Oracle® Al Database
Oracle Text Application Developer's Guide

26ali
(G43190-01
October 2025

ORACLE"



Oracle Al Database Oracle Text Application Developer's Guide, 26ai
G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

Primary Author: Minal Agashe

Contributing Authors: Doug Williams, Prakash Jashnani

Contributors: Ajay Sunnyhith Chidurala, Aleksandra Czarlinska, Asha Makur, Bonnie Xia, Ce Wei, Denis Mukhin, Edwin
Balthes, Gaurav Yadav, George Krupka, Mohammad Faisal, Nilay Panchal, Paul Lane, Rahul Kadwe, Rodrigo Fuentes

Hernandez, Roger Ford, Sanoop Sethumadhavan, Saurabh Naresh Netravalkar, Simona Herdan, Sudhir Kumar, Yiming
Qi

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

Preface

Audience
Conventions

1 Understanding Oracle Text Application Development

1.1 Introduction to Oracle Text
1.2 Document Collection Applications
1.2.1  About Document Collection Applications
1.2.2 Flowchart of Text Query Application
1.3 Catalog Information Applications
1.3.1 About Catalog Information Applications
1.3.2 Flowchart for Catalog Query Application
1.4 Document Classification Applications
1.5 XML Search Applications
1.5.1 The CONTAINS Operator with XML Search Applications
1.5.2 Combining Oracle Text Features with Oracle XML DB (XML Search Index)
1.5.2.1 Using the xml_enable Method for an XML Search Index
1.5.2.2 Using the Text-on-XML Method
1.5.2.3 Indexing JSON Data

2 Getting Started with Oracle Text

© 0 N N OO0 O B W W DN P PP P

2.1 Overview of Getting Started with Oracle Text
2.2 Creating an Oracle Text User
2.3 Query Application Quick Tour

2.3.1 Creating the Text Table

2.3.2 Using SQL*Loader to Load the Table
2.4 Catalog Application Quick Tour

2.4.1 Creating the Table

2.4.2 Using SQL*Loader to Load the Table
2.5 Classification Application Quick Tour

2.5.1 About Classification of a Document

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

O 0 O 01 O W NN PP -

October 13, 2025
Page i of xii



2.5.2 Creating a Classification Application 9

3 Indexing with Oracle Text

3.1 About Oracle Text Indexes 1
3.1.1 Types of Oracle Text Indexes 2
3.1.2  Structure of the Oracle Text CONTEXT Index 5
3.1.3 Oracle Text Indexing Process 5
3.1.3.1 Datastore Object 6

3.1.3.2  Filter Object 6

3.1.3.3 Sectioner Object 7

3.1.3.4 Lexer Object 7

3.1.3.5 Indexing Engine 7

3.1.4 About Updates to Indexed Columns 7
3.1.5 Partitioned Tables and Indexes 8
3.1.6 Online Indexes 9
3.1.7 Parallel Indexing 9
3.1.8 Indexing and Views 9

3.2 Considerations for Oracle Text Indexing 10
3.2.1 Location of Text 10
3.2.2 Supported Column Types 11
3.2.3 Storing Text in the Text Table 12
3.2.4 Storing File Path Names 12
3.2.5 Storing URLs 12
3.2.6  Storing Associated Document Information 13
3.2.7 Format and Character Set Columns 13
3.2.8 Supported Document Formats 13
3.2.9 Summary of DATASTORE Types 13
3.2.10 Document Formats and Filtering 15
3.2.10.1 No Filtering for HTML 15
3.2.10.2 Mixed-Format Columns Filtering 15
3.2.10.3 Custom Filtering 16

3.2.11 Bypass Rows 16
3.2.12 Document Character Set 16

3.3 Document Language 16
3.4 Special Characters 17
3.5 Case-Sensitive Indexing and Querying 18
3.6 Improved Document Services Performance with a Forward Index 19
3.6.1 Enabling Forward Index 19
3.6.2 Forward Index with Snippets 19
3.6.3 Forward Index with Save Copy 19
3.6.4 Forward Index Without Save Copy 20

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page ii of xii



3.6.5 Save Copy Without Forward Index 21

3.7 Language-Specific Features 21
3.7.1 Theme Indexing 21
3.7.2 Base-Letter Conversion for Characters with Diacritical Marks 21
3.7.3 Alternate Spelling 22
3.7.4 Composite Words 22
3.7.5 Korean, Japanese, and Chinese Indexing 23

3.8  About Entity Extraction and CTX_ENTITY 23
3.8.1 Basic Example of Using Entity Extraction 23
3.8.2 Example of Creating a New Entity Type by Using a User-Defined Rule 25

3.9 About Fuzzy Matching and Stemming 26

3.10 Better Wildcard Query Performance 27

3.11 Document Section Searches 27

3.12 Stopwords and Stopthemes 28

3.13 Index Performance 28

3.14 Query Performance and Storage of Large Object (LOB) Columns 28

3.15 Mixed Query Performance 29

3.16 In-Memory Full Text Search and JSON Full Text Search 29

4 Creating Oracle Text Indexes

4.1 Summary of the Procedure for Creating an Oracle Text Index 1

4.2 Creating Preferences 2

4.3 Section Searching Example: Creating HTML Sections 2

4.4  Using Stopwords and Stoplists 3
4.4.1 Multilanguage Stoplists 3
4.4.2 Stopthemes and Stopclasses 3
443 PL/SQL Procedures for Managing Stoplists 3

4.5 Creating a CONTEXT Index 4
451 CONTEXT Index and DML 4
4.5.2 Default CONTEXT Index Example 4
4.5.3 Incrementally Creating a CONTEXT Index 5
454 Custom CONTEXT Index Example: Indexing HTML Documents 7
455 CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY 8

4.6 Creating a CTXCAT Index 8
4.6.1 CTXCAT Index and DML Operations 9
4.6.2 About CTXCAT Subindexes and Their Costs 9
4.6.3 Creating CTXCAT Subindexes 9
4.6.4 Creating CTXCAT Index 11

4.7 Creating a CTXRULE Index 12

4.8 Creating a JSON Search Index 13

4.9 Creating an Oracle Text Search Index 13

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page iii of xii



4.10 Creating a Hybrid Vector Index

5 Maintaining Oracle Text Indexes

13

51
5.2
5.3
54

Viewing Index Errors

Dropping an Index

Resuming a Failed Index

Re-creating an Index

54.1
54.2

Re-creating a Global Index
Re-creating a Local Partitioned Index

5.5 Rebuilding an Index

5.6
5.7

5.8

Dropping a Preference
Managing DML Operations for a CONTEXT Index

57.1
57.2
57.3

Viewing Pending DML Operations
Synchronizing the Index
Optimizing the Index

5.7.3.1 Index Fragmentation

5.7.3.2 Document Invalidation and Garbage Collection

5.7.3.3 Single Token Optimization

5.7.3.4 Viewing Index Fragmentation and Garbage Data

Using Automatic Maintenance for an Index

5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6

About Automatic Maintenance

Requirements and Restrictions for Automatic Maintenance
Asynchronous Maintenance Framework

Enabling and Disabling Automatic Maintenance

Switching between Automatic and Manual Maintenance
Monitoring Maintenance Events and Errors

6 Querying with Oracle Text

© © © © 00 0 o O o O &~ W N DNDNPFP PP

e i el e =
o N NN O

6.1

Overview of Queries

6.1.1

Querying with CONTAINS

6.1.1.1 CONTAINS SQL Example
6.1.1.2 CONTAINS PL/SQL Example
6.1.1.3  Structured Query with CONTAINS Example

6.1.2

Querying with CATSEARCH

6.1.2.1 CATSEARCH SQL Query Example
6.1.2.2 CATSEARCH Example

6.1.3

Querying with MATCHES

6.1.3.1 MATCHES SQL Query
6.1.3.2 MATCHES PL/SQL Examples

6.1.4

Word and Phrase Queries

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

0 N O oA W W NDNDN PP

October 13, 2025
Page iv of xii



6.1.5 Querying Stopwords 8
6.1.6 ABOUT Queries and Themes 9

6.2 Oracle Text Query Features 10
6.2.1 Query Expressions 10
6.2.1.1 CONTAINS Operators 10

6.2.1.2 CATSEARCH Operator 10

6.2.1.3 MATCHES Operator 11

6.2.2 Case-Sensitive Searching 11
6.2.3 Query Feedback 12
6.2.4 Query Explain Plan 12
6.2.5 Using a Thesaurus in Queries 13
6.2.6 Document Section Searching 13
6.2.7 Using Query Templates 13
6.2.7.1 Query Rewrite 14

6.2.7.2 Query Relaxation 15

6.2.7.3 Query Language 15

6.2.7.4 Ordering by SDATA Sections 16

6.2.7.5 Alternative and User-Defined Scoring 16

6.2.7.6  Alternative Grammar 17

6.2.8 Query Analysis 17
6.2.9 Other Query Features 18

V4 Working with CONTEXT and CTXCAT Grammars in Oracle Text

7.1 The CONTEXT Grammar 1
7.1.1 ABOUT Query 2
7.1.2 Logical Operators 2
7.1.3 Section Searching and HTML and XML 3
7.1.4  Proximity Queries with NEAR, and NEAR2 Operators 3
7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators 4
7.1.6 Using CTXCAT Grammar 4
7.1.7 Defined Stored Query Expressions 4
7.1.7.1 Defining a Stored Query Expression 5

7.1.7.2 SQE Example 5

7.1.8 Calling PL/SQL Functions in CONTAINS 5
7.1.9 Optimizing for Response Time 6
7.1.10 Counting Hits 6
7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined Scoring 7

7.2 The CTXCAT Grammar 7

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of xii



8 Presenting Documents in Oracle Text

8.1 Highlighting Query Terms
8.1.1 Text highlighting
8.1.2 Theme Highlighting
8.1.3 CTX_DOC Highlighting Procedures
8.1.3.1 Markup Procedure
8.1.3.2 Highlight Procedure
8.1.3.3 Concordance
8.2 Obtaining Part-of-Speech Information for a Document
8.3 Obtaining Lists of Themes, Gists, and Theme Summaries
8.3.1 Lists of Themes
8.3.2 Gist and Theme Summary

N~ oo NN D ONR R R R

8.4 Presenting and Highlighting Documents

O Classifying Documents in Oracle Text

9.1 Overview of Document Classification
9.2 Classification Applications
9.3 Classification Solutions
9.4 Rule-Based Classification
9.4.1 Rule-Based Classification Example
9.4.2 CTXRULE Parameters and Limitations
9.5 Supervised Classification
9.5.1 Decision Tree Supervised Classification

0O N OO OO W W N - P

9.5.2 Decision Tree Supervised Classification Example
9.5.3 SVM-Based Supervised Classification
9.5.4 SVM-Based Supervised Classification Example

=
N R O

9.6 Unsupervised Classification (Clustering)

=
w

9.7 Unsupervised Classification (Clustering) Example

10  Tuning Oracle Text

10.1  Optimizing Queries with Statistics
10.1.1  Collecting Statistics
10.1.2 Query Optimization with Statistics Example
10.1.3 Re-Collecting Statistics
10.1.4 Deleting Statistics
10.2 Optimizing Queries for Response Time

A A b W O DN PP

10.2.1 Other Factors That Influence Query Response Time

10.2.2 Improved Response Time with the FIRST_ROWS(n) Hint for ORDER BY
Queries

10.2.3 Improved Response Time Using the DOMAIN_INDEX_SORT Hint 6

ol

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page vi of xii



10.2.4
10.2.5
10.2.6
10.2.7
10.2.8

10.2.9

Improved Response Time Using the Local Partitioned CONTEXT Index
Improved Response Time with the Local Partitioned Index for Order by Score
Improved Response Time with the Query Filter Cache

Improved Response Time Using the BIG_IO Option of CONTEXT Index

Improved Response Time Using the SEPARATE_OFFSETS Option of the
CONTEXT Index

Improved Response Time Using the STAGE_ITAB,
STAGE_ITAB_MAX_ROWS, and STAGE_ITAB_PARALLEL Options of
CONTEXT Index

10.3  Optimizing Queries for Throughput

10.4 Composite Domain Index in Oracle Text

10.5 Performance Tuning with CDI

10.6 Solving Index and Query Bottlenecks by Using Tracing

10.7 Using Parallel Queries

10.7.1
10.7.2

Parallel Queries on a Local Context Index
Parallelizing Queries Across Oracle RAC Nodes

10.8 Tuning Queries with Blocking Operations

10.9 Frequently Asked Questions About Query Performance

10.9.1
10.9.2
10.9.3
10.9.4
10.9.5
10.9.6
10.9.7
10.9.8
10.9.9
10.9.10
10.9.11
10.9.12

10.9.13
10.9.14
10.9.15
10.9.16
10.9.17
10.9.18
10.9.19
10.9.20

What is query performance?

What is the fastest type of Oracle Text query?

Should | collect statistics on my tables?

How does the size of my data affect queries?

How does the format of my data affect queries?

What is the difference between an indexed lookup and a functional lookup

What tables are involved in queries?

How is the $R table contention reduced?

Does sorting the results slow a text-only query?
How do | make an ORDER BY score query faster?
Which memory settings affect querying?

Does out-of-line LOB storage of wide base table columns improve
performance?

How can | speed up a CONTAINS query on more than one column?
Can | have many expansions in a query?

How can local partition indexes help?

Should | query in parallel?

Should | index themes?

When should | use a CTXCAT index?

When is a CTXCAT index NOT suitable?

What optimizer hints are available and what do they do?

10.10  Frequently Asked Questions About Indexing Performance

10.10.1
10.10.2
10.10.3

How long should indexing take?
Which index memory settings should | use?
How much disk overhead will indexing require?

Oracle Text Application Developer's Guide

G43190-01

0 N N O

10

11
13
14
14
15
16
16
16
17
18
18
18
19
19
19
19
20
20
20
21
21

21
22
22
23
23
23
24
24
25
25
26
26
27

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates.

Page vii of xii



10.10.4 How does the format of my data affect indexing? 27
10.10.5 Can parallel indexing improve performance? 27
10.10.6  How can | improve index performance when | create a local partitioned index? 27
10.10.7 How can | tell how much indexing has completed? 28
10.11 Frequently Asked Questions About Updating the Index 28
10.11.1 How often should I index new or updated records? 28
10.11.2 How can | tell when my indexes are fragmented? 29
10.11.3 Does memory allocation affect index synchronization? 29
11  Searching Document Sections in Oracle Text

11.1  About Oracle Text Document Section Searching 1
11.1.1  Enabling Oracle Text Section Searching 1
11.1.1.1 Create a Section Group 1
11.1.1.2 Define Your Sections 3
11.1.1.3 Index Your Documents 3
11.1.1.4 Search Sections with the WITHIN Operator 4
11.1.1.5 Search Paths with INPATH and HASPATH Operators 4
11.1.1.6  Mark an SDATA Section to Be Searchable 4

11.1.2 Oracle Text Section Types 5
11.1.2.1 Zone Section 5
11.1.2.2 Field Section 7
11.1.2.3 Stop Section 8
11.1.2.4 MDATA Section 8
11.1.2.5 NDATA Section 10
11.1.2.6 SDATA Section 11
11.1.2.7 Attribute Section 14
11.1.2.8 Special Sections 14

11.1.3 Oracle Text Section Attributes 14
11.2 HTML Section Searching with Oracle Text 16
11.2.1  Creating HTML Sections 16
11.2.2 Searching HTML Meta Tags 17
11.3 XML Section Searching with Oracle Text 17
11.3.1  Automatic Sectioning 17
11.3.2  Attribute Searching 18
11.3.3 Document Type Sensitive Sections 18
11.3.4 Path Section Searching 19
11.3.4.1 Creating an Index with PATH_SECTION_GROUP 20
11.3.4.2 Top-Level Tag Searching 20
11.3.4.3 Any-Level Tag Searching 20
11.3.4.4 Direct Parentage Searching 20
11.3.4.5 Tag Value Testing 21

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of xii



11.3.4.6  Attribute Searching 21

11.3.4.7 Attribute Value Testing 21
11.3.4.8 Path Testing 21
11.3.4.9 Section Equality Testing with HASPATH 21

12 Using Oracle Text Name Search

12.1  Overview of Name Search
12.2 Name Search Examples

13  Performing Ubiquitous Search with DBMS_SEARCH APIs

13.1 About Ubiquitous Search and Ubiquitous Search Indexes

13.2 Perform Ubiquitous Search: End-to-End Examples
13.2.1 Create and Query DBMS_SEARCH Indexes Using Multiple Tables and Views
13.2.2 Use JSON Duality Views with DBMS_SEARCH Indexes 17
13.2.3 Examine DBMS_SEARCH Indexes Using Dictionary Views 27

14  Working with a Thesaurus in Oracle Text

14.1  Overview of Oracle Text Thesaurus Features
14.1.1 Oracle Text Thesaurus Creation and Maintenance
14.1.2 Using a Case-Sensitive Thesaurus
14.1.3 Using a Case-Insensitive Thesaurus
14.1.4 Default Thesaurus
14.1.5 Supplied Thesaurus
14.2  Defining Terms in a Thesaurus
14.2.1 Defining Synonyms
14.2.2 Defining Hierarchical Relations
14.3 Using a Thesaurus in a Query Application
14.4  Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries
14.5 Augmenting the Knowledge Base with a Custom Thesaurus
14.5.1 Advantages
14.5.2 Limitations
14.6  Linking New Terms to Existing Terms

N NN~ OO ahMDdMD®WWNNRE

14.7 Example of Loading a Thesaurus with ctxload

14.8 Example of Loading a Thesaurus with the CTX_THES.IMPORT_THESAURUS
PL/SQL procedure

14.9 Compiling a Loaded Thesaurus
14.10  About the Supplied Knowledge Base
14.10.1 Adding a Language-Specific Knowledge Base

© 0 00

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page ix of xii



14.10.2 Limitations for Adding Knowledge Bases 10

15 Using Faceted Navigation

15.1 About Faceted Navigation

15.2 Defining Sections As Facets

15.3 Querying Facets by Using the Result Set Interface

15.4 Refining Queries by Using Facets As Filters 10
15.5 Multivalued Facets 10

16 Using Result Set Interface

16.1 Overview of the XML Query Result Set Interface 1
16.2 Using the XML Query Result Set Interface 1
16.3 Creating XML-Only Applications with Oracle Text 4
16.4 Example of a Result Set Descriptor 4
16.5 Identifying Collocates 5
16.6 Overview of the JSON Result Set Interface 7
16.7 Using the JSON Result Set Interface 7
17 Performing Sentiment Analysis Using Oracle Text
17.1  Overview of Sentiment Analysis 1
17.1.1  About Sentiment Analysis 1
17.1.2  About Sentiment Classifiers 2
17.1.3  About Performing Sentiment Analysis 2
17.1.4  Sentiment Analysis Interfaces 3
17.2 Creating a Sentiment Classifier Preference 3
17.3 Training Sentiment Classifiers 4
17.4 Performing Sentiment Analysis with the CTX_DOC Package 6
17.5 Performing Sentiment Analysis with the RSI 8
18  Working with Sharded Databases
18.1 Running Oracle Text PL/SQL APIs in a Sharded Database
18.2 Supported APIs in a Sharded Database
19 Administering Oracle Text
19.1 Oracle Text Users and Roles 1
19.1.1 CTXSYS User 1
19.1.2 CTXAPP Role 2
19.1.3 Granting Roles and Privileges to Users 2

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page x of xii



19.2 DML Queue
19.3 CTX_OUTPUT Package
19.4 CTX_REPORT Package
19.5 Text Manager in Oracle Enterprise Manager
19.5.1 Using Text Manager
19.5.2 Viewing General Information for an Oracle Text Index
19.5.3 Checking Oracle Text Index Health
19.6  Servers and Indexing
19.7 Tracking Database Feature Usage in Oracle Enterprise Manager
19.8 Oracle Text on Oracle Real Application Clusters
19.9 Configuring Oracle Text in Oracle Database Vault Environment
19.10 Unsupported Oracle Text Operations in Oracle Database Vault Realm
19.11  Export and Import of Schemas Containing Oracle Text Settings

20 Migrating Oracle Text Applications

© © © 00 0 0 N N O O W w N

20.1 Performing a Rolling Upgrade with a Logical Standby Database 1
20.1.1 CTX_DDL PL/SQL Procedures 1
20.1.2 CTX_OUTPUT PL/SQL Procedures 2
20.1.3 CTX_DOC PL/SQL Procedures 2

20.2 Identifying and Copying Oracle Text Files to a New Oracle Home 2

A CONTEXT Query Application

A.1  Web Query Application Overview A-1

A.2 The PL/SQL Server Pages (PSP) Web Application A-2
A.2.1 PSP Web Application Prerequisites A-3
A.2.2  Building the PSP Web Application A-3
A.2.3 PSP Web Application Sample Code A-4

A.2.3.1 loader.ctl A-5
A.2.3.2 loader.dat A-5
A.2.3.3 HTML Files for loader.dat Example A-5
A.2.3.4 search_htmlservices.sql A-9
A.2.3.5 search_html.psp A-11

A.3 The Java Server Pages (JSP) Web Application A-12
A.3.1 JSP Web Application Prerequisites A-12
A.3.2 JSP Web Application Sample Code A-13

B CATSEARCH Query Application
B.1 CATSEARCH Web Query Application Overview B-1
B.2 The JSP Web Application B-1

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xi of xii



B.2.1 Building the JSP Web Application B-2
B.2.2 JSP Web Application Sample Code B-3
B.2.2.1 loader.ctl B-4

B.2.2.2 loader.dat B-4

B.2.2.3 catalogSearch.jsp B-4

C Custom Index Preference Examples

C.1 Datastore Examples C-1
C.2 NULL_FILTER Example: Indexing HTML Documents C-3
C.3 PROCEDURE_FILTER Example C-3
C.4 BASIC_LEXER Example: Setting Printjoin Characters C-3
C.5 MULTI_LEXER Example: Indexing a Multilanguage Table C-3
C.6 BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing C-4
C.7 BASIC_WORDLIST Example: Enabling Wildcard Index C-5

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xii of xii



ORACLE’

Preface

Oracle Text Application Developer's Guide provides information for building applications with
Oracle Text.

e Audience

e Conventions

Audience

This document is intended for users who perform the following tasks:

* Develop Oracle Text applications
* Administer Oracle Text installations

To use this document, you must have experience with the Oracle object relational database
management system, SQL, SQL*Plus, and PL/SQL.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Pageiofi



Understanding Oracle Text Application
Development

Oracle Text enables you to build text query applications and document classification
applications.

This chapter contains the following topics:

¢ Introduction to Oracle Text

« Document Collection Applications

e Catalog Information Applications

Document Classification Applications

e XML Search Applications

1.1 Introduction to Oracle Text

Oracle Text provides indexing, word and theme searching, and viewing capabilities for text in
query applications and document classification applications.

To design an Oracle Text application, first determine the type of queries that you expect to run.
When you know the types, you can choose the most suitable index for the task.

Oracle Text is used for the following categories of applications:

«  Document Collection Applications

e Catalog Information Applications

« Document Classification Applications

« XML Search Applications

1.2 Document Collection Applications

A text query application enables users to search document collections, such as websites,
digital libraries, or document warehouses.

This section contains the following topics.

e About Document Collection Applications

»  Flowchart of Text Query Application

1.2.1 About Document Collection Applications

The collection is typically static and has no significant change in content after the initial
indexing run. Documents can be any size and format, such as HTML, PDF, or Microsoft Word.
These documents are stored in a document table. Searching is enabled by first indexing the
document collection.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 9



ORACLE

Chapter 1
Document Collection Applications

Queries usually consist of words or phrases. Application users specify logical combinations of
words and phrases by using operators such as OR and AND. Users can apply other query
operations to improve the search results, such as stemming, proximity searching, and
wildcarding.

For this type of application, you should retrieve documents that are most relevant to a query.
The documents must rank high in the result list.

The queries are best served with a CONTEXT index on your document table. To query this index,
the application uses the SQL CONTAI NS operator in the WHERE clause of a SELECT statement.

Figure 1-1 Overview of Text Query Application

SQL
CONTAINS
@@ Query

Context a
Index | |DocTable Text Query

O Application

O

]

1.2.2 Flowchart of Text Query Application

A typical text query application on a document collection lets the user enter a query. The
application enters a CONTAI NS query and returns a list, called a hitlist, of documents that satisfy
the query. The results are usually ranked by relevance. The application enables the user to
view one or more documents in the hitlist.

For example, an application might index URLs (HTML files) on the web and provide query
capabilities across the set of indexed URLSs. Hitlists returned by the query application are
composed of URLSs that the user can visit.

Figure 1-2 illustrates the flowchart of user interaction with a simple text query application:
The user enters a query.

The application runs a CONTAI NS query.

The application presents a hitlist.

The user selects document from the hitlist.

A A

The application presents a document to the user for viewing.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 9



ORACLE

Figure 1-2 Flowchart of a Text Query Application

e B
\ﬁeui_ Enter Query

-

v

Execute CONTAINS Query

v

Present Hitlist

v

e B
\qui— Select from Hitlist

Present Document
CTX_DOC .HIGHLIGHT

1.3 Catalog Information Applications

Catalog information consists of inventory type information, such as for an online book store or

auction site.

This section contains the following topics.

*  About Catalog Information Applications

*  Flowchart for Catalog Query Application

1.3.1 About Catalog Information Applications

Chapter 1
Catalog Information Applications

Application Action

User Action

The stored catalog information consists of text information, such as book titles, and related
structured information, such as price. The information is usually updated regularly to keep the
online catalog up-to-date with the inventory.

Queries are usually a combination of a text component and a structured component. Results
are almost always sorted by a structured component, such as date or price. Good response
time is always an important factor with this type of query application.

Catalog applications are best served by a CTXCAT index. Query this index with the CATSEARCH

operator in the WHERE clause of a SELECT statement.

Figure 1-3 illustrates the relationship of the catalog table, its CTXCAT index, and the catalog
application that uses the CATSEARCH operator to query the index.

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 0of 9



ORACLE

Figure

CTXCAT
Index

®

Chapter 1
Catalog Information Applications

1-3 A Catalog Query Application
SQL
CATSEARCH
0
g Catalog Table Catalog
0 —Ii Application
0
Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMM T) or, preferably, SYNC( EVERY [ti ne- period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FI LTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

1.3.2 Flowchart for Catalog Query Application

A catalog application enables users to search for specific items in catalogs. For example, an
online store application enables users to search for and purchase items in inventory. Typically,
the user query consists of a text component that searches across the textual descriptions plus
some other ordering criteria, such as price or date.

Figure 1-4 illustrates the flowchart of a catalog query application for an online electronics store.

1. The user enters the query, consisting of a text component (for example, cd player) and a
structured component (for example, order by price).

g » © b

The application executes the CATSEARCH query.
The application shows the results ordered accordingly.
The user browses the results.

The user enters another query or performs an action, such as purchasing the item.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 9



ORACLE

Chapter 1
Document Classification Applications

Figure 1-4 Flowchart of a Catalog Query Application

i

e B
\qQUi— Enter Query <
/ \ .
Text Component Structured Component P
'ed player' 'order by price'’ \

Execute CATSEARCH Query

v

Show Results

v

User Browses Results

New Query

!
!

* Application Action

User Purchases ltem User Action

1.4 Document Classification Applications

In a document classification application, an incoming stream or a set of documents is
compared to a predefined set of rules. If a document matches one or more rules, then the
application performs an action.

For example, assume an incoming stream of news articles. You define a rule to represent the
Finance category. The rule is essentially one or more queries that select documents about the
subject of Finance. The rule might have the form of ‘stocks or bonds or earnings.’

When a document arrives at a Wall Street earnings forecast and satisfies the rules for this
category, the application takes an action, such as tagging the document as Finance or emailing
one or more Users.

To create a document classification application, create a table of rules and then create a
CTXRULE index. To classify an incoming stream of text, use the MATCHES operator in the WHERE
clause of a SELECT statement. See Figure 1-5 for the general flow of a classification
application.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 9



ORACLE Chapter 1
XML Search Applications

Figure 1-5 Overview of a Document Classification Application

Document1 [——
from —
Database —
Document2 [—— Document Perform
from File p— Stream Document Action

— Classification
System — Application
Document N[—— lI\S/SI’LO—ES
from Web — Classify

— Query Document

CTXRULE
Index Rules Table
Database A Database B

1.5 XML Search Applications

An XML search application performs searches over XML documents. A regular document
search usually searches across a set of documents to return documents that satisfy a text
predicate; an XML search often uses the structure of the XML document to restrict the search.
Typically, only the document part that satisfies the search is returned. For example, instead of
finding all purchase orders that contain the word electric, the user might need only purchase
orders in which the comment field contains electric.

