*]'

Chapter 18
Object Store Access Parameters

18-16

Table 18-5 (Cont.) Textfile and CSV-Specific Access Parameters

Textfile-Specific Access Parameter Description

com.oracle.bigdata.json.unpackarrays Specifies whether to unbox the array found in
JSON files. The file consists of an array of JSON
objects. The entire file is a grammatically valid
JSON doc. An example of such a file is [{“a”:1},
{“a”:2},{“a”:3}].

Valid values: true, t, yes, y, 1, false, f, no, n,
0
Default: false
Example:
com.oracle.bigdata.json.unpackarrays=tr
ue

com.oracle.bigdata.quote Specifies the quote character for the fields. The
quote characters are removed during loading
when specified.

Valid values: character

Default: Null, meaning no quote

Example:
com.oracle.bigdata.csv.rowformat.quotec
haracter='"'

com.oracle.bigdata.rejectlimit The operation errors out after specified number of
rows are rejected. This only applies when rejecting
records due to conversion errors.

Valid values: number

Default: 0
Example:
com.oracle.bigdata.rejectlimit=2

com.oracle.bigdata.removequotes Removes any quotes that are around any field in
the source file.

Valid values: true, false
Default: false
Example:com.oracle.bigdata.removequotes
=true

com.oracle.bigdata.csv.skip.header Specifies how many rows should be skipped from
the start of the files.

Valid values: number

Default: 0, if not specified

Example:
com.oracle.bigdata.csv.skip.header=1

Chapter 18
Object Store Access Parameters

18-17

Table 18-5 (Cont.) Textfile and CSV-Specific Access Parameters

Textfile-Specific Access Parameter Description

com.oracle.bigdata.timestampformat Specifies the timestamp format in the source file.
The format option AUTO checks for the following
formats:

YYYY-MM-DD HH:MI:SS.FF, YYYY-MM-DD
HH:MI:SS.FF3, MM/DD/YYYY HH:MI:SS.FF3
Valid values: auto
Default: yyyy-mm-dd hh24:mi:ss.ff
Example:
com.oracle.bigdata.timestamptzformat="a
uto"

com.oracle.bigdata.timestampltzformat Specifies the timestamp with local timezone format
in the source file. The format option AUTO checks
for the following formats:

DD Mon YYYY HH:MI:SS.FF TZR, MM/DD/YYYY
HH:MI:SS.FF TZR, YYYY-MM-DD HH:MI:SS+/-
TZR, YYYY-MM-DD HH:MI:SS.FF3, DD.MM.YYYY
HH:MI:SS TZR
Valid values: auto
Default: yyyy-mm-dd hh24:mi:ss.ff
Example:
com.oracle.bigdata.timestampltzformat="
auto"

com.oracle.bigdata.timestamptzformat Specifies the timestamp with timezone format in
the source file. The format option AUTO checks for
the following formats:

DD Mon YYYY HH:MI:SS.FF TZR, MM/DD/YYYY
HH:MI:SS.FF TZR, YYYY-MM-DD HH:MI:SS+/-
TZR, YYYY-MM-DD HH:MI:SS.FF3, DD.MM.YYYY
HH:MI:SS TZR
Valid values: auto
Default: yyy-mm-dd hh24:mi:ss.ff
Example:
com.oracle.bigdata.timestamptzformat="a
uto"

com.oracle.bigdata.trimspaces Specifies how the leading and trailing spaces of
the fields are trimmed.

Valid values: rtrim, ltrim, notrim, ltrim,
ldrtrim
Default: notrim
Example:
com.oracle.bigdata.trimspaces=rtrim

Chapter 18
Object Store Access Parameters

18-18

Table 18-5 (Cont.) Textfile and CSV-Specific Access Parameters

Textfile-Specific Access Parameter Description

com.oracle.bigdata.truncatecol If the data in the file is too long for a field, then this
option truncates the value of the field rather than
rejecting the row or setting the field to NULL.

Valid values: true, false
Default: false
Example:
com.oracle.bigdata.truncatecol=true

18.3.4 GATHER_EXTERNAL_TABLE_STATS
This is the PL/SQL interface for manually gathering statistics on external tables
(ORACLE_HDFS, ORACLE_HIVE, ORACLE_BIGDATA).

The behavior and parameters are identical to that of dbms_stats.gather_table_stats, with
the exception that the owner of the table must be the session user running the procedure,
and the stats gathered using this procedure persist after a restart. This procedure cannot be
used on external tables that are automatically synced from Hive.

See GATHER_TABLE_STATS Procedure

Syntax

PROCEDURE gather_external_table_stats(tabname varchar2, partname varchar2
default null, estimate_percent number default
dbms_stats.DEFAULT_ESTIMATE_PERCENT, block_sample boolean default FALSE,
method_opt varchar2 default dbms_stats.DEFAULT_METHOD_OPT, degree number default
dbms_stats.DEFAULT_DEGREE_VALUE, granularity varchar2 default
dbms_stats.DEFAULT_GRANULARITY, cascade boolean default
dbms_stats.DEFAULT_CASCADE, stattab varchar2 default null, statid varchar2
default null, statown varchar2 default null, no_invalidate boolean default
dbms_stats.to_no_invalidate_type(dbms_stats.get_param('NO_INVALIDATE')),
stattype varchar2 default 'DATA', force boolean default FALSE, options varchar2
default dbms_stats.DEFAULT_OPTIONS)

PROCEDURE gather_external_table_stats(
 tabname varchar2,
 partname varchar2 default null,
 estimate_percent number default dbms_stats.DEFAULT_ESTIMATE_PERCENT,
 block_sample boolean default FALSE,
 method_opt varchar2 default dbms_stats.DEFAULT_METHOD_OPT,
 degree number default dbms_stats.DEFAULT_DEGREE_VALUE,
 granularity varchar2 default dbms_stats.DEFAULT_GRANULARITY,
 cascade boolean default dbms_stats.DEFAULT_CASCADE,
 stattab varchar2 default null,
 statid varchar2 default null,
 statown varchar2 default null,
 no_invalidate boolean default
dbms_stats.to_no_invalidate_type(dbms_stats.get_param('NO_INVALIDATE')),
 stattype varchar2 default 'DATA',
 force boolean default FALSE,

Chapter 18
Object Store Access Parameters

18-19

 options varchar2 default dbms_stats.DEFAULT_OPTIONS
)

Chapter 18
Object Store Access Parameters

18-20

19
External Tables Examples

Learn from these examples how to use the ORACLE_LOADER, ORACLE_DATAPUMP,ORACLE_HDFS,
and ORACLE_HIVE access drivers to query data in Oracle Database and Big Data.

• Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables
This topic describes using the ORACLE_LOADER access driver to create partitioned external
tables.

• Using the ORACLE_LOADER Access Driver to Create Partitioned Hybrid Tables
This topic describes using the ORACLE_LOADER access driver to create partitioned hybrid
tables.

• Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables
See how you can use ORACLE_DATAPUMP access driver to create a subpartitioned
external table, and partition tables with virtual columns..

• Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables
The example provided in this section shows how to create a partitioned external table
using the ORACLE_HDFS access driver.

• Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables
To create a partitioned external table for an ORACLE_HIVE table, you need a partitioned
Hive external table.

• Using the ORA_PARTITION_VALIDATION Function to Validate Partitioned External
Tables
To confirm if a row in a partitioned external table is in the correct partition, use the
ORA_PARTITION_VALIDATION function.

• Using SQL*Loader for External Tables with Partition Values in File Paths
To enhance management of large numbers of data files in object stores, you can use
external table partitioning with folder names as part of the filepaths. External table
columns also can return the filename of the source file for each row.

• Loading LOBs with External Tables
External tables are particularly useful for loading large numbers of records from a single
file, so that each record appears in its own row in the table.

• Loading CSV Files From External Tables
This topic provides examples of how to load CSV files from external tables under various
conditions.

19.1 Using the ORACLE_LOADER Access Driver to Create
Partitioned External Tables

This topic describes using the ORACLE_LOADER access driver to create partitioned external
tables.

19-1

Example 19-1 Using ORACLE_LOADER to Create a Partitioned External Table

This example assumes there are four data files with the following content:

p1a.dat:
1, AAAAA Plumbing,01372,
28, Sparkly Laundry,78907,
13, Andi's Doughnuts,54570,

p1b.dat:
51, DIY Supplies,61614,
87, Fast Frames,22201,
89, Friendly Pharmacy,89901,

p2.dat:
121, Pleasant Pets,33893,
130, Bailey the Bookmonger,99915,
105, Le Bistrot du Chat Noir,94114,

p3.dat:
210, The Electric Eel Diner,07101,
222, Everyt'ing General Store,80118,
231, Big Rocket Market,01754,

There are three fields in the data file: CUSTOMER_NUMBER, CUSTOMER_NAME and
POSTAL_CODE. The external table uses range partitioning on CUSTOMER_NUMBER to
create three partitions.

• Partition 1 is for customer_number less than 100

• Partition 2 is for customer_number less than 200

• Partition 3 is for customer_number less than 300

Note that the first partition has two data files while the other partitions only have
one. The following is the output from SQLPlus for creating the file.

SQL> create table customer_list_xt
 2 (CUSTOMER_NUMBER number, CUSTOMER_NAME VARCHAR2(50),
POSTAL_CODE CHAR(5))
 3 organization external
 4 (type oracle_loader default directory def_dir1)
 5 partition by range(CUSTOMER_NUMBER)
 6 (
 7 partition p1 values less than (100) location('p1a.dat',
'p1b.dat'),
 8 partition p2 values less than (200) location('p2.dat'),
 9 partition p3 values less than (300) location('p3.dat')
 10);

Table created.
SQL>

Chapter 19
Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables

19-2

The following is the output from SELECT * for the entire table:

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_xt
 3 order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372
 13 Andi's Doughnuts 54570
 28 Sparkly Laundry 78907
 51 DIY Supplies 61614
 87 Fast Frames 22201
 89 Friendly Pharmacy 89901
 105 Le Bistrot du Chat Noir 94114
 121 Pleasant Pets 33893
 130 Bailey the Bookmonger 99915
 210 The Electric Eel Diner 07101
 222 Everyt'ing General Store 80118
 231 Big Rocket Market 01754

12 rows selected.

SQL>

The following query should only read records from the first partition:

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_xt
 3 where customer_number < 20
 4 order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372
 13 Andi's Doughnuts 54570

2 rows selected.

SQL>

The following query specifies the partition to read as part of the SELECT statement.

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_xt partition (p1)
 3 order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372
 13 Andi's Doughnuts 54570
 28 Sparkly Laundry 78907
 51 DIY Supplies 61614

Chapter 19
Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables

19-3

 87 Fast Frames
22201
 89 Friendly Pharmacy
89901

6 rows selected.

SQL>

19.2 Using the ORACLE_LOADER Access Driver to Create
Partitioned Hybrid Tables

This topic describes using the ORACLE_LOADER access driver to create partitioned
hybrid tables.

Hybrid Partitioned Tables is a feature that extends Oracle Partitioning by allowing
some partitions to reside in database segments and some partitions in external files or
sources. This significantly enhances functionality of partitioning for Big Data SQL
where large portions of a table can reside in external partitions.

Example 19-2 Example

Here is an example of a statement for creating a partitioned hybrid l table:

CREATE TABLE hybrid_pt (time_id date, customer number)
 TABLESPACE TS1
 EXTERNAL PARTITION ATTRIBUTES (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY data_dir0
 ACCESS PARAMETERS(FIELDS TERMINATED
BY ',')
 REJECT LIMIT UNLIMITED)
PARTITION by range (time_id)
(
 PARTITION century_18 VALUES LESS THAN ('01-01-1800')
 EXTERNAL, <--
empty external partition
 PARTITION century_19 VALUES LESS THAN ('01-01-1900')
 EXTERNAL DEFAULT DIRECTORY data_dir1 LOCATION
(‘century19_data.txt'),
 PARTITION century_20 VALUES LESS THAN ('01-01-2000')
 EXTERNAL LOCATION (‘century20_data.txt'),
 PARTITION year_2000 VALUES LESS THAN ('01-01-2001') TABLESPACE TS2,
 PARTITION pmax VALUES LESS THAN (MAXVALUE)
);

In this example, the table contains both internal and external partitions. The default
tablespace for internal partitions in the table is TS1. An EXTERNAL PARTITION
ATTRIBUTES clause is added for specifying parameters that apply, at the table level, to
the external partitions in the table. The clause is mandatory for hybrid partitioned
tables. In this case, external partitions are accessed through the ORACLE_LOADER
access driver, and the parameters required by the access driver are specified in the
clause. At the partition level, an EXTERNAL clause is specified in each external partition,
along with any external parameters applied to the partition.

Chapter 19
Using the ORACLE_LOADER Access Driver to Create Partitioned Hybrid Tables

19-4

In this example, century_18, century_19, and century_20 are external partitions.
century_18 is an empty partition since it does not contain a location. The default directory for
partition century_19 isdata_dir1, overriding the table level default directory. The partition has
a location data_dir1:century19_data.txt. Partitioncentury_20 has location
data_dir0:century20_data.txt, since the table level default directory is applied to a location
when a default directory is not specified in a partition. Partitions year_2000 and pmax are
internal partitions. Partition year_2000has a tablespace TS2. When a partition has
noEXTERNAL clause or external parameters specified in it, it is assumed to be an internal
partition by default.

19.3 Using the ORACLE_DATAPUMP Access Driver to Create
Partitioned External Tables

See how you can use ORACLE_DATAPUMP access driver to create a subpartitioned
external table, and partition tables with virtual columns..

Note:

Starting with Oracle Database 23c, the ORACLE_DATAPUMP access driver provides
interval, auto-list, and composite partitioning options for hybrid partitioned tables
(HyPT) support. For more information, see Oracle Database VLDB and Partitioning
Guide

Example 19-3 Using the ORACLE_DATAPUMP Access Driver to Create Partitioned
External Tables

In this example, the dump files used are the same as those created in the previous example
using the ORACLE_LOADER access driver. However, in this example, in addition to partitioning
the data using customer_number, the data is subpartitioned using postal_code. For every
partition, there is a subpartition where the postal_code is less than 50000 and another
subpartition for all other values of postal_code. With three partitions, each containing two
subpartitions, a total of six files is required. To create the files, use the SQL CREATE TABLE AS
SELECT statement to select the correct rows for the partition and then write those rows into the
file for the ORACLE_DATAPUMP driver.

The following statement creates a file with data for the first subpartition (postal_code less
than 50000) of partition p1 (customer_number less than 100).

SQL> create table customer_list_dp_p1_sp1_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p1_sp1.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p1)
 7 where to_number(postal_code) < 50000;

Table created.

Chapter 19
Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables

19-5

SQL>

This statement creates a file with data for the second subpartition (all other values for
postal_code) of partition p1 (customer_number less than 100).

SQL> create table customer_list_dp_p1_sp2_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p1_sp2.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p1)
 7 where to_number(postal_code) >= 50000;

Table created.

The files for other partitions are created in a similar fashion, as follows:

SQL> create table customer_list_dp_p2_sp1_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p2_sp1.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p2)
 7 where to_number(postal_code) < 50000;

Table created.

SQL>
SQL> create table customer_list_dp_p2_sp2_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p2_sp2.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p2)
 7 where to_number(postal_code) >= 50000;

Table created.

SQL>
SQL> create table customer_list_dp_p3_sp1_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p3_sp1.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p3)
 7 where to_number(postal_code) < 50000;

Table created.

Chapter 19
Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables

19-6

SQL>
SQL> create table customer_list_dp_p3_sp2_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p3_sp2.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p3)
 7 where to_number(postal_code) >= 50000;

Table created.

SQL>

You can select from each of these external tables to verify that it has the data you intended to
write out. After you have run the SQL statement CREATE TABLE AS SELECT, you can drop
these external tables.

To use a virtual column to partition the table, create the partitioned ORACLE_DATAPUMP table.
Again, the table is partitioned on the customer_number column, and subpartitioned on the
postal_code column. The postal_code column is a character field that contains numbers, but
this example partitions it based on the numeric value, not a character string. In order to do
this, create a virtual column, postal_code_num, whose value is the postal_code field
converted to a NUMBER data type. The SUBPARTITION clause uses the virtual column to
determine the subpartition for the row.

SQL> create table customer_list_dp_xt
 2 (customer_number number,
 3 CUSTOMER_NAME VARCHAR2(50),
 4 postal_code CHAR(5),
 5 postal_code_NUM as (to_number(postal_code)))
 6 organization external
 7 (type oracle_datapump default directory def_dir1)
 8 partition by range(customer_number)
 9 subpartition by range(postal_code_NUM)
 10 (
 11 partition p1 values less than (100)
 12 (subpartition p1_sp1 values less than (50000) location('p1_sp1.dmp'),
 13 subpartition p1_sp2 values less than (MAXVALUE)
location('p1_sp2.dmp')),
 14 partition p2 values less than (200)
 15 (subpartition p2_sp1 values less than (50000) location('p2_sp1.dmp'),
 16 subpartition p2_sp2 values less than (MAXVALUE)
location('p2_sp2.dmp')),
 17 partition p3 values less than (300)
 18 (subpartition p3_sp1 values less than (50000) location('p3_sp1.dmp'),
 19 subpartition p3_sp2 values less than (MAXVALUE)
location('p3_sp2.dmp'))
 20);

Table created.

SQL>

Chapter 19
Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables

19-7

If you select all rows, then the data returned is the same as was returned in the
previous example using the ORACLE_LOADER access driver.

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_dp_xt
 3 order by customer_number;

customer_number CUSTOMER_NAME
POSTA
--------------- --

 1 AAAAA Plumbing
01372
 13 Andi's Doughnuts
54570
 28 Sparkly Laundry
78907
 51 DIY Supplies
61614
 87 Fast Frames
22201
 89 Friendly Pharmacy
89901
 105 Le Bistrot du Chat Noir
94114
 121 Pleasant Pets
33893
 130 Bailey the Bookmonger
99915
 210 The Electric Eel Diner
07101
 222 Everyt'ing General Store
80118
 231 Big Rocket Market
01754

12 rows selected.

SQL>

The WHERE clause can limit the rows read to a subpartition. The following query should
only read the first subpartition of the first partition.

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_dp_xt
 3 where customer_number < 20 and postal_code_NUM < 39998
 4 order by customer_number;

customer_number CUSTOMER_NAME
POSTA
--------------- --

 1 AAAAA Plumbing
01372

Chapter 19
Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables

19-8

1 row selected.

SQL>

You could also specify a specific subpartition in the query, as follows:

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_dp_xt subpartition (p2_sp2) order by
customer_number;

customer_number CUSTOMER_NAME POSTA
--------------- -- -----
 105 Le Bistrot du Chat Noir 94114
 130 Bailey the Bookmonger 99915

2 rows selected.

SQL>

Related Topics

• Managing Hybrid Partitioned Tables

19.4 Using the ORACLE_HDFS Access Driver to Create
Partitioned External Tables

The example provided in this section shows how to create a partitioned external table using
the ORACLE_HDFS access driver.

Example 19-4 Using the ORACLE_HDFS Access Driver to Create Partitioned External
Tables

In this example there are four data files stored in HDFS directory path "hdfs_pet/".

p1a.dat
1, AAAAA Plumbing,01372,
28, Sparkly Laundry,07101,
13, Andi'''s Doughnuts,01372,

p1b.dat
51, DIY Supplies,07101,
87, Fast Frames,01754,
89, Friendly Pharmacy,01372,

p2.dat
121, Pleasant Pets,01754,
130, Bailey the Bookmonger,01754,
105, Le Bistrot du Chat Noir,01754,

p3.dat
210, The Electric Eel Diner,07101,

Chapter 19
Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables

19-9

222, Everyt'ing General Store,01372,
231, Big Rocket Market,01754,

For the purposes of this example, the data files are written to the HDFS directory using
the following:

hadoop dfs -mkdir hdfs_pet
hadoop dfs -put p1a.dat hdfs_pet/p1a.dat
hadoop dfs -put p1b.dat hdfs_pet/p1b.dat
hadoop dfs -put p2.dat hdfs_pet/p2.dat
hadoop dfs -put p3.dat hdfs_pet/p3.dat

The following is the CREATE TABLE command to create the partitioned external table:

create table customer_list_hdfs
 (CUSTOMER_NUMBER number, CUSTOMER_NAME VARCHAR2(50), POSTAL_CODE
CHAR(5))
organization external
 (type oracle_hdfs
 default directory def_dir1
 access parameters
 (com.oracle.bigdata.cluster = hadoop_cl_1
 com.oracle.bigdata.rowformat = delimited fields terminated by ','))
partition by range(CUSTOMER_NUMBER)
(
 partition p1 values less than (100) location('hdfs_pet/p1a.dat',
'hdfs_pet/p1b.dat'),
 partition p2 values less than (200) location('hdfs_pet/p2.dat'),
 partition p3 values less than (300) location('hdfs_pet/p3.dat')
);

The following query shows a SELECT operation from the external table:

SQL> select * from customer_list_hdfs order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME
POSTA
--------------- --

 1 AAAAA Plumbing
01372
 13 Andi's Doughnuts
01372
 28 Sparkly Laundry
07101
 51 DIY Supplies
07101
 87 Fast Frames
01754
 89 Friendly Pharmacy
01372
 105 Le Bistrot du Chat Noir
01754

Chapter 19
Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables

19-10

 121 Pleasant Pets 01754
 130 Bailey the Bookmonger 01754
 210 The Electric Eel Diner 07101
 222 Everyt'ing General Store 01372
 231 Big Rocket Market 01754

12 rows selected.

SQL>

You can also execute queries with a WHERE clause that excludes partitions that cannot match
the conditions in the WHERE clause from being read, as follows:

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_hdfs
 3 where customer_number < 20
 4 order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372
 13 Andi's Doughnuts 01372

2 rows selected.

SQL>

You could also specify the partition you want to read as part of the FROM clause, as shown in
the following:

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_hdfs partition (p3)
 3 order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 210 The Electric Eel Diner 07101
 222 Everyt'ing General Store 01372
 231 Big Rocket Market 01754

3 rows selected.

SQL>

19.5 Using the ORACLE_HIVE Access Driver to Create
Partitioned External Tables

To create a partitioned external table for an ORACLE_HIVE table, you need a partitioned Hive
external table.

Chapter 19
Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables

19-11

After you set up a partitioned Hive external table, you need to use the PL/SQL
procedure DBMS_HADOOP.CREATE_EXTDDL_FOR_HIVE(). This example creates the
partitioned Hive table from the HDFS files used in "Using the ORACLE_HDFS Access
Driver to Create Partitioned External Tables." Before the partitioned Hive table can be
created, you must create an HDFS directory in which to store the data.

Example 19-5 Using the ORACLE_HIVE Access Driver to Create Partitioned
External Tables

This example creates the Hive table using the data files created in the example in
"Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables." In
this example, you can see how to use ORACLE_HDFS to create partitioned external
tables. The following commands are all performed inside of the Hive command-line
interface, so they use Hive syntax.

1. First, use Hive to create a Hive external table on top of the HDFS data files, as
follows:

create external table customer_list_no_part (customer_number int,
 customer_name
string,
 postal_code string)
 row format delimited fields terminated by ','
 stored as textfile
 location '/user/doc/hdfs_pet'

2. After you create the external table, run the following commands to tell Hive to
create the partitions dynamically:

set hive.exec.dynamic.partition=true
set hive.exec.dynamic.partition.mode=nonstrict

3. Create the partitioned Hive table:

create table customer_list(CUSTOMER_NUMBER int,
 CUSTOMER_NAME string)
 partitioned by (postal_code string)
 row format delimited
 fields terminated by '\t'
 location '/user/doc/doc_pet'

4. Populate the hive table with data from table customer_list_no_part. This should
create the files for each partition with the correct rows.

insert overwrite table customer_list partition (postal_code) select
* from customer_list_no_part

The Hive customer_list table is now populated with the rows, as shown in the
following query:

select * from customer_list order by customer_number
1 AAAAA Plumbing 01372
13 Andi's Doughnuts 01372
28 Sparkly Laundry 07101

Chapter 19
Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables

19-12

51 DIY Supplies 07101
87 Fast Frames 01754
89 Friendly Pharmacy 01372
105 Le Bistrot du Chat Noir 01754
121 Pleasant Pets 01754
130 Bailey the Bookmonger 01754
210 The Electric Eel Diner 07101
222 Everyt'ing General Store 01372
231 Big Rocket Market 01754

Now you can go back to SQL*Plus to create the partitioned external table inside Oracle
Database. First, use PL/SQL function DBMS_HADOOP.CREATE_EXTDDL_FOR_HIVE() to create the
external table. The arguments are as follows:

1. the name of the Hadoop cluster

2. the name of the Hive user that owns the table

3. the name of the partitioned Hive table

4. a boolean value indicating whether you want the partition columns in the Hive table to be
included as columns in the external table

5. the name of the partitioned ORACLE_HIVE table that is created

6. a boolean value indicating whether the CREATE DDL is executed

7. a CLOB contains the CREATE DDL string

In the following example, the SQL syntax obtains the CLOB for the CREATE DDL string, and
uses the DBMS_OUTPUT.PUT_LINE() procedure to write it. Setting SERVEROUTPUT ON tells
SQL*Plus to display the data from the DBMS_OUTPUT.PUT_LINE() procedure. Setting LINESIZE
to 132 makes sure there are no line breaks at odd places when displaying the data from the
DBMS_OUTPUT.PUT_LINE() procedure.

SQL> SET LINESIZE 132
SQL> SET SERVEROUTPUT ON
SQL>
SQL> DECLARE
 2 DDLtxt clob;
 3 BEGIN
 4 dbms_hadoop.create_extddl_for_hive
 5 ('hadoop_cl_1', 'default', 'customer_list',
 6 TRUE, 'CUSTOMER_LIST_HIVE', TRUE, DDLtxt);
 7 dbms_output.put_line('DDL Text is : ' || DDLtxt);
 8 END;
 9 /
External table successfully created.
DDL Text is : CREATE TABLE "DOC"."CUSTOMER_LIST_HIVE" (customer_number
NUMBER, customer_name VARCHAR2(4000), postal_code
VARCHAR2(4000)) ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS
(
com.oracle.bigdata.cluster=hadoop_cl_1
com.oracle.bigdata.tablename=default.customer_list)
) REJECT LIMIT UNLIMITED

Chapter 19
Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables

19-13

PARTITION BY
LIST (postal_code)
(
PARTITION "P_293620257" VALUES ('01372'),
PARTITION "P_292175793" VALUES ('01754'),
PARTITION "P_717839126"
VALUES ('07101')
)

Because Hive does not specify a maximum character count for STRING columns, the
column definition for the external table is VARCHAR2(4000). If you want a smaller
length for some columns, then you can call the
DBMS_HADOOP.CREATE_EXTDDL_FOR_HIVE() procedure and specify that you do not want
to run the CREATE DDL. After you call the procedure, you can then edit the CREATE
statement returned in the CLOB to set the length of the VARCHAR2 columns to a more
appropriate value.

Note that the numbers in the partition name can vary.

After you have created the table, running a SELECT * statement returns all of the table
rows. Note that the SET LINESIZE 132 statement you used in the SQL for the Hive
external table means that SQL*Plus uses 132 character for customer_name and
postal_code.

SQL> select * from customer_list_hive order by customer_number;

CUSTOMER_NUMBER

CUSTOMER_NAME

---POSTAL_CODE

--- 1
 AAAAA Plumbing
01372

 13
 Andi's Doughnuts
01372

 28
 Sparkly Laundry
07101

 51
 DIY Supplies
07101

 87
 Fast Frames
01754

 89
 Friendly Pharmacy

Chapter 19
Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables

19-14

01372

 105
 Le Bistrot du Chat Noir
01754

 121
 Pleasant Pets
01754

 130
 Bailey the Bookmonger
01754

 210
 The Electric Eel Diner
07101

 222
 Everyt'ing General Store
01372

 231
 Big Rocket Market
01754

12 rows selected.

SQL>

The SQL execution uses the partition information to prune partitions that do not match the
criteria in the WHERE clause.

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_hive
 3 where postal_code = '01754'
 4 order by customer_number;

CUSTOMER_NUMBER

CUSTOMER_NAME

---POSTAL_CODE

--- 87
 Fast Frames
01754

 105
 Le Bistrot du Chat Noir
01754

 121

Chapter 19
Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables

19-15

 Pleasant Pets
01754

 130
 Bailey the Bookmonger
01754

 231
 Big Rocket Market
01754

5 rows selected.

SQL>

19.6 Using the ORA_PARTITION_VALIDATION Function to
Validate Partitioned External Tables

To confirm if a row in a partitioned external table is in the correct partition, use the
ORA_PARTITION_VALIDATION function.

When you use partitioned external tables, Oracle Database cannot enforce data
placement in a partition with the correct partition key definition. Using
ORA_PARTITION_VALIDATION can help you to correct data placement errors.

Example 19-6 Using ORA_PARTITION_VALIDATION for Partition Testing

When you use the ORA_PARTITION_VALIDATION function, you can obtain a list of
external table partition rows that are placed in the wrong partition. To demonstrate this
feature, this example shows a partition created with the wrong department set followed
by an example using the ORA_PARTITION_VALIDATION function to identify data in the
incorrect partition:

create or replace directory def_dir1 as '/tmp';

REM create the exact same data in files locally
REM
set feedback 1
spool /tmp/xp1_15.txt
select '12#dept_12#xp1_15#' from dual;
spool off

spool /tmp/xp2_30.txt
select '29#dept_29#xp2_30#' from dual;
spool off

spool /tmp/xp2_wrong.txt
select '99#dept_99#xp2_wrong#' from dual;
spool off

drop table ept purge;
create table ept(deptno number,dname char(14),loc char(13))

Chapter 19
Using the ORA_PARTITION_VALIDATION Function to Validate Partitioned External Tables

19-16

organization external
(type oracle_loader
 default directory def_dir1
 access parameters(
 records delimited by newline
 fields terminated by '#')
)
reject limit unlimited
partition by range (deptno)
(
 partition ep1 values less than (10),
 partition ep2 values less than (20) location ('xp1_15.txt'),
 partition epwrong values less than (30) location ('xp2_wrong.txt')
)
;

select pt.*, ora_partition_validation(rowid) from pt;

19.7 Using SQL*Loader for External Tables with Partition Values
in File Paths

To enhance management of large numbers of data files in object stores, you can use external
table partitioning with folder names as part of the filepaths. External table columns also can
return the filename of the source file for each row.

Starting in Oracle Database 23c, External table partitioning where the partition key and
partition value together (for example, /state=CA) or only the only the partition value (for
example, /state/CA/) comprise a folder name in the file path. Also, an external table column
can return the filename of the source file for each row.

External tables pointing to data in the object store can consist of a large number of files.
These files can be organized across multiple directories, and even multiple directory trees.
The partition values can be in the directory name or file name. For example, you can have
files for different months or different states in separate directories. This can be a requirement
for Hive-generated tables in the object store.

19.8 Loading LOBs with External Tables
External tables are particularly useful for loading large numbers of records from a single file,
so that each record appears in its own row in the table.

• Overview of LOBs and External Tables
Learn the benefits of using external tables with your database to read and write data, and
to understand how to create them.

• Loading LOBs From External Tables with ORACLE_LOADER Access Driver
You can load LOB columns from the primary data files, from LOBfiles, or from LOB
Location Specifiers (LLS).

• Loading LOBs with ORACLE_DATAPUMP Access Driver
Use this example to see how you can load LOBs ORACLE_LOADER access driver.

Chapter 19
Using SQL*Loader for External Tables with Partition Values in File Paths

19-17

19.8.1 Overview of LOBs and External Tables
Learn the benefits of using external tables with your database to read and write data,
and to understand how to create them.

External tables enable you to treat the contents of external files as if they are rows in a
table in your Oracle Database. After you create an external table, you can then use
SQL statements to read rows from the external table, and insert them into another
table.

To perform these operations, Oracle Database uses one of the following access
drivers:

• The ORACLE_LOADER access driver reads text files and other file formats, similar to
SQL Loader.

• The ORACLE_DATAPUMP access driver creates binary files that store data returned by
a query. It also returns rows from files in binary format.

When you create an external table, you specify column and data types for the external
table. The access driver has a list of columns in the data file, and maps the contents of
the field in the data file to the column with the same name in the external table. The
access driver takes care of finding the fields in the data source, and converting these
fields to the appropriate data type for the corresponding column in the external table.
After you create an external table, you can load the target table by using an INSERT AS
SELECT statement.

One of the advantages of using external tables to load data over SQL Loader is that
external tables can load data in parallel. The easiest way to do this is to specify the
PARALLEL clause as part of CREATE TABLE for both the external table and the target
table.

Example 19-7

This example creates a table, CANDIDATE, that can be loaded by an external table.
When it is loaded, it then creates an external table, CANDIDATE_XT. Next, it executes an
INSERT statement to load the table. The INSERT statement includes the +APPEND hint,
which uses direct load to insert the rows into the table CANDIDATES. The PARALLEL
parameter tells SQL that the tables can be accessed in parallel.

The PARALLEL parameter setting specifies that there can be four (4) parallel query
processes reading from CANDIDATE_XT, and four parallel processes inserting into
CANDIDATE. Note that LOBs that are stored as BASICFILE cannot be loaded in parallel.
You can only load SECUREFILE LOBS in parallel. The variable additional-external-
table-info indicates where additional external table information can be inserted.

CREATE TABLE CANDIDATES

 (candidate_id NUMBER,

 first_name VARCHAR2(15),

 last_name VARCHAR2(20),

 resume CLOB,

Chapter 19
Loading LOBs with External Tables

19-18

 picture BLOB

) PARALLEL 4;

CREATE TABLE CANDIDATE_XT

 (candidate_id NUMBER,

 first_name VARCHAR2(15),

 last_name VARCHAR2(20),

 resume CLOB,

 picture BLOB

) PARALLEL 4;

ORGANIZATION EXTERNAL additional-external-table-info PARALLEL 4;

INSERT /*+APPEND*/ INTO CANDIDATE SELECT * FROM CANDIDATE_XT;

File Locations for External Tables Created By Access Drivers

All files created or read by ORACLE_LOADER and ORACLE_DATAPUMP reside in directories pointed
to by directory objects. Either the DBA or a user with the CREATE DIRECTORY privilege can
create a directory object that maps a new to a path on the file system. These users can grant
READ, WRITE or EXECUTE privileges on the created directory object to other users. A user
granted READ privilege on a directory object can use external tables to read files from
directory for the directory object. Similarly, a user with WRITE privilege on a directory object
can use external tables to write files to the directory for the directory object.

Example 19-8 Creating Directory Object

The following example shows how to create a directory object and grant READ and WRITE
access to user HR:

create directory HR_DIR as /usr/hr/files/exttab;

grant read, write on directory HR_DIR to HR;

Note:

When using external tables in an Oracle Real Application Clusters (Oracle RAC)
environment, you must make sure that the directory pointed to by the directory
object maps to a directory that is accessible from all nodes.

Chapter 19
Loading LOBs with External Tables

19-19

19.8.2 Loading LOBs From External Tables with ORACLE_LOADER
Access Driver

You can load LOB columns from the primary data files, from LOBfiles, or from LOB
Location Specifiers (LLS).

• Loading LOBs from Primary Data Files
Use this example to see how you can use the ORACLE_LOADER access driver to load
LOB columns from the primary data datatype files.

• Loading LOBs from LOBFILE Files
Use this example to see how you can use the ORACLE_LOADER access driver to load
LOB columns from LOBFILE data type files.

• Loading LOBs from LOB Location Specifiers
Use this example to see how you can use the ORACLE_LOADER access driver to load
LOBs from LOB location specifiers.

19.8.2.1 Loading LOBs from Primary Data Files
Use this example to see how you can use the ORACLE_LOADER access driver to load
LOB columns from the primary data datatype files.

If the LOB data is in the primary data file, then it is just another field defined for the
record format of the data file. It doesn’t matter how you define the field in the access
driver. You can use fixed positions to define the field, or you can use CHAR, VARCHAR or
VARCHARC. Remember that the data types for ORACLE_LOADER are not the same as data
types for SQL.

Note:

With Oracle Database 18c and later releases, symbolic links are not allowed
in directory object path names used with ORACLE_LOADER access driver.

Example 19-9 Loading LOBs from primary data file

In this example, the COMMENTS field in each record is up to 10000 bytes. When you use
SELECT to select the COMMENT column from table INTERVIEW_XT, the data for the
COMMENTS field is converted into a character large object (CLOB), and presented to the
Oracle SQL engine.

CREATE TABLE INTERVIEW_XT

(candidate_id NUMBER,

 interviewer_id NUMBER,

 comments CLOB

)

Chapter 19
Loading LOBs with External Tables

19-20

ORGANIZATION EXTERNAL

(type ORACLE_LOADER

 default directory hr_dir

 access parameters

 (records delimited by newline

 fields terminated by ‘|’

 (candidate_id CHAR(10),

 employee_id CHAR(10),

 comments CHAR(10000))

)

 location ('interviews.dat')

);

19.8.2.2 Loading LOBs from LOBFILE Files
Use this example to see how you can use the ORACLE_LOADER access driver to load LOB
columns from LOBFILE data type files.

Using LOB files can be preferable to reading LOBs from the from the primary data file, if your
primary data file has any of the following characteristics:

• Record delimiters.

The data for the LOB field cannot contain record deliminators in the data. In primary data
files, record deliminators such as NEWLINE can be present in the data. But when the
ORACLE_LOADER access driver accesses the next record, it looks for the next occurrence of
the record delimiter. If the record delimiter is also part of the data, then it will not read the
correct data for the LOB column.

• Field terminators.

The data for the LOB column cannot contain field terminators. With primary data files, the
data can contain field terminators, such as |. But just as with record deliminators, if field
terminators are part of the data, then ORACLE_LOADER will not read the correct data for the
LOB column.

• Record size that exceeds size limits.

The data for a LOB column must fit within the size limits for a record. The ORACLE_LOADER
access driver requires that a record not be any larger than the size of the read buffer. The
default value is 1MB, but you can change that with the READSIZE parameter.

• Binary data

Reading binary data from the primary file requires extra care in creating the file. Unless
you can guarantee that the record delimiter or field delimiter cannot occur inside the data

Chapter 19
Loading LOBs with External Tables

19-21

for a BLOB, you need to use VAR record formats, and use VARRAW or VARRAWC data
types for the binary fields. Files such as this typically must be generated
programatically.

If your primary data file has any of these characteristics, then using LOBFILE data
types to load LOB columns can be the better option for you to use.

Note:

With Oracle Database 18c and later releases, symbolic links are not allowed
in directory object path names used with ORACLE_LOADER access driver.

Example 19-10 Loading LOBs from primary data file

For each LOB column in each record, the ORACLE_LOADER access driver requires a
directory object, and the file name for the file that contains the contents of the LOB.
Typically, all of the file for the LOB columns is in one directory, and each record in the
data file has the file name in the directory. For example, suppose there is this object
created for LOB files as user HR:

create directory HR_LOB_DIR as /usr/hr/files/exttab/lobfile;

grant read, write on directory HR_LOB_DIR to HR;

Suppose the data consists of these records:

cristina_resume.pdf

cristina.jpg

arvind_resume.pdf

arvind.jpg

The data file looks like this, using field terminators, comma delimitors, character
strings, and binary data:

4378,Cristina,Garcia,cristina_resume.pdf,cristina.jpg

673289,Arvind,Gupta,arvind_resume.pdf,arvind.jpg

In this scenario, the external table LOB file appears as follows:

CREATE TABLE CANDIDATE_XT

 (candidate_id NUMBER,

 first_name VARCHAR2(15),

 last_name VARCHAR2(20),

Chapter 19
Loading LOBs with External Tables

19-22

 resume CLOB,

 picture BLOB

)

ORGANIZATION EXTERNAL

(type oracle_loader

 default directory hr_dir

 access parameters

 (fields terminated by ‘,’

 (candidate_id char(10),

 first_name char(15),

 last_name char(20),

 resume_file char(40),

 picture_file char(40)

)

 column transforms

 (

 resume from lobfile (constant 'HR_LOB_DIR': resume_file,

 picture from lobfile (constant 'HR_LOB_DIR': picture_file

)

19.8.2.3 Loading LOBs from LOB Location Specifiers
Use this example to see how you can use the ORACLE_LOADER access driver to load LOBs
from LOB location specifiers.

LOB Location Specifiers (LLS) are used when you have data for multiple LOBs in one file.
When you use LLS to load a LOB column, the data in the primary data file contains the name
of the file with the LOB data, the offset of the start of the LOB, and the number of bytes for
the LOB.

Note:

With Oracle Database 18c and later releases, symbolic links are not allowed in
directory object path names used with ORACLE_LOADER access driver.

Chapter 19
Loading LOBs with External Tables

19-23

Example 19-11 Loading Data Using LOB Location Specifiers

In the following example, suppose we have the directory HR_LOB_DIR, which contains
resumes and pictures. In the directory, we have concatenated the resumes into one
file, and the pictures into another file:

resumes.dat
pictures.dat

The data file appears as follows:

4378,Cristina,Garcia,resumes.dat.1.10928/,picture.dat.1.38679/

673289,Arvind,Gupta,resumes.dat.10929.8439,picture.dat.38680,45772/

In this scenario, the external table LOB file appears as follows:

CREATE TABLE CANDIDATE_XT

 (candidate_id NUMBER,

 first_name VARCHAR2(15),

 last_name VARCHAR2(20),

 resume CLOB,

 picture BLOB

)

ORGANIZATION EXTERNAL

(type oracle_loader

 default directory hr_dir

 access parameters

 (fields terminated by ‘,’

 (candidate_id char(10),

 first_name char(15),

 last_name char(20),

 resume_file lls directory ‘HR_LOB_DIR’,

 picture_file lls directory ‘HR_LOB_DIR’

)

)

Chapter 19
Loading LOBs with External Tables

19-24

 location ('candidates.dat')

);

Related Topics

• LLS Clause
If a field in a data file is a LOB location Specifier (LLS) field, then you can indicate this by
using the LLS clause.

19.8.3 Loading LOBs with ORACLE_DATAPUMP Access Driver
Use this example to see how you can load LOBs ORACLE_LOADER access driver.

The ORACLE_DATAPUMP access driver enables you to unload data from a SELECT statement by
using the command CREATE TABLE AS SELECT. This command creates a binary file that with
data for all of the rows returned by the SELECT statement. After you have this file, you can
create an ORACLE_DATAPUMP external table on the target database, and use the statement
INSERT INTO target_table SELECT * FROM external_table to load the table.

Note:

With Oracle Database 18c and later releases, symbolic links are not allowed in
directory object path names used with ORACLE_DATAPUMP access driver.

Example 19-12 Creating an External Table with CREATE TABLE AS SELECT

This example uses CREATE TABLE AS SELECT to unload data from a table in a database. It
creates a file named candidate.dmp in the directory for hr_dir. It then creates an external
table (it can be in another database or another schema in the same database), and then uses
INSERT to load the target table. Note that if the target table is in a different database then the
file, then the file candidates.dmp must be copied to the directory for HR_DIR in that database.

CREATE TABLE CANDIDATE_XT

 (candidate_id NUMBER,

 first_name VARCHAR2(15),

 last_name VARCHAR2(20),

 resume CLOB,

 picture BLOB

)

ORGANIZATION EXTERNAL

(type oracle_datapump

Chapter 19
Loading LOBs with External Tables

19-25

 default directory hr_dir

 location ('candidates.dmp')

)

as select * from candidates;

Next, in another schema or another database, create the external table using the file
created above. If executing this command in another database, then you must copy
the file to the directory for HR_DIR in that database.

CREATE TABLE CANDIDATE_XT

 (candidate_id NUMBER,

 first_name VARCHAR2(15),

 last_name VARCHAR2(20),

 resume CLOB,

 picture BLOB

)

ORGANIZATION EXTERNAL

(type oracle_datapump

 default directory hr_dir

 location ('candidates.dmp')

);

INSERT INTO CANDIDATES SELECT * FROM CANDIDATE_XT;

19.9 Loading CSV Files From External Tables
This topic provides examples of how to load CSV files from external tables under
various conditions.

Some of the examples build on previous examples.

Example 19-13 Loading Data From CSV Files With No Access Parameters

This example requires the following conditions:

• The order of the columns in the table must match the order of fields in the data file.

• The records in the data file must be terminated by newline.

Chapter 19
Loading CSV Files From External Tables

19-26

• The field in the records in the data file must be separated by commas (if field values are
enclosed in quotation marks, then the quotation marks are not removed from the field).

• There cannot be any newline characters in the middle of a field.

The data for the external table is as follows:

events_all.csv
Winter Games,10-JAN-2010,10,
Hockey Tournament,18-MAR-2009,3,
Baseball Expo,28-APR-2009,2,
International Football Meeting,2-MAY-2009,14,
Track and Field Finale,12-MAY-2010,3,
Mid-summer Swim Meet,5-JUL-2010,4,
Rugby Kickoff,28-SEP-2009,6,

The definition of the external table is as follows:

SQL> CREATE TABLE EVENTS_XT_1
 2 (EVENT varchar2(30),
 3 START_DATE date,
 4 LENGTH number)
 5 ORGANIZATION EXTERNAL
 6 (default directory def_dir1 location ('events_all.csv'));

Table created.

The following shows a SELECT operation on the external table EVENTS_XT_1:

SQL> select START_DATE, EVENT, LENGTH
 2 from EVENTS_XT_1
 3 order by START_DATE;

START_DAT EVENT LENGTH
--------- ------------------------------ ----------
18-MAR-09 Hockey Tournament 3
28-APR-09 Baseball Expo 2
02-MAY-09 International Football Meeting 14
28-SEP-09 Rugby Kickoff 6
10-JAN-10 Winter Games 10
12-MAY-10 Track and Field Finale 3
05-JUL-10 Mid-summer Swim Meet 4

7 rows selected.

SQL>

Example 19-14 Default Date Mask For the Session Does Not Match the Format of Data
Fields in the Data File

This example is the same as the previous example, except that the default date mask for the
session does not match the format of date fields in the data file. In the example below, the
session format for dates is DD-Mon-YYYY whereas the format of dates in the data file is
MM/DD/YYYY. If the external table definition does not have a date mask, then the

Chapter 19
Loading CSV Files From External Tables

19-27

ORACLE_LOADER access driver uses the session date mask to attempt to convert the
character data in the data file to a date data type. ou specify an access parameter for
the date mask to use for all fields in the data file that are used to load date columns in
the external table.

The following is the contents of the data file for the external table:

events_all_date_fmt.csv
Winter Games,1/10/2010,10
Hockey Tournament,3/18/2009,3
Baseball Expo,4/28/2009,2
International Football Meeting,5/2/2009,14
Track and Field Finale,5/12/2009,3
Mid-summer Swim Meet,7/5/2010,4
Rugby Kickoff,9/28/2009,6

The definition of the external table is as follows:

SQL> CREATE TABLE EVENTS_XT_2
 2 (EVENT varchar2(30),
 3 START_DATE date,
 4 LENGTH number)
 5 ORGANIZATION EXTERNAL
 6 (default directory def_dir1
 7 access parameters (fields date_format date mask "mm/dd/yyyy")
 8 location ('events_all_date_fmt.csv'));

Table created.

SQL>

The following shows a SELECT operation on the external table EVENTS_XT_2:

SQL> select START_DATE, EVENT, LENGTH
 2 from EVENTS_XT_2
 3 order by START_DATE;

START_DAT EVENT LENGTH
--------- ------------------------------ ----------
18-MAR-09 Hockey Tournament 3
28-APR-09 Baseball Expo 2
02-MAY-09 International Football Meeting 14
12-MAY-09 Track and Field Finale 3
28-SEP-09 Rugby Kickoff 6
10-JAN-10 Winter Games 10
05-JUL-10 Mid-summer Swim Meet 4

7 rows selected.

Example 19-15 Data is Split Across Two Data Files

This example is that same as the first example in this section except for the following:

• The data is split across two data files.

Chapter 19
Loading CSV Files From External Tables

19-28

• Each data file has a row containing the names of the fields.

• Some fields in the data file are enclosed by quotation marks.

The FIELD NAMES ALL FILES tells the access driver that the first row in each file contains a
row with names of the fields in the file. The access driver matches the names of the fields to
the names of the columns in the table. This means the order of the fields in the file can be
different than the order of the columns in the table. If a field name in the first row is not
enclosed in quotation marks, then the access driver uppercases the name before trying to
find the matching column name in the table. If the field name is enclosed in quotation marks,
then it does not change the case of the names before looking for a matching name.

Because the fields are enclosed in quotation marks, the access parameter requires the CSV
WITHOUT EMBEDDED RECORD TERMINATORS clause. This clause states the following:

• Fields in the data file are separated by commas.

• If the fields are enclosed in double quotation marks, then the access driver removes them
from the field value.

• There are no new lines embedded in the field values (this option allows the access driver
to skip some checks that can slow the performance of SELECT operations on the external
table).

The two data files are as follows:

events_1.csv

"EVENT","START DATE","LENGTH",
"Winter Games", "10-JAN-2010", "10"
"Hockey Tournament", "18-MAR-2009", "3"
"Baseball Expo", "28-APR-2009", "2"
"International Football Meeting", "2-MAY-2009", "14"

events_2.csv

Event,Start date,Length,
Track and Field Finale, 12-MAY-2009, 3
Mid-summer Swim Meet, 5-JUL-2010, 4
Rugby Kickoff, 28-SEP-2009, 6

The external table definition is as follows:

SQL> CREATE TABLE EVENTS_XT_3
 2 ("START DATE" date,
 3 EVENT varchar2(30),
 4 LENGTH number)
 5 ORGANIZATION EXTERNAL
 6 (default directory def_dir1
 7 access parameters (records field names all files
 8 fields csv without embedded record terminators)
 9 location ('events_1.csv', 'events_2.csv'));

Table created.

Chapter 19
Loading CSV Files From External Tables

19-29

The following shows the result of a SELECT operation on the EVENTS_XT_3 external
table:

SQL> select "START DATE", EVENT, LENGTH
 2 from EVENTS_XT_3
 3 order by "START DATE";

START DAT EVENT LENGTH
--------- ------------------------------ ----------
18-MAR-09 Hockey Tournament 3
28-APR-09 Baseball Expo 2
02-MAY-09 International Football Meeting 14
12-MAY-09 Track and Field Finale 3
28-SEP-09 Rugby Kickoff 6
10-JAN-10 Winter Games 10
05-JUL-10 Mid-summer Swim Meet 4

7 rows selected.

Example 19-16 Data Is Split Across Two Files and Only the First File Has a Row
of Field Names

This example is the same as example 3 except that only the 1st file has a row of field
names. The first row of the second file has real data. The RECORDS clause changes
to "field names first file".

The two data files are as follows:

events_1.csv (same as for example 3)

"EVENT","START DATE","LENGTH",
"Winter Games", "10-JAN-2010", "10"
"Hockey Tournament", "18-MAR-2009", "3"
"Baseball Expo", "28-APR-2009", "2"
"International Football Meeting", "2-MAY-2009", "14"

events_2_no_header_row.csv

Track and Field Finale, 12-MAY-2009, 3
Mid-summer Swim Meet, 5-JUL-2010, 4
Rugby Kickoff, 28-SEP-2009, 6

The external table definition is as follows:

SQL> CREATE TABLE EVENTS_XT_4
 2 ("START DATE" date,
 3 EVENT varchar2(30),
 4 LENGTH number)
 5 ORGANIZATION EXTERNAL
 6 (default directory def_dir1
 7 access parameters (records field names first file
 8 fields csv without embedded record

Chapter 19
Loading CSV Files From External Tables

19-30

terminators)
 9 location ('events_1.csv', 'events_2_no_header_row.csv'));

Table created.

The following shows a SELECT operation on the EVENTS_XT_4 external table:

SQL> select "START DATE", EVENT, LENGTH
 2 from EVENTS_XT_4
 3 order by "START DATE";

START DAT EVENT LENGTH
--------- ------------------------------ ----------
18-MAR-09 Hockey Tournament 3
28-APR-09 Baseball Expo 2
02-MAY-09 International Football Meeting 14
12-MAY-09 Track and Field Finale 3
28-SEP-09 Rugby Kickoff 6
10-JAN-10 Winter Games 10
05-JUL-10 Mid-summer Swim Meet 4

7 rows selected.

Example 19-17 The Order of the Fields in the File Match the Order of the Columns in
the Table

This example has the following conditions:

• The order of the fields in the file match the order of the columns in the table.

• Fields are separated by newlines and are optionally enclosed in double quotation marks.

• There are fields that have embedded newlines in their value and those fields are
enclosed in double quotation marks.

The contents of the data files are as follows:

event_contacts_1.csv

Winter Games, 10-JAN-2010, Ana Davis,
Hockey Tournament, 18-MAR-2009, "Daniel Dube
Michel Gagnon",
Baseball Expo, 28-APR-2009, "Robert Brown"
Internation Football Meeting, 2-MAY-2009,"Pete Perez
Randall Barnes
Melissa Gray",

event_contacts_2.csv

Track and Field Finale, 12-MAY-2009, John Taylor,
Mid-summer Swim Meet, 5-JUL-2010, "Louise Stewart
Cindy Sanders"
Rugby Kickoff, 28-SEP-2009, "Don Nguyen
Ray Lavoie"

Chapter 19
Loading CSV Files From External Tables

19-31

The table definition is as follows. The CSV WITH EMBEDDED RECORD TERMINATORS
clause tells the access driver how to handle fields enclosed by double quotation marks
that also have embedded new lines.

SQL> CREATE TABLE EVENTS_CONTACTS_1
 2 (EVENT varchar2(30),
 3 START_DATE date,
 4 CONTACT varchar2(120))
 5 ORGANIZATION EXTERNAL
 6 (default directory def_dir1
 7 access parameters (fields CSV with embedded record terminators)
 8 location ('event_contacts_1.csv', 'event_contacts_2.csv'));

Table created.

The following shows the result of a SELECT operation on the EVENT_CONTACTS_1
external table:

SQL> column contact format a30
SQL> select START_DATE, EVENT, CONTACT
 2 from EVENTS_CONTACTS_1
 3 order by START_DATE;

START_DAT EVENT CONTACT
--------- ------------------------------ ------------------------------
18-MAR-09 Hockey Tournament Daniel Dube
 Michel Gagnon

28-APR-09 Baseball Expo Robert Brown
02-MAY-09 Internation Football Meeting Pete Perez
 Randall Barnes
 Melissa Gray

12-MAY-09 Track and Field Finale John Taylor
28-SEP-09 Rugby Kickoff Don Nguyen
 Ray Lavoie

10-JAN-10 Winter Games Ana Davis
05-JUL-10 Mid-summer Swim Meet Louise Stewart
 Cindy Sanders

7 rows selected.

Example 19-18 Not All Fields in the Data File Use Default Settings for the
Access Parameters

This example shows what to do when most field in the data file use default settings for
the access parameters but a few do not. Instead of listing the setting for all fields, this
example shows how you can set attributes for just the fields that are different from the
default. The differences are as follows:

• there are two date fields, one of which uses the session format, but
registration_deadline uses a different format

• registration_deadline also uses a value of NONE to indicate a null value.

Chapter 19
Loading CSV Files From External Tables

19-32

The content of the data file is as follows:

events_reg.csv

Winter Games,10-JAN-2010,10,12/1/2009,
Hockey Tournament,18-MAR-2009,3,3/11/2009,
Baseball Expo,28-APR-2009,2,NONE
International Football Meeting,2-MAY-2009,14,3/1/2009
Track and Field Finale,12-MAY-2010,3,5/10/010
Mid-summer Swim Meet,5-JUL-2010,4,6/20/2010
Rugby Kickoff,28-SEP-2009,6,NONE

The table definition is as follows. The ALL FIELDS OVERRIDE clause allows you to specify
information for that field while using defaults for the remaining fields. The remaining fields
have a data type of CHAR(255) and the field data is terminated by a comma with a trimming
option of LDRTRIM.

SQL> CREATE TABLE EVENT_REGISTRATION_1
 2 (EVENT varchar2(30),
 3 START_DATE date,
 4 LENGTH number,
 5 REGISTRATION_DEADLINE date)
 6 ORGANIZATION EXTERNAL
 7 (default directory def_dir1
 8 access parameters
 9 (fields all fields override
 10 (REGISTRATION_DEADLINE CHAR (10) DATE_FORMAT DATE MASK "mm/dd/yyyy"
 11 NULLIF REGISTRATION_DEADLINE = 'NONE'))
 12 location ('events_reg.csv'));

Table created.

The following shows the result of a SELECT operation on the EVENT_REGISTRATION_1 external
table:

SQL> select START_DATE, EVENT, LENGTH, REGISTRATION_DEADLINE
 2 from EVENT_REGISTRATION_1
 3 order by START_DATE;

START_DAT EVENT LENGTH REGISTRAT
--------- ------------------------------ ---------- ---------
18-MAR-09 Hockey Tournament 3 11-MAR-09
28-APR-09 Baseball Expo 2
02-MAY-09 International Football Meeting 14 01-MAR-09
28-SEP-09 Rugby Kickoff 6
10-JAN-10 Winter Games 10 01-DEC-09
12-MAY-10 Track and Field Finale 3 10-MAY-10
05-JUL-10 Mid-summer Swim Meet 4 20-JUN-10

7 rows selected.

Chapter 19
Loading CSV Files From External Tables

19-33

Part IV
Other Utilities

Other Oracle data management utilities include the ADR Command Interpreter, DBVERIFY,
Oracle LogMiner, the DBMS_METADATA API, and the legacy data movement utilities.

• Cloud Premigration Advisor Tool
To evaluate the compatibility of the source database before you migrate to an Oracle
Cloud database, use the Cloud Premigration Advisor Tool (CPAT).

• Oracle SQL Access to Kafka
Starting with Oracle Database 23c, you can use Oracle SQL APIs to query Kafka topics
dynamically using Oracle SQL.

• ADRCI: ADR Command Interpreter
The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility is a
command-line tool that you use to manage Oracle Database diagnostic data.

• DBVERIFY: Offline Database Verification Utility
DBVERIFY is an external command-line utility that performs a physical data structure
integrity check.

• DBNEWID Utility
DBNEWID is a database utility that can change the internal database identifier (DBID) and
the database name (DBNAME) for an operational database.

• Using LogMiner to Analyze Redo Log Files
LogMiner, which is part of Oracle Database, enables you to query online and archived
redo log files through a SQL interface.

• Using the Metadata APIs
The DBMS_METADATA APIs enable you to check and update object metadata.

• Original Import
The original Import utility (imp) imports dump files that were created using the original
Export utility (exp).

20
Cloud Premigration Advisor Tool

To evaluate the compatibility of the source database before you migrate to an Oracle Cloud
database, use the Cloud Premigration Advisor Tool (CPAT).

• What is the Cloud Premigration Advisor Tool
The Cloud Premigration Advisor Tool (CPAT) is a migration assistant that analyzes
database metadata in an Oracle Database, and provides information to assist you to
move data to Oracle Autonomous Database in Oracle Cloud.

• Prerequisites for Using the Cloud Premigration Advisor Tool
Ensure that you have the required Java environment, user permissions and security set
up to run the Cloud Premigration Advisor Tool (CPAT).

• Downloading and Configuring Cloud Premigration Advisor Tool
Download the most recent update to the Cloud Premigration Advisor Tool (CPAT), extract
it to a directory, and set up environment variables.

• Getting Started with the Cloud Premigration Advisor Tool (CPAT)
After you download Oracle SQLcl or CPAT, ensure that your source database has the
required Java home, set up environment variables, and decide what kinds of checks you
want to perform.

• Connection Strings for Cloud Premigration Advisor Tool
The Cloud Premigration Advisor Tool (CPAT) accepts standard Oracle JDBC format
connection strings.

• Required Command-Line Strings for Cloud Premigration Advisor Tool
Depending on your use case, some strings are required to run the Cloud Premigration
Advisor Tool (CPAT).

• FULL Mode and SCHEMA Mode
The Cloud Premigration Advisor Tool (CPAT) can run against the entire instance, or
against a schema.

• Interpreting Cloud Premigration Advisor Tool (CPAT) Report Data
Reports generated by CPAT contain summary information, and details for each check
that is performed successfully.

• Command-Line Syntax and Properties
Use the Cloud Premigration Advisor Tool (CPAT) properties to specify the checks and
other operations you want to perform in CPAT command-line syntax.

• Premigration Advisor Tool Log File Structure
The Premigration Advisor Tool produces a log file structure that includes job status and
configuration files.

• List of Checks Performed By the Premigration Advisor Tool
Review information about the checks you find in a Premigration Advisor Tool report.

• Best Practices for Using the Premigration Advisor Tool
These Cloud Premigration Advisor Tool (CPAT) tips can help you use CPAT more
effectively.

20-1

20.2 Prerequisites for Using the Cloud Premigration Advisor
Tool

Ensure that you have the required Java environment, user permissions and security
set up to run the Cloud Premigration Advisor Tool (CPAT).

Java Runtime Environment (JRE) Requirement

You must have Java 7 or later installed on the server or client where you run CPAT.
Oracle recommends that you use Java 8 Java Runtime Environment (JRE).

CPAT looks for a JRE using the environment variables JAVA_HOME and ORACLE_HOME. If
your source Oracle Database is later than Oracle 12c Release 1 (12.1.0.2), then a
version of the Java JRE that can run CPAT is available in the Oracle home. If you are
migrating from an earlier release of Oracle Database, or if you want to specify to use a
later Java release Oracle home, then ensure that the environment variable is set to an
appropriate Java home for CPAT.

If you use a thick Oracle Call Interface-based JDBC connect string, then CPAT
currently expects the following environment variables to be set: ORACLE_SID,
ORACLE_HOME, and LD_LIBRARY_PATH.

Note:

Oracle recommends that you set ORACLE_SID, ORACLE_HOME, and
LD_LIBRARY_PATH by using the oraenv script available within the Oracle
Database home.

More details on connect strings and associated environment variables can be found in
the Advanced Usage Notes section titled Connection Strings.

User Privileges on the Source Database

When you specify a user to connect to the source database for checks, and provide
that user with the CPAT --username property, the user name that you specify must be
granted the SELECT ANY DICTIONARY privilege, and be granted SELECT on
SYSTEM.DUM$COLUMNS and SYSTEM.DUM$DATABASE.

Access to the DUM$ tables is needed only if the source and target character sets
indicate that Oracle Database Migration Assistant for Unicode (DMU) is required.

Note:

Installing and running CPAT does not modify the Oracle Database. CPAT
creates no users or packages, and CPAT does not grant any roles or
privileges. The CPAT access to the database is READ ONLY. It only checks
database metadata; no application or business data is checked.

Chapter 20
Prerequisites for Using the Cloud Premigration Advisor Tool

20-2

https://support.oracle.com/epmos/faces/DocumentDisplay?parent=DOCUMENT&sourceId=2758371.1&id=2758371.1#connection_strings

Security Configuration

• Use the --outdir property to set the output location of CPAT logs and uses a secure
location on your server or client.

• Set the user file creation mode mask (umask) on Linux and Unix systems so that the
default values for the r|w|x privileges on CPAT scripts are restricted to authorized users.

20.3 Downloading and Configuring Cloud Premigration Advisor
Tool

Download the most recent update to the Cloud Premigration Advisor Tool (CPAT), extract it to
a directory, and set up environment variables.

To run CPAT, Oracle recommends using Oracle SQLcl and the SQLcl command -
MIGRATEADVSOR. You can download SQLcl from the following URL:

https://www.oracle.com/database/sqldeveloper/.

1. Read the My Oracle Support note about CPAT, and download and extract the CPAT patch
from the following URL:

Cloud Premigration Advisor Tool (CPAT) Analyzes Databases for Suitability of Cloud
Migration (Doc ID 2758371.1).

You require an Oracle account to log in to My Oracle Support.

2. Ensure that you have Java installed, and the JAVA_HOME user environment variable and
other environment variables are set.

After you download and unzip CPAT, ensure that you have an appropriate Java Runtime
Environment (JRE) installed on the machine where CPAT is run. The minimum JRE
version required for CPAT is Java 7.

CPAT searches for a JRE home using the environment variables JAVA_HOME and
ORACLE_HOME. If the version of Java in ORACLE_HOME is Java 6 or an earlier release,
which should only be the case with an Oracle Database 12g Release 1 or earlier home,
then set JAVA_HOME to point to a Java 7 (or higher) JRE. To upgrade Java in an
ORACLE_HOME, visit https://support.oracle.com and search for Document 2366614.1
(patch id 25803774) for Oracle Database 11g databases, or Document 2495017.1 (patch
id 27301652) for Oracle Database 12.1 databases.

To set JAVA_HOME on a Microsoft Windows system:

a. Right click My Computer and select Properties.

b. On the Advanced tab, select Environment Variables, and then edit JAVA_HOME to point
to the location of the of the Java Runtime Environment (JRE).

For example:

C:\Program Files\Java\jdk1.8\jre

JRE is part of the Java Development Kit (JDK), but you can download it separately.

Chapter 20
Downloading and Configuring Cloud Premigration Advisor Tool

20-3

https://www.oracle.com/database/sqldeveloper/
https://support.oracle.com/rs?type=doc&id=2758371.1
https://support.oracle.com/rs?type=doc&id=2758371.1
https://support.oracle.com

To set JAVA_HOME on a Linux or Unix system (Korn or Bash shell):

export JAVA_HOME=jdk-install-dir
export PATH=$JAVA_HOME/bin:$PATH

Note:

On Linux and Unix, systems, Oracle recommends that you set the
ORACLE_SID, ORACLE_HOME, and LD_LIBRARY_PATH variables using the
oraenv script that comes with Oracle Database.

If you want to use CPAT without defining ORACLE_HOME, and you don't need to
use the Oracle Call interface JDBC connection string, then ensure that JAVA_HOME
is set to a Java 7 (or higher) JRE. When possible, Oracle recommends that you
use a Java 8 or higher JRE. Among other benefits, the functionality included in
OJDBC8 jars simplifies wallet-based connections such as those used when
connecting to Oracle Cloud instances.

Related Topics

• Cloud Premigration Advisor Tool (CPAT) Analyzes Databases for Suitability of
Cloud Migration (Doc ID 2758371.1)

20.4 Getting Started with the Cloud Premigration Advisor
Tool (CPAT)

After you download Oracle SQLcl or CPAT, ensure that your source database has the
required Java home, set up environment variables, and decide what kinds of checks
you want to perform.

The workflow for using the Cloud Premigration Advisor tool (CPAT) is as follows:

1. Determine the type of Cloud database to which you want to migrate.

2. Run CPAT to generate a CPAT properties file using the gettargetprops. This
switch gathers the properties of the target database, if one has been created. The
target properties are used when analyzing the source database to focus, and limits
the checks that are run to those required for the target database.

3. Run CPAT with the options required for your migration scenario. You can run CPAT
to test different migration scenarios. If you do run CPAT repeatedly, then to
distinguish between the tests, Oracle recommends using the --outfileprefix
and --outdir switches to keep the outputs organized, and to keep reports from
being overwritten.

The CPAT patch distribution kit contains premigration.sh for running CPAT on Linux
and Unix platforms, and premigration.cmd for running CPAT on Microsoft Windows
platforms. CPAT can be run from any host with network access to the database
instance that you want to analyze.

Chapter 20
Getting Started with the Cloud Premigration Advisor Tool (CPAT)

20-4

https://support.oracle.com/rs?type=doc&id=2758371.1
https://support.oracle.com/rs?type=doc&id=2758371.1

Note:

Running the premigration script on the server doesn't modify Oracle Database.
CPAT itself creates no users or packages, and requires granting no roles or
privileges. CPAT treats the database as READ ONLY. It only checks database
metadata; no application or business data is checked.

In this example, premigration.sh is used (use premigration.cmd on Microsoft Windows
systems)

Example 20-1 Generating a CPAT Properties File

This example checks whether your source database is ready to migrate to an Oracle
Autonomous Database Shared for Transaction Processing and Mixed Workloads (ATP-S),
you generate a properties file for the requirements:

premigration.sh --connectstring \
'jdbc:oracle:thin:@db_tp_tunnel?TNS_ADMIN=/path/to/wallets/Wallet1' --
username ADMIN \
--gettargetprops --outdir migration

The output of that command is as follows:

Enter password for ADMIN user: Cloud Premigration Advisor Tool Version 22.10.0
Cloud Premigration Advisor Tool generated properties file location: /home/
oracle/migration/configprops/atps_premigration_advisor_analysis.properties

Note:

When CPAT is run with the --username switch, the Oracle user name you specify
must have the SELECT ANY DICTIONARY privilege, and must be granted SELECT on
SYSTEM.DUM$COLUMNS and SYSTEM.DUM$DATABASE. Access to the DUM$ tables is
needed only if the source and target character sets indicate that Oracle Database
Migration Assistant for Unicode (DMU) is required.

20.5 Connection Strings for Cloud Premigration Advisor Tool
The Cloud Premigration Advisor Tool (CPAT) accepts standard Oracle JDBC format
connection strings.

Using standard Oracle JDBC format connection strings means that you can use either the
thick" or the "thin" Oracle JDBC driver for connections.

Table 20-1 Example JDBC Connection Strings

Connection Description Connection String Notes

Thin client jdbc:oracle:thin:@host:po
rt:sid

Replace the variables host,
port and sid with the host the
connection port, and the system
identifier for your source.

Chapter 20
Connection Strings for Cloud Premigration Advisor Tool

20-5

Table 20-1 (Cont.) Example JDBC Connection Strings

Connection Description Connection String Notes

Thin client with PDB Service jdbc:oracle:thin:@host:port/pdb-
service-name

Replace the variables host,
port and pdb-service-name
with the host the connection port,
and the PDB service name for
your source.

Thin with AWS RDS jdbc:oracle:thin:@databas
e-1.xxx.us-
east-1.rds.amazonaws.com:
port:sid

Consult the Amazon Web
Services Relational Database
(AWS RDS) documentation for
instructions on finding your
database's endpoint and port
details.

Operating system authentication jdbc:oracle:oci:@ The CPAT command line must
also include the property --
sysdba

Operating system authentication
with PDB

jdbc:oracle:oci:@ The CPAT command line must
also include the properties --
sysdba and --pdbname pdb-
name, where pdb-name is the
name of the PDB.

Wallet-based with Java 8 JRE jdbc:oracle:thin:@service
-name?TNS_ADMIN=path-to-
wallet

The TNS_ADMIN connection
property specifies the following,
represented by path-to-
wallet:

The location of tnsnames.ora.

The location of Oracle Wallet
(ewallet.sso, ewallet.p12)
or Java KeyStore (JKS) files
(truststore.jks,
keystore.jks).

The location of
ojdbc.properties. This file
contains the connection
properties required to use Oracle
Wallets or Java KeyStore (JKS).

For more information about using
a keystore, see the Oracle
Autonomous Database
documentation.

Additional Connection String Information

Using the --pdbname property is only required when the connection string is for
CDB$ROOT.

If you use keystore connection strings such as jdbc:oracle:thin:@service-name?
TNS_ADMIN=path-to-wallet, then JDBC requires that one of the following is true:

• An ojdbc.properties file is located in the Wallet directory, and it contains
oracle.net.wallet_location property with a value such as

Chapter 20
Connection Strings for Cloud Premigration Advisor Tool

20-6

oracle.net.wallet_location=(SOURCE=(METHOD=FILE)(METHOD_DATA=(DIRECTORY=$
{TNS_ADMIN})))

• The JAVA_TOOL_OPTIONS environment variable is set with the appropriate values, such as
the following:

export JAVA_TOOLS_OPTIONS='-Doracle.net.tns_admin=path-to-wallet-dir -
Doracle.net.wallet_location=(SOURCE=(METHOD=FILE)
(METHOD_DATA=(DIRECTORY=path-to-wallet-dir)))'

Related Topics

• Oracle Database Insider: Migrating from AWS RDS to Oracle Autonomous Database via
Data Pump

• Using Oracle Autonomous Database on Shared Exadata Infrastructure: Using a JDBC
URL Connection String with JDBC Thin Driver and Wallets

20.6 Required Command-Line Strings for Cloud Premigration
Advisor Tool

Depending on your use case, some strings are required to run the Cloud Premigration
Advisor Tool (CPAT).

When using CPAT to connect to a database for source analysis, there are three required
properties in the command string: One that specifies the cloud target (targetcloud), one that
specifies the connection string (connectstring), and a user authentication string, provided
either with the sysdba or username property.

The first two command properties must always be

• --targetcloud type (or -t type), where type is the Oracle Cloud target type
• --connectstring jdbc-connect-string, or -c jdbc-connect-string, where jdbc-

connect-string is the JDBC connection string you use to connect to the migration
source Oracle Database.

The other required property provides user credentials, and so it depends on what user
credentials you use to start the analysis:

• For operating system authentication by user account, or authorization on the local system
by using the SYS user, you use--sysdba, or -d. This starts CPAT by connecting to the
source database with AS SYSDBA. This authentication option is also required if you
connect as a user that has been granted SYSDBA but not the other privileges required by
CPAT.

• For authentication by user account, where you are not using a wallet or operating system
authentication, use --username name, or -u name, where name is the user account name
you use to log in to the source system. As it runs, CPAT prompts you for the password for
that user. The user name that you provide must be a user account granted SYSDBA and
ADMIN privileges.

If you authenticate CPAT with the username property, then the Oracle user name that you
specify must have the SELECT ANY DICTIONARY privilege, and must be granted SELECT on
SYSTEM.DUM$COLUMNS and SYSTEM.DUM$DATABASE. Access to the DUM$ tables is needed
only if the source and target character sets indicate that Oracle Database Migration
Assistant for Unicode (DMU) is required.

Chapter 20
Required Command-Line Strings for Cloud Premigration Advisor Tool

20-7

https://blogs.oracle.com/database/post/migrating-from-aws-rds-to-oracle-autonomous-database
https://blogs.oracle.com/database/post/migrating-from-aws-rds-to-oracle-autonomous-database
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-jdbc-thin-wallet.html#GUID-1640CC02-BF3E-48C2-8FFE-A596614A6A40
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-jdbc-thin-wallet.html#GUID-1640CC02-BF3E-48C2-8FFE-A596614A6A40

20.7 FULL Mode and SCHEMA Mode
The Cloud Premigration Advisor Tool (CPAT) can run against the entire instance, or
against a schema.

FULL Mode

FULL mode is the default mode. In this mode, CPAT runs any check relevant to the
migration methods and the Cloud target types you choose, and analyzes data in all
schemas that are not maintained by Oracle. In FULL mode, SCHEMA, INSTANCE, and
UNIVERSAL scope checks are run.

Note:

Even in FULL mode, CPAT by default excludes checking data in schemas
known to be maintained by Oracle. The use of the --excludeschemas
property does not change CPAT's default FULL mode.

SCHEMA Mode

SCHEMA mode is set with the --schemas property. When --schemas is set, and --
full is not also specified, then CPAT runs in SCHEMA mode. In SCHEMA mode, SCHEMA
and UNIVERSAL scope checks are run. INSTANCE scope checks are not run.

Controlling CPAT Modes

The CPAT mode is controlled by the use of two options properties:

• The schemas property (--schemas 'schemaname' ['schemaname''schemaname'],
runs checks against the schemas that you list, in a space-delimited schema name
list of one or more schema names, where the names are specified within single
straight quotes. In schema mode, SCHEMA and UNIVERSAL scope checks are run.
INSTANCE scope checks are not run.

• The Full property (--full) runs checks against the entire source database
instance.

If you do not specify a value for the --schemas property, then the default is FULL mode.

If you specify --schemas on the command line, then CPAT runs in SCHEMA mode unless
you also specify --full in the command line. If both properties are used, then SCHEMA,
INSTANCE, and UNIVERSAL scope checks are run, but only on the list of schemas in the
-schemas list.

If a schema name is lowercase, mixed case, or uses special characters, then use
double quotation marks as well as single quotation marks to designate the schema
name. For example:

premigration.sh --schemas 'PARdUS' '"ComEDIT"' '"faciem.$meam"' --
targetcloud ATPS --connectstring jdbc-connect-string"

Chapter 20
FULL Mode and SCHEMA Mode

20-8

20.8 Interpreting Cloud Premigration Advisor Tool (CPAT)
Report Data

Reports generated by CPAT contain summary information, and details for each check that is
performed successfully.

Each check includes the following information in the Premigration Advisor report:

• Description: This field describes what the check is looking for, or why the check is being
performed.

• Impact: This field describes the consequences of a result other than Passing.

• Action: This check describes what, if anything, you should do before migration to correct
issues, if the check result is not Passing.

Each check CPAT runs is given a report status of Passing, Review Suggested, Review
Required, or Action Required.

The overall result of the CPAT report will be the most severe result of all checks performed.
For example, if 30 checks have the status Passing, one check has a Review Required
status, then the overall result will be Review Required.

The current definitions of each of the CPAT check results are as follows:

Table 20-2 Premigration Advisor Tool (CPAT) Check Result Definitions

Check Definition

Passing Indicates that the migration should succeed, and
that there should be no difference in behavior of
applications.

Review Suggested Indicates that migration should succeed, and that
applications likely will have no functional
difference. However, database administrators
should evaluate each check with this status to look
for potential issues before migration.

Review Required Indicates that migration may succeed (at least in
part), but that either you cannot expect everything
to work exactly as it did in the source database, or
that a database administrator must complete
additional work after migration to bring the target
instance into alignment with the source database.

Action Required Indicates something that likely would cause the
migration to be unsuccessful. Checks with this
result typically must be resolved before attempting
migration.

Failed The Cloud Premigration Advisor was unable to
complete its analysis. Please contact Oracle
Support Services.

Note: A CPAT result of Action Required does not necessarily mean that, for instance,
Oracle Data Pump import will terminate prematurely while importing the data. It means that
there will likely be errors during import which can indicate not all data has been migrated. It is

Chapter 20
Interpreting Cloud Premigration Advisor Tool (CPAT) Report Data

20-9

imperative that an administrator familiar with both the database and the applications
supported by the database examine the results of any checks that are not Passing.

Why are Checks sometimes marked as "skipped"

Checks marked in the Premigration Advisor report as Skipped should have completed
during the CPAT analysis for properties provided in the CPAT command (for example,
--targetcloud --migrationmethod, or other report value), but were not run in this
particular Premigration Advisor report.

Either one of these two cases are the cause of a "Skipped" status:

• The check should be run but it is impossible to run at the time the report is
generated, either due to the current contents or configuration of the source
database. In this case, the check result will be Review Suggested or more
severe.

• The check does not need to be completed at the time of the report, due to the
current contents or configuration of the source database. The check result in this
case will be Passing.

20.12 Best Practices for Using the Premigration Advisor Tool
These Cloud Premigration Advisor Tool (CPAT) tips can help you use CPAT more
effectively.

• Generate Properties File on the Target Database Instance
Oracle recommends that you generate a Premigration Advisor Tool (CPAT)
properties file on the target database instance.

• Focus the CPAT Analysis
Oracle recommends that you focus the Premigration Advisor Tool (CPAT) analysis
to restrict what schemas CPAT will examine.

• Reduce the Amount of Data in Reports
Some Cloud Premigration Advisor tool checks can return thousands of objects
with the same concern. Here's how you can reduce the report size.

• Generate the JSON Report and Save Logs
Even if you only plan to use the text report, Oracle suggests you also generate a
JSON output file with the Cloud Premigration Advisor tool (CPAT), and save the
log files for diagnosis.

• Use Output Prefixes to Record Different Migration Scenarios
To keep track of reports for different migration options, use the --outfileprefix
and --outdir properties on the CPAT command line.

20.12.1 Generate Properties File on the Target Database Instance
Oracle recommends that you generate a Premigration Advisor Tool (CPAT) properties
file on the target database instance.

To perform the most complete and targeted analysis of the source database instance,
certain properties of the target database instance are required. For this reason, you
should generate your CPAT properties file on the database instance that you want to
migrate. To perform this function, the --gettargetprops property is intended to be
used with the other connection-related properties.

Chapter 20
Best Practices for Using the Premigration Advisor Tool

20-10

In the following example, the CPAT script is run by the user ADMIN on the target database
instance:

./premigration.sh --gettargetprops -username ADMIN --connectstring
'jdbc:oracle:thin:@service-name?TNS_ADMIN=path-to-wallet'

The command generates a properties file, premigration_advisor_analysis.properties,
which you can use to analyze a source instance.

If necessary, you can copy the properties file generated on the target to the host where the
source database analysis will be performed, and provide the file to CPAT using the --
analysisprops property.

For example:

./premigration.sh --connectstring jdbc:oracle:oci:@ --targetcloud ATPD --
sysdba --analysisprops premigration_advisor_analysis.properties

If you know that you (or Oracle Zero Downtime Migration (ZDM) or Oracle Database
Migration Service (DMS) will be mapping (or precreating) all needed tablespaces, then
append the property MigrationMethodProp.ALL_METHODS.TABLESPACE_MAPPING=ALL to the
properties file you provide to CPAT. This property setting causes CPAT to PASS most (if not
all) of its tablespace-related checks. However, if you choose this option, then be aware that
there can still be migration issues related to quotas with tablespace mapping.

20.12.2 Focus the CPAT Analysis
Oracle recommends that you focus the Premigration Advisor Tool (CPAT) analysis to restrict
what schemas CPAT will examine.

Consider using the --schema switch property to restrict what schemas you want CPAT to
examine during its analysis. When you start CPAT using --schemas list, where list is a
space-delimited list of schemas, CPAT performs checks only on those schemas. Without the
--schemas switch, CPAT will analyze all schemas in the source instance (excluding Oracle-
maintained schemas), which can result in problems being found in schemas that you do not
intend to migrate. Using the --schemas property to restrict scope can be particularly useful if
the source instance is hosting multiple applications, each of which could potentially be
migrated to different Oracle Autonomous Database instances.

In the following example, the CPAT script is run by the user ADMIN on the target database
instance to perform analysis on the schemas schema1 and schema2:

./premigration.sh -username SYSTEM --connectstring
'jdbc:oracle:thin:@service-name?TNS_ADMIN=path-to-wallet' --schemas schema1
schema2

The --schemas switch property provides a space-separated list of schemas (schema1 and
schema2) to CPAT, so that the checks it performs are restricted only to those two schemas.

Chapter 20
Best Practices for Using the Premigration Advisor Tool

20-11

20.12.3 Reduce the Amount of Data in Reports
Some Cloud Premigration Advisor tool checks can return thousands of objects with the
same concern. Here's how you can reduce the report size.

Depending on the checks you run, some CPAT checks can return results for the same
issue in multiple objects in the text report. To reduce the number of results, you can
use the --maxtextdatarows n function, where n is an integer that specifies the
number of rows that you want to view.

The --maxrelevantobjects n property performs the same function for reports, but
limiting the size of JSON reports is typically not necessary.

In the following example, the CPAT script is run by the user SYSTEM on the target
database instance, with the output set to return a maximum of 10 rows of text file data:

./premigration.sh --username SYSTEM --connectstring
'jdbc:oracle:thin:@service-name?TNS_ADMIN=path-to-wallet --
maxtextdatarows 10"

20.12.4 Generate the JSON Report and Save Logs
Even if you only plan to use the text report, Oracle suggests you also generate a
JSON output file with the Cloud Premigration Advisor tool (CPAT), and save the log
files for diagnosis.

Oracle recommends generating the JSON report as well as the text report, and always
save your log report files. Why? If you encounter an issue while using CPAT, and need
to contact Oracle Support, then you can provide all possible information to assist
Oracle Support with resolving your issue. You can assist Oracle Support by being
prepared to submit both the text and JSON reports, as well as the .log reports
generated by CPAT. The --reportformat property accepts one or more space-
delimited report formats. The permitted values for the --reportformat switch are json
and text.

For example:

./premigration.sh -username SYSTEM --connectstring
'jdbc:oracle:thin:@service-name --reportformat json text

20.12.5 Use Output Prefixes to Record Different Migration Scenarios
To keep track of reports for different migration options, use the --outfileprefix and
--outdir properties on the CPAT command line.

To generate reports for different Cloud migration options, you can use the Cloud
Premigration Advisor Tool (CPAT) with the --outfileprefix, so that you place a prefix
on reports and log files that can organize the report options that you have generated.
You can also use the --outdir property to organize reports for different instances, or
to organize reports for different scenarios.

Chapter 20
Best Practices for Using the Premigration Advisor Tool

20-12

Note:

The --outdir property accepts either an absolute or a relative folder path. Using
this property specifies a particular location where CPAT creates the log files, report
files, and any properties files that you generate. If --outdir is omitted from the
command line, then the log file and other generated files are created in the user's
current folder, which can lead to files being overwritten when multiple analyses are
performed.

For example:

./premigration.sh --outfileprefix ATPS_RUN_01 --outdir /path/CPAT_output --
reportformat TEXT JSON ...

20.1 What is the Cloud Premigration Advisor Tool
The Cloud Premigration Advisor Tool (CPAT) is a migration assistant that analyzes database
metadata in an Oracle Database, and provides information to assist you to move data to
Oracle Autonomous Database in Oracle Cloud.

The purpose of the Cloud Premigration Advisor Tool (CPAT) is to help plan successful
migrations to Oracle Databases in the Oracle Cloud or on-premises. It analyzes the
compatibility of the source database with your database target and chosen migration method,
and suggests a course of action for potential incompatibilities. CPAT provides you with
information to consider for different migration tools.

Running the Cloud Premigration Advisor Tool does not require any changes to the source
database. It does not require adding users, or granting roles, or loading packages.

How the Cloud Premigration Advisor Tool Works

The Cloud Premigration Advisor Tool performs source database metadata checks, and
provides you with information for your migration. It does not perform the actual migration. You
use that information as part of your migration plan. CPAT runs using Java 7 or later releases,
Java 8 Java Runtime Environment (JRE) preferred.

Note:

Installing and running CPAT does not modify Oracle Database. CPAT does not
create any users, any packages, or require granting any roles or privileges. CPAT
treats the database as READ ONLY.

A check is something that can be determined programmatically about a database, database
object, user, or component. Checks are intended to determine the suitability of the database
and database schema for moving to a particular Oracle Cloud Database deployment option.
For example: Oracle Autonomous Database on Shared Exadata Infrastructure (ADB-S),
using a particular migration method, such as Oracle Data Pump.

The source database is the database that you want to analyze for suitability to migrate to an
Oracle Autonomous Database. The target is either a particular Oracle Autonomous

Chapter 20
What is the Cloud Premigration Advisor Tool

20-13

Database, or a generic Oracle Autonomous Database deployment option that you can
select when you run CPAT.

You start CPAT by running it either as Java command-line tool, or as a SQL command-
line tool, using SQLcl. You then specify a source database and an Oracle Autonomous
Database target, or specify DEFAULT for other Oracle Cloud Infrastructure (OCI) target
databases, such as Exadata Cloud@Customer, Exadata Cloud Service, or an on-
premises database. CPAT performs a number of checks on the source database and
schema contents. These checks are guided by the target that you select, and your
intended migration option.

After CPAT completes the source database checks, it generates a report indicating
what was found. Reports contain both summary information and details for each check
including the check result: Passing, Review Suggested, Review Required, or
Action Required. In addition, CPAT identifies additional metadata in the source
database that can be relevant for the migration.

The check results are compiled and presented in a report. The report can be a
machine-readable report (JSON), a human-readable format (plain text)These reports
can also be used directly by other Oracle migration products and features, such as
Oracle Zero Downtime Migration (ZDM) Cloud Service, and the Oracle Cloud
Infrastructure (OCI) Database Migration Service.

Premigration Advisor Tool Properties

You can specify how CPAT runs, and what checks it performs, by specifying properties
in the command line to provide information for its analysis checks.

Cloud Premigration Advisor Tool Reports

CPAT recommends any relevant actions, such as using certain migration commands,
setting certain database parameters, or performing SQL scripts on either the source or
target instance, Because the checks can be performed on target deployment options,
as well as actual database targets, the reports use the term "Locus" instead of "Target"
when something needs to be completed on either the Source or Target database.
When the report recommends that you use particular parameters and commands,
Oracle strongly recommends that you follow the guidance in the report.

Related Topics

• Cloud Premigration Advisor Tool (CPAT) Analyzes Databases for Suitability of
Cloud Migration (Doc ID 2758371.1)

20.9 Command-Line Syntax and Properties
Use the Cloud Premigration Advisor Tool (CPAT) properties to specify the checks and
other operations you want to perform in CPAT command-line syntax.

• Premigration Advisor Tool Command-Line Syntax
You run the Premigration Advisor Tool as a command-line shell script.

• Premigration Advisor Tool Command-Line Properties
Review the Premigration Advisor Tool properties to construct a command tree and
options for your Oracle Database migration scenario. .

Chapter 20
Command-Line Syntax and Properties

20-14

https://support.oracle.com/rs?type=doc&id=2758371.1
https://support.oracle.com/rs?type=doc&id=2758371.1

20.9.1 Premigration Advisor Tool Command-Line Syntax
You run the Premigration Advisor Tool as a command-line shell script.

Prerequisites

• You must have Java Development Kit (JDK) 7 or later installed in your source
environment. Oracle recommends that you use Java 8 Runtime Environment (JRE).

JDK 8 is installed with every release starting with Oracle Database 12c Release 2 (12.2).
For any release earlier than 12.2, you must either run Premigration Advisor Tool (CPAT)
using the Java release in the target Oracle Database, or you must install JDK 8 on your
source database server.

Java File Path

Obtain the latest CPAT zip file from My Oracle Support. The application and deployment
instructions for the application are available from My Oracle Support note 2758371.1.
Because CPAT is a Java-based tool, it requires that an appropriate Java Runtime
Environment (JRE) is installed on the machine where the tool is run.

For thin clients, CPAT searches for a Java Runtime Environment (JRE) using the
environment variables JAVA_HOME and ORACLE_HOME. The JRE should be in one of these
paths.

For thick clients, CPAT uses an Oracle Call Interface (OCI) based JDBC connect string. With
this type of connection string, CPAT connects to the database typically by using the
environment variables: ORACLE_SID, ORACLE_HOME, and LD_LIBRARY_PATH.

Note:

You only need to set the ORACLE_SID if you use operating system authentication for
the user running CPAT. If necessary, the CPAT script can set LD_LIBRARY_PATH by
itself, so in most cases, you only need to set an ORACLE_HOME environment variable.

Syntax

The Premigration Advisor Tool command syntax is case-sensitive. You can pass properties
either as character strings or as text strings, as noted for each command property.

The syntax takes the following format, where character is a single case-sensitive character,
command-string is a case-sensitive string, and value is an input option or value specified by
the command property.

Java

java -jar premigration.jar [-character [value] | --command-string [value]]

Shell command:

./premigration.sh [-character [value] | --command-string value[]

Multiple properties can be concatenated in the command syntax, using either the character
flag or the full name of a property.

Chapter 20
Command-Line Syntax and Properties

20-15

20.9.2 Premigration Advisor Tool Command-Line Properties
Review the Premigration Advisor Tool properties to construct a command tree and
options for your Oracle Database migration scenario. .

• analysisprops
The Premigration Advisor Tool property analysisprops specifies the path and
name of a properties file for the source database.

• connectstring
The Premigration Advisor Tool property connectstring provides the JDBC
connect string for the source database.

• excludeschemas
The Premigration Advisor Tool property excludeschemas specifies a list of
schemas that you want to exclude from analysis for migration.

• full
The Premigration Advisor Tool (CPAT) property full specifies that the full set of
checks are run, even when --schemas is used.

• gettargetprops
The Premigration Advisor Tool property gettargetprops reads the connection
properties for the migration target database instance for analysis against the
source database instance.

• help
The Premigration Advisor Tool property help prints out the command line help
information, and exits.

• logginglevel
The Premigration Advisor Tool property logginglevel specifies the level of issues
recorded in the logging file.

• maxrelevantobjects
The Premigration Advisor Tool property maxrelevantobjects specifies the
maximum number of relevant objects included in all reports.

• maxtextdatarows
The Premigration Advisor Tool property maxtextdatarows specifies a limit to the
number of relevant object rows displayed in text reports (does not apply to JSON
reports).

• migrationmethod
The Premigration Advisor Tool property migrationmethod specifies the type of
method or tooling that you intend to use to migrate to Oracle Cloud.

• outdir
The Premigration Advisor Tool property outdir specifies the directory path where
you want premigration analysis log files and report files to be generated.

• outfileprefix
The Premigration Advisor Tool property outfileprefix specifies a prefix for the
Premigration Advisor Tool reports.

• pdbname
The Premigration Advisor Tool property pdbname specifies the name of a source
PDB on a CDB for which you want CPAT to generate a report.

Chapter 20
Command-Line Syntax and Properties

20-16

• reportformat
The Premigration Advisor Tool (CPAT) property reportformat specifies the format of
CPAT report output.

• schemas
The Premigration Advisor Tool property schemas specifies a list of schemas that you want
to analyze for migration.

• sqltext
The Premigration Advisor Tool property sqltext specifies to show the SQL used for
CPAT checks in TEXT reports

• sysdba
The Premigration Advisor Tool property sysdba is used to force AS SYSDBA when
connecting to the database.

• targetcloud
The Premigration Advisor Tool property targetcloud specifies the type of Oracle Cloud
database to which you want to migrate.

• username
The Premigration Advisor Tool property username specifies the username to use when
connecting to the source database.

• version
The Premigration Advisor Tool property version prints out the current version of CPAT,
and then exits.

• updatecheck
The Premigration Advisor Tool property updatecheck prints the current version of CPAT,
checks to see if there is a more recent version available, and then exits.

20.9.2.1 analysisprops
The Premigration Advisor Tool property analysisprops specifies the path and name of a
properties file for the source database.

Property Description

property type character, string

Syntax -a|--analysisprops --property-file-name

Description

The Premigration Advisor Tool analysisprops property specifies the path and name of a
properties file that you have generated previously for the source database by using the
Premigration Advisor Tool command-line property --gettargetprops. You use this properties
file with the Premigration Advisor Tool to analyze properties of the database .

Usage Notes

In the command string, you must also specify the options --connectString (-c) to the
source database, and --targetcloud (-t) to specify the type of Cloud database to which you
want to migrate.

Chapter 20
Command-Line Syntax and Properties

20-17

Examples

In this example, you obtain the properties file
premigration_advisor_analysis.properties from the target instance, and identify
that file to use with analysisprops:

./premigration.sh --connectstring jdbc:oracle:oci:@ --targetcloud ATPD
--sysdba \
--analysisprops premigration_advisor_analysis.properties

20.9.2.2 connectstring
The Premigration Advisor Tool property connectstring provides the JDBC connect
string for the source database.

Property Description

property type character, string

Syntax
-c, --connectstring connect-string [--pdbname
pdb-name]

Default value None

Description

The connectstring property specifies the JDBC connect string for the source
database. If the connect string is for a CDB, then you must also specify a PDB name
using the --pdbname switch, using --pdbname pdb-name, where pdb-name is the name
of the PDB containing the source database.

CPAT connections have the following steps:

1. Connect to and obtain properties from the target instance using primigration.sh.
This connection requires connnection information for the target instance, but does
not require --targetcloud. It is this step that creates the
premigration_advisor_analysis properties file. connectstring is required.

2. If necessary, connect to the computer where you will analyze the source instance,
and copy the premigration_advisor_analysis.properties file to that computer.

3. Generate a CPAT report by running premigration.sh with the connection
information for the source instance.

If you have a properties file that has Cloud service/lockdown information about the
target, then --targetcloud is not required. If you do not provide a properties file, or if
the properties file doesn't specify the Cloud service, then to obtain the most relevant
information, you must use --targetcloud or -t to specify a target cloud. If you don't
specify a target cloud using --targetcloud or -t, then the default is a Cloud target
with no known Cloud service/lockdown profile set on the PDB target.

Chapter 20
Command-Line Syntax and Properties

20-18

Note:

The restrictions enforced by a lockdown profile are for the entire PDB, and affect all
users on that PDB, including SYS and SYSTEM.

Examples

In the following example, the PDB name is sales1, and connect-string indicates where the
connection string is placed.

premigration.sh -c connect-string --pdbname sales1

20.9.2.3 excludeschemas
The Premigration Advisor Tool property excludeschemas specifies a list of schemas that you
want to exclude from analysis for migration.

Property Description

property type string

Syntax --excludeschemas --schemaname ['schemaname' 'schemaname' ...]
where schemaname is the name of one or more schema names, separated by
spaces.

Schema names are assumed to be case sensitive. For example, use SYSTEM, not
system. If a schema name is lowercase, mixed case, or uses special characters,
then use double quotation marks as well as single quotation marks to designate
the schema name. For example:

--excludeschemas '"MixedCase"' '"Special.Char$"'

Description

The Premigration Advisor Tool excludeschemas property specifies the schemas that you want
to exclude from analysis for their readiness to migrate to the Cloud.

Usage Notes

Use to indicate the schemas on which you do not want premigration checks to be performed.
If excludeschemas is omitted, and schemas is not used, then all schemas in the database will
be analyzed. The excludeschemas property cannot be used in conjunction with schemas.

In the command string, you must also specify the options --connectString (-c) to the
source database, and --targetcloud (-t) to specify the type of Cloud database to which you
want to migrate.

20.9.2.4 full
The Premigration Advisor Tool (CPAT) property full specifies that the full set of checks are
run, even when --schemas is used.

Chapter 20
Command-Line Syntax and Properties

20-19

Property Description

property type character, string

Syntax -f|--full

Description

Each CPAT check has a defined scope. If the scope of a check is INSTANCE, then that
check will not be run unless you override that defined scope by selecting FULL. The
CPAT full property forces the full set of checks to be run on the source database,
even when --schemas has also been specified in the command string to limit the scope
of checks.

Usage Notes

The option you use with CPAT should also be used with Oracle Data Pump. If you
intend to use Oracle Data Pump with FULL mode, then you should run CPAT with the
full property. If you intend to use Oracle Data Pump in SCHEMA mode, then run CPAT
in schema mode.

Examples

Suppose you have 100 schemas in your source database instance, but you want to
migrate only three schemas, s1, s2 and s3, to Autonomous Transaction Processing
Dedicated (ATP-D).

In this case, you do not need to analyze all the schemas, but you do want to run
INSTANCE SCOPED checks on all three schemas. You can do this by running CPAT with
--schemas s1 s2 s3 --full

20.9.2.5 gettargetprops
The Premigration Advisor Tool property gettargetprops reads the connection
properties for the migration target database instance for analysis against the source
database instance.

Property Description

property type string

Syntax -g|--gettargetprops property

Description

The Premigration Advisor Tool gettargetprops property specifies that CPAT collects
the connection parameters for the migration target instance. CPAT collects properties
of the migration target instance, so that it can then analyze those properties on the
source database instance.

Usage Notes

These properties are typically set by tools that use CPAT in their migration flow, and
use these properties to specify to CPAT that certain migration operations have been or
will be performed during migration. Generate the properties file with the --
gettargetprops switch and targetconnection parameters

Chapter 20
Command-Line Syntax and Properties

20-20

For more information, run premigration.sh --help, or premigration.com --help on
Microsoft Windows systems.

Examples

./premigration.sh --gettargetprops --connectstring
jdbc:oracle:thin:@atpd_high?TNS_ADMIN=/path/wallet . . .

20.9.2.6 help
The Premigration Advisor Tool property help prints out the command line help information,
and exits.

Property Description

property type string

Syntax -h|--help

Description

The Premigration Advisor Tool help property prints out the command-line help instructions,
and causes the advisor to exit.

Usage Notes

Use this option to obtain help information about the version of the Premigration Advisor Tool
that you are running.

Examples

premigration.sh --help

20.9.2.7 logginglevel
The Premigration Advisor Tool property logginglevel specifies the level of issues recorded
in the logging file.

Property Description

property type string

Syntax -l|--logginglevel -[severe|warning|info|config|fine|finer|
finest]

Default If you do not provide this property in the command string, then the default is
fine.

Description

The Premigration Advisor Tool logginglevel property specifies the severity of issues that
you want to have logged in the Premigration Advisor Tool Report

Chapter 20
Command-Line Syntax and Properties

20-21

Usage Notes

Use to indicate which type of checks you want to perform on the target database or
databases. Log properties:

• severe
• warning
• info
• config
• fine
• finer
• finest

20.9.2.8 maxrelevantobjects
The Premigration Advisor Tool property maxrelevantobjects specifies the maximum
number of relevant objects included in all reports.

Property Description

property type string

Syntax -M|--maxrelevantobjects maximum-relevant-objects

Description

The Premigration Advisor Tool maxrelevantobjects property specifies the maximum
number of relevant objects displayed in premigration advisor reports, specified by a
numeric value. For TEXT reports, this property overrides the maxtextdatarows property.

Note:

If you specify a limit to the number of objects reported, then there can be
objects that can affect your migration that are not published in reports.

Usage Notes

The purpose of this property is to place limits on the report that CPAT generates:

• Limit the size of a CPAT report

• Limit the memory CPAT uses

• Exclude inclusion of objects that may contain proprietary or confidential table,
column or other information in the report.

Examples

premigration.sh -maxrelevantobjects 5 -outfileprefix limit -
targettype adws -analysisprops /usr/example/CPAT/
cloud_premigration_advisor_analysis.properties

Chapter 20
Command-Line Syntax and Properties

20-22

20.9.2.9 maxtextdatarows
The Premigration Advisor Tool property maxtextdatarows specifies a limit to the number of
relevant object rows displayed in text reports (does not apply to JSON reports).

Property Description

property type string

Syntax -n|--maxtextdatarows maximum-number-of-data-rows
Default All rows in data tables (no maximum).

Description

The Premigration Advisor Tool maxtextdatarows property specifies the maximum number of
relevant object rows that are included in the TEXT reports, and provides a message indicating
that rows after the maximum row number is reached are not displayed. If this property is not
set, then all relevant objects are included (no maximum). This property does not apply to
JSON reports

Usage Notes

Where there is a conflict in property settings, maxrelevantobjects overrides the setting for
maxtextdatarows for Premigration Advisor TEXT report files.

Examples

20.9.2.10 migrationmethod
The Premigration Advisor Tool property migrationmethod specifies the type of method or
tooling that you intend to use to migrate to Oracle Cloud.

Property Description

property type string

Syntax -m|--migrationmethod -['datapump'|'goldengate']
Default If no value is supplied, then the default is datapump.

Description

The Premigration Advisor Tool migrationmethod property specifies the type of migration
method or tooling that you intend to use to migrate databases to the Cloud. The migration
method is used to influence what checks are done on the source database. Anything found in
the source database that is incompatible with the migration method will be included in the
generated report.

Usage Notes

Use to indicate which type of checks you want to perform on the target database or
databases.

Chapter 20
Command-Line Syntax and Properties

20-23

Option Description

datapump Specifies that the Preupgrade Advisor Tool performs
checks for using Oracle Data Pump to perform
migrations to the Oracle Cloud deployment you
select.

goldengate Specifies that the Preupgrade Advisor Tool performs
checks for using Oracle GoldenGate to perform
migrations to the Oracle Cloud deployment you
select.

Examples

In the following example, connect-string indicates where the connection string is
placed. The target Oracle Cloud database is Autonomous Transaction Processing
Shared, and the migration method selected is Oracle GoldenGate.

premigration.cmd --connectstring some-string --targetcloud atps --
username SYSTEM -migrationmethod 'goldengate'

20.9.2.11 outdir
The Premigration Advisor Tool property outdir specifies the directory path where you
want premigration analysis log files and report files to be generated.

Property Description

property type string

Syntax -o|--outdir directory-path
where directory-path is the path for the log file and report directory.

Description

The Premigration Advisor Tool outdir property specifies where the log files and report
files should be created.

Usage Notes

If the path you provide is not an absolute path then the Premigration Advisor Tool
specifies the directory relative to the file path location from which CPAT was started. If
you do not specify an output file name, then the default file name is premigration.
CPAT creates the filename, if it does not exist.

Examples

In the following example, connect-string indicates where the connection string is
placed. The target PDB is trend1, the Oracle Cloud database is Autonomous Data
Warehouse Dedicated, and the output directory path is /users/analytic/adwd-migr.

premigration.cmd --connectstring connect-string --targetcloud adwd --
username SYSTEM --pdbname trend1 -outdir /users/analytic/adwd-migr

Chapter 20
Command-Line Syntax and Properties

20-24

20.9.2.12 outfileprefix
The Premigration Advisor Tool property outfileprefix specifies a prefix for the Premigration
Advisor Tool reports.

Property Description

property type string

Syntax -P|--outfileprefix prefix-string

Description

The Premigration Advisor Tool outfileprefix property specifies a prefix that you want to
place on the output reports generated for the source database. Without a prefix, the standard
name for a Premigration Advisor Tool report or log is premigration_advisor.

Usage Notes

Use a prefix to distinguish different report outputs. For example, you can use a prefix to
distinguish the reports for a database where you generate one report for a migration using
Oracle GoldenGate, and another report for a migration using Oracle Data Pump, or generate
separate reports for each of the PDBs in a CDB.

Examples

In the following example, the prefix string is cdb4, connect-string indicates where the
connection string is placed, and the migration target Oracle Cloud database is Autonomous
Transaction Processing Shared. The reports for this command are
cdb4_premigration_advisor_report.txt and cdb4_premigration_advisor.log.

java -jar premigration.jar -c connect-string --targetcloud atps -P cdb4

20.9.2.13 pdbname
The Premigration Advisor Tool property pdbname specifies the name of a source PDB on a
CDB for which you want CPAT to generate a report.

Property Description

property type string

Syntax -p|--pdbname pdbname

Description

The name of a PDB to connect to. Applicable only when the source database connect string
is for a CDB.

Usage Notes

You only need to use this property when the source database connect string is for a CDB.

Chapter 20
Command-Line Syntax and Properties

20-25

Examples

In the following example, connect-string indicates where the connection string is
placed for the source CDB. The source PDB is trend4, and the target is an Oracle
Cloud Autonomous Data Warehouse Dedicated database.

premigration.cmd --connectstring connect-string --targetcloud adwd --
username SYSTEM --pdbname trend4

20.9.2.14 reportformat
The Premigration Advisor Tool (CPAT) property reportformat specifies the format of
CPAT report output.

Property Description

property type string

Syntax -r|--reportformat -format [format format]
where format is a report format. The CPAT supports JSON or TEXT
formats. Multiple formats are space-delimited. When this options is not
used, the default format of report is txt.

Description

At the time of this release, the Premigration Advisor Tool can generate reports in either
JSON or text format. Use the reportformat property to specify which report outputs
you require.

Usage Notes

Use to indicate which type of report output you want to generate. If this property is not
specified, then the default is TEXT.

Note:

Oracle recommends that you specify both text and JSON reports, and that
you always save reports and log files. If you encounter an issue during
migration, then it is important to include all possible information to assist with
the resolution of the issue, including the log file, and both the text and JSON
reports.

Option Description

json Specifies that the Preupgrade Advisor Tool produces
a report in JSON format.

text Specifies that the Preupgrade Advisor Tool produces
a report in text file format.

Chapter 20
Command-Line Syntax and Properties

20-26

Examples

In the following example, report outputs in JSON and text formats are specified for a report
where the target is an Oracle Cloud Autonomous Data Warehouse Dedicated database. The
reports generated are premigration_advisor_report.json
premigration_advisor_report.txt.

premigration.cmd --connectstring connect-string --targetcloud adwd --
username SYSTEM --sqltext

20.9.2.15 schemas
The Premigration Advisor Tool property schemas specifies a list of schemas that you want to
analyze for migration.

Property Description

property type string

Syntax -s|--schemas 'schemaname' ['schemaname' 'schemaname' ...]
where schemaname is the name of one or more schema names, separated by
spaces.

Description

The Premigration Advisor Tool schemas property specifies the schemas that you want to
check for their readiness to migrate to the Cloud. The migration method is used to influence
what checks are done on the source database. Anything found in the source database that is
incompatible with the migration method will be included in the generated report.

Usage Notes

Use to restrict the report to a specific list of schemas on which you want to perform checks. In
schema mode, SCHEMA and UNIVERSAL scope checks are run. INSTANCE scope checks are not
run. If you do not specify schemas, and excludeschemas is not used, then the default is to run
with the full property. All schemas in the database will be analyzed, except for the schemas
managed by Oracle. This can result in your receiving a report that lists problems in schemas
that you do not intend to migrate to the Cloud target.

Note:

The option you use with CPAT should also be used with Oracle Data Pump. If you
intend to use Oracle Data Pump with FULL mode, then you should run CPAT with
the full property. If you intend to use Oracle Data Pump in SCHEMA mode, then run
CPAT in schema mode.

The schemas property cannot be used in conjunction with excludeschemas. Limiting the scope
of schemas that you check can be particularly useful if the source instance hosts multiple
applications, each of which you may want to migrate to different Oracle Autonomous
Database instances.

Chapter 20
Command-Line Syntax and Properties

20-27

Note:

If you specify the --full property, then it forces the full set of checks to be
run on the source database, overriding the restrictions that otherwise are in
force when you limit the scope of checks with --schemas.

Schema names are assumed to be case sensitive. For example, use SYSTEM, not
system. If a schema name is lowercase, mixed case, or uses special characters, then
use double quotation marks as well as single quotation marks to designate the
schema name. For example:

--schemas '"MixedCase"' '"Special.Char$"'

Examples

In the following example, a report is generated for the schemas ADMIN and MixedCase
where the target is an Oracle Cloud Autonomous Data Warehouse Dedicated
database, and connect-string represents the connection string to the source
database.

premigration.cmd --connectstring connect-string --targetcloud atps --
username ADMIN -s 'SYSTEM' '"MixedCase'"

20.9.2.16 sqltext
The Premigration Advisor Tool property sqltext specifies to show the SQL used for
CPAT checks in TEXT reports

Property Description

property type string

Syntax -S|--sqltext

Description

The Premigration Advisor Tool sqltext property overides the default to hide SQL that
was run for CPAT checks in TEXT reports. This property does not apply to JSON
reports. It does not take any options.

Usage Notes

CPAT performs checks on the database using SQL statements. CPAT reports can be
generated in both TEXT and JSON format. By default the SQL that was executed for
each check is NOT included in the TEXT report. To have the SQL shown in the TEXT
report, you can use this parameter.

Examples

premigration.cmd --connectstring connect-string --targetcloud adwd --
username SYSTEM --sqltext ImpModes TABLES MySchema MyTable

Chapter 20
Command-Line Syntax and Properties

20-28

20.9.2.17 sysdba
The Premigration Advisor Tool property sysdba is used to force AS SYSDBA when connecting
to the database.

Property Description

property type character, string

Syntax -d,--sysdba

Description

The Premigration Advisor Tool sysdba property specifies that the Premigration Advisor Tool
connects to the source database AS SYSDBA. .

Usage Notes

If you are using operating aystem authentication, or the SYS user then you must use --
sysdba.You also must use --sysdba to connect as a user who has been granted SYSDBA, but
not the other privileges required by CPAT to perform checks.

Examples

./premigration.sh --connectstring jdbc:oracle:oci:@ --targetcloud ATPD --
sysdba --analysisprops premigration_advisor_analysis.properties

20.9.2.18 targetcloud
The Premigration Advisor Tool property targetcloud specifies the type of Oracle Cloud
database to which you want to migrate.

Property Description

property type string

Syntax -t | --targetcloud cloudtype
Default DEFAULT indicates a target with no known lockdown profile.

Description

This option is used The Premigration Advisor Tool targetcloud property specifies the type of
Cloud database to which you want to migrate. In a configuration file, you can set this value to
a different value for each database that you want to check.

Usage Notes

Use to identify the type of cloud to which you are migrating, which affects the kinds of checks
performed on the source database.

Option Description

'ATPD' Oracle Autonomous Database Transaction Processing
Dedicated

Chapter 20
Command-Line Syntax and Properties

20-29

Option Description

'ATPS' Oracle Autonomous Database Serverless

'ADWD' Oracle Autonomous Data Warehouse Dedicated

'ADWS' Oracle Autonomous Data Warehouse Serverless.

'DEFAULT' Use for targets such as Oracle Autonomous Database on
Exadata Cloud@Customer or Oracle Autonomous
Database Cloud Service, where typically there is no
predefined lockdown profile

Examples

./premigration.sh --targetcloud atps --outfileprefix ATPS_RUN_01 --
outdir /path/CPAT_output --reportformat TEXT JSON ...

20.9.2.19 username
The Premigration Advisor Tool property username specifies the username to use when
connecting to the source database.

Property Description

property type string

Syntax -u|--username user-name

Description

The --username switch provides CPAT with the user to connect to the source
database.

Usage Notes

The user name you specify must have the SELECT ANY DICTIONARY privilege, and be
granted SELECT on SYSTEM.DUM$COLUMNS and SYSTEM.DUM$DATABASE. When connecting
to the target database, use the ADMIN user, or another user with the PDB_DBA role.

Examples

premigration --connectstring jdbc:oracle:thin:@example.oracle.com:1521/
ORCLPDB1 --username ADMIN -t atps

20.9.2.20 version
The Premigration Advisor Tool property version prints out the current version of CPAT,
and then exits.

Property Description

property type string

Syntax -v|--version

Chapter 20
Command-Line Syntax and Properties

20-30

Description

The Premigration Advisor Tool version property enables you to print out the version number
of the Premigration Advisor Tool, and the date it was released.

Usage Notes

Use this option to obtain information about the version of the Preupgrade Advisor Tool that
you are running.

Examples

premigration.sh -v
Premigration Advisor Application Version: 22.10.0 (production)
Build date: 2022/10/18 10:55:43
Build hash: 53950fd

premigration.com --version
Premigration Advisor Application Version: 22.10.0 (production)
Build date: 2022/10/18 10:55:43
Build hash: 53950fd

20.9.2.21 updatecheck
The Premigration Advisor Tool property updatecheck prints the current version of CPAT,
checks to see if there is a more recent version available, and then exits.

Property Description

property type string

Syntax -U | --updatecheck
Default value None

Description

Checks to see if an updated version of Cloud Premigration Advisor Tool (CPAT) is available. If
here is a newer version, it prints yes. If there is not a newer version, it prints no. After
completing the checc, CPAT exits. Network access is required for a successful check.

The Premigration Advisor Tool updatecheck property checks Oracle Support to determine if
an updated version of Cloud Premigration Advisor Tool (CPAT) is available.

Usage Notes

To use this property, you must have a network connection. If you do not have a network
connection, then you receive the error CPAT-4001: Error checking for latest available
version of the Cloud Premigration Advisor Tool. If your network is behind a firewall,
then this switch must be used with an appropriate HTTPS proxy defined.

Chapter 20
Command-Line Syntax and Properties

20-31

Example

export _JAVA_OPTIONS='-Dhttps.proxyHost=www-proxy.us.oracle.com -
Dhttps.proxyPort=80'
./premigration.sh --updatecheck

If you already have the latest version of CPAT, then you should see the following
output:

Picked up _JAVA_OPTIONS: -Dhttps.proxyHost=www-proxy.us.oracle.com -
Dhttps.proxyPort=80There is no newer version available of the Cloud
Premigration Advisor Tool

20.10 Premigration Advisor Tool Log File Structure
The Premigration Advisor Tool produces a log file structure that includes job status and
configuration files.

premigration Log File Base Path

The Premigration Advisor Tool log file path is set using the global parameter
premigration_log_dir.

/cfgtoollogs/premigrate/auto

The automatic configuration tools log directory (/cfgtoollogs/premigration/auto)
contains three trace log files that provide specific information about each job that the
premigration job manager processes:

• premigration.log: Provides detailed logs of the job that identify any problems
that occur during job runs.

• premigration_usr.log: Job information, which is formatted to enhance readability.

• premigration_err.log: A report of any unexpected exceptions that occur when
the job runs.

If problems occur when jobs start or stop, then you can use information in these log
files to determine the cause of problems.

