
Oracle® Database
Oracle AI Vector Search User's Guide

23ai
F87786-02
May 2024

Oracle Database Oracle AI Vector Search User's Guide, 23ai

F87786-02

Copyright © 2023, 2024, Oracle and/or its affiliates.

Primary Author: Jean-Francois Verrier

Contributing Authors: Binika Kumar, Douglas Williams, Frederick Kush, Gunjan Jain, Maitreyee Chaliha, Mamata
Basapur, Jessica True, Jody Glover, Prakash Jashnani, Sarah Hirschfeld, Sarika Surampudi, Suresh Rajan, Tulika Das,
Usha Krishnamurthy, Ramya P

Contributors: Aleksandra Czarlinska, Agnivo Saha, Angela Amor, Aurosish Mishra, Bonnie Xia, Boriana Milenova, David
Jiang, Dinesh Das, Doug Hood, George Krupka, Harichandan Roy, Malavika S P, Mark Hornick, Rohan Aggarwal,
Roger Ford, Sebastian DeLaHoz, Shasank Chavan, Tirthankar Lahiri, Teck Hua Lee, Vinita Subramanian, Weiwei
Gong, Yuan Zhou

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

Conventions viii

1 Overview

Overview of Oracle AI Vector Search 1-1

Why Use Oracle AI Vector Search? 1-5

Oracle AI Vector Search Workflow 1-6

2 Get Started

SQL Quick Start 2-1

3 Generate Vector Embeddings

Import Pretrained Models in ONNX Format for Vector Generation Within the Database 3-1

Import ONNX Models and Generate Embeddings 3-1

Alternate Method to Import ONNX Models 3-7

Convert Pretrained Models to ONNX Format 3-11

Python Classes to Convert Pretrained Models to ONNX Models 3-16

Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs 3-21

Understand the Stages of Data Transformations 3-22

Use SQL Functions to Generate Embeddings 3-23

Use PL/SQL Packages to Generate Embeddings 3-24

Terms of Using Vector Utility PL/SQL Packages 3-24

About Chainable Utility Functions and Common Use Cases 3-25

About Vector Helper Procedures 3-27

Supplied Vector Utility PL/SQL Packages 3-28

Supported Third-Party Provider Operations 3-29

Validate JSON Input Parameters 3-30

Vector Generation Examples 3-33

iii

Generate Embeddings: SQL and PL/SQL Examples 3-33

Convert Text String to Embedding 3-34

Convert File to Text to Chunks to Embeddings 3-41

Convert File to Embeddings 3-48

Generate and Use Embeddings for End-to-End Search 3-49

Perform Text Processing: PL/SQL Examples 3-57

Convert Text String to Summary 3-57

Create and Use Custom Vocabulary 3-66

Create and Use Custom Language Data 3-68

Perform Chunking: SQL and PL/SQL Examples 3-70

Convert Text to Chunks With Custom Chunking Specifications 3-70

Explore Chunking Techniques and Examples 3-74

Generate Text for a Prompt: PL/SQL Example 3-90

4 Store Vector Embeddings

Create Tables Using the VECTOR Data Type 4-1

Insert Vectors in a Database Table Using the INSERT Statement 4-3

Load Vector Data Using SQL*Loader 4-7

Load Character Vector Data Using SQL*Loader Example 4-8

Load Binary Vector Data Using SQL*Loader Example 4-12

Unload and Load Vectors Using Oracle Data Pump 4-13

5 Create Vector Indexes

Size the Vector Pool 5-1

Manage the Different Categories of Vector Indexes 5-3

In-Memory Neighbor Graph Vector Index 5-4

Understand Hierarchical Navigable Small World Indexes 5-4

Hierarchical Navigable Small World Index Syntax and Parameter 5-8

Neighbor Partition Vector Index 5-8

Understand Inverted File Flat Vector Indexes 5-9

Inverted File Flat Index Syntax and Parameter 5-15

Guidelines for Using Vector Indexes 5-16

Index Accuracy Report 5-18

6 Use SQL Functions for Vector Operations

Vector Distance Functions 6-1

Vector Distance Metrics 6-1

Euclidean and Euclidean Squared Distances 6-2

Cosine Similarity 6-3

iv

Dot Product Similarity 6-3

Manhattan Distance 6-4

Hamming Similarity 6-5

Vector Distance Operand to the VECTOR_DISTANCE Function 6-6

Shorthand Operators for Distances 6-7

Other Basic Vector Functions 6-8

Vector Constructors 6-8

TO_VECTOR 6-8

VECTOR 6-9

Parameters 6-9

Examples 6-9

Vector Serializers 6-10

FROM_VECTOR 6-10

VECTOR_SERIALIZE 6-11

Parameters 6-11

Examples 6-11

VECTOR_NORM 6-12

VECTOR_DIMENSION_COUNT 6-12

VECTOR_DIMENSION_FORMAT 6-12

Oracle AI Vector Search SQL Functions 6-13

7 Query Data with Similarity Searches

Perform Exact Similarity Search 7-1

Perform Approximate Similarity Search Using Vector Indexes 7-2

Understand Approximate Similarity Search Using Vector Indexes 7-3

Optimizer Plans for Vector Indexes 7-5

Optimizer Plans for HNSW Vector Indexes 7-5

Optimizer Plans for IVF Vector Indexes 7-7

Approximate Similarity Search Examples 7-9

Approximate Search Using HNSW 7-9

Approximate Search Using IVF 7-11

Perform Multi-Vector Similarity Search 7-12

8 Work with Retrieval Augmented Generation

Compliment LLMs with Oracle AI Vector Search 8-1

SQL RAG Example 8-3

9 Supported Clients and Languages

v

10

Vector Diagnostics

Oracle AI Vector Search Views 10-1

Vector Utilities-Related Views 10-1

ALL_VECTOR_ABBREV_TOKENS 10-2

ALL_VECTOR_LANG 10-2

USER_VECTOR_ABBREV_TOKENS 10-2

USER_VECTOR_LANG 10-3

USER_VECTOR_VOCAB 10-3

USER_VECTOR_VOCAB_TOKENS 10-3

ALL_VECTOR_VOCAB 10-3

ALL_VECTOR_VOCAB_TOKENS 10-4

Vector Memory Pool Views 10-4

V$VECTOR_MEMORY_POOL 10-4

Vector Index Views 10-5

VECSYS.VECTOR$INDEX 10-6

Oracle AI Vector Search Statistics 10-8

Oracle AI Vector Search Dictionary Statistics 10-8

Oracle Machine Learning Static Dictionary Views 10-11

Oracle AI Vector Search Parameters 10-11

11

Vector Search PL/SQL APIs

Oracle AI Vector Search PL/SQL Packages 11-1

vi

Preface

Oracle Database AI Vector Search User's Guide provides information about querying semantic
and business data with Oracle AI Vector Search.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Conventions

Audience
This guide is intended for application developers, database administrators, data users, and
others who perform the following tasks:

• Implement artificial intelligence (AI) solutions for websites and unstructured or structured
data

• Build query applications by using natural language processing and machine learning
techniques

• Perform similarity searches on content, such as words, documents, audio tracks, or
images

To use this document, you must have a basic familiarity with vector embedding and machine
learning concepts, SQL, SQL*Plus, and PL/SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

1
Overview

Oracle AI Vector Search stores and indexes vector embeddings for fast retrieval and similarity
search.

• Overview of Oracle AI Vector Search
Oracle AI Vector Search is designed for Artificial Intelligence (AI) workloads and allows you
to query data based on semantics, rather than keywords.

• Why Use Oracle AI Vector Search?
One of the biggest benefits of Oracle AI Vector Search is that semantic search on
unstructured data can be combined with relational search on business data in one single
system.

• Oracle AI Vector Search Workflow
A typical Oracle AI Vector Search workflow follows the included primary steps.

Overview of Oracle AI Vector Search
Oracle AI Vector Search is designed for Artificial Intelligence (AI) workloads and allows you to
query data based on semantics, rather than keywords.

VECTOR Data Type

The VECTOR data type is introduced with the release of Oracle Database 23ai, providing the
foundation to store vector embeddings alongside business data in the database. Using
embedding models, you can transform unstructured data into vector embeddings that can then
be used for semantic queries on business data.

See the following basic example of using the VECTOR data type in a table definition:

CREATE TABLE docs (INT doc_id, CLOB doc_text, VECTOR doc_vector);

For more information about the VECTOR data type and how to use vectors in tables, see Create
Tables Using the VECTOR Data Type.

Vector Embeddings

If you've ever used applications such as voice assistants, chatbots, language translators,
recommendation systems, anomaly detection, or video search and recognition, you've implicitly
used vector embeddings features.

Oracle AI Vector Search stores vector embeddings, which are mathematical vector
representations of data points. These vector embeddings describe the semantic meaning
behind content such as words, documents, audio tracks, or images. As an example, while
doing text based searches, vector search is often considered better than keyword search as
vector search is based on the meaning and context behind the words and not the actual words
themselves. This vector representation translates semantic similarity of objects, as perceived
by humans, into proximity in a mathematical vector space. This vector space usually has
multihundreds, if not thousands, of dimensions. Put differently, vector embeddings are a way of
representing almost any kind of data, such as text, images, videos, users, or music as points in

1-1

a multidimensional space where the locations of those points in space, and proximity to others,
are semantically meaningful.

This simplified diagram illustrates a vector space where words are encoded as 2-dimensional
vectors.

Similarity Search

Searching semantic similarity in a data set is now equivalent to searching nearest neighbors in
a vector space instead of using traditional keyword searches using query predicates. As
illustrated in the following diagram, the distance between dog and wolf in this vector space is
shorter than the distance between dog and kitten. In this space, a dog is more similar to a wolf
than it is to a kitten. See Perform Exact Similarity Search for more information.

Chapter 1
Overview of Oracle AI Vector Search

1-2

Vector data tends to be unevenly distributed and clustered into groups that are semantically
related. Doing a similarity search based on a given query vector is equivalent to retrieving the
K-nearest vectors to your query vector in your vector space. Basically, you need to find an
ordered list of vectors by ranking them, where the first row in the list is the closest or most
similar vector to the query vector, the second row in the list is the second closest vector to the
query vector, and so on. When doing a similarity search, the relative order of distances is what
really matters rather than the actual distance.

Using the preceding vector space, here is an illustration of a semantic search where your
query vector is the one corresponding to the word Puppy and you want to identify the four
closest words:

Chapter 1
Overview of Oracle AI Vector Search

1-3

Similarity searches tend to get data from one or more clusters depending on the value of the
query vector and the fetch size.

Approximate searches using vector indexes can limit the searches to specific clusters,
whereas exact searches visit vectors across all clusters. See Use Vector Indexes for more
information.

Vector Embedding Models

One way of creating such vector embeddings could be to use someone's domain expertise to
quantify a predefined set of features or dimensions such as shape, texture, color, sentiment,
and many others, depending on the object type with which you're dealing. However, the
efficiency of this method depends on the use case and is not always cost effective.

Instead, vector embeddings are created via neural networks. Most modern vector embeddings
use a transformer model, as illustrated by the following diagram, but convolutional neural
networks can also be used.

Figure 1-1 Vector Embedding Model

Chapter 1
Overview of Oracle AI Vector Search

1-4

Depending on the type of your data, you can use different pretrained, open-source models to
create vector embeddings. For example:

• For textual data, sentence transformers transform words, sentences, or paragraphs into
vector embeddings.

• For visual data, you can use Residual Network (ResNet) to generate vector embeddings.

• For audio data, you can use the visual spectrogram representation of the audio data to fall
back into the visual data case.

Each model also determines the number of dimensions for your vectors. For example:

• Cohere's embedding model embed-english-v3.0 has 1024 dimensions.

• OpenAI's embedding model text-embedding-3-large has 3072 dimensions.

• Hugging Face's embedding model all-MiniLM-L6-v2 has 384 dimensions

Of course, you can always create your own model that is trained with your own data set.

Import Embedding Models into Oracle Database

Although you can generate vector embeddings outside the Oracle Database using pretrained
open-source embeddings models or your own embeddings models, you also have the option to
import those models directly into the Oracle Database if they are compatible with the Open
Neural Network Exchange (ONNX) standard. Oracle Database implements an ONNX runtime
directly within the database. This allows you to generate vector embeddings directly within the
Oracle Database using SQL. See Generate Vector Embeddings for more information.

Why Use Oracle AI Vector Search?
One of the biggest benefits of Oracle AI Vector Search is that semantic search on unstructured
data can be combined with relational search on business data in one single system.

This is not only powerful but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation between multiple
systems.

For example, suppose you use an application that allows you to find a house that is similar to a
picture you took of one you like that is located in your preferred area for a certain budget.
Finding a good match in this case requires combining a semantic picture search with searches
on business data.

With Oracle AI Vector Search, you can create the following table:

CREATE TABLE house_for_sale (house_id NUMBER,
 price NUMBER,
 city VARCHAR2(400),
 house_photo BLOB,
 house_vector VECTOR);

The following sections of this guide describe in detail the meaning of the VECTOR data type and
how to load data in this column data type.

With that table, you can run the following query to answer your basic question:

SELECT house_photo, city, price
FROM house_for_sale
WHERE price <= :input_price AND

Chapter 1
Why Use Oracle AI Vector Search?

1-5

 city = :input_city
ORDER BY VECTOR_DISTANCE(house_vector, :input_vector);

Later sections of this guide describe in detail the meaning of the VECTOR_DISTANCE function.
This query is just to show you how simple it is to combine a vector embedding similarity search
with relation predicates.

Oracle AI Vector Search Workflow
A typical Oracle AI Vector Search workflow follows the included primary steps.

This is illustrated in the following diagram:

Figure 1-2 Oracle AI Vector Search Use Case Flowchart

To understand the diagram, consider this high level workflow description. Vector embeddings
are generated by passing unstructured data through an embedding model. Vector embeddings
can then be stored alongside business data in relational tables and vector indexes can
optionally be created. Once you have the vector representations of your unstructured data
stored in your database table(s), a sample of unstructured data can be passed through the
embedding model to create a query vector. With the query vector, you can perform similarity
searches against the vectors that are already stored in the database, in combination with
relational queries if desired. To form a complete Retrieval Augmented Generation (RAG)
pipeline, it is also possible to make a call to a generative Large Language Model (LLM) as part
of the query step.

Primary workflow steps:

1. Generate Vector Embeddings from Your Unstructured Data
You can perform this step either outside or within Oracle Database. For more information,
see Generate Vector Embeddings.

2. Store Vector Embeddings, Unstructured Data, and Relational Business Data in
Oracle Database
You store the resulting vector embeddings and associated unstructured data with your
relational business data in Oracle Database. For more information, see Store Vector
Embeddings.

3. Create Vector Indexes
You may want to create vector indexes on your vector embeddings. This is beneficial for
running similarity searches over huge vector spaces. For more information, see Create
Vector Indexes.

Chapter 1
Oracle AI Vector Search Workflow

1-6

4. Query Data with Similarity Searches
You can then use Oracle AI Vector Search native SQL operations to combine similarity
with relational searches to retrieve relevant data. For more information, see Query Data
with Similarity Searches.

5. Generate a Prompt and Send it to an LLM for a Full RAG Inference
You can use the similarity search results to generate a prompt and send it to your
generative LLM of choice for a complete RAG pipeline. For more information, see Work
with Retrieval Augmented Generation.

Chapter 1
Oracle AI Vector Search Workflow

1-7

2
Get Started

To get started, review the steps for the different tasks that you can do with Oracle AI Vector
Search.

• SQL Quick Start
A set of SQL commands is provided to run a particular scenario that will help you
understand Oracle AI Vector Search capabilities.

SQL Quick Start
A set of SQL commands is provided to run a particular scenario that will help you understand
Oracle AI Vector Search capabilities.

This quick start scenario introduces you to the VECTOR data type, which represents the
semantic meaning behind your unstructured data. You will also use Vector Search SQL
operators, allowing you to perform a similarity search to find vectors (and thereby content) that
are similar to each other. Vector indexes are also created to help you accelerate similarity
searches in an approximate manner. See Overview of Oracle AI Vector Search for more
introductory information if needed.

The script chunks two Oracle Database Documentation books, assigns them corresponding
vector embeddings, and shows you some similarity searches using vector indexes.

To run this script you need three files similar to the following:

• my_embedding_model.onnx, which is an ONNX export of the corresponding embedding
model. To create such a file, see Convert Pretrained Models to ONNX Format.

• database-concepts23ai.pdf, which is the PDF file for Oracle Database 23ai Oracle
Database Concepts manual.

• oracle-ai-vector-search-users-guide.pdf, which is the PDF file for this guide
that you are reading.

Note:

You can use other PDF files instead of the ones listed here. If you prefer, you can use
another model of your choice as long as you can generate it as an .onnx file.

Let's start.

1. Copy the files to your local directory.

There is no script and you can use scp. For example, to copy the three files to a directory
on your server. You can call that directory /my_local_dir.

scp my_embedding_model.onnx /my_local_dir
scp database-concepts23ai.pdf /my_local_dir
scp oracle-ai-vector-search-users-guide.pdf /my_local_dir

2-1

https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/database-concepts.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/database-concepts.pdf

2. Create storage, user, and privileges.

Here you create a new tablespace and a new user. You grant that user the
DB_DEVELOPER_ROLE and create an Oracle directory to point to the PDF files. You grant the
new user the possibility to read and write from/to that directory.

sqlplus / as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

drop user vector cascade;

create user vector identified by vector DEFAULT TABLESPACE tbs1 quota
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to vector;

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory vec_dump to vector;

3. Load your embedding model into the Oracle Database.

Using the DBMS_VECTOR package, load your embedding model into the Oracle Database.
You must specify the directory where you stored your model in ONNX format as well as
describe what type of model it is and how you want to use it.

For more information about downloading pretrained embedding models, converting them
into ONNX format, and importing the ONNX file into Oracle Database, see Import
Pretrained Models in ONNX Format for Vector Generation Within the Database.

connect vector/<vector user password>@<pdb instance network name>

exec dbms_vector.drop_onnx_model(model_name => 'doc_model', force => true);

EXECUTE dbms_vector.load_onnx_model('VEC_DUMP', 'my_embedding_model.onnx',
'doc_model', JSON('{"function" : "embedding", "embeddingOutput" :
"embedding" , "input": {"input": ["DATA"]}}'));

4. Create a relational table to store books in the PDF format.

You now create a table containing all the books you want to chunk and vectorize. You
associate each new book with an ID and a pointer to your local directory where the books
are stored.

drop table documentation_tab purge;
create table documentation_tab (id number, data blob);
insert into documentation_tab values(1, to_blob(bfilename('VEC_DUMP',
'database-concepts23ai.pdf')));
insert into documentation_tab values(2, to_blob(bfilename('VEC_DUMP',
'oracle-ai-vector-search-users-guide.pdf')));
commit;
select dbms_lob.getlength(data) from documentation_tab;

Chapter 2
SQL Quick Start

2-2

5. Create a relational table to store unstructured data chunks and associated vector
embeddings using my_embedding_model.onnx.

You start by creating the table structure using the VECTOR data type. For more information
about declaring a table's column as a VECTOR data type, see Create Tables Using the
VECTOR Data Type .

The INSERT statement reads each PDF file from DOCUMENTATION_TAB, transforms each PDF
file into text, chunks each resulting text, then finally generates corresponding vector
embeddings on each chunk that is created. All that is done in one single INSERT SELECT
statement.

Here you choose to use Vector Utility PL/SQL package DBMS_VECTOR_CHAIN to convert,
chunk, and vectorize your unstructured data in one end-to-end pipeline. Vector Utility
PL/SQL functions are intended to be a set of chainable stages (using table functions)
through which you pass your input data to transform into a different representation. In this
case, from PDF to text to chunks to vectors. For more information about using chainable
utility functions in the DBMS_VECTOR_CHAIN package, see About Chainable Utility Functions
and Common Use Cases.

drop table doc_chunks purge;
create table doc_chunks (doc_id number, chunk_id number, chunk_data
varchar2(4000), chunk_embedding vector);

insert into doc_chunks
select dt.id doc_id, et.embed_id chunk_id, et.embed_data chunk_data,
to_vector(et.embed_vector) chunk_embedding
from
 documentation_tab dt,
 dbms_vector_chain.utl_to_embeddings(

dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(dt.data),
json('{"normalize":"all"}')),
 json('{"provider":"database", "model":"doc_model"}')) t,
 JSON_TABLE(t.column_value, '$[*]' COLUMNS (embed_id NUMBER PATH
'$.embed_id', embed_data VARCHAR2(4000) PATH '$.embed_data', embed_vector
CLOB PATH '$.embed_vector')) et;

commit;

See Also:

• Oracle Database JSON Developer’s Guide for information about the
JSON_TABLE function, which supports the VECTOR data type

6. Generate a query vector for use in a similarity search.

For a similarity search you will need query vectors. Here you enter your query text and
generate an associated vector embedding.

For example, you can use the following text: 'different methods of backup and recovery'.
You use the VECTOR_EMBEDDING SQL function to generate the vector embeddings from the
input text. The function takes an embedding model name and a text string to generate the
corresponding vector. Note that you can generate vector embeddings outside of the

Chapter 2
SQL Quick Start

2-3

database using your favorite tools. For more information about using the
VECTOR_EMBEDDING SQL function, see Use SQL Functions to Generate Embeddings.

In SQL*Plus, use the following code:

ACCEPT text_input CHAR PROMPT 'Enter text: '
VARIABLE text_variable VARCHAR2(1000)
VARIABLE query_vector VECTOR
BEGIN
 :text_variable := '&text_input';
 SELECT vector_embedding(doc_model using :text_variable as data)
into :query_vector;
END;
/

PRINT query_vector

In SQLCL, use the following code:

DEFINE text_input = '&text'

SELECT '&text_input';

VARIABLE text_variable VARCHAR2(1000)
VARIABLE query_vector CLOB
BEGIN
 :text_variable := '&text_input';
 SELECT vector_embedding(doc_model using :text_variable as data)
into :query_vector;
END;
/

PRINT query_vector

7. Run a similarity search to find, within your books, the first four most relevant chunks that
talk about backup and recovery.

Using the generated query vector, you search similar chunks in the DOC_CHUNKS table. For
this, you use the VECTOR_DISTANCE SQL function and the FETCH SQL clause to retrieve the
most similar chunks.

For more information about the VECTOR_DISTANCE SQL function, see Vector Distance
Functions.

For more information about exact similarity search, see Perform Exact Similarity Search.

SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH FIRST 4 ROWS ONLY;

You can also add a WHERE clause to further filter your search, for instance if you only want
to look at one particular book.

SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks

Chapter 2
SQL Quick Start

2-4

WHERE doc_id=1
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH FIRST 4 ROWS ONLY;

8. Use the EXPLAIN PLAN command to determine how the optimizer resolves this query.

EXPLAIN PLAN FOR
SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH FIRST 4 ROWS ONLY;

select plan_table_output from
table(dbms_xplan.display('plan_table',null,'all'));

PLAN_TABLE_OUTPUT

Plan hash value: 1651750914

| Id | Operation | Name | Rows | Bytes |TempSpc|
Cost (%CPU)| Time |

0	SELECT STATEMENT		4	104
549 (3)	00:00:01			
* 1	COUNT STOPKEY			
2	VIEW		5014	127K
549 (3)	00:00:01			
* 3	SORT ORDER BY STOPKEY		5014	156K
232K	549 (3)	00:00:01		
4	TABLE ACCESS FULL	DOC_CHUNKS	5014	156K
480 (3)	00:00:01			

9. Run a multi-vector similarity search to find, within your books, the first four most relevant
chunks in the first two most relevant books.

Here you keep using the same query vector as previously used.

For more information about performing multi-vector similarity search, see Perform Multi-
Vector Similarity Search.

SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH FIRST 2 PARTITIONS BY doc_id, 4 ROWS ONLY;

10. Create an In-Memory Neighbor Graph Vector Index on the vector embeddings that you
created.

When dealing with huge vector embedding spaces, you may want to create vector indexes
to accelerate your similarity searches. Instead of scanning each and every vector

Chapter 2
SQL Quick Start

2-5

embedding in your table, a vector index uses heuristics to reduce the search space to
accelerate the similarity search. This is called approximate similarity search.

For more information about creating vector indexes, see Create Vector Indexes.

Note:

You must have explicit SELECT privilege to select from the VECSYS.VECTOR$INDEX
table, which gives you detailed information about your vector indexes.

create vector index docs_hnsw_idx on doc_chunks(chunk_embedding)
organization inmemory neighbor graph
distance COSINE
with target accuracy 95;

SELECT INDEX_NAME, INDEX_TYPE, INDEX_SUBTYPE
FROM USER_INDEXES;
INDEX_NAME INDEX_TYPE INDEX_SUBTYPE
-------------- ----------- -----------------------------
DOCS_HNSW_IDX VECTOR INMEMORY_NEIGHBOR_GRAPH_HNSW

...

SELECT JSON_SERIALIZE(IDX_PARAMS returning varchar2 PRETTY)
FROM VECSYS.VECTOR$INDEX where IDX_NAME = 'DOCS_HNSW_IDX';
JSON_SERIALIZE(IDX_PARAMSRETURNINGVARCHAR2PRETTY)
__
{
 "type" : "HNSW",
 "num_neighbors" : 32,
 "efConstruction" : 300,
 "distance" : "COSINE",
 "accuracy" : 95,
 "vector_type" : "FLOAT32",
 "vector_dimension" : 384,
 "degree_of_parallelism" : 1,
 "pdb_id" : 3,
 "indexed_col" : "CHUNK_EMBEDDING"
}

11. Determine the memory allocation in the vector memory area.

To get an idea about the size of your In-Memory Neighbor Graph Vector Index in memory,
you can use the V$VECTOR_MEMORY_POOL view. See Size the Vector Pool for more
information about sizing the vector pool to allow for vector index creation and maintenance.

Chapter 2
SQL Quick Start

2-6

Note:

You must have explicit SELECT privilege to select from the V$VECTOR_MEMORY_POOL
view, which gives you detailed information about the vector pool.

select CON_ID, POOL, ALLOC_BYTES/1024/1024 as ALLOC_BYTES_MB,
USED_BYTES/1024/1024 as USED_BYTES_MB
from V$VECTOR_MEMORY_POOL order by 1,2;

12. Run an approximate similarity search to identify, within your books, the first four most
relevant chunks.

Using the previously generated query vector, you search chunks in the DOC_CHUNKS table
that are similar to your query vector. For this, you use the VECTOR_DISTANCE function and
the FETCH APPROX SQL clause to retrieve the most similar chunks using your vector index.

For more information about approximate similarity search, see Perform Approximate
Similarity Search Using Vector Indexes.

SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

You can also add a WHERE clause to further filter your search, for instance if you only want
to look at one particular book.

SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
WHERE doc_id=1
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

13. Use the EXPLAIN PLAN command to determine how the optimizer resolves this query.

See Optimizer Plans for Vector Indexes for more information about how the Oracle
Database optimizer uses vector indexes to run your approximate similarity searches.

EXPLAIN PLAN FOR
SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

select plan_table_output from
table(dbms_xplan.display('plan_table',null,'all'));

PLAN_TABLE_OUTPUT

Plan hash value: 2946813851

Chapter 2
SQL Quick Start

2-7

| Id | Operation | Name | Rows | Bytes |
TempSpc| Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 4 | 104
	12083 (2)	00:00:01	
* 1	COUNT STOPKEY		
2	VIEW		5014
127K		12083 (2)	00:00:01
* 3	SORT ORDER BY STOPKEY		5014
19M	39M	12083 (2)	00:00:01
4	TABLE ACCESS BY INDEX ROWID	DOC_CHUNKS	5014
19M		1 (0)	00:00:01
5	VECTOR INDEX HNSW SCAN	DOCS_HNSW_IDX	5014
19M| | 1 (0)| 00:00:01 |

14. Determine your vector index performance for your approximate similarity searches.

The index accuracy reporting feature allows you to determine the accuracy of your vector
indexes. After a vector index is created, you may be interested to know how accurate your
approximate vector searches are.

The DBMS_VECTOR.INDEX_ACCURACY_QUERY PL/SQL procedure provides an accuracy report
for a top-K index search for a specific query vector and a specific target accuracy. In this
case you keep using the query vector generated previously. For more information about
index accuracy reporting, see Index Accuracy Report.

SET SERVEROUTPUT ON
declare
 report varchar2(128);
begin
 report := dbms_vector.index_accuracy_query(
 OWNER_NAME => 'VECTOR',
 INDEX_NAME => 'DOCS_HNSW_IDX',
 qv => :query_vector,
 top_K => 10,
 target_accuracy => 90);
 dbms_output.put_line(report);
end;
/

The report looks like the following: Accuracy achieved (100%) is 10% higher than the
Target Accuracy requested (90%).

Chapter 2
SQL Quick Start

2-8

3
Generate Vector Embeddings

You must generate vector embeddings from your unstructured data either outside or within
Oracle Database.

To get vector embeddings, you can either use ONNX embedding machine learning models or
access third-party REST APIs.

• Import Pretrained Models in ONNX Format for Vector Generation Within the Database
You can download pretrained embedding machine learning models, convert them into
ONNX format if they are not already in ONNX format, import the ONNX format models into
Oracle Database, and generate vector embeddings from your data within the database.

• Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs
Oracle AI Vector Search offers vector utilities (SQL and PL/SQL tools) to automatically
generate vector embeddings from your unstructured data.

• Vector Generation Examples
Review these examples to see how you can generate vectors within and outside the
database.

Import Pretrained Models in ONNX Format for Vector Generation
Within the Database

You can download pretrained embedding machine learning models, convert them into ONNX
format if they are not already in ONNX format, import the ONNX format models into Oracle
Database, and generate vector embeddings from your data within the database.

• Import ONNX Models and Generate Embeddings
Learn to import a pretrained embedding model that is in ONNX format and generate vector
embeddings.

• Convert Pretrained Models to ONNX Format
OML4Py enables the use of text transformers from Hugging Face by converting them into
ONNX format models. OML4Py also adds the necessary tokenization and post-processing.
The resulting ONNX pipeline is then imported into the database and can be used to
generate embeddings for AI Vector Search.

Import ONNX Models and Generate Embeddings
Learn to import a pretrained embedding model that is in ONNX format and generate vector
embeddings.

Follow the steps below to import a pertained ONNX formatted embedding model into the
Oracle Database.

Prepare Your Data Dump Directory

Prepare your data dump directory and provide the necessary access and privileges to dmuser.

1. Choose from:

3-1

a. If you already have a pretrained ONNX embedding model, store it in your working
folder.

b. If you do not have pretrained embedding model in ONNX format, perform the steps
listed in Convert Pretrained Models to ONNX Format.

2. Login to SQL*Plus as SYSDBA in your PDB.

CONN sys/<password>@pdb as sysdba;

3. Grant the DB_DEVELOPER_ROLE to dmuser.

GRANT DB_DEVELOPER_ROLE TO dmuser identified by <password>;

4. Grant CREATE MINING MODEL privilege to dmuser.

GRANT create mining model TO dmuser;

5. Set your working folder as the data dump directory (DM_DUMP) to load the ONNX embedding
model.

CREATE OR REPLACE DIRECTORY DM_DUMP as '<work directory path>';

6. Grant READ permissions on the DM_DUMP directory to dmuser.

GRANT READ ON DIRECTORY dm_dump TO dmuser;

7. Grant WRITE permissions on the DM_DUMP directory to dmuser.

GRANT WRITE ON DIRECTORY dm_dump TO dmuser;

8. Drop the model if it already exits.

exec DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force => true);

Import ONNX Model Into the Database

You created a data dump directory and now you load the ONNX model into the Database. Use
the DBMS_VECTOR.LOAD_ONNX_MODEL procedure to load the model. The
DBMS_VECTOR.LOAD_ONNX_MODEL procedure facilitates the process of importing ONNX format
model into the Oracle Database. In this example, the procedure loads an ONNX model file,
named my_embedding_model.onnx from the DM_DUMP directory, into the Database as doc_model,
specifying its use for embedding tasks.

1. Connect as dmuser.

CONN dmuser/<password>@<pdbname>;

2. Load the ONNX model into the Database.

If the ONNX model to be imported already includes an output tensor named
embeddingOutput and an input string tensor named data, JSON metadata is unnecessary.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-2

Embedding models converted from OML4Py follow this convention and can be imported
without the JSON metadata.

EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
 'DM_DUMP',
 'my_embedding_model.onnx',
 'doc_model');

Alternately, you can load the ONNX embedding model by specifying the JSON metadata.

EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
 'DM_DUMP',
 'my_embedding_model.onnx',
 'doc_model',
 JSON('{"function" : "embedding", "embeddingOutput" : "embedding", "input": {"input":
["DATA"]}}'));

The procedure LOAD_ONNX_MODEL declares these parameters:

• DM_DUMP: specifies the directory name of the data dump.

Note:

Ensure that the DM_DUMP directory is defined.

• my_embedding_model: is a VARCHAR2 type parameter that specifies the name of the ONNX
model.

• doc_model: This parameter is a user-specified name under which the model is stored in the
Oracle Database.

• The JSON metadata associated with the ONNX model is declared as:

"function" : "embedding": Indicates the function name for text embedding model.

"embeddingOutput" : "embedding": Specifies the output variable which contains the
embedding results.

• "input": {"input": ["DATA"]}: Specifies a JSON object ("input") that describes the
input expected by the model. It specifies that there is an input named "input", and its
value should be an array with one element, "DATA". This indicates that the model expects
a single string input to generate embeddings.

See LOAD_ONNX_MODEL Procedure to learn about the PL/SQL procedure.

Query Model Statistics

You can view model attributes and learn about the model by querying machine learning
dictionary views and model detail views.

Note:

DOC_MODEL is the user-specified name of the embedding text model.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-3

1. Query USER_MINING_MODEL_ATTRIBUTES view.

SELECT model_name, attribute_name, attribute_type, data_type, vector_info
FROM user_mining_model_attributes
WHERE model_name = 'DOC_MODEL'
ORDER BY ATTRIBUTE_NAME;

To learn about USER_MINING_MODEL_ATTRIBUTES view, see
USER_MINING_MODEL_ATTRIBUTES.

2. Query USER_MINING_MODELS view.

SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM,
ALGORITHM_TYPE, MODEL_SIZE
FROM user_mining_models
WHERE model_name = 'DOC_MODEL'
ORDER BY MODEL_NAME;

To learn about USER_MINING_MODELS view, see USER_MINING_MODELS.

3. Check model statistics by viewing the model detail views. Query the DM$VMDOC_MODEL view.

SELECT * FROM DM$VMDOC_MODEL ORDER BY NAME;

To learn about model details views for ONNX embedding models, see Model Details Views
for ONNX Models.

4. Query the DM$VPDOC_MODEL model detail view.

SELECT * FROM DM$VPDOC_MODEL ORDER BY NAME;

5. Query the DM$VJDOC_MODEL model detail view.

SELECT * FROM DM$VJDOC_MODEL;

Generate Embeddings

Apply the model and generate vector embeddings for your input. Here, the input is hello.

Generate vector embeddings using the VECTOR_EMBEDDING function.

SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data)) AS
embedding;

To learn about the VECTOR_EMBEDDING SQL function, see VECTOR_EMBEDDING. You can use
the UTL_TO_EMBEDDING function in the DBMS_VECTOR_CHAIN PL/SQL package to generate vector
embeddings generically through REST endpoints. To explore these functions, see the example
Convert Text String to Embedding.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-4

Example: Importing a Pretrained ONNX Model to Oracle Database

The following presents a comprehensive step-by-step example of importing ONNX embedding
and generating vector embeddings.

conn sys/<password>@pdb as sysdba
grant db_developer_role to dmuser identified by dmuser;
grant create mining model to dmuser;

create or replace directory DM_DUMP as '<work directory path>';
grant read on directory dm_dump to dmuser;
grant write on directory dm_dump to dmuser;
>conn dmuser/<password>@<pdbname>;

–- Drop the model if it exits
exec DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force => true);

-- Load Model
EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
 'DM_DUMP',
 'my_embedding_model.onnx',
 'doc_model',
 JSON('{"function" : "embedding", "embeddingOutput" : "embedding"}'));
/

--check the attributes view
set linesize 120
col model_name format a20
col algorithm_name format a20
col algorithm format a20
col attribute_name format a20
col attribute_type format a20
col data_type format a20

SQL> SELECT model_name, attribute_name, attribute_type, data_type, vector_info
FROM user_mining_model_attributes
WHERE model_name = 'DOC_MODEL'
ORDER BY ATTRIBUTE_NAME;

OUTPUT:

MODEL_NAME ATTRIBUTE_NAME ATTRIBUTE_TYPE DATA_TYPE
VECTOR_INFO
-------------------- -------------------- -------------------- ----------

DOC_MODEL INPUT_STRING TEXT VARCHAR2
DOC_MODEL ORA$ONNXTARGET VECTOR VECTOR
VECTOR(128,FLOA
 T32)

SQL> SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM,
ALGORITHM_TYPE, MODEL_SIZE

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-5

FROM user_mining_models
WHERE model_name = 'DOC_MODEL'
ORDER BY MODEL_NAME;

OUTPUT:
MODEL_NAME MINING_FUNCTION ALGORITHM
ALGORITHM_ MODEL_SIZE
-------------------- ------------------------------ --------------------
---------- ----------
DOC_MODEL EMBEDDING ONNX
NATIVE 17762137

SQL> select * from DM$VMDOC_MODEL ORDER BY NAME;

OUTPUT:
NAME VALUE
--
--
Graph Description Graph combining g_8_torch_jit and
torch_
 jit
 g_8_torch_jit

 torch_jit

Graph Name g_8_torch_jit_torch_jit
Input[0] input:string[1]
Output[0] embedding:float32[?,128]
Producer Name onnx.compose.merge_models
Version 1

6 rows selected.

SQL> select * from DM$VPDOC_MODEL ORDER BY NAME;

OUTPUT:
NAME VALUE
--
--
batching False
embeddingOutput embedding

SQL> select * from DM$VJDOC_MODEL;

OUTPUT:
METADATA
--
--
{"function":"embedding","embeddingOutput":"embedding","input":{"input":

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-6

["DATA"]}}

--apply the model
SQL> SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data)) AS
embedding;

--
--
[-9.76553112E-002,-9.89954844E-002,7.69771636E-003,-4.16760892E-003,-9.6930563
4E-002,
-3.01141385E-002,-2.63396613E-002,-2.98553891E-002,5.96499592E-002,4.13885899E
-002,
5.32859489E-002,6.57707453E-002,-1.47056757E-002,-4.18472625E-002,4.1588001E-0
02,
-2.86354572E-002,-7.56499246E-002,-4.16395674E-003,-1.52879998E-001,6.60010576
E-002,
-3.9013084E-002,3.15719917E-002,1.2428958E-002,-2.47651711E-002,-1.16851285E-0
01,
-7.82847106E-002,3.34323719E-002,8.03267583E-002,1.70483496E-002,-5.42407483E-
002,
6.54291287E-002,-4.81935125E-003,6.11041225E-002,6.64106477E-003,-5.47

Oracle AI Vector Search SQL Scenario

To learn how you can chunk database-concepts23ai.pdf and oracle-ai-vector-search-users-
guide.pdf, generate vector embeddings, and perform similarity search using vector indexes,
see Quick Start SQL.