Oracle Text enables you to perform XML searching by using the following approaches:

«  The CONTAINS Operator with XML Search Applications
e Combining Oracle Text Features with Oracle XML DB (XML Search Index)

@ See Also

Using XML Query Result Set Interface

1.5.1 The CONTAINS Operator with XML Search Applications

The CONTAI NS operator is well suited to structured searching, enabling you to perform
restrictive searches with the W THI N, HASPATH, and | NPATH operators. If you use a CONTEXT
index, then you can also benefit from the following characteristics of Oracle Text searches:

« Token-based, whitespace-normalized searches
e Hitlists ranked by relevance
e Case-sensitive searching

e Section searching

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 9



ORACLE’

Chapter 1
XML Search Applications

e Linguistic features such as stemming and fuzzy searching

« Performance-optimized queries for large document sets

A\ Warning

Starting with Oracle Database 12c, Oracle XML Database (XML DB) is automatically
installed when you install the new Oracle Al Database software or when you upgrade.

@ See Also

"XML Section Searching with Oracle Text"

1.5.2 Combining Oracle Text Features with Oracle XML DB (XML Search

Index)

When you want a full-text retrieval for applications, combine the features of Oracle Text and
Oracle XML DB to create an XML Search Index. In this case, leverage the XML structure by
entering queries such as "find all nodes that contain the word Pentium." Oracle Database 12¢
extends Oracle's support for the W3C XQuery specification by adding support for the XQuery
full-text extension. This support lets you perform XML-aware, full-text searches on XML
content that is stored in the database.

The following topics explain how to use Oracle XML DB with Oracle Text applications:

» Using the xml_enable Method for an XML Search Index
* Using the Text-on-XML Method
e Indexing JSON Data

@ See Also

 "XML Section Searching with Oracle Text"

* Oracle Text Reference for information about the xm _enabl e variable of
SET_SEC GRP_ATTRto enable XML awareness

e Oracle XML DB Developer's Guide for more information about XML full-text
indexing and XML Search Index

1.5.2.1 Using the xml_enable Method for an XML Search Index

An XML Search Index is an XML-enabled Oracle Text index (CTXSYS.CONTEXT). This index
type supports information-retrieval searching and structured searching in one unified index.
XML Search Index also stores a Binary Persistent Document Object Model (PDOM) internally
within an Oracle Text table, so that XML operations can be functionally evaluated over the
Binary PDOM. This XML Search Index is supported for XMLTYPE datastores. XMLEXISTS is
seamlessly rewritten to a CONTAI NS query in the presence of such an XML Search Index.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 9



ORACLE Chapter 1
XML Search Applications

When you create an XML Search Index, a Binary PDOM of the XML document is materialized
in an internal table of Oracle Text. Post evaluation from the Oracle Text index is redirected to
go against the PDOM stored in this internal table.

@ See Also

Oracle Text Reference for information on xm _enabl e variable of SET_SEC GRP_ATTRto
enable XML awareness for XML Search Index

The following example creates an Oracle XML Search Index:

exec

CTX_DDL. CREATE_SECTI ON_GROUP( ' secgroup' , ' PATH_SECTI ON_GROUP' )
exec

CTX_DDL. SET_SEC_GRP_ATTR(' secgroup', ' xm _enable','t");

CREATE | NDEX po_ctx_i dx on T(X) indextype is ctxsys.context
paraneters (‘section group SECGROUP')

1.5.2.2 Using the Text-on-XML Method

With Oracle Text, you can create a CONTEXT index on a column that contains XML data. The
column type can be XM_Type or any supported type, provided that you use the correct index
preference for XML data.

With the Text-on-XML method, use the standard CONTAI NS query and add a structured
constraint to limit the scope of a search to a particular section, field, tag, or attribute. That is,
specify the structure inside text operators, such as W THI N, HASPATH, and | NPATH.

For example, set up your CONTEXT index to create sections with XML documents. Consider the
following XML document that defines a purchase order:

<?xm version="1.0"?>
<PURCHASEORDER pono="1">
<PNAME>Po_ 1</ PNAME>
<CUSTNAME>John</ CUSTNAMVE>
<SH PADDR>
<STREET>1033 Mai n Street </ STREET>
<Cl TY>Sunnyval ue</ CI TY>
<STATE>CA</ STATE>
</ SH PADDR>
<| TEM5>
<| TEM>
<I TEM NAME> Del | Conputer </I1TEM NAMVE>
<DESC> Pentium 2.0 Ghz 500MB RAM </ DESC>
</ | TEM>
<| TEM>
<I TEM NAME> Norel co R100 </ | TEM NAME>
<DESC>El ectric Razor </ DESC>
</ | TEM>
</ | TEMS>
</ PURCHASEORDER>

To query all purchase orders that contain Pentium within the item description section, use the
W THI N operator:

SELECT id from po_tab where CONTAINS( doc, 'Pentium WTH N desc') > 0;

Use the | NPATH operator to specify more complex criteria with XPATH expressions:

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 9



ORACLE Chapter 1

XML Search Applications

SELECT id frompo_tab where CONTAINS(doc, 'Pentium | NPATH (/purchaseOrder/itens/iten
desc') > 0;

1.5.2.3 Indexing JSON Data

JavaScript Object Notation (JSON) is a language-independent data format that is used for
serializing structured data and exchanging this data over a network, typically between a server

and web applications. JSON provides a text-based way of representing JavaScript object
literals, arrays, and scalar data.

@ See Also

Oracle Text Reference for information about creating a search index on JSON

Oracle Database JSON Developer's Guide for more information about JSON

Oracle Text Application Developer's Guide
G43190-01

October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates.

Page 9 of 9



Getting Started with Oracle Text

You can create an Oracle Text developer user account and build simple text query and catalog
applications.

This chapter contains the following topics:

¢ Overview of Getting Started with Oracle Text

e Creating an Oracle Text User

e Query Application Quick Tour

e Catalog Application Quick Tour

» Classification Application Quick Tour

2.1 Overview of Getting Started with Oracle Text

This chapter provides basic information about how to configure Oracle Text, how to create an
Oracle Text developer user account and how to build simple text query and catalog
applications. It also provides information about basic SQL statements for each type of
application to load, index, and query tables.

More complete application examples are given in the appendixes.

@® Note

The SQ.> prompt has been omitted in this chapter, in part to improve readability and in
part to make it easier for you to cut and paste text.

@ See Also

" Classifying Documents in Oracle Text" to learn more about building document
classification applications

2.2 Creating an Oracle Text User

Before you can create Oracle Text indexes and use Oracle Text PL/SQL packages, you need
to create a user with the CTXAPP role. This role enables you to do the following:

e Create and delete Oracle Text indexing preferences
e Use the Oracle Text PL/SQL packages

To create an Oracle Text application developer user, perform the following steps as the system
administrator user:

1. Create the user.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 10



ORACLE Chapter 2
Query Application Quick Tour

The following SQL statement creates a user called MYUSER with a password of passwor d:
CREATE USER nyuser | DENTI FI ED BY passwor d;
2. Grantroles to the user.

The following SQL statement grants the required roles of RESOURCE, CONNECT, and CTXAPP
to MYUSER:

CGRANT RESOURCE, CONNECT, CTXAPP TO MYUSER;
3. Grant EXECUTE privileges on the CTX PL/ SQL package.

Oracle Text includes several packages that let you perform actions ranging from
synchronizing an Oracle Text index to highlighting documents. For example, the CTX_DDL
package includes the SYNC | NDEX procedure, which enables you to synchronize your
index. The Oracle Text Reference describes these packages.

To call any of these procedures from a stored procedure, your application requires execute
privileges on the packages. For example, to grant execut e privileges to MYUSER on all
Oracle Text packages, enter the following SQL statements:

GRANT EXECUTE ON CTXSYS. CTX_CLS TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_DDL TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_DOC TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_QUTPUT TO myuser;
GRANT EXECUTE ON CTXSYS. CTX_QUERY TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_REPORT TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_THES TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_ULEXER TO nyuser;

@® Note

These permissions are granted to the CTXAPP role. However, because role
permissions do not always work in PL/SQL procedures, it is safest to explicitly
grant these permissions to the user who already has the CTXAPP role.

2.3 Query Application Quick Tour

In a basic text query application, users enter query words or phrases and expect the
application to return a list of documents that best match the query. Such an application involves
creating a CONTEXT index and querying it with CONTAI NS.

Typically, query applications require a user interface. An example of how to build such a query
application using the CONTEXT index type is given in CONTEXT Query Application.

The examples in this section provide the basic SQL statements to load the text table, index the
documents, and query the index.

e Creating the Text Table
e Using SQL*Loader to Load the Table

2.3.1 Creating the Text Table

Perform the following steps to create and load documents into a table.

1. Connect as the new user.

Before creating any tables, assume the identity of the user that you created.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 10



ORACLE

Chapter 2
Query Application Quick Tour

CONNECT nyuser;
Create your text table.

The following example creates a table called docs with two columns, i d and t ext, by using
the CREATE TABLE statement. This example makes the i d column the primary key. The t ext
column is VARCHAR2.

CREATE TABLE docs (id NUMBER PRI MARY KEY, text VARCHAR2(200));

@ Note

Primary keys of the following type are supported: NUMBER, VARCHAR2, DATE,
CHAR, VARCHAR, and RAW

Load documents into the table.
Use the SQL | NSERT statement to load text into a table.
To populate the docs table, use the | NSERT statement:

I NSERT | NTO docs VALUES(1, '<HTM.>California is a state in the US. </HTM.>");
I NSERT | NTO docs VALUES(2, '<HTM.>Paris is a city in France.</HTM.>');
I NSERT | NTO docs VALUES(3, '<HTML>France is in Europe.</HTM.>");

2.3.2 Using SQL*Loader to Load the Table

You can use SQL*Loader to load a table in batches.

Perform the following steps to load your table in batches with SQL*Loader:

1.

Create the CONTEXT index.

Index the HTML files by creating a CONTEXT index on the text column as follows. Because
you are indexing HTML, this example uses the NULL_FI LTER preference type for no filtering
and the HTM._SECTI ON_GROUP type. If you index PDF, Microsoft Word, or other formatted
documents, then use the CTXSYS. AUTO FI LTER (the default) as your FI LTER preference.

CREATE | NDEX i dx_docs ON docs(text)
| NDEXTYPE | S CTXSYS. CONTEXT PARAMETERS
(" FILTER CTXSYS. NULL_FI LTER SECTI ON GROUP CTXSYS. HTM__SECTI ON_GROUP' ) ;

This example also uses the HTM._SECTI ON_GROUP section group, which is recommended for
indexing HTML documents. Using HTM._SECTI ON_GROUP enables you to search within
specific HTML tags and eliminate unwanted markup, such as font information, from the
index.

Query your table with CONTAI NS.

First, set the format of the SELECT statement's output so that it is easily readable. Set the
width of the t ext column to 40 characters:

COLUWN text FORMVAT a40;

Next, query the table with the SELECT statement with CONTAI NS. This query retrieves the
document IDs that satisfy the query. The following query looks for all documents that
contain the word France:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'France', 1) > 0;

SCORE( 1) ID TEXT

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 10



ORACLE

Chapter 2
Query Application Quick Tour

4 3 <HTML>France is in Europe. </ HTM.>
4 2 <HTM_>Paris is a city in France. </ HTM.>

Present the document.

In a real-world application, you could present the selected document with query terms
highlighted. Oracle Text enables you to mark up documents with the CTX_DOC package.

You can demonstrate HTML document markup with an anonymous PL/SQL block in
SQL*Plus. However, in a real-world application, you could present the document in a
browser.

This PL/SQL example uses the in-memory version of CTX_DOC. MARKUP to highlight the word
France in document 3. It allocates a temporary CLOB (character large object data type) to
store the markup text and reads it back to the standard output. The CLOB is then
deallocated before exiting:

SET SERVEROQUTPUT ON;

DECLARE
2 nklob CLOB;
3 amt NUMBER : = 40;
4 line VARCHAR2(80);
5 BEGAN
6 CTX_DOC. MARKUP( ' i dx_docs', " 3", "' France', nklob);
7 DBVS_LOB. READ( kl ob, ant, 1, line);
8 DBMS_QUTPUT. PUT_LI NE(' FI RST 40 CHARS ARE:'||line);
9 DBMS_LOB. FREETEMPORARY( nkl ob) ;
10 END;

1 |/
FI RST 40 CHARS ARE: <HTM_><<<France>>> is in Europe. </ HTM.>

PL/ SQL procedure successful ly conpl et ed.
Synchronize the index after data manipulation.

When you create a CONTEXT index, you explicitly synchronize your index to update it with
any inserts, updates, or deletions to the text table.

Oracle Text enables you to do so with the CTX_DDL. SYNC_| NDEX procedure.
Add some rows to the docs table:

I NSERT | NTO docs VALUES(4, '<HTM.>Los Angeles is a city in California.</HTM>'");
I NSERT | NTO docs VALUES(5, '<HTM.>Mexico City is big.</HTM>");

Because the index is not synchronized, these new rows are not returned with a query on
city:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > O;

4 2 <HTM_.>Paris is a city in France.</HTM.>

Therefore, synchronize the index with 2 Mb of memory and rerun the query:

EXEC CTX_DDL. SYNC_| NDEX(" i dx_docs', '2M);
PL/ SQL procedure successful ly conpl et ed.

COLUWN text FORMAT a50;
SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > O;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 10



ORACLE

Chapter 2
Catalog Application Quick Tour

SCORE( 1) I D TEXT
4 5 <HTM.>Mexico City is big.</HIM.>
4 4 <HTML>Los Angeles is a city in California.</HTM>
4 2 <HTM_.>Paris is a city in France. </ HTM.>
@® See Also

"Building the PSP Web Application" for an example of how to use SQL*Loader to
load a text table from a data file

2.4 Catalog Application Quick Tour

The examples in this section provide the basic SQL statements to create a catalog index for an
auction site that sells electronic equipment, such as cameras and CD players.

New inventory is added every day, and item descriptions, bid dates, and prices must be stored
together.

The application requires good response time for mixed queries. The key is to determine what
columns users frequently search to create a suitable CTXCAT index. Queries on this type of
index use the CATSEARCH operator.

Creating the Table

Using SQL*Loader to Load the Table

Typically, query applications require a user interface. An example of how to build such a
query application using the CATSEARCH index type is given in CATSEARCH Query

Application .

@® Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COW T) or, preferably, SYNC( EVERY [ti me- period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FI LTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

2.4.1 Creating the Table

Perform the following steps to create and load the table:

1.

Connect as the appropriate user.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 10



ORACLE

Chapter 2
Catalog Application Quick Tour

Connect as the myuser with CTXAPP role:
CONNECT nyuser;

Create your table.

Set up an auction table to store your inventory:

CREATE TABLE aucti on(
item.id NUMBER,

title VARCHAR2(100),
category_id NUMBER
pri ce NUMBER

bi d_cl ose DATE);

Populate your table.
Populate the table with various items, each withanid, title, price andbid_date:

I NSERT | NTO AUCTI ON VALUES(1, ' N KON CAMERA', 1, 400, '24-CCT-2002');

I NSERT | NTO AUCTI ON VALUES(2, 'OLYMPUS CAMERA', 1, 300, '25-0CT-2002');
I NSERT | NTO AUCTI ON VALUES(3, 'PENTAX CAMERA', 1, 200, '26-OCT-2002');
I NSERT | NTO AUCTI ON VALUES(4, ' CANON CAMERA', 1, 250, '27-CCT-2002');

2.4.2 Using SQL*Loader to Load the Table

You can use SQL*Loader to load a table in batches.

Perform the following steps to load your table in batches with SQL*Loader:

1.

Determine your queries.

Determine what criteria are likely to be retrieved. In this example, you determine that all
queries search the title column for item descriptions, and most queries order by price. Later
on, when you use the CATSEARCH operator, specify the terms for the text column and the
criteria for the structured clause.

Create the subindex to order by price.

For Oracle Text to serve these queries efficiently, you need a subindex for the price
column, because your queries are ordered by price.

Therefore, create an index set called aucti on_set and add a subindex for the price
column:

EXEC CTX_DDL. CREATE_| NDEX_SET(" auction_iset');
EXEC CTX_DDL. ADD_| NDEX(' auction_iset', 'price'); /* subindex At/

Create the CTXCAT index.
Create the combined catalog index on the AUCTI ON table with the CREATE | NDEX statement:

CREATE | NDEX auction_titlex ON AUCTION(title) INDEXTYPE IS CTXSYS. CTXCAT PARAMETERS
("index set auction_iset');

The following figure shows how the CTXCAT index and its subindex relate to the columns.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 10



ORACLE Chapter 2
Catalog Application Quick Tour

Figure 2-1 Auction table schema and CTXCAT index

Subindex A
CTXCAT
. Index
Auction Table —
item_id | title category_id | price bid_close = (
number | varchar (100) | number number | date

4. Query your table with CATSEARCH.

After you create the CTXCAT index on the AUCTI ON table, query this index with the
CATSEARCH operator.

First, set the output format to make the output readable:

COLUWN title FORMAT a4o0;

Next, run the query:

SELECT title, price FROM auction WHERE CATSEARCH(title, ' CAMERA', 'order by price')>

0;

TITLE PRI CE
PENTAX CAMERA 200
CANON CAMERA 250
CLYMPUS CAMERA 300
NI KON CAVERA 400

SELECT title, price FROM auction WHERE CATSEARCH(title, ' CAMERA',
"price <= 300')>0;

TITLE PRI CE
PENTAX CAMERA 200
CANON CAMERA 250
CLYMPUS CAMERA 300

5. Update your table.

Update your catalog table by adding new rows. When you do so, the CTXCAT index is
automatically synchronized to reflect the change.

For example, add the following new rows to the table and then rerun the query:

I NSERT | NTO AUCTI ON VALUES(5, 'FUJI CAMERA', 1, 350, '28-0CT-2002');
I NSERT | NTO AUCTI ON VALUES(6, ' SONY CAMERA', 1, 310, '28-0OCT-2002');

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by price')>

0;

TITLE PRI CE
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300
SONY CAMERA 310

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 10



ORACLE Chapter 2
Classification Application Quick Tour

FUWI CAMERA 350
NI KON CAVERA 400

6 rows selected.

Note how the added rows show up immediately in the query.

@ See Also

"Building the PSP Web Application" for an example of how to use SQL*Loader to
load a text table from a data file

2.5 Classification Application Quick Tour

The function of a classification application is to perform some action based on document
content. These actions can include assigning a category ID to a document or sending the
document to a user. The result is classification of a document.

This section contains the following sections:

»  About Classification of a Document

»  Steps for Creating a Classification Application

2.5.1 About Classification of a Document

Documents are classified according to predefined rules. These rules select documents for a
category. For instance, a query rule of 'presidential elections' selects documents for a category
about politics.

Oracle Text provides several types of classification. One type is simple, or rule-based
classification, discussed here, where you create document categories and the rules for
categorizing documents. With supervised classification, Oracle Text derives the rules from a
set of training documents that you provide. With clustering, Oracle Text does all the work for
you, deriving both rules and categories.

To create a simple classification application for document content using Oracle Text, you create
rules. Rules are essentially a table of queries that categorize document content. You index
these rules in a CTXRULE index. To classify an incoming stream of text, use the MATCHES
operator in the WHERE clause of a SELECT statement. See the following image for the general
flow of a classification application.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 10



ORACLE Chapter 2
Classification Application Quick Tour

Figure 2-2 Overview of a Document Classification Application

Document1 [——
from —
Database —
Document2 [—— Document Perform
from File p— Stream Document Action

— Classification
System — Application
Document N[—— I\S/JS\DTLO—ES
from Web — Classify

— Query Document

CTXRULE
Index Rules Table
Database A Database B

@ See Also

"Overview of Document Classification"

2.5.2 Creating a Classification Application

The following example shows how to classify documents by using nyuser with the CTXAPP role.
You define simple categories, create a CTXRULE index, and use MATCHES.

1. Connect as the appropriate user.
Connect as the myuser with CTXAPP role:
CONNECT nyuser;

2. Create the rule table.

In this example, you create a table called queri es. Each row defines a category with an 1D
and a rule that is a query string.

CREATE TABLE queries (

query_id NUMBER,
query_string VARCHAR2(80)
);

I NSERT | NTO queries VALUES (1, 'oracle');

I NSERT | NTO queries VALUES (2, 'larry or ellison');
I NSERT | NTO queries VALUES (3, 'oracle and text');
I NSERT | NTO queries VALUES (4, 'market share');

3. Create your CTXRULE index.
CREATE | NDEX queryx ON queries(query_string) |NDEXTYPE | S CTXSYS. CTXRULE;
4. Classify with MATCHES.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 10



ORACLE Chapter 2
Classification Application Quick Tour

Use the MATCHES operator in the WHERE clause of a SELECT statement to match documents
to queries and then classify the documents.

COLUW query_string FORMAT a35;

SELECT query_id, query_string FROM queri es

VWHERE MATCHES( query_string,
"Oracl e announced that its market share in databases
i ncreased over the last year.')>0;

QUERY_I D QUERY_STRI NG

1 oracle
4 market share

As shown, the document string matches categories 1 and 4. With this classification, you
can perform an action, such as writing the document to a specific table or emailing a user.

@ See Also

Classifying Documents in Oracle Text for more extended classification examples

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 10



Indexing with Oracle Text

Oracle Text provides several types of indexes, which you create depending on the type of
application that you develop.

This chapter contains the following topics:

«  About Oracle Text Indexes

e Considerations for Oracle Text Indexing

¢ Document Language

* Indexing Special Characters

* Case-Sensitive Indexing and Querying

« Document Services Procedures Performance and Forward Index

* Language-Specific Features

«  About Entity Extraction and CTX ENTITY

¢ Fuzzy Matching and Stemming

e Better Wildcard Query Performance

«  Document Section Searching

e Stopwords and Stopthemes

¢ Index Performance

*  Query Performance and Storage of Large Object (LOB) Columns

«  Mixed Query Performance

¢ In-Memory Full Text Search and JSON Full Text Search

3.1 About Oracle Text Indexes

The discussion of Oracle Text indexes includes the different types of indexes, their structure,
the indexing process, and limitations.

The following topics provide information about Oracle Text indexes:

»  Types of Oracle Text Indexes
e Structure of the Oracle Text CONTEXT Index

e The Oracle Text Indexing Process

» Partitioned Tables and Indexes

e Creating an Index Online

e Parallel Indexing

e Indexing and Views

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 33



ORACLE Chapter 3
About Oracle Text Indexes

3.1.1 Types of Oracle Text Indexes

With Oracle Text, you create indexes by using the CREATE | NDEX statement.

Table 3-1 Oracle Text Index Types
|

Index Type Description Supported Query Operator Notes
Preferences and
Parameters

CONTEXT Use this index to build a All CREATE | NDEX CONTAI NS Supports all documents
text retrieval application preferences and The CONTEXT grammar services and query
when your text consists of parameters are supports a rich set of services.
large, coherent documents supported, except for operations. Supports indexing of
in, for example, MS Word, | NDEX SET. partitioned text tables.
HTML, or plain text. . Use the CTXCAT

' . _Supported_ parameters. grammar with query SUppOTtS FI LTERBY and

You can customize the index partition clause templating. ORDER BY clauses of
index in a variety of ways. format, charset, and CREATE | NDEX to index
This index type requires  language columns structured column values
CTX_DDL. SYNC_| NDEX for more efficient
after insert, update, and processing of mixed
delete operations to the queries.
base table.

SEARCH | NDEX Use this index to builda  All CREATE | NDEX CONTAI NS Supports all documents
text retrieval application preferences and The SEARCH | NDEX services and query
when your text consists of parameters are services.

grammar supports a
large, coherent documents supported, exceptfor (i set of operations.  Supports indexing of

in, for example, MS Word, | NDEX SET. iti
o e IZin o Use the CONTEXT ang  Partitioned text tables.

» Orp = Supported parameters:  ~TXcAT grammar with ~ Supports sharded
You can customize the index partition clause query templating databases and system
index in a variety of ways. format, charset, and - managed partitioning for
This index type requires language columns index storage tables.

CTX_DDL. SYNC_| NDEX
after insert, update, and
delete operations to the
base table.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 33



ORACLE

Table 3-1 (Cont.) Oracle Text Index Types

Chapter 3
About Oracle Text Indexes

Index Type Description Supported Query Operator Notes
Preferences and
Parameters
CTXCAT Use this index for better | NDEX SET CATSEARCH This index is larger and
mixed query performance | ExER The CTXCAT grammar takes longer to build than
of small documents and ; a CONTEXT index.
text fragments. To improve STCPLI ST suppor_ts logical ;

: 9 ) P operations, phrase The size of a CTXCAT
m|xed query performaqce, STORAGE queries, and index is related to the
Itrr:(e:ll:)(zj;\esgttgf):ecoslld?hn:\sm WORDLI ST (The wildcarding. total amount of text to be
item names. orices. and P ef i x_i ndex Use the CONTEXT indexed, the number of
| 1ames, p ' attribute is supported grammar with query indexes in the index set,

escriptions. only for Japanese templating. and the number of

This index type is
transactional. It
automatically updates
itself after inserts,
updates, or deletes to the
base table.

CTX_DDL. SYNC_| NDEX is
not necessary.

Note: The Oracle Text
indextype CTXCAT is
deprecated with Oracle Al
Database 26ai. The
indextype itself, and it's
operator CTXCAT, can be
removed in a future
release.

CTXCAT was introduced
when indexes were
typically a few megabytes
in size. Modern, large
indexes, can be difficult to
manage with CTXCAT. The
addition of index sets to
CTXCAT can be achieved
more effectively by the use
of FI LTER BY and ORDER
BY columns, or SDATA, or
both, in the CONTEXT
indextype. CTXCAT is
therefore rarely an
appropriate choice. Oracle
recommends that you
choose the more efficient
CONTEXT indextype.

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

data.) ing i
Theme querying is
Not supported: Format, supported.

charset, and language
columns

Table and index
partitioning

columns indexed.
Carefully consider your
queries and your
resources before adding
indexes to the index set.

The CTXCAT index does
not support index
partitioning, documents
services (highlighting,
markup, themes, and
gists) or query services
(explain, query feedback,
and browse words.)

October 13, 2025
Page 3 of 33



ORACLE

Chapter 3
About Oracle Text Indexes

Table 3-1 (Cont.) Oracle Text Index Types

Index Type Description Supported Query Operator Notes
Preferences and
Parameters
CTXRULE Use thisiindex to builda  See "CTXRULE MATCHES Use the MATCHES
document classification or Parameters and operator to classify
routing application. Create Limitations". single documents (plain
this index on a table of text, HTML, or XML).
queries, where the queries MATCHES turns a
define the classification or document into a set of
routing criteria.. queries and finds the
matching rows in the
index.

To build a document
classification application
by using simple or rule-
based classification,
create an index of type
CTXRULE. This index
classifies plain text,
HTML, or XML
documents by using the
MATCHES operator. Store
your defining query set in
the text table that you
index.

An Oracle Text index is an Oracle Database domain index. To build your query application, you
can create an index of type CONTEXT with a mixture of text and structured data columns, and
query it with the CONTAI NS operator.

You create an index from a populated text table. In a query application, the table must contain
the text or pointers to the location of the stored text. Text is usually a collection of documents,
but it can also be small text fragments.

® Note

If you are building a new application that uses XML data, Oracle recommends that you
use XM.I ndex, not CTXRULE.

Create an Oracle Text index as a type of extensible index to Oracle Al Database by using
standard SQL. This means that an Oracle Text index operates like an Oracle Database index.
It has a name by which it is referenced and can be manipulated with standard SQL statements.