/config_files

The config_files directory contains Premigration Advisor Tool internal runtime
configurations and global temporary files.

/status

The /status directory contains JSON job status files. It contains two directories:

• status.json: This directory contains the final job status of all jobs completed in
the JSON file format.

• progress.json: This directory contains the progress of all jobs currently running in
the JSON file format.

Each module in the directories contains a status file for the operation that it performed.
The module takes the following format, where the prefix dbname is the database name,

Chapter 20
Premigration Advisor Tool Log File Structure

20-32

operation is the upgrade operation that was performed, and the suffix status is the
completion status of that operation:

dbname_operation-name.status

The success or the failure of that operation is indicated by the suffix, which is
either .success, indicating the successful performance of that operation, or .failure,
indicating the failure of that operation. For example, the following module name indicates a
successful run of the prechecks operation on the database sales:

sales_prechecks.success

The operation module name can be one of the following:

• preupgrade: The preupgrade stage, in which custom scripts can be run.

• prechecks: The upgrade checks completed before starting the upgrade.

• grp: Guaranteed restore point (using Oracle Flashback technology).

• prefixups: The preupgrade fixups run before starting the upgrade.

• drain: The stage where existing jobs are completed or migrated before starting the
upgrade.

• dbupgrade: The stage in which the upgrade takes place.

• postchecks: The stage in which postupgrade checks are run after the upgrade is
completed.

• postfixups: The stage in which postupgrade fixups are run.

• postupgrade: The stage in which custom postupgrade scripts can be run.

Individual Job and Database Log File Directories

Each job started by the premigration dispatcher is given a directory with that job identifier
prefix. Inside that job directory, each database in the job is given a log directory in the path /
database/logs/sid, where sid is the system identifier for the database. For example, where
the job identified in the configuration file is sales1, and the database system identifier is
sales, the log file for the database sales is in the following path:

sales.log_dir=/database/logs/sales1

The log directory contain all the relevant log files for all the tasks performed for that database.
By default, a directory identified by SID is created under the /database/logs directory. Each
database job can have a separate log directory, if you choose to set up your configuration file
that way.

/#### (Job Number)

Individual job runs are placed in subdirectories identified by the run number, in the format /
####, where #### represents the job run number. For example: 0004. Job run number
directories contain the following log files:

• premigration_err.log: Reports any unexpected exceptions that occur while the job
runs.

Chapter 20
Premigration Advisor Tool Log File Structure

20-33

• premigrationYYYYMMDD.log: premigration trace log file. Provides detailed logs of
the job that identify any problems that occur during job runs. The variable
YYYYMMDD represents year, month, and day of the job.

• premigration_YYYYMMDD_user.log: premigration job status file, which is formatted
to enhance readability. The variable YYYYYYMMDD represents year, month, and day
of the job.

/premigration
The premigration directory (/premigration) contains the following files and log files:

• prechecks_databasename.log: Trace log file. This file provides detailed logs that
can assist with identifying problems that occur during the preupgrade job stage.
The variable databasename is the name of the database checked.

• databasename_preupgrade.html: HTML report on the database status. The
variable databasename is the name of the database checked.

• databasename_preupgrade.log: Text report on the database status. The variable
databasename is the name of the database checked.

/premigration
The database premigration directory (/premigration) contains all log files associated
with the database upgrade:

• premigrationYYYYMMDDHHMISCdbname.log: Log files for the source database,
identified by the date on which the upgrade was run, and by the database name,
indicating parallelism. Format:

– YYYY: Year

– MM: Month

– DD: Day

– HH: Hour

– MI: Minute

– SC: Second

– dbname: Database name, where dbname is the database name.

• premigrationYYYYMMDDHHMISCdbnameN.log: log files for the source database,
identified by the date on which the premigration checks were run.

Format:

– YYYY: Year

– MM: Month

– DD: Day

– HH: Hour

– MI: Minute

– SC: Second

– dbnameN: Database name, where dbname is the database name, and N
indicates the parallelism: 0...3 for CDB ROOT, and Non-CDB databases, and
0...1 for PDBs.

Chapter 20
Premigration Advisor Tool Log File Structure

20-34

/temp
Temporary premigration files (/temp). This directory can contain files such as the PFILE used
during an upgrade.

20.11 List of Checks Performed By the Premigration Advisor
Tool

Review information about the checks you find in a Premigration Advisor Tool report.

Note:

When you specify the source database and your migration target, the Premigration
Advisor Tool performs the checks required for that migration scenario. Only the
checks required for that scenario are performed. Your report provides responses to
the migration scenario you specify when you start CPAT.

• dp_has_low_streams_pool_size
The Premigration Advisor Tool check dp_has_low_streams_pool_size verifies the
STREAMS_POOL_SIZE amount is large enough for Data Pump migrations to start and work
efficiently.

• gg_enabled_replication
The Premigration Advisor Tool check gg_enabled_replication notifies you that the
initialization parameter ENABLE_GOLDENGATE_REPLICATION is not set on the source
database.

• gg_force_logging
The Premigration Advisor Tool check gg_force_logging indicates that forced logging of
all transactions and loads during the migration is not set.

• gg_has_low_streams_pool_size
The Premigration Advisor Tool check gg_has_low_streams_pool_size verifies that the
STREAMS_POOL_SIZE amount is large enough for Oracle GoldenGate.

• gg_not_unique_bad_col_no
The Premigration Advisor Tool check gg_not_unique_bad_col_no finds tables that have
no primary key and no non-nullable unique index.

• gg_not_unique_bad_col_yes
The Premigration Advisor Tool check gg_not_unique_bad_col_yes finds tables that have
no primary key, unique index, or key columns, including table columns defined with
unbounded data types.

• gg_objects_not_supported
The Premigration Advisor Tool check gg_objects_not_supported indicates that there are
unsupported objects on the source database.

• gg_supplemental_log_data_min
The Premigration Advisor Tool check gg_supplemental_log_data_min indicates that
minimal supplemental logging is not enabled on the source database.

• gg_tables_not_supported
The Premigration Advisor Tool check gg_tables_not_supported_adb indicates that some
objects in the database cannot be replicated using Oracle GoldenGate.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-35

• gg_tables_not_supported
The Premigration Advisor Tool check gg_tables_not_supported indicates that
some objects in the non-ADB database cannot be replicated using Oracle
GoldenGate.

• gg_user_objects_in_ggadmin_schemas
The Premigration Advisor Tool check gg_user_objects_in_ggadmin_schemas
indicates the presence of user objects in schemas that have Oracle GoldenGate
administrator privileges.

• has_absent_default_tablespace
The Premigration Advisor Tool check has_absent_default_tablespace indicates
that schema Owner default tablespaces are missing.

• has_absent_temp_tablespace
The Premigration Advisor Tool check has_absent_temp_tablespace indicates that
schema Owner temporary tablespaces are missing.

• has_active_data_guard_dedicated
The Premigration Advisor Tool check has_active_data_guard_dedicated detects
whether Active Data Guard is being used on the source instance.

• has_active_data_guard_serverless
The Premigration Advisor Tool check has_active_data_guard_serverless detects
whether Active Data Guard is being used on the source instance.

• has_basic_file_lobs
The Premigration Advisor Tool check has_basic_file_lobs indicates BASICFILE
LOBs are present in the schema, which are not supported with Oracle
Autonomous Database.

• has_clustered_tables
The Premigration Advisor Tool check has_clustered_tables indicates table
clusters are present in the schema, which are not supported with Oracle
Autonomous Database.

• has_columns_of_rowid_type
The Premigration Advisor Tool check has_columns_of_rowid_type indicates
tables with columns with ROWID data type that cannot be migrated.

• has_columns_with_media_data_types_adb
The Premigration Advisor Tool check has_columns_with_media_data_types_adb
indicates tables with multimedia data type that cannot be migrated.

• has_columns_with_media_data_types_default
The Premigration Advisor Tool check
has_columns_with_media_data_types_default indicates tables with multimedia
columns.

• has_columns_with_spatial_data_types
The Premigration Advisor Tool check has_columns_with_spatial_data_types
indicates there are spatial objects that are not fully supported.

• has_common_objects
The Premigration Advisor Tool check has_common_objects indicates there are
common objects in the database instance.

• has_compression_disabled_for_objects
The Premigration Advisor Tool check has_compression_disabled_for_objects
indicates there are tables or partitions lacking a COMPRESSION clause.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-36

• has_csmig_schema
The Premigration Advisor Tool check has_csmig_schema indicates the CSSCAN utility is
installed and configured on the source database..

• has_data_in_other_tablespaces_dedicated
The Premigration Advisor Tool check has_data_in_other_tablespaces_dedicated
identifies data subject to tablespace restrictions when migrating to Oracle Autonomous
Databases on Dedicated Infrastructure..

• has_data_in_other_tablespaces_serverless
The Premigration Advisor Tool check has_data_in_other_tablespaces_serverless
identifies data subject to tablespace restrictions when migrating to Oracle Autonomous
Databases on Shared Infrastructure.

• has_db_link_synonyms
The Premigration Advisor Tool check has_db_link_synonyms indicates the schema
contains synonyms with database links.

• has_db_links
The Premigration Advisor Tool check has_db_links indicates the schema contains
synonyms with database links.

• has_dbms_credentials
The Premigration Advisor Tool check has_dbms_credentials indicates the schema
contains credentials that were not created with DBMS_CLOUD.CREATE_CREDENTIAL.

• has_dbms_credentials
The Premigration Advisor Tool check has_dbms_credentials indicates the schema
contains credentials that were not created with DBMS_CLOUD.CREATE_CREDENTIAL.

• has_directories
The Premigration Advisor Tool check has_directories indicates that there are
directories objects in the source database.

• has_enabled_scheduler_jobs
The Premigration Advisor Tool check has_enabled_scheduler_jobs indicates that there
are List scheduler jobs that may interfere with Oracle Data Pump export.

• has_external_tables_dedicated
The Premigration Advisor Tool check has_external_tables_dedicated indicates that
Non-Cloud Objects Storage External tables exist in the source database.

• has_external_tables_default
The Premigration Advisor Tool check has_external_tables_default indicates that
external tables cannot be migrated unless the DIRECTORY objects the tables rely on have
been created.

• has_external_tables_serverless
The Premigration Advisor Tool check has_external_tables_serverless indicates that
there are non-cloud Objects Storage external tables in the source database.

• has_fmw_registry_in_system
The Premigration Advisor Tool check has_fmw_registry_in_system indicates that the
Fusion Middleware Schema Version Registry must be moved out of the SYSTEM schema
before migration.

• has_illegal_characters_in_comments
The Premigration Advisor Tool check has_illegal_characters_in_comments indicates
that there are characters in table comments that are not legal in the databases character
set.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-37

• has_ilm_ado_policies
The Premigration Advisor Tool check has_ilm_ado_policies indicates that
Information Lifestyle Management (ILM) Automatic Data Optimization Policies
(ADO) will not migrate.

• has_incompatible_jobs
The Premigration Advisor Tool check has_incompatible_jobs indicates that
Information Lifestyle Management (ILM) Automatic Data Optimization Policies
(ADO) will not migrate.

• has_index_organized_tables
The Premigration Advisor Tool check has_index_organized_tables indicates that
Index Organized tables are present in the source database.

• has_java_objects
The Premigration Advisor Tool check has_java_objects indicates that there are
Java objects present in the source database.

• has_java_source
The Premigration Advisor Tool check has_java_source indicates that there are
Java sources present in the source database.

• has_libraries
The Premigration Advisor Tool check has_libraries indicates that there are
applications that require the CREATE LIBRARY statement.

• has_logging_off_for_partitions
The Premigration Advisor Tool check has_logging_off_for_partitions indicates
that there are Partitions using the NOLOGGING storage attribute.

• has_logging_off_for_subpartitions
The Premigration Advisor Tool check has_logging_off_for_subpartitions
indicates that there are Partitions using the NOLOGGING storage attribute.

• has_logging_off_for_tables
The Premigration Advisor Tool check has_logging_off_for_tables indicates that
there are tables using the NOLOGGING storage attribute.

• has_low_streams_pool_size
The Premigration Advisor Tool check has_low_streams_pool_size indicates that
Mining Models with unexpected or incorrect attributes are detected.

• has_noexport_object_grants
The Premigration Advisor Tool check has_noexport_object_grants indicates that
Oracle Data Pump is unable to export all object grants.

• has_parallel_indexes_enabled
The Premigration Advisor Tool check has_parallel_indexes_enabled indicates
that PARALLEL clause indexes exist.

• has_profile_not_default
The Premigration Advisor Tool check has_profile_not_default indicates that
schemas exist whose PROFILE is not available on the target system.

• has_public_synonyms
The Premigration Advisor Tool check has_public_synonyms indicates that Public
Synonyms exist in source system schemas.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-38

• has_refs_to_restricted_packages_dedicated
The Premigration Advisor Tool check has_refs_to_restricted_packages_dedicated
indicates that there are references to partially or completely unsupported packages.

• has_refs_to_restricted_packages_serverless
The Premigration Advisor Tool check has_refs_to_restricted_packages_serverless
indicates that there are references to partially or completely unsupported packages.

• has_refs_to_user_objects_in_sys
The Premigration Advisor Tool check has_refs_to_user_objects_in_sys indicates that
there are user schema objects dependent on SYS or SYSTEM.

• has_role_privileges
The Premigration Advisor Tool check has_role_privileges indicates that some role
privileges used in the source database are not available in the target database

• has_sqlt_objects_adb
The Premigration Advisor Tool check has_sqlt_objects_adb indicates that SQLTXPLAIN
objects are detected.

• has_sqlt_objects_default
The Premigration Advisor Tool check has_sqlt_objects_default indicates that
SQLTXPLAIN objects are detected that Oracle Data Pump does not export.

• has_sys_privileges
The Premigration Advisor Tool check has_sys_privileges indicates that some system
privileges in the source database are not available in the target database.

• has_tables_that_fail_with_dblink
The Premigration Advisor Tool check has_tables_that_fail_with_dblink indicates that
there are tables with LONG or LONG RAW data types

• has_tables_with_long_raw_datatype
The Premigration Advisor Tool check has_tables_with_long_raw_datatype indicates
that there are tables with LONG or LONG RAW data types

• has_tables_with_xmltype_column
The Premigration Advisor Tool check has_tables_with_xmltype_column indicates that
there are tables with XMLTYPE columns.

• has_trusted_server_entries
The Premigration Advisor Tool check has_trusted_server_entries indicates that there
areTRUSTED_SERVER entries that cannot be recreated on Oracle Autonomous Database.

• has_user_defined_objects_in_sys
The Premigration Advisor Tool check has_user_defined_objects_in_sys indicates that
there are User-defined objects in the SYS or SYSTEM schemas.

• has_users_with_10g_password_version
The Premigration Advisor Tool check has_users_with_10g_password_version indicates
that there are user accounts using 10G password version.

• has_sys_privileges
The Premigration Advisor Tool check has_sys_privileges indicates that some system
privileges in the source database are not available in the target database.

• has_tables_that_fail_with_dblink
The Premigration Advisor Tool check has_tables_that_fail_with_dblink indicates that
there are tables with LONG or LONG RAW data types

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-39

• has_tables_with_long_raw_datatype
The Premigration Advisor Tool check has_tables_with_long_raw_datatype
indicates that there are tables with LONG or LONG RAW data types

• has_tables_with_xmltype_column
The Premigration Advisor Tool check has_tables_with_xmltype_column indicates
that there are tables with XMLTYPE columns.

• has_trusted_server_entries
The Premigration Advisor Tool check has_trusted_server_entries indicates that
there areTRUSTED_SERVER entries that cannot be recreated on Oracle Autonomous
Database.

• has_user_defined_objects_in_sys
The Premigration Advisor Tool check has_user_defined_objects_in_sys
indicates that there are User-defined objects in the SYS or SYSTEM schemas.

• has_users_with_10g_password_version
The Premigration Advisor Tool check has_users_with_10g_password_version
indicates that there are user accounts using 10G password version.

• has_xmlschema_objects
The Premigration Advisor Tool check has_xmlschema_objects indicates that there
are XML Schema Objects in the source database.

• has_xmltype_tables
The Premigration Advisor Tool check has_xmltype_tables indicates that there are
XMLType tables in the source database.

• modified_db_parameters_dedicated
The Premigration Advisor Tool check modified_db_parameters_dedicated
indicates that restricted initialization parameters are modified.

• modified_db_parameters_serverless
The Premigration Advisor Tool check modified_db_parameters_serverless
indicates that restricted initialization parameters are modified.

• nls_character_set_conversion
The Premigration Advisor Tool check nls_character_set_conversion indicates
that there are character codes on the source database that are invalid in Oracle
Autonomous Database.

• nls_national_character_set
The Premigration Advisor Tool check nls_national_character_set indicates that
the NCHAR and NVARCHAR2 lengths are different on the source and target databases.

• nls_nchar_ora_910
The Premigration Advisor Tool check nls_nchar_ora_910 indicates that the NCHAR
and NVARCHAR2 lengths are greater than the maximum length on the target
databases.

• options_in_use_not_available_dedicated
The Premigration Advisor Tool check options_in_use_not_available_dedicated
indicates that unavailable database options are present on the source database.

• options_in_use_not_available_serverless
The Premigration Advisor Tool check
options_in_use_not_available_serverless indicates that unavailable database
options are present on the source database.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-40

• standard_traditional_audit_adb
The Premigration Advisor Tool check standard_traditional_audit_adb indicates that
Traditional Audit configurations are detected in the database.

• standard_traditional_audit_default
The Premigration Advisor Tool check standard_traditional_audit_default indicates
that Traditional Audit configurations are detected in the database.

• timezone_table_compatibility_higher_dedicated
The Premigration Advisor Tool check
timezone_table_compatibility_higher_dedicated indicates that the timezone setting
is a more recent version on the source than on the target database.

• timezone_table_compatibility_higher_default
The Premigration Advisor Tool check timezone_table_compatibility_higher_default
indicates that the timezone setting is a more recent version on the source than on the
target database.

• timezone_table_compatibility_higher_serverless
The Premigration Advisor Tool check
timezone_table_compatibility_higher_serverless indicates that the timezone setting
is a more recent version on the source than on the target database.

• unified_and_standard_traditional_audit_adb
The Premigration Advisor Tool check unified_and_standard_traditional_audit_adb
indicates that Traditional Audit configurations are detected in the database.

• unified_and_standard_traditional_audit_default
The Premigration Advisor Tool check
unified_and_standard_traditional_audit_default indicates that Traditional Audit
configurations are detected in the database.

• xdb_resource_view_has_entries Check
The Premigration Advisor Tool check xdb_resource_view_has_entries Check indicates
that there is an XDB Repository that is not supported in Oracle Autonomous Database.
Entries in RESOURCE_VIEW will not migrate.

20.11.1 dp_has_low_streams_pool_size
The Premigration Advisor Tool check dp_has_low_streams_pool_size verifies the
STREAMS_POOL_SIZE amount is large enough for Data Pump migrations to start and work
efficiently.

Result Criticality

Runtime

Has Fixup

Yes

Scope

UNIVERSAL

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-41

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

The Premigration Advisor Tool check dp_has_low_streams_pool_size verifies the
STREAMS_POOL_SIZE has been preallocated to an amount is large enough for Oracle
Data Pump migrations to start and work efficiently.

Effect

The database initialization parameter STREAMS_POOL_SIZE value helps determine the
size of the Streams pool. You should allocate sufficient memory to STREAMS_POOL_SIZE
for the export. Failure to do this can reduce Oracle Data Pump export performance, or
cause the export to fail. Oracle recommends that you define a minimum value for
STREAMS_POOL_SIZE in the source database before export.

Action

Run SQL to set STREAMS_POOL_SIZE to allocate memory for the export. For example:

ALTER SYSTEM SET streams_pool_size=256M SCOPE=BOTH

After allocating memory, restart your instance if necessary.

20.11.2 gg_enabled_replication
The Premigration Advisor Tool check gg_enabled_replication notifies you that the
initialization parameter ENABLE_GOLDENGATE_REPLICATION is not set on the source
database.

Result Criticality

Action required

Has Fixup

Yes

Scope

UNIVERSAL

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-42

Description

The Premigration Advisor Tool gg_enabled_replication check indicates that you have
selected Oracle GoldenGate as your migration method, but the initialization parameter
ENABLE_GOLDENGATE_REPLICATION is not set to TRUE.

Effect

For Oracle GoldenGate to perform data migration, the source database initialization
parameter ENABLE_GOLDENGATE_REPLICATION must be set to TRUE. If it is not set, then the
migration fails.

Action

Set ENABLE_GOLDENGATE_REPLICATION to TRUE in the database initialization file.

20.11.3 gg_force_logging
The Premigration Advisor Tool check gg_force_logging indicates that forced logging of all
transactions and loads during the migration is not set.

Result Criticality

Review required

Has Fixup

Yes

Target Cloud

This is a default check. It applies to the following:

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

UNIVERSAL

Description

Forced logging mode is not set on the source database. When force logging mode is set, this
forces the logging of all transactions and loads, overriding any user or storage settings that
indicate these transactions and loads should not be logged.

Effect

If forced logging is not set, then source data in the Oracle GoldenGate Extract configuration
may be missed during the migration.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-43

Action

To enable forced logging at tablespace and database level, log in as SYSDBA, and turn
on forced logging. For example:

SQL> alter database force logging;
Database altered.

20.11.4 gg_has_low_streams_pool_size
The Premigration Advisor Tool check gg_has_low_streams_pool_size verifies that the
STREAMS_POOL_SIZE amount is large enough for Oracle GoldenGate.

Result Criticality

Runtime

Has Fixup

Yes

Scope

UNIVERSAL

Target Cloud

This is a default check. It applies to the following:

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

The Premigration Advisor Tool check gg_has_low_streams_pool_size verifies the
STREAMS_POOL_SIZE has been preallocated to an amount is large enough for Oracle
GoldenGate migrations to start and work efficiently.

Oracle GoldenGate Extract interacts with an underlying logmining server in the source
database, and Replicat interacts with an inbound server in the target database.

The shared memory that is used by the servers comes from the Streams pool portion
of the System Global Area (SGA) in the database.Therefore, you must set the
database initialization parameter STREAMS_POOL_SIZE high enough to keep enough
memory available for the number of Extract and Replicat processes that you expect to
run in integrated mode. Note that Streams pool is also used by other components of
the database (including Oracle Streams, Advanced Queuing, and Oracle Data Pump
export/import), so take other components into account when sizing the Streams pool
for Oracle GoldenGate.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-44

By default, one Extract requests the logmining server to run with of 1GB. As a best practice,
keep 25 percent of the Streams pool available. Therefor, for a single process the minimum
STREAMS_POOL_SIZE would be 1.25 GB. For more information see Oracle Support
Document ID 2078459.1 and the Oracle GoldenGate documentation.

Effect

Allocate sufficient memory to STREAMS_POOL_SIZE for Oracle GoldenGate processes. Failure
to do this can reduce Oracle GoldenGate performance, or cause the Extract or Replicat to
fail. Oracle recommends that you define a minimum value for STREAMS_POOL_SIZE in the
source database before running Oracle GoldenGate

Action

Run SQL to set STREAMS_POOL_SIZE to allocate memory for Extract and Replicat, depending
on the number of Oracle GoldenGate processes that will run. For example:

ALTER SYSTEM SET streams_pool_size=1250M SCOPE=BOTH;

After allocating memory, restart your instance if necessary.

20.11.5 gg_not_unique_bad_col_no
The Premigration Advisor Tool check gg_not_unique_bad_col_no finds tables that have no
primary key and no non-nullable unique index.

Result Criticality

Review required

Has Fixup

No

Scope

SCHEMA

Target Cloud

This is a default check. It applies to the following:

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Migration Method

GOLDENGATE

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-45

Description

The Premigration Advisor Tool check gg_not_unique_bad_col_no finds tables that
have no primary key and no non-nullable unique index.

High amounts of mutations on the tables identified in this check can cause
GoldenGate replication to fall behind and never catch up. A full table scan is needed to
replicate every INSERT, UPDATE, or DELETE operation.

Effect

If Oracle GoldenGate has to perform significant changes on these tables, then it can
fall behind progressively as the replication continues, and not recover.

Action

To address this issue, do one of the following:

• Add a primary key to the listed tables

• Quiesce the database as much as possible during migration

• Migrate changes to the tables using another method, such as Oracle Data Pump

20.11.6 gg_not_unique_bad_col_yes
The Premigration Advisor Tool check gg_not_unique_bad_col_yes finds tables that
have no primary key, unique index, or key columns, including table columns defined
with unbounded data types.

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

This is a default check. It applies to the following:

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

The Premigration Advisor Tool check gg_not_unique_bad_col_yes finds tables that
have no Primary Key, Unique Index or Key Columns. A Problematic Column

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-46

indicates that the table has a column not useful in the predicate (where clause). The table
column is defined using an unbounded data type, such as LONG or BLOB.

Effect

If there are tables without any uniqueness, and with unbounded data_types, then the table
records cannot be uniquely identified and cannot be used for logical replication. These tables
are not supported in the Oracle GoldenGate Guide for Oracle Databases, and cannot be
migrated using Oracle GoldenGate

Action

To address this issue, if possible add a primary or unique key to the tables. If you cannot add
a primary or uniquen key, then you must use some other method of migrating the tables, such
as Oracle Data Pump.

20.11.7 gg_objects_not_supported
The Premigration Advisor Tool check gg_objects_not_supported indicates that there are
unsupported objects on the source database.

Result Criticality

Action required

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

SCHEMA

Description

This check applies to schemas for Oracle GoldenGate migrations. Objects exist on the
source database that are not supported for migration with Oracle GoldenGate.

Effect

Typically, the objects listed under this check are not replicated successfully in the migration
without additional configuration.

Action

Consult the Oracle GoldenGate documentation to see how objects with the listed
SUPPORT_MODE values can be replicated successfully.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-47

20.11.8 gg_supplemental_log_data_min
The Premigration Advisor Tool check gg_supplemental_log_data_min indicates that
minimal supplemental logging is not enabled on the source database.

Result Criticality

Action required

Has Fixup

Yes

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

UNIVERSAL

Description

This check applies to schemas for Oracle GoldenGate migrations. Minimal
supplemental logging, a database-level option, is required for an Oracle source
database when using Oracle GoldenGate. This configuration adds row chaining
information, if any exists, to the redo log for update operations.

Effect

If minimal supplemental log data is not enabled, then Oracle GoldenGate cannot
function.

Action

Log in as SYSDBA, and enable minimal supplemental logging on the source database.
For example:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

20.11.9 gg_tables_not_supported
The Premigration Advisor Tool check gg_tables_not_supported_adb indicates that
some objects in the database cannot be replicated using Oracle GoldenGate.

Result Criticality

Action required

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-48

Has Fixup

No

Target Cloud

This is a default check. It applies to the following:

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

This check applies to schemas for Oracle GoldenGate migrations. When objects in the
source database cannot be replicated by Oracle GoldenGate, the report provides a list of
those objects with this check message.

Effect

The listed objects will not be migrated with Oracle GoldenGate.

Action

At the time of the switchover, you must move the listed relevant objects to the target
database using another migration method, such as Oracle Data Pump.

20.11.10 gg_tables_not_supported
The Premigration Advisor Tool check gg_tables_not_supported indicates that some objects
in the non-ADB database cannot be replicated using Oracle GoldenGate.

Result Criticality

Action required

Has Fixup

No

Target Cloud

• Default (an Oracle Database instance that is not Oracle Autonomous Database, or ADB)

Scope

SCHEMA

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-49

Description

This check applies to schemas for Oracle GoldenGate migrations. When objects in the
source database cannot be replicated by Oracle GoldenGate, the report provides a list
of those objects with this check message.

Effect

The listed objects will not be migrated with Oracle GoldenGate.

Action

At the time of the switchover, you must move the listed relevant objects to the target
database using another migration method, such as Oracle Data Pump.

20.11.11 gg_user_objects_in_ggadmin_schemas
The Premigration Advisor Tool check gg_user_objects_in_ggadmin_schemas indicates
the presence of user objects in schemas that have Oracle GoldenGate administrator
privileges.

Result Criticality

Action required

Has Fixup

No

Target Cloud

This is a default check. It applies to the following:

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

SCHEMA

Description

This check applies to schemas for Oracle GoldenGate migrations. When user objects
in schemas have Oracle GoldenGate administrator privileges, those schemas are
listed in CPAT report. Oracle GoldenGate cannot migrate them.

Effect

The listed objects will not be migrated with Oracle GoldenGate.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-50

Action

Exclude these schemas from the Oracle GoldenGate data migration. You must move the
listed relevant objects to the target database using another migration method, such as Oracle
Data Pump.

20.11.12 has_absent_default_tablespace
The Premigration Advisor Tool check has_absent_default_tablespace indicates that
schema Owner default tablespaces are missing.

Result Criticality

Review required.

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

SCHEMA

Description

This check applies to schemas for Oracle Data Pump and Oracle GoldenGate migrations.
When CPAT detects that one or more schema Owner's default tablespace are missing, the
schemas are listed in the report.

Effect

Schemas without a valid DEFAULT TABLESPACE cannot be created on the target instance due
to ORA-00959 errors..

Action

If the schemas are no longer being used, then drop those schemas. However, if the schemas
are being used, then either create a valid default tablespace for the schema, or define default
tablespace by running a query on DBA_TABLESPACE to list all valid tablespace names, and
select one as a valid default tablespace.

Related Topics

• DBA_TABLESPACES

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-51

20.11.13 has_absent_temp_tablespace
The Premigration Advisor Tool check has_absent_temp_tablespace indicates that
schema Owner temporary tablespaces are missing.

Result Criticality

Review required.

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

SCHEMA

Description

This check applies to schemas for Oracle Data Pump and Oracle GoldenGate
migrations. When CPAT detects that one or more schema Owner's temporary
tablespace are missing, the schemas are listed in the report.

Effect

For Oracle Autonomous Database Dedicated Infrastructure for Transaction Processing
(ATPD) and Oracle Autonomous Database Dedicated Infrastructure for Data
Warehouse (ADWD), unless the needed temporary tablespaces have been created
before migration on the target the source database schemas without a valid TEMPORARY
TABLESPACE cannot be created on the target instance due to ORA-00959 errors.

Action

Create the needed temporary tablespaces on the Oracle Autonomous Database
Dedicated infrastructure before you start the migration, or use tablespace remapping
parameters to map other tablespaces into the TEMP tablespace when you start
migration tools. Oracle Zero Downtime Migration and Database Migration Service can
perform tablespace precreation and mapping automatically as part of the migration.

Related Topics

• DBA_TABLESPACES

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-52

20.11.14 has_active_data_guard_dedicated
The Premigration Advisor Tool check has_active_data_guard_dedicated detects whether
Active Data Guard is being used on the source instance.

Result Criticality

Review suggested.

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

Scope

INSTANCE

Description

This check detects whether Active Data Guard is being used on the source instance.

Effect

If applications or schemas that are being migrated depend on certain capabilities of Active
Data Guard, then those applications may no longer work after migration.

Action

Consider using Autonomous Data Guard on your target Oracle Autonomous Database
instance. For more information, and to evaluate the capabilities of Autonomous Data Guard,
see "Protect Critical Databases from Failures and Disasters Using Autonomous Data Guard"
in Oracle Cloud Oracle Autonomous Database on Dedicated Exadata Infrastructure.

Related Topics

• Protect Critical Databases from Failures and Disasters Using Autonomous Data Guard

20.11.15 has_active_data_guard_serverless
The Premigration Advisor Tool check has_active_data_guard_serverless detects whether
Active Data Guard is being used on the source instance.

Result Criticality

Review suggested.

Has Fixup

No

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-53

https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbau/index.html

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Scope

INSTANCE

Description

This check detects whether Active Data Guard is being used on the source instance.

Effect

If applications or schemas that are being migrated depend on certain capabilities of
Active Data Guard, then those applications may no longer work after migration.

Action

Consider using Autonomous Data Guard on your target Oracle Autonomous Database
instance. For more information, and to evaluate the capabilities of Autonomous Data
Guard, see "Using Standby Databases with Autonomous Database for Disaster
Recovery " in Oracle Cloud Using Oracle Autonomous Database on Shared Exadata
Infrastructure.

Related Topics

• Using Standby Databases with Autonomous Database for Disaster Recovery

20.11.16 has_basic_file_lobs
The Premigration Advisor Tool check has_basic_file_lobs indicates BASICFILE
LOBs are present in the schema, which are not supported with Oracle Autonomous
Database.

Result Criticality

Review required.

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-54

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/autonomous-data-guard.html#GUID-2AFA2C06-BBD9-496E-94B9-B3C54EC567D1

Description

This check applies to schemas for Oracle Data Pump and Oracle GoldenGate migrations.
When CPAT detects that one or more schema Owner's temporary tablespace contain
BASICFILE LOBs, the schemas are listed in the report. .

Effect

During migration, all BASICFILE LOBs are converted automatically to SECUREFILE LOBs at the
time of the import.

Action

No action is required.

20.11.17 has_clustered_tables
The Premigration Advisor Tool check has_clustered_tables indicates table clusters are
present in the schema, which are not supported with Oracle Autonomous Database.

Result Criticality

Review suggested.

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

This check applies to schemas for Oracle Data Pump and Oracle GoldenGate migrations.
When CPAT detects that one or more schema s contain table clusters, the schemas are listed
in the report. .

Effect

When tables are created with a CLUSTER clause on the Oracle Autonomous Database, the
table is created as a regular table.

Action

No action is required. Consider doing some performance testing to ensure that there are no
adverse effects.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-55

20.11.18 has_columns_of_rowid_type
The Premigration Advisor Tool check has_columns_of_rowid_type indicates tables
with columns with ROWID data type that cannot be migrated.

Result Criticality

Action required.

Has Fixup

Yes

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

Scope

SCHEMA

Description

This check applies to schemas for Oracle Data Pump and Oracle GoldenGate
migrations. The ROWID data type is not enabled by default in Oracle Autonomous
Database on Dedicated Exadata Infrastructure deployments.

Effect

By default, columns with ROWID data type cannot be migrated to ATPD or ADWD.

Action

You can choose to enable the ROWID data type by setting the initialization parameter
ALLOW_ROWID_COLUMN_TYPE to true on the target ADBD instance. However, if you do
enable it, then be aware that ROWID columns are incompatible with rolling upgrade
operations, and other internal operations that physically move a row. At a minimum,
during upgrades, Oracle recommends that you suspend database activities involving
ROWID. Applications using ROWID columns should introduce correctness validation to
check for logical errors in the application if a row relocates.

20.11.19 has_columns_with_media_data_types_adb
The Premigration Advisor Tool check has_columns_with_media_data_types_adb
indicates tables with multimedia data type that cannot be migrated.

Result Criticality

Action required.

Has Fixup

No

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-56

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

This check applies to schemas for Oracle Data Pump and Oracle GoldenGate migrations.
Multimedia object types such as those from ORDSYS cannot be used in Oracle Autonomous
Database.

Effect

Migration of tables with multimedia columns will fail.

Action

Columns with media data types are not allowed in Oracle Autonomous Database. As an
alternative, Oracle recommends that you consider using SecureFiles LOBs for media type
storage.

Follow the instructions in the Oracle Multimedia README.txt file in Oracle_home/ord/im/
admin/README.txt, or Oracle Support Document ID 2555923.1 to determine if Oracle
Multimedia methods and packages are being used. If Oracle Multimedia is being used, then
refer to Oracle Support Document ID 2347372.1 for suggestions on replacing Oracle
Multimedia. Refer to Oracle Support Document ID 2375644.1 "How To Migrate Data From
Oracle Multimedia Data Types to BLOB columns" for information on how to move data stored
in Oracle Multimedia object types to SecureFiles LOBs.

Related Topics

• Desupport of Oracle Multimedia Component in Oracle 19c (Doc ID 2555923.1)

• Oracle Multimedia Statement of Direction (Doc ID 2347372.1)

• How To Migrate Data From Oracle Multimedia Data Types to BLOB columns (Doc ID
2375644.1)

20.11.20 has_columns_with_media_data_types_default
The Premigration Advisor Tool check has_columns_with_media_data_types_default
indicates tables with multimedia columns.

Result Criticality

Action required.

Has Fixup

No

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-57

https://support.oracle.com/rs?type=doc&id=2555923.1
https://support.oracle.com/rs?type=doc&id=2347372.1
https://support.oracle.com/rs?type=doc&id=2375644.1
https://support.oracle.com/rs?type=doc&id=2375644.1

Scope

SCHEMA

Target Cloud

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

This check applies to schemas for Oracle Data Pump and Oracle GoldenGate
migrations. Multimedia object types such as those from ORDSYS are desupported in
Oracle Database 19c and later releases.

Effect

Migration of tables with multimedia columns can fail.

Action

Oracle Multimedia was desupported in Oracle Database 19c. Oracle recommends that
you consider using SecureFiles LOBs for media type storage.

Follow the instructions in the Oracle Multimedia README.txt file in
Oracle_home/ord/im/admin/README.txt, or Oracle Support Document ID 2555923.1
to determine if Oracle Multimedia methods and packages are being used. If Oracle
Multimedia is being used, then refer to Oracle Support Document ID 2347372.1 for
suggestions on replacing Oracle Multimedia. Refer to Oracle Support Document ID
2375644.1 "How To Migrate Data From Oracle Multimedia Data Types to BLOB
columns" for information on how to move data stored in Oracle Multimedia object types
to SecureFiles LOBs.

Related Topics

• Desupport of Oracle Multimedia Component in Oracle 19c (Doc ID 2555923.1)

• Oracle Multimedia Statement of Direction (Doc ID 2347372.1)

• How To Migrate Data From Oracle Multimedia Data Types to BLOB columns (Doc
ID 2375644.1)

20.11.21 has_columns_with_spatial_data_types
The Premigration Advisor Tool check has_columns_with_spatial_data_types
indicates there are spatial objects that are not fully supported.

Result Criticality

Review required.

Has Fixup

Yes

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-58

https://support.oracle.com/rs?type=doc&id=2555923.1
https://support.oracle.com/rs?type=doc&id=2347372.1
https://support.oracle.com/rs?type=doc&id=2375644.1
https://support.oracle.com/rs?type=doc&id=2375644.1

Scope

SCHEMA

Description

This check applies to schemas for Oracle Data Pump and Oracle GoldenGate migrations. It
indicates the presence of spatial data type objects.

Effect

Because some of the functionality of spatial objects are dependent on the Oracle Java
(JAVAVM) feature, there can be objects not fully supported with Oracle Autonomous Databases
on Shared Infrastructure until JAVAVM is enabled.

Action

Enable the JAVAVM feature on the target system by running this SQL, and then restart your
instance:

BEGIN
 DBMS_CLOUD_ADMIN.ENABLE_FEATURE(
 feature_name => 'JAVAVM');
END;
/

For more information on enabling the JAVAVM feature see "Using Oracle Java on
Autonomous Database" in Oracle Cloud Using Oracle Autonomous Database Serverless For
more information on using Spatial on ADB, see "Use Oracle Spatial with Autonomous
Database" in Oracle Cloud Using Oracle Autonomous Database Serverless.

Related Topics

• Using Oracle Java on Autonomous Database

• Use Oracle Spatial with Autonomous Database

20.11.22 has_common_objects
The Premigration Advisor Tool check has_common_objects indicates there are common
objects in the database instance.

Result Criticality

Action required.

Has Fixup

Yes

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-59

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/autonomous-oracle-java.html#GUID-2516EE33-B38D-4270-BE52-30A4F9014E8B
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/spatial-autonomous-database.html#GUID-2090A775-E049-4695-B371-E583313A5F8C

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

INSTANCE

Description

This is a default check. This check applies to source instances for Oracle Data Pump
and Oracle GoldenGate migrations. It indicates the presence of common objects.

Effect

Oracle Data Pump does not migrate common objects to Oracle Autonomous Database
in Oracle Cloud, and these objects are not supported on Oracle Autonomous
Database (ADB). Anything dependent on the common objects will fail to be migrated
properly.

Action

Those common objects needed by applications must be recreated on the target
system before you start the migration. When targeting ADB, the common objects that
you require must be recreated as local objects. This can be done using
DBMS_METADATA.GET_DDL, as shown in Oracle Support Document ID 2739952.1

Related Topics

• How to Extract DDL for User including Privileges and Roles Using
dbms_metadata.get_ddl (Doc ID 2739952.1)

20.11.23 has_compression_disabled_for_objects
The Premigration Advisor Tool check has_compression_disabled_for_objects
indicates there are tables or partitions lacking a COMPRESSION clause.

Result Criticality

Review suggested.

Has Fixup

No

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

This check applies to source schema for Oracle Data Pump and Oracle GoldenGate
migrations. It indicates the presence of tables or partitions that do not have a

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-60

https://support.oracle.com/rs?type=doc&id=2739952.1
https://support.oracle.com/rs?type=doc&id=2739952.1

COMPRESSION clause. Tables and Partitions must be compressed to QUERY HIGH in Oracle
Autonomous Data Warehouse (ADW).

Effect

When migrating to ADW, if a table or partition SQL data definition language (DDL) statement
does not contain a COMPRESSION clause, then it is created during the migration with a default
compression of QUERY HIGH.

Action

No action required. To modify this behavior, either add a compression clause of your choice
(or even NOCOMPRESS) before starting the export, or alter the compression clause after the
import..

20.11.24 has_csmig_schema
The Premigration Advisor Tool check has_csmig_schema indicates the CSSCAN utility is
installed and configured on the source database..

Result Criticality

Review suggested.

Has Fixup

Yes

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

UNIVERSAL

Description

This is a default check. The CSSCAN utility is no longer supported, and has been replaced
by the Database Migration Assistant for Unicode (DMU) Tool..

Effect

Migration tools can ignore any objects, users, or roles related with CSSCAN utility.

Action

Remove the CSMIG user and any objects created by the CSSCAN utility: For example:

BEGIN FOR REC IN (SELECT SYNONYM_NAME FROM DBA_SYNONYMS WHERE TABLE_OWNER =
'CSMIG') LOOP

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-61

 EXECUTE IMMEDIATE 'DROP PUBLIC SYNONYM ' || REC.SYNONYM_NAME;
END LOOP; END; / DROP VIEW
 SYS.CSMV$KTFBUE; DROP USER CSMIG CASCADE;

Use The Database Migration Assistant for Unicode (DMU) Tool to scan for character
set migration issues. For more information on DMU see Oracle Support Document ID
1272374.1

Related Topics

• The Database Migration Assistant for Unicode (DMU) Tool (Doc ID 1272374.1)

20.11.25 has_data_in_other_tablespaces_dedicated
The Premigration Advisor Tool check has_data_in_other_tablespaces_dedicated
identifies data subject to tablespace restrictions when migrating to Oracle Autonomous
Databases on Dedicated Infrastructure..

Result Criticality

Action required.

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

Scope

SCHEMA

Description

This check applies to source schema for Oracle Data Pump and Oracle GoldenGate
migrations. It indicates the presence of data that is subject to tablespace restrictions
when migrating to Autonomous Databases on Dedicated Infrastructure.

Effect

For ATPD and ADWD (Dedicated Infrastructure), errors are reported for tablespaces
that have not been precreated on the target. If tablespace mapping is not employed,
then errors can occur during migration.

Action

If you are migrating the database using either Zero Downtime Migration (ZDM) or
Database Migration Service (DMS) then they precreate and map tablespaces
automatically, so the issue does not occur.

If you are migrating using Oracle Data Pump manually, then specify
IGNORE=TABLESPACE and REMAP_TABLESPACE='%:DATA' in your Data Pump impdp
parameter file, so that other tablespaces into the DATA tablespace when starting
migration tooling.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-62

https://support.oracle.com/rs?type=doc&id=1272374.1

In all cases, you should assess your application for any dependencies on specific tablespace
names.

20.11.26 has_data_in_other_tablespaces_serverless
The Premigration Advisor Tool check has_data_in_other_tablespaces_serverless
identifies data subject to tablespace restrictions when migrating to Oracle Autonomous
Databases on Shared Infrastructure.

Result Criticality

Action required.

Has Fixup

No

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

This check applies to source schema for Oracle Data Pump and Oracle GoldenGate
migrations. It indicates the presence of tables that have other tablespaces mapped into their
table.

Effect

User-defined tablespaces are not allowed in ATPS and ADWS (Serverless Infrastructure).
Each database in this cloud environment has a single 'DATA' tablespace. If tablespace
mapping is not employed, and the user performing migration does not have privileges on the
DATA tablespace, then errors can occur during migration.

Action

If you are migrating the database using either Zero Downtime Migration (ZDM) or Database
Migration Service (DMS) then they precreate and map tablespaces automatically, so the
issue does not occur.

If you are migrating using Oracle Data Pump manually, then specify IGNORE=TABLESPACE and
REMAP_TABLESPACE='%:DATA' in your Data Pump impdp parameter file, so that other
tablespaces into the DATA tablespace when starting migration tooling.

In all cases, you should assess your application for any dependencies on specific tablespace
names.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-63

20.11.27 has_db_link_synonyms
The Premigration Advisor Tool check has_db_link_synonyms indicates the schema
contains synonyms with database links.

Result Criticality

Review suggested.

Has Fixup

Yes

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

This check applies to source schema for Oracle Data Pump and Oracle GoldenGate
migrations. Database links cannot be migrated.

Effect

After migration, applications relying on the synonym will fail until the database links are
recreated.

Action

After migration is complete, create database links in the target Oracle Autonomous
Database in using DBMS_CLOUD_ADMIN.CREATE_DATABASE_LINK, and then recreate the
synonyms.

20.11.28 has_db_links
The Premigration Advisor Tool check has_db_links indicates the schema contains
synonyms with database links.

Result Criticality

Review required

Has Fixup

No

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-64

Scope

SCHEMA

Description

This check applies to source schema for Oracle Data Pump and Oracle GoldenGate
migrations. Database links cannot be migrated.

Effect

After migration, applications relying on database links will fail until the database links are
recreated.

Action

Precreate Database Links manually in ADB using DBMS_CLOUD_ADMIN.CREATE_DATABASE_LINK
in the respective database schemas before migrating. The proper sequence of statements is
as follows:

1. Create the schemas that own the links.

2. Create the links using DBMS_CLOUD_ADMIN.CREATE_DATABASE_LINK.

3. Import the schemas that you are migrating.

20.11.29 has_dbms_credentials
The Premigration Advisor Tool check has_dbms_credentials indicates the schema contains
credentials that were not created with DBMS_CLOUD.CREATE_CREDENTIAL.

Result Criticality

Review required

Has Fixup

No

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

This check applies to source schema for Oracle Data Pump and Oracle GoldenGate
migrations. Credentials originally created with DBMS_CREDENTIAL or DBMS_SCHEDULER packages
cannot be automatically migrated to Oracle Autonomous Database.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-65

Effect

After migration, users with credentials originally created with DBMS_CREDENTIAL or
DBMS_SCHEDULER packages receive ORA-27486: insufficient privileges errors. These
credentials cannot be migrated automatically to ADBS.

Action

After migration is complete, verify that the listed credentials are still required on the
target Oracle Autonomous Database instance. If these credentials are required, then
recreate the credentials using DBMS_CLOUD.CREATE_CREDENTIAL. For more information,
see My Oracle Support Document ID 2746284.1.

Related Topics

• Autonomous Database (Shared) - dbms_credential.create_credential failed with
ORA-27486 (Doc ID 2746284.1)

20.11.30 has_dbms_credentials
The Premigration Advisor Tool check has_dbms_credentials indicates the schema
contains credentials that were not created with DBMS_CLOUD.CREATE_CREDENTIAL.

Result Criticality

Review required

Has Fixup

No

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

This check applies to source schema for Oracle Data Pump and Oracle GoldenGate
migrations. Credentials originally created with DBMS_CREDENTIAL or DBMS_SCHEDULER
packages cannot be automatically migrated to Oracle Autonomous Database.

Effect

After migration, users with credentials originally created with DBMS_CREDENTIAL or
DBMS_SCHEDULER packages receive ORA-27486: insufficient privileges errors. The
schema Owner's default tablespace must be 'DATA'.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-66

https://support.oracle.com/rs?type=doc&id=2746284.1
https://support.oracle.com/rs?type=doc&id=2746284.1

Action

The schema owner's DEFAULT TABLESPACE will be modified in ADB to be 'DATA'. If a user has
quota on multiple tablespaces, then after migration is complete, ensure that the proper quota
is set.

20.11.31 has_directories
The Premigration Advisor Tool check has_directories indicates that there are directories
objects in the source database.

Result Criticality

Review required

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Scope

INSTANCE

Description

This check indicates that there are directories objects in the source database.

Effect

After migration, applications that rely on the directories will not work until the directories on
the source database are recreated on the target database.

Action

After migration is complete, recreate the directories on the Oracle Autonomous Database
instance.

20.11.32 has_enabled_scheduler_jobs
The Premigration Advisor Tool check has_enabled_scheduler_jobs indicates that there are
List scheduler jobs that may interfere with Oracle Data Pump export.

Result Criticality

Review suggested

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-67

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

INSTANCE

Description

This is a default check. This check indicates that there are List scheduler jobs that may
interfere with Oracle Data Pump export.

Effect

If a scheduler job runs at the same time as a FULL export is under way, then Oracle
Data Pump Export can fail with an ORA-39127 error.

Action

Disable any non-critical scheduler jobs, or plan the export at a time when you are
certain that no scheduler jobs are running. Either stop scheduler jobs before the
migration, or plan the export for a time when you are certain that no scheduler jobs are
running.

You can run the following SQL statement to ensure no Scheduler Jobs are running
during migration:

ALTER SYSTEM SET JOB_QUEUE_PROCESSES=0;

No restart is required after you run the statement.

20.11.33 has_external_tables_dedicated
The Premigration Advisor Tool check has_external_tables_dedicated indicates that
Non-Cloud Objects Storage External tables exist in the source database.

Result Criticality

Review required

Has Fixup

No

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-68

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

Scope

SCHEMA

Description

This check indicates that Non-Cloud Objects Storage external tables exist in the source
database. These tables are not allowed in Oracle Autonomous Databases.

Effect

Applications relying on user-created external tables will not function as expected.

Action

Consider using the DBMS_CLOUD package to create external tables that use Cloud Object
Storage.

Related Topics

• Attach Network File Storage to Autonomous Database on Dedicated Exadata
Infrastructure

20.11.34 has_external_tables_default
The Premigration Advisor Tool check has_external_tables_default indicates that external
tables cannot be migrated unless the DIRECTORY objects the tables rely on have been
created.

Result Criticality

Action required

Has Fixup

No

Target Cloud

This is a default check. It applies to the following:

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

SCHEMA

Description

This check indicates that external tables cannot be migrated unless the DIRECTORY objects
that the tables rely on have been created already in the target database.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-69

https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/anfra/#articletitle
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/anfra/#articletitle

Effect

The schema mode migration of external tables will fail when those tables rely on
DIRECTORY objects that don't already exist.

Action

Before migration, create the necessary DIRECTORY objects on the target database, or
migrate to the target database using Full mode.

20.11.35 has_external_tables_serverless
The Premigration Advisor Tool check has_external_tables_serverless indicates that
there are non-cloud Objects Storage external tables in the source database.

Result Criticality

Review required

Has Fixup

No

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

Non-Cloud Objects Storage External tables were found. These objects are not allowed
in Oracle Autonomous Database.

Effect

Applications relying on user-created external tables will not function as expected.
External tables in Oracle Autonomous Database (ADB) must be recreated using
Object Storage Service or File Storage Service.

Attempting to create a non-Cloud Object Storage external tables as part of the
migration results in those tables being created as non-external tables.

Action

Drop the empty imported table. Use the DBMS_CLOUD package to create External Tables
using Cloud Object Storage Service or use File Storage Service. for more info see

Related Topics

• Access Network File System from Autonomous Database

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-70

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/load-oci-file-storage.html#GUID-B9A7E58E-E1C0-4859-B16B-EF88942704BF

20.11.36 has_fmw_registry_in_system
The Premigration Advisor Tool check has_fmw_registry_in_system indicates that the Fusion
Middleware Schema Version Registry must be moved out of the SYSTEM schema before
migration.

Result Criticality

Action required

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Scope

INSTANCE

Description

The Fusion Middleware Schema Version Registry is in the SYSTEM schema. It must be moved
out of the SYSTEM schema before you start the migration.

Effect

If the Fusion Middleware Version Registry is not moved, then after upgrade, vital information
regarding what Fusion Middleware applications are installed will be lost.

Action

Before migration, run the Fusion Middleware Upgrade Assistant command ua -
moveRegistry.

20.11.37 has_illegal_characters_in_comments
The Premigration Advisor Tool check has_illegal_characters_in_comments indicates that
there are characters in table comments that are not legal in the databases character set.

Result Criticality

Review required

Has Fixup

No

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-71

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Scope

SCHEMA

Description

This is a default check for characters in TABLE and COLUMN comments as well as
PL/SQL sources for characters that are not legal in the databases character set.

Effect

Illegal characters can result in "ORA-39346: data loss in character set conversion for
object" errors during import. The illegal characters will be replaced with the default
replacement character.

Action

Before migration, delete any illegal characters or replace them with valid characters.

20.11.38 has_ilm_ado_policies
The Premigration Advisor Tool check has_ilm_ado_policies indicates that Information
Lifestyle Management (ILM) Automatic Data Optimization Policies (ADO) will not
migrate.

Result Criticality

Review required

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-72

Description

Tables exist with ILM Automatic Data Optimization Policies. These policies will not migrate to
Oracle Autonomous Database.

Effect

Tables with ILM ADO Policies (Release 12c and later) will be created without the ILM ADO
Policy in Oracle Autonomous Transaction Processing (ATP) and Oracle Autonomous Data
Warehouse (ADW).

Action

No action is required.

20.11.39 has_incompatible_jobs
The Premigration Advisor Tool check has_incompatible_jobs indicates that Information
Lifestyle Management (ILM) Automatic Data Optimization Policies (ADO) will not migrate.

Result Criticality

Review required

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

Scheduler Jobs and Programs other than PLSQL_BLOCK or STORED_PROCEDURE are present on
the source, but not supported on Oracle Autonomous Database (ADB).

Effect

Scheduler Jobs and Programs types such as EXECUTABLE and EXTERNAL_SCRIPT will not run
on Oracle Autonomous Database.

Action

Databases using unsupported Job or Program types should be modified before migrating to
Oracle Autonomous Database. Recreate required Job or Programs using types allowed in
ADB

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-73

20.11.40 has_index_organized_tables
The Premigration Advisor Tool check has_index_organized_tables indicates that
Index Organized tables are present in the source database.

Result Criticality

Review suggested

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

Index-organized tables are not allowed in Oracle Autonomous Database (ADB).
However, attempting to create one does not generate an error. Instead, a heap-
organized table with a primary key index is created.

Effect

The recreated tables can perform differently, so you should review them.

Action

Tables in the target database are created as non-index-organized tables (that is, as
regular tables).

20.11.41 has_java_objects
The Premigration Advisor Tool check has_java_objects indicates that there are Java
objects present in the source database.

Result Criticality

Action required

Has Fixup

Yes

Target Cloud

• ADWS Autonomous Data Warehouse Shared

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-74

• ATPS Autonomous Transaction Processing Shared

Scope

SCHEMA

Description

Java objects will not migrate by default.

Effect

When the Java virtual machine (JAVAVM) feature is not enabled on the target system, any
applications relying on Java objects will fail after migration.

Action

Non-essential Java Objects should be excluded from the migration process. Enable the
JAVAVM feature on the target system, as described in "Using Oracle Java on Autonomous
Database" in Oracle Autonomous Database Using Oracle Autonomous Database on Shared
Exadata Infrastructure.

Related Topics

• Using Oracle Java on Autonomous Database

20.11.42 has_java_source
The Premigration Advisor Tool check has_java_source indicates that there are Java sources
present in the source database.

Result Criticality

Action required

Has Fixup

Yes

Scope

SCHEMA

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Description

Java sources will not migrate by default.

Effect

When the Java virtual machine (JAVAVM) feature is not enabled on the target system, any
applications relying on Java objects will fail after migration.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-75

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/autonomous-oracle-java.html

Action

Non-essential Java Objects should be excluded from the migration process. Enable
the JAVAVM feature on the target system, as described in "Using Oracle Java on
Autonomous Database" in Oracle Autonomous Database Using Oracle Autonomous
Database on Shared Exadata Infrastructure

Related Topics

• Using Oracle Java on Autonomous Database

20.11.43 has_libraries
The Premigration Advisor Tool check has_libraries indicates that there are
applications that require the CREATE LIBRARY statement.

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

The CREATE LIBRARY statement is not allowed on Oracle Autonomous Database.

Effect

Applications that depend on these libraries will fail, because the libraries will not be
created on the target instance.

Action

Applications must be updated to remove their dependencies on any listed libraries.

Consider using Functions for business logic previously implemented in external
libraries.

Related Topics

• Functions

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-76

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/autonomous-oracle-java.html
https://docs.oracle.com/en-us/iaas/Content/Functions/

20.11.44 has_logging_off_for_partitions
The Premigration Advisor Tool check has_logging_off_for_partitions indicates that there
are Partitions using the NOLOGGING storage attribute.

Result Criticality

Review suggested

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Partitions with the NOLOGGING storage attribute are be changed to LOGGING during migration.

Effect

Partitions created with NOLOGGING will automatically be created in Oracle Autonomous
Database as partitions with LOGGING. Check the LOGGING attribute in DBA_TAB_PARTITIONS.

Action

No action required.

20.11.45 has_logging_off_for_subpartitions
The Premigration Advisor Tool check has_logging_off_for_subpartitions indicates that
there are Partitions using the NOLOGGING storage attribute.

Result Criticality

Review suggested

Has Fixup

No

Scope

SCHEMA

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-77

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Subpartitions with the NOLOGGING storage attribute are be changed to LOGGING during
migration.

Effect

Subpartitions created with NOLOGGING will automatically be created in Oracle
Autonomous Database as subpartitions with LOGGING. Check the LOGGING attribute in
DBA_TAB_SUBPARTITIONS.

Action

No action required.

20.11.46 has_logging_off_for_tables
The Premigration Advisor Tool check has_logging_off_for_tables indicates that
there are tables using the NOLOGGING storage attribute.

Result Criticality

Review suggested

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Tables with the NOLOGGING storage attribute are be changed to LOGGING during
migration.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-78

Effect

Tables created with NOLOGGING will automatically be created in Oracle Autonomous Database
as tables with LOGGING. Check the LOGGING attribute in DBA_TABLES.

Action

No action required.

20.11.47 has_low_streams_pool_size
The Premigration Advisor Tool check has_low_streams_pool_size indicates that Mining
Models with unexpected or incorrect attributes are detected.

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

Mining models are database schema objects that perform data mining. Mining models with
unexpected or incorrect attributes are detected. These mining models will not migrate.

Effect

Mining models with issues will not be exported properly, and cause ORA-39083 errors on
import.

Action

Download and apply Patch ID 33270686

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-79

20.11.48 has_noexport_object_grants
The Premigration Advisor Tool check has_noexport_object_grants indicates that
Oracle Data Pump is unable to export all object grants.

Result Criticality

Review required

Has Fixup

Yes

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

Oracle Data Pump is unable to export all object grants.

Effect

Object grants required for your application may be missing on the target instance,
preventing Oracle Data Pump from exporting them to the target instance.

Action

Recreate any required grants on the target instance. See My Oracle Support
Document ID 1911151.1 for more information. Note that any SELECT grants on system
objects will need to be replaced with READ grants, because SELECT is no longer allowed
on system objects.

Related Topics

• Data Pump: GRANTs On SYS Owned Objects Are Not Transferred With Data
Pump And Are Missing In The Target Database (Doc ID 1911151.1)

20.11.49 has_parallel_indexes_enabled
The Premigration Advisor Tool check has_parallel_indexes_enabled indicates that
PARALLEL clause indexes exist.

Result Criticality

Review suggested

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-80

https://support.oracle.com/rs?type=doc&id=1911151.1
https://support.oracle.com/rs?type=doc&id=1911151.1

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

When Parallel DEGREE is specified greater than 1 on INDEX, this setting can result in
unexpected behavior after migration.

Effect

When migrating to Oracle Autonomous Database Transaction Processing (ATP), if a
PARALLEL clause is specified on the index in your source database, then the clause remains
with the index when it is created on the target database, either by using Oracle Data Pump,
or by using manual methods. When the PARALLEL degree is greater than 1, this configuration
can result in SQL statements running in parallel that are unknown to the end-user.

Action

To specify serial processing, either change the INDEX parallel clause to NOPARALLEL, or alter
the PARALLEL degree to 1 before or after the migration.

Related Topics

• Data Pump: GRANTs On SYS Owned Objects Are Not Transferred With Data Pump And
Are Missing In The Target Database (Doc ID 1911151.1)

20.11.50 has_profile_not_default
The Premigration Advisor Tool check has_profile_not_default indicates that schemas exist
whose PROFILE is not available on the target system.

Result Criticality

Runtime

Has Fixup

Yes

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-81

https://support.oracle.com/rs?type=doc&id=1911151.1
https://support.oracle.com/rs?type=doc&id=1911151.1

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

Identifies schemas whose PROFILE is not available on the target system.

Effect

Creation of the schema on the target system fails due to the missing PROFILE.

Action

Either use Oracle Data Pump in FULL mode, or create the needed profiles before
migration on the target system, and then use the --analysisprops option with a
properties file created by using CPAT with the --gettargetprops option.

20.11.51 has_public_synonyms
The Premigration Advisor Tool check has_public_synonyms indicates that Public
Synonyms exist in source system schemas.

Result Criticality

Review required

Has Fixup

No

Scope

SCHEMA_ONLY

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

Identifies schemas whose that contain Public Synonyms. Oracle Data Pump does not
migrate Public Synonyms in SCHEMA mode.

Effect

Applications relying on Public Synonyms will not work correctly until the Public
Synonyms are recreated on the target instance.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-82

Action

Either use Oracle Data Pump in FULL mode, or recreate the listed relevant objects on the
target instance.

20.11.52 has_refs_to_restricted_packages_dedicated
The Premigration Advisor Tool check has_refs_to_restricted_packages_dedicated
indicates that there are references to partially or completely unsupported packages.

Result Criticality

Review required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

Description

Checks for references to packages that are not supported, or that are only partially
supported.

Effect

Applications that reference unsupported or restricted use packages can fail.

Action

Applications that reference unsupported packages must be modified before migration to
Oracle Autonomous Database Dedicated. Applications referencing partially supported
packages require testing and validation to ensure that they only use unrestricted functions
and procedures.

20.11.53 has_refs_to_restricted_packages_serverless
The Premigration Advisor Tool check has_refs_to_restricted_packages_serverless
indicates that there are references to partially or completely unsupported packages.

Result Criticality

Review required

Has Fixup

No

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-83

Scope

SCHEMA

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Description

Checks for references to packages that are not supported, or that are only partially
supported.

Effect

Applications that reference unsupported or restricted use packages can fail.

Action

Applications that reference unsupported packages must be modified before migration
to Oracle Autonomous Database Serverless. Applications referencing partially
supported packages require testing and validation to ensure that they only use
unrestricted functions and procedures.

20.11.54 has_refs_to_user_objects_in_sys
The Premigration Advisor Tool check has_refs_to_user_objects_in_sys indicates
that there are user schema objects dependent on SYS or SYSTEM.

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Detects if objects in user schemas depend on user-defined objects in SYS or SYSTEM
schemas.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-84

Effect

Migration will fail for schemas that depend on user-defined objects in SYS or SYSTEM.

Action

Oracle recommends that you move user-defined objects in SYS and SYSTEM schemas before
migration, and update the references. Consider dropping any user-defined objects that are no
longer required.

20.11.55 has_role_privileges
The Premigration Advisor Tool check has_role_privileges indicates that some role
privileges used in the source database are not available in the target database

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Detects the presence of role privileges used in the source database that are not available on
the target Oracle Autonomous Database.

Effect

After migration, applications can encounter operation failures due to role privilege issues.

Action

Find alternatives for those roles granted in the source database that are not available in the
target Oracle Autonomous Database instance. For example, you may want to substitute the
PDB_DBA role for some schemas granted the DBA role on the source instance. Similarly, you
may want to substitute the DATAPUMP_CLOUD_IMP role on the target instance for schemas
granted DATAPUMP_IMP_FULL_DATABASE or IMP_FULL_DATABASE on the source instance.
Whether such alternatives are appropriate can only be determined with testing, and by
experts familiar with the applications where these role privileges occur.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-85

20.11.56 has_sqlt_objects_adb
The Premigration Advisor Tool check has_sqlt_objects_adb indicates that
SQLTXPLAIN objects are detected.

Result Criticality

Review suggested

Has Fixup

No

Scope

UNIVERSAL

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Detects the presence of SQLTXPLAIN (SQLT) objects, which are not supported on
Oracle Autonomous Database.

Effect

Objects related to SQLTXPLAIN will fail on import to Oracle Autonomous Database
(ADB), which can cause import errors.

Action

Oracle recommends that administrators migrating a source database to Oracle
Autonomous Database apply sqdrop.sql in the installation directory under the
SQLTXPLAIN installation to drop all SQLTXPLAIN and SQLTXADMIN objects. See My Oracle
Support Document ID 1614107.1 for more information.

Related Topics

• SQLT Usage Instructions (Doc ID 1614107.1)

20.11.57 has_sqlt_objects_default
The Premigration Advisor Tool check has_sqlt_objects_default indicates that
SQLTXPLAIN objects are detected that Oracle Data Pump does not export.

Result Criticality

Review suggested

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-86

https://support.oracle.com/rs?type=doc&id=1614107.1

Has Fixup

No

Scope

UNIVERSAL

Target Cloud

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

Detects the presence of SQLTXPLAIN (SQLT) objects that are not exported by Oracle Data
Pump.

Effect

Some objects related to SQLTXPLAIN will not be imported on the target instance, possibly
causing import errors.

Action

Oracle recommends that SQLTXPLAIN users run sqcreate.sql in the target environment after
the import is complete. The sqcreate.sql script runs sqdrop.sql, and then reinstalls all
required objects. For more information, see My Oracle Support Document ID 1614107.1.

Related Topics

• SQLT Usage Instructions (Doc ID 1614107.1)

20.11.58 has_sys_privileges
The Premigration Advisor Tool check has_sys_privileges indicates that some system
privileges in the source database are not available in the target database.

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-87

https://support.oracle.com/rs?type=doc&id=1614107.1

Description

Detects that there are some system privileges used in the source database that are
not available on the Oracle Autonomous Database.

Effect

Operation failures can occur on the Oracle Autonomous Database, because of system
privilege issues.

Action

Verify whether all system privileges will be needed on the Oracle Autonomous
Database, and remove the grants for those privileges that are no longer needed. Find
alternatives for the granted system privileges that are not available in the target Oracle
Autonomous Database (ADB). For example, with schemas in ADB instances, replace
GRANT CREATE JOB to USER-WHO-HAD-CREATE-ANY-JOB Whether such alternatives are
appropriate can only be determined by experts familiar with the applications in
question and with testing.

20.11.59 has_tables_that_fail_with_dblink
The Premigration Advisor Tool check has_tables_that_fail_with_dblink indicates
that there are tables with LONG or LONG RAW data types

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

Tables with LONG or LONG RAW data types will not migrate over a DBLINK with Oracle
Data Pump.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-88

developed with later releases, Oracle strongly recommends that you use CLOB and NCLOB data
types for large amounts of character data.

Effect

Any applications relying on tables with LONG or LONG RAW data types will fail.

Action

Use Oracle Data Pump without DBLINK, or exclude the schemas and tables that have
columns with LONG or LONG RAW data types.

20.11.60 has_tables_with_long_raw_datatype
The Premigration Advisor Tool check has_tables_with_long_raw_datatype indicates that
there are tables with LONG or LONG RAW data types

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWS Autonomous Data Warehouse Shared

Description

ADWS does not support tables with LONG or LONGRAW data where the table has the Oracle
Hybrid Columnar Compression (HCC) compression clause, or where compression is DISABLED.

Effect

Tables with LONG or LONG RAW data types will not migrate.

In Oracle Autonomous Data Warehouse (ADW), tables with LONG or LONG RAW data types are
not created when the table has either an HCC compression clause, or compression is
DISABLED, which would result with tables being compressed by default with HCC compressed
by default on ADW.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were deprecated
in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type was provided for
backward compatibility with existing applications. In new applications developed with later
releases, Oracle strongly recommends that you use CLOB and NCLOB data types for large
amounts of character data.

Action

Oracle recommends that you you create the table manually on ADW with compression
enabled.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-89

20.11.61 has_tables_with_xmltype_column
The Premigration Advisor Tool check has_tables_with_xmltype_column indicates that
there are tables with XMLTYPE columns.

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Tables with XMLType column will not migrate unless the STORAGE_TYPE setting is
BINARY.

Effect

Any applications relying on XMLType columns that are not stored as BINARY will fail.

Action

Tables with XMLType columns defined with CLOB or Object-Relational storage are not
supported in Oracle Autonomous Database. When the relevant objects column
XMLSCHEMA is not empty, this indicates that your application uses XML Schema
Objects, and additional work may be required. For non-schema types, the BINARY
storage option must be used. See Oracle Support Document ID 1581065.1 for
information about how to convert CLOB columns to BINARY.

Related Topics

• How to Convert Basicfile CLOB to Securfile Binary XML (Doc ID 1581065.1)

20.11.62 has_trusted_server_entries
The Premigration Advisor Tool check has_trusted_server_entries indicates that
there areTRUSTED_SERVER entries that cannot be recreated on Oracle Autonomous
Database.

Result Criticality

Runtime

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-90

https://support.oracle.com/rs?type=doc&id=1581065.1

Has Fixup

No

Scope

INSTANCE

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Checks for TRUSTED_SERVER entries. These entries cannot be recreated on Oracle
Autonomous Database (ADB).

Effect

The DBMS_DISTRIBUTED_TRUST_ADMIN package is not available on Oracle Autonomous
Database (ADB). As a result, any TRUSTED_SERVER entries other than the default (Trusted:All)
will not be recreated on the target ADB instance.

Action

To avoid any exceptions reported by Oracle Data Pump during migration from the source
database to the target database, specify exclude=trusted_db_link. To control access to
your ADB instance, use Oracle Cloud Infrastructure firewall features to control access to your
ADB instance.

Related Topics

• Protect your cloud resources using a virtual firewall

20.11.63 has_user_defined_objects_in_sys
The Premigration Advisor Tool check has_user_defined_objects_in_sys indicates that there
are User-defined objects in the SYS or SYSTEM schemas.

Result Criticality

Action required

Has Fixup

No

Scope

INSTANCE

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-91

https://docs.oracle.com/en/solutions/deploy-virtual-firewall/index.html#GUID-E7024DA0-1C00-41AC-97FA-EE2CF7FB4031

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

This check indicates that user-defined objects exist in the SYS or SYSTEM schemas

Effect

User-defined objects in the SYS or SYSTEM schemas will not migrate. Any applications
relying on user-defined objects in SYS and SYSTEM will fail.

\

Action

Before migration, Oracle recommends that you move out of SYS and SYSTEM any user-
defined objects. Update any hardcoded references to those objects. Consider
dropping any user-defined objects that are no longer required.

20.11.64 has_users_with_10g_password_version
The Premigration Advisor Tool check has_users_with_10g_password_version
indicates that there are user accounts using 10G password version.

Result Criticality

Review required.

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-92

Description

This check indicates that there are users on the source database that are using the 10G
password version. This password version is desupported. After migration, users verified by
the 10G password version will not be able to log in.

Effect

After migration, users identified by the 10G password version fail to connect to the database,
and receive ORA-1017 errors. During Oracle Data Pump migration ORA-39384 warnings are
generated.

Action

To avoid Oracle Data Pump migration warnings, before migration, Oracle recommends that
you change the passwords for any users listed as using the 10G password version.
Alternatively, you can modify these users' passwords after migration to avoid login failures.
See Oracle Support Document ID 2289453.1 for more information.

Related Topics

• ORA-39384: Warning: User <USERNAME> Has Been Locked And The Password
Expired During Import (Doc ID 2289453.1)

20.11.65 has_sys_privileges
The Premigration Advisor Tool check has_sys_privileges indicates that some system
privileges in the source database are not available in the target database.

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Detects that there are some system privileges used in the source database that are not
available on the Oracle Autonomous Database.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-93

https://support.oracle.com/rs?type=doc&id=2289453.1
https://support.oracle.com/rs?type=doc&id=2289453.1

Effect

Operation failures can occur on the Oracle Autonomous Database, because of system
privilege issues.

Action

Verify whether all system privileges will be needed on the Oracle Autonomous
Database, and remove the grants for those privileges that are no longer needed. Find
alternatives for the granted system privileges that are not available in the target Oracle
Autonomous Database (ADB). For example, with schemas in ADB instances, replace
GRANT CREATE JOB to USER-WHO-HAD-CREATE-ANY-JOB Whether such alternatives are
appropriate can only be determined by experts familiar with the applications in
question and with testing.

20.11.66 has_tables_that_fail_with_dblink
The Premigration Advisor Tool check has_tables_that_fail_with_dblink indicates
that there are tables with LONG or LONG RAW data types

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

Tables with LONG or LONG RAW data types will not migrate over a DBLINK with Oracle
Data Pump.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

Effect

Any applications relying on tables with LONG or LONG RAW data types will fail.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-94

Action

Use Oracle Data Pump without DBLINK, or exclude the schemas and tables that have
columns with LONG or LONG RAW data types.

20.11.67 has_tables_with_long_raw_datatype
The Premigration Advisor Tool check has_tables_with_long_raw_datatype indicates that
there are tables with LONG or LONG RAW data types

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWS Autonomous Data Warehouse Shared

Description

ADWS does not support tables with LONG or LONGRAW data where the table has the Oracle
Hybrid Columnar Compression (HCC) compression clause, or where compression is DISABLED.

Effect

Tables with LONG or LONG RAW data types will not migrate.

In Oracle Autonomous Data Warehouse (ADW), tables with LONG or LONG RAW data types are
not created when the table has either an HCC compression clause, or compression is
DISABLED, which would result with tables being compressed by default with HCC compressed
by default on ADW.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were deprecated
in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type was provided for
backward compatibility with existing applications. In new applications developed with later
releases, Oracle strongly recommends that you use CLOB and NCLOB data types for large
amounts of character data.

Action

Oracle recommends that you you create the table manually on ADW with compression
enabled.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-95

20.11.68 has_tables_with_xmltype_column
The Premigration Advisor Tool check has_tables_with_xmltype_column indicates that
there are tables with XMLTYPE columns.

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Tables with XMLType column will not migrate unless the STORAGE_TYPE setting is
BINARY.

Effect

Any applications relying on XMLType columns that are not stored as BINARY will fail.

Action

Tables with XMLType columns defined with CLOB or Object-Relational storage are not
supported in Oracle Autonomous Database. When the relevant objects column
XMLSCHEMA is not empty, this indicates that your application uses XML Schema
Objects, and additional work may be required. For non-schema types, the BINARY
storage option must be used. See Oracle Support Document ID 1581065.1 for
information about how to convert CLOB columns to BINARY.

Related Topics

• How to Convert Basicfile CLOB to Securfile Binary XML (Doc ID 1581065.1)

20.11.69 has_trusted_server_entries
The Premigration Advisor Tool check has_trusted_server_entries indicates that
there areTRUSTED_SERVER entries that cannot be recreated on Oracle Autonomous
Database.

Result Criticality

Runtime

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-96

https://support.oracle.com/rs?type=doc&id=1581065.1

Has Fixup

No

Scope

INSTANCE

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Checks for TRUSTED_SERVER entries. These entries cannot be recreated on Oracle
Autonomous Database (ADB).

Effect

The DBMS_DISTRIBUTED_TRUST_ADMIN package is not available on Oracle Autonomous
Database (ADB). As a result, any TRUSTED_SERVER entries other than the default (Trusted:All)
will not be recreated on the target ADB instance.

Action

To avoid any exceptions reported by Oracle Data Pump during migration from the source
database to the target database, specify exclude=trusted_db_link. To control access to
your ADB instance, use Oracle Cloud Infrastructure firewall features to control access to your
ADB instance.

Related Topics

• Protect your cloud resources using a virtual firewall

20.11.70 has_user_defined_objects_in_sys
The Premigration Advisor Tool check has_user_defined_objects_in_sys indicates that there
are User-defined objects in the SYS or SYSTEM schemas.

Result Criticality

Action required

Has Fixup

No

Scope

INSTANCE

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-97

https://docs.oracle.com/en/solutions/deploy-virtual-firewall/index.html#GUID-E7024DA0-1C00-41AC-97FA-EE2CF7FB4031

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

This check indicates that user-defined objects exist in the SYS or SYSTEM schemas

Effect

User-defined objects in the SYS or SYSTEM schemas will not migrate. Any applications
relying on user-defined objects in SYS and SYSTEM will fail.

\

Action

Before migration, Oracle recommends that you move out of SYS and SYSTEM any user-
defined objects. Update any hardcoded references to those objects. Consider
dropping any user-defined objects that are no longer required.

20.11.71 has_users_with_10g_password_version
The Premigration Advisor Tool check has_users_with_10g_password_version
indicates that there are user accounts using 10G password version.

Result Criticality

Review required.

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-98

Description

This check indicates that there are users on the source database that are using the 10G
password version. This password version is desupported. After migration, users verified by
the 10G password version will not be able to log in.

Effect

After migration, users identified by the 10G password version fail to connect to the database,
and receive ORA-1017 errors. During Oracle Data Pump migration ORA-39384 warnings are
generated.

Action

To avoid Oracle Data Pump migration warnings, before migration, Oracle recommends that
you change the passwords for any users listed as using the 10G password version.
Alternatively, you can modify these users' passwords after migration to avoid login failures.
See Oracle Support Document ID 2289453.1 for more information.

Related Topics

• ORA-39384: Warning: User <USERNAME> Has Been Locked And The Password
Expired During Import (Doc ID 2289453.1)

20.11.72 has_xmlschema_objects
The Premigration Advisor Tool check has_xmlschema_objects indicates that there are XML
Schema Objects in the source database.

Result Criticality

Action required

Has Fixup

No

Scope

UNIVERSAL

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

This check indicates that XML Schema Objects are in the source database. These objects
will not migrate.

Effect

XML Schemas are not supported in Oracle Autonomous Database.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-99

https://support.oracle.com/rs?type=doc&id=2289453.1
https://support.oracle.com/rs?type=doc&id=2289453.1

Action

Modify your application to not use XML Schema Objects.

20.11.73 has_xmltype_tables
The Premigration Advisor Tool check has_xmltype_tables indicates that there are
XMLType tables in the source database.

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

This check indicates that there are XMLType Tables in the source database. These
tables will not migrate unless the STORAGE_TYPE is BINARY.

Effect

Any applications relying on XMLType tables not stored as BINARY will fail.

Action

XMLType tables with CLOB or Object-Relational storage are not supported in Oracle
Autonomous Database. Change the XMLType storage option to BINARY.

20.11.74 modified_db_parameters_dedicated
The Premigration Advisor Tool check modified_db_parameters_dedicated indicates
that restricted initialization parameters are modified.

Result Criticality

Review suggested

Has Fixup

No

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-100

Scope

INSTANCE

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

Description

This check indicates that there are Oracle Database parameters on the source database
instance whose modification is not allowed in Oracle Autonomous Database (Dedicated
Infrastructure).

Effect

You are provided with a list of initialization parameters that have been modified in your
database, but cannot be modified in Oracle Autonomous Database.

Action

To undersetand what parameters you are permitted to modify, refer to the Oracle
Autonomous Database documentation.

Related Topics

• List of Initialization Parameters that can be Modified

20.11.75 modified_db_parameters_serverless
The Premigration Advisor Tool check modified_db_parameters_serverless indicates that
restricted initialization parameters are modified.

Result Criticality

Review suggested

Has Fixup

No

Scope

INSTANCE

Target Cloud

This is a default check. It applies to the following:

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-101

https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbdk/index.html#GUID-88E45146-6118-4EE0-A17B-BFDB6D4AEF52

Description

This check indicates that there are Oracle Database parameters on the source
database instance whose modification is not allowed in Oracle Autonomous Database
(Shared Infrastructure).

Effect

You are provided with a list of initialization parameters that have been modified in your
database, but cannot be modified in Oracle Autonomous Database.

Action

To understand what parameters you are permitted to modify, refer to the Oracle
Autonomous Database documentation.

Related Topics

• List of Initialization Parameters that can be Modified

20.11.76 nls_character_set_conversion
The Premigration Advisor Tool check nls_character_set_conversion indicates that
there are character codes on the source database that are invalid in Oracle
Autonomous Database.

Result Criticality

Runtime

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

This check warns of issues caused by conversion of character data from the source to
the target database character set, such as expansion of character values beyond
column length or loss of invalid character codes.

Effect

During migration you can encounter ORA-1401 or loss of invalid character codes due
to character set conversion from the source to the target database character set.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-102

https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbdk/index.html#GUID-88E45146-6118-4EE0-A17B-BFDB6D4AEF52

Action

Correct the issue as needed. Possible solutions include the following:

• Use Database Migration Assistant for Unicode (DMU) to scan the schemas that you want
to migrate, and analyze all possible convertibility issues

• Create a new target instance using the same character set as the source instance. See
the Oracle Cloud Infrastructure Documentation for information on choosing a character
set when creating a database instance.

See the Oracle Cloud Infrastructure documentation for information on choosing a character
set when creating a database instance.

Note:

Oracle recommends that you use the default database character set, AL32UTF8

Related Topics

• The Database Migration Assistant for Unicode (DMU) Tool (Doc ID 1272374.1)

20.11.77 nls_national_character_set
The Premigration Advisor Tool check nls_national_character_set indicates that the NCHAR
and NVARCHAR2 lengths are different on the source and target databases.

Result Criticality

Review required

Has Fixup

No

Scope

UNIVERSAL

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

This check indicates that the NCHAR and NVARCHAR2 lengths are different on the source and
target databases.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-103

https://support.oracle.com/rs?type=doc&id=1272374.1

Check for issues caused by the conversion of character data from the source to the
target national character set, such as expansion of character values beyond data type
limits or loss of invalid character codes.

Effect

During migration you can encounter ORA-01401 or loss of invalid character codes due
to character set conversion from the source to the target national character set.

Action

If possible, provision the target database on Oracle Cloud Infrastructure with the same
national character set as the source database, and enable extended data types in the
target cloud database. See the Oracle Cloud Infrastructure documentation for
information on choosing a national character set when creating a database instance.

20.11.78 nls_nchar_ora_910
The Premigration Advisor Tool check nls_nchar_ora_910 indicates that the NCHAR and
NVARCHAR2 lengths are greater than the maximum length on the target databases.

Result Criticality

Action required

Has Fixup

No

Scope

SCHEMA

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

This check indicates that the NCHAR and NVARCHAR2 lengths are greater than the
maximum permitted length on the target database.

Determine the maximum column length for the national database character set on the
target database, and check for NCHAR and NVARCHAR2 columns on the source database
whose character length exceeds the limit on the target database.

Effect

During migration you can encounter ORA-00910 errors due to the difference of the
maximum character length of NCHAR and NVARCHAR2 columns between the source and
the target database.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-104

Action

If possible, provision the target database on Oracle Cloud Infrastructure with the same
national character set as the source database, and enable extended data types in the target
cloud database. See the Oracle Cloud Infrastructure documentation for information on
choosing a national character set when creating a database instance.

20.11.79 options_in_use_not_available_dedicated
The Premigration Advisor Tool check options_in_use_not_available_dedicated indicates
that unavailable database options are present on the source database.

Result Criticality

Review suggested

Has Fixup

No

Scope

INSTANCE

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

Description

Generates a list of database options that are in use on the source, but not available in Oracle
Autonomous Database (Dedicated Infrastructure).

Effect

If the database that you are migrating has applications or schemas in your database that use
options that are not available on Oracle Autonomous Database, then it is possible that these
applications will not work after migration.

Action

Verify that the applications or schemas in your source database depend on the options that
are not supported on Oracle Autonomous Database (Dedicated Infrastructure), and plan
accordingly.

20.11.80 options_in_use_not_available_serverless
The Premigration Advisor Tool check options_in_use_not_available_serverless indicates
that unavailable database options are present on the source database.

Result Criticality

Review suggested

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-105

Has Fixup

No

Scope

INSTANCE

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

Description

Generates a list of database options that are in use on the source, but not available in
Oracle Autonomous Database (Shared Infrastructure).

Effect

If the database that you are migrating has applications or schemas in your database
that use options that are not available on Oracle Autonomous Database, then it is
possible that these applications will not work after migration.

Action

Verify that the applications or schemas in your source database depend on the options
that are not supported on Oracle Autonomous Database (Shared Infrastructure), and
plan accordingly.

20.11.81 standard_traditional_audit_adb
The Premigration Advisor Tool check standard_traditional_audit_adb indicates that
Traditional Audit configurations are detected in the database.

Result Criticality

Review suggested

Has Fixup

No

Scope

INSTANCE

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-106

Description

Traditional audit, which was deprecated in Oracle Database 21c, is desupported starting with
Oracle Database 23c. Traditional Audit configurations have been detected in this database.

Effect

Traditional Auditing is desupported in Oracle Database 23c. Oracle strongly recommends that
you start using Unified Auditing.

Action

Delete the Traditional Auditing configurations. To assist you, use the instructions in Oracle
Support Document ID 2909718.1.

Related Topics

• Traditional to Unified Audit Syntax Converter - Generate Unified Audit Policies from
Current Traditional Audit Configuration (Doc ID 2909718.1)

20.11.82 standard_traditional_audit_default
The Premigration Advisor Tool check standard_traditional_audit_default indicates that
Traditional Audit configurations are detected in the database.

Result Criticality

Review suggested

Has Fixup

No

Scope

INSTANCE

Target Cloud

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

Traditional audit, which was deprecated in Oracle Database 21c, is desupported starting with
Oracle Database 23c. Traditional Audit configurations have been detected in this database.

Effect

Traditional Auditing is desupported in Oracle Database 23c. Oracle strongly recommends that
you start using Unified Auditing.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-107

https://support.oracle.com/rs?type=doc&id=2909718.1
https://support.oracle.com/rs?type=doc&id=2909718.1

Action

Delete the traditional auditing configurations using the instructions found in Oracle
Support Document ID 2909718.1. Ensure that the following init.ora parameter
values are set in CDB$ROOT, and restart the database:

AUDIT_TRAIL=none
AUDIT_SYS_OPERATIONS=false

Related Topics

• Traditional to Unified Audit Syntax Converter - Generate Unified Audit Policies
from Current Traditional Audit Configuration (Doc ID 2909718.1)

20.11.83 timezone_table_compatibility_higher_dedicated
The Premigration Advisor Tool check
timezone_table_compatibility_higher_dedicated indicates that the timezone
setting is a more recent version on the source than on the target database.

Result Criticality

Runtime

Has Fixup

No

Scope

UNIVERSAL

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ATPD Autonomous Transaction Processing Dedicated

Description

The source database TZ_VERSION cannot be higher than the target TZ_VERSION.

Effect

Migration is not possible until the target TZ_VERSION is the same or higher than the
source database TZ_VERSION.

Action

Use the "Enable time-zone update" option of the Schedule maintenance dialog for the
Quarterly Maintenance Update to update the time zone version on your target
instance.

Related Topics

• Schedule a Quarterly Maintenance Update

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-108

https://support.oracle.com/rs?type=doc&id=2909718.1
https://support.oracle.com/rs?type=doc&id=2909718.1
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/sqkuc/index.html#articletitle

20.11.84 timezone_table_compatibility_higher_default
The Premigration Advisor Tool check timezone_table_compatibility_higher_default
indicates that the timezone setting is a more recent version on the source than on the target
database.

Result Criticality

Runtime

Has Fixup

No

Scope

UNIVERSAL

Target Cloud

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

The source database TZ_VERSION cannot be higher than the target TZ_VERSION.

Effect

Migration is not possible until the target TZ_VERSION is the same or higher than the source
database TZ_VERSION.

Action

Ensure the target instance has a time zone version equal or greater than the source instance
by downloading and installing an appropriate patch from Oracle Support Document ID
412160.1

Related Topics

• Primary Note DST FAQ : Updated DST Transitions and New Time Zones in Oracle
RDBMS and OJVM Time Zone File Patches (Doc ID 412160.1)

20.11.85 timezone_table_compatibility_higher_serverless
The Premigration Advisor Tool check timezone_table_compatibility_higher_serverless
indicates that the timezone setting is a more recent version on the source than on the target
database.

Result Criticality

Runtime

Has Fixup

No

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-109

https://support.oracle.com/rs?type=doc&id=412160.1
https://support.oracle.com/rs?type=doc&id=412160.1

Scope

UNIVERSAL

Target Cloud

• ADWS Autonomous Data Warehouse Shared

• ATPS Autonomous Transaction Processing Shared

Description

The source database TZ_VERSION cannot be higher than the target TZ_VERSION.

Effect

Migration is not possible until the target TZ_VERSION is the same or higher than the
source database TZ_VERSION.

Action

Update the Time Zone File Version. Refer to "Manage Time Zone File Version on
Autonomous Database"

Related Topics

• Manage Time Zone File Version on Autonomous Database

20.11.86 unified_and_standard_traditional_audit_adb
The Premigration Advisor Tool check unified_and_standard_traditional_audit_adb
indicates that Traditional Audit configurations are detected in the database.

Result Criticality

Runtime

Has Fixup

No

Scope

INSTANCE

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

Description

Traditional audit, which was deprecated in Oracle Database 21c, is desupported
starting with Oracle Database 23c. Traditional Audit configurations have been detected
in this database, which is configured to use only Unified Auditing.

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-110

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/manage-time-zone-file-version.html#GUID-BACC9C4A-C0FA-4912-862A-1A2A24D6A0C2

Effect

Performance can degrade unless the traditional audit configurations in the database are
deleted.

Action

Oracle strongly recommends that you delete the Traditional Auditing configurations

20.11.87 unified_and_standard_traditional_audit_default
The Premigration Advisor Tool check unified_and_standard_traditional_audit_default
indicates that Traditional Audit configurations are detected in the database.

Result Criticality

Runtime

Has Fixup

No

Scope

INSTANCE

Target Cloud

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

Traditional audit, which was deprecated in Oracle Database 21c, is desupported starting with
Oracle Database 23c. Traditional Audit configurations have been detected in this database,
which is configured to use only Unified Auditing..

Effect

Performance can degrade unless the traditional audit configurations in the database are
deleted.

Action

Delete the traditional auditing configurations using the instructions found in Oracle Support
Document ID 2909718.1. Ensure that the following init.ora parameter values are set in
CDB$ROOT, and restart the database:

AUDIT_TRAIL=none
AUDIT_SYS_OPERATIONS=false

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-111

20.11.88 xdb_resource_view_has_entries Check
The Premigration Advisor Tool check xdb_resource_view_has_entries Check
indicates that there is an XDB Repository that is not supported in Oracle Autonomous
Database. Entries in RESOURCE_VIEW will not migrate.

Result Criticality

Review required

Has Fixup

No

Target Cloud

• ADWD Autonomous Data Warehouse Dedicated

• ADWS Autonomous Data Warehouse Shared

• ATPD Autonomous Transaction Processing Dedicated

• ATPS Autonomous Transaction Processing Shared

• Default (an Oracle Database instance that is not Oracle Autonomous Database)

Description

This check applies to source schema for Oracle Data Pump and Oracle GoldenGate
migrations, and Oracle Data Pump database links. When there is an Oracle XML DB
repository (XDB Repository) that is not supported in Oracle Autonomous Database
(ADB), entries in RESOURCE_VIEW will not migrate.

Effect

Applications relying on entries in the XDB Repository RESOURCE_VIEW may not function
as expected.

Action

Applications must be updated to remove their dependencies on the XDB Repository.
For more information on determining if XDB is being used in your database see Oracle
Support Document ID 733667.1

Related Topics

• How to Determine if XDB is Being Used in the Database? (Doc ID 733667.1)

Chapter 20
List of Checks Performed By the Premigration Advisor Tool

20-112

https://support.oracle.com/rs?type=doc&id=733667.1

21
Oracle SQL Access to Kafka

Starting with Oracle Database 23c, you can use Oracle SQL APIs to query Kafka topics
dynamically using Oracle SQL.

Oracle SQL Access to Kafka integrates Kafka and OCI Streaming Service streams with
Oracle Database 23c in several important ways. First, it enables you to connect Oracle
Database to one or more Kafka topics. After the database is connected, you can then query
that topic dynamically using Oracle SQL, without persisting the Kafka data in Oracle
Database. This feature enables you to analyze real time data in combination with data
captured in your Oracle Database. In addition, Oracle SQL Access to Kafka enables fast,
scalable and lossless loading of Kafka topics into Oracle Database. The DBMS_KAFKA APIs
simplify the management of this entire process.

• About Oracle SQL Access to Kafka Version 2
Oracle SQL access to Kafka (OSaK) provides a native feature of Oracle Database that
enables Oracle SQL to query Kafka topics.

• Global Tables and Views for Oracle SQL Access to Kafka
Learn about how Oracle SQL Access to Kafka accesses Kafka STREAMING, SEEKING,
and LOAD applications, and the unique ORA$ prefixes used with global temporary tables.

• Understanding how Oracle SQL Access to Kafka Queries are Performed
Oracle SQL Access to Kafka accesses Kafka streaming data, but queries are performed
on Oracle Database global temporary tables, which provides several advantages.

• Streaming Kafka Data Into Oracle Database
Oracle SQL Access to Kafka enables Kafka streaming data to be processed with Oracle
Database tables using standard SQL semantics.

• Querying Kafka Data Records by Timestamp
Oracle SQL Access to Kafka in Seekable mode assists you to query older data stored in
Kafka, based on timestamps associated with the Kafka data.

• About the Kafka Database Administrator Role
To administer Oracle SQL access to Kafka, grant the Oracle Database role
OSAK_ADMIN_ROLE and grant required administration privileges to the administrator role
and the Kafka administration API package.

• Enable Kafka Database Access to Users
The application user accounts are granted the DBMS_KAFKA database privileges required
to access OSAK.

• Data Formats Supported with Oracle SQL Access to Kafka
Oracle SQL access to Kafka supports Kafka records represented in three formats:
delimited text data (for example, csv), JSON, and Avro

• Configuring Access to a Kafka Cluster
You can configure access to secured Kafka clusters, or non-secured Kafka clusters

• Creating Oracle SQL Access to Kafka Applications
To create an application to access Apache Cluster data, create the type of application
that you require.

21-1

• Security for Kafka Cluster Connections
Oracle SQL Access to Kafka supports access to Kafka and Oracle Streaming
Service (OSS), using various security mechanisms, such as SSL, SASL, and
Kerberos.

• Configuring Access to Unsecured Kafka Clusters
To configure access to non-secure Kafka clusters, the OSAK administrator (Oracle
Database user with osak_admin_role) must complete this procedure.

• Configuring Access to Secure Kafka Clusters
To configure access to secure Kafka clusters use this procedure.

• Administering Oracle SQL Access to Kafka Clusters
See how to update, temporarily disable, and delete Kafka cluster definitions with
Oracle SQL access to Kafka

• Guidelines for Using Kafka Data with Oracle SQL Access to Kafka
Review guidelines, restrictions, and recommendations as part of your application
development plan.

• Choosing a Kafka Cluster Access Mode for Applications
To use Oracle SQL access to Kafka, decide what mode of data access you require
for your applications.

• Creating Oracle SQL Access to Kafka Applications
To query Kafka data in a LOAD application, load Kafka data into an Oracle
Database table using these procedures.

• Using Kafka Cluster Access for Applications
Learn how to use Kafka cluster data access with your applications.

21.1 About Oracle SQL Access to Kafka Version 2
Oracle SQL access to Kafka (OSaK) provides a native feature of Oracle Database that
enables Oracle SQL to query Kafka topics.

Starting with Oracle Database 23c, version 2 of Oracle SQL access to Kafka is
installed with Oracle Database. It provides a native Oracle Database connector service
to Kafka clusters. It consists of a set of features accessed through the DBMS_KAFKA and
DBMS_KAFKA_ADM packages.

What it does

Oracle SQL Access to Kafka Version 2 enables Kafka streaming data to be processed
with Oracle Database tables using standard Oracle Database SQL semantics, and
enables data to be processed by standard Oracle application logic (for example,
Oracle JDBC applications). Oracle SQL access to Kafka is integrated in Oracle
Database. This integration of Kafka access in Oracle Database enables you to relate
tables in Oracle Database using data streams produced by Kafka or an OCI Streaming
Service, without requiring an external client connector application. Oracle SQL access
to Kafka can scale up data streams for Oracle Database in the same fashion as Kafka
applications.

Oracle SQL access to Kafka enables you to do the following:

• Create and use a streaming application to process unread Kafka records one time,
where these records do not need to be retained after they are processed.

Chapter 21
About Oracle SQL Access to Kafka Version 2

21-2

• Create and use a loading application to capture unread Kafka records permanently in an
Oracle Database table, for access by various Oracle applications. In this case, Kafka
records are captured and persisted in user tables in Oracle Database. This use case is
helpful for data warehouses.

• Create and use a seeking application to reread records that are in a Kafka topic, based
on a user-supplied timestamp interval.

• Create and use two or more streaming applications. These applications can be used to
stream data from two or more Kafka topics, where you can then join them using SQL in
Oracle Database.

How It Works

Oracle SQL access to Kafka version 2 provides access to Kafka data using Oracle Database
system-generated views, and external tables. These views and external tables use the
DBMS_KAFKA package to define a named Oracle SQL access to Kafka application. In
general, these views and external tables are transparent for streaming, loading, and seeking
applications.

Your application can perform and control operations as an Oracle Database transaction,
complying with the ACID (Atomicity, Consistency, Isolation, Durability) requirements for the
database, ensuring that either all parts of the transaction are committed, or all rolled back,
with a unique identifier (a transaction ID) for each transaction. This transaction ID includes
timestamps that you can use to identify and roll back errors. The ACID feature of Oracle
Database transactions provides support for data recovery in case of a failure, without losing
or repeating records.

The Oracle transaction performed with Oracle SQL access to Kafka includes managing the
Kafka partition offsets, and committing them to database metadata tables in Oracle
Database.

Without Oracle SQL Access to Kafka, the Kafka partition offsets need to be managed either
by the application, or by Kafka, neither of which support transaction semantics. This means
that after a system failure, Kafka records can be lost or reprocessed by an application.
Managing offsets in an Oracle Database transaction avoids these problems, and enhances
the isolation and durability of the Kafka data.

Because Oracle SQL Access to Kafka is available with Oracle Database, and is used with
PL/SQL and SQL queries, no external client application is required to provide a connector to
Oracle Database.

The ORA_KAFKA PL/SQL package has functions and procedures to register a Kafka cluster in a
database schema, query Kafka topics, query data from specified offsets or specified
timestamps, and more. You can choose either to use global temporary tables without storing
the data, or store the data into user tables in the target Oracle Database.

How you can use it

You can use Oracle SQL access to Kafka application to access global temporary tables or
user tables created in Oracle Database, so that your application can obtain data. That data
can be streams of data, or snapshots of the data from other databases, which can be
accessed directly, or loaded into Oracle Database tables and be used within your application.

Kafka global temporary tables have the following characteristics:

• The global temporary table is loaded once at the outset of an application instance, and
used as a snapshot of Kafka records for the duration of the application instance. The
application can use standard Oracle SQL with the global temporary table.

Chapter 21
About Oracle SQL Access to Kafka Version 2

21-3

• Each query from a global temporary table results in a trip to the Kafka cluster, re-
retrieving the same rows, and perhaps additional rows.

The corresponding global temporary table receives a snapshot from an Oracle SQL
access to Kafka view. Applications use this temporary table for one or more queries
within a transaction: a global temp table is loaded once, and used. The Kafka offsets
are advanced, and then the app commits, indicating that it is finishee\d with the Kafka
records loaded in the global temporary table.

Reading from the temporary table is beneficial for the following reasons:

• Repeatable reads are supported, either explicitly from multiple queries or implicitly
within a join

• Reliable statistics are gathered for the query optimizer

• Only one trip is made to Kafka when loading the temporary table. Subsequent
queries do not result in a trip to the Kafka cluster.

• Global temporary tables can be joined with standard Oracle tables. Joining Oracle
SQL access to Kafka temporary tables with Oracle Database tables increases
your ability to use Oracle Database capabilities with Kafka data.

• You can leverage the mature optimization and processing strategies in Oracle
Database to minimize code paths needed to join tables efficiently.

21.2 Global Tables and Views for Oracle SQL Access to
Kafka

Learn about how Oracle SQL Access to Kafka accesses Kafka STREAMING,
SEEKING, and LOAD applications, and the unique ORA$ prefixes used with global
temporary tables.

Applications using Oracle SQL Access to Kafka (OSAK) for STREAMING and SEEKING of
Kafka topics use PL/SQL to call an OSAK procedure to load global temporary tables
with the results of a query from the corresponding Oracle SQL Access to Kafka view.
LOAD applications do not require global temporary tables, because the LOAD
application performs incremental loads into an existing Oracle Database table using
the EXECUTE_LOAD_APP procedure. For STREAMING, SEEKING and LOAD
applications, OSAK creates the views and external tables in all three cases.

Both Oracle SQL Access to Kafka views and temporary tables have unique ORA$
prefixes that identify them as objects created by Oracle SQL Access to Kafka.

ORA$DKV (for views) and ORA$DKX (for tables) are prefixes for Oracle SQL access to
Kafka generated views and external tables that serve calls to DBMS_KAFKA to load data
from Kafka into a user-owned table or into a global temporary table. Typically, these
views and external tables are treated as internal objects, which are not directly
manipulated by an Oracle application.

ORA$DKVGTT is a prefix that designates that it is a global temporary table that is loaded
from a streaming or seeking app. This global temporary table is loaded transparently
when calling DBMS_KAFKA.LOAD_TEMP_TABLE.

Chapter 21
Global Tables and Views for Oracle SQL Access to Kafka

21-4

21.3 Understanding how Oracle SQL Access to Kafka Queries
are Performed

Oracle SQL Access to Kafka accesses Kafka streaming data, but queries are performed on
Oracle Database global temporary tables, which provides several advantages.

A typical application does not query Oracle SQL Access to Kafka views directly. Instead:

• Each query from an Oracle SQL Access to Kafka view fetches data directly from Kafka
from the current offset to the current high water mark. Because rows are continually
being added, each query from a view will likely retrieve more rows. Therefore,Oracle SQL
Access to Kafka views do not support repeatable reads, either explicitly from multiple
queries or implicitly within a join.

• There are no reliable statistics gathered from Oracle SQL Access to Kafka views for the
query optimizer

• Each query from an Oracle SQL Access to Kafka view results in a trip to the Kafka
cluster, re-retrieving the same rows and perhaps additional rows. These query retrievals
can affect performance.

The corresponding temporary table receives a snapshot from an Oracle SQL Access to Kafka
view. Applications use this temporary table for one or more queries within a transaction.
Reading from the temporary table is beneficial for the following reasons:

• Repeatable reads are supported, either explicitly from multiple queries or implicitly within
a join

• Reliable statistics are gathered for the query optimizer

• Only one read is made to Kafka when loading the temporary table. Subsequent queries
do not require returning to the Kafka cluster to access the data.

The global temporary tables can be joined with standard Oracle tables (for example, Oracle
customer relationship management (CRM) tables.

By joining Oracle SQL access to Kafka temporary tables with Oracle Database tables, you
obtain the following advantages:

• Leveraging the mature optimization and execution strategies in Oracle Database to
minimize code path required to join tables efficiently

• Obtaining Oracle Database transaction semantics, with the security of Oracle Database
ACID transaction processing (atomicity, consistency, isolation, and durability), ensuring
that all changes to data are performed as if they are a single operation, controlled by the
application

• Managing the Kafka partition offsets and committing them to database metadata tables in
Oracle Database, so that after a system failure, these Oracle Database transactions with
Kafka records are not subject to being lost or reprocessed by an application.

21.4 Streaming Kafka Data Into Oracle Database
Oracle SQL Access to Kafka enables Kafka streaming data to be processed with Oracle
Database tables using standard SQL semantics.

Chapter 21
Understanding how Oracle SQL Access to Kafka Queries are Performed

21-5

Apache Kafka is commonly used to capture and consolidate data from many
streaming sources, so that analytics can be performed on this data. Typically, this
requires loading of all the Kafka records into the database, and then combining the
data with database tables for analytics, either for short-term study or for longer
analysis.

With Oracle SQL access to Kafka, you can use standard SQL, PL/SQL and other
database development tools to accomplish the load from Kafka to an Oracle
Database, and process that data using standard Oracle application logic, such as
JDBC applications. Oracle SQL access to Kafka can create a view that maps to all
partitions of the Kafka topic that you want to load. Each Oracle SQL access to Kafka
call to load more data queries this view, which in turn queries all partitions of the Kafka
topic from the previous point last read to the current data high watermark offset (the
offset of the last message that was fully inserted to all Kafka partitions). Data retrieved
from the Kafka partitions is loaded into a temporary Oracle Database table.

These Oracle SQL Access to Kafka views behave much like a Kafka application
instance. They read records from Kafka starting at a given offset until it reaches the
high watermark offset

When Oracle SQL Access to Kafka creates a view, it also creates a corresponding
global temporary table. The application calls an Oracle SQL Access to Kafka PL/SQL
procedure to load this global temporary table with the results of a query from the
corresponding Oracle SQL Access to Kafka view.

The global temporary tables can be joined with standard Oracle tables (for example,
Oracle customer relationship management (CRM) tables.

By joining Oracle SQL access to Kafka temporary tables with Oracle Database tables,
you obtain the following advantages:

• Leveraging the mature optimization and execution strategies in Oracle Database
to minimize code path required to join tables efficiently

• Obtaining Oracle Database transaction semantics, with the security of Oracle
Database ACID transaction processing (atomicity, consistency, isolation, and
durability), ensuring that all changes to data are performed as if they are a single
operation, controlled by the application

• Managing the Kafka partition offsets and committing them to database metadata
tables in Oracle Database, so that after a system failure, these Oracle Database
transactions with Kafka records are not subject to being lost or reprocessed by an
application.

21.5 Querying Kafka Data Records by Timestamp
Oracle SQL Access to Kafka in Seekable mode assists you to query older data stored
in Kafka, based on timestamps associated with the Kafka data.

In the event of anomalies, you can use Oracle SQL access to Kafka to assist with
identifying Kafka data associated with the anomaly in a specified window of time.

For example, suppose a computer company has multiple sites. Each site has labs, and
all access to the building and labs are protected by key card access. The company
has a vast array of employees, some who just need office space, some who maintain
the machines in the labs, and some who monitor the building for issues such as
ventilation issues, unpermitted access, and general usages of the sites. In this
scenario, Kafka topics can consist of the following:

Chapter 21
Querying Kafka Data Records by Timestamp

21-6

• Key card usage (KCdata)

• Facility monitoring (Fdata)

• System monitoring, such as uptime, access, intrusion detection (Sdata)

If an usual event is detected while reading through Kafka data and combining it with Oracle
data, the application can log the anomaly along with the timestamp of the record containing
the unusual event. A second application can then read through these errors and process
them. For each unusual event, the application might seek to a window of timestamps 10
seconds before and after the event. This is similar to analyzing exceptions in log files. It is
common to look at log entries before and after the event to see if the exception was caused
by an earlier issue, or if the exception led to downstream problems.

To evaluate a site issue, you can load the key card readers data (KCdata) to a permanent
table. For example, if multiple applications use this data, then it would make sense to load
that date into an Oracle Database table that can be used by multiple applications, to assist
the real estate team to track building and office usage. The IT department uses the data to
determine who is on site to handle issues.

Using a Streaming query, you can scan the facility data (Fdata) to determine if there are any
atyplical or unusual events in the data. This could be a spike in lab temperature, a door that
did not close and is raising an alarm, the fire detection system sounding an alarm, or other
data points associated with the timeframe, suhc as a door that was left ajar.

The security team is given an alert of a door that did not close. They use the streaming data
to determine the door was left ajar at 3:17 AM. They can then use a Seeking query to seek
multiple other data points (KCdata, Fdata, Sdata) in a 30 minute window (3:02 to 3:32) to
determine who accessed the building, what doors or labs were accessed, what machines
went offline or were directly accessed, and other data records, so that they can take the
proper response to the developing situation.

In this scenario, you can use Oracle SQL Access to Kafka to create a single view that maps
to all partitions of the Kafka topic. When Oracle SQL access to Kafka creates a view, it also
creates a corresponding global temporary table. The application first specifies a starting and
ending timestamp and then calls Oracle SQL access to Kafka to load the global temporary
table with the rows in the specified window of time. You can leverage standard Oracle
Database SQL transaction processing to parse large volumes of data to identify relevant
device data within the anomalous event.

21.6 About the Kafka Database Administrator Role
To administer Oracle SQL access to Kafka, grant the Oracle Database role OSAK_ADMIN_ROLE
and grant required administration privileges to the administrator role and the Kafka
administration API package.

To provide role-based authentication to grant the Oracle SQL access for Kafka administration
privileges to an administrative user, Oracle provides the OSAK_ADMIN_ROLE starting with
Oracle Database 23c. You can grant this role to an administrator user for Oracle SQL Access
to Kafka. This role grants the system privileges required for users that you designate as
Oracle SQL access for Kafka administrators to configure, register, and manage Kafka
clusters. The system privileges granted by this role are as follows:

• CREATE CREDENTIAL, to create a Kafka SASL-SSL (Simple Authentication and
Security Layer) password or OSS (Oracle Streaming Service) authToken

• CREATE ANY DIRECTORY, to create cluster access and cluster configuration directory

Chapter 21
About the Kafka Database Administrator Role

21-7

• DROP ANY DIRECTORY, to drop cluster access and cluster configuration
directory

• READ privileges to sys.dbms_kafka_clusters
• READ privileges to sys.dbms_kafka_applications
• READ privileges to sys.dbms_kafka_messages

21.7 Enable Kafka Database Access to Users
The application user accounts are granted the DBMS_KAFKA database privileges
required to access OSAK.

As a DBA, you create and grant users privileges to administer and use Oracle SQL
access to Kafka. There are two categories of users:

• Oracle SQL Access to Kafka administrators are privileged users. To simplify
management of Oracle SQL access to Kafka, Oracle recommends that the Oracle
DBA grant the OSAK_ADMIN_ROLE to designated Kafka administrators. This role is
precreated in the database starting with Oracle Database 23c.

Administrators run the DBMS_KAFKA_ADM package methods to configure and
manage the Kafka cluster information. Either users granted OSAK_ADMIN_ROLE or
the Oracle DBA can create the operating system level cluster configuration
directory, and populate that directory with configuration files. Oracle SQL Access
to Kafka administrators create the Oracle directory object for the Kafka cluster
configuration and access directories.

• Application users of Kafka topic data are granted the READ privileges required to
access to the DBMS_KAFKA packages, so that they can access and use data
accessed from Kafka cluster topics.

Example 21-1 Grant OSAK_ADMIN_ROLE to Kafka Administrator Users

In this example, the OSAK_ADMIN_ROLE is granted to user kafka-admin:

GRANT OSAK_ADMIN_ROLE
 TO kafka-admin;

Example 21-2 Grant User Access to Kafka Users

To enable applications to use Oracle SQL access to Kafka, you grant DBMS_KAFKA
access. These application users must already have the following privileges on the
source Kafka cluster and target Oracle Database:

• CREATE SESSION
• CREATE TABLE
• CREATE VIEW
• Available quota on the tablespace where they access Kafka data

• Read access on the cluster access directory of a registered Kafka cluster

Chapter 21
Enable Kafka Database Access to Users

21-8

21.8 Data Formats Supported with Oracle SQL Access to Kafka
Oracle SQL access to Kafka supports Kafka records represented in three formats: delimited
text data (for example, csv), JSON, and Avro

Kafka is without schemas, and format-neutral. Application data is stored as opaque byte
arrays in the key and value fields of a Kafka record. Because the Kafka key is used mainly for
hashing data into Kafka partitions, only the value field of a Kafka record is retrieved and
rendered as Oracle rows. The application is responsible for serialization and deserialization
of the data and for supplying a schema that defines the structure of the data format. In Oracle
SQL Access for Kafka, the data format and schema are specified in the options argument to
the DBMS_KAFKA.CREATE_[LOAD|STREAMING|SEEKABLE]_APP() procedures.

Note:

Regardless of the format type, the tables and views created contain three additional
columns: KAFKA_PARTITION, KAFKA_OFFSET, and KAFKA_EPOCH_TIMESTAMP.

• JSON Format and Oracle SQL Access to Kafka
For JSON, Oracle SQL access to Kafka determines the columns for the table or view.

• Delimited Text Format and Oracle SQL Access to Kafka
For delimited text formats, Oracle SQL access to Kafka creates views and temporary
tables in the user schema with Kafka data.

• Avro Formats and Oracle SQL Access to Kafka
For Avro formats, Oracle SQL access to Kafka uses the Avro schema to determine the
data columns and the three metadata columns.

21.8.1 JSON Format and Oracle SQL Access to Kafka
For JSON, Oracle SQL access to Kafka determines the columns for the table or view.

The following is an example of using options to display data for a JSON streaming
application:

DECLARE
 v_options VARCHAR2;
BEGIN
 v_options := ‘{"fmt" : "JSON"}';
 SYS.DBMS_KAFKA.CREATE_STREAMING_APP (
 'ALPHA1',
 'MYAPP',
 'ExampleTopic',
 v_options);
END;
/

With Javascript Object Notation (JSON) data, Oracle SQL Access to Kafka creates views and
global temporary tables in the user schema over Kafka data. These views are prefixed by
ORA$DKV_ The temporary tables are prefixed by ORA$DKVGTT_. The package
DBMS_KAFKA.CREATE_xxx_APP uses a fixed schema to return JSON data from a Kafka record.

Chapter 21
Data Formats Supported with Oracle SQL Access to Kafka

21-9

For example:

SQL> describe ORA$DKVGTT_ALPHA1_MYAPP_0;
 Name Null? Type
 --- --------

 KAFKA_PARTITION NUMBER(38)
 KAFKA_OFFSET NUMBER(38)
 KAFKA_EPOCH_TIMESTAMP NUMBER(38)
 VALUE VARCHAR2(4000)

With the VARCHAR2 type, the length of the VALUE column is restricted by the maximum
varchar2 length of your database. Note that the VALUE column has the option to be of
type CLOB.

The KAFKA_ columns identify the partition id, the offset, and the timestamp of the Kafka
record. (The underlying timestamp representation is an integer representing the
number of milliseconds since Unix epoch.)

The data in the value portion of the Kafka record is returned as text to the VALUE
column. The character encoding of the external text is fixed as AL32UTF8. Oracle SQL
access to Kafka logic does not check for valid JSON syntax in the VALUE columns.
However, faulty JSON is discovered when JSON operators in a SQL query attempt to
parse the VALUE data.

21.8.2 Delimited Text Format and Oracle SQL Access to Kafka
For delimited text formats, Oracle SQL access to Kafka creates views and temporary
tables in the user schema with Kafka data.

With delimited data, such as CSV or comma-delimited data, Oracle SQL Access to
Kafka creates views and global temporary tables in the user schema over Kafka data.
These views are prefixed by ORA$DKV_. The temporary tables are prefixed by
ORA$DKVGTT_. With DSV format, the data columns are based on the reference table
passed in the options plus the three metadata columns

The temporary tables and views created with Oracle SQL access to Kafka delimited
text format data have columns that reflect the shape of the delimited text data in the
value field of a Kafka record. Oracle SQL access to Kafka converts text data into the
native Oracle datatypes expressed in the table and view definition. The character
encoding of the external text is fixed as AL32UTF8.