• Alternate Method to Import ONNX Models
Use the DBMS_DATA_MINING.IMPORT_ONNX_MODEL procedure to import the model and
declare the input name. The following procedure uses a PL/SQL helper block that
facilitates the process of importing ONNX format model into the Oracle Database. The
function reads the model file from the server's file system and imports it into the Database.

Alternate Method to Import ONNX Models
Use the DBMS_DATA_MINING.IMPORT_ONNX_MODEL procedure to import the model and declare the
input name. The following procedure uses a PL/SQL helper block that facilitates the process of
importing ONNX format model into the Oracle Database. The function reads the model file
from the server's file system and imports it into the Database.

Perform the following steps to import ONNX model into the Database using DBMS_DATA_MINING
PL/SQL package.

• Connect as dmuser.

CONN dmuser/<password>@<pdbname>;

• Run the following helper PL/SQL block:

DECLARE
 m_blob BLOB default empty_blob();
 m_src_loc BFILE ;
 BEGIN

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-7

 DBMS_LOB.createtemporary (m_blob, FALSE);
 m_src_loc := BFILENAME('DM_DUMP', 'my_embedding_model.onnx');
 DBMS_LOB.fileopen (m_src_loc, DBMS_LOB.file_readonly);
 DBMS_LOB.loadfromfile (m_blob, m_src_loc, DBMS_LOB.getlength
(m_src_loc));
 DBMS_LOB.CLOSE(m_src_loc);
 DBMS_DATA_MINING.import_onnx_model ('doc_model', m_blob,
JSON('{"function" : "embedding", "embeddingOutput" : "embedding", "input":
{"input": ["DATA"]}}'));
 DBMS_LOB.freetemporary (m_blob);
 END;
 /

The code sets up a BLOB object and a BFILE locator, creates a temporary BLOB for storing
the my_embedding_model.onnx file from the DM_DUMP directory, and reads its contents into
the BLOB. It then closes the file and uses the content to import an ONNX model into the
database with specified metadata, before releasing the temporary BLOB resources.

The schema of the IMPORT_ONNX_MODEL procedure is as follows:
DBMS_DATA_MINING.IMPORT_ONNX_MODEL(model_data, model_name, metadata). This
procedure loads IMPORT_ONNX_MODEL from the DBMS_DATA_MINING package to import the ONNX
model into the Database using the name provided in model_name, the BLOB content in m_blob,
and the associated metadata.

• doc_model: This parameter is a user-specified name under which the imported model is
stored in the Oracle Database.

• m_blob: This is a model data in BLOB that holds the ONNX representation of the model.

• "function" : "embedding": Indicates the function name for text embedding model.

• "embeddingOutput" : "embedding": Specifies the output variable which contains the
embedding results.

• "input": {"input": ["DATA"]}: Specifies a JSON object ("input") that describes the
input expected by the model. It specifies that there is an input named "input", and its
value should be an array with one element, "DATA". This indicates that the model expects
a single string input to generate embeddings.

Alternately, the DBMS_DATA_MINING.IMPORT_ONNX_MODEL procedure can also accept a BLOB
argument representing an ONNX file stored and loaded from OCI Object Storage. The
following is an example to load an ONNX model stored in an OCI Object Storage.

DECLARE
 model_source BLOB := NULL;
BEGIN
 -- get BLOB holding onnx model
 model_source := DBMS_CLOUD.GET_OBJECT(
 credential_name => 'myCredential',
 object_uri => 'https://objectstorage.us-phoenix -1.oraclecloud.com/' ||
 'n/namespace -string/b/bucketname/o/myONNXmodel.onnx');

 DBMS_DATA_MINING.IMPORT_ONNX_MODEL(
 "myonnxmodel",
 model_source,
 JSON('{ function : "embedding" })
);

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-8

END;
/

This PL/SQL block starts by initializing a model_source variable as a BLOB type, initially set to
NULL. It then retrieves an ONNX model from Oracle Cloud Object Storage using the
DBMS_CLOUD.GET_OBJECT procedure, specifying the credentials (OBJ_STORE_CRED) and the URI
of the model. The ONNX model resides in a specific bucket named bucketname in this case,
and is accessible through the provided URL. Then, the script loads the ONNX model into the
model_source BLOB. The DBMS_DATA_MINING.IMPORT_ONNX_MODEL procedure then imports this
model into the Oracle Database as myonnxmodel. During the import, a JSON metadata
specifies the model's function as embedding, for embedding operations.

See IMPORT_ONNX_MODEL Procedure and GET_OBJECT Procedure and Function to learn
about the PL/SQL procedure.

Example: Importing a Pretrained ONNX Model to Oracle Database

The following presents a comprehensive step-by-step example of importing ONNX embedding
and generating vector embeddings.

conn sys/<password>@pdb as sysdba
grant db_developer_role to dmuser identified by dmuser;
grant create mining model to dmuser;

create or replace directory DM_DUMP as '<work directory path>';
grant read on directory dm_dump to dmuser;
grant write on directory dm_dump to dmuser;
>conn dmuser/<password>@<pdbname>;

–- Drop the model if it exits
exec DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force => true);

-- Load Model
EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
 'DM_DUMP',
 'my_embedding_model.onnx',
 'doc_model',
 JSON('{"function" : "embedding", "embeddingOutput" : "embedding"}'));
/
--Alternately, load the model
EXECUTE DBMS_DATA_MINING.IMPORT_ONNX_MODEL(
 'my_embedding_model.onnx',
 'doc_model',
 JSON('{"function" : "embedding",
 "embeddingOutput" : "embedding",
 "input": {"input": ["DATA"]}}')
);

--check the attributes view
set linesize 120
col model_name format a20
col algorithm_name format a20
col algorithm format a20
col attribute_name format a20
col attribute_type format a20

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-9

col data_type format a20

SQL> SELECT model_name, attribute_name, attribute_type, data_type, vector_info
FROM user_mining_model_attributes
WHERE model_name = 'DOC_MODEL'
ORDER BY ATTRIBUTE_NAME;

OUTPUT:

MODEL_NAME ATTRIBUTE_NAME ATTRIBUTE_TYPE DATA_TYPE
VECTOR_INFO
-------------------- -------------------- -------------------- ----------

DOC_MODEL INPUT_STRING TEXT VARCHAR2
DOC_MODEL ORA$ONNXTARGET VECTOR VECTOR
VECTOR(128,FLOA
 T32)

SQL> SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM,
ALGORITHM_TYPE, MODEL_SIZE
FROM user_mining_models
WHERE model_name = 'DOC_MODEL'
ORDER BY MODEL_NAME;

OUTPUT:
MODEL_NAME MINING_FUNCTION ALGORITHM
ALGORITHM_ MODEL_SIZE
-------------------- ------------------------------ --------------------
---------- ----------
DOC_MODEL EMBEDDING ONNX
NATIVE 17762137

SQL> select * from DM$VMDOC_MODEL ORDER BY NAME;

OUTPUT:
NAME VALUE
--
--
Graph Description Graph combining g_8_torch_jit and
torch_
 jit
 g_8_torch_jit

 torch_jit

Graph Name g_8_torch_jit_torch_jit
Input[0] input:string[1]
Output[0] embedding:float32[?,128]

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-10

Producer Name onnx.compose.merge_models
Version 1

6 rows selected.

SQL> select * from DM$VPDOC_MODEL ORDER BY NAME;

OUTPUT:
NAME VALUE
--
--
batching False
embeddingOutput embedding

SQL> select * from DM$VJDOC_MODEL;

OUTPUT:
METADATA
--
--
{"function":"embedding","embeddingOutput":"embedding","input":{"input":
["DATA"]}}

--apply the model
SQL> SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data)) AS
embedding;

--
--
[-9.76553112E-002,-9.89954844E-002,7.69771636E-003,-4.16760892E-003,-9.6930563
4E-002,
-3.01141385E-002,-2.63396613E-002,-2.98553891E-002,5.96499592E-002,4.13885899E
-002,
5.32859489E-002,6.57707453E-002,-1.47056757E-002,-4.18472625E-002,4.1588001E-0
02,
-2.86354572E-002,-7.56499246E-002,-4.16395674E-003,-1.52879998E-001,6.60010576
E-002,
-3.9013084E-002,3.15719917E-002,1.2428958E-002,-2.47651711E-002,-1.16851285E-0
01,
-7.82847106E-002,3.34323719E-002,8.03267583E-002,1.70483496E-002,-5.42407483E-
002,
6.54291287E-002,-4.81935125E-003,6.11041225E-002,6.64106477E-003,-5.47

Convert Pretrained Models to ONNX Format
OML4Py enables the use of text transformers from Hugging Face by converting them into
ONNX format models. OML4Py also adds the necessary tokenization and post-processing.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-11

The resulting ONNX pipeline is then imported into the database and can be used to generate
embeddings for AI Vector Search.

Note:

This feature will only work on OML4Py client. It is not supported on the OML4Py
server.

If you do not have a pretrained embedding model in ONNX-format to generate embeddings for
your data, Oracle offers a Python utility package that downloads pretrained models from an
external source, converts the model to ONNX format augmented with pre-processing and post-
processing steps, and imports the resulting ONNX-format model into Oracle Database. Use the
DBMS_VECTOR.LOAD_ONNX_MODEL procedure to import the file as a mining model. Then leverage
the in-database ONNX Runtime with the ONNX model to produce vector embeddings.

At a high level, the Python utility package performs the following tasks:

• Downloads the pretrained model from external source to your system

• Augments the model with pre-processing and post-processing steps and creates a new
ONNX model

• Validates the augmented ONNX model

• Loads into the database as a mining model or optionally exports to a file

The Python utility can take any of the models in the preconfigured list as input. Alternatively,
you can use the built-in template that contains common configurations for certain groups of
models such as text-based models. To understand what a preconfigured list, what is a built-in
template is, and how to use them, read further.

Limitations

This table describes the limitations of the Python utility package.

Note:

This feature is available with the OML4Py client only.

Parameter Description

Transformer Model Type Currently supported only for text transformers.

Model Size Model size should be less than 1GB. Quantization
can help reduce the size.

Tokenizers Must be either BERT, GPT2, SENTENCEPIECE, or
ROBERTA.

Preconfigured List of Models

Preconfigured list of models are common models from external resource repositories that are
provided with the Python utility. The preconfigured models have an existing specification. Users
can create their own specification using the text template as a starting point. To get a list of all
model names in the preconfigured list, you can use the show_preconfigured function.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-12

Templates

The Python utility package provides built-in text template for you to configure the pretrained
models with pre-processing and post-processing operations. The template has a default
specification for the pretrained models. This specification can be changed or augmented to
create custom configurations. The text template uses Mean Pooling and Normalization as post-
processing operations by default.

The Python utility package provides the following classes:

• EmbeddingModelConfig
• EmbeddingModel
To learn more about the Python classes, their properties, and to configure the properties, see
Python Classes to Convert Pretrained Models to ONNX Models.

To use the Python utility, ensure that you have the following:

• OML4Py Client running on Linux X64 for On-Premises Databases

• Python 3.12 (the earlier versions are not compatible)

.

1. Start Python in your work directory.

$python3

Python 3.12.2 | (main, Feb 27 2024, 17:35:02) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

2. On the OML4Py client, load the Python classes:

from oml.utils import EmbeddingModel, EmbeddingModelConfig

3. You can get a list of all preconfigured models by running the following:

EmbeddingModelConfig.show_preconfigured()

4. To get a list of available templates:

EmbeddingModelConfig.show_templates()

5. Choose from:

• Generate an ONNX file from the preconfigureded model "sentence-transformers/all-
MiniLM-L6-v2":

#generate from preconfigureded model "sentence-transformers/all-MiniLM-
L6-v2"
em = EmbeddingModel(model_name="sentence-transformers/all-MiniLM-L6-v2")
em.export2file("your_preconfig_file_name",output_dir=".")

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-13

• Generate an ONNX model from the preconfigured model "sentence-transformers/all-
MiniLM-L6-v2" in the database:

#generate from preconfigureded model "sentence-transformers/all-MiniLM-
L6-v2"
em = EmbeddingModel(model_name="sentence-transformers/all-MiniLM-L6-v2")
em.export2db("your_preconfig_model_name")

• Generate an ONNX file using the provided text template:

#generate using the "text" template
config = EmbeddingModelConfig.from_template("text",max_seq_length=512)
em = EmbeddingModel(model_name="intfloat/e5-small-v2",config=config)
em.export2file("your_template_file_name",output_dir=".")

Let's understand the code:

from oml.utils import EmbeddingModel, EmbeddingModelConfig: This line imports two
classes, EmbeddingModel and EmbeddingModelConfig.

In the preconfigured models first example:

• em = EmbeddingModel(model_name="sentence-transformers/all-MiniLM-L6-v2")
creates an instance of the EmbeddingModel class, loading a pretrained model specified
by the model_name parameter. em is the embedding model object. sentence-
transformers/all-MiniLM-L6-v2 is the model name for computing sentence
embeddings. This is the model name under Hugging Face. Oracle supports models
from Hugging Face.

• The export2file command creates an ONNX format model with a user-specified
model name in the database. your_preconfig_file_name is a user defined ONNX
model file name.

• output_dir="." specifies the output directory where the file will be saved. The "."
denotes the current directory (that is, the directory from which the script is running).

In the preconfigured models second example:

• em = EmbeddingModel(model_name="sentence-transformers/all-MiniLM-L6-v2")
creates an instance of the EmbeddingModel class, loading a pretrained model specified
by the model_name parameter. em is the embedding model object. sentence-
transformers/all-MiniLM-L6-v2 is the model name for computing sentence
embeddings. This is the model name under Hugging Face. Oracle supports models
from Hugging Face.

• The export2db command creates an ONNX format model with a user defined model
name in the database. your_preconfig_model_name is a user defined ONNX model
name.

In the template example:

• config = EmbeddingModelConfig.from_template("text", max_seq_length=512):
This line creates a configuration object for an embedding model using a method called
from_template. The "text" argument indicates the name of the template. The
max_seq_length=512 parameter specifies the maximum length of input to the model as
number of tokens. There is no default value. Specify this value for models that are not
preconfigured.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-14

• em = EmbeddingModel(model_name="intfloat/e5-small-v2", config=config)
initializes an EmbeddingModel instance with a specific model and the previously defined
configuration. The model_name="intfloat/e5-small-v2" argument specifies the name
or identifier of the pretrained model to be loaded.

• The export2file command creates an ONNX format model with a user defined model
name in the database. your_template_file_name is a user defined ONNX model
name.

• output_dir="." specifies the output directory where the file will be saved. The "."
denotes the current directory (that is, the directory from which the script is running).

Note:

• The model size is limited to 1 gigabyte. For models larger than 400MB,
Oracle recommends quantization.

Quantization reduces the model size by converting model weights from
high-precision representation to low-precision format. The quantization option
converts the weights to INT8. The smaller model size enables you to cache
the model in shared memory further improving the performance.

• The .onnx file is created with opset version 17 and ir version 8. For more
information about these version numbers, see https://onnxruntime.ai/docs/
reference/compatibility.html#onnx-opset-support.

6. Exit Python.

exit()

7. Inspect if the converted models are present in your directory.

Note:

ONNX files are only created when export2file is used. If export2db is used, no
ONNX files will be generated.

ls-ltr *.onnx

your_preconfig_file_name.onnx
your_template_file_name.onnx

The Python utility package validates the embedding text model before you can run them
using ONNX Runtime. Oracle supports ONNX embedding models that conform to string
as input and float32 [<vector dimension>] as output.

If the input or output of the model doesn't conform to the description, you receive an error
during the import.

DBMS_VECTOR.LOAD_ONNX_MODEL or DBMS_DATA_MINING.IMPORT_ONNX_MODEL are only needed if
export2file was used instead of export2db. Use the resulting ONNX format model in the

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-15

https://onnxruntime.ai/docs/reference/compatibility.html#onnx-opset-support
https://onnxruntime.ai/docs/reference/compatibility.html#onnx-opset-support

DBMS_VECTOR.LOAD_ONNX_MODEL procedure or in the DBMS_DATA_MINING.IMPORT_ONNX_MODEL
procedure and generate vector embeddings using the VECTOR_EMBEDDING SQL operator.

• Python Classes to Convert Pretrained Models to ONNX Models
Explore the functions and attributes of the EmbeddingModelConfig class and
EmbeddingModel class within Python. These classes are designed to configure pretrained
embedding models.

See Also:

• Oracle Database SQL Language Reference for information about the
VECTOR_EMBEDDING SQL function

• Oracle Database PL/SQL Packages and Types Reference for information about
the IMPORT_ONNX_MODEL procedure

• Oracle Database PL/SQL Packages and Types Reference for information about
the LOAD_ONNX_MODEL procedure

• Oracle Machine Learning for SQL Concepts for more information about importing
pretrained embedding models in ONNX format and generating vector
embeddings

• https://onnx.ai/onnx/intro/ for ONNX documentation

Python Classes to Convert Pretrained Models to ONNX Models
Explore the functions and attributes of the EmbeddingModelConfig class and EmbeddingModel
class within Python. These classes are designed to configure pretrained embedding models.

EmbeddingModelConfig

The EmbeddingModelConfig class contains the properties required for the package to perform
downloading, exporting, augmenting, validation, and storing of an ONNX model. The class
provides access to configuration properties using the dot operator. As a convenience, well-
known configurations are provided as templates.

Parameters

This table describes the functions and properties of the EmbeddingModelConfig class.

Functions Parameter Type Returns Description

from_template(name,
**kwargs)

• name (String): The
name of the
template

• **kwargs: template
properties to
override or add

Instance of
EmbeddingModelConfi
g

A static function that
creates an
EmbeddingModelConfi
g object based on a
predefined template
given by the name
parameter. You can use
named arguments to
override the template
properties.

show_templates() NA List of existing templates A static function that
returns a list of existing
templates by name.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-16

https://onnx.ai/onnx/intro/

Functions Parameter Type Returns Description

show_preconfigured(
)

• include_propert
ies
(bool,optional):
A flag indicating
whether properties
should be included
in the results.
Defaults to False
so only names will
be included by
default.

• model_name
(str,optional): A
model name to filter
by when including
properties. This
argument will be
ignored if
include_propert
ies is False.
Otherwise only the
properties of this
model will be
included in the
results.

A list of preconfigured
model names or
properties.

Shows a list of
preconfigured model
names, or properties. By
default, this function
returns a list of names
only. If the properties are
required, pass the
include_properties
parameter as True. The
returned list will contain
a single dict where each
key of the dict is the
name of a preconfigured
model and the value is
the property set for that
model. Finally, if only a
single set of properties
for a specific model is
required, pass the name
of the model in the
model_name parameter
(the
include_properties
parameter should also
be True). This will return
a list of a single dict with
the properties for the
specified model.

Template Properties

The text template has configuration properties shown below:

"do_lower_case": true,
"post_processors":[{"name":"Pooling","type":"mean"},{"name":"Normalize"}]

Note:

All other properties in the Properties table will take the default values. Any property
without a default value must be provided when creating the EmbeddingModelConfig
instance.

Properties

This table shows all properties that can be configured. preconfigured models already have
these properties set to specific values. Templates will use the default values unless a user
overrides it when using the from_template function on EmbeddingModelConfig.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-17

Property Description

post_processors An array of post_processors that will be loaded after the
model is loaded or initialized. The list of known and supported
post_processors is provided later in this section. Templates
may define a list of post_processors for the types of models
they support. Otherwise, an empty array is the default.

max_seq_length This property is applicable for text-based models only. The
maximum length of input to the model as number of tokens.
There is no default value. Specify this value for models that
are not preconfigured.

do_lower_case Specifies whether or not to lowercase the input when
tokenizing. The default value is True.

quantize_model Perform quantization on the model. This could greatly reduce
the size of the model as well as speed up the process. It may
however result in different results for the embedding vector
(against the original model) and possibly small reduction in
accuracy. The default value is False.

distance_metrics An array of names of suitable distance metrics for the model.
The names must be name of distance metrics used for Oracle
vector distance operator. Only used when exporting the model
to the database. Supported list is
["EUCLIDEAN","COSINE","MANHATTAN","HAMMING","DOT","EUCL
IDEAN_SQUARED"]. The default value is an empty array.

languages A array of language (Abbreviation) supported in the Database.
Only used when exporting the model to the database. For a
supported list of languages, see Languages. The default
value is an empty array.

use_float16 Specifies whether or not to convert the exported onnx model
to float16. The default value is False.

Properties of post_processors

This table describes the built-in post_processors and their configuration parameters.

post_processor Parameters Description

Pooling • name: Pooling.

• type: Valid values should be
mean(Default), max, cls

The Pooling post_processor
summarizes the output of the
transformer model into a fixed-
length vector.

Normalize • name: Specify Normalize The Normalize post_processor
bounds the vector values to a
range using L2 normalization.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-18

post_processor Parameters Description

Dense • name: Dense

• in_features: Input feature
size

• out_features: Output
feature size

• bias: Whether to learn an
additive bias. The default
value is True.

• activation_function:
Activation function of the
dense layer. Currently only
supports Tanh as the
activation function.

Applies transformation to the
incoming data.

Example: Configure post_processors

In this example, you override the post_processors in the sentence-transformers template with
a Max Pooling post_processor followed by Normalization.

config = EmbeddingModelConfig.from_template("text")
config.post_processors = [{"name":"Pooling","type":"max"},
{"name":"Normalize"}]

EmbeddingModel

Use the EmbeddingModel class to convert transformer models to the ONNX format with
post_processing steps embedded into the final model.

Parameters

This table describes the signature and properties of the EmbeddingModel class.

Functions Parameters Description

EmbeddingModel(model_name,
configuration=None,setting
s={})

• model_name: The name of
the model to be used. For
example, medicalai/
ClinicalBERT

• configuration: An
initialized
EmbeddingModelConfig
object. This parameter must
be specified when using a
template. If not specified, the
model will be assumed to be
a preconfigured model.

• settings: A dictionary of
various settings that are
global and control various
operations such as logging
levels and locations for files.

Creates a new instance of the
EmbeddingModel class.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-19

Settings

The settings object is a dictionary passed to the EmbeddingModel class. It provides global
properties for the EmbeddingModel class that are used for non-model-specific operations, such
as logging.

Property Default Value Description

cache_dir $HOME/.cache/OML The base directory used for
downloads. Model files will be
downloaded from the repository
to directories relative to the
cache_dir. If the cache_dir
does not exist at time of
execution, it will be created.

logging_level ERROR The level for logging. Valid values
are [‘DEBUG’, ‘INFO’,
‘WARNING’, ‘ERROR’,
‘CRITICAL’].

No

te:

This
log
leve
l is
also
appl
ied
glob
ally
to
all
pyth
on
pac
kag
es
and
is
also
map
ped
to
the
ON
NX
Run
time
libra
ries.

force_download False Forces download of model files
instead of reloading from cache.

Chapter 3
Import Pretrained Models in ONNX Format for Vector Generation Within the Database

3-20

Property Default Value Description

ignore_checksum_error False Ignores any errors caused by
mismatch in checksums when
using preconfigured models.

Functions

This table describes the function and properties of the EmbeddingModel class.

Function Parameters Description

export2file(export_name,ou
tput_dir=None)

• export_name(string):
The name of the file. The file
will be saved with the file
extension .onnx

• output_dir(string): An
optional output directory. If
not specified the file will be
saved to the current directory

Exports the model to a file.

export2db(export_name) • export_name(string): The
name that will be used for
the mining model object. This
name must be compliant with
existing rules for object
names in the database.

Exports the model to the
database.

Example: Preconfigured Model

This example illustrates the preconfigured embedding model that comes with the Python
package. You can use this model without any additional configurations.

"sentence-transformers/distiluse-base-multilingual-cased-v2": {
 "max_seq_length": 128,
 "do_lower_case": false,
 "post_processors":[{"name":"Pooling","type":"mean"},
{"name":"Dense","in_features":768, "out_features":512, "bias":true,
"activation_function":"Tanh"}],
 "quantize_model":true,
 "distance_metrics": ["COSINE"],
 "languages": ["ar", "bg", "ca", "cs", "dk", "d", "us", "el", "et",
"fa", "sf", "f", "frc", "gu", "iw", "hi", "hr", "hu", "hy", "in", "i", "ja",
"ko", "lt", "lv", "mk", "mr", "ms", "n", "nl", "pl", "pt", "ptb", "ro", "ru",
"sk", "sl", "sq", "lsr", "s", "th", "tr", "uk", "ur", "vn", "zhs", "zht"]
 }

Generate Vector Embeddings Using Vector Utilities Leveraging
Third-Party REST APIs

Oracle AI Vector Search offers vector utilities (SQL and PL/SQL tools) to automatically
generate vector embeddings from your unstructured data.

You can call either Vector Utility SQL functions or Vector Utility PL/SQL packages to transform
unstructured data into vector embeddings.

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-21

• Understand the Stages of Data Transformations
Your input data may travel through different stages before turning into a vector.

• Use SQL Functions to Generate Embeddings
Choose to implement Vector Utility SQL functions to perform parallel or on-the-fly chunking
and embedding operations, within Oracle Database.

• Use PL/SQL Packages to Generate Embeddings
Choose to implement Vector Utility PL/SQL packages to perform chunking, embedding,
and text generation operations along with text processing and similarity search, within and
outside Oracle Database.

Understand the Stages of Data Transformations
Your input data may travel through different stages before turning into a vector.

For example, you may first transform textual data (such as a PDF document) into plain text,
then break the resulting text into smaller pieces of text (chunks) to finally create vector
embeddings on each chunk.

As shown in the following image, input data passes through a pipeline of optional stages from
Text to Chunks to Tokens to Vectors, with Vector Index as the endpoint:

Prepare: Text and Chunks

This stage prepares your unstructured data to ensure that it is in a format that can be
processed by vector embedding models.

To prepare large unstructured textual data (for example, a PDF or Word document), you first
transform the data into plain text and then pass the resulting text through Chunker. The
chunker then splits the text into smaller chunks using a process known as chunking. A single
document may be split into many chunks, each transformed into a vector.

Chunks are pieces of words (to capture specific words or word pieces), sentences (to capture
a specific meaning), or paragraphs (to capture broader themes). Later, you will learn about
several chunking parameters and techniques to define so that each chunk contains relevant
and meaningful context.

Embed: Tokens and Vectors

You now pass the extracted chunks as input to Model (a declared vector embedding model) for
generating vector embeddings on each chunk. This stage makes these chunks searchable.

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-22

The chunks are first passed through Tokenizer of the model to split into words or word pieces,
known as tokens. The model then embeds each token into a vector representation.

Tokenizers used by embedding models frequently have limits on the size of the input text they
can deal with, so chunking is needed to avoid loss of text when generating embeddings. If
input text is larger than the maximum input limit imposed by the model, then the text gets
truncated unless it is split up into appropriate-sized segments or chunks. Chunking is not
needed for smaller documents, text strings, or summarized texts that meet this maximum input
limit.

The chunker must select a text size that approximates the maximum input limit of your model.
The actual number of tokens depends on the specified tokenizer for the model, which typically
uses a vocabulary list of words, numbers, punctuations, and pieces of tokens.

A vocabulary contains a set of tokens that are collected during a statistical training process.
Each tokenizer uses a different vocabulary format to process text into tokens, that is, the BERT
multilingual model uses Word-Piece encoding and the GPT model uses Byte-Pair encoding.

For example, the BERT model tokenizes the following four words:

Embedding usecase for chunking
as the following eight tokens and also includes ## (number signs) to indicate non-initial pieces
of words:

Em ##bedd ##ing use ##case for chunk ##ing
Vocabulary files are included as part of a model's distribution. You can supply a vocabulary file
(recognized by your model's tokenizer) to the chunker beforehand, so that it can correctly
estimate the token count of your input data when chunking.

Populate and Query: Vector Indexes

Finally, you store the semantic content of your input data as vectors in Vector Index. You can
now implement combined similarity and relational queries to retrieve relevant results using the
extracted vectors.

Use SQL Functions to Generate Embeddings
Choose to implement Vector Utility SQL functions to perform parallel or on-the-fly chunking and
embedding operations, within Oracle Database.

Vector Utility SQL functions are intended for a direct and quick interaction with data, within
pure SQL.

To get chunks, this function uses the in-house implementation with Oracle Database. To get an
embedding, this function uses ONNX embedding models that you load into the database (and
not third-party REST providers).

VECTOR_CHUNKS

Use the VECTOR_CHUNKS SQL function if you want to split plain text into chunks (pieces of
words, sentences, or paragraphs) in preparation for the generation of embeddings, to be used
with a vector index.

For example, you can use this function to build a standalone Text Chunking system that lets
you break down a large amount of text into smaller yet semantically meaningful chunks. You
can experiment with your chunks by inspecting and accordingly amending the chunking results
and then proceed further.

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-23

For detailed information, see VECTOR_CHUNKS in Oracle Database SQL Language
Reference.

VECTOR_EMBEDDING

Use the VECTOR_EMBEDDING function if you want to generate a single vector embedding for
different data types.

For example, you can use this function in information-retrieval applications or chatbots, where
you can generate a query vector on the fly from a user's natural language text input.

For detailed information, see VECTOR_EMBEDDING in Oracle Database SQL Language
Reference.

Use PL/SQL Packages to Generate Embeddings
Choose to implement Vector Utility PL/SQL packages to perform chunking, embedding, and
text generation operations along with text processing and similarity search, within and outside
Oracle Database.

Vector Utility PL/SQL APIs work with both the ONNX embedding models (loaded into the
database) and third-party REST providers, such as Cohere, Google AI, Hugging Face, Oracle
Cloud Infrastructure (OCI) Generative AI, OpenAI, or Vertex AI. You can create, run, and
schedule end-to-end data transformation and search pipelines.

These packages are made up of subprograms, such as chainable utility functions and vector
helper procedures.

• Terms of Using Vector Utility PL/SQL Packages
You must understand the terms of using REST APIs that are part of Vector Utility PL/SQL
packages.

• About Chainable Utility Functions and Common Use Cases
These are intended to be a set of chainable and flexible "stages" through which you pass
your input data to transform into a different representation, including vectors.

• About Vector Helper Procedures
Vector helper procedures let you configure authentication credentials and language-
specific data, for use in chainable utility functions.

• Supplied Vector Utility PL/SQL Packages
Use either a lightweight DBMS_VECTOR package or a more advanced DBMS_VECTOR_CHAIN
package with full capabilities.

• Supported Third-Party Provider Operations
Review the list of third-party REST providers that are supported with Vector Utility PL/SQL
packages and the corresponding API calls allowed for each of those.

• Validate JSON Input Parameters
You can optionally validate the structure of your JSON input to the DBMS_VECTOR.UTL and
DBMS_VECTOR_CHAIN.UTL functions, which use JSON to define their input parameters.

Terms of Using Vector Utility PL/SQL Packages
You must understand the terms of using REST APIs that are part of Vector Utility PL/SQL
packages.

Some of the Vector Utility PL/SQL APIs enable you to perform embedding, summarization, and
text generation operations outside Oracle Database, by using third-party REST providers (such
as Cohere, Google AI, Hugging Face, Generative AI, OpenAI, or Vertex AI).

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-24

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

About Chainable Utility Functions and Common Use Cases
These are intended to be a set of chainable and flexible "stages" through which you pass your
input data to transform into a different representation, including vectors.

Supplied Chainable Utility Functions

You can combine a set of chainable utility (UTL) functions together in an end-to-end pipeline.

Each pipeline or transformation chain can include a single function or a combination of
functions, which are applied to source documents as they are transformed into other
representations (text, chunks, summary, or vector). These functions are chained together, such
that the output from one function is used as an input for the next.

Each chainable utility function performs a specific task of transforming data into other
representations, such as converting data to text, converting text to chunks, or converting the
extracted chunks to embeddings.

At a high level, the supplied chainable utility functions include:

Function Description

UTL_TO_TEXT() Converts a document (for example, MS Word, HTML, or PDF) to plain text

UTL_TO_CHUNKS() Converts plain text to chunks

UTL_TO_EMBEDDING() Converts plain text to a single embedding (VECTOR)

UTL_TO_EMBEDDINGS() Converts an array of chunks (VECTOR_ARRAY_T) to an array of embeddings
(VECTOR_ARRAY_T)

UTL_TO_SUMMARY() Converts plain text to a summary

UTL_TO_GENERATE_TEXT() Generates text for a prompt or input string

Sequence of Chains

Chainable utility functions are designed to be flexible and modular. You can create
transformation chains in various sequences, depending on your use case.

For example, you can directly extract vectors from a PDF file by creating a chain of the
UTL_TO_TEXT, UTL_TO_CHUNKS, and UTL_TO_EMBEDDINGS chainable utility functions.

As shown in the following diagram, a file-to-text-to-chunks-to-embeddings chain performs a set
of operations in this order:

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-25

1. Converts a PDF file to plain text (using UTL_TO_TEXT)

2. Splits the resulting text into appropriate-sized chunks (using UTL_TO_CHUNKS)

3. Generates vector embeddings on each chunk (using UTL_TO_EMBEDDINGS)

Common Use Cases

Let us look at some common use cases to understand how you can customize and apply these
chains:

Single-Step or Direct Transformation:

• Document to vectors:

As discussed earlier, a common use case might be to automatically generate vectors from
documents.

You can convert a set of documents to plain text, split the resulting text into smaller chunks
to finally generate embeddings on each chunk, in a single file-to-text-to-chunks-to-
embeddings chain.

See Convert File to Embeddings.

• Document to vectors, with chunking and summarization:

Another use case might be to generate a short summary of a document and then
automatically extract vectors from that summary.

After generating the summary, you can either generate a single vector (using
UTL_TO_EMBEDDING) or chunk it and then generate multiple vectors (using
UTL_TO_EMBEDDINGS).

– You can convert the document to plain text, summarize the text into a concise gist to
finally create a single embedding on the summarized text, in a file-to-text-to-summary-
to-embedding chain.

– You can convert the document to plain text, summarize the text into a gist, split the gist
into chunks to finally create multiple embeddings on each summarized chunk, in a file-
to-text-to-summary-to-chunks-to-embeddings chain.

While both the chunking and summarization techniques make text smaller, they do so in
different ways. Chunking just breaks the text into smaller pieces, whereas summarization
extracts a salient meaning and context of that text into free-form paragraphs or bullet
points.

By summarizing the entire document and appending the summary to each chunk, you get
the best of both worlds, that is, an individual piece that also has a high-level understanding
of the overall document.

• Prompt to text:

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-26

You can generate a response directly based on a prompt.

A prompt can be an input string, such as a question that you ask a Large Language Model
(LLM). For example, "What is Oracle Text?". A prompt can also be a command, such as
"Summarize the following ...", "Draft an email asking for ...", or "Rewrite the
following ...", and can include results from a search.

See Generate Text for a Prompt: PL/SQL Example.

Step-by-Step or Parallel Transformation:

• Text to vector:

A common use case might be information retrieval applications or chatbots, where you can
on the fly generate an embedding from a user's natural language text query.

You can convert the input text to a query vector (and then run it against the vector index for
a fast similarity search), in a text-to-embedding chain.

See Convert Text String to Embedding.

• Text to chunks:

Another use case might be to build a standalone Text Chunking system to break down a
large amount of text into smaller yet semantically meaningful pieces, in a text-to-chunks
chain.

This method also gives you more flexibility to experiment with your chunks, where you can
create, inspect, and accordingly amend the chunking results and then proceed further.

See Convert Text to Chunks With Custom Chunking Specifications and Convert File to Text
to Chunks to Embeddings.

• Text to summary:

You can build a standalone Text Summarization system to convert a large amount of text
into a summary, in a text-to-summary chain.

This method also gives you more flexibility to experiment with your summaries, where you
can create, inspect, and accordingly amend the summarization results and then proceed
further.

See Convert Text String to Summary.

Schedule Vector Utility Packages

Some of the transformation chains may take a long time depending on your workload and
implementation, thus you can schedule to run Vector Utility PL/SQL packages in the
background.

The DBMS_SCHEDULER PL/SQL package helps you effectively schedule these packages, without
manual intervention.

For information on how to create, run, and manage jobs with Oracle Scheduler, see Oracle
Database Administrator’s Guide.

About Vector Helper Procedures
Vector helper procedures let you configure authentication credentials and language-specific
data, for use in chainable utility functions.

At a high level, the supplied vector helper procedures include:

• Credential helper procedures to securely manage authentication credentials, which are
used to access third-party providers when making REST API calls.

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-27

Function Description

CREATE_CREDENTIAL Creates a credential name for securely storing user authentication credentials in the
database.

DROP_CREDENTIAL Drops an existing credential name.

• Chunker helper procedures to manage custom vocabulary and language data, which are
used when chunking user data.

Function Description

CREATE_VOCABULARY Loads your own vocabulary file into the database.

DROP_VOCABULARY Removes the specified vocabulary data from the database.

CREATE_LANG_DATA Loads your own language data file (abbreviation tokens) into the database.

DROP_LANG_DATA Removes abbreviation data for a given language from the database.

Related Topics

• Vector Utilities-Related Views
These views display language-specific data (abbreviation token details) and vocabulary
data related to the Oracle AI Vector Search SQL and PL/SQL utilities.

Supplied Vector Utility PL/SQL Packages
Use either a lightweight DBMS_VECTOR package or a more advanced DBMS_VECTOR_CHAIN
package with full capabilities.

• DBMS_VECTOR:

This package simplifies common operations with Oracle AI Vector Search, such as
chunking text into smaller segments, extracting vector embeddings from user data, or
generating text for a given prompt.

Subprogram Operation Provider Implementation

Chainable Utility
Functions

UTL_TO_CHUNKS to perform
chunking

Oracle Database Calls the VECTOR_CHUNKS
SQL function under the hood

UTL_TO_EMBEDDING and
UTL_TO_EMBEDDINGS to
generate one or more
embeddings

Oracle Database Calls the ONNX embedding
model that you load into the
database

Third-party REST
providers

Calls the specified third-
party embedding model

UTL_TO_GENERATE_TEXT to
generate text for prompts

Third-party REST
providers

Calls the specified third-
party text generation model

Credential Helper
Procedures

CREATE_CREDENTIAL and
DROP_CREDENTIAL to
manage credentials for third-
party service providers

Oracle Database Stores credentials securely
for use in Chainable Utility
Functions

For detailed information on this package, see DBMS_VECTOR in Oracle Database
PL/SQL Packages and Types Reference.

• DBMS_VECTOR_CHAIN:

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-28

This package provides chunking and embedding functions along with some text generation
and summarization capabilities. It is more suitable for text processing with similarity
search, using functionality that can be pipelined together for an end-to-end search.

This package requires you to install the CONTEXT component of Oracle Text, an Oracle
Database technology that provides indexing, term extraction, text analysis, text
summarization, word and theme searching, and other utilities.