The benefit of creating an Oracle Text index is fast response time for text queries with the
CONTAI NS, CATSEARCH, and MATCHES operators. These operators query the CONTEXT, CTXCAT, and
CTXRULE index types, respectively.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 33



ORACLE’

Chapter 3
About Oracle Text Indexes

@® Note

Because a Transparent Data Encryption-enabled column does not support domain
indexes, do not use it with Oracle Text. However, you can create an Oracle Text index
on a column in a table that is stored in a Transparent Data Encryption-enabled
tablespace.

@ See Also

e "Creating Oracle Text Indexes"

*  Oracle XML DB Developer's Guide for information about XM.I ndex and indexing
XM.Type data

3.1.2 Structure of the Oracle Text CONTEXT Index

Oracle Text indexes text by converting all words into tokens. The general structure of an Oracle
Text CONTEXT index is an inverted index, where each token contains the list of documents
(rows) that contain the token.

For example, after a single initial indexing operation, the word DOG might have an entry as
follows:

Word Appears in Document
DOG DOC1 DOC3 DOC5

This means that the word DOG is contained in the rows that store documents one, three, and
five.

Merged Word and Theme Indexing

By default in English and French, Oracle Text indexes theme information with word information.
You can query theme information with the ABOUT operator. You can also enable and disable
theme indexing.

@ See Also

"Creating Preferences " to learn more about indexing theme information

3.1.3 Oracle Text Indexing Process

This section describes the Oracle Text indexing process. Initiate the indexing process by using
the CREATE | NDEX statement to create an Oracle Text index of tokens, organized according to
your parameters and preferences.

Figure 3-1 shows the indexing process. This process is a data stream that is acted upon by the
different indexing objects. Each object corresponds to an indexing preference type or section
group that you can specify in the parameter string of CREATE | NDEX or ALTER | NDEX.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 33



ORACLE Chapter 3
About Oracle Text Indexes

Figure 3-1 Oracle Text Indexing Process

Stoplist
O/S file
system
Wordlist
Markup I
v v $
Marked-up
Documents Text . Text Tokens P
Datastore |memmmm——pp | Filter |e———)| Sectioner ey | Lexer IE?%E:\“eg

l

Oracle Text
Index

Oracle Text processes the data stream with the following objects and engine:

» Datastore Object

* Filter Object
»  Sectioner Object

e Lexer Object
e Indexing Engine

3.1.3.1 Datastore Object

The stream starts with the datastore reading in the documents as they are stored in the system
according to your datastore preference.

For example, if you defined your datastore as DI RECTORY_DATASTORE, then the stream starts by
reading the files from an Oracle directory object. You can also store your documents on the
internet or in Oracle Al Database. Wherever your files reside physically, a text table in Oracle
Al Database must always point to the files.

3.1.3.2 Filter Object

The stream then passes through the filter. Your FI LTER preference determines what happens.
The stream can be acted upon in one of the following ways:

* No filtering takes place when you specify the NULL_FI LTER preference type or when the
value of the format column is | GNORE. Documents that are plain text, HTML, or XML need
no filtering.

e Formatted documents (binary) are filtered to marked-up text when you specify the
AUTO FI LTER preference type or when the value of the format column is Bl NARY.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 33



ORACLE Chapter 3
About Oracle Text Indexes

3.1.3.3 Sectioner Object

After being filtered, the marked-up text passes through the sectioner, which separates the
stream into text and section information. Section information includes where sections begin
and end in the text stream. The type of sections that are extracted is determined by your
section group type.

The text is passed to the lexer. The section information is passed directly to the indexing
engine, which uses it later.

3.1.3.4 Lexer Object

You create a lexer preference by using one of the Oracle Text lexer types to specify the
language of the text to be indexed. The lexer breaks the text into tokens according to your
language. These tokens are usually words. To extract tokens, the lexer uses the parameters
that are defined in your lexer preference. These parameters include the definitions for the
characters that separate tokens, such as whitespace. Parameters also include whether to
convert the text to all uppercase or to leave it in mixed case.

When you enable theme indexing, the lexer analyzes your text to create theme tokens for
indexing.

3.1.3.5 Indexing Engine

The indexing engine creates the inverted index that maps tokens to the documents that contain
them. In this phase, Oracle Text uses the stoplist that you specify to exclude stopwords or
stopthemes from the index. Oracle Text also uses the parameters that are defined in your
WORDLI ST preference. Those parameters tell the system how to create a prefix index or
substring index, if enabled.

3.1.4 About Updates to Indexed Columns

You can keep documents available for search operations until the index is synchronized,
without immediately performing index synchronization.

In releases prior to Oracle Database 12¢ Release 2 (12.2), when there is an update to the
column on which an Oracle Text index is based, the document is unavailable for search
operations until the index is synchronized. User queries cannot perform a search of this
document. Starting with Oracle Database 12c¢ Release 2 (12.2), you can specify that
documents must be searchable after updates, without immediately performing index
synchronization. Before the index is synchronized, queries use the old index entries to fetch
the contents of the old document. After index synchronization, user queries fetch the contents
of the updated document.

The ASYNCHRONOUS_UPDATE option for indexes enables you to retain the old contents of a
document after an update and then use this index to answer user queries.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 33



ORACLE

Chapter 3
About Oracle Text Indexes

@® Note

The ASYNCHRONOUS_UPDATE setting of the CONTEXT indextype is deprecated in Oracle Al
Database 26ai, and can be ignored or removed in a future release.

Oracle can ignore or remove this attribute in a future release. Oracle recommends that
you allow this value to be set to its default value, SYNCHRONOUS_UPDATE. To avoid
unexpected loss of results during updates, use SYNC (ON COW T) or SYNC( EVERY
[time-period]) with a short time period.

The ASYNCHRONOUS_UPDATE setting was introduced as a workaround for the fact that
updates are implemented as "delete followed by insert," and that deletes are
immediate (on commit), while inserts are only performed during an index sync.
However, this setting is incompatible with several other index options. Oracle
recommends that you discontinue its use.

Related Topics
* CREATE INDEX
* ALTER_INDEX

3.1.5 Partitioned Tables and Indexes

When you create a partitioned CONTEXT index on a partitioned text table, you must partition the
table by range. Hash, composite, and list partitions are not supported.

You can create a partitioned text table to partition your data by date. For example, if your
application maintains a large library of dated news articles, you can partition your information
by month or year. Partitioning simplifies the manageability of large databases, because
querying, insert, update, delete operations, and backup and recovery can act on a single
partition.

On local CONTEXT indexes with multiple table sets, Oracle Text supports the number of
partitions supported by Oracle Al Database.

@® Note

The number of partitions that are supported in Oracle Text is approximately 1024K-1.
This limit, which should be more than adequate, is not applicable to a CONTEXT index
on partitioned tables.

@ See Also

Oracle Database Concepts for more information about partitioning

To query a partitioned table, use CONTAI NS in the WHERE clause of a SELECT statement as you
query a regular table. You can query the entire table or a single partition. However, if you are
using the ORDER BY SCORE clause, Oracle recommends that you query single partitions unless
you include a range predicate that limits the query to a single partition.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 33



ORACLE Chapter 3
About Oracle Text Indexes

3.1.6 Online Indexes

When it is not practical to lock your base table for indexing because of ongoing updates, you
can create your index online with the ONLI NE parameter of CREATE | NDEX statement. This way
an application with frequent inserts, updates, or deletes does not have to stop updating the
base table for indexing.

There are short periods, however, when the base table is locked at the beginning and end of
the indexing process.

@ See Also

Oracle Text Reference to learn more about creating an index online

3.1.7 Parallel Indexing

Oracle Text supports parallel indexing with the CREATE | NDEX statement.

When you enter a parallel indexing statement on a nonpartitioned table, Oracle Text splits the
base table into temporary partitions, spawns child processes, and assigns a child to a partition.
Each child then indexes the rows in its partition. The method of slicing the base table into
partitions is determined by Oracle and is not under your direct control. This is true as well for
the number of child processes actually spawned, which depends on machine capabilities,
system load, your i nit. ora settings, and other factors. Because of these variables, the actual
parallel degree may not match the degree of parallelism requested.

Because indexing is an intensive 1/O operation, parallel indexing is most effective in decreasing
your indexing time when you have distributed disk access and multiple CPUs. Parallel indexing
can affect the performance of an initial index only with the CREATE | NDEX statement. It does not
affect insert, update, and delete operations with ALTER | NDEX, and has minimal effect on query
performance.

Because parallel indexing decreases the initial indexing time, it is useful for the following
scenarios:

- Data staging, when your product includes an Oracle Text index
« Rapid initial startup of applications based on large data collections

* Application testing, when you need to test different index parameters and schemas while
developing your application

@ See Also

"Parallel Queries on a Local Context Index"

"Frequently Asked Questions About Indexing Performance"

3.1.8 Indexing and Views

If you want to index documents that have contents in different tables, then create a ubiquitous
search index.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 33



ORACLE’

Chapter 3
Considerations for Oracle Text Indexing

You can use the DBM5S_SEARCH PL/ SQL package to create a ubiquitous search index on multiple
tables and views within a schema. You can create this index only on the views that have a
primary key and a foreign key constraint relationship with the component table.

Alternatively, you can create a data storage preference by using the USER_DATASTORE object.
With this object, you can define a procedure that synthesizes documents from different tables
at index time.

Oracle Text supports the creation of CONTEXT, CTXCAT, and CTXRULE indexes on materialized
views (M EW.

Related Topics

*  QOracle Text Reference

e Performing Ubiquitous Search with DBMS_SEARCH APIs
Starting with Oracle Al Database 26ai, you can use the DBMS_SEARCH PL/ SQL package for
indexing of multiple schema objects in a single index, enabling you to search across the
entire database.

3.2 Considerations for Oracle Text Indexing

Use the CREATE | NDEX statement to create an Oracle Text index. When you create an index but
do not specify a parameter string, an index is created with default parameters. You can create
a CONTEXT index, a CTXCAT index, or a CTXRULE index.

You can also override the defaults and customize your index to suit your query application. The
parameters and preference types that you use to customize your index with the CREATE | NDEX
statement fall into the following general categories.

This section contains the following topics:

e Location of Text

e Supported Column Types

e Storing Text in the Text Table

e  Storing File Path Names

e  Storing URLS
e Storing Associated Document Information

¢ Format and Character Set Columns

e Supported Document Formats
¢ Summary of DATASTORE Types

« Document Formats and Filtering

* Bypass Rows
¢« Document Character Set

3.2.1 Location of Text

The basic prerequisite for a text query application is a text table that is populated with your
document collection. The text table is required for indexing.

When you create a CONTEXT index, populate rows in your text table with one of the following
elements. CTXCAT and CTXRULE indexes support only the first method.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 33



ORACLE’

Chapter 3
Considerations for Oracle Text Indexing

Text information (Documents or text fragments. By default, the indexing operation expects
your document text to be directly loaded in your text table.)

Path names of documents in your file system

URLs of web documents

Figure 3-2 illustrates these different methods.

Figure 3-2 Different Ways of Storing Text

Document Collection

Text Table Document 1

author | date | text ——| Document 2 Documents are stored in
b —— — J the text table.
— |

Text Table

author |date |text
d—i—p File 1 /my_path/my_system/doc1.doc File paths are stored in
-— File 2 /my_path/my_system/doc2.doc the text column.

Text Table

author |date |text

4y URL 1 http://www.mysite.com/mydoc1.html URLs are stored in
—— URL 2 http://www.mysite.com/mydoc1.html the text column.

3.2.2 Supported Column Types

With Oracle Text, you can create a CONTEXT index with columns of type VARCHAR2, CLOB (limited
to 4294967295 bytes), BLOB, CHAR, BFI LE, XM.Type, and URI Type.

@ Note

You cannot index the NCLOB, DATE, and NUMBER column types.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 11 of 33



ORACLE

Chapter 3
Considerations for Oracle Text Indexing

3.2.3 Storing Text in the Text Table

For CONTEXT data storage, use these datastore types to store documents in your text table.

DI RECT_DATASTORE: In one column

MULTI _COLUWN_DATASTORE: In multiple columns (Oracle Text concatenates the columns into
a virtual document, one document for each row.)

DETAI L_DATASTORE: Primary-detail relationships (Store one document across a number of
rows.)

NESTED DATASTORE: In a nested table

Oracle Text supports the indexing of the XM.Type data type, which you use to store XML
documents.

For CTXCAT data storage, you can store short text fragments, such as names, descriptions, and
addresses, over a number of columns. A CTXCAT index improves performance for mixed
queries.

3.2.4 Storing File Path Names

In your text table, store path names to files stored in your file system. During indexing, use the
DI RECTORY_DATASTORE preference type. This method of data storage is supported only for
CONTEXT indexes.

@® Note

Starting with Oracle Database 19c, the Oracle Text type FI LE_DATASTORE is
deprecated. Use DI RECTORY_DATASTORE instead.

Oracle recommends that you replace FI LE_DATASTORE text indexes with the

DI RECTORY_DATASTORE index type, which is available starting with Oracle Database
19c. DI RECTORY_DATASTORE provides greater security because it enables file access to
be based on directory objects.

3.2.5 Storing URLs

Store URL names to index websites. During indexing, use the NETWORK _DATASTORE preference
type. This method of data storage is supported only for CONTEXT indexes.

@ Note

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is deprecated.
Use NETWORK_DATASTORE instead.

The URL_DATASTORE type is used for text stored in files on the internet (accessed
through HTTP or FTP), and for text stored in local file system files (accessed through
the file protocol). It is replaced with NETWORK_DATASTORE, which uses ACLs to allow
access to specific servers. This change aligns Oracle Text more closely with the
standard operating and security model for accessing URLs from the database.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 33



ORACLE Chapter 3
Considerations for Oracle Text Indexing

3.2.6 Storing Associated Document Information

In your text table, create additional columns to store structured information that your query
application might need, such as primary key, date, description, or author.

3.2.7 Format and Character Set Columns

If your documents consist of mixed formats or mixed character sets, create the following
additional columns:

< A format column to record the format (TEXT or Bl NARY) to help filtering during indexing. You
can also use the format column to ignore rows for indexing by setting the format column to
| GNORE. | GNORE is useful for bypassing rows containing data that is incompatible with
Oracle Text indexing, such as images.

¢ A character set column to record the document character set for each row.

When you create your index, specify the name of the format or character set column in the
parameter clause of the CREATE | NDEX statement.

For all rows containing the AUTO or AUTOMATI C keywords in character set or language columns,
Oracle Text applies statistical techniques to determine the character set and language of the
documents and modify document indexing appropriately.

3.2.8 Supported Document Formats

Because the system can index most document formats, including HTML, PDF, Microsoft Word,
and plain text, you can load any supported type into the text column.

When your text column has mixed formats, you can include a format column to help filtering
during indexing, and you can specify whether a document is binary (formatted) or text
(nonformatted, such as HTML). If you mix HTML and XML documents in one index, you might
not be able to configure your index to your needs; you cannot prevent style sheet information
from being added to the index.

@ See Also

Oracle Text Reference for more information about the supported document formats

3.2.9 Summary of DATASTORE Types

When you use CREATE | NDEX, specify the location that uses the datastore preference. Use an
appropriate datastore according to your application.

These are the different ways that you can store your text with datastore preference types.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 13 of 33



ORACLE Chapter 3
Considerations for Oracle Text Indexing

Table 3-2 Summary of DATASTORE Types

Datastore Type Use When
DI RECT_DATASTORE Data is stored internally in a text column. Each row is indexed as a single
document.

Your text column can be VARCHAR2, CLOB, BLOB, CHAR, or BFILE.
XM.Type columns are supported for the context index type.

MULTI _COLUWN_DATASTOR Data is stored in a text table in more than one column. Columns are
E concatenated to create a virtual document, one document for each row.

DETAI L_DATASTORE Data is stored internally in a text column. Document consists of one or
more rows stored in a text column in a detail table, with header information
stored in a primary table.

FI LE_DATASTORE Data is stored externally in operating system files. File names are stored in
the text column, one for each row.

@® Note

Starting with Oracle Database 19c, the Oracle
Text type FI LE_DATASTCORE is deprecated. Use
DI RECTORY_DATASTORE instead.

DI RECTORY_DATASTORE  Data is stored externally in Oracle directory objects. File names are stored
in the text column, one for each row.

NESTED DATASTORE Data is stored in a nested table.

URL_DATASTORE Data is stored externally in files located on an intranet or the internet. URLs
are stored in the text column.

@ Note

Starting with Oracle Database 19c, the Oracle
Text type URL_DATASTORE is deprecated. Use
NETWORK_DATASTORE instead.

NETWORK_DATASTORE Data is stored externally in files located on an intranet or the internet. URLs
are stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a user-defined stored
procedure.

Indexing time and document retrieval time increases for indexing URLS, because the system
must retrieve the document from the network.

@® Note

To troubleshoot issues with triggers and MJLTI _COLUMN_DATASTORE or USER DATASTORE,
refer to My Oracle Support document 1613741.1.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 33



ORACLE Chapter 3
Considerations for Oracle Text Indexing

Related Topics
e MOS Document 1613741.1

« Datastore Examples
You can use datastore preferences to specify how your text is stored. These are the
examples for setting some of the datastore preference types.

*  Oracle Text Reference

3.2.10 Document Formats and Filtering

To index formatted documents, such as Microsoft Word and PDF, you must filter them to text.
The FI LTER preference type determines the type of filtering that the system uses. By default,
the system uses the AUTO FI LTER filter type, which automatically detects the format of your
documents and filters them to text.

Oracle Text can index most formats. It can also index columns that contain mixed-format
documents.

* No Filtering for HTML

*  Filtering Mixed-Format Columns

e Custom Filtering

@ See Also

Oracle Text Reference for information about AUTO FI LTER supported document and
graphics formats

3.2.10.1 No Filtering for HTML

If you are indexing HTML or plain-text files, do not use the AUTO_FI LTER type. For best results,
use the NULL_FI LTER preference type.

@ See Also
"NULL_FILTER Example: Indexing HTML Documents"

3.2.10.2 Mixed-Format Columns Filtering

For a mixed-format column, such as one that contains Microsoft Word, plain text, and HTML
documents, you can bypass filtering for plain text or HTML by including a format column in
your text table. In the format column, tag each row TEXT or Bl NARY. Rows that are tagged TEXT
are not filtered.

For example, tag the HTML and plain text rows as TEXT and the Microsoft Word rows as
Bl NARY. You specify the format column in the CREATE | NDEX parameter clause.

When you do not want a document to be indexed, you can use a third format column type,
| GNORE. This column type is useful, for example, when a mixed-format table includes plain-text
documents in Japanese and English, but you only want to process the English documents.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 15 of 33


https://support.oracle.com/epmos/faces/DocumentDisplay?id=1613741.1

ORACLE Chapter 3
Document Language

This column type is also useful when a mixed-format table includes plain-text documents and
images. Because | GNORE is implemented at the datastore level, you can use it with all filters.

3.2.10.3 Custom Filtering

You can create a custom filter to filter documents for indexing. You can create either an
external filter that is executed from the file system or an internal filter as a PL/SQL or Java-
stored procedure.

For external custom filtering, use the USER_FI LTER filter preference type.

For internal filtering, use the PROCEDURE_FI LTER filter type.

@ See Also
"PROCEDURE _ FILTER Example"

3.2.11 Bypass Rows

In your text table, you can bypass rows that you do not want to index, such as rows that
contain image data. To bypass rows, you create a format column, set it to | GNORE, and name
the format column in the parameter clause of the CREATE | NDEX statement.

3.2.12 Document Character Set

The indexing engine expects filtered text to be in the database character set. When you use
the AUTO FI LTER filter type, formatted documents are converted to text in the database
character set.

If your source is text and your document character set is not the database character set, then
you can use the AUTO FI LTER filter type to convert your text for indexing.

Character Set Detection

When you set the CHARSET column to AUTO, the AUTO FI LTER filter detects the character set of
the document and converts it from the detected character set to the database character set, if
there is a difference.

Mixed Character Set Columns

If your document set contains documents with different character sets, such as JA1I6EUC and
JA16SJIS, you can index the documents, provided that you create a CHARSET column, populate
this column with the name of the document character set for each row, and name the column in
the parameter clause of the CREATE | NDEX statement.

3.3 Document Language

Oracle Text can index most languages. By default, Oracle Text assumes that the language of
the text to be indexed is the language that you specify in your database setup.

Depending on the language of your documents, use one of the following lexer types:

e AUTO LEXER: To automatically detect the language being indexed by examining the content,
and apply suitable options (including stemming) for that language. Works best where each

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 16 of 33



ORACLE

Chapter 3
Special Characters

document contains a single-language, and has at least a couple of paragraphs of text to
aid identification.

BASI C_LEXER: To index whitespace-delimited languages such as English, French, German,
and Spanish. For some of these languages, you can enable alternate spelling, composite
word indexing, and base-letter conversion.

MULTI _LEXER: To index tables containing documents of different languages such as
English, German, and Japanese.

CHI NESE_VGRAM To extract tokens from Chinese text.

CHI NESE_LEXER: To extract tokens from Chinese text. This lexer offers the following benefits
over the CH NESE_VGRAMIexer:

— Generates a smaller index

— Better query response time

— Generates real world tokens resulting in better query precision
—  Supports stop words

JAPANESE VGRAM To extract tokens from Japanese text.

JAPANESE LEXER: To extract tokens from Japanese text. This lexer offers the following
advantages over the JAPANESE_VGRAM lexer:

— Generates smaller index

— Better query response time

— Generates real world tokens resulting in better precision

KOREAN MORPH_LEXER: To extract tokens from Korean text.

USER_LEXER: To create your own lexer for indexing a particular language.

WORLD LEXER: To index tables containing documents of different languages and to
autodetect the languages in the document.

With the BASI C_LEXER preference, Oracle Text provides a lexing solution for most languages.
For the Japanese, Chinese, and Korean languages, you can create your own lexing solution in
the user-defined lexer interface.

Language Features Outside BASIC_LEXER: The user-defined lexer interface enables
you to create a PL/SQL or Java procedure to process your documents during indexing and
querying. With the user-defined lexer, you can also create your own theme lexing solution
or linguistic processing engine.

Multilanguage Columns: Oracle Text can index text columns that contain documents in
different languages, such as a column that contains documents written in English, German,
and Japanese. To index a multilanguage column, you add a language column to your text
table and use the MULTI _LEXER preference type. You can also incorporate a multilanguage
stoplist when you index multilanguage columns.

Related Topics

Oracle Text Reference

MULTI LEXER Example: Indexing a Multilanguage Table

3.4 Special Characters

When you use the BASI C_LEXER preference type, you can specify how nonalphanumeric
characters, such as hyphens and periods, are indexed in relation to the tokens that contain

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 17 of 33



ORACLE

Chapter 3
Case-Sensitive Indexing and Querying

them. For example, you can specify that Oracle Text include or exclude the hyphen (-) when it
indexes a word such as vice-president.

These characters fall into BASI C_LEXER categories according to the behavior that you require
during indexing. The way you set the lexer to behave for indexing is the way it behaves for
query parsing.

Some of the special characters you can set are as follows:

e Printjoin Characters: Define a nonalphanumeric character as pri ntj oi n when you want
this character to be included in the token during indexing. For example, if you want your
index to include hyphens and underscores, define them as printjoins. This means that a
word such as vice-president is indexed as vice-president. A query on vicepresident does
not find vice-president.

*  Skipjoin Characters: Define a nonalphanumeric character as ski pj oi n when you do not
want this character to be indexed with the token that contains it. For example, with the
hyphen (-) defined as a skipjoin, vice-president is indexed as vicepresident. A query on
vice-president finds documents containing vice-president and vicepresident.

« Other Characters: You can specify other characters to control other tokenization behavior,
such as token separation (startjoins, endjoins, whitespace), punctuation identification
(punctuations), number tokenization (numjoins), and word continuation after line breaks
(continuation). These categories of characters have modifiable defaults.

@ See Also
« "BASIC LEXER Example: Setting Printjoin Characters"

*  Oracle Text Reference to learn more about the BASI C_LEXER type

3.5 Case-Sensitive Indexing and Querying

By default, all text tokens are converted to uppercase and then indexed. This conversion
results in case-insensitive queries. For example, queries on cat, CAT, and Cat return the same
documents.

You can change the default and have the index record tokens as they appear in the text. When
you create a case-sensitive index, you must specify your queries with the exact case to match
documents. For example, if a document contains Cat, you must specify your query as Cat to
match this document. Specifying cat or CAT does not return the document.

To enable or disable case-sensitive indexing, use the ni xed_case attribute of the BASI C_ LEXER
preference.

@ See Also

Oracle Text Reference to learn more about the BASI C_LEXER

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 18 of 33



ORACLE Chapter 3
Improved Document Services Performance with a Forward Index

3.6 Improved Document Services Performance with a Forward
Index

When it searches for a word in a document, Oracle Text uses an inverted index and then
displays the results by calculating the snippet from that document. For calculating the snippet,
each document returned as part of the search result is reindexed. The search operation slows
down considerably when a document’s size is very large.

The forward index overcomes the performance problem of very large documents. It uses a $0
mapping table that refers to the token offsets in the $I inverted index table. Each token offset is
translated into the character offset in the original document, and the text surrounding the
character offset is then used to generate the text snippet.

Because the forward index does not use in-memory indexing of the documents while
calculating the snippet, it provides considerable improved performance over the inverted index
while searching for a word in very large documents.

The forward index improves the performance of the following procedures in the Oracle Text
CTX_DQOC package:

«  CTX_DOC. SNI PPET
«  CTX_DOC. HI GHLI GHT
«  CTX_DOC. MARKUP

@ See Also

Oracle Text Reference for information about the f orwar d_i ndex parameter clause of
the BASI C_STORAGE indexing type

3.6.1 Enabling Forward Index

The following example enables the forward index feature by setting the f or war d_i ndex
attribute value of the BASI C_STORAGE storage type to TRUE:

exec ctx_ddl.create_preference(' mystore', 'BASIC STORAGE );
exec ctx_ddl.set_attribute(' nystore','forward_index',' TRUE);

3.6.2 Forward Index with Snippets

In some cases, when you use the f or war d_i ndex option, generated snippets may be slightly
different from the snippets that are generated when you do not use the f or war d_i ndex option.
The differences are generally minimal, do not affect snippet quality, and are typically "few extra
white spaces" and "newline."

3.6.3 Forward Index with Save Copy

Using Forward Index with Save Copy

To use the forward index effectively, you should store copies of the documents in the $D table,
either in plain-text format or filtered format, depending upon the CTX_DOC package procedure

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 19 of 33



ORACLE

Chapter 3
Improved Document Services Performance with a Forward Index

that you use. For example, store the document in plain-text when you use the SNI PPET
procedure and store it in the filtered format when you use the MARKUP or Hl GHLI GHT procedure.

You should use the Save Copy feature of Oracle Text to store the copies of the documents in
the $D table. Implement the feature by using the save_copy attribute or the save_copy column
parameter.

save_copy basic storage attribute:

The following example sets the save_copy attribute value of the BASI C_STORACE storage
type to PLAI NTEXT. This example enables Oracle Text to save a copy of the text document
in the $D table while it searches for a word in that document.

exec ctx_ddl.create_preference(' mystore', 'BASIC STORAGE );
exec ctx_ddl.set_attribute(' nystore','save_copy',"' PLAINTEXT');

save_copy col um index parameter:

The following example uses the save_copy col unm index parameter to save a copy of a
text document into the $D table. The creat e i ndex statement creates the $D table and
copies document 1 ( "hello world") into the $D table.

create table docs(

id nunber,
txt var char 2(64),
save var char 2( 10)

)
insert into docs values(1, "hello world', 'PLAINTEXT);

create index idx on docs(txt) indextype is ctxsys.context
paranet ers(' save_copy col umm save');

For the save_copy attribute or column parameter, you can specify one of the following values:

PLAI NTEXT saves the copy of the document in a plain-text format in the $D index table. The
plain-text format is defined as the output format of the sectioner. Specify this value when
you use the SNI PPET procedure.

FI LTERED saves a copy of a document in a filtered format in the $D index table. The filtered
format is defined as the output format of the filter. Specify this value when you use the
MARKUP or HI GHLI GHT procedure.

NONE does not save the copy of the document in the $D index table. Specify this value when
you do not use the SNI PPET, MARKUP, or H GHLI GHT procedure and when the indexed
column is either VARCHAR?2 or CLOB.