When a Kafka record is retrieved, a canonical layout is created, starting with the Kafka
partition identifier (INTEGER), Kafka record offset (INTEGER), and Kafka record
timestamp (INTEGER), followed by delimited text data in the Kafka value. In other
words, the Kafka data is flattened out and streamed as rows of pure delimited text
fields, using the order of the view schema definition.

The following Oracle data types are supported:

• INTEGER, INT, NUMBER
• CHAR, VARCHAR2
• NCHAR, NVARCHAR2
• CLOB, NCLOB, BLOB

Chapter 21
Data Formats Supported with Oracle SQL Access to Kafka

21-10

• FLOAT, BINARY_FLOAT, BINARY_DOUBLE
• TIMESTAMP, DATE
• TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE
• INTERVAL
• RAW
• BOOLEAN
To simplify the specification of delimited text at application creation time, you provide the
name of a table that describes the columns of the user data in the order that they are
physically ordered in the Kafka record value field. Oracle SQL Access to Kafka uses that
name in views and temporary tables.

The following example shows the shape of the delimited text data table (a reference table, or
reftable) provided when you create an Oracle SQL Access to Kafka application. Again, the
Kafka value field reflects the identical physical order and the desired data type conversion
from the delimited text.

You should preserve reftables after they are used for a CREATE_xxx_APP call to create Oracle
SQL Access to Kafka views and temporary tables reflecting the shape. You will require the
reftable to recreate views.

SQL> describe FIVDTI_SHAPE;
 Name Null? Type
 --- --------

 F1 NUMBER
 I2 NUMBER
 V3 VARCHAR2(50)
 D4 DATE
 T5 TIMESTAMP(6)
 V6 VARCHAR2(200)
 I7 NUMBER

The reference table describes the fields in the Kafka record value only. For example, the
reftable FIVDTI_SHAPE could support Kafka records where F1, I2, V3, D4, T5, V6, I7 are fields
in the Kafka record value. The fields in the Kafka record value must be separated by
delimiters (for example, comma delimiters).

Note:

The reference table cannot include invisible (hidden) columns. The ordering of the
columns must match the order of the data values from the Kafka record. An invisible
column has a COLUMN_ID of NULL, so its position in the column list cannot be
determined.

Oracle SQL Access to Kafka temporary tables created for data described by the
FIVDTI_SHAPE table will have the following schema:

SQL> describe ORA$DKVGTT_ALPHA1_MYAPP__0;
 Name Null? Type

Chapter 21
Data Formats Supported with Oracle SQL Access to Kafka

21-11

 --- --------

 KAFKA_PARTITION NUMBER(38)
 KAFKA_OFFSET NUMBER(38)
 KAFKA_EPOCH_TIMESTAMP NUMBER(38)
 F1 NUMBER
 I2 NUMBER
 V3 VARCHAR2(50)
 D4 DATE
 T5 TIMESTAMP(6)
 V6 VARCHAR2(200)
 I7 NUMBER

21.8.3 Avro Formats and Oracle SQL Access to Kafka
For Avro formats, Oracle SQL access to Kafka uses the Avro schema to determine the
data columns and the three metadata columns.

• About Using Avro Format with Oracle SQL Access to Kafka
Learn how Oracle SQL access to Kafka makes Kafka data in the Avro format
available for use in Oracle Database tables and views.

• Primitive Avro Types Supported with Oracle SQL Access to Kafka
To use Apache Avro Schema primitive type names in the database, Oracle
converts these types to SQL data types.

• Complex Avro Types Supported with Oracle SQL Access to Kafka
To use Apache Avro Schema complex type names in the database, Oracle
converts these types to supported SQL data types.

• Avro Logical Types Supported with Oracle SQL Access to Kafka
To use Apache Avro Schema logical type names in the database, Oracle converts
these types to supported SQL data types.

21.8.3.1 About Using Avro Format with Oracle SQL Access to Kafka
Learn how Oracle SQL access to Kafka makes Kafka data in the Avro format available
for use in Oracle Database tables and views.

To enable the use of the Apache Avro formatted data by applications in Oracle
Database table and views, Oracle SQL Access for Kafka converts the data format
based on the schema specified in the options argument to the
DBMS_KAFKA.CREATE_[LOAD|STREAMING|SEEKABLE]_APP() procedures.

An Apache Avro record is an ordered list of named fields and types. The schema for a
record defines the structure of the data and how it can be read. The Avro schema must
be passed when the Oracle SQL access to Kafka application is created. This means
that an Oracle SQL access to Kafka application can only support a single Avro schema
for a Kafka topic. It is not supported to use more than one schema type in the topic
stream. If the schema evolves, then you must create a new Oracle SQL access to
Kafka application. Oracle SQL access to Kafka does not support the Confluent
Schema Registry. If Kafka records in Avro format include a Confluent header, then that
header is stripped off and ignored by Oracle SQL access to Kafka.

Kafka is without schemas, and format-neutral. Application data is stored as opaque
byte arrays in the key and value fields of an Apache Avro record. Because the Kafka
key is used mainly for hashing data into Kafka partitions, only the value field of an

Chapter 21
Data Formats Supported with Oracle SQL Access to Kafka

21-12

Apache Avro record is retrieved and rendered in Oracle Database tables, as Oracle rows.
The application is responsible for serialization and deserialization of the data, and for
supplying a schema that defines the structure of the data format.

You can use both primitive and complex Avro types with Oracle SQL access to Kafka, but you
can use only one type for each application.

21.8.3.2 Primitive Avro Types Supported with Oracle SQL Access to Kafka
To use Apache Avro Schema primitive type names in the database, Oracle converts these
types to SQL data types.

Table 21-1 Avro Primitive types and Oracle Type Conversions for Oracle SQL Access
to Kafka

Type Description Avro Primitive Type Oracle Type

null/no value null VARCHAR2(1)
(not applicable) boolean NUMBER(1)
32-bit signed integer int INTEGER
64-bit signed integer long INTEGER
IEEE 32-bit floating point float BINARY_FLOAT
IEEE 64-bit floating point double BINARY_DOUBLE
byte array/binary bytes BLOB
UTF-8 encoded character string string VARCHAR2

The following example Avro schema defines a record that uses all Avro primitive types:

{
 "type" : "record",
 "name" : "primitives",
 "fields" : [
 { "name" : "f_null", "type" : "null" },
 { "name" : "f_boolean", "type" : "boolean" },
 { "name" : "f_int", "type" : "int"}
 { "name" : "f_long", "type" : "long" },
 { "name" : "f_float", "type" : "float" },
 { "name" : "f_double", "type" : "double" },
 { "name" : "f_bytes", "type" : "bytes" },
 { "name" : "f_string", "type" : "string"}
]
}

If you created Oracle SQL access to Kafka temporary tables for Avro data by using this
example Avro schema, then the temporary tables have the following schema:

describe ORA$DKVGTT_ALPHA1_MYAPP__0;
 Name Null? Type
 --- --------

 KAFKA_PARTITION NUMBER(38)

Chapter 21
Data Formats Supported with Oracle SQL Access to Kafka

21-13

 KAFKA_OFFSET NUMBER(38)
 KAFKA_EPOCH_TIMESTAMP NUMBER(38)
 F_NULL CHAR(1)
 F_BOOLEAN NUMBER(1)
 F_INT NUMBER(38)
 F_LONG NUMBER(38)
 F_FLOAT BINARY_FLOAT
 F_DOUBLE BINARY_DOUBLE
 F_BYTES BLOB
 F_STRING VARCHAR2(4000)

The VARCHAR2 type length (in this example, for the F_STRING column) is determined by
the maximum varchar2 length of your database.

21.8.3.3 Complex Avro Types Supported with Oracle SQL Access to Kafka
To use Apache Avro Schema complex type names in the database, Oracle converts
these types to supported SQL data types.

Description

The Apache Avro complex data types take specified attributes. To use the Avro
complex types, Oracle SQL access to Kafka convertes them to Oracle types, as
specified in the following table.

Table 21-2 Avro Complex types and Oracle Type Conversions for Oracle SQL
Access to Kafka

Avro Complex Type Oracle Type Type Description

fixed BLOB A fixed type is used to declare
a fixed-length field that can be
used for storing binary data. It
has two required attributes:
the field's name, and the size
in 1-byte quantities.

enum VARCHAR2 An Avro enum field.

Avro enums are enumerated
types. They consist of are
JSON strings with the type
name enum, taking the name
of the enum, and can take
additional optional attributes.

record VARCHAR2 Struct field.

The struct field corresponds to
a field in the input Avro
records. A record represents
an encapsulation of attributes
that, all combined, describe a
single thing.

Chapter 21
Data Formats Supported with Oracle SQL Access to Kafka

21-14

Table 21-2 (Cont.) Avro Complex types and Oracle Type Conversions for Oracle
SQL Access to Kafka

Avro Complex Type Oracle Type Type Description

map VARCHAR2 A map is an associative array,
or dictionary, that organizes
data as key-value pairs. The
key for an Avro map must be a
string. Avro maps supports
only one attribute: values. This
attribute is required and it
defines the type for the value
portion of the map.

Values can be of any type.

array VARCHAR2 An array of any type

The array type defines an
array field. It only supports the
items attribute, which is
required. The items attribute
identifies the type of the items
in the array.

Note:

The Avro complex types record, map, and array are converted to a JSON format
string before conversion to a VARCHAR2 type.

The following example Avro schema defines a record that uses all Avro complex types:

{
 "type" : "record",
 "name" : "complex",
 "fields" : [
 { "name" : "f_fixed",
 "type" : { "type" : "fixed", "name" : "ten", "size" : 10}
 },
 { "name" : "f_enum",
 "type" : { "type" : "enum", "name" : "colors",
 "symbols" : ["red", "green", "blue"] }
 },
 { "name" : "f_record",
 "type" : {"type" : "record", "name" : "person",
 "fields" : [{ "name" : "first_name", "type" : "string" },
 { "name" : "last_name", "type" : "string"}] }
 },
 { "name" : "f_map",
 "type" : { "type" : "map", "values" : "int" }
 },
 { "name" : "f_array",
 "type" : {"type" : "array", "items" : "string" }

Chapter 21
Data Formats Supported with Oracle SQL Access to Kafka

21-15

 }]
}

If you created Oracle SQL access to Kafka temporary tables for Avro data by using
this example Avro schema, then the temporary tables have the following schema:

describe ORA$DKVGTT_ALPHA1_MYAPP__0;
 Name Null? Type
 --- --------

 KAFKA_PARTITION NUMBER(38)
 KAFKA_OFFSET NUMBER(38)
 KAFKA_EPOCH_TIMESTAMP NUMBER(38)
 F_FIXED BLOB
 F_ENUM VARCHAR2(4000)
 F_RECORD VARCHAR2(4000)
 F_MAP VARCHAR2(4000)
 F_ARRAY VARCHAR2(4000)

The VARCHAR2 type length (in this example, for the F_ENUM, F_RECORD, F_MAP and
F_ARRAY columns) is determined by the maximum varchar2 length of your database.

21.8.3.4 Avro Logical Types Supported with Oracle SQL Access to Kafka
To use Apache Avro Schema logical type names in the database, Oracle converts
these types to supported SQL data types.

Description

An Avro logical type is an Avro primitive or complex type with extra attributes to
represent a derived type. Logical types are converted to Oracle types as specified in
the following table.

Table 21-3 Avro Complex types and Oracle Type Conversions for Oracle SQL
Access to Kafka

Type Description Avro Logical Type Oracle Type

decimal: arbitrary-precision
signed decimal number of the
form unscaled × 10-scale

decimal (bytes, fixed) NUMBER

UUIDs (Universally Unique
Identifiers), also known as
GUIDS (Globally Unique
Identifiers):

These IDs are randomly
generated, in conformity with
RFC-4122.

UUID (string) Not supported.

Chapter 21
Data Formats Supported with Oracle SQL Access to Kafka

21-16

Table 21-3 (Cont.) Avro Complex types and Oracle Type Conversions for Oracle
SQL Access to Kafka

Type Description Avro Logical Type Oracle Type

date

A date within the calendar,
with no reference to a
particular time zone or time of
day

Number of days from the Unix
epoch, 1 January 1970

date (int) DATE

time (millis):

A time of day, with no
reference to a particular
calendar, time zone or date,
represented as number of
milliseconds after midnight:
00:00:00.000

time-millis (int) TIMESTAMP

time (micros):

A time of day, with no
reference to a particular
calendar, time zone or date
number of microseconds after
midnight: 00:00:00.000000

time-micros (long) TIMESTAMP

timestamp (millis) UTC:

An instant on the global
timeline, independent of a
particular time zone or
calendar number of
milliseconds from the Unix
epoch, 1 January 1970:
00:00:00.000 UTC

timestampmillis (long) TIMESTAMP

timestamp (micros) UTC:

An instant on the global
timeline, independent of a
particular time zone or
calendar number of
microseconds from the Unix
epoch, 1 January 1970:
00:00:00.000000 UTC

timestampmicros (long) TIMESTAMP

duration

An amount of time defined by
a number of months, days and
milliseconds.

fixed (size:12) Not supported.

Chapter 21
Data Formats Supported with Oracle SQL Access to Kafka

21-17

Note:

Decimal types, which are used with the logical types time-millis, time-macros,
timestampmillis and timestampmicros, are internally stored as byte arrays
(fixed or not). Depending on the Avro writer, some of these arrays store the
string representation of the decimal, while others store the unscaled value.
To avoid presenting ambiguous data, Oracle recommends that you use the
option avrodecimaltype to declare explicitly which representation is used. If
this option is not explicitly specified, then the default option for Oracle SQL
access to Kafka is that the unscaled representation of the data is stored in
the decimal columns of the file.

The following example Avro schema defines a record that uses all Avro logical types:

{
 "type" : "record",
 "name" : "logical",
 "fields" : [{
 "name" : "f_decimal",
 "type" : {
 "type" : "bytes",
 "logicalType" : "decimal",
 "precision" : 4,
 "scale" : 2
 }
 }, {
 "name" : "f_date",
 "type" : {
 "type" : "int",
 "logicalType" : "date"
 }
 }, {
 "name" : "f_time_millis",
 "type" : {
 "type" : "int",
 "logicalType" : "time-millis"
 }
 }, {
 "name" : "f_time_micros",
 "type" : {
 "type" : "long",
 "logicalType" : "time-micros"
 }
 }, {
 "name" : "f_timestamp_millis",
 "type" : {
 "type" : "long",
 "logicalType" : "timestamp-millis"
 }
 }, {
 "name" : "f_timestamp_micros",
 "type" : {
 "type" : "long",

Chapter 21
Data Formats Supported with Oracle SQL Access to Kafka

21-18

 "logicalType" : "timestamp-micros"
 }
 }]
}

If you created Oracle SQL access to Kafka temporary tables for Avro data by using this
example Avro schema, then the temporary tables have the following schema:

describe ORA$DKVGTT_ALPHA1_MYAPP__0;
 Name Null? Type
 --- --------

 KAFKA_PARTITION NUMBER(38)
 KAFKA_OFFSET NUMBER(38)
 KAFKA_EPOCH_TIMESTAMP NUMBER(38)
 F_DECIMAL NUMBER
 F_DATE DATE
 F_TIME_MILLIS TIMESTAMP(3)
 F_TIME_MICROS TIMESTAMP(6)
 F_TIMESTAMP_MILLIS TIMESTAMP(3)
 F_TIMESTAMP_MICROS TIMESTAMP(6)

21.9 Configuring Access to a Kafka Cluster
You can configure access to secured Kafka clusters, or non-secured Kafka clusters

• Create a Cluster Access Directory
The Oracle SQL access to Kafka administrator must create a cluster access directory
object for each Kafka cluster to control database user access to the cluster.

• The Kafka Configuration File (osakafka.properties)
To access Kafka clusters, you must create and a configuration file that contains the
information required to access the Kafka cluster.

• Kafka Configuration File Properties
The properties described here are used in the Kafka Configuration File
osakafka.properties.

• Security Configuration Files Required for the Cluster Access Directory
Identify the configuration files you require, based on your security protocol.

21.9.1 Create a Cluster Access Directory
The Oracle SQL access to Kafka administrator must create a cluster access directory object
for each Kafka cluster to control database user access to the cluster.

The Cluster Access Directory is the Oracle directory object that contains the Kafka cluster
configuration files. This directory is required for all clusters. For access to Kafka clusters,
each Kafka cluster requires its own Cluster Access Directory. As the Oracle SQL access to
Kafka administrator, you administer access to the Kafka cluster through creating the Cluster
Access Directory object, and then granting READ access to this directory to the database
users who need to access the Kafka cluster. You must create the Cluster Access Directory
before you call the DBMS_KAFKA_ADM.REGISTER_CLUSTER() procedure.

Chapter 21
Configuring Access to a Kafka Cluster

21-19

Example 21-3 Creating a Cluster Access Directory Object and Granting READ
Access

First create a cluster access directory object. In this example, the object is
osak_kafkaclus1_access:

 CREATE DIRECTORY osak_kafkaclus1_access AS '';;

After the Kafka Cluster is successfully registered, the Oracle SQL access to Kafka
administrator grants READ access on this directory to users.

In this example, the user example_user is granted access to
osak_kafkaclus1_access:

 GRANT READ ON DIRECTORY osak_kafkaclus1_access TO example_user;

21.9.2 The Kafka Configuration File (osakafka.properties)
To access Kafka clusters, you must create and a configuration file that contains the
information required to access the Kafka cluster.

• About the Kafka Configuration File
The osakafka.properties file contains configuration information required to
access secured Kafka Clusters, as well as additional information about Oracle
SQL access to Kafka.

• Oracle SQL Access for Kafka Configuration File Properties
To create an osakafka.properties file, review and specify the properties as
described here.

• Creating the Kafka Access Directory
To access secure Kafka clusters, you must create a Kafka Access Directory for
each Kafka cluster.

21.9.2.1 About the Kafka Configuration File
The osakafka.properties file contains configuration information required to access
secured Kafka Clusters, as well as additional information about Oracle SQL access to
Kafka.

The Kafka Configuration File, osakafka.properties, is created in the Cluster
Access Directory. The Oracle SQL access to Kafka administrator (granted
OSAK_ADMIN_ROLE) creates the osakafka.properties file. This file is used by the
DBMS_KAFKA_ADM package to make connections to an Apache Kafka cluster.

The Oracle SQL access to Kafka administrator creates a Cluster Access Directory
directory in which to store the configuration files for each Kafka Cluster. Each Cluster
Access Directory has its own Kafka Configuration File. To manage access to Apache
Kafka clusters, only an Oracle SQL access to Kafka administrator has read and write
access to Cluster Access Directories for Kafka clusters. No other users are granted
any privileges on Cluster Access Directories, or Kafka Configuration Files.

Chapter 21
Configuring Access to a Kafka Cluster

21-20

Functions of the Kafka Configuration File

The osakafka.properties file is similar to the consumer properties file used by a Kafka
Consumer using librdkafka. Secure Apache Kafka clusters require credential files, such as
certificate authority, and client private key and client public certificate (PEM). These additional
files again are like the ones required by a Kafka Consumer using librdkafka. The
osakafka.properties file has the following properties:

• It is created and managed by the Oracle SQL access to Kafka administrator as part of the
setup and configuration needed to access a Kafka cluster.

• It consists of a text file of key-value pairs. Each line has the format key=value describing
the key and the value, and is terminated with a new line. The new line character cannot
be part of the key or value.

• It contains Oracle SQL access for Kafka parameters, which are identified with the osak
prefix.

• It contains debugging properties for Oracle SQL access to Kafka.

• It is used by the DBMS_KAFKA_ADM package to make connections to a Kafka cluster using
librdkafka APIs.

• It is required for secure Kafka clusters, to store security configuration properties required
to connect to Kafka clusters using librdkaka interfaces, Oracle SQL access to Kafka
tuning properties, which are identified with the osak prefix, and debugging properties. For
secure cluster access, the key-value pairs contain include cluster configuration files such
as SSL/TLS certificates and client public and private keys.

• It is optional for non-secure Kafka clusters, to contain the tuning and debugging
properties for cluster connections

The osakafka.properties file is stored in the Oracle SQL access for Kafka Cluster Access
directory, in the path ORACLE_base/osak/clusters/cluster-name/config, where
Oracle_base is the Oracle base directory of the target Oracle Database, and cluster-name is
the name of the Kafka Cluster whose access information is stored in the configuration file.

Guidelines for Creating Kafka Configuration Files

As part of the setup and configuration required to access an Apache Kafka cluster, an Oracle
SQL access for Kafka administrator The information in this file is used to set session context
in C interfaces, which make connections to a Kafka cluster using librdkafka APIs.

The SYS.DBMS_KAFKA_SEC_ALLOWED_PROPERTIES system table contains a pre-populated list of
supported consumer configuration properties, including security properties. For extensibility,
SYS can add more properties to this table with certain restrictions

The DBMS_KAFKA_ADM.REGISTER_CLUSTER() procedure reads only those properties from the
osakafka.properties file that are also listed in the
SYS.DBMS_KAFKA_SEC_ALLOWED_PROPERTIES system table. Any extra properties are ignored.

Chapter 21
Configuring Access to a Kafka Cluster

21-21

21.9.2.2 Oracle SQL Access for Kafka Configuration File Properties
To create an osakafka.properties file, review and specify the properties as described
here.

osakafka.properties File Processing

The properties specified in the osakafka.properties must be those listed in the table
that follows. If you provide any other key-value pairs, then these values are ignored.

Note the following:

• Property names with the osak prefix are internal tuning properties or debugging
properties.

• Property names without the osak prefix are Kafka consumer properties, which are
used by librdkafka. For a complete list of properties, refer to the documentation
for the Apache Kafka C/C++ client library (librdkafka) documentation.

Property Allowed Values Description

security.protocol PLAINTEXT

SSL

SASL_PLAIN_TEXT

SASL_SSL

Security Protocol used to
communicate with Kafka
brokers

sasl.mechanisms GSSAPI

PLAIN

SCRAM-SHA-256

SCRAM-SHA-512

SASL mechanism to use for
authentication

NOTE: Despite the plural
name, only one mechanism
must be configured.

This property is allowed to
provide backward compatibility
for older Kafka clusters.
Where possible, Oracle
recommends that you use the
property
sasl.mechanisminstead.

sasl.mechanism GSSAPI

PLAIN

SCRAM-SHA-256

SCRAM-SHA-512

Simple Authentication and
Security Layer (SASL)
mechanism to use for
authentication

ssl.ca.location File in the cluster configuration
directory

File name of Certification
Authority (CA) certificate for
verifying the broker key. If an
absolute path is specified,
then the last token of path is
taken as the file name.

Chapter 21
Configuring Access to a Kafka Cluster

21-22

Property Allowed Values Description

ssl.key.location File in the cluster configuration
directory

File name of client private key

If an absolute path is
specified, then the last token
of path is taken as the file
name.

The corresponding password
value must be stored as a
database credential using the
DBMS_CREDENTIALCREATE_C
REDENTIAL() procedure

ssl.certificate.locatio
n

File in the cluster configuration
directory

File name of client public
(PEM) key

If an absolute path is
specified, then the last token
of path is taken as the file
name.

ssl.endpoint.identifica
tion.algorithm

Valid Values:

https

none

Endpoint identification
algorithm to validate the Kafka
broker hostname, using a
Kafka broker certificate.
Values are as follows:

https: Server (Kafka broker)
hostname verification, as
specified in RFC2818.

none: No endpoint verification.

Default Value: none
sasl.username Username The username required for

authenticating to the Kafka
cluster.

The corresponding password
value for this username must
be stored as a database
credential, using the
DBMS_CREDENTIALCREATE_C
REDENTIAL() procedure

sasl.kerberos.principal Client Kafka Kerberos
principal name

The Client Kerberos principal
name

sasl.kerberos.ccname Kerberos ticket cache
file name

The Kerberos ticket cache file

Example: krb5ccname_osak
This file must exist in the
cluster configuration directory.

sasl.kerberos.config Kerberos Configuration
file name

The Kerberos configuration of
the Kafka Cluster. Example
krb5.conf
This file must exist in the
cluster configuration directory

Chapter 21
Configuring Access to a Kafka Cluster

21-23

Property Allowed Values Description

sasl.kerberos.service.n
ame

Kerberos principal name
(Kafka primary name)

The primary name of the
Kerberos principal, which is
the name that appears before
the slash (/). For example,
kafka is the primary name of
the Kerberos principal kafka/
broker1.example.com@EXA
MPLE.

max.partition.fetch.byt
es

1024 * 1024 For librdkafkaSDK clients,
OSS recommends that you
allocate 1MB for each
partition.

debug all Used to debug connectivity
issues.

Example

The following is an example osakafka.properties file that specifies security protocol
SSL,and provides authentication by using a Certification Authority (CA) certificate on
the client:

security.protocol=ssl
ssl.ca.location=ca-cert
ssl.certificate.location=client_myhostname_client.pem
ssl.key.location=client_myhostname_client.key

Related Topics

• librdkafka The Apache Kafka C/C++ client library

21.9.2.3 Creating the Kafka Access Directory
To access secure Kafka clusters, you must create a Kafka Access Directory for each
Kafka cluster.

The Oracle SQL access to Kafka administrator creates the operating system directory
Oracle-base/osak/cluster_name/config, where Oracle-base is the Oracle base
directory, and cluster_name is the value of the cluster name parameter passed to the
SYS.DBMS_KAFKA_ADM.REGISTER_CLUSTER call. Each Kafka cluster requires its own
dedicated Kafka Cluster Directory.

This directory must contain all the configuration files needed to access the Kafka
Cluster:

• osakafka.properties file.

• Security files listed in the osakafka.properties file

In the following example, the Oracle base directory is /u01/app/oracle, and the
cluster name is kafkaclus1:

 mkdir u01/app/oracle/osak/kafkaclus1/config;

Chapter 21
Configuring Access to a Kafka Cluster

21-24

https://docs.confluent.io/platform/current/clients/librdkafka/html/index.html

 CREATE DIRECTORY osak_kafkaclus1_config AS
 ‘u01/app/oracle/osak/kafkaclus1/config’ ;

21.9.3 Kafka Configuration File Properties
The properties described here are used in the Kafka Configuration File
osakafka.properties.

Description

The properties in the Kafka Configuration File contain configuration information for the
Apache Kafka cluster. There are two categories of property names in the Kafka Configuration
File:

• consumer configuration property parameters are properties used by the Apache
Kafka broker. These files

• Oracle properties are the property names with the osak prefix. These properties are
used for internal tuning or debugging.

The properties listed in the Kafka Configuration File are cross-checked against the system
table SYS.DBMS_KAFKA_SEC_ALLOWED_PROPERTIES which contains all the supported properties.
Any properties specified in the osakafka.properties file but not listed in the
SYS.DBMS_KAFKA_SEC_ALLOWED_PROPERTIES table will be ignored by OSAK. The properties
and values allowed in the osakafka.properties file are listed below:

Table 21-4 Property Names and Descriptions for Kafka Configuration Files

Property Name Allowed Values Description

security.protocol PLAINTEXT, SSL,
SASL_PLAIN_TEXT, SASL_SSL

Security Protocol used to
communicate with Kafka brokers

sasl.mechanisms GSSAPI, PLAIN, SCRAM-
SHA-256, SCRAM-SHA-512

The SASL mechanism to use for
authentication

NOTE: Despite the plural name,
only one mechanism must be
configured.

This property is allowed to
provide backward compatibility
for older Kafka clusters. Where
possible, Oracle recommends
that you use use the property
sasl.mechanism instead.

sasl.mechanism GSSAPI, PLAIN, SCRAM-
SHA-256, SCRAM-SHA-512

The SASL mechanism to use for
authentication

ssl.ca.location File in cluster config directory File name of Certification
Authority (CA) certificate for
verifying the broker key. If the
absolute path is specified, then
the last token of path is taken as
the file name

Chapter 21
Configuring Access to a Kafka Cluster

21-25

Table 21-4 (Cont.) Property Names and Descriptions for Kafka Configuration Files

Property Name Allowed Values Description

ssl.key.location File in cluster config directory File name of client private key

If an absolute path is specified,
then the last token of path is
taken as the file name

The corresponding password
value must be stored as a
database credential using the
DBMS_CREDENTIALCREATE_CRE
DENTIAL() procedure

ssl.certificate.location File in cluster config directory File name of client public (PEM)
key

If an absolute path is specified,
then the last token of path is
taken as the file name.

ssl.endpoint.identificati
on.algorithm

Valid Values: https, none
Default Value: none

The endpoint identification
algorithm to validate the Kafka
broker hostname, using the
Kafka broker certificate.

https: Server (Kafka broker)
hostname verification as
specified in RFC2818.

none: No endpoint verification..

sasl.username Username required for
authenticating with Kafka cluster

Username required for
authenticating with Kafka cluster.

The corresponding password
value must be stored as a
database credential using the
DBMS_CREDENTIALCREATE_CRE
DENTIAL() procedure

sasl.kerberos.principal Client Kafka Kerberos principal
name

Client Kerberos principal name

sasl.kerberos.ccname Kerberos ticket cache file name Kerberos ticket cache file

Example: krb5ccname_osak
This file must exist in the cluster
configuration directory.

sasl.kerberos.config Kerberos Configuration file name Kerberos configuration of the
Kafka Cluster.

Example krb5.conf
This file must exist in the cluster
configuration directory

sasl.kerberos.service.nam
e

The Kerberos principal name
with which Kafka runs.

The Kerberos principal name
with which Kafka runs.

max.partition.fetch.bytes 1024 * 1024 OSS recommends that you
allocate 1MB for each partition
for librdkafkaSDK clients.

debug All Used to debug connectivity
issues

Chapter 21
Configuring Access to a Kafka Cluster

21-26

Example 21-4 Configuration File with Properties

osakafka.properties file for security protocol: SSL with client
authentication
security.protocol=ssl
ssl.ca.location=ca-cert
ssl.certificate.location=client_myhostname_client.pem
ssl.key.location=client_myhostname_client.key

21.9.4 Security Configuration Files Required for the Cluster Access
Directory

Identify the configuration files you require, based on your security protocol.

To configure access to a secure Kafka Cluster, the Oracle SQL access to Kafka administrator
must add several configuration files from the Kafka Cluster Access Directory. The list of
required files depends on which security protocol is used to configure security on the Kafka
cluster. The file list can include files such as the certificate authority file, the SSL client public
certificate file (PEM format), and the SSL client private key file.

Note:

The Kerberos keytab file is not required, because Kerberos ticket management is
handled outside of Oracle SQL access to Kafka.

• SASL_SSL/GSSAPI
Apache clusters with the SASL_SSL using GSSAPI authentication protocol required files for
the Cluster Access Directory

• SASL_PLAINTEXT/GSSAPI
Apache clusters with the SASL_PLAINTEXT using GSSAPI authentication protocol required
files for the Cluster Access Directory

• SASL_PLAINTEXT/SCRAM-SHA-256
Apache clusters with the SASL_PLAINTEXT using SCRAM-SHA-256 authentication protocol
required files for the Cluster Access Directory

• SASL_SSL/PLAIN
Apache clusters with the SASL_SSL using PLAIN authentication protocol required files for
the Cluster Access Directory

• SSL with Client Authentication
Apache clusters with the SSL authentication protocol required files for the Cluster Access
Directory

• SSL without Client Authentication
Apache clusters with the SSL authentication protocol and without cliet authentication that
are required files for the Cluster Access Directory

Chapter 21
Configuring Access to a Kafka Cluster

21-27

21.9.4.1 SASL_SSL/GSSAPI
Apache clusters with the SASL_SSL using GSSAPI authentication protocol required files
for the Cluster Access Directory

Description

The SASL_SSL/GSSAPI protocol specifies Kerberos authentication with encryption.
The Kerberos tickets must be managed externally (outside Oracle SQL access To
Kafka).

DBMS_CREDENTIAL

Not required, because Kerberos tickets are managed externally.

Required Files in the Cluster Access Directory

1. The certificate authority (CA) file

2. The osakafka.properties file, with ssl.ca.location specifying the CA file is the
SSL certificate authority .

In the following example, the property security.protocol specifies SASL_SSL. The
property sasl.mechanism specifies GSSAPI. The CA file is ca-cert.pem, and it is
specified by the property ssl.ca.location.

security.protocol=SASL_SSL
sasl.mechanism=GSSAPI
sasl.kerberos.service.name=kafka
sasl.kerberos.config=krb5.conf
sasl.kerberos.ccname=krb5ccname_osak
sasl.kerberos.principal=kafkaclient/<FQDN-hostname>@<Realm>
ssl.ca.location=ca-cert.pem
ssl.endpoint.identification.algorithm=https

21.9.4.2 SASL_PLAINTEXT/GSSAPI
Apache clusters with the SASL_PLAINTEXT using GSSAPI authentication protocol
required files for the Cluster Access Directory

Description

The SASL_PLAINTEXT/GSSAPI protocol specifies Kerberos authentication with no
encryption. The Kerberos tickets must be managed externally (outside Oracle SQL
access to Kafka).

DBMS_CREDENTIAL

Not required, because Kerberos tickets are managed externally.

Required Files in the Cluster Access Directory

1. The osakafka.properties file, with ssl.ca.location specifying the CA file is the
SSL certificate authority .

Chapter 21
Configuring Access to a Kafka Cluster

21-28

In the following example, the property security.protocol specifies SASL_PLAINTEXT, and the
property sasl.mechanism specifies GSSAPI.

security.protocol=SASL_PLAINTEXT
sasl.mechanism=GSSAPI
sasl.kerberos.service.name=kafka
sasl.kerberos.principal=kafkaclient/FQDN-hostname@Realm
sasl.kerberos.config=krb5.conf
sasl.kerberos.ccname=krb5ccname_osak

21.9.4.3 SASL_PLAINTEXT/SCRAM-SHA-256
Apache clusters with the SASL_PLAINTEXT using SCRAM-SHA-256 authentication protocol
required files for the Cluster Access Directory

Description

The SASL_PLAINTEXT/SCRAM-SHA-256 protocol specifies SASL SCRAM authentication with no
encryption.

DBMS_CREDENTIAL

Required, to store the password for the SASL user name.

Required Files in the Cluster Access Directory

1. The osakafka.properties file.

In the following example, the property security.protocol specifies SASL_PLAINTEXT, and the
property sasl.mechanism specifies SCRAM-SHA-256.

security.protocol=SASL_PLAINTEXT
sasl.mechanism=SCRAM-SHA-256
sasl.username=testuser

21.9.4.4 SASL_SSL/PLAIN
Apache clusters with the SASL_SSL using PLAIN authentication protocol required files for the
Cluster Access Directory

Description

The SASL_SSL/PLAIN protocol specifies settings for used OSS Kafka clusters

DBMS_CREDENTIAL

Required to store the r sasl.password.

Required Files in the Cluster Access Directory

1. The osakafka.properties file.

Chapter 21
Configuring Access to a Kafka Cluster

21-29

Example 21-5 OSS Cluster osakafka.properties File

In the following example, the property security.protocol specifies SASL_SSL, and the
property sasl.mechanism specifies PLAIN.

security.protocol=SASL_SSL
sasl.mechanism=PLAIN
sasl.username=<tenancyName>/<username>/<streamPoolID>
 #-- limit request size to 1 MB per partition
max.partition.fetch.bytes=1048576

Example 21-6 Non-OSS Cluster osakafka.properties File

In the following example, the property security.protocol specifies SASL_SSL, and the
property sasl.mechanism specifies PLAIN.The ssl.ca.location property specifies a
certificate authority (CA) file. The CA file is ca-cert.pem.

security.protocol=SASL_SSL
sasl.mechanism=PLAIN
sasl.username=kafkauser
ssl.ca.location=ca-cert.pem
ssl.endpoint.identification.algorithm=https

21.9.4.5 SSL with Client Authentication
Apache clusters with the SSL authentication protocol required files for the Cluster
Access Directory

Description

The SSL protocol specifies SSL with client authorization.

DBMS_CREDENTIAL

Required, to store the password for the SSL key.

Required Files in the Cluster Access Directory

1. The osakafka.properties file.

2. The configuration authority (CA) file

3. The rdkafka client PEM file (rdkafka.client.pem)

4. The rdkafka client key (rdkafka.client.key)

Example 21-7 SSL osakafka.properties File

In the following example, the property security.protocol specifies SSL, the property
ssl.key.location specifies the rdkafka client key, and the sa.ca.location property
specifies the certificate authority file.

security.protocol=SSL
ssl.certificate.location=rdkafka.client.pem
ssl.key.location=rdkafka.client.key

Chapter 21
Configuring Access to a Kafka Cluster

21-30

ssl.ca.location=ca-cert.pem
ssl.endpoint.identification.algorithm=https

21.9.4.6 SSL without Client Authentication
Apache clusters with the SSL authentication protocol and without cliet authentication that are
required files for the Cluster Access Directory

Description

The SSL protocol specifies SSL without client authorization.

DBMS_CREDENTIAL

Not required.

Required Files in the Cluster Access Directory

1. The osakafka.properties file.

2. The configuration authority (CA) file

Example 21-8 SSL osakafka.properties File

In the following example, the property security.protocol specifies SSL, and the
sa.ca.location property specifies the certificate authority file.

security.protocol=SSL
ssl.ca.location=ca-cert.pem
ssl.endpoint.identification.algorithm=https

21.10 Creating Oracle SQL Access to Kafka Applications
To create an application to access Apache Cluster data, create the type of application that
you require.

Oracle SQL access to Kafka provides the following application modes that you can use to
attach to the Apache Kafka cluster:

• Loading: Use to load data from a Kafka Topic into an Oracle Database table.

• Streaming: Use to read sequentially through a Kafka topic.

• Seekable: Use to access a Kafka topic randomly between starting and ending
timestamps that you designate.

Choose the type of application that you want to create, depending on the kind of access to
Kafka topics that you require:

• DBMS_KAFKA.CREATE_LOAD_APP creates an application that can be used in Loading mode.

• DBMS_KAFKA.CREATE_STREAMING_APP creates an application that can be used in Streaming
mode.

• DBMS_KAFKA.CREATE_SEEKABLE_APP creates an application that can used in Seekable
mode.

Chapter 21
Creating Oracle SQL Access to Kafka Applications

21-31

Example 21-9 Creating a Streaming Application with Four Views for a Kafka
Topic

In the following example, a streaming application is created to use a set of four views
with temporary tables for a Kafka topic that has four (4) partitions. Each view creates a
temporary table. Each view (and temporary table) is associated with one partition of
the Kafka topic:

DECLARE
 v_options VARCHAR2;
BEGIN
 v_options := ‘{"fmt" : "DSV", "reftable" : "user_shape_table_name"}';
 SYS.DBMS_KAFKA.CREATE_STREAMING_APP (
 'ExampleCluster',
 'ExampleApp',
 'ExampleTopic',
 v_options,
 4);
END;
/

Example 21-10 Creating a Streaming Application with One View for a Kafka
Topic

In the following example, a streaming application is created to use one view (1) with a
temporary table where the temporary tables for a Kafka topic has four partitions. The
view (a temporary table) is associated with the entire Kafka topic:

DECLARE
 v_options VARCHAR2;
BEGIN
 v_options := ‘{"fmt" : "DSV", "reftable" : "user_shape_table_name"}';
 SYS.DBMS_KAFKA.CREATE_STREAMING_APP (
 'ExampleCluster',
 'ExampleApp',
 'ExampleTopic',
 v_options,
 1);
END;
/

21.11 Security for Kafka Cluster Connections
Oracle SQL Access to Kafka supports access to Kafka and Oracle Streaming Service
(OSS), using various security mechanisms, such as SSL, SASL, and Kerberos.

Chapter 21
Security for Kafka Cluster Connections

21-32

Note:

The credentials used to access the Kafka cluster must have access to both the
Kafka broker metadata, as well as any topics that will be part of any Oracle SQL
access to Kafka application. If there are access control lists (ACLs) enabled for the
credentials, then ensure that access is granted to both the brokers and to the Kafka
topics. In a shared Oracle Real Application Clusters (Oracle RAC) environment,
securiy credentials should be in a shared location, not local to a cluster member
node.

Secure Kafka Clusters

To maintain securely encrypted data transmission between Oracle Database and clusters,
Oracle SQL access to Kafka employs several security protocols. For access to secure Kafka
clusters and Oracle Streaming Services (OSS) clusters, security configuration files are used.
These operating system files must exist in the cluster configuration directory. The cluster
configuration Oracle directory object is created to access the cluster configuration files. Only
the osak_admin_role is granted READ access to this directory. The cluster configuration files
are readable only by the osak_admin_role. The cluster configuration files include the
osakafka.properties file, and additional security files, such as SSL/TLS/PEM files and
certificates. Keys and Certificates for SSL are stored in the Oracle keystore.

The cluster access Oracle directory object is used to control access to the Kafka cluster. This
directory object does not contain any configuration files. Kafka sessions are exclusive to
individual PDBs in the multitenant environment. Each PDB where you want to create an
application to connect to a Kafka broker must create its own application.

No passwords must be embedded in files. Any embedded password properties in the
osakafka.properties file will be ignored. All passwords must be stored as database
credentials using the DBMS_CREDENTIAL package.

Kafka Clusters Using Kerberos Authentication

For Kafka clusters using Kerberos Authentication, the Kerberos ticket for the Kafka principal
specified in the osakafka.properties file must be acquired on the database system, and
renewed periodically outside of Oracle SQL access to Kafka.

The cluster configuration directory object and the cluster access directory object and
database credential name must be supplied as input parameters to the
DBMS_KAFKA_ADM.REGISTER_CLUSTER() call.

The Oracle SQL Access to Kafka administrator (a user with the osak_admin_role, the
OSAK_ADMIN) performs the cluster registration and administration tasks.

21.12 Configuring Access to Unsecured Kafka Clusters
To configure access to non-secure Kafka clusters, the OSAK administrator (Oracle Database
user with osak_admin_role) must complete this procedure.

Access to non-secure Kafka clusters requires that you create a cluster access database
directory object to control access to the Kafka cluster. The grants on this database directory
are used to control which Oracle Database users can access the Kafka cluster. This
database directory has an empty path: it does not a need a corresponding operating system
directory, and it also does not contain any files. Oracle recommends that the Oracle Directory

Chapter 21
Configuring Access to Unsecured Kafka Clusters

21-33

Object Name for a cluster access database directory object takes the form
OSAK_CLUSTER_NAME_ACCESS, where CLUSTER_NAME is the name of the Kafka cluster.

Procedure:

1. Create the cluster access database directory with an empty path. This directory is
used to control which Oracle users can access the Kafka cluster.

For example, create a cluster access database directory object called
oaskaccess_kafkaclust1 with an empty path. This directory is used to control
which Oracle users can access the Kafka cluster.

SQL> CREATE DIRECTORY OSAK_KAFKACLUS2_ACCESS AS '';

2. On the target Oracle Database server, create the cluster configuration operating
system directory in the Oracle base path directory, using the path Oracle_base/
osak/cluster_name/config where Oracle_base is the Oracle base directory, and
cluster_name is the Kafka cluster name. For example:

mkdir /u01/app/oracle/osak/kafkaclus2/config

Log in to the database as SYSDBA, start SQL, and create the corresponding
Oracle directory object. In this example, the Kafka cluster name is KAFKACLUS2:

SQL> CREATE DIRECTORY OSAK_KAFKACLUS2_CONFIG AS 'u01/app/oracle/
osak/kafkaclus2/config';

3. Create an empty osakafka.properties file, or an osakafka.properties file with
OSAK tuning or debugging properties.

4. In SQL, register the Kafka cluster using DBMS_KAKFA_ADM.REGISTER_CLUSTER().
For example, using the server hostname mykafkabootstrap-host, port 9092, for
Kafka cluster KAFKACLUS2:

SQL> select DBMS_KAFKA_ADM.REGISTER_CLUSTER (
 cluster_name => ‘KAFKACLUS2’,
 bootstrap_servers =>‘Kafka-example-host:9092’,
 kafka_provider =>
DBMS_KAFKA_ADM.KAFKA_PROVIDER_APACHE,
 cluster_access_dir => ‘OSAK_KAFKACLUS2_ACCESS’,
 credential_name => NULL,
 cluster_config_dir => ‘OSAK_KAFKACLUS2_CONFIG’,
 cluster_description => 'My test cluster kafkaclus2’,
 options => NULL)
from dual;

If configuration is successful, then the registration return is 0 (zero):

SQL> DBMS_KAFKA_ADM_RE…..
 0

Chapter 21
Configuring Access to Unsecured Kafka Clusters

21-34

5. Grant read access to a Kafka user. In the following example, user app2-usr is granted
access to the Kafka cluster named KAFKACLUS2:

SQL> grant read on directory osak_kafkaclus2_access to app2-usr;

21.13 Configuring Access to Secure Kafka Clusters
To configure access to secure Kafka clusters use this procedure.

Access to secure Kafka clusters requires configuration files, such as osakafka.properties,
and additional security files such as SSL/TLS PEM files and certificates. These files are
stored in a cluster configuration database directory object. The configuration files and
directory are protected by the operating system directory and file access privileges,

The cluster configuration operating system directory is configured in the Oracle base
directory, and is owned by the Oracle Installatoin owner, or Oracle user (oracle), and the
Oracle Inventory Group (oinstall). The Oracle user and Oracle Inventory group must have
directory privileges set to 750 (rwxr-x---) on and the osakafka.properties file in the
directory must have privileges set to 540 (rw-r-----). All other files in the cluster
configuration directory must have privileges set to and 440 (r--r-----).

• The Oracle SQL Access for Kafka configuration file (osakafka.properties) is created
and stored in a cluster configuration database directory object.

• Security files for your chosen security method, such as Kerberos, SSL, TLS/SSL with
PEM files, and the certificates created for them, are stored in a cluster configuration
database directory object.

Procedure:

1. Create a cluster access database directory object to control access to the Kafka cluster.
The grants on this database directory object are used to control which Oracle Database
users can access the Kafka cluster. This database directory has an empty path. That is, it
does not need a corresponding operating system directory, and does not contain any
files.

For example, create a cluster access database directory object called
oaskaccess_kafkaclust1 with an empty path. This directory is used to control which
Oracle users can access the Kafka cluster. :

SQL> CREATE DIRECTORY osakaccess_kafkaclus1 AS '';

2. On the target Oracle Database server, create the cluster configuration operating system
directory in the Oracle base path directory, using the path Oracle_base/osak/
cluster_name/config where Oracle_base is the Oracle base directory, and
cluster_name is the Kafka cluster name. For example:

mkdir /u01/app/oracle/osak/kafkaclus1/config

3. Log in to the database as SYSDBA, start SQL, and create the corresponding Oracle
directory object in the target Oracle Database. Oracle recommends that you use

Chapter 21
Configuring Access to Secure Kafka Clusters

21-35

OSAK_clustername_access for the database object name, where clusternamne is
the name of the Kafka cluster. For example:

CREATE DIRECTORY OSAK_KAFKACLUS1_CONFIG
 AS '/u01/app/oracle/osak/kafkaclus1/config';

4. Create the osakafka.properties file in the cluster configuration directory, based
on the security protocol you use. This file is similar to librdkafka client properties
file.

In the following example, the osakafka.properties file is configured to use
Secure Socket Layer (SSL) for the security protocol, with client authentication:

security.protocol=ssl
ssl.ca.location=ca-cert
ssl.certificate.location=client_myhostname_client.pem
ssl.key.location=client_myhostname_client.key
ssl.key.password=password-that-is-ignored

5. Copy the security files referred to by osakafka.properties into the cluster
configuration directory. For example, where the ca-cert path is /etc/ssl/certs/:

$cp /etc/ssl/certs/ca-cert /u01/app/oracle/osak/kafkaclus1/config;
$cp /etc/ssl/certs/client-myhostname-client.pem /u01/app/oracle/
osak/kafkaclus1/config;
$cp /etc/ssl/certs/client-myhostname-client.key /u01/app/oracle/
osak/kafkaclus1/config;

6. Set up credentials:

• If you are using either SSL.key.location or sasl.username properties in the
osakafka.properties file:

Create a database credential to store the password required for authentication
with the Kafka cluster using SSL SASI authentication. The corresponding
password properties ssl.key.password or sasl.password are added
automatically by DBMS_KAFKA during the cluster registration process. For
example:

begin
 dbms_credential.create_credential(
 credential_name => 'KAFKACLUS1CRED1',
 username => 'KAFKACLUS1',
 password => 'enter-ssl-key-password-or-sasl-password);
end;
/

• If your Kafka cluster uses GSSAPI/Kerberos as its authentication mechanism:

Acquire the Kerberos ticket on the databases system for the Kafka principal
listed in the osakafka.properties file

Chapter 21
Configuring Access to Secure Kafka Clusters

21-36

7. Log in as SYSDBA, start SQL, and register the Kafka cluster using the
SYS.DBMS_KAFKA_ADM.REGISTER_CLUSTER() procedure. In the following example, the
Kafka cluster KAFKACLUS1 is registered:

select DBMS_KAFKA_ADM.REGISTER_CLUSTER ('KAFKACLUS1',
 'mykafkabootstrap-host:9092',
 DBMS_KAFKA_ADM.KAFKA_PROVIDER_APACHE,
 'OSAK_KAFKACLUS1_ACCESS'
 'KAFKACLUS1CRED1',
 'OSAK_KAFKACLUS1_CONFIG',
 'My test cluster kafkaclus1') from dual;

If successful, then the output should return 0 (zero). For example:

SQL> DBMS_KAFKA_ADM_RE…..
 0

8. Grant read access to a Kafka user. In the following example, user app1-usr is granted
access to the Kafka cluster named KAFKACLUS1:

SQL> grant read on directory OSAK_KAFKACLUS1_ACCESS to app1-usr;

21.14 Administering Oracle SQL Access to Kafka Clusters
See how to update, temporarily disable, and delete Kafka cluster definitions with Oracle SQL
access to Kafka

• Updating Access to Kafka Clusters
If the Kafka cluster environment changes, you can update the cluster definition and
configuration for those changes.

• Disabling or Deleting Access to Kafka Clusters
You can temporarily disable an Oracle SQL access to a Kafka cluster, or delete the
connection if it is no longer required.

21.14.1 Updating Access to Kafka Clusters
If the Kafka cluster environment changes, you can update the cluster definition and
configuration for those changes.

During the lifetime of the Kafka cluster definition, if you need to update the cluster definition,
then you can use DBMS_KAFKA_ADM.UPDATE_CLUSTER_INFO and
DBMS_KAFKA_ADM.CHECK_CLUSTER.

21.14.2 Disabling or Deleting Access to Kafka Clusters
You can temporarily disable an Oracle SQL access to a Kafka cluster, or delete the
connection if it is no longer required.

Chapter 21
Administering Oracle SQL Access to Kafka Clusters

21-37

Example 21-11 Disabling a Kafka Cluster

During temporary outages of the Kafka environment, you can temporarily disable
access to the Kafka cluster

• DBMS_KAFKA_ADM.DISABLE_CLUSTER followed by

• DBMS_KAFKA_ADM.ENABLE_CLUSTER when the Kafka environment is back
up

Example 21-12 Deleting a Kafka Cluster

When a cluster definition is no longer needed, the OSAK Administrator can remove the
cluster definition

• DBMS_KAFKA_ADM.DEREGISTER_CLUSTER

21.15 Guidelines for Using Kafka Data with Oracle SQL
Access to Kafka

Review guidelines, restrictions, and recommendations as part of your application
development plan.

• Kafka Temporary Tables and Applications
Oracle SQL access to Kafka views and their corresponding temporary tables are
bound to a unique Kafka application (a group ID), and must exclusively access
one or more partitions in a topic on behalf of that application.

• Sharing Kafka Data with Multiple Applications Using Streaming
To enable multiple applications to use Kafka data, use Oracle SQL access to
Kafka to stream Kafka tables to a user table.

• Dropping and Recreating Kafka Tables
Because the Kafka offsets are managed by the DBMS_KAFKA metadata tables,
changes to a Kafka topic configuration can require manual updates to Oracle SQL
access to Kafka applications.

21.15.1 Kafka Temporary Tables and Applications
Oracle SQL access to Kafka views and their corresponding temporary tables are
bound to a unique Kafka application (a group ID), and must exclusively access one or
more partitions in a topic on behalf of that application.

Use these guidelines to assist you with constricting your applications.

Kafka Group IDs and Oracle SQL Access to Kafka Temporary Tables

Unlike standard Oracle tables and views, in accordance with the rules for consuming
Apache Kafka data, Kafka temporary tables cannot be shared across multiple
applications. With Kafka data, each temporary table is a snapshot of data fetched
directly from Kafka at a particular point of time, and has a canonical name format that
identifies the Kafka cluster, the application name, and a view ID, an integer identifying
a particular view accessing one or more partitions in the cluster or topic on behalf of an
application associated with a consumer group ID (groupID) in Kafka. The temporary
views and tables created in Oracle Database are bound to a unique Kafka application
(identified by groupID), and must exclusively access one or more partitions in a topic
on behalf of that application. It cannot share access to these partitions simultaneously

Chapter 21
Guidelines for Using Kafka Data with Oracle SQL Access to Kafka

21-38

with other applications. This restriction extends to an Oracle application instance. An Oracle
SQL Access to Kafka view and its associated temporary table must be exclusive to that
application. If you want to configure multiple applications to query the same Kafka topic or
partition data, then these applications must identify themselves as a different application (that
is, with different, unique Kafka group IDs), and create their own Oracle SQL access to Kafka
applications, reflecting their own group ID and applcation identity, and their own set of offsets
to track.

Guidelines for Using Views and Tables with Oracle SQL Access to Kafka

Create views and tables for your applications in accordance with the kinds of analytics you
want to perform with that data.

If you want your application to use Oracle SQL for analytics, then Oracle recommends that
you create an Oracle SQL access to Kafka view for that application that captures all partitions
of the data that you want to query. Each visit by a single application instance captures all new
Kafka data in a topic, and generates aggregate information that the application can then store
or display.

If you do not want to perform analytics using Oracle SQL, but instead use complex logic in
the application itself, then Oracle recommends that you scale out the application instances,
and have each Oracle SQL access to Kafka view access a single partition on behalf of a
single application instance. For this case, typically the Kafka data is joined with standard
Oracle tables to enrich the data returned to the application.

In cases where some SQL analytics and joins are performed before more analysis is done by
the application, views mapping to some subset of the partitions in a topic can be a good
option to choose.

21.15.2 Sharing Kafka Data with Multiple Applications Using Streaming
To enable multiple applications to use Kafka data, use Oracle SQL access to Kafka to stream
Kafka tables to a user table.

To share Kafka data with multiple Oracle users, so that table is not tied to a specific Group ID,
Oracle recommends that you have an application user run the Oracle SQL access to Kafka in
Loading mode, with the PL/SQL procedure DBMS_KAFKA.EXECUTE_LOAD_APP, to create a table
owned by that user. With this option, a single application instance runs the Loading PL/SQL
procedure on a regular basis to load all new data incrementally from a Kafka topic into an
Oracle Database table. After the data is loaded into the table, it can then be made accessible
to standard Oracle Database applications granted access to that table, without the
restrictions that apply to temporary tables.

21.15.3 Dropping and Recreating Kafka Tables
Because the Kafka offsets are managed by the DBMS_KAFKA metadata tables, changes to a
Kafka topic configuration can require manual updates to Oracle SQL access to Kafka
applications.

To ensure that Oracle application instances can identify what Kafka table content has been
read, and where it has been read, partition offsets of a Kafka topic must tracked on a per
application instance basis.

Kafka supports three models for committing offsets:

• Auto-commit, where Kafka commits the last offset fetched on a short time schedule

Chapter 21
Guidelines for Using Kafka Data with Oracle SQL Access to Kafka

21-39

• Manual commit, where applications send a request for Kafka to commit an offset

• Application-managed commits, where Kafka commits are entirely managed by the
applications.

Oracle uses application-managed commits. In these commits, Kafka sees this as an
application declaring manual commits without ever explicitly committing to Kafka.
Offsets are recorded and maintained exclusively in DBMS_KAFKA metadata tables.
These tables are protected by the ACID transaction properties of Oracle Database. To
insure the integrity of transactions, Oracle does not support Kafka auto-commit or
Kafka manual commit in Oracle SQL Access to Kafka.

If a Kafka topic is dropped and recreated, then you must update that table manually,
depending on the scenario:

Example 21-13 Dropping and Resetting a View with the Same Partitions

If the number of partitions remains the same as the original Kafka topic configuration,
then you must reset the view reset the Oracle SQL access to Kafka view to begin
processing from the beginning of the Kafka partition within the recreated topic. To reset
the view, call the procedure DBMS_KAFKA.INIT_OFFSET(view_name, 0, ‘WML’), where
view_name is the name of the view.

Example 21-14 Dropping and Resetting a View with Fewer Partitions

This option is not available. If the number of partitions is less than the original Kafka
topic configuration, then the Oracle SQL access to Kafka applications associated with
this topic must be dropped and recreated.

Example 21-15 Dropping and Resetting a View with More Partitions

If the number of partitions is greater than the original Kafka topic configuration, then
you must reset the Oracle SQL Access to Kafka view by calling the procedure
DBMS_KAFKA.INIT_OFFSET(view_name, 0, ‘WML’), where view_name is the name of
the view, and then call the procedure DBMS_KAFKA.ADD_PARTITIONS for each Oracle
SQL Access to Kafka application using this topic.

21.16 Choosing a Kafka Cluster Access Mode for
Applications

To use Oracle SQL access to Kafka, decide what mode of data access you require for
your applications.

• Configuring Incremental Loads of Kafka Records Into an Oracle Database Table
To enable applications to load data incrementally from a Kafka topic into an Oracle
Database table, you use Oracle SQL Access to Kafka in Loading mode.

• Streaming Access to Kafka Records in Oracle SQL Queries
To access Kafka topics in a sequential manner from the beginning of the topic, or
from a specific starting point in a Kafka topic, you can use Oracle SQL Access to
Kafka in Streaming mode.

• Seekable access to Kafka Records in Oracle SQL queries
To access Kafka records randomly between two timestamps, you use Oracle SQL
Access to Kafka in Seekable mode

Chapter 21
Choosing a Kafka Cluster Access Mode for Applications

21-40

21.16.1 Configuring Incremental Loads of Kafka Records Into an Oracle
Database Table

To enable applications to load data incrementally from a Kafka topic into an Oracle Database
table, you use Oracle SQL Access to Kafka in Loading mode.

Configuring Oracle SQL Access to Kafka to perform incremental loads using the
EXECUTE_LOAD_APP procedure enables you to move Kafka data into standard Oracle tables,
which are accessible by multiple applications without the one reader constraint imposed
when using Oracle SQL access to Kafka temporary tables.

To load Kafka data incrementally into an Oracle Database table, an application declares that
it is a loading application by calling the PL/SQL procedure DBMS_KAFKA.CREATE_LOAD_APP to
initialize a state for subsequent calls toDBMS_KAFKA.EXECUTE_LOAD_APP. The
DBMS_KAFKA.CREATE_LOAD_APP procedure creates a single view over all partitions of the topic.

If you do not require data from the entire topic, then you also have the option to configure the
application to call the DBMS_KAFKA.INIT_OFFSET[_TS] procedure to set the starting point in
Kafka topic partitions for loading the Kafka data.

The DBMS_KAFKA.EXECUTE_LOAD_APP procedure is called in an application loop to load data
from where the previous call left off to the current high water mark of the Kafka topic. This
procedure runs in an autonomous transaction.

To load data into an Oracle Database table from a Kafka topic:

• DBMS_KAFKA.CREATE_LOAD_APP to create an Oracle SQL Access to Kafka Load
application

• Optionally, DBMS_KAFFA_INIT_OFFSET_TS or DBMS_KAFKA_INIT_OFFSET to set
the first Kafka record to be read

• LOOP until done

– DBMS_KAFKA.EXECUTE_LOAD_APP to load Kafka data starting from where we
left off to the current high water mark

• DBMS_KAFKA.DROP_LOAD_APP to drop the load application

21.16.2 Streaming Access to Kafka Records in Oracle SQL Queries
To access Kafka topics in a sequential manner from the beginning of the topic, or from a
specific starting point in a Kafka topic, you can use Oracle SQL Access to Kafka in Streaming
mode.

If your application requires access to Kafka topics in a sequential manner, you can configure
Oracle SQL Access to Kafka in Streaming mode. This mode enables a SQL query using an
Oracle SQL access to Kafka temporary table to access Kafka records sequentially in an
application processing loop. With this use case, the application declares that it is a streaming
application by calling the PL/SQL procedure DBMS_KAFKA.CREATE_STREAMING_APP to initialize
the state for subsequent queries of Oracle SQL access to Kafka views. In addition to creating
views, this procedure also creates a global temporary table for each view. You also have the
option to use the INIT_OFFSET[_TS] procedure to set the starting point in Kafka topic
partitions for your application. When you set as starting point, the initial query reads the Kafka
data from the starting point. The application then can perform the following steps, in a
processing loop:

Chapter 21
Choosing a Kafka Cluster Access Mode for Applications

21-41

1. Call DBMS_KAFKA.CREATE_STREAMING_APP to create the Oracle SQL access to
Kafka streaming application.

2. (Optional) call DBMS_KAFFA_INIT_OFFSET_TS or DBMS_KAFKA_INIT_OFFSET to set
the first Kafka record that you want to be read.

3. LOOP until done:

a. Call DBMS_KAFKA.LOAD_TEMP_TABLE to load the global temporary table
with the next set of rows from Kafka

b. SELECT from the OSAK global temporary table Process data retrieved

c. If the processing was successful, call DBMS_KAFKA.UPDATE_OFFSET to update
the last Kafka offsets read

d. Commit the offset tracking information using COMMIT.

4. When finished, call DBMS_KAFKA.DROP_STREAMING_APP to drop the
application.

The PL/SQL procedure DBMS_KAFKA.UPDATE_OFFSET transparently advances Kafka
partition offsets of the Kafka group ID for all of the partitions that are identified with the
Oracle SQL access to Kafka view, so that for every call to
DBMS_KAFKA.LOAD_TEMP_TABLE, a new set of unread Kafka records is retrieved and
processed

Note that UPDATE_OFFSET initiates an Oracle transaction if a transaction is not already
started, and records the last offsets in metadata tables. Because of this, to ensure that
the transaction does not lose its session information you should configure your
application to commit the transaction after every call to UPDATE_OFFSET. After you
commit the transaction, because Oracle SQL access to Kafka manages offsets within
an Oracle transaction, no records are lost or reread. If the transaction fails to
complete, then offsets are not advanced. When the application resumes data reads, it
can then restart the data reads of the Kafka data from where it stopped its previous
reads.

21.16.3 Seekable access to Kafka Records in Oracle SQL queries
To access Kafka records randomly between two timestamps, you use Oracle SQL
Access to Kafka in Seekable mode

The Seekable mode of Oracle SQL access to Kafka enables an application to read
Kafka records between timestamps of interest, typically identified by a peer application
doing streaming access. In this mode, you specify the start and end timestamps that
define a window of time from which the DBMS_KAFKA.LOAD_TEMP_TABLE procedure will
populate the temporary table. An application declares that it is a Seekable application
by calling the PL/SQL procedure DBMS_KAFKA.CREATE_SEEKABLE_APP to initialize the
state for accessing Kafka in Seekable mode. This procedure creates a view and a
corresponding global temporary table over all partitions of the topic. The
DBMS_KAFKA.SEEK_OFFSET_TS procedure is called to specify the time window from
which to query. The application calls SEEK_OFFSET_TS before calling the
DBMS_KAFKA.LOAD_TEMP_TABLE procedure to load the temporary table with the next set
of rows.

To query Kafka data in ”Seekable” mode in order to access Kafka records between two
timestamps

Chapter 21
Choosing a Kafka Cluster Access Mode for Applications

21-42

• DBMS_KAFKA.CREATE_SEEKABLE_APP to create the Oracle SQL Access to Kafka
seekable application

• LOOP until done

– DBMS_KAFKA.SEEK_OFFSET_TS to seek to a user defined window of time in a
Kafka topic

– Call DBMS_KAFKA.LOAD_TEMP_TABLE to load the global temporary table with the
set of rows from Kafka

– SELECT from the OSAK global temporary table

– Process the data

• DBMS_KAFKA.DROP_SEEKABLE_APP when done with the application

21.17 Creating Oracle SQL Access to Kafka Applications
To query Kafka data in a LOAD application, load Kafka data into an Oracle Database table
using these procedures.

Typical uses of load procedures include:

DBMS_KAFKA.CREATE_LOAD_APP: This procedure is used to set up loading into an Oracle table

DBMS_KAFKA.INIT_OFFSET[_TS] (OPTIONAL): This procedure is used to set offsets in all topic
partitions to control the starting point of a sequence of load operations. You repeat this
procedure until you no longer want to load new rows from the Kafka topic on which you run
the procedure.

DBMS_KAFKA.EXECUTE_LOAD_APP: This procedure is used to load new unread records from a
Kafka topic to high water mark of all topic partitions

DBMS_KAFKA. DROP_LOAD_APP: This procedure is used when loading is complete from
the Kafka topic on which you are running procedures.

• Creating Load Applications with Oracle SQL Access to Kafka
If you want to load data into an Oracle Database table, then use the Loading mode of
DBMS_KAFKA.

• Creating Streaming Applications with Oracle SQL Access to Kafka
If you want to load data into an Oracle Database table, then use the Loading mode of
DBMS_KAFKA.

• Creating Seekable Applications with Oracle SQL Access to Kafka
If you want to investigate issues that occurred in the past, and randomly access a Kafka
topic between starting and ending timestamps, then use the Seekable mode of
DBMS_KAFKA.

21.17.1 Creating Load Applications with Oracle SQL Access to Kafka
If you want to load data into an Oracle Database table, then use the Loading mode of
DBMS_KAFKA.

An Oracle SQL access to Kafka load application retrieves data from all partitions of a Kafka
topic, and places that data into an Oracle Database table for processing. It also creates, if not
already present, a metadata view that is used to inspect the Kafka cluster for live topic and
partition information regarding the Kafka topic. This view is created once, and serves all

Chapter 21
Creating Oracle SQL Access to Kafka Applications

21-43

applications that are sharing the same cluster. Only one application instance is allowed
to call DBMS_KAFKA.EXECUTE_LOAD_APP for the created LOAD application.

Example 21-16 Loading Data Into a Table with
DBMS_KAFKA.EXECUTE_LOAD_APP

In this example, you create create one view and associated temporary table for a
loading application. The Kafka cluster name is ExampleCluster, the application name
is ExampleApp. The Kafka Topic is ExampleTopic, which is a topic that has four
partitions:

DECLARE
v_options VARCHAR2;
BEGIN
 v_options := ‘{“fmt” : “DSV”, “reftable” : “user_reftable_name”}’;
 SYS.DBMS_KAFKA.CREATE_LOAD_APP (
 ‘ExampleCluster’,
 ‘ExampleApp’,
 ‘ExampleTopic’,
 v_options);
END;
/

Example 21-17 Loading Data Periodically Into a Table with
DBMS_KAFKA.EXECUTE_LOAD_APP

As an alternative to processing Kafka data from a set of application views, you can
choose simply to load the data from Kafka into an Oracle Database table, periodically
fetching the latest data into the table. The DBMS_KAFKA.EXECUTE_LOAD_APP procedure in
this example obtains the latest data from the Kafka cluster, and inserts the data into
the table, ExampleLoadTable. An application that uses the data in this table has the
option to calll DBMS_KAFKA.INIT_OFFSET[_TS] to set the starting point for the load.

DECLARE
 v_records_inserted INTEGER;
BEGIN
 SYS.DBMS_KAFKA.EXECUTE_LOAD_APP (
 ‘ExampleCluster’,
 ‘ExampleLoadApp’,
 ‘ExampleLoadTable’,
 v_records_inserted);
END;

Example 21-18 Dropping the Kafka View and Metadata with
DBMS_KAFKA.DROP_LOAD_APP or DBMS_KAFKA.DROP_ALL_APPS

If the Oracle SQL access to Kafka Load application is no longer needed, then you can
drop the views and metadata by calling DBMS_KAFKA.DROP_LOAD_APP. In the following
example, the Kafka cluster is ExampleCluster, and the application is ExampleApp.

EXEC SYS.DBMS_KAFKA.DROP_LOAD_APP
 (‘ExampleCluster’, ‘ExampleApp’);

Chapter 21
Creating Oracle SQL Access to Kafka Applications

21-44

If the Kafka cluster for one or more Oracle SQL access to Kafka applications no longer exists,
then you can drop all of the applications for a given cluster by calling
DBMS_KAFKA.DROP_ALL_APPS

EXEC SYS.DBMS_KAFKA.DROP_ALL_APPS
 (‘ExampleCluster’);

21.17.2 Creating Streaming Applications with Oracle SQL Access to Kafka
If you want to load data into an Oracle Database table, then use the Loading mode of
DBMS_KAFKA.

Streaming enables the ability to process data at scale. You can use Oracle SQL access to
Kafka in streaming mode to create multiple application instances. Multiple instances enables
applications to scale out and divide the workload of analyzing Kafka data across the
application instances running concurrently on one or more threads, processes, or systems.

An Oracle SQL access to Kafka streaming application includes a set of dedicated Oracle
SQL access to Kafka global temporary tables and Oracle SQL access to Kafka views. These
temporary tables and views can be used for retrieving new, unread records from partitions in
a Kafka topic.

It also creates, if not already present, a metadata view that is used to inspect the Kafka
cluster for active topic and partition information regarding the Kafka topic. This view is
created once, and serves all applications that are sharing the same cluster.

Each Oracle SQL access to Kafka global temporary table and its related view is exclusively
used by one instance of an Oracle SQL access to Kafka application.

Each application instance calls LOAD_TEMP_TABLE, which populates the dedicated Oracle SQL
access to Kafka global temporary table with Kafka rows retrieved from the associated view.
The application then can run one or more SQL queries against the content in the Oracle SQL
access to Kafka global temporary table. When the application is done with the current set of
Kafka rows, it calls UPDATE_OFFSET and COMMIT.

A STREAMING mode application is different from a LOAD or SEEKING application in that you can
configure the application to select how many Oracle SQL access to Kafka views and
temporary tables are required for your application purpose. As with other types of Oracle SQL
access to Kafka applications, each application instance exclusively queries one unique
Oracle SQL access to Kafka temporary table. Each Oracle SQL access to Kafka view and
global temporary table name includes the cluster name, the application name, and an
application instance identifier (ID).

In creating your application, be aware that the number Oracle SQL access to Kafka views
and temporary table pairs you create must be between 1 and N where N is the number of
partitions in the Kafka topic.

During runtime, each application instance runs in its own user session, and processes one
Oracle SQL access to Kafka global temporary table and its associated view. Accordingly, to
run application instances concurrently, you must allocate at least as many sessions to the
user as there are partitions in the Kafka topic (that is, the value of N). If the view_count
exceeds the maximum sessions per user, then this call fails with an error indicating that there
are insufficient sessions allocated to the user. The number of Kafka partitions bound to a
specific Oracle SQL access to Kafka view and its associated global temporary table varies,
depending on how many views are created, and on how many partitions exist. Oracle SQL
access to Kafka balances the number of partitions assigned to each view.

Chapter 21
Creating Oracle SQL Access to Kafka Applications

21-45

Example 21-19 Streaming Data Into a Table with
DBMS_KAFKA.CREATE_STREAMING_APP

In this example, you create a set of four views and associated temporary tables for a
Streaming mode application using data from a topic called ExampleTopic. The topic
has four partitions, and each view and temporary table is associated with one partition:

DECLARE
 v_options VARCHAR2;
BEGIN
 v_options := ‘{“fmt” : “DSV”, “reftable” : “user_reftable_name”}’;
 SYS.DBMS_KAFKA.CREATE_STREAMING_APP (
 ‘ExampleCluster’,
 ‘ExampleApp’,
 ‘ExampleTopic’,
 v_options,
 4);
END;
/

Example 21-20 Loading Data Into a Single Table with
DBMS_KAFKA.CREATE_STREAMING_APP

In this example, Streaming mode is used to create one view and associated temporary
table for an application that is associated with all four partition of the topic:

DECLARE
v_options VARCHAR2;
BEGIN
 v_options := ‘{“fmt” : “DSV”, “reftable” :
“user_reftable_name”}’;
 SYS.DBMS_KAFKA.CREATE_STREAMING_APP (
 ‘ExampleCluster’,
 ‘ExampleApp’,
 ‘ExampleTopic’,
 v_options,
 1);
END;
/

Example 21-21 Dropping the Kafka View and Metadata with
DBMS_KAFKA.DROP_STREAMING_APP or DBMS_KAFKA.DROP_ALL_APPS

If the Oracle SQL access to Kafka Load application is no longer needed, then you can
drop the views and metadata by calling DBMS_KAFKA.DROP_STREAMING_APP. In the
following example, the Kafka cluster is ExampleCluster, and the application is
ExampleApp.

EXEC SYS.DBMS_KAFKA.DROP_STREAMING_APP
 (‘ExampleCluster’, ‘ExampleApp’);

Chapter 21
Creating Oracle SQL Access to Kafka Applications

21-46

If the Kafka cluster for one or more Oracle SQL access to Kafka applications no longer exists,
then you can drop all of the applications for a given cluster by calling
DBMS_KAFKA.DROP_ALL_APPS

EXEC SYS.DBMS_KAFKA.DROP_ALL_APPS
 (‘ExampleCluster’);

21.17.3 Creating Seekable Applications with Oracle SQL Access to Kafka
If you want to investigate issues that occurred in the past, and randomly access a Kafka topic
between starting and ending timestamps, then use the Seekable mode of DBMS_KAFKA.

Before accessing Kafka topics in Seekable mode, you must create an Oracle SQL Access to
Kafka application with DBMS_KAFKA.CREATE_SEEKABLE_APP This package creates an
application that you can use in Seekable mode.

Using Oracle SQL access to Kafka in Seekable mode enables you to use Kafka data to
investigate issues that have occurred in the past. Provided that the data is still present in the
Kafka steam, you can create a Seekable application by calling
DBMS_KAFKA.CREATE_SEEKABLE_APP. When you have created a Seekable mode application,
you can then call the procedure DBMS_KAFKA.SEEK_OFFSET_TS to request the Oracle SQL
access to Kafka view to retrieve a range of data records. For example, suppose that an IT
consultant was informed that a production issue occurred around 03:00 in the morning, and
needed to investigate the cause. The consultant could use the following procedure, load the
temporary table, and then select to retrieve an hour’s worth of data around that time:

In creating your application, be aware that the number Oracle SQL access to Kafka views
and temporary table pairs you create must be between 1 and N where N is the number of
partitions in the Kafka topic.

During runtime, each application instance runs in its own user session, and processes one
Oracle SQL access to Kafka global temporary table and its associated view. Accordingly, to
run application instances concurrently, you must allocate at least as many sessions to the
user as there are partitions in the Kafka topic (that is, the value of N). If the view_count
exceeds the maximum sessions per user, then this call fails with an error indicating that there
are insufficient sessions allocated to the user. The number of Kafka partitions bound to a
specific Oracle SQL access to Kafka view and its associated global temporary table varies,
depending on how many views are created, and on how many partitions exist. Oracle SQL
access to Kafka balances the number of partitions assigned to each view.

Example 21-22 Searching a Date Range in Kafka Data Using
DBMS_KAFKA.CREATE_SEEKABLE_APP

In this example, suppose that an IT consultant was informed that a production issue occurred
around 03:00 in the morning, and needed to investigate the cause. The consultant could use
the following procedure, load the temporary table, and then select to retrieve an hour’s worth
of data around that time, where the Kafka cluster is EXAMPLECLUSTER, and the columns are
EventCol and ExceptionCol:

SYS.DBMS_KAFKA.SEEK_OFFSET_TS (
 ‘ORA$DKV_EXAMPLECLUSTER_SEEKABLEAPP_0’,
 TO_DATE (‘2022/07/04 02:30:00’, ‘YYYY/MM/DD
HH:MI:SS’,
 TO_DATE (‘2022/07/04 03:30:00’, ‘YYYY/MM/DD
HH:MI:SS’));

Chapter 21
Creating Oracle SQL Access to Kafka Applications

21-47

SYS.DBMS_KAFKA.LOAD_TEMP_TABLE
 (ORA$DKVGTT_EXAMPLECLUSTER_SEEKABLEAPP_0);
SELECT EventCol, ExceptionCol FROM
ORA$DKV_EXAMPLECLUSTER_SEEKABLEAPP_0;

Example 21-23 Locating Records Associated with Anomalies Using
DBMS_KAFKA.CREATE_SEEKABLE_APP

Suppose that when an application using sequential access to a Kafka stream detected
a potential anomaly, the application inserts a row into an anomaly table. The anomaly
table includes the Kafka timestamp, as well as any other data specified as important to
trace. Another application could use this information to retrieve records around the
suspected record to see if there were any other issues associated with the anomaly. In
this example, the columns associated with an anomaly that an IT consultant wants to
examine are UserCol and ReqeustCol. To achieve this, run the following procedure,
load the temporary table, and then select and apply application logic to the results:

SYS.DBMS_KAFKA.SEEK_OFFSET_TS (
 ‘ORA$DKV_EXAMPLECLUSTER_SEEKABLEAPP_0’,
 TO_DATE (‘2020/07/04 02:30:00’, ‘YYYY/MM/DD
HH:MI:SS’,
 TO_DATE (‘2020/07/04 03:30:00’, ‘YYYY/MM/DD
HH:MI:SS’));

SYS.DBMS_KAFKA.LOAD_TEMP_TABLE
 (ORA$DKVGTT_EXAMPLECLUSTER_SEEKABLEAPP_0);
SELECT UserCol, RequestCol FROM ORA$DKV_EXAMPLECLUSTER_SEEKABLEAPP_0;
--application logic

Example 21-24 Dropping the Kafka View and Metadata with
DBMS_KAFKA.DROP_SEEKABLE_APP or DBMS_KAFKA.DROP_ALL_APPS

If the Oracle SQL access to Kafka Load application is no longer needed, then you can
drop the views and metadata by calling DBMS_KAFKA.DROP_SEEKABLE_APP. In the
following example, the Kafka cluster is ExampleCluster, and the application is
ExampleApp.

EXEC SYS.DBMS_KAFKA.DROP_SEEKABLE_APP
 (‘ExampleCluster’, ‘ExampleApp’);

If the Kafka cluster for one or more Oracle SQL access to Kafka applications no longer
exists, then you can drop all of the applications for a given cluster by calling
DBMS_KAFKA.DROP_ALL_APPS

EXEC SYS.DBMS_KAFKA.DROP_ALL_APPS
 (‘ExampleCluster’);

21.18 Using Kafka Cluster Access for Applications
Learn how to use Kafka cluster data access with your applications.

Chapter 21
Using Kafka Cluster Access for Applications

21-48

• How to Diagnose Oracle SQL Access to Kafka Issues
If you encounter issues with Oracle SQL access to Kafka, then use these guidelines to
determine the cause, and resolve the issue.

• Identifying and Resolving Oracle SQL Access to Kafka Issues
To assist with identifying and resolving issues, Oracle SQL access to Kafka provides
trace files, message tables, operation results tables, and a state column in the cluster
table.

21.18.1 How to Diagnose Oracle SQL Access to Kafka Issues
If you encounter issues with Oracle SQL access to Kafka, then use these guidelines to
determine the cause, and resolve the issue.

The following are the main diagnostic issues for Oracle SQL access to Kafka:

Failures to establish an initial connection

Errors of this type are as follows:

• Incorrect startup server list

• Incorrect credential information

• Networking configuration issues

Failures on first access

Failures on first access when calling DBMS_KAFKA CREATE_LOAD_APP, CREATE_STREAMING_APP,
or CREATE_SEEKABLE_APP typically have the following causes:

• Missing or incorrect topic

• Connection issues

Failures during record selection

Failures of this type typically have the following causes:

• Connection issues

• Internal metadata or logic issues

• Missing records

• Parsing errors where the Oracle SQL access to Kafka view shape does not match the
input.

Failure for an Oracle application and Oracle SQL access to Kafka views to keep up
with Kafka data input.

Failures of this type require resource tuning. They occur when the ingestion rate of rows into
a topic in a Kafka cluster comes close to or exceeds the Oracle Database ability to consume
Kafka records, such that after a period of time, unread records in Kafka become aged out by
Kafka before they are consumed by Oracle Database.

Avoid or correct this kind of error by determining the workload. For example, check the
frequency of querying, the typical number of records processed per query per Oracle SQL
access to Kafka view, the degree of parallelism being used, and the time spent by an
application performing analysis. When you have determined the workload, then ensure that
the application stack can meet it. Size your resources so that the application and Oracle

Chapter 21
Using Kafka Cluster Access for Applications

21-49

Database can process peak Kafka records without stressing either the application or
Oracle Database resources.

If you find that throughput rates start increasing, then several things can help. For
example: increase the degree of parallelism for the application user, start more
application instances, or add partitions to the Kafka cluster.

Example 21-25 Resolving an Oracle SQL Access to Kafka (OSAK) Application
Error

Suppose your OSAK application EXAMPLEAPP is loading data from the Kafka cluster
EXAMPLECLUSTER, and you receive an error such as the following:

ORA-62721: The specified parallel hint [%0!s] exceeds the granule
count {%1!s}.

The cause of this error is that the specified value was greater than the maximum
possible parallelism, which is determined by the granule count. How do you resolve
such an error?

The parallel_hint parameter on LOAD_TEMP_TABLE and EXECUTE_LOAD_APP is related
to the degree or parallelism (or DOP), which determines how many parallel process
can be run for a given select statement to fetch the data. To leverage parallel queries
to their potential, the parallel_hint parameter must be set between 2 and the
maximum allowed DOP. The maximum DOP is either the maximum allowed for the
user making the call, or the number of partitions associated with the OSAK view,
whichever is smaller. The cause is that either the database or the user account
running the application has exceeded the maximum allowed DOP.

To resolve this issue, specify a value less than or equal to the granule count. The
granule count can be determined by calling the DBMS_KAFKA.GET_GRANULE_COUNT
function:

DECLARE
 v_dop INTEGER;
BEGIN
 LOOP
 v_dop :=
SYS.DBMS_KAFKA.GET_GRANULE_COUNT(‘ORA$DKVGTT_EXAMPLECLUSTER_EXAMPLEAPP_
0’);

SYS.DBMS_KAFKA.LOAD_TEMP_TABLE(‘ORA$DKVGTT_EXAMPLECLUSTER_EXAMPLEAPP_0’
);
 FOR kafka_record IN (
 SELECT kafka_offset offset
 FROM ORA$DKVGTT_EXAMPLECLUSTER_EXAMPLEAPP_0)
 LOOP
 SYS.DBMS_OUTPUT.PUT_LINE (‘Processing record: ‘ ||
kafka_record.offset);
 --application logic to process the Kafka records
 END LOOP;
 IF (application logic was successful) THEN
 --Update internal metadata to confirm Kafka records were
successfully processed

SYS.DBMS_KAFKA.UPDATE_OFFSET(‘ORA$DKV_EXAMPLECLUSTER_EXAMPLEAPP_0’);

Chapter 21
Using Kafka Cluster Access for Applications

21-50

 COMMIT;
 ELSE
 --add your application logic to correct for any failures
 END IF;
 END LOOP;
END;

21.18.2 Identifying and Resolving Oracle SQL Access to Kafka Issues
To assist with identifying and resolving issues, Oracle SQL access to Kafka provides trace
files, message tables, operation results tables, and a state column in the cluster table.

Determine the nature of the issue you see, and then use the utility available to you to identify
and address the issue:

• Connection issue, logic issue, or Kafka access layer (Oracle executables called by
a Kafka data select) Check the trace file. Also, you can check the state column in the
sys.user_kafka_clusters table.

• Exceptions from DBMS_KAFKA and DBMS_KAFKA_ADM APIs: Review error
messages in the sys.user_kafka_messages table.

• Operations runtime issue: Review messages in the sys.user_kafka_ops_results table
when the performance of Oracle SQL access to Kafka data retrieval is not as expected.

Example 21-26 Connection issue, Logic Issue or Kafka access layer issue

Use the trace file to identify the issue.

• For connection related issues, the details are available from the view object tracing. To
enable, either add the event to the init.ora file or use the alter system command to
update the system during runtime:

Add the following entry to the initialization file (init.ora):

event='trace[KGRK] disk highest'

Alter the system:

 alter system set events 'trace[KGRK] disk highest';

Note:

Updates to the init.ora file require a restart of the database to take effect.

• For logic-related errors, all error paths contain tracing. All messages are prefaced with by
the string kubsCRK. These logic errors will also result in SQL exceptions being raised.

• The tracing output for the Kafka access layer of an Oracle SQL access to Kafka
application is enabled by calling DBMS_KAFKA.SET_TRACING with the enable argument
passed as TRUE. The tracing output is disabled by calling the same function with the
enable argument passed as FALSE.
For example:

Chapter 21
Using Kafka Cluster Access for Applications

21-51

To enable tracing for a cluster named ExampleCluster, with the application is
ExampleApp, enter the following:

DBMS_KAFKA.SET_TRACING('ExampleCluster', 'ExampleApp', true)

To disable tracing for that cluster, enter the following:

DBMS_KAFKA.SET_TRACING('ExampleCluster', 'ExampleApp', false)

Note:

To enable tracing, the following event must already be enabled for the
database:

event="39431 trace name context forever, level 1" # Enable
external table debug tracing

If you determine that the issue is a connection issue, then check the State column in
the sys.user_kafka_clusters table. The connection levels are designated by numeric
values:

• CONNECTED (0): This state indicates that the connection to the Kafka cluster has
been established. Errors that occur while the connection is established indicate an
issue with requesting the Kafka data. To identify the issue, enable tracing by using
the DBMS_KAFKA.SET_TRACING API, reproduce the problem, and then check the
associated trace file for the session for messages containing 'kubsCRK". Also check
for messages in the user_kafka_messages table.

• MAINTENANCE (1): This state indicates that the connection to the Kafka cluster
has been established, but errors that occur while the connection is established
indicate an issue requesting the Kafka data. To resolve this issue, enable tracing
using the DBMS_KAFKA.SET_TRACING API, reproduce the problem, and then check
the associated trace file for the session for messages containing kubsCRK. Also
check for messages in the user_kafka_messages table.

• BROKEN (2): This state indicates that a connection cannot be reestablished to the
Kafka cluster. Look for errors in the trace file for the facility KUBD, and in the
message table.

• DEREGISTERED (3): This state indicates that the OSAK administrator has forced
the cluster to be deregistered, and the associated Oracle SQL access to Kafka
views should no longer be accessed. This is expected behavior, and not an error.

Example 21-27 PL/SQL Package issues

Check the Sys.user_kafka_messages table. This table contains any messages
logged within the last three days. The data is automatically purged of older data once
a day. The messages are also removed if the OSAK views associated with the data
are dropped.

Chapter 21
Using Kafka Cluster Access for Applications

21-52

Example 21-28 Operations Runtime Issue

If the number of rows retrieved using a SELECT statement appears to be less than expected,
then use the data in the sys.user_kafka_ops_results table to review the number of records
read from Kafka for the last selection.

The SELECT only contains rows that parsed correctly, so the difference between the rows
retrieved and Kafka records read indicates that not all data in the Kafka topic is in the format
specified during the DBMS_KAFKA CREATE_LOAD_APP, CREATE_STREAMING_APP, or
CREATE_SEEKABLE_APP call.

If the Kafka topic data is not in the specified format, then the answers are as follows:

1. Fix the producers publishing to the Kafka cluster.

2. Drop and recreate the application so that it provides the proper format (reference table for
DSV, Avro schema for AVRO).

3. For JSON data, before you drop and recreate the application, check to see if the data
exceeds the maximum column length in the VARCHAR2 VALUE column. If the data is larger
than the maximum, then you can drop and recreate the application, but this time add the
option "jsond" : "clob" to the options parameter. This option enables OSAK to create
the column as a character large object (CLOB) column, instead of the default maximum
sized VARCHAR2.

Chapter 21
Using Kafka Cluster Access for Applications

21-53

22
ADRCI: ADR Command Interpreter

The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility is a command-line
tool that you use to manage Oracle Database diagnostic data.

Note:

Do not use UIDRVCI.exe file as it is used to access diagnostic data.

• About the ADR Command Interpreter (ADRCI) Utility
The Automatic Diagnostic Repository Command Interpreter (ADRCI) is a command-line
tool that is part of the Oracle Database fault diagnosability infrastructure.

• Definitions for Oracle Database ADRC
To understand how to diagnose Oracle Database problems, learn the definitions of terms
that Oracle uses for the ADRCI, and the Oracle Database fault diagnosability
infrastructure.

• Starting ADRCI and Getting Help
You can use ADRCI in interactive mode or batch mode.

• Setting the ADRCI Homepath Before Using ADRCI Commands
When diagnosing a problem, you may want to work with diagnostic data from multiple
database instances or components, or you may want to focus on diagnostic data from
one instance or component.

• Viewing the Alert Log
To view the ACR Command Interpreter alert log (ADRCI), use this procedure to view the
alert log in your default editor.

• Finding Trace Files
ADRCI enables you to view the names of trace files that are currently in the automatic
diagnostic repository (ADR).

• Viewing Incidents
The ADRCI SHOW INCIDENT command displays information about open Oracle Database
incidents.

• Packaging Incidents
You can use ADRCI commands to package one or more incidents for transmission to
Oracle Support for analysis.

• ADRCI Command Reference
Learn about the commands you can use with the Automatic Diagnostic Repository
Command Interpreter (ADRCI).

• Troubleshooting ADRCI
To assist troubleshooting, review some of the common ADRCI error messages, and their
possible causes and remedies.

22-1

22.1 About the ADR Command Interpreter (ADRCI) Utility
The Automatic Diagnostic Repository Command Interpreter (ADRCI) is a command-
line tool that is part of the Oracle Database fault diagnosability infrastructure.

The ADRCI utility assists you with diagnosing the cause of problems in your database
(incidents). It can assist you with collecting data in an incident package that Oracle
Support may need to help you to address the root cause of issues.

ADRCI assists you to do the following:

• View diagnostic data within the Automatic Diagnostic Repository (ADR).

• View Health Monitor reports.

• Package incident and problem information into a zip file for transmission to Oracle
Support.

Diagnostic data includes incident and problem descriptions, trace files, dumps, health
monitor reports, alert log entries, and more.

ADR data is secured by operating system permissions on the ADR directories, so
there is no need to log in to ADRCI.

ADRCI has a rich command set. You can use these commands either in interactive
mode, or within scripts.

Note:

The easier and recommended way to manage diagnostic data is with the
Oracle Enterprise Manager Support Workbench (Support Workbench).
ADRCI provides a command-line alternative to most of the functionality of the
Support Workbench, and adds capabilities, such as listing and querying trace
files.

See Oracle Database Administrator’s Guide for more information about the
Oracle Database fault diagnosability infrastructure.

Related Topics

• Oracle Database Administrator’s Guide Diagnosing and Resolving Problems

22.2 Definitions for Oracle Database ADRC
To understand how to diagnose Oracle Database problems, learn the definitions of
terms that Oracle uses for the ADRCI, and the Oracle Database fault diagnosability
infrastructure.

The following terms are associated with the Oracle Database automatic diagnostic
repository incident fault diagnosability infrastructure (ADRCI), and the Oracle
Database fault diagnosability infrastructure:

Chapter 22
About the ADR Command Interpreter (ADRCI) Utility

22-2

Automatic Diagnostic Repository (ADR)

The Automatic Diagnostic Repository (ADR) is a file-based repository for database
diagnostic data such as traces, dumps, the alert log, health monitor reports, and more. It has
a unified directory structure across multiple instances and multiple products. Beginning with
Oracle Database 11g and later releases, Oracle Automatic Storage Management (Oracle
ASM), and other Oracle Database products or components store all diagnostic data in the
ADR. Each instance of each product stores diagnostic data underneath its own ADR home
directory. For example, in an Oracle Real Application Clusters (Oracle RAC) environment with
shared storage and Oracle ASM, each database instance and each Oracle ASM instance has
a home directory within the ADR. The ADR's unified directory structure enables customers
and Oracle Support to correlate and analyze diagnostic data across multiple instances and
multiple products.

Problem

A problem is a critical error in the database. Critical errors include internal errors, such as
ORA-00600 and other severe errors, such as ORA-07445 (operating system exception) or
ORA-04031 (out of memory in the shared pool). Problems are tracked in the ADR. Each
problem has a problem key and a unique problem ID.

Incident

An incident is a single occurrence of a problem. When a problem occurs multiple times, an
incident is created for each occurrence. Incidents are tracked in the ADR. Each incident is
identified by a numeric incident ID, which is unique within the ADR. When an incident occurs,
the database makes an entry in the alert log, sends an incident alert to Oracle Enterprise
Manager, gathers diagnostic data about the incident in the form of dump files (incident
dumps), tags the incident dumps with the incident ID, and stores the incident dumps in an
ADR subdirectory created for that incident.

Diagnosis and resolution of a critical error usually starts with an incident alert. You can obtain
a list of all incidents in the ADR with an ADRCI command. Each incident is mapped to a
single problem only.

Incidents are flood-controlled, so that a single problem does not generate too many
incidents and incident dumps.

Problem Key

Every problem has a problem key, which is a text string that includes an error code (such as
ORA-600) and in some cases, one or more error parameters. Two incidents are considered to
have the same root cause if their problem keys match.

Incident Package

An incident package (Package) is a collection of data about incidents for one or more
problems. Before sending incident data to Oracle Support, you must collect the date into a
package, using the Incident Packaging Service (IPS). After a package is created, you can
add external files to the package, remove selected files from the package, or scrub (edit)
selected files in the package to remove sensitive data.

A package is a logical construct only, until you create a physical file from the package
contents. That is, an incident package starts out as a collection of metadata in the ADR. As
you add and remove package contents, only the metadata is modified. When you are ready
to upload the data to Oracle Support, you create a physical package by using ADRCI, which
saves the data into a zip file. You can then upload the zip file to Oracle Support.

Chapter 22
Definitions for Oracle Database ADRC

22-3

Finalizing

Before ADRCI can generate a physical package from a logical package, the package
must be finalized. This means that other components are called to add any correlated
diagnostic data files to the incidents already in this package. Finalizing also adds
recent trace files, alert log entries, Health Monitor reports, SQL test cases, and
configuration information. This step is run automatically when a physical package is
generated, and can also be run manually using the ADRCI utility. After manually
finalizing a package, you can review the files that were added and then remove or edit
any that contain sensitive information.

ADR Home

An ADR home is the root directory for all diagnostic data—traces, dumps, alert log,
and so on—for a particular instance of a particular Oracle product or component. For
example, in an Oracle RAC environment with Oracle ASM, each database instance
and each Oracle ASM instance has an ADR home. All ADR homes share the same
hierarchical directory structure. Some of the standard subdirectories in each ADR
home include alert (for the alert log), trace (for trace files), and incident (for incident
information). All ADR homes are located within the ADR base directory.

Some ADRCI commands can work with multiple ADR homes simultaneously. The
current ADRCI homepath determines the ADR homes that are searched for
diagnostic data when an ADRCI command is issued.

ADR Base

To permit correlation of diagnostic data across multiple ADR homes, ADR homes are
grouped together under the same root directory called the ADR base. For example, in
an Oracle RAC environment, the ADR base could be on a shared disk, and the ADR
home for each Oracle RAC instance could be located under this ADR base.

The location of the ADR base for a database instance is set by the DIAGNOSTIC_DEST
initialization parameter. If this parameter is omitted or is null, the database sets it to a
default value.

When multiple database instances share an Oracle home, whether they are multiple
single instances or the instances of an Oracle RAC database, and when one or more
of these instances set ADR base in different locations, the last instance to start up
determines the default ADR base for ADRCI.

Homepath

All ADRCI commands operate on diagnostic data in the current ADR homes. More
than one ADR home can be current at any one time. Some ADRCI commands (such
as SHOW INCIDENT) search for and display diagnostic data from all current ADR homes,
while other commands require that only one ADR home be current, and display an
error message if more than one are current.

The ADRCI homepath determines the ADR homes that are current. It does so by
pointing to a directory within the ADR base hierarchy. If it points to a single ADR home
directory, that ADR home is the only current ADR home. If the homepath points to a
directory that is above the ADR home directory level in the hierarchy, all ADR homes
that are below the directory that is pointed to become current.

The homepath is null by default when ADRCI starts. This means that all ADR homes
under ADR base are current.

Chapter 22
Definitions for Oracle Database ADRC

22-4

The SHOW HOME and SHOW HOMEPATH commands display a list of the ADR homes that are
current, and the SET HOMEPATH command sets the homepath.

Related Topics

• Oracle Database Administrator’s Guide About Incidents and Problems

• Oracle Database Administrator’s GuideAbout Correlated Diagnostic Data in Incident
Packages

22.3 Starting ADRCI and Getting Help
You can use ADRCI in interactive mode or batch mode.

Details are provided in the following sections:

• Using ADRCI in Interactive Mode
When you use ADRCI in interactive mode to diagnose Oracle Database incidents, it
prompts you to enter individual commands one at a time.

• Getting Help
Learn how to obtain help when using the ADR Command Interpreter (ADRCI) Utility..

• Using ADRCI in Batch Mode
Batch mode enables you to run a series of ADRCI commands using script or batch files,
without being prompted for input.

22.3.1 Using ADRCI in Interactive Mode
When you use ADRCI in interactive mode to diagnose Oracle Database incidents, it prompts
you to enter individual commands one at a time.

1. Ensure that the ORACLE_HOME and PATH environment variables are set properly.

On Microsoft Windows platforms, these environment variables are set in the Windows
registry automatically during installation. On other platforms, you must set and check
environment variables with operating system commands.

The PATH environment variable must include Oracle_home/bin
.

2. Enter the following command at the operating system command prompt:

ADRCI

The utility starts and displays the following prompt:

adrci>
3. Enter ADRCI commands, following each with the Enter key.

4. To exit ADRCI, Enter one of the following commands:

EXIT
QUIT

Chapter 22
Starting ADRCI and Getting Help

22-5

22.3.2 Getting Help
Learn how to obtain help when using the ADR Command Interpreter (ADRCI) Utility..

With the ADRCI help system, you can:

• View a list of ADR commands.

• View help for an individual command.

• View a list of ADRCI command line options.

To view a list of ADRCI commands

1. Start ADRCI in interactive mode.

2. At the ADRCI prompt, enter the following command:

HELP

To get help for a specific ADRCI command

1. Start ADRCI in interactive mode.

2. At the ADRCI prompt, enter the following command, where command is the ADRCI
command about which you want more information:

HELP command

For example, to obtain help on the SHOW TRACEFILE command, enter the following:

HELP SHOW TRACEFILE

To view a list of command line options

• Enter the following command at the operating system command prompt:

ADRCI -HELP

The utility displays output similar to the following:

Syntax:
 adrci [-help] [script=script_filename] [exec="command [;command;...]"]

Options Description (Default)

script script file name (None)
help help on the command options (None)
exec exec a set of commands (None)

Related Topics

• Using ADRCI in Interactive Mode
When you use ADRCI in interactive mode to diagnose Oracle Database incidents,
it prompts you to enter individual commands one at a time.

Chapter 22
Starting ADRCI and Getting Help

22-6

22.3.3 Using ADRCI in Batch Mode
Batch mode enables you to run a series of ADRCI commands using script or batch files,
without being prompted for input.

To use batch mode, you add a command line parameter to the ADRCI command when you
start ADRCI. Batch mode enables you to include ADRCI commands in shell scripts or
Microsoft Windows batch files. As with interactive mode, the ORACLE_HOME and PATH
environment variables must be set before starting ADRCI.

ADRCI Command Line Parameters for Batch Operation

The following command line parameters are available for batch operation:

Table 22-1 ADRCI Batch Operation Parameters

Parameter Description

EXEC Enables you to submit one or more ADRCI commands on the operating system
command line that starts ADRCI. Commands are separated by semicolons (;).

SCRIPT Enables you to run a script containing ADRCI commands.

How to Submit ADRCI Commands on the Command Line

• Enter the following command at the operating system command prompt:

ADRCI EXEC="COMMAND[; COMMAND]..."

For example, to run the SHOW HOMES command in batch mode, enter the following
command at the operating system command prompt:

ADRCI EXEC="SHOW HOMES"

To run the SHOW HOMES command followed by the SHOW INCIDENT command, enter the
following:

ADRCI EXEC="SHOW HOMES; SHOW INCIDENT"

How to Run ADRCI Scripts:

Enter the following command at the operating system command prompt:

ADRCI SCRIPT=SCRIPT_FILE_NAME

For example, to run a script file named adrci_script.txt, enter the following command at
the operating system command prompt:

ADRCI SCRIPT=adrci_script.txt

A script file contains a series of commands separated by semicolons (;) or line breaks. For
example:

SET HOMEPATH diag/rdbms/orcl/orcl; SHOW ALERT -term

Chapter 22
Starting ADRCI and Getting Help

22-7

22.4 Setting the ADRCI Homepath Before Using ADRCI
Commands

When diagnosing a problem, you may want to work with diagnostic data from multiple
database instances or components, or you may want to focus on diagnostic data from
one instance or component.

To work with diagnostic data from multiple instances or components, you must ensure
that the ADR homes for all of these instances or components are current. To work with
diagnostic data from only one instance or component, you must ensure that only the
ADR home for that instance or component is current. You control the ADR homes that
are current by setting the ADRCI homepath.

If multiple homes are current, this means that the homepath points to a directory in the
ADR directory structure that contains multiple ADR home directories underneath it. To
focus on a single ADR home, you must set the homepath to point lower in the directory
hierarchy, to a single ADR home directory.

For example, if the Oracle RAC database with database name orclbi has two
instances, where the instances have SIDs orclbi1 and orclbi2, and Oracle RAC is
using a shared Oracle home, the following two ADR homes exist:

/diag/rdbms/orclbi/orclbi1/
/diag/rdbms/orclbi/orclbi2/

In all ADRCI commands and output, ADR home directory paths (ADR homes) are
always expressed relative to ADR base. So if ADR base is currently /u01/app/oracle,
the absolute paths of these two ADR homes are the following:

/u01/app/oracle/diag/rdbms/orclbi/orclbi1/
/u01/app/oracle/diag/rdbms/orclbi/orclbi2/

You use the SET HOMEPATH command to set one or more ADR homes to be current. If
ADR base is /u01/app/oracle and you want to set the homepath to /u01/app/oracle/
diag/rdbms/orclbi/orclbi2/, you use this command:

adrci> set homepath diag/rdbms/orclbi/orclbi2

When ADRCI starts, the homepath is null by default, which means that all ADR homes
under ADR base are current. In the previously cited example, therefore, the ADR
homes for both Oracle RAC instances would be current.

adrci> show homes
ADR Homes:
diag/rdbms/orclbi/orclbi1
diag/rdbms/orclbi/orclbi2

In this case, any ADRCI command that you run, assuming that the command supports
more than one current ADR home, works with diagnostic data from both ADR homes.
If you were to set the homepath to /diag/rdbms/orclbi/orclbi2, only the ADR home for
the instance with SID orclbi2 would be current.

adrci> set homepath diag/rdbms/orclbi/orclbi2
adrci> show homes
ADR Homes:
diag/rdbms/orclbi/orclbi2

Chapter 22
Setting the ADRCI Homepath Before Using ADRCI Commands

22-8

In this case, any ADRCI command that you run would work with diagnostic data from this
single ADR home only.

See Also:

• Oracle Database Administrator's Guide for more information about the structure
of ADR homes

• ADR Base

• ADR Home

• Homepath

• SET HOMEPATH

• SHOW HOMES

22.5 Viewing the Alert Log
To view the ACR Command Interpreter alert log (ADRCI), use this procedure to view the alert
log in your default editor.

The alert log is written as both an XML-formatted file and as a text file. You can view either
format of the file with any text editor, or you can run an ADRCI command to view the XML-
formatted alert log with the XML tags omitted.

By default, ADRCI displays the alert log in your default editor. You can use the SET EDITER
command to change your default editor.

To view the alert log with ADRCI:

1. Start ADRCI in interactive mode.

2. (Optional) Use the SET HOMEPATH command to select (make current) a single ADR home.

You can use the SHOW HOMES command first to see a list of current ADR homes. See
Homepath and Setting the ADRCI Homepath Before Using ADRCI Commands for more
information.

3. At the ADRCI prompt, enter the following command:

SHOW ALERT

If more than one ADR home is current, you are prompted to select a single ADR home
from a list. The alert log is displayed, with XML tags omitted, in your default editor.

4. Exit the editor to return to the ADRCI command prompt.

The following are variations on the SHOW ALERT command:

SHOW ALERT -TAIL

This displays the last portion of the alert log (the last 10 entries) in your terminal session.

SHOW ALERT -TAIL 50

This displays the last 50 entries in the alert log in your terminal session.

Chapter 22
Viewing the Alert Log

22-9

SHOW ALERT -TAIL -F

This displays the last 10 entries in the alert log, and then waits for more messages to
arrive in the alert log. As each message arrives, it is appended to the display. This
command enables you to perform live monitoring of the alert log. Press CTRL+C to
stop waiting and return to the ADRCI prompt.

SPOOL /home/steve/MYALERT.LOG
SHOW ALERT -TERM
SPOOL OFF

This outputs the alert log, without XML tags, to the file /home/steve/MYALERT.LOG.

SHOW ALERT -P "MESSAGE_TEXT LIKE '%ORA-600%'"

This displays only alert log messages that contain the string 'ORA-600'. The output
looks something like this:

ADR Home = /u01/app/oracle/product/11.1.0/db_1/log/diag/rdbms/orclbi/orclbi:
**
01-SEP-06 09.17.44.849000000 PM -07:00
AlertMsg1: ORA-600 dbgris01, addr=0xa9876541

Related Topics

• SHOW ALERT
The ADRCI SHOW ALERT command shows the contents of the alert log in the
default editor.

See Also:

• SHOW ALERT

• SET EDITOR

• Oracle Database Administrator's Guide for instructions for viewing the
alert log with Oracle Enterprise Manager or with a text editor

22.6 Finding Trace Files
ADRCI enables you to view the names of trace files that are currently in the automatic
diagnostic repository (ADR).

You can view the names of all trace files in the ADR, or you can apply filters to view a
subset of names. For example, ADRCI has commands that enable you to:

• Obtain a list of trace files whose file name matches a search string.

• Obtain a list of trace files in a particular directory.

• Obtain a list of trace files that pertain to a particular incident.

You can combine filtering functions by using the proper command line parameters.

Chapter 22
Finding Trace Files

22-10

The SHOW TRACEFILE command displays a list of the trace files that are present in the trace
directory and in all incident directories under the current ADR home. When multiple ADR
homes are current, the traces file lists from all ADR homes are output one after another.

The following statement lists the names of all trace files in the current ADR homes, without
any filtering:

SHOW TRACEFILE

The following statement lists the name of every trace file that has the string mmon in its file
name. The percent sign (%) is used as a wildcard character, and the search string is case
sensitive.

SHOW TRACEFILE %mmon%

This statement lists the name of every trace file that is located in the /home/steve/temp
directory and that has the string mmon in its file name:

SHOW TRACEFILE %mmon% -PATH /home/steve/temp

This statement lists the names of trace files in reverse order of last modified time. That is, the
most recently modified trace files are listed first.

SHOW TRACEFILE -RT

This statement lists the names of all trace files related to incident number 1681:

SHOW TRACEFILE -I 1681

See Also:

• SHOW TRACEFILE

• Oracle Database Administrator's Guide for information about the directory
structure of the ADR

22.7 Viewing Incidents
The ADRCI SHOW INCIDENT command displays information about open Oracle Database
incidents.

When you submit a SHOW INCIDENT command, the ADRCI report shows the incident ID,
problem key, and incident creation time for each incident. If you set the homepath (a
directory within the ADR base hierarchy) so that there are multiple current ADR homes within
that hierarchy location, then the report includes incidents from all of the ADR homes. See
"Definitions for Oracle Database ADRC" for more information about homepath and other
ADRCI terms.

1. Start ADRCI in interactive mode, and ensure that the homepath points to the correct
directory within the ADR base directory hierarchy.

2. At the ADRCI prompt, enter the following command:

SHOW INCIDENT

Chapter 22
Viewing Incidents

22-11

ADRCI generates output similar to the following:

ADR Home = /u01/app/oracle/product/11.1.0/db_1/log/diag/rdbms/orclbi/orclbi:

INCIDENT_ID PROBLEM_KEY CREATE_TIME
----------------- ------------------------- ---------------------------------
3808 ORA 603 2010-06-18 21:35:49.322161 -07:00
3807 ORA 600 [4137] 2010-06-18 21:35:47.862114 -07:00
3805 ORA 600 [4136] 2010-06-18 21:35:25.012579 -07:00
3804 ORA 1578 2010-06-18 21:35:08.483156 -07:00
4 rows fetched

The following are variations on the SHOW INCIDENT command:

SHOW INCIDENT -MODE BRIEF
SHOW INCIDENT -MODE DETAIL

These commands produce more detailed versions of the incident report. For example,
to see a detailed incident report for incident 1681, enter the following command:

SHOW INCIDENT -MODE DETAIL -P "INCIDENT_ID=1681"

Related Topics

• ADRCI Command Reference
Learn about the commands you can use with the Automatic Diagnostic Repository
Command Interpreter (ADRCI).

• Definitions for Oracle Database ADRC
To understand how to diagnose Oracle Database problems, learn the definitions of
terms that Oracle uses for the ADRCI, and the Oracle Database fault
diagnosability infrastructure.

22.8 Packaging Incidents
You can use ADRCI commands to package one or more incidents for transmission to
Oracle Support for analysis.

Background information and instructions are presented in the following topics:

• About Packaging Incidents
Packaging ADR Command Interpreter (ADRCI) incidents is a three-step process.

• Creating Incident Packages
The following topics describe creating incident packages.

22.8.1 About Packaging Incidents
Packaging ADR Command Interpreter (ADRCI) incidents is a three-step process.

Step 1: Create a logical incident package.

The incident package (package) is denoted as logical, because it exists only as
metadata in the automatic diagnostic repository (ADR). It has no content until you
generate a physical package from the logical package. The logical package is
assigned a package number, and you refer to it by that number in subsequent
commands.

You can create the logical package as an empty package, or as a package based on
an incident number, a problem number, a problem key, or a time interval. If you create

Chapter 22
Packaging Incidents

22-12

the package as an empty package, then you can add diagnostic information to it in step 2.

Creating a package based on an incident means including diagnostic data—dumps, health
monitor reports, and so on—for that incident. Creating a package based on a problem
number or problem key means including in the package diagnostic data for incidents that
reference that problem number or problem key. Creating a package based on a time interval
means including diagnostic data on incidents that occurred in the time interval.

Step 2: Add diagnostic information to the incident package

If you created a logical package based on an incident number, a problem number, a problem
key, or a time interval, this step is optional. You can add additional incidents to the package or
you can add any file within the ADR to the package. If you created an empty package, you
must use ADRCI commands to add incidents or files to the package.

Step 3: Generate the physical incident package

When you submit the command to generate the physical package, ADRCI gathers all
required diagnostic files and adds them to a zip file in a designated directory. You can
generate a complete zip file or an incremental zip file. An incremental file contains all the
diagnostic files that were added or changed since the last zip file was created for the same
logical package. You can create incremental files only after you create a complete file, and
you can create as many incremental files as you want. Each zip file is assigned a sequence
number so that the files can be analyzed in the correct order.

Zip files are named according to the following scheme:

packageName_mode_sequence.zip

where:

• packageName consists of a portion of the problem key followed by a timestamp

• mode is either COM or INC, for complete or incremental

• sequence is an integer

For example, if you generate a complete zip file for a logical package that was created on
September 6, 2006 at 4:53 p.m., and then generate an incremental zip file for the same
logical package, you would create files with names similar to the following:

ORA603_20060906165316_COM_1.zip
ORA603_20060906165316_INC_2.zip

22.8.2 Creating Incident Packages
The following topics describe creating incident packages.

The ADRCI commands that you use to create a logical incident package (package) and
generate a physical package are:

• Creating a Logical Incident Package
You use variants of the IPS CREATE PACKAGE command to create a logical package
(package).

• Adding Diagnostic Information to a Logical Incident Package
After you have an existing logical package (package) configured for packaging incidents,
you can add diagnostic information to that package.

Chapter 22
Packaging Incidents

22-13

• Generating a Physical Incident Package
When you generate a package, you create a physical package (a zip file) for an
existing logical package.

See Also:

About Packaging Incidents

22.8.2.1 Creating a Logical Incident Package
You use variants of the IPS CREATE PACKAGE command to create a logical package
(package).

1. Start ADRCI in interactive mode, and ensure that the homepath (a directory within
the ADR base hierarchy) points to the correct directory within the ADR base
directory hierarchy for the database for which you want to create a logical
package.

See "Definitions for Oracle Database ADRC" for more information about homepath
and other ADRCI terms.

2. At the ADRCI prompt, enter the following command:

IPS CREATE PACKAGE INCIDENT incident_number

For example, the following command creates a package based on incident 3:

IPS CREATE PACKAGE INCIDENT 3

ADRCI generates output similar to the following:

Created package 10 based on incident id 3, correlation level typical

The package number assigned to this logical package is 10.

The following are variations on the IPS CREATE PACKAGE command:

IPS CREATE PACKAGE

Entering the command without specifications creates an empty package. To add
diagnostic data to the package before generating it, you then must use the IPS ADD
INCIDENT or IPS ADD FILE commands.

IPS CREATE PACKAGE PROBLEM problem_ID

This command creates a package, and includes diagnostic information for incidents
that reference the specified problem ID. (Problem IDs are integers.) You can obtain the
problem ID for an incident from the report displayed by the SHOW INCIDENT -MODE
BRIEF command. Because there can be many incidents with the same problem ID,
ADRCI adds to the package the diagnostic information for the first three incidents
(early incidents) that occurred and last three incidents (late incidents) that occurred
with this problem ID, excluding any incidents that are older than 90 days.

Chapter 22
Packaging Incidents

22-14

Note:

The number of early and late incidents, and the 90-day age limit are defaults, which
you can change. See IPS SET CONFIGURATION.

ADRCI may also add other incidents that correlate closely in time or in other criteria with the
already added incidents.

IPS CREATE PACKAGE PROBLEMKEY "problem_key"

This command creates a package, and includes diagnostic information for incidents that
reference the specified problem key. You can obtain problem keys from the report displayed
by the SHOW INCIDENT command. Because there can be many incidents with the same
problem key, ADRCI adds to the package only the diagnostic information for the first three
early incidents, and the last three late incidents with this problem key, excluding incidents that
are older than 90 days.

Note:

The number of early and late incidents, and the 90-day age limit are defaults, which
you can change. See IPS SET CONFIGURATION.

ADRCI may also add other incidents that correlate closely in time or in other criteria with the
already added incidents.

The problem key must be enclosed in single quotation marks (') or double quotation marks (")
if it contains spaces or quotation marks.

IPS CREATE PACKAGE SECONDS sec

This creates a package and includes diagnostic information for all incidents that occurred
from sec seconds ago until now. sec must be an integer.

IPS CREATE PACKAGE TIME 'start_time' TO 'end_time'

This command creates a package and includes diagnostic information for all incidents that
occurred within the specified time range. start_time and end_time must be in the format
'YYYY-MM-DD HH24:MI:SS.FF TZR'. This string is a valid format string for the
NLS_TIMESTAMP_TZ_FORMAT initialization parameter. The fraction (FF) portion of the time is
optional, and the HH24:MI:SS delimiters can be either colons or periods.