Subprogram Operation Provider Implementation

Chainable Utility
Functions

UTL_TO_TEXT to extract plain text
data from documents

Oracle Database Uses the Oracle Text component
(CONTEXT) of Oracle Database

UTL_TO_CHUNKS to perform
chunking

Oracle Database Calls the VECTOR_CHUNKS SQL
function under the hood

UTL_TO_EMBEDDING and
UTL_TO_EMBEDDINGS to generate
one or more embeddings

Oracle Database Calls the ONNX embedding model
that you load into the database

Third-party REST
providers

Calls the specified third-party
embedding model

UTL_TO_SUMMARY to generate
summaries

Oracle Database Uses Oracle Text

Third-party REST
providers

Calls the specified third-party text
summarization model

UTL_TO_GENERATE_TEXT to
generate text for prompts

Third-party REST
providers

Calls the specified third-party text
generation model

Credential Helper
Procedures

CREATE_CREDENTIAL and
DROP_CREDENTIAL to manage
credentials for third-party service
providers

Oracle Database Stores credentials securely for use
in Chainable Utility Functions

Chunker Helper
Procedures

CREATE_VOCABULARY and
DROP_VOCABULARY to manage
custom token vocabularies

Oracle Database Uses Oracle Text

CREATE_LANG_DATA and
DROP_LANG_DATA to manage
language-specific data (abbreviation
tokens)

Oracle Database Uses Oracle Text

Due to underlying dependance on the text processing capabilities of Oracle Text, note that
both the UTL_TO_TEXT and UTL_TO_SUMMARY chainable utility functions and all the chunker
helper procedures are available only in this package through Oracle Text.

For detailed information on this package, see DBMS_VECTOR_CHAIN in Oracle
Database PL/SQL Packages and Types Reference.

Related Topics

• Supported Third-Party Provider Operations
Review the list of third-party REST providers that are supported with Vector Utility PL/SQL
packages and the corresponding API calls allowed for each of those.

Supported Third-Party Provider Operations
Review the list of third-party REST providers that are supported with Vector Utility PL/SQL
packages and the corresponding API calls allowed for each of those.

The supported third-party REST providers are:

• Cohere

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-29

• Generative AI

• Google AI

• Hugging Face

• OpenAI

• Vertex AI

The corresponding REST calls allowed for each operation are:

• DBMS_VECTOR.UTL_TO_EMBEDDING and DBMS_VECTOR.UTL_TO_EMBEDDINGS

• DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDING and
DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDINGS

• DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY

• DBMS_VECTOR.UTL_TO_GENERATE_TEXT

• DBMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT

Validate JSON Input Parameters
You can optionally validate the structure of your JSON input to the DBMS_VECTOR.UTL and
DBMS_VECTOR_CHAIN.UTL functions, which use JSON to define their input parameters.

The JSON data is schemaless, so the amount of validation that Vector Utility package APIs do
at runtime is minimal for better performance. The APIs validate only the mandatory JSON
parameters, that is, the parameters that you supply for the APIs to run (not optional JSON
parameters and attributes).

Before calling an API, you can use subprograms in the DBMS_JSON_SCHEMA package to test
whether the input data to be specified in the PARAMS clause is valid with respect to a given
JSON schema. This offers more flexibility and also ensures that only schema-valid data is
inserted in a JSON column.

Validate JSON input parameters for the DBMS_VECTOR.UTL and DBMS_VECTOR_CHAIN.UTL
functions against the following schema:

• For the Database Provider:

– SCHEMA_CHUNK

{ "title" : "utl_to_chunks",
 "description" : "Chunk parameters",
 "type" : "object",
 "properties" : {
 "by" : {"type" : "string", "enum" : ["chars",
"characters", "words", "vocabulary"] },
 "max" : {"type" : "string", "pattern" : "^[1-9][0-9]*$" },
 "overlap" : {"type" : "string", "pattern" : "^[0-9]+$" },
 "split" : {"type" : "string", "enum" : ["none", "newline",
"blankline", "space", "recursively", "custom"] },
 "vocabulary" : {"type" : "string" },
 "language" : {"type" : "string" },
 "normalize" : {"type" : "string", "enum" : ["all", "none",
"options"] },
 "norm_options" : {"type" : "array", "items": { { "type":
"string", "enum": ["widechar", "whitespace", "punctuation"] } },
 "custom_list" : {"type" : "array", "items": { "type":

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-30

"string" } },
 "extended" : {"type" : "boolean" } },
 "additionalProperties" : false
}

– SCHEMA_VOCAB

{ "title" : "create_vocabulary",
 "description" : "Create vocabulary parameters",
 "type" : "object",
 "properties" : {
 "table_name" : {"type" : "string" },
 "column_name" : {"type" : "string" },
 "vocabulary_name" : {"type" : "string" },
 "format" : {"type" : "string", "enum" : ["BERT", "GPT2",
"XLM"] },
 "cased" : {"type" : "boolean" } },
 "additionalProperties" : false,
 "required" : ["table_name", "column_name", "vocabulary_name"]
}

– SCHEMA_LANG

{ "title" : "create_lang_data",
 "description" : "Create language data parameters",
 "type" : "object",
 "properties" : {
 "table_name" : {"type" : "string" },
 "column_name" : {"type" : "string" },
 "preference_name" : {"type" : "string" },
 "language" : {"type" : "string" } },
 "additionalProperties" : false,
 "required" : ["table_name", "column_name", "preference_name",
"language"]
}

– SCHEMA_TEXT

{ "title": "utl_to_text",
 "description": "To text parameters",
 "type" : "object",
 "properties" : {
 "plaintext" : {"type" : "boolean" },
 "charset" : {"type" : "string", "enum" : ["UTF8"] } },
 "additionalProperties": false
}

– SCHEMA_DBEMB

{ "title" : "utl_to_embedding",
 "description" : "To DB embeddings parameters",
 "type" : "object",
 "properties" : {
 "provider" : {"type" : "string" },
 "model" : {"type" : "string" } },

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-31

 "additionalProperties": true,
 "required" : ["provider", "model"]
}

– SCHEMA_SUM

{ "title" : "utl_to_summary",
 "description" : "To summary parameters",
 "type" : "object",
 "properties" : {
 "provider" : {"type" : "string" },
 "numParagraphs" : {"type" : "number" },
 "language" : {"type" : "string" },
 "glevel" : {"type" : "string" }
 },
 "additionalProperties" : true,
 "required" : ["provider"]
}

• For REST Providers:

SCHEMA_REST

{ "title" : "REST parameters",
 "description" : "REST versions of utl_to_embedding, utl_to_summary,
utl_to_generate_text",
 "type" : "object",
 "properties" : {
 "provider" : {"type" : "string" },
 "credential_name" : {"type" : "string" },
 "url" : {"type" : "string" },
 "model" : {"type" : "string" }
 },
 "additionalProperties" : true,
 "required" : ["provider", "credential_name", "url", "model"] }

Note that all the REST calls to third-party service providers share the same schema for
their respective embedding, summarization, and text generation operations.

Examples:

• To validate your JSON data against JSON schema, use the PL/SQL function or procedure
DBMS_JSON_SCHEMA.is_valid().

The function returns 1 for valid and 0 for invalid (invalid data can optionally raise an error).
The procedure returns TRUE for valid and FALSE for invalid as the value of an OUT
parameter.

l_valid := sys.DBMS_JSON_SCHEMA.is_valid(params, json(SCHEMA),
dbms_json_schema.RAISE_ERROR);

• To read a detailed validation report of errors, use the PL/SQL procedure
DBMS_JSON_SCHEMA.validate_report.

Chapter 3
Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs

3-32

This use of the procedure checks data against schema, providing output in parameters
validity (BOOLEAN) and errors (JSON).

sys.DBMS_JSON_SCHEMA.is_valid(params, json(SCHEMA), l_valid, l_errors);

• If you use the procedure (not function) is_valid, then you have access to the validation
errors report as an OUT parameter. If you use the function is_valid, then you do not have
access to such a report. Instead of using the function is_valid, you can use the PL/SQL
function DBMS_JSON_SCHEMA.validate_report in a SQL query to validate and return the
same full validation information that the reporting OUT parameter of the procedure is_valid
provides, as a JSON type instance.

SELECT JSON_SERIALIZE(DBMS_JSON_SCHEMA.validate_report('json',SCHEMA)
returning varchar2 PRETTY);

Related Topics

• DBMS_VECTOR

• DBMS_VECTOR_CHAIN

• DBMS_JSON_SCHEMA

Vector Generation Examples
Review these examples to see how you can generate vectors within and outside the database.

• Generate Embeddings: SQL and PL/SQL Examples
In these examples, you can see how to generate one or more vector embeddings from text
strings and PDF documents.

• Perform Text Processing: PL/SQL Examples
In these examples, you can see how to use some of the text processing features enabled
by Oracle Text.

• Perform Chunking: SQL and PL/SQL Examples
In these examples, you can see how to extract chunks from text strings and PDF
documents.

• Generate Text for a Prompt: PL/SQL Example
In this example, you can see how to generate text for a given prompt by accessing third-
party text generation models.

Generate Embeddings: SQL and PL/SQL Examples
In these examples, you can see how to generate one or more vector embeddings from text
strings and PDF documents.

• Convert Text String to Embedding
You can vectorize text strings like this for chatbots or information-retrieval applications,
where you want to directly convert a user's input text to a query vector and then run it
against vector index for a fast similarity search.

• Convert File to Text to Chunks to Embeddings
You can run parallel or step-by-step transformations like this for standalone applications
where you want to review, inspect, and accordingly amend results at each stage and then
proceed further.

Chapter 3
Vector Generation Examples

3-33

• Convert File to Embeddings
You can directly extract vector embeddings from a PDF document, using a single-step
statement.

• Generate and Use Embeddings for End-to-End Search
In this example, you first generate embeddings from textual content by using an ONNX
model, and then populate and query a vector index. At query time, you also vectorize the
query criteria on the fly.

Convert Text String to Embedding
You can vectorize text strings like this for chatbots or information-retrieval applications, where
you want to directly convert a user's input text to a query vector and then run it against vector
index for a fast similarity search.

You can perform a text-to-embedding transformation using the UTL_TO_EMBEDDING PL/SQL API
(note the singular "embedding") or the VECTOR_EMBEDDING SQL function. Both
UTL_TO_EMBEDDING and VECTOR_EMBEDDING directly return a VECTOR type (not an array).

Determine which API to use:

• If you want to access a third-party embedding model, then you can use UTL_TO_EMBEDDING
from either the DBMS_VECTOR or DBMS_VECTOR_CHAIN package.

This scenario uses the DBMS_VECTOR.UTL_TO_EMBEDDING API.

• If you are using an ONNX format embedding model, then you can use both
VECTOR_EMBEDDING and UTL_TO_EMBEDDING.

To generate a vector embedding with "hello" as the input:

1. Start SQL*Plus and connect to Oracle Database as a local test user.

a. Log in to SQL*Plus as the sys user, connecting as sysdba, to a pluggable database
(PDB) within your multitenant container database (CDB):

conn sys/password@CDB_PDB as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

b. Create a local test user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

Chapter 3
Vector Generation Examples

3-34

c. Connect to Oracle Database as the test user and alter the environment settings for
your session:

CONN docuser/password@CDB_PDB

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

d. Set the HTTP proxy server, if configured:

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

e. Grant connect privilege for a host using the DBMS_NETWORK_ACL_ADMIN procedure. This
example uses * to allow any host. However, you can explicitly specify each host that
you want to connect to.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => '*',
 ace => xs$ace_type(privilege_list => xs$name_list('connect'),
 principal_name => 'docuser',
 principal_type => xs_acl.ptype_db));
END;
/

2. If you are using a third-party embedding model and need to make a REST call, set up your
credentials for the REST provider and then call UTL_TO_EMBEDDING.

• Using Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI:

a. Run DBMS_VECTOR.CREATE_CREDENTIAL to create and store a credential.

Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI require the following
authentication parameter:

{ "access_token": "<access token>" }
You will later refer to this credential name when declaring JSON parameters for the
UTL_to_EMBEDDING call.

exec dbms_vector.drop_credential('<credential name>');

declare
 jo json_object_t;
begin
 jo := json_object_t();
 jo.put('access_token', '<access token>');
 dbms_vector.create_credential(
 credential_name => '<credential name>',
 params => json(jo.to_string));

Chapter 3
Vector Generation Examples

3-35

end;
/

Replace the access_token and credential_name values. For example:

declare
 jo json_object_t;
begin
 jo := json_object_t();
 jo.put('access_token', 'AbabA1B123aBc123AbabAb123a1a2ab');
 dbms_vector.create_credential(
 credential_name => 'HF_CRED',
 params => json(jo.to_string));
end;
/

b. Call DBMS_VECTOR.UTL_TO_EMBEDDING:

-- select example

var params clob;
exec :params := '
{
 "provider": "<REST provider>",
 "credential_name": "<credential name>",
 "url": "<REST endpoint URL for embedding service>",
 "model": "<embedding model name>"
}';

select dbms_vector.utl_to_embedding('hello', json(:params)) from
dual;

-- PL/SQL example

declare
 input clob;
 params clob;
 v vector;
begin
 input := 'hello';

 params := '
{
 "provider": "<REST provider>",
 "credential_name": "<credential name>",
 "url": "<REST endpoint URL for embedding service>",
 "model": "<embedding model name>"
}';

 v := dbms_vector.utl_to_embedding(input, json(params));
 dbms_output.put_line(vector_serialize(v));
exception
 when OTHERS THEN
 DBMS_OUTPUT.PUT_LINE (SQLERRM);
 DBMS_OUTPUT.PUT_LINE (SQLCODE);

Chapter 3
Vector Generation Examples

3-36

end;
/

Replace the provider, credential_name, url, and model values. Optionally, you
can specify additional REST provider parameters.

Cohere example:

{
 "provider": "cohere",
 "credential_name": "COHERE_CRED",
 "url": "https://api.cohere.example.com/embed",
 "model": "embed-model",
 "input_type": "search_query"
}

Google AI example:

{
 "provider": "googleai",
 "credential_name": "GOOGLEAI_CRED",
 "url": "https://googleapis.example.com/models/",
 "model": "embed-model"
}

Hugging Face example:

{
 "provider": "huggingface",
 "credential_name": "HF_CRED",
 "url": "https://api.huggingface.example.com/",
 "model": "embed-model",
 "wait_for_model": "true"
}

OpenAI example:

{
 "provider": "openai",
 "credential_name": "OPENAI_CRED",
 "url": "https://api.openai.example.com/embeddings",
 "model": "embed-model"
}

Vertex AI example:

{
 "provider": "vertexai",
 "credential_name": "VERTEXAI_CRED",
 "url": "https://googleapis.example.com/models/",
 "model": "embed-model"
}

Chapter 3
Vector Generation Examples

3-37

• Using Generative AI:

a. Run DBMS_VECTOR.CREATE_CREDENTIAL to create and store an OCI credential
(OCI_CRED).

Generative AI requires the following authentication parameters:

{
"user_ocid": "<user ocid>",
"tenancy_ocid": "<tenancy ocid>",
"compartment_ocid": "<compartment ocid>",
"private_key": "<private key>",
"fingerprint": "<fingerprint>"
}

You will later refer to this credential name when declaring JSON parameters for the
UTL_to_EMBEDDING call.

Note:

The generated private key may appear as:

-----BEGIN RSA PRIVATE KEY-----
<private key string>
-----END RSA PRIVATE KEY-----

You pass the <private key string> value (excluding the BEGIN and END
lines), either as a single line or as multiple lines.

exec dbms_vector.drop_credential('OCI_CRED');

declare
 jo json_object_t;
begin
 jo := json_object_t();
 jo.put('user_ocid','<user ocid>');
 jo.put('tenancy_ocid','<tenancy ocid>');
 jo.put('compartment_ocid','<compartment ocid>');
 jo.put('private_key','<private key>');
 jo.put('fingerprint','<fingerprint>');
 dbms_output.put_line(jo.to_string);
 dbms_vector.create_credential(
 credential_name => 'OCI_CRED',
 params => json(jo.to_string));
end;
/

Replace all the authentication parameter values. For example:

declare
 jo json_object_t;

Chapter 3
Vector Generation Examples

3-38

begin
 jo := json_object_t();

jo.put('user_ocid','ocid1.user.oc1..aabbalbbaa1112233aabbaabb1111222
aa1111bb');

jo.put('tenancy_ocid','ocid1.tenancy.oc1..aaaaalbbbb1112233aaaabbaa1
111222aaa111a');

jo.put('compartment_ocid','ocid1.compartment.oc1..ababalabab1112233a
bababab1111222aba11ab');
 jo.put('private_key','AAAaaaBBB11112222333...AAA111AAABBB222aaa1a/
+');

jo.put('fingerprint','01:1a:a1:aa:12:a1:12:1a:ab:12:01:ab:a1:12:ab:1
a');
 dbms_output.put_line(jo.to_string);
 dbms_vector.create_credential(
 credential_name => 'OCI_CRED',
 parameters => json(jo.to_string));
end;
/

b. Call DBMS_VECTOR.UTL_TO_EMBEDDING:

-- select example

var params clob;
exec :params := '
{
 "provider": "ocigenai",
 "credential_name": "OCI_CRED",
 "url": "<REST endpoint URL for embedding service>",
 "model": "<REST provider embedding model name>"
}';

select dbms_vector.utl_to_embedding('hello', json(:params)) from
dual;

-- PL/SQL example

declare
 input clob;
 params clob;
 v vector;
begin
 input := 'hello;

 params := '
{
 "provider": "ocigenai",
 "credential_name": "OCI_CRED",
 "url": "<REST endpoint URL for embedding service>",
 "model": "<REST provider embedding model name>"
}';

Chapter 3
Vector Generation Examples

3-39

 v := dbms_vector.utl_to_embedding(input, json(params));
 dbms_output.put_line(vector_serialize(v));
exception
 when OTHERS THEN
 DBMS_OUTPUT.PUT_LINE (SQLERRM);
 DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Replace the url and model values. Optionally, you can specify additional REST
provider-specific parameters.

For example:

{
 "provider": "ocigenai",
 "credential_name": "OCI_CRED",
 "url": "https://generativeai.oci.example.com/embedText",
 "model": "embed-modelname",
 "batch_size": 10
}

3. If you are using a declared embedding model, then call either VECTOR_EMBEDDING or
UTL_TO_EMBEDDING.

a. Load your ONNX model into Oracle Database.

For detailed information on how to perform this step, see Import ONNX Models and
Generate Embeddings.

Here, doc_model specifies the name under which the imported model is stored in
Oracle Database.

b. Call VECTOR_EMBEDDING or UTL_TO_EMBEDDING:

• VECTOR_EMBEDDING:

SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data))
AS embedding;

• DBMS_VECTOR.UTL_TO_EMBEDDING:

var params clob; exec :params := '{"provider":"database",
"model":"doc_model"}';

select dbms_vector.utl_to_embedding('hello', json(:params)) from
dual;

The generated embedding appears as follows:

EMBEDDING

--
[8.78423732E-003,-4.29633334E-002,-5.93001908E-003,-4.65480909E-002,2.14333
013E-002,6.53376281E-002,-5.93746938E-002,2.10403297E-002,
4.38376889E-002,5.22960871E-002,1.25104953E-002,6.49512559E-002,-9.26998071
E-003,-6.97442219E-002,-3.02916039E-002,-4.74979728E-003,

Chapter 3
Vector Generation Examples

3-40

-1.08755399E-002,-4.63751052E-003,3.62781435E-002,-9.35919806E-002,-1.13934
642E-002,-5.74270077E-002,-1.36667723E-002,2.42995787E-002,
-6.96804151E-002,4.93822657E-002,1.01460628E-002,-1.56464987E-002,-2.394105
68E-002,-4.27529104E-002,-5.65665103E-002,-1.74160264E-002,
5.05326502E-002,4.31500375E-002,-2.6994409E-002,-1.72731467E-002,9.30535868
E-002,6.85951149E-004,5.61876409E-003,-9.0233935E-003,
-2.55788807E-002,-2.04174276E-002,3.74175981E-002,-1.67872179E-002,1.074793
04E-001,-6.64602639E-003,-7.65537247E-002,-9.71965566E-002,
-3.99636962E-002,-2.57076006E-002,-5.62455431E-002,-1.3583754E-001,3.459460
29E-002,1.85191762E-002,3.01524661E-002,-2.62163244E-002,
-4.05582506E-003,1.72979087E-002,-3.66434865E-002,-1.72491539E-002,3.952284
16E-002,-1.05518714E-001,-1.27463877E-001,1.42578809E-002

This example uses the default settings for each provider. For detailed information on additional
parameters, refer to your third-party provider's documentation.

Related Topics

• UTL_TO_EMBEDDING

• VECTOR_EMBEDDING

Convert File to Text to Chunks to Embeddings
You can run parallel or step-by-step transformations like this for standalone applications where
you want to review, inspect, and accordingly amend results at each stage and then proceed
further.

Using a set of functions from the DBMS_VECTOR_CHAIN package, you first convert a PDF file to
text (UTL_TO_TEXT), split the text into chunks (UTL_TO_CHUNKS), and then create vector
embeddings on each chunk (UTL_TO_EMBEDDINGS).

To generate embeddings using a declared embedding model, through step-by-step
transformation chains:

1. Start SQL*Plus and connect to Oracle Database as a local test user:

a. Log in to SQL*Plus as the sys user, connecting as sysdba, to a pluggable database
(PDB) within your multitenant container database (CDB):

conn sys/password@CDB_PDB as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

b. Create a local test user (docuser) and grant necessary privileges:

drop user docuser cascade;

create user docuser identified by docuser DEFAULT TABLESPACE tbs1 quota
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to docuser;

Chapter 3
Vector Generation Examples

3-41

c. Create a local directory on your server (VEC_DUMP) to store your input data and model
files. Grant necessary privileges:

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory VEC_DUMP to docuser;

commit;

d. Connect to Oracle Database as the test user and alter the environment settings for
your session:

conn docuser/password@CDB_PDB;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

2. Convert file to text:

a. Create a relational table (documentation_tab) and store your PDF document (Oracle
Database Concepts) in it:

drop table documentation_tab purge;

CREATE TABLE documentation_tab (id number, data blob);

INSERT INTO documentation_tab values(1, to_blob(bfilename('VEC_DUMP',
'database-concepts23ai.pdf')));

commit;

SELECT dbms_lob.getlength(t.data) from documentation_tab t;

b. Run UTL_TO_TEXT to convert the PDF document into text format:

SELECT dbms_vector_chain.utl_to_text(dt.data) from documentation_tab dt;

An excerpt from the output is as follows:

DBMS_VECTOR_CHAIN.UTL_TO_TEXT(DT.DATA)
--
Database Concepts
23ai
Oracle Database Database Concepts, 23ai

This software and related documentation are provided under a license
agreement containing restrictions on

Chapter 3
Vector Generation Examples

3-42

use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce,
translate
, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any for
m, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by
law for interoperability, is prohibited.

Contents

Preface
Audience
xxiii
Documentation Accessibility
xxiii
Related Documentation
xxiv
Conventions
xxiv
1
Introduction to Oracle Database
About Relational Databases
1-1
Database Management System (DBMS)
1-2
Relational Model
1-2
Relational Database Management System (RDBMS)
1-3
Brief History of Oracle Database
1-3
Schema Objects
1-5
Tables
1-5
Indexes
1-6
Data Access

1 row selected.

3. Convert text to chunks:

a. Run UTL_TO_CHUNKS to chunk the text document:

SELECT ct.*
 from documentation_tab dt,

dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(dt.data))
ct;

Chapter 3
Vector Generation Examples

3-43

An excerpt from the output is as follows:

{"chunk_id":1,"chunk_offset":1508024,"chunk_length":579,"chunk_data":"In
ventory
\n\n\n\nAnalysis \n\n\n\nReporting \n\n\n\nMining\n\n\n\nSummary
\n\n\n\nData
 \n\n\n\nRaw Data\n\n\n\nMetadata\n\n\n\nSee Also:\n\n\n\nOracle
Database Data
Warehousing Guide to learn about transformation
\n\n\n\nmechanisms\n\n\n\nOvervie
w of Extraction, Transformation, and Loading (ETL) \n\n\n\nThe process
of extrac
ting data from source systems and bringing it into the warehouse is
\n\n\n\ncomm
only called ETL: extraction, transformation, and loading. ETL refers to
a broad
process \n\n\n\nrather than three well-defined steps.\n\n\n\nIn a
typical scenar
io, data from one or more operational systems is extracted and then"}

{"chunk_id":2,"chunk_offset":1508603,"chunk_length":607,"chunk_data":"ph
ysica
lly transported to the target system or an intermediate system for
processing. \
n\n\n\nDepending on the method of transportation, some transformations
can occur
 during this \n\n\n\nprocess. For example, a SQL statement that
directly accesse
s a remote target through a \n\n\n\ngateway can concatenate two columns
as part
of the \n\n\n\nSELECT\n\n\n\nstatement. \n\n\n\nOracle Database is not
itself an
 ETL tool. However, Oracle Database provides a rich set of
\n\n\n\ncapabilities
usable by ETL tools and customized ETL solutions. ETL capabilities
provided by \
n\n\n\nOracle Database include:\n\n\n\n? \n\n\n\nTransportable
tablespaces"}

3728 rows selected.

Notice the extra spaces and newline characters (\n\n) in the chunked output. You can
set the normalize chunking parameter to omit duplicate characters, extra spaces, or
newline characters from the output. You can further refine your chunks by applying
other chunking specifications, such as split conditions or maximum size limits.

b. Supply the following JSON parameters to use normalization and some of the custom
chunking specifications:

SELECT ct.*
 from documentation_tab dt,
 dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(
 dt.data),
 JSON('{
 "by" : "words",
 "max" : "100",

Chapter 3
Vector Generation Examples

3-44

 "overlap" : "0",
 "split" : "recursively",
 "language" : "american",
 "normalize" : "all"
 }')) ct;

The output may now appear as:

{"chunk_id":2536,"chunk_offset":1372527,"chunk_length":633,"chunk_data":
"The dat
abase maps granules to parallel execution servers at execution time.
When a para
llel execution server finishes reading the rows corresponding to a
granule, and
when granules remain, it obtains another granule from the query
coordinator. This
operation continues until the table has been read. The execution
servers send
results back to the coordinator, which assembles the pieces into the
desired full
table scan. Oracle Database VLDB and Partitioning Guide to learn how to
use
parallel execution. Oracle Database Data Warehousing Guide to learn
about
recommended"}

{"chunk_id":2537,"chunk_offset":1373160,"chunk_length":701,"chunk_data":
"initial
ization parameters for parallelism\n\nChapter 18\n\nOverview of
Background Proce
sses\n\nApplication and Oracle Net Services Architecture\n\nThis
chapter defines
application architecture and describes how an Oracle database and
database appli
cations work in a distributed processing environment. This material
applies to
almost every type of Oracle Database environment. Overview of Oracle
Application
Architecture In the context of this chapter, application architecture
refers to
the computing environment in which a database application connects to
an Oracle
database."}

3728 rows selected.

The chunking results contain:

• chunk_id: Chunk ID for each chunk

• chunk_offset: Original position of each chunk in the source document, relative to
the start of document (which has a position of 1)

• chunk_length: Character length of each chunk

• chunk_data: Text pieces from each chunk

Chapter 3
Vector Generation Examples

3-45

4. Convert chunks to embeddings:

a. Drop and load your ONNX model by calling the load_onnx_model procedure.

EXECUTE dbms_vector.drop_onnx_model(model_name => 'doc_model', force =>
true);

EXECUTE dbms_vector.load_onnx_model('VEC_DUMP',
'my_embedding_model.onnx', 'doc_model', JSON('{"function" :
"embedding", "embeddingOutput" : "embedding" , "input": {"input":
["DATA"]}}'));

Replace my_embedding_model.onnx with an ONNX export of your embedding model.
Here, doc_model specifies the name under which the imported model is stored in
Oracle Database.

Note:

If you do not have an embedding model in ONNX format, then perform the
steps listed in Convert Pretrained Models to ONNX Format.

b. Declare embedding parameters:

var embed_params clob;

exec :embed_params := '{"provider":"database", "model":"doc_model"}';

c. Run UTL_TO_EMBEDDINGS to generate a set of vector embeddings corresponding to the
chunks:

SELECT et.* from
 documentation_tab dt,
 dbms_vector_chain.utl_to_embeddings(

dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(dt.data)),
 json(:embed_params)) et;

An excerpt from the output is as follows:

{"embed_id":"1","embed_data":"Introduction to Oracle Database\n\n\nThis
chapter provides an overview of Oracle Database. Every organization has
informat
ion that it must store and manage to meet its requirements. For example, a
corpo
ration must collect and maintain human resources records for its
employees. About
Relational Databases and Schema Objects\n\n\nData Access tables with
parent keys,
base, upgrade, UROWID data type, user global area (UGA), user program
interface,
","embed_vector":"[0.111119926,0.0423980951,-0.00929224491,-0.0352411047,-0
.0144
591287,0.0277361721,0.183199733,-0.0245029964,-0.137614027,0.0730137378,0.0

Chapter 3
Vector Generation Examples

3-46

17934
6036,0.0788726509,0.0176453814,0.100403085,-0.0518687107,-0.0152645027,0.02
83792
187,-0.114087239,0.0139923804,0.0747490972,-0.181839675,-0.130034953,0.1012
07718
,0.117135495,-0.0682030097,-0.217743069,0.0613380745,0.0150767341,0.0361393
057,-
0.113082513,-0.0550440662,-0.000983044971,-0.00719357422,0.1590323,-0.02204
14512
,-0.0723528489,-0.0126240514,-0.175765082,0.168952227,0.0466451086,-0.12136
507,-
0.0442310236,0.0139067639,0.054659389,-0.29653421,-0.0988782048,0.079434923
8,-0.
0758788213,0.0152856084,-0.0260562375,0.0652966872,-0.0782724097,-0.0226081
386,0
.0909011662,-0.184569761,0.159565002,-0.15350005,-0.0108382348,0.101788878,
1.919
59683E-002,2.54665539E-002,2.50248201E-002,5.29858321E-002,1.42359538E-002,
5.655
82886E-002,3.41602638E-002,3.18607911E-002,-3.07250433E-002,-3.60006578E-00
2,-3.
26940455E-002,-5.13980947E-002,-9.18597169E-003,-2.40122043E-002,2.15246622
E-002
,-3.89301814E-002,1.09825116E-002,-8.59739035E-002,-3.34327705E-002,-6.5231
0252E
-002,2.46418975E-002,6.27725571E-003,6.54156879E-002,-2.97986511E-003,-1.48
5541E
-003,-9.00155635E-003]"}

{"embed_id":2,"embed_data":"1-18 Database, 19-6 write-ahead,18-17 Learn
session
memory in a large pool. The multitenant architecture enables an Oracle
database
to function as a multitenant container database (CDB). XStream,20-38\nZero
Data
Loss Recovery Appliance See Recovery Appliance zone maps, An application
contai
ner consists of exactly one application root, and PDBs plugged in to this
root.
Index-21\n D:20231208125114-08'00' D:20231208125114-08'00'
D:20231208125114-08'0
0'
19-6","embed_vector":"[6.30229115E-002,6.80943206E-002,-6.94655553E-002,-2.
58
157589E-002,-1.89648587E-002,-9.02655348E-002,1.97774544E-002,-9.39233322E-
003,-
5.06882742E-002,2.0078931E-002,-1.28898735E-003,-4.10606936E-002,2.09831214
E-003
,-4.53372523E-002,-7.09890276E-002,5.38906306E-002,-5.81014939E-002,-1.3959
175E-
004,-1.08725717E-002,-3.79145369E-002,-4.39973129E-003,3.25602405E-002,6.58
87302
2E-002,-4.27212603E-002,-3.00925318E-002,3.07144262E-002,-2.26370787E-004,-
4.623
15865E-002,1.11807801E-001,7.36674219E-002,-1.61244173E-003,7.35205635E-002
,4.16

Chapter 3
Vector Generation Examples

3-47

726843E-002,-5.08309156E-002,-3.55720241E-003,4.49763797E-003,5.03803678E-0
02,2.
32542045E-002,-2.58533042E-002,9.06257033E-002,8.49585086E-002,8.65213498E-
002,5
.84013164E-002,-7.72946924E-002,6.65430725E-002,-1.64568517E-002,3.23978886
E-002
,2.24988302E-003,3.02566844E-003,-2.43405364E-002,9.75424573E-002,4.1463053
8E-00
3,1.89351812E-002,-1.10467218E-001,-1.24333188E-001,-2.36738548E-002,7.5427
7706E
-002,-1.64660662E-002,-1.38906585E-002,3.42438952E-003,-1.88432514E-005,-2.
47511
379E-002,-3.42802797E-003,3.23110656E-003,4.24311385E-002,6.59448802E-002,-
3.311
67318E-002,-5.14010936E-002,2.38897409E-002,-9.00154635E-002]"}

3728 rows selected.

The embedding results contain:

• embed_id: ID number of each vector embedding

• embed_data: Input text that is transformed into embeddings

• embed_vector: Generated vector representations

Related Topics

• DBMS_VECTOR Package

• DBMS_VECTOR_CHAIN Package

Convert File to Embeddings
You can directly extract vector embeddings from a PDF document, using a single-step
statement.

Perform a file-to-text-to-chunks-to-embeddings transformation (using a declared embedding
model), by calling a set of DBMS_VECTOR_CHAIN.UTL functions in a single CREATE TABLE
statement.

This statement creates a relational table (doc_chunks) from unstructured text chunks and the
corresponding vector embeddings:

CREATE TABLE doc_chunks as
(select dt.id doc_id, et.embed_id, et.embed_data, to_vector(et.embed_vector)
embed_vector
 from
 documentation_tab dt,
 dbms_vector_chain.utl_to_embeddings(

dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(dt.data),
json('{"normalize":"all"}')),
 json('{"provider":"database", "model":"doc_model"}')) t,
 JSON_TABLE(t.column_value, '$[*]' COLUMNS (embed_id NUMBER PATH
'$.embed_id', embed_data VARCHAR2(4000) PATH '$.embed_data', embed_vector

Chapter 3
Vector Generation Examples

3-48

CLOB PATH '$.embed_vector')) et
);

Note that each successive function depends on the output of the previous function, so the
order of chains is important here. First, the output from utl_to_text (dt.data column) is
passed as an input for utl_to_chunks and then the output from utl_to_chunks is passed as
an input for utl_to_embeddings.

For complete example, run SQL Quick Start, where you embed two Oracle Database
Documentation books in the doc_chunks table and perform similarity searches using vector
indexes.

Generate and Use Embeddings for End-to-End Search
In this example, you first generate embeddings from textual content by using an ONNX model,
and then populate and query a vector index. At query time, you also vectorize the query criteria
on the fly.

This example covers the entire workflow of Oracle AI Vector Search, as described in
Understand the Stages of Data Transformations. If you are not yet familiar with the concepts
beyond generating embeddings (such as creating and querying vector indexes), review the
remaining sections before running this scenario.
To run an end-to-end similarity search workflow using a declared embedding model:

1. Start SQL*Plus and connect to Oracle Database as a local test user:

a. Log in to SQL*Plus as the sys user, connecting as sysdba, to a pluggable database
(PDB) within your multitenant container database (CDB):

conn sys/password@CDB_PDB as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

b. Create a local test user (docuser) and grant necessary privileges:

drop user docuser cascade;

create user docuser identified by docuser DEFAULT TABLESPACE tbs1 quota
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to docuser;

Chapter 3
Vector Generation Examples

3-49

c. Create a local directory on your server (VEC_DUMP) to store your input data and model
files. Grant necessary privileges:

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory VEC_DUMP to docuser;

commit;

d. Connect to Oracle Database as the test user and alter the environment settings for
your session:

conn docuser/password@CDB_PDB;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

2. Create a relational table (documentation_tab) and store your textual content in it.

drop table documentation_tab purge;

create table documentation_tab (id number, text clob);

insert into documentation_tab values (1,
 'Analytics empowers business analysts and consumers with modern, AI-
powered, self-service analytics capabilities for data preparation,
visualization, enterprise reporting, augmented analysis, and natural
language processing.
 Oracle Analytics Cloud is a scalable and secure public cloud service
that provides capabilities to explore and perform collaborative analytics
for you, your workgroup, and your enterprise.

 Oracle Analytics Cloud is available on Oracle Cloud Infrastructure
Gen 2 in several regions in North America, EMEA, APAC, and LAD when you
subscribe through Universal Credits. You can subscribe to Professional
Edition or Enterprise Edition.');

insert into documentation_tab values (3,
 'Generative AI Data Science is a fully managed and serverless platform
for data science teams to build, train, and manage machine learning models
in the Oracle Cloud Infrastructure.');

insert into documentation_tab values (4,
 'Language allows you to perform sophisticated text analysis at scale.
Using the pretrained and custom models, you can process unstructured text
to extract insights without data science expertise.

Chapter 3
Vector Generation Examples

3-50

 Pretrained models include sentiment analysis, key phrase extraction,
text classification, and named entity recognition. You can also train
custom models for named entity recognition and text
 classification with domain specific datasets. Additionally, you can
translate text across numerous languages.');

insert into documentation_tab values (5,
 'When you work with Oracle Cloud Infrastructure, one of the first
steps is to set up a virtual cloud network (VCN) for your cloud resources.
This topic gives you an overview of Oracle Cloud
 Infrastructure Networking components and typical scenarios for using
a VCN. A virtual, private network that you set up in Oracle data centers.
It closely resembles a traditional network, with
 firewall rules and specific types of communication gateways that you
can choose to use. A VCN resides in a single Oracle Cloud Infrastructure
region and covers one or more CIDR blocks
 (IPv4 and IPv6, if enabled). See Allowed VCN Size and Address Ranges.
The terms virtual cloud network, VCN, and cloud network are used
interchangeably in this documentation.
 For more information, see VCNs and Subnets.');

insert into documentation_tab values (6,
 'NetSuite banking offers several processing options to accurately
track your income. You can record deposits to your bank accounts to
capture customer payments and other monies received in the
 course of doing business. For a deposit, you can select payments
received for existing transactions, add funds not related to transaction
payments, and record any cash received back from the bank.');

commit;

3. Load your ONNX model by calling the load_onnx_model procedure.

EXECUTE dbms_vector.drop_onnx_model(model_name => 'doc_model', force =>
true);

EXECUTE dbms_vector.load_onnx_model(
 'VEC_DUMP',
 'my_embedding_model.onnx',
 'doc_model',
 json('{"function" : "embedding", "embeddingOutput" : "embedding" ,
"input": {"input": ["DATA"]}}')
);

Replace my_embedding_model.onnx with an ONNX export of your embedding model. Here,
doc_model specifies the name under which the imported model is stored in Oracle
Database.

Note:

If you do not have an embedding model in ONNX format, then perform the steps
listed in Convert Pretrained Models to ONNX Format.

Chapter 3
Vector Generation Examples

3-51

4. Create a relational table (doc_chunks) to store unstructured data chunks and associated
vector embeddings, by using doc_model.

create table doc_chunks as (
 SELECT d.id id,
 row_number() over (partition by d.id order by d.id) chunk_id,
 vc.chunk_offset chunk_offset,
 vc.chunk_length chunk_length,
 vc.chunk_text chunk,
 vector_embedding(doc_model using vc.chunk_text as data) vector
 FROM documentation_tab d,
 vector_chunks(d.text by words max 100 overlap 10 split RECURSIVELY)
vc
);

The CREATE TABLE statement reads the text from the DOCUMENTATION_TAB table, first applies
the VECTOR_CHUNKS SQL function to split the text into chunks based on the specified
chunking parameters, and then applies the VECTOR_EMBEDDING SQL function to generate
corresponding vector embedding on each resulting chunk text.