3.6.4 Forward Index Without Save Copy

In the following scenarios, you can take advantage of the performance enhancement of
forward index without saving copies of all documents in the $D table (that is, without using the
Save Copy feature):

The document set contains HTML and plain text: Store all documents in the base table by
using the DI RECT_DATASTORE or the MULTI _COLUMN_DATASTORE datastore type.

The document set contains HTML, plain text, and binary: Store all documents in the base
table by using the DI RECT_DATASTORE datastore type. Store only the binary documents in
the $D table in the filtered format.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 20 of 33



ORACLE Chapter 3
Language-Specific Features

3.6.5 Save Copy Without Forward Index

Even if you do not enable the forward index feature, the Save Copy feature improves the
performance of the following procedures of the CTX_DOC package:

«  CTX_DCC. FILTER
. CTX_DCC. G ST

. CTX_DOC. THEMES
- CTX_DOC. TOKENS

3.7 Language-Specific Features

You can enable the following language-specific features:

¢ Indexing Themes

 Base-Letter Conversion for Characters with Diacritical Marks

« Alternate Spelling

«  Composite Words

« Korean, Japanese, and Chinese Indexing

3.7.1 Theme Indexing

By default, themes are indexed in English and French, for which you can index document
theme information. A document theme is a concept that is sufficiently developed in the
document.

Search document themes with the ABOUT operator and retrieve document themes
programatically with the CTX_DOC PL/SQL package.

Enable and disable theme indexing with the i ndex_t henes attribute of the BASI C_LEXER
preference type.

You can also index theme information in other languages, provided that you loaded and
compiled a knowledge base for the language.

@ See Also

e Oracle Text Reference to learn more about the BASI C_ LEXER

e "ABOUT Queries and Themes"

3.7.2 Base-Letter Conversion for Characters with Diacritical Marks

Some languages contain characters with diacritical marks, such as tildes, umlauts, and
accents. When your indexing operation converts words containing diacritical marks to their
base-letter form, queries do not have to contain diacritical marks to score matches.

For example, in a Spanish base-letter index, a query of energia matches energia and energia.
However, if you disable base-letter indexing, a query of energia only matches energia.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 21 of 33



ORACLE Chapter 3
Language-Specific Features

Enable and disable base-letter indexing for your language with the base_| et t er attribute of the
BASI C_LEXER preference type.

@ See Also

Oracle Text Reference to learn more about the BASI C_LEXER

3.7.3 Alternate Spelling

Languages such as German, Danish, and Swedish contain words that have more than one
accepted spelling. For example, in German, you can substitute ae for 4. The ae character pair
is known as the alternate form.

By default, Oracle Text indexes words in their alternate forms for these languages. Query
terms are also converted to their alternate forms. The result is that you can query these words
with either spelling.

Enable and disable alternate spelling for your language with the al t er nat e_spel | i ng attribute
in the BASI C_LEXER preference type.

@ See Also

Oracle Text Reference to learn more about the BASI C_LEXER

3.7.4 Composite Words

You can create composite indexes for all the languages that are supported for AUTO LEXER and
BASI C_LEXER.

As a result, a query on a term returns words that contain the term as a subcomposite. For
example, in German, a query on the term Bahnhof (train station) returns documents that
contain Bahnhof or any word containing Bahnhof as a subcomposite, such as Hauptbahnhof,
Nordbahnhof, or Ostbahnhof.

You can enable and disable composite indexes with the conposi t e attribute of the AUTO LEXER
and BASI C_LEXER preferences. The default value for conposi t e is YES (composite word
indexing enabled).

When composite word indexing is disabled, words that are usually one entry in a dictionary are
not split into composite stems. Words that are not dictionary entries are split into composite
stems.

Related Topics

e AUTO_LEXER Language Support

* AUTO_LEXER Language-Independent Attributes
e BASIC_LEXER Language Support
BASIC_LEXER Attributes

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 22 of 33



ORACLE’

Chapter 3
About Entity Extraction and CTX_ENTITY

3.7.5 Korean, Japanese, and Chinese Indexing

This is a list of specific lexers that you can use to index Korean, Japanese, and Chinese
languages.

Table 3-3 Lexers for Asian Languages
]

Language Lexer

Korean AUTO_LEXER, KOREAN_MORPH _LEXER

Japanese AUTO _LEXER, JAPANESE_LEXER, JAPANESE_VGRAM LEXER
Chinese AUTO_LEXER, CHI NESE_LEXER, CHI NESE_VGRAM LEXER

These lexers have their own sets of attributes to control indexing.

Related Topics

e Oracle Text Reference

3.8 About Entity Extraction and CTX_ENTITY

Entity extraction is the identification and extraction of named entities within text. Entities are
mainly nouns and noun phrases, such as names, places, times, coded strings (such as phone
numbers and zip codes), percentages, and monetary amounts. The CTX_ENTI TY package
implements entity extraction by means of a built-in dictionary and a set of rules for English text.
You can extend the capabilities for English and other languages with user-provided add-on
dictionaries and rule sets.

® See Also
e CTX_ENTITY Package in Oracle Text Reference

e Entity Extraction User Dictionary Loader (ctxload) in Oracle Text Reference

This section contains the following examples:

e Basic Example of Using Entity Extraction

 Example of Creating a New Entity Type Using a User-defined Rule

3.8.1 Basic Example of Using Entity Extraction

The example in this section provides a very basic example of entity extraction. The example
assumes that a CLOB contains the following text:

New York, United States of Anerica
The Dow Jones |ndustrial Average clinbed by 5% yesterday on news of a new software
rel ease from database giant Oracle Corporation.

The example uses CTX_ENTI TY. EXTRACT to find the entities in CLOB value. (For now, do not
worry about how the text got into the CLOB or how we provide the output CLOB.)

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 23 of 33



ORACLE

Chapter 3
About Entity Extraction and CTX_ENTITY

Entity extraction requires a new type of policy, an "extract policy," which enables you to specify
options. For now, create a default policy:

ctx_entity.create_extract_policy( "mypolicy' );

Now you can call extract to do the work. It needs four arguments: the policy name, the
document to process, the language, and the output CLOB (which you should have initialized,
for example, by calling dbns_| ob. cr eat et enpor ary).

ctx_entity.extract( "mypolicy', nydoc, 'ENG.ISH, outclob )

In the previous example, out cl ob contains the XML that identifies extracted entities. When you
display the contents (preferably by selecting it as XMLTYPE so that it is formatted nicely), here
is what you see:

<entities>

<entity id="0" offset="0" |ength="8" source="SuppliedDictionary">
<t ext >New Yor k</t ext >
<type>city</type>

</entity>

<entity id="1" offset="150" |ength="18" source="SuppliedRul ">
<text>Oracl e Corporation</text>
<t ype>conpany</type>

</entity>

<entity id="2" offset="10" |ength="24" source="SuppliedDictionary">
<text>United States of America</text>
<type>country</type>

</entity>

<entity id="3" offset="83" |ength="2" source="SuppliedRul e">
<t ext >5%/ t ext >
<t ype>per cent </ type>

</entity>

<entity id="4" offset="113" |ength="8" source="SuppliedDictionary">
<t ext >sof t war e</ t ext >
<t ype>product </t ype>

</entity>

<entity id="5" offset="0" |ength="8" source="SuppliedDictionary">
<t ext >New Yor k</t ext >
<type>st ate</type>

</entity>

<lentities>

This display is fine if you process it with an XML-aware program. However, if you want it in a
more "SQL friendly" view, use Oracle XML Database (XML DB) functions to convert it as
follows:

sel ect xtab.offset, xtab.text, xtab.type, xtab.source
fromxnitable( '/entities/entity'
PASSI NG xni t ype(out cl ob)

COLUWNS
of f set nunber PATH ' @f fset',
I ngth nunber PATH ' @ength',

text  varchar2(50) PATH 'text/text(
type varchar2(50) PATH 'type/text(
source varchar2(50) PATH ' @our ce'

) as xtab order by offset;

~— —

Here is the output:

OFFSET TEXT TYPE SOURCE

0 New York city Suppl i edDi cti onary

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 24 of 33



ORACLE Chapter 3
About Entity Extraction and CTX_ENTITY

0 New York state Suppl i edDi cti onary
10 United States of Anerica country Suppl i edDi cti onary
83 5% per cent Suppl i edRul e

113 software product Suppl i edDi cti onary
150 Oracle Corporation conpany Suppl i edRul e

If you do not want to fetch all entity types, you can select the types by adding a fourth
argument to the "extract" procedure, with a comma-separated list of entity types. For example:

ctx_entity.extract( 'mypolicy', mydoc, 'ENGLISH , outclob, 'city, country' )
That woul d give us the XM

<entities>
<entity id="0" offset="0" |ength="8" source="SuppliedDictionary">
<t ext >New Yor k</t ext >
<type>city</type>
</entity>
<entity id="2" offset="10" |ength="24" source="SuppliedDictionary">
<text>United States of America</text>
<t ype>count ry</type>
</entity>
<lentities>

3.8.2 Example of Creating a New Entity Type by Using a User-Defined Rule

The example in this section shows how to create a new entity type with a user-defined rule.
You define rules with a regular-expression-based syntax and add the rules to an extraction
policy. The policy is applied whenever it is used.

The following rule identifies increases in a stock index by matching any of the following
expressions:

clinbed by 5%
i ncreased by over 30 percent
junped 5. 5%

Therefore, you must create a new type of entity as well as a regular expression that matches
any of the expressions:

exec ctx_entity.add_extract_rule( 'nypolicy', 1,
"<rul e>'
' <expressi on>'
"((clinbed| gai ned|junped|increasing|increased|rallied)’
"( (by|over|nearly|mre than))* \d+(\.\d+)?( percent| %)’
' </ expressi on>'
' <type>Positive Gain</type>'
"<lrule>);

In this case, you must compile the policy with CTX_ENTI TY. COVPI LE:
ctx_entity.conpile(' nypolicy');

Then you can use it as before:
ctx_entity.extract (' nypolicy', mydoc, null, nyresults)

Here is the (abbreviated) output:

<entities>
.<é.nti ty id="6" offset="72" |ength="18" source="UserRul e">

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 25 of 33



ORACLE

Chapter 3
About Fuzzy Matching and Stemming

<text>clinbed by over 5%/text>
<type>Positive Gin</type>
</entity>
<lentities>

Finally, you add another user-defined entity, but this time it uses a dictionary. You want to
recognize "Dow Jones Industrial Average" as an entity of type | ndex. You also add "S&P 500"
To do that, create an XML file containing the following:

<di ctionary>
<entities>
<entity>
<val ue>dow j ones industrial average</val ue>
<t ype>l ndex</type>
</entity>
<entity>
<val ue>S&anp; P 500</ val ue>
<type>l ndex</type>
</entity>
</entities>
</dictionary>

Case is not significant in this file, but notice how the "&" in "S&P" must be specified as the XML
entity &np; . Otherwise, the XML is not valid.

This XML file is loaded into the system with the CTXLQAD utility. If the file were called di ct . | oad,
you would use the following command:

ctxl oad -user usernanme/password -extract -name nypolicy -file dict.load

You must compile the policy with CTX_ENTI TY. COVPI LE.

3.9 About Fuzzy Matching and Stemming

Use the BASI C WORDLI ST preference to enable query options, such as stemming and fuzzy
matching for your language.

Overview

Fuzzy matching allows you to match words that have a similar spelling as the specified term.
Oracle Text provides entity extraction for multiple languages.

Stemming enables indexing by the stem (same linguistic root as the specified $t er m). For
example, you can index words like speak, speaks, spoke, and spoken by the term speak. The
term speak is interpreted as the stem of those words.

Fuzzy matching and stemming are automatically enabled in your index if Oracle Text supports
this feature for your language.

Fuzzy Matching Attributes

Fuzzy matching (f uzzy_mat ch) is enabled with default parameters for its fuzzy score and
maximum number of expanded terms. Fuzzy score (f uzzy_scor e) is a measure of how closely
the expanded word matches the query word. Fuzzy number results (fuzzy_nunresul ts)
specify the maximum number of fuzzy expansions. At index time, you can change these
default parameters.

Stemming Attributes

e Language Attribute Values for AUTO LEXER:

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 26 of 33



ORACLE

Chapter 3
Better Wildcard Query Performance

To automatically detect the language of a document and to have the necessary
transformations performed, create a stem index by enabling the i ndex_st ens attribute of
the AUTO_LEXER. Use the stemmer that corresponds to the document language and always
configure the stemmer to maximize document recall.

For compound words in languages (for example, in German, Finnish, Swedish, or Dutch), if
you set conposi t e to YES (default value), then compound word stemming is automatically
performed in documents. Compounds are always separated into their component stems.

* Language Attribute Values for BASI C_LEXER:

To improve the performance of stem queries, create a stem index by enabling the
i ndex_st ens attribute of BASI C_LEXER.

Starting with Oracle Al Database 26ai, the old stemmer has been removed, making the
_NEWsuffix redundant. For example, ENGLI SH_NEWis equivalent to ENGLI SH.

For compound words in languages (for example, in German, Finnish, Swedish, or Dutch), if
you set conposi t e to YES (default value), then compound word stemming is automatically
performed in documents. Compounds are always separated into their component stems.

Related Topics

e BASIC_WORDLIST

e AUTO_LEXER Language Support

e« AUTO_LEXER Language-Independent Attributes
° BASIC_LEXER Attributes

3.10 Better Wildcard Query Performance

Wildcard queries enable you to enter left-truncated, right-truncated, and double-truncated
queries, such as %ing, cos%, or %benz%. With normal indexing, these queries can sometimes
expand into large word lists and degrade your query performance.

Wildcard queries have better response time when token prefixes and substrings are recorded
in the index.

By default, token prefixes and substrings are not recorded in the Oracle Text index. If your
query application makes heavy use of wildcard queries, consider indexing token prefixes and
substrings. To do so, use the wordlist preference type. The trade-off is a bigger index for
improved wildcard searching.

@ See Also
« "BASIC WORDLIST Example: Enabling Substring and Prefix Indexing"

e Oracle Text Reference for more information on how to keep wildcard query
performance within an acceptable limit

3.11 Document Section Searches

For documents that have internal structure, such as HTML and XML, you can define and index
document sections. By indexing document sections, you can narrow the scope of your queries
to predefined sections. For example, you can specify a query to find all documents that contain
the term dog within a section defined as Headings.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 27 of 33



ORACLE Chapter 3
Stopwords and Stopthemes
Before indexing, you must define sections and specify them with the section group preference.

Oracle Text provides section groups with system-defined section definitions for HTML and
XML. You can also specify that the system automatically create sections from XML documents
during indexing.

@ See Also

Searching Document Sections in Oracle Text

3.12 Stopwords and Stopthemes

A stopword is a word that you do not want indexed. Stopwords are typically low-information
words in a given language, such as this and that in English.

By default, Oracle Text provides a stoplist for indexing a given language. Modify this list or
create your own with the CTX_DDL package. Specify the stoplist in the parameter string of the
CREATE | NDEX statement.

A stoptheme is a word that is prevented from being theme-indexed or that is prevented from
contributing to a theme. Add stopthemes with the CTX_DDL package.

* Language detection and stoplists: At query time, the language of the query is inherited
from the query template or from the session language (if no language is specified through
the query template).

e Multilanguage stoplists: You create multilanguage stoplists to hold language-specific
stopwords. This stoplist is useful when you use MILTI _LEXER to index a table that contains
documents in different languages, such as English, German, and Japanese. At index
creation, the language column of each document is examined, and only the stopwords for
that language are eliminated. At query time, the session language setting determines the
active stopwords, just as it determines the active lexer with the multi-lexer.

3.13 Index Performance

Factors that influence indexing performance include memory allocation, document format,
degree of parallelism, and partitioned tables.

@ See Also

"Frequently Asked Questions About Indexing Performance"

3.14 Query Performance and Storage of Large Object (LOB)
Columns

If your table contains large object (LOB) structured columns that are frequently accessed in
queries but rarely updated, you can improve query performance by storing these columns out-
of-line. However, you cannot map attributes to remote LOB columns.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 28 of 33



ORACLE’

Chapter 3
Mixed Query Performance

@ See Also

"Does out-of-line LOB storage of wide base table columns improve performance?"

3.15 Mixed Query Performance

If your CONTAI NS() query also has structured predicates on the nontext columns, then consider
indexing those column values. To do so, specify those columns in the FI LTER BY clause of the
CREATE | NDEX statement. Oracle Text can then determine whether to have the structured
predicates processed by the Oracle Text index for better performance.

Additionally, if your CONTAI NS() query has ORDER BY criteria on one or more structured columns,
then the Oracle Text index can also index those column values. Specify those columns in the
ORDER BY clause of the CREATE | NDEX statement. Oracle Text can then determine whether to
push the sort into the Oracle Text index for better query response time.

@ See Also
"CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY"

3.16 In-Memory Full Text Search and JSON Full Text Search

The queries using CONTAI NS() and JSON_TEXTCONTAI NS() can be evaluated in SQL predicates
when the underlying columns that store the full text documents or JSON documents are
enabled for In-Memory full text search.

Normally, to use full-text (keyword) searching against textual columns, you must create an
Oracle Text index on that column. For JSON data, you create a JSON search index. Starting
with Oracle Database Release 21c, instead of creating an index, you can load the column into
memory, using an In-Memory columnar format. This does not require an index, but allows for
fast scanning of the text using In-Memory techniques. This is particularly valuable when
running queries which combine text searches and structured searches on other In-Memory
columns.

You must declare the columns that must be loaded into memory during table creation time,
using the | NVEMORY TEXT clause. These columns can be searched using the same CONTAI NS()
and JSON_TEXTCONTAI NS() functions that are used with Oracle Text or JSON search indexes,
but there are limitations on the types of query operators that can be used. Hence, In-Memory is
not a replacement for Oracle Text or JSON search indexes, but an alternative that can be used
when required, and when the limitations are not considered to be a problem.

It is possible to have a column which has an Oracle Text index on it and also uses | NVEMORY
TEXT clause. In this situation, the optimizer chooses the Oracle Text index to execute the query.
If there is an Oracle Text index on the column, the query always uses the Oracle Text index. If
there is no Oracle Text index, then the optimizer checks if the table is marked as In-Memory. If
the table is marked as In-Memory, the In-Memory evaluation is used for the query. If there is no
Oracle Text index and the table is not marked as In-Memory, then the "DRG 10599: colum is
not indexed" error is returned.

Unlike CONTEXT indexes, you can use the | NVEMORY TEXT clause with indirect datastore types
(NETWORK_DATASTORE and DI RECTORY_DATASTORE) on LOB (large object) or LONG columns.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 29 of 33



ORACLE

Chapter 3
In-Memory Full Text Search and JSON Full Text Search

For detailed information on how to specify an in-memory Text column, see Oracle Al Database
In-Memory Guide.

Supported Data Types

The In-Memory full text search supports the following data types:

* CHAR
*  VARCHARZ2
- CLOB
- BLOB
« JSON

Both JSON and text columns support a custom indexing policy created with the

CTX _DDL. CREATE_PQLI CY procedure. If the column data type is JSON, then the In-Memory full
text version of this column enables path-aware search using JSON_TEXTCONTAI NS() when the
column uses either of the following:

e A default policy
e A custom policy with a PATH _SECTI ON_GROUP having JSON_ENABLED attribute set to TRUE

Usage Notes

You specify an In-Memory full text search column with the | NVEMORY TEXT clause. Both CREATE
TABLE and ALTER TABLE statements support the | NVEMORY TEXT clause. You can use the

PRI ORI TY subclause to control the order of object population. The default priority is NONE. The
MEMCOVPRESS subclause is not valid with | NVEMORY TEXT.

Specify either the CREATE TABLE or ALTER TABLE statement with the | NVEMORY TEXT clause,
using either of the following forms:

e | NMEMORY TEXT (col 1, col2, .)

I NMEMORY TEXT (col1 USING policyl, col2 USING policy2, .)

Oracle recommends that you run in-memory repopulate operations after a batch of DML
operations or before running any queries. You can use the DBMS_| NVEMORY. REPOPULATE
procedure that forces immediate repopulation of an object. See Oracle Al Database PL/SQL
Packages and Types Reference.

You must set the following database initialization parameters when using the | NVEMORY TEXT
clause:

e MAX STRI NG SI ZE: This parameter controls the maximum size of the VARCHAR2, NVARCHAR2,
and RAWdata types in SQL. You must set MAX_STRI NG_SI ZE to EXTENDED. This setting raises
the byte limit to 32767, which requires shutting down or upgrading your database.

e | NMEMORY_EXPRESSI ONS_USAGE: This parameter controls the type of IM expression that the
database populates. Set | NVEMORY_EXPRESSI ONS_USAGE to a value other than DI SABLE:

— ENABLE (default) to enable both static and dynamic IM expressions
— STATI C_ONLY to enable only static IM expressions

e | NMEMORY_VI RTUAL_COLUMNS: This parameter controls which user-defined virtual columns
are stored as IM virtual columns. Set | NVEMORY_VI RTUAL_COLUMNS to ENABLE, which is the
default setting.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 30 of 33



ORACLE’

Limitations

Chapter 3
In-Memory Full Text Search and JSON Full Text Search

Data Types

BFI LE, XM.Type, and URI Type data types are
not supported in In-Memory full text search
columns.

The DI RECT_DATASTORE,

Dl RECTORY_DATASTORE, and

NETWORK DATASTORE datastore types are
supported. However, you cannot use

DI RECTORY_DATASTORE and
NETWORK_DATASTORE with a context index on
the CHAR data type column.

Oracle Text Query Operators

For querying a text column, only the following
Oracle Text query operators are supported:

° AND

- R
° NOT
°  NEAR

For querying a JSON column, the following
Oracle Text query operators are also
supported:

e HASPATH
* | NPATH

Policies

* Inthe CTX _DDL. CREATE_POLI CY procedure,
the filter parameter is not supported. All
of the BASI C_ WORDLI ST attributes (such as
wi | dcard_i ndex, st emer, fuzzy_natch,
or substring_i ndex) are not supported.
The section_group parameter must be
set to either NULL_SECTI ON_GROUP (default)
or JSON_SECTI ON_GROUP with JSON_ENABLE
set to TRUE (for JSON enabled context
indexes). The | exer parameter is
supported only with the BASI C_LEXER lexer

type.

* JSON enabled indexing policies are
supported only for JSON columns.

* You can only use your own custom
indexing policy for In-Memory full text
search and JSON In-Memory full text
search. Also, you can not use a JSON
enabled indexing policy for text columns
with | S JSON check constraint.

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 33



ORACLE

Chapter 3
In-Memory Full Text Search and JSON Full Text Search

Disable or Enable In-Memory Full Text Search [You cannot disable and re-enable In-Memory
ull text search by using a single ALTER TABLE
statement. You must first disable the In-
Memory full text search before re-enabling it.

Examples
Example 3-1 Using In-Memory Full Text Search

The following example shows you how to query from an In-Memory full text search enabled
column using the CONTAI NS operator. It also shows you how to create a custom policy for text
search and apply it on a column.

Create a table named t ext _docs that is loaded in memory and populate it with an In-Memory
full text search column named doc:

CREATE TABLE text docs(id NUMBER, docCreationTine DATE, doc CLOB) | NMEMORY
| NMEMORY TEXT(doc);

Query using the CONTAI NS operator with your condition:

SELECT id FROM text_docs WHERE docCreationTime > to_date('2014-01-01", ' YYYY-
MV DD )
AND CONTAI NS(doc, "in memory text processing');

You can also create a custom policy for text search, and then apply it to the doc column:

EXEC CTX _DDL. CREATE_PCLI CY('first_policy');
ALTER TABLE text _docs | NVEMORY TEXT (doc USING "first_policy');

You can replace an existing custom policy by disabling the In-Memaory full text search using the
NO | NVEMORY TEXT clause and then enabling In-Memory full text search using the | NVEMORY
TEXT clause:

EXEC CTX _DDL. CREATE_POLI CY(' second_policy');
ALTER TABLE text docs NO | NVEMORY TEXT(doc);
ALTER TABLE text docs | NMEMORY TEXT (doc USING ' second policy');

Example 3-2 Using JSON In-Memory Full Text Search

The following example shows you how to query from an In-Memory full text search enabled
column using the JSON_TEXTCONTAI NS operator.

Create a table named j son_docs that is loaded in memory and populate it with an In-Memory
full text search column named doc:

CREATE TABLE json_docs(id NUMBER, docCreationTine DATE, doc JSON) | NMEMORY
| NMEMORY TEXT(doc);

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 32 of 33



ORACLE

Chapter 3
In-Memory Full Text Search and JSON Full Text Search

Query using the JSON_TEXTCONTAI NS operator with your condition:

SELECT id FROM j son_docs WHERE docCreationTime > to_date('2014-01-01", 'YYYY-
MV DD )
AND JSON_TEXTCONTAI NS(doc, '$.abstract', 'in nenory text processing');

Example 3-3 Prioritizing In-Memory Population in Full Text Search

The following example shows you how to set the priority level for data population using the
PRI ORI TY subclause.

Create a table named prioritized docs thatis loaded in memory and use the PRI ORI TY
subclause to set the priority level:

CREATE TABLE prioritized_docs(id NUMBER, docCreationTime DATE, doc CLOB,
j son_doc CHECK(json_doc IS json))
I NMEMORY PRI ORI TY CRITI CAL | NMEMORY TEXT(doc, json_doc);

Related Topics

e Oracle Text Reference

e Oracle Al Database In-Memory Guide

e Oracle Al Database JSON Developer’s Guide

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 33 of 33



Creating Oracle Text Indexes

Learn how to create Oracle Text indexes.
This chapter contains the following topics:

«  Summary of the Procedure for Creating an Oracle Text Index

* Creating Preferences

e Section Searching Example: Creating HTML Sections

* Using Stopwords and Stoplists
* Creating a CONTEXT Index

* Creating a CTXCAT Index

* Creating a CTXRULE Index

* Creating a JSON Search Index

e  Creating an Oracle Text Search Index

e Creating a Hybrid Vector Index

4.1 Summary of the Procedure for Creating an Oracle Text Index

With Oracle Text, you can create indexes of type CONTEXT, SEARCH | NDEX, CTXCAT, and
CTXRULE.

By default, the system expects your documents to be stored in a text column. After you satisfy
this requirement, you can create an Oracle Text index by using the CREATE | NDEX SQL
statement as an extensible index of type CONTEXT, without explicitly specifying preferences.
The system automatically detects your language, the data type of the text column, and the
format of the documents. Next, the system sets indexing preferences.

You can create a search index using the CREATE SEARCH | NDEX SQL statement for indexing
and querying structured, unstructured, or semi-structured data, such as textual, JSON, and
XML documents. The SEARCH | NDEX is an index type that supports the CONTEXT index
functionality along with sharded databases and system-managed partitioning for index storage.

To create an Oracle Text index:

1. (Optional) Determine your custom indexing preferences, section groups, or stoplists if you
do not use the defaults. The following table describes these indexing classes:

Class Description

Datastore How are your documents stored?

Filter How can the documents be converted to plaintext?
Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?
Storage How should the index data be stored?

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 14



ORACLE’

Chapter 4
Creating Preferences

Class Description
Stoplist What words or themes are not to be indexed?
Section Group How are document sections defined?

2. (Optional) Create custom preferences, section groups, or stoplists.

3. Create the Oracle Text index with the CREATE | NDEX SQL statement. Name your index and,
if necessary, specify preferences.

Related Topics
*  Considerations for Oracle Text Indexing

e Creating a CONTEXT Index
The CONTEXT index type is well suited for indexing large, coherent documents in formats
such as Microsoft Word, HTML, or plain text.

e Creating Preferences
e CREATE_INDEX
e CREATE SEARCH INDEX

4.2 Creating Preferences

If you want, you can create custom index preferences to override the defaults. Use the
preferences to specify index information, such as where your files are stored and how to filter
your documents. You create the preferences and then set the attributes.

@ See Also

"Custom Index Preference Examples"

4.3 Section Searching Example: Creating HTML Sections

When documents have internal structure such as in HTML and XML, you can define document
sections by using embedded tags before you index. This approach enables you to query within
the sections by using the W TH N operator. You define sections as part of a section group.