For example, the following command creates a package with incidents that occurred between
July 24th and July 30th of 2010:

IPS CREATE PACKAGE TIME '2010-07-24 00:00:00 -07:00' to '2010-07-30 23.59.59 -07:00'

Related Topics

• ADRCI Command Reference
Learn about the commands you can use with the Automatic Diagnostic Repository
Command Interpreter (ADRCI).

Chapter 22
Packaging Incidents

22-15

• Definitions for Oracle Database ADRC
To understand how to diagnose Oracle Database problems, learn the definitions of
terms that Oracle uses for the ADRCI, and the Oracle Database fault
diagnosability infrastructure.

• IPS CREATE PACKAGE
The ADRCI IPS CREATE PACKAGE command creates a new package. ADRCI
automatically assigns the package number for the new package.

22.8.2.2 Adding Diagnostic Information to a Logical Incident Package
After you have an existing logical package (package) configured for packaging
incidents, you can add diagnostic information to that package.

Adding diagnostic information to a logical package enables you to add incident
information after the package is created, such the following:

• All diagnostic information for a particular incident

• A named file within the Automatic Diagnostic Repository (ADR).

1. Start ADRCI in interactive mode, and ensure that the homepath (a directory within
the ADR base hierarchy) points to the correct directory within the ADR base
directory hierarchy for the diagnostic information that you want to add.

See "Definitions for Oracle Database ADRC" for more information about homepath
and other ADRCI terms.

2. At the ADRCI prompt, enter the command for the diagnostic information that you
want to add:

To add all diagnostic information:
IPS ADD INCIDENT incident_number PACKAGE package_number

To add a file in the ADR to an existing package:
• At the ADRCI prompt, enter the following command:

IPS ADD FILE filespec PACKAGE package_number

filespec must be a fully qualified file name (with path). Only files that are
within the ADR base directory hierarchy may be added.

Related Topics

• ADRCI Command Reference
Learn about the commands you can use with the Automatic Diagnostic Repository
Command Interpreter (ADRCI).

• Definitions for Oracle Database ADRC
To understand how to diagnose Oracle Database problems, learn the definitions of
terms that Oracle uses for the ADRCI, and the Oracle Database fault
diagnosability infrastructure.

22.8.2.3 Generating a Physical Incident Package
When you generate a package, you create a physical package (a zip file) for an
existing logical package.

Chapter 22
Packaging Incidents

22-16

1. Start ADRCI in interactive mode, and ensure that the homepath (a directory within the
ADR base hierarchy) points to the correct directory within the ADR base directory
hierarchy.

See "Definitions for Oracle Database ADRC" for more information about homepath and
other ADRCI terms.

2. At the ADRCI prompt, enter the command for the package information that you want to
generate (complete or incremental):

To generate a complete physical package:
The following command generates a complete physical package (zip file) in the path you
designate:

IPS GENERATE PACKAGE package_number IN path

For example, the following command creates a complete physical package in the
directory /home/steve/diagnostics from logical package number 2:

IPS GENERATE PACKAGE 2 IN /home/steve/diagnostics

To generate an incremental physical package
You can also generate an incremental package containing only the incidents that have
occurred since the last package generation. At the ADRCI prompt, enter the following
command:

IPS GENERATE PACKAGE package_number IN path INCREMENTAL

Related Topics

• About Packaging Incidents
Packaging ADR Command Interpreter (ADRCI) incidents is a three-step process.

• ADRCI Command Reference
Learn about the commands you can use with the Automatic Diagnostic Repository
Command Interpreter (ADRCI).

• Definitions for Oracle Database ADRC
To understand how to diagnose Oracle Database problems, learn the definitions of terms
that Oracle uses for the ADRCI, and the Oracle Database fault diagnosability
infrastructure.

22.9 ADRCI Command Reference
Learn about the commands you can use with the Automatic Diagnostic Repository Command
Interpreter (ADRCI).

There are four command types in ADRCI:

• Commands that work with one or more current ADR homes

• Commands that work with only one current ADR home, and that issue an error message
if there is more than one current ADR home

• Commands that prompt you to select an ADR home when there are multiple current ADR
homes

• Commands that do not need a current ADR home

All ADRCI commands support the case where there is a single current ADR home.

Chapter 22
ADRCI Command Reference

22-17

Note:

Unless otherwise specified, all commands work with multiple current ADR
homes.

• CREATE REPORT
The ADRCI CREATE REPORT command creates a report for the specified report type
and run ID, and stores the report in the ADR.

• ECHO
The ADRCI ECHO command prints the input string.

• EXIT
The ADRCI EXIT command exits the ADRCI utility.

• HOST
The ADRCI HOST command runs operating system commands without leaving
ADRCI.

• IPS
The ADRCI IPS command calls the Incident Packaging Service (IPS).

• PURGE
The ADRCI PURGE command purges diagnostic data in the current ADR home,
according to current purging policies.

• QUIT
The ADRCI QUIT command is a synonym for the EXIT command.

• RUN
The ADRCI RUN command runs an ADR Command Interpreter (ADRCI) script.

• SELECT
The ADRCI SELECT command and its functions retrieve qualified diagnostic
records for the specified incident or problem.

• SET BASE
The ADRCI SET BASE command sets the ADR base to use in the current ADRCI
session.

• SET BROWSER
The ADRCI SET BROWSER command sets the default browser for displaying reports.

• SET CONTROL
The ADRCI SET CONTROL command sets purging policies for Automatic Diagnostic
Repository (ADR) contents.

• SET ECHO
The ADRCI SET ECHO command turns command output on or off. This command
only affects output being displayed in a script or using the spool mode.

• SET EDITOR
The ADRCI SET EDITOR command sets the editor for displaying the alert log and
the contents of trace files.

• SET HOMEPATH
The ADRCI SET HOMEPATH command makes one or more ADR homes current.
Many ADR commands work with the current ADR homes only.

Chapter 22
ADRCI Command Reference

22-18

• SET TERMOUT
The ADRCI SET TERMOUT command turns output to the terminal on or off.

• SHOW ALERT
The ADRCI SHOW ALERT command shows the contents of the alert log in the default
editor.

• SHOW BASE
The ADRCI SET EDITOR command shows the current ADR base.

• SHOW CONTROL
The ADRCI SHOW CONTROL command displays information about the Automatic Diagnostic
Repository (ADR), including the purging policy.

• SHOW HM_RUN
The ADRCI SHOW HM_RUN command shows all information for Health Monitor runs.

• SHOW HOMEPATH
The ADRCI SHOW HOMEPATH command is identical to the SHOW HOMES command.

• SHOW HOMES
The ADRCI SHOW HOMES command shows the ADR homes in the current ADRCI session.

• SHOW INCDIR
The ADRCI SHOW INCDIR command shows trace files for the specified incident.

• SHOW INCIDENT
The ADRCI SHOW INCIDENT command lists all of the incidents associated with the current
ADR home. Includes both open and closed incidents.

• SHOW LOG
The ADRCI SHOW LOG command shows diagnostic log messages.

• SHOW PROBLEM
The ADRCI SHOW PROBLEM command shows problem information for the current ADR
home.

• SHOW REPORT
The ADRCI SET EDITOR command shows a report for the specified report type and run
name.

• SHOW TRACEFILE
The ADRCI SHOW TRACEFILE command lists trace files.

• SPOOL
The ADRCI SET EDITOR command directs ADRCI output to a file.

22.9.1 CREATE REPORT
The ADRCI CREATE REPORT command creates a report for the specified report type and run
ID, and stores the report in the ADR.

Purpose

Creates a report for the specified report type and run ID, and stores the report in the ADR.
Currently, only the hm_run (Health Monitor) report type is supported.

Chapter 22
ADRCI Command Reference

22-19

Note:

Results of Health Monitor runs are stored in the ADR in an internal format. To
view these results, you must create a Health Monitor report from them and
then view the report. You need create the report only once. You can then
view it multiple times.

Syntax and Description

create report report_type run_name
The variable report_type must be hm_run. run_name is a Health Monitor run name.
Obtain run names by using the command SHOW HM_RUN.

If the report already exists, then it is overwritten. To view the report, use the command
SHOW REPORT.

This command does not support multiple ADR homes.

Example

This example creates a report for the Health Monitor run with run name hm_run_1421:

create report hm_run hm_run_1421

Note:

CREATE REPORT REPORT does not work when multiple ADR homes are set. To
set a single ADR home as the target of the command, set the ADRCI home
path before using the command.

Related Topics

• SHOW HM_RUN
The ADRCI SHOW HM_RUN command shows all information for Health Monitor runs.

• SHOW REPORT
The ADRCI SET EDITOR command shows a report for the specified report type and
run name.

• Setting the ADRCI Homepath Before Using ADRCI Commands
When diagnosing a problem, you may want to work with diagnostic data from
multiple database instances or components, or you may want to focus on
diagnostic data from one instance or component.

Chapter 22
ADRCI Command Reference

22-20

22.9.2 ECHO
The ADRCI ECHO command prints the input string.

Purpose

Prints the input string. You can use this command to print custom text from ADRCI scripts.

Syntax and Description

ECHO quoted_string
The string must be enclosed in single or double quotation marks.

This command does not require an ADR home to be set before you can use it.

Example

These examples print the string "Hello, world!":

ECHO "Hello, world!"

ECHO 'Hello, world!'

22.9.3 EXIT
The ADRCI EXIT command exits the ADRCI utility.

Purpose

Exits the ADRCI utility.

Syntax and Description

exit
EXIT is a synonym for the QUIT command.

This command does not require an ADR home to be set before you can use it.

22.9.4 HOST
The ADRCI HOST command runs operating system commands without leaving ADRCI.

Purpose

Runs operating system commands without leaving ADRCI.

Syntax and Description

host ["host_command_string"]
Use host by itself to enter an operating system shell, which allows you to enter multiple
operating system commands. Enter EXIT to leave the shell and return to ADRCI.

Chapter 22
ADRCI Command Reference

22-21

You can also specify the command on the same line (host_command_string) enclosed
in double quotation marks.

This command does not require an ADR home to be set before you can use it.

Examples

host

host "ls -l *.pl"

22.9.5 IPS
The ADRCI IPS command calls the Incident Packaging Service (IPS).

Purpose

Calls the Incident Packaging Service (IPS). The IPS command provides options for
creating logical incident packages (packages), adding diagnostic data to packages,
and generating physical packages for transmission to Oracle Support.

Note:

IPS commands do not work when multiple ADR homes are set. For
information about setting a single ADR home, see Setting the ADRCI
Homepath Before Using ADRCI Commands.

• Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands
The ADRCI IPS command set provides shortcuts for referencing the current ADR
home and ADR base directories.

• IPS ADD
The ADRCI IPS ADD command adds incidents to a package.

• IPS ADD FILE
The ADRCI IPS ADD FILE command adds a file to an existing package.

• IPS ADD NEW INCIDENTS
The ADRCI IPS ADD NEW INCIDENTS command finds and adds new incidents for
all of the problems in the specified package.

• IPS COPY IN FILE
The ADRCI IPS COPY IN FILE command copies a file into the ADR from the
external file system.

• IPS COPY OUT FILE
The ADRCI IPS COPY OUT FILE command copies a file from the ADR to the
external file system.

• IPS CREATE PACKAGE
The ADRCI IPS CREATE PACKAGE command creates a new package. ADRCI
automatically assigns the package number for the new package.

Chapter 22
ADRCI Command Reference

22-22

• IPS DELETE PACKAGE
The ADRCI IPS DELETE PACKAGE command drops a package and its contents from the
ADR.

• IPS FINALIZE
The ADRCI IPS FINALIZE command finalizes a package before uploading.

• IPS GENERATE PACKAGE
The ADRCI IPS GENERATE PACKAGE command creates a physical package (a zip file) in a
target directory.

• IPS GET MANIFEST
The ADRCI IPS GET MANIFEST command extracts the manifest from a package zip file
and displays it.

• IPS GET METADATA
The ADRCI IPS GET METADATA command extracts ADR-related metadata from a package
file and displays it.

• IPS PACK
The ADRCI IPS PACK command creates a package, and generates the physical package
immediately

• IPS REMOVE
The ADRCI IPS REMOVE command removes incidents from an existing package.

• IPS REMOVE FILE
The ADRCI IPS REMOVE FILE command removes a file from an existing package.

• IPS SET CONFIGURATION
The ADRCI IPS SET CONFIGURATION command changes the value of an IPS
configuration parameter.

• IPS SHOW CONFIGURATION
The ADRCI IPS SHOW CONFIGURATION command displays a list of IPS configuration
parameters and their values.

• IPS SHOW FILES
The ADRCI IPS SHOW FILES command lists files included in the specified package.

• IPS SHOW INCIDENTS
The ADRCI IPS SHOW INCIDENTS command lists incidents included in the specified
package.

• IPS SHOW PACKAGE
The ADRCI IPS SHOW PACKAGE command displays information about the specified
package.

• IPS UNPACK FILE
The ADRCI IPS UNPACK FILE command unpacks a physical package file into the
specified path.

See Also:

Packaging Incidents for more information about packaging

Chapter 22
ADRCI Command Reference

22-23

22.9.5.1 Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands

The ADRCI IPS command set provides shortcuts for referencing the current ADR
home and ADR base directories.

To access the current ADR home directory, use the <ADR_HOME> variable. For example:

ips add file <ADR_HOME>/trace/orcl_ora_13579.trc package 12

Use the <ADR_BASE> variable to access the ADR base directory. For example:

ips add file <ADR_BASE>/diag/rdbms/orcl/orcl/trace/orcl_ora_13579.trc
package 12

Note:

Type the angle brackets (< >) as shown.

22.9.5.2 IPS ADD
The ADRCI IPS ADD command adds incidents to a package.

Purpose

Adds incidents to a package.

Syntax and Description

ips add {incident first [n] | incident inc_id | incident last [n] |
 problem first [n] | problem prob_id | problem last [n] |
 problemkey pr_key | seconds secs | time start_time to end_time}
 package package_id

The following table describes the arguments of IPS ADD.

Table 22-2 Arguments of IPS ADD command

Argument Description

incident first [n] Adds the first n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the
first five incidents are added. If n is omitted, then the
default is 1, and the first incident is added.

incident inc_id Adds an incident with ID inc_id to the package.

incident last [n] Adds the last n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the last
five incidents are added. If n is omitted, then the default
is 1, and the last incident is added.

Chapter 22
ADRCI Command Reference

22-24

Table 22-2 (Cont.) Arguments of IPS ADD command

Argument Description

problem first [n] Adds the incidents for the first n problems to the
package, where n is a positive integer. For example, if n
is set to 5, then the incidents for the first five problems
are added. If n is omitted, then the default is 1, and the
incidents for the first problem is added.

Adds only the first three early incidents and last three
late incidents for each problem, excluding any older than
90 days. (Note: These limits are defaults and can be
changed. See "IPS SET CONFIGURATION".)

problem prob_id Adds all incidents with problem ID prob_id to the
package. Adds only the first three early incidents and
last three late incidents for the problem, excluding any
older than 90 days. (Note: These limits are defaults and
can be changed. See "IPS SET CONFIGURATION".)

problem last [n] Adds the incidents for the last n problems to the
package, where n is a positive integer. For example, if n
is set to 5, then the incidents for the last five problems
are added. If n is omitted, then the default is 1, and the
incidents for the last problem is added.

Adds only the first three early incidents and last three
late incidents for each problem, excluding any older than
90 days. (Note: These limits are defaults and can be
changed. See "IPS SET CONFIGURATION".)

problemkey pr_key Adds incidents with problem key pr_key to the package.
Adds only the first three early incidents and last three
late incidents for the problem key, excluding any older
than 90 days. (Note: These limits are defaults and can
be changed.)

seconds secs Adds all incidents that have occurred within secs-
seconds of the present time.

time start_time to end_time Adds all incidents between start_time and end_time
to the package. Time format is 'YYYY-MM-YY
HH24:MI:SS.FF TZR'. Fractional part (FF) is optional.

package package_id Specifies the package to which to add incidents.

Examples

This example adds incident 22 to package 12:

ips add incident 22 package 12

This example adds the first three early incidents and the last three late incidents with problem
ID 6 to package 2, exuding any incidents older than 90 days:

ips add problem 6 package 2

This example adds all incidents taking place during the last minute to package 5:

ips add seconds 60 package 5

Chapter 22
ADRCI Command Reference

22-25

This example adds all incidents taking place between 10:00 A.M. and 11:00 P.M. on
May 1, 2020:

ips add time '2020-05-01 10:00:00.00 -07:00' to '2020-05-01 23:00:00.00 -07:00'

22.9.5.3 IPS ADD FILE
The ADRCI IPS ADD FILE command adds a file to an existing package.

Syntax and Description

ips add file file_name package package_id

file_name is the full path name of the file. You can use the <ADR_HOME> and
<ADR_BASE> variables if desired. The file must be under the same ADR base as the
package.

package_id is the package ID.

Example

This example adds a trace file to package 12:

ips add file <ADR_HOME>/trace/orcl_ora_13579.trc package 12

Related Topics

• Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands
The ADRCI IPS command set provides shortcuts for referencing the current ADR
home and ADR base directories.

22.9.5.4 IPS ADD NEW INCIDENTS
The ADRCI IPS ADD NEW INCIDENTS command finds and adds new incidents for all of
the problems in the specified package.

Syntax and Description

ips add new incidents package package_id

package_id is the ID of the package to update. Only new incidents of the problems in
the package are added.

Example

This example adds up to three of the new late incidents for the problems in package
12:

ips add new incidents package 12

Chapter 22
ADRCI Command Reference

22-26

Note:

The number of late incidents added is a default that can be changed.

Related Topics

• IPS SET CONFIGURATION
The ADRCI IPS SET CONFIGURATION command changes the value of an IPS
configuration parameter.

22.9.5.5 IPS COPY IN FILE
The ADRCI IPS COPY IN FILE command copies a file into the ADR from the external file
system.

Purpose

To edit a file in a package, you must copy the file out to a designated directory, edit the file,
and copy it back into the package. For example, you can use this command to delete
sensitive data in the file before sending the package to Oracle Support.

Syntax and Description

ips copy in file filename [to new_name][overwrite] package package_id
 [incident incid]

Copies an external file, filename (specified with full path name) into the ADR, associating it
with an existing package, package_id, and optionally an incident, incid. Use the to
new_name option to give the copied file a new file name within the ADR. Use the overwrite
option to overwrite a file that exists already.

Example

This example copies a trace file from the file system into the ADR, associating it with package
2 and incident 4:

ips copy in file /home/nick/trace/orcl_ora_13579.trc to <ADR_HOME>/trace/
orcl_ora_13579.trc package 2 incident 4

Related Topics

• Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands
The ADRCI IPS command set provides shortcuts for referencing the current ADR home
and ADR base directories.

• IPS SHOW FILES
The ADRCI IPS SHOW FILES command lists files included in the specified package.

Chapter 22
ADRCI Command Reference

22-27

22.9.5.6 IPS COPY OUT FILE
The ADRCI IPS COPY OUT FILE command copies a file from the ADR to the external
file system.

Purpose

To edit a file in a package, you must copy the file out to a designated directory, edit the
file, and copy it back into the package. You may want to do this to delete sensitive data
in the file before sending the package to Oracle Support.

Syntax and Description

ips copy out file source to target [overwrite]

Copies a file, source, to a location outside the ADR, target (specified with full path
name). Use the overwrite option to overwrite the file that exists already.

Example

This example copies the file orcl_ora_13579.trc, in the trace subdirectory of the
current ADR home, to a local folder.

ips copy out file <ADR_HOME>/trace/orcl_ora_13579.trc to /home/nick/
trace/orcl_ora_13579.trc

Related Topics

• Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands
The ADRCI IPS command set provides shortcuts for referencing the current ADR
home and ADR base directories.

• IPS SHOW FILES
The ADRCI IPS SHOW FILES command lists files included in the specified
package.

22.9.5.7 IPS CREATE PACKAGE
The ADRCI IPS CREATE PACKAGE command creates a new package. ADRCI
automatically assigns the package number for the new package.

Purpose

Creates a new package. ADRCI automatically assigns the package number for the
new package.

Syntax and Description

ips create package {incident first [n] | incident inc_id |
 incident last [n] | problem first [n] | problem prob_id |
 problem last [n] | problemkey prob_key | seconds secs |
 time start_time to end_time} [correlate {basic |typical | all}]

(Optional) You can add incidents to the new package using the provided options.

Chapter 22
ADRCI Command Reference

22-28

Table 22-3 describes the arguments for IPS CREATE PACKAGE.

Table 22-3 Arguments of IPS CREATE PACKAGE command

Argument Description

incident first [n] Adds the first n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the first five
incidents are added. If n is omitted, then the default is 1, and
the first incident is added.

incident inc_id Adds an incident with ID inc_id to the package.

incident last [n] Adds the last n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the last five
incidents are added. If n is omitted, then the default is 1, and
the last incident is added.

problem first [n] Adds the incidents for the first n problems to the package,
where n is a positive integer. For example, if n is set to 5,
then the incidents for the first five problems are added. If n is
omitted, then the default is 1, and the incidents for the first
problem is added.

Adds only the first three early incidents and last three late
incidents for each problem, excluding any older than 90 days.
(Note: These limits are defaults and can be changed. See
"IPS SET CONFIGURATION".)

problem prob_id Adds all incidents with problem ID prob_id to the package.
Adds only the first three early incidents and last three late
incidents for the problem, excluding any older than 90 days.
(Note: These limits are defaults and can be changed. See
"IPS SET CONFIGURATION".)

problem last [n] Adds the incidents for the last n problems to the package,
where n is a positive integer. For example, if n is set to 5,
then the incidents for the last five problems are added. If n is
omitted, then the default is 1, and the incidents for the last
problem is added.

Adds only the first three early incidents and last three late
incidents for each problem, excluding any older than 90 days.
(Note: These limits are defaults and can be changed. See
"IPS SET CONFIGURATION".)

problemkey pr_key Adds all incidents with problem key pr_key to the package.
Adds only the first three early incidents and last three late
incidents for the problem key, excluding any older than 90
days. (Note: These limits are defaults and can be changed.)

seconds secs Adds all incidents that have occurred within secs seconds of
the present time.

time start_time to end_time Adds all incidents taking place between start_time and
end_time to the package. Time format is 'YYYY-MM-YY
HH24:MI:SS.FF TZR'. Fractional part (FF) is optional.

Chapter 22
ADRCI Command Reference

22-29

Table 22-3 (Cont.) Arguments of IPS CREATE PACKAGE command

Argument Description

correlate {basic |typical |
all}

Selects a method of including correlated incidents in the
package. There are three options for this argument:

• correlate basic includes incident dumps and incident
process trace files.

• correlate typical includes incident dumps and any
trace files that were modified within five minutes of each
incident. You can alter the time interval by modifying the
INCIDENT_TIME_WINDOW configuration parameter.

• correlate all includes the incident dumps, and all
trace files that were modified between the time of the
first selected incident and the last selected incident.

The default value is correlate typical.

Examples

This example creates a package with no incidents:

ips create package

Output:

Created package 5 without any contents, correlation level typical

This example creates a package containing all incidents between 10 AM and 11 PM on
the given day:

ips create package time '2010-05-01 10:00:00.00 -07:00' to '2010-05-01
23:00:00.00 -07:00'

Output:

Created package 6 based on time range 2010-05-01 10:00:00.00 -07:00 to
2010-05-01 23:00:00.00 -07:00, correlation level typical

This example creates a package and adds the first three early incidents and the last
three late incidents with problem ID 3, excluding incidents that are older than 90 days:

ips create package problem 3

Output:

Created package 7 based on problem id 3, correlation level typical

Note:

The number of early and late incidents added, and the 90-day age limit are
defaults that can be changed.

Chapter 22
ADRCI Command Reference

22-30

Related Topics

• IPS SET CONFIGURATION
The ADRCI IPS SET CONFIGURATION command changes the value of an IPS
configuration parameter.

• Creating Incident Packages
The following topics describe creating incident packages.

22.9.5.8 IPS DELETE PACKAGE
The ADRCI IPS DELETE PACKAGE command drops a package and its contents from the ADR.

Syntax and Description

ips delete package package_id

package_id is the package to delete.

Example

ips delete package 12

22.9.5.9 IPS FINALIZE
The ADRCI IPS FINALIZE command finalizes a package before uploading.

Syntax and Description

ips finalize package package_id

package_id is the package ID to finalize.

Example

ips finalize package 12

See Also:

Oracle Database Administrator’s Guide for more information about finalizing
packages

Chapter 22
ADRCI Command Reference

22-31

22.9.5.10 IPS GENERATE PACKAGE
The ADRCI IPS GENERATE PACKAGE command creates a physical package (a zip file) in
a target directory.

Syntax and Description

ips generate package package_id [in path] [complete | incremental]

package_id is the ID of the package to generate. Optionally, you can save the file in
the directory path. Otherwise, the package is generated in the current working
directory.

The complete option means the package forces ADRCI to include all package files.
This is the default behavior.

The incremental option includes only files that have been added or changed since the
last time that this package was generated. With the incremental option, the command
finishes more quickly.

Example

This example generates a physical package file in path /home/steve:

ips generate package 12 in /home/steve

This example generates a physical package from files added or changed since the last
generation:

ips generate package 14 incremental

See Also:

Generating a Physical Incident Package

22.9.5.11 IPS GET MANIFEST
The ADRCI IPS GET MANIFEST command extracts the manifest from a package zip file
and displays it.

Syntax and Description

ips get manifest from file filename

filename is a package zip file. The manifest is an XML-formatted set of metadata for
the package file, including information about ADR configuration, correlated files,
incidents, and how the package was generated.

This command does not require an ADR home to be set before you can use it.

Chapter 22
ADRCI Command Reference

22-32

Example

ips get manifest from file /home/steve/ORA603_20060906165316_COM_1.zip

22.9.5.12 IPS GET METADATA
The ADRCI IPS GET METADATA command extracts ADR-related metadata from a package file
and displays it.

Syntax and Description

ips get metadata {from file filename | from adr}

filename is a package zip file. The metadata in a package file (stored in the file
metadata.xml) contains information about the ADR home, ADR base, and product.

Use the from adr option to get the metadata from a package zip file that has been unpacked
into an ADR home using IPS UNPACK.

The from adr option requires an ADR home to be set.

Example

This example displays metadata from a package file:

ips get metadata from file /home/steve/ORA603_20060906165316_COM_1.zip

This next example displays metadata from a package file that was unpacked into the
directory /scratch/oracle/package1:

set base /scratch/oracle/package1
ips get metadata from adr

In this previous example, upon receiving the SET BASE command, ADRCI automatically adds
to the homepath the ADR home that was created in /scratch/oracle/package1 by the
IPS UNPACK FILE command.

See Also:

IPS UNPACK FILE for more information about unpacking package files

22.9.5.13 IPS PACK
The ADRCI IPS PACK command creates a package, and generates the physical package
immediately

Purpose

Creates a package, and generates the physical package immediately.

Chapter 22
ADRCI Command Reference

22-33

Syntax and Description

ips pack [incident first [n] | incident inc_id | incident last [n] |
 problem first [n] | problem prob_id | problem last [n] |
 problemkey prob_key | seconds secs | time start_time to end_time]
 [correlate {basic |typical | all}] [in path]

ADRCI automatically generates the package number for the new package. IPS PACK
creates an empty package if no package contents are specified.

Table 22-4 describes the arguments for IPS PACK.

Table 22-4 Arguments of IPS PACK command

Argument Description

incident first [n] Adds the first n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the
first five incidents are added. If n is omitted, then the
default is 1, and the first incident is added.

incident inc_id Adds an incident with ID inc_id to the package.

incident last [n] Adds the last n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the last
five incidents are added. If n is omitted, then the default
is 1, and the last incident is added.

problem first [n] Adds the incidents for the first n problems to the
package, where n is a positive integer. For example, if n
is set to 5, then the incidents for the first five problems
are added. If n is omitted, then the default is 1, and the
incidents for the first problem is added.

Adds only the first three early incidents and last three
late incidents for each problem, excluding any older than
90 days. (Note: These limits are defaults and can be
changed. See "IPS SET CONFIGURATION".)

problem prob_id Adds all incidents with problem ID prob_id to the
package. Adds only the first three early incidents and
last three late incidents for the problem, excluding any
older than 90 days. (Note: These limits are defaults and
can be changed. See "IPS SET CONFIGURATION".)

problem last [n] Adds the incidents for the last n problems to the
package, where n is a positive integer. For example, if n
is set to 5, then the incidents for the last five problems
are added. If n is omitted, then the default is 1, and the
incidents for the last problem is added.

Adds only the first three early incidents and last three
late incidents for each problem, excluding any older than
90 days. (Note: These limits are defaults and can be
changed. See "IPS SET CONFIGURATION".)

problemkey pr_key Adds incidents with problem key pr_key to the package.
Adds only the first three early incidents and last three
late incidents for the problem key, excluding any older
than 90 days. (Note: These limits are defaults and can
be changed.)

Chapter 22
ADRCI Command Reference

22-34

Table 22-4 (Cont.) Arguments of IPS PACK command

Argument Description

seconds secs Adds all incidents that have occurred within secs
seconds of the present time.

time start_time to end_time Adds all incidents taking place between start_time
and end_time to the package. Time format is 'YYYY-
MM-YY HH24:MI:SS.FF TZR'. Fractional part (FF) is
optional.

correlate {basic |typical |
all}

Selects a method of including correlated incidents in the
package. There are three options for this argument:

• correlate basic includes incident dumps and
incident process trace files.

• correlate typical includes incident dumps and
any trace files that were modified within five minutes
of each incident. You can alter the time interval by
modifying the INCIDENT_TIME_WINDOW
configuration parameter.

• correlate all includes the incident dumps, and
all trace files that were modified between the time of
the first selected incident and the last selected
incident.

The default value is correlate typical.

in path Saves the physical package to directory path.

Example

This example creates an empty package:

ips pack

This example creates a physical package containing all information for incident 861:

ips pack incident 861

This example creates a physical package for all incidents in the last minute, fully correlated:

ips pack seconds 60 correlate all

Related Topics

• IPS SET CONFIGURATION
The ADRCI IPS SET CONFIGURATION command changes the value of an IPS
configuration parameter.

22.9.5.14 IPS REMOVE
The ADRCI IPS REMOVE command removes incidents from an existing package.

Purpose

Removes incidents from an existing package.

Chapter 22
ADRCI Command Reference

22-35

Syntax and Description

ips remove {incident inc_id | problem prob_id | problemkey prob_key}
 package package_id

After removing incidents from a package, the incidents continue to be tracked within
the package metadata to prevent ADRCI from automatically including them later (such
as with ADD NEW INCIDENTS).

The following table describes the arguments of IPS REMOVE.

Table 22-5 Arguments of IPS REMOVE command

Argument Description

incident inc_id Removes the incident with ID inc_id from the package

problem prob_id Removes all incidents with problem ID prob_id from the
package

problemkey pr_key Removes all incidents with problem key pr_key from the
package

package package_id Removes incidents from the package with ID
package_id.

Example

This example removes incident 22 from package 12:

ips remove incident 22 package 12

Related Topics

• IPS GET MANIFEST
The ADRCI IPS GET MANIFEST command extracts the manifest from a package zip
file and displays it.

22.9.5.15 IPS REMOVE FILE
The ADRCI IPS REMOVE FILE command removes a file from an existing package.

Syntax and Description

ips remove file file_name package package_id

file_name is the file to remove from package package_id. The complete path of the
file must be specified. (You can use the <ADR_HOME> and <ADR_BASE> variables if
desired.)

After removal, the file continues to be tracked within the package metadata to prevent
ADRCI from automatically including it later (such as with ADD NEW INCIDENTS).
Removing a file, therefore, only sets the EXCLUDE flag for the file to Explicitly
excluded.

Chapter 22
ADRCI Command Reference

22-36

Example

This example removes a trace file from package 12:

ips remove file <ADR_HOME>/trace/orcl_ora_13579.trc package 12
Removed file <ADR_HOME>/trace/orcl_ora_13579.trc from package 12
ips show files package 12

.

.

.
FILE_ID 4
FILE_LOCATION <ADR_HOME>/trace
FILE_NAME orcl_ora_13579.trc
LAST_SEQUENCE 0
EXCLUDE Explicitly excluded
.
.
.

See Also:

• IPS GET MANIFEST for information about package metadata

• Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands for
information about the <ADR_BASE> directory syntax

• IPS SHOW FILES

22.9.5.16 IPS SET CONFIGURATION
The ADRCI IPS SET CONFIGURATION command changes the value of an IPS configuration
parameter.

Syntax and Description

ips set configuration {parameter_id | parameter_name} value

parameter_id is the ID of the parameter to change, and parameter_name is the name of the
parameter to change. value is the new value. For a list of the configuration parameters and
their IDs, use IPS SHOW CONFIGURATION.

Example

ips set configuration 3 10

Chapter 22
ADRCI Command Reference

22-37

Related Topics

• IPS SHOW CONFIGURATION
The ADRCI IPS SHOW CONFIGURATION command displays a list of IPS
configuration parameters and their values.

22.9.5.17 IPS SHOW CONFIGURATION
The ADRCI IPS SHOW CONFIGURATION command displays a list of IPS configuration
parameters and their values.

Purpose

These parameters control various thresholds for IPS data, such as timeouts and
incident inclusion intervals.

Syntax and Description

ips show configuration {parameter_id | parameter_name}]

IPS SHOW CONFIGURATION lists the following information for each configuration
parameter:

• Parameter ID

• Name

• Description

• Unit used by parameter (such as days or hours)

• Value

• Default value

• Minimum Value

• Maximum Value

• Flags

Optionally, you can get information about a specific parameter by supplying a
parameter_id or a parameter_name.

Example

This command describes all IPS configuration parameters:

ips show configuration

Output:

PARAMETER INFORMATION:
 PARAMETER_ID 1
 NAME CUTOFF_TIME
 DESCRIPTION Maximum age for an incident to be considered
for
 inclusion
 UNIT Days

Chapter 22
ADRCI Command Reference

22-38

 VALUE 90
 DEFAULT_VALUE 90
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 2
 NAME NUM_EARLY_INCIDENTS
 DESCRIPTION How many incidents to get in the early part of the
range
 UNIT Number
 VALUE 3
 DEFAULT_VALUE 3
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 3
 NAME NUM_LATE_INCIDENTS
 DESCRIPTION How many incidents to get in the late part of the
range
 UNIT Number
 VALUE 3
 DEFAULT_VALUE 3
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 4
 NAME INCIDENT_TIME_WINDOW
 DESCRIPTION Incidents this close to each other are considered
 correlated
 UNIT Minutes
 VALUE 5
 DEFAULT_VALUE 5
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 5
 NAME PACKAGE_TIME_WINDOW
 DESCRIPTION Time window for content inclusion is from x hours
 before first included incident to x hours after
last
 incident
 UNIT Hours
 VALUE 24
 DEFAULT_VALUE 24
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

Chapter 22
ADRCI Command Reference

22-39

PARAMETER INFORMATION:
 PARAMETER_ID 6
 NAME DEFAULT_CORRELATION_LEVEL
 DESCRIPTION Default correlation level for packages
 UNIT Number
 VALUE 2
 DEFAULT_VALUE 2
 MINIMUM 1
 MAXIMUM 4
 FLAGS 0

Examples

This command describes configuration parameter NUM_EARLY_INCIDENTS:

ips show configuration num_early_incidents

This command describes configuration parameter 3:

ips show configuration 3

Configuration Parameter Descriptions

The following table describes the IPS configuration parameters in detail.

Table 22-6 IPS Configuration Parameters

Parameter ID Description

CUTOFF_TIME 1 Maximum age, in days, for an incident to be
considered for inclusion.

NUM_EARLY_INCIDENTS 2 Number of incidents to include in the early part of the
range when creating a package based on a problem.
By default, ADRCI adds the three earliest incidents
and three most recent incidents to the package.

NUM_LATE_INCIDENTS 3 Number of incidents to include in the late part of the
range when creating a package based on a problem.
By default, ADRCI adds the three earliest incidents
and three most recent incidents to the package.

INCIDENT_TIME_WINDOW 4 Number of minutes between two incidents in order for
them to be considered correlated.

PACKAGE_TIME_WINDOW 5 Number of hours to use as a time window for
including incidents in a package. For example, a
value of 5 includes incidents five hours before the
earliest incident in the package, and five hours after
the most recent incident in the package.

Chapter 22
ADRCI Command Reference

22-40

Table 22-6 (Cont.) IPS Configuration Parameters

Parameter ID Description

DEFAULT_CORRELATION_LEVE
L

6 The default correlation level to use for correlating
incidents in a package. The correlation levels are:

• 1 (basic): includes incident dumps and incident
process trace files.

• 2 (typical): includes incident dumps and any
trace files that were modified within the time
window specified by INCIDENT_TIME_WINDOW
(see above).

• 4 (all): includes the incident dumps, and all trace
files that were modified between the first selected
incident and the last selected incident. Additional
incidents can be included automatically if they
occurred in the same time range.

Related Topics

• IPS SET CONFIGURATION
The ADRCI IPS SET CONFIGURATION command changes the value of an IPS
configuration parameter.

22.9.5.18 IPS SHOW FILES
The ADRCI IPS SHOW FILES command lists files included in the specified package.

Purpose

Lists files included in the specified package.

Syntax and Description

ips show files package package_id

package_id is the package ID to display.

Example

This example shows all files associated with package 1:

ips show files package 1

Output:

 FILE_ID 1
 FILE_LOCATION <ADR_HOME>/alert
 FILE_NAME log.xml
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 2
 FILE_LOCATION <ADR_HOME>/trace

Chapter 22
ADRCI Command Reference

22-41

 FILE_NAME alert_adcdb.log
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 27
 FILE_LOCATION <ADR_HOME>/incident/incdir_4937
 FILE_NAME adcdb_ora_692_i4937.trm
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 28
 FILE_LOCATION <ADR_HOME>/incident/incdir_4937
 FILE_NAME adcdb_ora_692_i4937.trc
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 29
 FILE_LOCATION <ADR_HOME>/trace
 FILE_NAME adcdb_ora_692.trc
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 30
 FILE_LOCATION <ADR_HOME>/trace
 FILE_NAME adcdb_ora_692.trm
 LAST_SEQUENCE 1
 EXCLUDE Included
.
.
.

22.9.5.19 IPS SHOW INCIDENTS
The ADRCI IPS SHOW INCIDENTS command lists incidents included in the specified
package.

Syntax and Description

ips show incidents package package_id

package_id is the package ID to display.

Example

This example lists the incidents in package 1:

ips show incidents package 1

Output:

MAIN INCIDENTS FOR PACKAGE 1:
 INCIDENT_ID 4985
 PROBLEM_ID 1

Chapter 22
ADRCI Command Reference

22-42

 EXCLUDE Included

CORRELATED INCIDENTS FOR PACKAGE 1:

22.9.5.20 IPS SHOW PACKAGE
The ADRCI IPS SHOW PACKAGE command displays information about the specified package.

Syntax and Description

ips show package package_id {basic | brief | detail}

package_id is the ID of the package to display.

Use the basic option to display a minimal amount of information. It is the default when no
package_id is specified.

Use the brief option to display more information about the package than the basic option. It
is the default when a package_id is specified.

Use the detail option to show the information displayed by the brief option, as well as
some package history and information about the included incidents and files.

Example

ips show package 12

ips show package 12 brief

22.9.5.21 IPS UNPACK FILE
The ADRCI IPS UNPACK FILE command unpacks a physical package file into the specified
path.

Syntax and Description

ips unpack file file_name [into path]

file_name is the full path name of the physical package (zip file) to unpack. Optionally, you
can unpack the file into directory path, which must exist, and muste be writable. If you omit
the path, then the current working directory is used. The destination directory is treated as an
ADR base, and the entire ADR base directory hierarchy is created, including a valid ADR
home.

This command does not require an ADR home to be set before you can use it.

Example

ips unpack file /tmp/ORA603_20060906165316_COM_1.zip into /tmp/newadr

Chapter 22
ADRCI Command Reference

22-43

22.9.6 PURGE
The ADRCI PURGE command purges diagnostic data in the current ADR home,
according to current purging policies.

Purpose

Purges diagnostic data in the current ADR home, according to current purging policies.
Only ADR contents that are due to be purged are purged.

Diagnostic data in the ADR has a default lifecycle. For example, information about
incidents and problems is subject to purging after one year, whereas the associated
dump files (dumps) are subject to purging after only 30 days.

Some Oracle products, such as Oracle Database, automatically purge diagnostic data
at the end of its life cycle. Other products and components require you to purge
diagnostic data manually with this command. You can also use this command to purge
data that is due to be automatically purged.

The SHOW CONTROL command displays the default purging policies for short-lived
ADR contents and long-lived ADR contents.

Syntax and Description

purge [-i {id | start_id end_id} |
 -age mins [-type {ALERT|INCIDENT|TRACE|CDUMP|HM|UTSCDMP}]]

The following table describes the flags for PURGE.

Table 22-7 Flags for the PURGE command

Flag Description

-i {id1 | start_id end_id} Purges either a specific incident ID (id) or
a range of incident IDs (start_id and
end_id)

-age mins Purges only data older than mins minutes.

Chapter 22
ADRCI Command Reference

22-44

Table 22-7 (Cont.) Flags for the PURGE command

Flag Description

-type {ALERT|INCIDENT|TRACE|CDUMP|HM|
UTSCDMP}

Specifies the type of diagnostic data to
purge. Used with the -age clause.

The following types can be specified:

• ALERT - Alert logs

• INCIDENT - Incident data

• TRACE - Trace files (including dumps)

• CDUMP - Core dump files

• HM - Health Monitor run data and
reports

• UTSCDMP - Dumps of in-memory traces
for each session

The UTSCDMP data is stored in
directories under the trace directory.
Each of these directories is named
cdmp_timestamp. In response to a
critical error (such as an ORA-600 or
ORA-7445 error), a background
process creates such a directory and
writes each session's in-memory
tracing data into a trace file. This data
might be useful in determining what the
instance was doing in the seconds
leading up to the failure.

Examples

This example purges all diagnostic data in the current ADR home based on the default
purging policies:

purge

This example purges all diagnostic data for all incidents between 123 and 456:

purge -i 123 456

This example purges all incident data from before the last hour:

purge -age 60 -type incident

Note:

PURGE does not work when multiple ADR homes are set. For information about
setting a single ADR home, see "Setting the ADRCI Homepath Before Using
ADRCI Commands".

22.9.7 QUIT
The ADRCI QUIT command is a synonym for the EXIT command.

Chapter 22
ADRCI Command Reference

22-45

Related Topics

• EXIT
The ADRCI EXIT command exits the ADRCI utility.

22.9.8 RUN
The ADRCI RUN command runs an ADR Command Interpreter (ADRCI) script.

Syntax and Description

run script_name
@ script_name
@@ script_name
The variable script_name is the file containing the ADRCI commands that you want to
run. ADRCI looks for the script in the current directory, unless a full path name is
supplied. If the file name is given without a file extension, then ADRCI uses the default
extension .adi.

The run and @ commands are synonyms. The @@ command is similar to run and @.
However, when used inside a script, @@ uses the path of the calling script to locate
script_name, rather than the current directory.

You are not required to have an ADR home set before you can use the run command.

Example

run my_script

@my_script

22.9.9 SELECT
The ADRCI SELECT command and its functions retrieve qualified diagnostic records for
the specified incident or problem.

Purpose

Retrieves qualified records for the specified incident or problem, to assist with
diagnosing the issue.

Syntax and Description

select {*|[field1, [field2, ...]} FROM {incident|problem}
 [WHERE predicate_string]
 [ORDER BY field1 [, field2, ...] [ASC|DSC|DESC]]
 [GROUP BY field1 [, field2, ...]]
 [HAVING having_predicate_string]

Chapter 22
ADRCI Command Reference

22-46

Table 22-8 Flags for the SELECT command

Flag Description

field1, field2, ... Lists the fields to retrieve. If * is specified, then all fields are retrieved.

incident|problem Indicates whether to query incidents or problems.

WHERE "predicate_string" Uses a SQL-like predicate string to show only the incident or problem
for which the predicate is true. The predicate string must be enclosed
in double quotation marks.

SHOW INCIDENT lists the fields that can be used in the predicate
string incidents.

SHOW PROBLEM lists the fields that can be used in the predicate
string for problems.

ORDER BY field1,
field2, ... [ASC|DSC|
DESC]

Show results sorted by field in the given order, as well as in ascending
(ASC) and descending order (DSC or DESC). When the ORDER BY
clause is specified, results are shown in ascending order by default.

GROUP BY field1,
field2, ...

Show results grouped by the specified fields.

The GROUP BY flag groups rows but does not guarantee the order of
the result set. To order the groupings, use the ORDER BY flag.

HAVING
"having_predicate_string
"

Restrict the groups of returned rows to those groups for which the
having predicate is true. The HAVING flag must be used in
combination with the GROUP BY flag.

Note:

The WHERE, ORDER BY, GROUP BY, and HAVING flags are similar to the clauses with the
same names in a SELECT SQL statement.

See Oracle Database SQL Language Reference for more information about the
clauses in a SELECT SQL statement.

Restrictions

The following restrictions apply when you use the SELECT command:

• The command cannot join more than two tables.

• The command cannot use table aliases.

• The command can use only a limited set of functions, which are listed in this section.

• The command cannot use column wildcard ("*") when joining tables or when using the
GROUP BY clause.

• Statements must be on a single line.

• Statement cannot have subqueries.

• Statement cannot have a WITH clause.

• A limited set of pseudocolumns are allowed. For example, ROWNUM is allowed, but ROWID is
not allowed.

Chapter 22
ADRCI Command Reference

22-47

Examples

This example retrieves the incident_id and create_time for incidents with an
incident_id greater than 1:

select incident_id, create_time from incident where incident_id > 1

The following is an example of output for this query:

INCIDENT_ID CREATE_TIME
-------------------- --
4801 2011-05-27 10:10:26.541656 -07:00
4802 2011-05-27 10:11:02.456066 -07:00
4803 2011-05-27 10:11:04.759654 -07:00

This example retrieves the problem_id and first_incident for each problem with a
problem_key that includes 600:

select problem_id, first_incident from problem where problem_key like '%600%'

The following is an example of output for this query:

PROBLEM_ID FIRST_INCIDENT
-------------------- --------------------
1 4801
2 4802
3 4803

Functions

This section describes functions that you can use with the SELECT command.

The purpose and syntax of these functions are similar to the corresponding SQL
functions, but there are some differences between SQL functions and the functions
used with the ADRCI utility.

The following restrictions apply to all of the ADRCI functions:

• The expressions must be simple expressions.

See Oracle Database SQL Language Reference for information about simple
expressions.

• You cannot combine function calls. For example, the following combination of
function calls is not supported:

sum(length(column_name))
• No functions are overloaded.

• All function arguments are mandatory.

• The functions cannot be used with other ADRCI Utility commands.

• AVG
The AVG function of the ADRC SELECT command returns the average value of an
expression.

• CONCAT
The CONCAT function of the ADRC SELECT command returns a concatenation of two
character strings.

Chapter 22
ADRCI Command Reference

22-48

• COUNT
The COUNT function of the ADRC SELECT command returns the number of rows returned
by a query.

• DECODE
The DECODE function of the ADRC SELECT command compares an expression to each
search value one by one.

• LENGTH
The LENGTH function of the ADRC SELECT command returns the length of a character string
using as defined by the input character set.

• MAX
The MAX function of the ADRC SELECT command returns the maximum value of an
expression.

• MIN
The MIN function of the ADRC SELECT command returns the minimum value of an
expression.

• NVL
The NVL function of the ADRC SELECT command replaces null (returned as a blank) with
character data in the results of a query.

• REGEXP_LIKE
The REGEXP_LIKE function of the ADRC SELECT command returns rows that match a
specified pattern in a specified regular expression.

• SUBSTR
The SUBSTR function of the ADRC SELECT command returns a portion of character data.

• SUM
The SUM function of the ADRC SELECT command returns the sum of values of an
expression.

• TIMESTAMP_TO_CHAR
The TIMESTAMP_TO_CHAR function of the ADRC SELECT command converts a value of
TIMESTAMP data type to a value of VARCHAR2 data type in a specified format.

• TOLOWER
The TOLOWER function of the ADRC SELECT command returns character data, with all letters
lowercase.

• TOUPPER
The TOUPPER function of the ADRC SELECT command returns character data, with all letters
uppercase.

22.9.9.1 AVG
The AVG function of the ADRC SELECT command returns the average value of an expression.

Purpose

Returns the average value of an expression.

Syntax

See the description of AVG in Oracle Database SQL Language Reference.

Chapter 22
ADRCI Command Reference

22-49

Restrictions

The following restrictions apply when you use the AVG function in the SELECT
command:

• The expression must be a numeric column or a positive numeric constant.

• The function does not support the DISTINCT or ALL keywords.

• The function does not support the OVER clause.

Related Topics

• Oracle Database SQL Language Reference AVG

22.9.9.2 CONCAT
The CONCAT function of the ADRC SELECT command returns a concatenation of two
character strings.

Purpose

Returns a concatenation of two character strings. The character data can be of the
data types CHAR and VARCHAR2. The return value is the same data type as the character
data.

Syntax

See the description of CONCAT in Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the CONCAT function in the SELECT
command:

• The function does not support LOB data types, including BLOB, CLOB, NCLOB, and
BFILE data types.

• The function does not support national character set data types, including NCHAR,
NVARCHAR2, and NCLOB data types.

Related Topics

• Oracle Database SQL Language Reference CONCAT

22.9.9.3 COUNT
The COUNT function of the ADRC SELECT command returns the number of rows
returned by a query.

Purpose

Returns the number of rows returned by the query.

Syntax

See the description of COUNT in Oracle Database SQL Language Reference.

Chapter 22
ADRCI Command Reference

22-50

Restrictions

The following restrictions apply when you use the COUNT function in the SELECT command:

• The expression must be a column, a numeric constant, or a string constant.

• The function does not support the DISTINCT or ALL keywords.

• The function does not support the OVER clause.

• The function always counts all rows for the query, including duplicates and nulls.

Examples

This example returns the number of incidents for which flood_controlled is 0 (zero):

select count(*) from incident where flood_controlled = 0;

This example returns the number of problems for which problem_key includes ORA-600:

select count(*) from problem where problem_key like '%ORA-600%';

Related Topics

• Oracle Database SQL Language Reference COUNT

22.9.9.4 DECODE
The DECODE function of the ADRC SELECT command compares an expression to each search
value one by one.

Purpose

Compares an expression to each search value one by one. If the expression is equal to a
search, then Oracle Database returns the corresponding result. If no match is found, then the
database returns the specified default value.

Syntax

See the description of DECODE in Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the DECODE function in the SELECT command:

• The search arguments must be character data.

• A default value must be specified.

Example

This example shows each incident_id and whether or not the incident is flood-controlled.
The example uses the DECODE function to display text instead of numbers for the
flood_controlled field.

select incident_id, decode(flood_controlled, 0, \
 "Not flood-controlled", "Flood-controlled") from incident;

Chapter 22
ADRCI Command Reference

22-51

Related Topics

• Oracle Database SQL Language Reference DECODE

22.9.9.5 LENGTH
The LENGTH function of the ADRC SELECT command returns the length of a character
string using as defined by the input character set.

Purpose

Returns the length of a character string using as defined by the input character set.
The character string can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB. The return value is of data type NUMBER. If the character sting has data
type CHAR, then the length includes all trailing blanks. If the character string is null, then
this function returns 0 (zero).

Note:

The SQL function returns null if the character string is null.

Syntax

See the description of LENGTH in Oracle Database SQL Language Reference.

Restrictions

The ADRC SELECT command does not support the following functions: LENGTHB,
LENGTHC, LENGTH2, and LENGTH4.

Example

This example shows the problem_id and the length of the problem_key for each
problem.

select problem_id, length(problem_key) from problem;

Related Topics

• Oracle Database SQL Language Reference LENGTH

22.9.9.6 MAX
The MAX function of the ADRC SELECT command returns the maximum value of an
expression.

Syntax

See MAX in Oracle Database SQL Language Reference

Restrictions

The following restrictions apply when you use the MAX function in the SELECT
command:

Chapter 22
ADRCI Command Reference

22-52

• The function does not support the DISTINCT or ALL keywords.

• The function does not support the OVER clause.

Example

This example shows the maximum last_incident value for all of the recorded problems.

select max(last_incident) from problem;

22.9.9.7 MIN
The MIN function of the ADRC SELECT command returns the minimum value of an expression.

Syntax

See MIN in Oracle Database SQL Language Reference

Restrictions

The following restrictions apply when you use the MIN function in the SELECT command:

• The function does not support the DISTINCT or ALL keywords.

• The function does not support the OVER clause.

Example

This example shows the minimum first_incident value for all of the recorded problems.

select min(first_incident) from problem;

22.9.9.8 NVL
The NVL function of the ADRC SELECT command replaces null (returned as a blank) with
character data in the results of a query.

Purpose

If the first expression specified is null, then NVL returns second expression specified. If first
expression specified is not null, then NVL returns the value of the first expression.

Syntax

See NVL in Oracle Database SQL Language Reference

Restrictions

The following restrictions apply when you use the NVL function in the SELECT command:

• The replacement value (second expression) must be specified as character data.

• The function does not support data conversions.

Chapter 22
ADRCI Command Reference

22-53

Example

This example replaces NULL in the output for signalling_component with the text "No
component."

select nvl(signalling_component, 'No component') from incident;

22.9.9.9 REGEXP_LIKE
The REGEXP_LIKE function of the ADRC SELECT command returns rows that match a
specified pattern in a specified regular expression.

Purpose

In SQL, REGEXP_LIKE is a condition instead of a function.

Syntax

See REGEXP_LIKE Condition in Oracle Database SQL Language Reference

Restrictions

The following restrictions apply when you use the REGEXP_LIKE function in the SELECT
command:

• The pattern match is always case-sensitive.

• The function does not support the match_param argument.

Example

This example shows the problem_id and problem_key for all problems where the
problem_key ends with a number.

select problem_id, problem_key from problem \
 where regexp_like(problem_key, '[0-9]$') = true

22.9.9.10 SUBSTR
The SUBSTR function of the ADRC SELECT command returns a portion of character data.

Purpose

The portion of data returned begins at the specified position and is the specified
substring length characters long. SUBSTR calculates lengths using characters as
defined by the input character set.

Syntax

See SUBSTR in Oracle Database SQL Language Reference

Restrictions

The following restrictions apply when you use the SUBSTR function in the SELECT
command:

Chapter 22
ADRCI Command Reference

22-54

• The function supports only positive integers. It does not support negative values or
floating-point numbers.

• The SELECT command does not support the following functions: SUBSTRB, SUBSTRC,
SUBSTR2, and SUBSTR4.

Example

This example shows each problem_key starting with the fifth character in the key.

select substr(problem_key, 5) from problem;

22.9.9.11 SUM
The SUM function of the ADRC SELECT command returns the sum of values of an expression.

Syntax

See SUM in Oracle Database SQL Language Reference

Restrictions

The following restrictions apply when you use the SUM function in the SELECT command:

• The expression must be a numeric column or a numeric constant.

• The function does not support the DISTINCT or ALL keywords.

• The function does not support the OVER clause.

22.9.9.12 TIMESTAMP_TO_CHAR
The TIMESTAMP_TO_CHAR function of the ADRC SELECT command converts a value of
TIMESTAMP data type to a value of VARCHAR2 data type in a specified format.

Purpose

If you do not specify a format, then the function converts values to the default timestamp
format.

Syntax

See the syntax of the TO_CHAR function (TO_CHAR (datetime)) in Oracle Database SQL
Language Reference

Restrictions

The following restrictions apply when you use the TIMESTAMP_TO_CHAR function in the SELECT
command:

• The function converts only TIMESTAMP data type. TIMESTAMP WITH TIME ZONE, TIMESTAMP
WITH LOCAL TIME ZONE, and other data types are not supported.

• The function does not support the nlsparm argument. The function uses the default
language for your session.

Chapter 22
ADRCI Command Reference

22-55

Example

This example converts the create_time for each incident from a TIMESTAMP data type to
a VARCHAR2 data type in the DD-MON-YYYY format.

select timestamp_to_char(create_time, 'DD-MON-YYYY') from incident;

22.9.9.13 TOLOWER
The TOLOWER function of the ADRC SELECT command returns character data, with all
letters lowercase.

Purpose

The character data can be of the data types CHAR and VARCHAR2. The return value is
the same data type as the character data. The database sets the case of the
characters based on the binary mapping defined for the underlying character set.

Syntax

See the syntax of the LOWER function (LOWER) in Oracle Database SQL Language
Reference

Restrictions

The following restrictions apply when you use the TOLOWER function in the SELECT
command:

• The function does not support LOB data types, including BLOB, CLOB, NCLOB, and
BFILE data types.

• The function does not support national character set data types, including NCHAR,
NVARCHAR2, and NCLOB data types.

Example

This example shows each problem_key in all lowercase letters.

select tolower(problem_key) from problem;

22.9.9.14 TOUPPER
The TOUPPER function of the ADRC SELECT command returns character data, with all
letters uppercase.

Purpose

The character data can be of the data types CHAR and VARCHAR2. The return value is
the same data type as the character data. The database sets the case of the
characters based on the binary mapping defined for the underlying character set.

Syntax

See the syntax of the UPPER function (UPPER) in Oracle Database SQL Language
Reference

Chapter 22
ADRCI Command Reference

22-56

Restrictions

The following restrictions apply when you use the TOUPPER function in the SELECT command:

• The function does not support LOB data types, including BLOB, CLOB, NCLOB, and BFILE
data types.

• The function does not support national character set data types, including NCHAR,
NVARCHAR2, and NCLOB data types.

Example

This example shows each problem_key in all uppercase letters.

select toupper(problem_key) from problem;

22.9.10 SET BASE
The ADRCI SET BASE command sets the ADR base to use in the current ADRCI session.

Syntax and Description

set base base_str

base_str is a full path to a directory. The format for base_str depends on the operating
system. If there are valid ADR homes under the base directory, these homes are added to the
home path of the current ADRCI session.

This command does not require an ADR home to be set before you can use it.

Example

set base /u01/app/oracle

Related Topics

• Definitions for Oracle Database ADRC
To understand how to diagnose Oracle Database problems, learn the definitions of terms
that Oracle uses for the ADRCI, and the Oracle Database fault diagnosability
infrastructure.

22.9.11 SET BROWSER
The ADRCI SET BROWSER command sets the default browser for displaying reports.

Syntax and Description

Note:

This command is reserved for future use. At this time ADRCI does not support
HTML-formatted reports in a browser.

Chapter 22
ADRCI Command Reference

22-57

set browser browser_program

browser_program is the browser program name (it is assumed the browser can be
started from the current ADR working directory). If no browser is set, then ADRCI
displays reports to the terminal or spool file.

This command does not require an ADR home to be set before you can use it.

Example

set browser mozilla

See Also:

• SHOW REPORT for more information about showing reports

• SPOOL for more information about spooling

22.9.12 SET CONTROL
The ADRCI SET CONTROL command sets purging policies for Automatic Diagnostic
Repository (ADR) contents.

Purpose

Sets time limit and size limit controls that manage when ADR repository files are
purged.

Syntax and Description

set control (purge_policy = value purge_policy = value, ...)

In the preceding syntax, the variable purge_policy can be SHORTP_POLICY,
LONGP_POLICY, or SIZEP_POLICY.

For SHORTP_POLICY and LONGP_POLICY, value is the number of hours after which the
ADR contents become eligible for purging. The controls SHORTP_POLICY and
LONGP_POLICY are not mutually exclusive. Each policy controls different types of
content.

For SIZEP_POLICY, value is the size limit that you want to set for the ADR home. If you
do not set a value, then the ADR home is purged every 24 hours. If you set a value for
SIZEP_POLICY, then a MMON task is set that checks the current status of that limit every
four hours. When the ADR home size reaches that limit, the ADR home is purged.

This command works with a single ADR home only.

Use SET CONTROL to set the following purge attributes:

Chapter 22
ADRCI Command Reference

22-58

Attribute Name Description

SHORTP_POLICY Number of hours after which to purge ADR contents that have a short life.
Default: 720 (30 days).

A setting of 0 (zero) means that all contents that have a short life can be
purged. The maximum setting is 35791394. If a value greater than 35791394
is specified, then this attribute is set to 0 (zero).

The ADR contents that have a short life include the following:

• Trace files, including those files stored in the cdmp_timestamp
subdirectories

• Core dump files
• Packaging information

LONGP_POLICY Number of hours after which to purge ADR contents that have a long life.
Default is 8760 (365 days).

A setting of 0 (zero) means that all contents that have a long life can be
purged. The maximum setting is 35791394. If a value greater than 35791394
is specified, then this attribute is set to 0 (zero).

The ADR contents that have a long life include the following:

• Incident information
• Incident dumps
• Alert logs

SIZEP_POLICY (Optional) Defines the size limit for an Automatic Diagnostic Repository
(ADR) home.

In Oracle Database 12c Release 2 (12.2) and later releases, you can use
SIZEP_POLICY to set a size limit for the AWR.

When you set SIZEP_POLICY, the MMON background process collects
statistics for the AWR home. By default, the ADR home is purged every 24
hours. If this purge time frame is inadequate, then you can set the
SIZEP_POLICY to define a size limit for an ADR home to purge the ADR
home when it approaches the purge size threshold. When you set a size limit
using SIZEP_POLICY, MMON checks the current status of that limit every four
hours. If the size limit is reached, then ADR purges the ADR repository.

PURGE_THRESHOLD The PURGE_THRESHOLD value is a value at which the SIZEP_POLICY is
triggered. If you set SIZEP_POLICY, then by default, the value of
PURGE_THRESHOLD is 95 percent of the value of the SIZEP_POLICY. In a
multitenant environment, the ADR home is shared, so the PURGE_THRESHOLD
size policy is applied to the diagnostics storage location (diag).

You can tune PURGE_THRESHOLD independently for each ADR home by
setting the value for the PURGE_THRESHOLD column in the
ADR_CONTROL_AUX relation .

When you tune the PURGE_THRESHOLD, this can assist you with keeping
the amount of ADR data below the SIZEP_POLICY limit, even if your ADR
home is purged infrequently.

Example

Suppose the ADR purge policy is set to the default values of 720 for short life files (30 days),
8760 for long life files (365 days), and that you have no size-based purge policy set for the
ADR repository. In the following example, the ADR short life files purge policy is changed to
360 (15 days), the short life files size limit before a purge is set to 18 gigabytes (G), and the
size purge threshold is set to 12G

set control (SHORTP_POLICY = 360 SIZEP_POLICY = 18G PURGE_THRESHOLD =12G)

Chapter 22
ADRCI Command Reference

22-59

22.9.13 SET ECHO
The ADRCI SET ECHO command turns command output on or off. This command only
affects output being displayed in a script or using the spool mode.

Syntax and Description

SET ECHO ON | OFF
This command does not require an ADR home to be set before you can use it.

Example

SET ECHO OFF

Related Topics

• SPOOL
The ADRCI SET EDITOR command directs ADRCI output to a file.

22.9.14 SET EDITOR
The ADRCI SET EDITOR command sets the editor for displaying the alert log and the
contents of trace files.

Syntax and Description

SET EDITOR editor_program

editor_program is the editor program name. If no editor is set, then ADRCI uses the
editor specified by the operating system environment variable EDITOR. If EDITOR is not
set, then ADRCI uses vi as the default editor.

This command does not require an ADR home to be set before you can use it.

Example

SET EDITOR xemacs

22.9.15 SET HOMEPATH
The ADRCI SET HOMEPATH command makes one or more ADR homes current. Many
ADR commands work with the current ADR homes only.

Syntax and Description

SET HOMEPATH homepath_str1 homepath_str2 ...

When diagnosing data, to work with data from other instances or components, you
must ensure that all the ADR homes for all of these instances or components are
current. The homepath_strn strings are the paths of the ADR homes relative to the
current ADR base. The diag directory name can be omitted from the path. If the
specified path contains multiple ADR homes, then all of the homes are added to the
home path.

Chapter 22
ADRCI Command Reference

22-60

If a desired new ADR home is not within the current ADR base, then you can use SET BASE to
set a new ADR base, and then use SET HOMEPATH.

This command does not require an ADR home to be set before you can use it.

Example

SET HOMEPATH diag/rdbms/orcldw/orcldw1 diag/rdbms/orcldw/orcldw2

The following command sets the same home path as the previous example:

SET HOMEPATH rdbms/orcldw/orcldw1 rdbms/orcldw/orcldw2

Related Topics

• Definitions for Oracle Database ADRC
To understand how to diagnose Oracle Database problems, learn the definitions of terms
that Oracle uses for the ADRCI, and the Oracle Database fault diagnosability
infrastructure.

22.9.16 SET TERMOUT
The ADRCI SET TERMOUT command turns output to the terminal on or off.

Syntax and Description

SET TERMOUT ON | OFF

This setting is independent of spooling. That is, the output can be directed to both terminal
and a file at the same time.

This command does not require an ADR home to be set before you can use it.

See Also:

SPOOL for more information about spooling

Example

SET TERMOUT ON

Related Topics

• SPOOL
The ADRCI SET EDITOR command directs ADRCI output to a file.

22.9.17 SHOW ALERT
The ADRCI SHOW ALERT command shows the contents of the alert log in the default editor.

Purpose

Shows the contents of the alert log in the default editor.

Chapter 22
ADRCI Command Reference

22-61

Syntax and Description

show alert [-p "predicate_string"] [-tail [num] [-f]] [-term]
 [-file alert_file_name]

Except when using the -term flag, this command works with only a single current ADR
home. If more than one ADR home is set, ADRCI prompts you to choose the ADR
home to use.

Table 22-9 Flags for the SHOW ALERT command

Flag Description

-p "predicate_string" Uses a SQL-like predicate string to show only the alert log
entries for which the predicate is true. The predicate string must
be enclosed in double quotation marks.

The table that follows this table lists the fields that can be used in
the predicate string.

-tail [num][-f] Displays the most recent entries in the alert log.

Use the num option to display the last num entries in the alert log.
If num is omitted, then the last 10 entries are displayed.

If the -f option is given, after displaying the requested
messages, the command does not return. Instead, it remains
active and continuously displays new alert log entries to the
terminal as they arrive in the alert log. You can use this
command to perform live monitoring of the alert log. To terminate
the command, press CTRL+C.

-term Directs results to the terminal. Outputs the entire alert logs from
all current ADR homes, one after another. If this option is not
given, then the results are displayed in the default editor.

-file alert_file_name Enables you to specify an alert file outside the ADR.
alert_file_name must be specified with a full path name. Note
that this option cannot be used with the -tail option.

Table 22-10 Alert Fields for SHOW ALERT

Field Type

ORIGINATING_TIMESTAMP timestamp
NORMALIZED_TIMESTAMP timestamp
ORGANIZATION_ID text(65)
COMPONENT_ID text(65)
HOST_ID text(65)
HOST_ADDRESS text(17)
MESSAGE_TYPE number
MESSAGE_LEVEL number
MESSAGE_ID text(65)
MESSAGE_GROUP text(65)
CLIENT_ID text(65)

Chapter 22
ADRCI Command Reference

22-62

Table 22-10 (Cont.) Alert Fields for SHOW ALERT

Field Type

MODULE_ID text(65)
PROCESS_ID text(33)
THREAD_ID text(65)
USER_ID text(65)
INSTANCE_ID text(65)
DETAILED_LOCATION text(161)
UPSTREAM_COMP_ID text(101)
DOWNSTREAM_COMP_ID text(101)
EXECUTION_CONTEXT_ID text(101)
EXECUTION_CONTEXT_SEQUENCE number
ERROR_INSTANCE_ID number
ERROR_INSTANCE_SEQUENCE number
MESSAGE_TEXT text(2049)
MESSAGE_ARGUMENTS text(129)
SUPPLEMENTAL_ATTRIBUTES text(129)
SUPPLEMENTAL_DETAILS text(4000)
PROBLEM_KEY text(65)

Examples

This example shows all alert messages for the current ADR home in the default editor:

show alert

This example shows all alert messages for the current ADR home and directs the output to
the terminal instead of the default editor:

show alert -term

This example shows all alert messages for the current ADR home with message text
describing an incident:

show alert -p "message_text like '%incident%'"

This example shows the last twenty alert messages, and then keeps the alert log open,
displaying new alert log entries as they arrive:

show alert -tail 20 -f

This example shows all alert messages for a single ADR home in the default editor when
multiple ADR homes have been set:

show alert

Choose the alert log from the following homes to view:

1: diag/tnslsnr/dbhost1/listener

Chapter 22
ADRCI Command Reference

22-63

2: diag/asm/+asm/+ASM
3: diag/rdbms/orcl/orcl
4: diag/clients/user_oracle/host_9999999999_11
Q: to quit

Please select option:
3

Related Topics

• SET EDITOR
The ADRCI SET EDITOR command sets the editor for displaying the alert log and
the contents of trace files.

22.9.18 SHOW BASE
The ADRCI SET EDITOR command shows the current ADR base.

Syntax and Description

SHOW BASE [-product product_name]

(Optional) You can show the product's ADR base location for a specific product. The
products currently supported are CLIENT and ADRCI.

This command does not require an ADR home to be set before you can use it.

Example

This example shows the current ADR base:

SHOW BASE

Output:

ADR base is "/u01/app/oracle"

This example shows the current ADR base for Oracle Database clients:

SHOW BASE -product client

22.9.19 SHOW CONTROL
The ADRCI SHOW CONTROL command displays information about the Automatic
Diagnostic Repository (ADR), including the purging policy.

Purpose

Displays metadata values for the ADR. The ADR maintains it's metadata in a
repository as relations between controls in the repository. Use SHOW CONTROL to see
what the current settings are for automatic time-based ADR purging.

Syntax and Description

SHOW CONTROL

Show control shows the including the following purging policy attributes:

Chapter 22
ADRCI Command Reference

22-64

Attribute Name Description

SHORTP_POLICY Number of hours after which to purge ADR contents that have a short life.
Default: 720 (30 days).

A setting of 0 (zero) means that all contents that have a short life can be
purged. The maximum setting is 35791394. If a value greater than 35791394
is specified, then this attribute is set to 0 (zero).

The ADR contents that have a short life include the following:

• Trace files, including those files stored in the cdmp_timestamp
subdirectories

• Core dump files
• Packaging information

LONGP_POLICY Number of hours after which to purge ADR contents that have a long life.
Default is 8760 (365 days).

A setting of 0 (zero) means that all contents that have a long life can be
purged. The maximum setting is 35791394. If a value greater than 35791394
is specified, then this attribute is set to 0 (zero).

The ADR contents that have a long life include the following:

• Incident information
• Incident dumps
• Alert logs

SIZEP_POLICY (Optional) Defines the size limit for an Automatic Workload Repository (AWR)
home.

In Oracle Database 12c Release 2 (12.2) and later releases, you can use
SIZEP_POLICY to set a size limit for the AWR.

When you set SIZEP_POLICY, the MMON background process collects
statistics for the AWR home. By default, the ADR home is purged every 24
hours. If this purge time frame is inadequate, then you can set the
SIZEP_POLICY to define a size limit for an ADR home to purge the ADR
home when it approaches the purge size threshold. When you set a size limit
using SIZEP_POLICY, MMON checks the current status of that limit every four
hours. If the size limit is reached, then ADR purges the ADR repository.

PURGE_THRESHOLD The PURGE_THRESHOLD value is a value at which the SIZEP_POLICY is
triggered. If you set SIZEP_POLICY, then by default, the value of
PURGE_THRESHOLD is 95 percent of the value of the SIZEP_POLICY. In a
multitenant environment, the ADR home is shared, so the PURGE_THRESHOLD
size policy is applied to the diagnostics storage location (diag).

You can tune PURGE_THRESHOLD independently for each ADR home by
setting the value for the PURGE_THRESHOLD column in the
ADR_CONTROL_AUX relation .

When you tune the PURGE_THRESHOLD, this can assist you with keeping
the amount of ADR data below the SIZEP_POLICY limit, even if your ADR
home is purged infrequently.

Note:

The SHORTP_POLICY and LONGP_POLICY attributes are not mutually exclusive. Each
policy controls different types of content.

Chapter 22
ADRCI Command Reference

22-65

Example

In the following example, SHOW CONTROL is used to show the purge policy settings
for the ADR home in CDB1. Relevant values are highlighted in Bold font. The format
of the SHOW CONTROL output is slightly altered in this example. Note the following

• The SHORTP_POLICY shows that the ADR automatically purges files that have a
short life, such as trace files, after 30 days (720 hours). This is the default setting.

• The LONGP_POLICY shows that the ADR purges contents that have a long life,
such as alert files, after 365 days (8760 hours). This is the default setting.

• The SIZEP_POLICY shows that the maximum size limit for the ADR home is set to
18 GB (19,327,352,832 bytes).

• The PURGE_THRESHOLD shows that the threshold is set to 95 percent of the
SIZEP_POLICY (the default).

ADRID SHORTP_POLICY LONGP_POLICY LAST_MOD_TIME
 LAST_AUTOPRG_TIME LAST_MANUPRG_TIME ADRDIR_VERSION ADRSCHM_VERSION
ADRSCHMV_SUMMARY
 ADRALERT_VERSION CREATE_TIME SIZEP_POLICY PURGE_PERIOD FLAGS
PURGE_THRESHOLD
 . . .
 1481481004 720 8760 2020-03-31...2020-03-31... 1 2 110 1
2020-03-25...
 19327352832 0 0 95
 -07:00 1 rows fetched

Certain values in the SHOW CONTROL output are not relevant for managing the ADR, but
can be relevant for Oracle Support. Note that you can also query individual results:

adrci> select
SHORTP_POLICY,LONGP_POLICY,LAST_AUTOPRG_TIME,LAST_MANUPRG_TIME from
ADR_CONTROL;

ADR Home = /home/oracle/diag/rdbms/cdb1/cdb1:

**
SHORTP_POLICY LONGP_POLICY
LAST_AUTOPRG_TIME
LAST_MANUPRG_TIME
-------------------- --------------------
--
--
720 8760 2020-01-03 23:17:09.351760
+00:00
1 rows fetched

Chapter 22
ADRCI Command Reference

22-66

22.9.20 SHOW HM_RUN
The ADRCI SHOW HM_RUN command shows all information for Health Monitor runs.

Purpose

Shows all information for Health Monitor runs.

Syntax and Description

show hm_run [-p "predicate_string]
predicate_string is a SQL-like predicate that specifies the field names that you want to
select. The following table displays the list of field names you can use:

Table 22-11 Fields for Health Monitor Runs

Field Type

RUN_ID number
RUN_NAME text(31)
CHECK_NAME text(31)
NAME_ID number
MODE number
START_TIME timestamp
RESUME_TIME timestamp
END_TIME timestamp
MODIFIED_TIME timestamp
TIMEOUT number
FLAGS number
STATUS number
SRC_INCIDENT_ID number
NUM_INCIDENTS number
ERR_NUMBER number
REPORT_FILE bfile

Examples

This example displays data for all Health Monitor runs:

show hm_run

This example displays data for the Health Monitor run with ID 123:

show hm_run -p "run_id=123"

Related Topics

• About Health Monitor

Chapter 22
ADRCI Command Reference

22-67

22.9.21 SHOW HOMEPATH
The ADRCI SHOW HOMEPATH command is identical to the SHOW HOMES command.

Syntax and Description

SHOW HOMEPATH | SHOW HOMES | SHOW HOME

This command does not require an ADR home to be set before you can use it.

Example

SHOW HOMEPATH

Output:

ADR Homes:
diag/tnslsnr/dbhost1/listener
diag/asm/+asm/+ASM
diag/rdbms/orcl/orcl
diag/clients/user_oracle/host_9999999999_11

Related Topics

• SET HOMEPATH
The ADRCI SET HOMEPATH command makes one or more ADR homes current.
Many ADR commands work with the current ADR homes only.

22.9.22 SHOW HOMES
The ADRCI SHOW HOMES command shows the ADR homes in the current ADRCI
session.

Syntax and Description

SHOW HOMES | SHOW HOME | SHOW HOMEPATH

This command does not require an ADR home to be set before you can use it.

Example

SHOW HOMES

Output:

ADR Homes:
diag/tnslsnr/dbhost1/listener
diag/asm/+asm/+ASM
diag/rdbms/orcl/orcl
diag/clients/user_oracle/host_9999999999_11

Chapter 22
ADRCI Command Reference

22-68

22.9.23 SHOW INCDIR
The ADRCI SHOW INCDIR command shows trace files for the specified incident.

Syntax and Description

show incdir [id | id_low id_high]

You can provide a single incident ID (id), or a range of incidents (id_low to id_high). If no
incident ID is given, then trace files for all incidents are listed.

Examples

This example shows all trace files for all incidents:

show incdir

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_ora_23604_i3801.trc
diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_m000_23649_i3801_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3802/emdb_ora_23604_i3802.trc
diag/rdbms/emdb/emdb/incident/incdir_3803/emdb_ora_23604_i3803.trc
diag/rdbms/emdb/emdb/incident/incdir_3804/emdb_ora_23604_i3804.trc
diag/rdbms/emdb/emdb/incident/incdir_3805/emdb_ora_23716_i3805.trc
diag/rdbms/emdb/emdb/incident/incdir_3805/emdb_m000_23767_i3805_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3806/emdb_ora_23716_i3806.trc
diag/rdbms/emdb/emdb/incident/incdir_3633/emdb_pmon_28970_i3633.trc
diag/rdbms/emdb/emdb/incident/incdir_3633/emdb_m000_23778_i3633_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_smon_28994_i3713.trc
diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_m000_23797_i3713_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3807/emdb_ora_23783_i3807.trc
diag/rdbms/emdb/emdb/incident/incdir_3807/emdb_m000_23803_i3807_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3808/emdb_ora_23783_i3808.trc

This example shows all trace files for incident 3713:

show incdir 3713

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_smon_28994_i3713.trc
diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_m000_23797_i3713_a.trc

This example shows all tracefiles for incidents between 3801 and 3804:

show incdir 3801 3804

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_ora_23604_i3801.trc
diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_m000_23649_i3801_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3802/emdb_ora_23604_i3802.trc

Chapter 22
ADRCI Command Reference

22-69

diag/rdbms/emdb/emdb/incident/incdir_3803/emdb_ora_23604_i3803.trc
diag/rdbms/emdb/emdb/incident/incdir_3804/emdb_ora_23604_i3804.trc

22.9.24 SHOW INCIDENT
The ADRCI SHOW INCIDENT command lists all of the incidents associated with the
current ADR home. Includes both open and closed incidents.

Syntax and Description

show incident [-p "predicate_string"] [-mode {BASIC|BRIEF|DETAIL}] [-orderby
field1, field2, ... [ASC|DSC]]

Table 22-12 Flags for SHOW INCIDENT command

Flag Description

-p "predicate_string" Use a predicate string to show only the incidents for
which the predicate is true. The predicate string
must be enclosed in double quotation marks.

Refer to the table "Incident Fields for SHOW
INCIDENT" for a list of the fields that can be used in
the predicate string.

-mode {BASIC|BRIEF|DETAIL} Choose an output mode for incidents. BASIC is the
default.

• BASIC displays only basic incident information
(the INCIDENT_ID, PROBLEM_ID, and
CREATE_TIME fields). It does not display flood-
controlled incidents.

• BRIEF displays all information related to the
incidents, as described in the table "Incident
Fields for SHOW INCIDENT." It includes flood-
controlled incidents.

• DETAIL displays all information for the incidents
(as with BRIEF mode) as well as information
about incident dumps. It includes flood-
controlled incidents.

-orderby field1, field2, ...
[ASC|DSC]

Show results sorted by field in the given order, as
well as in ascending (ASC) and descending order
(DSC). By default, results are shown in ascending
order.

Table 22-13 Incident Fields for SHOW INCIDENT

Field Type Description

INCIDENT_ID number ID of the incident

PROBLEM_ID number ID of the problem to which the
incident belongs

CREATE_TIME timestamp Time when the incident was created

CLOSE_TIME timestamp Time when the incident was closed

STATUS number Status of this incident

FLAGS number Flags for internal use

Chapter 22
ADRCI Command Reference

22-70

Table 22-13 (Cont.) Incident Fields for SHOW INCIDENT

Field Type Description

FLOOD_CONTROLLED number (decoded to a
text status by ADRCI)

Encodes the flood control status for
the incident

ERROR_FACILITY text(10) Error facility for the error that caused
the incident

ERROR_NUMBER number Error number for the error that
caused the incident

ERROR_ARG1 text(64) First argument for the error that
caused the incident

Error arguments provide additional
information about the error, such as
the code location that issued the
error.

ERROR_ARG2 text(64) Second argument for the error that
caused the incident

ERROR_ARG3 text(64) Third argument for the error that
caused the incident

ERROR_ARG4 text(64) Fourth argument for the error that
caused the incident

ERROR_ARG5 text(64) Fifth argument for the error that
caused the incident

ERROR_ARG6 text(64) Sixth argument for the error that
caused the incident

ERROR_ARG7 text(64) Seventh argument for the error that
caused the incident

ERROR_ARG8 text(64) Eighth argument for the error that
caused the incident

SIGNALLING_COMPONENT text(64) Component that signaled the error
that caused the incident

SIGNALLING_SUBCOMPONENT text(64) Subcomponent that signaled the error
that caused the incident

SUSPECT_COMPONENT text(64) Component that has been
automatically identified as possibly
causing the incident

SUSPECT_SUBCOMPONENT text(64) Subcomponent that has been
automatically identified as possibly
causing the incident

ECID text(64) Execution Context ID

IMPACT number Encodes the impact of the incident

ERROR_ARG9 text(64) Ninth argument for the error that
caused the incident

ERROR_ARG10 text(64) Tenth argument for the error that
caused the incident

ERROR_ARG11 text(64) Eleventh argument for the error that
caused the incident

Chapter 22
ADRCI Command Reference

22-71

Table 22-13 (Cont.) Incident Fields for SHOW INCIDENT

Field Type Description

ERROR_ARG12 text(64) Twelfth argument for the error that
caused the incident

Examples

This example shows all incidents for this ADR home:

show incident

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

INCIDENT_ID PROBLEM_KEY CREATE_TIME
-------------------- -- ----------------------------
3808 ORA 603 2010-06-18 21:35:49.322161
-07:00
3807 ORA 600 [4137] 2010-06-18 21:35:47.862114
-07:00
3806 ORA 603 2010-06-18 21:35:26.666485
-07:00
3805 ORA 600 [4136] 2010-06-18 21:35:25.012579
-07:00
3804 ORA 1578 2010-06-18 21:35:08.483156
-07:00
3713 ORA 600 [4136] 2010-06-18 21:35:44.754442
-07:00
3633 ORA 600 [4136] 2010-06-18 21:35:35.776151
-07:00
7 rows fetched

This example shows the detail view for incident 3805:

adrci> show incident -mode DETAIL -p "incident_id=3805"

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

**
INCIDENT INFO RECORD 1
**
 INCIDENT_ID 3805
 STATUS closed
 CREATE_TIME 2010-06-18 21:35:25.012579 -07:00
 PROBLEM_ID 2
 CLOSE_TIME 2010-06-18 22:26:54.143537 -07:00
 FLOOD_CONTROLLED none
 ERROR_FACILITY ORA
 ERROR_NUMBER 600
 ERROR_ARG1 4136
 ERROR_ARG2 2
 ERROR_ARG3 18.0.628
 ERROR_ARG4 <NULL>
 ERROR_ARG5 <NULL>

Chapter 22
ADRCI Command Reference

22-72

 ERROR_ARG6 <NULL>
 ERROR_ARG7 <NULL>
 ERROR_ARG8 <NULL>
 SIGNALLING_COMPONENT <NULL>
 SIGNALLING_SUBCOMPONENT <NULL>
 SUSPECT_COMPONENT <NULL>
 SUSPECT_SUBCOMPONENT <NULL>
 ECID <NULL>
 IMPACTS 0
 PROBLEM_KEY ORA 600 [4136]
 FIRST_INCIDENT 3805
 FIRSTINC_TIME 2010-06-18 21:35:25.012579 -07:00
 LAST_INCIDENT 3713
 LASTINC_TIME 2010-06-18 21:35:44.754442 -07:00
 IMPACT1 0
 IMPACT2 0
 IMPACT3 0
 IMPACT4 0
 KEY_NAME Client ProcId
 KEY_VALUE oracle@dbhost1 (TNS V1-V3).23716_3083142848
 KEY_NAME SID
 KEY_VALUE 127.52237
 KEY_NAME ProcId
 KEY_VALUE 23.90
 KEY_NAME PQ
 KEY_VALUE (0, 1182227717)
 OWNER_ID 1
 INCIDENT_FILE /.../emdb/emdb/incident/incdir_3805/emdb_ora_23716_i3805.trc
 OWNER_ID 1
 INCIDENT_FILE /.../emdb/emdb/trace/emdb_ora_23716.trc
 OWNER_ID 1
 INCIDENT_FILE /.../emdb/emdb/incident/incdir_3805/emdb_m000_23767_i3805_a.trc
1 rows fetched

Related Topics

• SHOW INCIDENT
The ADRCI SHOW INCIDENT command lists all of the incidents associated with the current
ADR home. Includes both open and closed incidents.

22.9.25 SHOW LOG
The ADRCI SHOW LOG command shows diagnostic log messages.

Syntax and Description

SHOW LOG [-l log_name] [-p "predicate_string"] [-term] [[-tail [num] [-f]]]

The following table describes the flags for SHOW LOG.

Table 22-14 Flags for SHOW LOG command

Flag Description

-l log_name Name of the log to show.

If no log name is specified, then this command displays all messages
from all diagnostic logs under the current ADR Home.

Chapter 22
ADRCI Command Reference

22-73

Table 22-14 (Cont.) Flags for SHOW LOG command

Flag Description

-p "predicate_string" Use a SQL-like predicate string to show only the log entries for which
the predicate is true. The predicate string must be enclosed in double
quotation marks.

The table "Log Fields for SHOW LOG" lists the fields that can be used
in the predicate string.

-term Direct results to the terminal.

If this option is not specified, then this command opens the results in
an editor. By default, it opens the results in the emacs editor, but you
can use the SET EDITOR command to open the results in other
editors.

-tail [num] [-f] Displays the most recent entries in the log.

Use the num option to display the last num entries in the log. If num is
omitted, then the last 10 entries are displayed.

If the -f option is given, then after displaying the requested
messages, the command does not return. Instead, it remains active,
and continuously displays new log entries to the terminal as they
arrive in the log. You can use this command to perform live monitoring
of the log. To terminate the command, press CTRL+C.

Table 22-15 Log Fields for SHOW LOG

Field Type

ORIGINATING_TIMESTAMP timestamp
NORMALIZED_TIMESTAMP timestamp
ORGANIZATION_ID text(65)
COMPONENT_ID text(65)
HOST_ID text(65)
HOST_ADDRESS text(17)
MESSAGE_TYPE number
MESSAGE_LEVEL number
MESSAGE_ID text(65)
MESSAGE_GROUP text(65)
CLIENT_ID text(65)
MODULE_ID text(65)
PROCESS_ID text(33)
THREAD_ID text(65)
USER_ID text(65)
INSTANCE_ID text(65)
DETAILED_LOCATION text(161)
UPSTREAM_COMP_ID text(101)
DOWNSTREAM_COMP_ID text(101)

Chapter 22
ADRCI Command Reference

22-74

Table 22-15 (Cont.) Log Fields for SHOW LOG

Field Type

EXECUTION_CONTEXT_ID text(101)
EXECUTION_CONTEXT_SEQUENCE number
ERROR_INSTANCE_ID number
ERROR_INSTANCE_SEQUENCE number
MESSAGE_TEXT text(2049)
MESSAGE_ARGUMENTS text(129)
SUPPLEMENTAL_ATTRIBUTES text(129)
SUPPLEMENTAL_DETAILS text(4000)
PROBLEM_KEY text(65)

22.9.26 SHOW PROBLEM
The ADRCI SHOW PROBLEM command shows problem information for the current ADR home.

Syntax and Description

show problem [-p "predicate_string"] [-last num | -all]
 [-orderby field1, field2, ... [ASC|DSC]]

The following table describes the flags for SHOW PROBLEM.

Table 22-16 Flags for SHOW PROBLEM command

Flag Description

-p "predicate_string" Use a SQL-like predicate string to show only the incidents for which
the predicate is true. The predicate string must be enclosed in double
quotation marks.

The table "Problem Fields for SHOW PROBLEM" lists the fields that
can be used in the predicate string.

-last num | -all Shows the last num problems, or lists all the problems. By default,
SHOW PROBLEM lists the most recent 50 problems.

-orderby field1,
field2, ... [ASC|DSC]

Show results sorted by field in the given order (field1,
field2, ...), as well as in ascending (ASC) and descending order
(DSC). By default, results are shown in ascending order.

Table 22-17 Problem Fields for SHOW PROBLEM

Field Type Description

PROBLEM_ID number ID of the problem

PROBLEM_KEY text(550) Problem key for the problem

FIRST_INCIDENT number Incident ID of the first incident for the problem

FIRSTINC_TIME timestamp Creation time of the first incident for the problem

Chapter 22
ADRCI Command Reference

22-75

Table 22-17 (Cont.) Problem Fields for SHOW PROBLEM

Field Type Description

LAST_INCIDENT number Incident ID of the last incident for the problem

LASTINC_TIME timestamp Creation time of the last incident for the problem

IMPACT1 number Encodes an impact of this problem

IMPACT2 number Encodes an impact of this problem

IMPACT3 number Encodes an impact of this problem

IMPACT4 number Encodes an impact of this problem

SERVICE_REQUEST text(64) Service request for the problem (entered through
Support Workbench)

BUG_NUMBER text(64) Bug number for the problem (entered through
Support Workbench)

Example

This example lists all the problems in the current ADR home:

show problem -all

This example shows the problem with ID 4:

show problem -p "problem_id=4"

22.9.27 SHOW REPORT
The ADRCI SET EDITOR command shows a report for the specified report type and run
name.

Purpose

Currently, only the hm_run (Health Monitor) report type is supported, and only in XML
formatting. To view HTML-formatted Health Monitor reports, use Oracle Enterprise
Manager or the DBMS_HM PL/SQL package.

See Oracle Database Administrator’s Guide for more information.

Syntax and Description

SHOW REPORT report_type run_name

report_type must be hm_run. run_name is the Health Monitor run name from which
you created the report. You must first create the report using the CREATE REPORT
command.

This command does not require an ADR home to be set before you can use it.

Example

SHOW REPORT hm_run hm_run_1421

Chapter 22
ADRCI Command Reference

22-76

Related Topics

• CREATE REPORT
The ADRCI CREATE REPORT command creates a report for the specified report type and
run ID, and stores the report in the ADR.

• SHOW HM_RUN
The ADRCI SHOW HM_RUN command shows all information for Health Monitor runs.

22.9.28 SHOW TRACEFILE
The ADRCI SHOW TRACEFILE command lists trace files.

Syntax and Description

show tracefile [file1 file2 ...] [-rt | -t]
 [-i inc1 inc2 ...] [-path path1 path2 ...]

This command searches for one or more files under the trace directory, and all incident
directories of the current ADR homes, unless the -i or -path flags are given.

This command does not require an ADR home to be set unless using the -i option.

The following table describes the arguments of SHOW TRACEFILE.

Table 22-18 Arguments for SHOW TRACEFILE Command

Argument Description

file1 file2 ... Filter results by file name. The % symbol is a wildcard character.

Table 22-19 Flags for SHOW TRACEFILE Command

Flag Description

-rt | -t Order the trace file names by timestamp. -t sorts the file names in
ascending order by timestamp, and -rt sorts them in reverse order.
Note that file names are only ordered relative to their directory. Listing
multiple directories of trace files applies a separate ordering to each
directory.

Timestamps are listed next to each file name when using this option.

-i inc1 inc2 ... Select only the trace files produced for the given incident IDs.

-path path1 path2 ... Query only the trace files under the given path names.

Examples

This example shows all the trace files under the current ADR home:

show tracefile

This example shows all the mmon trace files, sorted by timestamp in reverse order:

show tracefile %mmon% -rt

This example shows all trace files for incidents 1 and 4, under the path /home/steve/temp:

show tracefile -i 1 4 -path /home/steve/temp

Chapter 22
ADRCI Command Reference

22-77

22.9.29 SPOOL
The ADRCI SET EDITOR command directs ADRCI output to a file.

Syntax and Description

SPOOL filename [[APPEND] | [OFF]]

filename is the file name where you want the output to be directed. If a full path name
is not given, then the file is created in the current ADRCI working directory. If no file
extension is given, then the default extension .ado is used. APPEND causes the output
to be appended to the end of the file. Otherwise, the file is overwritten. Use OFF to turn
off spooling.

This command does not require an ADR home to be set before you can use it.

Examples

SPOOL myfile

SPOOL myfile.ado APPEND

SPOOL OFF

SPOOL

22.10 Troubleshooting ADRCI
To assist troubleshooting, review some of the common ADRCI error messages, and
their possible causes and remedies.

No ADR base is set
Cause: You may have started ADRCI with a null or invalid value for the ORACLE_HOME
environment variable.

Action: Exit ADRCI, set the ORACLE_HOME environment variable, and restart ADRCI.
For more information, see "ADR BASE" in Definitions for Oracle Database ADRC

DIA-48323: Specified pathname string must be inside current ADR home
Cause: A file outside of the ADR home is not allowed as an incident file for this
command.

Action: Retry using an incident file inside the ADR home.

DIA-48400: ADRCI initialization failed
Cause: The ADR Base directory does not exist.

Action: Check the value of the DIAGNOSTIC_DEST initialization parameter, and ensure
that it points to an ADR base directory that contains at least one ADR home. If
DIAGNOSTIC_DEST is missing or null, check for a valid ADR base directory hierarchy in
ORACLE_HOME/log.

DIA-48431: Must specify at least one ADR home path
Cause: The command requires at least one ADR home to be current.

Chapter 22
Troubleshooting ADRCI

22-78

Action: Use the SET HOMEPATH command to make one or more ADR homes current.

DIA-48432: The ADR home path string is not valid
Cause: The supplied ADR home is not valid, possibly because the path does not exist.

Action: Check if the supplied ADR home path exists.

DIA-48447: The input path [path] does not contain any ADR homes
Cause: When using SET HOMEPATH to set an ADR home, you must supply a path relative to
the current ADR base.

Action: If the new desired ADR home is not within the current ADR base, first set ADR base
with SET BASE, and then use SHOW HOMES to check the ADR homes under the new ADR base.
Next, use SET HOMEPATH to set a new ADR home if necessary.

DIA-48448: This command does not support multiple ADR homes
Cause: There are multiple current ADR homes in the current ADRCI session.

Action: Use the SET HOMEPATH command to make a single ADR home current.

Chapter 22
Troubleshooting ADRCI

22-79

23
DBVERIFY: Offline Database Verification
Utility

DBVERIFY is an external command-line utility that performs a physical data structure
integrity check.

DBVERIFY can be used on offline or online databases, as well on backup files. You use
DBVERIFY primarily when you need to ensure that a backup database (or data file) is valid
before it is restored, or as a diagnostic aid when you have encountered data corruption
problems. Because DBVERIFY can be run against an offline database, integrity checks are
significantly faster.

DBVERIFY checks are limited to cache-managed blocks (that is, data blocks). Because
DBVERIFY is only for use with data files, it does not work against control files or redo logs.

There are two command-line interfaces to DBVERIFY. With the first interface, you specify
disk blocks of a single data file for checking. With the second interface, you specify a
segment for checking. Both interfaces are started with the dbv command. The following
sections provide descriptions of these interfaces:

• Using DBVERIFY to Validate Disk Blocks of a Single Data File
In this mode, DBVERIFY scans one or more disk blocks of a single data file and performs
page checks.

• Using DBVERIFY to Validate a Segment
In this mode, DBVERIFY enables you to specify a table segment or index segment for
verification.

23.1 Using DBVERIFY to Validate Disk Blocks of a Single Data
File

In this mode, DBVERIFY scans one or more disk blocks of a single data file and performs
page checks.

If the file you are verifying is an Oracle Automatic Storage Management (Oracle ASM) file,
then you must supply a USERID. This is because DBVERIFY needs to connect to an Oracle
instance to access Oracle ASM files.

• DBVERIFY Syntax When Validating Blocks of a Single File
See the syntax for using DBVERIFY to validate blocks of a single file.

• DBVERIFY Parameters When Validating Blocks of a Single File
See the DBVERIFY parameters that you can use to validate blocks of a single file.

• Example DBVERIFY Output For a Single Data File
See an example of verification for a single data file, and how you can interpret it.

23-1

23.1.1 DBVERIFY Syntax When Validating Blocks of a Single File
See the syntax for using DBVERIFY to validate blocks of a single file.

The syntax for DBVERIFY when you want to validate disk blocks of a single data file is
as follows:

dbv

USERID = username/password

FILE = filename

START

END
= block_address

BLOCKSIZE = integer

LOGFILE = filename

FEEDBACK = integer

HELP =
Y

N

PARFILE = filename

HIGH_SCN = integer

23.1.2 DBVERIFY Parameters When Validating Blocks of a Single File
See the DBVERIFY parameters that you can use to validate blocks of a single file.

Parameter Description

USERID Specifies your username and password.

This parameter is only necessary when the files being
verified are Oracle ASM files.

If you do specify this parameter, then you must enter
both a username and a password; otherwise, a
DBV-00112: USERID incorrectly specified error
is returned.

FILE The name of the database file that you want to verify.

START The starting block address that you want to verify.
Specify block addresses in Oracle blocks (as opposed
to operating system blocks). If you do not specify
START, then DBVERIFY defaults to the first block in the
file.

END The ending block address that you want to verify. If you
do not specify END, then DBVERIFY defaults to the last
block in the file.

Chapter 23
Using DBVERIFY to Validate Disk Blocks of a Single Data File

23-2

Parameter Description

BLOCKSIZE BLOCKSIZE is required only if the file that you want to
be verified does not have a block size of 2 KB. If the file
does not have block size of 2 KB, and you do not
specify BLOCKSIZE, then you will receive the error
DBV-00103.

HIGH_SCN When a value is specified for HIGH_SCN, DBVERIFY
writes diagnostic messages for each block whose block-
level system change number (SCN) exceeds the value
specified.

This parameter is optional. There is no default.

LOGFILE Specifies the log file name and path to which logging
information should be written. The default sends output
to the terminal display.

FEEDBACK Causes DBVERIFY to send a progress display to the
terminal in the form of a single period (.) for n number of
pages verified during the DBVERIFY run. If n = 0, then
there is no progress display.

HELP Provides online help. For help on command line
parameters in a given version of DBVERIFY, type dbv
help=y at the command line.

PARFILE Specifies the name of the parameter file to use. You can
store various values for DBVERIFY parameters in flat
files. Doing this enables you to customize parameter
files to handle different types of data files, and to
perform specific types of integrity checks on data files.

Related Topics

• DBVERIFY - Database file Verification Utility (Doc ID 35512.1)

23.1.3 Example DBVERIFY Output For a Single Data File
See an example of verification for a single data file, and how you can interpret it.

The following is an example verification of the file t_db1.dbf. The feedback parameter has
been given the value 100 to display one period (.) for every 100 pages processed.

% dbv FILE=t_db1.dbf FEEDBACK=100

Output example

The output of this command is as follows:

.

.

.
DBVERIFY - Verification starting : FILE = t_db1.f
DBVERIFY - Verification complete

Total Pages Examined : 120424

Chapter 23
Using DBVERIFY to Validate Disk Blocks of a Single Data File

23-3

https://support.oracle.com/rs?type=doc&id=35512.1

Total Pages Processed (Data) : 79507
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 15236
Total Pages Failing (Index): 0
Total Pages Processed (Other): 5626
Total Pages Processed (Seg) : 1
Total Pages Failing (Seg) : 0
Total Pages Empty : 20055
Total Pages Marked Corrupt : 0
Total Pages Influx : 0
Total Pages Encrypted : 0
Highest block SCN : 25565681 (0.25565681)

Notes

• Pages = Blocks

• Total Pages Examined = number of blocks in the file.

• Total Pages Processed (Data) = number of blocks that were verified (formatted
blocks).

• Total Pages Processed (Other) = metadata blocks. These blocks are not being
verified, so there is no output for "Total Pages Failing (Other)."

• Total Pages Processed (Seg) = number of segment header blocks.

• Total Pages Failing (Data) = number of blocks that failed the data block checking
routine.

• Total Pages Failing (Index) = number of blocks that failed the index block checking
routine.

• Total Pages Marked Corrupt = number of blocks for which the cache header is
invalid, thereby making it impossible for DBVERIFY to identify the block type.

• Total Pages Influx = number of blocks that are being read and written to at the
same time. If the database is open when DBVERIFY is run, then DBVERIFY reads
blocks multiple times to obtain a consistent image. But because the database is
open, there can be blocks that are being read and written to at the same time
(INFLUX). In that event, DBVERIFY cannot obtain a consistent image of pages that
are in flux.

• Total Pages Encrypted = all blocks (Data, Index, Other, Seg), not only Data or
Index. When "Total Pages Encrypted" is different than zero, DBVERIFY outputs
the message "DBVerify cannot perform logical check against encrypted blocks,
RMAN should be used."

23.2 Using DBVERIFY to Validate a Segment
In this mode, DBVERIFY enables you to specify a table segment or index segment for
verification.

It checks to ensure that a row chain pointer is within the segment being verified.

This mode requires that you specify a segment (data or index) to be validated. It also
requires that you log on to the database with SYSDBA privileges, because information
about the segment must be retrieved from the database.

Chapter 23
Using DBVERIFY to Validate a Segment

23-4

During this mode, the segment is locked. If the specified segment is an index, then the parent
table is locked. Note that some indexes, such as IOTs, do not have parent tables.

• DBVERIFY Syntax When Validating a Segment
See the syntax for using DBVERIFY to validate a segment.

• DBVERIFY Parameters When Validating a Single Segment
See the DBVERIFY parameters that you can use to validate a single segment.

• Example DBVERIFY Output For a Validated Segment
See an example of a verification for a validated segment.

23.2.1 DBVERIFY Syntax When Validating a Segment
See the syntax for using DBVERIFY to validate a segment.

The syntax for DBVERIFY when you want to validate a segment is as follows:

dbv

USERID = username/password

SEGMENT_ID = tsn.segfile.segblock

LOGFILE = filename

FEEDBACK = integer

HELP =
Y

N

PARFILE = filename

HIGH_SCN = integer

23.2.2 DBVERIFY Parameters When Validating a Single Segment
See the DBVERIFY parameters that you can use to validate a single segment.

Parameter Description

USERID Specifies your username and password. If you do not enter both a
username and a password, then the error DBV-00112: USERID
incorrectly specified is returned.

If you are connecting to a container database (CDB), then you would
enter username@cdbname/password.

SEGMENT_ID Specifies the segment that you want to verify. A segment identifier is
composed of the tablespace ID number (tsn), segment header file
number (segfile), and segment header block number (segblock). You
can obtain this information from SYS_USER_SEGS. The relevant columns
are TABLESPACE_ID, HEADER_FILE, and HEADER_BLOCK. To query
SYS_USER_SEGS, you must have SYSDBA privileges.

For example, if the tablespace number (TS#) is 2, the segment header
file number (HEADER_FILE) is 5, and the segment header block number
(HEADER_BLOCK) is 37767, then check that segment using
SEGMENT_ID=2.5.37767

Chapter 23
Using DBVERIFY to Validate a Segment

23-5

Parameter Description

HIGH_SCN When a value is specified for HIGH_SCN, DBVERIFY writes diagnostic
messages for each block whose block-level SCN exceeds the value
specified.

This parameter is optional. There is no default.

LOGFILE Specifies the file to which logging information should be written. The
default sends output to the terminal display.

FEEDBACK Causes DBVERIFY to send a progress display to the terminal in the form
of a single period (.) for n number of pages verified during the
DBVERIFY run. If n = 0, then there is no progress display.

HELP Provides online help.

PARFILE Specifies the name of the parameter file that you want to use. You can
store various values for DBVERIFY parameters in flat files. Doing this
enables you to customize parameter files to handle different types of
data files, and to perform specific types of integrity checks on data files.

23.2.3 Example DBVERIFY Output For a Validated Segment
See an example of a verification for a validated segment.

The following is an example of using the DBVERIFY command with a tablespace
segment, and the output produced by a DBVERIFY operation.

% dbv userid=system/ SEGMENT_ID=2.5.37767

The output of this command is as follows:

DBVERIFY - Verification starting : SEGMENT_ID = 2.5.37767

DBVERIFY - Verification complete

Total Pages Examined : 640
Total Pages Processed (Data) : 0
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 0
Total Pages Failing (Index): 0
Total Pages Processed (Other): 591
Total Pages Processed (Seg) : 8
Total Pages Failing (Seg) : 0
Total Pages Empty : 13
Total Pages Marked Corrupt : 0
Total Pages Influx : 0
Total Pages Encrypted : 28
Highest block SCN : 7877587 (0.7877587)

Related Topics

• DBVERIFY enhancement - How to scan an object/segment (Doc ID 139962.1)

Chapter 23
Using DBVERIFY to Validate a Segment

23-6

https://support.oracle.com/rs?type=doc&id=139962.1

24
DBNEWID Utility

DBNEWID is a database utility that can change the internal database identifier (DBID) and the
database name (DBNAME) for an operational database.

• What Is the DBNEWID Utility?
The DBNEWID utility enables you to change only the DBID, DBNAME, or both the DBID and
DBNAME of a database.

• Ramifications of Changing the DBID and DBNAME
Before you change the DBID and DBNAME of a database with the DBNEWID utility, review
these guidelines.

• Considerations for Global Database Names
If you are dealing with a database in a distributed database system, then each database
should have a unique global database name.

• Changing Both CDB and PDB DBIDs Using DBNEWID
The DBNEWID parameter PDB enables you to change the DBID on pluggable databases
(PDBs).

• Changing the DBID and DBNAME of a Database
To change either DBID or DBNAME, or both the DBID and DBNAME of your database, select
the DBNEWID procedure that you need.

• DBNEWID Syntax
To change only the DBID, DBNAME, or both the DBID and DBNAME of a database, use
DBNEWID.

24.1 What Is the DBNEWID Utility?
The DBNEWID utility enables you to change only the DBID, DBNAME, or both the DBID and DBNAME
of a database.

Before the introduction of the DBNEWID utility, you could manually create a copy of a
database and give it a new database name (DBNAME) by recreating the control file. However,
you could not give the database a new identifier (DBID). The DBID is an internal, unique
identifier for a database. Because Recovery Manager (RMAN) distinguishes databases by
DBID, you could not register a seed database and a manually copied database together in the
same RMAN repository. The DBNEWID utility solves this problem by enabling you to change
any of the following:

• Only the DBID of a database

• Only the DBNAME of a database

• Both the DBNAME and DBID of a database

24-1

24.2 Ramifications of Changing the DBID and DBNAME
Before you change the DBID and DBNAME of a database with the DBNEWID utility,
review these guidelines.

When you change the DBID, you should make a backup of the whole database
immediately.

Changing the DBID of a database is a serious procedure. When the DBID of a database
is changed, all previous backups and archived logs of the database become unusable.
Changing the DBID is similar to creating a database, except that the data is already in
the data files. After you change the DBID, backups and archive logs that were created
before the DBID change can no longer be used, because they still have the original
DBID, which does not match the current DBID. You must open the database with the
RESETLOGS option, which recreates the online redo logs, and resets the redo log
sequence to 1. Consequently,

When you change DBNAME and do not change DBID, you must change the DBNAME
initialization parameter, and follow additional guidelines.

Changing the DBNAME without changing the DBID does not require you to open with the
RESETLOGS option, so database backups and archived logs are not invalidated.
However, changing the DBNAME does have consequences. You must change the
DB_NAME initialization parameter after a database name change to reflect the new
name. Also, you may have to recreate the Oracle password file. If you restore an old
backup of the control file (before the name change), then you should use the
initialization parameter file and password file from before the database name change.

Caution:

If you are using a capture process to capture changes to the database, then
do not change the DBID or DBNAME of a database .

For Oracle RAC environments only, you must first detach the database from the
cluster before you can run the DBNEWID utility. Use SQL*Plus to enter the following
commands to set the initialization parameter value for CLUSTER_DATABASE to FALSE

1. ALTER SYSTEM SET CLUSTER_DATABASE=FALSE SCOPE=SPFILE;

Restart the database after changing the CLUSTER_DATABASE parameter.

2. Shut down the database.

SHUTDOWN IMMEDIATE

You can then run STARTUP MOUNT EXCLUSIVE, and change the global database name. If
you attempt to use the DBNEWID utility while CLUSTER_DATABASE=TRUE, then the
command fails with NID-00120: Database should be mounted exclusively.

Chapter 24
Ramifications of Changing the DBID and DBNAME

24-2

Related Topics

• How to Change the DBID, DBNAME Using NID Utility (Doc ID 863800.1)

24.3 Considerations for Global Database Names
If you are dealing with a database in a distributed database system, then each database
should have a unique global database name.

The DBNEWID utility does not change global database names.

You can only change a global database name with the SQL ALTER DATABASE statement, for
which the syntax is as follows:

ALTER DATABASE RENAME GLOBAL_NAME TO newname.domain;

The global database name is made up of a database name and a domain, which are
determined by the DB_NAME and DB_DOMAIN initialization parameters when the database is first
created.

For example, suppose you use DBNEWID to change a database name to sales. To ensure
that you also change the global database name to sales in the domain example.com, you
should use ALTER DATABASE RENAME as follows:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.example.com

Related Topics

• Changing a Global Database Name: Scenario in Oracle Database Administrator’s Guide

See Also:

Oracle Database Administrator’s Guide for more information about global database
names, and My Oracle Support "How to Change the DBID, DBNAME Using NID
Utility (Doc ID 863800.1)"

24.4 Changing Both CDB and PDB DBIDs Using DBNEWID
The DBNEWID parameter PDB enables you to change the DBID on pluggable databases
(PDBs).

By default, when you run the DBNEWID utility on a container database (CDB), the utility only
changes the DBID of the CDB. The DBID values for each of the pluggable databases (PDBs)
plugged into the CDB remain the same. In some cases, you can find that this default behavior
causes problems with duplicate DBID values for PDBs. For example, you can encounter this
issue when a CDB is cloned.

With Oracle Database 12c Release 2 (12.2) and later releases, you can use the DBNEWID
utility PDB parameter in multitenant databases to change the DBID values for PDBs. You
cannot specify a particular PDB; either all of them or none of them are assigned new DBID
values. The PDB parameter has the following format:

PDB=[ALL | NONE]

Chapter 24
Considerations for Global Database Names

24-3

https://support.oracle.com/rs?type=doc&id=863800.1

• If you specify ALL, then in addition to the DBID for the CDB changing, the DBID
values for all PDBs plugged into the CDB are also changed.

• Specifying NONE (the default) leaves the PDB DBIDs the same, even if the CDB
DBID is changed.

Oracle recommends that you use PDB=ALL. For backward compatibility, the default is
PDB=NONE.

24.5 Changing the DBID and DBNAME of a Database
To change either DBID or DBNAME, or both the DBID and DBNAME of your database, select
the DBNEWID procedure that you need.

• Changing the DBID and Database Name
To change the DBID of a database, or both the DBID and DBNAME of a database with
DBNEWID, use this procedure.

• Changing Only the Database ID
To change the database ID (DBID) without changing the database name, use this
DBNEWID procedure.

• Changing Only the Database Name
To change the database name (DBNAME) without changing the DBID, use this
DBNEWID procedure.

• Troubleshooting DBNEWID
If you encounter an error when using DBNEWID to change a database ID, then
refer to these troubleshooting hints.

24.5.1 Changing the DBID and Database Name
To change the DBID of a database, or both the DBID and DBNAME of a database with
DBNEWID, use this procedure.

The following steps describe how to change the DBID of a database. You also have the
option to change the database name as well.

1. Ensure that you have a recoverable whole database backup.

2. Ensure that the target database is mounted but not open, and that it was shut
down consistently before mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT

3. Start the DBNEWID utility on the command line, specifying a valid user (TARGET)
that has the SYSDBA privilege (you will be prompted for a password):

% nid TARGET=SYS

To change the database name in addition to the DBID, also specify the DBNAME
parameter on the command line (you will be prompted for a password). The
following example changes the database name to test_db:

% nid TARGET=SYS DBNAME=test_db

The DBNEWID utility performs validations in the headers of the data files and
control files before attempting to modify the files. If validation is successful, then

Chapter 24
Changing the DBID and DBNAME of a Database

24-4

DBNEWID prompts you to confirm the operation (unless you specify a log file, in which
case it does not prompt), changes the DBID (and the DBNAME, if specified, as in this
example) for each data file, including offline normal and read-only data files, shuts down
the database, and then exits. The following is an example of what the output for this
would look like:

.

.

.
Connected to database PROD (DBID=86997811)
.
.
.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

Changing database ID from 86997811 to 1250654267
Changing database name from PROD to TEST_DB
 Control File /oracle/TEST_DB/data/cf1.dbf - modified
 Control File /oracle/TEST_DB/data/cf2.dbf - modified
 Datafile /oracle/TEST_DB/data/tbs_01.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_ax1.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_02.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_11.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_12.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/temp1.dbf - dbid changed, wrote new name
 Control File /oracle/TEST_DB/data/cf1.dbf - dbid changed, wrote new name
 Control File /oracle/TEST_DB/data/cf2.dbf - dbid changed, wrote new name
 Instance shut down

Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Database ID for database TEST_DB changed to 1250654267.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open database with RESETLOGS option.
Successfully changed database name and ID.
DBNEWID - Completed successfully.

If validation is not successful, then DBNEWID terminates, and leaves the target database
intact, as shown in the following example output. You can open the database, fix the
error, and then either resume the DBNEWID operation, or continue using the database
without changing its DBID.

.

.

.
Connected to database PROD (DBID=86997811)
.

Chapter 24
Changing the DBID and DBNAME of a Database

24-5

.

.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

The following datafiles are offline immediate:
 /oracle/TEST_DB/data/tbs_71.dbf (25)
 /oracle/TEST_DB/data/tbs_72.dbf (26)

NID-00122: Database should have no offline immediate datafiles

Change of database name failed during validation - database is intact.
DBNEWID - Completed with validation errors.

4. Mount the database. For example:

STARTUP MOUNT
5. Open the database in RESETLOGS mode, and resume normal use. For example:

ALTER DATABASE OPEN RESETLOGS;
After you reset the logs, create a new database backup. Because you reset the online
redo logs, the old backups and archived logs are no longer usable in the current
incarnation of the database.

24.5.2 Changing Only the Database ID
To change the database ID (DBID) without changing the database name, use this
DBNEWID procedure.

Follow the steps in Changing the DBID and Database Name, but in Step 3 do not
specify the optional database name (DBNAME). The following is an example of the type
of output that is generated when only the database ID is changed.

.

.

.
Connected to database PROD (DBID=86997811)
.
.
.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)

Chapter 24
Changing the DBID and DBNAME of a Database

24-6

 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

Changing database ID from 86997811 to 4004383693
 Control File /oracle/TEST_DB/data/cf1.dbf - modified
 Control File /oracle/TEST_DB/data/cf2.dbf - modified
 Datafile /oracle/TEST_DB/data/tbs_01.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_ax1.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_02.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_11.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_12.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/temp1.dbf - dbid changed
 Control File /oracle/TEST_DB/data/cf1.dbf - dbid changed
 Control File /oracle/TEST_DB/data/cf2.dbf - dbid changed
 Instance shut down

Database ID for database TEST_DB changed to 4004383693.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open database with RESETLOGS option.
Succesfully changed database ID.
DBNEWID - Completed succesfully.

24.5.3 Changing Only the Database Name
To change the database name (DBNAME) without changing the DBID, use this DBNEWID
procedure.