5. Explore the doc_chunks table by selecting rows from it to see the chunked output.

desc doc_chunks;
set linesize 100
set long 1000
col id for 999
col chunk_id for 99999
col chunk_offset for 99999
col chunk_length for 99999
col chunk for a30
col vector for a100

select id, chunk_id, chunk_offset, chunk_length, chunk from doc_chunks;

The chunking output returns a set of seven chunks, which are split recursively, that is,
using the BLANKLINE, NEWLINE, SPACE, NONE sequence. Note that Document 5 produces two
chunks when the maximum word limit of 100 is reached.

You can see that the first chunk ends at a blank line. The text from the first chunk overlaps
onto the second chunk, that is, 10 words (including comma and period; underlined below)
are overlapping. Similarly, there is an overlap of 10 (also underlined below) between the
fifth and sixth chunks.

 ID CHUNK_ID CHUNK_OFFSET CHUNK_LENGTH CHUNK
---- -------- ------------ ------------ ------------------------------
 1 1 1 418 Analytics empowers business an
 alysts and consumers with mode
 rn, AI-powered, self-service a
 nalytics capabilities for data
 preparation, visualization, e
 nterprise reporting, augmented
 analysis, and natural languag
 e processing.

Chapter 3
Vector Generation Examples

3-52

 Oracle Analytics Cloud is
 a scalable and secure public
 cloud service that provides ca
 pabilities to explore and perf
 orm collaborative analytics for
 you, your workgroup, and your
 enterprise.

 1 2 373 291 for you, your workgroup, and
 your enterprise.
 Oracle Analytics Cloud is
 available on Oracle Cloud Inf
 rastructure Gen 2 in several r
 egions in North America, EMEA,
 APAC, and LAD when you subscr
 ibe through Universal Credits.
 You can subscribe to Professi
 onal Edition or Enterprise Edi
 tion.

 3 1 1 180 Generative AI Data Science is
 a fully managed and serverless
 platform for data science tea
 ms to build, train, and manage
 machine learning models in th
 e Oracle Cloud Infrastructure.

 4 1 1 505 Language allows you to perform
 sophisticated text analysis a
 t scale. Using the pretrained
 and custom models, you can pro
 cess unstructured text to extr
 act insights without data scie
 nce expertise.
 Pretrained models include
 sentiment analysis, key phras
 e extraction, text classificat
 ion, and named entity recognit
 ion. You can also train custom
 models for named entity recog
 nition and text
 classification with domai
 n specific datasets. Additiona
 lly, you can translate text ac
 ross numerous languages.

 5 1 1 386 When you work with Oracle Clou
 d Infrastructure, one of the f
 irst steps is to set up a virt
 ual cloud network (VCN) for yo
 ur cloud resources. This topic
 gives you an overview of Orac
 le Cloud
 Infrastructure Networking
 components and typical scenar
 ios for using a VCN. A virtual

Chapter 3
Vector Generation Examples

3-53

 , private network that you set
 up in Oracle data centers. It
 closely resembles a tradition
 al network, with

 5 2 329 474 centers. It closely resembles
 a traditional network, with
 firewall rules and specif
 ic types of communication gate
 ways that you can choose to us
 e. A VCN resides in a single O
 racle Cloud Infrastructure reg
 ion and covers one or more CID
 R blocks
 (IPv4 and IPv6, if enable
 d). See Allowed VCN Size and A
 ddress Ranges. The terms virtu
 al cloud network, VCN, and clo
 ud network are used interchang
 eably in this documentation.
 For more information, see
 VCNs and Subnets.

 6 1 1 393 NetSuite banking offers severa
 l processing options to accura
 tely track your income. You ca
 n record deposits to your bank
 accounts to capture customer
 payments and other monies rece
 ived in the
 course of doing business.
 For a deposit, you can select
 payments received for existin
 g transactions, add funds not
 related to transaction payment
 s, and record any cash receive
 d back from the bank.

7 rows selected.

6. Explore the first vector result by selecting rows from the doc_chunks table to see the
embedding output.

select vector from doc_chunks where rownum <= 1;

An excerpt from the output is as follows:

[1.18813422E-002,2.53968383E-003,-5.33896387E-002,1.46877998E-003,5.7720981
5E-002,-1.58939194E-002,3
.12595293E-002,-1.13087103E-001,8.5138239E-002,1.10731693E-002,3.70671228E-
002,4.03710492E-002,1.503
95066E-001,3.31836529E-002,-1.98343433E-002,6.16453104E-002,4.2827677E-002,
-4.02921103E-002,-7.84291
551E-002,-4.79201972E-002,-5.06678E-002,-1.36317732E-002,-3.7761624E-003,-2
.3332756E-002,1.42400926E

Chapter 3
Vector Generation Examples

3-54

-002,-1.11553416E-001,-3.70503664E-002,-2.60722954E-002,-1.2074843E-002,-3.
55089158E-002,-1.03518805
E-002,-7.05051869E-002,5.63110895E-002,4.79055084E-002,-1.46315445E-003,8.8
3129537E-002,5.12795225E-
002,7.5858552E-003,-4.13030013E-002,-5.2099824E-002,5.75958602E-002,3.72097
567E-002,6.11167103E-002,
,-1.23207876E-003,-5.46219759E-003,3.04734893E-002,1.80617068E-002,-2.85708
476E-002,-1.01670986E-002
,6.49402961E-002,-9.76506807E-003,6.15146831E-002,5.27246818E-002,7.4499443
2E-002,-5.86469211E-002,8
.84285953E-004,2.77456306E-002,1.99283361E-002,2.37570312E-002,2.33389344E-
002,-4.07911092E-002,-7.6
1070028E-002,1.23929314E-001,6.65794984E-002,-6.15389943E-002,2.62510721E-0
02,-2.48490628E-002]

7. Create an index on top of the doc_chunks table's vector column.

create vector index vidx on doc_chunks (vector)
 organization neighbor partitions
 with target accuracy 95
 distance EUCLIDEAN parameters (
 type IVF,
 neighbor partitions 2);

8. Run queries using the vector index.

• Query about Machine Learning:

select id, vector_distance(
 vector,
 vector_embedding(doc_model using 'machine learning models' as data),
 EUCLIDEAN) results
FROM doc_chunks order by results;

 ID RESULTS
---- ----------
 3 1.074E+000
 4 1.086E+000
 5 1.212E+000
 5 1.296E+000
 1 1.304E+000
 6 1.309E+000
 1 1.365E+000

7 rows selected.

• Query about Generative AI:

select id, vector_distance(
 vector,
 vector_embedding(doc_model using 'gen ai' as data),

Chapter 3
Vector Generation Examples

3-55

 EUCLIDEAN) results
FROM doc_chunks order by results;

 ID RESULTS
---- ----------
 4 1.271E+000
 3 1.297E+000
 1 1.309E+000
 5 1.32E+000
 1 1.352E+000
 5 1.388E+000
 6 1.424E+000

7 rows selected.

• Query about Networks:

select id, vector_distance(
 vector,
 vector_embedding(doc_model using 'computing networks' as data),
 MANHATTAN) results
FROM doc_chunks order by results;

 ID RESULTS
---- ----------
 5 1.387E+001
 5 1.441E+001
 3 1.636E+001
 1 1.707E+001
 4 1.758E+001
 1 1.795E+001
 6 1.902E+001

7 rows selected.

• Query about Banking:

select id, vector_distance(
 vector,
 vector_embedding(doc_model using 'banking, money' as data),
 MANHATTAN) results
FROM doc_chunks order by results;

 ID RESULTS
---- ----------
 6 1.363E+001
 1 1.969E+001
 5 1.978E+001
 5 1.997E+001
 3 1.999E+001
 1 2.058E+001
 4 2.079E+001

Chapter 3
Vector Generation Examples

3-56

7 rows selected.

Related Topics

• DBMS_VECTOR_CHAIN Package

Perform Text Processing: PL/SQL Examples
In these examples, you can see how to use some of the text processing features enabled by
Oracle Text.

• Convert Text String to Summary
You can extract a concise summary from large and complex documents.

• Create and Use Custom Vocabulary
You can see how to create and use your own vocabulary of tokens when chunking data.

• Create and Use Custom Language Data
You can create and use your own language-specific conditions (such as common
abbreviations) when chunking data.

Convert Text String to Summary
You can extract a concise summary from large and complex documents.

You can see how to access third-party text summarization models to perform a text-to-
summary transformation, by using the DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY API.

1. Start SQL*Plus and connect to Oracle Database as a local test user.

a. Log in to SQL*Plus as the sys user, connecting as sysdba, to a pluggable database
(PDB) within your multitenant container database (CDB):

conn sys/password@CDB_PDB as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

b. Create a local test user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

Chapter 3
Vector Generation Examples

3-57

c. Connect to Oracle Database as the test user and alter the environment settings for
your session:

CONN docuser/password@CDB_PDB

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

d. Set the HTTP proxy server if configured:

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

e. Grant connect privilege for a host using the DBMS_NETWORK_ACL_ADMIN procedure. This
example uses * to allow any host. However, you can explicitly specify each host that
you want to connect to.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => '*',
 ace => xs$ace_type(privilege_list => xs$name_list('connect'),
 principal_name => 'docuser',
 principal_type => xs_acl.ptype_db));
END;
/

2. Set up your credentials for the REST provider that you want to access and then call
UTL_TO_SUMMARY:

• Using Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI:

a. Run DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL to create and store a credential.

Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI require the following
authentication parameter:

{ "access_token": "<access token>" }
You will later refer to this credential name when declaring JSON parameters for the
UTL_TO_SUMMARY call.

exec dbms_vector_chain.drop_credential('<credential name>');

declare
 jo json_object_t;
begin
 jo := json_object_t();
 jo.put('access_token', '<access token>');
 dbms_vector_chain.create_credential(
 credential_name => '<credential name>',
 params => json(jo.to_string));

Chapter 3
Vector Generation Examples

3-58

end;
/

Replace the access_token and credential_name values. For example:

declare
 jo json_object_t;
begin
 jo := json_object_t();
 jo.put('access_token', 'AbabA1B123aBc123AbabAb123a1a2ab');
 dbms_vector_chain.create_credential(
 credential_name => 'HF_CRED',
 params => json(jo.to_string));
end;
/

b. Run DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY:

-- select example

var params clob;
exec :params := '
{
 "provider": "<REST provider>",
 "credential_name": "<credential name>",
 "url": "<REST endpoint URL for text summarization service>",
 "model": "<REST provider text summarization model name>"
}';

select dbms_vector_chain.utl_to_summary(
 'A transaction is a logical, atomic unit of work that contains
one or more SQL
 statements.
 An RDBMS must be able to group SQL statements so that they are
either all
 committed, which means they are applied to the database, or all
rolled back, which
 means they are undone.
 An illustration of the need for transactions is a funds
transfer from a savings account to
 a checking account. The transfer consists of the following
separate operations:
 1. Decrease the savings account.
 2. Increase the checking account.
 3. Record the transaction in the transaction journal.
 Oracle Database guarantees that all three operations succeed or
fail as a unit. For
 example, if a hardware failure prevents a statement in the
transaction from executing,
 then the other statements must be rolled back.
 Transactions set Oracle Database apart from a file system. If
you
 perform an atomic operation that updates several files, and if
the system fails halfway
 through, then the files will not be consistent. In contrast, a

Chapter 3
Vector Generation Examples

3-59

transaction moves an
 Oracle database from one consistent state to another. The basic
principle of a
 transaction is "all or nothing": an atomic operation succeeds
or fails as a whole.',
 json(:params)) from dual;

-- PL/SQL example

declare
 input clob;
 params clob;
 output clob;
begin
 input := 'A transaction is a logical, atomic unit of work that
contains one or more SQL
 statements.
 An RDBMS must be able to group SQL statements so that they are
either all
 committed, which means they are applied to the database, or all
rolled back, which
 means they are undone.
 An illustration of the need for transactions is a funds
transfer from a savings account to
 a checking account. The transfer consists of the following
separate operations:
 1. Decrease the savings account.
 2. Increase the checking account.
 3. Record the transaction in the transaction journal.
 Oracle Database guarantees that all three operations succeed or
fail as a unit. For
 example, if a hardware failure prevents a statement in the
transaction from executing,
 then the other statements must be rolled back.
 Transactions set Oracle Database apart from a file system. If
you
 perform an atomic operation that updates several files, and if
the system fails halfway
 through, then the files will not be consistent. In contrast, a
transaction moves an
 Oracle database from one consistent state to another. The basic
principle of a
 transaction is "all or nothing": an atomic operation succeeds
or fails as a whole.';

 params := '
{
 "provider": "<REST provider>",
 "credential_name": "<credential name>",
 "url": "<REST endpoint URL for text summarization service>",
 "model": "<REST provider text summarization model name>"
}';

 output := dbms_vector_chain.utl_to_summary(input, json(params));
 dbms_output.put_line(output);
 if output is not null then

Chapter 3
Vector Generation Examples

3-60

 dbms_lob.freetemporary(output);
 end if;
exception
 when OTHERS THEN
 DBMS_OUTPUT.PUT_LINE (SQLERRM);
 DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Replace the provider, credential_name, url, and model values. Optionally, you
can specify additional REST provider parameters.

Cohere example:

{
 "provider": "cohere",
 "credential_name": "COHERE_CRED",
 "url": "https://api.cohere.example.com/summarize",
 "model": "summarize-model",
 "length": "medium",
 "format": "paragraph",
 "temperature": 1.0
}

Google AI example:

{
 "provider": "googleai",
 "credential_name": "GOOGLEAI_CRED",
 "url": "https://googleapis.example.com/models/",
 "model": "summarize-model",
 "generation_config": {
 "temperature": 0.9,
 "topP": 1,
 "candidateCount": 1,
 "maxOutputTokens": 256
 }
}

Hugging Face example:

{
 "provider": "huggingface",
 "credential_name": "HF_CRED",
 "url": "https://api.huggingface.example.co/models/",
 "model": "summarize-model",
 "wait_for_model": "true"
}

OpenAI example:

{
 "provider": "openai",
 "credential_name": "OPENAI_CRED",

Chapter 3
Vector Generation Examples

3-61

 "url": "https://api.openai.example.com",
 "model": "summarize-model",
 "max_tokens": 256,
 "temperature": 1.0
}

Vertex AI example:

{
 "provider": "vertexai",
 "credential_name": "VERTEXAI_CRED",
 "url": "https://googleapis.example.com/models/",
 "model": "summarize-model",
 "generation_config": {
 "temperature": 0.9,
 "topP": 1,
 "candidateCount": 1,
 "maxOutputTokens": 256
 }
}

• Using Generative AI:

a. Run DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL to create and store an OCI
credential (OCI_CRED).

Generative AI requires the following authentication parameters:

{
"user_ocid": "<user ocid>",
"tenancy_ocid": "<tenancy ocid>",
"compartment_ocid": "<compartment ocid>",
"private_key": "<private key>",
"fingerprint": "<fingerprint>"
}

You will later refer to this credential name when declaring JSON parameters for the
UTL_TO_SUMMARY call.

Chapter 3
Vector Generation Examples

3-62

Note:

The generated private key may appear as:

-----BEGIN RSA PRIVATE KEY-----
<private key string>
-----END RSA PRIVATE KEY-----

You pass the <private key string> value (excluding the BEGIN and END
lines), either as a single line or as multiple lines.

exec dbms_vector_chain.drop_credential('OCI_CRED');

declare
 jo json_object_t;
begin
 jo := json_object_t();
 jo.put('user_ocid','<user ocid>');
 jo.put('tenancy_ocid','<tenancy ocid>');
 jo.put('compartment_ocid','<compartment ocid>');
 jo.put('private_key','<private key>');
 jo.put('fingerprint','<fingerprint>');
 dbms_output.put_line(jo.to_string);
 dbms_vector_chain.create_credential(
 credential_name => 'OCI_CRED',
 params => json(jo.to_string));
end;
/

Replace all the authentication parameter values.

For example:

declare
 jo json_object_t;
begin
 jo := json_object_t();

jo.put('user_ocid','ocid1.user.oc1..aabbalbbaa1112233aabbaabb1111222
aa1111bb');

jo.put('tenancy_ocid','ocid1.tenancy.oc1..aaaaalbbbb1112233aaaabbaa1
111222aaa111a');

jo.put('compartment_ocid','ocid1.compartment.oc1..ababalabab1112233a
bababab1111222aba11ab');
 jo.put('private_key','AAAaaaBBB11112222333...AAA111AAABBB222aaa1a/
+');

jo.put('fingerprint','01:1a:a1:aa:12:a1:12:1a:ab:12:01:ab:a1:12:ab:1
a');

Chapter 3
Vector Generation Examples

3-63

 dbms_output.put_line(jo.to_string);
 dbms_vector_chain.create_credential(
 credential_name => 'OCI_CRED',
 params => json(jo.to_string));
end;
/

b. Run DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY:

-- select example

var params clob;
exec :params := '
{
 "provider": "ocigenai",
 "credential_name": "OCI_CRED",
 "url": "<REST endpoint URL for text summarization service>",
 "model": "<REST provider text summarization model name>"
}';

select dbms_vector_chain.utl_to_summary(
 'A transaction is a logical, atomic unit of work that contains
one or more SQL
 statements.
 An RDBMS must be able to group SQL statements so that they are
either all
 committed, which means they are applied to the database, or all
rolled back, which
 means they are undone.
 An illustration of the need for transactions is a funds
transfer from a savings account to
 a checking account. The transfer consists of the following
separate operations:
 1. Decrease the savings account.
 2. Increase the checking account.
 3. Record the transaction in the transaction journal.
 Oracle Database guarantees that all three operations succeed or
fail as a unit. For
 example, if a hardware failure prevents a statement in the
transaction from executing,
 then the other statements must be rolled back.
 Transactions set Oracle Database apart from a file system. If
you
 perform an atomic operation that updates several files, and if
the system fails halfway
 through, then the files will not be consistent. In contrast, a
transaction moves an
 Oracle database from one consistent state to another. The basic
principle of a
 transaction is all or nothing: an atomic operation succeeds or
fails as a whole.',
 json(:params)) from dual;

-- PL/SQL example

declare

Chapter 3
Vector Generation Examples

3-64

 input clob;
 params clob;
 output clob;
begin
 input := 'A transaction is a logical, atomic unit of work that
contains one or more SQL
 statements.
 An RDBMS must be able to group SQL statements so that they are
either all
 committed, which means they are applied to the database, or all
rolled back, which
 means they are undone.
 An illustration of the need for transactions is a funds
transfer from a savings account to
 a checking account. The transfer consists of the following
separate operations:
 1. Decrease the savings account.
 2. Increase the checking account.
 3. Record the transaction in the transaction journal.
 Oracle Database guarantees that all three operations succeed or
fail as a unit. For
 example, if a hardware failure prevents a statement in the
transaction from executing,
 then the other statements must be rolled back.
 Transactions set Oracle Database apart from a file system. If
you
 perform an atomic operation that updates several files, and if
the system fails halfway
 through, then the files will not be consistent. In contrast, a
transaction moves an
 Oracle database from one consistent state to another. The basic
principle of a
 transaction is all or nothing: an atomic operation succeeds or
fails as a whole.';

 params := '
{
 "provider": "ocigenai",
 "credential_name": "OCI_CRED",
 "url": "<REST endpoint URL for text summarization service>",
 "model": "<REST provider text summarization model name>"
}';

 output := dbms_vector_chain.utl_to_summary(input, json(params));
 dbms_output.put_line(output);
 if output is not null then
 dbms_lob.freetemporary(output);
 end if;
exception
 when OTHERS THEN
 DBMS_OUTPUT.PUT_LINE (SQLERRM);
 DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Chapter 3
Vector Generation Examples

3-65

Replace the url and model values. Optionally, you can specify additional REST
provider-specific parameters.

For example:

{
 "provider": "ocigenai",
 "credential_name": "OCI_CRED",
 "url": "https://generativeai.oci.example.com/summarizeText",
 "model": "summarize.modelname",
 "length": "MEDIUM",
 "format": "PARAGRAPH",
 "temperature": 1.0
}

The generated summary appears as follows:

A transaction is a logical unit of work that groups one or more SQL
statements
that must be executed as a unit, with all statements succeeding, or all
statements being rolled back. Transactions are a fundamental concept in
relational database management systems (RDBMS), and Oracle Database is
specifically designed to manage transactions, ensuring database
consistency and
integrity. Transactions differ from file systems in that they maintain
atomicity, ensuring that all related operations succeed or fail as a whole,
maintaining database consistency regardless of intermittent failures.
Transactions move a database from one consistent state to another, and the
fundamental principle is that a transaction is committed or rolled back as
a
whole, upholding the "all or nothing" principle.

PL/SQL procedure successfully completed.

This example uses the default settings for each provider. For detailed information on additional
parameters, refer to your third-party provider's documentation.

Related Topics

• UTL_TO_SUMMARY

Create and Use Custom Vocabulary
You can see how to create and use your own vocabulary of tokens when chunking data.

Here, you use the chunker helper function CREATE_VOCABULARY from the DBMS_VECTOR_CHAIN
package to load custom vocabulary. This vocabulary file contains a list of tokens, recognized
by your model's tokenizer.

1. Start SQL*Plus and connect to Oracle Database as a local test user:

Chapter 3
Vector Generation Examples

3-66

a. Log in to SQL*Plus as the sys user, connecting as sysdba, to a pluggable database
(PDB) within your multitenant container database (CDB):

conn sys/password@CDB_PDB as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

b. Create a local test user (docuser) and grant necessary privileges:

drop user docuser cascade;

create user docuser identified by docuser DEFAULT TABLESPACE tbs1 quota
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to docuser;

c. Create a local directory on your server (VEC_DUMP) to store your vocabulary file. Grant
necessary privileges:

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory VEC_DUMP to docuser;

commit;

d. Transfer the vocabulary file for your required model to the VEC_DUMP directory.

For example, if using WordPiece tokenization, you can download and transfer the
vocab.txt vocabulary file for "bert-base-uncased".

e. Connect to Oracle Database as the test user and alter the environment settings for
your session:

conn docuser/password@CDB_PDB;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

2. Create a relational table (doc_vocabtab) to store your vocabulary tokens in it:

CREATE TABLE doc_vocabtab(token nvarchar2(64))
 ORGANIZATION EXTERNAL
 (default directory VEC_DUMP

Chapter 3
Vector Generation Examples

3-67

 ACCESS PARAMETERS (RECORDS DELIMITED BY NEWLINE)
 location ('bert-vocabulary-uncased.txt'));

3. Run DBMS_VECTOR_CHAIN.CREATE_VOCABULARY to create a vocabulary (doc_vocab).

DECLARE
 vocab_params clob := '{"table_name" : "doc_vocabtab",
 "column_name" : "token",
 "vocabulary_name" : "doc_vocab",
 "format" : "bert",
 "cased" : false}';

BEGIN
 dbms_vector_chain.create_vocabulary(json(vocab_params));
END;
/

After loading the token vocabulary, you can now use the BY VOCABULARY chunking mode (with
VECTOR_CHUNKS or UTL_TO_CHUNKS) to split data by counting the number of tokens.

Related Topics

• CREATE_VOCABULARY

• VECTOR_CHUNKS

• UTL_TO_CHUNKS

Create and Use Custom Language Data
You can create and use your own language-specific conditions (such as common
abbreviations) when chunking data.

Here, you use the chunker helper function CREATE_LANG_DATA from the DBMS_VECTOR_CHAIN
package to load the data file for Simplified Chinese. This data file contains abbreviation tokens
for your chosen language.

1. Start SQL*Plus and connect to Oracle Database as a local test user:

a. Log in to SQL*Plus as the sys user, connecting as sysdba, to a pluggable database
(PDB) within your multitenant container database (CDB):

conn sys/password@CDB_PDB as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

Chapter 3
Vector Generation Examples

3-68

b. Create a local test user (docuser) and grant necessary privileges:

drop user docuser cascade;

create user docuser identified by docuser DEFAULT TABLESPACE tbs1 quota
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to docuser;

c. Create a local directory on your server (VEC_DUMP) to store your language data file.
Grant necessary privileges:

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory VEC_DUMP to docuser;

commit;

d. Transfer the data file for your required language to the VEC_DUMP directory. For
example, dreoszhs.txt for Simplified Chinese.

To know the data file location for your language, see Supported Languages and Data
File Locations.

e. Connect to Oracle Database as the test user and alter the environment settings for
your session:

conn docuser/password@CDB_PDB;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

2. Create a relational table (doc_langtab) to store your abbreviation tokens in it:

CREATE TABLE doc_langtab(token nvarchar2(64))
 ORGANIZATION EXTERNAL
 (default directory VEC_DUMP
 ACCESS PARAMETERS (RECORDS DELIMITED BY NEWLINE CHARACTERSET AL32UTF8)
 location ('dreoszhs.txt'));

3. Run DBMS_VECTOR_CHAIN.CREATE_LANG_DATA to create language data (doc_lang_data).

DECLARE
 lang_params clob := '{"table_name" : "doc_langtab",
 "column_name" : "token",
 "language" : "simplified chinese",
 "preference_name" : "doc_lang_data"}';

Chapter 3
Vector Generation Examples

3-69

BEGIN
 dbms_vector_chain.create_lang_data(json(lang_params));
END;
/

After loading the language data, you can now use language-specific chunking by specifying the
LANGUAGE chunking parameter with VECTOR_CHUNKS or UTL_TO_CHUNKS.

Related Topics

• CREATE_LANG_DATA

• VECTOR_CHUNKS

• UTL_TO_CHUNKS

Perform Chunking: SQL and PL/SQL Examples
In these examples, you can see how to extract chunks from text strings and PDF documents.

• Convert Text to Chunks With Custom Chunking Specifications
A chunked output, especially for long and complex documents, sometimes loses
contextual meaning or coherence with its parent content. In this example, you can see how
to refine your chunks by applying custom chunking specifications.

• Explore Chunking Techniques and Examples
Review these examples of all the supported chunking parameters. These examples can
provide an idea on what are good and bad chunking techniques, and thus help you define
a strategy while chunking your data.

Convert Text to Chunks With Custom Chunking Specifications
A chunked output, especially for long and complex documents, sometimes loses contextual
meaning or coherence with its parent content. In this example, you can see how to refine your
chunks by applying custom chunking specifications.

Here, you use the VECTOR_CHUNKS SQL function or the UTL_TO_CHUNKS() PL/SQL function from
the DBMS_VECTOR_CHAIN package.

1. Start SQL*Plus and connect to Oracle Database as a local test user.

a. Log in to SQL*Plus as the sys user, connecting as sysdba, to a pluggable database
(PDB) within your multitenant container database (CDB):

conn sys/password@CDB_PDB as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

Chapter 3
Vector Generation Examples

3-70

b. Create a local test user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE to docuser;

c. Connect to Oracle Database as the test user and alter the environment settings for
your session:

CONN docuser/password@CDB_PDB

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

2. Create a relational table (documentation_tab) to store unstructured text chunks in it:

DROP TABLE IF EXISTS documentation_tab;

CREATE TABLE documentation_tab (
 id NUMBER,
 text VARCHAR2(2000));

INSERT INTO documentation_tab VALUES(1,
'Oracle AI Vector Search stores and indexes vector embeddings'||
' for fast retrieval and similarity search.'||CHR(10)||CHR(10)||
' About Oracle AI Vector Search'||CHR(10)||
' Vector Indexes are a new classification of specialized indexes'||
' that are designed for Artificial Intelligence (AI) workloads that
allow'||
' you to query data based on semantics, rather than keywords.'||CHR(10)||
CHR(10)||
' Why Use Oracle AI Vector Search?'||CHR(10)||
' The biggest benefit of Oracle AI Vector Search is that semantic search'||
' on unstructured data can be combined with relational search on
business'||
' data in one single system.'||CHR(10));

COMMIT;

SET LINESIZE 1000;
SET PAGESIZE 200;

Chapter 3
Vector Generation Examples

3-71

COLUMN doc FORMAT 999;
COLUMN id FORMAT 999;
COLUMN pos FORMAT 999;
COLUMN siz FORMAT 999;
COLUMN txt FORMAT a60;
COLUMN data FORMAT a80;

3. Call the VECTOR_CHUNKS SQL function and specify the following custom chunking
parameters:

SELECT D.id doc, C.chunk_offset pos, C.chunk_length siz, C.chunk_text txt
FROM documentation_tab D, VECTOR_CHUNKS(D.text
 BY words
 MAX 50
 OVERLAP 0
 SPLIT BY recursively
 LANGUAGE american
 NORMALIZE all) C;

To call the same operation using the UTL_TO_CHUNKS function from the DBMS_VECTOR_CHAIN
package, run:

SELECT D.id doc,
 JSON_VALUE(C.column_value, '$.chunk_id' RETURNING NUMBER) AS id,
 JSON_VALUE(C.column_value, '$.chunk_offset' RETURNING NUMBER) AS pos,
 JSON_VALUE(C.column_value, '$.chunk_length' RETURNING NUMBER) AS siz,
 JSON_VALUE(C.column_value, '$.chunk_data') AS txt
FROM documentation_tab D,
 dbms_vector_chain.utl_to_chunks(D.text,
 JSON('{"by":"words",
 "max":"50",
 "overlap":"0",
 "split":"recursively",
 "language":"american",
 "normalize":"all"}')) C;

This returns a set of three chunks, which are split by words recursively using blank lines,
new lines, and spaces:

DOC POS SIZ TXT
---- ---- ---- --
1 1 108 Oracle AI Vector Search stores and indexes vector embeddings
 for fast retrieval and similarity search.

1 109 234 About Oracle AI Vector Search
 Vector Indexes are a new classification of specialized index
 es that are designed for Artificial Intelligence (AI) worklo
 ads that allow you to query data based on semantics, rather
 than keywords.

1 343 204 Why Use Oracle AI Vector Search?
 The biggest benefit of Oracle AI Vector Search is that seman
 tic search on unstructured data can be combined with relatio
 nal search on business data in one single system.

Chapter 3
Vector Generation Examples

3-72

4. To further clean up the chunking results, supply JSON parameters for UTL_TO_CHUNKS:

SELECT C.*
FROM documentation_tab D,
 dbms_vector_chain.utl_to_chunks(D.text,
 JSON('{"by":"words",
 "max":"50",
 "overlap":"0",
 "split":"recursively",
 "language":"american",
 "normalize":"all"}')) C;

This returns chunk texts in JSON format:

COLUMN_VALUE

{"chunk_id":1,"chunk_offset":1,"chunk_length":108,"chunk_data":"Oracle AI
Vector
 Search stores and indexes vector embeddings for fast retrieval and
similarity s
earch."}

{"chunk_id":2,"chunk_offset":109,"chunk_length":234,"chunk_data":"About
Oracle A
I Vector Search\nVector Indexes are a new classification of specialized
indexes
that are designed for Artificial Intelligence (AI) workloads that allow
you to q
uery data based on semantics, rather than keywords."}

{"chunk_id":3,"chunk_offset":343,"chunk_length":204,"chunk_data":"Why Use
Oracle
 AI Vector Search?\nThe biggest benefit of Oracle AI Vector Search is that
seman
tic search on unstructured data can be combined with relational search on
busine
ss data in one single system."}

The chunking results contain:

• chunk_id: Chunk ID for each chunk

• chunk_offset: Original position of each chunk in the source document, relative to the
start of document (which has a position of 1)

• chunk_length: Character length of each chunk

• chunk_data: Text pieces from each chunk

Related Topics

• VECTOR_CHUNKS

• UTL_TO_CHUNKS

Chapter 3
Vector Generation Examples

3-73

Explore Chunking Techniques and Examples
Review these examples of all the supported chunking parameters. These examples can
provide an idea on what are good and bad chunking techniques, and thus help you define a
strategy while chunking your data.

Here, you can see how the following sample text of five lines is split when you apply various
chunking parameters to it:

• The lines are numbered as a reference for the explanations and include the word count in
square brackets (for example, 1[15]). The blank lines are also noted.

• The start and end boundaries of chunks are represented with colored markers.

• To perform examples with the BY VOCABULARY mode, you must create custom vocabulary
beforehand (for example, DOC_VOCAB). See Create and Use Custom Vocabulary.

Example 3-1 BY chars MAX 200 OVERLAP 0 SPLIT BY none

This example shows the simplest form of chunking, where you split the text by a fixed number
of characters (including the end-of-line characters), at whatever point that occurs in the text.

The text from the first chunk is split at an absolute maximum character of 200, which divides
the word indexes between the first two chunks. Similarly, you can see the word Oracle splitting
between second and third chunks.

Chapter 3
Vector Generation Examples

3-74

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY chars MAX 200 OVERLAP 0
 SPLIT BY none LANGUAGE american NORMALIZE none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT

1 200 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

 About Oracle AI Vector Search
 Vector Indexes are a new classification of
specialized ind

201 200 exes that are designed for Artificial Intelligence
(AI) workloads that allow you to query data based on semantics, rather than
keywords.

 Why Use Oracle AI Vector Search?
 The biggest benefit of O

401 146 racle AI Vector Search is that semantic search on
unstructured data can be combined with relational search on business data in
one single system.

Example 3-2 BY chars MAX 200 OVERLAP 0 SPLIT BY newline

In this example, the text is split into four chunks at new lines, if possible, within the maximum
limit of 200 characters.

The text from the first chunk is split after the second line because the third line would exceed
the maximum. The third line fits within the maximum perfectly. The fourth and fifth line would
also exceed the maximum, so it produces two chunks.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY chars MAX 200 OVERLAP 0

Chapter 3
Vector Generation Examples

3-75

 SPLIT BY newline LANGUAGE american NORMALIZE none)
C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 138 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

 About Oracle AI Vector Search

143 196 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial Intelligence (AI)
workloads that allow you to query data based on semantics, rather than
keywords.

343 33 Why Use Oracle AI Vector Search?

377 170 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured data can be combined with relational
search on business data in one single system.

Example 3-3 BY chars MAX 200 OVERLAP 0 SPLIT BY recursively

In this example, the text is split into five chunks recursively using blank lines, newlines and
then spaces, if possible, within the maximum of 200 characters.

The first chunk is split after the first blank line because including the text after the second blank
line would exceed the maximum. The second passage exceeds the maximum on its own, so it
is broken into two chunks at the new lines. Similarly, the third section is also broken into two
chunks at the new lines.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY chars MAX 200 OVERLAP 0
 SPLIT BY recursively LANGUAGE american NORMALIZE
none) C;

Chapter 3
Vector Generation Examples

3-76

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 104 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

109 30 About Oracle AI Vector Search

143 196 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial Intelligence (AI)
workloads that allow you to query data based on semantics, rather than
keywords.

343 33 Why Use Oracle AI Vector Search?

377 170 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured data can be combined with relational
search on business data in one single system.

Example 3-4 BY words MAX 40 OVERLAP 0 SPLIT BY none

In this example, the text is split into three chunks at an absolute maximum word of 40, the third
line after wordloads and the fifth line after with.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 0
 SPLIT BY none LANGUAGE american NORMALIZE none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 266 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

 About Oracle AI Vector Search

Chapter 3
Vector Generation Examples

3-77

 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial
 Intelligence (AI) workloads

267 223 that allow you to query data based on semantics,
rather than keywords.

 Why Use Oracle AI Vector Search?
 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured data can be combined with

490 57 relational search on business data in one single
system.

Example 3-5 BY words MAX 40 OVERLAP 0 SPLIT BY newline

In this example, the text is split into chunks at new lines, if possible, within the maximum of 40
words.

The first chunk (of 21 words) is split after the second line, as the third line would exceed the
maximum number of words (21+33 words). The third and fourth lines fit within the maximum.
The fifth line is 29 words, so fits in the last chunk.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 0
 SPLIT BY newline LANGUAGE american NORMALIZE none)
C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 138 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

 About Oracle AI Vector Search

Chapter 3
Vector Generation Examples

3-78

143 233 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial Intelligence (AI)
workloads that allow you to query data based on semantics, rather than
keywords.

 Why Use Oracle AI Vector Search?

377 170 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured data can be combined with relational
search on business data in one single system.

Example 3-6 BY words MAX 40 OVERLAP 0 SPLIT BY recursively

In this example, the chunks are split by words recursively using blank lines, newlines, and
spaces.

The text after the second blank line exceeds the maximum words, so the first chunk ends at
the first blank line. The second chunk (of 38 words) ends at the next blank line. The final chunk
(of 35 words) consists of the rest of the input.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 0
 SPLIT BY recursively LANGUAGE american NORMALIZE
none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 104 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

109 230 About Oracle AI Vector Search
 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial
 Intelligence (AI) workloads that allow you to query
data based on semantics, rather than keywords.

Chapter 3
Vector Generation Examples

3-79

343 204 Why Use Oracle AI Vector Search?
 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured data can be
 combined with relational search on business data in
one single system.

Example 3-7 BY vocabulary MAX 40 OVERLAP 0 SPLIT BY none

In this example, the text is split into four chunks at an absolute maximum vocabulary token of
40, which contrasts with the three chunks produced in Example 3-4. This is because
vocabulary tokens include pieces of words, so the chunk text is generally smaller than simple
word splitting.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY vocabulary doc_vocab MAX 40
OVERLAP 0
 SPLIT BY none LANGUAGE american NORMALIZE none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 157 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

 About Oracle AI Vector Search
 Vector Indexes
158 156 are a new classification of specialized indexes that
are designed for Artificial Intelligence (AI) workloads that allow you to
query data based on semantics

314 150 , rather than keywords.

 Why Use Oracle AI Vector Search?
 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured

Chapter 3
Vector Generation Examples

3-80

464 83 data can be combined with relational search on
business data in one single system.

Example 3-8 BY vocabulary MAX 40 OVERLAP 0 SPLIT BY newline

In this example, the text is split into five chunks with newlines, using an absolute maximum
vocabulary token of 40, which contrasts with Example 3-5.

Vocabulary tokens include pieces of words, so the chunk text is generally smaller than simple
word splitting. This example produces five chunks rather than three in Example 3-5, with the
middle passage split into two, and the final word unable to fit into the fourth chunk.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY vocabulary doc_vocab MAX 40
OVERLAP 0
 SPLIT BY newline LANGUAGE american NORMALIZE none)
C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 138 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

 About Oracle AI Vector Search

143 148 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial Intelligence (AI)
workloads that allow you to query

291 85 data based on semantics, rather than keywords.

 Why Use Oracle AI Vector Search?

377 162 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured data can be combined with relational
search on business data in one single

Chapter 3
Vector Generation Examples

3-81

539 8 system.

Example 3-9 BY vocabulary MAX 40 OVERLAP 0 SPLIT BY recursively

In this example, the text is split into seven chunks recursively using blank lines, new lines, and
spaces and an absolute maximum vocabulary token of 40, which contrasts with the three
chunks produced in Example 3-6.