This example defines a section group called ht ngr oup of type HTM._SECTI ON_GROUP. It then
creates a zone section in ht mgr oup called headi ng identified by the <HL> tag:

begin

ctx_ddl . create_section_group(' htmgroup', 'HTM._SECTI ON_GROUF' );

ctx_ddl . add_zone_section(' htmgroup', 'heading', 'Hl');
end;

@ See Also

Searching Document Sections in Oracle Text

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 14



ORACLE’

Chapter 4
Using Stopwords and Stoplists

4.4 Using Stopwords and Stoplists

A stopword is a word that is not to be indexed, such as this or that in English.

The system supplies a stoplist for every language. By default during indexing, the system uses
the Oracle Text default stoplist for your language.

You can edit the default CTXSYS. DEFAULT_STOPLI ST or create your own with the following
PL/SQL procedures:

e CTX_DDL. CREATE_STOPLI ST

« CTX_DDL. ADD_STOPWORD

«  CTX_DDL. REMOVE_STOPWORD

You specify your custom stoplists in the parameter clause of CREATE | NDEX.

You can also dynamically add stopwords after indexing with the ALTER | NDEX statement.

e Multi-Language Stoplists

»  Stopthemes and Stopclasses

e PL/SQL Procedures for Managing Stoplists

4.4.1 Multilanguage Stoplists

You can create multilanguage stoplists to hold language-specific stopwords. This stoplist is
useful when you use MULTI _LEXER to index a table that contains documents in different
languages, such as English, German, and Japanese.

To create a multilanguage stoplist, use the CTX_DDL. CREATE_STOPLI ST procedure and specify a
stoplist type of MULTI _STOPLI ST. You add language-specific stopwords with
CTX_DDL. ADD_STOPWORD.

4.4.2 Stopthemes and Stopclasses

In addition to defining your own stopwords, you can define stopthemes, which are themes that
are not indexed. This feature is available only for English and French.

You can also specify that numbers are not indexed. A class of alphanumeric characters such a
numbers that is not to be indexed is a stopclass.

You create a single stoplist, to which you add the stopwords, stopthemes, and stopclasses,
and specify the stoplist in the par anst r i ng for CREATE | NDEX.

4.4.3 PL/SQL Procedures for Managing Stoplists

Use the following procedures to manage stoplists, stopwords, stopthemes, and stopclasses:
«  CTX_DDL. CREATE_STOPLI ST

«  CTX_DDL. ADD_STOPWORD

«  CTX_DDL. ADD_STOPTHEME

e CTX_DDL. ADD_STOPCLASS

«  CTX_DDL. REMOVE_STOPWORD

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 14



ORACLE’

Chapter 4
Creating a CONTEXT Index

«  CTX_DDL. REMOVE_STOPTHEME
«  CTX_DDL. REMOVE_STOPCLASS
«  CTX_DDL. DROP_STOPLI ST

@ See Also

Oracle Text Reference to learn more about using these procedures

4.5 Creating a CONTEXT Index

The CONTEXT index type is well suited for indexing large, coherent documents in formats such
as Microsoft Word, HTML, or plain text.

With a CONTEXT index, you can also customize your index in a variety of ways. The documents
must be loaded in a text table.

e CONTEXT Index and DML
e Default CONTEXT Index Example

« Incrementally Creating a CONTEXT Index

e Custom CONTEXT Index Example: Indexing HTML Documents
e CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY

4.5.1 CONTEXT Index and DML

A CONTEXT index is not transactional. When you delete a record, the index is changed
immediately. That is, your session no longer finds the record from the moment you make the
change, and other users cannot find the record after you commit. For inserts and updates, the
new information is not visible to text searches until an index synchronization has occurred.
Therefore, when you perform inserts or updates on the base table, you must explicitly
synchronize the index with CTX_DDL. SYNC_| NDEX.

@ See Also

"Synchronizing the Index"

4.5.2 Default CONTEXT Index Example

The following statement creates a default CONTEXT index called nyi ndex on the t ext column in
the docs table:

CREATE | NDEX nyi ndex ON docs(text) |NDEXTYPE IS CTXSYS. CONTEXT;

When you use the CREATE | NDEX statement without explicitly specifying parameters, the
system completes the following actions by default for all languages:

e Assumes that the text to be indexed is stored directly in a text column. The text column can
be of type CLOB, BLOB, BFI LE, VARCHAR2, or CHAR

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 14



ORACLE

Chapter 4
Creating a CONTEXT Index

» Detects the column type and uses filtering for the binary column types of BLOB and BFI LE.
Most document formats are supported for filtering. If your column is plain text, the system
does not use filtering.

@® Note

For document filtering to work correctly in your system, you must ensure that your
environment is set up correctly to support the AUTO FI LTER filter.

« Assumes that the language of the text to index is the language specified in your database
setup.

* Uses the default stoplist for the language specified in your database setup. Stoplists
identify the words that the system ignores during indexing.

* Enables fuzzy and stemming queries for your language, if this feature is available for your
language.

You can always change the default indexing behavior by customizing your preferences and
specifying those preferences in the parameter string of CREATE | NDEX.

@ See Also

Oracle Text Reference to learn more about configuring your environment to use the
AUTO _FI LTER filter

4.5.3 Incrementally Creating a CONTEXT Index

The ALTER | NDEX and CREATE | NDEX statements support incrementally creating a CONTEXT
index.

You can incrementally create Oracle Text indexes, which means that the index structure is
immediately created but the data is not populated during the index creation or rebuild process.
You populate the index later at a suitable time. This procedure is useful for creating indexes in
large installations that cannot afford to have the indexing process running continuously. It
provides finer control over the creation of indexes, allowing you to avoid building indexes in a
single operation.

Incremental index creation involves the following steps:

1. Create an empty index:

If you specify the NOPOPULATE keyword at the time of index creation or rebuild, it only
creates metadata for the index tables but does not populate them.

e Global index:

For a global index, use CREATE | NDEX to support the NOPOPULATE keyword in the
REPLACE parameter of the REBUI LD clause.

* Local index partition:

For a local index partition, modify the ALTER | NDEX ... REBUI LD partition ...
par anmet er s ('REPLACE ...") parameter string to support the NOPOPULATE keyword.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 14



ORACLE Chapter 4
Creating a CONTEXT Index

For a partition on a local index, CREATE | NDEX ... LOCAL ... (partition ... paraneters
('NOPOPULATE)) is supported. The partition-level POPULATE or NOPOPULATE keywords
override any POPULATE or NOPOPULATE specified at the index level.

2. Place all ROWIDs into the pending queue:

Use the CTX_DDL. POPULATE_PENDI NG procedure to populate the pending queues with every
ROWID in the base table or table partition.

3. Populate the index:
Use the CTX_DDL. SYNC | NDEX procedure to populate the index with the queued data.

The SYNC_| NDEX procedure includes the maxt i me argument that indicates a suggested time
limit in minutes for the operation. The indexing process runs in an estimate of the given
maxt i ne instead of running to completion. You might need to run multiple SYNC | NDEX calls
until the index is fully synced.

You can choose to run both the POPULATE_PENDI NGand SYNC | NDEX calls separately so that
the population of the pending queue and the population of the index happen at different
times, thereby optimizing system performance.

Example 4-1 Incrementally Build an Empty Global Index

-- Create an enpty index

CREATE | NDEX ctx_ind ON ctx_tab(doc) |NDEXTYPE | S CTXSYS. CONTEXT
PARAMVETERS (' NOPOPULATE' ) ;

decl are
n_pendi ng nunber;

function get_pending return nunber is
n_pendi ng nunber;

begi n
n_pending := 0;
begin
execute i nmediate ' SELECT COUNT(*) FROM DRSCTX_I NDSC into n_pending;
exception when others then
if (sqglcode !'=-942) then
rai se;
end if;
end;

if (n_pending = 0) then
execute inmediate ' SELECT COUNT(*) FROM CTX_USER_PENDI NG WHERE
PND_| NDEX_NAME = :1'
into n_pending using 'CTX IND ;
end if;
return n_pending;
end get pendi ng;

begi n
-- Fill in the pending queue
CTX_DDL. POPULATE_PENDI NG(' CTX_IND' ) ;
n_pendi ng : = get_pendi ng;
while (n_pending > 0) |oop

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 14



ORACLE Chapter 4
Creating a CONTEXT Index

-- Popul ate the index through sync_i ndex
CTX_DDL. SYNC_| NDEX(' CTX_IND', maxtine => 1);
n_pending : = get_pendi ng;

end | oop;
end;
/

Related Topics

e CREATE INDEX

e ALTER INDEX

e CTX_DDL.POPULATE_PENDING
e CTX_DDL.SYNC_INDEX

4.5.4 Custom CONTEXT Index Example: Indexing HTML Documents

To index an HTML document set located by URLSs, specify the system-defined preference for
the NULL_FI LTER in the CREATE | NDEX statement.

You can also specify your ht ngr oup section group that uses HTM._SECTI ON_GROUP and
NETWORK _PREF datastore that uses NETWORK DATASTORE:

begin
ctx_ddl . create_preference(' NETWORK_PREF' , ' NETWORK_DATASTORE' ) ;
ctx_ddl.set_attribute(' NETWORK_PREF' , ' HTTP_PROXY' , ' ww+ pr oxy. us. exanpl e. com ) ;
ctx_ddl.set_attribute(' NETWORK PREF' ,' NO_PROXY' , "' us. exanpl e. com ) ;
ctx_ddl.set_attribute(' NETWORK_PREF' ,' TI MEQUT' , ' 300" );

end;

begin

ctx_ddl . create_section_group(' htmgroup', 'HTM._SECTI ON_GROUF' );
ctx_ddl . add_zone_section(' htmgroup', 'heading', 'Hl');

end;

You can then index your documents:

CREATE | NDEX nyi ndex on docs(htmfile) indextype is ctxsys.context
par anet er s(
"datastore NETWORK PREF filter ctxsys.null _filter section group htngroup'

)i

@ Note

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is deprecated.
Use NETWORK_DATASTORE instead.

Related Topics

e Creating Preferences

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 14



ORACLE Chapter 4
Creating a CTXCAT Index

4.5.5 CONTEXT Index Example: Query Processing with FILTER BY and
ORDER BY

To enable more efficient query processing and better response time for mixed queries, use
FI LTER BY and ORDER BY clauses as shown in the following example:

CREATE | NDEX nyi ndex on docs(text) |NDEXTYPE i s CTXSYS. CONTEXT
FI LTER BY category, publisher, pub_date
ORDER BY pub_dat e desc;

Because you specified the FI LTERBY cat egory, publisher, pub_dat e clause at query time,
Oracle Text also considers pushing a relational predicate on any of these columns into the
Oracle Text index row source.

Also, when the query has matching ORDER BY criteria, by specifying ORDER BY pub_dat e desc,
Oracle Text determines whether to push SORT into the Oracle Text index row source for better
response time.

4.6 Creating a CTXCAT Index

The CTXCAT index type is well-suited for indexing small text fragments and related information.
This index type provides better structured query performance than a CONTEXT index.

* CTXCAT Index and DML

*  About CTXCAT Sub-Indexes and Their Costs

*  Creating CTXCAT Sub-indexes

* Creating CTXCAT Index

@ Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COW T) or, preferably, SYNC(EVERY [ti me-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FI LTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 14



ORACLE Chapter 4
Creating a CTXCAT Index

4.6.1 CTXCAT Index and DML Operations

A CTXCAT index is transactional. When you perform inserts, updates, and deletes on the base
table, Oracle Text automatically synchronizes the index. Unlike a CONTEXT index, no
CTX _DDL. SYNC | NDEX is necessary.

@ Note

Applications that insert without invoking triggers, such as SQL*Loader, do not result in
automatic index synchronization as described in this section.

4.6.2 About CTXCAT Subindexes and Their Costs

A CTXCAT index contains subindexes that you define as part of your index set. You create a
subindex on one or more columns to improve mixed query performance. However, the time
Oracle Text takes to create a CTXCAT index depends on its total size, and the total size of a
CTXCAT index is directly related to the following factors:

* Total text to be indexed
*  Number of subindexes in the index set
*  Number of columns in the base table that make up the subindexes

Many component indexes in your index set also degrade the performance of insert, update,
and delete operations, because more indexes must be updated.

Because of the added index time and disk space costs for creating a CTXCAT index, before
adding it to your index set, carefully consider the query performance benefit that each
component index gives your application.

@® Note

You can use | _RON D_| NDEX_CLAUSE of BASI C_STORAGE to speed up creation of a
CTXCAT index. This clause is described in Oracle Text Reference.

4.6.3 Creating CTXCAT Subindexes

An online auction site that must store item descriptions, prices, and bid-close dates for ordered
look-up is a good example for creating a CTXCAT index.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 14



ORACLE

Chapter 4
Creating a CTXCAT Index

Figure 4-1 Auction Table Schema and CTXCAT Index

Subindex A

CTXCAT
. Index

Auction Table —

item_id | title category_id | price bid_close =

number | varchar (100) | number number | date
> B]
Subindex B

Figure 4-1 shows a table called AUCTI ON with the following schema:

create table auction(
itemid nunber,

title varchar2(100),
category_id nunber,
price nunber,

bid_cl ose date);

To create your subindexes, create an index set to contain them:
begin

ctx_ddl.create_index_set('auction_iset');
end;

Next, determine the structured queries that you are likely to enter. The CATSEARCH query
operator takes a mandatory text clause and optional structured clause.

In the example, this means that all queries include a clause for the titl e column, which is the
text column.

Assume that the structured clauses fall into the following categories:

Structured Clauses Subindex Definition to Category
Serve Query

'price < 200' 'price’ A

'price = 150'

‘order by price’
‘price = 100 order by bid_close' ‘price, bid_close’ B
‘order by price, bid_close'

Structured Query Clause Category A
The structured query clause contains an expression only for the pri ce column as follows:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price < 200')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price = 150')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by price')> 0;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 14



ORACLE

Chapter 4
Creating a CTXCAT Index

These queries can be served by using subindex B. However, for efficiency, you can also create
a subindex only on pri ce (subindex A):

begin
ctx_ddl . add_i ndex('auction_iset','price'); /* sub-index A */
end;

Structured Query Clause Category B

The structured query clause includes an equivalent expression for pri ce ordered by
bi d_cl ose, and an expression for ordering by pri ce and bi d_cl ose, in that order:

SELECT FROM aucti on WHERE CATSEARCH(
title, 'canera','price = 100
ORDER BY bi d_cl ose')> 0;
SELECT FROM auction
WHERE CATSEARCH(
title, 'canera','order by price, bid_close)> 0;

These queries can be served with a subindex defined as follows:

begin
ctx_ddl . add_i ndex('auction_iset', ' price, bid_close'); /* sub-index B */
end;

Like a combined b-tree index, the column order that you specify with CTX_DDL. ADD_| NDEX
affects the efficiency and viability of the index scan which Oracle Text uses to serve specific
queries. For example, if two structured columns p and g have a b-tree index specified as
'p, q', Oracle Text cannot scan this index to sort' ORDERBY q, p' .

4.6.4 Creating CTXCAT Index

This example combines the previous examples and creates the index set preference with the
two subindexes:

begin

ctx_ddl . create_index_set('auction_iset');

ctx_ddl . add_i ndex('auction_iset','price'); /* sub-index A */

ctx_ddl . add_i ndex('auction_iset', ' price, bid_close'); /* sub-index B */
end;

Figure 4-1 shows how the subindexes A and B are created from the auction table. Each
subindex is a b-tree index on the text column and the named structured columns. For example,
subindex A is an index on the titl e column and the bi d_cl ose column.

You create the combined catalog index with the CREATE | NDEX statement as follows:

CREATE | NDEX auction_titlex ON AUCTION(title)
| NDEXTYPE | S CTXSYS. CTXCAT
PARAMETERS ('index set auction_iset")

® See Also
Oracle Text Reference to learn more about creating a CTXCAT index with CREATEI NDEX

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 11 of 14



ORACLE

Chapter 4
Creating a CTXRULE Index

4.7 Creating a CTXRULE Index

To build a document classification application, use the CTXRULE index on a table or queries. The
stream of incoming documents is classified by content, and the queries define your categories.
You can use the MATCHES operator to classify single documents.

To create a CTXRULE index and a simple document classification application:

1.

Create a table of queries.

Create a nyquer i es table to hold the category name and query text, and then populate the
table with the classifications and the queries that define each classification.

CREATE TABLE nyqueries (
queryid NUMBER PRI MARY KEY,
cat egory VARCHAR2(30),
query VARCHAR2(2000)

);

For example, consider a classification for the US Politics, Music, and Soccer subjects:

I NSERT | NTO nyqueries VALUES(1, 'US Politics', 'denocrat or republican');
I NSERT | NTO nyqueries VALUES(2, 'Music', 'ABOQUT(nusic)');
I NSERT | NTO nyqueries VALUES(3, 'Soccer', 'ABOUT(soccer)');

@ Tip

You can also generate a table of rules (or queries) with the CTX_CLS. TRAI N
procedure, which takes as input a document training set.

Create the CTXRULE index.

Use the CREATE | NDEX statement to create the CTXRULE index and specify lexer, storage,
section group, and wordlist parameters if needed.

CREATE | NDEX myrul ei ndex ON nyqueri es(query)
I NDEXTYPE 1S CTXRULE PARAMETERS
(" l'exer |exer_pref
storage storage_pref
section group section_pref
wordlist wordlist_pref');

Classify a document.
Use the MATCHES operator to classify a document.
Assume that incoming documents are stored in the table news:

CREATE TABLE news (
newsi d NUVBER,
aut hor VARCHAR2(30),
sour ce VARCHAR2( 30),
article CLOB);

If you want, create a "before insert" trigger with MATCHES to route each document to a
news_rout e table based on its classification:

BEG N
- find matching queries
FOR c1 IN (select category

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 14



ORACLE Chapter 4
Creating a JSON Search Index

from nyqueries
where MATCHES(query, :new. article)>0)
LOoP
I NSERT | NTO news_rout e( newsi d, category)
VALUES (:new. newsid, cl.category);
END LOOP;
END;

@ See Also

» Classifying Documents in Oracle Text for more information on document
classification and the CTXRULE index

e Oracle Text Reference for more information on CTX_CLS. TRAI N

4.8 Creating a JSON Search Index

Oracle Text supports a simpler alternative syntax for creating a search index on JavaScript
Object Notation (JSON). The JSON search index is created on the table column name.

When creating a JSON search index, you can specify path subsetting to identify the JISON
fields to include or exclude from indexing. The excluded fields are not indexed, and the JSON
search index is not used for those fields when querying.

Related Topics
e Oracle Al Database JSON Developer’s Guide

*  QOracle Text Reference

4.9 Creating an Oracle Text Search Index

You can create a CONTEXT index using a simplified SEARCH | NDEX syntax.

The Oracle Text SEARCH | NDEX is a new index type which supports CONTEXT index functionality
but also supports sharded databases and system managed partitioning for index storage.

@ See Also
Oracle Text Reference for more information about CREATE SEARCH | NDEX

4.10 Creating a Hybrid Vector Index

You can create a hybrid vector index using the CREATE HYBRI D VECTOR | NDEX syntax.

A hybrid vector index inherits all the information retrieval capabilities of Oracle Text search
indexes and leverages the semantic search capabilities of Oracle Al Vector Search vector
indexes. These indexes allow you to index and query documents using a combination of full-
text search and semantic vector search.

Related Topics

*  QOracle Text Reference

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 13 of 14



ORACLE Chapter 4
Creating a Hybrid Vector Index

e Oracle Al Database Al Vector Search User's Guide

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 14



Maintaining Oracle Text Indexes

Learn how to manage indexing errors or failures, re-create or rebuild indexes, drop custom
index preferences, manage synchronization and optimization tasks, and automate index
maintenance operations.

*  Viewing Index Errors

e Dropping an Index

e Resuming Failed Index

* Re-creating an Index

e Rebuilding an Index

e Dropping a Preference
 Managing DML Operations for a CONTEXT Index

» Using Automatic Maintenance for an Index

5.1 Viewing Index Errors

Sometimes an indexing operation might fail or it might not complete successfully. When the
system encounters an error during row indexing, it logs the error in an Oracle Text view.

You can view errors on your indexes with CTX_USER | NDEX_ERRORS. View errors on all indexes
as CTXSYS with CTX_| NDEX_ERRORS.

For example, to view the most recent errors on your indexes, enter the following statement:

SELECT err_timestanp, err_text
FROM ct x_user _i ndex_errors
ORDER BY err_timestanp DESC

To clear the view of errors, enter:

DELETE FROM ct x_user _i ndex_errors;

This view is cleared automatically when you create a new index.

@ See Also

Oracle Text Reference to learn more about index error views

5.2 Dropping an Index

You must drop an existing index before you can re-create it with the CREATE | NDEX statement.

Drop an index by using the DROP | NDEX statement in SQL.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 19



ORACLE’

Chapter 5
Resuming a Failed Index

If you try to create an index with an invalid PARAMETERS string, then you still need to drop it
before you can re-create it.

For example, to drop an index called newsi ndex, enter the following SQL statement:

DROP | NDEX newsi ndex;

If Oracle Text cannot determine the state of the index (for example, because of an indexing
malfunction), you cannot drop the index. Instead use:

DROP | NDEX newsi ndex FORCE;

@ See Also

Oracle Text Reference to learn more about the DROP | NDEX statement

5.3 Resuming a Failed Index

You can sometimes resume a failed index by using the ALTER | NDEX statement. You typically
resume a failed index after you have investigated and corrected the index failure. You cannot
resume all index failures.

Index optimization commits at regular intervals. Therefore, if an optimization operation fails,
then all optimization work up to the commit point was already saved.

@ See Also

Oracle Text Reference to learn more about the ALTER | NDEX statement syntax

The following statement resumes the indexing operation on newsi ndex with 10 megabytes of
memory:

ALTER | NDEX newsi ndex REBUN LD PARAMETERS('resume nenory 10M);

5.4 Re-creating an Index

This section describes the procedures for re-creating an index. During the re-creation process,
you can query the index normally.

e Re-creating a Global Index

» Re-creating a Local Partitioned Index

5.4.1 Re-creating a Global Index

Oracle Text provides RECREATE_| NDEX_ONLI NE to re-create a CONTEXT index with new
preferences, while preserving inserts, updates, and deletes on the base table. You can use
RECREATE_| NDEX_ONLI NE in a single-step procedure to re-create a CONTEXT index online for
global indexes. Because the new index is created alongside the existing index, this operation
requires storage that is roughly equal to the size of the existing index. Also, because the
RECREATE_| NDEX_ONLI NE operation is performed online, you can perform inserts, updates, and

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 19



ORACLE

Chapter 5
Re-creating an Index

deletes on the base table during the operation. All insert, update, and delete operations that
occur during the re-creation process are logged into an online pending queue.

e After the re-creation operation is complete, new information may not be immediately
reflected. As with creating an index online, you should synchronize the index after the re-
creation operation is complete to bring it fully up-to-date.

e Synchronizations issued against the index during the re-creation operation are processed
against the existing data. Synchronizations are blocked when queries return errors.

e Optimize commands issued against the index during the re-creation operation return
immediately without error and without processing.

e During RECREATE | NDEX_ONLI NE, you can query the index normally most of the time.
Queries return results based on the existing index and policy until after the final swap.
Also, if you issue insert, update, and delete operations and synchronize them, then you will
be able to see the new rows when you query the existing index.

@ Note
Transactional queries are not supported with RECREATE | NDEX_ONLI NE.

Re-creating a Global Index with Time Limit for Synch

You can control index re-creation to set a time limit for SYNC_| NDEX during honbusiness hours
and incrementally re-create the index. Use the CREATE_SHADOW | NDEX procedure with
POPULATE_PENDI NG and maxtime.

Re-creating a Global Index with Scheduled Swap

With CTX_DDL. EXCHANGE_SHADOW | NDEX, you can perform index re-creation during nonbusiness
hours when query failures and DML blocking can be tolerated.

® See Also
*  Oracle Text Reference to learn more about the RECREATE | NDEX_ONLI NE procedure
e Oracle Text Reference for information and examples for CREATE_SHADOW | NDEX

* Oracle Text Reference for information and examples for
CTX_DDL. EXCHANGE_SHADOW | NDEX

5.4.2 Re-creating a Local Partitioned Index

If the index is locally partitioned, you cannot re-create the index in one step. You must first
create a shadow policy, and then run the RECREATE_| NDEX_ONLI NE procedure for every
partition. You can specify SWAP or NOSWAP, which indicates whether re-creating the index for the
partition swaps the index partition data and index partition metadata.

You can also use this procedure to update the metadata (for example, the storage preference)
of each partition when you specify NOPOPULATE in the parameter string. This keyword is useful
for incremental building of a shadow index through time-limited synchronization. If you specify
NOPOPULATE, then NOSWAP is silently enforced.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 19



ORACLE

Chapter 5
Rebuilding an Index

*  When all partitions use NOSWAP, the storage requirement is approximately equal to the size
of the existing index. During re-creation of the index partition, because no swapping is
performed, queries on the partition are processed normally. Queries spanning multiple
partitions return consistent results across partitions until the swapping stage is reached.

*  When the partitions are rebuilt with SWAP, the storage requirement for the operation is
equal to the size of the existing index partition. Because index partition data and metadata
are swapped after re-creation, queries spanning multiple partitions do not return consistent
results from partition to partition, but they will always be correct with respect to each index
partition.

* If you specify SWAP, then insert, update, and delete operations and synchronization on the
partition are blocked during the swap process.

Re-creating a Local Index with All-at-Once Swap

You can re-create a local partitioned index online to create or change preferences. The
swapping of the index and partition metadata occurs at the end of the process. Queries
spanning multiple partitions return consistent results across partitions when the re-creation is in
process, except at the end when EXCHANGE_SHADOW | NDEX is running.

Scheduling Local Index Re-creation with All-at-Once Swap

With RECREATE_| NDEX_ONLI NE of the CTX. DDL package, you can incrementally re-create a local
partitioned index, where partitions are all swapped at the end.

Re-creating a Local Index with Per-Partition Swap

Instead of swapping all partitions at once, you can re-create the index online with new
preferences, and each partition is swapped as it is completed. Queries across all partitions
may return inconsistent results during this process. This procedure uses CREATE_SHADOW | NDEX
with RECREATE_| NDEX_ONLI NE.

® See Also
Oracle Text Reference for complete information about RECREATE | NDEX_ONLI NE

5.5 Rebuilding an Index

You can rebuild a valid index by using ALTER | NDEX. Rebuilding an index does not allow most
index settings to be changed. You might rebuild an index when you want to index with a new
preference. Generally, there is no advantage in rebuilding an index over dropping it and re-
creating it with the CREATE | NDEX statement.

@ See Also

"Re-creating an Index" for information about changing index settings

The following statement rebuilds the index and replaces the lexer preference with ny_| exer:

ALTER | NDEX newsi ndex REBUI LD PARAMETERS('repl ace |exer my_lexer');

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 19



ORACLE’

Chapter 5
Dropping a Preference

5.6 Dropping a Preference

You might drop a custom index preference when you no longer need it for indexing.
You drop index preferences with the CTX_DDL. DROP_PREFERENCE procedure.

Dropping a preference does not affect the index that is created from the preference.

@ See Also

Oracle Text Reference to learn more about the syntax for the
CTX_DDL. DROP_PREFERENCE procedure

The following code drops the ny_| exer preference:

begin
ctx_ddl . drop_preference(' ny_lexer');
end;

5.7 Managing DML Operations for a CONTEXT Index

DML operations refer to when documents are inserted, updated, or deleted from the base
table.

This section describes how you can view, synchronize, and optimize the Oracle Text CONTEXT
index for DML operations. This section contains the following topics:

*  Viewing Pending DML Operations

e Synchronizing the Index

e Optimizing the Index

5.7.1 Viewing Pending DML Operations

When you insert, update, or delete documents in the base table, their ROWIDs are held in a
DML queue until you synchronize the index.

You can view the DML queue by querying index tables, as follows:

* When the index is created using the default f ast _dml option and when the COVPATI BLE
database parameter is set to a value lower than 20. 0, the CTXSYS. DRSPENDI NG table keeps
track of pending DMLs. You can query pending insert and update operations with the
CTX_PENDI NG and CTX_USER_PENDI NG views.

* When the index is created using the default f ast _dml option and when the COVPATI BLE
database parameter is set to 20. 0 or higher, the DR$I NDEX_NAME$C table stores information
on ROWIDs that are waiting for synchronization into the index.