Complete the following steps:

1. Ensure that you have a recoverable whole database backup.

2. Ensure that the target database is mounted but not open, and that it was shut down
consistently before mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT

3. Start the utility on the command line, specifying a valid user with the SYSDBA privilege
(you will be prompted for a password). You must specify both the DBNAME and SETNAME
parameters. This example changes the name to test_db:

% nid TARGET=SYS DBNAME=test_db SETNAME=YES

DBNEWID performs validations in the headers of the control files (not the data files)
before attempting I/O to the files. If validation is successful, then DBNEWID prompts for
confirmation, changes the database name in the control files, shuts down the database
and exits. The following is an example of what the output for this would look like:

.

.

.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

Chapter 24
Changing the DBID and DBNAME of a Database

24-7

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

Changing database name from PROD to TEST_DB
 Control File /oracle/TEST_DB/data/cf1.dbf - modified
 Control File /oracle/TEST_DB/data/cf2.dbf - modified
 Datafile /oracle/TEST_DB/data/tbs_01.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_ax1.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_02.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_11.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_12.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/temp1.dbf - wrote new name
 Control File /oracle/TEST_DB/data/cf1.dbf - wrote new name
 Control File /oracle/TEST_DB/data/cf2.dbf - wrote new name
 Instance shut down

Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Successfully changed database name.
DBNEWID - Completed successfully.

If validation is not successful, then DBNEWID terminates and leaves the target
database intact. You can open the database, fix the error, and then either resume
the DBNEWID operation or continue using the database without changing the
database name. (For an example of what the output looks like for an unsuccessful
validation, see Step 3 in Changing the DBID and Database Name.)

4. Set the DB_NAME initialization parameter in the initialization parameter file (PFILE)
to the new database name.

Note:

The DBNEWID utility does not change the server parameter file
(SPFILE). Therefore, if you use SPFILE to start your Oracle database,
then you must re-create the initialization parameter file from the server
parameter file, remove the server parameter file, change the DB_NAME in
the initialization parameter file, and then re-create the server parameter
file.

5. Create a new password file.

6. Start up the database and resume normal use. For example:

STARTUP

Because you have changed only the database name, and not the database ID, it is
not necessary to use the RESETLOGS option when you open the database. All
previous backups are still usable.

Chapter 24
Changing the DBID and DBNAME of a Database

24-8

24.5.4 Troubleshooting DBNEWID
If you encounter an error when using DBNEWID to change a database ID, then refer to these
troubleshooting hints.

If the DBNEWID utility succeeds in its validation stage, but detects an error while performing
the requested change, then the utility stops and leaves the database in the middle of the
change. In this case, you cannot open the database until the DBNEWID operation is either
completed, or it is reverted. DBNEWID displays messages indicating the status of the
operation.

Before continuing or reverting, fix the underlying cause of the error. Sometimes the only
solution is to restore the whole database from a recent backup and perform recovery to the
point in time before DBNEWID was started. This scenario underscores the importance of
having a recent backup available before you DBNEWID.

If you choose to continue with the change, then rerun your original command. The DBNEWID
utility resumes, and attempts to continue the change until all data files and control files have
the new value or values. At this point, the database is shut down. You should mount it before
opening it with the RESETLOGS option.

If you choose to revert a DBNEWID operation, and if the reversion succeeds, then DBNEWID
reverts all performed changes and leaves the database in a mounted state.

If DBNEWID is run against Oracle Database 10g Release 1 (10.1) or a later release Oracle
Database, then a summary of the operation is written to the alert file.

Example 24-1 Alert Files for a Database Name and Database ID Change

Suppose you changed a database name and database ID. In the alert file, you see something
similar to the following:

*** DBNEWID utility started ***
DBID will be changed from 86997811 to new DBID of 1250452230 for
database PROD
DBNAME will be changed from PROD to new DBNAME of TEST_DB
Starting datafile conversion
Setting recovery target incarnation to 1
Datafile conversion complete
Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Database ID for database TEST_DB changed to 1250452230.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open with RESETLOGS option.
Successfully changed database name and ID.
*** DBNEWID utility finished successfully ***

For a change of just the database name, the alert file might show something similar to the
following:

*** DBNEWID utility started ***
DBNAME will be changed from PROD to new DBNAME of TEST_DB
Starting datafile conversion
Datafile conversion complete
Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Successfully changed database name.
*** DBNEWID utility finished successfully ***

Chapter 24
Changing the DBID and DBNAME of a Database

24-9

In case of failure during DBNEWID the alert will also log the failure:
*** DBNEWID utility started ***
DBID will be changed from 86997811 to new DBID of 86966847 for database
AV3
Change of database ID failed.
Must finish change or REVERT changes before attempting any database
operation.
*** DBNEWID utility finished with errors ***

24.6 DBNEWID Syntax
To change only the DBID, DBNAME, or both the DBID and DBNAME of a database, use
DBNEWID.

The following diagrams show the syntax for the DBNEWID utility.

nid TARGET =

username

/

password @ service_name

REVERT =
YES

NO

DBNAME = new_db_name

SETNAME =
YES

NO

PDB =
ALL

NONE

LOGFILE = logfile

APPEND =
YES

NO HELP =
YES

NO

• DBNEWID Parameters
Describes the parameters for DBNEWID.

• Restrictions and Usage Notes
Describes restrictions for the DBNEWID utility.

• Additional Restrictions for Releases Earlier Than Oracle Database 10g
Describes additional restrictions if the DBNEWID utility is run against an Oracle
Database release earlier than 10.1.

24.6.1 DBNEWID Parameters
Describes the parameters for DBNEWID.

The following table describes the parameters in the DBNEWID syntax.

Chapter 24
DBNEWID Syntax

24-10

Table 24-1 Parameters for the DBNEWID Utility

Parameter Description

TARGET Specifies the username and password used to connect to the database. The user
must have the SYSDBA privilege. If you are using operating system authentication,
then you can connect with the slash (/). If the $ORACLE_HOME and $ORACLE_SID
variables are not set correctly in the environment, then you can specify a secure (IPC
or BEQ) service to connect to the target database. A target database must be
specified in all invocations of the DBNEWID utility.

REVERT Specify YES to indicate that a failed change of DBID should be reverted (default is
NO). The utility signals an error if no change DBID operation is in progress on the
target database. A successfully completed change of DBID cannot be reverted.
REVERT=YES is valid only when a DBID change failed.

DBNAME=new_db_name Changes the database name of the database. You can change the DBID and the
DBNAME of a database at the same time. To change only the DBNAME, also specify
the SETNAME parameter.

SETNAME Specify YES to indicate that DBNEWID should change the database name of the
database but should not change the DBID (default is NO). When you specify
SETNAME=YES, the utility writes only to the target database control files.

PDB Changes the DBID on either all or none of the pluggable databases (PDBs) in a
multitenant container database (CDB). (By default, when you run the DBNEWID
utility on a container database (CDB) it changes the DBID of only the CDB; the
DBIDs of the pluggable databases (PDBs) comprising the CDB remain the same.)
The PDB parameter is applicable only in a CDB environment.

LOGFILE=logfile Specifies that DBNEWID should write its messages to the specified file. By default
the utility overwrites the previous log. If you specify a log file, then DBNEWID does
not prompt for confirmation.

APPEND Specify YES to append log output to the existing log file (default is NO).

HELP Specify YES to print a list of the DBNEWID syntax options (default is NO).

24.6.2 Restrictions and Usage Notes
Describes restrictions for the DBNEWID utility.

For example:

• To change the DBID of a database, the database must be mounted and must have been
shut down consistently before mounting. In the case of an Oracle Real Application
Clusters database, the database must be mounted in NOPARALLEL mode.

• You must open the database with the RESETLOGS option after changing the DBID.
However, you do not have to open with the RESETLOGS option after changing only the
database name.

• No other process should be running against the database when DBNEWID is executing.
If another session shuts down and starts the database, then DBNEWID terminates
unsuccessfully.

• All online data files should be consistent without needing recovery.

• Normal offline data files should be accessible and writable. If this is not the case, then
you must drop these files before invoking the DBNEWID utility.

Chapter 24
DBNEWID Syntax

24-11

• All read-only tablespaces must be accessible and made writable at the operating
system level before invoking DBNEWID. If these tablespaces cannot be made
writable (for example, they are on a CD-ROM), then you must unplug the
tablespaces using the transportable tablespace feature and then plug them back in
the database before invoking the DBNEWID utility.

• The DBNEWID utility does not change global database names. See
Considerations for Global Database Names.

24.6.3 Additional Restrictions for Releases Earlier Than Oracle
Database 10g

Describes additional restrictions if the DBNEWID utility is run against an Oracle
Database release earlier than 10.1.

For example:

• The nid executable file should be owned and run by the Oracle owner because it
needs direct access to the data files and control files. If another user runs the
utility, then set the user ID to the owner of the data files and control files.

• The DBNEWID utility must access the data files of the database directly through a
local connection. Although DBNEWID can accept a net service name, it cannot
change the DBID of a nonlocal database.

Chapter 24
DBNEWID Syntax

24-12

25
Using LogMiner to Analyze Redo Log Files

LogMiner, which is part of Oracle Database, enables you to query online and archived redo
log files through a SQL interface.

Redo log files contain information about the history of activity on a database. You can use
LogMiner from a command line.

Note:

The continuous_mine option for the dbms_logmnr.start_logmnr package is
desupported in Oracle Database 19c (19.1), and is no longer available.

• LogMiner Benefits
All changes made to user data or to the database dictionary are recorded in the Oracle
redo log files so that database recovery operations can be performed.

• Introduction to LogMiner
As a DBA, Oracle's LogMiner tool helps you to find changed records in redo log files by
using a set of PL/SQL procedures and functions.

• Using LogMiner in a CDB
Learn about the views you use to review LogMiner sessions, and about the syntax you
use for mining logs.

• How to Configure Supplemental Logging for Oracle GoldenGate
Starting with Oracle Database 21c, Oracle Database provides support to enable logical
replication and supplemental logging of individual tables.

• LogMiner Dictionary Files and Redo Log Files
To obtain accurate log mining results, learn how LogMiner works with the LogMiner
dictionary.

• Starting LogMiner
Call the DBMS_LOGMNR.START_LOGMNR procedure to start LogMiner.

• Querying V$LOGMNR_CONTENTS for Redo Data of Interest
You access the redo data of interest by querying the V$LOGMNR_CONTENTS view.

• Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS
Learn how to use V$LOGMNR_CONTENTS view filtering and formatting features to manage
what data appears, how it is displayed, and control the speed at which it is returned.

• Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS
If you use LogMiner to run one or more DDL statements, then query the
V$LOGMNR_CONTENTS INFO column and only run SQL DDL marked as USER_DDL.

• Calling DBMS_LOGMNR.START_LOGMNR Multiple Times
Even after you have successfully called DBMS_LOGMNR.START_LOGMNR and selected from
the V$LOGMNR_CONTENTS view, you can call DBMS_LOGMNR.START_LOGMNR again without
ending the current LogMiner session and specify different options and time or SCN
ranges.

25-1

• LogMiner and Supplemental Logging
Learn about using the supplemental logging features of LogMiner

• Accessing LogMiner Operational Information in Views
LogMiner operational information (as opposed to redo data) is contained in views.

• Steps in a Typical LogMiner Session
Learn about the typical ways you can use LogMiner to extract and mine data.

• Examples Using LogMiner
To see how you can use LogMiner for data mining, review the provided examples.

• Supported Data Types, Storage Attributes, and Database and Redo Log File
Versions
Describes information about data type and storage attribute support and the
releases of the database and redo log files that are supported.

25.1 LogMiner Benefits
All changes made to user data or to the database dictionary are recorded in the Oracle
redo log files so that database recovery operations can be performed.

Because LogMiner provides a well-defined, easy-to-use, and comprehensive relational
interface to redo log files, it can be used as a powerful data auditing tool, and also as a
sophisticated data analysis tool. The following list describes some key capabilities of
LogMiner:

• Pinpointing when a logical corruption to a database, such as errors made at the
application level, may have begun. These might include errors such as those
where the wrong rows were deleted because of incorrect values in a WHERE clause,
rows were updated with incorrect values, the wrong index was dropped, and so
forth. For example, a user application could mistakenly update a database to give
all employees 100 percent salary increases rather than 10 percent increases, or a
database administrator (DBA) could accidently delete a critical system table. It is
important to know exactly when an error was made so that you know when to
initiate time-based or change-based recovery. This enables you to restore the
database to the state it was in just before corruption. See Querying
V$LOGMNR_CONTENTS Based on Column Values for details about how you can
use LogMiner to accomplish this.

• Determining what actions you would have to take to perform fine-grained recovery
at the transaction level. If you fully understand and take into account existing
dependencies, then it may be possible to perform a table-specific undo operation
to return the table to its original state. This is achieved by applying table-specific
reconstructed SQL statements that LogMiner provides in the reverse order from
which they were originally issued. See Scenario 1: Using LogMiner to Track
Changes Made by a Specific User for an example.

Normally you would have to restore the table to its previous state, and then apply
an archived redo log file to roll it forward.

• Performance tuning and capacity planning through trend analysis. You can
determine which tables get the most updates and inserts. That information
provides a historical perspective on disk access statistics, which can be used for
tuning purposes. See Scenario 2: Using LogMiner to Calculate Table Access
Statistics for an example.

• Performing postauditing. LogMiner can be used to track any data manipulation
language (DML) and data definition language (DDL) statements executed on the

Chapter 25
LogMiner Benefits

25-2

database, the order in which they were executed, and who executed them. (However, to
use LogMiner for such a purpose, you need to have an idea when the event occurred so
that you can specify the appropriate logs for analysis; otherwise you might have to mine a
large number of redo log files, which can take a long time. Consider using LogMiner as a
complementary activity to auditing database use. See the Oracle Database
Administrator's Guide for information about database auditing.)

25.2 Introduction to LogMiner
As a DBA, Oracle's LogMiner tool helps you to find changed records in redo log files by using
a set of PL/SQL procedures and functions.

• LogMiner Configuration
Learn about the objects that LogMiner analyzes, and see examples of configuration files.

• Directing LogMiner Operations and Retrieving Data of Interest
You direct LogMiner operations using the DBMS_LOGMNR and DBMS_LOGMNR_D PL/SQL
packages, and retrieve data of interest using the V$LOGMNR_CONTENTS view.

25.2.1 LogMiner Configuration
Learn about the objects that LogMiner analyzes, and see examples of configuration files.

• Objects in LogMiner Configuration Files
DataMiner Configuration files have four objects: the source database, the mining
database, the LogMiner dictionary, and the redo log files containing the data of interest.

• LogMiner Configuration Example
This example shows how you can generate redo logs on one Oracle Database release in
one location, and send them to another Oracle Database of a different release in another
location.

• LogMiner Requirements
Learn about the requirements for the source and mining database, the data dictionary,
the redo log files, and table and column name limits for databases that you want
LogMiner to mine.

25.2.1.1 Objects in LogMiner Configuration Files
DataMiner Configuration files have four objects: the source database, the mining database,
the LogMiner dictionary, and the redo log files containing the data of interest.

• The source database is the database that produces all the redo log files that you want
LogMiner to analyze.

• The mining database is the database that LogMiner uses when it performs the analysis.

• The LogMiner dictionary enables LogMiner to provide table and column names, instead
of internal object IDs, when it presents the redo log data that you request.

LogMiner uses the dictionary to translate internal object identifiers and data types to
object names and external data formats. Without a dictionary, LogMiner returns internal
object IDs, and presents data as binary data.

Chapter 25
Introduction to LogMiner

25-3

For example, consider the following SQL statement:

 INSERT INTO HR.JOBS(JOB_ID, JOB_TITLE, MIN_SALARY, MAX_SALARY)
VALUES('IT_WT','Technical Writer', 4000, 11000);

When LogMiner delivers results without the LogMiner dictionary, LogMiner
displays the following output:

insert into "UNKNOWN"."OBJ# 45522"("COL 1","COL 2","COL 3","COL 4")
values
(HEXTORAW('45465f4748'),HEXTORAW('546563686e6963616c20577269746572')
,
HEXTORAW('c229'),HEXTORAW('c3020b'));

• The redo log files contain the changes made to the database, or to the database
dictionary.

25.2.1.2 LogMiner Configuration Example
This example shows how you can generate redo logs on one Oracle Database release
in one location, and send them to another Oracle Database of a different release in
another location.

In the following figure, you can see an example of a LogMiner configuration, in which
the Source database is in Boston, and the Target database is in San Francisco.

The Source database in Boston generates redo log files that are archived and shipped
to the database in San Francisco. A LogMiner dictionary has been extracted to these
redo log files. The mining database, where LogMiner actually analyzes the redo log
files, is in San Francisco. The Boston database is running Oracle Database 12g and
the San Francisco database is running Oracle Database 19c.

Figure 25-1 Example LogMiner Database Configuration
S

o
u
rc

e

D
a
ta

b
a
s
e

M
in

in
g

D
a
ta

b
a
s
e

B
o
s
to

n
S

a
n
 F

ra
n
c
is

c
o

A
rc

h
iv

e
d
 R

e
d
o
 L

o
g
 F

ile
s

c
o
n
ta

in
in

g
 L

o
g
M

in
e
r

d
ic

ti
o
n
a
ry

This example shows just one valid LogMiner configuration. Other valid configurations
are those that use the same database for both the source and mining database, or use
another method for providing the data dictionary.

Related Topics

• LogMiner Dictionary Options
LogMiner requires a dictionary to translate object IDs into object names when it
returns redo data to you.

Chapter 25
Introduction to LogMiner

25-4

25.2.1.3 LogMiner Requirements
Learn about the requirements for the source and mining database, the data dictionary, the
redo log files, and table and column name limits for databases that you want LogMiner to
mine.

LogMiner requires the following objects:

• A Source database and a Mining database, with the following characteristics:

– Both the Source database and the Mining database must be running on the same
hardware platform.

– The Mining database can be the same as, or completely separate from, the Source
database.

– The Mining database must run using either the same release or a later release of the
Oracle Database software as the Source database.

– The Mining database must use the same character set (or a superset of the character
set) that is used by the source database.

• LogMiner dictionary

– The dictionary must be produced by the same Source database that generates the
redo log files that you want LogMiner to analyze.

• All redo log files, with the following characteristics:

– The redo log files must be produced by the same source database.

– The redo log files must be associated with the same database RESETLOGS SCN.

– The redo log files must be from a release 8.0 or later Oracle Database. However,
several of the LogMiner features introduced as of release 9.0.1 work only with redo
log files produced on an Oracle9i or later database.

– The tables or column names selected for mining must not exceed 30 characters.

Note:

Datatypes and features added after Oracle Database 12c Release 2 (12.2) that use
extended column formats greater than 30 characters, including JSON-formatted
extended varchar2 columns and extended varchar column names, are only
supported from the DBMS_ROLLING PL/SQL package, Oracle GoldenGate, and
XStream. Virtual column names that exceed 30 characters are UNSUPPORTED in
v$logmnr_contents (dba_logstdby_unsupported and dba_rolling_unsupported
views).

LogMiner does not allow you to mix redo log files from different databases, or to use a
dictionary from a different database than the one that generated the redo log files that you
want to analyze. LogMiner requires table or column names that are 30 characters or less.

Chapter 25
Introduction to LogMiner

25-5

Note:

You must enable supplemental logging before generating log files that will be
analyzed by LogMiner.

When you enable supplemental logging, additional information is recorded in
the redo stream that is needed to make the information in the redo log files
useful to you. Therefore, at the very least, you must enable minimal
supplemental logging, as the following SQL statement shows:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

To determine whether supplemental logging is enabled, query the
V$DATABASE view, as the following SQL statement shows:

SELECT SUPPLEMENTAL_LOG_DATA_MIN FROM V$DATABASE;

If the query returns a value of YES or IMPLICIT, then minimal supplemental
logging is enabled.

Be aware that the LogMiner utility (DBMS_LOGMNR) does not support long table or
column names when supplemental logging is enabled. When using an online
dictionary, and without any supplement logging enabled, v$logmnr_contents shows all
names, and sql_undo or sql_redo for the relevant objects. However, using the
LogMiner utility requires that you enable at least minimal supplemental logging. When
mining tables with table names or column names exceeding 30 characters, entries in
v$logmnr_contents such as the following appear:

select sql_redo , operation, seg_name, info
 from v$logmnr_contents where seg_name =
 upper('my_table_with_a_very_very_long_name_for_test') or seg_name =
 upper('table_with_long_col_name') ;
SQL_REDO --- OPERATION -- SEG_NAME ----------------------- INFO

Unsupported UNSUPPORTED MY_TABLE_W_A_VERY_VERY_LONG_NAME Object or Data type
Unsupported
Unsupported UNSUPPORTED TABLE_WITH_LONG_COL_NAME Object or Data type
Unsupported

Accordingly, use LogMiner with tables and columns with names that are 30 characters
or less.

Related Topics

• Supported Databases and Redo Log File Versions
The Oracle Database release that created a redo log file can affect the operations
you are able to perform on it.

• Understanding Supplemental Logging and LogMiner
Supplemental logging is the process of adding additional columns in redo log files
to facilitate data mining.

Chapter 25
Introduction to LogMiner

25-6

25.2.2 Directing LogMiner Operations and Retrieving Data of Interest
You direct LogMiner operations using the DBMS_LOGMNR and DBMS_LOGMNR_D PL/SQL
packages, and retrieve data of interest using the V$LOGMNR_CONTENTS view.

For example:

1. Specify a LogMiner dictionary.

Use the DBMS_LOGMNR_D.BUILD procedure or specify the dictionary when you start
LogMiner (in Step 3), or both, depending on the type of dictionary you plan to use.

2. Specify a list of redo log files for analysis.

Use the DBMS_LOGMNR.ADD_LOGFILE procedure, or direct LogMiner to create a list of log
files for analysis automatically when you start LogMiner (in Step 3).

3. Start LogMiner.

Use the DBMS_LOGMNR.START_LOGMNR procedure.

4. Request the redo data of interest.

Query the V$LOGMNR_CONTENTS view.

5. End the LogMiner session.

Use the DBMS_LOGMNR.END_LOGMNR procedure.

You must have the EXECUTE_CATALOG_ROLE role and the LOGMINING privilege to query the
V$LOGMNR_CONTENTS view and to use the LogMiner PL/SQL packages.

Note:

When mining a specified time or SCN range of interest within archived logs
generated by an Oracle RAC database, you must ensure that you have specified all
archived logs from all redo threads that were active during that time or SCN range.
If you fail to do this, then any queries of V$LOGMNR_CONTENTS return only partial
results (based on the archived logs specified to LogMiner through the
DBMS_LOGMNR.ADD_LOGFILE procedure).

The CONTINUOUS_MINE option for the dbms_logmnr.start_logmnr package is
desupported in Oracle Database 19c (19.1), and is no longer available.

See Also:

Steps in a Typical LogMiner Session for an example of using LogMiner

25.3 Using LogMiner in a CDB
Learn about the views you use to review LogMiner sessions, and about the syntax you use
for mining logs.

Chapter 25
Using LogMiner in a CDB

25-7

LogMiner supports CDBs that have PDBs of different character sets provided the root
container has a character set that is a superset of all the PDBs.

To administer a multitenant environment you must have the CDB_DBA role.

Note:

Starting with Oracle Database 21c, installation of non-CDB Oracle Database
architecture is no longer supported.

The non-CDB architecture was deprecated in Oracle Database 12c. It is
desupported in Oracle Database 21c. Oracle Universal Installer can no
longer be used to create non-CDB Oracle Database instances.

• LogMiner V$ Views and DBA Views in a CDB
In a CDB, views used by LogMiner to show information about LogMiner sessions
running in the system contain an additional column named CON_ID.

• The V$LOGMNR_CONTENTS View in a CDB
When viewing CDBs, you can use V$LOGMNR_CONTENTS to view the CDB, or
individual PDBs. When this view is queried from a PDB, it returns only redo
generated by that PDB.

• Enabling Supplemental Logging in a CDB
In a CDB, the syntax for enabling and disabling database-wide supplemental
logging is the ALTER DATABASE command.

Related Topics

• LogMiner V$ Views and DBA Views in a CDB
In a CDB, views used by LogMiner to show information about LogMiner sessions
running in the system contain an additional column named CON_ID.

• The V$LOGMNR_CONTENTS View in a CDB
When viewing CDBs, you can use V$LOGMNR_CONTENTS to view the CDB, or
individual PDBs. When this view is queried from a PDB, it returns only redo
generated by that PDB.

• Enabling Supplemental Logging in a CDB
In a CDB, the syntax for enabling and disabling database-wide supplemental
logging is the ALTER DATABASE command.

25.3.1 LogMiner V$ Views and DBA Views in a CDB
In a CDB, views used by LogMiner to show information about LogMiner sessions
running in the system contain an additional column named CON_ID.

The CON_ID column identifies the container ID associated with the session for which
information is being displayed. When you query the view from a pluggable database
(PDB), only information associated with the database is displayed. The following views
are affected by this new behavior:

• V$LOGMNR_DICTIONARY_LOAD
• V$LOGMNR_LATCH

Chapter 25
Using LogMiner in a CDB

25-8

• V$LOGMNR_PROCESS
• V$LOGMNR_SESSION
• V$LOGMNR_STATS

Note:

To support CDBs, the V$LOGMNR_CONTENTS view has several other new columns in
addition to CON_ID.

The following DBA views have analogous CDB views whose names begin with CDB.

Type of Log View DBA View CDB View

LogMiner Log Views DBA_LOGMNR_LOG CDB_LOGMNR_LOG
LogMiner Purged Log Views DBA_LOGMNR_PURGED_LOG CDB_LOGMNR_PURGED_LOG
LogMiner Session Log Views DBA_LOGMNR_SESSION CDB_LOGMNR_SESSION

The DBA views show only information related to sessions defined in the container in which
they are queried.

The CDB views contain an additional CON_ID column, which identifies the container whose
data a given row represents. When CDB views are queried from the root, they can be used to
see information about all containers.

25.3.2 The V$LOGMNR_CONTENTS View in a CDB
When viewing CDBs, you can use V$LOGMNR_CONTENTS to view the CDB, or individual PDBs.
When this view is queried from a PDB, it returns only redo generated by that PDB.

When you query redo logs on a CDB, the SELECT statement is run on CDB$ROOT against the
V$LOGMNR_CONTENTS view, and the archive redo log files are read sequentially. Translated
records from the redo log files are returned as rows in the V$LOGMNR_CONTENTS view. This read
continues until either the filter criteria specified at startup (endTime or endScn) are met, or until
the end of the archive log file is reached.

When you query logs for an individual PDB, the mining you perform is an upstream (local)
mining of PDB redo. To query logs, you specify a time range or SCN range for the redo logs.
To do this, you query DBA_LOGMNR_DICTIONARY_BUILDLOG, and identify a START_SCN or a time
value. You then start LogMiner with DBMS_LOGMNR.START_LOGMNR, specifying the SCN value or
time value of the log that you want to query. LogMiner automatically determines the correct
set of log files for the PDB, and adds the redo logs to the LogMiner session for you to
analyze.

• CON_ID — contains the ID associated with the container from which the query is
executed. Because V$LOGMNR_CONTENTS is restricted to the root database, this column
returns a value of 1 when a query is done on a CDB.

• SRC_CON_NAME — the PDB name. This information is available only when mining is
performed with a LogMiner dictionary.

Chapter 25
Using LogMiner in a CDB

25-9

• SRC_CON_ID — the container ID of the PDB that generated the redo record. This
information is available only when mining is performed with a LogMiner dictionary.

• SRC_CON_DBID — the PDB identifier. This information is available only when mining
is performed with a current LogMiner dictionary.

• SRC_CON_GUID — contains the GUID associated with the PDB. This information is
available only when mining is performed with a current LogMiner dictionary.

Related Topics

• V_LOGMNR_CONTENTS

25.3.3 Enabling Supplemental Logging in a CDB
In a CDB, the syntax for enabling and disabling database-wide supplemental logging is
the ALTER DATABASE command.

For example, when you want to add or drop supplemental log data, use the following
syntax:

ALTER DATABASE [ADD|DROP] SUPPLEMENTAL LOG DATA ...

Supplemental logging operations started with CREATE TABLE and ALTER TABLE
statements can be run either from the CDB root, or from a PDB. These supplemental
logging operations affect only the table to which they are applied.

Starting with Oracle Database 23c, CDB supplemental logging behavior is different,
depending on whether the undo mode is shared, or local.

In shared undo mode, CDB supplemental logging behavior is same as in previous
releases:

• If at least minimal supplemental logging is enabled in CDB$ROOT, then you can
enable additional supplemental logging levels at the PDB level.

• If you drop all supplemental logging from CDB$ROOT, then this disables all
supplemental logging across the CDB, regardless of previous PDB level settings.

In local undo mode, perPDB (logging for each PDB) supplemental logging is enabled.
You are no longer required to set minimal supplemental logging (ADD SUPPLEMENTAL
LOG DATA) at CDB$ROOT to be able to obtain supplemental logging at the level of
individual PDBs:

• You can enable supplemental logging levels for a PDB without having minimal
supplemental logging enabled at CDB$ROOT.

• If you drop all supplemental logging from CDB$ROOT, then this does not disable
supplemental logging enabled at PDB level.

Regardless of the supplemental logging mode, the following rules apply:

• In a CDB, supplemental logging levels that are enabled from CDB$ROOT are
enabled across the CDB.

• Supplemental logging levels enabled at the CDB level from CDB$ROOT cannot be
disabled at the PDB level.

When undo mode is changed from shared undo mode to local undo mode, if minimal
supplemental logging is disabled at CDB$ROOT, then before the undo mode change,

Chapter 25
Using LogMiner in a CDB

25-10

supplemental logging is disabled across the CDB. After the undo mode change,
supplemental logging will be enabled for PDBs with PDB-level supplemental logging.

Changing undo mode from local undo to shared undo will be disallowed if minimal
supplemental logging is disabled at CDB$ROOT, and supplemental logging is enabled at some
PDBs. The result of attempting a change in this case is an error: "ORA-60526: cannot switch
to shared undo mode when perPDB supplemental logging is enabled." This error is returned to
prevent losing PDB-level supplemental logging data after the undo mode change. To resolve
this error, you can either enable supplemental logging at CDB$ROOT, or you can drop
supplemental logging data at all PDBs, and then switch undo.

25.4 How to Configure Supplemental Logging for Oracle
GoldenGate

Starting with Oracle Database 21c, Oracle Database provides support to enable logical
replication and supplemental logging of individual tables.

• Oracle GoldenGate Integration with Oracle Database for Fine-Grained Supplemental
Logging
You can enable or disable logical replication at the table level by using fine-grained
supplemental logging.

• Logical Replication of Tables with LogMiner and Oracle GoldenGate
You can obtain logical replication (autocapture) at table level when you use LogMiner and
enable Oracle GoldenGate RDBMS services

• Views that Show Tables Enabled for Oracle GoldenGate Automatic Capture
To find out which tables are enabled for automatic capture (ENABLE_AUTO_CAPTURE), use
the views SYS.DBA_OGG_AUTO_CAPTURED_TABLES and
SYS.USER_OGG_AUTO_CAPTURED_TABLES.

25.4.1 Oracle GoldenGate Integration with Oracle Database for Fine-
Grained Supplemental Logging

You can enable or disable logical replication at the table level by using fine-grained
supplemental logging.

Table Level Replication Setting Integration in ADD TRANDATA and DELETE
TRANDATA

The table level replication setting (enable or disable table level supplemental logging) is
integrated to ADD TRANDATA, DELETE TRANDATA, and INFO TRANDATA commands. You issue
these commands either through the Oracle GoldenGate Software Command Interface
(GGSCI, or Admin Client). The syntax of these commands remains the same, but the
underlying behavior is slightly changed:

• ADD TRANDATA: This command enables logical replication for the table.

• DELETE TRANDATA: This command deletes supplemental logging of the key columns. It
also disables logical replication for the table.

• INFO TRANDATA command shows if logical replication is disabled or enabled for the table.

Chapter 25
How to Configure Supplemental Logging for Oracle GoldenGate

25-11

Logical Replication and the Fine-Grained Supplemental Log Setting

The fine-grained table supplemental log setting is dependent on whether logical
replication is enabled. There are three options for the setting:

1. If logical replication is enabled, then the table supplemental log setting is
determined by database level, schema level, and the table level supplemental log
data.

2. If logical replication is disabled for a table, then the table supplemental log setting
is only determined by database level supplemental log data. Schema level
supplemental log data is ignored.

3. If a table is created without enabling or disabling the logical replication clause,
then by default, logical replication is enabled for the table.

25.4.2 Logical Replication of Tables with LogMiner and Oracle
GoldenGate

You can obtain logical replication (autocapture) at table level when you use LogMiner
and enable Oracle GoldenGate RDBMS services

Starting with Oracle Database 21c, you can configure tables for automatic capture
(autocapture) using Oracle GoldenGate.

Note:

To use this feature, you must have Oracle GoldenGate enabled, and you
must configure Table level replication setting (enable or disable table level
supplemental logging) using the ADD TRANDATA or ADD SCHEMATRANDATA in the
Oracle GoldenGate logging property commands.

Logical Replication (Autocapture) with Oracle GoldenGate

When you enable supplemental logging in Oracle Database, you can enable it at the
table, schema, or database level. If you enable logical replication for tables, then
supplemental logging of all levels is performed for the table.

If you disable logical replication for a table, then only the database supplemental
logging is honored for the table. That means that schema or table-level supplemental
logging is ignored.

Tables and Oracle GoldenGate Logical Replication

Supplemental logging capabilities for tables depends on how the Oracle GoldenGate
LOGICAL_REPLICATION clause is configured:

• When a table is created without setting the LOGICAL_REPLICATION clause, or when
a table is created or altered with ENABLE LOGICAL REPLICATION clause: Logical
replication is not disabled, and supplemental logging of all levels is performed.
There is no additional supplemental logging data implicitly added for the table.

• When a table is created or altered with ENABLE LOGICAL REPLICATION ALL KEYS
clause: Supplemental logging for logical replication is enabled for Oracle

Chapter 25
How to Configure Supplemental Logging for Oracle GoldenGate

25-12

GoldenGate automatic capture, using the (ENABLE_AUTO_CAPTURE) parameter.
Supplemental logging (primary key, unique index, foreign key and allkeys) is added
implicitly for the table.

• When a table is created or altered with ENABLE LOGICAL REPLICATION ALLOW NOVALIDATE
KEYS clause: Supplemental logging for logical replication is enabled for Oracle
GoldenGate automatic capture, using the (ENABLE-AUTO_CAPTURE) parameter, and non-
validated primary keys can be used as a unique identifier. Supplemental logging (primary
key, unique index, foreign key and allkeys with non-validated primary key) is added
implicitly for the table.

• When a table is created or altered with the DISABLE LOGICAL REPLICATION clause,
Logical replication is disabled for the table. Table and schema-level supplemental logging
is not performed.

25.4.3 Views that Show Tables Enabled for Oracle GoldenGate Automatic
Capture

To find out which tables are enabled for automatic capture (ENABLE_AUTO_CAPTURE), use the
views SYS.DBA_OGG_AUTO_CAPTURED_TABLES and SYS.USER_OGG_AUTO_CAPTURED_TABLES.

Oracle GoldenGate manages logical replication with the ENABLE_AUTO_CAPTURE parameter.
You can use views to determine which tables are enabled for Oracle GoldenGate to capture
automatically.

The user account that you use to query the DBA_OGG_AUTO_CAPTURED_TABLES view must have
the SELECT_CATALOG_ROLE privilege.

Example 25-1 SYS.DBA_AUTO_CAPTURED_TABLES

To describe the view for all of the tables designated for logical replication, enter DESCRIBE
SYS.DBA_AUTO_CAPTURED_TABLES. You can see the owner name, table name, and table logical
replication status for all the tables that are enabled for Oracle GoldenGate automatic capture
(ENABLE_AUTO_CAPTURE).

SQL> DESCRIBE SYS.DBA_AUTO_CAPTURED_TABLES

Name Null? Type
 -------------------------------------- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 NAME NOT NULL VARCHAR2(128)
 ALLOW_NOVALIDATE_PK VARCHAR2(3)

In the view:

• OWNER: Owner of the table enabled for Oracle GoldenGate ENABLE_AUTO_CAPTURE
• NAME: Name of the table enabled for Oracle GoldenGate ENABLE_AUTO_CAPTURE
• ALLOW_NOVALIDATE_PK[YES|NO]: A non-validated primary key is allowed for key

supplemental logging, where YES equals yes, and NO equals no. If the result is NO, then
only unique or primary keys that are validated are used.

The Oracle GoldenGate view DBA_OGG_AUTO_CAPTURED_TABLES is a synonym for the
SYS.DBA_AUTO_CAPTURED_TABLES view.

Chapter 25
How to Configure Supplemental Logging for Oracle GoldenGate

25-13

Example 25-2 SYS.USER_OGG_AUTO_CAPTURED_TABLES

To describe the view for all tables of the user that are enabled for Oracle GoldenGate
automatic capture, enter DESCRIBE SYS.USER_OGG_AUTO_CAPTURED_TABLES:

SQL> DESCRIBE SYS.USER_OGG_AUTO_CAPTURED_TABLES

Name Null? Type
 ------------------------------------- --------

 NAME NOT NULL VARCHAR2(128)
 ALLOW_NOVALIDATE_PK VARCHAR2(3)

The Oracle GoldenGate view USER_OGG_AUTO_CAPTURED_TABLES is a synonym for the
SYS.USER_OGG_AUTO_CAPTURED_TABLES view.

25.5 LogMiner Dictionary Files and Redo Log Files
To obtain accurate log mining results, learn how LogMiner works with the LogMiner
dictionary.

Before you begin using LogMiner, you should understand how LogMiner works with
the LogMiner dictionary file (or files) and Oracle Database redo log files. Knowing this
helps you to obtain accurate results, and to plan the use of your system resources.

• LogMiner Dictionary Options
LogMiner requires a dictionary to translate object IDs into object names when it
returns redo data to you.

• Specifying Redo Log Files for Data Mining
To mine data in the redo log files, LogMiner needs information about which redo
log files to mine.

25.5.1 LogMiner Dictionary Options
LogMiner requires a dictionary to translate object IDs into object names when it returns
redo data to you.

LogMiner gives you three options for supplying the dictionary:

• Using the online catalog

Oracle recommends that you use this option when you will have access to the
source database from which the redo log files were created and when no changes
to the column definitions in the tables of interest are anticipated. This is the most
efficient and easy-to-use option.

• Extracting a LogMiner dictionary to the redo log files

Oracle recommends that you use this option when you do not expect to have
access to the source database from which the redo log files were created, or if you
anticipate that changes will be made to the column definitions in the tables of
interest.

• Extracting the LogMiner Dictionary to a Flat File

Chapter 25
LogMiner Dictionary Files and Redo Log Files

25-14

This option is maintained for backward compatibility with previous releases. This option
does not guarantee transactional consistency. Oracle recommends that you use either
the online catalog or extract the dictionary to redo log files instead.

Note:

The ability to create flat file dictionary dumps of pluggable databases (PDBs) is
desupported in Oracle Database 21c.

In previous releases, using a flat file dictionary was one means of mining the
redo logs for the changes associated with a specific PDB whose data dictionary
was contained within the flat file. This feature is now desupported. Starting with
Oracle Database 21c, Oracle recommends that you call
DBMS_LOGMNR.START_LOGMNR, and supply the system change number (SCN) or
time range that you want to mine. The SCN or time range options of
START_LOGMNR are enhanced to support mining of individual PDBs.

The following figure is a decision tree to help you select a LogMiner dictionary, depending on
your situation.

Figure 25-2 Decision Tree for Choosing a LogMiner Dictionary

Y
e

s

Y
e

s

N
o

N
o

W
ill

h
a
ve

 a
c
c
e

s
s
 t

o
th

e
 s

o
u

rc
e

d
a

ta
b

a
s
e

?

L
o

g
M

in
e

r

U
s
e

 t
h

e
 d

ic
ti
o

n
a

ry
in

 t
h

e
 o

n
lin

e
 c

a
ta

lo
g

.

W
ill

d

e
fi
n

it
io

n
s
 b

e
u

n
c
h

a
n

g
e

d
?

c
o

lu
m

n

W
ill

th
e

 d
a

ta
b

a
s
e

b
e

 o
p

e
n

?
N

o

W
ill

th
e

 d
a

ta
b

a
s
e

b
e

 o
p

e
n

 f
o

r
w

ri
te

a
c
c
e

s
s
?

Y
e

s

N
o

Y
e

s

U
s
e

 t
h

e
 d

ic
ti
o

n
a

ry
in

 t
h

e
 r

e
d

o
 l
o

g
 f

ile
s
.

U
s
e

 t
h

e
 d

ic
ti
o

n
a

ry
e
x
tr

a
c
te

d
 t

o
 a

 f
la

t
fi
le

.

N
o

M
ig

h
t

d

e
fi
n

it
io

n
s

c
h

a
n

g
e

?

c
o

lu
m

n

Y
e

s

W
ill

th
e

 i
n

s
ta

n
c
e

b
e

 s
ta

rt
e

d
?

Y
e

s

Chapter 25
LogMiner Dictionary Files and Redo Log Files

25-15

To specify your available dictionary option, review the instructions for the procedure
that you choose.

• Using the Online Catalog
To direct LogMiner to use the dictionary currently in use for the database, specify
the online catalog as your dictionary source when you start LogMiner.

• Extracting a LogMiner Dictionary to the Redo Log Files
To extract a LogMiner dictionary to the redo log files, the database must be open
and in ARCHIVELOG mode and archiving must be enabled.

• Extracting the LogMiner Dictionary to a Flat File
When the LogMiner dictionary is in a flat file, fewer system resources are used
than when it is contained in the redo log files.

25.5.1.1 Using the Online Catalog
To direct LogMiner to use the dictionary currently in use for the database, specify the
online catalog as your dictionary source when you start LogMiner.

For example:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

In addition to using the online catalog to analyze online redo log files, you can use it to
analyze archived redo log files, if you are on the same system that generated the
archived redo log files.

The online catalog contains the latest information about the database and may be the
fastest way to start your analysis. Because DDL operations that change important
tables are somewhat rare, the online catalog generally contains the information you
need for your analysis.

Remember, however, that the online catalog can only reconstruct SQL statements that
are executed on the latest version of a table. As soon as a table is altered, the online
catalog no longer reflects the previous version of the table. This means that LogMiner
will not be able to reconstruct any SQL statements that were executed on the previous
version of the table. Instead, LogMiner generates nonexecutable SQL (including
hexadecimal-to-raw formatting of binary values) in the SQL_REDO column of the
V$LOGMNR_CONTENTS view similar to the following example:

insert into HR.EMPLOYEES(col#1, col#2) values (hextoraw('4a6f686e20446f65'),
hextoraw('c306'));"

The online catalog option requires that the database be open.

The online catalog option is not valid with the DDL_DICT_TRACKING option of
DBMS_LOGMNR.START_LOGMNR.

25.5.1.2 Extracting a LogMiner Dictionary to the Redo Log Files
To extract a LogMiner dictionary to the redo log files, the database must be open and
in ARCHIVELOG mode and archiving must be enabled.

While the dictionary is being extracted to the redo log stream, no DDL statements can
be executed. Therefore, the dictionary extracted to the redo log files is guaranteed to
be consistent (whereas the dictionary extracted to a flat file is not).

Chapter 25
LogMiner Dictionary Files and Redo Log Files

25-16

To extract dictionary information to the redo log files, execute the PL/SQL
DBMS_LOGMNR_D.BUILD procedure with the STORE_IN_REDO_LOGS option. Do not specify a file
name or location.

EXECUTE DBMS_LOGMNR_D.BUILD(-
 OPTIONS=> DBMS_LOGMNR_D.STORE_IN_REDO_LOGS);

The process of extracting the dictionary to the redo log files does consume database
resources, but if you limit the extraction to off-peak hours, then this should not be a problem,
and it is faster than extracting to a flat file. Depending on the size of the dictionary, it may be
contained in multiple redo log files. If the relevant redo log files have been archived, then you
can find out which redo log files contain the start and end of an extracted dictionary. To do so,
query the V$ARCHIVED_LOG view, as follows:

SELECT NAME FROM V$ARCHIVED_LOG WHERE DICTIONARY_BEGIN='YES';
SELECT NAME FROM V$ARCHIVED_LOG WHERE DICTIONARY_END='YES';

Specify the names of the start and end redo log files, and other redo logs in between them,
with the ADD_LOGFILE procedure when you are preparing to begin a LogMiner session.

Oracle recommends that you periodically back up the redo log files so that the information is
saved and available at a later date. Ideally, this will not involve any extra steps because if
your database is being properly managed, then there should already be a process in place
for backing up and restoring archived redo log files. Again, because of the time required, it is
good practice to do this during off-peak hours.

Related Topics

• Running a Database in ARCHIVELOG Mode

• Summary of DBMS_LOGMNR_D Subprograms

25.5.1.3 Extracting the LogMiner Dictionary to a Flat File
When the LogMiner dictionary is in a flat file, fewer system resources are used than when it is
contained in the redo log files.

Note:

The ability to create flat file dictionary dumps of pluggable databases (PDBs) is
desupported in Oracle Database 21c.
In previous releases, using a flat file dictionary was one means of mining the redo
logs for the changes associated with a specific PDB whose data dictionary was
contained within the flat file. This feature is now desupported. Starting with Oracle
Database 21c, Oracle recommends that you call DBMS_LOGMNR.START_LOGMNR, and
supply the system change number (SCN) or time range that you want to mine. The
SCN or time range options of START_LOGMNR are enhanced to support mining of
individual PDBs.

To extract database dictionary information to a flat file, use the DBMS_LOGMNR_D.BUILD
procedure with the STORE_IN_FLAT_FILE option. Oracle recommends that you regularly back
up the dictionary extract to ensure correct analysis of older redo log files.

Chapter 25
LogMiner Dictionary Files and Redo Log Files

25-17

The following steps describe how to extract a dictionary to a flat file. Steps 1 and 2 are
preparation steps. You only need to do them once, and then you can extract a
dictionary to a flat file as many times as you want to.

1. The DBMS_LOGMNR_D.BUILD procedure requires access to a directory where it can
place the dictionary file. Because PL/SQL procedures do not normally access user
directories, you must specify a directory location, or the procedure will fail. The
directory location must be a directory object. The following is an example of using
the SQL CREATE DIRECTORY statement to create a directory object named
my_dictionary_dir for the path /oracle/database.

SQL> CREATE DIRECTORY "my_dictionary_dir" AS '/oracle/database';

Note:

Prior to Oracle Database 12c Release 2 (12.2), you used the
UTL_FILE_DIR initialization parameter to specify a directory location.
However, as of Oracle Database 18c, the UTL_FILE_DIR initialization
parameter is desupported. It is still supported for backward compatibility,
but Oracle strongly recommends that you instead use directory objects.

2. If the database is closed, then use SQL*Plus to mount and open the database
whose redo log files you want to analyze. For example, entering the SQL STARTUP
command mounts and opens the database:

SQL> STARTUP
3. Execute the PL/SQL procedure DBMS_LOGMNR_D.BUILD. The following example

extracts the LogMiner dictionary file to a flat file named dictionary.ora in the
directory object my_dictionary_dir that was created in step 1.

SQL> EXECUTE dbms_logmnr_d.build(dictionary_location=>'my_dictionary_dir', -
 dictionary_filename=>'dictionary.ora', -
 options =>
dbms_logmnr_d.store_in_flat_file);

You could also specify a file name and location without specifying the
STORE_IN_FLAT_FILE option. The result would be the same.

Related Topics

• Start LogMiner
See how to start LogMiner, and what options you can use to analyze redo log files,
filter criteria, and other session characteristics.

• Filtering Data by SCN
To filter data by SCN (system change number), use the STARTSCN and ENDSCN
parameters to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure.

25.5.2 Specifying Redo Log Files for Data Mining
To mine data in the redo log files, LogMiner needs information about which redo log
files to mine.

Changes made to the database that are found in these redo log files are delivered to
you through the V$LOGMNR_CONTENTS view.

Chapter 25
LogMiner Dictionary Files and Redo Log Files

25-18

You must explicitly specify a list of redo log files for LogMiner to analyze, as follows:

Use the DBMS_LOGMNR.ADD_LOGFILE procedure to create a list of redo log files manually before
you start LogMiner. After the first redo log file is added to the list, each subsequently added
redo log file must be from the same database, and associated with the same database
RESETLOGS SCN. When using this method, LogMiner need not be connected to the source
database.

For example, to start a new list of redo log files, specify the NEW option of the
DBMS_LOGMNR.ADD_LOGFILE PL/SQL procedure to signal that this is the beginning of a new list.
For example, enter the following to specify /oracle/logs/log1.f:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log1.f', -
 OPTIONS => DBMS_LOGMNR.NEW);

If desired, you can add more redo log files by specifying the ADDFILE option of the PL/SQL
DBMS_LOGMNR.ADD_LOGFILE procedure. For example, enter the following to add /oracle/
logs/log2.f:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

To determine which redo log files are being analyzed in the current LogMiner session, you
can query the V$LOGMNR_LOGS view, which contains one row for each redo log file.

Note:

The continuous_mine option for the dbms_logmnr.start_logmnr package is
desupported starting with Oracle Database 19c (19.1), and is no longer available.

25.6 Starting LogMiner
Call the DBMS_LOGMNR.START_LOGMNR procedure to start LogMiner.

Because the options available with the DBMS_LOGMNR.START_LOGMNR procedure allow you to
control output to the V$LOGMNR_CONTENTS view, you must call DBMS_LOGMNR.START_LOGMNR
before querying the V$LOGMNR_CONTENTS view.

When you start LogMiner, you can:

• Specify how LogMiner should filter data it returns (for example, by starting and ending
time or SCN value)

• Specify options for formatting the data returned by LogMiner

• Specify the LogMiner dictionary to use

The following list is a summary of LogMiner settings that you can specify with the OPTIONS
parameter to DBMS_LOGMNR.START_LOGMNR and where to find more information about them.

• DICT_FROM_ONLINE_CATALOG

Chapter 25
Starting LogMiner

25-19

• DICT_FROM_REDO_LOGS
• COMMITTED_DATA_ONLY
• SKIP_CORRUPTION
• NO_SQL_DELIMITER
• PRINT_PRETTY_SQL
• NO_ROWID_IN_STMT
• DDL_DICT_TRACKING
When you execute the DBMS_LOGMNR.START_LOGMNR procedure, LogMiner checks to
ensure that the combination of options and parameters that you have specified is valid
and that the dictionary and redo log files that you have specified are available.
However, the V$LOGMNR_CONTENTS view is not populated until you query the view.

Note that parameters and options are not persistent across calls to
DBMS_LOGMNR.START_LOGMNR. You must specify all desired parameters and options
(including SCN and time ranges) each time you call DBMS_LOGMNR.START_LOGMNR.

25.7 Querying V$LOGMNR_CONTENTS for Redo Data of
Interest

You access the redo data of interest by querying the V$LOGMNR_CONTENTS view.

• How to Use V$LOGMNR_CONTENTS to Find Redo Data
You use V$LOGMNR_CONTENTS to find historical information about changes made to
Oracle Database.

• How the V$LOGMNR_CONTENTS View Is Populated
The V$LOGMNR_CONTENTS fixed view is unlike other views in that it is not a selective
presentation of data stored in a table. Instead, it is a relational presentation of the
data that you request from the redo log files.

• Querying V$LOGMNR_CONTENTS Based on Column Values
You can query column values by using the Oracle Database LogMiner view
V$LOGMNR_CONTENTS.

• Querying V$LOGMNR_CONTENTS Based on XMLType Columns and Tables
LogMiner supports redo generated for XMLType columns. XMLType data stored as
CLOB is supported when redo is generated at a compatibility setting of 11.0.0.0 or
higher.

25.7.1 How to Use V$LOGMNR_CONTENTS to Find Redo Data
You use V$LOGMNR_CONTENTS to find historical information about changes made to
Oracle Database.

To query the V$LOGMNR_CONTENTS view, you must have either the SYSDBA or LOGMINING
privilege. Historical information that you can find with V$LOGMNR_CONTENTS includes (but
is not limited to) the following:

• The type of change made to the database: INSERT, UPDATE, DELETE, or DDL
(OPERATION column).

Chapter 25
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

25-20

• The SCN at which a change was made (SCN column).

• The SCN at which a change was committed (COMMIT_SCN column).

• The transaction to which a change belongs (XIDUSN, XIDSLT, and XIDSQN columns).

• The table and schema name of the modified object (SEG_NAME and SEG_OWNER columns).

• The name of the user who issued the Data Definition Language (DDL) or Data
Manipulation Language (DML) statement to make the change (USERNAME column).

• If the change was due to a SQL DML statement, the reconstructed SQL statements
showing SQL DML that is equivalent (but not necessarily identical) to the SQL DML used
to generate the redo records (SQL_REDO column).

• If a password is part of the statement in a SQL_REDO column, then the password is
encrypted. SQL_REDO column values that correspond to DDL statements are always
identical to the SQL DDL used to generate the redo records.

• If the change was due to a SQL DML change, the reconstructed SQL statements
showing the SQL DML statements needed to undo the change (SQL_UNDO column).

SQL_UNDO columns that correspond to DDL statements are always NULL. The SQL_UNDO
column may be NULL also for some data types and for rolled back operations.

Note:

LogMiner supports Transparent Data Encryption (TDE), in that V$LOGMNR_CONTENTS
shows DML operations performed on tables with encrypted columns (including the
encrypted columns being updated), provided the LogMiner data dictionary contains
the metadata for the object in question and provided the appropriate access key is
in the Oracle wallet. The wallet must be open or V$LOGMNR_CONTENTS cannot
interpret the associated redo records. TDE support is not available if the database
is not open (either read-only or read-write).

Example of Querying V$LOGMNR_CONTENTS

To find any delete operations that a user named Ron performed on the oe.orders table, issue
a SQL query similar to the following:

SELECT OPERATION, SQL_REDO, SQL_UNDO
 FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER = 'OE' AND SEG_NAME = 'ORDERS' AND
 OPERATION = 'DELETE' AND USERNAME = 'RON';

The following output is produced by the query. The formatting can be different on your display
than that shown here.

OPERATION SQL_REDO SQL_UNDO

DELETE delete from "OE"."ORDERS" insert into "OE"."ORDERS"
 where "ORDER_ID" = '2413' ("ORDER_ID","ORDER_MODE",
 and "ORDER_MODE" = 'direct' "CUSTOMER_ID","ORDER_STATUS",
 and "CUSTOMER_ID" = '101' "ORDER_TOTAL","SALES_REP_ID",
 and "ORDER_STATUS" = '5' "PROMOTION_ID")

Chapter 25
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

25-21

 and "ORDER_TOTAL" = '48552' values
('2413','direct','101',
 and "SALES_REP_ID" = '161'
'5','48552','161',NULL);
 and "PROMOTION_ID" IS NULL
 and ROWID = 'AAAHTCAABAAAZAPAAN';

DELETE delete from "OE"."ORDERS" insert into "OE"."ORDERS"
 where "ORDER_ID" = '2430' ("ORDER_ID","ORDER_MODE",
 and "ORDER_MODE" = 'direct'
"CUSTOMER_ID","ORDER_STATUS",
 and "CUSTOMER_ID" = '101'
"ORDER_TOTAL","SALES_REP_ID",
 and "ORDER_STATUS" = '8' "PROMOTION_ID")
 and "ORDER_TOTAL" = '29669.9'
values('2430','direct','101',
 and "SALES_REP_ID" = '159'
'8','29669.9','159',NULL);
 and "PROMOTION_ID" IS NULL
 and ROWID = 'AAAHTCAABAAAZAPAAe';

This output shows that user Ron deleted two rows from the oe.orders table. The
reconstructed SQL statements are equivalent, but not necessarily identical, to the
actual statement that Ron issued. The reason for this difference is that the original
WHERE clause is not logged in the redo log files, so LogMiner can only show deleted (or
updated or inserted) rows individually.

Therefore, even though a single DELETE statement may be responsible for the deletion
of both rows, the output in V$LOGMNR_CONTENTS does not reflect that fact. The actual
DELETE statement may have been DELETE FROM OE.ORDERS WHERE CUSTOMER_ID
='101' or it may have been DELETE FROM OE.ORDERS WHERE PROMOTION_ID = NULL.
Related Topics

• Oracle Database Security Guide

25.7.2 How the V$LOGMNR_CONTENTS View Is Populated
The V$LOGMNR_CONTENTS fixed view is unlike other views in that it is not a selective
presentation of data stored in a table. Instead, it is a relational presentation of the data
that you request from the redo log files.

LogMiner populates the view only in response to a query against it. You must
successfully start LogMiner before you can query V$LOGMNR_CONTENTS.
When a SQL select operation is executed against the V$LOGMNR_CONTENTS view, the
redo log files are read sequentially. Translated information from the redo log files is
returned as rows in the V$LOGMNR_CONTENTS view. This continues until either the filter
criteria specified at startup are met or the end of the redo log file is reached.

In some cases, certain columns in V$LOGMNR_CONTENTS may not be populated. For
example:

• The TABLE_SPACE column is not populated for rows where the value of the
OPERATION column is DDL. This is because a DDL may operate on more than one

Chapter 25
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

25-22

tablespace. For example, a table can be created with multiple partitions spanning multiple
table spaces; hence it would not be accurate to populate the column.

• LogMiner does not generate SQL redo or SQL undo for temporary tables. The SQL_REDO
column will contain the string "/* No SQL_REDO for temporary tables */" and the
SQL_UNDO column will contain the string "/* No SQL_UNDO for temporary tables */".

LogMiner returns all the rows in SCN order unless you have used the COMMITTED_DATA_ONLY
option to specify that only committed transactions should be retrieved. SCN order is the order
normally applied in media recovery.

Note:

Because LogMiner populates the V$LOGMNR_CONTENTS view only in response to a
query and does not store the requested data in the database, the following is true:

• Every time you query V$LOGMNR_CONTENTS, LogMiner analyzes the redo log files
for the data you request.

• The amount of memory consumed by the query is not dependent on the
number of rows that must be returned to satisfy a query.

• The time it takes to return the requested data is dependent on the amount and
type of redo log data that must be mined to find that data.

For the reasons stated in the previous note, Oracle recommends that you create a table to
temporarily hold the results from a query of V$LOGMNR_CONTENTS if you need to maintain the
data for further analysis, particularly if the amount of data returned by a query is small in
comparison to the amount of redo data that LogMiner must analyze to provide that data.

Related Topics

• Showing Only Committed Transactions
When using the COMMITTED_DATA_ONLY option to DBMS_LOGMNR.START_LOGMNR, only rows
belonging to committed transactions are shown in the V$LOGMNR_CONTENTS view.

25.7.3 Querying V$LOGMNR_CONTENTS Based on Column Values
You can query column values by using the Oracle Database LogMiner view
V$LOGMNR_CONTENTS.

• Example of Querying V$LOGMNR_CONTENTS Column Values
Learn about ways you can perform column value-based data mining with the
LOGMINER_CONTENTS view.

• The Meaning of NULL Values Returned by the MINE_VALUE Function
Describes the meaning of NULL values returned by the MINE_VALUE function.

• Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions
Describes the usage rules that apply to the MINE_VALUE and COLUMN_PRESENT functions.

• Restrictions When Using the MINE_VALUE Function To Get an NCHAR Value
Describes restrictions when using the MINE_VALUE function.

Chapter 25
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

25-23

25.7.3.1 Example of Querying V$LOGMNR_CONTENTS Column Values
Learn about ways you can perform column value-based data mining with the
LOGMINER_CONTENTS view.

There are a variety of column-based queries you could perform to mine data from your
Oracle Database redo log files. For example, you can perform a query to show all
updates to the hr.employees table that increase salary more than a certain amount.
You can use data such as this to analyze system behavior, and to perform auditing
tasks.

LogMiner data extraction from redo log files is performed by using two mine functions:
DBMS_LOGMNR.MINE_VALUE, and DBMS_LOGMNR.COLUMN_PRESENT. Support for these mine
functions is provided by the REDO_VALUE and UNDO_VALUE columns in the
V$LOGMNR_CONTENTS view.

The following is an example of how you could use the MINE_VALUE function to select all
updates to hr.employees that increased the salary column to more than twice its
original value:

SELECT SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE
 SEG_NAME = 'EMPLOYEES' AND
 SEG_OWNER = 'HR' AND
 OPERATION = 'UPDATE' AND
 DBMS_LOGMNR.MINE_VALUE(REDO_VALUE, 'HR.EMPLOYEES.SALARY') >
 2*DBMS_LOGMNR.MINE_VALUE(UNDO_VALUE, 'HR.EMPLOYEES.SALARY');

As shown in this example, the MINE_VALUE function takes two arguments:

• The first argument specifies whether to mine the redo (REDO_VALUE) or undo
(UNDO_VALUE) portion of the data. The redo portion of the data is the data that is in
the column after an insert, update, or delete operation. The undo portion of the
data is the data that was in the column before an insert, update, or delete
operation. Another way of seeing this is to think of the REDO_VALUE as the new
value, and the UNDO_VALUE as the old value.

• The second argument is a string that specifies the fully qualified name of the
column that you want to mine (in this case, hr.employees.salary). The
MINE_VALUE function always returns a string that can be converted back to the
original data type.

25.7.3.2 The Meaning of NULL Values Returned by the MINE_VALUE Function
Describes the meaning of NULL values returned by the MINE_VALUE function.

If the MINE_VALUE function returns a NULL value, then it can mean either:

• The specified column is not present in the redo or undo portion of the data.

• The specified column is present and has a null value.

To distinguish between these two cases, use the DBMS_LOGMNR.COLUMN_PRESENT
function which returns a 1 if the column is present in the redo or undo portion of the
data. Otherwise, it returns a 0. For example, suppose you wanted to find out the

Chapter 25
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

25-24

increment by which the values in the salary column were modified and the corresponding
transaction identifier. You could issue the following SQL query:

SELECT
 (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 (DBMS_LOGMNR.MINE_VALUE(REDO_VALUE, 'HR.EMPLOYEES.SALARY') -
 DBMS_LOGMNR.MINE_VALUE(UNDO_VALUE, 'HR.EMPLOYEES.SALARY')) AS INCR_SAL
 FROM V$LOGMNR_CONTENTS
 WHERE
 OPERATION = 'UPDATE' AND
 DBMS_LOGMNR.COLUMN_PRESENT(REDO_VALUE, 'HR.EMPLOYEES.SALARY') = 1 AND
 DBMS_LOGMNR.COLUMN_PRESENT(UNDO_VALUE, 'HR.EMPLOYEES.SALARY') = 1;

25.7.3.3 Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions
Describes the usage rules that apply to the MINE_VALUE and COLUMN_PRESENT functions.

Specifically:

• They can only be used within a LogMiner session.

• They must be started in the context of a select operation from the V$LOGMNR_CONTENTS
view.

• They do not support LONG, LONG RAW, CLOB, BLOB, NCLOB, ADT, or COLLECTION data types.

25.7.3.4 Restrictions When Using the MINE_VALUE Function To Get an NCHAR
Value

Describes restrictions when using the MINE_VALUE function.

If the DBMS_LOGMNR.MINE_VALUE function is used to get an NCHAR value that includes
characters not found in the database character set, then those characters are returned as the
replacement character (for example, an inverted question mark) of the database character
set.

25.7.4 Querying V$LOGMNR_CONTENTS Based on XMLType Columns
and Tables

LogMiner supports redo generated for XMLType columns. XMLType data stored as CLOB is
supported when redo is generated at a compatibility setting of 11.0.0.0 or higher.

• How V$LOGMNR_CONTENTS Based on XMLType Columns and Tables are Queried
Depending on what XMLType storage you use, LogMiner presents the SQL_REDO in
V$LOGMNR_CONTENTS in different ways.

• Restrictions When Using LogMiner With XMLType Data
Describes restrictions when using LogMiner with XMLType data.

• Example of a PL/SQL Procedure for Assembling XMLType Data
Example showing a procedure that can be used to mine and assemble XML redo for
tables that contain out of line XML data.

Chapter 25
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

25-25

25.7.4.1 How V$LOGMNR_CONTENTS Based on XMLType Columns and
Tables are Queried

Depending on what XMLType storage you use, LogMiner presents the SQL_REDO in
V$LOGMNR_CONTENTS in different ways.

XMLType data stored as object-relational and binary XML is supported for redo
generated at a compatibility setting of 11.2.0.3 and higher.

LogMiner presents the SQL_REDO in V$LOGMNR_CONTENTS in different ways depending on
the XMLType storage. In all cases, the contents of the SQL_REDO column, in combination
with the STATUS column, require careful scrutiny, and usually require reassembly
before a SQL or PL/SQL statement can be generated to redo the change. There can
be cases when it is not possible to use the SQL_REDO data to construct such a change.
The examples in the following subsections are based on XMLType stored as CLOB which
is generally the simplest to use for reconstruction of the complete row change.

Note:

XMLType data stored as CLOB was deprecated in Oracle Database 12c
Release 1 (12.1), and can be desupported. For any existing applications that
you plan to use on ADB, be aware that many XML schema-related features
are not supported

Querying V$LOGMNR_CONTENTS For Changes to Tables With XMLType
Columns

The example in this section is for a table named XML_CLOB_COL_TAB that has the
following columns:

• f1 NUMBER
• f2 VARCHAR2(100)
• f3 XMLTYPE
• f4 XMLTYPE
• f5 VARCHAR2(10)
Assume that a LogMiner session has been started with the logs and with the
COMMITED_DATA_ONLY option. The following query is executed against
V$LOGMNR_CONTENTS for changes to the XML_CLOB_COL_TAB table.

SELECT OPERATION, STATUS, SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER = 'SCOTT' AND TABLE_NAME = 'XML_CLOB_COL_TAB';

The query output looks similar to the following:

OPERATION STATUS SQL_REDO

INSERT 0 insert into "SCOTT"."XML_CLOB_COL_TAB"("F1","F2","F5") values
 ('5010','Aho40431','PETER')

XML DOC BEGIN 5 update "SCOTT"."XML_CLOB_COL_TAB" a set a."F3" = XMLType(:1)

Chapter 25
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

25-26

 where a."F1" = '5010' and a."F2" = 'Aho40431' and a."F5" = 'PETER'

XML DOC WRITE 5 XML Data

XML DOC WRITE 5 XML Data

XML DOC WRITE 5 XML Data

XML DOC END 5

In the SQL_REDO columns for the XML DOC WRITE operations there will be actual data for the
XML document. It will not be the string 'XML Data'.

This output shows that the general model for an insert into a table with an XMLType column is
the following:

1. An initial insert with all of the scalar columns.

2. An XML DOC BEGIN operation with an update statement that sets the value for one
XMLType column using a bind variable.

3. One or more XML DOC WRITE operations with the data for the XML document.

4. An XML DOC END operation to indicate that all of the data for that XML document has been
seen.

5. If there is more than one XMLType column in the table, then steps 2 through 4 will be
repeated for each XMLType column that is modified by the original DML.

If the XML document is not stored as an out-of-line column, then there will be no XML DOC
BEGIN, XML DOC WRITE, or XML DOC END operations for that column. The document will be
included in an update statement similar to the following:

OPERATION STATUS SQL_REDO

UPDATE 0 update "SCOTT"."XML_CLOB_COL_TAB" a
 set a."F3" = XMLType('<?xml version="1.0"?>
 <PO pono="1">
 <PNAME>Po_99</PNAME>
 <CUSTNAME>Dave Davids</CUSTNAME>
 </PO>')
 where a."F1" = '5006' and a."F2" = 'Janosik' and a."F5" = 'MMM'

Querying V$LOGMNR_CONTENTS For Changes to XMLType Tables

DMLs to XMLType tables are slightly different from DMLs to XMLType columns. The XML
document represents the value for the row in the XMLType table. Unlike the XMLType column
case, an initial insert cannot be done which is then followed by an update containing the XML
document. Rather, the whole document must be assembled before anything can be inserted
into the table.

Another difference for XMLType tables is the presence of the OBJECT_ID column. An object
identifier is used to uniquely identify every object in an object table. For XMLType tables, this
value is generated by Oracle Database when the row is inserted into the table. The
OBJECT_ID value cannot be directly inserted into the table using SQL. Therefore, LogMiner
cannot generate SQL_REDO which is executable that includes this value.

The V$LOGMNR_CONTENTS view has a new OBJECT_ID column which is populated for changes
to XMLType tables. This value is the object identifier from the original table. However, even if

Chapter 25
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

25-27

this same XML document is inserted into the same XMLType table, a new object
identifier will be generated. The SQL_REDO for subsequent DMLs, such as updates and
deletes, on the XMLType table will include the object identifier in the WHERE clause to
uniquely identify the row from the original table.

25.7.4.2 Restrictions When Using LogMiner With XMLType Data
Describes restrictions when using LogMiner with XMLType data.

Mining XMLType data should only be done when using the
DBMS_LOGMNR.COMMITTED_DATA_ONLY option. Otherwise, incomplete changes could be
displayed or changes which should be displayed as XML might be displayed as CLOB
changes due to missing parts of the row change. This can lead to incomplete and
invalid SQL_REDO for these SQL DML statements.

The SQL_UNDO column is not populated for changes to XMLType data.

25.7.4.3 Example of a PL/SQL Procedure for Assembling XMLType Data
Example showing a procedure that can be used to mine and assemble XML redo for
tables that contain out of line XML data.

This shows how to assemble the XML data using a temporary LOB. Once the XML
document is assembled, it can be used in a meaningful way. This example queries the
assembled document for the EmployeeName element and then stores the returned
name, the XML document and the SQL_REDO for the original DML in the
EMPLOYEE_XML_DOCS table.

Note:

This procedure is an example only and is simplified. It is only intended to
illustrate that DMLs to tables with XMLType data can be mined and assembled
using LogMiner.

Before calling this procedure, all of the relevant logs must be added to a LogMiner
session and DBMS_LOGMNR.START_LOGMNR() must be called with the
COMMITTED_DATA_ONLY option. The MINE_AND_ASSEMBLE() procedure can then be called
with the schema and table name of the table that has XML data to be mined.

-- table to store assembled XML documents
create table employee_xml_docs (
 employee_name varchar2(100),
 sql_stmt varchar2(4000),
 xml_doc SYS.XMLType);

-- procedure to assemble the XML documents
create or replace procedure mine_and_assemble(
 schemaname in varchar2,
 tablename in varchar2)
AS
 loc_c CLOB;
 row_op VARCHAR2(100);
 row_status NUMBER;
 stmt VARCHAR2(4000);

Chapter 25
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

25-28

 row_redo VARCHAR2(4000);
 xml_data VARCHAR2(32767 CHAR);
 data_len NUMBER;
 xml_lob clob;
 xml_doc XMLType;
BEGIN

-- Look for the rows in V$LOGMNR_CONTENTS that are for the appropriate schema
-- and table name but limit it to those that are valid sql or that need assembly
-- because they are XML documents.

 For item in (SELECT operation, status, sql_redo FROM v$logmnr_contents
 where seg_owner = schemaname and table_name = tablename
 and status IN (DBMS_LOGMNR.VALID_SQL, DBMS_LOGMNR.ASSEMBLY_REQUIRED_SQL))
 LOOP
 row_op := item.operation;
 row_status := item.status;
 row_redo := item.sql_redo;

 CASE row_op

 WHEN 'XML DOC BEGIN' THEN
 BEGIN
 -- save statement and begin assembling XML data
 stmt := row_redo;
 xml_data := '';
 data_len := 0;
 DBMS_LOB.CreateTemporary(xml_lob, TRUE);
 END;

 WHEN 'XML DOC WRITE' THEN
 BEGIN
 -- Continue to assemble XML data
 xml_data := xml_data || row_redo;
 data_len := data_len + length(row_redo);
 DBMS_LOB.WriteAppend(xml_lob, length(row_redo), row_redo);
 END;

 WHEN 'XML DOC END' THEN
 BEGIN
 -- Now that assembly is complete, we can use the XML document
 xml_doc := XMLType.createXML(xml_lob);
 insert into employee_xml_docs values
 (extractvalue(xml_doc, '/EMPLOYEE/NAME'), stmt, xml_doc);
 commit;

 -- reset
 xml_data := '';
 data_len := 0;
 xml_lob := NULL;
 END;

 WHEN 'INSERT' THEN
 BEGIN
 stmt := row_redo;
 END;

 WHEN 'UPDATE' THEN
 BEGIN
 stmt := row_redo;
 END;

Chapter 25
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

25-29

 WHEN 'INTERNAL' THEN
 DBMS_OUTPUT.PUT_LINE('Skip rows marked INTERNAL');

 ELSE
 BEGIN
 stmt := row_redo;
 DBMS_OUTPUT.PUT_LINE('Other - ' || stmt);
 IF row_status != DBMS_LOGMNR.VALID_SQL then
 DBMS_OUTPUT.PUT_LINE('Skip rows marked non-executable');
 ELSE
 dbms_output.put_line('Status : ' || row_status);
 END IF;
 END;

 END CASE;

 End LOOP;

End;
/

show errors;

This procedure can then be called to mine the changes to the SCOTT.XML_DATA_TAB
and apply the DMLs.

EXECUTE MINE_AND_ASSEMBLE ('SCOTT', 'XML_DATA_TAB');

As a result of this procedure, the EMPLOYEE_XML_DOCS table will have a row for each
out-of-line XML column that was changed. The EMPLOYEE_NAME column will have the
value extracted from the XML document and the SQL_STMT column and the XML_DOC
column reflect the original row change.

The following is an example query to the resulting table that displays only the
employee name and SQL statement:

SELECT EMPLOYEE_NAME, SQL_STMT FROM EMPLOYEE_XML_DOCS;

EMPLOYEE_NAME
SQL_STMT

Scott Davis update "SCOTT"."XML_DATA_TAB" a set a."F3" = XMLType(:1)
 where a."F1" = '5000' and a."F2" = 'Chen' and a."F5" = 'JJJ'

Richard Harry update "SCOTT"."XML_DATA_TAB" a set a."F4" = XMLType(:1)
 where a."F1" = '5000' and a."F2" = 'Chen' and a."F5" = 'JJJ'

Margaret Sally update "SCOTT"."XML_DATA_TAB" a set a."F4" = XMLType(:1)
 where a."F1" = '5006' and a."F2" = 'Janosik' and a."F5" = 'MMM'

25.8 Filtering and Formatting Data Returned to
V$LOGMNR_CONTENTS

Learn how to use V$LOGMNR_CONTENTS view filtering and formatting features to manage
what data appears, how it is displayed, and control the speed at which it is returned.

Chapter 25
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

25-30

When you extract data from Oracle Database redo logs, LogMiner can potentially deal with
large amounts of information. Learning how to filter and format that data is helpful to assist
with your data mining project. You request each of these filtering and formatting features by
using parameters or options to the DBMS_LOGMNR.START_LOGMNR procedure.

• Showing Only Committed Transactions
When using the COMMITTED_DATA_ONLY option to DBMS_LOGMNR.START_LOGMNR, only rows
belonging to committed transactions are shown in the V$LOGMNR_CONTENTS view.

• Skipping Redo Corruptions
When you use the SKIP_CORRUPTION option to DBMS_LOGMNR.START_LOGMNR, any
corruptions in the redo log files are skipped during select operations from the
V$LOGMNR_CONTENTS view.

• Filtering Data by Time
To filter data by time, set the STARTTIME and ENDTIME parameters in the
DBMS_LOGMNR.START_LOGMNR procedure.

• Filtering Data by SCN
To filter data by SCN (system change number), use the STARTSCN and ENDSCN parameters
to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure.

• Formatting Reconstructed SQL Statements for Reprocessing
When LogMiner reprocesses reconstructed SQL statements, you can use LogMiner
options to modify the default structure of those statements.

• Formatting the Appearance of Returned Data for Readability
LogMiner provides the PRINT_PRETTY_SQL option that formats the appearance of returned
data for readability.

25.8.1 Showing Only Committed Transactions
When using the COMMITTED_DATA_ONLY option to DBMS_LOGMNR.START_LOGMNR, only rows
belonging to committed transactions are shown in the V$LOGMNR_CONTENTS view.

Using this option enables you to filter out rolled back transactions, transactions that are in
progress, and internal operations.

To enable the COMMITTED_DATA_ONLY option, specify it when you start LogMiner:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

When you specify the option COMMITTED_DATA_ONLY, LogMiner groups together all DML
operations that belong to the same transaction. Transactions are returned in the order in
which they were committed.

Note:

If the COMMITTED_DATA_ONLY option is specified and you issue a query, then
LogMiner stages all redo records within a single transaction in memory until
LogMiner finds the commit record for that transaction. Therefore, it is possible to
exhaust memory, in which case an "Out of Memory" error will be returned. If this
occurs, then you must restart LogMiner without the COMMITTED_DATA_ONLY option
specified and reissue the query.

Chapter 25
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

25-31

The default is for LogMiner to show rows corresponding to all transactions and to
return them in the order in which they are encountered in the redo log files.

For example, suppose you start LogMiner without specifying the COMMITTED_DATA_ONLY
option and you run the following query:

SELECT (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 USERNAME, SQL_REDO FROM V$LOGMNR_CONTENTS WHERE USERNAME != 'SYS'
 AND SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM');

The output is as follows. Both committed and uncommitted transactions are returned
and rows from different transactions are interwoven.

XID USERNAME SQL_REDO

1.15.3045 RON set transaction read write;
1.15.3045 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9782',
 'HR_ENTRY',NULL,NULL);
1.18.3046 JANE set transaction read write;
1.18.3046 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('9839','Edgar',
 'Cummings',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.9.3041 RAJIV set transaction read write;
1.9.3041 RAJIV insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME","CUST_ADDRESS",
 "PHONE_NUMBERS","NLS_LANGUAGE","NLS_TERRITORY",
 "CREDIT_LIMIT","CUST_EMAIL","ACCOUNT_MGR_ID")
 values ('9499','Rodney','Emerson',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.15.3045 RON commit;
1.8.3054 RON set transaction read write;
1.8.3054 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9566',
 'FI_ENTRY',NULL,NULL);
1.18.3046 JANE commit;
1.11.3047 JANE set transaction read write;
1.11.3047 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('8933','Ronald',
 'Frost',NULL,NULL,NULL,NULL,NULL,NULL,NULL);
1.11.3047 JANE commit;
1.8.3054 RON commit;

Now suppose you start LogMiner, but this time you specify the COMMITTED_DATA_ONLY
option. If you execute the previous query again, then the output is as follows:

1.15.3045 RON set transaction read write;
1.15.3045 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9782',
 'HR_ENTRY',NULL,NULL);
1.15.3045 RON commit;
1.18.3046 JANE set transaction read write;
1.18.3046 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",

Chapter 25
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

25-32

 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('9839','Edgar',
 'Cummings',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.18.3046 JANE commit;
1.11.3047 JANE set transaction read write;
1.11.3047 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('8933','Ronald',
 'Frost',NULL,NULL,NULL,NULL,NULL,NULL,NULL);
1.11.3047 JANE commit;
1.8.3054 RON set transaction read write;
1.8.3054 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9566',
 'FI_ENTRY',NULL,NULL);
1.8.3054 RON commit;

Because the COMMIT statement for the 1.15.3045 transaction was issued before the COMMIT
statement for the 1.18.3046 transaction, the entire 1.15.3045 transaction is returned first. This
is true even though the 1.18.3046 transaction started before the 1.15.3045 transaction. None
of the 1.9.3041 transaction is returned because a COMMIT statement was never issued for it.

Related Topics

• Examples Using LogMiner
To see how you can use LogMiner for data mining, review the provided examples.

See Also:

See "Examples Using LogMiner" for a complete example that uses the
COMMITTED_DATA_ONLY option

25.8.2 Skipping Redo Corruptions
When you use the SKIP_CORRUPTION option to DBMS_LOGMNR.START_LOGMNR, any corruptions in
the redo log files are skipped during select operations from the V$LOGMNR_CONTENTS view.

For every corrupt redo record encountered, a row is returned that contains the value
CORRUPTED_BLOCKS in the OPERATION column, 1343 in the STATUS column, and the number of
blocks skipped in the INFO column.

Be aware that the skipped records may include changes to ongoing transactions in the
corrupted blocks; such changes will not be reflected in the data returned from the
V$LOGMNR_CONTENTS view.

The default is for the select operation to terminate at the first corruption it encounters in the
redo log file.

The following SQL example shows how this option works:

-- Add redo log files of interest.
--
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-

Chapter 25
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

25-33

 logfilename => '/usr/oracle/data/db1arch_1_16_482701534.log' -
 options => DBMS_LOGMNR.NEW);

-- Start LogMiner
--
EXECUTE DBMS_LOGMNR.START_LOGMNR();

-- Select from the V$LOGMNR_CONTENTS view. This example shows corruptions are --
in the redo log files.
--
SELECT rbasqn, rbablk, rbabyte, operation, status, info
 FROM V$LOGMNR_CONTENTS;

ERROR at line 3:
ORA-00368: checksum error in redo log block
ORA-00353: log corruption near block 6 change 73528 time 11/06/2011 11:30:23
ORA-00334: archived log: /usr/oracle/data/dbarch1_16_482701534.log

-- Restart LogMiner. This time, specify the SKIP_CORRUPTION option.
--
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 options => DBMS_LOGMNR.SKIP_CORRUPTION);

-- Select from the V$LOGMNR_CONTENTS view again. The output indicates that
-- corrupted blocks were skipped: CORRUPTED_BLOCKS is in the OPERATION
-- column, 1343 is in the STATUS column, and the number of corrupt blocks
-- skipped is in the INFO column.
--
SELECT rbasqn, rbablk, rbabyte, operation, status, info
 FROM V$LOGMNR_CONTENTS;

RBASQN RBABLK RBABYTE OPERATION STATUS INFO
13 2 76 START 0
13 2 76 DELETE 0
13 3 100 INTERNAL 0
13 3 380 DELETE 0
13 0 0 CORRUPTED_BLOCKS 1343 corrupt blocks 4 to 19 skipped
13 20 116 UPDATE 0

25.8.3 Filtering Data by Time
To filter data by time, set the STARTTIME and ENDTIME parameters in the
DBMS_LOGMNR.START_LOGMNR procedure.

To avoid the need to specify the date format in the call to the PL/SQL
DBMS_LOGMNR.START_LOGMNR procedure, you can use the SQL ALTER SESSION SET
NLS_DATE_FORMAT statement first, as shown in the following example.

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME => '/oracle/database/dictionary.ora', -
 STARTTIME => '01-Jan-2019 08:30:00', -
 ENDTIME => '01-Jan-2019 08:45:00'-
);

The timestamps should not be used to infer ordering of redo records. You can infer the
order of redo records by using the SCN.

Chapter 25
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

25-34

Note:

You must add log files before filtering. Continuous logging is no longer supported. If
logfiles have not been added that match the time or the SCN that you provide, then
DBMS_LOGMNR.START_LOGMNR fails with the error 1291 ORA-01291: missing logfile.

25.8.4 Filtering Data by SCN
To filter data by SCN (system change number), use the STARTSCN and ENDSCN parameters to
the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure.

For example:

 EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTSCN => 621047, -
 ENDSCN => 625695, -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
);

The STARTSCN and ENDSCN parameters override the STARTTIME and ENDTIME parameters in
situations where all are specified.

Note:

In previous releases, using a flat file dictionary was one means of mining the redo
logs for the changes associated with a specific PDB whose data dictionary was
contained within the flat file. This feature is now desupported. Starting with Oracle
Database 21c, Oracle recommends that you call DBMS_LOGMNR.START_LOGMNR, and
supply the system change number (SCN) or time range that you want to mine. The
SCN or time range options of START_LOGMNR are enhanced to support mining of
individual PDBs.

You must add log files before filtering. Continuous logging is no longer supported. If
log files have not been added that match the time or the SCN that you provide, then
DBMS_LOGMNR.START_LOGMNR fails with the error 1291 ORA-01291: missing logfile.

25.8.5 Formatting Reconstructed SQL Statements for Reprocessing
When LogMiner reprocesses reconstructed SQL statements, you can use LogMiner options
to modify the default structure of those statements.

By default, a ROWID clause is included in the reconstructed SQL_REDO and SQL_UNDO
statements and the statements are ended with a semicolon. However, you can override the
default settings, as follows:

• Specify the NO_ROWID_IN_STMT option when you start LogMiner.

The NO_ROWID_IN_STMT option excludes the ROWID clause from the reconstructed
statements. Because row IDs are not consistent between databases, if you intend to

Chapter 25
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

25-35

reprocess the SQL_REDO or SQL_UNDO statements against a different database than
the one against which they were originally run, then you can specify the
NO_ROWID_IN_STMT option when you start LogMiner to address that problem.

• Specify the NO_SQL_DELIMITER option when you start LogMiner.

The NO_SQL_DELIMITER option suppresses the semicolon from the reconstructed
statements. Suppressing the semicolon can be helpful for applications that open a
cursor, and then run the reconstructed statements.

Note that if the STATUS field of the V$LOGMNR_CONTENTS view contains the value 2
(invalid sql), then the associated SQL statement cannot be processed.

25.8.6 Formatting the Appearance of Returned Data for Readability
LogMiner provides the PRINT_PRETTY_SQL option that formats the appearance of
returned data for readability.

Sometimes a query can result in a large number of columns containing reconstructed
SQL statements, which can be visually busy and hard to read. LogMiner provides the
PRINT_PRETTY_SQL option to address this problem. The PRINT_PRETTY_SQL option to
the DBMS_LOGMNR.START_LOGMNR procedure formats the reconstructed SQL statements
as follows, which makes them easier to read:

insert into "HR"."JOBS"
 values
 "JOB_ID" = '9782',
 "JOB_TITLE" = 'HR_ENTRY',
 "MIN_SALARY" IS NULL,
 "MAX_SALARY" IS NULL;
 update "HR"."JOBS"
 set
 "JOB_TITLE" = 'FI_ENTRY'
 where
 "JOB_TITLE" = 'HR_ENTRY' and
 ROWID = 'AAAHSeAABAAAY+CAAX';

update "HR"."JOBS"
 set
 "JOB_TITLE" = 'FI_ENTRY'
 where
 "JOB_TITLE" = 'HR_ENTRY' and
 ROWID = 'AAAHSeAABAAAY+CAAX';

delete from "HR"."JOBS"
 where
 "JOB_ID" = '9782' and
 "JOB_TITLE" = 'FI_ENTRY' and
 "MIN_SALARY" IS NULL and
 "MAX_SALARY" IS NULL and
 ROWID = 'AAAHSeAABAAAY+CAAX';

SQL statements that are reconstructed when the PRINT_PRETTY_SQL option is enabled
are not executable, because they do not use standard SQL syntax.

Related Topics

• Examples Using LogMiner
To see how you can use LogMiner for data mining, review the provided examples.

Chapter 25
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

25-36

25.9 Reapplying DDL Statements Returned to
V$LOGMNR_CONTENTS

If you use LogMiner to run one or more DDL statements, then query the V$LOGMNR_CONTENTS
INFO column and only run SQL DDL marked as USER_DDL.

Caution:

If you run DDL statements that were run internally by Oracle Database, then you
can corrupt your database.

When you reapply SQL DDL from the SQL_REDO or SQL_UNDO columns of the
V$LOGMNR_CONTENTS view as it was originally applied to the database, do not run any
statements that were run internally by Oracle Database.

To differentiate between DDL statements that were issued by a user from those that were
issued internally by Oracle Database, query the INFO column of V$LOGMNR_CONTENTS. The
value of the INFO column indicates if the DDL was run by a user, or the DDL was run by
Oracle Database.

To reapply SQL DDL as it was originally applied, only run the DDL SQL contained in the
SQL_REDO or SQL_UNDO column of V$LOGMNR_CONTENTS if the INFO column contains the value
USER_DDL.

Related Topics

• Example 4: Using the LogMiner Dictionary in the Redo Log Files
Learn how to use the dictionary that has been extracted to the redo log files.

25.10 Calling DBMS_LOGMNR.START_LOGMNR Multiple
Times

Even after you have successfully called DBMS_LOGMNR.START_LOGMNR and selected from the
V$LOGMNR_CONTENTS view, you can call DBMS_LOGMNR.START_LOGMNR again without ending the
current LogMiner session and specify different options and time or SCN ranges.

The following list presents reasons why you might want to do this:

• You want to limit the amount of redo data that LogMiner has to analyze.

• You want to specify different options. For example, you might decide to specify the
PRINT_PRETTY_SQL option or that you only want to see committed transactions (so you
specify the COMMITTED_DATA_ONLY option).

• You want to change the time or SCN range to be analyzed.

Examples: Calling DBMS_LOGMNR.START_LOGMNR Multiple Times

The following are some examples of when it could be useful to call
DBMS_LOGMNR.START_LOGMNR multiple times.

Chapter 25
Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS

25-37

Example 1: Mining Only a Subset of the Data in the Redo Log Files

Suppose the list of redo log files that LogMiner has to mine include those generated
for an entire week. However, you want to analyze only what happened from 12:00 to
1:00 each day. You could do this most efficiently by:

1. Calling DBMS_LOGMNR.START_LOGMNR with this time range for Monday.

2. Selecting changes from the V$LOGMNR_CONTENTS view.

3. Repeating Steps 1 and 2 for each day of the week.

If the total amount of redo data is large for the week, then this method would make the
whole analysis much faster, because only a small subset of each redo log file in the list
would be read by LogMiner.

Example 2: Adjusting the Time Range or SCN Range

Suppose you specify a redo log file list and specify a time (or SCN) range when you
start LogMiner. When you query the V$LOGMNR_CONTENTS view, you find that only part of
the data of interest is included in the time range you specified. You can call
DBMS_LOGMNR.START_LOGMNR again to expand the time range by an hour (or adjust the
SCN range).

Example 3: Analyzing Redo Log Files As They Arrive at a Remote Database

Suppose you have written an application to analyze changes or to replicate changes
from one database to another database. The source database sends its redo log files
to the mining database and drops them into an operating system directory. Your
application:

1. Adds all redo log files currently in the directory to the redo log file list

2. Calls DBMS_LOGMNR.START_LOGMNR with appropriate settings and selects from the
V$LOGMNR_CONTENTS view

3. Adds additional redo log files that have newly arrived in the directory

4. Repeats Steps 2 and 3, indefinitely

25.11 LogMiner and Supplemental Logging
Learn about using the supplemental logging features of LogMiner

• Understanding Supplemental Logging and LogMiner
Supplemental logging is the process of adding additional columns in redo log files
to facilitate data mining.

• Database-Level Supplemental Logging
LogMiner provides different types of database-level supplemental logging: minimal
supplemental logging, identification key logging, and procedural supplemental
logging, as described in these sections.

• Disabling Database-Level Supplemental Logging
Disable database-level supplemental logging using the SQL ALTER DATABASE
statement with the DROP SUPPLEMENTAL LOGGING clause.

• Table-Level Supplemental Logging
Table-level supplemental logging specifies, at the table level, which columns are to
be supplementally logged.

Chapter 25
LogMiner and Supplemental Logging

25-38

• Tracking DDL Statements in the LogMiner Dictionary
LogMiner automatically builds its own internal dictionary from the LogMiner dictionary that
you specify when you start LogMiner (either an online catalog, a dictionary in the redo log
files, or a flat file).

• DDL_DICT_TRACKING and Supplemental Logging Settings
Describes interactions that occur when various settings of dictionary tracking and
supplemental logging are combined.

• DDL_DICT_TRACKING and Specified Time or SCN Ranges
Because LogMiner must not miss a DDL statement if it is to ensure the consistency of its
dictionary, LogMiner may start reading redo log files before your requested starting time
or SCN (as specified with DBMS_LOGMNR.START_LOGMNR) when the DDL_DICT_TRACKING
option is enabled.

25.11.1 Understanding Supplemental Logging and LogMiner
Supplemental logging is the process of adding additional columns in redo log files to facilitate
data mining.

Oracle Database redo log files are generally used for instance recovery and media recovery.
The data needed for such operations is automatically recorded in the redo log files. However,
a redo-based application can require that additional columns are logged in the redo log files.
The process of logging these additional columns is called supplemental logging.

By default, Oracle Database does not provide any supplemental logging, which means that
by default LogMiner is not usable. Therefore, you must enable at least minimal supplemental
logging before generating log files that you can analyze with LogMiner.

Use Case Examples for Supplemental Logging

The following is a list of some examples in which you can decide that you need to have
additional redo log file columns available to your applications:

• An application that applies reconstructed SQL statements to a different database must
identify the update statement by a set of columns that uniquely identify the row (for
example, a primary key), not by the ROWID shown in the reconstructed SQL returned by
the V$LOGMNR_CONTENTS view, because the ROWID of one database will be different and
therefore meaningless in another database.

• An application can require that the before-image of the whole row is logged, not just the
modified columns, so that tracking of row changes is more efficient.

Supplemental Log Groups

A supplemental log group is the set of additional columns that you want to be logged when
supplemental logging is enabled. There are two types of supplemental log groups that
determine when columns in the log group are logged:

• Unconditional supplemental log groups: The before-images of specified columns are
logged any time a row is updated, regardless of whether the update affected any of the
specified columns. This is sometimes referred to as an ALWAYS log group.

• Conditional supplemental log groups: The before-images of all specified columns are
logged only if at least one of the columns in the log group is updated.

Supplemental log groups can be system-generated, or user-defined.

Chapter 25
LogMiner and Supplemental Logging

25-39

In addition to the two types of supplemental logging, there are two levels of
supplemental logging, which you can query.

Related Topics

• Querying Views for Supplemental Logging Settings
To determine the current settings for supplemental logging, you can query several
different views.

25.11.2 Database-Level Supplemental Logging
LogMiner provides different types of database-level supplemental logging: minimal
supplemental logging, identification key logging, and procedural supplemental logging,
as described in these sections.

Minimal supplemental logging does not impose significant overhead on the database
generating the redo log files. However, enabling database-wide identification key
logging can impose overhead on the database generating the redo log files. Oracle
recommends that you at least enable minimal supplemental logging for LogMiner.

• Minimal Supplemental Logging
Minimal supplemental logging logs the minimal amount of information needed for
LogMiner to identify, group, and merge the redo operations associated with DML
changes.

• Database-Level Identification Key Logging
Identification key logging is necessary when redo log files will not be mined at the
source database instance, for example, when the redo log files will be mined at a
logical standby database.

• Procedural Supplemental Logging
Procedural supplemental logging causes LogMiner to log certain procedural
invocations to redo, so that they can be replicated by rolling upgrades or Oracle
GoldenGate.

25.11.2.1 Minimal Supplemental Logging
Minimal supplemental logging logs the minimal amount of information needed for
LogMiner to identify, group, and merge the redo operations associated with DML
changes.

It ensures that LogMiner (and any product building on LogMiner technology) has
sufficient information to support chained rows and various storage arrangements, such
as cluster tables and index-organized tables. To enable minimal supplemental logging,
execute the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

25.11.2.2 Database-Level Identification Key Logging
Identification key logging is necessary when redo log files will not be mined at the
source database instance, for example, when the redo log files will be mined at a
logical standby database.

Using database identification key logging, you can enable database-wide before-
image logging for all updates by specifying one or more of the following options to the
SQL ALTER DATABASE ADD SUPPLEMENTAL LOG statement:

Chapter 25
LogMiner and Supplemental Logging

25-40

• ALL system-generated unconditional supplemental log group

This option specifies that when a row is updated, all columns of that row (except for
LOBs, LONGS, and ADTs) are placed in the redo log file.

To enable all column logging at the database level, run the following statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;
• PRIMARY KEY system-generated unconditional supplemental log group

This option causes the database to place all columns of a row's primary key in the redo
log file whenever a row containing a primary key is updated (even if no value in the
primary key has changed).

If a table does not have a primary key, but has one or more non-null unique index key
constraints or index keys, then one of the unique index keys is chosen for logging as a
means of uniquely identifying the row being updated.

If the table has neither a primary key nor a non-null unique index key, then all columns
except LONG and LOB are supplementally logged; this is equivalent to specifying ALL
supplemental logging for that row. Therefore, Oracle recommends that when you use
database-level primary key supplemental logging, all or most tables should be defined to
have primary or unique index keys.

To enable primary key logging at the database level, run the following statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
• UNIQUE system-generated conditional supplemental log group

This option causes the database to place all columns of a row's composite unique key or
bitmap index in the redo log file, if any column belonging to the composite unique key or
bitmap index is modified. The unique key can be due either to a unique constraint, or to a
unique index.

To enable unique index key and bitmap index logging at the database level, execute the
following statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
• FOREIGN KEY system-generated conditional supplemental log group

This option causes the database to place all columns of a row's foreign key in the redo
log file if any column belonging to the foreign key is modified.

To enable foreign key logging at the database level, execute the following SQL
statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (FOREIGN KEY) COLUMNS;

Note:

Regardless of whether identification key logging is enabled, the SQL
statements returned by LogMiner always contain the ROWID clause. You can
filter out the ROWID clause by using the NO_ROWID_IN_STMT option to the
DBMS_LOGMNR.START_LOGMNR procedure call. See Formatting Reconstructed
SQL Statements for Re-execution for details.

Keep the following in mind when you use identification key logging:

Chapter 25
LogMiner and Supplemental Logging

25-41

• If the database is open when you enable identification key logging, then all DML
cursors in the cursor cache are invalidated. This can affect performance until the
cursor cache is repopulated.

• When you enable identification key logging at the database level, minimal
supplemental logging is enabled implicitly.

• If you specify ENABLE NOVALIDATE for the primary key, then the primary key will not
be considered a valid identification key. If there are no valid unique constraints,
then all scalar columns are logged. Out of line columns (for example, LOBs, XML,
32k varchar, and so on) are never supplementally logged.

• Supplemental logging statements are cumulative. If you issue the following SQL
statements, then both primary key and unique key supplemental logging is
enabled:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

25.11.2.3 Procedural Supplemental Logging
Procedural supplemental logging causes LogMiner to log certain procedural
invocations to redo, so that they can be replicated by rolling upgrades or Oracle
GoldenGate.

Procedural supplemental logging must be enabled for rolling upgrades and Oracle
GoldenGate to support replication of AQ queue tables, hierarchy-enabled tables, and
tables with SDO_TOPO_GEOMETRY or SDO_GEORASTER columns. Use the following SQL
statement to enable procedural supplemental logging:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA FOR PROCEDURAL REPLICATION
END SUBHEADING

If procedural supplemental logging is enabled, then minimal supplemental logging
cannot be dropped unless procedural supplemental logging is dropped first.

25.11.3 Disabling Database-Level Supplemental Logging
Disable database-level supplemental logging using the SQL ALTER DATABASE
statement with the DROP SUPPLEMENTAL LOGGING clause.

You can drop supplemental logging attributes incrementally. For example, suppose
you issued the following SQL statements, in the following order:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

The statements would have the following effects:

• After the first statement, primary key supplemental logging is enabled.

• After the second statement, primary key and unique key supplemental logging are
enabled.

• After the third statement, only unique key supplemental logging is enabled.

Chapter 25
LogMiner and Supplemental Logging

25-42

• After the fourth statement, all supplemental logging is not disabled. The following error is
returned: ORA-32589: unable to drop minimal supplemental logging.

To disable all database supplemental logging, you must first disable any identification key
logging that has been enabled, then disable minimal supplemental logging. The following
example shows the correct order:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

Dropping minimal supplemental log data is allowed only if no other variant of database-level
supplemental logging is enabled.

25.11.4 Table-Level Supplemental Logging
Table-level supplemental logging specifies, at the table level, which columns are to be
supplementally logged.

You can use identification key logging or user-defined conditional and unconditional
supplemental log groups to log supplemental information, as described in the following
sections.

• Table-Level Identification Key Logging
Identification key logging at the table level offers the same options as those provided at
the database level: all, primary key, foreign key, and unique key.

• Table-Level User-Defined Supplemental Log Groups
In addition to table-level identification key logging, Oracle supports user-defined
supplemental log groups.

• Usage Notes for User-Defined Supplemental Log Groups
Hints for using user-defined supplemental log groups.

25.11.4.1 Table-Level Identification Key Logging
Identification key logging at the table level offers the same options as those provided at the
database level: all, primary key, foreign key, and unique key.

However, when you specify identification key logging at the table level, only the specified
table is affected. For example, if you enter the following SQL statement (specifying database-
level supplemental logging), then whenever a column in any database table is changed, the
entire row containing that column (except columns for LOBs, LONGs, and ADTs) will be placed
in the redo log file:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

However, if you enter the following SQL statement (specifying table-level supplemental
logging) instead, then only when a column in the employees table is changed will the entire
row (except for LOB, LONGs, and ADTs) of the table be placed in the redo log file. If a column
changes in the departments table, then only the changed column will be placed in the redo
log file.

ALTER TABLE HR.EMPLOYEES ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

Chapter 25
LogMiner and Supplemental Logging

25-43

Keep the following in mind when you use table-level identification key logging:

• If the database is open when you enable identification key logging on a table, then
all DML cursors for that table in the cursor cache are invalidated. This can affect
performance until the cursor cache is repopulated.

• Supplemental logging statements are cumulative. If you issue the following SQL
statements, then both primary key and unique index key table-level supplemental
logging is enabled:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

Note:

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW)
were deprecated in Oracle8i Release 8.1.6. For succeeding releases, the
LONG data type was provided for backward compatibility with existing
applications. In new applications developed with later releases, Oracle
strongly recommends that you use CLOB and NCLOB data types for large
amounts of character data.

See Database-Level Identification Key Logging for a description of each of the
identification key logging options.

25.11.4.2 Table-Level User-Defined Supplemental Log Groups
In addition to table-level identification key logging, Oracle supports user-defined
supplemental log groups.

With user-defined supplemental log groups, you can specify which columns are
supplementally logged. You can specify conditional or unconditional log groups, as
follows:

• User-defined unconditional log groups

To enable supplemental logging that uses user-defined unconditional log groups,
use the ALWAYS clause as shown in the following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_parttime (EMPLOYEE_ID, LAST_NAME,
 DEPARTMENT_ID) ALWAYS;

This creates a log group named emp_parttime on the hr.employees table that
consists of the columns employee_id, last_name, and department_id. These
columns are logged every time an UPDATE statement is executed on the
hr.employees table, regardless of whether the update affected these columns. (To
have the entire row image logged any time an update is made, use table-level ALL
identification key logging, as described previously).

Chapter 25
LogMiner and Supplemental Logging

25-44

Note:

LOB, LONG, and ADT columns cannot be supplementally logged.

• User-defined conditional supplemental log groups

To enable supplemental logging that uses user-defined conditional log groups, omit the
ALWAYS clause from the SQL ALTER TABLE statement, as shown in the following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_fulltime (EMPLOYEE_ID, LAST_NAME,
 DEPARTMENT_ID);

This creates a log group named emp_fulltime on table hr.employees. As in the previous
example, it consists of the columns employee_id, last_name, and department_id. But
because the ALWAYS clause was omitted, before-images of the columns are logged only if
at least one of the columns is updated.

For both unconditional and conditional user-defined supplemental log groups, you can
explicitly specify that a column in the log group be excluded from supplemental logging by
specifying the NO LOG option. When you specify a log group and use the NO LOG option, you
must specify at least one column in the log group without the NO LOG option, as shown in the
following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_parttime(
 DEPARTMENT_ID NO LOG, EMPLOYEE_ID);

This enables you to associate this column with other columns in the named supplemental log
group such that any modification to the NO LOG column causes the other columns in the
supplemental log group to be placed in the redo log file. This might be useful, for example, for
logging certain columns in a group if a LONG column changes. You cannot supplementally log
the LONG column itself; however, you can use changes to that column to trigger supplemental
logging of other columns in the same row.

25.11.4.3 Usage Notes for User-Defined Supplemental Log Groups
Hints for using user-defined supplemental log groups.

Keep the following in mind when you specify user-defined supplemental log groups:

• A column can belong to more than one supplemental log group. However, the before-
image of the columns gets logged only once.

• If you specify the same columns to be logged both conditionally and unconditionally, then
the columns are logged unconditionally.

25.11.5 Tracking DDL Statements in the LogMiner Dictionary
LogMiner automatically builds its own internal dictionary from the LogMiner dictionary that
you specify when you start LogMiner (either an online catalog, a dictionary in the redo log
files, or a flat file).

This dictionary provides a snapshot of the database objects and their definitions.

Chapter 25
LogMiner and Supplemental Logging

25-45

If your LogMiner dictionary is in the redo log files or is a flat file, then you can use the
DDL_DICT_TRACKING option to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure to
direct LogMiner to track data definition language (DDL) statements. DDL tracking
enables LogMiner to successfully track structural changes made to a database object,
such as adding or dropping columns from a table. For example:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.DDL_DICT_TRACKING + DBMS_LOGMNR.DICT_FROM_REDO_LOGS);

See Example 5: Tracking DDL Statements in the Internal Dictionary for a complete
example.

With this option set, LogMiner applies any DDL statements seen in the redo log files to
its internal dictionary.

Note:

In general, it is a good idea to keep supplemental logging and the DDL
tracking feature enabled, because if they are not enabled and a DDL event
occurs, then LogMiner returns some of the redo data as binary data. Also, a
metadata version mismatch could occur.

When you enable DDL_DICT_TRACKING, data manipulation language (DML) operations
performed on tables created after the LogMiner dictionary was extracted can be shown
correctly.

For example, if a table employees is updated through two successive DDL operations
such that column gender is added in one operation, and column commission_pct is
dropped in the next, then LogMiner will keep versioned information for employees for
each of these changes. This means that LogMiner can successfully mine redo log files
that are from before and after these DDL changes, and no binary data will be
presented for the SQL_REDO or SQL_UNDO columns.

Because LogMiner automatically assigns versions to the database metadata, it will
detect and notify you of any mismatch between its internal dictionary and the
dictionary in the redo log files. If LogMiner detects a mismatch, then it generates
binary data in the SQL_REDO column of the V$LOGMNR_CONTENTS view, the INFO column
contains the string "Dictionary Version Mismatch", and the STATUS column will contain
the value 2.

Note:

It is important to understand that the LogMiner internal dictionary is not the
same as the LogMiner dictionary contained in a flat file, in redo log files, or in
the online catalog. LogMiner does update its internal dictionary, but it does
not update the dictionary that is contained in a flat file, in redo log files, or in
the online catalog.

The following list describes the requirements for specifying the DDL_DICT_TRACKING
option with the DBMS_LOGMNR.START_LOGMNR procedure.

Chapter 25
LogMiner and Supplemental Logging

25-46

• The DDL_DICT_TRACKING option is not valid with the DICT_FROM_ONLINE_CATALOG option.

• The DDL_DICT_TRACKING option requires that the database be open.

• Supplemental logging must be enabled database-wide, or log groups must have been
created for the tables of interest.

25.11.6 DDL_DICT_TRACKING and Supplemental Logging Settings
Describes interactions that occur when various settings of dictionary tracking and
supplemental logging are combined.

Note the following:

• If DDL_DICT_TRACKING is enabled, but supplemental logging is not enabled and:

– A DDL transaction is encountered in the redo log file, then a query of
V$LOGMNR_CONTENTS will terminate with the ORA-01347 error.

– A DML transaction is encountered in the redo log file, then LogMiner will not assume
that the current version of the table (underlying the DML) in its dictionary is correct,
and columns in V$LOGMNR_CONTENTS will be set as follows:

* The SQL_REDO column will contain binary data.

* The STATUS column will contain a value of 2 (which indicates that the SQL is not
valid).

* The INFO column will contain the string 'Dictionary Mismatch'.

• If DDL_DICT_TRACKING is not enabled and supplemental logging is not enabled, and the
columns referenced in a DML operation match the columns in the LogMiner dictionary,
then LogMiner assumes that the latest version in its dictionary is correct, and columns in
V$LOGMNR_CONTENTS will be set as follows:

– LogMiner will use the definition of the object in its dictionary to generate values for
the SQL_REDO and SQL_UNDO columns.

– The status column will contain a value of 3 (which indicates that the SQL is not
guaranteed to be accurate).

– The INFO column will contain the string 'no supplemental log data found'.

• If DDL_DICT_TRACKING is not enabled and supplemental logging is not enabled and there
are more modified columns in the redo log file for a table than the LogMiner dictionary
definition for the table defines, then:

– The SQL_REDO and SQL_UNDO columns will contain the string 'Dictionary Version
Mismatch'.

– The STATUS column will contain a value of 2 (which indicates that the SQL is not
valid).

– The INFO column will contain the string 'Dictionary Mismatch'.

Also be aware that it is possible to get unpredictable behavior if the dictionary definition of
a column indicates one type but the column is really another type.

25.11.7 DDL_DICT_TRACKING and Specified Time or SCN Ranges
Because LogMiner must not miss a DDL statement if it is to ensure the consistency of its
dictionary, LogMiner may start reading redo log files before your requested starting time or

Chapter 25
LogMiner and Supplemental Logging

25-47

SCN (as specified with DBMS_LOGMNR.START_LOGMNR) when the DDL_DICT_TRACKING
option is enabled.

The actual time or SCN at which LogMiner starts reading redo log files is referred to as
the required starting time or the required starting SCN.

No missing redo log files (based on sequence numbers) are allowed from the required
starting time or the required starting SCN.

LogMiner determines where it will start reading redo log data as follows:

• After the dictionary is loaded, the first time that you call
DBMS_LOGMNR.START_LOGMNR, LogMiner begins reading as determined by one of
the following, whichever causes it to begin earlier:

– Your requested starting time or SCN value

– The commit SCN of the dictionary dump

• On subsequent calls to DBMS_LOGMNR.START_LOGMNR, LogMiner begins reading as
determined for one of the following, whichever causes it to begin earliest:

– Your requested starting time or SCN value

– The start of the earliest DDL transaction where the COMMIT statement has not
yet been read by LogMiner

– The highest SCN read by LogMiner

The following scenario helps illustrate this:

Suppose you create a redo log file list containing five redo log files. Assume that a
dictionary is contained in the first redo file, and the changes that you have indicated
you want to see (using DBMS_LOGMNR.START_LOGMNR) are recorded in the third redo log
file. You then do the following:

1. Call DBMS_LOGMNR.START_LOGMNR. LogMiner will read:

a. The first log file to load the dictionary

b. The second redo log file to pick up any possible DDLs contained within it

c. The third log file to retrieve the data of interest

2. Call DBMS_LOGMNR.START_LOGMNR again with the same requested range.

LogMiner will begin with redo log file 3; it no longer needs to read redo log file 2,
because it has already processed any DDL statements contained within it.

3. Call DBMS_LOGMNR.START_LOGMNR again, this time specifying parameters that
require data to be read from redo log file 5.

LogMiner will start reading from redo log file 4 to pick up any DDL statements that
may be contained within it.

Query the REQUIRED_START_DATE or the REQUIRED_START_SCN columns of the
V$LOGMNR_PARAMETERS view to see where LogMiner will actually start reading.
Regardless of where LogMiner starts reading, only rows in your requested range will
be returned from the V$LOGMNR_CONTENTS view.

25.12 Accessing LogMiner Operational Information in Views
LogMiner operational information (as opposed to redo data) is contained in views.

Chapter 25
Accessing LogMiner Operational Information in Views

25-48

• Options for Viewing LogMiner Operational Information
To check LogMiner operations, you can use SQL to query the LogMiner views, as you
would any other view.

• Querying V$LOGMNR_LOGS
To determine which redo log files have been manually or automatically added to the list of
redo log files for LogMiner to analyze, you can query the V$LOGMNR_LOGS view.

• Querying Views for Supplemental Logging Settings
To determine the current settings for supplemental logging, you can query several
different views.

• Querying Individual PDBs Using LogMiner
To locate a dictionary build, by time or by SCN (for example, when starting per-PDB
mining), you can use the SYS.DBA_LOGMNR_DICTIONARY_BUILDLOG view on the source
database.

25.12.1 Options for Viewing LogMiner Operational Information
To check LogMiner operations, you can use SQL to query the LogMiner views, as you would
any other view.

In addition to V$LOGMNR_CONTENTS, the following is a list of other views and what they show.

• V$LOGMNR_DICTIONARY
Shows information about a LogMiner dictionary file that was created using the
STORE_IN_FLAT_FILE option to DBMS_LOGMNR.START_LOGMNR. The information shown
includes information about the database from which the LogMiner dictionary was created.

• V$LOGMNR_LOGS
Shows information about specified redo log files.

• V$LOGMNR_PARAMETERS
Shows information about optional LogMiner parameters, including starting and ending
system change numbers (SCNs) and starting and ending times.

• V$DATABASE, DBA_LOG_GROUPS, ALL_LOG_GROUPS, USER_LOG_GROUPS,
DBA_LOG_GROUP_COLUMNS, ALL_LOG_GROUP_COLUMNS, USER_LOG_GROUP_COLUMN
Shows information about the current settings for supplemental logging.

• SYS.DBA_LOGMNR_DICTIONARY_BUILDLOG
Locates a dictionary build, either by time or by SCN. This view is available in Oracle
Database 19c (Release Update 10 and later) both to the CDB$ROOT log miner, and to the
per-pdb log miner. For example, when you want to obtain per-PDB log mining, you may
need to specify the time or the SCN when you run START_LOGMNR,

25.12.2 Querying V$LOGMNR_LOGS
To determine which redo log files have been manually or automatically added to the list of
redo log files for LogMiner to analyze, you can query the V$LOGMNR_LOGS view.

V$LOGMNR_LOGS contains one row for each redo log file. This view provides valuable
information about each of the redo log files, including file name, SCN and time ranges, and
whether it contains all or part of the LogMiner dictionary.

Chapter 25
Accessing LogMiner Operational Information in Views

25-49

After a successful call to DBMS_LOGMNR.START_LOGMNR, the STATUS column of the
V$LOGMNR_LOGS view contains one of the following values:

• 0
Indicates that the redo log file will be processed during a query of the
V$LOGMNR_CONTENTS view.

• 1
Indicates that this will be the first redo log file to be processed by LogMiner during
a select operation against the V$LOGMNR_CONTENTS view.

• 2
Indicates that the redo log file has been pruned, and therefore will not be
processed by LogMiner during a query of the V$LOGMNR_CONTENTS view. The redo
log file has been pruned because it is not needed to satisfy your requested time or
SCN range.

• 4
Indicates that a redo log file (based on sequence number) is missing from the
LogMiner redo log file list.

The V$LOGMNR_LOGS view contains a row for each redo log file that is missing from the
list, as follows:

• The FILENAME column will contain the consecutive range of sequence numbers
and total SCN range gap.

For example: Missing log file(s) for thread number 1, sequence number(s)
100 to 102.

• The INFO column will contain the string MISSING_LOGFILE.

Information about files missing from the redo log file list can be useful for the following
reasons:

• The DDL_DICT_TRACKING option that can be specified when you call
DBMS_LOGMNR.START_LOGMNR will not allow redo log files to be missing from the
LogMiner redo log file list for the requested time or SCN range. If a call to
DBMS_LOGMNR.START_LOGMNR fails, then you can query the STATUS column in the
V$LOGMNR_LOGS view to determine which redo log files are missing from the list.
You can then find and manually add these redo log files and attempt to call
DBMS_LOGMNR.START_LOGMNR again.

Note:

The continuous_mine option for the dbms_logmnr.start_logmnr
package is desupported in Oracle Database 19c (19.1), and is no longer
available.