Vocabulary tokens include pieces of words, so the chunk text is generally smaller than simple
word splitting. This example produces seven chunks with the middle passage split into three
and the final passage split into three.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY vocabulary doc_vocab MAX 40
OVERLAP 0
 SPLIT BY recursively LANGUAGE american NORMALIZE
none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 104 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

109 30 About Oracle AI Vector Search

143 148 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial Intelligence (AI)
workloads that allow you to query

291 48 data based on semantics, rather than keywords.

343 33 Why Use Oracle AI Vector Search?

377 162 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured data can be combined with relational

Chapter 3
Vector Generation Examples

3-82

search on business data in one single

539 8 system.

Example 3-10 BY words MAX 40 OVERLAP 5 SPLIT BY none

This example is the similar to Example 3-4, except an overlap of 5 is used.

The first chunk ends at the maximum 40 words (after workloads). The second chunk overlaps
with the last 5 words including parentheses of the first chunk, and ends after unstructured.
The overlapping words are underlined below. The third chunk overlaps with the last 5 words,
which are also underlined.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 5
 SPLIT BY none LANGUAGE american NORMALIZE none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 266 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

 About Oracle AI Vector Search
 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial Intelligence (AI)
workloads

239 225 Intelligence (AI) workloads that allow you to query
data based on semantics, rather than keywords.

 Why Use Oracle AI Vector Search?
 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured

427 120 that semantic search on unstructured data can be
combined with relational search on business data in one single system.

Chapter 3
Vector Generation Examples

3-83

Example 3-11 BY words MAX 40 OVERLAP 5 SPLIT BY newline

This example is the similar to Example 3-5, except an overlap of 5 is used. The overlapping
portion of a chunk must obey the same split condition, in this case must begin on a new line.

The first chunk ends at the second line, as the third line would exceed the maximum 40 words.
The second chunk starts with the second line of 5 words of the first chunk (underlined below)
and ends at the third line. The third chunk has no overlap because the preceding line exceeds
the maximum of 5.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 5
 SPLIT BY newline LANGUAGE american NORMALIZE none)
C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 138 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

 About Oracle AI Vector Search

109 230 About Oracle AI Vector Search
 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial
 Intelligence (AI) workloads that allow you to query
data based on semantics, rather than keywords.

343 204 Why Use Oracle AI Vector Search?
 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured data can be
 combined with relational search on business data in
one single system.

Chapter 3
Vector Generation Examples

3-84

Example 3-12 BY words MAX 40 OVERLAP 5 SPLIT BY recursively

This example is the similar to Example 3-6, except an overlap of 5 is used. The overlapping
portion of a chunk must obey the same split condition, in this case must begin at either a blank
line, new line, or space.

The text after the second blank line exceeds the maximum words, so the first chunk ends at
the first blank line. The second chunk overlaps with 5 words (beginning on a space; underlined
below) and includes the second line, but excludes the third line of 33 words. The third chunk
overlaps 5 words and ends on the second blank line. The fourth chunk consumes the rest of
the input.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 5
 SPLIT BY recursively LANGUAGE american NORMALIZE
none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 104 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

71 68 retrieval and similarity search.

 About Oracle AI Vector Search

109 230 About Oracle AI Vector Search
 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial
 Intelligence (AI) workloads that allow you to query
data based on semantics, rather than keywords.

316 231 rather than keywords.

 Why Use Oracle AI Vector Search?
 The biggest benefit of Oracle AI Vector Search is

Chapter 3
Vector Generation Examples

3-85

that semantic search on unstructured data can be
 combined with relational search on business data in
one single system.

Example 3-13 BY chars MAX 200 OVERLAP 0 SPLIT BY none NORMALIZE none

This example is the same as Example 3-1, to contrast with Example 3-13 with normalization.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY chars MAX 200 OVERLAP 0
 SPLIT BY none LANGUAGE american NORMALIZE none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 200 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

 About Oracle AI Vector Search
 Vector Indexes are a new classification of
specialized ind

201 200 exes that are designed for Artificial Intelligence
(AI) workloads that allow you to query data based
 on semantics, rather than keywords.

 Why Use Oracle AI Vector Search?
 The biggest benefit of O

401 146 racle AI Vector Search is that semantic search on
unstructured data can be combined with relational
 search on business data in one single system.

Chapter 3
Vector Generation Examples

3-86

Example 3-14 BY chars MAX 200 OVERLAP 0 SPLIT BY none NORMALIZE whitespace

This example enables whitespace normalization, which collapses redundant white space to
produce more content within a chunk maximum.

The first chunk extends 8 more characters due to the two indented lines of 4 spaces each
(marked with underscores _ below). The second chunk extends 4 more characters due to the
one indented line of 4 total spaces. The third chunk has the remaining input.

This example shows that the chunk length (normally in bytes) can differ from the chunk text's
size. The CHUNK_OFFSET and CHUNK_LENGTH represent the original source location of the chunk.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY chars MAX 200 OVERLAP 0
 SPLIT BY none LANGUAGE american NORMALIZE
whitespace) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 208 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

 About Oracle AI Vector Search
 Vector Indexes are a new classification of
specialized indexes tha

209 205 t are designed for Artificial Intelligence (AI)
workloads that allow you to query data based on sema
 ntics, rather than keywords.

 Why Use Oracle AI Vector Search?
 The biggest benefit of Oracle AI Vect

414 133 or Search is that semantic search on unstructured
data can be combined with relational search on business data in one single
system.

Chapter 3
Vector Generation Examples

3-87

Example 3-15 BY words MAX 40 OVERLAP 0 SPLIT BY sentence LANGUAGE American

This example uses end-of-sentence splitting which uses language-specific data and heuristics
(such as sentence punctuations, contextual rules, or common abbreviations) to determine
likely sentence boundaries. Three chunks are produced, each ending at the periods.

You can use this technique to keep your text intact for chunks that contain many split
sentences. Otherwise, the text may lose semantic context and may not be useful for queries
that target specific information.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 0
 SPLIT BY sentence LANGUAGE american NORMALIZE
NONE) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
--

1 102 Oracle AI Vector Search stores and indexes vector
embeddings for fast retrieval and similarity search.

109 228 About Oracle AI Vector Search
 Vector Indexes are a new classification of
specialized indexes that are designed for Artificial
 Intelligence (AI) workloads that allow you to query
data based on semantics, rather than keywords.

343 203 Why Use Oracle AI Vector Search?
 The biggest benefit of Oracle AI Vector Search is
that semantic search on unstructured data can be
 combined with relational search on business data in
one single system.

Example 3-16 BY words MAX 40 OVERLAP 0 SPLIT BY sentence LANGUAGE Simplified Chinese

In continuation with the preceding example, this example uses a Simplified Chinese text as the
input to specify language-specific sentence chunking.

Chapter 3
Vector Generation Examples

3-88

The output contains four chunks, each ending at the periods:

For the purpose of clarity, in this example, documentation_tab is a CLOB inserted with the
following ChineseDoc.txt document:

使用 My Oracle Support 之前，您的用务概要信息中必务至少具有一个客务服务号。客务服务号是
务务您所在务务的唯一参考号。使用 My Oracle Support 务务向您的概要信息中添加一个客务服务
号。有关务务信息，务参务 My Oracle Support 帮助的“如何将客务服务号添加到概要信息？

Perform the chunking operation as follows:

-- create a relational table

DROP TABLE IF EXISTS documentation_tab;
CREATE TABLE documentation_tab (
 id NUMBER,
 text CLOB);

-- create a local directory and store the document into the table

CREATE OR REPLACE DIRECTORY VEC_DUMP AS '/my_local_dir/';
CREATE OR REPLACE PROCEDURE my_clob_from_file(
 p_dir in varchar2,
 p_file in varchar2,
 p_id in number
) AS
 dest_loc CLOB;
 v_bfile bfile := null;
 v_lang_context number := dbms_lob.default_lang_ctx;
 v_dest_offset integer := 1;
 v_src_offset integer := 1;
 v_warning number;
BEGIN
 insert into documentation_tab values(p_id,empty_clob()) returning text
 into dest_loc;

 v_bfile := BFileName(p_dir, p_file);

 dbms_lob.open(v_bfile, dbms_lob.lob_readonly);
 dbms_lob.loadClobFromFile(
 dest_loc,
 v_bfile,
 dbms_lob.lobmaxsize,
 v_dest_offset,
 v_src_offset,
 873,
 v_lang_context,
 v_warning);

Chapter 3
Vector Generation Examples

3-89

 dbms_lob.close(v_bfile);
END my_clob_from_file;
/

show errors;

-- transform clob into chunks

exec my_clob_from_file('VEC_DUMP', 'ChineseDoc.txt', 1);

SELECT rownum as id, C.chunk_offset pos, C.chunk_length as siz,
 REPLACE(SUBSTR(C.chunk_text,1,15),CHR(10),'_') as beg,
 '...' as rng,
 REPLACE(SUBSTR(C.chunk_text,-15),CHR(10),'_') as end
FROM documentation_tab D, VECTOR_CHUNKS(to_char(D.text) BY words
 MAX 40
 OVERLAP 0
 SPLIT BY sentence
 LANGUAGE "simplified chinese"
 NORMALIZE none) C;

Output:

ID POS SIZ BEG RNG END
---- ---- ---- --------------------------- --- ------------------------
 1 1 103 使用 My Oracle Su ... 中必务至少具有一个客务服务号。
 2 104 60 客务服务号是务务您所在务务的唯 ... 是务务您所在务务的唯一参考号。
 3 164 85 使用 My Oracle Su ... 概要信息中添加一个客务服务号。
 4 249 109 有关务务信息，务参务 My O ... 何将客务服务号添加到概要信息？

Related Topics

• VECTOR_CHUNKS

• UTL_TO_CHUNKS

Generate Text for a Prompt: PL/SQL Example
In this example, you can see how to generate text for a given prompt by accessing third-party
text generation models.

A prompt can be an input string (such as a question that you ask an LLM or a command), and
can include results from a search.

You can use the described functions either from the DBMS_VECTOR or DBMS_VECTOR_CHAIN
package, depending on your use case.

To generate text using "What is Oracle Text?" as the prompt:

1. Start SQL*Plus and connect to Oracle Database as a local test user.

Chapter 3
Vector Generation Examples

3-90

a. Log in to SQL*Plus as the sys user, connecting as sysdba, to a pluggable database
(PDB) within your multitenant container database (CDB):

conn sys/password@CDB_PDB as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

b. Create a local test user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Connect to Oracle Database as the test user and alter the environment settings for
your session:

CONN docuser/password@CDB_PDB

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

d. Set the HTTP proxy server, if configured:

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

e. Grant connect privilege for a host using the DBMS_NETWORK_ACL_ADMIN procedure. This
example uses * to allow any host. However, you can explicitly specify each host that
you want to connect to.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => '*',
 ace => xs$ace_type(privilege_list => xs$name_list('connect'),
 principal_name => 'docuser',
 principal_type => xs_acl.ptype_db));
END;
/

Chapter 3
Vector Generation Examples

3-91

2. Set up your credentials for the REST provider that you want to access and then call
UTL_TO_GENERATE_TEXT:

• Using Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI:

a. Call CREATE_CREDENTIAL to create and store a credential.

Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI require the following
authentication parameter:

{ "access_token": "<access token>" }
You will later refer to this credential name when declaring JSON parameters for the
UTL_TO_GENERATE_TEXT call.

exec dbms_vector_chain.drop_credential('<credential name>');

declare
 jo json_object_t;
begin
 jo := json_object_t();
 jo.put('access_token', '<access token>');
 dbms_vector_chain.create_credential(
 credential_name => '<credential name>',
 params => json(jo.to_string));
end;
/

Replace the access_token and credential_name values. For example:

declare
 jo json_object_t;
begin
 jo := json_object_t();
 jo.put('access_token', 'AbabA1B123aBc123AbabAb123a1a2ab');
 dbms_vector_chain.create_credential(
 credential_name => 'HF_CRED',
 params => json(jo.to_string));
end;
/

b. Call UTL_TO_GENERATE_TEXT:

-- select example

var params clob;
exec :params := '
{
 "provider": "<REST provider>",
 "credential_name": "<credential name>",
 "url": "<REST endpoint URL for text generation service>",
 "model": "<REST provider text generation model name>"
}';

select dbms_vector_chain.utl_to_generate_text(
 'What is Oracle Text?',json(:params)) from dual;

Chapter 3
Vector Generation Examples

3-92

-- PL/SQL example

declare
 input clob;
 params clob;
 output clob;
begin
 input := 'What is Oracle Text?';

 params := '
{
 "provider": "<REST provider>",
 "credential_name": "<credential name>",
 "url": "<REST endpoint URL for text generation service>",
 "model": "<REST provider text generation model name>"
}';

 output := dbms_vector_chain.utl_to_generate_text(input,
json(params));
 dbms_output.put_line(output);
 if output is not null then
 dbms_lob.freetemporary(output);
 end if;
exception
 when OTHERS THEN
 DBMS_OUTPUT.PUT_LINE (SQLERRM);
 DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Replace the provider, credential_name, url, and model values. Optionally, you
can specify additional REST provider parameters.

Cohere example:

{
 "provider": "Cohere",
 "credential_name": "COHERE_CRED",
 "url": "https://api.cohere.example.com/generateText",
 "model": "generate-text-model"
}

Google AI example:

{
 "provider": "googleai",
 "credential_name": "GOOGLEAI_CRED",
 "url": "https://googleapis.example.com/models/",
 "model": "generate-text-model"
}

Chapter 3
Vector Generation Examples

3-93

Hugging Face example:

{
 "provider": "huggingface",
 "credential_name": "HF_CRED",
 "url": "https://api.huggingface.example.com/models/",
 "model": "generate-text-model",
 "wait_for_model": "true"
}

OpenAI example:

{
 "provider": "openai",
 "credential_name": "OPENAI_CRED",
 "url": "https://api.openai.example.com",
 "model": "generate-text-model",
 "max_tokens": 60,
 "temperature": 1.0
}

Vertex AI example:

{
 "provider": "vertexai",
 "credential_name":"VERTEXAI_CRED",
 "url": "https://googleapis.example.com/models/",
 "model": "generate-text-model",
 "generation_config": {
 "temperature": 0.9,
 "topP": 1,
 "candidateCount": 1,
 "maxOutputTokens": 256
 }
}

• Using Generative AI:

a. Call CREATE_CREDENTIAL to create and store an OCI credential (OCI_CRED).

Generative AI requires the following authentication parameters:

{
"user_ocid": "<user ocid>",
"tenancy_ocid": "<tenancy ocid>",
"compartment_ocid": "<compartment ocid>",
"private_key": "<private key>",
"fingerprint": "<fingerprint>"
}

You will later refer to this credential name when declaring JSON parameters for the
UTL_TO_GENERATE_TEXT call.

Chapter 3
Vector Generation Examples

3-94

Note:

The generated private key may appear as:

-----BEGIN RSA PRIVATE KEY-----
<private key string>
-----END RSA PRIVATE KEY-----

You pass the <private key string> value (excluding the BEGIN and END
lines), either as a single line or as multiple lines.

exec dbms_vector_chain.drop_credential('OCI_CRED');

declare
 jo json_object_t;
begin
 jo := json_object_t();
 jo.put('user_ocid','<user ocid>');
 jo.put('tenancy_ocid','<tenancy ocid>');
 jo.put('compartment_ocid','<compartment ocid>');
 jo.put('private_key','<private key>');
 jo.put('fingerprint','<fingerprint>');
 dbms_output.put_line(jo.to_string);
 dbms_vector_chain.create_credential(
 credential_name => 'OCI_CRED',
 params => json(jo.to_string));
end;
/

Replace all the authentication parameter values. For example:

declare
 jo json_object_t;
begin

 -- create an OCI credential
 jo := json_object_t();

jo.put('user_ocid','ocid1.user.oc1..aabbalbbaa1112233aabbaabb1111222
aa1111bb');

jo.put('tenancy_ocid','ocid1.tenancy.oc1..aaaaalbbbb1112233aaaabbaa1
111222aaa111a');

jo.put('compartment_ocid','ocid1.compartment.oc1..ababalabab1112233a
bababab1111222aba11ab');
 jo.put('private_key','AAAaaaBBB11112222333...AAA111AAABBB222aaa1a/
+');

jo.put('fingerprint','01:1a:a1:aa:12:a1:12:1a:ab:12:01:ab:a1:12:ab:1
a');

Chapter 3
Vector Generation Examples

3-95

 dbms_output.put_line(jo.to_string);
 dbms_vector_chain.create_credential(
 credential_name => 'OCI_CRED',
 params => json(jo.to_string));
end;
/

b. Call UTL_TO_GENERATE_TEXT:

-- select example

var params clob;
exec :params := '
{
 "provider": "ocigenai",
 "credential_name": "OCI_CRED",
 "url": "<REST endpoint URL for text generation service>",
 "model": "<REST provider text generation model name>"
}';

select dbms_vector_chain.utl_to_generate_text(
 'What is Oracle Text?',json(:params)) from dual;

-- PL/SQL example

declare
 input clob;
 params clob;
 output clob;
begin
 input := 'What is Oracle Text?';

 params := '
{
 "provider": "ocigenai",
 "credential_name": "OCI_CRED",
 "url": "<REST endpoint URL for text generation service>",
 "model": "<REST provider text generation model name>"
}';

 output := dbms_vector_chain.utl_to_generate_text(input,
json(params));
 dbms_output.put_line(output);
 if output is not null then
 dbms_lob.freetemporary(output);
 end if;
exception
 when OTHERS THEN
 DBMS_OUTPUT.PUT_LINE (SQLERRM);
 DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Replace the url and model values. Optionally, you can specify additional REST
provider-specific parameters.

Chapter 3
Vector Generation Examples

3-96

For example:

{
 "provider": "OCIGenAI",
 "credential_name": "GENAI_CRED",
 "url": "https://generativeai.oci.example.com/generateText",
 "model": "generate-text-model",
 "inferenceRequest": {
 "maxTokens": 300,
 "temperature": 1
 }
}

The generated text appears as follows:

BMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT(:INPUT,JSON(:PARAMS))

Oracle Text is a powerful tool that enhances Oracle Database with
integrated
text mining and text analytics capabilities.

It enables users to extract valuable insights and make informed decisions
by
analyzing unstructured text data stored within the database.

Here are some enhanced capabilities offered by Oracle Text:

1. Full-Text Search: Enables powerful and rapid full-text searches across
large
collections of documents. This helps users find relevant information
quickly
and effectively, even within massive datasets.

2. Natural Language Processing: Implements advanced language processing
techn
iques to analyze text and extract meaningful information. This includes
capabilities
like tokenization, stemming, lemmatization, and part-of-speech tagging,
which collectively facilitate efficient text processing and understanding.

3. Sentiment Analysis: Provides a deeper understanding of sentiment
expressed
 in text. It enables businesses to automatically analyze customer
opinions, feed
back, and reviews, helping them gain valuable insights into customer
sentiment,
satisfaction levels, and potential trends.

4. Entity Recognition: Automatically identifies and categorizes entities
with
in text, such as names of people, organizations, locations, or any other
specific
terms of interest. This is useful in applications like customer
relationship
management, where linking relevant information to individuals or

Chapter 3
Vector Generation Examples

3-97

organizations is
crucial.

5. Contextual Analysis: Delivers insights into the context and
relationships
between entities and concepts in textual data. It helps organizations
better und
erstand the broader implications and associations between entities,
facilitating
 a deeper understanding of their data.

These features collectively empower various applications, enhancing the
function
ality of the Oracle Database platform to allow businesses and
organizations to
derive maximum value from their unstructured text data.

Let me know if you'd like to dive deeper into any of these specific
capabilities
, or if there are other aspects of Oracle Text you'd like to explore
further.

This example uses the default settings for each provider. For detailed information on additional
parameters, refer to your third-party provider's documentation.

Related Topics

• DBMS_VECTOR Package

• DBMS_VECTOR_CHAIN Package

Chapter 3
Vector Generation Examples

3-98

4
Store Vector Embeddings

You store the resulting vector embeddings and associated unstructured data with your
relational business data in Oracle Database.

• Create Tables Using the VECTOR Data Type
You can declare a table's column as a VECTOR data type.

• Insert Vectors in a Database Table Using the INSERT Statement
Once you create a table with a VECTOR data type column, you can directly insert vectors
into the table using the INSERT statement.

• Load Vector Data Using SQL*Loader
Use these examples to understand how you can load character and binary vector data.

• Unload and Load Vectors Using Oracle Data Pump
Starting with Oracle Database 23ai, Oracle Data Pump enables you to use multiple
components to load and unload vectors to databases.

Create Tables Using the VECTOR Data Type
You can declare a table's column as a VECTOR data type.

The following command shows a simple example:

CREATE TABLE my_vectors (id NUMBER, embedding VECTOR);

In this example, you don't have to specify the number of dimensions or their format, which are
both optional. If you don't specify any of them, you can enter vectors of different dimensions
with different formats. This is a simplification to help you get started with using vectors in
Oracle Database.

Note:

Such vectors typically arise from different embedding models. Vectors from different
models (providing a different semantic landscape) are not comparable for use in
similarity search.

Here's a more complex example that imposes more constraints on what you can store:

CREATE TABLE my_vectors (id NUMBER, embedding VECTOR(768, INT8)) ;

In this example, each vector that is stored:

• Must have 768 dimensions, and

• Each dimension will be formatted as an INT8.

The number of dimensions must be strictly greater than zero with no practical upper limit.

4-1

The possible dimension formats are:

• INT8 (8-bit integers)

• FLOAT32 (32-bit IEEE floating-point numbers)

• FLOAT64 (64-bit IEEE floating-point numbers)

Oracle Database automatically casts the values as needed.

The following table guides you through the possible declaration format for a VECTOR data type:

Possible Declaration Format Explanation

VECTOR Vectors can have an arbitrary number of
dimensions and formats.

VECTOR(*, *) Vectors can have an arbitrary number of
dimensions and formats. VECTOR and
VECTOR(*,*) are equivalent.

VECTOR(number_of_dimensions, *) Vectors must all have the specified number of
dimensions or an error is thrown. Every vector will
have its dimensions stored without format
modification.

VECTOR(number_of_dimensions) Vectors must all have the specified number of
dimensions or an error is thrown. Every vector will
have its dimensions stored without format
modification. VECTOR(number_of_dimensions, *)
and VECTOR(number_of_dimensions) are
equivalent.

VECTOR(*, dimension_element_format) Vectors can have an arbitrary number of
dimensions, but their format will be up-converted or
down-converted to the specified
dimension_element_format (INT8, FLOAT32, or
FLOAT64).

A vector can be NULL but its dimensions cannot (for example, you cannot have a VECTOR with a
NULL dimension such as [1.1, NULL, 2.2]).

The following SQL*Plus code example shows how the system interprets various vector
definitions:

CREATE TABLE my_vect_tab (
 v1 VECTOR(3, FLOAT32),
 v2 VECTOR(2, FLOAT64),
 v3 VECTOR(1, INT8),
 v4 VECTOR(1, *),
 v5 VECTOR(*, FLOAT32),
 v6 VECTOR(*, *),
 v7 VECTOR
);

Table created.

DESC my_vect_tab;
 Name Null? Type
 --------------------------- -------- ----------------------------
 V1 VECTOR(3 , FLOAT32)
 V2 VECTOR(2 , FLOAT64)

Chapter 4
Create Tables Using the VECTOR Data Type

4-2

 V3 VECTOR(1 , INT8)
 V4 VECTOR(1 , *)
 V5 VECTOR(* , FLOAT32)
 V6 VECTOR(* , *)
 V7 VECTOR(* , *)

You currently cannot define VECTOR columns in/as:

• External Tables

• IOTs (neither as Primary Key nor as non-Key column)

• Clusters/Cluster Tables

• Global Temp Tables

• (Sub)Partitioning Key

• Primary Key

• Foreign Key

• Unique Constraint

• Check Constraint

• Default Value

• Modify Column

• MSSM tablespace (only SYS user can create VECTORs as Basicfiles in MSSM
tablespace)

• CQN queries

• Non-vector indexes such as B-tree, Bitmap, Reverse Key, Text, Spatial indexes, etc

Oracle Database does not support the following SQL constructs with VECTOR columns:

• Distinct, Count Distinct

• Order By, Group By

• Join condition

• Comparison operators (e.g. >, <, =) etc

Insert Vectors in a Database Table Using the INSERT Statement
Once you create a table with a VECTOR data type column, you can directly insert vectors into the
table using the INSERT statement.

The following examples assume you have already created vectors and know their values.

Here is a simple example:

DROP TABLE galaxies PURGE;
CREATE TABLE galaxies (id NUMBER, name VARCHAR2(50), doc VARCHAR2(500),
embedding VECTOR);

INSERT INTO galaxies VALUES (1, 'M31', 'Messier 31 is a barred spiral galaxy
in the Andromeda constellation which has a lot of barred spiral galaxies.',
'[0,2,2,0,0]');
INSERT INTO galaxies VALUES (2, 'M33', 'Messier 33 is a spiral galaxy in the

Chapter 4
Insert Vectors in a Database Table Using the INSERT Statement

4-3

Triangulum constellation.', '[0,0,1,0,0]');
INSERT INTO galaxies VALUES (3, 'M58', 'Messier 58 is an intermediate barred
spiral galaxy in the Virgo constellation.', '[1,1,1,0,0]');
INSERT INTO galaxies VALUES (4, 'M63', 'Messier 63 is a spiral galaxy in the
Canes Venatici constellation.', '[0,0,1,0,0]');
INSERT INTO galaxies VALUES (5, 'M77', 'Messier 77 is a barred spiral galaxy
in the Cetus constellation.', '[0,1,1,0,0]');
INSERT INTO galaxies VALUES (6, 'M91', 'Messier 91 is a barred spiral galaxy
in the Coma Berenices constellation.', '[0,1,1,0,0]');
INSERT INTO galaxies VALUES (7, 'M49', 'Messier 49 is a giant elliptical
galaxy in the Virgo constellation.', '[0,0,0,1,1]');
INSERT INTO galaxies VALUES (8, 'M60', 'Messier 60 is an elliptical galaxy in
the Virgo constellation.', '[0,0,0,0,1]');
INSERT INTO galaxies VALUES (9, 'NGC1073', 'NGC 1073 is a barred spiral
galaxy in Cetus constellation.', '[0,1,1,0,0]');
COMMIT;

Here is a more sophisticated example:

DROP TABLE doc_queries PURGE;
CREATE TABLE doc_queries (id NUMBER, query VARCHAR2(500), embedding VECTOR);

DECLARE
 e CLOB;
BEGIN
e:=
'[-7.73346797E-002,1.09683955E-002,4.68435362E-002,2.57333983E-002,6.95586428E
-00'||
'2,-2.43412293E-002,-7.25011379E-002,6.66433945E-002,3.78751606E-002,-2.223544
75E'||
'-002,3.02388351E-002,9.36625451E-002,-1.65204913E-003,3.50606232E-003,-5.4773
859'||
'7E-002,-7.5879097E-002,-2.72218436E-002,7.01764375E-002,-1.32512336E-003,3.14
728'||
'022E-002,-1.39147148E-001,-7.52705336E-002,2.62449421E-002,1.91645715E-002,4.
055'||
'73137E-002,5.83701171E-002,-3.26474942E-002,2.0509012E-002,-3.81141738E-003,-
7.1'||
'8656182E-002,-1.95893757E-002,-2.56917924E-002,-6.57705888E-002,-4.39117625E-
002'||
',-6.82357177E-002,1.26592368E-001,-3.46683599E-002,1.07687116E-001,-3.9695449
2E-'||
'002,-9.06721968E-003,-2.4109887E-002,-1.29214963E-002,-4.82468568E-002,-3.872
307'||
'76E-002,5.13443872E-002,-1.40985977E-002,-1.87066793E-002,-1.11725368E-002,9.
367'||
'76772E-002,-6.39425665E-002,3.13162468E-002,8.61801133E-002,-5.5481784E-002,4
.13'||
'125418E-002,2.0447813E-002,5.03717586E-002,-1.73418857E-002,3.94522659E-002,-
7.2'||
'6833269E-002,3.13266069E-002,1.2377765E-002,7.64856935E-002,-3.77447419E-002,
-6.'||
'41075056E-003,1.1455299E-001,1.75497644E-002,4.64923214E-003,1.89623125E-002,
9.1'||
'3506597E-002,-8.22509527E-002,-1.28537193E-002,1.495138E-002,-3.22528258E-002

Chapter 4
Insert Vectors in a Database Table Using the INSERT Statement

4-4

,-4'||
'.71280375E-003,-3.15563753E-003,2.20409594E-002,7.77796134E-002,-1.927099E-00
2,-'||
'1.24283969E-001,4.69769612E-002,1.78121701E-002,1.67152807E-002,-3.83916795E-
002'||
',-1.51029453E-002,2.10864041E-002,6.86845928E-002,-7.4719809E-002,1.17681816E
-00'||
'3,3.93113159E-002,6.04066066E-002,8.55340436E-002,3.68878953E-002,2.41579115E
-00'||
'2,-5.92489541E-002,-1.21883564E-002,-1.77226216E-002,-1.96259264E-002,8.51236
377'||
'E-003,1.43039867E-001,2.62829307E-002,2.96348184E-002,1.92485824E-002,7.66567
141'||
'E-002,-1.18600562E-001,3.01779062E-002,-5.88010997E-002,7.07774982E-002,-6.60
426'||
'617E-002,6.44619241E-002,1.29240509E-002,-2.51785964E-002,2.20869959E-004,-2.
514'||
'38171E-002,5.52265197E-002,8.65883753E-002,-1.83726232E-002,-8.13263431E-002,
1.1'||
'6624301E-002,1.63392909E-002,-3.54643688E-002,2.05128491E-002,4.67337575E-003
,1.'||
'20488718E-001,-4.89500947E-002,-3.80397178E-002,6.06209273E-003,-1.37961926E-
002'||
',4.68355882E-031,3.35873142E-002,6.20040558E-002,2.13472452E-002,-1.87379227E
-00'||
'3,-5.83158981E-004,-4.04266678E-002,2.40761992E-002,-1.93725452E-002,9.376372
4E-'||
'002,-3.02913114E-002,7.67844869E-003,6.11112304E-002,6.02455214E-002,-6.38855
845'||
'E-002,-8.03523697E-003,2.08786246E-003,-7.45898336E-002,8.74964818E-002,-5.02
371'||
'937E-002,-4.99385223E-003,3.37120108E-002,8.99377018E-002,1.09540671E-001,5.8
501'||
'102E-002,1.71627291E-002,-3.26152593E-002,8.36912021E-002,5.05600758E-002,-9.
737'||
'63615E-002,-1.40264994E-002,-2.07926836E-002,-4.20163684E-002,-5.97197041E-00
2,1'||
'.32461395E-002,2.26361351E-003,8.1473738E-002,-4.29272018E-002,-3.86809185E-0
02,'||
'-8.24682564E-002,-3.89646105E-002,1.9992901E-002,2.07321253E-002,-1.74706057E
-00'||
'2,4.50415723E-003,4.43851873E-002,-9.86309871E-002,-7.68082142E-002,-4.538143
05E'||
'-003,-8.90906602E-002,-4.54972908E-002,-5.71065396E-002,2.10020249E-003,1.224
947'||
'07E-002,-6.70659095E-002,-6.52298108E-002,3.92126441E-002,4.33384106E-002,4.3
899'||
'6181E-002,5.78813367E-002,2.95345876E-002,4.68395352E-002,9.15119275E-002,-9.
629'||
'58392E-003,-5.96637605E-003,1.58674959E-002,-6.74034096E-003,-6.00510836E-002
,2.'||
'67188111E-003,-1.10706768E-003,-6.34015873E-002,-4.80389707E-002,6.84534572E-
003'||
',-1.1547043E-002,-3.44865513E-003,1.18979132E-002,-4.31232266E-002,-5.9022788
E-0'||
'02,4.87607308E-002,3.95954074E-003,-7.95252472E-002,-1.82770658E-002,1.182642

Chapter 4
Insert Vectors in a Database Table Using the INSERT Statement

4-5

49E'||
'-002,-3.79164703E-002,3.87993976E-002,1.09805465E-002,2.29136664E-002,-7.2278
082'||
'4E-002,-5.31538352E-002,6.38669729E-002,-2.47980515E-003,-9.6999377E-002,-3.7
566'||
'7699E-002,4.06541862E-002,-1.69874367E-003,5.58868013E-002,-1.80723771E-033,-
6.6'||
'5985467E-003,-4.45010923E-002,1.77929532E-002,-4.8369132E-002,-1.49722975E-00
2,-'||
'3.97582203E-002,-7.05247298E-002,3.89178023E-002,-8.26886389E-003,-3.91006246
E-0'||
'02,-7.02963024E-002,-3.91333885E-002,1.76661201E-002,-5.09723537E-002,2.37749
107'||
'E-002,-1.83419678E-002,-1.2693027E-002,-1.14232123E-001,-6.68751821E-002,7.52
167'||
'869E-003,-9.94713791E-003,6.03599809E-002,6.61353692E-002,3.70595567E-002,-2.
019'||
'52495E-002,-2.40410417E-002,-3.36526595E-002,6.20064288E-002,5.50279953E-002,
-2.'||
'68641673E-002,4.35859226E-002,-4.57317568E-002,2.76936609E-002,7.88119733E-00
2,-'||
'4.78852056E-002,1.08523415E-002,-6.43479973E-002,2.0192951E-002,-2.09538229E-
002'||
',-2.2202393E-002,-1.0728148E-003,-3.09607089E-002,-1.67067181E-002,-6.0357227
9E-'||
'002,-1.58187654E-002,3.45828459E-002,-3.45360823E-002,-4.4002533E-003,1.77463
517'||
'E-002,6.68234832E-004,6.14458732E-002,-5.07084019E-002,-1.21073434E-002,4.195
981'||
'85E-002,3.69152687E-002,1.09461844E-002,1.83413982E-001,-3.89185362E-002,-5.1
846'||
'0497E-002,-8.71620141E-003,-1.17692262E-001,4.04785499E-002,1.07505821E-001,1
.41'||
'624091E-002,-2.57720836E-002,2.6652012E-002,-4.50568087E-002,-3.34110335E-002
,-1'||
'.11387551E-001,-1.29796984E-003,-6.51671961E-002,5.36890551E-002,1.0702607E-0
01,'||
'-2.34011523E-002,3.97406481E-002,-1.01149324E-002,-9.95831117E-002,-4.4019784
8E-'||
'002,6.88989647E-003,4.85475454E-003,-3.94048765E-002,-3.6099229E-002,-5.40755
13E'||
'-002,8.58292207E-002,1.0697281E-002,-4.70785573E-002,-2.96272673E-002,-9.4919
120'||
'9E-003,1.57316476E-002,-5.4926388E-002,6.49022609E-002,2.55531631E-002,-1.839
057'||
'17E-002,4.06873561E-002,4.74951901E-002,-1.22502812E-033,-4.6441108E-002,3.74
079'||
'868E-002,9.14599106E-004,6.09740615E-002,-7.67391697E-002,-6.32521287E-002,-2
.17'||
'353106E-002,2.45231949E-003,1.50869079E-002,-4.96984981E-002,-3.40828523E-002
,8.'||
'09691194E-003,3.31339166E-002,5.41345142E-002,-1.16213948E-001,-2.49572527E-0
02,'||
'5.00682592E-002,5.90037219E-002,-2.89178211E-002,8.01460445E-003,-3.41945067E
-00'||
'2,-8.60121697E-002,-6.20261126E-004,2.26721354E-002,1.28968194E-001,2.8765536

Chapter 4
Insert Vectors in a Database Table Using the INSERT Statement

4-6

8E-'||
'002,-2.20255274E-002,2.7228903E-002,-1.12029864E-002,-3.20301466E-002,4.98079
099'||
'E-002,2.89051589E-002,2.413591E-002,3.64605561E-002,6.26017479E-003,6.5463289
6E-'||
'002,1.11282602E-001,-3.60428065E-004,1.95987038E-002,6.16615731E-003,5.935930
46E'||
'-002,1.50377362E-003,2.95319762E-002,2.56325547E-002,-1.72190219E-002,-6.5816
819'||
'7E-002,-4.08149995E-002,2.7983617E-002,-6.80195764E-002,-3.52494679E-002,-2.9
840'||
'0577E-002,-3.04043181E-002,-1.9352382E-002,5.49411364E-002,8.74160081E-002,5.
614'||
'25127E-002,-5.60747795E-002,-3.43311466E-002,9.83581021E-002,2.01142877E-002,
1.3'||
'193069E-002,-3.22583504E-002,8.54402035E-002,-2.20514946E-002]';

INSERT INTO doc_queries VALUES (13, 'different methods of backup and
recovery', e);
COMMIT;
END;
/

You can also generate vectors by calling services outside the database or generate vectors
directly from within the database after you have imported pretrained embedding models.

See Also:

• Import Pretrained Models in ONNX Format for Vector Generation Within the
Database

• Convert Text String to Embedding

Load Vector Data Using SQL*Loader
Use these examples to understand how you can load character and binary vector data.

SQL*Loader supports loading VECTOR columns from character data and binary floating point
array fvec files. The format for fvec files is that each binary 32-bit floating point array is
preceded by a four (4) byte value, which is the number of elements in the vector. There can be
multiple vectors in the file, possibly with different dimensions. Export and import of a table with
vector datatype columns is supported in all the modes (FULL, SCHEMA, TABLES) using all
the available methods (access_method=direct_path, access_method=external_table,
access_method=automatic) for unloading/loading data.

• Load Character Vector Data Using SQL*Loader Example
In this example, you can see how to use SQL*Loader to load vector data into a five-
dimension vector space.

• Load Binary Vector Data Using SQL*Loader Example
In this example, you can see how to use SQL*Loader to load binary vector data files.

Chapter 4
Load Vector Data Using SQL*Loader

4-7

Load Character Vector Data Using SQL*Loader Example
In this example, you can see how to use SQL*Loader to load vector data into a five-dimension
vector space.

Let's imagine we have the following text documents classifying galaxies by their types:

• DOC1: "Messier 31 is a barred spiral galaxy in the Andromeda constellation which has a
lot of barred spiral galaxies."

• DOC2: "Messier 33 is a spiral galaxy in the Triangulum constellation."

• DOC3: "Messier 58 is an intermediate barred spiral galaxy in the Virgo constellation."

• DOC4: "Messier 63 is a spiral galaxy in the Canes Venatici constellation."

• DOC5: "Messier 77 is a barred spiral galaxy in the Cetus constellation."

• DOC6: "Messier 91 is a barred spiral galaxy in the Coma Berenices constellation."

• DOC7: "NGC 1073 is a barred spiral galaxy in Cetus constellation."

• DOC8: "Messier 49 is a giant elliptical galaxy in the Virgo constellation."

• DOC9: "Messier 60 is an elliptical galaxy in the Virgo constellation."