The indexes that are set to MAI NTENANCE AUTO (automatic maintenance) or SYNC EVERY are
automatically synchronized, however you can periodically examine the pending DML tables to
determine whether a synchronization call is failing. For example, if your query results appear
incorrect or outdated, then you can check if the documents have been synchronized and
accordingly run a manual SYNC_| NDEX call if required.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 19



ORACLE

Chapter 5
Managing DML Operations for a CONTEXT Index

For example, to view pending DML operations on your indexes, enter the following command:

SELECT COUNT(*) FROM myschena. dr $nyi ndex$c;

The output appears as follows:

To retrieve ROWIDs of all unsynchronized changes from the $C table, enter the following
command:

SELECT dm _rid FROM nyschena. dr $nyi ndex$c;

The output appears as follows:

AAAVPIAAVAAAAKGAAD

You can run CTX_DDL. SYNC_| NDEX to synchronize your index, and then check if the $C table has
been cleared:

EXEC CTX_DDL. SYNC | NDEX("' myschema. nyi ndex" ) ;

SELECT COUNT(*) FROM nyschena. dr $nyi ndex$c;

5.7.2 Synchronizing the Index

When you synchronize the index, you process all pending updates and inserts to the base
table. You can do this in PL/SQL with the CTX_DDL. SYNC_| NDEX procedure. You can also control
the duration and locking behavior for index synchronization with the CTX_DDL. SYNC_| NDEX
procedure.

Synchronizing the Index with SYNC_INDEX

The following example synchronizes the index with 2 megabytes of memory:
begin

ctx_ddl . sync_i ndex(' nyi ndex', '2M);

end;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 19



ORACLE

Chapter 5
Managing DML Operations for a CONTEXT Index

Maxtime Parameter for SYNC_INDEX

The SYNC_| NDEX procedure includes a naxt i me parameter that, like OPTI M ZE_| NDEX, indicates
a suggested time limit in minutes for the operation. The SYNC | NDEX procedure processes as
many documents in the queue as possible within the given time limit.

NULL naxti me is equivalent to CTX _DDL. MAXTI ME_UNLI M TED.

The time limit is approximate. The actual time may be less than, or greater than, what you
specify.

The ALTER | NDEX... sync command has no changes because it is deprecated.

The maxt i me parameter is ignored when SYNC_| NDEX is invoked without an index name.

The maxt i ne parameter cannot be communicated for automatic synchronizations (for
example, sync on commit or sync every).

Locking Parameter for SYNC_INDEX

The locking parameter of SYNC | NDEX enables you to configure how the synchronization works
when another synchronization is already running on the index.

The locking parameter is ignored when SYNC | NDEX is invoked without an index name.

The locking parameter cannot be communicated for automatic synchronizations (that is,
sync on comit or sync every).

When the locking mode is LOCK_ WAI T, the mode waits forever and ignores the maxtime
setting if it cannot get a lock.

The options are as follows:

Option Description

CTX_DDL. LOCK_VAI'T If another SYNC_| NDEX is running, wait until the

running synchronization is complete, and then begin
the new synchronization.

CTX_DDL. LOCK_NOWAI T If another SYNC_|I NDEX is running, immediately return

without error.

CTX_DDL. LOCK_NOMI T_ERROR If another SYNC_| NDEX is running, immediately

generate an error (DRG-51313: timeout while waiting
for inserts, updates, or deletes or optimize lock).

@ Note

Starting with Oracle Database 12c Release 2 (12.2.0.1), you automatically merge rows
from STACGE_| TAB back to the $I table by using SYNC | NDEX. This merging of rows
happens when the number of rows in STAGE | TAB ($G exceeds the

STAGE | TAB_MAX_ROWS parameter (10K by default). Therefore, you do not have to run
merge optimization explicitly or schedule an auto optimize job.

® See Also
Oracle Text Reference to learn more about the CTX_DDL. SYNC_| NDEX statement syntax

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 19



ORACLE Chapter 5
Managing DML Operations for a CONTEXT Index

5.7.3 Optimizing the Index

The CONTEXT index is an inverted index where each word contains the list of documents that
contain that word. For example, after a single initial indexing operation, the word DOG might
have the following entry:

DOG DOC1 DOC3 DOCS

Frequent index synchronization ultimately causes fragmentation of your CONTEXT index. Index
fragmentation can adversely affect query response time. Therefore, to reduce fragmentation
and index size and to ensure optimal query performance, allow time to optimize your CONTEXT
index.

To schedule an auto optimize job, you must explicitly set STAGE | TAB_MAX_ROW6 to 0 to disable
the automatic merging that now happens with SYNC_| NDEX.

To optimize an index, Oracle recommends that you use CTX_DDL. OPTI M ZE_| NDEX. To
understand index optimization, you must understand the structure of the index and what
happens when it is synchronized. This section contains the following topics:

¢ Index Fragmentation

Document Invalidation and Garbage Collection

¢ Single Token Optimization

* Viewing Index Fragmentation and Garbage Data

@ See Also

Oracle Text Reference for the CTX_DDL. OPTI M ZE_| NDEX statement syntax and
examples

5.7.3.1 Index Fragmentation

When you add new documents to the base table, the index is synchronized by adding new
rows. For example, if you add the DOC 7 document with the word dog and synchronize the
index, you now have:

DOG DOC1 DOC3 DOCS
DOG DOC7

Subsequent inserts, updates, or deletes also create new rows, as follows:

DOG DOC1 DOC3 DOCS
DOG DOCY
DOG DOC9
DOG DOCL1

Index fragmentation occurs when you add new documents and synchronize the index. In
particular, background inserts, updates, or deletes, which synchronize the index frequently,
generally produce more fragmentation than batch mode synchronization.

When you perform batch processing less frequently, you reduce fragmentation because you
produce longer document lists with a reduced number of rows in the index.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 19



ORACLE’

Chapter 5
Using Automatic Maintenance for an Index

You can reduce index fragmentation by optimizing the index in either FULL or FAST mode with
CTX_DDL. OPTI M ZE_| NDEX.

5.7.3.2 Document Invalidation and Garbage Collection

When you remove documents from the base table, Oracle Text marks the document as
removed but does not immediately alter the index.

Because the old information takes up space and can cause extra overhead at query time, you
must remove the old information from the index by optimizing it in FULL mode. This process is
called garbage collection. Optimizing in FULL mode for garbage collection is necessary when
you perform frequent updates or deletes to the base table.

5.7.3.3 Single Token Optimization

In addition to optimizing the entire index, you can optimize single tokens. You can use token
mode to optimize index tokens that are frequently searched, without spending time on
optimizing tokens that are rarely referenced.

For example, you can specify that only the token DOG be optimized in the index, if you know
that this token is updated and queried frequently.

An optimized token can improve query response time for the token.

To optimize an index in token mode, use CTX_DDL. OPTI M ZE_| NDEX.

5.7.3.4 Viewing Index Fragmentation and Garbage Data

With the CTX_REPORT. | NDEX_STATS procedure, you can create a statistical report on your index.
The report includes information on optimal row fragmentation, a list of most fragmented tokens,
and the amount of garbage data in your index. Although this report might take a long time to
run for large indexes, it can help you decide whether to optimize your index.

@ See Also

Oracle Text Reference to learn more about using the CTX_REPORT. | NDEX_STATS
procedure

5.8 Using Automatic Maintenance for an Index

Instead of manually managing synchronization tasks for your indexes, you can automate
CTX_DDL. SYNC_| NDEX operations using automatic maintenance.

e About Automatic Maintenance

 Requirements and Restrictions for Automatic Maintenance

 Asynchronous Maintenance Framework

Enabling and Disabling Automatic Maintenance

*  Switching between Automatic and Manual Maintenance

*  Monitoring Maintenance Events and Errors

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 19



ORACLE

Chapter 5
Using Automatic Maintenance for an Index

5.8.1 About Automatic Maintenance

Indexes with automatic maintenance are synchronized in the background without any user
intervention.

Overview

Index maintenance is the process of updating index data structures (in-memory and on-disk)
as a result of performing DML operations.

Automatic maintenance is the default method for synchronizing Oracle Text CONTEXT and
search indexes (Oracle Text, JSON, and XML search indexes) that are created in Oracle Al
Database 26ai and later releases.

Both the automatic maintenance and synchronization (SYNC) methods involve processing
pending updates, inserts, and deletes to the base table. However, the automatic maintenance
and SYNC specifications are orthogonal. Automatic maintenance uses an asynchronous
maintenance framework to perform SYNC operations in the background, and provides the
following capabilities:

e Eliminates time-based or manual SYNC operations:

In an automatic maintenance mode, IRnn background processes automatically perform
index maintenance operations in an optimal manner. This feature internally determines an
optimal synchronization interval (based on the DML arrival) and automatically schedules
background SYNC operations, as required. You cannot override the automatically
determined intervals.

For detailed information about this background mechanism process, see Asynchronous
Maintenance Framework.

* Reduces the frequency of background jobs:

Background processes maintain indexes rather than the database scheduler. The
background mechanism breaks each CTX_DDL. SYNC | NDEX operation into separate events
(sync stages) and launches each event only when needed.

* Provides the default maintenance configuration:

These indexes do not require you to configure a SYNC type or set any synchronization
interval. By default, indexes are configured with a combination of automatic maintenance
and SYNC ( MANUAL) . No other SYNC settings are compatible with these indexes.

Note that the SYNC ( MANUAL) behavior is different in this mode. Unlike the regular SYNC
( MANUAL) type (where you must manually synchronize an index), here
CTX_DDL. SYNC_| NDEX is automatically called in the background at optimal intervals.

Why and When to Use Automatic Maintenance?

Oracle recommends that you use automatic maintenance in cases where sync requirements
for indexes are not clear or you want to synchronize a large number of indexes in an optimal
manner.

In addition to reducing the administrative tasks of managing your indexes, the benefit of using
this framework is that it automatically determines when a background SYNC operation needs to
be performed, by tracking the DML queue. It also provides more control over the frequency of
different background jobs running at any given time, instead of creating independent jobs for
each index or index partition per pluggable database (PDB). As a result, automatic
maintenance helps in reducing the workload on database resources, eliminates scheduling
conflicts, and enhances query performance.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 19



ORACLE

Chapter 5
Using Automatic Maintenance for an Index

With SYNC ( EVERY), which also enables automatic background synchronization, you must
manually specify sync interval using i nt erval - st ri ng. Although SYNC ( EVERY) allows you to
explicitly control the synchronization interval, automatic maintenance provides an efficient
usage of database resources especially when supporting multiple PDBs. In addition, SYNC

( EVERY) may result in excessive launching of background sync jobs, based on the user's
estimate of how frequently new index data may arrive.

What is Manual Maintenance?

Manual maintenance is a non-automatic maintenance mode that provides the pre-release 23ai
synchronization behavior.

In a manual maintenance mode, you can specify SYNC types, such as SYNC MANUAL, SYNC
EVERY interval -string, or SYNC ON COWM T. The MAI NTENANCE MANUAL index parameter sets
your indexes to manual maintenance.

After upgrading to a new release, existing indexes continue to use the previously specified
method of synchronization. For example, after upgrading to Oracle Al Database 26ai, existing
indexes are set to manual maintenance with the previously specified SYNC settings. If you did
not specify any SYNC setting before the upgrade, then the index uses the default SYNC type.
That is, SYNC MANUAL for Oracle Text CONTEXT indexes and SYNC ON COW T for JSON and XML
search indexes. If required, you can manually enable automatic maintenance for such indexes.

How to Configure the MAINTENANCE Parameter?

The MAI NTENANCE parameter controls the maintenance type (mode) for your index. You can set
the MAI NTENANCE parameter globally and not per partition. This means that the maintenance
type specified for an index applies to all index partitions.

The supported maintenance types are:
e MAI NTENANCE AUTO (default): Sets your indexes to automatic maintenance.

By default, you do not need to configure automatic maintenance while creating an index.
This example creates a JSON search index that has the default behavior (no PARAMETERS
clause):

CREATE SEARCH | NDEX po_search_idx ON j_purchaseorder (po_docunent)
FOR JSON;

This example creates a JSON search index by explicitly specifying MAI NTENANCE AUTO
using the PARAMETERS clause:

CREATE SEARCH | NDEX po_search_idx ON j_purchaseorder (po_docunent)
FOR JSON PARAMETERS (' MAI NTENANCE AUTO );

e MAI NTENANCE MANUAL: Sets your indexes to manual maintenance.
This example disables automatic maintenance on a new JSON search index by specifying
MAI NTENANCE MANUAL using the PARAMETERS clause:

CREATE SEARCH | NDEX po_search_idx ON j _purchaseorder (po_docunent)
FOR JSON PARAMETERS(' MAI NTENANCE MANUAL');

For detailed information about configuring these parameters, see Enabling and Disabling
Automatic Maintenance.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 11 of 19



ORACLE’

Chapter 5
Using Automatic Maintenance for an Index

You can switch between the automatic and manual maintenance modes using ALTER | NDEX.
This command alters only the synchronization options, and thus you do not need to rebuild the
index. When set to manual maintenance, if you do not explicitly specify any SYNC type, then the
index uses the default SYNC type.

5.8.2 Requirements and Restrictions for Automatic Maintenance

Review these requirements and restrictions (such as database compatibility, supported
parameter combinations, and supported indexes) when using the automatic maintenance
mode.

» Database compatibility for the asynchronous maintenance framework is Oracle Database
21.0.0.0 and later.

e The combination of automatic maintenance with the following parameters is not supported:
—  FAST_QUERY
—  ASYNCHRONOUS_UPDATE
—  TRANSACTI ONAL
— SYNC (ON COW T) and SYNC ( EVERY)

Running any of the preceding combinations results in an error, prompting you to use a
compatible mode for your index.

e Shadow indexes do not support automatic maintenance.

5.8.3 Asynchronous Maintenance Framework

In an automatic maintenance mode, IRnn background processes perform index maintenance
operations, which provides a better scalability of background jobs and enhances query
performance.

List of Maintenance Events

Each SYNC operation consists of separate events (stages) that can concurrently run in the
background.

Event Description
SYNC- Mappi ng Reads the $B catalog table to find the next DocID, and allocates DoclID to each
(Sync-M) ROWID. Next, it reads the contents of the $C commit journal, sorts it on ROWID, and
decides which DocIDs must be removed or added. Next, it performs deletes and
inserts on the $K mapping table. Then, it adds the removed DoclDs to the $N garbage
collection table. Finally, it deletes all the rows read from $C.
During a failure, these events are retried and also broadcasted to other Oracle Real
Application Clusters (Oracle RAC) nodes.
SYNC- Mappi ng Ti meout Specifies the Sync-M timeout events, generated on a commit. These are processed
(Sync-MT) only by timeout actions and not by interrupt actions.
During a timeout, the Sync-MT events are converted into the Sync-M events.
SYNC- Ranges Assigns DoclID ranges generated by Sync-M as READY for postings stage. It reads all
(Sync-R) available NEWranges to determine the minimum of the first DocID and the maximum

on the last DoclID. Next, it deletes all NEWranges and inserts a number of equally-
sized READY ranges. The size of the range is determined based on the average size of
each document for the index or index partition.

During a failure, these events are retried and also broadcasted to other RAC nodes.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 19



ORACLE Chapter 5
Using Automatic Maintenance for an Index
Event Description
SYNC- Schedul er Schedules Sync-P based on the number of READY ranges generated by Sync-R.
(Sync-S) Depending on the value, it schedules either a serial or concurrent Sync-P event.
SYNC- Post i ngs Generates postings lists that contain new index data. Sync-P starts by getting a READY
(Sync-P) range. During scheduling, it decides the number of workers for running the event.

On Oracle RAC systems, concurrent events are also broadcasted to other nodes for
running as the SYNC- Post i ngs Concur rent (Sync-PC) events.

During a failure, the Sync-S events are scheduled with increased iteration. On Oracle
RAC systems, the failed Sync-PC and SYNC- Post i ngs Serial (Sync-PS) events
are broadcasted as Sync-PS events.

SYNC- Postings Seri al
(Sync-PS)

Runs Sync-P serially. The postings are generated in SGA batches.

SYNC- Post i ngs Concurrent
(Sync-PC)

Runs Sync-P concurrently. Can schedule multiple ranges to run concurrently and
independently without contention.

SYNC-Witer
(Sync-W)

Writes SGA batches of postings lists to disk. Sync-W events can run concurrently with
itself. However, these events cannot run with SYNC- Cl eanup bat ches (Sync-C).

Sync-W events are never broadcasted to other RAC nodes because they process
SGA batches, which are local to the node that generated them.

SYNC- O eanup bat ches
(Sync-C)

Cleans up WRI TE ranges in $B that do not have any SGA batches associated with
them due to a failure. These events are retried in the subsequent run of Sync-P.

SYNC- | nspect Inspects index and index partitions (checks the $C and $B tables) to find if any events

(Sync-1) are missing.

During a failure, the Sync-I events are not retried and are also not broadcasted to
other RAC nodes.

MONI TOR Schedules the Sync-I events for each index or index partition and the EClean events
for each pluggable database (PDB). The Scheduler schedules the actual Monitor
event, which is further processed by the Monitor worker.

EVENT Stats Terminal event that is processed by Writer workers (Sync-W events). It writes event

(EStat) stats for all completed events in a PDB.

EVENT Stats Cl ean up
(EClean)

Cleans up persisted event stats (older than the PDB-specific threshold) from the
dictionary.

OPTI M ZE- Schedul er Ti meout

Prevents dealing with large postings lists gaps that are crated after the order
completion of the Sync-W events.

(Opti-ST)
OPTI M ZE- Schedul er Determines the maximum DoclID for which there are no gaps in postings lists due to
(Opti-S) the out-of-order processing of the WRI TE ranges by the Sync-W events.

The Opti-S event aggregates $G token counts that are stored in $B by the Sync-W
events, and it schedules the Opti-M event when the aggregate count reaches a user-
specified threshold.

OPTI M ZE- Mer ge
(Opti-M)

Terminal event that does not perform the actual MERCGE operation. Instead, it schedules
the DBMS_SCHEDULER Optimize Merge operation.

Background Mechanism Process

The main Scheduler background process checks for the workload from all indexes at
predefined intervals (that is, every 3 seconds by default). It then assigns the workload to a
Worker background process, which reads events one at a time and processes them based on
the event type. The index is synchronized immediately after the Worker process runs

CTX _DDL. SYNC_| NDEX. Apart from the Scheduler and Worker processes, the Monitor
background process helps in recovering lost events.

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 19



ORACLE Chapter 5
Using Automatic Maintenance for an Index

A CTX_DDL. SYNC_I NDEX call performs the following steps in an order:
1. Resets all waiting events for an index or index partition:

When an event fails, it adds the event to the Waiting Queue with progressively increasing
delay. Even after the issue is corrected, the event continues to wait for the current delay to
elapse. To track such delays, it schedules retry events at an incremented level. This means
that the Scheduler process first moves a retry event into an Event Queue. From the Event
Queue, the Scheduler moves it into the Waiting Queue, then to the Ready Queue, and
finally allocates the event to the Worker process.

In addition to incremental levels, each event has a retry iteration. On long retries (that is,
when a retry event is not the same as the original event), it increments the iteration instead
of the level and initializes the level to the iteration.

CTX_DDL. SYNC_| NDEX can force immediate re-execution of the event, which moves all
relevant Waiting Queue events to the Event Queue and also resets the level and iteration.
If the event fails again, then it restarts from the starting incremental level or iteration.

2. Performs Sync-M in the foreground:

CTX_DDL. SYNC_| NDEX waits for the background maintenance to finish. However, instead of
waiting for all events to finish, it calls Sync-M in the foreground and gets the maximum
DoclID that is allocated. It uses this DoclD to ignore all future events.

3. Schedules other stages of SYNC in the background:

CTX _DDL. SYNC_| NDEX posts the Scheduler process so that it can immediately start
processing pending events.

4. Waits for the completion of background processing:

The waiting is controlled by the | ocki ng parameter when it is set to CTX_DDL. LOCK_WAI T.
For all other values, CTX_DDL. SYNC | NDEX returns after completing Sync-M.

The values of the menory, paral | el _degree, maxti me, and di rect _pat h parameters are
ignored.

If some background events are delayed or cannot complete, then CTX_DDL. SYNC_| NDEX
returns ORA-30608 and logs an error message in the catalog views.

Differences in SYNC Behavior Between Automatic Maintenance and Manual
Maintenance

Compare the differences in the synchronization behavior between automatic maintenance and
manual maintenance, and how different events are processed during a CTX_DDL. SYNC | NDEX

operation:
Behavior Automatic Maintenance Manual Maintenance
Background In an automatic maintenance mode, background In a manual maintenance mode, the
mechanism processes maintain indexes. The background DBMS_SCHEDULER background jobs maintain
mechanism breaks each SYNC operation into indexes. The background mechanism
separate events that are run concurrently with implements all sync events (Sync-M, Sync-R,
each other, as needed. and Sync-P) together as a single SYNC

For example, Sync-S launches Sync-P to pick up OpPeration.
new index data only when Sync-R generates
READY ranges.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 19



ORACLE’

Chapter 5

Using Automatic Maintenance for an Index

Behavior

Automatic Maintenance Manual Maintenance

SYNC types

These indexes are preconfigured with a
combination of automatic maintenance and
SYNC ( MANUAL) .

Unlike the regular SYNC ( MANUAL) type (where
you must manually call CTX_DDL. SYNC_| NDEX),
here CTX_DDL. SYNC_| NDEX is automatically
called in the background at optimal intervals.

The other SYNC types, such as SYNC ON

COW T and SYNC EVERY are not supported
with automatic maintenance.

Running SYNC ( MANUAL), SYNC (ON COWM T),
or SYNC ( EVERY) launches a SYNC operation in
the foreground for each index or index partition.

Catalog views

CTX_BACKGROUND_EVENTS . CTX_AUTOSYNC JOBS
CTX_USER_BACKGROUND EVENTS CTX_AUTOSYNC_STATUS

VSTEXT_WAI TI NG_EVENTS . CTX_USER AUTOSYNC JOBS

. CTX_USER AUTCSYNC STATUS

Related Topics

*  Monitoring Maintenance Events and Errors

The SYS and CTXSYS users can query catalog views to monitor the status of all background
maintenance events for indexes with automatic maintenance.

5.8.4 Enabling and Disabling Automatic Maintenance

Automatic maintenance is enabled by default for new Oracle Text CONTEXT and search indexes.
Learn how to explicitly specify automatic maintenance while creating an index, or disable it to
override the default behavior and enable SYNC instead.

1. To explicitly specify automatic maintenance for a new index, use the MAI NTENANCE AUTO
keyword in the PARAMETERS clause of the CREATE | NDEX or CREATE SEARCH | NDEX
statement.

For an Oracle Text index:

CREATE | NDEX CTX_| DX ON CTX_TAB( DOC)
| NDEXTYPE | 'S CTXSYS. CONTEXT
PARANMETERS(' MAI NTENANCE AUTO ) ;

For an Oracle Text search index:

CREATE SEARCH I NDEX CTX_I DX ON CTX_TAB( DOC)
PARAVETERS(" MAI NTENANCE AUTO );

For a JSON search index:

CREATE SEARCH | NDEX JSON | DX ON CTX_TAB(JSON DOC) FOR JSON
PARAVETERS(' MAI NTENANCE AUTO ) ;

For an XML search index:

CREATE SEARCH | NDEX XM._| DX ON CTX_TAB(XM._DOC) FOR XM
PARANMETERS(' MAI NTENANCE AUTO ) ;

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 19



ORACLE

Chapter 5
Using Automatic Maintenance for an Index

To disable automatic maintenance for a new index, use the MAI NTENANCE MANUAL keyword
in the CREATE | NDEX or CREATE SEARCH | NDEX clause.

This will set your index to manual maintenance. If you do not specify any SYNC type, then
the index will use the default SYNC settings. For example, SYNC MANUAL for Oracle Text
CONTEXT indexes and SYNC ON COW T for JSON and XML search indexes.

For an Oracle Text index:

CREATE | NDEX CTX_I ND ON CTX_TAB( DOC)
| NDEXTYPE | 'S CTXSYS. CONTEXT
PARAVETERS(' MAI NTENANCE MANUAL' ) ;

For an Oracle Text search index:

CREATE SEARCH | NDEX CTX_I DX ON CTX_TAB( DOC)
PARAVETERS(" MAI NTENANCE MANUAL' ) ;

For a JSON search index:

CREATE SEARCH | NDEX JSON_| DX ON CTX_TAB(JSON DOC) FOR JSON
PARAMETERS(' MAI NTENANCE MANUAL');

For an XML search index:

CREATE SEARCH | NDEX XM._| DX ON CTX_TAB(XM._DOC) FOR XM
PARANMETERS( ' MAI NTENANCE MANUAL' ) ;

To override the default SYNC settings for the index set to manual maintenance, specify the
required SYNC type:

MANUAL : To manually synchronize the index on demand.
For example:
ALTER | NDEX CTX_|I DX REBUI LD
PARAMETERS(* REPLACE METADATA MAI NTENANCE MANUAL) ;
ON COW T: To synchronize the index immediately after a commit.
For example:
ALTER | NDEX CTX_|I DX REBUI LD
PARAMETERS(' REPLACE METADATA SYNC(ON COMM T) MAI NTENANCE MANUAL');
EVERY "interval -string": To synchronize the index at a regular interval.
For example, starting every 20 minutes:
ALTER I NDEX CTX_I DX REBU LD

PARAMETERS(' REPLACE METADATA SYNC( EVERY
“freq=m nutely;interval =20") MAI NTENANCE MANUAL');

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 16 of 19



ORACLE’

Chapter 5
Using Automatic Maintenance for an Index

Related Topics

Switching between Automatic and Manual Maintenance

You can use ALTER | NDEX to switch between MAI NTENANCE AUTO and MAI NTENANCE MANUAL,
without rebuilding the index. While changing modes, you must specify compatible
Maintenance type and SYNC type combinations.

Oracle Text Reference

5.8.5 Switching between Automatic and Manual Maintenance

You can use ALTER | NDEX to switch between MAI NTENANCE AUTO and MAI NTENANCE MANUAL,
without rebuilding the index. While changing modes, you must specify compatible Maintenance
type and SYNC type combinations.

Guidelines for Switching between Modes

MAI NTENANCE AUTOis supported with SYNC ( MANUAL) . By default, all indexes with automatic
maintenance are specified with this combination.

A combination of MAI NTENANCE AUTOand SYNC ON COW T or SYNC ( EVERY) is not
supported. If you want to specify MAI NTENANCE AUTOfor indexes that also use SYNC (ON
COMM T) or SYNC ( EVERY), then you must first set such indexes to SYNC ( MANUAL) .

Static dictionary view CTX_USER | NDEXES contains information about existing Oracle Text
CONTEXT and search indexes for the current user. For example, this query lists the SYNC and
Maintenance types for an Oracle Text index set to MAI NTENANCE AUTC:

SQL> SELECT | DX_NAME, | DX_SYNC TYPE, |DX_MAI NTENANCE TYPE FROM
CTX_USER | NDEXES;

| DX_NAME | DX_SYNC_TYPE | DX_MAI NTENANCE_TYPE

Switching Indexes to Automatic Maintenance

This table provides ALTER | NDEX examples with various SYNC types, while altering your index
from MAI NTENANCE MANUAL to MAI NTENANCE AUTC:

Setting

Maintenance and SYNC Type Example

SYNC ( MANUAL)
to
MAI NTENANCE AUTO

| DX_SYNC_TYPE: MANUAL

| DX MAI NTENANCE TYPE: AUTO ALTER INDEX CTX_I DX REBU LD
- - PARAVETERS( ‘ REPLACE METADATA MAI NTENANCE

AUTO );

SYNC ON COM T
to
MAI NTENANCE AUTO

| DX_SYNC_TYPE: ON COWM T

| DX MAI NTENANCE TYPE: AUTO ALTER INDEX CTX_I DX REBU LD
- - PARAVETERS(* REPLACE METADATA SYNC

(MANUAL) MAI NTENANCE AUTO ) ;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 17 of 19



ORACLE’

Chapter 5
Using Automatic Maintenance for an Index

Setting Maintenance and SYNC Type Example
SYNC ( EVERY) | DX_SYNC TYPE: EVERY
to | DX_MAI NTENANCE_TYPE: AUTO ALTER I NDEX CTX_I DX REBUI LD
MAI NTENANCE AUTO PARAVETERS(* REPLACE METADATA SYNC
( MANUAL) MAI NTENANCE AUTO ) ;
Switching Indexes to Manual Maintenance
This table provides ALTER | NDEX examples with various SYNC types, while altering your index
from MAI NTENANCE AUTOto MAI NTENANCE MANUAL:
Setting Maintenance and SYNC Type Example

MAI NTENANCE AUTO | DX_SYNC_TYPE: MANUAL

to

SYNC ( MANUAL)

| DX_MAI NTENANCE_TYPE: MANUAL ALTER I NDEX CTX_I DX REBUI LD
PARAVETERS(‘ REPLACE METADATA MAI NTENANCE

MANUAL) ;

The default SYNC type for a CONTEXT index is MANUAL.