• Although all other options that can be specified when you call
DBMS_LOGMNR.START_LOGMNR allow files to be missing from the LogMiner redo log
file list, you may not want to have missing files. You can query the V$LOGMNR_LOGS
view before querying the V$LOGMNR_CONTENTS view to ensure that all required files
are in the list. If the list is left with missing files and you query the

Chapter 25
Accessing LogMiner Operational Information in Views

25-50

V$LOGMNR_CONTENTS view, then a row is returned in V$LOGMNR_CONTENTS with the following
column values:

– In the OPERATION column, a value of 'MISSING_SCN'

– In the STATUS column, a value of 1291
– In the INFO column, a string indicating the missing SCN range. For example: Missing

SCN 100 - 200

25.12.3 Querying Views for Supplemental Logging Settings
To determine the current settings for supplemental logging, you can query several different
views.

You can use one of several views, depending on the information you require:

• V$DATABASE view

– SUPPLEMENTAL_LOG_DATA_FK column

This column contains one of the following values:

* NO - if database-level identification key logging with the FOREIGN KEY option is not
enabled

* YES - if database-level identification key logging with the FOREIGN KEY option is
enabled

– SUPPLEMENTAL_LOG_DATA_ALL column

This column contains one of the following values:

* NO - if database-level identification key logging with the ALL option is not enabled

* YES - if database-level identification key logging with the ALL option is enabled

– SUPPLEMENTAL_LOG_DATA_UI column

* NO - if database-level identification key logging with the UNIQUE option is not
enabled

* YES - if database-level identification key logging with the UNIQUE option is enabled

– SUPPLEMENTAL_LOG_DATA_MIN column

This column contains one of the following values:

* NO - if no database-level supplemental logging is enabled

* IMPLICIT - if minimal supplemental logging is enabled because database-level
identification key logging options is enabled

* YES - if minimal supplemental logging is enabled because the SQL ALTER
DATABASE ADD SUPPLEMENTAL LOG DATA statement was issued

• DBA_LOG_GROUPS, ALL_LOG_GROUPS, and USER_LOG_GROUPS views

– ALWAYS column

This column contains one of the following values:

* ALWAYS - indicates that the columns in this log group will be supplementally
logged if any column in the associated row is updated

Chapter 25
Accessing LogMiner Operational Information in Views

25-51

* CONDITIONAL - indicates that the columns in this group will be
supplementally logged only if a column in the log group is updated

– GENERATED column

This column contains one of the following values:

* GENERATED NAME - if the LOG_GROUP name was system-generated

* USER NAME - if the LOG_GROUP name was user-defined

– LOG_GROUP_TYPE column

This column contains one of the following values to indicate the type of logging
defined for this log group. USER LOG GROUP indicates that the log group was
user-defined (as opposed to system-generated).

* ALL COLUMN LOGGING
* FOREIGN KEY LOGGING
* PRIMARY KEY LOGGING
* UNIQUE KEY LOGGING
* USER LOG GROUP

• DBA_LOG_GROUP_COLUMNS, ALL_LOG_GROUP_COLUMNS, and USER_LOG_GROUP_COLUMNS
views

– The LOGGING_PROPERTY column

This column contains one of the following values:

* LOG - indicates that this column in the log group will be supplementally
logged

* NO LOG - indicates that this column in the log group will not be
supplementally logged

25.12.4 Querying Individual PDBs Using LogMiner
To locate a dictionary build, by time or by SCN (for example, when starting per-PDB
mining), you can use the SYS.DBA_LOGMNR_DICTIONARY_BUILDLOG view on the source
database.

Starting with Oracle Database 19c (Release Update 10 and later), you can chose to
connect either to the CDB$ROOT, or to an individual PDB.

In a traditional On Premises log mining session, you connect to CDB$ROOT, and your
query is performed for the entire multitenant architecture, including CDB$ROOT and the
PDBs. With Per-PDB log mining sessions, when you connect to a specific PDB,
LogMiner returns rows only for the PDB to which you have connected. This method is
required when you want to query redo log files for Oracle Autonomous Database on
Oracle Autonomous Cloud Platform Services.

To view log history information for a PDB, you continue to use the V$LOGMNR_CONTENTS
view. However, to start LogMiner for a PDB, you no longer add log files. Instead, you
call DBMS_LOGMNR.START_LOGMNR, and supply a system change number (SCN) for the
PDB log history that you want to view. You can use any START_SCN value that you find
in the DBA_LOGMNR_DICTIONARY_BUILDLOG view for the PDB.

Chapter 25
Accessing LogMiner Operational Information in Views

25-52

Note:

When starting LogMiner, if you know the ENDSCN or ENDTIME value for the log history
that you want to view, then you can specify one of those end values.

Example 25-3 Querying SYS.DBA_LOGMNR_DICTIONARY

In the following example, after you connect to the PDB, you query
DBA_LOGMNR_DICTIONARY_BUILDLOG, identify a START_SCN value, and then start LogMiner with
DBMS_LOGMNR.START_LOGMNR, specifying the SCN value of the log that you want to query.

SQL> execute dbms_logmnr_d.build(options =>
dbms_logmnr_d.store_in_redo_logs);

PL/SQL procedure successfully completed.

SQL> select date_of_build, start_scn from dba_logmnr_dictionary_buildlog;

DATE_OF_BUILD START_SCN
-------------------- --------------------
09/02/2020 15:58:42 2104064
09/02/2020 19:35:36 3943026
09/02/2020 19:35:54 3943543
09/02/2020 19:35:57 3944009
09/02/2020 19:36:00 3944473
09/10/2020 20:13:22 5902422
09/15/2020 10:03:16 7196131

7 rows selected.

SQL> execute dbms_logmnr.start_logmnr(Options =>
dbms_logmnr.DDL_DICT_TRACKING + dbms_logmnr.DICT_FROM_REDO_LOGS,
startscn=>5902422);

PL/SQL procedure successfully completed.

SQL> select count(sql_redo) from v$logmnr_contents;

 COUNT(SQL_REDO)

 619958

SQL>

25.13 Steps in a Typical LogMiner Session
Learn about the typical ways you can use LogMiner to extract and mine data.

• Understanding How to Run LogMiner Sessions
On Premises and Oracle Autonomous Cloud Platform Services LogMiner Sessions are
similar, but require different users.

Chapter 25
Steps in a Typical LogMiner Session

25-53

• Typical LogMiner Session Task 1: Enable Supplemental Logging
To be able to use LogMiner with redo log files, you must enable supplemental
logging.

• Typical LogMiner Session Task 2: Extract a LogMiner Dictionary
To use LogMiner, you must select an option to supply LogMiner with a database
dictionary.

• Typical LogMiner Session Task 3: Specify Redo Log Files for Analysis
You must specify the redo log files that you want to analyze with
DBMS_LOGMNR_ADD_LOGFILE before starting LogMiner.

• Start LogMiner
See how to start LogMiner, and what options you can use to analyze redo log files,
filter criteria, and other session characteristics.

• Query V$LOGMNR_CONTENTS
After you start LogMiner, you can query the Oracle Database V$LOGMNR_CONTENTS
view.

• Typical LogMiner Session Task 6: End the LogMiner Session
Ending the LogMiner session.

25.13.1 Understanding How to Run LogMiner Sessions
On Premises and Oracle Autonomous Cloud Platform Services LogMiner Sessions are
similar, but require different users.

In a traditional LogMiner session, and when you run LogMiner on CDB$ROOT, you run
LogMiner by using a PL/SQL package that is owned by SYS. To use LogMiner, there
are requirements for the user account that you use with LogMiner.

When you run LogMiner in an On-Premise Oracle Database, you can create one
CDB$ROOT capture extract to capture data from multiple PDBs at the same time, or mine
multiple individual PDB logs using Oracle GoldenGate, each capturing data from just
one PDB. However for Oracle Autonomous Database Cloud Platform Services, where
you do not have access to CDB$ROOT, you must use the per-PDB capture method. In
this mode, you provision a local user with a predefined set of privileges to the source
PDB whose logs you want to review. All LogMiner processing is restricted to this PDB
only.

With On-Premise PDBs, you can start as many sessions as resources allow. But for
Cloud configurations, while you can still start many concurrent sessions in CDB$ROOT,
you can start only one session for each PDB using the LogMiner PL/SQL package.

To run LogMiner on CDB$ROOT, you use the PL/SQL package
DBMS_LOGMNR.ADD_LOGFILE and add log files explicitly. Additionally, if you choose to
extract a LogMiner dictionary rather than use the online catalog, then you can also use
the DBMS_LOGMNR_D package.

To run LogMiner on individual PDBs, the procedures are slightly different. instead of
using DBMS_LOGMNR.ADD_LOGFILE. you specify a period in which you want to review log
files for the PDB. Specify the SCN value of the log that you want to query, with either
startScn and, if you choose, endScn, or startTime, and if you choose, endTime. You
then start LogMiner with DBMS_LOGMNR.START_LOGMNR. DBMS_LOGMNR.START_LOGMNR
automatically adds the redo logs for you to analyze.

Chapter 25
Steps in a Typical LogMiner Session

25-54

The DBMS_LOGMNR package contains the procedures used to initialize and run LogMiner,
including interfaces to specify names of redo log files, filter criteria, and session
characteristics. The DBMS_LOGMNR_D package queries the database dictionary tables of the
current database to create a LogMiner dictionary file.

Requirements for Running LogMiner for Individual PDB

To run LogMiner to query individual PDBs, you must provision a local user with the necessary
privilege, using the procedure call DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE. Also,
users with the GGADMIN privilege can run Per-PDB capture Extracts.

Again, with individual PDBs, you do not specify the archive logs that you want to mine.
Instead, connect to the PDB that you want to mine, and then run
dbms_logmnr_d.STORE_IN_REDO_LOGS. For example:

SQL> execute dbms_logmnr_d.build(option=>dbms_logmnr_d.STORE_IN_REDO_LOGS);

You can then connect to the PDB, identify SCNs, then run dbms_logmnr.start_logmnr to
query the log files for the starting point system change number (SCN) for the PDB log history
that you want to view, and if you choose, an end point SCN. Mining proceeds at that point just
as with traditional LogMiner queries to the V$LOGMNR_CONTENTS view. However, only
redo generated for the PDB to which you are connected is available

Note:

If you shut down a PDB while Extract and any LogMiner processes are running,
then these processes are terminated, as with other active sessions. When the PDB
is reopened, restart of Extract mining should continue as normal. When you unplug
the PDB, there are no special actions required. However, when you plug in a PDB
after unplugging it, all LogMiner and Capture sessions that previously existed in the
PDB are removed.

Requirements for Running Traditional LogMiner Sessions When Not Connected As
SYS

With On Premises log mining, the LogMiner PL/SQL packages are owned by the SYS
schema. Therefore, if you are not connected as user SYS, then:

• You must include SYS in your call. For example:

EXECUTE SYS.DBMS_LOGMNR.END_LOGMNR;

• You must have been granted the EXECUTE_CATALOG_ROLE role.

Related Topics

• Querying Individual PDBs Using LogMiner
To locate a dictionary build, by time or by SCN (for example, when starting per-PDB
mining), you can use the SYS.DBA_LOGMNR_DICTIONARY_BUILDLOG view on the source
database.

• DBMS_LOGMNR

• Overview of PL/SQL Packages

Chapter 25
Steps in a Typical LogMiner Session

25-55

25.13.2 Typical LogMiner Session Task 1: Enable Supplemental
Logging

To be able to use LogMiner with redo log files, you must enable supplemental logging.

Redo-based applications can require that additional columns are logged in the redo
log files. The process of logging these additional columns is called supplemental
logging. By default, Oracle Database does not have supplemental logging enabled. At
the very least, to use LogMiner, you must enable minimal supplemental logging.

Example 25-4 Enabling Minimal Supplemental Logging

To enable supplemental logging, enter the following statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

Related Topics

• Understanding Supplemental Logging and LogMiner
Supplemental logging is the process of adding additional columns in redo log files
to facilitate data mining.

25.13.3 Typical LogMiner Session Task 2: Extract a LogMiner
Dictionary

To use LogMiner, you must select an option to supply LogMiner with a database
dictionary.

Choose one of the following options:

• Specify use of the online catalog by using the DICT_FROM_ONLINE_CATALOG option
when you start LogMiner.

• Extract the database dictionary information to the redo log files.

• Extract database dictionary information to a flat file.

Related Topics

• Using the Online Catalog
To direct LogMiner to use the dictionary currently in use for the database, specify
the online catalog as your dictionary source when you start LogMiner.

• Extracting a LogMiner Dictionary to the Redo Log Files
To extract a LogMiner dictionary to the redo log files, the database must be open
and in ARCHIVELOG mode and archiving must be enabled.

• Extracting the LogMiner Dictionary to a Flat File
When the LogMiner dictionary is in a flat file, fewer system resources are used
than when it is contained in the redo log files.

Chapter 25
Steps in a Typical LogMiner Session

25-56

25.13.4 Typical LogMiner Session Task 3: Specify Redo Log Files for
Analysis

You must specify the redo log files that you want to analyze with DBMS_LOGMNR_ADD_LOGFILE
before starting LogMiner.

To query logs on CDB$ROOT for On Premises, before you can start LogMiner, you must specify
the redo log files that you want to analyze. To specify log files, run the
DBMS_LOGMNR.ADD_LOGFILE procedure, as demonstrated in the following steps. You can add
and remove redo log files in any order.

Note:

To query logs for an individual PDB, you use a slightly different procedure. After you
connect to the PDB, you query DBA_LOGMNR_DICTIONARY_BUILDLOG, identify a
START_SCN value, and then start LogMiner with DBMS_LOGMNR.START_LOGMNR,
specifying the SCN value of the log that you want to review.
DBMS_LOGMNR.START_LOGMNR automatically adds the redo logs for you to analyze.
Refer to "Querying Individual PDBs Using LogMiner" for an example.

1. Use SQL*Plus to start an Oracle Database instance, with the database either mounted or
unmounted. For example, enter the STARTUP statement at the SQL prompt:

STARTUP

2. Create a list of redo log files. Specify the NEW option of the DBMS_LOGMNR.ADD_LOGFILE
PL/SQL procedure to signal that this is the beginning of a new list. For example, enter the
following to specify the /oracle/logs/log1.f redo log file:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log1.f', -
 OPTIONS => DBMS_LOGMNR.NEW);

3. If desired, add more redo log files by specifying the ADDFILE option of the
DBMS_LOGMNR.ADD_LOGFILE PL/SQL procedure. For example, enter the following to add
the /oracle/logs/log2.f redo log file:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

The OPTIONS parameter is optional when you are adding additional redo log files. For
example, you can simply enter the following:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME=>'/oracle/logs/log2.f');

Chapter 25
Steps in a Typical LogMiner Session

25-57

4. If desired, remove redo log files by using the DBMS_LOGMNR.REMOVE_LOGFILE
PL/SQL procedure. For example, enter the following to remove the /oracle/logs/
log2.f redo log file:

EXECUTE DBMS_LOGMNR.REMOVE_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f');

Related Topics

• Querying Individual PDBs Using LogMiner
To locate a dictionary build, by time or by SCN (for example, when starting per-
PDB mining), you can use the SYS.DBA_LOGMNR_DICTIONARY_BUILDLOG view on the
source database.

25.13.5 Start LogMiner
See how to start LogMiner, and what options you can use to analyze redo log files,
filter criteria, and other session characteristics.

After you have created a LogMiner dictionary file and specified which redo log files to
analyze, you can start LogMiner and analyze your Oracle Database transactions.

1. To start LogMiner, execute the DBMS_LOGMNR.START_LOGMNR procedure.

Oracle recommends that you specify a LogMiner dictionary option. If you do not
specify a dictionary option, then LogMiner cannot translate internal object
identifiers and data types to object names and external data formats. As a result,
LogMiner returns internal object IDs and present data as binary data. Additionally,
you cannot use the MINE_VALUE and COLUMN_PRESENT functions without a
dictionary.

If you are specifying the name of a flat file LogMiner dictionary, then you must
supply a fully qualified file name for the dictionary file. For example, to start
LogMiner using /oracle/database/dictionary.ora, issue the following
statement:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME =>'/oracle/database/dictionary.ora');

If you are not specifying a flat file dictionary name, then use the OPTIONS
parameter to specify either the DICT_FROM_REDO_LOGS or
DICT_FROM_ONLINE_CATALOG option.

If you specify DICT_FROM_REDO_LOGS, then LogMiner expects to find a dictionary in
the redo log files that you specified with the DBMS_LOGMNR.ADD_LOGFILE procedure.
To determine which redo log files contain a dictionary, look at the V$ARCHIVED_LOG
view. To see an example of this task, refer to "Extracting a LogMiner Dictionary to
the Redo Log Files."

Chapter 25
Steps in a Typical LogMiner Session

25-58

Note:

If you add additional redo log files after LogMiner has been started, then you
must restart LogMiner. LogMiner does not retain options included in the
previous call to DBMS_LOGMNR.START_LOGMNR; you must respecify the options
that you want to use. However, if you do not specify a dictionary in the current
call to DBMS_LOGMNR.START_LOGMNR, then LogMiner does retain the dictionary
specification from the previous call.

2. Optionally, you can filter or format your query, or use the OPTIONS parameter to specify
additional characteristics of your LogMiner session. For example, you might decide to
use the online catalog as your LogMiner dictionary and to have only committed
transactions shown in the V$LOGMNR_CONTENTS view, as follows:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

You can execute the DBMS_LOGMNR.START_LOGMNR procedure multiple times, specifying
different options each time. For example, if you did not obtain the desired results from a
query of V$LOGMNR_CONTENTS, you can restart LogMiner with different options. Unless you
need to respecify the LogMiner dictionary, you do not need to add redo log files if they
were already added with a previous call to DBMS_LOGMNR.START_LOGMNR.

Related Topics

• Extracting a LogMiner Dictionary to the Redo Log Files
To extract a LogMiner dictionary to the redo log files, the database must be open and in
ARCHIVELOG mode and archiving must be enabled.

• Using the Online Catalog
To direct LogMiner to use the dictionary currently in use for the database, specify the
online catalog as your dictionary source when you start LogMiner.

25.13.6 Query V$LOGMNR_CONTENTS
After you start LogMiner, you can query the Oracle Database V$LOGMNR_CONTENTS view.

For example:

SELECT (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 USERNAME, SQL_REDO FROM V$LOGMNR_CONTENTS WHERE USERNAME != 'SYS'
 AND SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM');

XID USERNAME SQL_REDO

1.15.3045 RON set transaction read write;
1.15.3045 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9782',
 'HR_ENTRY',NULL,NULL);
1.18.3046 JANE set transaction read write;
1.18.3046 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",

Chapter 25
Steps in a Typical LogMiner Session

25-59

 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('9839','Edgar',
 'Cummings',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.9.3041 RAJIV set transaction read write;
1.9.3041 RAJIV insert into "OE"."CUSTOMERS"("CUSTOMER_ID",

"CUST_FIRST_NAME","CUST_LAST_NAME","CUST_ADDRESS",
 "PHONE_NUMBERS","NLS_LANGUAGE","NLS_TERRITORY",
 "CREDIT_LIMIT","CUST_EMAIL","ACCOUNT_MGR_ID")
 values
('9499','Rodney','Emerson',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.15.3045 RON commit;
1.8.3054 RON set transaction read write;
1.8.3054 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9566',
 'FI_ENTRY',NULL,NULL);
1.18.3046 JANE commit;
1.11.3047 JANE set transaction read write;
1.11.3047 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('8933','Ronald',
 'Frost',NULL,NULL,NULL,NULL,NULL,NULL,NULL);
1.11.3047 JANE commit;
1.8.3054 RON commit;

To see more examples, refer to "Filtering an Formatting Data Returned to
V$LOGMNR_CONTENTS.

Related Topics

• Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS
Learn how to use V$LOGMNR_CONTENTS view filtering and formatting features to
manage what data appears, how it is displayed, and control the speed at which it
is returned.

25.13.7 Typical LogMiner Session Task 6: End the LogMiner Session
Ending the LogMiner session.

To properly end a LogMiner session, use the DBMS_LOGMNR.END_LOGMNR PL/SQL
procedure, as follows:

EXECUTE DBMS_LOGMNR.END_LOGMNR;

This procedure closes all the redo log files and allows all the database and system
resources allocated by LogMiner to be released.

If this procedure is not executed, then LogMiner retains all its allocated resources until
the end of the Oracle session in which it was called. It is particularly important to use
this procedure to end the LogMiner session if either the DDL_DICT_TRACKING option or
the DICT_FROM_REDO_LOGS option was used.

Chapter 25
Steps in a Typical LogMiner Session

25-60

25.14 Examples Using LogMiner
To see how you can use LogMiner for data mining, review the provided examples.

Note:

All examples in this section assume that minimal supplemental logging has been
enabled:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

All examples, except the LogMiner Use Case Scenario examples, assume that the
NLS_DATE_FORMAT parameter has been set as follows:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'dd-mon-yyyy hh24:mi:ss';

Because LogMiner displays date data using the setting for the NLS_DATE_FORMAT
parameter that is active for the user session, this step is optional. However, setting
the parameter explicitly lets you predict the date format.

• Examples of Mining by Explicitly Specifying the Redo Log Files of Interest
Use examples to see how to specify redo log files.

• LogMiner Use Case Scenarios
See typical examples of how you can perform data mining tasks with LogMiner.

Related Topics

• Understanding Supplemental Logging and LogMiner
Supplemental logging is the process of adding additional columns in redo log files to
facilitate data mining.

25.14.1 Examples of Mining by Explicitly Specifying the Redo Log Files of
Interest

Use examples to see how to specify redo log files.

These examples demonstrate how to use LogMiner when you know which redo log files
contain the data of interest. These examples are best read sequentially, because each
example builds on the example or examples that precede it.

The SQL output formatting can be different on your display than that shown in these
examples.

Note:

The continuous_mine option for the dbms_logmnr.start_logmnr package is
desupported in Oracle Database 19c (19.1), and is no longer available. You must
specify log files manually

Chapter 25
Examples Using LogMiner

25-61

• Example 1: Finding All Modifications in the Last Archived Redo Log File
LogMiner displays all modifications it finds in the redo log files that it analyzes by
default, regardless of whether the transaction has been committed or not.

• Example 2: Grouping DML Statements into Committed Transactions
Learn how to use LogMiner to group redo log transactions.

• Example 3: Formatting the Reconstructed SQL
To make visual inspection easy, you can run LogMiner with the PRINT_PRETTY_SQL
option.

• Example 4: Using the LogMiner Dictionary in the Redo Log Files
Learn how to use the dictionary that has been extracted to the redo log files.

• Example 5: Tracking DDL Statements in the Internal Dictionary
Learn how to use the DBMS_LOGMNR.DDL_DICT_TRACKING option to update the
LogMiner internal dictionary with the DDL statements encountered in the redo log
files.

• Example 6: Filtering Output by Time Range
To filter a set of redo logs by time, learn about the different ways you can return
log files by specifying a time range.

25.14.1.1 Example 1: Finding All Modifications in the Last Archived Redo Log
File

LogMiner displays all modifications it finds in the redo log files that it analyzes by
default, regardless of whether the transaction has been committed or not.

The easiest way to examine the modification history of a database is to mine at the
source database and use the online catalog to translate the redo log files. This
example shows how to do the simplest analysis using LogMiner.

This example assumes that you know you want to mine the redo log file that was most
recently archived. It finds all modifications that are contained in the last archived redo
log generated by the database (assuming that the database is not an Oracle Real
Application Clusters (Oracle RAC) database).

1. Determine which redo log file was most recently archived.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

2. Specify the list of redo log files to be analyzed. In this case, it is the redo log file
that was returned by the query in Step 1.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

Chapter 25
Examples Using LogMiner

25-62

3. Start LogMiner and specify the dictionary to use.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

4. Query the V$LOGMNR_CONTENTS view.

Note that there are four transactions (two of them were committed within the redo log file
being analyzed, and two were not). The output shows the DML statements in the order in
which they were executed; thus transactions interleave among themselves.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 SQL_REDO, SQL_UNDO FROM V$LOGMNR_CONTENTS WHERE username IN ('HR', 'OE');

USR XID SQL_REDO SQL_UNDO
---- --------- --
HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", where "EMPLOYEE_ID" = '306'
 "LAST_NAME","EMAIL", and "FIRST_NAME" = 'Nandini'
 "PHONE_NUMBER","HIRE_DATE", and "LAST_NAME" = 'Shastry'
 "JOB_ID","SALARY", and "EMAIL" = 'NSHASTRY'
 "COMMISSION_PCT","MANAGER_ID", and "PHONE_NUMBER" = '1234567890'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-
JAN-2012
 ('306','Nandini','Shastry', 13:34:43', 'dd-mon-yyyy hh24:mi:ss')
 'NSHASTRY', '1234567890', and "JOB_ID" = 'HR_REP' and
 TO_DATE('10-jan-2012 13:34:43', "SALARY" = '120000' and
 'dd-mon-yyyy hh24:mi:ss'), "COMMISSION_PCT" = '.05' and
 'HR_REP','120000', '.05', "DEPARTMENT_ID" = '10' and
 '105','10'); ROWID = 'AAAHSkAABAAAY6rAAO';

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1799' and "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB'; ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1801' and "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC'; ROWID ='AAAHTKAABAAAY9mAAC';

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", "EMPLOYEE_ID" = '307' and
 "LAST_NAME","EMAIL", "FIRST_NAME" = 'John' and
 "PHONE_NUMBER","HIRE_DATE", "LAST_NAME" = 'Silver' and

Chapter 25
Examples Using LogMiner

25-63

 "JOB_ID","SALARY", "EMAIL" = 'JSILVER' and
 "COMMISSION_PCT","MANAGER_ID", "PHONE_NUMBER" = '5551112222'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-
jan-2012
 ('307','John','Silver', 13:41:03', 'dd-mon-yyyy
hh24:mi:ss')
 'JSILVER', '5551112222', and "JOB_ID" ='105' and
"DEPARTMENT_ID"
 TO_DATE('10-jan-2012 13:41:03', = '50' and ROWID =
'AAAHSkAABAAAY6rAAP';
 'dd-mon-yyyy hh24:mi:ss'),
 'SH_CLERK','110000', '.05',
 '105','50');

OE 1.1.1484 commit;

HR 1.15.1481 set transaction read write;

HR 1.15.1481 delete from "HR"."EMPLOYEES" insert into "HR"."EMPLOYEES"(
 where "EMPLOYEE_ID" = '205' and "EMPLOYEE_ID","FIRST_NAME",
 "FIRST_NAME" = 'Shelley' and
"LAST_NAME","EMAIL","PHONE_NUMBER",
 "LAST_NAME" = 'Higgins' and "HIRE_DATE", "JOB_ID","SALARY",
 "EMAIL" = 'SHIGGINS' and "COMMISSION_PCT","MANAGER_ID",
 "PHONE_NUMBER" = '515.123.8080' "DEPARTMENT_ID") values
 and "HIRE_DATE" = TO_DATE(('205','Shelley','Higgins',
 '07-jun-1994 10:05:01', and
'SHIGGINS','515.123.8080',
 'dd-mon-yyyy hh24:mi:ss') TO_DATE('07-jun-1994 10:05:01',
 and "JOB_ID" = 'AC_MGR' 'dd-mon-yyyy hh24:mi:ss'),
 and "SALARY"= '12000'
'AC_MGR','12000',NULL,'101','110');
 and "COMMISSION_PCT" IS NULL
 and "MANAGER_ID"
 = '101' and "DEPARTMENT_ID" =
 '110' and ROWID =
 'AAAHSkAABAAAY6rAAM';

OE 1.8.1484 set transaction read write;

OE 1.8.1484 update "OE"."PRODUCT_INFORMATION" update
"OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+12-06') where TO_YMINTERVAL('+20-00') where
 "PRODUCT_ID" = '2350' and "PRODUCT_ID" = '2350' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+20-00') and TO_YMINTERVAL('+20-00') and
 ROWID = 'AAAHTKAABAAAY9tAAD'; ROWID ='AAAHTKAABAAAY9tAAD';

HR 1.11.1476 commit;

Chapter 25
Examples Using LogMiner

25-64

5. End the LogMiner session.

SQL> EXECUTE DBMS_LOGMNR.END_LOGMNR();

25.14.1.2 Example 2: Grouping DML Statements into Committed Transactions
Learn how to use LogMiner to group redo log transactions.

As shown in Example 1, LogMiner displays all modifications it finds in the redo log files that it
analyzes by default, regardless of whether the transaction has been committed or not. In
addition, LogMiner shows modifications in the same order in which they were executed.
Because DML statements that belong to the same transaction are not grouped together,
visual inspection of the output can be difficult. Although you can use SQL to group
transactions, LogMiner provides an easier way. In this example, the latest archived redo log
file will again be analyzed, but it will return only committed transactions.

1. Determine which redo log file was most recently archived by the database.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

2. Specify the redo log file that was returned by the query in Step 1. The list will consist of
one redo log file.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

3. Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY option.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

4. Query the V$LOGMNR_CONTENTS view.

Although transaction 1.11.1476 was started before transaction 1.1.1484 (as revealed in
Step 1), it committed after transaction 1.1.1484 committed. In this example, therefore,
transaction 1.1.1484 is shown in its entirety before transaction 1.11.1476. The two
transactions that did not commit within the redo log file being analyzed are not returned.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_REDO,
SQL_UNDO FROM V$LOGMNR_CONTENTS WHERE username IN ('HR', 'OE');
;
USR XID SQL_REDO SQL_UNDO
---- --------- ------------------------------- ---------------------------------

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1799' and "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB'; ROWID = 'AAAHTKAABAAAY9mAAB';

Chapter 25
Examples Using LogMiner

25-65

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1801' and "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC'; ROWID ='AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", where "EMPLOYEE_ID" = '306'
 "LAST_NAME","EMAIL", and "FIRST_NAME" = 'Nandini'
 "PHONE_NUMBER","HIRE_DATE", and "LAST_NAME" = 'Shastry'
 "JOB_ID","SALARY", and "EMAIL" = 'NSHASTRY'
 "COMMISSION_PCT","MANAGER_ID", and "PHONE_NUMBER" = '1234567890'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-JAN-2012
 ('306','Nandini','Shastry', 13:34:43', 'dd-mon-yyyy hh24:mi:ss')
 'NSHASTRY', '1234567890', and "JOB_ID" = 'HR_REP' and
 TO_DATE('10-jan-2012 13:34:43', "SALARY" = '120000' and
 'dd-mon-yyy hh24:mi:ss'), "COMMISSION_PCT" = '.05' and
 'HR_REP','120000', '.05', "DEPARTMENT_ID" = '10' and
 '105','10'); ROWID = 'AAAHSkAABAAAY6rAAO';

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", "EMPLOYEE_ID" = '307' and
 "LAST_NAME","EMAIL", "FIRST_NAME" = 'John' and
 "PHONE_NUMBER","HIRE_DATE", "LAST_NAME" = 'Silver' and
 "JOB_ID","SALARY", "EMAIL" = 'JSILVER' and
 "COMMISSION_PCT","MANAGER_ID", "PHONE_NUMBER" = '5551112222'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-jan-2012
 ('307','John','Silver', 13:41:03', 'dd-mon-yyyy hh24:mi:ss')
 'JSILVER', '5551112222', and "JOB_ID" ='105' and "DEPARTMENT_ID"
 TO_DATE('10-jan-2012 13:41:03', = '50' and ROWID = 'AAAHSkAABAAAY6rAAP';
 'dd-mon-yyyy hh24:mi:ss'),
 'SH_CLERK','110000', '.05',
 '105','50');

HR 1.11.1476 commit;
5. End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

25.14.1.3 Example 3: Formatting the Reconstructed SQL
To make visual inspection easy, you can run LogMiner with the PRINT_PRETTY_SQL
option.

As shown in Example 2, using the COMMITTED_DATA_ONLY option with the dictionary in
the online redo log file is an easy way to focus on committed transactions. However,
one aspect remains that makes visual inspection difficult: the association between the
column names and their respective values in an INSERT statement are not apparent.
This can be addressed by specifying the PRINT_PRETTY_SQL option. Note that
specifying this option will make some of the reconstructed SQL statements
nonexecutable.

Chapter 25
Examples Using LogMiner

25-66

1. Determine which redo log file was most recently archived.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

2. Specify the redo log file that was returned by the query in Step 1.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

3. Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY and
PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

The DBMS_LOGMNR.PRINT_PRETTY_SQL option changes only the format of the reconstructed
SQL, and therefore is useful for generating reports for visual inspection.

4. Query the V$LOGMNR_CONTENTS view for SQL_REDO statements.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_REDO
 FROM V$LOGMNR_CONTENTS;

USR XID SQL_REDO
---- --------- ---

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

Chapter 25
Examples Using LogMiner

25-67

HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"
 values
 "EMPLOYEE_ID" = 306,
 "FIRST_NAME" = 'Nandini',
 "LAST_NAME" = 'Shastry',
 "EMAIL" = 'NSHASTRY',
 "PHONE_NUMBER" = '1234567890',
 "HIRE_DATE" = TO_DATE('10-jan-2012 13:34:43',
 'dd-mon-yyyy hh24:mi:ss',
 "JOB_ID" = 'HR_REP',
 "SALARY" = 120000,
 "COMMISSION_PCT" = .05,
 "MANAGER_ID" = 105,
 "DEPARTMENT_ID" = 10;

HR 1.11.1476 insert into "HR"."EMPLOYEES"
 values
 "EMPLOYEE_ID" = 307,
 "FIRST_NAME" = 'John',
 "LAST_NAME" = 'Silver',
 "EMAIL" = 'JSILVER',
 "PHONE_NUMBER" = '5551112222',
 "HIRE_DATE" = TO_DATE('10-jan-2012 13:41:03',
 'dd-mon-yyyy hh24:mi:ss'),
 "JOB_ID" = 'SH_CLERK',
 "SALARY" = 110000,
 "COMMISSION_PCT" = .05,
 "MANAGER_ID" = 105,
 "DEPARTMENT_ID" = 50;
HR 1.11.1476 commit;

5. Query the V$LOGMNR_CONTENTS view for reconstructed SQL_UNDO statements.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
SQL_UNDO
 FROM V$LOGMNR_CONTENTS;

USR XID SQL_UNDO
---- --------- ---

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00')
 where
 "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set

Chapter 25
Examples Using LogMiner

25-68

 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00')
 where
 "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 delete from "HR"."EMPLOYEES"
 where
 "EMPLOYEE_ID" = 306 and
 "FIRST_NAME" = 'Nandini' and
 "LAST_NAME" = 'Shastry' and
 "EMAIL" = 'NSHASTRY' and
 "PHONE_NUMBER" = '1234567890' and
 "HIRE_DATE" = TO_DATE('10-jan-2012 13:34:43',
 'dd-mon-yyyy hh24:mi:ss') and
 "JOB_ID" = 'HR_REP' and
 "SALARY" = 120000 and
 "COMMISSION_PCT" = .05 and
 "MANAGER_ID" = 105 and
 "DEPARTMENT_ID" = 10 and
 ROWID = 'AAAHSkAABAAAY6rAAO';

HR 1.11.1476 delete from "HR"."EMPLOYEES"
 where
 "EMPLOYEE_ID" = 307 and
 "FIRST_NAME" = 'John' and
 "LAST_NAME" = 'Silver' and
 "EMAIL" = 'JSILVER' and
 "PHONE_NUMBER" = '555122122' and
 "HIRE_DATE" = TO_DATE('10-jan-2012 13:41:03',
 'dd-mon-yyyy hh24:mi:ss') and
 "JOB_ID" = 'SH_CLERK' and
 "SALARY" = 110000 and
 "COMMISSION_PCT" = .05 and
 "MANAGER_ID" = 105 and
 "DEPARTMENT_ID" = 50 and
 ROWID = 'AAAHSkAABAAAY6rAAP';
HR 1.11.1476 commit;

6. End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

25.14.1.4 Example 4: Using the LogMiner Dictionary in the Redo Log Files
Learn how to use the dictionary that has been extracted to the redo log files.

When you use the dictionary in the online catalog, you must mine the redo log files in the
same database that generated them. Using the dictionary contained in the redo log files
enables you to mine redo log files in a different database.

Chapter 25
Examples Using LogMiner

25-69

When you use the dictionary in the online catalog, you must mine the redo log files in
the same database that generated them. Using the dictionary contained in the redo log
files enables you to mine redo log files in a different database.

1. Determine which redo log file was most recently archived by the database.

SELECT NAME, SEQUENCE# FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME SEQUENCE#
-- --------------
/usr/oracle/data/db1arch_1_210_482701534.dbf 210

2. The dictionary may be contained in more than one redo log file. Therefore, you
need to determine which redo log files contain the start and end of the dictionary.
Query the V$ARCHIVED_LOG view, as follows:

a. Find a redo log file that contains the end of the dictionary extract. This redo log
file must have been created before the redo log file that you want to analyze,
but should be as recent as possible.

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END
d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_END = 'YES' and SEQUENCE# <= 210);

NAME SEQUENCE#
D_BEG D_END
-- ----------
----- ------
/usr/oracle/data/db1arch_1_208_482701534.dbf 208
NO YES

b. Find the redo log file that contains the start of the data dictionary extract that
matches the end of the dictionary found in the previous step:

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END
d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES' and SEQUENCE# <= 208);

NAME SEQUENCE#
D_BEG D_END
-- ----------
----- ------
/usr/oracle/data/db1arch_1_207_482701534.dbf 207
YES NO

Chapter 25
Examples Using LogMiner

25-70

c. Specify the list of the redo log files of interest. Add the redo log files that contain the
start and end of the dictionary and the redo log file that you want to analyze. You can
add the redo log files in any order.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_210_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_208_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_207_482701534.dbf');

d. Query the V$LOGMNR_LOGS view to display the list of redo log files to be analyzed,
including their timestamps.

In the output, LogMiner flags a missing redo log file. LogMiner lets you proceed with
mining, provided that you do not specify an option that requires the missing redo log
file for proper functioning.

3. Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY and
PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

4. Query the V$LOGMNR_CONTENTS view.

To reduce the number of rows returned by the query, exclude from the query all DML
statements done in the SYS or SYSTEM schemas. (This query specifies a timestamp to
exclude transactions that were involved in the dictionary extraction.)

The output shows three transactions: two DDL transactions and one DML transaction.
The DDL transactions, 1.2.1594 and 1.18.1602, create the table oe.product_tracking
and create a trigger on table oe.product_information, respectively. In both transactions,
the DML statements done to the system tables (tables owned by SYS) are filtered out
because of the query predicate.

The DML transaction, 1.9.1598, updates the oe.product_information table. The update
operation in this transaction is fully translated. However, the query output also contains
some untranslated reconstructed SQL statements. Most likely, these statements were
done on the oe.product_tracking table that was created after the data dictionary was
extracted to the redo log files.

(The next example shows how to run LogMiner with the DDL_DICT_TRACKING option so
that all SQL statements are fully translated; no binary data is returned.)

SELECT USERNAME AS usr, SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM') AND
 TIMESTAMP > '10-jan-2012 15:59:53';

USR XID SQL_REDO
--- -------- -----------------------------------
SYS 1.2.1594 set transaction read write;
SYS 1.2.1594 create table oe.product_tracking (product_id number not null,
 modified_time date,

Chapter 25
Examples Using LogMiner

25-71

 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);
SYS 1.2.1594 commit;

SYS 1.18.1602 set transaction read write;
SYS 1.18.1602 create or replace trigger oe.product_tracking_trigger
 before update on oe.product_information
 for each row
 when (new.list_price <> old.list_price or
 new.warranty_period <> old.warranty_period)
 declare
 begin
 insert into oe.product_tracking values
 (:old.product_id, sysdate,
 :old.list_price, :old.warranty_period);
 end;
SYS 1.18.1602 commit;

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 100
 where
 "PRODUCT_ID" = 1729 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 80 and
 ROWID = 'AAAHTKAABAAAY9yAAA';

OE 1.9.1598 insert into "UNKNOWN"."OBJ# 33415"
 values
 "COL 1" = HEXTORAW('c2121e'),
 "COL 2" = HEXTORAW('7867010d110804'),
 "COL 3" = HEXTORAW('c151'),
 "COL 4" = HEXTORAW('800000053c');

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 92
 where
 "PRODUCT_ID" = 2340 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 72 and
 ROWID = 'AAAHTKAABAAAY9zAAA';

OE 1.9.1598 insert into "UNKNOWN"."OBJ# 33415"
 values
 "COL 1" = HEXTORAW('c21829'),
 "COL 2" = HEXTORAW('7867010d110808'),
 "COL 3" = HEXTORAW('c149'),
 "COL 4" = HEXTORAW('800000053c');

OE 1.9.1598 commit;

5. Issue additional queries, if desired.

Chapter 25
Examples Using LogMiner

25-72

Display all the DML statements that were executed as part of the CREATE TABLE DDL
statement. This includes statements executed by users and internally by Oracle.

Note:

If you choose to reapply statements displayed by a query such as the one
shown here, then reapply DDL statements only. Do not reapply DML statements
that were executed internally by Oracle, or you risk corrupting your database. In
the following output, the only statement that you should use in a reapply
operation is the CREATE TABLE OE.PRODUCT_TRACKING statement.

SELECT SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE XIDUSN = 1 and XIDSLT = 2 and XIDSQN = 1594;

SQL_REDO
--

set transaction read write;

insert into "SYS"."OBJ$"
 values
 "OBJ#" = 33415,
 "DATAOBJ#" = 33415,
 "OWNER#" = 37,
 "NAME" = 'PRODUCT_TRACKING',
 "NAMESPACE" = 1,
 "SUBNAME" IS NULL,
 "TYPE#" = 2,
 "CTIME" = TO_DATE('13-jan-2012 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "MTIME" = TO_DATE('13-jan-2012 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "STIME" = TO_DATE('13-jan-2012 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "STATUS" = 1,
 "REMOTEOWNER" IS NULL,
 "LINKNAME" IS NULL,
 "FLAGS" = 0,
 "OID$" IS NULL,
 "SPARE1" = 6,
 "SPARE2" = 1,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

insert into "SYS"."TAB$"
 values
 "OBJ#" = 33415,
 "DATAOBJ#" = 33415,
 "TS#" = 0,
 "FILE#" = 1,
 "BLOCK#" = 121034,
 "BOBJ#" IS NULL,
 "TAB#" IS NULL,

Chapter 25
Examples Using LogMiner

25-73

 "COLS" = 5,
 "CLUCOLS" IS NULL,
 "PCTFREE$" = 10,
 "PCTUSED$" = 40,
 "INITRANS" = 1,
 "MAXTRANS" = 255,
 "FLAGS" = 1,
 "AUDIT$" = '--------------------------------------',
 "ROWCNT" IS NULL,
 "BLKCNT" IS NULL,
 "EMPCNT" IS NULL,
 "AVGSPC" IS NULL,
 "CHNCNT" IS NULL,
 "AVGRLN" IS NULL,
 "AVGSPC_FLB" IS NULL,
 "FLBCNT" IS NULL,
 "ANALYZETIME" IS NULL,
 "SAMPLESIZE" IS NULL,
 "DEGREE" IS NULL,
 "INSTANCES" IS NULL,
 "INTCOLS" = 5,
 "KERNELCOLS" = 5,
 "PROPERTY" = 536870912,
 "TRIGFLAG" = 0,
 "SPARE1" = 178,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" = TO_DATE('13-jan-2012 14:01:05', 'dd-mon-yyyy
hh24:mi:ss'),

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 1,
 "SEGCOL#" = 1,
 "SEGCOLLENGTH" = 22,
 "OFFSET" = 0,
 "NAME" = 'PRODUCT_ID',
 "TYPE#" = 2,
 "LENGTH" = 22,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" IS NULL,
 "SCALE" IS NULL,
 "NULL$" = 1,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 1,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,

Chapter 25
Examples Using LogMiner

25-74

 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 2,
 "SEGCOL#" = 2,
 "SEGCOLLENGTH" = 7,
 "OFFSET" = 0,
 "NAME" = 'MODIFIED_TIME',
 "TYPE#" = 12,
 "LENGTH" = 7,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" IS NULL,
 "SCALE" IS NULL,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 2,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 3,
 "SEGCOL#" = 3,
 "SEGCOLLENGTH" = 22,
 "OFFSET" = 0,
 "NAME" = 'OLD_LIST_PRICE',
 "TYPE#" = 2,
 "LENGTH" = 22,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" = 8,
 "SCALE" = 2,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 3,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,

Chapter 25
Examples Using LogMiner

25-75

 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 4,
 "SEGCOL#" = 4,
 "SEGCOLLENGTH" = 5,
 "OFFSET" = 0,
 "NAME" = 'OLD_WARRANTY_PERIOD',
 "TYPE#" = 182,
 "LENGTH" = 5,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" = 2,
 "SCALE" = 0,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 4,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 2,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."CCOL$"
 values
 "OBJ#" = 33415,
 "CON#" = 2090,
 "COL#" = 1,
 "POS#" IS NULL,
 "INTCOL#" = 1,
 "SPARE1" = 0,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

insert into "SYS"."CDEF$"
 values
 "OBJ#" = 33415,
 "CON#" = 2090,
 "COLS" = 1,
 "TYPE#" = 7,
 "ROBJ#" IS NULL,
 "RCON#" IS NULL,
 "RRULES" IS NULL,
 "MATCH#" IS NULL,
 "REFACT" IS NULL,

Chapter 25
Examples Using LogMiner

25-76

 "ENABLED" = 1,
 "CONDLENGTH" = 24,
 "SPARE6" IS NULL,
 "INTCOLS" = 1,
 "MTIME" = TO_DATE('13-jan-2012 14:01:08', 'dd-mon-yyyy hh24:mi:ss'),
 "DEFER" = 12,
 "SPARE1" = 6,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "CONDITION" = '"PRODUCT_ID" IS NOT NULL';

create table oe.product_tracking (product_id number not null,
 modified_time date,
 old_product_description varchar2(2000),
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);

update "SYS"."SEG$"
 set
 "TYPE#" = 5,
 "BLOCKS" = 5,
 "EXTENTS" = 1,
 "INIEXTS" = 5,
 "MINEXTS" = 1,
 "MAXEXTS" = 121,
 "EXTSIZE" = 5,
 "EXTPCT" = 50,
 "USER#" = 37,
 "LISTS" = 0,
 "GROUPS" = 0,
 "CACHEHINT" = 0,
 "HWMINCR" = 33415,
 "SPARE1" = 1024
 where
 "TS#" = 0 and
 "FILE#" = 1 and
 "BLOCK#" = 121034 and
 "TYPE#" = 3 and
 "BLOCKS" = 5 and
 "EXTENTS" = 1 and
 "INIEXTS" = 5 and
 "MINEXTS" = 1 and
 "MAXEXTS" = 121 and
 "EXTSIZE" = 5 and
 "EXTPCT" = 50 and
 "USER#" = 37 and
 "LISTS" = 0 and
 "GROUPS" = 0 and
 "BITMAPRANGES" = 0 and
 "CACHEHINT" = 0 and
 "SCANHINT" = 0 and
 "HWMINCR" = 33415 and
 "SPARE1" = 1024 and

Chapter 25
Examples Using LogMiner

25-77

 "SPARE2" IS NULL and
 ROWID = 'AAAAAIAABAAAdMOAAB';

insert into "SYS"."CON$"
 values
 "OWNER#" = 37,
 "NAME" = 'SYS_C002090',
 "CON#" = 2090,
 "SPARE1" IS NULL,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

commit;

6. End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

25.14.1.5 Example 5: Tracking DDL Statements in the Internal Dictionary
Learn how to use the DBMS_LOGMNR.DDL_DICT_TRACKING option to update the LogMiner
internal dictionary with the DDL statements encountered in the redo log files.

1. Determine which redo log file was most recently archived by the database.

SELECT NAME, SEQUENCE# FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME SEQUENCE#
-- --------------
/usr/oracle/data/db1arch_1_210_482701534.dbf 210

2. Because the dictionary can be contained in more than one redo log file, determine
which redo log files contain the start and end of the data dictionary. To do this,
query the V$ARCHIVED_LOG view, as follows:

a. Find a redo log that contains the end of the data dictionary extract. This redo
log file must have been created before the redo log files that you want to
analyze, but should be as recent as possible.

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END
d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_END = 'YES' and SEQUENCE# < 210);

NAME SEQUENCE#
D_BEG D_END
-- ----------
----- ------

Chapter 25
Examples Using LogMiner

25-78

/usr/oracle/data/db1arch_1_208_482701534.dbf 208 NO YES

b. Find the redo log file that contains the start of the data dictionary extract that matches
the end of the dictionary found by the previous SQL statement:

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES' and SEQUENCE# <= 208);

NAME SEQUENCE# D_BEG
D_END
-- ---------- -----

/usr/oracle/data/db1arch_1_208_482701534.dbf 207 YES NO

3. Ensure that you have a complete list of redo log files.

To successfully apply DDL statements encountered in the redo log files, ensure that all
files are included in the list of redo log files to mine. The missing log file corresponding to
sequence# 209 must be included in the list. Determine the names of the redo log files
that you need to add to the list by issuing the following query:

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# >= 207 AND SEQUENCE# <= 210
 ORDER BY SEQUENCE# ASC;

NAME
--
/usr/oracle/data/db1arch_1_207_482701534.dbf
/usr/oracle/data/db1arch_1_208_482701534.dbf
/usr/oracle/data/db1arch_1_209_482701534.dbf
/usr/oracle/data/db1arch_1_210_482701534.dbf

4. Specify the list of the redo log files of interest.

Include the redo log files that contain the beginning and end of the dictionary, the redo log
file that you want to mine, and any redo log files required to create a list without gaps.
You can add the redo log files in any order.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_210_482701534.dbf', -

 OPTIONS => DBMS_LOGMNR.NEW);

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_209_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_208_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_207_482701534.dbf');

Chapter 25
Examples Using LogMiner

25-79

5. Start LogMiner by specifying the dictionary to use and the DDL_DICT_TRACKING,
COMMITTED_DATA_ONLY, and PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 DBMS_LOGMNR.DDL_DICT_TRACKING + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

6. Query the V$LOGMNR_CONTENTS view.

To reduce the number of rows returned, exclude from the query all DML
statements done in the SYS or SYSTEM schemas. (This query specifies a timestamp
to exclude transactions that were involved in the dictionary extraction.)

The query returns all the reconstructed SQL statements correctly translated and
the insert operations on the oe.product_tracking table that occurred because of
the trigger execution.

SELECT USERNAME AS usr,(XIDUSN || '.' || XIDSLT || '.' || XIDSQN) as XID, SQL_REDO
FROM
 V$LOGMNR_CONTENTS
 WHERE SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM') AND
 TIMESTAMP > '10-jan-2012 15:59:53';

USR XID SQL_REDO
----------- -------- -----------------------------------
SYS 1.2.1594 set transaction read write;
SYS 1.2.1594 create table oe.product_tracking (product_id number
not null,
 modified_time date,
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);
SYS 1.2.1594 commit;

SYS 1.18.1602 set transaction read write;
SYS 1.18.1602 create or replace trigger oe.product_tracking_trigger
 before update on oe.product_information
 for each row
 when (new.list_price <> old.list_price or
 new.warranty_period <> old.warranty_period)
 declare
 begin
 insert into oe.product_tracking values
 (:old.product_id, sysdate,
 :old.list_price, :old.warranty_period);
 end;
SYS 1.18.1602 commit;

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 100
 where
 "PRODUCT_ID" = 1729 and

Chapter 25
Examples Using LogMiner

25-80

 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 80 and
 ROWID = 'AAAHTKAABAAAY9yAAA';
OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 1729,
 "MODIFIED_TIME" = TO_DATE('13-jan-2012 16:07:03',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 80,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 92
 where
 "PRODUCT_ID" = 2340 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 72 and
 ROWID = 'AAAHTKAABAAAY9zAAA';

OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 2340,
 "MODIFIED_TIME" = TO_DATE('13-jan-2012 16:07:07',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 72,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 commit;

7. End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

25.14.1.6 Example 6: Filtering Output by Time Range
To filter a set of redo logs by time, learn about the different ways you can return log files by
specifying a time range.

In Example 4 and Example 5, you saw how to filter rows by specifying a timestamp-based
predicate (timestamp > '10-jan-2012 15:59:53') in the query. However, a more efficient
way to filter out redo records based on timestamp values is by specifying the time range in
the DBMS_LOGMNR.START_LOGMNR procedure call, as shown in this example.

1. Create a list of redo log files to mine.

Suppose you want to mine redo log files generated since a given time. The following
procedure creates a list of redo log files based on a specified time. The subsequent SQL
EXECUTE statement calls the procedure and specifies the starting time as 2 P.M. on
Jan-13-2012.

--
-- my_add_logfiles
-- Add all archived logs generated after a specified start_time.

Chapter 25
Examples Using LogMiner

25-81

--
CREATE OR REPLACE PROCEDURE my_add_logfiles (in_start_time IN
DATE) AS
 CURSOR c_log IS
 SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME >= in_start_time;

count pls_integer := 0;
my_option pls_integer := DBMS_LOGMNR.NEW;

BEGIN
 FOR c_log_rec IN c_log
 LOOP
 DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME => c_log_rec.name,
 OPTIONS => my_option);
 my_option := DBMS_LOGMNR.ADDFILE;
 DBMS_OUTPUT.PUT_LINE('Added logfile ' || c_log_rec.name);
 END LOOP;
END;
/

EXECUTE my_add_logfiles(in_start_time => '13-jan-2012 14:00:00');

2. To see the list of redo log files, query the V$LOGMNR_LOGS view.

This example includes the size of the redo log files in the output.

SELECT FILENAME name, LOW_TIME start_time, FILESIZE bytes
 FROM V$LOGMNR_LOGS;

NAME START_TIME BYTES
----------------------------------- --------------------

/usr/orcl/arch1_310_482932022.dbf 13-jan-2012 14:02:35 23683584
/usr/orcl/arch1_311_482932022.dbf 13-jan-2012 14:56:35 2564096
/usr/orcl/arch1_312_482932022.dbf 13-jan-2012 15:10:43 23683584
/usr/orcl/arch1_313_482932022.dbf 13-jan-2012 15:17:52 23683584
/usr/orcl/arch1_314_482932022.dbf 13-jan-2012 15:23:10 23683584
/usr/orcl/arch1_315_482932022.dbf 13-jan-2012 15:43:22 23683584
/usr/orcl/arch1_316_482932022.dbf 13-jan-2012 16:03:10 23683584
/usr/orcl/arch1_317_482932022.dbf 13-jan-2012 16:33:43 23683584
/usr/orcl/arch1_318_482932022.dbf 13-jan-2012 17:23:10 23683584

3. Adjust the list of redo log files.

Suppose you realize that you want to mine just the redo log files generated
between 3 P.M. and 4 P.M.

You can use the query predicate (timestamp > '13-jan-2012 15:00:00' and
timestamp < '13-jan-2012 16:00:00') to accomplish this goal. However, the
query predicate is evaluated on each row returned by LogMiner, and the internal
mining engine does not filter rows based on the query predicate. Thus, although
you only wanted to get rows out of redo log files arch1_311_482932022.dbf to
arch1_315_482932022.dbf, your query would result in mining all redo log files
registered to the LogMiner session.

Chapter 25
Examples Using LogMiner

25-82

Furthermore, although you could use the query predicate and manually remove the redo
log files that do not fall inside the time range of interest, the simplest solution is to specify
the time range of interest in the DBMS_LOGMNR.START_LOGMNR procedure call.

Although this does not change the list of redo log files, LogMiner will mine only those
redo log files that fall in the time range specified.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => '13-jan-2012 15:00:00', -
 ENDTIME => '13-jan-2012 16:00:00', -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

4. Query the V$LOGMNR_CONTENTS view.

SELECT TIMESTAMP, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,

 SQL_REDO FROM V$LOGMNR_CONTENTS WHERE SEG_OWNER = 'OE';

TIMESTAMP XID SQL_REDO
--------------------- ----------- --------------------------------
13-jan-2012 15:29:31 1.17.2376 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 3399 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9TAAE';
13-jan-2012 15:29:34 1.17.2376 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 3399,
 "MODIFIED_TIME" = TO_DATE('13-jan-2012 15:29:34',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 815,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

13-jan-2012 15:52:43 1.15.1756 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 1768 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9UAAB';

13-jan-2012 15:52:43 1.15.1756 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 1768,
 "MODIFIED_TIME" = TO_DATE('13-jan-2012 16:52:43',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 715,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

5. End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

25.14.2 LogMiner Use Case Scenarios
See typical examples of how you can perform data mining tasks with LogMiner.

Chapter 25
Examples Using LogMiner

25-83

• Using LogMiner to Track Changes Made by a Specific User
Learn how to use LogMiner to identify all changes made to the database in a
specific time range by a single user.

• Using LogMiner to Calculate Table Access Statistics
Learn how to use LogMiner to calculate table access statistics over a given time
range.

25.14.2.1 Using LogMiner to Track Changes Made by a Specific User
Learn how to use LogMiner to identify all changes made to the database in a specific
time range by a single user.

Suppose you want to determine all the changes that the user joedevo has made to the
database in a specific time range. To perform this task, you can use LogMiner:

1. Connect to the database.

2. Create the LogMiner dictionary file.

To use LogMiner to analyze joedevo's data, you must either create a LogMiner
dictionary file before any table definition changes are made to tables that joedevo
uses, or use the online catalog at LogMiner startup. This example uses a
LogMiner dictionary that has been extracted to the redo log files.

3. Add redo log files.

Assume that joedevo has made some changes to the database. You can now
specify the names of the redo log files that you want to analyze, as follows:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => 'log1orc1.ora', -
 OPTIONS => DBMS_LOGMNR.NEW);

If desired, add additional redo log files, as follows:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => 'log2orc1.ora', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

4. Start LogMiner and limit the search to the specified time range:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME => 'orcldict.ora', -
 STARTTIME => TO_DATE('01-Jan-1998 08:30:00','DD-MON-YYYY
HH:MI:SS'), -
 ENDTIME => TO_DATE('01-Jan-1998 08:45:00', 'DD-MON-YYYY
HH:MI:SS'));

5. Query the V$LOGMNR_CONTENTS view.

Chapter 25
Examples Using LogMiner

25-84

At this point, the V$LOGMNR_CONTENTS view is available for queries. You decide to find all of
the changes made by user joedevo to the salary table. Execute the following SELECT
statement:

SELECT SQL_REDO, SQL_UNDO FROM V$LOGMNR_CONTENTS
 WHERE USERNAME = 'joedevo' AND SEG_NAME = 'salary';

For both the SQL_REDO and SQL_UNDO columns, two rows are returned (the format of the
data display will be different on your screen). You discover that user joedevo requested
two operations: the user deleted their old salary and then inserted a new, higher salary.
You now have the data necessary to undo this operation.

SQL_REDO SQL_UNDO
-------- --------
delete from SALARY insert into SALARY(NAME, EMPNO, SAL)
where EMPNO = 12345 values ('JOEDEVO', 12345, 500)
and NAME='JOEDEVO'
and SAL=500;

insert into SALARY(NAME, EMPNO, SAL) delete from SALARY
values('JOEDEVO',12345, 2500) where EMPNO = 12345
 and NAME = 'JOEDEVO'
2 rows selected and SAL = 2500;

6. End the LogMiner session.

Use the DBMS_LOGMNR.END_LOGMNR procedure to finish the LogMiner session properly:

DBMS_LOGMNR.END_LOGMNR();

25.14.2.2 Using LogMiner to Calculate Table Access Statistics
Learn how to use LogMiner to calculate table access statistics over a given time range.

In this example, assume you manage a direct marketing database, and you want to
determine how productive the customer contacts have been in generating revenue for a 2-
week period in January. In this case, we assume that you have already created the LogMiner
dictionary, and added the redo log files that you want to search. To identify those contacts,
search your logs by the time range in January, as follows:

1. Start LogMiner and specify a range of times:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => TO_DATE('07-Jan-2012 08:30:00','DD-MON-YYYY HH:MI:SS'), -
 ENDTIME => TO_DATE('21-Jan-2012 08:45:00','DD-MON-YYYY HH:MI:SS'), -
 DICTFILENAME => '/usr/local/dict.ora');

2. Query the

V$LOGMNR_CONTENTS

Chapter 25
Examples Using LogMiner

25-85

view to determine which tables were modified in the time range you specified, as
shown in the following example. (This query filters out system tables that
traditionally have a

$

in their name.)

SELECT SEG_OWNER, SEG_NAME, COUNT(*) AS Hits FROM
 V$LOGMNR_CONTENTS WHERE SEG_NAME NOT LIKE '%$' GROUP BY
 SEG_OWNER, SEG_NAME ORDER BY Hits DESC;

3. The following data is displayed. (The format of your display can be different.)

SEG_OWNER SEG_NAME Hits
--------- -------- ----
CUST ACCOUNT 384
UNIV EXECDONOR 325
UNIV DONOR 234
UNIV MEGADONOR 32
HR EMPLOYEES 12
SYS DONOR 12

The values in the

Hits

column show the number of times that the named table had an insert, delete, or
update operation performed on it during the 2-week period specified in the query.
In this example, the

cust.account

table was modified the most during the specified 2-week period, and the

hr.employees

and

sys.donor

tables were modified the least during the same time period.

4. End the LogMiner session.

Use the

DBMS_LOGMNR.END_LOGMNR

Chapter 25
Examples Using LogMiner

25-86

procedure to finish the LogMiner session properly:

DBMS_LOGMNR.END_LOGMNR();

25.15 Supported Data Types, Storage Attributes, and Database
and Redo Log File Versions

Describes information about data type and storage attribute support and the releases of the
database and redo log files that are supported.

• Supported Data Types and Table Storage Attributes
Describes supported data types and table storage attributes.

• Database Compatibility Requirements for LogMiner
LogMiner support for certain data types and table storage attributes depends on Oracle
Database release compatibility requirements.

• Unsupported Data Types and Table Storage Attributes
To avoid results where tables are left out of mining results, review the data types and
table storage attributes that LogMiner does not support.

• Supported Databases and Redo Log File Versions
The Oracle Database release that created a redo log file can affect the operations you
are able to perform on it.

• SecureFiles LOB Considerations
SecureFiles LOBs are supported when database compatibility is set to 11.2 or later.

25.15.1 Supported Data Types and Table Storage Attributes
Describes supported data types and table storage attributes.

Database Compatibility and Data Type Release Changes

Be aware that some data types are supported only in certain releases.

In Oracle Database 12c Release 1 (12.1) and later releases, the maximum size of the
VARCHAR2, NVARCHAR2, and RAW data types was increased to 32 KB when the COMPATIBLE
initialization parameter is set to 12.0 or higher, and the MAX_STRING_SIZE initialization
parameter is set to EXTENDED.

For supplemental logging, LogMiner treats 32 KB columns as LOBs.

A 32 KB column cannot be part of an ALWAYS supplemental logging group.

Supported Data Types Using LogMiner

LogMiner supports the following data types:

• BINARY_DOUBLE
• BINARY_FLOAT
• BLOB
• CHAR
• CLOB and NCLOB

Chapter 25
Supported Data Types, Storage Attributes, and Database and Redo Log File Versions

25-87

• DATE
• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND
• LOBs stored as SecureFiles (requires that the database be run at a compatibility

of 11.2 or higher.

• LONG
• LONG RAW
• NCHAR
• NUMBER
• NVARCHAR2
• Objects stored as VARRAYs

• Objects (Simple and Nested ADTs without Collections)

Object support (including Oracle-supplied types such as SDO_GEOMETRY, ORDIMAGE,
and so on) requires that the database be running Oracle Database 12c Release 1
(12.1) or higher with a redo compatibility setting of 12.0.0.0 or higher. The contents
of the SQL_REDO column for the XML data-related operations is never valid SQL or
PL/SQL.

• Oracle Text

• RAW
• TIMESTAMP
• TIMESTAMP WITH TIMEZONE
• TIMESTAMP WITH LOCAL TIMEZONE
• VARCHAR and VARCHAR2
• XDB

• XMLType data for all storage models, assuming the following primary database
compatibility requirements:

– XMLType stored in CLOB format requires that you run Oracle Database with a
compatibility setting of 11.0 or higher. Using XMLType stored as CLOB is
deprecated as of Oracle Database 12c Release 1 (12.1).

– XMLType stored in object-relational format or as binary XML requires that you
run Oracle Database with a compatibility setting of 11.2.0.3 or higher, and with
a redo compatibility setting of 11.2.0.3 or higher. The contents of the SQL_REDO
column for the XML data-related operations is never valid SQL or PL/SQL.

– For any existing applications that you plan to use on Oracle Autonomous
Database (ADB), be aware that many XML schema-related features are not
supported. For example, XML storage associated with XML schemas are not
available. Use Transportable Binary XML storage instead. Object-relational
XML storage and Schema-based binary XML storage are also unavailable on
ADB. Review Oracle XML DB Developer’s Guide for details about XMLType
restrictions.

Chapter 25
Supported Data Types, Storage Attributes, and Database and Redo Log File Versions

25-88

Supported Table Storage Types Using LogMiner

LogMiner supports the following table storage attributes:

• Cluster tables (including index clusters and heap clusters).

• Index-organized tables (IOTs) (partitioned and nonpartitioned, including overflow
segments).

• Heap-organized tables (partitioned and nonpartitioned).

• Advanced row compression and basic table compression. Both of these options require a
database compatibility setting of 11.1.0 or higher.

• Tables containing LOB columns stored as SecureFiles, when Oracle Database
compatibility is set to 11.2 or higher.

• Tables using Hybrid Columnar Compression, when Oracle Database compatibility is set
to 11.2.0.2 or higher.

Related Topics

• Hybrid Columnar Compression

25.15.2 Database Compatibility Requirements for LogMiner
LogMiner support for certain data types and table storage attributes depends on Oracle
Database release compatibility requirements.

Data Types and Database Compatibility Requirements

• Multibyte CLOB support requires the database to run at a compatibility of 10.1 or higher.

• IOT support without LOBs and Overflows requires the database to run at a compatibility of
10.1 or higher.

• IOT support with LOB and Overflow requires the database to run at a compatibility of 10.2
or higher.

• TDE and TSE support require the database to run at a compatibility of 11.1 or higher.

• Basic compression and advanced row compression require the database to run at a
compatibility of 11.1 or higher.

• Hybrid Columnar Compression support is dependent on the underlying storage system
and requires the database to run at a compatibility of 11.2 or higher.

Related Topics

• Hybrid Columnar Compression

25.15.3 Unsupported Data Types and Table Storage Attributes
To avoid results where tables are left out of mining results, review the data types and table
storage attributes that LogMiner does not support.

LogMiner does not support the following data types and table storage attributes. If a table
contains columns having any of these unsupported data types, then the entire table is
ignored by LogMiner.

• BFILE

Chapter 25
Supported Data Types, Storage Attributes, and Database and Redo Log File Versions

25-89

• Nested tables

• Objects with nested tables

• Tables with identity columns

• Temporal validity columns

• PKREF columns

• PKOID columns

• Nested table attributes and stand-alone nested table columns

25.15.4 Supported Databases and Redo Log File Versions
The Oracle Database release that created a redo log file can affect the operations you
are able to perform on it.

LogMiner runs only on Oracle Database 8 release 8.1 or later. You can use LogMiner
to analyze redo log files as early as Oracle Database 8. However, the information that
LogMiner is able to retrieve from a redo log file created with an earlier Oracle
Database release depends on the release version of the log, not the release of the
Oracle Database using the log. For example, you can augment redo log files for
Oracle9i to capture additional information by enabling supplemental logging.
Augmenting redo log files allows LogMiner functionality to be used to its fullest
advantage. Redo log files created with older releases of Oracle Database can be
missing information that was only enabled with later Oracle Database release redo log
files. This missing information can place limitations on the operations and data types
that LogMiner is able to support with an earlier Oracle Database redo log file.

Related Topics

• Understanding How to Run LogMiner Sessions
On Premises and Oracle Autonomous Cloud Platform Services LogMiner
Sessions are similar, but require different users.

• Understanding Supplemental Logging and LogMiner
Supplemental logging is the process of adding additional columns in redo log files
to facilitate data mining.

25.15.5 SecureFiles LOB Considerations
SecureFiles LOBs are supported when database compatibility is set to 11.2 or later.

Only SQL_REDO columns can be filled in for SecureFiles LOB columns; SQL_UNDO
columns are not filled in.

Transparent Data Encryption (TDE) and data compression can be enabled on
SecureFiles LOB columns at the primary database.

Deduplication of SecureFiles LOB columns is fully supported. Fragment operations are
not supported.

If LogMiner encounters redo generated by unsupported operations, then it generates
rows with the OPERATION column set to UNSUPPORTED. No SQL_REDO or SQL_UNDO
will be generated for these redo records.

Chapter 25
Supported Data Types, Storage Attributes, and Database and Redo Log File Versions

25-90

26
Using the Metadata APIs

The DBMS_METADATA APIs enable you to check and update object metadata.

The DBMS_METADATA API enables you to do the following:

• Retrieve an object's metadata as XML

• Transform the XML in a variety of ways, including transforming it into SQL DDL

• Submit the XML to re-create the object extracted by the retrieval

The DBMS_METADATA_DIFF API lets you compare objects between databases to identify
metadata changes over time in objects of the same type.

• Why Use the DBMS_METADATA API?
The DBMS_METADATA API eliminates the need for you to write and maintain your own code
for metadata extraction.

• Overview of the DBMS_METADATA API
Learn how to take advantage of the DBMS_METADATA API features.

• Using the DBMS_METADATA API to Retrieve an Object's Metadata
The retrieval interface of the DBMS_METADATA API lets you specify the kind of object to be
retrieved.

• Using the DBMS_METADATA API to Recreate a Retrieved Object
When you fetch metadata for an object, you can choose to use it to recreate the object in
a different database or schema.

• Using the DBMS_METADATA API to Retrieve Collections of Different Object Types
To retrieve collections of objects in which the objects are of different types, but comprise
a logical unit, you can use the heterogeneous object types in the DBMS_METADATA API.

• Filtering the Return of Heterogeneous Object Types
Learn how you can use the SET_FILTER procedure to enable you to filter the return of
heterogeneous object types.

• Using the DBMS_METADATA_DIFF API to Compare Object Metadata
Description and example that uses the retrieval, comparison, and submit interfaces of
DBMS_METADATA and DBMS_METADATA_DIFF to fetch metadata for two tables, compare the
metadata, and generate ALTER statements which make one table like the other.

• Performance Tips for the Programmatic Interface of the DBMS_METADATA API
Describes how to enhance performance when using the programmatic interface of the
DBMS_METADATA API.

• Example Usage of the DBMS_METADATA API
Example of how the DBMS_METADATA API could be used.

• Summary of DBMS_METADATA Procedures
Provides brief descriptions of the procedures provided by the DBMS_METADATA API.

• Summary of DBMS_METADATA_DIFF Procedures
Provides brief descriptions of the procedures and functions provided by the
DBMS_METADATA_DIFF API.

26-1

26.1 Why Use the DBMS_METADATA API?
The DBMS_METADATA API eliminates the need for you to write and maintain your own
code for metadata extraction.

If you have developed your own code for Oracle Database for extracting metadata
from the dictionary, or for manipulating the metadata (adding columns, changing
column data types, and so on), and converting the metadata to DDL so that you could
recreate the object on the same or another database, then maintenance is an issue.
Keeping that code updated to support new dictionary features has probably proven to
be challenging.

Oracle Database provides a centralized facility for the extraction, manipulation, and
recreation of dictionary metadata. Oracle Database also supports all dictionary objects
at their most current level.

Although the DBMS_METADATA API can dramatically decrease the amount of custom
code you are writing and maintaining, it does not involve any changes to your normal
database procedures. You can install the DBMS_METADATA API in the same way as data
dictionary views, by running catproc.sql to run a SQL script at database installation
time. After you have installed DBMS_METADATA, it is available whenever the instance is
operational, even in restricted mode.

When you change database releases using the DBMS_METADATA API, you are not
required to make any source code changes. The DBMS_METADATA API enables the
code to be upwardly compatible across different Oracle Database releases. XML
documents retrieved by one release can be processed by the submit interface on the
same or later releases. For example, XML documents retrieved by an Oracle
Database 10g Release 2 (10.2) database can be submitted to Oracle Database 12c.

26.2 Overview of the DBMS_METADATA API
Learn how to take advantage of the DBMS_METADATA API features.

For the purposes of the DBMS_METADATA API, every entity in the database is modeled
as an object that belongs to an object type. For example, the table scott.emp is an
object. Its object type is TABLE. When you fetch an object's metadata, you must specify
the object type.

Using Filters to Search for Objects By Object Type

To fetch a particular object or set of objects within an object type, you specify a filter.
Different filters are defined for each object type. For example, two of the filters defined
for the TABLE object type are SCHEMA and NAME. These filters enable you to say, for
example, that you want the table whose schema is scott, and whose name is emp.

The DBMS_METADATA API makes use of XML (Extensible Markup Language) and XSLT
(Extensible Stylesheet Language Transformation). The DBMS_METADATA API represents
object metadata as XML, because it is a universal format that can be easily parsed
and transformed. The DBMS_METADATA API uses XSLT to transform XML documents
either into other XML documents, or into SQL DDL.

You can use the DBMS_METADATA API to specify one or more transforms (XSLT scripts)
to be applied to the XML when the metadata is fetched (or when it is resubmitted). The

Chapter 26
Why Use the DBMS_METADATA API?

26-2

API provides some predefined transforms, including one named DDL, which transforms the
XML document into SQL creation DDL.

You can then specify conditions on the transform by using transform parameters. You can
also specify optional parse items to access specific attributes of an object's metadata.

Using Views to Determine Valid DBMS_METADATA Options

You can use the following views to determine which DBMS_METADATA transforms are allowed
for each object type transformation, the parameters for each transform, and their parse items.

• DBMS_METADATA_TRANSFORMS - documents all valid Oracle-supplied transforms that are
used with the DBMS_METADATA package.

• DBMS_METADATA_TRANSFORM_PARAMS - documents the valid transform parameters for each
transform.

• DBMS_METADATA_PARSE_ITEMS - documents the valid parse items.

For example, suppose that you want to know which transforms are allowed for INDEX objects.
The following query returns the transforms that are valid for INDEX objects, the required input
types, and the resulting output types:

SQL> SELECT transform, output_type, input_type, description
2 FROM dbms_metadata_transforms
3 WHERE object_type='INDEX';

TRANSFORM OUTPUT_TYP INPUT_TYPE DESCRIPTION
---------- ---------- --------------------
--
ALTERXML ALTER_XML SXML difference doc Generate ALTER_XML from SXML
difference document
SXMLDDL DDL SXML Convert SXML to DDL
MODIFY XML XML Modify XML document according to
transform parameters
SXML SXML XML Convert XML to SXML
DDL DDL XML Convert XML to SQL to create the
object
ALTERDDL ALTER_DDL ALTER_XML Convert ALTER_XML to ALTER_DDL
MODIFYSXML SXML SXML Modify SXML document

If you want to know which transform parameters are valid for the DDL transform, then you
can run this query:

SQL> SELECT param, datatype, default_val, description
2 FROM dbms_metadata_transform_params
3 WHERE object_type='INDEX' and transform='DDL'
4 ORDER BY param;

PARAM DATATYPE DEFAULT_VA DESCRIPTION
------------------------- ---------- ----------
--
INCLUDE_PARTITIONS TEXT Include generated interval
and list partitions in DDL

Chapter 26
Overview of the DBMS_METADATA API

26-3

 transformation
INDEX_COMPRESSION_CLAUSE TEXT "" Text of user-
specified index compression clause
PARTITIONING BOOLEAN TRUE Include partitioning
clauses in transformation
PARTITION_NAME TEXT "" Name of partition
selected for the transformation
PCTSPACE NUMBER "" Percentage by which
space allocation is to be modified
SEGMENT_ATTRIBUTES BOOLEAN TRUE Include segment
attribute clauses (physical attributes, storage
 attribues,
tablespace, logging) in transformation
STORAGE BOOLEAN TRUE Include storage
clauses in transformation
SUBPARTITION_NAME TEXT "" Name of subpartition
selected for the transformation
TABLESPACE BOOLEAN TRUE Include tablespace
clauses in transformation

You can also perform the following query which returns specific metadata about the
INDEX object type:

SQL> SELECT parse_item, description
2 FROM dbms_metadata_parse_items
3 WHERE object_type='INDEX' and convert='Y';

PARSE_ITEM DESCRIPTION

--
OBJECT_TYPE Object type
TABLESPACE Object tablespace (default tablespace for
partitioned objects)
BASE_OBJECT_SCHEMA Schema of the base object
SCHEMA Object schema, if any
NAME Object name
BASE_OBJECT_NAME Name of the base object
BASE_OBJECT_TYPE Object type of the base object
SYSTEM_GENERATED Y = system-generated object; N = not system-
generated

Related Topics

• DBMS_METADATA_TRANSFORMS

• DBMS_METADATA_TRANSFORM_PARAMS

• DBMS_METADATA_PARSE_ITEMS

Chapter 26
Overview of the DBMS_METADATA API

26-4

26.3 Using the DBMS_METADATA API to Retrieve an Object's
Metadata

The retrieval interface of the DBMS_METADATA API lets you specify the kind of object to be
retrieved.

• How to Use the DBMS_METADATA API to Retrieve Object Metadata
Learn about the kinds of Oracle Database objects that you can query, and decide what
interface you want to use for the query.

• Typical Steps Used for Basic Metadata Retrieval
When you retrieve metadata, you use the DBMS_METADATA PL/SQL API.

• Retrieving Multiple Objects
Description and example of retrieving multiple objects.

• Placing Conditions on Transforms
To specify conditions on the transforms that you add with DBMS_METADATA, you can use
transform parameters.

• Accessing Specific Metadata Attributes
See how you can access specific metadata attributes of an object's metadata with the
DBMS_METADATA API.

26.3.1 How to Use the DBMS_METADATA API to Retrieve Object
Metadata

Learn about the kinds of Oracle Database objects that you can query, and decide what
interface you want to use for the query.

This can be either a particular object type (such as a table, index, or procedure) or a
heterogeneous collection of object types that form a logical unit (such as a database export
or schema export). By default, metadata that you fetch is returned in an XML document.

Note:

To access objects that are not in your own schema, you must have the
SELECT_CATALOG_ROLE role. However, roles are disabled within many PL/SQL
objects (stored procedures, functions, definer's rights APIs). Therefore, if you are
writing a PL/SQL program that will access objects in another schema (or, in general,
any objects for which you need the SELECT_CATALOG_ROLE role), then you must put
the code in an invoker's rights API.

You can use the programmatic interface for casual browsing, or you can use it to develop
applications. You can use the browsing interface if you simply want to make quick queries of
the system metadata. You can use the programmatic interface when you want to extract
dictionary metadata as part of an application. In such cases, you can choose to use the
procedures provided by the DBMS_METADATA API, instead of using SQL scripts or customized
code that you may be currently using to do the same thing.

Chapter 26
Using the DBMS_METADATA API to Retrieve an Object's Metadata

26-5

26.3.2 Typical Steps Used for Basic Metadata Retrieval
When you retrieve metadata, you use the DBMS_METADATA PL/SQL API.

The following examples illustrate the programmatic and browsing interfaces.

The DBMS_METADATA programmatic interface example provides a basic demonstration
of using the DBMS_METADATA programmatic interface to retrieve metadata for one table.
It creates a DBMS_METADATA program that creates a function named get_table_md. This
function returns metadata for one table.

The DBMS_METADATA browsing interface example demonstrates how you can use the
browsing interface to obtain the same results.

Example 26-1 Using the DBMS_METADATA Programmatic Interface to Retrieve
Data

1. Create a DBMS_METADATA program that creates a function named get_table_md,
which will return the metadata for one table, timecards, in the hr schema. The
content of such a program looks as follows. (For this example, name the program
metadata_program.sql.)

CREATE OR REPLACE FUNCTION get_table_md RETURN CLOB IS
-- Define local variables.
h NUMBER; --handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB;
BEGIN

-- Specify the object type.
h := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the particular object desired.
DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

 -- Request that the metadata be transformed into creation DDL.
th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the object.
doc := DBMS_METADATA.FETCH_CLOB(h);

 -- Release resources.
DBMS_METADATA.CLOSE(h);
RETURN doc;
END;
/

2. Connect as user hr.

3. Run the program to create the get_table_md function:

SQL> @metadata_program
4. Use the newly created get_table_md function in a select operation. To generate

complete, uninterrupted output, set the PAGESIZE to 0 and set LONG to some large
number, as shown, before executing your query:

Chapter 26
Using the DBMS_METADATA API to Retrieve an Object's Metadata

26-6

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000
SQL> SELECT get_table_md FROM dual;

5. The output, which shows the metadata for the timecards table in the hr schema, looks
similar to the following:

 CREATE TABLE "HR"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "HR"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "EXAMPLE"

Example 26-2 Using the DBMS_METADATA Browsing Interface to Retrieve Data

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000
SQL> SELECT DBMS_METADATA.GET_DDL('TABLE','TIMECARDS','HR') FROM dual;

The results of this query are same as shown in step 5 in the DBMS_METADATA programmatic
interface example.

26.3.3 Retrieving Multiple Objects
Description and example of retrieving multiple objects.

In the previous example “Using the DBMS_METADATA Programmatic Interface to Retrieve Data,”
the FETCH_CLOB procedure was called only once, because it was known that there was only
one object. However, you can also retrieve multiple objects, for example, all the tables in
schema scott. To do this, you need to use the following construct:

 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);
 --
 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 --
 EXIT WHEN doc IS NULL;
 END LOOP;

The following example demonstrates use of this construct and retrieving multiple objects.
Connect as user scott for this example. The password is tiger.

Example 26-3 Retrieving Multiple Objects

1. Create a table named my_metadata and a procedure named get_tables_md, as follows.
Because not all objects can be returned, they are stored in a table and queried at the
end.

DROP TABLE my_metadata;
CREATE TABLE my_metadata (md clob);
CREATE OR REPLACE PROCEDURE get_tables_md IS
-- Define local variables
h NUMBER; -- handle returned by 'OPEN'
th NUMBER; -- handle returned by 'ADD_TRANSFORM'
doc CLOB; -- metadata is returned in a CLOB

Chapter 26
Using the DBMS_METADATA API to Retrieve an Object's Metadata

26-7

BEGIN

 -- Specify the object type.
 h := DBMS_METADATA.OPEN('TABLE');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the objects.
 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in a table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/

2. Execute the procedure:

EXECUTE get_tables_md;
3. Query the my_metadata table to see what was retrieved:

SET LONG 9000000
SET PAGES 0
SELECT * FROM my_metadata;

26.3.4 Placing Conditions on Transforms
To specify conditions on the transforms that you add with DBMS_METADATA, you can use
transform parameters.

To use transform parameters, you use the SET_TRANSFORM_PARAM procedure. For
example, if you have added the DDL transform for a TABLE object, then you can specify
the SEGMENT_ATTRIBUTES transform parameter to indicate that you do not want
segment attributes (physical, storage, logging, and so on) to appear in the DDL. The
default is that segment attributes do appear in the DDL.

Example 26-4 Placing Conditions on Transforms

This example shows how to use the SET_TRANSFORM_PARAM procedure.

1. Create a function named get_table_md, as follows:

CREATE OR REPLACE FUNCTION get_table_md RETURN CLOB IS
 -- Define local variables.
 h NUMBER; -- handle returned by 'OPEN'
 th NUMBER; -- handle returned by 'ADD_TRANSFORM'
 doc CLOB;

Chapter 26
Using the DBMS_METADATA API to Retrieve an Object's Metadata

26-8

BEGIN

 -- Specify the object type.
 h := DBMS_METADATA.OPEN('TABLE');

 -- Use filters to specify the particular object desired.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
 DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

 -- Request that the metadata be transformed into creation DDL.
 th := dbms_metadata.add_transform(h,'DDL');

 -- Specify that segment attributes are not to be returned.
 -- Note that this call uses the TRANSFORM handle, not the OPEN handle.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false);

 -- Fetch the object.
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- Release resources.
 DBMS_METADATA.CLOSE(h);

 RETURN doc;
END;
/

2. Perform the following query:

SQL> SELECT get_table_md FROM dual;

The output looks similar to the following:

 CREATE TABLE "HR"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "HR"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
)

The examples shown up to this point have used a single transform, the DDL transform. The
DBMS_METADATA API also enables you to specify multiple transforms, with the output of the first
being the input to the next and so on.

Oracle supplies a transform called MODIFY that modifies an XML document. You can do things
like change schema names or tablespace names. To do this, you use remap parameters and
the SET_REMAP_PARAM procedure.

Example 26-5 Modifying an XML Document

This example shows how you can use the SET_REMAP_PARAM procedure. It first adds the
MODIFY transform and specifies remap parameters to change the schema name from hr to
scott. It then adds the DDL transform. The output of the MODIFY transform is an XML

Chapter 26
Using the DBMS_METADATA API to Retrieve an Object's Metadata

26-9

document that becomes the input to the DDL transform. The end result is the creation
DDL for the timecards table with all instances of schema hr changed to scott.

1. Create a function named remap_schema:

CREATE OR REPLACE FUNCTION remap_schema RETURN CLOB IS
-- Define local variables.
h NUMBER; --handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB;
BEGIN

-- Specify the object type.
h := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the particular object desired.
DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

-- Request that the schema name be modified.
th := DBMS_METADATA.ADD_TRANSFORM(h,'MODIFY');
DBMS_METADATA.SET_REMAP_PARAM(th,'REMAP_SCHEMA','HR','SCOTT');

-- Request that the metadata be transformed into creation DDL.
th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

-- Specify that segment attributes are not to be returned.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false);

-- Fetch the object.
doc := DBMS_METADATA.FETCH_CLOB(h);

-- Release resources.
DBMS_METADATA.CLOSE(h);
RETURN doc;
END;
/

2. Perform the following query:

SELECT remap_schema FROM dual;

The output looks similar to the following:

 CREATE TABLE "SCOTT"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "SCOTT"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
)

Chapter 26
Using the DBMS_METADATA API to Retrieve an Object's Metadata

26-10

If you are familiar with XSLT, then you can add your own user-written transforms to
process the XML.

Example 26-6 INCLUDE_SHARDING_CLAUSES and PARTITION BY or PARTITIONS
AUTO Keywords

Starting with Oracle Database 23c, you can set the API transform parameter
INCLUDE_SHARDING_CLAUSES using dbms_metedata.set_transform_param(). If it is set to
TRUE, then get_ddl() will generate shard syntax as described below.

Create with a SHARDED keyword:

In the following example, a sharded table is created using the keyword customers:

CREATE SHARDED TABLE customers (
 custno NUMBER NOT NULL,
 region char(2) NOT NULL,
 name VARCHAR2(20),
 zip number)
PARTITION BY CONSISTENT HASH (custno, region)
PARTITIONS AUTO
TABLESPACE SET ts1;

When the INCLUDE_SHARDING_CLAUSES parameter is set to FALSE, the DDL will contain
PARTITION BY RANGE and not include the PARTITIONS AUTO clause. For example:

Partition by a consistent hash:

CREATE SHARDED TABLE customers (
 custno NUMBER NOT NULL,
 region char(2) NOT NULL,
 name VARCHAR2(20),
 zip number)
PARTITION BY CONSISTENT HASH (custno, region)
PARTITIONS AUTO
TABLESPACE SET ts1;

26.3.5 Accessing Specific Metadata Attributes
See how you can access specific metadata attributes of an object's metadata with the
DBMS_METADATA API.

It is often desirable to access specific attributes of an object's metadata, for example, its
name or schema. You could get this information by parsing the returned metadata, but the
DBMS_METADATA API provides another mechanism; you can specify parse items, specific
attributes that will be parsed out of the metadata and returned in a separate data structure. To
do this, you use the SET_PARSE_ITEM procedure.

Example 26-7 Using Parse Items to Access Specific Metadata Attributes

This example shows how to check all tables in a schema. For each table, a parse item is
used to obtain its name. The name is then used to obtain all indexes on the table. In this
example, you can see how to use the FETCH_DDL function, which returns metadata in a
sys.ku$_ddls object.

Chapter 26
Using the DBMS_METADATA API to Retrieve an Object's Metadata

26-11

In this example, we assume that you are connected to a schema that contains some
tables and indexes. The outcome of this series of steps creates a table named
my_metadata.

1. Create a table named my_metadata and a procedure named
get_tables_and_indexes, as follows:

DROP TABLE my_metadata;
CREATE TABLE my_metadata (
 object_type VARCHAR2(30),
 name VARCHAR2(30),
 md CLOB);
CREATE OR REPLACE PROCEDURE get_tables_and_indexes IS
-- Define local variables.
h1 NUMBER; -- handle returned by OPEN for tables
h2 NUMBER; -- handle returned by OPEN for indexes
th1 NUMBER; -- handle returned by ADD_TRANSFORM for tables
th2 NUMBER; -- handle returned by ADD_TRANSFORM for indexes
doc sys.ku$_ddls; -- metadata is returned in sys.ku$_ddls,
 -- a nested table of sys.ku$_ddl objects
ddl CLOB; -- creation DDL for an object
pi sys.ku$_parsed_items; -- parse items are returned in this object
 -- which is contained in sys.ku$_ddl
objname VARCHAR2(30); -- the parsed object name
idxddls sys.ku$_ddls; -- metadata is returned in sys.ku$_ddls,
 -- a nested table of sys.ku$_ddl objects
idxname VARCHAR2(30); -- the parsed index name
BEGIN
 -- This procedure has an outer loop that fetches tables,
 -- and an inner loop that fetches indexes.

 -- Specify the object type: TABLE.
 h1 := DBMS_METADATA.OPEN('TABLE');

 -- Request that the table name be returned as a parse item.
 DBMS_METADATA.SET_PARSE_ITEM(h1,'NAME');

 -- Request that the metadata be transformed into creation DDL.
 th1 := DBMS_METADATA.ADD_TRANSFORM(h1,'DDL');

 -- Specify that segment attributes are not to be returned.
 DBMS_METADATA.SET_TRANSFORM_PARAM(th1,'SEGMENT_ATTRIBUTES',false);

 -- Set up the outer loop: fetch the TABLE objects.
 LOOP
 doc := dbms_metadata.fetch_ddl(h1);

-- When there are no more objects to be retrieved, FETCH_DDL returns NULL.
 EXIT WHEN doc IS NULL;

-- Loop through the rows of the ku$_ddls nested table.
 FOR i IN doc.FIRST..doc.LAST LOOP
 ddl := doc(i).ddlText;
 pi := doc(i).parsedItems;
 -- Loop through the returned parse items.
 IF pi IS NOT NULL AND pi.COUNT > 0 THEN
 FOR j IN pi.FIRST..pi.LAST LOOP
 IF pi(j).item='NAME' THEN
 objname := pi(j).value;
 END IF;
 END LOOP;

Chapter 26
Using the DBMS_METADATA API to Retrieve an Object's Metadata

26-12

 END IF;
 -- Insert information about this object into our table.
 INSERT INTO my_metadata(object_type, name, md)
 VALUES ('TABLE',objname,ddl);
 COMMIT;
 END LOOP;

 -- Now fetch indexes using the parsed table name as
 -- a BASE_OBJECT_NAME filter.

 -- Specify the object type.
 h2 := DBMS_METADATA.OPEN('INDEX');

 -- The base object is the table retrieved in the outer loop.
 DBMS_METADATA.SET_FILTER(h2,'BASE_OBJECT_NAME',objname);

 -- Exclude system-generated indexes.
 DBMS_METADATA.SET_FILTER(h2,'SYSTEM_GENERATED',false);

 -- Request that the index name be returned as a parse item.
 DBMS_METADATA.SET_PARSE_ITEM(h2,'NAME');

 -- Request that the metadata be transformed into creation DDL.
 th2 := DBMS_METADATA.ADD_TRANSFORM(h2,'DDL');

 -- Specify that segment attributes are not to be returned.
 DBMS_METADATA.SET_TRANSFORM_PARAM(th2,'SEGMENT_ATTRIBUTES',false);

 LOOP
 idxddls := dbms_metadata.fetch_ddl(h2);

 -- When there are no more objects to be retrieved, FETCH_DDL returns NULL.
 EXIT WHEN idxddls IS NULL;

 FOR i in idxddls.FIRST..idxddls.LAST LOOP
 ddl := idxddls(i).ddlText;
 pi := idxddls(i).parsedItems;
 -- Loop through the returned parse items.
 IF pi IS NOT NULL AND pi.COUNT > 0 THEN
 FOR j IN pi.FIRST..pi.LAST LOOP
 IF pi(j).item='NAME' THEN
 idxname := pi(j).value;
 END IF;
 END LOOP;
 END IF;

 -- Store the metadata in our table.
 INSERT INTO my_metadata(object_type, name, md)
 VALUES ('INDEX',idxname,ddl);
 COMMIT;
 END LOOP; -- for loop
 END LOOP;
 DBMS_METADATA.CLOSE(h2);
 END LOOP;
 DBMS_METADATA.CLOSE(h1);
END;
/

2. Execute the procedure:

EXECUTE get_tables_and_indexes;

Chapter 26
Using the DBMS_METADATA API to Retrieve an Object's Metadata

26-13

3. Perform the following query to see what was retrieved:

SET LONG 9000000
SET PAGES 0
SELECT * FROM my_metadata;

26.4 Using the DBMS_METADATA API to Recreate a
Retrieved Object

When you fetch metadata for an object, you can choose to use it to recreate the object
in a different database or schema.

When you fetch metadata, suppose that you are not ready to make remapping
decisions, and you want to defer these decisions until later. To defer your decision
about remapping, you can fetch the metadata as XML, and store it in a file or table.
Later, you can use that file or table with the submit interface to recreate the object.

The submit interface is similar in form to the retrieval interface. It has an OPENW
procedure, in which you specify the object type of the object that you want to create.
You can specify transforms, transform parameters, and parse items. You can call the
CONVERT function to convert the XML to DDL, or you can call the PUT function to both
convert XML to DDL, and to submit the DDL to create the object.

Example 26-8 Using the Submit Interface to Re-Create a Retrieved Object

This example shows how to fetch the XML for a table in one schema, and then use the
submit interface to recreate the table in another schema.

1. Connect as a privileged user:

CONNECT system
Enter password: password

2. Because access to objects in another schema requires the SELECT_CATALOG_ROLE
role, create an invoker's rights package to hold the procedure. In a definer's rights
PL/SQL object (such as a procedure or function), roles are disabled.

CREATE OR REPLACE PACKAGE example_pkg AUTHID current_user IS
 PROCEDURE move_table(
 table_name in VARCHAR2,
 from_schema in VARCHAR2,
 to_schema in VARCHAR2);
END example_pkg;
/
CREATE OR REPLACE PACKAGE BODY example_pkg IS
PROCEDURE move_table(
 table_name in VARCHAR2,
 from_schema in VARCHAR2,
 to_schema in VARCHAR2) IS

-- Define local variables.
h1 NUMBER; -- handle returned by OPEN
h2 NUMBER; -- handle returned by OPENW
th1 NUMBER; -- handle returned by ADD_TRANSFORM for
MODIFY

Chapter 26
Using the DBMS_METADATA API to Recreate a Retrieved Object

26-14

th2 NUMBER; -- handle returned by ADD_TRANSFORM for DDL
xml CLOB; -- XML document
errs sys.ku$_SubmitResults := sys.ku$_SubmitResults();
err sys.ku$_SubmitResult;
result BOOLEAN;
BEGIN

-- Specify the object type.
h1 := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the name and schema of the table.
DBMS_METADATA.SET_FILTER(h1,'NAME',table_name);
DBMS_METADATA.SET_FILTER(h1,'SCHEMA',from_schema);

-- Fetch the XML.
xml := DBMS_METADATA.FETCH_CLOB(h1);
IF xml IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('Table ' || from_schema || '.' || table_name
|| ' not found');
 RETURN;
 END IF;

-- Release resources.
DBMS_METADATA.CLOSE(h1);

-- Use the submit interface to re-create the object in another schema.

-- Specify the object type using OPENW (instead of OPEN).
h2 := DBMS_METADATA.OPENW('TABLE');

-- First, add the MODIFY transform.
th1 := DBMS_METADATA.ADD_TRANSFORM(h2,'MODIFY');

-- Specify the desired modification: remap the schema name.
DBMS_METADATA.SET_REMAP_PARAM(th1,'REMAP_SCHEMA',from_schema,to_schema);

-- Now add the DDL transform so that the modified XML can be
-- transformed into creation DDL.
th2 := DBMS_METADATA.ADD_TRANSFORM(h2,'DDL');

-- Call PUT to re-create the object.
result := DBMS_METADATA.PUT(h2,xml,0,errs);

DBMS_METADATA.CLOSE(h2);
 IF NOT result THEN
 -- Process the error information.
 FOR i IN errs.FIRST..errs.LAST LOOP
 err := errs(i);
 FOR j IN err.errorLines.FIRST..err.errorLines.LAST LOOP
 dbms_output.put_line(err.errorLines(j).errorText);
 END LOOP;
 END LOOP;
 END IF;
END;

Chapter 26
Using the DBMS_METADATA API to Recreate a Retrieved Object

26-15

END example_pkg;
/

3. Next, create a table named my_example in the schema SCOTT:

CONNECT scott
Enter password:
-- The password is tiger.

DROP TABLE my_example;
CREATE TABLE my_example (a NUMBER, b VARCHAR2(30));

CONNECT system
Enter password: password

SET LONG 9000000
SET PAGESIZE 0
SET SERVEROUTPUT ON SIZE 100000

4. Copy the my_example table to the SYSTEM schema:

DROP TABLE my_example;
EXECUTE example_pkg.move_table('MY_EXAMPLE','SCOTT','SYSTEM');

5. Perform the following query to verify that it worked:

SELECT DBMS_METADATA.GET_DDL('TABLE','MY_EXAMPLE') FROM dual;

26.5 Using the DBMS_METADATA API to Retrieve
Collections of Different Object Types

To retrieve collections of objects in which the objects are of different types, but
comprise a logical unit, you can use the heterogeneous object types in the
DBMS_METADATA API.

There can be times when you need to retrieve collections of Oracle Database objects
in which the objects are of different types, but comprise a logical unit. For example,
you might need to retrieve all the objects in a database or a schema, or a table and all
its dependent indexes, constraints, grants, audits, and so on. To make such a retrieval
possible, the DBMS_METADATA API provides several heterogeneous object types. A
heterogeneous object type is an ordered set of object types.

Oracle supplies the following heterogeneous object types:

• TABLE_EXPORT - a table and its dependent objects

• SCHEMA_EXPORT - a schema and its contents

• DATABASE_EXPORT - the objects in the database

These object types were developed for use by the Oracle Data Pump Export utility, but
you can use them in your own applications.

Chapter 26
Using the DBMS_METADATA API to Retrieve Collections of Different Object Types

26-16

You can use only the programmatic retrieval interface (OPEN, FETCH, CLOSE) with these types,
not the browsing interface or the submit interface.

You can specify filters for heterogeneous object types, just as you do for the homogeneous
types. For example, you can specify the SCHEMA and NAME filters for TABLE_EXPORT, or the
SCHEMA filter for SCHEMA_EXPORT.

Example 26-9 Retrieving Heterogeneous Object Types

This example shows you how to retrieve the object types in the user scott schema. Connect
as user scott. The password is tiger.

1. Create a table to store the retrieved objects:

DROP TABLE my_metadata;
CREATE TABLE my_metadata (md CLOB);
CREATE OR REPLACE PROCEDURE get_schema_md IS

-- Define local variables.
h NUMBER; -- handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB; -- metadata is returned in a CLOB
BEGIN

-- Specify the object type.
 h := DBMS_METADATA.OPEN('SCHEMA_EXPORT');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the objects.
 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns
NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in the table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/

2. Execute the procedure:

EXECUTE get_schema_md;

Chapter 26
Using the DBMS_METADATA API to Retrieve Collections of Different Object Types

26-17

3. Perform the following query to see what was retrieved:

SET LONG 9000000
SET PAGESIZE 0
SELECT * FROM my_metadata;

In this example, objects are returned ordered by object type; for example, all tables are
returned, then all grants on tables, then all indexes on tables, and so on. The order is,
generally speaking, a valid creation order. Thus, if you take the objects in the order in
which they were returned and use the submit interface to recreate them in the same
order in another schema or database, then there usually should be no errors. (The
exceptions usually involve circular references; for example, if package A contains a
call to package B, and package B contains a call to package A, then one of the
packages must be recompiled a second time.)

26.6 Filtering the Return of Heterogeneous Object Types
Learn how you can use the SET_FILTER procedure to enable you to filter the return of
heterogeneous object types.

For finer control of the objects returned, use the SET_FILTER procedure and specify
that the filter apply only to a specific member type. You do this by specifying the path
name of the member type as the fourth parameter to SET_FILTER. In addition, you can
use the EXCLUDE_PATH_EXPR filter to exclude all objects of an object type. For a list of
valid path names, see the TABLE_EXPORT_OBJECTS catalog view.

Example 26-10 Filtering the Return of Heterogeneous Object Types

In this example, SET_FILTER is used to specify finer control on the objects returned.:

1. Create a table, my_metadata, to store the retrieved objects, and create a
procedure, get_schema_md2:

DROP TABLE my_metadata;
CREATE TABLE my_metadata (md CLOB);
CREATE OR REPLACE PROCEDURE get_schema_md2 IS

-- Define local variables.
h NUMBER; -- handle returned by 'OPEN'
th NUMBER; -- handle returned by 'ADD_TRANSFORM'
doc CLOB; -- metadata is returned in a CLOB
BEGIN

 -- Specify the object type.
 h := DBMS_METADATA.OPEN('SCHEMA_EXPORT');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Use the fourth parameter to SET_FILTER to specify a filter
 -- that applies to a specific member object type.
 DBMS_METADATA.SET_FILTER(h,'NAME_EXPR','!=''MY_METADATA''','TABLE');

 -- Use the EXCLUDE_PATH_EXPR filter to exclude procedures.
 DBMS_METADATA.SET_FILTER(h,'EXCLUDE_PATH_EXPR','=''PROCEDURE''');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

Chapter 26
Filtering the Return of Heterogeneous Object Types

26-18

 -- Use the fourth parameter to SET_TRANSFORM_PARAM to specify a parameter
 -- that applies to a specific member object type.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false,'TABLE');

 -- Fetch the objects.
 LOOP
 doc := dbms_metadata.fetch_clob(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in the table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/

2. Run the procedure:

EXECUTE get_schema_md2;
3. Perform the following query to see what was retrieved:

SET LONG 9000000
SET PAGESIZE 0
SELECT * FROM my_metadata;

26.7 Using the DBMS_METADATA_DIFF API to Compare
Object Metadata

Description and example that uses the retrieval, comparison, and submit interfaces of
DBMS_METADATA and DBMS_METADATA_DIFF to fetch metadata for two tables, compare the
metadata, and generate ALTER statements which make one table like the other.

For simplicity, function variants are used throughout the example.

Example 26-11 Comparing Object Metadata

1. Create two tables, TAB1 and TAB2:

SQL> CREATE TABLE TAB1
 2 ("EMPNO" NUMBER(4,0),
 3 "ENAME" VARCHAR2(10),
 4 "JOB" VARCHAR2(9),
 5 "DEPTNO" NUMBER(2,0)
 6) ;

Table created.

SQL> CREATE TABLE TAB2
 2 ("EMPNO" NUMBER(4,0) PRIMARY KEY ENABLE,
 3 "ENAME" VARCHAR2(20),
 4 "MGR" NUMBER(4,0),
 5 "DEPTNO" NUMBER(2,0)
 6) ;

Chapter 26
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

26-19

Table created.

Note the differences between TAB1 and TAB2:

• The table names are different

• TAB2 has a primary key constraint; TAB1 does not

• The length of the ENAME column is different in each table

• TAB1 has a JOB column; TAB2 does not

• TAB2 has a MGR column; TAB1 does not

2. Create a function to return the table metadata in SXML format. The following are
some key points to keep in mind about SXML when you are using the
DBMS_METADATA_DIFF API:

• SXML is an XML representation of object metadata.

• The SXML returned is not the same as the XML returned by
DBMS_METADATA.GET_XML, which is complex and opaque and contains binary
values, instance-specific values, and so on.

• SXML looks like a direct translation of SQL creation DDL into XML. The tag
names and structure correspond to names in the Oracle Database SQL
Language Reference.

• SXML is designed to support editing and comparison.

To keep this example simple, a transform parameter is used to suppress physical
properties:

SQL> CREATE OR REPLACE FUNCTION get_table_sxml(name IN VARCHAR2) RETURN CLOB
IS
 2 open_handle NUMBER;
 3 transform_handle NUMBER;
 4 doc CLOB;
 5 BEGIN
 6 open_handle := DBMS_METADATA.OPEN('TABLE');
 7 DBMS_METADATA.SET_FILTER(open_handle,'NAME',name);
 8 --
 9 -- Use the 'SXML' transform to convert XML to SXML
 10 --
 11 transform_handle := DBMS_METADATA.ADD_TRANSFORM(open_handle,'SXML');
 12 --
 13 -- Use this transform parameter to suppress physical properties
 14 --
 15
DBMS_METADATA.SET_TRANSFORM_PARAM(transform_handle,'PHYSICAL_PROPERTIES',
 16 FALSE);
 17 doc := DBMS_METADATA.FETCH_CLOB(open_handle);
 18 DBMS_METADATA.CLOSE(open_handle);
 19 RETURN doc;
 20 END;
 21 /

Function created.

3. Use the get_table_sxml function to fetch the table SXML for the two tables:

Chapter 26
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

26-20

SQL> SELECT get_table_sxml('TAB1') FROM dual;

 <TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB1</NAME>
 <RELATIONAL_TABLE>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>ENAME</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>10</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>JOB</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>9</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>DEPTNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>2</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 </COL_LIST>
 </RELATIONAL_TABLE>
</TABLE>

1 row selected.

SQL> SELECT get_table_sxml('TAB2') FROM dual;

 <TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB2</NAME>
 <RELATIONAL_TABLE>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>ENAME</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>20</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>MGR</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>DEPTNO</NAME>

Chapter 26
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

26-21

 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>2</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 </COL_LIST>
 <PRIMARY_KEY_CONSTRAINT_LIST>
 <PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 </COL_LIST_ITEM>
 </COL_LIST>
 </PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 </PRIMARY_KEY_CONSTRAINT_LIST>
 </RELATIONAL_TABLE>
</TABLE>

1 row selected.

4. Compare the results using the DBMS_METADATA browsing APIs:

SQL> SELECT dbms_metadata.get_sxml('TABLE','TAB1') FROM dual;
SQL> SELECT dbms_metadata.get_sxml('TABLE','TAB2') FROM dual;

5. Create a function using the DBMS_METADATA_DIFF API to compare the metadata for
the two tables. In this function, the get_table_sxml function that was just defined
in step 2 is used.

SQL> CREATE OR REPLACE FUNCTION compare_table_sxml(name1 IN VARCHAR2,
 2 name2 IN VARCHAR2) RETURN CLOB
IS
 3 doc1 CLOB;
 4 doc2 CLOB;
 5 diffdoc CLOB;
 6 openc_handle NUMBER;
 7 BEGIN
 8 --
 9 -- Fetch the SXML for the two tables
 10 --
 11 doc1 := get_table_sxml(name1);
 12 doc2 := get_table_sxml(name2);
 13 --
 14 -- Specify the object type in the OPENC call
 15 --
 16 openc_handle := DBMS_METADATA_DIFF.OPENC('TABLE');
 17 --
 18 -- Add each document
 19 --
 20 DBMS_METADATA_DIFF.ADD_DOCUMENT(openc_handle,doc1);
 21 DBMS_METADATA_DIFF.ADD_DOCUMENT(openc_handle,doc2);
 22 --
 23 -- Fetch the SXML difference document
 24 --
 25 diffdoc := DBMS_METADATA_DIFF.FETCH_CLOB(openc_handle);
 26 DBMS_METADATA_DIFF.CLOSE(openc_handle);
 27 RETURN diffdoc;
 28 END;
 29 /

Function created.

Chapter 26
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

26-22

6. Use the function to fetch the SXML difference document for the two tables:

SQL> SELECT compare_table_sxml('TAB1','TAB2') FROM dual;

<TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <SCHEMA>SCOTT</SCHEMA>
 <NAME value1="TAB1">TAB2</NAME>
 <RELATIONAL_TABLE>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>ENAME</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH value1="10">20</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM src="1">
 <NAME>JOB</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>9</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>DEPTNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>2</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM src="2">
 <NAME>MGR</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 </COL_LIST>
 <PRIMARY_KEY_CONSTRAINT_LIST src="2">
 <PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 </COL_LIST_ITEM>
 </COL_LIST>
 </PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 </PRIMARY_KEY_CONSTRAINT_LIST>
 </RELATIONAL_TABLE>
</TABLE>

1 row selected.

The SXML difference document shows the union of the two SXML documents, with the
XML attributes value1 and src identifying the differences. When an element exists in only
one document it is marked with src. Thus, <COL_LIST_ITEM src="1"> means that this
element is in the first document (TAB1) but not in the second. When an element is present
in both documents but with different values, the element's value is the value in the
second document and the value1 gives its value in the first. For example, <LENGTH

Chapter 26
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

26-23

value1="10">20</LENGTH> means that the length is 10 in TAB1 (the first document)
and 20 in TAB2.

7. Compare the result using the DBMS_METADATA_DIFF browsing APIs:

SQL> SELECT dbms_metadata_diff.compare_sxml('TABLE','TAB1','TAB2') FROM dual;
8. Create a function using the DBMS_METADATA.CONVERT API to generate an

ALTERXML document. This is an XML document containing ALTER statements to
make one object like another. You can also use parse items to get information
about the individual ALTER statements. (This example uses the functions defined
thus far.)

SQL> CREATE OR REPLACE FUNCTION get_table_alterxml(name1 IN VARCHAR2,
 2 name2 IN VARCHAR2) RETURN CLOB
IS
 3 diffdoc CLOB;
 4 openw_handle NUMBER;
 5 transform_handle NUMBER;
 6 alterxml CLOB;
 7 BEGIN
 8 --
 9 -- Use the function just defined to get the difference document
 10 --
 11 diffdoc := compare_table_sxml(name1,name2);
 12 --
 13 -- Specify the object type in the OPENW call
 14 --
 15 openw_handle := DBMS_METADATA.OPENW('TABLE');
 16 --
 17 -- Use the ALTERXML transform to generate the ALTER_XML document
 18 --
 19 transform_handle :=
DBMS_METADATA.ADD_TRANSFORM(openw_handle,'ALTERXML');
 20 --
 21 -- Request parse items
 22 --
 23 DBMS_METADATA.SET_PARSE_ITEM(openw_handle,'CLAUSE_TYPE');
 24 DBMS_METADATA.SET_PARSE_ITEM(openw_handle,'NAME');
 25 DBMS_METADATA.SET_PARSE_ITEM(openw_handle,'COLUMN_ATTRIBUTE');
 26 --
 27 -- Create a temporary LOB
 28 --
 29 DBMS_LOB.CREATETEMPORARY(alterxml, TRUE);
 30 --
 31 -- Call CONVERT to do the transform
 32 --
 33 DBMS_METADATA.CONVERT(openw_handle,diffdoc,alterxml);
 34 --
 35 -- Close context and return the result
 36 --
 37 DBMS_METADATA.CLOSE(openw_handle);
 38 RETURN alterxml;
 39 END;
 40 /

Function created.

9. Use the function to fetch the ALTER_XML document:

SQL> SELECT get_table_alterxml('TAB1','TAB2') FROM dual;

Chapter 26
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

26-24

<ALTER_XML xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <OBJECT_TYPE>TABLE</OBJECT_TYPE>
 <OBJECT1>
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB1</NAME>
 </OBJECT1>
 <OBJECT2>
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB2</NAME>
 </OBJECT2>
 <ALTER_LIST>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>MGR</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>ADD_COLUMN</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" ADD ("MGR" NUMBER(4,0))</TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>JOB</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>DROP_COLUMN</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" DROP ("JOB")</TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>ENAME</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>MODIFY_COLUMN</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>COLUMN_ATTRIBUTE</ITEM>
 <VALUE> SIZE_INCREASE</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>

Chapter 26
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

26-25

 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" MODIFY
 ("ENAME" VARCHAR2(20))
 </TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>ADD_CONSTRAINT</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" ADD PRIMARY KEY
 ("EMPNO") ENABLE
 </TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>TAB1</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>RENAME_TABLE</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" RENAME TO "TAB2"</TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 </ALTER_LIST>
</ALTER_XML>

1 row selected.

10. Compare the result using the DBMS_METADATA_DIFF browsing API:

SQL> SELECT dbms_metadata_diff.compare_alter_xml('TABLE','TAB1','TAB2') FROM
dual;

11. The ALTER_XML document contains an ALTER_LIST of each of the alters. Each
ALTER_LIST_ITEM has a PARSE_LIST containing the parse items as name-value
pairs and a SQL_LIST containing the SQL for the particular alter. You can parse
this document and decide which of the SQL statements to execute, using the
information in the PARSE_LIST. (Note, for example, that in this case one of the
alters is a DROP_COLUMN, and you might choose not to execute that.)

12. Create one last function that uses the DBMS_METADATA.CONVERT API and the ALTER
DDL transform to convert the ALTER_XML document into SQL DDL:

Chapter 26
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

26-26

SQL> CREATE OR REPLACE FUNCTION get_table_alterddl(name1 IN VARCHAR2,
 2 name2 IN VARCHAR2) RETURN CLOB IS
 3 alterxml CLOB;
 4 openw_handle NUMBER;
 5 transform_handle NUMBER;
 6 alterddl CLOB;
 7 BEGIN
 8 --
 9 -- Use the function just defined to get the ALTER_XML document
 10 --
 11 alterxml := get_table_alterxml(name1,name2);
 12 --
 13 -- Specify the object type in the OPENW call
 14 --
 15 openw_handle := DBMS_METADATA.OPENW('TABLE');
 16 --
 17 -- Use ALTERDDL transform to convert the ALTER_XML document to SQL DDL
 18 --
 19 transform_handle := DBMS_METADATA.ADD_TRANSFORM(openw_handle,'ALTERDDL');
 20 --
 21 -- Use the SQLTERMINATOR transform parameter to append a terminator
 22 -- to each SQL statement
 23 --
 24 DBMS_METADATA.SET_TRANSFORM_PARAM(transform_handle,'SQLTERMINATOR',true);
 25 --
 26 -- Create a temporary lob
 27 --
 28 DBMS_LOB.CREATETEMPORARY(alterddl, TRUE);
 29 --
 30 -- Call CONVERT to do the transform
 31 --
 32 DBMS_METADATA.CONVERT(openw_handle,alterxml,alterddl);
 33 --
 34 -- Close context and return the result
 35 --
 36 DBMS_METADATA.CLOSE(openw_handle);
 37 RETURN alterddl;
 38 END;
 39 /

Function created.

13. Use the function to fetch the SQL ALTER statements:

SQL> SELECT get_table_alterddl('TAB1','TAB2') FROM dual;
ALTER TABLE "SCOTT"."TAB1" ADD ("MGR" NUMBER(4,0))
/
 ALTER TABLE "SCOTT"."TAB1" DROP ("JOB")
/
 ALTER TABLE "SCOTT"."TAB1" MODIFY ("ENAME" VARCHAR2(20))
/
 ALTER TABLE "SCOTT"."TAB1" ADD PRIMARY KEY ("EMPNO") ENABLE
/
 ALTER TABLE "SCOTT"."TAB1" RENAME TO "TAB2"
/

1 row selected.