You can create vectors representing the preceding galaxy's classes using the following five-
dimension vector space based on the count of important words appearing in each document:

Table 4-1 Five dimension vector space

Galaxy
Classes

Intermediate Barred Spiral Giant Elliptical

M31 0 2 2 0 0

M33 0 0 1 0 0

M58 1 1 1 0 0

M63 0 0 1 0 0

M77 0 1 1 0 0

M91 0 1 1 0 0

M49 0 0 0 1 1

M60 0 0 0 0 1

NGC1073 0 1 1 0 0

This naturally gives you the following vectors:

• M31: [0,2,2,0,0]
• M33: [0,0,1,0,0]
• M58: [1,1,1,0,0]
• M63: [0,0,1,0,0]
• M77: [0,1,1,0,0]
• M91: [0,1,1,0,0]
• M49: [0,0,0,1,1]
• M60: [0,0,0,0,1]

Chapter 4
Load Vector Data Using SQL*Loader

4-8

• NGC1073: [0,1,1,0,0]
You can use SQL*Loader to load this data into the GALAXIES database table defined as:

drop table galaxies purge;
create table galaxies (id number, name varchar2(50), doc varchar2(500),
embedding vector);

Based on the data described previously, you can create the following galaxies_vec.csv file:

1:M31:Messier 31 is a barred spiral galaxy in the Andromeda constellation
which has a lot of barred spiral galaxies.:[0,2,2,0,0]:
2:M33:Messier 33 is a spiral galaxy in the Triangulum constellation.:
[0,0,1,0,0]:
3:M58:Messier 58 is an intermediate barred spiral galaxy in the Virgo
constellation.:[1,1,1,0,0]:
4:M63:Messier 63 is a spiral galaxy in the Canes Venatici constellation.:
[0,0,1,0,0]:
5:M77:Messier 77 is a barred spiral galaxy in the Cetus constellation.:
[0,1,1,0,0]:
6:M91:Messier 91 is a barred spiral galaxy in the Coma Berenices
constellation.:[0,1,1,0,0]:
7:M49:Messier 49 is a giant elliptical galaxy in the Virgo constellation.:
[0,0,0,1,1]:
8:M60:Messier 60 is an elliptical galaxy in the Virgo constellation.:
[0,0,0,0,1]:
9:NGC1073:NGC 1073 is a barred spiral galaxy in Cetus constellation.:
[0,1,1,0,0]:

Here is a possible SQL*Loader control file galaxies_vec.ctl:

recoverable
LOAD DATA
infile 'galaxies_vec.csv'
INTO TABLE galaxies
fields terminated by ':'
trailing nullcols
(
id,
name char (50),
doc char (500),
embedding char (32000)
)

After you have created the two files galaxies_vec.csv and galaxies_vec.ctl, you can
run the following sequence of instructions directly from your favorite SQL command line tool:

host sqlldr vector/vector@CDB1_PDB1 control=galaxies_vec.ctl
log=galaxies_vec.log

SQL*Loader: Release 23.0.0.0.0 - Development on Thu Jan 11 19:46:21 2024
Version 23.4.0.23.00

Copyright (c) 1982, 2024, Oracle and/or its affiliates. All rights reserved.

Chapter 4
Load Vector Data Using SQL*Loader

4-9

Path used: Conventional
Commit point reached - logical record count 10

Table GALAXIES2:
 9 Rows successfully loaded.

Check the log file:
 galaxies_vec.log
for more information about the load.

SQL>

select * from galaxies;

 ID NAME DOC
EMBEDDING
--- ------ --

 1 M31 Messier 31 is a barred spiral galaxy in the Andromeda ...
[0,2.0E+000,2.0E+000,0,0]
 2 M33 Messier 33 is a spiral galaxy in the Triangulum ...
[0,0,1.0E+000,0,0]
 3 M58 Messier 58 is an intermediate barred spiral galaxy ...
[1.0E+000,1.0E+000,1.0E+000,0,0]
 4 M63 Messier 63 is a spiral galaxy in the Canes Venatici ...
[0,0,1.0E+000,0,0]
 5 M77 Messier 77 is a barred spiral galaxy in the Cetus ...
[0,1.0E+000,1.0E+000,0,0]
 6 M91 Messier 91 is a barred spiral galaxy in the Coma ...
[0,1.0E+000,1.0E+000,0,0]
 7 M49 Messier 49 is a giant elliptical galaxy in the Virgo ...
[0,0,0,1.0E+000,1.0E+000]
 8 M60 Messier 60 is an elliptical galaxy in the Virgo ...
[0,0,0,0,1.0E+000]
 9 NGC1073 NGC 1073 is a barred spiral galaxy in Cetus ...
[0,1.0E+000,1.0E+000,0,0]

9 rows selected.

SQL>

Here is the resulting log file for this load (galaxies_vec.log):

cat galaxies_vec.log

SQL*Loader: Release 23.0.0.0.0 - Development on Thu Jan 11 19:46:21 2024
Version 23.4.0.23.00

Copyright (c) 1982, 2024, Oracle and/or its affiliates. All rights reserved.

Control File: galaxies_vec.ctl
Data File: galaxies_vec.csv
 Bad File: galaxies_vec.bad
 Discard File: none specified

Chapter 4
Load Vector Data Using SQL*Loader

4-10

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 250 rows, maximum of 1048576 bytes
Continuation: none specified
Path used: Conventional

Table GALAXIES, loaded from every logical record.
Insert option in effect for this table: INSERT
TRAILING NULLCOLS option in effect

Column Name Position Len Term Encl Datatype
----------- ---------- ----- ---- ---- ----------
ID FIRST * : CHARACTER
NAME NEXT 50 : CHARACTER
DOC NEXT 500 : CHARACTER
EMBEDDING NEXT 32000 : CHARACTER

value used for ROWS parameter changed from 250 to 31

Table GALAXIES2:
 9 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.

Space allocated for bind array: 1017234 bytes(31 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 9
Total logical records rejected: 0
Total logical records discarded: 1

Run began on Thu Jan 11 19:46:21 2024
Run ended on Thu Jan 11 19:46:24 2024

Elapsed time was: 00:00:02.43
CPU time was: 00:00:00.03
$

Note:

This example uses embedding char (32000) vectors. For very large vectors, you can
use the LOBFILE feature

Related Topics

• Loading LOB Data from LOBFILEs

Chapter 4
Load Vector Data Using SQL*Loader

4-11

Load Binary Vector Data Using SQL*Loader Example
In this example, you can see how to use SQL*Loader to load binary vector data files.

The vectors in a binary (fvec) file are stored in raw 32-bit Little Endian format.

Each vector takes 4+d*4 bytes for the .fvecs file where the first 4 bytes indicate the
dimensionality (d) of the vector (that is, the number of dimensions in the vector) followed by
d*4 bytes representing the vector data, as described in the following table:

Table 4-2 Fields for Vector Dimensions and Components

Field Field Type Description

d int The vector dimension

components array of floats The vector components

For binary fvec files, they must be defined as follows:

• You must specify LOBFILE.

• You must specify the syntax format fvecs to indicate that the dafafile contains binary
dimensions.

• You must specify that the datafile contains raw binary data (raw).

The following is an example of a control file used to load VECTOR columns from binary floating
point arrays using the galaxies vector example described in Understand Hierarchical Navigable
Small World Indexes, but in this case importing fvecs data, using the control file syntax format
"fvecs":

Note:

SQL*Loader supports loading VECTOR columns from character data and binary
floating point array fvec files. The format for fvec files is that each binary 32-bit
floating point array is preceded by a four (4) byte value, which is the number of
elements in the vector. There can be multiple vectors in the file, possibly with
different dimensions.

LOAD DATA
infile 'galaxies_vec.csv'
INTO TABLE galaxies
fields terminated by ':'
trailing nullcols
(
id,
name char (50),
doc char (500),
embedding lobfile (constant '/u01/data/vector/embedding.fvecs' format
"fvecs") raw
)

Chapter 4
Load Vector Data Using SQL*Loader

4-12

The data contained in galaxies_vec.csv in this case does not have the vector data. Instead,
the vector data will be read from the secondary LOBFILE in the /u01/data/vector directory
(/u01/data/vector/embedding.fvecs), which contains the same information in float32
floating point binary numbers, but is in fvecs format:

1:M31:Messier 31 is a barred spiral galaxy in the Andromeda constellation
which has a lot of barred spiral galaxies.:
2:M33:Messier 33 is a spiral galaxy in the Triangulum constellation.:
3:M58:Messier 58 is an intermediate barred spiral galaxy in the Virgo
constellation.:
4:M63:Messier 63 is a spiral galaxy in the Canes Venatici constellation.:
5:M77:Messier 77 is a barred spiral galaxy in the Cetus constellation.:
6:M91:Messier 91 is a barred spiral galaxy in the Coma Berenices
constellation.:
7:M49:Messier 49 is a giant elliptical galaxy in the Virgo constellation.:
8:M60:Messier 60 is an elliptical galaxy in the Virgo constellation.:
9:NGC1073:NGC 1073 is a barred spiral galaxy in Cetus constellation.:

Unload and Load Vectors Using Oracle Data Pump
Starting with Oracle Database 23ai, Oracle Data Pump enables you to use multiple
components to load and unload vectors to databases.

Oracle Data Pump technology enables very high-speed movement of data and metadata from
one database to another. Oracle Data Pump is made up of three distinct components:
Command-line clients, expdp and impdp; the DBMS_DATAPUMP PL/SQL package (also
known as the Data Pump API); and the DBMS_METADATA PL/SQL package (also known as
the Metadata API).

Unloading and Loading a table with vector datatype columns is supported in all modes (FULL,
SCHEMA, TABLES) using all the available access methods (DIRECT_PATH, EXTERNAL_TABLE,
AUTOMATIC, INSERT_AS_SELECT).

Examples Vector Export and Import Syntax

expdp <username>/<password>@<Database-instance-TNS-alias> dumpfile=<dumpfile-
name>.dmp directory=<directory-name> full=y metrics=y
access_method=direct_path

expdp <username>/<password>@<Database-instance-TNS-alias> dumpfile=<dumpfile-
name>.dmp directory=<directory-name> schemas=<schema-name> metrics=y
access_method=external_table

expdp <username>/<password>@<Database-instance-TNS-alias> dumpfile=<dumpfile-
name>.dmp directory=<directory-name> tables=<schema-name>.<table-name>
metrics=y access_method=direct_path

impdp <username>/<password>@<Database-instance-TNS-alias> dumpfile=<dumpfile-
name>.dmp directory=<directory-name> metrics=y access_method=direct_path

Chapter 4
Unload and Load Vectors Using Oracle Data Pump

4-13

Note:

• TABLE_EXISTS_ACTION=APPEND | TRUNCATE can only be used with the
EXTERNAL_TABLE access method.

• TABLE_EXISTS_ACTION=APPEND | TRUNCATE can load VECTOR column data into a
VARCHAR2 column if the conversion can fit into that VARCHAR2.

• TABLE_EXISTS_ACTION=APPEND | TRUNCATE can only load a VECTOR column with
the source VECTOR data dimasion that matches that loaded VECTOR column's
dimension. If the dimension does not match, then an error is raised.

• TABLE_EXISTS_ACTION=REPLACE supports any access method.

• It is not possible to use a the transportable tablespace mode with vector indexes.
However, this mode supports tables with the VECTOR datatype.

Related Topics

• Overview of Oracle Data Pump

• DBMS_DATAPUMP

• DBMS_METADATA

Chapter 4
Unload and Load Vectors Using Oracle Data Pump

4-14

5
Create Vector Indexes

You may want to create vector indexes on your vector embeddings and use these indexes for
running similarity searches over huge vector spaces.

Vector indexes are a class of specialized indexing data structures that are designed to
accelerate similarity searches using high-dimensional vectors. They use techniques such as
clustering, partitioning, and neighbor graphs to group vectors representing similar items, which
drastically reduces the search space, thereby making the search process extremely efficient.

• Size the Vector Pool
To allow vector index creation, you must enable a new memory area stored in the SGA
called the Vector Pool.

• Manage the Different Categories of Vector Indexes
Learn how vector indexing methods make vector searches faster and how to enable vector
indexes creation.

Size the Vector Pool
To allow vector index creation, you must enable a new memory area stored in the SGA called
the Vector Pool.

The Vector Pool is a memory allocated in SGA to store Hierarchical Navigable Small World
(HNSW) vector indexes and all associated metadata. It is also used to speed up Inverted Flat
File (IVF) index creation as well as DML operations on base tables with IVF indexes.

Enabling a Vector Pool is illustrated in the following diagram:

5-1

Figure 5-1 Vector Pool

To size the Vector Pool, use the VECTOR_MEMORY_SIZE initialization parameter. You can
dynamically modify this parameter at the following levels:

• At the CDB level VECTOR_MEMORY_SIZE specifies the current size of the Vector Pool.
Reducing the parameter value will fail if there is current vector usage.

• At the PDB level VECTOR_MEMORY_SIZE specifies the maximum Vector Pool usage
allowed by a PDB. Reducing the parameter value will be allowed even if current vector
usage exceeds the new quota.

You can change the value of a parameter in a parameter file in the following ways:

• By editing an initialization parameter file. In most cases, the new value takes effect the
next time you start an instance of the database.

• By issuing an ALTER SYSTEM SET ... SCOPE=SPFILE statement to update a server
parameter file.

• By issuing an ALTER SYSTEM RESET statement to clear an initialization parameter value and
set it back to its default value.

Here is an example of how to change the value for VECTOR_MEMORY_SIZE at the PDB level if you
are using an SPFILE:

SQL> show con_name
CON_NAME

MYPDB1

Chapter 5
Size the Vector Pool

5-2

SQL> show user
USER is "SYS"

SQL> show parameter vector_memory_size
NAME TYPE VALUE
------------------ ----------- -----
vector_memory_size big integer 500M

SQL> SELECT ISPDB_MODIFIABLE
 2 FROM V$SYSTEM_PARAMETER
 3* WHERE NAME='vector_memory_size';

ISPDB_MODIFIABLE

TRUE

SQL> ALTER SYSTEM SET vector_memory_size=1G SCOPE=BOTH;

System altered.

SQL> show parameter vector_memory_size

NAME TYPE VALUE
------------------- ----------- -------
vector_memory_size big integer 1G
SQL>

For more information about changing initialization parameter values, see Managing
Initialization Parameters Using a Server Parameter File

V$VECTOR_MEMORY_POOL, is the view you can query to monitor the Vector Pool.

See Also:

• Vector Memory Pool Views

Manage the Different Categories of Vector Indexes
Learn how vector indexing methods make vector searches faster and how to enable vector
indexes creation.

There are two ways to make vector searches faster:

• Reduce the search scope by clustering vectors (nearest neighbors) into structures based
on certain attributes and restricting the search to closest clusters.

• Reduce the vector size by reducing the number of bits representing vectors values.

Oracle AI Vector Search supports the following categories of vector indexing methods based
on approximate nearest-neighbors (ANN) search:

• In-Memory Neighbor Graph Vector Index

• Neighbor Partition Vector Index

Chapter 5
Manage the Different Categories of Vector Indexes

5-3

The distance function used to create and search the index should be the one recommended by
the embedding model used to create the vectors. You can specify this distance function at the
time of index creation or when you perform a similarity search using the VECTOR_DISTANCE()
function. If you use a different distance function than the one used to create the index, an exact
match is triggered because you cannot use the index in this case.

Note:

• Oracle AI Vector Search indexes supports the same distance metrics as the
VECTOR_DISTANCE() function. COSINE is the default metric if you do not specify
any metric at the time of index creation or during a similarity search using the
VECTOR_DISTANCE() function.

• You should always define the distance metric in an index based on the distance
metric used by the embedding model you are using.

• In-Memory Neighbor Graph Vector Index
Hierarchical Navigable Small World (HNSW) is the only type of In-Memory Neighbor Graph
vector index supported. HNSW graphs are very efficient indexes for vector approximate
similarity search. HNSW graphs are structured using principles from small world networks
along with layered hierarchical organization.

• Neighbor Partition Vector Index
Inverted File Flat (IVF) index is the only type of Neighbor Partition vector index supported.
Inverted File Flat Index (IVF Flat or simply IVF) is a partitioned-based index which balance
high search quality with reasonable speed.

• Guidelines for Using Vector Indexes
Use these guidelines to create and use Hierarchical Navigable Small World (HNSW) or
Inverted File Flat (IVF) vector indexes.

• Index Accuracy Report
The index accuracy reporting feature lets you determine the accuracy of your vector
indexes.

In-Memory Neighbor Graph Vector Index
Hierarchical Navigable Small World (HNSW) is the only type of In-Memory Neighbor Graph
vector index supported. HNSW graphs are very efficient indexes for vector approximate
similarity search. HNSW graphs are structured using principles from small world networks
along with layered hierarchical organization.

• Understand Hierarchical Navigable Small World Indexes
The default type of index created for an In-Memory Neighbor Graph vector index is
Hierarchical Navigable Small World (HNSW). Use these examples to understand how to
create HNSW indexes for vector approximate similarity searches.

• Hierarchical Navigable Small World Index Syntax and Parameter
Syntax for Hierarchical Navigable Small World Index

Understand Hierarchical Navigable Small World Indexes
The default type of index created for an In-Memory Neighbor Graph vector index is
Hierarchical Navigable Small World (HNSW). Use these examples to understand how to create
HNSW indexes for vector approximate similarity searches.

Chapter 5
Manage the Different Categories of Vector Indexes

5-4

With Navigable Small World (NSW), the idea is to build a proximity graph where each vector in
the graph connects to several others based on three characteristics:

• The distance between vectors

• The maximum number of closest vector candidates considered at each step of the search
during insertion (EFCONSTRUCTION)

• Within the maximum number of connections (NEIGHBORS) permitted per vector

If the combination of the above two thresholds is too high, then you may end up with a densely
connected graph, which can slow down the search process. On the other hand, if the
combination of those thresholds is too low, then the graph may become too sparse and/or
disconnected, which makes it challenging to find a path between certain vectors during the
search.

Navigable Small World (NSW) graph traversal for vector search begins with a predefined entry
point in the graph, accessing a cluster of closely related vectors. The search algorithm employs
two key lists: Candidates, a dynamically updated list of vectors that we encounter while
traversing the graph, and Results, which contains the vectors closest to the query vector found
thus far. As the search progresses, the algorithm navigates through the graph, continually
refining the Candidates by exploring and evaluating vectors that might be closer than those in
the Results. The process concludes once there are no vectors in the Candidates closer than
the farthest in the Results, indicating a local minimum has been reached and the closest
vectors to the query vector have been identified.

This is illustrated in the following graphic:

Figure 5-2 Navigable Small World Graph

The described method demonstrates robust performance up to a certain scale of vector
insertion into the graph. Beyond this threshold, the Hierarchical Navigable Small World
(HNSW) approach enhances the NSW model by introducing a multi-layered hierarchy, akin to
the structure observed in Probabilistic Skip Lists. This hierarchical architecture is implemented
by distributing the graph's connections across several layers, organizing them in a manner
where each subsequent layer contains a subset of the links from the layer below. This
stratification ensures that the top layers capture long-distance links, effectively serving as
express pathways across the graph, while the lower layers focus on shorter links, facilitating
fine-grained, local navigation. As a result, searches begin at the higher layers to quickly
approximate the region of the target vector, progressively moving to lower layers for a more

Chapter 5
Manage the Different Categories of Vector Indexes

5-5

precise search, significantly improving search efficiency and accuracy by leveraging shorter
links (smaller distances) between vectors as one moves from the top layer to the bottom.

To better understand how this works for HNSW, let's look at how this hierarchy is used for the
Probability Skip List structure:

Figure 5-3 Probability Skip List Structure

The Probability Skip List structure uses multiple layers of linked lists where the above layers
are skipping more numbers than the lower ones. In this example, you are trying to search for
number 17. You start with the top layer and jump to the next element until you either find 17,
reach the end of the list, or you find a number that is greater than 17. When you reach the end
of a list or you find a number greater than 17, then you start in the previous layer from the
latest number less than 17.

HNSW uses the same principle with NSW layers where you find greater distances between
vectors in the higher layers. This is illustrated by the following diagrams in a 2D space:

At the top layer are the longest edges and at the bottom layer are the shortest ones.

Figure 5-4 Hierarchical Navigable Small World Graphs

Chapter 5
Manage the Different Categories of Vector Indexes

5-6

Starting from the top layer, the search in one layer starts at the entry vector. Then for each
node, if there is a neighbor that is closer to the query vector than the current node, it jumps to
that neighbor. The algorithm keeps doing this until it finds a local minimum for the query vector.
When a local minimum is found in one layer, the search goes to the next layer by using the
same vector in that new layer and the search continues in that layer. This process repeats itself
until the local minimum of the bottom layer is found, which contains all the vectors. At this
point, the search is transformed into an approximate similarity search using the NSW algorithm
around that latest local minimum found to extract the top k most similar vectors to your query
vector. While the upper layers can have a maximum of connections for each vector set by the
NEIGHBORS parameter, layer 0 can have twice as much. This process is illustrated in the
following graphic:

Figure 5-5 Hierarchical Navigable Small World Graphs Search

Layers are implemented using in-memory graphs (not Oracle Inmemory graph). Each layer
uses a separate in-memory graph. As already seen, when creating an HNSW index, you can
fine tune the maximum number of connections per vector in the upper layers using
the NEIGHBORS parameter as well as the maximum number of closest vector candidates
considered at each step of the search during insertion using the EFCONSTRUCTION parameter,
where EF stands for Enter Factor.

As explained earlier, when using Oracle AI Vector Search to run an approximate search query
using HNSW indexes, you have the possibility to specify a target accuracy at which the
approximate search should be performed. In the case of an HNSW approximate search, you
can specify a target accuracy percentage value to influence the number of candidates
considered to probe the search. This is automatically calculated by the algorithm. A value of
100 will tend to impose a similar result as an exact search, although the system may still use
the index and will not perform an exact search. The optimizer may choose to still use an index
as it may be faster to do so given the predicates in the query. Instead of specifying a target
accuracy percentage value, you can specify the EFSEARCH parameter to impose a certain
maximum number of candidates to be considered while probing the index. The higher that
number, the higher the accuracy.

Chapter 5
Manage the Different Categories of Vector Indexes

5-7

Note:

• If you do not specify any target accuracy in your approximate search query, then
you will inherit the one set when the index was created. You will see that at index
creation, you can specify a target accuracy either using a percentage value or
parameters values depending on the index type you are creating.

• It is possible to specify a different target accuracy at index search compared to
the one set at index creation. For HNSW indexes, you may look at more
neighbors using the EFSEARCH parameter (higher than the EFCONSTRUCTION
value specified at index creation) to get more accurate results. The target
accuracy that you give during index creation decides the index creation
parameters and also acts as the default accuracy values for vector index
searches.

Hierarchical Navigable Small World Index Syntax and Parameter
Syntax for Hierarchical Navigable Small World Index

Syntax

CREATE VECTOR INDEX vector_index_name
 ON table_name (vector_column)
 [GLOBAL] ORGANIZATION INMEMORY NEIGHBOR GRAPH
 [WITH] [DISTANCE metric name]
 [WITH TARGET ACCURACY percentage_value]
 [PARAMETERS (TYPE
 { HNSW , { NEIGHBORS max_closest_vectors_connected
 | M
max_closest_vectors_connected }
 , EFCONSTRUCTION max_candidates_to_consider
 |
 IVF , { NEIGHBOR PARTITIONS number_of_partitions
 | SAMPLE_PER_PARTITION number_of_samples
 | MIN_VECTORS_PER_PARTITION
min_number_of_vectors_per_partition }
 }
]
 [PARALLEL degree_of_parallelism]

For detailed information, see CREATE VECTOR INDEX in Oracle Database SQL Language
Reference

Neighbor Partition Vector Index
Inverted File Flat (IVF) index is the only type of Neighbor Partition vector index supported.
Inverted File Flat Index (IVF Flat or simply IVF) is a partitioned-based index which balance high
search quality with reasonable speed.

Chapter 5
Manage the Different Categories of Vector Indexes

5-8

• Understand Inverted File Flat Vector Indexes
The default type of index created for a Neighbor Partition vector index is Inverted File Flat
(IVF) vector index. The IVF index is a technique designed to enhance search efficiency by
narrowing the search area through the use of neighbor partitions or clusters.

• Inverted File Flat Index Syntax and Parameter
Syntax for Inverted File Flat Index

Understand Inverted File Flat Vector Indexes
The default type of index created for a Neighbor Partition vector index is Inverted File Flat (IVF)
vector index. The IVF index is a technique designed to enhance search efficiency by narrowing
the search area through the use of neighbor partitions or clusters.

The following diagrams depict how partitions or clusters are created in an approximate search
done using a 2D space representation. But this can be generalized to much higher dimensional
spaces.

Figure 5-6 Inverted File Flat Index Using 2D

Crosses represent the vector data points in this space.

New data points, shown as small plain circles, are added to identify k partition centroids, where
the number of centroids (k) is determined by the size of the dataset (n). Typically k is set to the
square root of n, though it can be adjusted by specifying the NEIGHBOR PARTITIONS parameter
during index creation.

Each centroid represents the average vector (center of gravity) of the corresponding partition.

The centroids are calculated by a training pass over the vectors whose goal is to minimize the
total distance of each vector from the closest centroid.

Chapter 5
Manage the Different Categories of Vector Indexes

5-9

The centroids ends up partitioning the vector space into k partitions. This division is
conceptually illustrated as expanding circles from the centroids that stop growing as they meet,
forming distinct partitions.

Figure 5-7 Inverted File Flat Index

Except for those on the periphery, each vector falls within a specific partition associated with a
centroid.

Chapter 5
Manage the Different Categories of Vector Indexes

5-10

Figure 5-8 Inverted File Flat Index

For a query vector vq, the search algorithm identifies the nearest i centroids, where i defaults
to the square root of k but can be adjusted for a specific query by setting the NEIGHBOR
PARTITION PROBES parameter. This adjustment allows for a trade-off between search speed
and accuracy.

Higher numbers for this parameter will result in higher accuracy. In this example, i is set to 2
and the two identified partitions are partitions number 1 and 3.

Chapter 5
Manage the Different Categories of Vector Indexes

5-11

Figure 5-9 Inverted File Flat Index

Once the i partitions are determined, they are fully scanned to identify, in this example, the top
5 nearest vectors. This number 5 can be different from k and you specify this number in your
query. The five nearest vectors to vq found in partitions number 1 and 3 are highlighted in the
following diagram.

This method constitutes an approximate search as it limits the search to a subset of partitions,
thereby accelerating the process but potentially missing closer vectors in unexamined
partitions. This example illustrates that an approximate search might not yield the exact
nearest vectors to vq, demonstrating the inherent trade-off between search efficiency and
accuracy.

Chapter 5
Manage the Different Categories of Vector Indexes

5-12

Figure 5-10 Inverted File Flat Index

However, the five exact nearest vectors from vq are not the ones found by the approximate
search. You can see that one of the vectors in partition number 4 is closer to vq than one of the
retrieved vectors in partition number 3.

Figure 5-11 Inverted File Flat Index

Chapter 5
Manage the Different Categories of Vector Indexes

5-13

You can now see why using vector index searches is not always an exact search and is called
an approximate search instead. In this example, the approximate search accuracy is only 80%
as it has retrieved only 4 out of 5 of the exact search vectors' result.

Figure 5-12 Inverted File Flat Index

When using Oracle AI Vector Search to run an approximate search query using vector indexes,
you have the possibility to specify a target accuracy at which the approximate search should
be performed. In the case of an IVF approximate search, you can specify a target accuracy
percentage value to influence the number of partitions used to probe the search. This is
automatically calculated by the algorithm. A value of 100 will tend to impose an exact search,
although the system may still use the index and will not perform an exact search. The optimizer
may choose to still use an index as it may be faster to do so given the predicates in the query.
Instead of specifying a target accuracy percentage value, you can specify the NEIGHBOR
PARTITION PROBES parameter to impose a certain maximum number of partitions to be
probed by the search. The higher that number, the higher the accuracy.

Chapter 5
Manage the Different Categories of Vector Indexes

5-14

Note:

• If you do not specify any target accuracy in your approximate search query, then
you will inherit the one set when the index was created. You will see that at index
creation time, you can specify a target accuracy either using a percentage value
or parameters values depending on the type of index you are creating.

• It is possible to specify a different target accuracy at index search, compared to
the one set at index creation. For IVF indexes, you may probe more centroid
partitions using the NEIGHBOR PARTITION PROBES parameter to get more
accurate results. The target accuracy that you provide during index creation
decides the index creation parameters and also acts as the default accuracy
value for vector index searches.

Inverted File Flat Index Syntax and Parameter
Syntax for Inverted File Flat Index

Syntax

CREATE VECTOR INDEX <vector index name>
ON <table name> (<vector column>)
[GLOBAL] ORGANIZATION NEIGHBOR PARTITIONS
[WITH] [DISTANCE <metric name>]
[WITH TARGET ACCURACY <percentage value>
[PARAMETERS (TYPE IVF, { NEIGHBOR PARTITIONS <number of partitions> |
SAMPLE_PER_PARTITION
 <number of samples> | MIN_VECTORS_PER_PARTITION <minimum number of
vectors per partition>
})]]
[PARALLEL <degree of parallelism>];

Parameter

NEIGHBOR PARTITIONS determines the target number of centroid partitions that are created
by the index.

SAMPLE_PER_PARTITION decides the total number of vectors that are passed to the
clustering algorithm (samples_per_partition * neighbor_partitions). Passing all the vectors
could significantly increase the total index creation time. The goal is to pass in a subset of
vectors that can capture the data distribution.

MIN_VECTORS_PER_PARTITION represents the target minimum number of vectors per
partition. The goal is to trim out any partition that can end up with few vectors (<= 100).

The valid range for IVF vector index parameters are:

• ACCURACY: > 0 and <= 100

• DISTANCE: EUCLIDEAN, L2_SQUARED (aka EUCLIDEAN_SQUARED), COSINE, DOT,
MANHATTAN, HAMMING

• TYPE: IVF

• NEIGHBOR PARTITIONS: >0 and <= 10000000

Chapter 5
Manage the Different Categories of Vector Indexes

5-15

• SAMPLE_PER_PARTITION: from 1 to (num_vectors/neighbor_partitions)

• MIN_VECTORS_PER_PARTITION: from 0 (no trimming of centroid partitions) to total number of
vectors (would result in 1 centroid partition)

Examples

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION
NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 95;

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION
NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type IVF, neighbor partitions 10);

Guidelines for Using Vector Indexes
Use these guidelines to create and use Hierarchical Navigable Small World (HNSW) or
Inverted File Flat (IVF) vector indexes.

Create Index Guidelines

The minimum information required to create a vector index is to specify one VECTOR data
type table column and a vector index type: INMEMORY NEIGHBOR GRAPH for HNSW and NEIGHBOR
PARTITIONS for IVF. However, you also have the possibility to specify more information, such
as the following:

• You can optionally provide more information including the distance metric to use.
Supported metrics are EUCLIDEAN SQUARED, EUCLIDEAN, COSINE, DOT, MANHATTAN, and
HAMMING. If not specified, COSINE is used by default.

• Specific parameters that impact the accuracy of index creation and approximate searches.
A target accuracy percentage value and, NEIGHBORS (or M) and EFCONSTRUCTION for HNSW
and NEIGHBOR PARTITIONS for IVF.

• You can create globally partitioned vector indexes.

• You can also specify the degree of parallelism to use for index creation.

You cannot currently define a VECTOR index on:

• External tables

• IOTs

• Clusters/Cluster tables

• Global Temp tables

• Blockchain tables

• Materialized views

• Non-vector columns (VARCHAR, NUMBER, and so on.)

• Function-based vector index

• Sharded tables

Chapter 5
Manage the Different Categories of Vector Indexes

5-16

You can find information about your vector indexes by looking at ALL_INDEXES, DBA_INDEXES,
and USER_INDEXES family of views. The columns of interest are INDEX_TYPE (VECTOR) and
INDEX_SUBTYPE (INMEMORY_NEIGHBOR_GRAPH_HNSW or NEIGHBOR_PARTITIONS_IVF). In the case
the index is not a vector index, INDEX_SUBTYPE is NULL.

See VECSYS.VECTOR$INDEX for detailed information about vector indexes.

Note:

• The VECTOR column is designed to be extremely flexible to support vectors of any
number of dimensions and any format for the vector dimensions. However, you
can create a vector index only on a VECTOR column containing vectors that all
have the same number of dimensions. This is required as you can't compute
distances over vectors with different dimensions. For example, if a VECTOR
column is defined as VECTOR(*, FLOAT32), and two vectors with different
dimensions (128 and 256 respectively) are inserted in that column. When you try
to create the vector index on that column, you will get an error.

• You can only create one type of vector index per vector column.

• Oracle recommends that you allocate larger, temporary tablespaces for proper
Inverted File Flat (IVF) vector index creation with big vector spaces and vector
sizes. In such cases, the system internally makes extensive use of temporary
space.

• If you are running your Oracle Database on a RAC environment, you cannot
create HNSW indexes. On a non-RAC single instance environment, you can
create both HNSW and IVF indexes. Using HNSW is the preferred type if it fits
entirely into memory.

• On a RAC environment you can set up a vector pool on each instance for the
best performance of IVF indexes.

Use Index Guidelines

For the Oracle Database Optimizer to consider a vector index, you must ensure to verify these
conditions in your SQL statements:

• The similarity search SQL query must include the APPROX or APPROXIMATE keyword.

• The vector index must exist.

• The distance function for the index must be the same as the distance function used in the
vector_distance() function.

• If the vector index DDL does not specify the distance function and the vector_distance()
function uses COSINE, DOT, MANHATTAN or HAMMING, then the vector index is not used.

• If the vector index DDL uses the DOT distance function and the vector_distance()
function uses the default distance function [COSINE], then the vector index is not used.

• The vector_distance() must not be encased in another SQL function.

• If using the partition row-limiting clause, then the vector index is not used.

• Index accuracy with an IVF index may diminish over time due to DML operations being
performed on the underlying table. You can check for this by using the
INDEX_ACCURACY_QUERY function provided by the DBMS_VECTOR package. In such a case, the
index can be rebuild using the REBUILD_INDEX function also provided by the DBMS_VECTOR

Chapter 5
Manage the Different Categories of Vector Indexes

5-17

package. See Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_VECTOR and its subprograms.

• After an HNSW vector index is created, DML operations are not permitted on the indexed
table. DML operations are supported when using IVF indexes.

Note:

When the database instance is restarted, the existing HNSW indexes must be rebuilt
as these structures are inmemory-only structures. There are three options for you to
recreate an HNSW vector index after a restart:

• Manually drop the index and create it again. This requires you to remember and
provide the original index creation parameters.

• DBMS_VECTOR.REBUILD_INDEX: This procedure uses the DBMS_METADATA.GET_DDL
function to get all of the index creation parameters. You may override the
parameters by passing their values into the procedure. For more information
about the DBMS_VECTOR.REBUILD procedure, see Oracle Database PL/SQL
Packages and Types Reference.

• Automatic reload: The VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD initialization
parameter is set to OFF by default. If set to RESTART, the system automatically
loads the HNSW indexes one by one through a background task. It will use the
same parallelism and the index creation parameters that you had specified
during the original HNSW index creation.

Note:

Except for ALTER TABLE tab SUBPARTITION/PARTITION (RANGE/LIST) with or without
Update Global Indexes, global vector indexes are marked as unusable as part of
other Partition Management Operations on a partitioned table. In those cases you
must manually rebuild the global vector indexes.

Index Accuracy Report
The index accuracy reporting feature lets you determine the accuracy of your vector indexes.

Accuracy of One Specific Query Vector

After a vector index is created, you may be interested to know how accurate your vector
searches are. One possibility might be to run two queries using the same query vector, that is,
one performing an approximate search using a vector index and the other performing an exact
search without an index. Then, you need to manually compare the results to determine the real
accuracy of your index.

Instead, you can use an index accuracy report provided by the
DBMS_VECTOR.INDEX_ACCURACY_QUERY procedure. This procedure provides an accuracy report
for a top-K index search for a specific query vector and a specific target accuracy.

Here is a usage example of this procedure using our galaxies scenario:

declare
 q_v VECTOR;

Chapter 5
Manage the Different Categories of Vector Indexes

5-18

 report varchar2(128);
begin
 q_v := to_vector('[0,1,1,0,0]');
 report := dbms_vector.index_accuracy_query(
 OWNER_NAME => 'COSMOS',
 INDEX_NAME => 'GALAXIES_HNSW_IDX',
 qv => q_v, top_K =>10,
 target_accuracy =>90);
 dbms_output.put_line(report);
end;
/

The preceding example computes the top-10 accuracy of the GALAXIES_HNSW_IDX vector index
using the embedding corresponding to the NGC 1073 galaxy and a 90% accuracy requested.

The index accuracy report for this may look like:

Accuracy achieved (100%) is 10% higher than the Target Accuracy requested
(90%)

The possible parameters are:

• owner_name: Index owner name

• index_name: Index name

• qv: Query vector

• top_K: Top K value for accuracy computation

• target_accuracy: Target accuracy for the index

Accuracy of Automatically Captured Query Vectors

An overloaded version of the DBMS_VECTOR.INDEX_ACCURACY_REPORT function allows you to
capture from your past workloads, accuracy values achieved by your approximate searches
using a particular vector index for a certain period of time. Query vectors used for approximate
searches are captured automatically in memory and persisted to a catalog table every hour.

The INDEX_ACCURACY_REPORT function computes the achieved accuracy using the captured
query vectors for a given index. To compute the achieved accuracy for each query vector, the
function compares the result set of approximate similarity searches with exact similarity
searches for the same query vectors.

The accuracy findings are stored in dictionary and exposed using the
DBA_VECTOR_INDEX_ACCURACY_REPORT dictionary view.

Here is a usage example of this function using the galaxies scenario:

VARIABLE t_id NUMBER;
BEGIN
 :t_id := DBMS_VECTOR.INDEX_ACCURACY_REPORT('VECTOR', 'GALAXIES_HNSW_IDX');
END;
/

Chapter 5
Manage the Different Categories of Vector Indexes

5-19

You can also run the following statement to get the corresponding task identifier:

SELECT DBMS_VECTOR.INDEX_ACCURACY_REPORT('VECTOR', 'GALAXIES_HNSW_IDX');

The following are possible parameters for the INDEX_ACCURACY_REPORT function:

• owner_name (IN): Index owner name

• ind_name (IN): Index name

• start_time (IN): Query vectors captured from this time are considered for the accuracy
computation. A NULL start_time uses query vectors captured in the last 24 hours.

• end_time (IN): Query vectors captured until this time are considered for accuracy
computation. A NULL end_time uses query vectors captured from start_time until the
current time.

• Return Values: A numeric task ID if the accuracy for the given index was successfully
computed. Otherwise, a NULL task ID is returned.

Note:

• If both start_time and end_time are NULL, accuracy is computed using query
vectors captured in the last 24 hours.

• If start_time is NULL and end_time is not NULL, accuracy is computed using
query vectors captured between 24 hours before end_time until end_time.

• If start_time is not NULL and end_time is NULL, accuracy is computed using
query vectors captured between start_time and the current time.