MAI NTENANCE AUTO | DX_SYNC_TYPE: ON COWM T

to

SYNC ON COWM T

| DX_MAI NTENANCE_TYPE: MANUAL ALTER I NDEX CTX_| DX REBUI LD
PARAMETERS(' REPLACE METADATA SYNC(ON

COVM T) MAI NTENANCE MANUAL' ) ;

MAI NTENANCE AUTO | DX_SYNC_TYPE: EVERY

to
SYNC ( EVERY)

| DX_MAI NTENANCE_TYPE: MANUAL ALTER I NDEX CTX_I DX REBUI LD
- - PARANETERS( ‘' REPLACE METADATA MAI NTENANCE

MANUAL) ;
ALTER | NDEX CTX_| DX REBUI LD

PARAVETERS(‘ REPLACE METADATA SYNC( EVERY
"freq=mnutely;interval =20")");

Related Topics

*  QOracle Text Reference

5.8.6 Monitoring Maintenance Events and Errors

The SYS and CTXSYS users can query catalog views to monitor the status of all background
maintenance events for indexes with automatic maintenance.

In an automatic maintenance mode, indexes are asynchronously maintained without any user
intervention. Oracle recommends that you periodically examine the CTX and dynamic
performance views to know the status of all background maintenance events that are complete
or delayed.

Querying Data and Status about Maintenance Events
Use the following views to monitor events at an index or index partition level:

e CTX_BACKGROUND_EVENTS:

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 18 of 19



ORACLE

Chapter 5
Using Automatic Maintenance for an Index

This Oracle Text view displays historical information about the execution of events for the
SYS or CTXSYS user.

CTX_USER_BACKGROUND_EVENTS:

This Oracle Text view displays historical information about the execution of events for the
current user, based on the index owner.

VSTEXT WAl TI NG_EVENTS:

This dynamic performance view displays historical information about events that are
delayed or cannot complete due to errors or contentions.

For example, you can query the index object number and hame, index owner number and
name, base table (or table partition) object number and name, type of event (such as SYNC-
Post i ngs, SYNC- Mappi ng, SYNC- Ranges, and so on), status of the event (such as successful,
running, failed, and so on), status of the retry iterations (such as retry delays, waiting time, and
so on), elapsed time since the event started waiting, logged error messages, and so on.

Handling Errors

When the system encounters an indexing error (such as an index failure, event delay, or event
retry), it logs the error in a catalog view. The error is not directly reported to the user. You must
periodically query views to examine such errors and take corrective actions, as follows:

Some errors are transient and do not reproduce on a retry. Such error types do not require
user intervention.

Some failed events may automatically succeed after a retry. If a retry event does not
succeed, then try restarting the event from another event.

For example, when SYNC- Post i ngs (Sync-P) fails after a retry, you can restart SYNC-
Schedul er (Sync-S) so that the system can schedule a serial or concurrent operation. A
successful completion of Sync-S clears the queue for Sync-P, and Sync-P immediately
runs at a starting level without overloading the system.

If an event does not succeed even after periodic retries, then contact your database
administrator.

To limit the load on the system due to periodic retries, the delays between successive
retries may progressively increase.

To track such delays, all retry events are scheduled at an incremented level. This means
that the Scheduler process first moves a retry event into an Event Queue. From the Event
Queue, the Scheduler process moves it into the Waiting Queue, then to the Ready Queue,
and finally allocates the event to the Worker process.

In addition to incremental levels, each event has a retry iteration. On long retries (that is,
when a retry event is not the same as the original event), the iteration is incremented
instead of the level and the level is initialized to the iteration.

On Oracle Real Application Clusters (Oracle RAC) systems, there may be errors that occur
only on some nodes but not on others. In such cases, an event may successfully complete
only when the event is sent to the other nodes.

Related Topics

CTX_BACKGROUND_EVENTS
CTX_USER_BACKGROUND_EVENTS
V$TEXT_WAITING_EVENTS

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 19 of 19



Querying with Oracle Text

Become familiar with Oracle Text querying and associated features.
This chapter contains the following topics:

e Overview of Queries

¢ Oracle Text Query Features

6.1 Overview of Queries

The basic Oracle Text query takes a query expression, usually a word with or without
operators, as input. Oracle Text returns all documents (previously indexed) that satisfy the
expression along with a relevance score for each document. You can use the scores to order
the documents in the result set.

To enter an Oracle Text query, use the SQL SELECT statement. Depending on the type of index,
you use either the CONTAI NS or CATSEARCH operator in the WHERE clause. You can use these
operators programatically wherever you can use the SELECT statement, such as in PL/SQL
cursors.

Use the MATCHES operator to classify documents with a CTXRULE index.
*  Querying with CONTAINS

e Querying with CATSEARCH

*  Querying with MATCHES

Word and Phrase Queries

e Querying Stopwords
e ABOUT Queries and Themes

6.1.1 Querying with CONTAINS

When you create an index of type CONTEXT, you must use the CONTAI NS operator to enter your
query. This index is suitable for indexing collections of large coherent documents.

With the CONTAI NS operator, you can use a number of operators to define your search criteria.
These operators enable you to enter logical, proximity, fuzzy, stemming, thesaurus, and
wildcard searches. With a correctly configured index, you can also enter section searches on
documents that have internal structure such as HTML and XML.

With CONTAI NS, you can also use the ABOUT operator to search on document themes.
* CONTAINS SQL Example

e CONTAINS PL/SQL Example
e Structured Query with CONTAINS

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 19



ORACLE Chapter 6
Overview of Queries

6.1.1.1 CONTAINS SQL Example

In the SELECT statement, specify the query in the WHERE clause with the CONTAI NS operator. Also
specify the SCORE operator to return the score of each hit in the hitlist. The following example
shows how to enter a query:

SELECT SCORE(1), title fromnews WHERE CONTAINS(text, 'oracle', 1) > 0;

You can order the results from the highest scoring documents to the lowest scoring documents
by using the ORDER BY clause as follows:

SELECT SCORE(1), title from news
WHERE CONTAINS(text, 'oracle', 1) >0
ORDER BY SCORE(1) DESC;

The CONTAI NS operator must always be followed by the > 0 syntax, which specifies that the
score value returned by the CONTAI NS operator must be greater than zero for the row to be
returned.

When the SCORE operator is called in the SELECT statement, the CONTAI NS operator must
reference the score label value in the third parameter, as shown in the previous example.

6.1.1.2 CONTAINS PL/SQL Example

In a PL/SQL application, you can use a cursor to fetch the results of the query.

The following example enters a CONTAI NS query against the NEWS table to find all articles that
contain the word oracle. The titles and scores of the first ten hits are output.

decl are
rowno number := 0;
begin
for ¢l in (SELECT SCORE(1) score, title FROM news
WHERE CONTAINS(text, 'oracle', 1) >0
ORDER BY SCORE(1) DESC)

| oop
rowno := rowno + 1;
dbns_out put. put _line(cl.titlel|': "||cl.score);
exit when rowno = 10;
end | oop;
end;

This example uses a cursor FOR loop to retrieve the first ten hits. An alias score is declared for
the return value of the SCORE operator. The score and title are shown as output by using the
cursor dot notation.

6.1.1.3 Structured Query with CONTAINS Example

A structured query, also called a mixed query, is a query that has one CONTAI NS predicate to
query a text column and another predicate to query a structured data column.

To enter a structured query, specify the structured clause in the WHERE condition of the SELECT
statement.

For example, the following SELECT statement returns all articles that contain the word oracle
written on or after October 1, 1997:

SELECT SCORE(1), title, issue_date from news
WHERE CONTAINS(text, 'oracle', 1) >0

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 19



ORACLE Chapter 6
Overview of Queries

AND i ssue_date >= (' 01-OCT-97")
ORDER BY SCORE(1) DESC

6.1.2 Querying with CATSEARCH

When you create an index of type CTXCAT, you must use the CATSEARCH operator to enter your
query.

This index is suitable when your application stores short text fragments in the text column and
associated information in related columns.

For example, an application serving an online auction site includes a table that stores item
descriptions in a text column and date and price information in other columns. With a CTXCAT
index, you can create b-tree indexes on one or more columns, so that query performance is
generally faster for mixed queries.

The operators available for CATSEARCH queries are limited to logical operations such as AND or
OR. To define your structured criteria, use the following operators : greater than, less than,
equality, BETVEEN, and I N.

¢ CATSEARCH SOQL Query
e CATSEARCH Example

@® Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMM T) or, preferably, SYNC( EVERY [ti ne- period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FI LTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

6.1.2.1 CATSEARCH SQL Query Example

A typical query with CATSEARCH includes the following structured clause to find all rows that
contain the word camera ordered by the bi d_cl ose date:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by bid_close desc')> 0;

The type of structured query tht you can enter depends on how you create your sub-indexes.

@ See Also
"Creating a CTXCAT Index"

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 19



ORACLE

Chapter 6
Overview of Queries

As shown in the previous example, you specify the structured part of a CATSEARCH query with
the third st ruct ured_query parameter. The columns in the structured expression must have a
corresponding subindex.

For example, assuming that cat egory_i d and bi d_cl ose have a subindex in the ct xcat index
for the AUCTI ON table, enter the following structured query:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'category_id=99 order by bid_close
desc')> 0;

6.1.2.2 CATSEARCH Example

The following example shows a field section search against a CTXCAT index. It uses CONTEXT
grammar by means of a query template in a CATSEARCH query.

-- Create and popul ate table
create tabl e BOOKS (1D nunber, |NFO varchar?2(200), PUBDATE DATE);

insert into BOOKS val ues(1, '<author>NOAM CHOVBKY</ aut hor ><subj ect >Cl VI L
Rl GHTS</ subj ect ><| anguage>ENGL| SH</ | anguage><publ i sher>M T
PRESS</ publ i sher>", ' 01- NOV-2003');

insert into BOOKS val ues(2, '<author>Nl CANOR PARRA</ aut hor ><subj ect >PCEMS
AND ANTI POEMB</ subj ect ><| anguage>SPANI SH</ | anguage>
<publ i sher >VASQUEZ</ publ i sher>", '01-JAN-2001');

insert into BOOKS val ues(1, '<author>LUC SANTE</ aut hor ><subj ect >XM.
DATABASE</ subj ect ><I anguage>FRENCH</ | anguage><publ i sher >FREE
PRESS</ publ i sher>', ' 15- MAY-2002');

conmit;

-- Create index set and section group
exec ctx_ddl.create_index_set (' BOOK | NDEX SET');
exec ctx_ddl.add_i ndex(' BOOK_| NDEX_SET', ' PUBDATE' ) ;

exec ctx_ddl.create_section_group(' BOOK_SECTI ON_GROUP',
" BASI C_SECTI ON_GROUP' ) ;
exec ctx_ddl.add_field_section
exec ctx_ddl.add_field_section
exec ctx_ddl.add_field_section
exec ctx_ddl.add_field_section

' BOOK_SECTI ON_GROUP' , " AUTHOR , ' AUTHCR' ) ;

' BOOK_SECTI ON_GROUP' , ' SUBJECT' , ' SUBJECT' ) ;

' BOOK_SECTI ON_GROUP' , ' LANGUAGE' , ' LANGUAGE' ) ;

' BOOK_SECTI ON_GRCUP' , ' PUBLI SHER', ' PUBLI SHER ) ;

_ ===

-- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
paramet ers('index set book_index_set section group book_section_group');

-- Use the index

-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).

-- W need to use query tenplate with CONTEXT grammar to access field

-- sections with CATSEARCH

select id, info from books
wher e catsearch(info,
' <query>
<textquery grammar="context">
NOAM wi t hi n aut hor and english within | anguage
</textquery>
</ query>",
"order by pubdate')>0;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 19



ORACLE Chapter 6
Overview of Queries

6.1.3 Querying with MATCHES

When you create an index of type CTXRULE, you must use the MATCHES operator to classify your
documents. The CTXRULE index is essentially an index on the set of queries that define your
classifications.

For example, if you have an incoming stream of documents that need to be routed according to
content, you can create a set of queries that define your categories. You create the queries as
rows in a text column. You can create this type of table with the CTX_CLS. TRAI N procedure.

You then index the table to create a CTXRULE index. When documents arrive, you use the
MATCHES operator to classify each document

e MATCHES SOL Query
e MATCHES PL/SQL Example

@ See Also

Classifying Documents in Oracle Text

6.1.3.1 MATCHES SQL Query

A MATCHES query finds all rows in a query table that match a given document. Assuming that a
queryt abl e table is associated with a CTXRULE indeX, enter the following query:

SELECT cl assi fication FROM querytabl e WHERE MATCHES( query_string,:doc_text) > O;

The : doc_t ext bind variable contains the CLOB document to be classified.
Here is a simple example:

create table queries (
query_id nunber,
query_string varchar?2(80)

)i

insert into queries values (1, 'oracle');

insert into queries values (2, 'larry or ellison');
insert into queries values (3, 'oracle and text');
insert into queries values (4, 'market share');

create index queryx on queries(query_string)
i ndextype is ctxsys.ctxrule;

select query_id from queries

where mat ches(query_string,
"Oracle announced that its market share in databases
i ncreased over the last year.')>0

This query returns queries 1 (the word oracle appears in the document) and 4 (the phrase
market share appears in the document), but not 2 (neither the word /larry nor the word ellison
appears, and not 3 (there is no text in the document, so it does not match the query).

In this example, the document was passed in as a string for simplicity. Your document is
typically passed in a bind variable.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 19



ORACLE

Chapter 6
Overview of Queries

The document text used in a MATCHES query can be VARCHAR?2 or CLOB. It does not accept BLOB
input, so you cannot match filtered documents directly. Instead, you must filter the binary
content to CLOB by using AUTO FI LTER. The following example makes two assumptions:

e The document data is in the : doc_bl ob bind variable.
* You have already defined ny_pol i cy that CTX_DCC. POLI CY_FI LTER can use.
For example:

declare
doc_text clob;
begi n
- create a tenporary CLOB to hold the document text
doc_text := dbns_| ob. createtenporary(doc_text, TRUE, DBMS_LOB. SESSION);

- create a sinple policy for this exanple

ctx_ddl.create_preference(preference_name => 'fast _filter',
obj ect _name => ' AUTO FILTER );

ctx_ddl.set_attribute(preference_name => 'fast filter',
attribute_nane => ' QUTPUT_FORMATTI NG ,
attribute_value =>"'FALSE);

ctx_ddl . create_policy(policy_name = 'ny_policy',
filter = 'fast _filter);

- call ctx_doc.policy filter to filter the BLOB to CLOB data
ctx_doc.policy filter('nmy_policy', :doc_blob, doc_text, FALSE);

- now do the matches query using the CLOB version
for ¢l in (select * fromqueries where matches(query_string, doc_text)>0)
| oop
-- do what you need to do here
end | oop;

dbns_| ob. freet enporary(doc_text);
end;

The CTX_DOC. POLI CY_FI LTER procedure filters the BLOB into the CLOB data, because you must
get the text into a CLOB to enter a MATCHES query. It takes, as one argument, the name of a
policy that you already created with CTX_DDL. CREATE_PQOLI CY.

® See Also
Oracle Text Reference for information on CTX_DCC. PCLI CY_FI LTER

If your file is text in the database character set, then you can create a BFI LE and load it to a
CLOB by using the DBMS_LOB. LOADFROMWFI LE function, or you can use UTL_FI LE to read the file
into a temp CLOB locator.

If your file needs AUTO _FI LTER filtering, then you can load the file into a BLOB instead and call
CTX_DQC. POLI CY_FI LTER, as previously shown.

@ See Also

Classifying Documents in Oracle Text for more extended classification examples

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 19



ORACLE

Chapter 6
Overview of Queries

6.1.3.2 MATCHES PL/SQL Examples

The following example assumes that the profi | es table of queries is associated with a
CTXRULE index. It also assumes that the newsf eed table contains a set of news articles to be
categorized.

This example loops through the newsf eed table, categorizing each article by using the MATCHES
operator. The results are stored in the resul t s table.

PROVPT Popul ate the category table based on newsfeed articles

PROVPT
set serveroutput on;
decl are

mypk  nunber;

mytitle varchar2(1000);

myarticles clob;

mycat egory varchar2(100);

cursor doccur is select pk,title,articles from newsfeed;

cursor nycur is select category fromprofiles where matches(rule, nyarticles)>0;
cursor rescur is select category, pk, title fromresults order by category, pk;

begin
dbns_out put . enabl e(1000000) ;
open doccur;
| oop
fetch doccur into nypk, nytitle, nyarticles;
exit when doccur %ot f ound;
open nycur;
| oop
fetch nycur into nycategory;
exi t when nycur %ot f ound,;
insert into results values(nycategory, nypk, nytitle);
end | oop;
close nycur;
comit;
end | oop;
cl ose doccur;
commi t;

end;

The following example displays the categorized articles by category.

PROWT display the list of articles for every category
PROVPT
set serveroutput on;

decl are
mypk  nunber;
mytitle varchar2(1000);
mycat egory varchar2(100);
cursor catcur is select category fromprofiles order by category;
cursor rescur is select pk, title fromresults where category=nycategory order by pk;

begi n
dbns_out put . enabl e(1000000) ;
open catcur;
| oop
fetch catcur into nmycategory;
exit when cat cur %ot f ound;
dbns_out put. put _|ine(' *******x*x* CATEGORY: '||nmycategory||' **x*x*xkxkxkxt).

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 19



ORACLE

Chapter 6
Overview of Queries

open rescur;
| oop
fetch rescur into nypk, nytitle;
exit when rescur %ot f ound;
dbns_output. put _line("** ("|[nypk||'). "||nytitle);
end | oop;
close rescur;
dbns_out put. put _line('**");
dbn’B_OUtpUt.pUt_|iHE('*******************************************************');
end | oop;
cl ose catcur;
end;

@ See Also

Classifying Documents in Oracle Text for more extended classification examples

6.1.4 Word and Phrase Queries

A word query is a query on a word or phrase. For example, to find all the rows in your text table
that contain the word dog, enter a query specifying dog as your query term.

You can enter word queries with both CONTAI NS and CATSEARCH SQL operators. However,
phrase queries are interpreted differently.

* CONTAINS Phrase Queries: If multiple words are contained in a query expression,
separated only by blank spaces (no operators), the string of words is considered a phrase.
Oracle Text searches for the entire string during a query. For example, to find all
documents that contain the phrase international law, enter your query with the phrase
international law.

« CATSEARCH Phrase Queries: With the CATSEARCH operator, you insert the AND operator
between words in phrases. For example, a query such as international law is interpreted as
international AND law.

6.1.5 Querying Stopwords

Stopwords are words for which Oracle Text does not create an index entry. They are usually
common words in your language that are unlikely to be searched.

Oracle Text includes a default list of stopwords for your language. This list is called a stoplist.
For example, in English, the words this and that are defined as stopwords in the default
stoplist. You can modify the default stoplist or create new stoplists with the CTX_DDL package.
You can also add stopwords after indexing with the ALTER | NDEX statement.

You cannot query on a stopword itself or on a phrase composed of only stopwords. For
example, a query on the word this returns no hits when this is defined as a stopword.

Because the Oracle Text index records the position of stopwords even though it does not
create an index entry for them, you can query phrases that contain stopwords as well as
indexable words, such as this boy talks to that girl.

When you include a stopword within your query phrase, the stopword matches any word. For
example, the following query assumes that was is a stopword. It matches phrases such as
Jack is big and Jack grew big. It also matches grew, even though it is not a stopword.

"Jack was big'

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 19



ORACLE

Chapter 6
Overview of Queries

Starting with Oracle Database 12c Release 2 (12.2), stopwords and unary operators on
stopwords are ignored at the initial stages of a query result in different query results than
earlier releases. For example, the following query does not return documents because t he is a
stopword and the $ operator and the stopword are ignored during query processing:

SQL> select count(1) fromtabx where contains(text,"'$the')>0;

The next query returns documents containing fi r st because the t he stopword and the $
operator are ignored.

SQL> select count(1) fromtabx where contains(text, first and $the')>0;

6.1.6 ABOUT Queries and Themes

An ABOUT query is a query on a document theme. A document theme is a concept that is
sufficiently developed in the text. For example, an ABOUT query on US politics might return
documents containing information about US presidential elections and US foreign policy.
Documents need not contain the exact phrase US politics to be returned.

During indexing, document themes are derived from the knowledge base, which is a
hierarchical list of categories and concepts that represents a view of the world. Some
examples of themes in the knowledge catalog are concrete concepts such as jazz music,
football, or Nelson Mandela. Themes can also be abstract concepts such as happiness or
honesty.

During indexing, the system can also identify and index document themes that are sufficiently
developed in the document but that do not exist in the knowledge base.

You can augment the knowledge base to define concepts and terms specific to your industry or
query application. When you do so, ABOUT queries are more precise for the added concepts.

ABQUT queries perform best when you create a theme component in your index. Theme
components are created by default for English and French.

@ See Also

Oracle Text Reference

Querying Stopthemes

Oracle Text enables you to query on themes with the ABOUT operator. A stoptheme is a theme
that is not to be indexed. You can add and remove stopthemes with the CTX_DDL package. You
can add stopthemes after indexing with the ALTER | NDEX statement.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 19



ORACLE’

Chapter 6
Oracle Text Query Features

6.2 Oracle Text Query Features

Oracle Text has various query features. You can use these query features in your query
application.

e Query Expressions

» Case-Sensitive Searching

e Query Feedback

e Query Explain Plan

* Using a Thesaurus in Queries

»  About Document Section Searching

e Using Query Templates

e Query Analysis

e Other Query Features

6.2.1 Query Expressions

A query expression is everything in between the single quotes in the t ext _query argument of
the CONTAI NS or CATSEARCH operator. The contents of a query expression in a CONTAI NS query
differs from the contents of a CATSEARCH operator.

¢ CONTAINS Operators
¢ CATSEARCH Operator
¢ MATCHES Operator

6.2.1.1 CONTAINS Operators

A CONTAI NS query expression can contain query operators that enable logical, proximity,
thesaural, fuzzy, and wildcard searching. Querying with stored expressions is also possible.
Within the query expression, you can use grouping characters to alter operator precedence.
This book refers to these operators as the CONTEXT grammatr.

With CONTAI NS, you can also use the ABOUT query to query document themes.

@ See Also
"The CONTEXT Grammar"

6.2.1.2 CATSEARCH Operator

With the CATSEARCH operator, you specify your query expression with the t ext _query argument
and your optional structured criteria with the st ruct ured_query argument. The t ext _query
argument enables you to query words and phrases. You can use logical operations, such as
logical and, or, and not. This book refers to these operators as the CTXCAT grammatr.

If you want to use the much richer set of operators supported by the CONTEXT grammatr, you
can use the query template feature with CATSEARCH.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 19



ORACLE’

Chapter 6
Oracle Text Query Features

With st ruct ured_query argument, you specify your structured criteria. You can use the
following SQL operations:

. <=
. =

¢« >

¢ <

< IN

- BETVEEN

You can also use the ORDER BY clause to order your output.

@ See Also
"The CTXCAT Grammar"

6.2.1.3 MATCHES Operator

Unlike CONTAI NS and CATSEARCH, MATCHES does not take a query expression as input.

Instead, the MATCHES operator takes a document as input and finds all rows in a query (rule)
table that match it. As such, you can use MATCHES to classify documents according to the rules
they match.

@ See Also
"Querying with MATCHES"

6.2.2 Case-Sensitive Searching

Oracle Text supports case-sensitivity for word and ABOUT queries.

Word queries are not case-insensitive by default. This means that a query on the term dog
returns the rows in your text table that contain the word dog, but not Dog or DOG.

You can enable or disable case-sensitive searching with the M XED_CASE attribute in your

BASI C_LEXER index preference. With a case-sensitive index, your queries must be entered in
exact case. For example, a query on Dog matches only documents with Dog. Documents with
dog or DOG are not returned as hits.

To enable case-insensitive searching, set the M XED_CASE attribute in your BASI C_LEXER index
preference to NO.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 11 of 19



ORACLE

Chapter 6
Oracle Text Query Features

@® Note

If you enable case-sensitivity for word queries and you query a phrase containing
stopwords and indexable words, then you must specify the correct case for the
stopwords. For example, a query on the dog does not return text that contains The
Dog, assuming that the is a stopword.

ABQUT queries give the best results when your query is formulated with proper case because
the normalization of your query is based on the knowledge catalog. The knowledge catalog is
case-sensitive. Attention to case is required, especially for words that have different meanings
depending on case, such as turkey the bird and Turkey the country.

However, you do not have to enter your query in exact case to obtain relevant results from an
ABQUT query. The system does its best to interpret your query. For example, if you enter a
query of ORACLE and the system does not find this concept in the knowledge catalog, the
system might use Oracle as a related concept for lookup.

6.2.3 Query Feedback

Feedback provides broader-term, narrower term, and related term information for a specified
guery with a CONTEXT index. You obtain this information programatically with the
CTX_QUERY. HFEEDBACK procedure.

Broader term, narrower term, and related term information is useful for suggesting other query
terms to the user in your query application.

The returned feedback information is obtained from the knowledge base and contains only
those terms that are also in the index. This process increases the chances that terms returned
from HFEEDBACK produce hits over the currently indexed document set.

® See Also
Oracle Text Reference for more information about using CTX_QUERY. HFEEDBACK

6.2.4 Query Explain Plan

Explain plan information provides a graphical representation of the parse tree for a CONTAI NS
query expression. You can obtain this information programatically with the CTX_QUERY. EXPLAI N
procedure.

Explain plan information tells you how a query is expanded and parsed without having the
system execute the query. Obtaining explain information is useful for knowing the expansion
for a particular stem, wildcard, thesaurus, fuzzy, soundex, or ABOUT query. Parse trees also
show the following information:

*  Order of execution

e ABQUT query normalization

*  Query expression optimization
*  Stopword transformations

*  Breakdown of composite-word tokens for supported languages

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 19



ORACLE’

Chapter 6
Oracle Text Query Features

® See Also
Oracle Text Reference for more information about using CTX_QUERY. EXPLAI N

6.2.5 Using a Thesaurus in Queries

Oracle Text enables you to define a thesaurus for your query application and process queries
more intelligently.

Because users might not know which words represent a topic, you can define synonyms or
narrower terms for likely query terms. You can use the thesaurus operators to expand your
query to include thesaurus terms.

@ See Also

Working With a Thesaurus in Oracle Text

6.2.6 Document Section Searching

Section searching enables you to narrow text queries down to sections within documents.

You can implement section searching when your documents have internal structure, such as
HTML and XML documents. For example, you can define a section for the <H1> tag that
enables you to query within this section by using the W THI N operator.

You can set the system to automatically create sections from XML documents.

You can also define attribute sections to search attribute text in XML documents.
@ Note

Section searching is supported for only word queries with a CONTEXT index.

@ See Also

Searching Document Sections in Oracle Text

6.2.7 Using Query Templates

Query templates are an alternative to the existing query languages.

Rather than passing a query string to CONTAI NS or CATSEARCH, you pass a structured document
that contains the query string in a tagged element. Within this structured document, or query
template, you can enable additional query features.

*  Query Rewrite

*  Query Relaxation

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 13 of 19



ORACLE

Chapter 6
Oracle Text Query Features

¢ Query Language
e Ordering By SDATA Sections

« Alternative and User-defined Scoring

e Alternative Grammar

® Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMM T) or, preferably, SYNC( EVERY [ti ne- period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FI LTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

6.2.7.1 Query Rewrite

Query applications sometimes parse end-user queries, interpreting a query string in one or
more ways by using different operator combinations. For example, if a user enters a query of
kukui nut, your application enters the {kukui nut} and {kukui or nut} queries to increase recall.