14. Compare the results using the DBMS_METADATA_DIFF browsing API:

Chapter 26
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

26-27

SQL> SELECT dbms_metadata_diff.compare_alter('TABLE','TAB1','TAB2') FROM
dual;
ALTER TABLE "SCOTT"."TAB1" ADD ("MGR" NUMBER(4,0))
 ALTER TABLE "SCOTT"."TAB1" DROP ("JOB")
 ALTER TABLE "SCOTT"."TAB1" MODIFY ("ENAME" VARCHAR2(20))
 ALTER TABLE "SCOTT"."TAB1" ADD PRIMARY KEY ("EMPNO") USING INDEX
 PCTFREE 10 INITRANS 2 STORAGE (INITIAL 16384 NEXT 16384 MINEXTENTS 1
 MAXEXTENTS 505 PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL
 DEFAULT) ENABLE ALTER TABLE "SCOTT"."TAB1" RENAME TO "TAB2"

1 row selected.

26.8 Performance Tips for the Programmatic Interface of the
DBMS_METADATA API

Describes how to enhance performance when using the programmatic interface of the
DBMS_METADATA API.

Specifically:

1. Fetch all of one type of object before fetching the next. For example, if you are
retrieving the definitions of all objects in your schema, first fetch all tables, then all
indexes, then all triggers, and so on. This will be much faster than nesting OPEN
contexts; that is, fetch one table then all of its indexes, grants, and triggers, then
the next table and all of its indexes, grants, and triggers, and so on. Example
Usage of the DBMS_METADATA API reflects this second, less efficient means,
but its purpose is to demonstrate most of the programmatic calls, which are best
shown by this method.

2. Use the SET_COUNT procedure to retrieve more than one object at a time. This
minimizes server round trips and eliminates many redundant function calls.

3. When writing a PL/SQL package that calls the DBMS_METADATA API, declare LOB
variables and objects that contain LOBs (such as SYS.KU$_DDLS) at package scope
rather than within individual functions. This eliminates the creation and deletion of
LOB duration structures upon function entrance and exit, which are very expensive
operations.

26.9 Example Usage of the DBMS_METADATA API
Example of how the DBMS_METADATA API could be used.

A script is provided that automatically runs the demo for you by performing the
following actions:

• Establishes a schema (MDDEMO) and some payroll users.

• Creates three payroll-like tables within the schema and any associated indexes,
triggers, and grants.

• Creates a package, PAYROLL_DEMO, that uses the DBMS_METADATA API. The
PAYROLL_DEMO package contains a procedure, GET_PAYROLL_TABLES, that retrieves
the DDL for the two tables in the MDDEMO schema that start with PAYROLL. For each
table, it retrieves the DDL for the table's associated dependent objects; indexes,
grants, and triggers. All the DDL is written to a table named MDDEMO.DDL.

To execute the example, do the following:

Chapter 26
Performance Tips for the Programmatic Interface of the DBMS_METADATA API

26-28

1. Start SQL*Plus as user system. You will be prompted for a password.

sqlplus system
2. Install the demo, which is located in the file mddemo.sql in rdbms/demo:

SQL> @mddemo

For an explanation of what happens during this step, see What Does the
DBMS_METADATA Example Do?.

3. Connect as user mddemo. You will be prompted for a password, which is also mddemo.

SQL> CONNECT mddemo
Enter password:

4. Set the following parameters so that query output will be complete and readable:

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000

5. Execute the GET_PAYROLL_TABLES procedure, as follows:

SQL> CALL payroll_demo.get_payroll_tables();
6. Execute the following SQL query:

SQL> SELECT ddl FROM DDL ORDER BY SEQNO;

The output generated is the result of the execution of the GET_PAYROLL_TABLES
procedure. It shows all the DDL that was performed in Step 2 when the demo was
installed. See Output Generated from the GET_PAYROLL_TABLES Procedure for a
listing of the actual output.

• What Does the DBMS_METADATA Example Do?
Explanation of the DBMS_METADATA example.

• Output Generated from the GET_PAYROLL_TABLES Procedure
Explanation of the output generated from the GET_PAYROLL_TABLES procedure.

26.9.1 What Does the DBMS_METADATA Example Do?
Explanation of the DBMS_METADATA example.

When the mddemo script is run, the following steps take place. You can adapt these steps to
your own situation.

1. Drops users as follows, if they exist. This will ensure that you are starting out with fresh
data. If the users do not exist, then a message to that effect is displayed, no harm is
done, and the demo continues to execute.

CONNECT system
Enter password: password
SQL> DROP USER mddemo CASCADE;
SQL> DROP USER mddemo_clerk CASCADE;
SQL> DROP USER mddemo_mgr CASCADE;

2. Creates user mddemo, identified by mddemo:

SQL> CREATE USER mddemo IDENTIFIED BY mddemo;
SQL> GRANT resource, connect, create session,
 1 create table,
 2 create procedure,
 3 create sequence,

Chapter 26
Example Usage of the DBMS_METADATA API

26-29

 4 create trigger,
 5 create view,
 6 create synonym,
 7 alter session,
 8 TO mddemo;

3. Creates user mddemo_clerk, identified by clerk:

CREATE USER mddemo_clerk IDENTIFIED BY clerk;
4. Creates user mddemo_mgr, identified by mgr:

CREATE USER mddemo_mgr IDENTIFIED BY mgr;
5. Connect to SQL*Plus as mddemo (the password is also mddemo):

CONNECT mddemo
Enter password:

6. Creates some payroll-type tables:

SQL> CREATE TABLE payroll_emps
 2 (lastname VARCHAR2(60) NOT NULL,
 3 firstname VARCHAR2(20) NOT NULL,
 4 mi VARCHAR2(2),
 5 suffix VARCHAR2(10),
 6 dob DATE NOT NULL,
 7 badge_no NUMBER(6) PRIMARY KEY,
 8 exempt VARCHAR(1) NOT NULL,
 9 salary NUMBER (9,2),
 10 hourly_rate NUMBER (7,2))
 11 /

SQL> CREATE TABLE payroll_timecards
 2 (badge_no NUMBER(6) REFERENCES payroll_emps (badge_no),
 3 week NUMBER(2),
 4 job_id NUMBER(5),
 5 hours_worked NUMBER(4,2))
 6 /

7. Creates a dummy table, audit_trail. This table is used to show that tables that
do not start with payroll are not retrieved by the GET_PAYROLL_TABLES procedure.

SQL> CREATE TABLE audit_trail
 2 (action_time DATE,
 3 lastname VARCHAR2(60),
 4 action LONG)
 5 /

8. Creates some grants on the tables just created:

SQL> GRANT UPDATE (salary,hourly_rate) ON payroll_emps TO mddemo_clerk;
SQL> GRANT ALL ON payroll_emps TO mddemo_mgr WITH GRANT OPTION;

SQL> GRANT INSERT,UPDATE ON payroll_timecards TO mddemo_clerk;
SQL> GRANT ALL ON payroll_timecards TO mddemo_mgr WITH GRANT OPTION;

9. Creates some indexes on the tables just created:

SQL> CREATE INDEX i_payroll_emps_name ON payroll_emps(lastname);
SQL> CREATE INDEX i_payroll_emps_dob ON payroll_emps(dob);
SQL> CREATE INDEX i_payroll_timecards_badge ON payroll_timecards(badge_no);

10. Creates some triggers on the tables just created:

Chapter 26
Example Usage of the DBMS_METADATA API

26-30

SQL> CREATE OR REPLACE PROCEDURE check_sal(salary in number) AS BEGIN
 2 RETURN;
 3 END;
 4 /

Note that the security is kept fairly loose to keep the example simple.

SQL> CREATE OR REPLACE TRIGGER salary_trigger BEFORE INSERT OR UPDATE OF salary
ON payroll_emps
FOR EACH ROW WHEN (new.salary > 150000)
CALL check_sal(:new.salary)
/

SQL> CREATE OR REPLACE TRIGGER hourly_trigger BEFORE UPDATE OF hourly_rate ON
payroll_emps
FOR EACH ROW
BEGIN :new.hourly_rate:=:old.hourly_rate;END;
/

11. Sets up a table to hold the generated DDL:

CREATE TABLE ddl (ddl CLOB, seqno NUMBER);
12. Creates the PAYROLL_DEMO package, which provides examples of how DBMS_METADATA

procedures can be used.

SQL> CREATE OR REPLACE PACKAGE payroll_demo AS PROCEDURE get_payroll_tables;
END;
/

Note:

To see the entire script for this example, including the contents of the
PAYROLL_DEMO package, see the file mddemo.sql located in your $ORACLE_HOME/
rdbms/demo directory.

26.9.2 Output Generated from the GET_PAYROLL_TABLES Procedure
Explanation of the output generated from the GET_PAYROLL_TABLES procedure.

After you execute the mddemo.payroll_demo.get_payroll_tables procedure, you can
execute the following query:

SQL> SELECT ddl FROM ddl ORDER BY seqno;

The results are as follows, which reflect all the DDL executed by the script as described in the
previous section.

CREATE TABLE "MDDEMO"."PAYROLL_EMPS"
 ("LASTNAME" VARCHAR2(60) NOT NULL ENABLE,
 "FIRSTNAME" VARCHAR2(20) NOT NULL ENABLE,
 "MI" VARCHAR2(2),
 "SUFFIX" VARCHAR2(10),
 "DOB" DATE NOT NULL ENABLE,
 "BADGE_NO" NUMBER(6,0),
 "EXEMPT" VARCHAR2(1) NOT NULL ENABLE,
 "SALARY" NUMBER(9,2),
 "HOURLY_RATE" NUMBER(7,2),

Chapter 26
Example Usage of the DBMS_METADATA API

26-31

 PRIMARY KEY ("BADGE_NO") ENABLE
) ;

 GRANT UPDATE ("SALARY") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
 GRANT UPDATE ("HOURLY_RATE") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
 GRANT ALTER ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT DELETE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INDEX ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INSERT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT SELECT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT UPDATE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT REFERENCES ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;

 CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_DOB" ON "MDDEMO"."PAYROLL_EMPS" ("DOB")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

 CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_NAME" ON "MDDEMO"."PAYROLL_EMPS" ("LASTNAME")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

 CREATE OR REPLACE TRIGGER hourly_trigger before update of hourly_rate on payroll_emps
for each row
begin :new.hourly_rate:=:old.hourly_rate;end;
/
ALTER TRIGGER "MDDEMO"."HOURLY_TRIGGER" ENABLE;

 CREATE OR REPLACE TRIGGER salary_trigger before insert or update of salary on payroll_emps
for each row
WHEN (new.salary > 150000) CALL check_sal(:new.salary)
/
ALTER TRIGGER "MDDEMO"."SALARY_TRIGGER" ENABLE;

CREATE TABLE "MDDEMO"."PAYROLL_TIMECARDS"
 ("BADGE_NO" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" NUMBER(5,0),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("BADGE_NO")
 REFERENCES "MDDEMO"."PAYROLL_EMPS" ("BADGE_NO") ENABLE
) ;

 GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
 GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
 GRANT ALTER ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT DELETE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INDEX ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT SELECT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT REFERENCES ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;

 CREATE INDEX "MDDEMO"."I_PAYROLL_TIMECARDS_BADGE" ON "MDDEMO"."PAYROLL_TIMECARDS" ("BADGE_NO")

Chapter 26
Example Usage of the DBMS_METADATA API

26-32

 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

26.10 Summary of DBMS_METADATA Procedures
Provides brief descriptions of the procedures provided by the DBMS_METADATA API.

For detailed descriptions of these procedures, see Oracle Database PL/SQL Packages and
Types Reference.

The following table provides a brief description of the procedures provided by the
DBMS_METADATA programmatic interface for retrieving multiple objects.

Table 26-1 DBMS_METADATA Procedures Used for Retrieving Multiple Objects

PL/SQL Procedure Name Description

DBMS_METADATA.OPEN() Specifies the type of object to be retrieved, the version of its
metadata, and the object model.

DBMS_METADATA.SET_FILTER() Specifies restrictions on the objects to be retrieved, for example,
the object name or schema.

DBMS_METADATA.SET_COUNT() Specifies the maximum number of objects to be retrieved in a single
FETCH_xxx call.

DBMS_METADATA.GET_QUERY() Returns the text of the queries that are used by FETCH_xxx. You
can use this as a debugging aid.

DBMS_METADATA.SET_PARSE_ITEM() Enables output parsing by specifying an object attribute to be
parsed and returned. You can query the
DBMS_METADATA_PARSE_ITEMS to see all valid parse items.

DBMS_METADATA.ADD_TRANSFORM() Specifies a transform that FETCH_xxx applies to the XML
representation of the retrieved objects. You can query the
DBMS_METADATA_TRANSFORMS view to see all valid Oracle-supplied
transforms.

DBMS_METADATA.SET_TRANSFORM_PARAM() Specifies parameters to the XSLT stylesheet identified by
transform_handle. You can query the
DBMS_METADATA_TRANSFORM_PARAMS view to see all the valid
transform parameters for each transform.

DBMS_METADATA.SET_REMAP_PARAM() Specifies parameters to the XSLT stylesheet identified by
transform_handle.

DBMS_METADATA.FETCH_xxx() Returns metadata for objects meeting the criteria established by
OPEN, SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on.

DBMS_METADATA.CLOSE() Invalidates the handle returned by OPEN and cleans up the
associated state.

The following table lists the procedures provided by the DBMS_METADATA browsing interface
and provides a brief description of each one. These functions return metadata for one or
more dependent or granted objects. These procedures do not support heterogeneous object
types.

Chapter 26
Summary of DBMS_METADATA Procedures

26-33

Table 26-2 DBMS_METADATA Procedures Used for the Browsing Interface

PL/SQL Procedure
Name

Description

DBMS_METADATA.GET_x
xx()

Provides a way to return metadata for a single object. Each GET_xxx
call consists of an OPEN procedure, one or two SET_FILTER calls,
optionally an ADD_TRANSFORM procedure, a FETCH_xxx call, and a
CLOSE procedure.

The object_type parameter has the same semantics as in the OPEN
procedure. schema and name are used for filtering.

If a transform is specified, then session-level transform flags are
inherited.

DBMS_METADATA.GET_D
EPENDENT_xxx()

Returns the metadata for one or more dependent objects, specified as
XML or DDL.

DBMS_METADATA.GET_G
RANTED_xxx()

Returns the metadata for one or more granted objects, specified as
XML or DDL.

The following table provides a brief description of the DBMS_METADATA procedures and
functions used for XML submission.

Table 26-3 DBMS_METADATA Procedures and Functions for Submitting XML
Data

PL/SQL Name Description

DBMS_METADATA.OPENW() Opens a write context.

DBMS_METADATA.ADD_TRANSFORM(
)

Specifies a transform for the XML documents

DBMS_METADATA.SET_TRANSFORM_
PARAM() and
DBMS_METADATA.SET_REMAP_PARA
M()

SET_TRANSFORM_PARAM specifies a parameter to a
transform.

SET_REMAP_PARAM specifies a remapping for a transform.

DBMS_METADATA.SET_PARSE_ITE
M()

Specifies an object attribute to be parsed.

DBMS_METADATA.CONVERT() Converts an XML document to DDL.

DBMS_METADATA.PUT() Submits an XML document to the database.

DBMS_METADATA.CLOSE() Closes the context opened with OPENW.

Chapter 26
Summary of DBMS_METADATA Procedures

26-34

26.11 Summary of DBMS_METADATA_DIFF Procedures
Provides brief descriptions of the procedures and functions provided by the
DBMS_METADATA_DIFF API.

For detailed descriptions of these procedures, see Oracle Database PL/SQL Packages and
Types Reference.

Table 26-4 DBMS_METADATA_DIFF Procedures and Functions

PL/SQL Procedure Name Description

OPENC function Specifies the type of objects to be compared.

ADD_DOCUMENT procedure Specifies an SXML document to be compared.

FETCH_CLOB functions and procedures Returns a CLOB showing the differences between the two
documents specified by ADD_DOCUMENT.

CLOSE procedure Invalidates the handle returned by OPENC and cleans up associated
state.

Chapter 26
Summary of DBMS_METADATA_DIFF Procedures

26-35

27
Original Import

The original Import utility (imp) imports dump files that were created using the original Export
utility (exp).

The original Export utility is desupported.

• What Is the Import Utility?
The original Import utility (imp) read object definitions and table data from dump files
created by the original Export utility (exp).

• Table Objects: Order of Import
Table objects are imported as they are read from the export dump file.

• Before Using Import
Learn what you should do before using the original import tool.

• Importing into Existing Tables
These sections describe factors to consider when you import data into existing tables.

• Effect of Schema and Database Triggers on Import Operations
Triggers that are defined to trigger on DDL events for a specific schema or on DDL-
related events for the database, are system triggers.

• Invoking Import
To start the original Import utility and specify parameters, use one of three different
methods.

• Import Modes
The Import utility supports four modes of operation.

• Import Parameters
These sections contain descriptions of the Import command-line parameters.

• Example Import Sessions
These sections give some examples of import sessions that show you how to use the
parameter file and command-line methods.

• Exit Codes for Inspection and Display
Import provides the results of an operation immediately upon completion. Depending on
the platform, the outcome may be reported in a process exit code and the results
recorded in the log file.

• Error Handling During an Import
These sections describe errors that can occur when you import database objects.

• Table-Level and Partition-Level Import
You can import tables, partitions, and subpartitions.

• Controlling Index Creation and Maintenance
These sections describe the behavior of Import with respect to index creation and
maintenance.

• Network Considerations for Using Oracle Net with Original Import
To perform imports over a network, you can use the Oracle Data Pump original Import
utility (imp) with Oracle Net.

27-1

• Character Set and Globalization Support Considerations
These sections describe the globalization support behavior of Import with respect
to character set conversion of user data and data definition language (DDL).

• Using Instance Affinity
You can use instance affinity to associate jobs with instances in databases you
plan to export and import.

• Considerations When Importing Database Objects
These sections describe restrictions and points you should consider when you
import particular database objects.

• Support for Fine-Grained Access Control
To restore the fine-grained access control policies, the user who imports from an
export file containing such tables must have the EXECUTE privilege on the DBMS_RLS
package, so that the security policies on the tables can be reinstated.

• Snapshots and Snapshot Logs
In certain situations, particularly those involving data warehousing, snapshots may
be referred to as materialized views. These sections retain the term snapshot.

• Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces
from one Oracle database to another.

• Storage Parameters
By default, a table is imported into its original tablespace.

• Read-Only Tablespaces
Read-only tablespaces can be exported. On import, if the tablespace does not
already exist in the target database, then the tablespace is created as a read/write
tablespace.

• Dropping a Tablespace
You can drop a tablespace by redefining the objects to use different tablespaces
before the import. You can then issue the imp command and specify IGNORE=y.

• Reorganizing Tablespaces
If a user's quota allows it, the user's tables are imported into the same tablespace
from which they were exported.

• Importing Statistics
If statistics are requested at export time and analyzer statistics are available for a
table, then Export will include the ANALYZE statement used to recalculate the
statistics for the table into the dump file.

• Using Export and Import to Partition a Database Migration
When you use the Export and Import utilities to migrate a large database, it may
be more efficient to partition the migration into multiple export and import jobs.

• Tuning Considerations for Import Operations
These sections discuss some ways to improve the performance of an import
operation.

• Using Different Releases of Export and Import
These sections describe compatibility issues that relate to using different releases
of Export and the Oracle database.

Chapter 27

27-2

27.1 What Is the Import Utility?
The original Import utility (imp) read object definitions and table data from dump files created
by the original Export utility (exp).

Note:

Original Export is desupported for general use as of Oracle Database 11g. The only
supported use of original Export in Oracle Database 11g and later releases is
backward migration of XMLType data to Oracle Database 10g Release 2 (10.2) or
earlier. Oracle strongly recommends that you use the new Oracle Data Pump
Export and Import utilities. The only exception to this guidelines is in the following
situations, which require original Export and Import:

• You want to import files that were created using the original Export utility (exp).

• You want to export files that must be imported using the original Import utility
(imp). An example of this would be exporting data from Oracle Database 10g
and then importing it into an earlier database release.

If you use original Import, then the following conditions must be true:

• The dump file is in an Oracle binary-format that can be read only by original Import.

• The version of the Import utility cannot be earlier than the version of the Export utility
used to create the dump file.

27.2 Table Objects: Order of Import
Table objects are imported as they are read from the export dump file.

The dump file contains objects in the following order:

1. Type definitions

2. Table definitions

3. Table data

4. Table indexes

5. Integrity constraints, views, procedures, and triggers

6. Bitmap, function-based, and domain indexes

The order of import is as follows: new tables are created, data is imported and indexes are
built, triggers are imported, integrity constraints are enabled on the new tables, and any
bitmap, function-based, and/or domain indexes are built. This sequence prevents data from
being rejected due to the order in which tables are imported. This sequence also prevents
redundant triggers from firing twice on the same data (once when it is originally inserted and
again during the import).

Chapter 27
What Is the Import Utility?

27-3

27.3 Before Using Import
Learn what you should do before using the original import tool.

• Overview of Import Preparation
To prepare for the import, check to make sure you have run scripts as required,
and have access privileges

• Running catexp.sql or catalog.sql
To use Import, you must run the script catexp.sql or catalog.sql (which runs
catexp.sql) after the database has been created or migrated to a newer version.

• Verifying Access Privileges for Import Operations
To use Import, you must have the CREATE SESSION privilege on an Oracle
database. This privilege belongs to the CONNECT role established during database
creation.

• Processing Restrictions
Restrictions apply when you process data with the Import utility.

27.3.1 Overview of Import Preparation
To prepare for the import, check to make sure you have run scripts as required, and
have access privileges

Before you begin using Import, be sure you take care of the following items

• If you created your database manually, ensure that the catexp.sql or
catalog.sql script has been run. If you created your database using the Database
Configuration Assistant (DBCA), it is not necessary to run these scripts.

• Verify that you have the required access privileges.

27.3.2 Running catexp.sql or catalog.sql
To use Import, you must run the script catexp.sql or catalog.sql (which runs
catexp.sql) after the database has been created or migrated to a newer version.

The catexp.sql or catalog.sql script needs to be run only once on a database. The
script performs the following tasks to prepare the database for export and import
operations:

• Creates the necessary import views in the data dictionary

• Creates the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles

• Assigns all necessary privileges to the EXP_FULL_DATABASE and
IMP_FULL_DATABASE roles

• Assigns EXP_FULL_DATABASE and IMP_FULL_DATABASE to the DBA role

• Records the version of catexp.sql that has been installed

27.3.3 Verifying Access Privileges for Import Operations
To use Import, you must have the CREATE SESSION privilege on an Oracle database.
This privilege belongs to the CONNECT role established during database creation.

Chapter 27
Before Using Import

27-4

You can perform an import operation even if you did not create the export file. However, keep
in mind that if the export file was created by a user with the EXP_FULL_DATABASE role, then
you must have the IMP_FULL_DATABASE role to import it. Both of these roles are typically
assigned to database administrators (DBAs).

• Importing Objects Into Your Own Schema
To import objects into your own schema, check the privileges required for each object.

• Importing Grants
To import the privileges that a user has granted to others, the user initiating the import
must either own the objects, or have object privileges with the option WITH GRANT OPTION.

• Importing Objects Into Other Schemas
To import objects into another user's schema, you must have the IMP_FULL_DATABASE role
enabled.

• Importing System Objects
To import system objects from a full database export file, the IMP_FULL_DATABASE role
must be enabled.

27.3.3.1 Importing Objects Into Your Own Schema
To import objects into your own schema, check the privileges required for each object.

The following table lists the privileges required to import objects into your own schema. All of
these privileges initially belong to the RESOURCE role.

Table 27-1 Privileges Required to Import Objects into Your Own Schema

Object Required Privilege (Privilege Type, If Applicable)

Clusters CREATE CLUSTER (System) or UNLIMITED TABLESPACE (System).
The user must also be assigned a tablespace quota.

Database links CREATE DATABASE LINK (System) and CREATE SESSION (System)
on remote database

Triggers on tables CREATE TRIGGER (System)

Triggers on schemas CREATE ANY TRIGGER (System)

Indexes CREATE INDEX (System) or UNLIMITED TABLESPACE (System). The
user must also be assigned a tablespace quota.

Integrity constraints ALTER TABLE (Object)

Libraries CREATE ANY LIBRARY (System)

Packages CREATE PROCEDURE (System)

Private synonyms CREATE SYNONYM (System)

Sequences CREATE SEQUENCE (System)

Snapshots CREATE SNAPSHOT (System)

Stored functions CREATE PROCEDURE (System)

Stored procedures CREATE PROCEDURE (System)

Table data INSERT TABLE (Object)

Table definitions (including
comments and audit options)

CREATE TABLE (System) or UNLIMITED TABLESPACE (System). The
user must also be assigned a tablespace quota.

Chapter 27
Before Using Import

27-5

Table 27-1 (Cont.) Privileges Required to Import Objects into Your Own Schema

Object Required Privilege (Privilege Type, If Applicable)

Views CREATE VIEW (System) and SELECT (Object) on the base table, or
SELECT ANY TABLE (System)

Object types CREATE TYPE (System)

Foreign function libraries CREATE LIBRARY (System)

Dimensions CREATE DIMENSION (System)

Operators CREATE OPERATOR (System)

Indextypes CREATE INDEXTYPE (System)

27.3.3.2 Importing Grants
To import the privileges that a user has granted to others, the user initiating the import
must either own the objects, or have object privileges with the option WITH GRANT
OPTION.

The following table shows the required conditions for the authorizations to be valid on
the target system.

Table 27-2 Privileges Required to Import Grants

Grant Conditions

Object privileges Either the object must exist in the user's schema, or

the user must have the object privileges with the WITH GRANT
OPTION or,

the user must have the IMP_FULL_DATABASE role enabled.

System privileges Users must have the SYSTEM privilege and also the WITH ADMIN
OPTION.

27.3.3.3 Importing Objects Into Other Schemas
To import objects into another user's schema, you must have the IMP_FULL_DATABASE
role enabled.

27.3.3.4 Importing System Objects
To import system objects from a full database export file, the IMP_FULL_DATABASE role
must be enabled.

The parameter FULL specifies that the following system objects are included in the
import:

• Profiles

• Public database links

• Public synonyms

• Roles

Chapter 27
Before Using Import

27-6

• Rollback segment definitions

• Resource costs

• Foreign function libraries

• Context objects

• System procedural objects

• System audit options

• System privileges

• Tablespace definitions

• Tablespace quotas

• User definitions

• Directory aliases

• System event triggers

27.3.4 Processing Restrictions
Restrictions apply when you process data with the Import utility.

Specifically:

• When a type definition has evolved and data referencing that evolved type is exported,
the type definition on the import system must have evolved in the same manner.

• The table compression attribute of tables and partitions is preserved during export and
import. However, the import process does not use the direct path API, hence the data will
not be stored in the compressed format when imported.

27.4 Importing into Existing Tables
These sections describe factors to consider when you import data into existing tables.

• Manually Creating Tables Before Importing Data
You can manually create tables before importing data.

• Disabling Referential Constraints
Describes how to disable referential constraints.

• Manually Ordering the Import
Describes manually ordering the import.

27.4.1 Manually Creating Tables Before Importing Data
You can manually create tables before importing data.

When you choose to create tables manually before importing data into them from an export
file, you should use either the same table definition previously used or a compatible format.
For example, although you can increase the width of columns and change their order, you
cannot do the following:

• Add NOT NULL columns

Chapter 27
Importing into Existing Tables

27-7

• Change the data type of a column to an incompatible data type (LONG to NUMBER,
for example)

• Change the definition of object types used in a table

• Change DEFAULT column values

Note:

When tables are manually created before data is imported, the CREATE
TABLE statement in the export dump file will fail because the table already
exists. To avoid this failure and continue loading data into the table, set
the Import parameter IGNORE=y. Otherwise, no data will be loaded into
the table because of the table creation error.

27.4.2 Disabling Referential Constraints
Describes how to disable referential constraints.

In the normal import order, referential constraints are imported only after all tables are
imported. This sequence prevents errors that could occur if a referential integrity
constraint exists for data that has not yet been imported.

These errors can still occur when data is loaded into existing tables. For example, if
table emp has a referential integrity constraint on the mgr column that verifies that the
manager number exists in emp, then a legitimate employee row might fail the
referential integrity constraint if the manager's row has not yet been imported.

When such an error occurs, Import generates an error message, bypasses the failed
row, and continues importing other rows in the table. You can disable constraints
manually to avoid this.

Referential constraints between tables can also cause problems. For example, if the
emp table appears before the dept table in the export dump file, but a referential check
exists from the emp table into the dept table, then some of the rows from the emp table
may not be imported due to a referential constraint violation.

To prevent errors like these, you should disable referential integrity constraints when
importing data into existing tables.

27.4.3 Manually Ordering the Import
Describes manually ordering the import.

When the constraints are reenabled after importing, the entire table is checked, which
may take a long time for a large table. If the time required for that check is too long,
then it may be beneficial to order the import manually.

To do so, perform several imports from an export file instead of one. First, import
tables that are the targets of referential checks. Then, import the tables that reference
them. This option works if tables do not reference each other in a circular fashion, and
if a table does not reference itself.

Chapter 27
Importing into Existing Tables

27-8

27.5 Effect of Schema and Database Triggers on Import
Operations

Triggers that are defined to trigger on DDL events for a specific schema or on DDL-related
events for the database, are system triggers.

These triggers can have detrimental effects on certain import operations. For example, they
can prevent successful re-creation of database objects, such as tables. This causes errors to
be returned that give no indication that a trigger caused the problem.

Database administrators and anyone creating system triggers should verify that such triggers
do not prevent users from performing database operations for which they are authorized. To
test a system trigger, take the following steps:

1. Define the trigger.

2. Create some database objects.

3. Export the objects in table or user mode.

4. Delete the objects.

5. Import the objects.

6. Verify that the objects have been successfully re-created.

Note:

A full export does not export triggers owned by schema SYS. You must manually
re-create SYS triggers either before or after the full import. Oracle recommends
that you re-create them after the import in case they define actions that would
impede progress of the import.

27.6 Invoking Import
To start the original Import utility and specify parameters, use one of three different methods.

The three methods you have to start the original Import utility are:

• Command-line entries

• Parameter files

• Interactive mode

Before you use one of these methods, be sure to read the descriptions of the available
parameters.

• Command-Line Entries
You can specify all valid parameters and their values from the command line.

• Parameter Files
You can specify all valid parameters and their values in a parameter file.

Chapter 27
Effect of Schema and Database Triggers on Import Operations

27-9

• Interactive Mode
If you prefer to be prompted for the value of each parameter, then you can simply
specify imp at the command line.

• Invoking Import As SYSDBA
Starting the original Import utility as SYSDBA is a specialized procedure, which
should only be done under specific scenarios.

• Getting Online Help
Import provides online help. Enter imp help=y to display Import help.

Related Topics

• Import Parameters
These sections contain descriptions of the Import command-line parameters.

27.6.1 Command-Line Entries
You can specify all valid parameters and their values from the command line.

Use the following syntax (you will then be prompted for a username and password):

imp PARAMETER=value

or

imp PARAMETER=(value1,value2,...,valuen)

The number of parameters cannot exceed the maximum length of a command line on
the system.

27.6.2 Parameter Files
You can specify all valid parameters and their values in a parameter file.

Storing the parameters in a file allows them to be easily modified or reused. If you use
different parameters for different databases, then you can have multiple parameter
files.

Create the parameter file using any flat file text editor. The command-line option
PARFILE=filename tells Import to read the parameters from the specified file rather
than from the command line. For example:

The syntax for parameter file specifications can be any of the following:

PARAMETER=value
PARAMETER=(value)
PARAMETER=(value1, value2, ...)

The following example shows a partial parameter file listing:

FULL=y
FILE=dba.dmp
GRANTS=y
INDEXES=y
CONSISTENT=y

Chapter 27
Invoking Import

27-10

Note:

The maximum size of the parameter file may be limited by the operating system.
The name of the parameter file is subject to the file-naming conventions of the
operating system.

You can add comments to the parameter file by preceding them with the pound (#) sign.
Import ignores all characters to the right of the pound (#) sign.

You can specify a parameter file at the same time that you are entering parameters on the
command line. In fact, you can specify the same parameter in both places. The position of
the PARFILE parameter and other parameters on the command line determines which
parameters take precedence. For example, assume the parameter file params.dat contains
the parameter INDEXES=y and Import is started with the following line:

imp PARFILE=params.dat INDEXES=n

In this case, because INDEXES=n occurs after PARFILE=params.dat, INDEXES=n overrides the
value of the INDEXES parameter in the parameter file.

See Also:

• Import Parameters

• Network Considerations for information about how to specify an export from a
remote database

27.6.3 Interactive Mode
If you prefer to be prompted for the value of each parameter, then you can simply specify imp
at the command line.

You will be prompted for a username and password.

Commonly used parameters are then displayed. You can accept the default value, if one is
provided, or enter a different value. The command-line interactive method does not provide
prompts for all functionality and is provided only for backward compatibility.

27.6.4 Invoking Import As SYSDBA
Starting the original Import utility as SYSDBA is a specialized procedure, which should only be
done under specific scenarios.

SYSDBA is used internally, and has specialized functions; its behavior is not the same as for
generalized users. For this reason, you should not typically need to start Import as SYSDBA,
except in the following situations:

• At the request of Oracle technical support

• When importing a transportable tablespace set

Chapter 27
Invoking Import

27-11

27.6.5 Getting Online Help
Import provides online help. Enter imp help=y to display Import help.

27.7 Import Modes
The Import utility supports four modes of operation.

Specifically:

• Full: Imports a full database. Only users with the IMP_FULL_DATABASE role can use
this mode. Use the FULL parameter to specify this mode.

• Tablespace: Enables a privileged user to move a set of tablespaces from one
Oracle database to another. Use the TRANSPORT_TABLESPACE parameter to specify
this mode.

• User: Enables you to import all objects that belong to you (such as tables, grants,
indexes, and procedures). A privileged user importing in user mode can import all
objects in the schemas of a specified set of users. Use the FROMUSER parameter to
specify this mode.

• Table: Enables you to import specific tables and partitions. A privileged user can
qualify the tables by specifying the schema that contains them. Use the TABLES
parameter to specify this mode.

Note:

When you use table mode to import tables that have columns of type
ANYDATA, you may receive the following error:

ORA-22370: Incorrect usage of method. Nonexistent type.

This indicates that the ANYDATA column depends on other types that are
not present in the database. You must manually create dependent types
in the target database before you use table mode to import tables that
use the ANYDATA type.

A user with the IMP_FULL_DATABASE role must specify one of these modes. Otherwise,
an error results. If a user without the IMP_FULL_DATABASE role fails to specify one of
these modes, then a user-level Import is performed.

Chapter 27
Import Modes

27-12

Note:

As of Oracle Database 12c release 2 (12.2) the import utility (imp), for security
reasons, will no longer import objects as user SYS. If a dump file contains objects
that need to be re-created as user SYS, then the imp utility tries to re-create them as
user SYSTEM instead. If the object cannot be re-created by user SYSTEM, then you
must manually re-create the object yourself after the import is completed.

If the import job is run by a user with the DBA role, and not all objects can be re-
created by user SYSTEM, then the following warning message is written to the log
file:

IMP-00403:
Warning: This import generated a separate SQL file "logfilename_sys"
which contains DDL that failed due to a privilege issue.

The SQL file that is generated contains the failed DDL of objects that could not be
re-created by user SYSTEM. To re-create those objects, you must manually execute
the failed DDL after the import finishes.

The SQL file is automatically named by appending '_sys.sql' to the file name
specified for the LOG parameter. For example, if the log file name was JulyImport,
then the SQL file name would be JulyImport_sys.sql.

If no log file was specified, then the default name of the SQL file is import_sys.sql.

Note: Not all import jobs generate a SQL file; only those jobs run as user DBA.

The following table lists the objects that are imported in each mode.

Table 27-3 Objects Imported in Each Mode

Object Table Mode User Mode Full Database
Mode

Tablespace
Mode

Analyze cluster No Yes Yes No

Analyze tables/statistics Yes Yes Yes Yes

Application contexts No No Yes No

Auditing information Yes Yes Yes No

B-tree, bitmap, domain
function-based indexes

Yes1 Yes Yes Yes

Cluster definitions No Yes Yes Yes

Column and table
comments

Yes Yes Yes Yes

Database links No Yes Yes No

Default roles No No Yes No

Dimensions No Yes Yes No

Directory aliases No No Yes No

Chapter 27
Import Modes

27-13

Table 27-3 (Cont.) Objects Imported in Each Mode

Object Table Mode User Mode Full Database
Mode

Tablespace
Mode

External tables (without
data)

Yes Yes Yes No

Foreign function libraries No Yes Yes No

Indexes owned by users
other than table owner

Yes (Privileged
users only)

Yes Yes Yes

Index types No Yes Yes No

Java resources and
classes

No Yes Yes No

Job queues No Yes Yes No

Nested table data Yes Yes Yes Yes

Object grants Yes (Only for
tables and
indexes)

Yes Yes Yes

Object type definitions
used by table

Yes Yes Yes Yes

Object types No Yes Yes No

Operators No Yes Yes No

Password history No No Yes No

Postinstance actions and
objects

No No Yes No

Postschema procedural
actions and objects

No Yes Yes No

Posttable actions Yes Yes Yes Yes

Posttable procedural
actions and objects

Yes Yes Yes Yes

Preschema procedural
objects and actions

No Yes Yes No

Pretable actions Yes Yes Yes Yes

Pretable procedural actions Yes Yes Yes Yes

Private synonyms No Yes Yes No

Procedural objects No Yes Yes No

Profiles No No Yes No

Public synonyms No No Yes No

Referential integrity
constraints

Yes Yes Yes No

Refresh groups No Yes Yes No

Resource costs No No Yes No

Role grants No No Yes No

Roles No No Yes No

Rollback segment
definitions

No No Yes No

Chapter 27
Import Modes

27-14

Table 27-3 (Cont.) Objects Imported in Each Mode

Object Table Mode User Mode Full Database
Mode

Tablespace
Mode

Security policies for table Yes Yes Yes Yes

Sequence numbers No Yes Yes No

Snapshot logs No Yes Yes No

Snapshots and
materialized views

No Yes Yes No

System privilege grants No No Yes No

Table constraints (primary,
unique, check)

Yes Yes Yes Yes

Table data Yes Yes Yes Yes

Table definitions Yes Yes Yes Yes

Tablespace definitions No No Yes No

Tablespace quotas No No Yes No

Triggers Yes Yes2 Yes3 Yes

Triggers owned by other
users

Yes (Privileged
users only)

No No No

User definitions No No Yes No

User proxies No No Yes No

User views No Yes Yes No

User-stored procedures,
packages, and functions

No Yes Yes No

1 Nonprivileged users can export and import only indexes they own on tables they own. They cannot export indexes
they own that are on tables owned by other users, nor can they export indexes owned by other users on their own
tables. Privileged users can export and import indexes on the specified users' tables, even if the indexes are
owned by other users. Indexes owned by the specified user on other users' tables are not included, unless those
other users are included in the list of users to export.

2 Nonprivileged and privileged users can export and import all triggers owned by the user, even if they are on tables
owned by other users.

3 A full export does not export triggers owned by schema SYS. You must manually re-create SYS triggers either
before or after the full import. Oracle recommends that you re-create them after the import in case they define
actions that would impede progress of the import.

27.8 Import Parameters
These sections contain descriptions of the Import command-line parameters.

• BUFFER
The BUFFER import parameter defines the size, in bytes, of the buffer through which data
rows are transferred

• COMMIT
The COMMIT import parameter specifies whether Import performs a commit after each
array insert

• COMPILE
The COMPILE Import parameter specifies whether Import compiles packages, procedures,
and functions as they are created.

Chapter 27
Import Parameters

27-15

• CONSTRAINTS
The CONSTRAINTS Import parameter specifies whether table constraints are
imported.

• DATA_ONLY
The DATA_ONLY Import parameter imports only data from a dump file.

• DATAFILES
The DATAFILES Import parameter lists the data files that you want to transport into
the database.

• DESTROY
The DESTROY Import parameter specifies whether the existing data files making up
the database should be reused.

• FEEDBACK
The FEEDBACK Import utility parameter specifies that Import should display a
progress meter in the form of a period for n number of rows imported.

• FILE
The FILE Import utility parameter specifies the names of the export files to import.

• FILESIZE
The FILESIZE Import utility parameter lets you specify the same maximum dump
file size that you specified on export.

• FROMUSER
The FROMUSER parameter of the Import utility enables you to import a subset of
schemas from an export file containing multiple schemas.

• FULL
The FULL Import utility parameter specifies whether to import the entire export
dump file.

• GRANTS
Specifies whether to import object grants.

• HELP
The HELP parameter of Import utility displays a description of the Import
parameters.

• IGNORE
The IGNORE Import utility parameter specifies how object creation errors should
be handled.

• INDEXES
Indexes import parameter specifies whether to import indexes.

• INDEXFILE
INDEXFILE parameter of Import utility specifies a file to receive index-creation
statements.

• LOG
Specifies a file (for example, import.log) to receive informational and error
messages.

• PARFILE
Specifies a file name for a file that contains a list of Import parameters.

• RECORDLENGTH
Specifies the length, in bytes, of the file record.

Chapter 27
Import Parameters

27-16

• RESUMABLE
The RESUMABLE parameter is used to enable and disable resumable space allocation.

• RESUMABLE_NAME
The value for the RESUMABLE_NAME parameter identifies the statement that is resumable.

• RESUMABLE_TIMEOUT
The value of the RESUMABLE_TIMEOUT parameter specifies the time period during which an
error must be fixed.

• ROWS
Specifies whether to import the rows of table data.

• SHOW
Lists the contents of the export file before importing.

• SKIP_UNUSABLE_INDEXES
Both Import and the Oracle database provide a SKIP_UNUSABLE_INDEXES parameter.

• STATISTICS
Specifies what is done with the database optimizer statistics at import time.

• STREAMS_CONFIGURATION
Specifies whether to import any general GoldenGate Replication metadata that may be
present in the export dump file.

• STREAMS_INSTANTIATION
Specifies whether to import Streams instantiation metadata that may be present in the
export dump file.

• TABLES

• TABLESPACES
The TABLESPACES parameter for the Import utility.

• TOID_NOVALIDATE
Use the TOID_NOVALIDATE parameter to specify types to exclude from TOID comparison.

• TOUSER
Specifies a list of user names whose schemas will be targets for Import.

• TRANSPORT_TABLESPACE
When specified as y, instructs Import to import transportable tablespace metadata from
an export file.

• TTS_OWNERS
When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the users who
own the data in the transportable tablespace set.

• USERID (username/password)
Specifies the username, password, and an optional connect string of the user performing
the import.

• VOLSIZE
Specifies the maximum number of bytes in a dump file on each volume of tape.

Chapter 27
Import Parameters

27-17

27.8.1 BUFFER
The BUFFER import parameter defines the size, in bytes, of the buffer through which
data rows are transferred

Default

Operating system-dependent

Description

The integer specified for BUFFER is the size, in bytes, of the buffer through which data
rows are transferred.

BUFFER determines the number of rows in the array inserted by Import. The following
formula gives an approximation of the buffer size that inserts a given array of rows:

buffer_size = rows_in_array * maximum_row_size

That is, the buffer size is equal to the rows in the array multiplied by the maximum row
size.

For tables containing LOBs, LONG, BFILE, REF, ROWID, UROWID, or TIMESTAMP columns,
rows are inserted individually. The size of the buffer must be large enough to contain
the entire row, except for LOB and LONG columns. If the buffer cannot hold the longest
row in a table, then Import attempts to allocate a larger buffer.

For DATE columns, two or more rows are inserted at once if the buffer is large enough.

Note:

See your Oracle operating system-specific documentation to determine the
default value for this parameter.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW)
were deprecated in Oracle8i Release 8.1.6. For succeeding releases, the
LONG data type was provided for backward compatibility with existing
applications. In new applications developed with later releases, Oracle
strongly recommends that you use CLOB and NCLOB data types for large
amounts of character data.

27.8.2 COMMIT
The COMMIT import parameter specifies whether Import performs a commit after each
array insert

Default

n

Chapter 27
Import Parameters

27-18

Purpose

Specifies whether Import should commit after each array insert. By default, Import commits
only after loading each table, and Import performs a rollback when an error occurs, before
continuing with the next object.

If a table has nested table columns or attributes, then the contents of the nested tables are
imported as separate tables. Therefore, the contents of the nested tables are always
committed in a transaction distinct from the transaction used to commit the outer table.

If COMMIT=n, and a table is partitioned, then each partition and subpartition in the Export file is
imported in a separate transaction.

For tables containing LOBs, LONG, BFILE, REF, ROWID, UROWID, or TIMESTAMP columns, array
inserts are not done. If COMMIT=y, then Import commits these tables after each row.

Note:

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new
applications developed with later releases, Oracle strongly recommends that you
use CLOB and NCLOB data types for large amounts of character data.

27.8.3 COMPILE
The COMPILE Import parameter specifies whether Import compiles packages, procedures, and
functions as they are created.

Default

y

Purpose

Specifies whether Import compiles packages, procedures, and functions as they are created.

If COMPILE=n, then these units are compiled on their first use. For example, packages that are
used to build domain indexes are compiled when the domain indexes are created.

Related Topics

• Importing Stored Procedures, Functions, and Packages
The behavior of Import when a local stored procedure, function, or package is imported
depends upon whether the COMPILE parameter is set to y or ton.

27.8.4 CONSTRAINTS
The CONSTRAINTS Import parameter specifies whether table constraints are imported.

Default

y

Chapter 27
Import Parameters

27-19

Purpose

Specifies whether table constraints are imported. The default is to import constraints
(y). If you do not want constraints to be imported, then you must set the parameter
value to n.
Note that primary key constraints for index-organized tables (IOTs) and object tables
are always imported.

27.8.5 DATA_ONLY
The DATA_ONLY Import parameter imports only data from a dump file.

Default

n

Purpose

To import only data (no metadata) from a dump file, specify DATA_ONLY=y.

When you specify DATA_ONLY=y, any import parameters related to metadata that are
entered on the command line (or in a parameter file) become invalid. This means that
no metadata from the dump file will be imported.

The metadata-related parameters are the following: COMPILE, CONSTRAINTS, DATAFILES,
DESTROY, GRANTS, IGNORE, INDEXES, INDEXFILE, ROWS=n, SHOW, SKIP_UNUSABLE_INDEXES,
STATISTICS, STREAMS_CONFIGURATION, STREAMS_INSTANTIATION, TABLESPACES,
TOID_NOVALIDATE, TRANSPORT_TABLESPACE, TTS_OWNERS.

27.8.6 DATAFILES
The DATAFILES Import parameter lists the data files that you want to transport into the
database.

Default

None.

Purpose

When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the data files
that you want to be transported into the database.

Related Topics

• TRANSPORT_TABLESPACE
When specified as y, instructs Import to import transportable tablespace metadata
from an export file.

Chapter 27
Import Parameters

27-20

27.8.7 DESTROY
The DESTROY Import parameter specifies whether the existing data files making up the
database should be reused.

Default

n

Specifies whether the existing data files making up the database should be reused. That is,
specifying DESTROY=y causes Import to include the REUSE option in the data file clause of the
SQL CREATE TABLESPACE statement, which causes Import to reuse the original database's
data files after deleting their contents.

Note that the export file contains the data file names used in each tablespace. If you specify
DESTROY=y and attempt to create a second database on the same system (for testing or other
purposes), then the Import utility will overwrite the first database's data files when it creates
the tablespace. In this situation you should use the default, DESTROY=n, so that an error
occurs if the data files already exist when the tablespace is created. Also, when you need to
import into the original database, you will need to specify IGNORE=y to add to the existing data
files without replacing them.

Note:

If data files are stored on a raw device, then DESTROY=n does not prevent files from
being overwritten.

27.8.8 FEEDBACK
The FEEDBACK Import utility parameter specifies that Import should display a progress meter in
the form of a period for n number of rows imported.

Default: 0 (zero)

Specifies that Import should display a progress meter in the form of a period for n number of
rows imported. For example, if you specify FEEDBACK=10, then Import displays a period each
time 10 rows have been imported. The FEEDBACK value applies to all tables being imported; it
cannot be individually set for each table.

27.8.9 FILE
The FILE Import utility parameter specifies the names of the export files to import.

Default: expdat.dmp

Description

Specifies the names of the export files to import. The default extension is .dmp. Because
Export supports multiple export files, it can be necessary to specify multiple file names that
you want to be imported.

Chapter 27
Import Parameters

27-21

You do not need to be the user that exported the export files. However, you must have
read access to the files. If you did not export the files under your user ID, then you
must also have the IMP_FULL_DATABASE role granted to you.

Example

imp scott IGNORE=y FILE = dat1.dmp, dat2.dmp, dat3.dmp FILESIZE=2048

27.8.10 FILESIZE
The FILESIZE Import utility parameter lets you specify the same maximum dump file
size that you specified on export.

Default: operating system-dependent

Lets you specify the same maximum dump file size that you specified on export.

Note:

The maximum size allowed is operating system-dependent. You should
verify this maximum value in your Oracle operating system-specific
documentation before specifying FILESIZE.

The FILESIZE value can be specified as a number followed by KB (number of
kilobytes). For example, FILESIZE=2KB is the same as FILESIZE=2048. Similarly, MB
specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). B remains
the shorthand for bytes; the number is not multiplied to obtain the final file size
(FILESIZE=2048B is the same as FILESIZE=2048).

27.8.11 FROMUSER
The FROMUSER parameter of the Import utility enables you to import a subset of
schemas from an export file containing multiple schemas.

Default: none

A comma-delimited list of schemas to import. This parameter is relevant only to users
with the IMP_FULL_DATABASE role. The parameter enables you to import a subset of
schemas from an export file containing multiple schemas (for example, a full export
dump file or a multischema, user-mode export dump file).

Schema names that appear inside function-based indexes, functions, procedures,
triggers, type bodies, views, and so on, are not affected by FROMUSER or TOUSER
processing. Only the name of the object is affected. After the import has completed,
items in any TOUSER schema should be manually checked for references to old
(FROMUSER) schemas, and corrected if necessary.

You will typically use FROMUSER in conjunction with the Import parameter TOUSER, which
you use to specify a list of usernames whose schemas will be targets for import. The
user that you specify with TOUSER must exist in the target database before the import
operation; otherwise an error is returned.

Chapter 27
Import Parameters

27-22

If you do not specify TOUSER, then Import will do the following:

• Import objects into the FROMUSER schema if the export file is a full dump or a multischema,
user-mode export dump file

• Create objects in the importer's schema (regardless of the presence of or absence of the
FROMUSER schema on import) if the export file is a single-schema, user-mode export dump
file created by an unprivileged user

Note:

Specifying FROMUSER=SYSTEM causes only schema objects belonging to user
SYSTEM to be imported; it does not cause system objects to be imported.

27.8.12 FULL
The FULL Import utility parameter specifies whether to import the entire export dump file.

Default: y
Specifies whether to import the entire export dump file.

• Points to Consider for Full Database Exports and Imports
A full database export and import can be a good way to replicate or clean up a database.

27.8.12.1 Points to Consider for Full Database Exports and Imports
A full database export and import can be a good way to replicate or clean up a database.

However, to avoid problems be sure to keep the following points in mind:

• A full export does not export triggers owned by schema SYS. You must manually re-create
SYS triggers either before or after the full import. Oracle recommends that you re-create
them after the import in case they define actions that would impede progress of the
import.

• A full export also does not export the default profile. If you have modified the default
profile in the source database (for example, by adding a password verification function
owned by schema SYS), then you must manually pre-create the function and modify the
default profile in the target database after the import completes.

• If possible, before beginning, make a physical copy of the exported database and the
database into which you intend to import. This ensures that any mistakes are reversible.

• Before you begin the export, it is advisable to produce a report that includes the following
information:

– A list of tablespaces and data files

– A list of rollback segments

– A count, by user, of each object type such as tables, indexes, and so on

This information lets you ensure that tablespaces have already been created and that the
import was successful.

Chapter 27
Import Parameters

27-23

• If you are creating a completely new database from an export, then remember to
create an extra rollback segment in SYSTEM and to make it available in your
initialization parameter file (init.ora)before proceeding with the import.

• When you perform the import, ensure you are pointing at the correct instance. This
is very important because on some UNIX systems, just the act of entering a
subshell can change the database against which an import operation was
performed.

• Do not perform a full import on a system that has more than one database unless
you are certain that all tablespaces have already been created. A full import
creates any undefined tablespaces using the same data file names as the
exported database. This can result in problems in the following situations:

– If the data files belong to any other database, then they will become corrupted.
This is especially true if the exported database is on the same system,
because its data files will be reused by the database into which you are
importing.

– If the data files have names that conflict with existing operating system files.

27.8.13 GRANTS
Specifies whether to import object grants.

Default: y
By default, the Import utility imports any object grants that were exported. If the export
was a user-mode export, then the export file contains only first-level object grants
(those granted by the owner).

If the export was a full database mode export, then the export file contains all object
grants, including lower-level grants (those granted by users given a privilege with the
WITH GRANT OPTION). If you specify GRANTS=n, then the Import utility does not import
object grants. (Note that system grants are imported even if GRANTS=n.)

Note:

Export does not export grants on data dictionary views for security reasons
that affect Import. If such grants were exported, then access privileges would
be changed and the importer would not be aware of this.

27.8.14 HELP
The HELP parameter of Import utility displays a description of the Import parameters.

Default: none

Displays a description of the Import parameters. Enter imp HELP=y on the command
line to display the help content.

Chapter 27
Import Parameters

27-24

27.8.15 IGNORE
The IGNORE Import utility parameter specifies how object creation errors should be handled.

Default: n
Specifies how object creation errors should be handled. If you accept the default, IGNORE=n,
then Import logs or displays object creation errors before continuing.

If you specify IGNORE=y, then Import overlooks object creation errors when it attempts to
create database objects, and continues without reporting the errors.

Note that only object creation errors are ignored; other errors, such as operating system,
database, and SQL errors, are not ignored and may cause processing to stop.

In situations where multiple refreshes from a single export file are done with IGNORE=y, certain
objects can be created multiple times (although they will have unique system-defined
names). You can prevent this for certain objects (for example, constraints) by doing an import
with CONSTRAINTS=n. If you do a full import with CONSTRAINTS=n, then no constraints for any
tables are imported.

If a table already exists and IGNORE=y, then rows are imported into existing tables without any
errors or messages being given. You might want to import data into tables that already exist
in order to use new storage parameters or because you have already created the table in a
cluster.

If a table already exists and IGNORE=n, then errors are reported and the table is skipped with
no rows inserted. Also, objects dependent on tables, such as indexes, grants, and
constraints, will not be created.

Note:

When you import into existing tables, if no column in the table is uniquely indexed,
rows could be duplicated.

27.8.16 INDEXES
Indexes import parameter specifies whether to import indexes.

Default: y
Specifies whether to import indexes. System-generated indexes such as LOB indexes, OID
indexes, or unique constraint indexes are re-created by Import regardless of the setting of
this parameter.

You can postpone all user-generated index creation until after Import completes, by
specifying INDEXES=n.

If indexes for the target table already exist at the time of the import, then Import performs
index maintenance when data is inserted into the table.

Chapter 27
Import Parameters

27-25

27.8.17 INDEXFILE
INDEXFILE parameter of Import utility specifies a file to receive index-creation
statements.

Default: none

Specifies a file to receive index-creation statements.

When this parameter is specified, index-creation statements for the requested mode
are extracted and written to the specified file, rather than used to create indexes in the
database. No database objects are imported.

If the Import parameter CONSTRAINTS is set to y, then Import also writes table
constraints to the index file.

The file can then be edited (for example, to change storage parameters) and used as
a SQL script to create the indexes.

To make it easier to identify the indexes defined in the file, the export file's CREATE
TABLE statements and CREATE CLUSTER statements are included as comments.

Perform the following steps to use this feature:

1. Import using the INDEXFILE parameter to create a file of index-creation
statements.

2. Edit the file, making certain to add a valid password to the connect strings.

3. Rerun Import, specifying INDEXES=n.

(This step imports the database objects while preventing Import from using the
index definitions stored in the export file.)

4. Execute the file of index-creation statements as a SQL script to create the index.

The INDEXFILE parameter can be used only with the FULL=y, FROMUSER, TOUSER, or
TABLES parameters.

27.8.18 LOG
Specifies a file (for example, import.log) to receive informational and error messages.

Default: none

If you specify a log file, then the Import utility writes all information to the log in addition
to the terminal display.

27.8.19 PARFILE
Specifies a file name for a file that contains a list of Import parameters.

Default: none

For more information about using a parameter file, see Parameter Files.

Chapter 27
Import Parameters

27-26

27.8.20 RECORDLENGTH
Specifies the length, in bytes, of the file record.

Default

Operating system-dependent.

Purpose

The RECORDLENGTH parameter is necessary when you must transfer the export file to another
operating system that uses a different default value.

If you do not define this parameter, then it defaults to your platform-dependent value for
BUFSIZ.
You can set RECORDLENGTH to any value equal to or greater than your system's BUFSIZ. (The
highest value is 64 KB.) Changing the RECORDLENGTH parameter affects only the size of data
that accumulates before writing to the database. It does not affect the operating system file
block size.

You can also use this parameter to specify the size of the Import I/O buffer.

27.8.21 RESUMABLE
The RESUMABLE parameter is used to enable and disable resumable space allocation.

Default

n

Purpose

Because this parameter is disabled by default, you must set RESUMABLE=y to use its
associated parameters, RESUMABLE_NAME and RESUMABLE_TIMEOUT.

See Also:

Oracle Database Administrator's Guide for more information about resumable
space allocation.

27.8.22 RESUMABLE_NAME
The value for the RESUMABLE_NAME parameter identifies the statement that is resumable.

Default

'User USERNAME (USERID), Session SESSIONID, Instance INSTANCEID'

Chapter 27
Import Parameters

27-27

Purpose

This value is a user-defined text string that is inserted in either the USER_RESUMABLE or
DBA_RESUMABLE view to help you identify a specific resumable statement that has been
suspended.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable
resumable space allocation.

27.8.23 RESUMABLE_TIMEOUT
The value of the RESUMABLE_TIMEOUT parameter specifies the time period during which
an error must be fixed.

Default

7200 seconds (2 hours)

Purpose

If the error is not fixed within the timeout period, then execution of the statement is
terminated.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable
resumable space allocation.

27.8.24 ROWS
Specifies whether to import the rows of table data.

Default

y

Purpose

If ROWS=n, then statistics for all imported tables will be locked after the import operation
is finished.

27.8.25 SHOW
Lists the contents of the export file before importing.

Default

n

Syntax and Description

When SHOW=y, the contents of the export dump file are listed to the display and not
imported. The SQL statements contained in the export are displayed in the order in
which Import will execute them.

The SHOW parameter can be used only with the FULL=y, FROMUSER, TOUSER, or TABLES
parameter.

Chapter 27
Import Parameters

27-28

27.8.26 SKIP_UNUSABLE_INDEXES
Both Import and the Oracle database provide a SKIP_UNUSABLE_INDEXES parameter.

Default: the value of the Oracle database configuration parameter, SKIP_UNUSABLE_INDEXES,
as specified in the initialization parameter file.

The Import SKIP_UNUSABLE_INDEXES parameter is specified at the Import command line. The
Oracle database SKIP_UNUSABLE_INDEXES parameter is specified as a configuration
parameter in the initialization parameter file. It is important to understand how they affect
each other.

If you do not specify a value for SKIP_UNUSABLE_INDEXES at the Import command line, then
Import uses the database setting for the SKIP_UNUSABLE_INDEXES configuration parameter, as
specified in the initialization parameter file.

If you do specify a value for SKIP_UNUSABLE_INDEXES at the Import command line, then it
overrides the value of the SKIP_UNUSABLE_INDEXES configuration parameter in the initialization
parameter file.

A value of y means that Import will skip building indexes that were set to the Index Unusable
state (by either system or user). Other indexes (not previously set to Index Unusable)
continue to be updated as rows are inserted.

This parameter enables you to postpone index maintenance on selected index partitions until
after row data has been inserted. You then have the responsibility to rebuild the affected
index partitions after the Import.

Note:

Indexes that are unique and marked Unusable are not allowed to skip index
maintenance. Therefore, the SKIP_UNUSABLE_INDEXES parameter has no effect on
unique indexes.

You can use the INDEXFILE parameter in conjunction with INDEXES=n to provide the SQL
scripts for re-creating the index. If the SKIP_UNUSABLE_INDEXES parameter is not specified,
then row insertions that attempt to update unusable indexes will fail.

See Also:

The ALTER SESSION statement in the Oracle Database SQL Language Reference

27.8.27 STATISTICS
Specifies what is done with the database optimizer statistics at import time.

Default: ALWAYS
The options are:

• ALWAYS

Chapter 27
Import Parameters

27-29

Always import database optimizer statistics regardless of whether they are
questionable.

• NONE
Do not import or recalculate the database optimizer statistics.

• SAFE
Import database optimizer statistics only if they are not questionable. If they are
questionable, then recalculate the optimizer statistics.

• RECALCULATE
Do not import the database optimizer statistics. Instead, recalculate them on
import. This requires that the original export operation that created the dump file
must have generated the necessary ANALYZE statements (that is, the export was
not performed with STATISTICS=NONE). These ANALYZE statements are included in
the dump file and used by the import operation for recalculation of the table's
statistics.

See Also:

– Oracle Database Concepts for more information about the optimizer
and the statistics it uses

– Importing Statistics

27.8.28 STREAMS_CONFIGURATION
Specifies whether to import any general GoldenGate Replication metadata that may
be present in the export dump file.

Default: y

27.8.29 STREAMS_INSTANTIATION
Specifies whether to import Streams instantiation metadata that may be present in the
export dump file.

Default: n
Specify y if the import is part of an instantiation in a Streams environment.

27.8.30 TABLES
Default: none

Specifies that the import is a table-mode import and lists the table names and partition
and subpartition names to import. Table-mode import lets you import entire partitioned
or nonpartitioned tables. The TABLES parameter restricts the import to the specified
tables and their associated objects, as listed in Import Modes. You can specify the
following values for the TABLES parameter:

Chapter 27
Import Parameters

27-30

• tablename specifies the name of the table or tables to be imported. If a table in the list is
partitioned and you do not specify a partition name, then all its partitions and
subpartitions are imported. To import all the exported tables, specify an asterisk (*) as the
only table name parameter.

tablename can contain any number of '%' pattern matching characters, which can each
match zero or more characters in the table names in the export file. All the tables whose
names match all the specified patterns of a specific table name in the list are selected for
import. A table name in the list that consists of all pattern matching characters and no
partition name results in all exported tables being imported.

• partition_name and subpartition_name let you restrict the import to one or more
specified partitions or subpartitions within a partitioned table.

The syntax you use to specify the preceding is in the form:

tablename:partition_name

tablename:subpartition_name

If you use tablename:partition_name, then the specified table must be partitioned, and
partition_name must be the name of one of its partitions or subpartitions. If the specified
table is not partitioned, then the partition_name is ignored and the entire table is imported.

The number of tables that can be specified at the same time is dependent on command-line
limits.

As the export file is processed, each table name in the export file is compared against each
table name in the list, in the order in which the table names were specified in the parameter.
To avoid ambiguity and excessive processing time, specific table names should appear at the
beginning of the list, and more general table names (those with patterns) should appear at
the end of the list.

Although you can qualify table names with schema names (as in scott.emp) when exporting,
you cannot do so when importing. In the following example, the TABLES parameter is specified
incorrectly:

imp TABLES=(jones.accts, scott.emp, scott.dept)

The valid specification to import these tables is as follows:

imp FROMUSER=jones TABLES=(accts)
imp FROMUSER=scott TABLES=(emp,dept)

For a more detailed example, see "Example Import Using Pattern Matching to Import Various
Tables".

Note:

Some operating systems, such as UNIX, require that you use escape characters
before special characters, such as a parenthesis, so that the character is not
treated as a special character. On UNIX, use a backslash (\) as the escape
character, as shown in the following example:

TABLES=\(emp,dept\)

Chapter 27
Import Parameters

27-31

• Table Name Restrictions
This is an explanation of table name restrictions for Import utility.

27.8.30.1 Table Name Restrictions
This is an explanation of table name restrictions for Import utility.

The following restrictions apply to table names:

• By default, table names in a database are stored as uppercase. If you have a table
name in mixed-case or lowercase, and you want to preserve case-sensitivity for
the table name, then you must enclose the name in quotation marks. The name
must exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how case-
sensitivity can be preserved in the different Import modes.

– In command-line mode:

tables='\"Emp\"'

– In interactive mode:

Table(T) to be exported: "Exp"

– In parameter file mode:

tables='"Emp"'

• Table names specified on the command line cannot include a pound (#) sign,
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound (#) sign, then the Import utility interprets the
rest of the line as a comment, unless the table name is enclosed in quotation
marks.

For example, if the parameter file contains the following line, then Import interprets
everything on the line after emp# as a comment and does not import the tables
dept and mydata:

TABLES=(emp#, dept, mydata)

However, given the following line, the Import utility imports all three tables because
emp# is enclosed in quotation marks:

TABLES=("emp#", dept, mydata)

Chapter 27
Import Parameters

27-32

Note:

Some operating systems require single quotation marks rather than double
quotation marks, or the reverse; see your Oracle operating system-specific
documentation. Different operating systems also have other restrictions on table
naming.

For example, the UNIX C shell attaches a special meaning to a dollar sign ($)
or pound sign (#) (or certain other special characters). You must use escape
characters to get such characters in the name past the shell and into Import.

27.8.31 TABLESPACES
The TABLESPACES parameter for the Import utility.

Default: none

When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the tablespaces to
be transported into the database. If there is more than one tablespace in the export file, then
you must specify all of them as part of the import operation.

See TRANSPORT_TABLESPACE for more information.

27.8.32 TOID_NOVALIDATE
Use the TOID_NOVALIDATE parameter to specify types to exclude from TOID comparison.

Default: none

When you import a table that references a type, but a type of that name already exists in the
database, Import attempts to verify that the preexisting type is, in fact, the type used by the
table (rather than a different type that just happens to have the same name).

To do this, Import compares the type's unique identifier (TOID) with the identifier stored in the
export file. Import will not import the table rows if the TOIDs do not match.

In some situations, you may not want this validation to occur on specified types (for example,
if the types were created by a cartridge installation). You can use the TOID_NOVALIDATE
parameter to specify types to exclude from TOID comparison.

The syntax is as follows:

TOID_NOVALIDATE=([schemaname.]typename [, ...])

For example:

imp scott TABLES=jobs TOID_NOVALIDATE=typ1
imp scott TABLES=salaries TOID_NOVALIDATE=(fred.typ0,sally.typ2,typ3)

If you do not specify a schema name for the type, then it defaults to the schema of the
importing user. For example, in the first preceding example, the type typ1 defaults to
scott.typ1 and in the second example, the type typ3 defaults to scott.typ3.

Chapter 27
Import Parameters

27-33

Note that TOID_NOVALIDATE deals only with table column types. It has no effect on
table types.

The output of a typical import with excluded types would contain entries similar to the
following:

[...]
. importing IMP3's objects into IMP3
. . skipping TOID validation on type IMP2.TOIDTYP0
. . importing table "TOIDTAB3"
[...]

Note:

When you inhibit validation of the type identifier, it is your responsibility to
ensure that the attribute list of the imported type matches the attribute list of
the existing type. If these attribute lists do not match, then results are
unpredictable.

27.8.33 TOUSER
Specifies a list of user names whose schemas will be targets for Import.

Default: none

The user names must exist before the import operation; otherwise an error is returned.
The IMP_FULL_DATABASE role is required to use this parameter. To import to a different
schema than the one that originally contained the object, specify TOUSER. For
example:

imp FROMUSER=scott TOUSER=joe TABLES=emp

If multiple schemas are specified, then the schema names are paired. The following
example imports scott's objects into joe's schema, and fred's objects into ted's
schema:

imp FROMUSER=scott,fred TOUSER=joe,ted

If the FROMUSER list is longer than the TOUSER list, then the remaining schemas will be
imported into either the FROMUSER schema, or into the importer's schema, based on
normal defaulting rules. You can use the following syntax to ensure that any extra
objects go into the TOUSER schema:

imp FROMUSER=scott,adams TOUSER=ted,ted

Note that user ted is listed twice.

Chapter 27
Import Parameters

27-34

See Also:

FROMUSER for information about restrictions when using FROMUSER and TOUSER

27.8.34 TRANSPORT_TABLESPACE
When specified as y, instructs Import to import transportable tablespace metadata from an
export file.

Default: n
Encrypted columns are not supported in transportable tablespace mode.

Note:

You cannot export transportable tablespaces and then import them into a database
at a lower release level. The target database must be at the same or later release
level as the source database.

27.8.35 TTS_OWNERS
When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the users who own
the data in the transportable tablespace set.

Default: none

See TRANSPORT_TABLESPACE.

27.8.36 USERID (username/password)
Specifies the username, password, and an optional connect string of the user performing the
import.

Default: none

If you connect as user SYS, then you must also specify AS SYSDBA in the connect string. Your
operating system may require you to treat AS SYSDBA as a special string, in which case the
entire string would be enclosed in quotation marks.

See Also:

The user's guide for your Oracle Net protocol for information about specifying a
connect string for Oracle Net.

27.8.37 VOLSIZE
Specifies the maximum number of bytes in a dump file on each volume of tape.

Default: none

Chapter 27
Import Parameters

27-35

The VOLSIZE parameter has a maximum value equal to the maximum value that can
be stored in 64 bits on your platform.

The VOLSIZE value can be specified as number followed by KB (number of kilobytes).
For example, VOLSIZE=2KB is the same as VOLSIZE=2048. Similarly, MB specifies
megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). The shorthand for
bytes remains B; the number is not multiplied to get the final file size (VOLSIZE=2048B
is the same as VOLSIZE=2048).

27.9 Example Import Sessions
These sections give some examples of import sessions that show you how to use the
parameter file and command-line methods.

• Example Import of Selected Tables for a Specific User

• Example Import of Tables Exported by Another User

• Example Import of Tables from One User to Another

• Example Import Session Using Partition-Level Import

• Example Import Using Pattern Matching to Import Various Tables

27.9.1 Example Import of Selected Tables for a Specific User
In this example, using a full database export file, an administrator imports the dept and
emp tables into the scott schema.

Parameter File Method

> imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=dba.dmp
SHOW=n
IGNORE=n
GRANTS=y
FROMUSER=scott
TABLES=(dept,emp)

Command-Line Method

> imp FILE=dba.dmp FROMUSER=scott TABLES=(dept,emp)

Import Messages

Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Status messages are also displayed.

27.9.2 Example Import of Tables Exported by Another User
This example illustrates importing the unit and manager tables from a file exported by
blake into the scott schema.

Chapter 27
Example Import Sessions

27-36

Parameter File Method

> imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=blake.dmp
SHOW=n
IGNORE=n
GRANTS=y
ROWS=y
FROMUSER=blake
TOUSER=scott
TABLES=(unit,manager)

Command-Line Method

> imp FROMUSER=blake TOUSER=scott FILE=blake.dmp TABLES=(unit,manager)

Import Messages

Information is displayed about the release of Import you are using and the release of Oracle
Database that you are connected to. Status messages are also displayed.

27.9.3 Example Import of Tables from One User to Another
In this example, a database administrator (DBA) imports all tables belonging to scott into
user blake's account.

Parameter File Method

 > imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
FROMUSER=scott
TOUSER=blake
TABLES=(*)

Command-Line Method

> imp FILE=scott.dmp FROMUSER=scott TOUSER=blake TABLES=(*)

Import Messages

Information is displayed about the release of Import you are using and the release of Oracle
Database that you are connected to. Then, status messages similar to the following are
shown:

.

.

.
Warning: the objects were exported by SCOTT, not by you

import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT's objects into BLAKE
. . importing table "BONUS" 0 rows imported
. . importing table "DEPT" 4 rows imported

Chapter 27
Example Import Sessions

27-37

. . importing table "EMP" 14 rows imported

. . importing table "SALGRADE" 5 rows imported
Import terminated successfully without warnings.

27.9.4 Example Import Session Using Partition-Level Import
This section describes an import of a table with multiple partitions, a table with
partitions and subpartitions, and repartitioning a table on different columns.

• Example 1: A Partition-Level Import

• Example 2: A Partition-Level Import of a Composite Partitioned Table

• Example 3: Repartitioning a Table on a Different Column

27.9.4.1 Example 1: A Partition-Level Import
In this example, emp is a partitioned table with three partitions: P1, P2, and P3.

A table-level export file was created using the following command:

> exp scott TABLES=emp FILE=exmpexp.dat ROWS=y

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition P1 7 rows exported
. . exporting partition P2 12 rows exported
. . exporting partition P3 3 rows exported
Export terminated successfully without warnings.

In a partition-level Import you can specify the specific partitions of an exported table
that you want to import. In this example, these are P1 and P3 of table emp:
> imp scott TABLES=(emp:p1,emp:p3) FILE=exmpexp.dat ROWS=y

Import Messages

Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Status messages are also displayed.

27.9.4.2 Example 2: A Partition-Level Import of a Composite Partitioned Table
This example demonstrates that the partitions and subpartitions of a composite
partitioned table are imported. emp is a partitioned table with two composite partitions:
P1 and P2. Partition P1 has three subpartitions: P1_SP1, P1_SP2, and P1_SP3. Partition
P2 has two subpartitions: P2_SP1 and P2_SP2.

A table-level export file was created using the following command:

> exp scott TABLES=emp FILE=exmpexp.dat ROWS=y

Chapter 27
Example Import Sessions

27-38

Export Messages

Information is displayed about the release of Export you are using and the release of Oracle
Database that you are connected to. Then, status messages similar to the following are
shown:

When the command executes, the following Export messages are displayed:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting composite partition P1
. . exporting subpartition P1_SP1 2 rows exported
. . exporting subpartition P1_SP2 10 rows exported
. . exporting subpartition P1_SP3 7 rows exported
. . exporting composite partition P2
. . exporting subpartition P2_SP1 4 rows exported
. . exporting subpartition P2_SP2 2 rows exported
Export terminated successfully without warnings.

The following Import command results in the importing of subpartition P1_SP2 and P1_SP3 of
composite partition P1 in table emp and all subpartitions of composite partition P2 in table emp.
> imp scott TABLES=(emp:p1_sp2,emp:p1_sp3,emp:p2) FILE=exmpexp.dat ROWS=y

Import Messages

Information is displayed about the release of Import you are using and the release of Oracle
Database that you are connected to. Then, status messages similar to the following are
shown:

.

.

.

. importing SCOTT's objects into SCOTT

. . importing subpartition "EMP":"P1_SP2" 10 rows imported

. . importing subpartition "EMP":"P1_SP3" 7 rows imported

. . importing subpartition "EMP":"P2_SP1" 4 rows imported

. . importing subpartition "EMP":"P2_SP2" 2 rows imported
Import terminated successfully without warnings.

27.9.4.3 Example 3: Repartitioning a Table on a Different Column
This example assumes the emp table has two partitions based on the empno column. This
example repartitions the emp table on the deptno column.

Perform the following steps to repartition a table on a different column:

1. Export the table to save the data.

2. Drop the table from the database.

3. Create the table again with the new partitions.

4. Import the table data.

The following example illustrates these steps.

Chapter 27
Example Import Sessions

27-39

> exp scott table=emp file=empexp.dat
.
.
.

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition EMP_LOW 4 rows exported
. . exporting partition EMP_HIGH 10 rows exported
Export terminated successfully without warnings.

SQL> connect scott
Connected.
SQL> drop table emp cascade constraints;
Statement processed.
SQL> create table emp
 2 (
 3 empno number(4) not null,
 4 ename varchar2(10),
 5 job varchar2(9),
 6 mgr number(4),
 7 hiredate date,
 8 sal number(7,2),
 9 comm number(7,2),
 10 deptno number(2)
 11)
 12 partition by range (deptno)
 13 (
 14 partition dept_low values less than (15)
 15 tablespace tbs_1,
 16 partition dept_mid values less than (25)
 17 tablespace tbs_2,
 18 partition dept_high values less than (35)
 19 tablespace tbs_3
 20);
Statement processed.
SQL> exit

> imp scott tables=emp file=empexp.dat ignore=y
.
.
.
import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT's objects into SCOTT
. . importing partition "EMP":"EMP_LOW" 4 rows imported
. . importing partition "EMP":"EMP_HIGH" 10 rows imported
Import terminated successfully without warnings.

The following SQL SELECT statements show that the data is partitioned on the deptno
column:

SQL> connect scott
Connected.
SQL> select empno, deptno from emp partition (dept_low);
EMPNO DEPTNO
---------- ----------
 7782 10
 7839 10
 7934 10
3 rows selected.
SQL> select empno, deptno from emp partition (dept_mid);

Chapter 27
Example Import Sessions

27-40

EMPNO DEPTNO
---------- ----------
 7369 20
 7566 20
 7788 20
 7876 20
 7902 20
5 rows selected.
SQL> select empno, deptno from emp partition (dept_high);
EMPNO DEPTNO
---------- ----------
 7499 30
 7521 30
 7654 30
 7698 30
 7844 30
 7900 30
6 rows selected.
SQL> exit;

27.9.5 Example Import Using Pattern Matching to Import Various Tables
In this example, pattern matching is used to import various tables for user scott.

Parameter File Method

imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
IGNORE=n
GRANTS=y
ROWS=y
FROMUSER=scott
TABLES=(%d%,b%s)

Command-Line Method

imp FROMUSER=scott FILE=scott.dmp TABLES=(%d%,b%s)

Import Messages

Information is displayed about the release of Import you are using and the release of Oracle
Database that you are connected to. Then, status messages similar to the following are
shown:

.

.

.
import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses JA16SJIS character set (possible charset conversion)
. importing SCOTT's objects into SCOTT
. . importing table "BONUS" 0 rows imported
. . importing table "DEPT" 4 rows imported
. . importing table "SALGRADE" 5 rows imported
Import terminated successfully without warnings.

Chapter 27
Example Import Sessions

27-41

27.10 Exit Codes for Inspection and Display
Import provides the results of an operation immediately upon completion. Depending
on the platform, the outcome may be reported in a process exit code and the results
recorded in the log file.

Import Process Exit Codes

Reporting the result in a process exit code enables you to check the outcome from the
command line or script. The following table shows the exit codes that are returned for
various results.

Table 27-4 Exit Codes for Original Import

Result Exit Code

Import terminated successfully without
warnings

EX_SUCC

Import terminated successfully with warnings EX_OKWARN
Import terminated unsuccessfully EX_FAIL

Example 27-1 Log file Exit Code Output

For Unix and Linux platforms, the exit codes are as follows:

EX_SUCC 0
EX_OKWARN 0
EX_FAIL 1

27.11 Error Handling During an Import
These sections describe errors that can occur when you import database objects.

• Row Errors
If a row is rejected due to an integrity constraint violation or invalid data, then
Import displays a warning message but continues processing the rest of the table.

• Errors Importing Database Objects
Errors can occur for many reasons when you import database objects, as
described in these sections.

27.11.1 Row Errors
If a row is rejected due to an integrity constraint violation or invalid data, then Import
displays a warning message but continues processing the rest of the table.

Some errors, such as "tablespace full," apply to all subsequent rows in the table.
These errors cause Import to stop processing the current table and skip to the next
table.

A "tablespace full" error can suspend the import if the RESUMABLE=y parameter is
specified.

Chapter 27
Exit Codes for Inspection and Display

27-42

• Failed Integrity Constraints
A row error is generated if a row violates one of the integrity constraints in force on your
system.

• Invalid Data
Row errors can also occur when the column definition for a table in a database is
different from the column definition in the export file.

27.11.1.1 Failed Integrity Constraints
A row error is generated if a row violates one of the integrity constraints in force on your
system.

Including:

• NOT NULL constraints

• Uniqueness constraints

• Primary key (not null and unique) constraints

• Referential integrity constraints

• Check constraints

See Also:

– Oracle Database Development Guide for information about using integrity
constraints in applications

– Oracle Database Concepts for more information about integrity constraints

27.11.1.2 Invalid Data
Row errors can also occur when the column definition for a table in a database is different
from the column definition in the export file.

The error is caused by data that is too long to fit into a new table's columns, by invalid data
types, or by any other INSERT error.

Note:

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new
applications developed with later releases, Oracle strongly recommends that you
use CLOB and NCLOB data types for large amounts of character data.

27.11.2 Errors Importing Database Objects
Errors can occur for many reasons when you import database objects, as described in these
sections.

Chapter 27
Error Handling During an Import

27-43

When these errors occur, import of the current database object is discontinued. Import
then attempts to continue with the next database object in the export file.

• Object Already Exists
If a database object to be imported already exists in the database, then an object
creation error occurs.

• Sequences
If sequence numbers need to be reset to the value in an export file as part of an
import, then you should drop sequences.

• Resource Errors
Resource limitations can cause objects to be skipped. When you are importing
tables, for example, resource errors can occur because of internal problems or
when a resource such as memory has been exhausted.

• Domain Index Metadata
Domain indexes can have associated application-specific metadata that is
imported using anonymous PL/SQL blocks.

27.11.2.1 Object Already Exists
If a database object to be imported already exists in the database, then an object
creation error occurs.

What happens next depends on the setting of the IGNORE parameter.

If IGNORE=n (the default), then the error is reported, and Import continues with the next
database object. The current database object is not replaced. For tables, this behavior
means that rows contained in the export file are not imported.

If IGNORE=y, then object creation errors are not reported. The database object is not
replaced. If the object is a table, then rows are imported into it. Note that only object
creation errors are ignored; all other errors (such as operating system, database, and
SQL errors) are reported and processing may stop.

Note:

Specifying IGNORE=y can cause duplicate rows to be entered into a table
unless one or more columns of the table are specified with the UNIQUE
integrity constraint. This could occur, for example, if Import were run twice.

27.11.2.2 Sequences
If sequence numbers need to be reset to the value in an export file as part of an
import, then you should drop sequences.

If a sequence is not dropped before the import, then it is not set to the value captured
in the export file, because Import does not drop and re-create a sequence that already
exists. If the sequence already exists, then the export file's CREATE SEQUENCE
statement fails and the sequence is not imported.

Chapter 27
Error Handling During an Import

27-44

27.11.2.3 Resource Errors
Resource limitations can cause objects to be skipped. When you are importing tables, for
example, resource errors can occur because of internal problems or when a resource such
as memory has been exhausted.

If a resource error occurs while you are importing a row, then Import stops processing the
current table and skips to the next table. If you have specified COMMIT=y, then Import commits
the partial import of the current table. If not, then a rollback of the current table occurs before
Import continues. See the description of COMMIT.

27.11.2.4 Domain Index Metadata
Domain indexes can have associated application-specific metadata that is imported using
anonymous PL/SQL blocks.

These PL/SQL blocks are executed at import time, before the CREATE INDEX statement. If a
PL/SQL block causes an error, then the associated index is not created because the
metadata is considered an integral part of the index.

27.12 Table-Level and Partition-Level Import
You can import tables, partitions, and subpartitions.

Specifically:

• Table-level Import: Imports all data from the specified tables in an export file.

• Partition-level Import: Imports only data from the specified source partitions or
subpartitions.

• Guidelines for Using Table-Level Import
For each specified table, table-level Import imports all rows of the table.

• Guidelines for Using Partition-Level Import
Partition-level Import can only be specified in table mode. It lets you selectively load data
from specified partitions or subpartitions in an export file.

• Migrating Data Across Partitions and Tables
If you specify a partition name for a composite partition, then all subpartitions within the
composite partition are used as the source.

27.12.1 Guidelines for Using Table-Level Import
For each specified table, table-level Import imports all rows of the table.

With table-level Import:

• All tables exported using any Export mode (except TRANSPORT_TABLESPACES) can be
imported.

• Users can import the entire (partitioned or nonpartitioned) table, partitions, or
subpartitions from a table-level export file into a (partitioned or nonpartitioned) target
table with the same name.

If the table does not exist, and if the exported table was partitioned, then table-level Import
creates a partitioned table. If the table creation is successful, then table-level Import reads all

Chapter 27
Table-Level and Partition-Level Import

27-45

source data from the export file into the target table. After Import, the target table
contains the partition definitions of all partitions and subpartitions associated with the
source table in the export file. This operation ensures that the physical and logical
attributes (including partition bounds) of the source partitions are maintained on
import.

27.12.2 Guidelines for Using Partition-Level Import
Partition-level Import can only be specified in table mode. It lets you selectively load
data from specified partitions or subpartitions in an export file.

Keep the following guidelines in mind when using partition-level Import.

• Import always stores the rows according to the partitioning scheme of the target
table.

• Partition-level Import inserts only the row data from the specified source partitions
or subpartitions.

• If the target table is partitioned, then partition-level Import rejects any rows that fall
above the highest partition of the target table.

• Partition-level Import cannot import a nonpartitioned exported table. However, a
partitioned table can be imported from a nonpartitioned exported table using table-
level Import.

• Partition-level Import is legal only if the source table (that is, the table called
tablename at export time) was partitioned and exists in the export file.

• If the partition or subpartition name is not a valid partition in the export file, then
Import generates a warning.

• The partition or subpartition name in the parameter refers to only the partition or
subpartition in the export file, which may not contain all of the data of the table on
the export source system.

• If ROWS=y (default), and the table does not exist in the import target system, then
the table is created and all rows from the source partition or subpartition are
inserted into the partition or subpartition of the target table.

• If ROWS=y (default) and IGNORE=y, but the table already existed before import, then
all rows for the specified partition or subpartition in the table are inserted into the
table. The rows are stored according to the existing partitioning scheme of the
target table.

• If ROWS=n, then Import does not insert data into the target table and continues to
process other objects associated with the specified table and partition or
subpartition in the file.

• If the target table is nonpartitioned, then the partitions and subpartitions are
imported into the entire table. Import requires IGNORE=y to import one or more
partitions or subpartitions from the export file into a nonpartitioned table on the
import target system.

27.12.3 Migrating Data Across Partitions and Tables
If you specify a partition name for a composite partition, then all subpartitions within
the composite partition are used as the source.

Chapter 27
Table-Level and Partition-Level Import

27-46

In the following example, the partition specified by the partition name is a composite partition.
All of its subpartitions will be imported:

imp SYSTEM FILE=expdat.dmp FROMUSER=scott TABLES=b:py

The following example causes row data of partitions qc and qd of table scott.e to be
imported into the table scott.e:

imp scott FILE=expdat.dmp TABLES=(e:qc, e:qd) IGNORE=y

If table e does not exist in the import target database, then it is created and data is inserted
into the same partitions. If table e existed on the target system before import, then the row
data is inserted into the partitions whose range allows insertion. The row data can end up in
partitions of names other than qc and qd.

Note:

With partition-level Import to an existing table, you must set up the target partitions
or subpartitions properly and use IGNORE=y.

27.13 Controlling Index Creation and Maintenance
These sections describe the behavior of Import with respect to index creation and
maintenance.

• Delaying Index Creation
Import provides you with the capability of delaying index creation and maintenance
services until after completion of the import and insertion of exported data.

• Index Creation and Maintenance Controls
Describes index creation and maintenance controls.

27.13.1 Delaying Index Creation
Import provides you with the capability of delaying index creation and maintenance services
until after completion of the import and insertion of exported data.

Performing index creation, re-creation, or maintenance after Import completes is generally
faster than updating the indexes for each row inserted by Import.

Index creation can be time consuming, and therefore can be done more efficiently after the
import of all other objects has completed. You can postpone creation of indexes until after the
import completes by specifying INDEXES=n. (INDEXES=y is the default.) You can then store the
missing index definitions in a SQL script by running Import while using the INDEXFILE
parameter. The index-creation statements that would otherwise be issued by Import are
instead stored in the specified file.

After the import is complete, you must create the indexes, typically by using the contents of
the file (specified with INDEXFILE) as a SQL script after specifying passwords for the connect
statements.

Chapter 27
Controlling Index Creation and Maintenance

27-47

27.13.2 Index Creation and Maintenance Controls
Describes index creation and maintenance controls.

If SKIP_UNUSABLE_INDEXES=y, then the Import utility postpones maintenance on all
indexes that were set to Index Unusable before the Import. Other indexes (not
previously set to Index Unusable) continue to be updated as rows are inserted. This
approach saves on index updates during the import of existing tables.

Delayed index maintenance may cause a violation of an existing unique integrity
constraint supported by the index. The existence of a unique integrity constraint on a
table does not prevent existence of duplicate keys in a table that was imported with
INDEXES=n. The supporting index will be in an UNUSABLE state until the duplicates are
removed and the index is rebuilt.

• Example of Postponing Index Maintenance
Shows an example of postponing index maintenance.

27.13.2.1 Example of Postponing Index Maintenance
Shows an example of postponing index maintenance.

Assume that partitioned table t with partitions p1 and p2 exists on the import target
system. Assume that local indexes p1_ind on partition p1 and p2_ind on partition p2
exist also. Assume that partition p1 contains a much larger amount of data in the
existing table t, compared with the amount of data to be inserted by the export file
(expdat.dmp). Assume that the reverse is true for p2.

Consequently, performing index updates for p1_ind during table data insertion time is
more efficient than at partition index rebuild time. The opposite is true for p2_ind.

Users can postpone local index maintenance for p2_ind during import by using the
following steps:

1. Issue the following SQL statement before import:

ALTER TABLE t MODIFY PARTITION p2 UNUSABLE LOCAL INDEXES;
2. Issue the following Import command:

imp scott FILE=expdat.dmp TABLES = (t:p1, t:p2) IGNORE=y
SKIP_UNUSABLE_INDEXES=y

This example executes the ALTER SESSION SET SKIP_UNUSABLE_INDEXES=y
statement before performing the import.

3. Issue the following SQL statement after import:

ALTER TABLE t MODIFY PARTITION p2 REBUILD UNUSABLE LOCAL INDEXES;
In this example, local index p1_ind on p1 will be updated when table data is inserted
into partition p1 during import. Local index p2_ind on p2 will be updated at index
rebuild time, after import.

Chapter 27
Controlling Index Creation and Maintenance

27-48

27.14 Network Considerations for Using Oracle Net with Original
Import

To perform imports over a network, you can use the Oracle Data Pump original Import utility
(imp) with Oracle Net.

For example, if you run Import locally, then you can read data into a remote Oracle Database
instance.

To use Import with Oracle Net, when you run the imp command and enter the username and
password, include the connection qualifier string @connect_string. For the exact syntax of
this clause, see the user's guide for your Oracle Net protocol.

Related Topics

• Entering a Connect String

27.15 Character Set and Globalization Support Considerations
These sections describe the globalization support behavior of Import with respect to
character set conversion of user data and data definition language (DDL).

• User Data
The Export utility always exports user data, including Unicode data, in the character sets
of the Export server. (Character sets are specified at database creation.)

• Data Definition Language (DDL)
Up to three character set conversions may be required for data definition language (DDL)
during an export/import operation.

• Single-Byte Character Sets
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you
import an 8-bit character set export file.

• Multibyte Character Sets
During character set conversion, any characters in the export file that have no equivalent
in the target character set are replaced with a default character. (The default character is
defined by the target character set.)

27.15.1 User Data
The Export utility always exports user data, including Unicode data, in the character sets of
the Export server. (Character sets are specified at database creation.)

If the character sets of the source database are different than the character sets of the import
database, then a single conversion is performed to automatically convert the data to the
character sets of the Import server.

• Effect of Character Set Sorting Order on Conversions
If the export character set has a different sorting order than the import character set, then
tables that are partitioned on character columns may yield unpredictable results.

Chapter 27
Network Considerations for Using Oracle Net with Original Import

27-49

27.15.1.1 Effect of Character Set Sorting Order on Conversions
If the export character set has a different sorting order than the import character set,
then tables that are partitioned on character columns may yield unpredictable results.

For example, consider the following table definition, which is produced on a database
having an ASCII character set:

CREATE TABLE partlist
 (
 part VARCHAR2(10),
 partno NUMBER(2)
)
PARTITION BY RANGE (part)
 (
 PARTITION part_low VALUES LESS THAN ('Z')
 TABLESPACE tbs_1,
 PARTITION part_mid VALUES LESS THAN ('z')
 TABLESPACE tbs_2,
 PARTITION part_high VALUES LESS THAN (MAXVALUE)
 TABLESPACE tbs_3
);

This partitioning scheme makes sense because z comes after Z in ASCII character
sets.

When this table is imported into a database based upon an EBCDIC character set, all
of the rows in the part_mid partition will migrate to the part_low partition because z
comes before Z in EBCDIC character sets. To obtain the desired results, the owner of
partlist must repartition the table following the import.

See Also:

Oracle Database Globalization Support Guide for more information about
character sets

27.15.2 Data Definition Language (DDL)
Up to three character set conversions may be required for data definition language
(DDL) during an export/import operation.

Specifically:

1. Export writes export files using the character set specified in the NLS_LANG
environment variable for the user session. A character set conversion is performed
if the value of NLS_LANG differs from the database character set.

2. If the export file's character set is different than the import user session character
set, then Import converts the character set to its user session character set. Import
can only perform this conversion for single-byte character sets. This means that
for multibyte character sets, the import file's character set must be identical to the
export file's character set.

Chapter 27
Character Set and Globalization Support Considerations

27-50

3. A final character set conversion may be performed if the target database's character set
is different from the character set used by the import user session.

To minimize data loss due to character set conversions, ensure that the export database, the
export user session, the import user session, and the import database all use the same
character set.

27.15.3 Single-Byte Character Sets
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you import an
8-bit character set export file.

This occurs if the system on which the import occurs has a native 7-bit character set, or the
NLS_LANG operating system environment variable is set to a 7-bit character set. Most often,
this is apparent when accented characters lose the accent mark.

To avoid this unwanted conversion, you can set the NLS_LANG operating system environment
variable to be that of the export file character set.

27.15.4 Multibyte Character Sets
During character set conversion, any characters in the export file that have no equivalent in
the target character set are replaced with a default character. (The default character is
defined by the target character set.)

To guarantee 100% conversion, the target character set must be a superset (or equivalent) of
the source character set.

Note:

When the character set width differs between the Export server and the Import
server, truncation of data can occur if conversion causes expansion of data. If
truncation occurs, then Import displays a warning message.

27.16 Using Instance Affinity
You can use instance affinity to associate jobs with instances in databases you plan to export
and import.

Be aware that there may be some compatibility issues if you are using a combination of
releases.

See Also:

• Oracle Database Administrator's Guide for more information about affinity

Chapter 27
Using Instance Affinity

27-51

27.17 Considerations When Importing Database Objects
These sections describe restrictions and points you should consider when you import
particular database objects.

• Importing Object Identifiers

• Importing Existing Object Tables and Tables That Contain Object Types
Importing existing Object Tables and tables that contain Object Types is one of the
considerations when importing database objects. The tables must be created with
the same definitions as were previously used or a compatible format (except for
storage parameters).

• Importing Nested Tables

• Importing REF Data
Importing REF data is one of the considerations when importing database objects.
REF columns and attributes may contain a hidden ROWID that points to the
referenced type instance.

• Importing BFILE Columns and Directory Aliases
Importing BFILE Columns and Directory Aliases is one of the considerations when
importing database objects. When you import table data that contains BFILE
columns, the BFILE locator is imported with the directory alias and file name that
was present at export time.

• Importing Foreign Function Libraries
Importing Foreign Function Libraries is one of the considerations when importing
database objects. Import does not verify that the location referenced by the foreign
function library is correct.

• Importing Stored Procedures, Functions, and Packages
The behavior of Import when a local stored procedure, function, or package is
imported depends upon whether the COMPILE parameter is set to y or ton.

• Importing Java Objects
Importing Java Objects is one of the considerations when importing database
objects. When you import Java objects into any schema, the Import utility leaves
the resolver unchanged.

• Importing External Tables
Importing external tables is one of the considerations when importing database
objects. Import does not verify that the location referenced by the external table is
correct.

• Importing Advanced Queue (AQ) Tables
Importing Advanced Queue Tables is a one of the considerations when importing
database objects. Importing a queue table also imports any underlying queues and
the related dictionary information.

• Importing LONG Columns
Importing LONG columns is one of the considerations when importing database
objects. In importing and exporting, the LONG columns must fit into memory with the
rest of each row's data.

• Importing LOB Columns When Triggers Are Present
Importing LOB columns when triggers are present is one of the considerations
when importing database objects. The Import utility automatically changes all
LOBs that were empty at export time to be NULL after they are imported.

Chapter 27
Considerations When Importing Database Objects

27-52

• Importing Views
Importing views that contain references to tables in other schemas requires that the
importer have the READ ANY TABLE or SELECT ANY TABLE privilege.

• Importing Partitioned Tables
Importing partitioned tables is one of the considerations when importing database
objects. Import attempts to create a partitioned table with the same partition or
subpartition names as the exported partitioned table, including names of the form
SYS_Pnnn.

27.17.1 Importing Object Identifiers
The Oracle database assigns object identifiers to uniquely identify object types, object tables,
and rows in object tables. These object identifiers are preserved by Import.

When you import a table that references a type, but a type of that name already exists in the
database, Import attempts to verify that the preexisting type is, in fact, the type used by the
table (rather than a different type that just happens to have the same name).

To do this, Import compares the types's unique identifier (TOID) with the identifier stored in
the export file. If those match, then Import then compares the type's unique hashcode with
that stored in the export file. Import will not import table rows if the TOIDs or hashcodes do
not match.

In some situations, you may not want this validation to occur on specified types (for example,
if the types were created by a cartridge installation). You can use the parameter
TOID_NOVALIDATE to specify types to exclude from the TOID and hashcode comparison. See
TOID_NOVALIDATE for more information.

Note:

Be very careful about using TOID_NOVALIDATE, because type validation provides an
important capability that helps avoid data corruption. Be sure you are confident of
your knowledge of type validation and how it works before attempting to perform an
import operation with this feature disabled.

Import uses the following criteria to decide how to handle object types, object tables, and
rows in object tables:

• For object types, if IGNORE=y, the object type already exists, and the object identifiers,
hashcodes, and type descriptors match, then no error is reported. If the object identifiers
or hashcodes do not match and the parameter TOID_NOVALIDATE has not been set to
ignore the object type, then an error is reported and any tables using the object type are
not imported.

• For object types, if IGNORE=n and the object type already exists, then an error is reported.
If the object identifiers, hashcodes, or type descriptors do not match and the parameter
TOID_NOVALIDATE has not been set to ignore the object type, then any tables using the
object type are not imported.

• For object tables, if IGNORE=y, then the table already exists, and the object identifiers,
hashcodes, and type descriptors match, no error is reported. Rows are imported into the
object table. Import of rows may fail if rows with the same object identifier already exist in
the object table. If the object identifiers, hashcodes, or type descriptors do not match, and

Chapter 27
Considerations When Importing Database Objects

27-53

the parameter TOID_NOVALIDATE has not been set to ignore the object type, then
an error is reported and the table is not imported.

• For object tables, if IGNORE=n and the table already exists, then an error is
reported and the table is not imported.

Because Import preserves object identifiers of object types and object tables, consider
the following when you import objects from one schema into another schema using the
FROMUSER and TOUSER parameters:

• If the FROMUSER object types and object tables already exist on the target system,
then errors occur because the object identifiers of the TOUSER object types and
object tables are already in use. The FROMUSER object types and object tables must
be dropped from the system before the import is started.

• If an object table was created using the OID AS option to assign it the same object
identifier as another table, then both tables cannot be imported. You can import
one of the tables, but the second table receives an error because the object
identifier is already in use.

27.17.2 Importing Existing Object Tables and Tables That Contain
Object Types

Importing existing Object Tables and tables that contain Object Types is one of the
considerations when importing database objects. The tables must be created with the
same definitions as were previously used or a compatible format (except for storage
parameters).

Users frequently create tables before importing data to reorganize tablespace usage
or to change a table's storage parameters. The tables must be created with the same
definitions as were previously used or a compatible format (except for storage
parameters). For object tables and tables that contain columns of object types, format
compatibilities are more restrictive.

For object tables and for tables containing columns of objects, each object the table
references has its name, structure, and version information written out to the export
file. Export also includes object type information from different schemas, as needed.

Import verifies the existence of each object type required by a table before importing
the table data. This verification consists of a check of the object type's name followed
by a comparison of the object type's structure and version from the import system with
that found in the export file.

If an object type name is found on the import system, but the structure or version do
not match that from the export file, then an error message is generated and the table
data is not imported.

The Import parameter TOID_NOVALIDATE can be used to disable the verification of the
object type's structure and version for specific objects.

27.17.3 Importing Nested Tables
Inner nested tables are exported separately from the outer table. Therefore, situations
may arise where data in an inner nested table might not be properly imported:

• Suppose a table with an inner nested table is exported and then imported without
dropping the table or removing rows from the table. If the IGNORE=y parameter is

Chapter 27
Considerations When Importing Database Objects

27-54

used, then there will be a constraint violation when inserting each row in the outer table.
However, data in the inner nested table may be successfully imported, resulting in
duplicate rows in the inner table.

• If nonrecoverable errors occur inserting data in outer tables, then the rest of the data in
the outer table is skipped, but the corresponding inner table rows are not skipped. This
may result in inner table rows not being referenced by any row in the outer table.

• If an insert to an inner table fails after a recoverable error, then its outer table row will
already have been inserted in the outer table and data will continue to be inserted into it
and any other inner tables of the containing table. This circumstance results in a partial
logical row.

• If nonrecoverable errors occur inserting data in an inner table, then Import skips the rest
of that inner table's data but does not skip the outer table or other nested tables.

You should always carefully examine the log file for errors in outer tables and inner tables. To
be consistent, table data may need to be modified or deleted.

Because inner nested tables are imported separately from the outer table, attempts to access
data from them while importing may produce unexpected results. For example, if an outer
row is accessed before its inner rows are imported, an incomplete row may be returned to the
user.

27.17.4 Importing REF Data
Importing REF data is one of the considerations when importing database objects. REF
columns and attributes may contain a hidden ROWID that points to the referenced type
instance.

REF columns and attributes may contain a hidden ROWID that points to the referenced type
instance. Import does not automatically recompute these ROWIDs for the target database. You
should execute the following statement to reset the ROWIDs to their proper values:

ANALYZE TABLE [schema.]table VALIDATE REF UPDATE;

See Also:

Oracle Database SQL Language Reference for more information about the ANALYZE
statement

27.17.5 Importing BFILE Columns and Directory Aliases
Importing BFILE Columns and Directory Aliases is one of the considerations when importing
database objects. When you import table data that contains BFILE columns, the BFILE
locator is imported with the directory alias and file name that was present at export time.

Export and Import do not copy data referenced by BFILE columns and attributes from the
source database to the target database. Export and Import only propagate the names of the
files and the directory aliases referenced by the BFILE columns. It is the responsibility of the
DBA or user to move the actual files referenced through BFILE columns and attributes.

Chapter 27
Considerations When Importing Database Objects

27-55

When you import table data that contains BFILE columns, the BFILE locator is imported
with the directory alias and file name that was present at export time. Import does not
verify that the directory alias or file exists. If the directory alias or file does not exist,
then an error occurs when the user accesses the BFILE data.

For directory aliases, if the operating system directory syntax used in the export
system is not valid on the import system, then no error is reported at import time. The
error occurs when the user seeks subsequent access to the file data. It is the
responsibility of the DBA or user to ensure the directory alias is valid on the import
system.

27.17.6 Importing Foreign Function Libraries
Importing Foreign Function Libraries is one of the considerations when importing
database objects. Import does not verify that the location referenced by the foreign
function library is correct.

Import does not verify that the location referenced by the foreign function library is
correct. If the formats for directory and file names used in the library's specification on
the export file are invalid on the import system, then no error is reported at import time.
Subsequent usage of the callout functions will receive an error.

It is the responsibility of the DBA or user to manually move the library and ensure the
library's specification is valid on the import system.

27.17.7 Importing Stored Procedures, Functions, and Packages
The behavior of Import when a local stored procedure, function, or package is
imported depends upon whether the COMPILE parameter is set to y or ton.

The behavior of Import when a local stored procedure, function, or package is
imported depends upon whether the COMPILE parameter is set to y or to n.

When a local stored procedure, function, or package is imported and COMPILE=y, the
procedure, function, or package is recompiled upon import and retains its original
timestamp specification. If the compilation is successful, then it can be accessed by
remote procedures without error.

If COMPILE=n, then the procedure, function, or package is still imported, but the original
timestamp is lost. The compilation takes place the next time the procedure, function, or
package is used.

See Also:

COMPILE

27.17.8 Importing Java Objects
Importing Java Objects is one of the considerations when importing database objects.
When you import Java objects into any schema, the Import utility leaves the resolver
unchanged.

Chapter 27
Considerations When Importing Database Objects

27-56

When you import Java objects into any schema, the Import utility leaves the resolver
unchanged. (The resolver is the list of schemas used to resolve Java full names.) This means
that after an import, all user classes are left in an invalid state until they are either implicitly or
explicitly revalidated. An implicit revalidation occurs the first time the classes are referenced.
An explicit revalidation occurs when the SQL statement ALTER JAVA CLASS...RESOLVE is
used. Both methods result in the user classes being resolved successfully and becoming
valid.

27.17.9 Importing External Tables
Importing external tables is one of the considerations when importing database objects.
Import does not verify that the location referenced by the external table is correct.

Import does not verify that the location referenced by the external table is correct. If the
formats for directory and file names used in the table's specification on the export file are
invalid on the import system, then no error is reported at import time. Subsequent usage of
the callout functions will result in an error.

It is the responsibility of the DBA or user to manually move the table and ensure the table's
specification is valid on the import system.

27.17.10 Importing Advanced Queue (AQ) Tables
Importing Advanced Queue Tables is a one of the considerations when importing database
objects. Importing a queue table also imports any underlying queues and the related
dictionary information.

Importing a queue table also imports any underlying queues and the related dictionary
information. A queue can be imported only at the granularity level of the queue table. When a
queue table is imported, export pre-table and post-table action procedures maintain the
queue dictionary.

See Also:

Oracle Database Advanced Queuing User's Guide

27.17.11 Importing LONG Columns
Importing LONG columns is one of the considerations when importing database objects. In
importing and exporting, the LONG columns must fit into memory with the rest of each row's
data.

Caution:

This feature is deprecated, and can be desupported in a future release.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were deprecated
in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type was provided for
backward compatibility with existing applications. In new applications developed with later

Chapter 27
Considerations When Importing Database Objects

27-57

releases, Oracle strongly recommends that you use CLOB and NCLOB data types for
large amounts of character data.

LONG columns can be up to 2 gigabytes in length. In importing and exporting, the LONG
columns must fit into memory with the rest of each row's data. The memory used to
store LONG columns, however, does not need to be contiguous, because LONG data is
loaded in sections.

You should use Import to convert LONG columns to CLOB columns. To convert LONG
columns, first create a table specifying the new CLOB column. When Import is run, the
LONG data is converted to CLOB format. The same technique can be used to convert
LONG RAW columns to BLOB columns.

Note:

Because LONG data types are deprecated, Oracle strongly recommends that
you convert existing LONG columns to LOB columns, and update applications
accordingly. LOB columns are subject to far fewer restrictions than LONG
columns.

27.17.12 Importing LOB Columns When Triggers Are Present
Importing LOB columns when triggers are present is one of the considerations when
importing database objects. The Import utility automatically changes all LOBs that
were empty at export time to be NULL after they are imported.

As of Oracle Database 10g, LOB handling has been improved to ensure that triggers
work properly and that performance remains high when LOBs are being loaded. To
achieve these improvements, the Import utility automatically changes all LOBs that
were empty at export time to be NULL after they are imported.

If you have applications that expect the LOBs to be empty rather than NULL, then after
the import you can issue a SQL UPDATE statement for each LOB column. Depending
on whether the LOB column type was a BLOB or a CLOB, the syntax would be one of the
following:

UPDATE <tablename> SET <lob column> = EMPTY_BLOB() WHERE <lob column>
= IS NULL;
UPDATE <tablename> SET <lob column> = EMPTY_CLOB() WHERE <lob column>
= IS NULL;

It is important to note that once the import is performed, there is no way to distinguish
between LOB columns that are NULL versus those that are empty. Therefore, if that
information is important to the integrity of your data, then be sure you know which LOB
columns are NULL and which are empty before you perform the import.

27.17.13 Importing Views
Importing views that contain references to tables in other schemas requires that the
importer have the READ ANY TABLE or SELECT ANY TABLE privilege.

Chapter 27
Considerations When Importing Database Objects

27-58

Views are exported in dependency order. In some cases, Export must determine the ordering,
rather than obtaining the order from the database. In doing so, Export may not always be
able to duplicate the correct ordering, resulting in compilation warnings when a view is
imported, and the failure to import column comments on such views.

In particular, if viewa uses the stored procedure procb, and procb uses the view viewc, then
Export cannot determine the proper ordering of viewa and viewc. If viewa is exported before
viewc, and procb already exists on the import system, then viewa receives compilation
warnings at import time.

Grants on views are imported even if a view has compilation errors. A view could have
compilation errors if an object it depends on, such as a table, procedure, or another view,
does not exist when the view is created. If a base table does not exist, then the server cannot
validate that the grantor has the proper privileges on the base table with the GRANT option.
Access violations could occur when the view is used if the grantor does not have the proper
privileges after the missing tables are created.

Importing views that contain references to tables in other schemas requires that the importer
have the READ ANY TABLE or SELECT ANY TABLE privilege. If the importer has not been
granted this privilege, then the views will be imported in an uncompiled state. Note that
granting the privilege to a role is insufficient. For the view to be compiled, the privilege must
be granted directly to the importer.

27.17.14 Importing Partitioned Tables
Importing partitioned tables is one of the considerations when importing database objects.
Import attempts to create a partitioned table with the same partition or subpartition names as
the exported partitioned table, including names of the form SYS_Pnnn.

Import attempts to create a partitioned table with the same partition or subpartition names as
the exported partitioned table, including names of the form SYS_Pnnn. If a table with the same
name already exists, then Import processing depends on the value of the IGNORE parameter.

Unless SKIP_UNUSABLE_INDEXES=y,inserting the exported data into the target table fails if
Import cannot update a nonpartitioned index or index partition that is marked Indexes
Unusable or is otherwise not suitable.

27.18 Support for Fine-Grained Access Control
To restore the fine-grained access control policies, the user who imports from an export file
containing such tables must have the EXECUTE privilege on the DBMS_RLS package, so that the
security policies on the tables can be reinstated.

If a user without the correct privileges attempts to import from an export file that contains
tables with fine-grained access control policies, then a warning message is issued.

27.19 Snapshots and Snapshot Logs
In certain situations, particularly those involving data warehousing, snapshots may be
referred to as materialized views. These sections retain the term snapshot.

• Snapshot Log
The snapshot log in a dump file is imported if the Data Pump control table already exists
for the database to which you are importing, and it has a snapshot log.

Chapter 27
Support for Fine-Grained Access Control

27-59

• Snapshots
A snapshot that has been restored from an export file has reverted to a previous
state.

27.19.1 Snapshot Log
The snapshot log in a dump file is imported if the Data Pump control table already
exists for the database to which you are importing, and it has a snapshot log.

When a ROWID snapshot log is exported, The ROWID values stored in the snapshot log
have no meaning upon import. As a result, each ROWID snapshot's first attempt to do a
fast refresh fails, generating an error indicating that a complete refresh is required.

To avoid the refresh error, do a complete refresh after importing a ROWID snapshot log.
After you have done a complete refresh, subsequent fast refreshes will work properly.
In contrast, when a primary key snapshot log is exported, the values of the primary
keys do retain their meaning upon import. Therefore, primary key snapshots can do a
fast refresh after the import.

27.19.2 Snapshots
A snapshot that has been restored from an export file has reverted to a previous state.

On import, the time of the last refresh is imported as part of the snapshot table
definition. The function that calculates the next refresh time is also imported.

Each refresh leaves a signature. A fast refresh uses the log entries that date from the
time of that signature to bring the snapshot up to date. When the fast refresh is
complete, the signature is deleted and a new signature is created. Any log entries that
are not needed to refresh other snapshots are also deleted (all log entries with times
before the earliest remaining signature).

• Importing a Snapshot
When you restore a snapshot from an export file, you may encounter a problem
under certain circumstances.

• Importing a Snapshot into a Different Schema
Snapshots and related items are exported with the schema name given in the DDL
statements.

27.19.2.1 Importing a Snapshot
When you restore a snapshot from an export file, you may encounter a problem under
certain circumstances.

Assume that a snapshot is refreshed at time A, exported at time B, and refreshed
again at time C. Then, because of corruption or other problems, the snapshot needs to
be restored by dropping the snapshot and importing it again. The newly imported
version has the last refresh time recorded as time A. However, log entries needed for a
fast refresh may no longer exist. If the log entries do exist (because they are needed
for another snapshot that has yet to be refreshed), then they are used, and the fast
refresh completes successfully. Otherwise, the fast refresh fails, generating an error
that says a complete refresh is required.

Chapter 27
Snapshots and Snapshot Logs

27-60

27.19.2.2 Importing a Snapshot into a Different Schema
Snapshots and related items are exported with the schema name given in the DDL
statements.

To import them into a different schema, use the FROMUSER and TOUSER parameters. This does
not apply to snapshot logs, which cannot be imported into a different schema.

Note:

Schema names that appear inside function-based indexes, functions, procedures,
triggers, type bodies, views, and so on, are not affected by FROMUSER or TOUSER
processing. Only the name of the object is affected. After the import has completed,
items in any TOUSER schema should be manually checked for references to old
(FROMUSER) schemas, and corrected if necessary.

27.20 Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces from one
Oracle database to another.

Note:

You cannot export transportable tablespaces and then import them into a database
at a lower release level. The target database must be at the same or later release
level as the source database.

To move or copy a set of tablespaces, you must make the tablespaces read-only, manually
copy the data files of these tablespaces to the target database, and use Export and Import to
move the database information (metadata) stored in the data dictionary over to the target
database. The transport of the data files can be done using any facility for copying flat binary
files, such as the operating system copying facility, binary-mode FTP, or publishing on CD-
ROMs.

After copying the data files and exporting the metadata, you can optionally put the
tablespaces in read/write mode.

Export and Import provide the following parameters to enable movement of transportable
tablespace metadata.

• TABLESPACES
• TRANSPORT_TABLESPACE
See TABLESPACES and TRANSPORT_TABLESPACE for information about using these
parameters during an import operation.

Chapter 27
Transportable Tablespaces

27-61

See Also:

• Oracle Database Administrator's Guide for details about managing
transportable tablespaces

27.21 Storage Parameters
By default, a table is imported into its original tablespace.

If the tablespace no longer exists, or the user does not have sufficient quota in the
tablespace, then the system uses the default tablespace for that user, unless the table:

• Is partitioned

• Is a type table

• Contains LOB, VARRAY, or OPAQUE type columns

• Has an index-organized table (IOT) overflow segment

If the user does not have sufficient quota in the default tablespace, then the user's
tables are not imported. See Reorganizing Tablespaces to see how you can use this to
your advantage.

• The OPTIMAL Parameter
The storage parameter OPTIMAL for rollback segments is not preserved during
export and import.

• Storage Parameters for OID Indexes and LOB Columns
Tables are exported with their current storage parameters.

• Overriding Storage Parameters
Before using the Import utility to import data, you may want to create large tables
with different storage parameters.

27.21.1 The OPTIMAL Parameter
The storage parameter OPTIMAL for rollback segments is not preserved during export
and import.

27.21.2 Storage Parameters for OID Indexes and LOB Columns
Tables are exported with their current storage parameters.

For object tables, the OIDINDEX is created with its current storage parameters and
name, if given. For tables that contain LOB, VARRAY, or OPAQUE type columns, LOB,
VARRAY, or OPAQUE type data is created with their current storage parameters.

If you alter the storage parameters of existing tables before exporting, then the tables
are exported using those altered storage parameters. Note, however, that storage
parameters for LOB data cannot be altered before exporting (for example, chunk size
for a LOB column, whether a LOB column is CACHE or NOCACHE, and so forth).