You can see the analysis results using the DBA_VECTOR_INDEX_ACCURACY_REPORT view:

desc DBA_VECTOR_INDEX_ACCURACY_REPORT

 Name Null? Type
 --- --------

 TASK_ID NUMBER
 TASK_TIME TIMESTAMP(6)
 OWNER_NAME VARCHAR2(128)
 INDEX_NAME VARCHAR2(128)
 INDEX_TYPE VARCHAR2(16)
 MIN_TARGET_ACCURACY NUMBER
 MAX_TARGET_ACCURACY NUMBER
 NUM_VECTORS NUMBER
 MEDIAN_ACHIEVED_ACCURACY NUMBER
 MIN_ACHIEVED_ACCURACY NUMBER
 MAX_ACHIEVED_ACCURACY NUMBER

Chapter 5
Manage the Different Categories of Vector Indexes

5-20

Select target accuracy values in the following statement:

SELECT MIN_TARGET_ACCURACY, MAX_TARGET_ACCURACY, num_vectors,
MIN_ACHIEVED_ACCURACY, MEDIAN_ACHIEVED_ACCURACY, MAX_ACHIEVED_ACCURACY
FROM DBA_VECTOR_INDEX_ACCURACY_REPORT WHERE task_id = 1;

MIN_TARGET_ACCURACY MAX_TARGET_ACCURACY NUM_VECTORS MIN_ACHIEVED_ACCURACY
MEDIAN_ACHIEVED_ACCURACY MAX_ACHIEVED_ACCURACY
------------------- ------------------- ----------- ---------------------
------------------------ ---------------------
 1 10 2
49 57 65
 11 20 3
60 73 83
 21 30 3
44 64 84
 31 40 2
63 76.5 90
 41 50 3
63 81 90
 61 70 2
57 68 79
 71 80 3
79 87 89
 81 90 3
70 71 78
 91 100 4
67 79.5 88

Each row in the output represents a bucket of 10 target accuracy values: 1-10, 11-20, 21-30,
… , 91-100.

Consider the following partial statement that runs an approximate similarity search for a
particular query vector and a particular target accuracy:

SELECT ...
FROM ...
WHERE ...
ORDER BY VECTOR_DISTANCE(embedding, :my_query_vector, COSINE)
FETCH APPROXIMATE FIRST 3 ROWS ONLY WITH TARGET ACCURACY 65;

Once the preceding approximate similarity search is run and captured by your accuracy report
task, the value of NUM_VECTORS would be increased by one in row 6 (bucket values between 61
and 70) of the results of the select statement on the DBA_VECTOR_INDEX_ACCURACY_REPORT view
for your task. NUM_VECTORS represents the number of query vectors that fall in a particular
target accuracy bucket.

MIN_ACHIEVED_ACCURACY, MEDIAN_ACHIEVED_ACCURACY, and MAX_ACHIEVED_ACCURACY are the
actual achieved accuracy values for the given target accuracy bucket.

Chapter 5
Manage the Different Categories of Vector Indexes

5-21

Note:

The initialization parameter VECTOR_QUERY_CAPTURE is used to enable and disable
capture of query vectors. The parameter value is set to ON by default. You can turn off
this background functionality by setting VECTOR_QUERY_CAPTURE to OFF. When
VECTOR_QUERY_CAPTURE is ON, the database captures some of the query vectors
through sampling. The captured query vectors are retrained for a week and then
purged automatically.

Chapter 5
Manage the Different Categories of Vector Indexes

5-22

6
Use SQL Functions for Vector Operations

There are a number of SQL functions and operators that you can use with vectors in Oracle AI
Vector Search.

• Vector Distance Functions
A vector distance function takes in two vector operands and a distance metric to compute
a mathematical distance between those two vectors based on the distance metric
provided. Distances determine similarity or dissimilarity between vectors.

• Other Basic Vector Functions
Other basic vector operations for Oracle AI Vector Search involve creating, converting, and
describing vectors.

• Oracle AI Vector Search SQL Functions
Oracle AI Vector utilities provide the VECTOR_CHUNKS and VECTOR_EMBEDDING SQL functions
for chunking and embedding data, respectively.

Vector Distance Functions
A vector distance function takes in two vector operands and a distance metric to compute a
mathematical distance between those two vectors based on the distance metric provided.
Distances determine similarity or dissimilarity between vectors.

• Vector Distance Metrics
Measuring distances in a vector space is at the heart of identifying the most relevant
results for a given query vector. That process is very different from the well-known keyword
filtering in the relational database world.

• Vector Distance Operand to the VECTOR_DISTANCE Function
VECTOR_DISTANCE() is the main function that allows you to calculate distances between
two vectors.

• Shorthand Operators for Distances
Oracle AI Vector Search provides shorthand operators that you can use for distance
functions.

Vector Distance Metrics
Measuring distances in a vector space is at the heart of identifying the most relevant results for
a given query vector. That process is very different from the well-known keyword filtering in the
relational database world.

When working with vectors, there are several ways you can calculate distances to determine
how similar, or dissimilar, two vectors are. Each distance metric is computed using different
mathematical formulas. The time it takes to calculate the distance between two vectors
depends on many factors, including the distance metric used as well as the format of the
vectors themselves, such as the number of vector dimensions and the vector dimension
formats. Generally it's best to match the distance metric you use to the one that was used to
train the vector embedding model that generated the vectors.

6-1

• Euclidean and Euclidean Squared Distances
Euclidean distance reflects the distance between each of the vectors' coordinates being
compared—basically the straight-line distance between two vectors. This is calculated
using the Pythagorean theorem applied to the vector's coordinates (SQRT(SUM((xi-
yi)2))).

• Cosine Similarity
One of the most widely used similarity metric, especially in natural language processing
(NLP), is cosine similarity, which measures the cosine of the angle between two vectors.

• Dot Product Similarity
The dot product similarity of two vectors can be viewed as multiplying the size of each
vector by the cosine of their angle. The corresponding geometrical interpretation of this
definition is equivalent to multiplying the size of one of the vectors by the size of the
projection of the second vector onto the first one, or vice versa.

• Manhattan Distance
This metric is calculated by summing the distance between the dimensions of the two
vectors that you want to compare.

• Hamming Similarity
The Hamming distance between two vectors represents the number of dimensions where
they differ.

Euclidean and Euclidean Squared Distances
Euclidean distance reflects the distance between each of the vectors' coordinates being
compared—basically the straight-line distance between two vectors. This is calculated using
the Pythagorean theorem applied to the vector's coordinates (SQRT(SUM((xi-yi)2))).

This metric is sensitive to both the vector's size and it's direction.

With Euclidean distances, comparing squared distances is equivalent to comparing distances.
So, when ordering is more important than the distance values themselves, the Squared
Euclidean distance is very useful as it is faster to calculate than the Euclidean distance
(avoiding the square-root calculation).

Chapter 6
Vector Distance Functions

6-2

Cosine Similarity
One of the most widely used similarity metric, especially in natural language processing (NLP),
is cosine similarity, which measures the cosine of the angle between two vectors.

The smaller the angle, the more similar are the two vectors. Cosine similarity measures the
similarity in the direction or angle of the vectors, ignoring differences in their size (also called
magnitude). The smaller the angle, the bigger is its cosine. So the cosine distance and the
cosine similarity have an inverse relationship. While cosine distance measures how different
two vectors are, cosine similarity measures how similar two vectors are.

Dot Product Similarity
The dot product similarity of two vectors can be viewed as multiplying the size of each vector
by the cosine of their angle. The corresponding geometrical interpretation of this definition is
equivalent to multiplying the size of one of the vectors by the size of the projection of the
second vector onto the first one, or vice versa.

As illustrated in the following diagram, you project one vector on the other and multiply the
resulting vector sizes.

Incidentally, this is equivalent to the sum of the products of each vector's coordinate. Often,
you do not have access to the cosine of the two vector's angle, hence this calculation is easier.

Chapter 6
Vector Distance Functions

6-3

Larger dot product values imply that the vectors are more similar, while smaller values imply
that they are less similar. Compared to using Euclidean distance, using the dot product
similarity is especially useful for high-dimensional vectors.

Note that normalizing vectors and using the dot product similarity is equivalent to using cosine
similarity. There are cases where dot product similarity is faster to evaluate than cosine
similarity, and conversely where cosine similarity is faster than dot product similarity. A
normalized vector is created by dividing each dimension by the norm (or length) of the vector,
such that the norm of the normalized vector is equal to 1.

Manhattan Distance
This metric is calculated by summing the distance between the dimensions of the two vectors
that you want to compare.

Imagine yourself in the streets of Manhattan trying to go from point A to point B. A straight line
is not possible.

This metric is most useful for vectors describing objects on a uniform grid, such as city blocks,
power grids, or a chessboard. It can be useful for higher dimensional vector spaces too.
Compared to the Euclidean metric, the Manhattan metric is faster for calculations and you can
use it advantageously for higher dimensional vector spaces.

Chapter 6
Vector Distance Functions

6-4

Hamming Similarity
The Hamming distance between two vectors represents the number of dimensions where they
differ.

For example, when using binary vectors, the Hamming distance between two vectors is the
number of bits you must change to change one vector into the other. To compute the Hamming
distance between two vectors, you need to compare the position of each bit in the sequence.
You can do this by using exclusive or (also called the XOR bit operation), which outputs 1 if
the bits in the sequence do not match, and 0 otherwise. It's important to note that the bit strings
need to be of equal length for the comparison to make sense.

The Hamming metric is mainly used with binary vectors for error detection over networks.

Chapter 6
Vector Distance Functions

6-5

Vector Distance Operand to the VECTOR_DISTANCE Function
VECTOR_DISTANCE() is the main function that allows you to calculate distances between two
vectors.

The VECTOR_DISTANCE() function takes two vectors as parameters. You can optionally specify
a distance metric to calculate the distance desirably. If you do not specify a distance metric,
then the default distance metric is the COSINE metric.

You can optionally use the following shorthand functions too : L1_DISTANCE, L2_DISTANCE,
COSINE_DISTANCE and INNER_PRODUCT. These functions take two vectors as input and return
the distance between them.

All of these functions return the vectors' distance as a BINARY_DOUBLE.

When using the VECTOR_DISTANCE() function to perform a similarity search, note the following
caveats:

• If a similarity search query does not specify a distance metric in the VECTOR_DISTANCE()
function, then the default COSINE metric will be used for both exact and approximate (index-
based) searches.

• If a similarity search query does specify a distance metric in the VECTOR_DISTANCE()
function, then an exact search with that distance metric is used if it conflicts with the
distance metric specified in a vector index. If the two distance metrics are the same, then
that will be used for both exact and approximate (index-based) searches.

Chapter 6
Vector Distance Functions

6-6

Syntax

For detailed information on the vector functions, see Vector Functions in Oracle SQL Language
Reference.

Related Topics

• Perform Exact Similarity Search
A similarity search looks for the relative order of vectors compared to a query vector.
Naturally, the comparison is done using a particular distance metric but what is important is
the result set of your top closest vectors, not the distance between them.

• Perform Approximate Similarity Search Using Vector Indexes
For a vector search to be useful, it needs to be fast and accurate. Approximate similarity
searches seek a balance between these goals.

Shorthand Operators for Distances
Oracle AI Vector Search provides shorthand operators that you can use for distance functions.

Purpose

Oracle provides the following shorthand distance operators in lieu of their corresponding
distance functions:

• <-> is the Euclidian distance operator: expr1 <-> expr2 is equivalent to
L2_DISTANCE(expr1, expr2) or VECTOR_DISTANCE(expr1, expr2, EUCLIDEAN)

• <=> is the cosine distance operator: expr1 <=> expr2 is equivalent to
COSINE_DISTANCE(expr1, expr2) or VECTOR_DISTANCE(expr1, expr2, COSINE)

• <#> is the negative dot product operator: expr1 <#> expr2 is equivalent to
-1*INNER_PRODUCT(expr1, expr2) or VECTOR_DISTANCE(expr1, expr2, DOT)

Syntax

<expr1> <-> <expr2>
<expr1> <#> <expr2>
<expr1> <=> <expr2>

Parameters

expr1 and expr2 must evaluate to vectors and have the same number of dimensions. These
operations return NULL if either expr1 or expr2 is NULL.

Example

• '[1, 2]' <-> '[0,1]'
• v1 <-> '[' || '1,2,3' || ']' is equivalent to v1 <-> '[1, 2, 3]'
• v1 <-> '[1,2]' is equivalent to L2_DISTANCE(v1, '[1,2]')
• v1 <=> v2 is equivalent to COSINE_DISTANCE(v1, v2)
• v1 <#> v2 is equivalent to -1*INNER_PRODUCT(v1, v2)

Chapter 6
Vector Distance Functions

6-7

Other Basic Vector Functions
Other basic vector operations for Oracle AI Vector Search involve creating, converting, and
describing vectors.

• Vector Constructors
TO_VECTOR() and VECTOR() are synonymous constructors of vectors. The functions take a
string of type VARCHAR2 or CLOB as input and return a vector as output.

• Vector Serializers
FROM_VECTOR() and VECTOR_SERIALIZE() are synonymous serializers of vectors.

• VECTOR_NORM
The VECTOR_NORM() function returns the Euclidean norm of a vector (SQRT(SUM((xi-
yi)2))) in the format of BINARY_DOUBLE.

• VECTOR_DIMENSION_COUNT
The VECTOR_DIMENSION_COUNT() function returns the number of dimensions of a vector in
the format of an Oracle number.

• VECTOR_DIMENSION_FORMAT
The VECTOR_DIMENSION_FORMAT() returns the storage format of the vector. It returns a
VARCHAR2, which can be one of the following values: 'INT8', 'FLOAT32', or 'FLOAT64'.

Vector Constructors
TO_VECTOR() and VECTOR() are synonymous constructors of vectors. The functions take a
string of type VARCHAR2 or CLOB as input and return a vector as output.

TO_VECTOR() and VECTOR() are synonymous constructors of vectors. The functions take a
string of type VARCHAR2 or CLOB as input and return a vector as output.

For detailed information, see the following in the Oracle SQL Language Reference:

• TO_VECTOR

• VECTOR

• TO_VECTOR

• VECTOR

• Parameters

• Examples

TO_VECTOR

Syntax

TO_VECTOR(expr [, number_of_dimensions [, format]])

Chapter 6
Other Basic Vector Functions

6-8

VECTOR

Syntax

VECTOR (expr [, number_of_dimensions [, format]])

Parameters

• expr must evaluate to either (a) a string that represents a vector (accepted input data
types for the string are character types, JSON, CLOB, and BLOB) or (b) a vector. The valid
string representation of a vector is in the form of an array of non-null numbers enclosed
with a bracket and separated by commas, such as '[1, 3.4, -05.60, 3e+4]'. If it
evaluates to a vector (the input's data type is VECTOR), the function serves the purpose of
converting it to the specified or default format. The expression can be NULL, in which case
the result is NULL as well. If a BLOB is used as the input parameter, it must represent the
vector binary bytes.

• number_of_dimensions must be a numeric value that describes the number of dimensions
of the vector to construct. The number of dimensions may also be specified as an asterisk
*, in which case the dimension is determined by expr.

• format must be one of the following tokens: INT8, FLOAT32, FLOAT64, or *. This is the target
internal storage format of the vector. If * is used, the format will be FLOAT32. Note that this
behavior is a bit different than declaring a vector column. If you declare a column of type
VECTOR(3, *), then all inserted vectors will NOT have their storage format modified (stored
as is).

Examples

SELECT TO_VECTOR('[34.6, 77.8]');
SELECT TO_VECTOR('[34.6, 77.8]', 2, FLOAT32);

SELECT TO_VECTOR('[34.6, 77.8]', 2, FLOAT32) FROM dual;

TO_VECTOR('[34.6,77.8]',2,FLOAT32)

[3.45999985E+001,7.78000031E+001]

1 row selected.

SELECT TO_VECTOR('[34.6, 77.8, -89.34]', 3, FLOAT32);

TO_VECTOR('[34.6,77.8,-89.34]',3,FLOAT32)

Chapter 6
Other Basic Vector Functions

6-9

[3.45999985E+001,7.78000031E+001,-8.93399963E+001]

1 row selected.

Note:

• Applications using Oracle Client 23ai libraries or Thin mode drivers can insert
vector data directly as a string or a CLOB. For example:

INSERT INTO vecTab VALUES ('[1.1, 2.9, 3.14]');

• For applications using pre-Oracle Client 23ai libraries connected to Oracle
Database 23ai, use the TO_VECTOR() SQL function to insert vector data. For
example:

INSERT INTO vecTab VALUES(TO_VECTOR('[1.1, 2.9, 3.14]'));

Vector Serializers
FROM_VECTOR() and VECTOR_SERIALIZE() are synonymous serializers of vectors.

Both functions take a vector as input and return a string of type VARCHAR2 or CLOB as output.
They optionally take a RETURNING clause to specify the returned data type. If VARCHAR2 is
specified without size, the returned value size is 32767. There is no support to convert to CHAR,
NCHAR, and NVARCHAR2.

For detailed information, see the following in the Oracle SQL Language Reference:

• FROM_VECTOR

• VECTOR_SERIALIZE

• FROM_VECTOR

• VECTOR_SERIALIZE

• Parameters

• Examples

FROM_VECTOR

Syntax

FROM_VECTOR (expr [RETURNING (CLOB | VARCHAR2 [(size [BYTE |
CHAR])])])

Chapter 6
Other Basic Vector Functions

6-10

VECTOR_SERIALIZE

Syntax

VECTOR_SERIALIZE (expr [RETURNING (CLOB | VARCHAR2 [(size [BYTE |
CHAR])])])

Parameters

expr must have a vector type. The function returns NULL if expr is NULL.

Examples

SELECT FROM_VECTOR(TO_VECTOR('[1, 2, 3]'));

SELECT FROM_VECTOR(TO_VECTOR('[1.1, 2.2, 3.3]', 3, FLOAT32));

VECTOR_SERIALIZE(VECTOR('[1.1,2.2,3.3]',3,FLOAT32))

[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.

SELECT FROM_VECTOR(TO_VECTOR('[1.1, 2.2, 3.3]', 3, FLOAT32) RETURNING
VARCHAR2(1000));

VECTOR_SERIALIZE(VECTOR('[...]',3,FLOAT32)RETURNINGVARCHAR2(1000))
--
[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.

SELECT FROM_VECTOR(TO_VECTOR('[1.1, 2.2, 3.3]', 3, FLOAT32) RETURNING CLOB);

Chapter 6
Other Basic Vector Functions

6-11

VECTOR_SERIALIZE(VECTOR('[...]',3,FLOAT32)RETURNINGCLOB)
--
[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.

Note:

Applications using Oracle Client 23ai libraries or Thin mode drivers can fetch vector
data directly, as shown in the following example:

SELECT dataVec FROM vecTab;

For applications using pre-Oracle Client 23ai libraries connected to Oracle Database
23ai, use the FROM_VECTOR() SQL function to fetch vector data, as shown by the
following example:

SELECT FROM_VECTOR(dataVec) FROM vecTab;

VECTOR_NORM
The VECTOR_NORM() function returns the Euclidean norm of a vector (SQRT(SUM((xi-yi)2))) in
the format of BINARY_DOUBLE.

The VECTOR_NORM() function returns the Euclidean norm of a vector (SQRT(SUM((xi-yi)2))) in
the format of BINARY_DOUBLE.

For detailed information, see VECTOR_NORM of Oracle SQL Language Reference.

VECTOR_DIMENSION_COUNT
The VECTOR_DIMENSION_COUNT() function returns the number of dimensions of a vector in the
format of an Oracle number.

The VECTOR_DIMENSION_COUNT() function returns the number of dimensions of a vector in the
format of an Oracle number.

For detailed information, see VECTOR_DIMENSION_COUNT and VECTOR_DIMS of Oracle
SQL Language Reference.

VECTOR_DIMENSION_FORMAT
The VECTOR_DIMENSION_FORMAT() returns the storage format of the vector. It returns a
VARCHAR2, which can be one of the following values: 'INT8', 'FLOAT32', or 'FLOAT64'.

The VECTOR_DIMENSION_FORMAT() returns the storage format of the vector. It returns a
VARCHAR2, which can be one of the following values: 'INT8', 'FLOAT32', or 'FLOAT64'.

For detailed information, see VECTOR_DIMENSION_FORMAT of Oracle SQL Language
Reference.

Chapter 6
Other Basic Vector Functions

6-12

Oracle AI Vector Search SQL Functions
Oracle AI Vector utilities provide the VECTOR_CHUNKS and VECTOR_EMBEDDING SQL functions for
chunking and embedding data, respectively.

For detailed information, see the following sections in Oracle Database SQL Language
Reference:

• VECTOR_CHUNKS

The VECTOR_CHUNKS function enables you to split plain text into chunks (pieces of words,
sentences, or paragraphs) in preparation for the generation of embeddings, to be used
with a vector index.

• VECTOR_EMBEDDING

The VECTOR_EMBEDDING function enables you to generate embedding for different data
types according to an embedding ONNX model.

Chapter 6
Oracle AI Vector Search SQL Functions

6-13

7
Query Data with Similarity Searches

Use Oracle AI Vector Search native SQL operations from your development environment to
combine similarity with relational searches.

• Perform Exact Similarity Search
A similarity search looks for the relative order of vectors compared to a query vector.
Naturally, the comparison is done using a particular distance metric but what is important is
the result set of your top closest vectors, not the distance between them.

• Perform Approximate Similarity Search Using Vector Indexes
For a vector search to be useful, it needs to be fast and accurate. Approximate similarity
searches seek a balance between these goals.

• Perform Multi-Vector Similarity Search
Another major use-case of vector search is multi-vector search. Multi-vector search is
typically associated with a multi-document search, where documents are split into chunks
that are individually embedded into vectors.

Perform Exact Similarity Search
A similarity search looks for the relative order of vectors compared to a query vector. Naturally,
the comparison is done using a particular distance metric but what is important is the result set
of your top closest vectors, not the distance between them.

As an example, and given a certain query vector, you can calculate its distance to all other
vectors in your data set. This type of search, also called flat search, or exact search, produces
the most accurate results with perfect search quality. However, this comes at the cost of
significant search times. This is illustrated by the following diagrams:

Figure 7-1 Exact Search

With an exact search, you compare the query vector vq against every other vector in your
space by calculating its distance to each vector. After calculating all of these distances, the
search returns the nearest k of those as the nearest matches. This is called a k-nearest
neighbors (kNN) search.

7-1

For example, the Euclidean similarity search involves retrieving the top-k nearest vectors in
your space relative to the Euclidean distance metric and a query vector. Here's an example
that retrieves the top 10 vectors from the vector_tab table that are the nearest to
query_vector using the following exact similarity search query:

SELECT docID
FROM vector_tab
ORDER BY VECTOR_DISTANCE(embedding, :query_vector, EUCLIDEAN)
FETCH EXACT FIRST 10 ROWS ONLY;

In this example, docID and embedding are columns defined in the vector_tab table and
embedding has the VECTOR data type.

In the case of Euclidean distances, comparing squared distances is equivalent to comparing
distances. So, when ordering is more important than the distance values themselves, the
Euclidean Squared distance is very useful as it is faster to calculate than the Euclidean
distance (avoiding the square-root calculation). Consequently, it is simpler and faster to rewrite
the query like this:

SELECT docID
FROM vector_tab
ORDER BY VECTOR_DISTANCE(embedding, :query_vector, EUCLIDEAN_SQUARED)
FETCH FIRST 10 ROWS ONLY;

Note that EXACT is optional.

Note:

Ensure that you use the distance function that was used to train your embedding
model.

See Also:

Oracle Database SQL Language Reference for the full syntax of the
ROW_LIMITING_CLAUSE

Perform Approximate Similarity Search Using Vector Indexes
For a vector search to be useful, it needs to be fast and accurate. Approximate similarity
searches seek a balance between these goals.

• Understand Approximate Similarity Search Using Vector Indexes
For faster search speeds with large vector spaces, you can use approximate similarity
search using vector indexes.

• Optimizer Plans for Vector Indexes
Optimizer plans for HNSW and IVF indexes are described in the following sections.

Chapter 7
Perform Approximate Similarity Search Using Vector Indexes

7-2

• Approximate Similarity Search Examples
Review these examples to see how you can perform an approximate similarity search
using vector indexes.

Understand Approximate Similarity Search Using Vector Indexes
For faster search speeds with large vector spaces, you can use approximate similarity search
using vector indexes.

Using vector indexes for a similarity search is called an approximate search. Approximate
searches use vector indexes, which trade off accuracy for performance.

Approximate search for large vector spaces

When search quality is your high priority and search speed is less important, Exact Similarity
search is a good option. Search speed can be irrelevant for smaller vector spaces, or when
you perform searches with high performance servers. However, ML algorithms often perform
similarity searches on vector spaces with billions of embeddings. For example, the Deep1B
data-set contains 1B images generated by a Convolutional Neural Network (CNN). Computing
vector distances with every vector in the corpus to find Top-K matches at 100 percent accuracy
is very slow.

Fortunately, there are many types of approximate searches that you can perform using vector
indexes. Vector indexes can be less accurate, but they can consume less resources, and can
be more efficient. Unlike traditional database indexes, vector indexes are constructed and
perform searches using heuristic-based algorithms.

Because 100 percent accuracy cannot be guaranteed by heuristics, vector index searches use
target accuracy. Internally, the algorithms used for both index creation and index search are
doing their best to be as accurate as possible. However, you have the possibility to influence
those algorithms by specifying a target accuracy. When creating the index or searching it, you
can specify non-default target accuracy values either by specifying a percentage value, or by
specifying internal parameters values, depending on the index type you are using.

Target accuracy example

To better understand what is meant by target accuracy look at the following diagrams. The first
diagram illustrate a vector space where each vector is represented by a small cross. The one
in red represents your query vector.

Chapter 7
Perform Approximate Similarity Search Using Vector Indexes

7-3

Running a top-5 exact similarity search in that context would return the five vectors shown on
the second diagram:

Depending on how your vector index was constructed, running a top-5 approximate similarity
search in that context could return the five vectors shown on the third diagram. This is because
the index creation process is using heuristics. So searching through the vector index may lead
to different results compared to an exact search:

As you can see, the retrieved vectors are different and, in this case, they differ by one vector.
This means that, compared to the exact search, the similarity search retrieved 4 out of 5
vectors correctly. The similarity search has 80% accuracy compared to the exact similarity
search. This is illustrated on the fourth diagram:

Chapter 7
Perform Approximate Similarity Search Using Vector Indexes

7-4

Due to the nature of vector indexes being approximate search structures, it's possible that
fewer than K rows are returned in a top-K similarity search.

For information on how to set up your vector indexes, see Create Vector Indexes.

Optimizer Plans for Vector Indexes
Optimizer plans for HNSW and IVF indexes are described in the following sections.

• Optimizer Plans for HNSW Vector Indexes
A Hierarchical Navigable Small World Graph (HNSW) is a form of In-Memory Neighbor
Graph vector index. It is a very efficient index for vector approximate similarity search.

• Optimizer Plans for IVF Vector Indexes
Inverted File Flat (IVF) is a form of Neighbor Partition Vector index. It is a partition-based
index that achieves search efficiency by narrowing the search area through the use of
neighbor partitions or clusters.

Optimizer Plans for HNSW Vector Indexes
A Hierarchical Navigable Small World Graph (HNSW) is a form of In-Memory Neighbor Graph
vector index. It is a very efficient index for vector approximate similarity search.

In the simplest case, a query has a single table and it does not contain any relational filter
predicates or subqueries. The following query example illustrates this situation:

SELECT chunk_id, chunk_data
FROM doc_chunks
ORDER BY VECTOR_DISTANCE(chunk_embedding, :query_vector, COSINE)
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

The corresponding execution plan should look like the following, if the optimizer decides to use
the index (start from operation id 5):

Chapter 7
Perform Approximate Similarity Search Using Vector Indexes

7-5

Top-K similar vectors are first identified using the HNSW vector index. For each of them,
corresponding rows are identified in the base table and required selected columns are
extracted.

| Id | Operation | Name |

0	SELECT STATEMENT	
* 1	COUNT STOPKEY	
2	VIEW	
* 3	SORT ORDER BY STOPKEY	
4	TABLE ACCESS BY INDEX ROWID	DOC_CHUNKS
5	VECTOR INDEX HNSW SCAN	DOCS_HNSW_IDX5

Note:

The Hierarchical Navigable Small World (HNSW) vector index structure contains
rowids of corresponding base table rows for each vector in the index.

However, your query may contain traditional relational data filters, as illustrated in the following
example:

SELECT chunk_id, chunk_data
FROM doc_chunks
WHERE doc_id=1
ORDER BY VECTOR_DISTANCE(chunk_embedding, :query_vector, COSINE)
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

In that case, there are essentially two main alternatives for the optimizer to generate an
execution plan using an HNSW vector index. These two alternatives are called pre-filtering
and in-filtering.

The main difference between pre-filtering and in-filtering are:

• Pre-filtering runs the filtering evaluation on the base table first and only traverses the
HNSW vector index for corresponding vectors. This can be very fast if the filter predicates
are selective (that is, most rows filtered out).

• In-filtering, on the other hand, starts by traversing the HNSW vector index and invokes the
filtering only for each vector matching candidate. This can be better than pre-filtering when
more rows pass the filter predicates. In this case, the number of vector candidates to
consider, while traversing the HNSW vector index, might be much less than the number of
rows that pass the filters.

For both in-filtering and pre-filtering, the optimizer may choose to process projected columns
from your select list before or after the similarity search operation. If it does so after, this is
called a join-back operation. If it does so before, it is called a no-join-back operation. The
tradeoff between the two depends on the number of rows returned by the similarity search.

The following plan shows one of the four possibilities just described. Specifically, it shows the
execution plan when in-filtering is chosen with join back.

Chapter 7
Perform Approximate Similarity Search Using Vector Indexes

7-6

In-filter With Join-back (Start from Operation id 5)

HNSW vector index is traversed first, and for each identified vector, filters on the base table for
the corresponding rowid are applied. Once the top-K rowids passing the filters are identified,
base table columns are extracted.

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
* 1	COUNT STOPKEY	
2	VIEW	
* 3	SORT ORDER BY STOPKEY	
* 4	TABLE ACCESS BY INDEX ROWID	DOC_CHUNKS
5	VECTOR INDEX HNSW SCAN IN-FILTER	DOCS_HNSW_IDX3
6	VIEW	VW_HIJ_B919B0A0
* 7	TABLE ACCESS BY USER ROWID	DOC_CHUNKS
--

HNSW Indexes in the Optimizer Plan

HNSW indexes plans may use an internal table and associated index to store index
information like mapping between vector ids and rowids. Mainly VECTOR$<index
name>$HNSW_ROWID_VID_MAP.

Table 7-1 HNSW Options

Operation Options Object_name

TABLE ACCESS FULL VECTOR$<index-
name>$HNSW_ROW_VID_MAP

TABLE ACCESS STORAGE FULL VECTOR$<index-
name>$HNSW_ROW_VID_MAP

For the HNSW index itself, which is an In-Memory object, the plan uses a VECTOR INDEX
operation. The object name GALAXIES_HSNW_INX is provided as an example of the user-
specified HNSW index name:

Operation Options Object_name

VECTOR INDEX HNSW SCAN GALAXIES_HSNW_INX
VECTOR INDEX HNSW SCAN PRE-FILTER GALAXIES_HSNW_INX
VECTOR INDEX HNSW SCAN IN-FILTER GALAXIES_HSNW_INX

Optimizer Plans for IVF Vector Indexes
Inverted File Flat (IVF) is a form of Neighbor Partition Vector index. It is a partition-based index
that achieves search efficiency by narrowing the search area through the use of neighbor
partitions or clusters.

Consider the following query:

SELECT chunk_id, chunk_data,
FROM doc_chunks

Chapter 7
Perform Approximate Similarity Search Using Vector Indexes

7-7

WHERE doc_id=1
ORDER BY VECTOR_DISTANCE(chunk_embedding, :query_vector, COSINE)
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

The preceding query can lead to the following execution plan:

• Plan line ids 5 to 9: This part happens first. The optimizer chooses the centroid ids that are
closest to the query vector.

• Plan line ids 10 to 13: With these lines, the base table is joined to the identified centroid
partitions. The base table is scanned to look for all the rows that pass the WHERE clause
filter.

• Plan line id 4: Once both sets are identified, the rows are joined to extract only the relevant
ones.

• Plan line id 3: This step extracts the top-K rows.

--

| Id | Operation |
Name

| 0 | SELECT STATEMENT
| |
|* 1 | COUNT STOPKEY
| |
| 2 | VIEW
| |
|* 3 | SORT ORDER BY STOPKEY
| |
|* 4 | HASH JOIN
| |
| 5 | VIEW |
VW_IVCR_2D77159E |
|* 6 | COUNT STOPKEY
| |
| 7 | VIEW |
VW_IVCN_9A1D2119 |
|* 8 | SORT ORDER BY STOPKEY
| |
| 9 | TABLE ACCESS FULL |
VECTOR$DOCS_IVF_IDX2$81357_82648_0$IVF_FLAT_CENTROIDS |
| 10 | NESTED LOOPS
| |
|* 11 | TABLE ACCESS FULL |
DOC_CHUNKS |
| 12 | TABLE ACCESS BY GLOBAL INDEX ROWID|
VECTOR$DOCS_IVF_IDX2$81357_82648_0$IVF_FLAT_CENTROID_PARTITIONS |
|* 13 | INDEX UNIQUE SCAN |
SYS_C008661

Chapter 7
Perform Approximate Similarity Search Using Vector Indexes

7-8

IVF Indexes in the Optimizer Plan

If the IVF index is used by the optimizer, the plan contains the names of the centroids and
centroid partitions tables accessed as well as corresponding indexes.

The value displayed in the Options column for tables accessed via IVF indexes depends upon
whether the table scan is for a regular table or Exadata table.

Table 7-2 Centroids and Centroid Partition Table Options

Operation Options Object_name

TABLE ACCESS FULL VECTOR$<vector-index-
name>$<id>$IVF_FLAT_CENTRO
IDS
VECTOR$DOCS_IVF_IDX2$<id>$
IVF_FLAT_CENTROID_PARTITIO
NS

TABLE ACCESS STORAGE FULL VECTOR$<vector-index-
name>$<id>$IVF_FLAT_CENTRO
IDS
VECTOR$DOCS_IVF_IDX2$<id>$
IVF_FLAT_CENTROID_PARTITIO
NS

Approximate Similarity Search Examples
Review these examples to see how you can perform an approximate similarity search using
vector indexes.

• Approximate Search Using HNSW
This example shows how you can create the Hierarchical Navigable Small World (HNSW)
index and run an approximate search using that index.

• Approximate Search Using IVF
This example shows how you can create the Inverted File Flat (IVF) index and run an
approximate search using that index.

Approximate Search Using HNSW
This example shows how you can create the Hierarchical Navigable Small World (HNSW)
index and run an approximate search using that index.

create table galaxies (id number, name varchar2(50), doc varchar2(500),
embedding vector(5,INT8));

insert into galaxies values (1, 'M31', 'Messier 31 is a barred spiral galaxy
in the Andromeda constellation which has a lot of barred spiral galaxies.',
'[0,2,2,0,0]');
insert into galaxies values (2, 'M33', 'Messier 33 is a spiral galaxy in the
Triangulum constellation.', '[0,0,1,0,0]');
insert into galaxies values (3, 'M58', 'Messier 58 is an intermediate barred
spiral galaxy in the Virgo constellation.', '[1,1,1,0,0]');
insert into galaxies values (4, 'M63', 'Messier 63 is a spiral galaxy in the
Canes Venatici constellation.', '[0,0,1,0,0]');

Chapter 7
Perform Approximate Similarity Search Using Vector Indexes

7-9

insert into galaxies values (5, 'M77', 'Messier 77 is a barred spiral galaxy
in the Cetus constellation.', '[0,1,1,0,0]');
insert into galaxies values (6, 'M91', 'Messier 91 is a barred spiral galaxy
in the Coma Berenices constellation.', '[0,1,1,0,0]');
insert into galaxies values (7, 'M49', 'Messier 49 is a giant elliptical
galaxy in the Virgo constellation.', '[0,0,0,1,1]');
insert into galaxies values (8, 'M60', 'Messier 60 is an elliptical galaxy in
the Virgo constellation.', '[0,0,0,0,1]');
insert into galaxies values (9, 'NGC1073', 'NGC 1073 is a barred spiral
galaxy in Cetus constellation.', '[0,1,1,0,0]');

...

commit;

In the galaxies example, this is how you can create the HNSW index and how you would run
an approximate search using that index:

CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION
INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 95;

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY VECTOR_DISTANCE(embedding, to_vector('[0,1,1,0,0]'), COSINE)
FETCH APPROXIMATE FIRST 3 ROWS ONLY;

This approximate search example inherits a target accuracy of 95 as it is set when the index is
defined. You could override the TARGET ACCURACY of your search by running the following
query examples:

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY VECTOR_DISTANCE(embedding, to_vector('[0,1,1,0,0]'), COSINE)
FETCH APPROXIMATE FIRST 3 ROWS ONLY WITH TARGET ACCURACY 90;

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY VECTOR_DISTANCE(embedding, to_vector('[0,1,1,0,0]'), COSINE)
FETCH APPROXIMATE FIRST 3 ROWS ONLY WITH TARGET ACCURACY PARAMETERS (efsearch
500);

You can also create the index using the following syntax:

CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION
INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE

Chapter 7
Perform Approximate Similarity Search Using Vector Indexes

7-10

WITH TARGET ACCURACY 90 PARAMETERS (type HNSW, neighbors 40, efconstruction
500);

See Also:

Oracle Database SQL Language Reference for the full syntax of the
ROW_LIMITING_CLAUSE

Approximate Search Using IVF
This example shows how you can create the Inverted File Flat (IVF) index and run an
approximate search using that index.

create table galaxies (id number, name varchar2(50), doc varchar2(500),
embedding vector(5,INT8));

insert into galaxies values (1, 'M31', 'Messier 31 is a barred spiral galaxy
in the Andromeda constellation which has a lot of barred spiral galaxies.',
'[0,2,2,0,0]');
insert into galaxies values (2, 'M33', 'Messier 33 is a spiral galaxy in the
Triangulum constellation.', '[0,0,1,0,0]');
insert into galaxies values (3, 'M58', 'Messier 58 is an intermediate barred
spiral galaxy in the Virgo constellation.', '[1,1,1,0,0]');
insert into galaxies values (4, 'M63', 'Messier 63 is a spiral galaxy in the
Canes Venatici constellation.', '[0,0,1,0,0]');
insert into galaxies values (5, 'M77', 'Messier 77 is a barred spiral galaxy
in the Cetus constellation.', '[0,1,1,0,0]');
insert into galaxies values (6, 'M91', 'Messier 91 is a barred spiral galaxy
in the Coma Berenices constellation.', '[0,1,1,0,0]');
insert into galaxies values (7, 'M49', 'Messier 49 is a giant elliptical
galaxy in the Virgo constellation.', '[0,0,0,1,1]');
insert into galaxies values (8, 'M60', 'Messier 60 is an elliptical galaxy in
the Virgo constellation.', '[0,0,0,0,1]');
insert into galaxies values (9, 'NGC1073', 'NGC 1073 is a barred spiral
galaxy in Cetus constellation.', '[0,1,1,0,0]');

...

commit;

In the galaxies example, this is how you can create the IVF index and how you can run an
approximate search using that index:

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION
NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 95;

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'

Chapter 7
Perform Approximate Similarity Search Using Vector Indexes

7-11

ORDER BY VECTOR_DISTANCE(embedding, to_vector('[0,1,1,0,0]'), COSINE)
FETCH APPROXIMATE FIRST 3 ROWS ONLY;

If the index is used by the optimizer, then this approximate search example inherits a target
accuracy of 95 as it is set when the index is defined. You can override the TARGET ACCURACY of
your search by running the following query examples:

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY VECTOR_DISTANCE(embedding, to_vector('[0,1,1,0,0]'), COSINE)
FETCH APPROXIMATE FIRST 3 ROWS ONLY WITH TARGET ACCURACY 90;

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY VECTOR_DISTANCE(embedding, to_vector('[0,1,1,0,0]'))
FETCH APPROXIMATE FIRST 3 ROWS ONLY WITH TARGET ACCURACY PARAMETERS
(NEIGHBOR PARTITION PROBES 10);

You can also create the index using the following syntax:

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION
NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type IVF, neighbor partitions 100);

See Also:

Oracle Database SQL Language Reference for the full syntax of the
ROW_LIMITING_CLAUSE

Perform Multi-Vector Similarity Search
Another major use-case of vector search is multi-vector search. Multi-vector search is typically
associated with a multi-document search, where documents are split into chunks that are
individually embedded into vectors.

A multi-vector search consists of retrieving top-K vector matches using grouping criteria known
as partitions based on the documents' characteristics. This ability to score documents based
on the similarity of their chunks to a query vector being searched is facilitated in SQL using the
partitioned row limiting clause.

With multi-vector search, it is easier to write SQL statements to answer the following type of
question:

• If they exist, what are the four best matching sentences found in the three best matching
paragraphs of the two best matching books?

Chapter 7
Perform Multi-Vector Similarity Search

7-12

For example, imagine if each book in your database is organized into paragraphs containing
sentences which have vector embedding representations, then you can answer the previous
question using a single SQL statement such as:

SELECT bookId, paragraphId, sentence
FROM books
ORDER BY vector_distance(sentence_embedding, :sentence_query_vector)
FETCH FIRST 2 PARTITIONS BY bookId, 3 PARTITIONS BY paragraphId, 4 ROWS ONLY;

You can also use an approximate similarity search instead of an exact similarity search as
shown in the following example:

SELECT bookId, paragraphId, sentence
FROM books
ORDER BY vector_distance(sentence_embedding, :sentence_query_vector)
FETCH APPROXIMATE FIRST 2 PARTITIONS BY bookId, 3 PARTITIONS BY paragraphId,
4 ROWS ONLY
WITH TARGET ACCURACY 90;

Note:

All the rows returned are ordered by VECTOR_DISTANCE() and not grouped by the
partition clause.

Semantically, the previous SQL statement is interpreted as:

• Sort all records in the books table in descending order of the vector distance between the
sentences and the query vector.

• For each record in this order, check its bookId and paragraphId. This record is produced if
the following three conditions are met:

1. Its bookId is one of the first two distinct bookId in the sorted order.

2. Its paragraphId is one of the first three distinct paragraphId in the sorted order within
the same bookId.

3. Its record is one of the first four records within the same bookId and paragraphId
combination.

• Otherwise, this record is filtered out.

Multi-vector similarity search is not just for documents and can be used to answer the following
questions too:

• Return the top K closest matching photos but ensure that they are photos of different
people.

• Find the top K songs with two or more audio segments that best match this sound snippet.

Chapter 7
Perform Multi-Vector Similarity Search

7-13

Note:

• This partition row-limiting clause extension is a generic extension of the SQL
language. It does not have to apply just to vector searches.

• Multi-vector search with the partitioning row-limit clause does not use vector
indexes.

See Also:

Oracle Database SQL Language Reference for the full syntax of the
ROW_LIMITING_CLAUSE

Chapter 7
Perform Multi-Vector Similarity Search

7-14

8
Work with Retrieval Augmented Generation

Oracle AI Vector Search supports Enterprise Retrieval Augmented Generation (RAG) to enable
sophisticated queries that can combine vectors with relational data, graph data, spatial data,
and JSON collections. By communicating with LLMs through the implementation of RAG, the
knowledge of LLMs is increased with business data found through AI Vector Search.

• Compliment LLMs with Oracle AI Vector Search
Using Retrieval Augmented Generation (RAG) can mitigate the inaccuracies and
hallucinations faced when using Large Language Models (LLMs). Oracle AI Vector Search
enables RAG through the use of popular frameworks and PL/SQL APIs.

• SQL RAG Example
This scenario allows you to run a similarity search for specific documentation content
based on a user query. Once documentation chunks are retrieved, they are concatenated
and a prompt is generated to ask an LLM to answer the user question using retrieved
chunks.

Compliment LLMs with Oracle AI Vector Search
Using Retrieval Augmented Generation (RAG) can mitigate the inaccuracies and hallucinations
faced when using Large Language Models (LLMs). Oracle AI Vector Search enables RAG
through the use of popular frameworks and PL/SQL APIs.

The primary problem with Large Language Models (LLMs) like GPT (Generative Pretrained
Transformer) is that they generate responses based solely on the patterns and data they were
trained on up to the point of their last update. This means that they inherently lack the ability to
access or incorporate new, real-time information after their training is cut off, potentially limiting
their responses to outdated or incomplete information. LLMs do not know about your private
company data. Consequently, LLMs can make up answers (hallucinate) when they do not have
enough relevant and up-to-date facts.

By providing your LLM with up-to-date facts from your company, you can minimize the
probability that an LLM will make up answers (hallucinate).

8-1

Figure 8-1 Example RAG Workflow

Retrieval Augmented Generation (RAG) is an approach developed to address the limitations
of LLMs. RAG combines the strengths of pretrained language models with the ability to retrieve
recent and accurate information from a dataset or database in real-time during the generation
of responses. Here is how RAG improves upon the issues with traditional LLMs:

• Access to External and Private Information: RAG can pull in data from external and
private sources during its response generation process. This allows it to provide answers
that are up-to-date and grounded in the latest available information, which is crucial for
queries requiring current knowledge or specific details not included in its original training
data.

• Factually More Accurate and Detailed Responses: While traditional LLMs are trained
on older data, RAG incorporates real-time retrieved information, meaning that generated
responses are not only contextually rich but also factually more up-to-date and accurate as
time goes on. This is particularly beneficial for queries that require precision and detail,
such as scientific facts, historical data, or specific statistics.

• Reduced Hallucination: LLMs can sometimes "hallucinate" information, as in generate
plausible but false or unverified content. RAG mitigates this by grounding responses in
retrieved documents, thereby enhancing the reliability of the information provided.

Oracle AI Vector Search enables RAG within Oracle Database using the DBMS_VECTOR_CHAIN
PL/SQL package. Alternatively, you can implement RAG externally by using popular
frameworks such as LangChain.

LangChain is a popular open source framework that encapsulates popular LLMs, vector
databases, document stores, and embedding models. DBMS_VECTOR_CHAIN is a PL/SQL
package that provides the ability to create RAG solutions, all within the database. With
DBMS_VECTOR_CHAIN, your data never needs to leave the security of Oracle Database.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for details about the
DBMS_VECTOR_CHAIN package

Chapter 8
Compliment LLMs with Oracle AI Vector Search

8-2

SQL RAG Example
This scenario allows you to run a similarity search for specific documentation content based on
a user query. Once documentation chunks are retrieved, they are concatenated and a prompt
is generated to ask an LLM to answer the user question using retrieved chunks.

1. Start SQL*Plus and connect to Oracle Database as a local test user.

a. Log in to SQL*Plus as the sys user, connecting as sysdba:

conn sys/password AS sysdba

SET SERVEROUTPUT ON;
SET ECHO ON;
SET LONG 100000;

b. Create a local test user (vector) and grant necessary privileges:

DROP USER vector cascade;

CREATE USER vector identified by <my vector password>

GRANT DB_DEVELOPER_ROLE, CREATE CREDENTIAL TO vector;

c. Set the proxy if one exists:

EXEC UTL_HTTP.SET_PROXY('<my proxy full name>:<my proxy port>');

d. Grant connect privilege for a host using the DBMS_NETWORK_ACL_ADMIN procedure. This
example uses * to allow any host. However, you can explicitly specify each host that
you want to connect to.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => '*',
 ace => xs$ace_type(privilege_list => xs$name_list('connect'),
 principal_name => 'VECTOR',
 principal_type => xs_acl.ptype_db));
END;
/

e. Connect to Oracle Database as the test user.

conn docuser/password;

2. Create a credential for Oracle Cloud Infrastructure Generative AI:

a. Run DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL to create and store an OCI credential
(OCI_CRED).

Chapter 8
SQL RAG Example

8-3

OCIGenAI requires the following parameters:

{
"user_ocid": "<user ocid>",
"tenancy_ocid": "<tenancy ocid>",
"compartment_ocid": "<compartment ocid>",
"private_key": "<private key>",
"fingerprint": "<fingerprint>"
}

Note:

The generated private key may appear as:

-----BEGIN RSA PRIVATE KEY-----
<private key string>
-----END RSA PRIVATE KEY-----

You pass the <private key string> value (excluding the BEGIN and END
lines), either as a single line or as multiple lines.

BEGIN
 DBMS_VECTOR_CHAIN.DROP_CREDENTIAL(credential_name => 'OCI_CRED');
EXCEPTION
 WHEN OTHERS THEN NULL;
END;
/

DECLARE
 jo json_object_t;
BEGIN
 jo := json_object_t();
 jo.put('user_ocid', '<user ocid>');
 jo.put('tenancy_ocid', '<tenancy ocid>');
 jo.put('compartment_ocid', '<compartment ocid>');
 jo.put('private_key', '<private key>');
 jo.put('fingerprint', '<fingerprint>');
 DBMS_OUTPUT.PUT_LINE(jo.to_string);
 DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL(
 credential_name => 'OCID_CRED',
 params => json(jo.to_string));
END;
/

Chapter 8
SQL RAG Example

8-4

b. Check credential creation:

col owner format a15
col credential_name format a20
col username format a20

SELECT owner, credential_name, username
FROM all_credentials
ORDER BY owner, credential_name, username;

3. Generate a prompt using similarity search results:

Note:

For information about loading the ONNX format model into the database as
doc_model, see Import ONNX Models and Generate Embeddings.

SET SERVEROUTPUT ON;

VAR prompt CLOB;
VAR user_question CLOB;
VAR context CLOB;

BEGIN
 -- initialize the concatenated string
 :context := '';

 -- read this question from the user
 :user_question := 'what are vector indexes?';

 -- cursor to fetch chunks relevant to the user's query
 FOR rec IN (SELECT EMBED_DATA
 FROM doc_chunks
 WHERE DOC_ID = 'Vector User Guide'
 ORDER BY vector_distance(embed_vector, vector_embedding(
 doc_model using :user_question as input), COSINE)
 FETCH EXACT FIRST 10 ROWS ONLY)
 LOOP
 -- concatenate each value to the string
 :context := :context || rec.embed_data;
 END LOOP;

 -- concatenate strings and format it as an enhanced prompt to the LLM
 :prompt := 'Answer the following question using the supplied context
 assuming you are a subject matter expert. Question: '
 || :user_question || ' Context: ' || :context;

 DBMS_OUTPUT.PUT_LINE('Generated prompt: ' || :prompt);
END;
/

Chapter 8
SQL RAG Example

8-5

4. Issue the GenAI call:

DECLARE
 input CLOB;
 params CLOB;
 output CLOB;
BEGIN
 input := :prompt;
 params := '{
 "provider" : "ocigenai",
 "credential_name" : "OCI_CRED",
 "url" : "https://inference.generativeai.us-chicago-1.oci.
 oraclecloud.com/20231130/actions/generateText",
 "model" : "cohere.command"
 }';

 output := DBMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT(input, json(params));
 DBMS_OUTPUT.PUT_LINE(output);
 IF output IS NOT NULL THEN
 DBMS_LOB.FREETEMPORARY(output);
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
END;
/

Chapter 8
SQL RAG Example

8-6

9
Supported Clients and Languages

For more information about Oracle AI Vector Search support using some of Oracle's available
clients and languages, see the included reference material.

Clients and Languages Reference Material

PL/SQL Oracle Database PL/SQL Language Reference

MLE JavaScript Oracle Database JavaScript Developer's Guide

JDBC Oracle Database JDBC Developer’s Guide

Node.js node-oracledb documentation

Python python-oracledb documentation

Oracle Call Interface Oracle Call Interface Developer's Guide

ODP.NET Oracle Data Provider for .NET Developer's Guide.

SQL*Plus SQL*Plus User's Guide and Reference

Oracle Database 23ai supports binding with native VECTOR types for all Oracle clients.
Applications that use earlier Oracle Client 23ai libraries can connect to Oracle Database 23ai
in the following ways:

• Using the TO_VECTOR() SQL function to insert vector data, as shown in the following
example:

INSERT INTO vecTab VALUES(TO_VECTOR('[1.1, 2.9, 3.14]'));

• Using the FROM_VECTOR() SQL function to fetch vector data, as shown in the following
example:

SELECT FROM_VECTOR(dataVec) FROM vecTab;

9-1

https://node-oracledb.readthedocs.io/en/latest/user_guide/introduction.html
https://python-oracledb.readthedocs.io/en/latest/index.html

10
Vector Diagnostics

AI Vector Search includes several views, statistics, and parameters that can be used to help
understand how vector search is performing for your workload.

• Oracle AI Vector Search Views
These are a set of data dictionary views related to Oracle AI Vector Search.

• Oracle AI Vector Search Statistics
These are a set of statistics related to Oracle AI Vector Search.

• Oracle AI Vector Search Parameters
This is a set of parameters related to Oracle AI Vector Search.

Oracle AI Vector Search Views
These are a set of data dictionary views related to Oracle AI Vector Search.

• Vector Utilities-Related Views
These views display language-specific data (abbreviation token details) and vocabulary
data related to the Oracle AI Vector Search SQL and PL/SQL utilities.

• Vector Memory Pool Views
Review the various vector memory pool views.

• Vector Index Views
Review the vector index views.

Vector Utilities-Related Views
These views display language-specific data (abbreviation token details) and vocabulary data
related to the Oracle AI Vector Search SQL and PL/SQL utilities.

• ALL_VECTOR_ABBREV_TOKENS
The ALL_VECTOR_ABBREV_TOKENS view displays a list of abbreviation tokens from all
supported languages.

• ALL_VECTOR_LANG
The ALL_VECTOR_LANG view displays a list of all supported languages, distributed by
default.

• USER_VECTOR_ABBREV_TOKENS
The USER_VECTOR_ABBREV_TOKENS view displays a list of abbreviation tokens from all
languages loaded by the current user.

• USER_VECTOR_LANG
The USER_VECTOR_LANG view displays all languages loaded by the current user.

• USER_VECTOR_VOCAB
The USER_VECTOR_VOCAB view displays all custom token vocabularies created by the
current user.

10-1

• USER_VECTOR_VOCAB_TOKENS
The USER_VECTOR_VOCAB_TOKENS view displays tokens from all custom token vocabularies
created by the current user.

• ALL_VECTOR_VOCAB
The ALL_VECTOR_VOCAB view displays all custom token vocabularies.

• ALL_VECTOR_VOCAB_TOKENS
The ALL_VECTOR_VOCAB_TOKENS view displays tokens from all custom token vocabularies.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

ALL_VECTOR_ABBREV_TOKENS
The ALL_VECTOR_ABBREV_TOKENS view displays a list of abbreviation tokens from all supported
languages.

Column Name Data Type Description

ABBREV_OWNER VARCHAR2(128) Owner of the abbreviation token (for
example, PUBLIC)

ABBREV_LANGUAGE NUMBER Language ID for the language (for
example, 1 for American)

ABBREV_TOKEN NVARCHAR2(255) List of all abbreviation tokens
corresponding to each language

ALL_VECTOR_LANG
The ALL_VECTOR_LANG view displays a list of all supported languages, distributed by default.

Column Name Data Type Description

LANG_OWNER VARCHAR2(128) Owner of the language (for example,
PUBLIC)

LANG_LANG NUMBER Language ID for the language (for
example, 1 for American)

LANG_NAME VARCHAR2(128) Name of the language (for example,
AMERICAN)

USER_VECTOR_ABBREV_TOKENS
The USER_VECTOR_ABBREV_TOKENS view displays a list of abbreviation tokens from all languages
loaded by the current user.

Column Name Data Type Description

ABBREV_LANGUAGE NUMBER Language ID for the language (for
example, 1 for American)

ABBREV_TOKEN NVARCHAR2(255) List of all abbreviation tokens
corresponding to each language

Chapter 10
Oracle AI Vector Search Views

10-2

USER_VECTOR_LANG
The USER_VECTOR_LANG view displays all languages loaded by the current user.

Column Name Data Type Description

LANG_LANG NUMBER Language ID for the language (for
example, 1 for American)

LANG_NAME VARCHAR2(128) Name of the language (for example,
AMERICAN)

USER_VECTOR_VOCAB
The USER_VECTOR_VOCAB view displays all custom token vocabularies created by the current
user.

Column Name Data Type Description

VOCAB_NAME VARCHAR2(128) User-specified name of the vocabulary
(for example, DOC_VOCAB)

FORMAT VARCHAR2(4) Format of the vocabulary, such as XLM,
BERT, or GPT2

CASED VARCHAR2(7) Character-casing of the vocabulary, that
is, vocabulary to be treated as cased or
uncased

USER_VECTOR_VOCAB_TOKENS
The USER_VECTOR_VOCAB_TOKENS view displays tokens from all custom token vocabularies
created by the current user.

Column Name Data Type Description

VOCAB_NAME VARCHAR2(128) User-specified name of the vocabulary
(for example, DOC_VOCAB)

VOCAB_TOKEN VARCHAR2(255) Tokens contained in the vocabulary

ALL_VECTOR_VOCAB
The ALL_VECTOR_VOCAB view displays all custom token vocabularies.

Column Name Data Type Description

VOCAB_OWNER VARCHAR2(128) Owner of the vocabulary (for example,
SYS)

VOCAB_NAME VARCHAR2(128) User-specified name of the vocabulary
(for example, DOC_VOCAB)

FORMAT VARCHAR2(4) Format of the vocabulary, such as XLM,
BERT, or GPT2

Chapter 10
Oracle AI Vector Search Views

10-3

Column Name Data Type Description

CASED VARCHAR2(7) Character-casing of the vocabulary, that
is, vocabulary to be treated as cased or
uncased

ALL_VECTOR_VOCAB_TOKENS
The ALL_VECTOR_VOCAB_TOKENS view displays tokens from all custom token vocabularies.

Column Name Data Type Description

VOCAB_OWNER VARCHAR2(128) Owner of the vocabulary (for example,
SYS)

VOCAB_NAME VARCHAR2(128) User-specified name of the vocabulary
(for example, DOC_VOCAB)

VOCAB_TOKEN VARCHAR2(255) Tokens contained in the vocabulary

Vector Memory Pool Views
Review the various vector memory pool views.

• V$VECTOR_MEMORY_POOL
This view contains information about the space allocation for Vector Memory.

V$VECTOR_MEMORY_POOL
This view contains information about the space allocation for Vector Memory.

The Vector Memory Pool area is used primarily to maintain in-memory vector indexes or
metadata useful for vector-related operations. The Vector Memory Pool is subdivided into two
pools: a 1MB pool used to store In-Memory Neighbor Graph Index allocations; and a 64K pool
used to store metadata. The amount of available memory in each pool is visible in the
V$VECTOR_MEMORY_POOL view. The relative size of the two pools is determined by internal
heuristics. The size of the Vector Memory Pool is controlled by the vector_memory_size
parameter. Area in the Vector Memory Pool is also allocated to accelerate Neighbor Partition
Index access by storing centroid vectors.

Column Name Data Type Description

POOL VARCHAR2(26) Name of the pools in the Vector
Memory Pool (64K or 1MB)

ALLOC_BYTES NUMBER Total amount of memory
allocated to this pool

USED_BYTES NUMBER Amount of memory currently
used in this pool

POPULATE_STATUS VARCHAR2(26) Status of the vector memory store
—whether it is being populated, is
done populating etc.

Chapter 10
Oracle AI Vector Search Views

10-4

Column Name Data Type Description

CON_ID NUMBER The ID of the container to which
the data pertains. Possible values
are:

• 0: This value is used for rows
containing data that pertain
to the entire multitenant
container database (CDB).
This value is also used for
rows in non-CDBs.

• 1: This value is used for rows
containing data that pertain
to only the root.

• n: Where n is the applicable
container ID for the rows
containing data.

Example

select CON_ID, POOL, ALLOC_BYTES/1024/1024 as ALLOC_BYTES_MB,
USED_BYTES/1024/1024 as USED_BYTES_MB
from V$VECTOR_MEMORY_POOL order by 1,2;

 CON_ID POOL ALLOC_BYTES_MB USED_BYTES_MB
---------- ---------------- -------------- -------------
 1 1MB POOL 319 0
 1 64KB POOL 144 0
 1 IM POOL METADATA 32 32
 2 1MB POOL 320 0
 2 64KB POOL 144 0
 2 IM POOL METADATA 16 16
 3 1MB POOL 320 0
 3 64KB POOL 144 0
 3 IM POOL METADATA 16 16
 4 1MB POOL 320 0
 4 64KB POOL 144 0
 4 IM POOL METADATA 16 16

12 rows selected.

SQL>

Vector Index Views
Review the vector index views.

• VECSYS.VECTOR$INDEX
This dictionary table contains detailed information about vector indexes.

Chapter 10
Oracle AI Vector Search Views

10-5

VECSYS.VECTOR$INDEX
This dictionary table contains detailed information about vector indexes.

Column Name Data Type Description

IDX_OBJN NUMBER Object number of the vector index

IDX_OBJD NUMBER ID of the vector index object. This
ID can be used to rebuild the
vector index.

IDX_OWNER# NUMBER Owner ID of the vector index.
Refer user$ entry

IDX_NAME VARCHAR2(128) Name of the vector index.

IDX_BASE_TABLE_OBJN NUMBER Base table object number

IDX_PARAMS JSON Vector index creation parameters
such as vector column indexed,
index distance, vector dimension
datatype, number of dimensions,
efConstruction, and number of
neighbors for in-memory neighbor
graph HNSW index or the number
of centroids for Inverted Flat
Vector Indexes.

IDX_AUXILIARY_TABLES JSON Names and object IDs of auxiliary
tables used to support rowid-to-
vertexid conversion information or
names of a centroid table and its
associated partitions table for
Inverted Flat File vector indexes.

IDX_SPARE1 NUMBER
IDX_SPARE2 JSON

Example

SQL> SELECT JSON_SERIALIZE(IDX_PARAMS returning varchar2 PRETTY)
 2* FROM VECSYS.VECTOR$INDEX where IDX_NAME = 'DOCS_HNSW_IDX';

JSON_SERIALIZE(IDX_PARAMSRETURNINGVARCHAR2PRETTY)
{
 "type" : "HNSW",
 "num_neighbors" : 32,
 "efConstruction" : 300,
 "upcast_dtype" : 1,
 "distance" : "COSINE",
 "accuracy" : 95,
 "vector_type" : "FLOAT32",
 "vector_dimension" : 384,
 "degree_of_parallelism" : 1,
 "indexed_col" : "EMBED_VECTOR"
}
SQL>
SQL> select * from vecsys.vector$index;

Chapter 10
Oracle AI Vector Search Views

10-6

IDX_OBJN IDX_OBJD IDX_OWNER# IDX_NAME IDX_BASE_TABLE_OBJN
IDX_PARAMS
IDX_AUXILIARY_TABLES
 IDX_SPARE1 IDX_SPARE2
-------- -------- ---------- -------------- -------------------

 ---------- ---------
 74051 143 DOCS_HNSW_IDX 73497
{"type":"HNSW", {"rowid_vid_map_objn":74052,

"num_neighbors":32,
"shared_journal_transaction_commits_objn":74054,

"efConstruction":300,
"shared_journal_change_log_objn":74057,

"upcast_dtype":1,
"rowid_vid_map_name":"VECTOR$DOCS_HNSW_IDX$HNSW_ROWID_VID_MAP",

"distance":"COSINE",
"shared_journal_transaction_commits_name":"VECTOR$DOCS_HNSW_IDX$HNSW_SHARED_JO
URNAL_TRANSACTION_COMMITS",

"accuracy":95,
"shared_journal_change_log_name":"VECTOR$DOCS_HNSW_IDX$HNSW_SHARED_JOURNAL_CHA
NGE_LOG"}

"vector_type":"FLOAT32",

"vector_dimension":384,

"degree_of_parallelism":1,

"indexed_col":"EMBED_VECTOR"}

 74072 143 GALAXIES_HNSW_IDX 74069
{"type":"HNSW", {"rowid_vid_map_objn":74073,

"num_neighbors":32,
"shared_journal_transaction_commits_objn":74075,

"efConstruction":300,
"shared_journal_change_log_objn":74078,

"upcast_dtype":0,
"rowid_vid_map_name":"VECTOR$GALAXIES_HNSW_IDX$HNSW_ROWID_VID_MAP",

"distance":"COSINE",
"shared_journal_transaction_commits_name":"VECTOR$GALAXIES_HNSW_IDX$HNSW_SHARE
D_JOURNAL_TRANSACTION_COMMITS",

"accuracy":95,
"shared_journal_change_log_name":"VECTOR$GALAXIES_HNSW_IDX$HNSW_SHARED_JOURNAL
_CHANGE_LOG"}

Chapter 10
Oracle AI Vector Search Views

10-7

"vector_type":"INT8",

"vector_dimension":5,

"degree_of_parallelism":1,

"indexed_col":"EMBEDDING"}

SQL>

Oracle AI Vector Search Statistics
These are a set of statistics related to Oracle AI Vector Search.

• Oracle AI Vector Search Dictionary Statistics
A set of dictionary statistics related to Oracle AI Vector Search.

• Oracle Machine Learning Static Dictionary Views
Lists data dictionary views related to Oracle Machine Learning models.

Oracle AI Vector Search Dictionary Statistics
A set of dictionary statistics related to Oracle AI Vector Search.

• Vector simd dist single calls: The number of vector distance function calls invoked by the
user, where both the inputs are a single vector.

• Vector simd dist point calls: The number of vector distance function calls invoked by the
user, where one input is a single vector, and the other input is an array of vectors.

• Vector simd dist array calls: The number of vector distance function calls invoked by the
user, where both the inputs are an array of vectors.

• Vector simd dist flex calls: The number of vector distance function calls invoked by the
user, where at least one input is with FLEX vector data type (no dimension or storage data
type specified).

• Vector simd dist total rows: The number of rows processed by the vector distance
function.

• Vector simd dist flex rows: The number of rows processed by the vector distance
function with FLEX vector data type.

• Vector simd topK single calls: The number of topK distance function calls invoked by the
user, where both the inputs are a single vector.

• Vector simd topK point calls: The number of topK distance function calls invoked by the
user, where one input is a single vector and the other input is an array of vectors.

• Vector simd topK array calls: The number of topK distance function calls invoked by the
user, where both the inputs are an array of vectors.

• Vector simd topK flex calls: The number of topK distance function calls invoked by the
user, where at least one input is with FLEX vector data type (no dimension or storage data
type specified).

• Vector simd topK total rows: The number of rows processed by the topK distance
function.

Chapter 10
Oracle AI Vector Search Statistics

10-8

• Vector simd topK flex rows: The number of rows processed by the topK distance
function with FLEX vector data type.

• Vector simd topK selected total rows: The number of distance results returned by the
topK vector distance function.

Note:

This is typically sum(K) for all topK queries.

• Vector simd construction num of total calls: The number of vector construction function
calls invoked by the user.

• Vector simd construction total result rows: The number of vector rows returned by the
vector construction function.

• Vector simd construction num of ASCII calls: The number of vector construction
function calls invoked by the user, where the input encoding is ASCII.

• Vector simd construction num of flex calls: The number of vector construction function
calls invoked by the user, where the output vector is of FLEX vector data type.

• Vector simd construction result rows for flex: The number of vector rows returned by
the vector construction function, where the output vector is of FLEX vector data type.

• Vector simd vector conversion num of total calls: The number of vector conversion
function calls invoked by the user.

• VECTOR NEIGHBOR GRAPH HNSW build HT Element Allocated: The number of hash
table elements allocated for vector indexes having organization Inmemory Neighbor Graph
and type HNSW that were created by a user.

• VECTOR NEIGHBOR GRAPH HNSW build HT Element Freed: The number of hash
table elements freed for vector indexes having organization Inmemory Neighbor Graph
and type HNSW that were created by a user.

• VECTOR NEIGHBOR GRAPH HNSW reload attempted: The number of reload
operations attempted in the background for vector indexes having organization Inmemory
Neighbor Graph and type HNSW.

• VECTOR NEIGHBOR GRAPH HNSW reload successful: The number of reload
operations completed in the background for vector indexes having organization Inmemory
Neighbor Graph and type HNSW.

• VECTOR NEIGHBOR GRAPH HNSW build computed layers: The total number of layers
created in an HNSW index.

• VECTOR NEIGHBOR GRAPH HNSW build indexed vectors: The total number of vector
indexes in the HNSW index.

• VECTOR NEIGHBOR GRAPH HNSW build computed distances: The total number of
distance computations executed during the HNSW index build phase.

• VECTOR NEIGHBOR GRAPH HNSW build sparse layers computed distances: The
total number of distance computations executed during the HNSW index build phase, in all
the layers, except the bottom one.

• VECTOR NEIGHBOR GRAPH HNSW build dense layer computed distances: The total
number of distance computations executed during the HNSW index phase in the bottom
layer.

Chapter 10
Oracle AI Vector Search Statistics

10-9

• VECTOR NEIGHBOR GRAPH HNSW build prune operation computed distances: The
total number of distance computations that were executed during the pruning operations
required to find the closest neighbors for a vector in the HNSW index build phase.

• VECTOR NEIGHBOR GRAPH HNSW build pruned neighbor lists: The total number of
neighbors pruned during the HNSW index build phase.

• VECTOR NEIGHBOR GRAPH HNSW build pruned neighbors: The total number of
neighbors pruned during the HNSW index build phase.

• VECTOR NEIGHBOR GRAPH HNSW build created edges: The total number of edges
created in an HNSW index.

• VECTOR NEIGHBOR GRAPH HNSW search executed approximate: The total number
of query searches executed using approximate search in an HNSW index.

• VECTOR NEIGHBOR GRAPH HNSW search executed exhaustive: The total number of
query searches executed using exact search in an HNSW index.

• VECTOR NEIGHBOR GRAPH HNSW search computed distances dense layer: The
total number of distance computations executed in the bottom layer of an HNSW index
during query searches.

• VECTOR NEIGHBOR GRAPH HNSW search computed distances sparse layer: The
total number of distance computations executed in all the layers except the bottom layer of
an HNSW index during query searches.

• VECTOR NEIGHBOR PARTITIONS IVF build HT Element Allocated: The number of
hash table elements allocated for vector indexes having organization Neighbor
Partitions and type IVF that were created by a user.

• VECTOR NEIGHBOR PARTITIONS IVF build HT Element Freed: The number of hash
table elements freed for vector indexes having organization Neighbor Partitions and
type IVF that were created by a user.

• VECTOR NEIGHBOR PARTITIONS IVF background Population Started: The number of
in-memory centroids background population operations started for vector indexes having
organization Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF background Population Succeeded: The
number of in-memory centroids background population operations completed for vector
indexes having organization Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF background Cleanup Started: The number of
in-memory centroids background cleanup operations started for vector indexes having
organization Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF XIC Population Started: The number of in-
memory centroids cross-instance population operations started for vector indexes having
organization Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF XIC Population Succeeded: The number of in-
memory centroids cross-instance population operations completed for vector indexes
having organization Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF XIC Cleanup Started: The number of in-memory
centroids cross-instance cleanup operations started for vector indexes having organization
Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF XIC Cleanup Succeeded: The number of in-
memory centroids cross-instance cleanup operations completed for vector indexes having
organization Neighbor Partitions and type IVF.

Chapter 10
Oracle AI Vector Search Statistics

10-10

• VECTOR NEIGHBOR PARTITIONS IVF im centroids in scan: The number of times that
in-memory centroids are used in scan for vector indexes having organization Neighbor
Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF im centroids in dmls: The number of times that
in-memory centroids are used in the DML that happens on the base table with vector
indexes having organization Neighbor Partitions and type IVF.

Oracle Machine Learning Static Dictionary Views
Lists data dictionary views related to Oracle Machine Learning models.

Query the following views to learn more about the machine learning models:

• ALL_MINING_MODEL_ATTRIBUTES

• ALL_MINING_MODELS

Oracle AI Vector Search Parameters
This is a set of parameters related to Oracle AI Vector Search.

• VECTOR_MEMORY_SIZE
Syntax: vector_memory_size = [ON | OFF] (default ON)

The initialization parameter VECTOR_MEMORY_SIZE specifies either the current size of the
Vector Pool (at CDB level) or the maximum Vector Pool usage allowed by a PDB (at PDB
level). The possible For more information about this parameter, see Size the Vector Pool.

• VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD
Syntax: vector_index_neighbor_graph_reload = [RESTART | OFF] (default OFF)

The initialization parameter VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD automatically loads
HNSW indexes one by one after instance restart through a background task. For more
information about this parameter, see Guidelines for Using Vector Indexes.

• VECTOR_QUERY_CAPTURE
Syntax: vector_query_capture = [ON | OFF] (default ON)

The initialization parameter VECTOR_QUERY_CAPTURE is used to enable and disable capture
of query vectors. For more information about this parameter and about capturing query
vectors, see Index Accuracy Report.

Chapter 10
Oracle AI Vector Search Parameters

10-11

11
Vector Search PL/SQL APIs

Explore Oracle AI Vector Search APIs and reference materials.

• Oracle AI Vector Search PL/SQL Packages
These are a set of PL/SQL packages related to Oracle AI Vector Search.

Oracle AI Vector Search PL/SQL Packages
These are a set of PL/SQL packages related to Oracle AI Vector Search.

For detailed information, see the following sections in Oracle Database PL/SQL Packages and
Types Reference:

• DBMS_VECTOR

The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt, or creating vector indexes.

• DBMS_VECTOR_CHAIN

The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search,
using functionality that can be pipelined together for an end-to-end search.

11-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	1 Overview
	Overview of Oracle AI Vector Search
	Why Use Oracle AI Vector Search?
	Oracle AI Vector Search Workflow

	2 Get Started
	SQL Quick Start

	3 Generate Vector Embeddings
	Import Pretrained Models in ONNX Format for Vector Generation Within the Database
	Import ONNX Models and Generate Embeddings
	Alternate Method to Import ONNX Models

	Convert Pretrained Models to ONNX Format
	Python Classes to Convert Pretrained Models to ONNX Models

	Generate Vector Embeddings Using Vector Utilities Leveraging Third-Party REST APIs
	Understand the Stages of Data Transformations
	Use SQL Functions to Generate Embeddings
	Use PL/SQL Packages to Generate Embeddings
	Terms of Using Vector Utility PL/SQL Packages
	About Chainable Utility Functions and Common Use Cases
	About Vector Helper Procedures
	Supplied Vector Utility PL/SQL Packages
	Supported Third-Party Provider Operations
	Validate JSON Input Parameters

	Vector Generation Examples
	Generate Embeddings: SQL and PL/SQL Examples
	Convert Text String to Embedding
	Convert File to Text to Chunks to Embeddings
	Convert File to Embeddings
	Generate and Use Embeddings for End-to-End Search

	Perform Text Processing: PL/SQL Examples
	Convert Text String to Summary
	Create and Use Custom Vocabulary
	Create and Use Custom Language Data

	Perform Chunking: SQL and PL/SQL Examples
	Convert Text to Chunks With Custom Chunking Specifications
	Explore Chunking Techniques and Examples

	Generate Text for a Prompt: PL/SQL Example

	4 Store Vector Embeddings
	Create Tables Using the VECTOR Data Type
	Insert Vectors in a Database Table Using the INSERT Statement
	Load Vector Data Using SQL*Loader
	Load Character Vector Data Using SQL*Loader Example
	Load Binary Vector Data Using SQL*Loader Example

	Unload and Load Vectors Using Oracle Data Pump

	5 Create Vector Indexes
	Size the Vector Pool
	Manage the Different Categories of Vector Indexes
	In-Memory Neighbor Graph Vector Index
	Understand Hierarchical Navigable Small World Indexes
	Hierarchical Navigable Small World Index Syntax and Parameter

	Neighbor Partition Vector Index
	Understand Inverted File Flat Vector Indexes
	Inverted File Flat Index Syntax and Parameter

	Guidelines for Using Vector Indexes
	Index Accuracy Report

	6 Use SQL Functions for Vector Operations
	Vector Distance Functions
	Vector Distance Metrics
	Euclidean and Euclidean Squared Distances
	Cosine Similarity
	Dot Product Similarity
	Manhattan Distance
	Hamming Similarity

	Vector Distance Operand to the VECTOR_DISTANCE Function
	Shorthand Operators for Distances

	Other Basic Vector Functions
	Vector Constructors
	TO_VECTOR
	VECTOR
	Parameters
	Examples

	Vector Serializers
	FROM_VECTOR
	VECTOR_SERIALIZE
	Parameters
	Examples

	VECTOR_NORM
	VECTOR_DIMENSION_COUNT
	VECTOR_DIMENSION_FORMAT

	Oracle AI Vector Search SQL Functions

	7 Query Data with Similarity Searches
	Perform Exact Similarity Search
	Perform Approximate Similarity Search Using Vector Indexes
	Understand Approximate Similarity Search Using Vector Indexes
	Optimizer Plans for Vector Indexes
	Optimizer Plans for HNSW Vector Indexes
	Optimizer Plans for IVF Vector Indexes

	Approximate Similarity Search Examples
	Approximate Search Using HNSW
	Approximate Search Using IVF

	Perform Multi-Vector Similarity Search

	8 Work with Retrieval Augmented Generation
	Compliment LLMs with Oracle AI Vector Search
	SQL RAG Example

	9 Supported Clients and Languages
	10 Vector Diagnostics
	Oracle AI Vector Search Views
	Vector Utilities-Related Views
	ALL_VECTOR_ABBREV_TOKENS
	ALL_VECTOR_LANG
	USER_VECTOR_ABBREV_TOKENS
	USER_VECTOR_LANG
	USER_VECTOR_VOCAB
	USER_VECTOR_VOCAB_TOKENS
	ALL_VECTOR_VOCAB
	ALL_VECTOR_VOCAB_TOKENS

	Vector Memory Pool Views
	V$VECTOR_MEMORY_POOL

	Vector Index Views
	VECSYS.VECTOR$INDEX

	Oracle AI Vector Search Statistics
	Oracle AI Vector Search Dictionary Statistics
	Oracle Machine Learning Static Dictionary Views

	Oracle AI Vector Search Parameters

	11 Vector Search PL/SQL APIs
	Oracle AI Vector Search PL/SQL Packages