Chapter 27
Storage Parameters

27-62

Note that LOB data might not reside in the same tablespace as the containing table. The
tablespace for that data must be read/write at the time of import or the table will not be
imported.

If LOB data resides in a tablespace that does not exist at the time of import, or the user does
not have the necessary quota in that tablespace, then the table will not be imported. Because
there can be multiple tablespace clauses, including one for the table, Import cannot
determine which tablespace clause caused the error.

27.21.3 Overriding Storage Parameters
Before using the Import utility to import data, you may want to create large tables with
different storage parameters.

If so, then you must specify IGNORE=y on the command line or in the parameter file.

27.22 Read-Only Tablespaces
Read-only tablespaces can be exported. On import, if the tablespace does not already exist
in the target database, then the tablespace is created as a read/write tablespace.

To get read-only functionality, you must manually make the tablespace read-only after the
import.

If the tablespace already exists in the target database and is read-only, then you must make it
read/write before the import.

27.23 Dropping a Tablespace
You can drop a tablespace by redefining the objects to use different tablespaces before the
import. You can then issue the imp command and specify IGNORE=y.
In many cases, you can drop a tablespace by doing a full database export, then creating a
zero-block tablespace with the same name (before logging off) as the tablespace you want to
drop. During import, with IGNORE=y, the relevant CREATE TABLESPACE statement will fail and
prevent the creation of the unwanted tablespace.

All objects from that tablespace will be imported into their owner's default tablespace except
for partitioned tables, type tables, and tables that contain LOB or VARRAY columns or index-
only tables with overflow segments. Import cannot determine which tablespace caused the
error. Instead, you must first create a table and then import the table again, specifying
IGNORE=y.
Objects are not imported into the default tablespace if the tablespace does not exist, or you
do not have the necessary quotas for your default tablespace.

27.24 Reorganizing Tablespaces
If a user's quota allows it, the user's tables are imported into the same tablespace from which
they were exported.

However, if the tablespace no longer exists or the user does not have the necessary quota,
then the system uses the default tablespace for that user as long as the table is
unpartitioned, contains no LOB or VARRAY columns, is not a type table, and is not an index-

Chapter 27
Read-Only Tablespaces

27-63

only table with an overflow segment. This scenario can be used to move a user's
tables from one tablespace to another.

For example, you need to move joe's tables from tablespace A to tablespace B after a
full database export. Follow these steps:

1. If joe has the UNLIMITED TABLESPACE privilege, then revoke it. Set joe's quota on
tablespace A to zero. Also revoke all roles that might have such privileges or
quotas.

When you revoke a role, it does not have a cascade effect. Therefore, users who
were granted other roles by joe will be unaffected.

2. Export joe's tables.

3. Drop joe's tables from tablespace A.

4. Give joe a quota on tablespace B and make it the default tablespace for joe.

5. Import joe's tables. (By default, Import puts joe's tables into tablespace B.)

27.25 Importing Statistics
If statistics are requested at export time and analyzer statistics are available for a
table, then Export will include the ANALYZE statement used to recalculate the statistics
for the table into the dump file.

In most circumstances, Export will also write the precalculated optimizer statistics for
tables, indexes, and columns to the dump file. See the description of the Import
parameter STATISTICS.

Because of the time it takes to perform an ANALYZE statement, it is usually preferable
for Import to use the precalculated optimizer statistics for a table (and its indexes and
columns) rather than execute the ANALYZE statement saved by Export. By default,
Import will always use the precalculated statistics that are found in the export dump
file.

The Export utility flags certain precalculated statistics as questionable. The importer
might want to import only unquestionable statistics, not precalculated statistics, in the
following situations:

• Character set translations between the dump file and the import client and the
import database could potentially change collating sequences that are implicit in
the precalculated statistics.

• Row errors occurred while importing the table.

• A partition level import is performed (column statistics will no longer be accurate).

Note:

Specifying ROWS=n will not prevent the use of precalculated statistics.
This feature allows plan generation for queries to be tuned in a
nonproduction database using statistics from a production database. In
these cases, the import should specify STATISTICS=SAFE.

Chapter 27
Importing Statistics

27-64

In certain situations, the importer might want to always use ANALYZE statements rather than
precalculated statistics. For example, the statistics gathered from a fragmented database
may not be relevant when the data is imported in a compressed form. In these cases, the
importer should specify STATISTICS=RECALCULATE to force the recalculation of statistics.

If you do not want any statistics to be established by Import, then you should specify
STATISTICS=NONE.

27.26 Using Export and Import to Partition a Database Migration
When you use the Export and Import utilities to migrate a large database, it may be more
efficient to partition the migration into multiple export and import jobs.

If you decide to partition the migration, then be aware of the following advantages and
disadvantages.

• Advantages of Partitioning a Migration
Describes the advantages of partitioning a migration.

• Disadvantages of Partitioning a Migration
Describes the disadvantages of partitioning a migration.

• How to Use Export and Import to Partition a Database Migration
To use Export and Import to perform a database migration in a partitioned manner,
complete this procedure.

27.26.1 Advantages of Partitioning a Migration
Describes the advantages of partitioning a migration.

Specifically:

• Time required for the migration may be reduced, because many of the subjobs can be
run in parallel.

• The import can start as soon as the first export subjob completes, rather than waiting for
the entire export to complete.

27.26.2 Disadvantages of Partitioning a Migration
Describes the disadvantages of partitioning a migration.

Specifically:

• The export and import processes become more complex.

• Support of cross-schema references for certain types of objects may be compromised.
For example, if a schema contains a table with a foreign key constraint against a table in
a different schema, then you may not have the required parent records when you import
the table into the dependent schema.

27.26.3 How to Use Export and Import to Partition a Database Migration
To use Export and Import to perform a database migration in a partitioned manner, complete
this procedure.

1. For all top-level metadata in the database, issue the following commands:

Chapter 27
Using Export and Import to Partition a Database Migration

27-65

a. exp FILE=full FULL=y CONSTRAINTS=n TRIGGERS=n ROWS=n INDEXES=n
b. imp FILE=full FULL=y

2. For each scheman in the database, issue the following commands:

a. exp OWNER=scheman FILE=scheman
b. imp FILE=scheman FROMUSER=scheman TOUSER=scheman IGNORE=y

All exports can be done in parallel. When the import of full.dmp completes, all
remaining imports can also be done in parallel.

27.27 Tuning Considerations for Import Operations
These sections discuss some ways to improve the performance of an import
operation.

• Changing System-Level Options
Describes system-level options that may help improve the performance of an
import operation.

• Changing Initialization Parameters
These suggestions about settings in your initialization parameter file may help
improve performance of an import operation.

• Changing Import Options
These suggestions about the usage of import options may help improve
performance.

• Dealing with Large Amounts of LOB Data
Describes importing large amounts of LOB data.

• Dealing with Large Amounts of LONG Data
Keep in mind that importing a table with a LONG column can cause a higher rate of
I/O and disk usage, resulting in reduced performance of the import operation.

27.27.1 Changing System-Level Options
Describes system-level options that may help improve the performance of an import
operation.

Specifically :

• Create and use one large rollback segment and take all other rollback segments
offline. Generally a rollback segment that is one half the size of the largest table
being imported should be big enough. It can also help if the rollback segment is
created with the minimum number of two extents, of equal size.

Note:

Oracle recommends that you use automatic undo management instead
of rollback segments.

• Put the database in NOARCHIVELOG mode until the import is complete. This will
reduce the overhead of creating and managing archive logs.

Chapter 27
Tuning Considerations for Import Operations

27-66

• Create several large redo files and take any small redo log files offline. This will result in
fewer log switches being made.

• If possible, have the rollback segment, table data, and redo log files all on separate disks.
This will reduce I/O contention and increase throughput.

• If possible, do not run any other jobs at the same time that may compete with the import
operation for system resources.

• Ensure that there are no statistics on dictionary tables.

• Set TRACE_LEVEL_CLIENT=OFF in the sqlnet.ora file.

• If possible, increase the value of DB_BLOCK_SIZE when you re-create the database. The
larger the block size, the smaller the number of I/O cycles needed. This change is
permanent, so be sure to carefully consider all effects it will have before making it.

27.27.2 Changing Initialization Parameters
These suggestions about settings in your initialization parameter file may help improve
performance of an import operation.

• Set LOG_CHECKPOINT_INTERVAL to a number that is larger than the size of the redo log
files. This number is in operating system blocks (512 on most UNIX systems). This
reduces checkpoints to a minimum (at log switching time).

• Increase the value of SORT_AREA_SIZE. The amount you increase it depends on other
activity taking place on the system and on the amount of free memory available. (If the
system begins swapping and paging, then the value is probably set too high.)

• Increase the value for DB_BLOCK_BUFFERS and SHARED_POOL_SIZE.

27.27.3 Changing Import Options
These suggestions about the usage of import options may help improve performance.

Be sure to also read the individual descriptions of all the available options in Import
Parameters.

• Set COMMIT=N. This causes Import to commit after each object (table), not after each
buffer. This is why one large rollback segment is needed. (Because rollback segments
will be deprecated in future releases, Oracle recommends that you use automatic undo
management instead.)

• Specify a large value for BUFFER or RECORDLENGTH, depending on system activity,
database size, and so on. A larger size reduces the number of times that the export file
has to be accessed for data. Several megabytes is usually enough. Be sure to check
your system for excessive paging and swapping activity, which can indicate that the
buffer size is too large.

• Consider setting INDEXES=N because indexes can be created at some point after the
import, when time is not a factor. If you choose to do this, then you need to use the
INDEXFILE parameter to extract the DLL for the index creation or to rerun the import with
INDEXES=Y and ROWS=N.

27.27.4 Dealing with Large Amounts of LOB Data
Describes importing large amounts of LOB data.

Chapter 27
Tuning Considerations for Import Operations

27-67

Specifically:

• Eliminating indexes significantly reduces total import time. This is because LOB
data requires special consideration during an import because the LOB locator has
a primary key that cannot be explicitly dropped or ignored during an import.

• Ensure that there is enough space available in large contiguous chunks to
complete the data load.

27.27.5 Dealing with Large Amounts of LONG Data
Keep in mind that importing a table with a LONG column can cause a higher rate of I/O
and disk usage, resulting in reduced performance of the import operation.

Caution:

This feature is deprecated, and can be desupported in a future release.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

There are no specific parameters that will improve performance during an import of
large amounts of LONG data, although some of the more general tuning suggestions
made in this section may help overall performance.

See Also:

Importing LONG Columns

27.28 Using Different Releases of Export and Import
These sections describe compatibility issues that relate to using different releases of
Export and the Oracle database.

Whenever you are moving data between different releases of the Oracle database, the
following basic rules apply:

• The Import utility and the database to which data is being imported (the target
database) must be the same version. For example, if you try to use the Import
utility 9.2.0.7 to import into a 9.2.0.8 database, then you may encounter errors.

• The version of the Export utility must be equal to the version of either the source or
target database, whichever is earlier.

For example, to create an export file for an import into a later release database,
use a version of the Export utility that equals the source database. Conversely, to
create an export file for an import into an earlier release database, use a version of
the Export utility that equals the version of the target database.

Chapter 27
Using Different Releases of Export and Import

27-68

– In general, you can use the Export utility from any Oracle8 release to export from an
Oracle9i server and create an Oracle8 export file.

• Restrictions When Using Different Releases of Export and Import
Restrictions apply when you are using different releases of Export and Import.

• Examples of Using Different Releases of Export and Import
Using different releases of Export and Import.

27.28.1 Restrictions When Using Different Releases of Export and Import
Restrictions apply when you are using different releases of Export and Import.

Specifically:

• Export dump files can be read only by the Import utility because they are stored in a
special binary format.

• Any export dump file can be imported into a later release of the Oracle database.

• The Import utility cannot read export dump files created by the Export utility of a later
maintenance release or version. For example, a release 9.2 export dump file cannot be
imported by a release 9.0.1 Import utility.

• Whenever a lower version of the Export utility runs with a later version of the Oracle
database, categories of database objects that did not exist in the earlier version are
excluded from the export.

• Export files generated by Oracle9i Export, either direct path or conventional path, are
incompatible with earlier releases of Import and can be imported only with Oracle9i
Import. When backward compatibility is an issue, use the earlier release or version of the
Export utility against the Oracle9i database.

27.28.2 Examples of Using Different Releases of Export and Import
Using different releases of Export and Import.

Table 27-5 shows some examples of which Export and Import releases to use when moving
data between different releases of the Oracle database.

Table 27-5 Using Different Releases of Export and Import

Export from->Import to Use Export Release Use Import Release

8.1.6 -> 8.1.6 8.1.6 8.1.6

8.1.5 -> 8.0.6 8.0.6 8.0.6

8.1.7 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 9.0.2 9.0.1 9.0.2

9.0.2 -> 10.1.0 9.0.2 10.1.0

10.1.0 -> 9.0.2 9.0.2 9.0.2

Table 27-5 covers moving data only between the original Export and Import utilities. For
Oracle Database 10g release 1 (10.1) or later, Oracle recommends the Data Pump Export
and Import utilities in most cases because these utilities provide greatly enhanced
performance compared to the original Export and Import utilities.

Chapter 27
Using Different Releases of Export and Import

27-69

See Also:

Oracle Database Upgrade Guide for more information about exporting and
importing data between different releases, including releases later than 10.1

Chapter 27
Using Different Releases of Export and Import

27-70

Part V
Appendices

Appendixes contain supplemental information to assist you with data migration.

• Instant Client for SQL*Loader, Export, and Import
Oracle Instant Client enables you to run your applications without installing the standard
Oracle Client, or having an Oracle home.

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called railroad
diagrams or DDL diagrams).

A
Instant Client for SQL*Loader, Export, and
Import

Oracle Instant Client enables you to run your applications without installing the standard
Oracle Client, or having an Oracle home.

• What is the Tools Instant Client?
The Tools Instant Client package is available on platforms that support the Oracle Call
Interface (OCI) Instant Client.

• Choosing Which Instant Client to Install
Before you install the Tools Instant Client Tools package, decide if you want to use Basic
Instant Client, or take advantage of the smaller disk space requirements of Instant Client
Light.

• Installing Instant Client Tools by Downloading from OTN
To install the Oracle Instant Client tools package, select the procedure for your platform
from the Oracle Technical Network (OTN), and download the files.

• Installing Tools Instant Client from the Client Release Media
To install the Tools Instant Client package from the client release media, you copy files
over to a local home.

• List of Oracle Instant Client Tools Files
Learn about the purpose of the files that comprise the Oracle Instant Client Tools.

• Configuring Tools Instant Client Package
To configure the Tools Instant Client package executable for use with Oracle Instant
Client, you must set environment variables.

• Connecting to a Database with the Tools Instant Client Package
After the Tools Instant Client package is installed and configured, there are multiple ways
that you can connect to the database using the tools.

• Uninstalling Tools Instant Client Package and Instant Client
You can uninstall the Tools Instant Client package separately, or uninstall the entire
Instant Client.

A.1 What is the Tools Instant Client?
The Tools Instant Client package is available on platforms that support the Oracle Call
Interface (OCI) Instant Client.

The Tools package contains several command-line utilities, including SQL*Loader, Oracle
Data Pump Export, Oracle Data Pump Import, Original (classic) Export, and Original (classic)
Import. Instant Client installations are standalone, with all of the functionality of the command-
line versions of the products. The Instant Client connects to existing remote Oracle
Databases, but does not include its own database. It is easy to install, and uses significantly
less disk space than the full Oracle Database Client installation required to use the
command-line versions of products.

A-1

Overview of Steps Required to use Tools Instant Client

To use the Tools Instant Client, you need two packages:

• Tools Instant Client Package

• Either the Basic OCI Instant Client package, or the OCI Instant Client Light
package.

The basic steps required to use the Tools Instant Client are as follows. Each of these
steps is described in this appendix.

1. Choose which OCI Package (Basic or Light) you want to use, and also select the
directory in which to install the Instant Client files.

2. Copy the Tools Instant Client Package, and the OCI Instant Client package of your
choice, from an installed Oracle instance or download them from OTN.

3. Install (unpack) the Tools Instant Client package and the OCI package. A new
directory instantclient_12_2 is created as part of the installation.

4. Configure the Instant Client.

5. Connect to a remote instance with the utility you want to run.

Both the Tools package and OCI package must be from Oracle Database version
12.2.0.0.0, or higher, and the versions for both must be the same.

See Oracle Call Interface Developer's Guide for more information about the OCI
Instant Client.

Related Topics

• About Oracle Instant Client

A.2 Choosing Which Instant Client to Install
Before you install the Tools Instant Client Tools package, decide if you want to use
Basic Instant Client, or take advantage of the smaller disk space requirements of
Instant Client Light.

The Tools Instant Client package is fully supported with both of the Oracle Instant
Client options. The primary difference between them is that the Instant Client Light
option includes only error message files in English.

Basic Instant Client

The Tools Instant Client package, when used with Basic Instant Client works with any
NLS_LANG setting supported by Oracle Database. It supports all character sets and
language settings available with Oracle Database.

Instant Client Light

The Instant Client Light (English) version of Instant Client further reduces the disk
space requirements of the client installation. The size of the library has been reduced
by removing error message files for languages other than English and leaving only a
few supported character set definitions out of around 250.

Instant Client Light is geared toward applications that use either US7ASCII, WE8DEC,
WE8ISO8859P1, WE8MSWIN1252, or a Unicode character set. There is no restriction on

Appendix A
Choosing Which Instant Client to Install

A-2

the LANGUAGE and the TERRITORY fields of the NLS_LANG setting, Instant Client Light operates
with any language and territory settings. Because only English error messages are provided
with Instant Client Light, error messages generated on the client side, such as Net connection
errors, are always reported in English. This is true even if NLS_LANG is set to a language other
than AMERICAN. Error messages generated by the database side, such as syntax errors in
SQL statements, are in the selected language provided the appropriate translated message
files are installed in the Oracle home of the Oracle Database instance.

A.3 Installing Instant Client Tools by Downloading from OTN
To install the Oracle Instant Client tools package, select the procedure for your platform from
the Oracle Technical Network (OTN), and download the files.

The Instant Client tools package provides an easy way to add many Oracle Database utilities
to your Instant Client. The tool package includes Oracle Data Pump, SQL*Loader and
Workload Replay Client.

The OTN downloads for Linux are RPM packages. The OTN downloads for UNIX and
Windows are zip files.

• Installing Instant Client and Instant Client Tools RPM Packages for Linux
Use this procedure to download and install the Linux RPM packages for Oracle Instant
Client, and Oracle Instant Client Tools.

• Installing Instant Client and Instant Client Tools from Unix or Windows Zip Files
Use this procedure to download and install the zip files for Oracle Instant Client, and
Oracle Instant Client Tools.

A.3.1 Installing Instant Client and Instant Client Tools RPM Packages for
Linux

Use this procedure to download and install the Linux RPM packages for Oracle Instant Client,
and Oracle Instant Client Tools.

In this deployment option, you download the Oracle Instant Client RPM and the Instant Client
Tools RPM from the Oracle Technical Network.

Caution:

Set up a separate installation location for Oracle Instant Client. Never install Oracle
Instant Client packages in an Oracle home.

1. Download the Oracle Instant Client and Instant Client Tools RPM packages from the
following URL:

http://www.oracle.com/technetwork/database/database-technologies/instant-client/
overview/index.html

Both packages must be at least release 12.2.0.0.0 or higher, and both packages must be
the same release.

Appendix A
Installing Instant Client Tools by Downloading from OTN

A-3

http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

2. Use rpm -i for the initial install of the RPM packages, or rpm -u to upgrade to a
newer version of the packages. Install Oracle Instant Client first before you attempt
to install the Instant Client Tools package.

3. Configure Instant Client.

Related Topics

• Configuring Tools Instant Client Package
To configure the Tools Instant Client package executable for use with Oracle
Instant Client, you must set environment variables.

• Oracle Instant Client and Oracle Instant Client Light

A.3.2 Installing Instant Client and Instant Client Tools from Unix or
Windows Zip Files

Use this procedure to download and install the zip files for Oracle Instant Client, and
Oracle Instant Client Tools.

In this deployment option, you download the Oracle Instant Client RPM and the Instant
Client Tools RPM from the Oracle Technical Network.

Caution:

Set up a separate installation location for Oracle Instant Client. Never install
Oracle Instant Client packages in an Oracle home.

1. Download the Oracle Instant Client and Instant Client Tools zip files from the
following URL:

http://www.oracle.com/technetwork/database/database-technologies/instant-client/
overview/index.html

Both zip files must be at least release 12.2.0.0.0 or higher, and both packages
must be the same release.

2. Create a new directory. For example, with an Oracle Instant Client 19c
deployment, on Unix systems create /home/instantclient19c. On Windows,
create c:\instantclient19c on Windows.

3. Unzip the two packages into the new directory. Install the Oracle Instant Client
package first.

4. Configure Instant Client.

Related Topics

• Configuring Tools Instant Client Package
To configure the Tools Instant Client package executable for use with Oracle
Instant Client, you must set environment variables.

• Oracle Instant Client and Oracle Instant Client Light

Appendix A
Installing Instant Client Tools by Downloading from OTN

A-4

http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

A.4 Installing Tools Instant Client from the Client Release Media
To install the Tools Instant Client package from the client release media, you copy files over
to a local home.

1. Run the installer on the Oracle Database Client Release media and choose the
Administrator option.

2. Create a new directory. For example, on Unix and Linux, create a directory such as /
home/instantclientrelease, where release is the release number of the instant client
package. For example: /home/instantclient19 On Microsoft Windows, create a path
such as c:\instantclient19.

3. Copy the Tools Instant Client package to the new directory. All files must be copied from
the same Oracle home. Refer to "List of Oracle Instant Client Tools Files" for a list of the
files to copy

After you copy the Instant Client files, you are ready to configure the Tools Instant Client
package on your system.

A.5 List of Oracle Instant Client Tools Files
Learn about the purpose of the files that comprise the Oracle Instant Client Tools.

Oracle Instant Client Tools Files

Refer to the list of files for your platform. Note that, for convenience, the Microsoft Windows
files include symbolic links (symlinks), so that you do not need to create them. When the zip
file is unzipped and restored, the symlinks are also restored.

Table A-1 Instant Client Tools Files for Linux and Unix

File Name Description

exp Original (classic) export executable

expdp Oracle Data Pump export executable

imp Original (classic) import executable

impdp Oracle Data Pump import executable

libnfsodmrelease.so A shared library used by the SQL*Loader Instant Client to use the
Oracle Disk Manager (ODM). The value in the variable release
corresponds to the release of the tools files contained in the zip. For
example, and Oracle Database 19c tools file set has the shared
library libnfsodm19.so

sqlldr SQL*Loader executable

TOOLS_LICENSE License document for the Tools Instant Client package.

TOOLS_README Readme for the Tools Instant Client package

wrc The Tools Instant Client package contains tools other than those
described in this appendix. The wrc tool is the Workload Replay
Client (wrc) for the Oracle Database Replay feature. The wrc tool is
listed here, but it is not covered by the information in this appendix.

Appendix A
Installing Tools Instant Client from the Client Release Media

A-5

Table A-2 Oracle Instant Client Tools Files for Microsoft Windows

File Name Description

exp.exe Original (classic) export executable.

exp.sym Symbolic link file for the original (classic) export executable.

expdp.exe Oracle Data Pump export executable.

expdp.sym Symlink for Oracle Data Pump export executable.

imp.exe Original (classic) import executable.

imp.sym Symlink for Original (classic) import executable.

impdp.exe Oracle Data Pump import executable.

impdp.sym Symlink for Oracle Data Pump import executable.

sqlldr.exe SQL*Loader executable.

sqlldr.exe Symlink for SQL*Loader executable.

TOOLS_LICENSE License document for the Tools Instant Client package.

TOOLS_README Read Me document for the Tools Instant Client package.

wrc.exe The Tools Instant Client package contains tools other than
those described in this appendix. The wrc tool is the Workload
Replay Client (wrc) for the Oracle Database Replay feature.
The wrc tool is listed here, but it is not covered by the
information in this appendix.

wrc.sym Symlink for the Workload Replay Client.

A.6 Configuring Tools Instant Client Package
To configure the Tools Instant Client package executable for use with Oracle Instant
Client, you must set environment variables.

With Oracle Instant Client, you do not need to set ORACLE_HOME or ORACLE_SID
environment variables. However, you must set LD_LIBRARY_PATH, and you must set
any globalization environment variables that you require.

Only use the Tools Instant Client package executable that is the same release as the
Oracle Instant Client executable that you intend to use with the Tools package.

Example A-1 Configuring Tools Instant Client Package (from RPMS) on Linux

In this example, you move the RPMs downloaded from OTN install into the /usr file
system, in release-specific subdirectories for the Tools Instant Client package By using
release-specific folders in the /usr subdirectory, you can have multiple versions of
Instant Client tools available for each release of Oracle Instant Client that you want to
use.

1. Add the name of the directory containing the Oracle Instant Client libraries to
LD_LIBRARY_PATH. Remove any other Oracle directories.

Appendix A
Configuring Tools Instant Client Package

A-6

For example, to set LD_LIBRARY_PATH in the Bourne or Korn shells, use the following
syntax:

LD_LIBRARY_PATH=/usr/lib/oracle/19/client/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH

Or, to set LD_LIBRARY_PATH in the C shell, use the following syntax:

% setenv LD_LIBRARY_PATH /usr/lib/oracle/19/client/lib:$LD_LIBRARY_PATH

2. Make sure the Tools executables installed from the RPM are the first executables found
in your PATH. For example, to test if the Tools executable is found first, enter which
sqlldr. If the PATH environment variable is configured correctly, then the response
should be /usr/bin/sqlldr. If you do not obtain that response, then remove any other
Oracle directories from PATH, or put /usr/bin before other Tools executables in PATH, or
use an absolute or relative path to start Tools Instant Client.

For example, to set PATH in the bash shell:

PATH=/usr/bin:${PATH}
export PATH

3. Set Oracle globalization variables required for your locale. For example:

NLS_LANG=AMERICAN_AMERICA.UTF8
export NLS_LANG

If you do not set a globalization value, then the Tools package takes the globalization
values from the default locale.

Example A-2 Configuring Tools Instant Client Package (from Client Media or Zip File)
on Linux and Unix

1. Add the name of the directory containing the Instant Client files to the appropriate shared
library path LD_LIBRARY_PATH, LIBPATH or SHLIB_PATH. Remove any other Oracle
directories.

For example, using Solaris the Bourne or Korn shells on Oracle Solaris, enter the
following command:

LD_LIBRARY_PATH=/home/instantclient19:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH

2. Add the directory containing the Instant Client files to the PATH environment variable. If it
is not set, then an absolute or relative path must be used to start the utilities provided in
the Tools package. Remove any other Oracle directories from PATH. For example:

PATH=/home/instantclient19:${PATH}
export PATH

3. Set Oracle globalization variables required for your locale. For example:

NLS_LANG=AMERICAN_AMERICA.UTF8
export NLS_LANG

Appendix A
Configuring Tools Instant Client Package

A-7

If you do not set a globalization value, then the Tools package takes the
globalization values from the default locale.

Example A-3 Configuring Tools Instant Client Package on Windows

You can configure your Microsoft Windows environment by using the SET commands in
a Windows command prompt. You can make the environment variable permanent by
setting Environment Variables in System Properties.

For example, to set environment variables in Windows Server 2019 using System
Properties, open System from the Control Panel, click the Advanced System
Settings link, and then click Environment Variables.

1. Add the directory containing the Instant Client files to the PATH system environment
variable. Remove any other Oracle directories from PATH.

For example, add c:\instantclient19 to the beginning of PATH.

2. Set Oracle globalization variables required for your locale. A default locale will be
assumed if no variables are set.

For example, to set NLS_LANG for a Japanese environment, create a user
environment variable NLS_LANG set to JAPANESE_JAPAN.JA16EUC.

A.7 Connecting to a Database with the Tools Instant Client
Package

After the Tools Instant Client package is installed and configured, there are multiple
ways that you can connect to the database using the tools.

The utilities supplied in the Tools Instant Client are always remote from any database
server. To use Oracle Instant Client, a server must have an Oracle Database instance
up and running, and it must have the TNS listener running. For the Oracle Data Pump
Export and Import clients, the dump files reside on the remote server; an Oracle
Database directory object on the server must exist, and should have the appropriate
permissions.

Example A-4 Different Ways You Can Connect to a Database Using the Instant
Client Tools

To connect to a database, you must specify the database by using an Oracle Net
connection identifier. The following information uses the SQL*Loader (sqlldr) utility,
but the information applies to other utilities supplied in the Tools Instant Client package
as well.

For example, you can use an Easy Connection identifier to connect to the HR schema
in the MYDB database running on mymachine is:

sqlldr hr/your_password@\"//mymachine.mydomain:port/MYDB\"

Alternatively you can use a Net Service Name:

sqlldr hr/your_password@MYDB

Appendix A
Connecting to a Database with the Tools Instant Client Package

A-8

Your Net Service Names can be stored in a number of places, including LDAP. To take full
advantage of new release Oracle Database features, Oracle recommends that you use
LDAP.

To use Net Service Names configured in a local Oracle Net tnsnames.ora file, set the
environment variable TNS_ADMIN to the directory containing the tnsnames.ora file. For
example, on Unix or Linux systems, if your tnsnames.ora file is in /home/user1 and it defines
the Net Service Name MYDB2, you can use the following commands:

TNS_ADMIN=/home/user1
export TNS_ADMIN
sqlldr hr@MYDB2

If you do not set TNS_ADMIN as an environment variable, then an operating system dependent
set of directories is examined to find tnsnames.ora. This search path includes looking in the
directory specified by the ORACLE_HOME environment variable for network/admin/
tnsnames.ora. Enabling the operating system to find the tnsnames.ora file is the only reason
to set the ORACLE_HOME environment variable for SQL*Loader Instant Client. If ORACLE_HOME is
set when running Instant Client applications, then you must set it to a directory that exists.

In the following example, we assume that the ORACLE_HOME environment variable is set, and
the $ORACLE_HOME/network/admin/tnsnames.ora or
ORACLE_HOME\network\admin\tnsnames.ora file defines the Net Service Name MYDB3:

sqlldr hr@MYDB3

You can set the environment variable TWO_TASK (on Unix and Linux) or LOCAL (on Microsoft
Windows) to a connection identifier. By setting the environment variable this way, you can
aovid the need to explicitly enter the connection identifier whenever a connection is made in
SQL*Loader or SQL*Loader Instant Client. For example, suppose you want to connect to a
database using a client on a Unix system. The following example connects to the database
called MYDB4:

TNS_ADMIN=/home/user1
export TNS_ADMIN
TWO_TASK=MYDB4
export TWO_TASK
sqlldr hr

On Microsoft Windows, you can set both TNS_ADMIN and LOCAL in the System Properties.

A.8 Uninstalling Tools Instant Client Package and Instant Client
You can uninstall the Tools Instant Client package separately, or uninstall the entire Instant
Client.

After uninstalling the Tools Instant Client package, the remaining Instant Client libraries still
enable custom written OCI programs or third-party database utilities to connect to a
database.

Appendix A
Uninstalling Tools Instant Client Package and Instant Client

A-9

Example A-5 Uninstalling Tools Instant Client

1. For installations on Linux from RPM packages, use rpm -e only on the Tools
Instant Client package
OR

For installations on Unix and Windows, and installations on Linux from the Client
Release media, manually remove any files specific to the Tools Instant Client. The
files that you want to delete should be in the Instant Client directory that you
specified at installation. Do not remove any Oracle home files.

If necessary, reset environment variables and remove tnsnames.ora.

Example A-6 Uninstalling the Complete Instant Client

1. For installations on Linux from RPM packages, choose one of the following
options:

• use rpm -qa to find the Tools Instant Client and Basic Oracle Instant Client
package names. To remove them, run rpm -e

• For installations on UNIX and Windows, and installations on Linux from the
Client Release media, manually delete the directory containing the Tools
executable and Oracle libraries.

2. Reset environment variables, such as PATH, LD_LIBRARY_PATH and TNS_ADMIN.

3. Remove tnsnames.ora if necessary.

Appendix A
Uninstalling Tools Instant Client Package and Instant Client

A-10

B
SQL*Loader Syntax Diagrams

This appendix describes SQL*Loader syntax in graphic form (sometimes called railroad
diagrams or DDL diagrams).

How to Read Graphic Syntax Diagrams

Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram, trace it
from left to right, in the direction shown by the arrows.

For more information about standard SQL syntax notation, see:

How to Read Syntax Diagrams in Oracle Database SQL Language Reference

The following diagrams are shown with certain clauses collapsed (such as pos_spec). These
diagrams are expanded and explained further along in the appendix.

B-1

Options Clause

OPTIONS (

BINDSIZE = n

COLUMNARRAYROWS = n

DATE_CACHE = n

DEFAULTS =

IGNORE

EVALUATE_ONCE

EVALUATE_EVERY_ROW

IGNORE_UNSUPPORTED_EVALUATE_ONCE

IGNORE_UNSUPPORTED_EVALUATE_EVERY_ROW

DEGREE_OF_PARALLELISM =

degree_num

DEFAULT

AUTO

NONE

DIRECT =
TRUE

FALSE

DIRECT_PATH_LOCK_WAIT =
TRUE

FALSE

EMPTY_LOBS_ARE_NULL =
TRUE

FALSE

ERRORS = n

EXTERNAL_TABLE =

NOT_USED

GENERATE_ONLY

EXECUTE

FILE = tablespace file

LOAD = n

MULTITHREADING =
TRUE

FALSE

PARALLEL =
TRUE

FALSE

)

Appendix B

B-2

Options_Cont

(

READSIZE = n

RESUMABLE =
TRUE

FALSE

RESUMABLE_NAME = ’text string’

RESUMABLE_TIMEOUT = n

ROWS = n

SILENT =

HEADER

FEEDBACK

ERRORS

DISCARDS

PARTITIONS

ALL

SKIP = n

SKIP_INDEX_MAINTENANCE =
TRUE

FALSE

SKIP_UNUSABLE_INDEXES =
TRUE

FALSE

STREAMSIZE = n

TRIM =

LRTRIM

NOTRIM

TRIM

RTRIM

LDRTRIM

)

Appendix B

B-3

Load Statement

UNRECOVERABLE

RECOVERABLE LOAD

CONTINUE_LOAD

DATA DEFAULT EXPRESSION CACHE n

CHARACTERSET char_set_name

LENGTH

SEMANTICS
BYTE

CHAR

CHARACTER

BYTEORDER
BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK

FIELD NAMES

FIRST FILE

IGNORE

ALL FILES

IGNORE

NONE

infile_clause

,

READSIZE size READBUFFERS integer

INSERT

APPEND

REPLACE

TRUNCATE

concatenate_clause PRESERVE BLANKS

into_table_clause

,
BEGINDATA

Appendix B

B-4

infile_clause

INFILE
*

input_filename

os_file_proc_clause

BADFILE

directory_path filename

DISCARDFILE

directory_path filename

"

var

fix

str

’string’

X’hex_string’

integer

"

Note:

On the BADFILE and DISCARDFILE clauses, you must specify either a directory path,
or a filename, or both.

concatenate_clause

CONCATENATE
integer

(integer)

CONTINUEIF

THIS

NEXT PRESERVE (

pos_spec

LAST

PRESERVE (operator
str

X’hex_str’

)

Appendix B

B-5

into_table_clause

INTO TABLE name

SORTED

INDEXES

(name

,

)

SINGLEROW
(

PARTITION name

SUBPARTITION name
)

RESUME

YES

NO

REPLACE

INSERT

REPLACE

USING
DELETE

TRUNCATE

TRUNCATE

APPEND

OPTIONS (STORAGE=(storage_spec) , FILE=database_filename)

EVALUATE CHECK_CONSTRAINTS into_table_clause_continued

Appendix B

B-6

into_table_clause_continued

REENABLE

DISABLED_CONSTRAINTS EXCEPTIONS table

WHEN field_condition

OID_spec

SID_spec

XMLTYPE_spec

FIELDS

CSV

WITH

WITHOUT
EMBEDDED

delim_spec

TRAILING

NULLCOLS

DATE

TIMESTAMP

FORMAT mask

NULLIF

=

!=

" char_string "

X’hexstr’

BLANKS

SKIP n

field_list

field_condition

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

Appendix B

B-7

delim_spec

enclosure_spec

termination_spec

OPTIONALLY

enclosure_spec

full_fieldname

full_fieldname

termination_spec

TERMINATED

BY

WHITESPACE

X’hexstr’

’string’

EOF

enclosure_spec

ENCLOSED

BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

oid_spec

OID (fieldname)

sid_spec

SID (
fieldname

CONSTANT SID_val
)

Appendix B

B-8

xmltype_spec

XMLTYPE (fieldname)

field_list

(column_name

dgen_fld_spec

scalar_fld_spec

col_obj_fld_spec

collection_fld_spec

filler_fld_spec

,

)

dgen_fld_spec

RECNUM

SYSDATE

CONSTANT val

SEQUENCE (

COUNT

MAX

integer

, incr

)

REF_spec

SID_spec

BFILE_spec

init_spec

EXPRESSION " sql_string "

ref_spec

REF (
fieldname

CONSTANT val

,

)

Appendix B

B-9

init_spec

NULLIF

DEFAULTIF

field_condition

bfile_spec

BFILE (
fieldname

CONSTANT val
,

fieldname

CONSTANT val
)

filler_fld_spec

FILLER

BOUNDFILLER

pos_spec datatype_spec PIECED

scalar_fld_spec

LOBFILE_spec

POSITION pos_spec

datatype_spec PIECED

init_spec " sql_string "

lobfile_spec

LOBFILE (
fieldname

CONSTANT filename

CHARACTERSET name

LENGTH

SEMANTICS
BYTE

CHAR

CHARACTER
BYTEORDER

BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK

)

Appendix B

B-10

lls_field_spec

lob_column_name

init_spec

LLS

" sql_string "

pos_spec

(

start

*

+integer

:

–
end

)

datatype_spec

delim_spec

INTEGER

(length)

SIGNED

UNSIGNED

EXTERNAL

(length) delim_spec

FLOAT

EXTERNAL

(length) delim_spec

DECIMAL

ZONED

EXTERNAL

(length) delim_spec

(precision

, scale

)

DOUBLE

BYTEINT

SMALLINT

SIGNED

UNSIGNED

RAW

(length)

GRAPHIC

EXTERNAL (graphic_char_length)

VARGRAPHIC

VARCHAR

(max_length)

datatype_spec_cont

Appendix B

B-11

datatype_spec_cont

CHAR

(length) delim_spec

VARCHARC (length_of_length

, max_size_bytes

)

VARRAWC (length_of_length

, max_size_bytes

)

LONG

VARRAW

(max_bytes)

DATE

EXTERNAL (length) "mask" delim_spec

TIME

TIMESTAMP

fractional_second_precision WITH

LOCAL

TIME ZONE "mask"

INTERVAL

YEAR

year_precision

TO MONTH

DAY

day_precision

TO SECOND

fractional_second_precision

col_obj_fld_spec

COLUMN OBJECT

TREAT AS typename init_spec

field_list

sql_string_spec

collection_fld_spec

nested_table_spec

BOUNDFILLER

varray_spec

nested_table_spec

NESTED TABLE

SDF_spec count_spec init_spec

count_spec field_list

delim_spec

Appendix B

B-12

varray_spec

VARRAY

SDF_spec count_spec init_spec

count_spec field_list

delim_spec

sdf_spec

SDF (

field_name

CONSTANT filename os_file_proc_clause READSIZE size

CHARACTERSET name

LENGTH

SEMANTICS
BYTE

CHAR

CHARACTER

BYTEORDER
BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK delim_spec

)

count_spec

COUNT (
fieldname

CONSTANT positive_integer
)

Appendix B

B-13

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Syntax Diagrams
	Conventions

	Part I Oracle Data Pump
	1 Overview of Oracle Data Pump
	1.1 Oracle Data Pump Components
	1.2 How Does Oracle Data Pump Move Data?
	1.2.1 Using Data File Copying to Move Data
	1.2.2 Using Direct Path to Move Data
	1.2.3 Using External Tables to Move Data
	1.2.4 Using Conventional Path to Move Data
	1.2.5 Using Network Link Import to Move Data
	1.2.6 Using a Parameter File (Parfile) with Oracle Data Pump

	1.3 Using Oracle Data Pump With CDBs
	1.3.1 About Using Oracle Data Pump in a Multitenant Environment
	1.3.2 Using Oracle Data Pump to Move Data Into a CDB
	1.3.3 Using Oracle Data Pump to Move PDBs Within or Between CDBs

	1.4 Cloud Premigration Advisor Tool
	1.4.1 What is the Cloud Premigration Advisor Tool (CPAT)

	1.5 Required Roles for Oracle Data Pump Export and Import Operations
	1.6 What Happens During the Processing of an Oracle Data Pump Job?
	1.6.1 Coordination of an Oracle Data Pump Job
	1.6.2 Tracking Progress Within an Oracle Data Pump Job
	1.6.3 Filtering Data and Metadata During an Oracle Data Pump Job
	1.6.4 Transforming Metadata During an Oracle Data Pump Job
	1.6.5 Maximizing Job Performance of Oracle Data Pump
	1.6.6 Loading and Unloading Data with Oracle Data Pump

	1.7 How to Monitor Status of Oracle Data Pump Jobs
	1.8 How to Monitor the Progress of Running Jobs with V$SESSION_LONGOPS
	1.9 File Allocation with Oracle Data Pump
	1.9.1 Understanding File Allocation in Oracle Data Pump
	1.9.2 Specifying Files and Adding Additional Dump Files
	1.9.3 Default Locations for Dump, Log, and SQL Files
	1.9.3.1 Understanding Dump, Log, and SQL File Default Locations
	1.9.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC
	1.9.3.3 Using Directory Objects When Oracle Automatic Storage Management Is Enabled
	1.9.3.4 The DATA_PUMP_DIR Directory Object and Pluggable Databases

	1.9.4 Using Substitution Variables with Oracle Data Pump Exports

	1.10 Exporting and Importing Between Different Oracle Database Releases
	1.11 Exporting and Importing Blockchain Tables with Oracle Data Pump
	1.12 Managing SecureFiles Large Object Exports with Oracle Data Pump
	1.13 Oracle Data Pump Process Exit Codes
	1.14 How Oracle Data Pump Manages Dump File Blocks
	1.14.1 Dump Files for Exports
	1.14.2 Trailer Block File Layout in Dump Files
	1.14.3 Header Block File Layout in Dump Files
	1.14.4 Types of Dump File Trailer Blocks

	1.15 How to Monitor Oracle Data Pump Jobs with Unified Auditing
	1.16 Encrypted Data Security Warnings for Oracle Data Pump Operations
	1.17 How Does Oracle Data Pump Handle Timestamp Data?
	1.17.1 TIMESTAMP WITH TIMEZONE Restrictions
	1.17.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions
	1.17.1.2 Oracle Data Pump Support for TIMESTAMP WITH TIME ZONE Data
	1.17.1.3 Time Zone File Versions on the Source and Target

	1.17.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions

	1.18 Character Set and Globalization Support Considerations
	1.18.1 Data Definition Language (DDL)
	1.18.2 Single-Byte Character Sets and Export and Import
	1.18.3 Multibyte Character Sets and Export and Import

	1.19 Oracle Data Pump Behavior with Data-Bound Collation

	2 Oracle Data Pump Export
	2.1 What Is Oracle Data Pump Export?
	2.2 Starting Oracle Data Pump Export
	2.2.1 Oracle Data Pump Export Interfaces
	2.2.2 Oracle Data Pump Export Modes
	2.2.2.1 Full Export Mode
	2.2.2.2 Schema Mode
	2.2.2.3 Table Mode
	2.2.2.4 Tablespace Mode
	2.2.2.5 Transportable Tablespace Mode

	2.2.3 Network Considerations for Oracle Data Pump Export

	2.3 Filtering During Export Operations
	2.3.1 Oracle Data Pump Export Data Filters
	2.3.2 Oracle Data Pump Metadata Filters

	2.4 Parameters Available in Data Pump Export Command-Line Mode
	2.4.1 About Oracle Data Pump Export Parameters
	2.4.2 ABORT_STEP
	2.4.3 ACCESS_METHOD
	2.4.4 ATTACH
	2.4.5 CHECKSUM
	2.4.6 CHECKSUM_ALGORITM
	2.4.7 CLUSTER
	2.4.8 COMPRESSION
	2.4.9 COMPRESSION_ALGORITHM
	2.4.10 CONTENT
	2.4.11 CREDENTIAL
	2.4.12 DATA_OPTIONS
	2.4.13 DIRECTORY
	2.4.14 DUMPFILE
	2.4.15 ENABLE_SECURE_ROLES
	2.4.16 ENCRYPTION
	2.4.17 ENCRYPTION_ALGORITHM
	2.4.18 ENCRYPTION_MODE
	2.4.19 ENCRYPTION_PASSWORD
	2.4.20 ENCRYPTION_PWD_PROMPT
	2.4.21 ESTIMATE
	2.4.22 ESTIMATE_ONLY
	2.4.23 EXCLUDE
	2.4.24 FILESIZE
	2.4.25 FLASHBACK_SCN
	2.4.26 FLASHBACK_TIME
	2.4.27 FULL
	2.4.28 HELP
	2.4.29 INCLUDE
	2.4.30 JOB_NAME
	2.4.31 KEEP_MASTER
	2.4.32 LOGFILE
	2.4.33 LOGTIME
	2.4.34 METRICS
	2.4.35 NETWORK_LINK
	2.4.36 NOLOGFILE
	2.4.37 PARALLEL
	2.4.38 PARALLEL_THRESHOLD
	2.4.39 PARFILE
	2.4.40 QUERY
	2.4.41 REMAP_DATA
	2.4.42 REUSE_DUMPFILES
	2.4.43 SAMPLE
	2.4.44 SCHEMAS
	2.4.45 SERVICE_NAME
	2.4.46 SOURCE_EDITION
	2.4.47 STATUS
	2.4.48 TABLES
	2.4.49 TABLESPACES
	2.4.50 TRANSPORT_DATAFILES_LOG
	2.4.51 TRANSPORT_FULL_CHECK
	2.4.52 TRANSPORT_TABLESPACES
	2.4.53 TRANSPORTABLE
	2.4.54 TTS_CLOSURE_CHECK
	2.4.55 VERSION
	2.4.56 VIEWS_AS_TABLES

	2.5 Commands Available in Data Pump Export Interactive-Command Mode
	2.5.1 About Oracle Data Pump Export Interactive Command Mode
	2.5.2 ADD_FILE
	2.5.3 CONTINUE_CLIENT
	2.5.4 EXIT_CLIENT
	2.5.5 FILESIZE
	2.5.6 HELP
	2.5.7 KILL_JOB
	2.5.8 PARALLEL
	2.5.9 START_JOB
	2.5.10 STATUS
	2.5.11 STOP_JOB

	2.6 Examples of Using Oracle Data Pump Export
	2.6.1 Performing a Table-Mode Export
	2.6.2 Data-Only Unload of Selected Tables and Rows
	2.6.3 Estimating Disk Space Needed in a Table-Mode Export
	2.6.4 Performing a Schema-Mode Export
	2.6.5 Performing a Parallel Full Database Export
	2.6.6 Using Interactive Mode to Stop and Reattach to a Job

	2.7 Syntax Diagrams for Oracle Data Pump Export

	3 Oracle Data Pump Import
	3.1 What Is Oracle Data Pump Import?
	3.2 Starting Oracle Data Pump Import
	3.2.1 Oracle Data Pump Import Interfaces
	3.2.2 Oracle Data Pump Import Modes
	3.2.2.1 About Oracle Data Pump Import Modes
	3.2.2.2 Full Import Mode
	3.2.2.3 Schema Mode
	3.2.2.4 Table Mode
	3.2.2.5 Tablespace Mode
	3.2.2.6 Transportable Tablespace Mode

	3.2.3 Network Considerations for Oracle Data Pump Import

	3.3 Filtering During Import Operations
	3.3.1 Oracle Data Pump Import Data Filters
	3.3.2 Oracle Data Pump Import Metadata Filters

	3.4 Parameters Available in Oracle Data Pump Import Command-Line Mode
	3.4.1 About Import Command-Line Mode
	3.4.2 ABORT_STEP
	3.4.3 ACCESS_METHOD
	3.4.4 ATTACH
	3.4.5 CLUSTER
	3.4.6 CONTENT
	3.4.7 CREDENTIAL
	3.4.8 DATA_OPTIONS
	3.4.9 DIRECTORY
	3.4.10 DUMPFILE
	3.4.11 ENABLE_SECURE_ROLES
	3.4.12 ENCRYPTION_PASSWORD
	3.4.13 ENCRYPTION_PWD_PROMPT
	3.4.14 ESTIMATE
	3.4.15 EXCLUDE
	3.4.16 FLASHBACK_SCN
	3.4.17 FLASHBACK_TIME
	3.4.18 FULL
	3.4.19 HELP
	3.4.20 INCLUDE
	3.4.21 JOB_NAME
	3.4.22 KEEP_MASTER
	3.4.23 LOGFILE
	3.4.24 LOGTIME
	3.4.25 MASTER_ONLY
	3.4.26 METRICS
	3.4.27 NETWORK_LINK
	3.4.28 NOLOGFILE
	3.4.29 PARALLEL
	3.4.30 PARALLEL_THRESHOLD
	3.4.31 PARFILE
	3.4.32 PARTITION_OPTIONS
	3.4.33 QUERY
	3.4.34 REMAP_DATA
	3.4.35 REMAP_DATAFILE
	3.4.36 REMAP_DIRECTORY
	3.4.37 REMAP_SCHEMA
	3.4.38 REMAP_TABLE
	3.4.39 REMAP_TABLESPACE
	3.4.40 SCHEMAS
	3.4.41 SERVICE_NAME
	3.4.42 SKIP_UNUSABLE_INDEXES
	3.4.43 SOURCE_EDITION
	3.4.44 SQLFILE
	3.4.45 STATUS
	3.4.46 STREAMS_CONFIGURATION
	3.4.47 TABLE_EXISTS_ACTION
	3.4.48 REUSE_DATAFILES
	3.4.49 TABLES
	3.4.50 TABLESPACES
	3.4.51 TARGET_EDITION
	3.4.52 TRANSFORM
	3.4.53 TRANSPORT_DATAFILES
	3.4.54 TRANSPORT_FULL_CHECK
	3.4.55 TRANSPORT_TABLESPACES
	3.4.56 TRANSPORTABLE
	3.4.57 VERIFY_CHECKSUM
	3.4.58 VERIFY_ONLY
	3.4.59 VERSION
	3.4.60 VIEWS_AS_TABLES (Network Import)

	3.5 Commands Available in Oracle Data Pump Import Interactive-Command Mode
	3.5.1 About Oracle Data Pump Import Interactive Command Mode
	3.5.2 CONTINUE_CLIENT
	3.5.3 EXIT_CLIENT
	3.5.4 HELP
	3.5.5 KILL_JOB
	3.5.6 PARALLEL
	3.5.7 START_JOB
	3.5.8 STATUS
	3.5.9 STOP_JOB

	3.6 Examples of Using Oracle Data Pump Import
	3.6.1 Performing a Data-Only Table-Mode Import
	3.6.2 Performing a Schema-Mode Import
	3.6.3 Performing a Network-Mode Import
	3.6.4 Using Wildcards in URL-Based Dumpfile Names

	3.7 Syntax Diagrams for Oracle Data Pump Import

	4 Oracle Data Pump Legacy Mode
	4.1 Oracle Data Pump Legacy Mode Use Cases
	4.2 Parameter Mappings
	4.2.1 Using Original Export Parameters with Oracle Data Pump
	4.2.2 Using Original Import Parameters with Oracle Data Pump

	4.3 Management of File Locations in Oracle Data Pump Legacy Mode
	4.4 Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors
	4.4.1 Log Files
	4.4.2 Error Cases
	4.4.3 Exit Status

	5 Oracle Data Pump Performance
	5.1 Data Performance Improvements for Oracle Data Pump Export and Import
	5.2 Tuning Performance
	5.2.1 How To Manage Oracle Data Pump Resource Consumption
	5.2.2 Effect of Compression and Encryption on Performance
	5.2.3 Memory Considerations When Exporting and Importing Statistics

	5.3 Initialization Parameters That Affect Oracle Data Pump Performance
	5.3.1 Performance Guidelines for Oracle Data Pump Parameters
	5.3.2 Setting the Size Of the Buffer Cache In a GoldenGate Replication Environment
	5.3.3 Managing Resource Usage for Multiple User Oracle Data Pump Jobs

	6 Using the Oracle Data Pump API
	6.1 How Does the Oracle Data Pump Client Interface API Work?
	6.2 DBMS_DATAPUMP Job States
	6.3 What Are the Basic Steps in Using the Oracle Data Pump API?
	6.4 Examples of Using the Oracle Data Pump API
	6.4.1 Using the Oracle Data Pump API Examples with Your Database
	6.4.2 Performing a Simple Schema Export with Oracle Data Pump
	6.4.3 Performing a Table Mode Export to Object Store with Oracle Data Pump
	6.4.4 Importing a Dump File and Remapping All Schema Objects
	6.4.5 Importing a Table to an Object Store Using Oracle Data Pump
	6.4.6 Using Exception Handling During a Simple Schema Export
	6.4.7 Displaying Dump File Information for Oracle Data Pump Jobs

	Part II SQL*Loader
	7 Understanding How to Use SQL*Loader
	7.1 SQL*Loader Features
	7.2 SQL*Loader Parameters
	7.3 SQL*Loader Control File
	7.4 Input Data and Data Fields in SQL*Loader
	7.4.1 How SQL*Loader Reads Input Data and Data Files
	7.4.2 Fixed Record Format
	7.4.3 Variable Record Format and SQL*Loader
	7.4.4 Stream Record Format and SQL*Loader
	7.4.5 Logical Records and SQL*Loader
	7.4.6 Data Field Setting and SQL*Loader

	7.5 LOBFILEs and Secondary Data Files (SDFs)
	7.6 Data Conversion and Data Type Specification
	7.7 SQL*Loader Discarded and Rejected Records
	7.7.1 The SQL*Loader Bad File
	7.7.1.1 Records Rejected by SQL*Loader
	7.7.1.2 Records Rejected by Oracle Database During a SQL*Loader Operation

	7.7.2 The SQL*Loader Discard File

	7.8 Log File and Logging Information
	7.9 Conventional Path Loads, Direct Path Loads, and External Table Loads
	7.9.1 Conventional Path Loads
	7.9.2 Direct Path Loads
	7.9.3 Parallel Direct Path
	7.9.4 External Table Loads
	7.9.5 Choosing External Tables Versus SQL*Loader
	7.9.6 Behavior Differences Between SQL*Loader and External Tables
	7.9.6.1 Multiple Primary Input Data Files
	7.9.6.2 Syntax and Data Types
	7.9.6.3 Byte-Order Marks
	7.9.6.4 Default Character Sets, Date Masks, and Decimal Separator
	7.9.6.5 Use of the Backslash Escape Character

	7.9.7 Loading Tables Using Data Stored into Object Storage

	7.10 Loading Objects, Collections, and LOBs with SQL*Loader
	7.10.1 Supported Object Types
	7.10.1.1 column objects
	7.10.1.2 row objects

	7.10.2 Supported Collection Types
	7.10.2.1 Nested Tables
	7.10.2.2 VARRAYs

	7.10.3 SODA Collections and SQL*Loader
	7.10.4 Supported LOB Data Types

	7.11 Partitioned Object Support in SQL*Loader
	7.12 Application Development: Direct Path Load API
	7.13 SQL*Loader Case Studies
	7.13.1 How to Access and Use the Oracle SQL*Loader Case Studies
	7.13.2 Case Study Files
	7.13.3 Running the Case Studies
	7.13.4 Case Study Log Files
	7.13.5 Checking the Results of a Case Study

	8 SQL*Loader Command-Line Reference
	8.1 Starting SQL*Loader
	8.1.1 Specifying Parameters on the Command Line
	8.1.2 Alternative Ways to Specify SQL*Loader Parameters
	8.1.3 Using SQL*Loader to Load Data Across a Network

	8.2 Command-Line Parameters for SQL*Loader
	8.2.1 BAD
	8.2.2 BINDSIZE
	8.2.3 COLUMNARRAYROWS
	8.2.4 COMPRESS_STREAM
	8.2.5 CONTROL
	8.2.6 CREDENTIAL
	8.2.7 DATA
	8.2.8 DATE_CACHE
	8.2.9 DEFAULTS
	8.2.10 DEGREE_OF_PARALLELISM
	8.2.11 DIRECT
	8.2.12 DIRECT_PATH_LOCK_WAIT
	8.2.13 DISCARD
	8.2.14 DISCARDMAX
	8.2.15 DNFS_ENABLE
	8.2.16 DNFS_READBUFFERS
	8.2.17 EMPTY_LOBS_ARE_NULL
	8.2.18 ERRORS
	8.2.19 EXTERNAL_TABLE
	8.2.20 FILE
	8.2.21 GRANULE_SIZE
	8.2.22 GSM_HOST
	8.2.23 GSM_NAME
	8.2.24 GSM_PORT
	8.2.25 HELP
	8.2.26 LOAD
	8.2.27 LOAD_SHARDS
	8.2.28 LOG
	8.2.29 MULTITHREADING
	8.2.30 NO_INDEX_ERRORS
	8.2.31 OPTIMIZE PARALLEL
	8.2.32 PARALLEL
	8.2.33 PARFILE
	8.2.34 PARTITION_MEMORY
	8.2.35 READER_COUNT
	8.2.36 READSIZE
	8.2.37 RESUMABLE
	8.2.38 RESUMABLE_NAME
	8.2.39 RESUMABLE_TIMEOUT
	8.2.40 ROWS
	8.2.41 SDF_PREFIX
	8.2.42 SILENT
	8.2.43 SKIP
	8.2.44 SKIP_INDEX_MAINTENANCE
	8.2.45 SKIP_UNUSABLE_INDEXES
	8.2.46 STREAMSIZE
	8.2.47 TRIM
	8.2.48 USERID

	8.3 Exit Codes for Inspection and Display

	9 SQL*Loader Control File Reference
	9.1 Control File Contents
	9.2 Comments in the Control File
	9.3 Specifying Command-Line Parameters in the Control File
	9.3.1 OPTIONS Clause for Schema Data
	9.3.2 OPTIONS Clause for SODA Collections
	9.3.3 Specifying the Number of Default Expressions to Be Evaluated At One Time

	9.4 Specifying File Names and Object Names
	9.4.1 File Names That Conflict with SQL and SQL*Loader Reserved Words
	9.4.2 Specifying SQL Strings in the SQL*Loader Control File
	9.4.3 Operating Systems and SQL Loader Control File Characters
	9.4.3.1 Specifying a Complete Path
	9.4.3.2 Backslash Escape Character
	9.4.3.3 Nonportable Strings
	9.4.3.4 Using the Backslash as an Escape Character
	9.4.3.5 Escape Character Is Sometimes Disallowed

	9.5 Identifying XMLType Tables
	9.6 Specifying Field Order
	9.7 Specifying Data Files
	9.7.1 Understanding How to Specify Data Files
	9.7.2 Examples of INFILE Syntax
	9.7.3 Specifying Multiple Data Files

	9.8 Specifying CSV Format Files
	9.9 Loading VECTOR Columns from Character Data and fvec Format Files
	9.10 Identifying Data in the Control File with BEGINDATA
	9.11 Specifying Data File Format and Buffering
	9.12 Specifying the Bad File
	9.12.1 Understanding and Specifying the Bad File
	9.12.2 Examples of Specifying a Bad File Name
	9.12.3 How Bad Files Are Handled with LOBFILEs and SDFs
	9.12.4 Criteria for Rejected Records

	9.13 Specifying the Discard File
	9.13.1 Understanding and Specifying the Discard File
	9.13.2 Specifying the Discard File in the Control File
	9.13.3 Limiting the Number of Discard Records
	9.13.4 Examples of Specifying a Discard File Name
	9.13.5 Criteria for Discarded Records
	9.13.6 How Discard Files Are Handled with LOBFILEs and SDFs
	9.13.7 Specifying the Discard File from the Command Line

	9.14 Specifying a NULLIF Clause At the Table Level
	9.15 Specifying Datetime Formats At the Table Level
	9.16 Handling Different Character Encoding Schemes
	9.16.1 Multibyte (Asian) Character Sets
	9.16.2 Unicode Character Sets
	9.16.3 Database Character Sets
	9.16.4 Data File Character Sets
	9.16.5 Input Character Conversion with SQL*Loader
	9.16.5.1 Options for Converting Character Sets Using SQL*Loader
	9.16.5.2 Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs
	9.16.5.3 CHARACTERSET Parameter
	9.16.5.4 Control File Character Set
	9.16.5.5 Character-Length Semantics

	9.16.6 Shift-sensitive Character Data

	9.17 Interrupted SQL*Loader Loads
	9.17.1 Understanding Causes of Interrupted SQL*Loader Loads
	9.17.2 Discontinued Conventional Path Loads
	9.17.3 Discontinued Direct Path Loads
	9.17.3.1 Load Discontinued Because of Space Errors
	9.17.3.2 Load Discontinued Because Maximum Number of Errors Exceeded
	9.17.3.3 Load Discontinued Because of Irrecoverable Errors
	9.17.3.4 Load Discontinued Because a Ctrl+C Was Issued

	9.17.4 Status of Tables and Indexes After an Interrupted Load
	9.17.5 Using the Log File to Determine Load Status
	9.17.6 Continuing Single-Table Loads

	9.18 Assembling Logical Records from Physical Records
	9.18.1 Using CONCATENATE to Assemble Logical Records
	9.18.2 Using CONTINUEIF to Assemble Logical Records

	9.19 Loading Logical Records into Tables
	9.19.1 Specifying Table Names
	9.19.2 INTO TABLE Clause
	9.19.3 Table-Specific Loading Method
	9.19.4 Loading Data into Empty Tables with INSERT
	9.19.5 Loading Data into Nonempty Tables
	9.19.5.1 Options for Loading Data Into Nonempty Tables
	9.19.5.2 APPEND
	9.19.5.3 APPEND_PARALLEL
	9.19.5.4 REPLACE
	9.19.5.5 Updating Existing Rows with REPLACE
	9.19.5.6 TRUNCATE

	9.19.6 Table-Specific OPTIONS Parameter
	9.19.7 Loading Records Based on a Condition
	9.19.8 Using the WHEN Clause with LOBFILEs and SDFs
	9.19.9 Specifying Default Data Delimiters
	9.19.9.1 fields_spec
	9.19.9.2 termination_spec
	9.19.9.3 enclosure_spec

	9.19.10 Handling Records with Missing Specified Fields
	9.19.10.1 SQL*Loader Management of Short Records with Missing Data
	9.19.10.2 TRAILING NULLCOLS Clause

	9.20 Index Options with SQL*Loader
	9.20.1 Understanding the SORTED INDEXES Parameter
	9.20.2 Understanding the SINGLEROW Parameter

	9.21 Benefits of Using Multiple INTO TABLE Clauses
	9.21.1 Understanding the SQL*Loader INTO TABLE Clause
	9.21.2 Distinguishing Different Input Record Formats
	9.21.3 Relative Positioning Based on the POSITION Parameter
	9.21.4 Distinguishing Different Input Row Object Subtypes
	9.21.5 Loading Data into Multiple Tables
	9.21.6 Summary of Using Multiple INTO TABLE Clauses
	9.21.7 Extracting Multiple Logical Records
	9.21.7.1 Example of Extracting Multiple Logical Records From a Physical Record
	9.21.7.2 Example of Relative Positioning Based on Delimiters

	9.22 Bind Arrays and Conventional Path Loads
	9.22.1 Differences Between Bind Arrays and Conventional Path Loads
	9.22.2 Size Requirements for Bind Arrays
	9.22.3 Performance Implications of Bind Arrays
	9.22.4 Specifying Number of Rows Versus Size of Bind Array
	9.22.5 Setting Up SQL*Loader Bind Arrays
	9.22.5.1 Calculations to Determine Bind Array Size
	9.22.5.2 Determining the Size of the Length Indicator
	9.22.5.3 Calculating the Size of Field Buffers

	9.22.6 Minimizing Memory Requirements for Bind Arrays
	9.22.7 Calculating Bind Array Size for Multiple INTO TABLE Clauses

	10 SQL*Loader Field List Reference
	10.1 Field List Contents
	10.2 Specifying the Position of a Data Field.
	10.2.1 POSITION
	10.2.2 Using POSITION with Data Containing Tabs
	10.2.3 Using POSITION with Multiple Table Loads
	10.2.4 Examples of Using POSITION in SQL*Loader Specifications

	10.3 Specifying Columns and Fields
	10.3.1 Options for Column and Field Specification
	10.3.2 Specifying Filler Fields
	10.3.3 Specifying the Data Type of a Data Field

	10.4 SQL*Loader Data Types
	10.4.1 Portable and Nonportable Data Type Differences
	10.4.2 Nonportable Data Types
	10.4.2.1 Categories of Nonportable Data Types
	10.4.2.2 INTEGER(n)
	10.4.2.3 SMALLINT
	10.4.2.4 FLOAT
	10.4.2.5 DOUBLE
	10.4.2.6 BYTEINT
	10.4.2.7 ZONED
	10.4.2.8 DECIMAL
	10.4.2.9 VARGRAPHIC
	10.4.2.10 VARCHAR
	10.4.2.11 VARRAW
	10.4.2.12 LONG VARRAW

	10.4.3 Portable Data Types
	10.4.3.1 Categories of Portable Data Types
	10.4.3.2 CHAR
	10.4.3.3 Datetime and Interval
	10.4.3.3.1 Categories of Datetime and Interval Data Types
	10.4.3.3.2 DATE
	10.4.3.3.3 TIME
	10.4.3.3.4 TIME WITH TIME ZONE
	10.4.3.3.5 TIMESTAMP
	10.4.3.3.6 TIMESTAMP WITH TIME ZONE
	10.4.3.3.7 TIMESTAMP WITH LOCAL TIME ZONE
	10.4.3.3.8 INTERVAL YEAR TO MONTH
	10.4.3.3.9 INTERVAL DAY TO SECOND

	10.4.3.4 GRAPHIC
	10.4.3.5 GRAPHIC EXTERNAL
	10.4.3.6 Numeric EXTERNAL
	10.4.3.7 RAW
	10.4.3.8 VARCHARC
	10.4.3.9 VARRAWC
	10.4.3.10 Conflicting Native Data Type Field Lengths
	10.4.3.11 Field Lengths for Length-Value Data Types

	10.4.4 SODA Collection Data Types
	10.4.4.1 RAW(*)
	10.4.4.2 CONTENTFILE(soda_filename)

	10.4.5 Data Type Conversions
	10.4.6 Data Type Conversions for Datetime and Interval Data Types
	10.4.7 Specifying Delimiters
	10.4.7.1 Syntax for Termination and Enclosure Specification
	10.4.7.2 Delimiter Marks in the Data
	10.4.7.3 Maximum Length of Delimited Data
	10.4.7.4 Loading Trailing Blanks with Delimiters

	10.4.8 How Delimited Data Is Processed
	10.4.8.1 Fields Using Only TERMINATED BY
	10.4.8.2 Fields Using ENCLOSED BY Without TERMINATED BY
	10.4.8.3 Fields Using ENCLOSED BY With TERMINATED BY
	10.4.8.4 Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY

	10.4.9 Conflicting Field Lengths for Character Data Types
	10.4.9.1 Predetermined Size Fields
	10.4.9.2 Delimited Fields
	10.4.9.3 Date Field Masks

	10.5 Specifying Field Conditions
	10.5.1 Comparing Fields to BLANKS
	10.5.2 Comparing Fields to Literals

	10.6 Using the WHEN, NULLIF, and DEFAULTIF Clauses
	10.7 Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses
	10.8 Loading Data Across Different Platforms
	10.9 Understanding how SQL*Loader Manages Byte Ordering
	10.9.1 Byte Order Syntax
	10.9.2 Using Byte Order Marks (BOMs)
	10.9.2.1 Suppressing Checks for BOMs

	10.10 Loading All-Blank Fields
	10.11 Trimming Whitespace
	10.11.1 Data Types for Which Whitespace Can Be Trimmed
	10.11.2 Specifying Field Length for Data Types for Which Whitespace Can Be Trimmed
	10.11.2.1 Predetermined Size Fields
	10.11.2.2 Delimited Fields

	10.11.3 Relative Positioning of Fields
	10.11.3.1 No Start Position Specified for a Field
	10.11.3.2 Previous Field Terminated by a Delimiter
	10.11.3.3 Previous Field Has Both Enclosure and Termination Delimiters

	10.11.4 Leading Whitespace
	10.11.4.1 Previous Field Terminated by Whitespace 
	10.11.4.2 Optional Enclosure Delimiters

	10.11.5 Trimming Trailing Whitespace
	10.11.6 Trimming Enclosed Fields

	10.12 How the PRESERVE BLANKS Option Affects Whitespace Trimming
	10.13 How [NO] PRESERVE BLANKS Works with Delimiter Clauses
	10.14 Applying SQL Operators to Fields
	10.14.1 Referencing Fields
	10.14.2 Common Uses of SQL Operators in Field Specifications
	10.14.3 Combinations of SQL Operators
	10.14.4 Using SQL Strings with a Date Mask
	10.14.5 Interpreting Formatted Fields
	10.14.6 Using SQL Strings to Load the ANYDATA Database Type

	10.15 Using SQL*Loader to Generate Data for Input
	10.15.1 Loading Data Without Files
	10.15.2 CONSTANT Parameter
	10.15.3 EXPRESSION Parameter
	10.15.4 RECNUM Parameter
	10.15.5 SYSDATE Parameter
	10.15.6 SEQUENCE Parameter
	10.15.7 Generating Sequence Numbers for Multiple Tables

	11 Loading Objects, LOBs, and Collections with SQL*Loader
	11.1 Loading Column Objects
	11.1.1 Understanding Column Object Attributes
	11.1.2 Loading Column Objects in Stream Record Format
	11.1.3 Loading Column Objects in Variable Record Format
	11.1.4 Loading Nested Column Objects
	11.1.5 Loading Column Objects with a Derived Subtype
	11.1.6 Specifying Null Values for Objects
	11.1.6.1 Specifying Attribute Nulls
	11.1.6.2 Specifying Atomic Nulls

	11.1.7 Loading Column Objects with User-Defined Constructors

	11.2 Loading Object Tables with SQL*Loader
	11.2.1 Examples of Loading Object Tables with SQL*Loader
	11.2.2 Loading Object Tables with Subtypes

	11.3 Loading REF Columns with SQL*Loader
	11.3.1 Specifying Table Names in a REF Clause
	11.3.2 System-Generated OID REF Columns
	11.3.3 Primary Key REF Columns
	11.3.4 Unscoped REF Columns That Allow Primary Keys

	11.4 Loading LOBs with SQL*Loader
	11.4.1 Overview of Loading LOBs with SQL*Loader
	11.4.2 Options for Using SQL*Loader to Load LOBs
	11.4.3 Loading LOB Data from a Primary Data File
	11.4.3.1 LOB Data in Predetermined Size Fields
	11.4.3.2 LOB Data in Delimited Fields
	11.4.3.3 LOB Data in Length-Value Pair Fields

	11.4.4 Loading LOB Data from LOBFILEs
	11.4.4.1 Overview of Loading LOB Data from LOBFILEs
	11.4.4.2 Dynamic Versus Static LOBFILE Specifications
	11.4.4.3 Examples of Loading LOB Data from LOBFILEs
	11.4.4.3.1 One LOB for Each File
	11.4.4.3.2 Predetermined Size LOBs
	11.4.4.3.3 Delimited LOBs
	11.4.4.3.4 Length-Value Pair Specified LOBs

	11.4.4.4 Considerations When Loading LOBs from LOBFILEs

	11.4.5 Loading Data Files that Contain LLS Fields

	11.5 Loading BFILE Columns with SQL*Loader
	11.6 Loading Collections (Nested Tables and VARRAYs)
	11.6.1 Overview of Loading Collections (Nested Tables and VARRAYS)
	11.6.2 Restrictions in Nested Tables and VARRAYs
	11.6.3 Secondary Data Files (SDFs)

	11.7 Choosing Dynamic or Static SDF Specifications
	11.8 Loading a Parent Table Separately from Its Child Table
	11.8.1 Memory Issues When Loading VARRAY Columns

	11.9 Loading Modes and Options for SODA Collections
	11.9.1 SQL*Loader and SODA_COLLECTION
	11.9.2 Loading Empty SODA Collections Using INSERT
	11.9.3 Loading Empty SODA Collections Using APPEND
	11.9.4 Loading Empty SODA Collections Using REPLACE and TRUNCATE
	11.9.5 Permitted SQL*Loader Command-Line Parameters for SODA Collections
	11.9.6 Examples of Loading SODA Collections
	11.9.6.1 Creating and Loading a Small SODA Collection

	12 Conventional and Direct Path Loads
	12.1 Data Loading Methods
	12.2 Loading ROWID Columns
	12.3 Conventional Path Loads
	12.3.1 Conventional Path Load
	12.3.2 When to Use a Conventional Path Load
	12.3.3 Conventional Path Load of a Single Partition

	12.4 Direct Path Loads
	12.4.1 About SQL*Loader Direct Path Load
	12.4.2 Loading into Synonyms
	12.4.3 Field Defaults on the Direct Path
	12.4.4 Integrity Constraints
	12.4.5 When to Use a Direct Path Load
	12.4.6 Restrictions on a Direct Path Load of a Single Partition
	12.4.7 Restrictions on Using Direct Path Loads
	12.4.8 Advantages of a Direct Path Load
	12.4.9 Direct Path Load of a Single Partition or Subpartition
	12.4.10 Direct Path Load of a Partitioned or Subpartitioned Table
	12.4.11 Data Conversion During Direct Path Loads

	12.5 Automatic Parallel Load of Table Data with SQL*Loader
	12.6 Loading Modes and Options for Automatic Parallel Loads
	12.6.1 Loading Modes for Automatic Parallel Loads
	12.6.2 Non-Sharded Automatic Parallel Loading Modes for SQL*Loader
	12.6.3 Sharded Automatic Parallel Loading Modes for SQL*Loader

	12.7 Using Direct Path Load
	12.7.1 Setting Up for Direct Path Loads
	12.7.2 Specifying a Direct Path Load
	12.7.3 Building Indexes
	12.7.3.1 Improving Performance
	12.7.3.2 Calculating Temporary Segment Storage Requirements

	12.7.4 Indexes Left in an Unusable State
	12.7.5 Preventing Data Loss with Data Saves
	12.7.5.1 Using Data Saves to Protect Against Data Loss
	12.7.5.2 Using the ROWS Parameter
	12.7.5.3 Data Save Versus Commit

	12.7.6 Data Recovery During Direct Path Loads
	12.7.6.1 Media Recovery and Direct Path Loads
	12.7.6.2 Instance Recovery and Direct Path Loads

	12.7.7 Loading Long Data Fields
	12.7.8 Loading Data As PIECED
	12.7.9 Auditing SQL*Loader Operations That Use Direct Path Mode

	12.8 Optimizing Performance of Manual Direct Path Loads
	12.8.1 Minimizing Time and Space Required for Direct Path Loads
	12.8.2 Preallocating Storage for Faster Loading
	12.8.3 Presorting Data for Faster Indexing
	12.8.3.1 Advantages of Presorting Data
	12.8.3.2 SORTED INDEXES Clause
	12.8.3.3 Unsorted Data
	12.8.3.4 Multiple-Column Indexes
	12.8.3.5 Choosing the Best Sort Order

	12.8.4 Infrequent Data Saves
	12.8.5 Minimizing Use of the Redo Log
	12.8.5.1 Disabling Archiving
	12.8.5.2 Specifying the SQL*Loader UNRECOVERABLE Clause
	12.8.5.3 Setting the SQL NOLOGGING Parameter

	12.8.6 Specifying the Number of Column Array Rows and Size of Stream Buffers
	12.8.7 Specifying a Value for DATE_CACHE

	12.9 Optimizing Direct Path Loads on Multiple-CPU Systems
	12.10 Avoiding Index Maintenance
	12.11 Direct Path Loads, Integrity Constraints, and Triggers
	12.11.1 Integrity Constraints
	12.11.1.1 Enabled Constraints
	12.11.1.2 Disabled Constraints
	12.11.1.3 Reenable Constraints

	12.11.2 Database Insert Triggers
	12.11.2.1 Replacing Insert Triggers with Integrity Constraints
	12.11.2.2 When Automatic Constraints Cannot Be Used
	12.11.2.3 Preparation of Database Triggers
	12.11.2.4 Using an Update Trigger
	12.11.2.5 Duplicating the Effects of Exception Conditions
	12.11.2.6 Using a Stored Procedure

	12.11.3 Permanently Disabled Triggers and Constraints
	12.11.4 Increasing Performance with Concurrent Conventional Path Loads

	12.12 Optimizing Performance of Direct Path Loads
	12.12.1 Restrictions on Automatic and Manual Parallel Direct Path Loads
	12.12.2 About SQL*Loader Parallel Data Loading Models
	12.12.3 Concurrent Conventional Path Loads
	12.12.4 Intersegment Concurrency with Direct Path
	12.12.5 Intrasegment Concurrency with Direct Path
	12.12.6 Restrictions on Manual Parallel Direct Path Loads
	12.12.7 Initiating Multiple SQL*Loader Sessions Manually
	12.12.8 Parameters for Manual Parallel Direct Path Loads
	12.12.8.1 Using the FILE Parameter to Specify Temporary Segments
	12.12.8.1.1 Using the FILE Parameter
	12.12.8.1.2 Using the STORAGE Parameter

	12.12.9 Enabling Constraints After a Parallel Direct Path Load
	12.12.10 PRIMARY KEY and UNIQUE KEY Constraints

	12.13 General Performance Improvement Hints

	13 SQL*Loader Express
	13.1 What is SQL*Loader Express Mode?
	13.2 Using SQL*Loader Express Mode
	13.2.1 Starting SQL*Loader in Express Mode
	13.2.2 Default Values Used by SQL*Loader Express Mode
	13.2.3 How SQL*Loader Express Mode Handles Byte Order

	13.3 SQL*Loader Express Mode Parameter Reference
	13.3.1 BAD
	13.3.2 CHARACTERSET
	13.3.3 CSV
	13.3.4 DATA
	13.3.5 DATE_FORMAT
	13.3.6 DEGREE_OF_PARALLELISM
	13.3.7 DIRECT
	13.3.8 DNFS_ENABLE
	13.3.9 DNFS_READBUFFERS
	13.3.10 ENCLOSED_BY
	13.3.11 EXTERNAL_TABLE
	13.3.12 FIELD_NAMES
	13.3.13 LOAD
	13.3.14 NULLIF
	13.3.15 OPTIONALLY_ENCLOSED_BY
	13.3.16 PARFILE
	13.3.17 SILENT
	13.3.18 TABLE
	13.3.19 TERMINATED_BY
	13.3.20 TIMESTAMP_FORMAT
	13.3.21 TRIM
	13.3.22 USERID

	13.4 SQL*Loader Express Mode Command-Line Parameters for SODA Collections
	13.5 SQL*Loader Express Mode Syntax Diagrams

	Part III External Tables
	14 External Tables Concepts
	14.1 How Are External Tables Created?
	14.2 CREATE_EXTERNAL_PART_TABLE Procedure
	14.3 Location of Data Files and Output Files
	14.4 Access Parameters for External Tables
	14.5 Data Type Conversion During External Table Use

	15 The ORACLE_LOADER Access Driver
	15.1 About the ORACLE_LOADER Access Driver
	15.2 access_parameters Clause
	15.3 record_format_info Clause
	15.3.1 Overview of record_format_info Clause
	15.3.2 FIXED Length
	15.3.3 VARIABLE size
	15.3.4 DELIMITED BY
	15.3.5 XMLTAG
	15.3.6 CHARACTERSET
	15.3.7 PREPROCESSOR
	15.3.8 PREPROCESSOR_TIMEOUT
	15.3.9 EXTERNAL VARIABLE DATA
	15.3.10 LANGUAGE
	15.3.11 TERRITORY
	15.3.12 DATA IS...ENDIAN
	15.3.13 BYTEORDERMARK [CHECK | NOCHECK]
	15.3.14 STRING SIZES ARE IN
	15.3.15 LOAD WHEN
	15.3.16 BADFILE | NOBADFILE
	15.3.17 DISCARDFILE | NODISCARDFILE
	15.3.18 LOGFILE | NOLOGFILE
	15.3.19 SKIP
	15.3.20 FIELD NAMES
	15.3.21 READSIZE
	15.3.22 DATE_CACHE
	15.3.23 string
	15.3.24 condition_spec
	15.3.25 [directory object name:] [filename]
	15.3.26 condition
	15.3.26.1 range start : range end

	15.3.27 IO_OPTIONS clause
	15.3.28 DNFS_DISABLE | DNFS_ENABLE
	15.3.29 DNFS_READBUFFERS

	15.4 field_definitions Clause
	15.4.1 Overview of field_definitions Clause
	15.4.2 delim_spec
	15.4.2.1 Example: External Table with Terminating Delimiters
	15.4.2.2 Example: External Table with Enclosure and Terminator Delimiters
	15.4.2.3 Example: External Table with Optional Enclosure Delimiters

	15.4.3 trim_spec
	15.4.4 MISSING FIELD VALUES ARE NULL
	15.4.5 field_list
	15.4.6 pos_spec Clause
	15.4.6.1 pos_spec Clause Syntax
	15.4.6.2 start
	15.4.6.3 *
	15.4.6.4 increment
	15.4.6.5 end
	15.4.6.6 length

	15.4.7 datatype_spec Clause
	15.4.7.1 datatype_spec Clause Syntax
	15.4.7.2 [UNSIGNED] INTEGER [EXTERNAL] [(len)]
	15.4.7.3 DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
	15.4.7.4 ORACLE_DATE
	15.4.7.5 ORACLE_NUMBER
	15.4.7.6 Floating-Point Numbers
	15.4.7.7 DOUBLE
	15.4.7.8 FLOAT [EXTERNAL]
	15.4.7.9 BINARY_DOUBLE
	15.4.7.10 BINARY_FLOAT
	15.4.7.11 RAW
	15.4.7.12 CHAR
	15.4.7.13 date_format_spec
	15.4.7.13.1 DATE
	15.4.7.13.2 MASK
	15.4.7.13.3 TIMESTAMP
	15.4.7.13.4 INTERVAL

	15.4.7.14 VARCHAR and VARRAW
	15.4.7.15 VARCHARC and VARRAWC

	15.4.8 init_spec Clause
	15.4.9 LLS Clause

	15.5 column_transforms Clause
	15.5.1 transform
	15.5.1.1 column_name FROM
	15.5.1.2 NULL
	15.5.1.3 CONSTANT
	15.5.1.4 CONCAT
	15.5.1.5 LOBFILE
	15.5.1.6 lobfile_attr_list
	15.5.1.7 STARTOF source_field (length)

	15.6 Parallel Loading Considerations for the ORACLE_LOADER Access Driver
	15.7 Performance Hints When Using the ORACLE_LOADER Access Driver
	15.8 Restrictions When Using the ORACLE_LOADER Access Driver
	15.9 Reserved Words for the ORACLE_LOADER Access Driver

	16 The ORACLE_DATAPUMP Access Driver
	16.1 Using the ORACLE_DATAPUMP Access Driver
	16.2 access_parameters Clause
	16.2.1 Comments
	16.2.2 ENCRYPTION
	16.2.3 LOGFILE | NOLOGFILE
	16.2.3.1 Log File Naming in Parallel Loads

	16.2.4 COMPRESSION
	16.2.5 VERSION Clause
	16.2.6 HADOOP_TRAILERS Clause
	16.2.7 Effects of Using the SQL ENCRYPT Clause

	16.3 Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver
	16.3.1 Parallel Loading and Unloading
	16.3.2 Combining Dump Files

	16.4 Supported Data Types
	16.5 Unsupported Data Types
	16.5.1 Unloading and Loading BFILE Data Types
	16.5.2 Unloading LONG and LONG RAW Data Types
	16.5.3 Unloading and Loading Columns Containing Final Object Types
	16.5.4 Tables of Final Object Types

	16.6 Performance Hints When Using the ORACLE_DATAPUMP Access Driver
	16.7 Restrictions When Using the ORACLE_DATAPUMP Access Driver
	16.8 Reserved Words for the ORACLE_DATAPUMP Access Driver

	17 ORACLE_HDFS and ORACLE_HIVE Access Drivers
	17.1 Syntax Rules for Specifying Properties
	17.2 ORACLE_HDFS Access Parameters
	17.2.1 Default Parameter Settings for ORACLE_HDFS
	17.2.2 Optional Parameter Settings for ORACLE_HDFS

	17.3 ORACLE_HIVE Access Parameters
	17.3.1 Default Parameter Settings for ORACLE_HIVE
	17.3.2 Optional Parameter Settings for ORACLE_HIVE

	17.4 Descriptions of com.oracle.bigdata Parameters
	17.4.1 com.oracle.bigdata.colmap
	17.4.2 com.oracle.bigdata.datamode
	17.4.3 com.oracle.bigdata.erroropt
	17.4.4 com.oracle.bigdata.fields
	17.4.5 com.oracle.bigdata.fileformat
	17.4.6 com.oracle.bigdata.log.exec
	17.4.7 com.oracle.bigdata.log.qc
	17.4.8 com.oracle.bigdata.overflow
	17.4.9 com.oracle.bigdata.rowformat
	17.4.10 com.oracle.bigdata.tablename

	18 ORACLE_BIGDATA Access Driver
	18.1 Using the ORACLE_BIGDATA Access Driver
	18.2 How to Create a Credential for Object Stores
	18.2.1 Creating the Credential Object with DBMS_CREDENTIAL.CREATE_CREDENTIAL
	18.2.2 Creating the Credential Object with DBMS_CLOUD.CREATE_CREDENTIAL
	18.2.3 How to Define the Location Clause for Object Storage
	18.2.4 Understanding ORACLE_BIGDATA Access Parameters

	18.3 Object Store Access Parameters
	18.3.1 Syntax Rules for Specifying Properties
	18.3.2 com.oracle.bigdata.fileformat
	18.3.3 ORACLE_BIGDATA Access Parameters
	18.3.4 GATHER_EXTERNAL_TABLE_STATS

	19 External Tables Examples
	19.1 Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables
	19.2 Using the ORACLE_LOADER Access Driver to Create Partitioned Hybrid Tables
	19.3 Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables
	19.4 Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables
	19.5 Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables
	19.6 Using the ORA_PARTITION_VALIDATION Function to Validate Partitioned External Tables
	19.7 Using SQL*Loader for External Tables with Partition Values in File Paths
	19.8 Loading LOBs with External Tables
	19.8.1 Overview of LOBs and External Tables
	19.8.2 Loading LOBs From External Tables with ORACLE_LOADER Access Driver
	19.8.2.1 Loading LOBs from Primary Data Files
	19.8.2.2 Loading LOBs from LOBFILE Files
	19.8.2.3 Loading LOBs from LOB Location Specifiers

	19.8.3 Loading LOBs with ORACLE_DATAPUMP Access Driver

	19.9 Loading CSV Files From External Tables

	Part IV Other Utilities
	20 Cloud Premigration Advisor Tool
	20.2 Prerequisites for Using the Cloud Premigration Advisor Tool
	20.3 Downloading and Configuring Cloud Premigration Advisor Tool
	20.4 Getting Started with the Cloud Premigration Advisor Tool (CPAT)
	20.5 Connection Strings for Cloud Premigration Advisor Tool
	20.6 Required Command-Line Strings for Cloud Premigration Advisor Tool
	20.7 FULL Mode and SCHEMA Mode
	20.8 Interpreting Cloud Premigration Advisor Tool (CPAT) Report Data
	20.12 Best Practices for Using the Premigration Advisor Tool
	20.12.1 Generate Properties File on the Target Database Instance
	20.12.2 Focus the CPAT Analysis
	20.12.3 Reduce the Amount of Data in Reports
	20.12.4 Generate the JSON Report and Save Logs
	20.12.5 Use Output Prefixes to Record Different Migration Scenarios

	20.1 What is the Cloud Premigration Advisor Tool
	20.9 Command-Line Syntax and Properties
	20.9.1 Premigration Advisor Tool Command-Line Syntax
	20.9.2 Premigration Advisor Tool Command-Line Properties
	20.9.2.1 analysisprops
	20.9.2.2 connectstring
	20.9.2.3 excludeschemas
	20.9.2.4 full
	20.9.2.5 gettargetprops
	20.9.2.6 help
	20.9.2.7 logginglevel
	20.9.2.8 maxrelevantobjects
	20.9.2.9 maxtextdatarows
	20.9.2.10 migrationmethod
	20.9.2.11 outdir
	20.9.2.12 outfileprefix
	20.9.2.13 pdbname
	20.9.2.14 reportformat
	20.9.2.15 schemas
	20.9.2.16 sqltext
	20.9.2.17 sysdba
	20.9.2.18 targetcloud
	20.9.2.19 username
	20.9.2.20 version
	20.9.2.21 updatecheck

	20.10 Premigration Advisor Tool Log File Structure
	20.11 List of Checks Performed By the Premigration Advisor Tool
	20.11.1 dp_has_low_streams_pool_size
	20.11.2 gg_enabled_replication
	20.11.3 gg_force_logging
	20.11.4 gg_has_low_streams_pool_size
	20.11.5 gg_not_unique_bad_col_no
	20.11.6 gg_not_unique_bad_col_yes
	20.11.7 gg_objects_not_supported
	20.11.8 gg_supplemental_log_data_min
	20.11.9 gg_tables_not_supported
	20.11.10 gg_tables_not_supported
	20.11.11 gg_user_objects_in_ggadmin_schemas
	20.11.12 has_absent_default_tablespace
	20.11.13 has_absent_temp_tablespace
	20.11.14 has_active_data_guard_dedicated
	20.11.15 has_active_data_guard_serverless
	20.11.16 has_basic_file_lobs
	20.11.17 has_clustered_tables
	20.11.18 has_columns_of_rowid_type
	20.11.19 has_columns_with_media_data_types_adb
	20.11.20 has_columns_with_media_data_types_default
	20.11.21 has_columns_with_spatial_data_types
	20.11.22 has_common_objects
	20.11.23 has_compression_disabled_for_objects
	20.11.24 has_csmig_schema
	20.11.25 has_data_in_other_tablespaces_dedicated
	20.11.26 has_data_in_other_tablespaces_serverless
	20.11.27 has_db_link_synonyms
	20.11.28 has_db_links
	20.11.29 has_dbms_credentials
	20.11.30 has_dbms_credentials
	20.11.31 has_directories
	20.11.32 has_enabled_scheduler_jobs
	20.11.33 has_external_tables_dedicated
	20.11.34 has_external_tables_default
	20.11.35 has_external_tables_serverless
	20.11.36 has_fmw_registry_in_system
	20.11.37 has_illegal_characters_in_comments
	20.11.38 has_ilm_ado_policies
	20.11.39 has_incompatible_jobs
	20.11.40 has_index_organized_tables
	20.11.41 has_java_objects
	20.11.42 has_java_source
	20.11.43 has_libraries
	20.11.44 has_logging_off_for_partitions
	20.11.45 has_logging_off_for_subpartitions
	20.11.46 has_logging_off_for_tables
	20.11.47 has_low_streams_pool_size
	20.11.48 has_noexport_object_grants
	20.11.49 has_parallel_indexes_enabled
	20.11.50 has_profile_not_default
	20.11.51 has_public_synonyms
	20.11.52 has_refs_to_restricted_packages_dedicated
	20.11.53 has_refs_to_restricted_packages_serverless
	20.11.54 has_refs_to_user_objects_in_sys
	20.11.55 has_role_privileges
	20.11.56 has_sqlt_objects_adb
	20.11.57 has_sqlt_objects_default
	20.11.58 has_sys_privileges
	20.11.59 has_tables_that_fail_with_dblink
	20.11.60 has_tables_with_long_raw_datatype
	20.11.61 has_tables_with_xmltype_column
	20.11.62 has_trusted_server_entries
	20.11.63 has_user_defined_objects_in_sys
	20.11.64 has_users_with_10g_password_version
	20.11.65 has_sys_privileges
	20.11.66 has_tables_that_fail_with_dblink
	20.11.67 has_tables_with_long_raw_datatype
	20.11.68 has_tables_with_xmltype_column
	20.11.69 has_trusted_server_entries
	20.11.70 has_user_defined_objects_in_sys
	20.11.71 has_users_with_10g_password_version
	20.11.72 has_xmlschema_objects
	20.11.73 has_xmltype_tables
	20.11.74 modified_db_parameters_dedicated
	20.11.75 modified_db_parameters_serverless
	20.11.76 nls_character_set_conversion
	20.11.77 nls_national_character_set
	20.11.78 nls_nchar_ora_910
	20.11.79 options_in_use_not_available_dedicated
	20.11.80 options_in_use_not_available_serverless
	20.11.81 standard_traditional_audit_adb
	20.11.82 standard_traditional_audit_default
	20.11.83 timezone_table_compatibility_higher_dedicated
	20.11.84 timezone_table_compatibility_higher_default
	20.11.85 timezone_table_compatibility_higher_serverless
	20.11.86 unified_and_standard_traditional_audit_adb
	20.11.87 unified_and_standard_traditional_audit_default
	20.11.88 xdb_resource_view_has_entries Check

	21 Oracle SQL Access to Kafka
	21.1 About Oracle SQL Access to Kafka Version 2
	21.2 Global Tables and Views for Oracle SQL Access to Kafka
	21.3 Understanding how Oracle SQL Access to Kafka Queries are Performed
	21.4 Streaming Kafka Data Into Oracle Database
	21.5 Querying Kafka Data Records by Timestamp
	21.6 About the Kafka Database Administrator Role
	21.7 Enable Kafka Database Access to Users
	21.8 Data Formats Supported with Oracle SQL Access to Kafka
	21.8.1 JSON Format and Oracle SQL Access to Kafka
	21.8.2 Delimited Text Format and Oracle SQL Access to Kafka
	21.8.3 Avro Formats and Oracle SQL Access to Kafka
	21.8.3.1 About Using Avro Format with Oracle SQL Access to Kafka
	21.8.3.2 Primitive Avro Types Supported with Oracle SQL Access to Kafka
	21.8.3.3 Complex Avro Types Supported with Oracle SQL Access to Kafka
	21.8.3.4 Avro Logical Types Supported with Oracle SQL Access to Kafka

	21.9 Configuring Access to a Kafka Cluster
	21.9.1 Create a Cluster Access Directory
	21.9.2 The Kafka Configuration File (osakafka.properties)
	21.9.2.1 About the Kafka Configuration File
	21.9.2.2 Oracle SQL Access for Kafka Configuration File Properties
	21.9.2.3 Creating the Kafka Access Directory

	21.9.3 Kafka Configuration File Properties
	21.9.4 Security Configuration Files Required for the Cluster Access Directory
	21.9.4.1 SASL_SSL/GSSAPI
	21.9.4.2 SASL_PLAINTEXT/GSSAPI
	21.9.4.3 SASL_PLAINTEXT/SCRAM-SHA-256
	21.9.4.4 SASL_SSL/PLAIN
	21.9.4.5 SSL with Client Authentication
	21.9.4.6 SSL without Client Authentication

	21.10 Creating Oracle SQL Access to Kafka Applications
	21.11 Security for Kafka Cluster Connections
	21.12 Configuring Access to Unsecured Kafka Clusters
	21.13 Configuring Access to Secure Kafka Clusters
	21.14 Administering Oracle SQL Access to Kafka Clusters
	21.14.1 Updating Access to Kafka Clusters
	21.14.2 Disabling or Deleting Access to Kafka Clusters

	21.15 Guidelines for Using Kafka Data with Oracle SQL Access to Kafka
	21.15.1 Kafka Temporary Tables and Applications
	21.15.2 Sharing Kafka Data with Multiple Applications Using Streaming
	21.15.3 Dropping and Recreating Kafka Tables

	21.16 Choosing a Kafka Cluster Access Mode for Applications
	21.16.1 Configuring Incremental Loads of Kafka Records Into an Oracle Database Table
	21.16.2 Streaming Access to Kafka Records in Oracle SQL Queries
	21.16.3 Seekable access to Kafka Records in Oracle SQL queries

	21.17 Creating Oracle SQL Access to Kafka Applications
	21.17.1 Creating Load Applications with Oracle SQL Access to Kafka
	21.17.2 Creating Streaming Applications with Oracle SQL Access to Kafka
	21.17.3 Creating Seekable Applications with Oracle SQL Access to Kafka

	21.18 Using Kafka Cluster Access for Applications
	21.18.1 How to Diagnose Oracle SQL Access to Kafka Issues
	21.18.2 Identifying and Resolving Oracle SQL Access to Kafka Issues

	22 ADRCI: ADR Command Interpreter
	22.1 About the ADR Command Interpreter (ADRCI) Utility
	22.2 Definitions for Oracle Database ADRC
	22.3 Starting ADRCI and Getting Help
	22.3.1 Using ADRCI in Interactive Mode
	22.3.2 Getting Help
	22.3.3 Using ADRCI in Batch Mode

	22.4 Setting the ADRCI Homepath Before Using ADRCI Commands
	22.5 Viewing the Alert Log
	22.6 Finding Trace Files
	22.7 Viewing Incidents
	22.8 Packaging Incidents
	22.8.1 About Packaging Incidents
	22.8.2 Creating Incident Packages
	22.8.2.1 Creating a Logical Incident Package
	22.8.2.2 Adding Diagnostic Information to a Logical Incident Package
	22.8.2.3 Generating a Physical Incident Package

	22.9 ADRCI Command Reference
	22.9.1 CREATE REPORT
	22.9.2 ECHO
	22.9.3 EXIT
	22.9.4 HOST
	22.9.5 IPS
	22.9.5.1 Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands
	22.9.5.2 IPS ADD
	22.9.5.3 IPS ADD FILE
	22.9.5.4 IPS ADD NEW INCIDENTS
	22.9.5.5 IPS COPY IN FILE
	22.9.5.6 IPS COPY OUT FILE
	22.9.5.7 IPS CREATE PACKAGE
	22.9.5.8 IPS DELETE PACKAGE
	22.9.5.9 IPS FINALIZE
	22.9.5.10 IPS GENERATE PACKAGE
	22.9.5.11 IPS GET MANIFEST
	22.9.5.12 IPS GET METADATA
	22.9.5.13 IPS PACK
	22.9.5.14 IPS REMOVE
	22.9.5.15 IPS REMOVE FILE
	22.9.5.16 IPS SET CONFIGURATION
	22.9.5.17 IPS SHOW CONFIGURATION
	22.9.5.18 IPS SHOW FILES
	22.9.5.19 IPS SHOW INCIDENTS
	22.9.5.20 IPS SHOW PACKAGE
	22.9.5.21 IPS UNPACK FILE

	22.9.6 PURGE
	22.9.7 QUIT
	22.9.8 RUN
	22.9.9 SELECT
	22.9.9.1 AVG
	22.9.9.2 CONCAT
	22.9.9.3 COUNT
	22.9.9.4 DECODE
	22.9.9.5 LENGTH
	22.9.9.6 MAX
	22.9.9.7 MIN
	22.9.9.8 NVL
	22.9.9.9 REGEXP_LIKE
	22.9.9.10 SUBSTR
	22.9.9.11 SUM
	22.9.9.12 TIMESTAMP_TO_CHAR
	22.9.9.13 TOLOWER
	22.9.9.14 TOUPPER

	22.9.10 SET BASE
	22.9.11 SET BROWSER
	22.9.12 SET CONTROL
	22.9.13 SET ECHO
	22.9.14 SET EDITOR
	22.9.15 SET HOMEPATH
	22.9.16 SET TERMOUT
	22.9.17 SHOW ALERT
	22.9.18 SHOW BASE
	22.9.19 SHOW CONTROL
	22.9.20 SHOW HM_RUN
	22.9.21 SHOW HOMEPATH
	22.9.22 SHOW HOMES
	22.9.23 SHOW INCDIR
	22.9.24 SHOW INCIDENT
	22.9.25 SHOW LOG
	22.9.26 SHOW PROBLEM
	22.9.27 SHOW REPORT
	22.9.28 SHOW TRACEFILE
	22.9.29 SPOOL

	22.10 Troubleshooting ADRCI

	23 DBVERIFY: Offline Database Verification Utility
	23.1 Using DBVERIFY to Validate Disk Blocks of a Single Data File
	23.1.1 DBVERIFY Syntax When Validating Blocks of a Single File
	23.1.2 DBVERIFY Parameters When Validating Blocks of a Single File
	23.1.3 Example DBVERIFY Output For a Single Data File

	23.2 Using DBVERIFY to Validate a Segment
	23.2.1 DBVERIFY Syntax When Validating a Segment
	23.2.2 DBVERIFY Parameters When Validating a Single Segment
	23.2.3 Example DBVERIFY Output For a Validated Segment

	24 DBNEWID Utility
	24.1 What Is the DBNEWID Utility?
	24.2 Ramifications of Changing the DBID and DBNAME
	24.3 Considerations for Global Database Names
	24.4 Changing Both CDB and PDB DBIDs Using DBNEWID
	24.5 Changing the DBID and DBNAME of a Database
	24.5.1 Changing the DBID and Database Name
	24.5.2 Changing Only the Database ID
	24.5.3 Changing Only the Database Name
	24.5.4 Troubleshooting DBNEWID

	24.6 DBNEWID Syntax
	24.6.1 DBNEWID Parameters
	24.6.2 Restrictions and Usage Notes
	24.6.3 Additional Restrictions for Releases Earlier Than Oracle Database 10g

	25 Using LogMiner to Analyze Redo Log Files
	25.1 LogMiner Benefits
	25.2 Introduction to LogMiner
	25.2.1 LogMiner Configuration
	25.2.1.1 Objects in LogMiner Configuration Files
	25.2.1.2 LogMiner Configuration Example
	25.2.1.3 LogMiner Requirements

	25.2.2 Directing LogMiner Operations and Retrieving Data of Interest

	25.3 Using LogMiner in a CDB
	25.3.1 LogMiner V$ Views and DBA Views in a CDB
	25.3.2 The V$LOGMNR_CONTENTS View in a CDB
	25.3.3 Enabling Supplemental Logging in a CDB

	25.4 How to Configure Supplemental Logging for Oracle GoldenGate
	25.4.1 Oracle GoldenGate Integration with Oracle Database for Fine-Grained Supplemental Logging
	25.4.2 Logical Replication of Tables with LogMiner and Oracle GoldenGate
	25.4.3 Views that Show Tables Enabled for Oracle GoldenGate Automatic Capture

	25.5 LogMiner Dictionary Files and Redo Log Files
	25.5.1 LogMiner Dictionary Options
	25.5.1.1 Using the Online Catalog
	25.5.1.2 Extracting a LogMiner Dictionary to the Redo Log Files
	25.5.1.3 Extracting the LogMiner Dictionary to a Flat File

	25.5.2 Specifying Redo Log Files for Data Mining

	25.6 Starting LogMiner
	25.7 Querying V$LOGMNR_CONTENTS for Redo Data of Interest
	25.7.1 How to Use V$LOGMNR_CONTENTS to Find Redo Data
	25.7.2 How the V$LOGMNR_CONTENTS View Is Populated
	25.7.3 Querying V$LOGMNR_CONTENTS Based on Column Values
	25.7.3.1 Example of Querying V$LOGMNR_CONTENTS Column Values
	25.7.3.2 The Meaning of NULL Values Returned by the MINE_VALUE Function
	25.7.3.3 Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions
	25.7.3.4 Restrictions When Using the MINE_VALUE Function To Get an NCHAR Value

	25.7.4 Querying V$LOGMNR_CONTENTS Based on XMLType Columns and Tables
	25.7.4.1 How V$LOGMNR_CONTENTS Based on XMLType Columns and Tables are Queried
	25.7.4.2 Restrictions When Using LogMiner With XMLType Data
	25.7.4.3 Example of a PL/SQL Procedure for Assembling XMLType Data

	25.8 Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS
	25.8.1 Showing Only Committed Transactions
	25.8.2 Skipping Redo Corruptions
	25.8.3 Filtering Data by Time
	25.8.4 Filtering Data by SCN
	25.8.5 Formatting Reconstructed SQL Statements for Reprocessing
	25.8.6 Formatting the Appearance of Returned Data for Readability

	25.9 Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS
	25.10 Calling DBMS_LOGMNR.START_LOGMNR Multiple Times
	25.11 LogMiner and Supplemental Logging
	25.11.1 Understanding Supplemental Logging and LogMiner
	25.11.2 Database-Level Supplemental Logging
	25.11.2.1 Minimal Supplemental Logging
	25.11.2.2 Database-Level Identification Key Logging
	25.11.2.3 Procedural Supplemental Logging

	25.11.3 Disabling Database-Level Supplemental Logging
	25.11.4 Table-Level Supplemental Logging
	25.11.4.1 Table-Level Identification Key Logging
	25.11.4.2 Table-Level User-Defined Supplemental Log Groups
	25.11.4.3 Usage Notes for User-Defined Supplemental Log Groups

	25.11.5 Tracking DDL Statements in the LogMiner Dictionary
	25.11.6 DDL_DICT_TRACKING and Supplemental Logging Settings
	25.11.7 DDL_DICT_TRACKING and Specified Time or SCN Ranges

	25.12 Accessing LogMiner Operational Information in Views
	25.12.1 Options for Viewing LogMiner Operational Information
	25.12.2 Querying V$LOGMNR_LOGS
	25.12.3 Querying Views for Supplemental Logging Settings
	25.12.4 Querying Individual PDBs Using LogMiner

	25.13 Steps in a Typical LogMiner Session
	25.13.1 Understanding How to Run LogMiner Sessions
	25.13.2 Typical LogMiner Session Task 1: Enable Supplemental Logging
	25.13.3 Typical LogMiner Session Task 2: Extract a LogMiner Dictionary
	25.13.4 Typical LogMiner Session Task 3: Specify Redo Log Files for Analysis
	25.13.5 Start LogMiner
	25.13.6 Query V$LOGMNR_CONTENTS
	25.13.7 Typical LogMiner Session Task 6: End the LogMiner Session

	25.14 Examples Using LogMiner
	25.14.1 Examples of Mining by Explicitly Specifying the Redo Log Files of Interest
	25.14.1.1 Example 1: Finding All Modifications in the Last Archived Redo Log File
	25.14.1.2 Example 2: Grouping DML Statements into Committed Transactions
	25.14.1.3 Example 3: Formatting the Reconstructed SQL
	25.14.1.4 Example 4: Using the LogMiner Dictionary in the Redo Log Files
	25.14.1.5 Example 5: Tracking DDL Statements in the Internal Dictionary
	25.14.1.6 Example 6: Filtering Output by Time Range

	25.14.2 LogMiner Use Case Scenarios
	25.14.2.1 Using LogMiner to Track Changes Made by a Specific User
	25.14.2.2 Using LogMiner to Calculate Table Access Statistics

	25.15 Supported Data Types, Storage Attributes, and Database and Redo Log File Versions
	25.15.1 Supported Data Types and Table Storage Attributes
	25.15.2 Database Compatibility Requirements for LogMiner
	25.15.3 Unsupported Data Types and Table Storage Attributes
	25.15.4 Supported Databases and Redo Log File Versions
	25.15.5 SecureFiles LOB Considerations

	26 Using the Metadata APIs
	26.1 Why Use the DBMS_METADATA API?
	26.2 Overview of the DBMS_METADATA API
	26.3 Using the DBMS_METADATA API to Retrieve an Object's Metadata
	26.3.1 How to Use the DBMS_METADATA API to Retrieve Object Metadata
	26.3.2 Typical Steps Used for Basic Metadata Retrieval
	26.3.3 Retrieving Multiple Objects
	26.3.4 Placing Conditions on Transforms
	26.3.5 Accessing Specific Metadata Attributes

	26.4 Using the DBMS_METADATA API to Recreate a Retrieved Object
	26.5 Using the DBMS_METADATA API to Retrieve Collections of Different Object Types
	26.6 Filtering the Return of Heterogeneous Object Types
	26.7 Using the DBMS_METADATA_DIFF API to Compare Object Metadata
	26.8 Performance Tips for the Programmatic Interface of the DBMS_METADATA API
	26.9 Example Usage of the DBMS_METADATA API
	26.9.1 What Does the DBMS_METADATA Example Do?
	26.9.2 Output Generated from the GET_PAYROLL_TABLES Procedure

	26.10 Summary of DBMS_METADATA Procedures
	26.11 Summary of DBMS_METADATA_DIFF Procedures

	27 Original Import
	27.1 What Is the Import Utility?
	27.2 Table Objects: Order of Import
	27.3 Before Using Import
	27.3.1 Overview of Import Preparation
	27.3.2 Running catexp.sql or catalog.sql
	27.3.3 Verifying Access Privileges for Import Operations
	27.3.3.1 Importing Objects Into Your Own Schema
	27.3.3.2 Importing Grants
	27.3.3.3 Importing Objects Into Other Schemas
	27.3.3.4 Importing System Objects

	27.3.4 Processing Restrictions

	27.4 Importing into Existing Tables
	27.4.1 Manually Creating Tables Before Importing Data
	27.4.2 Disabling Referential Constraints
	27.4.3 Manually Ordering the Import

	27.5 Effect of Schema and Database Triggers on Import Operations
	27.6 Invoking Import
	27.6.1 Command-Line Entries
	27.6.2 Parameter Files
	27.6.3 Interactive Mode
	27.6.4 Invoking Import As SYSDBA
	27.6.5 Getting Online Help

	27.7 Import Modes
	27.8 Import Parameters
	27.8.1 BUFFER
	27.8.2 COMMIT
	27.8.3 COMPILE
	27.8.4 CONSTRAINTS
	27.8.5 DATA_ONLY
	27.8.6 DATAFILES
	27.8.7 DESTROY
	27.8.8 FEEDBACK
	27.8.9 FILE
	27.8.10 FILESIZE
	27.8.11 FROMUSER
	27.8.12 FULL
	27.8.12.1 Points to Consider for Full Database Exports and Imports

	27.8.13 GRANTS
	27.8.14 HELP
	27.8.15 IGNORE
	27.8.16 INDEXES
	27.8.17 INDEXFILE
	27.8.18 LOG
	27.8.19 PARFILE
	27.8.20 RECORDLENGTH
	27.8.21 RESUMABLE
	27.8.22 RESUMABLE_NAME
	27.8.23 RESUMABLE_TIMEOUT
	27.8.24 ROWS
	27.8.25 SHOW
	27.8.26 SKIP_UNUSABLE_INDEXES
	27.8.27 STATISTICS
	27.8.28 STREAMS_CONFIGURATION
	27.8.29 STREAMS_INSTANTIATION
	27.8.30 TABLES
	27.8.30.1 Table Name Restrictions

	27.8.31 TABLESPACES
	27.8.32 TOID_NOVALIDATE
	27.8.33 TOUSER
	27.8.34 TRANSPORT_TABLESPACE
	27.8.35 TTS_OWNERS
	27.8.36 USERID (username/password)
	27.8.37 VOLSIZE

	27.9 Example Import Sessions
	27.9.1 Example Import of Selected Tables for a Specific User
	27.9.2 Example Import of Tables Exported by Another User
	27.9.3 Example Import of Tables from One User to Another
	27.9.4 Example Import Session Using Partition-Level Import
	27.9.4.1 Example 1: A Partition-Level Import
	27.9.4.2 Example 2: A Partition-Level Import of a Composite Partitioned Table
	27.9.4.3 Example 3: Repartitioning a Table on a Different Column

	27.9.5 Example Import Using Pattern Matching to Import Various Tables

	27.10 Exit Codes for Inspection and Display
	27.11 Error Handling During an Import
	27.11.1 Row Errors
	27.11.1.1 Failed Integrity Constraints
	27.11.1.2 Invalid Data

	27.11.2 Errors Importing Database Objects
	27.11.2.1 Object Already Exists
	27.11.2.2 Sequences
	27.11.2.3 Resource Errors
	27.11.2.4 Domain Index Metadata

	27.12 Table-Level and Partition-Level Import
	27.12.1 Guidelines for Using Table-Level Import
	27.12.2 Guidelines for Using Partition-Level Import
	27.12.3 Migrating Data Across Partitions and Tables

	27.13 Controlling Index Creation and Maintenance
	27.13.1 Delaying Index Creation
	27.13.2 Index Creation and Maintenance Controls
	27.13.2.1 Example of Postponing Index Maintenance

	27.14 Network Considerations for Using Oracle Net with Original Import
	27.15 Character Set and Globalization Support Considerations
	27.15.1 User Data
	27.15.1.1 Effect of Character Set Sorting Order on Conversions

	27.15.2 Data Definition Language (DDL)
	27.15.3 Single-Byte Character Sets
	27.15.4 Multibyte Character Sets

	27.16 Using Instance Affinity
	27.17 Considerations When Importing Database Objects
	27.17.1 Importing Object Identifiers
	27.17.2 Importing Existing Object Tables and Tables That Contain Object Types
	27.17.3 Importing Nested Tables
	27.17.4 Importing REF Data
	27.17.5 Importing BFILE Columns and Directory Aliases
	27.17.6 Importing Foreign Function Libraries
	27.17.7 Importing Stored Procedures, Functions, and Packages
	27.17.8 Importing Java Objects
	27.17.9 Importing External Tables
	27.17.10 Importing Advanced Queue (AQ) Tables
	27.17.11 Importing LONG Columns
	27.17.12 Importing LOB Columns When Triggers Are Present
	27.17.13 Importing Views
	27.17.14 Importing Partitioned Tables

	27.18 Support for Fine-Grained Access Control
	27.19 Snapshots and Snapshot Logs
	27.19.1 Snapshot Log
	27.19.2 Snapshots
	27.19.2.1 Importing a Snapshot
	27.19.2.2 Importing a Snapshot into a Different Schema

	27.20 Transportable Tablespaces
	27.21 Storage Parameters
	27.21.1 The OPTIMAL Parameter
	27.21.2 Storage Parameters for OID Indexes and LOB Columns
	27.21.3 Overriding Storage Parameters

	27.22 Read-Only Tablespaces
	27.23 Dropping a Tablespace
	27.24 Reorganizing Tablespaces
	27.25 Importing Statistics
	27.26 Using Export and Import to Partition a Database Migration
	27.26.1 Advantages of Partitioning a Migration
	27.26.2 Disadvantages of Partitioning a Migration
	27.26.3 How to Use Export and Import to Partition a Database Migration

	27.27 Tuning Considerations for Import Operations
	27.27.1 Changing System-Level Options
	27.27.2 Changing Initialization Parameters
	27.27.3 Changing Import Options
	27.27.4 Dealing with Large Amounts of LOB Data
	27.27.5 Dealing with Large Amounts of LONG Data

	27.28 Using Different Releases of Export and Import
	27.28.1 Restrictions When Using Different Releases of Export and Import
	27.28.2 Examples of Using Different Releases of Export and Import

	Part V Appendices
	A Instant Client for SQL*Loader, Export, and Import
	A.1 What is the Tools Instant Client?
	A.2 Choosing Which Instant Client to Install
	A.3 Installing Instant Client Tools by Downloading from OTN
	A.3.1 Installing Instant Client and Instant Client Tools RPM Packages for Linux
	A.3.2 Installing Instant Client and Instant Client Tools from Unix or Windows Zip Files

	A.4 Installing Tools Instant Client from the Client Release Media
	A.5 List of Oracle Instant Client Tools Files
	A.6 Configuring Tools Instant Client Package
	A.7 Connecting to a Database with the Tools Instant Client Package
	A.8 Uninstalling Tools Instant Client Package and Instant Client

	B SQL*Loader Syntax Diagrams