The query rewrite feature enables you to submit a single query that expands the original query
into the rewritten versions. The results are returned with no duplication.

You specify your rewrite sequences with the query template feature. The rewritten versions of
the query are executed efficiently with a single call to CONTAI NS or CATSEARCH.

The following template defines a query rewrite sequence. The query of {kukui nut} is rewritten
as follows:

{kukui} {nut}
{kukui} ; {nut}
{kukui} AND {nut}
{kukui} ACCUM {nut}
The following is the query rewrite template for these transformations:
select id fromdocs where CONTAINS (text,
' <query>

<textquery |ang="ENGLI SH' granmmar="CONTEXT"> kukui nut
<progr essi on>

<seg><rewrite>transform (TOKENS, "{", "}", " "))</rewite></seq>
<seg><rewrite>transform (TOKENS, "{", "}", " ; "))</rewite></seq>
<seg><rewrite>transform (TOKENS, "{", "}", "AND'))</rewite></seq>
<seg><rewrite>transform (TOKENS, "{", "}", "ACCUM))</rewite></seq>

</ progressi on>

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 19



ORACLE Chapter 6
Oracle Text Query Features

</textquery>
<score datatype="INTEGER' al gorithm=" COUNT"/ >
</ query>')>0;

6.2.7.2 Query Relaxation

The query relaxation feature enables your application to execute the most restrictive version of
a query first and progressively relax the query until the required humber of hits are obtained.

For example, your application searches first on green pen and then the query is relaxed to
green NEAR pen to obtain more hits.

The following query template defines a query relaxation sequence. The query of green pen is
entered in sequence.

{green} {pen}
{green} NEAR {pen}

{green} AND {pen}
{green} ACCUM {pen}
The following is the query relaxation template for these transformations:

select id fromdocs where CONTAINS (text,
' <query>
<textquery | ang="ENGLI SH' grammar =" CONTEXT" >
<pr ogr essi on>
<seqg>{green} {pen}</seq>
<seq>{green} NEAR {pen}</seq>
<seq>{green} AND {pen}</seq>
<seqg>{green} ACCUM {pen}</seq>
</ progressi on>
</textquery>
<score datatype="INTEGER' al gorithm=" COUNT"/ >
</ query>")>0;

Query hits are returned in this sequence with no duplication as long as the application needs
results.

Query relaxation is most effective when your application needs the top-N hits to a query, which
you can obtain with the DOMAI N_I| NDEX_SORT hint or in a PL/SQL cursor.

Using query templating to relax a query is more efficient than reexecuting a query.

6.2.7.3 Query Language

When you use MULTI _LEXERto index a column containing documents in different languages,
you can specify which language lexer to use during querying. You do so by using the | ang
parameter in the query template, which specifies the document-level lexer.

select id fromdocs where CONTAINS (text,
' <query><textquery | ang="french">bon soir</textquery></query>')>0;

@ See Also

Oracle Text Reference for information on LANGUAGE and | ang with ALTER INDEX and
document sublexer

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 15 of 19



ORACLE Chapter 6
Oracle Text Query Features

6.2.7.4 Ordering by SDATA Sections

You can order the query results according to the content of SDATA sections by using the
<or der > and <or der key> elements of the query template.

In the following example, the first level of ordering is performed on the SDATA pri ce section,
which is sorted in ascending order. The second and third level of ordering are performed by the
SDATA pub_dat e section and score, both of which are sorted in descending order.

select id fromdocs where CONTAINS (text, '
<query>
<textquery | ang="ENGLI SH' grammar="CONTEXT"> Oracle </textquery>
<score datatype="INTEGER' al gorithm=" COUNT"/ >
<or der >
<order key> SDATA(price) ASC </orderkey>
<or der key> SDATA(pub_date) DESC </ order Key>
<or derkey> Score DESC </ orderkey>
</ order>
</ query>', 1)>0;

® Note

* You can add additional SDATA sections to an index. Refer to the ADD SDATA
SECTI ON parameter string under ALTER | NDEX in Oracle Text Reference.

» Documents that were indexed before adding an SDATA section do not reflect this
new preference. Rebuild the index in this case.

@ See Also

Oracle Text Reference for syntax of <or der > and <or der key> elements of the query
template

6.2.7.5 Alternative and User-Defined Scoring

You can use query templating to specify alternative scoring algorithms. Those algorithms help
you customize how CONTAI NS is scored. They also enable SDATA to be used as part of the
scoring expressions. In this way, you can mathematically define the scoring expression by
using not only predefined scoring components, but also SDATA components.

With alternative user-defined scoring, you can specify:

e Scoring expressions of terms by defining arithmetic expressions that define how the query
should be scored, using

— predefined scoring algorithms: DI SCRETE, OCCURRENCE, RELEVANCE, and COVPLETI ON
— arithmetic operations: plus, minus, multiply, divide

— arithmetic functions: ABS( n), finding the absolute value of n ; LOG n), finding the
base-10 logarithmic value of n

— Numeric literals

e Scoring expressions at the term level

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 16 of 19



ORACLE

Chapter 6
Oracle Text Query Features

e Terms that should not be taken into account when calculating the score
* How the score from child elements of OR and AND operators should be merged
e Use

You can also use the SDATA that stores numeric or DATETI ME values to affect the final score of
the document.

The following example specifies an alternative scoring algorithm:

select id fromdocs where CONTAINS (text,

' <query>

<textquery grammar="CONTEXT" |ang="english"> mustang </textquery>
<score datatype="float" al gorithnm="DEFAULT"/ >

</ query>')>0

The following query templating example includes SDATA values as part of the final score:

select id fromdocs where CONTAINS (text,

' <query>

<textquery grammar="CONTEXT" | ang="english"> nustang </textquery>
<score datatype="float" al gorithm="DEFAULT" nornalization_expr
="doc_scor e+SDATA(price)"/>

</ query>"')>0"

@ See Also
"Using DEFINESCORE and DEFINEMERGE for User-defined Scoring"

6.2.7.6 Alternative Grammar

Query templating enables you to use the CONTEXT grammar with CATSEARCH queries and vice
versa.

select id fromdocs where CONTAINS (text,

' <query>
<textquery grammar="CTXCAT">San Di ego</t extquery>
<score datatype="integer"/>

</ query>")>0;

6.2.8 Query Analysis

Oracle Text enables you to create a log of queries and to analyze the queries. For example,
suppose you have an application that searches a database of large animals, and your analysis
of its queries shows that users search for the word mouse. This analysis shows you that you
should rewrite your application to avoid returning an unsuccessful search. Instead, a search for
mouse redirects users to a database of small animals.

With query analysis, you can find out:
*  Which queries were made

*  Which queries were successful

*  Which queries were unsuccessful

* How many times each query was made

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 17 of 19



ORACLE

Chapter 6
Oracle Text Query Features

You can combine these factors in various ways, such as determining the 50 most frequent
unsuccessful queries made by your application.

You start query logging with CTX_OUTPUT. START_QUERY_LOG. The query log contains all queries
made to all CONTEXT indexes that the program is using until a CTX_OUTPUT. END_QUERY_LOG
procedure is entered. Use CTX_REPORT. QUERY_LOG_SUMMARY to get a report of queries.

@ See Also

Oracle Text Reference for syntax and examples for these procedures

6.2.9 Other Query Features

In your query application, you can use other query features such as proximity searching.
Table 6-1 lists some of these features.

Table 6-1 Other Oracle Text Query Features

Feature

Description

Implement With

Case-Sensitive Searching

Base-Letter Conversion

Word Decompounding
(German and Dutch)

Alternate Spelling
(German, Dutch, and
Swedish)

Proximity Searching

Expanded operator
containing the functionality of
PHRASE, NEAR and AND

operators.

Stemming

Fuzzy Searching

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

Enables you to search on words or
phrases exactly as they are entered in
the query. For example, a search on
Roman returns documents that contain
Roman and not roman.

Queries words with or without
diacritical marks such as tildes,
accents, and umlauts. For example,
with a Spanish base-letter index, a
query of energia matches documents
containing both energia and energia.

Enables searching on words that
contain the specified term as
subcomposite.

Searches on alternate spellings of
words.

Searches for words near one another.

Breaks a document into clumps based
on the given query. Each clump is
classified based on a primary feature,
and is scored based on secondary
features. The final document score
adds clump scores such that the
ordering of primary features
determines the initial ordering of
document scores.

Searches for words with the same root
as the specified term.

Searches for words that have a similar
spelling as the specified term.

BASI C_LEXER when you create
the index

BASI C_LEXER when you create
the index

BASI C_LEXER when you create
the index

BASI C_LEXER when you create
the index

NEAR operator when you enter
the query

NEAR2 operator when you enter
the query

$ operator at when you enter the
query

FUZZY operator when you enter
the query

October 13, 2025
Page 18 of 19



ORACLE Chapter 6
Oracle Text Query Features

Table 6-1 (Cont.) Other Oracle Text Query Features

. _________________________________________________________________________________|
Feature Description Implement With

Query Explain Plan Generates query parse information. CTX_QUERY. EXPLAI N PL/SQL
procedure after you index

Hierarchical Query Feedback Generates broader term, narrower term CTX_QUERY. HFEEDBACK

and related term information for a PL/SQL procedure after you
query. index
Browse index Browses the words around a seed CTX_QUERY. BROASE_WORDS
word in the index. PL/SQL after you index
Count hits Counts the number of hits in a query. ~ CTX_QUERY. COUNT_HI TS
PL/SQL procedure after you
index
Stored Query Expression Stores the text of a query expression ~ CTX_QUERY. STORE_SQE
for later reuse in another query. PL/SQL procedure after you
index
Thesaural Queries Uses a thesaurus to expand queries. Thesaurus operators such as
SYNand BT as well as the
ABQUT operator

(Use CTX_THES package to
maintain the thesaurus.)

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 19 of 19



Working with CONTEXT and CTXCAT
Grammars in Oracle Text

Become familiar with CONTEXT and CTXCAT grammars.
This chapter contains the following topics:

e The CONTEXT Grammar
e The CTXCAT Grammar

@ Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COW T) or, preferably, SYNC(EVERY [ti me-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FI LTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

7.1 The CONTEXT Grammar

The CONTEXT grammar is the default grammar for CONTAI NS. With this grammar, you can add
complexity to your searches with operators. You use the query operators in your query
expression. For example, the AND logical operator enables you to search for all documents that
contain two different words. The ABOUT operator enables you to search on concepts.

You can also use the W THI N operator for section searches; the NEAR operator for proximity
searches; and the stem, fuzzy, and thesaurus operators for expanding a query expression.

With CONTAI NS, you can also use the CTXCAT grammar with the query template feature.

The following sections describe some of the Oracle Text operators:

e ABOUT Query

»  Logical Operators
e Section Searching and HTML and XML
e Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2 Operators

e Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 8



ORACLE Chapter 7
The CONTEXT Grammar

e Using CTXCAT Grammar

e Stored Query Expressions
e Calling PL/SQL Functions in CONTAINS
e Optimizing for Response Time

e Counting Hits
 Using DEFINESCORE and DEFINEMERGE for User-defined Scoring

@ See Also

Oracle Text Reference for complete information about using query operators

7.1.1 ABOUT Query

Use the ABOUT operator in English or French to query on a concept. The query string is usually
a concept or theme that represents the idea to be searched on. Oracle Text returns the
documents that contain the theme.

Word information and theme information are combined into a single index. To enter a theme
query in your index, you must include that is created by default in English and French.

Enter a theme query by using the ABOUT operator inside the query expression. For example, to
retrieve all documents that are about politics, write your query as follows:

SELECT SCORE(1), title FROM news
WHERE CONTAI NS(text, 'about(politics)', 1) >0
ORDER BY SCORE(1) DESC;

@ See Also

Oracle Text Reference for more information about using the ABOUT operator

7.1.2 Logical Operators

Use logical operators to limit your search criteria in a number of ways. Table 7-1 describes
some of these operators.

Table 7-1 Logical Operators

|
Operator Symbol Description Example Expression

AND & Use to search for documents
that contain at least one
occurrence of each of the
query terms.

The returned score is the
minimum of the operands.

'cats AND dogs'
'cats & dogs'

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 8



ORACLE Chapter 7
The CONTEXT Grammar

Table 7-1 (Cont.) Logical Operators
]

Operator Symbol Description Example Expression
R | tLrJ]set) to stegrchtflor dtocuments ‘cats | dogs'
at contain at least one ‘cats OR dogs'
occurrence of any of the
query terms.
The returned score is the
maximum of the operands.
NOT ~ Use to search for documents To obtain the documents that contain the
that contain one query term term animals but not dogs, use the following
and not another. expression:

"animal s ~ dogs'

ACCUM , Use to search for documents The following query returns all documents
that contain at least one that contain the terms dogs, cats, and
occurrence of any of the puppies, giving the highest scores to the
query terms. The documents that contain all three terms:

accumulate operator ranks
documents according to the
total term weight of a
document.

' dogs, cats, puppies’

EQUI V Use to specify an acceptable The following example returns all
substitution for aword ina  documents that contain either the phrase
query. alsatians are big dogs or German

shepherds are big dogs:

" German shepherds=al satians are hig
dogs'

7.1.3 Section Searching and HTML and XML

Section searching is useful when your document set is HTML or XML. For HTML, you can
define sections by using embedded tags and then use the W THI N operator to search these
sections.

For XML, you can have the system automatically create sections. You can query with the
W THI N operator or with the | NPATH operator for path searching.

@ See Also

Searching Document Sections in Oracle Text

7.1.4 Proximity Queries with NEAR, and NEAR2 Operators

Use the NEAR operator to search for terms that are near to one another in a document.

For example, to find all the documents where dog is within 6 words of cat, enter the following
query:

'near((dog, cat), 6)'

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 8



ORACLE Chapter 7
The CONTEXT Grammar

The NEAR operator is now modified to change how the distance is measured between phrases
in NESTED NEAR.

The NEAR2 operator combines the functionality of PHRASE, NEAR, and AND operators. In addition,
the NEAR2 operator can use position information to boost the scores of its hits. That is, if one
phrase hit occurs at the beginning of a document and another at the end of the document, then
a higher weight is given to the first hit as compared to the second hit.

@ See Also

Oracle Text Reference for more information about using the NEAR, and NEAR2 operators

7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators

Expand your queries into longer word lists with operators such as wildcard, fuzzy, stem,
soundex, and thesaurus.

@ See Also

e Oracle Text Reference for more information about using these operators

e "Is it OK to have many expansions in a query?"

7.1.6 Using CTXCAT Grammar

Use the CTXCAT grammar in CONTAI NS queries. To do so, use a query template specification in
the t ext _query parameter of CONTAI NS.

Take advantage of the CTXCAT grammar when you need an alternative and simpler query
grammar.

@ See Also

Oracle Text Reference for more information about using these operators

7.1.7 Defined Stored Query Expressions

Use the CTX_QUERY. STORE_SQE procedure to store the definition of a query without storing any
results.

Referencing the query with the CONTAI NS SQL operator references the definition of the query.
In this way, you can use the stored query expressions to define long or frequently used query
expressions.

Stored query expressions are not attached to an index. When you call CTX_QUERY. STORE_SQE,
you specify only the name of the stored query expression and the query expression.

The query definitions are stored in the Text data dictionary. Any user can reference a stored
query expression.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 8



ORACLE Chapter 7
The CONTEXT Grammar

Related Topics
» Defining a Stored Query Expression

SQE Example

* Oracle Text Reference

7.1.7.1 Defining a Stored Query Expression

To define and use a stored query expression:

1. Call CTX_QUERY. STORE_SQE to store the queries for the text column. With STORE_SQE, you
specify a name for the stored query expression and a query expression.

2. Use the SCE operator to call the stored query expression in a query expression. Oracle Text
returns the results of the stored query expression in the same way that it returns the results
of a regular query. The query is evaluated when the stored query expression is called.

You can delete a stored query expression by using REMOVE_SCE.

7.1.7.2 SQE Example

The following example creates a stored query expression called disaster that searches for
documents containing the words tornado, hurricane, or earthquake:

begi n
ctx_query.store_sqe('disaster', 'tornado | hurricane | earthquake');
end;

To execute this query in an expression, write your query as follows:

SELECT SCORE(1), title from news
VWHERE CONTAI NS(text, 'SQE(disaster)', 1) >0
ORDER BY SCORE(1);

® See Also
Oracle Text Reference to learn more about the syntax of CTX_QUERY. STORE_SQE

7.1.8 Calling PL/SQL Functions in CONTAINS

You can call user-defined functions directly in the CONTAI NS clause as long as the function
satisfies the requirements for being named in a SQL statement. The caller must also have
EXECUTE privilege on the function.

For example, if the f rench function returns the French equivalent of an English word, you can
search on the French word for cat by writing:

SELECT SCORE(1), title from news
VHERE CONTAI NS(text, french('cat'), 1) >0
ORDER BY SCORE(1);

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 8



ORACLE Chapter 7
The CONTEXT Grammar

@ See Also

Oracle Database SQL Language Reference for more information about creating user
functions and calling user functions from SQL

7.1.9 Optimizing for Response Time

A CONTAI NS query optimized for response time provides a fast solution when you need the
highest scoring documents from a hitlist.

The following example returns the first twenty hits as output. This example uses the
FI RST_ROWAS(n) hint and a cursor.

declare
cursor c is
select /*+ FIRST_ROAS5(20) */ title, score(l) score
from news where contains(txt_col, 'dog', 1) > 0 order by score(1l) desc;
begin
for clinc
| oop
dbns_out put. put _line(cl.score||"':"||substr(cl.title,1,50));
exit when c% owcount = 21;
end | oop;
end;
/

The following factors can also influence query response time:

e Collection of table statistics

e Memory allocation

e Sorting

e Presence of large object columns in your base table
e Partitioning

e Parallelism

e Number of term expansions in your query

@ See Also

"Frequently Asked Questions About Query Performance"

7.1.10 Counting Hits

Use CTX_QUERY. COUNT_HI TS in PL/SQL or COUNT(*) in a SQL SELECT statement to count the
number of hits returned from a query with only a CONTAI NS predicate.

If you want a rough hit count, use CTX_QUERY. COUNT_HI TS in estimate mode (EXACT parameter
set to FALSE). With respect to response time, this is the fastest count you can get.

Use the COUNT(*) function in a SELECT statement to count the number of hits returned from a
guery that contains a structured predicate.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 8



ORACLE Chapter 7
The CTXCAT Grammar

To find the number of documents that contain the word oracle, enter the query with the SQL
COUNT function.

SELECT count (*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0;

To find the number of documents returned by a query with a structured predicate, use
COUNT(*).

SELECT COUNT(*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0 and author = 'jones';

To find the number of documents that contain the word oracle, use COUNT_HI TS,

decl are count numnber;
begin
count := ctx_query.count_hits(index_name => ny_index, text_query => 'oracle', exact =>
TRUE) ;
dbns_out put . put _I'i ne(' Nunber of docs with oracle:');
dbns_out put . put _| i ne(count);
end;

@® See Also
Oracle Text Reference to learn more about the syntax of CTX_QUERY. COUNT_HI TS

7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined
Scoring

Use the DEFI NESCORE operator to define how the score for a term or phrase is to be calculated.
The DEFI NEMERGE operator defines how to merge scores of child elements of AND and OR
operators. You can also use the alternative scoring template with SDATA to affect the final
scoring of the document.

@ See Also

» "Alternative and User-defined Scoring" for information about the alternative
scoring template

* Oracle Text Reference to learn more about the syntax of DEFI NESCORE and
DEFI NEMERGE

7.2 The CTXCAT Grammar

The CTXCAT grammar is the default grammar for CATSEARCH. This grammar supports logical
operations, such as AND and OR, as well as phrase queries.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 8



ORACLE Chapter 7
The CTXCAT Grammar

@® Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COW T) or, preferably, SYNC( EVERY [ti me-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FI LTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

The CATSEARCH query operators have the following syntax:

Table 7-2 CATSEARCH Query Operator Syntax
]

Operation Syntax Description of Operation

Logical AND abc Returns rows that contain a, b and c.
Logical OR alblc Returns rows that contain a, b, or c.
Logical NOT a-b Returns rows that contain a and not b.
hyphen with no space a-b Hyphen treated as a regular character.

For example, if you define the hyphen as a skipjoin,
then words such as vice-president are treated as
the single query term vicepresident.

Likewise, if you define the hyphen as a printjoin,
then words such as vice-president are treated as
vice president with the space in the CTXCAT query

language.
" "abc" Returns rows that contain the phrase "a b c."
For example, entering "Sony CD Player" means
return all rows that contain this sequence of words.
) (AB)|C Parentheses group operations. This query is

equivalent to the CONTAI NS query (A &B) | C.

To use the CONTEXT grammar in CATSEARCH queries, use a query template specification in the
t ext _query parameter.

You might use the CONTAI NS grammar as such when you need to enter proximity, thesaurus, or
ABQUT queries with a CTXCAT index.

Related Topics

e Oracle Text Reference

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 8



Presenting Documents in Oracle Text

Oracle Text provides various methods for presenting documents in results for query
applications.

This chapter contains the following topics:

« Highlighting Query Terms

e Obtaining Part-of-Speech Information for a Document

e Obtaining Lists of Themes, Gists, and Theme Summaries

« Document Presentation and Highlighting

8.1 Highlighting Query Terms

In text query applications, you can present selected documents with query terms highlighted
for text queries or with themes highlighted for ABOUT queries.

You can generate three types of output associated with highlighting:

* A marked-up version of the document
*  Query offset information for the document

* A concordance of the document, in which occurrences of the query term are returned with
their surrounding text

This section contains the following topics:

e Text highlighting
e Theme Highlighting

e CTX_DOC Highlighting Procedures

8.1.1 Text highlighting

For text highlighting, you supply the query, and Oracle Text highlights words in the document
that satisfy the query. You can obtain plain-text or HTML highlighting.

8.1.2 Theme Highlighting

For ABQUT queries, the CTX_DOC procedures highlight and mark up words or phrases that best
represent the ABOUT query.

8.1.3 CTX_DOC Highlighting Procedures

These are the highlighting procedures in CTX_DCOC:

«  CTX_DOC. MARKUP and CTX_DOC. POLI CY_MARKUP
« CTX_DOC. HI GHLI GHT and CTX_DOC. POLI CY_HI GHLI GHT

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 7



ORACLE

Chapter 8
Highlighting Query Terms

«  CTX_DOC. SNI PPET and CTX_DCC. POLI CY_SNI PPET

The PCLI CY and non-PQLI CY versions of the procedures are equivalent, except that the POLI CY
versions do not require an index.

@® Note

SNI PPET can also be generated using the Result Set Interface.

® See Also
Oracle Text Reference for information on CTX_QUERY. RESULT_SET

This section contains these topics:

e Markup Procedure

»  Highlight Procedure

e Concordance

8.1.3.1 Markup Procedure

The CTX_DCOC. MARKUP and CTX_DOC. POLI CY_MARKUP procedures take a document reference and
a query, and return a marked-up version of the document.

The output can be either marked-up plain text or marked-up HTML. For example, specify that a
marked-up document be returned with the query term surrounded by angle brackets
(<<<tansu>>>) or HTML (<b>tansu</b>).

CTX_DOC. MARKUP and CTX_DCC. POLI CY_MARKUP are equivalent, except that
CTX_DQC. POLI CY_MARKUP does not require an index.

You can customize the markup sequence for HTML navigation.

CTX_DOC.MARKUP Example

The following example is taken from the web application described in CONTEXT Query
Application. The showDoc procedure takes an HTML document and a query, creates the
highlight markup—in this case, the query term is displayed in red—and outputs the result to an
in-memory buffer. It then uses ht p. pri nt to display it in the browser.

procedure showbDoc (p_id in varchar2, p_query in varchar2) is

v_clob_selected CLOB;

v_read_amount i nteger;
v_read_of f set i nteger;
v_buffer var char 2(32767) ;
v_query var char (2000) ;
v_cursor i nteger;

begi n

htp. p(' <htm ><title>HTM. version with highlighted terns</title>");
ht p. p(' <body bgcol or="#ffffff">");
htp. p(' <b>HTM. version with highlighted terns</b>'");

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 7



ORACLE

Chapter 8
Highlighting Query Terms

begin
ctx_doc. markup (index_nanme => 'idx_search_table',
t ext key = p_id,
text_query => p_query,

restab => v_cl ob_sel ect ed,
starttag => '<i><font color=red>',
endt ag = '</font></i>");
v_read_anount := 32767,
v_read_offset := 1;
begi n
| oop

dbns_| ob.read(v_cl ob_sel ected, v_read_amount,v_read_offset,v_buffer);
htp.print(v_buffer);

v_read_offset := v_read offset + v_read_amount;
v_read_anount := 32767,
end | oop;
exception
when no_data_found then
nul | ;
end;
exception
when others then
null; --showHTM.doc(p_id);
end;
end showDoc;
end;

/
show errors
set define on

@ See Also

Oracle Text Reference for more information about CTX_DOC. MARKUP and
CTX_DOC. PQLI CY_SNI PPET

8.1.3.2 Highlight Procedure

CTX_DQOC. Hl GHLI GHT and CTX_DQC. POLI CY_HI GHLI GHT take a query and a document and return
offset information for the query in plain text or HTML format. You can use this offset information
to write your own custom routines for displaying documents.

CTX_DQC. Hl GHLI GHT and CTX_DQC. POLI CY_HI GHLI GHT are equivalent, except that
CTX_DQOC. POLI CY_HI GHLI GHT does not require an index.

With offset information, you can display a highlighted version of a document (such as different
font types or colors) instead of the standard plain-text markup obtained from CTX_DOC. MARKUP.

@ See Also

Oracle Text Reference for more information about using CTX_DOC. Hl GHLI GHT and
CTX_DCC. POLI CY_HI GHLI GHT

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 7



ORACLE Chapter 8
Obtaining Part-of-Speech Information for a Document

8.1.3.3 Concordance

CTX _DQOC. SNI PPET and CTX_DOC. POLI CY_SNI PPET produce a concordance of the document, in
which occurrences of the query term are returned with their surrounding text. This result is
sometimes known as Key Word in Context (KWIC) because, instead of returning the entire
document (with or without the query term highlighted), it returns the query term in text
fragments, allowing a user to see it in context. You can control how the query term is
highlighted in the returned fragments.

CTX_DQOC. SNI PPET and CTX_DOC. POLI CY_SNI PPET are equivalent, except that

CTX _DQC. POLI CY_SNI PPET does not require an index. CTX_DOC. PCLI CY_SNI PPET and

CTX_DQOC. SNI PPET include two new attributes: r adi us specifies the approximate desired length
of each segment, whereas, max_| engt h puts an upper bound on the length of the sum of all
segments.

@ See Also

Oracle Text Reference for more information about CTX_DCOC. SNI PPET and
CTX _DCC. POLI CY_SNI PPET

8.2 Obtaining Part-of-Speech Information for a Document

The CTX_DCC package contains procedures to create policies for obtaining part-of-speech
information for a given document. This approach is described under POLI CY_NOUN_PHRASES in
Oracle Text Reference and POLI CY_PART_OF SPEECH in Oracle Text Reference.

8.3 Obtaining Lists of Themes, Gists, and Theme Summaries

The following table describes lists of themes, gists, and theme summaries.

Table 8-1 Lists of Themes, Gists, and Theme Summaries

Output Type Description

List of Themes A list of the main concepts of a document.
Each theme is a single word, a single phrase, or a hierarchical list of parent
themes.

Gist Text in a document that best represents what the document is about as a whole.

Theme Summary Text in a document that best represents a given theme in the document.

To obtain lists of themes, gists, and theme summaries, use procedures in the CTX_DCOC package
to:

e ldentify documents by ROA D in addition to primary key

e Store results in-memory for improved performance

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 7



ORACLE Chapter 8
Obtaining Lists of Themes, Gists, and Theme Summaries

8.3.1 Lists of Themes

A list of themes is a list of the main concepts in a document. Use the CTX_DOC. THEMES
procedure to generate lists of themes.

@ See Also

Oracle Text Reference to learn more about the command syntax for CTX_DOC. THEMES

The following in-memory theme example generates the top 10 themes for document 1 and
stores them in an in-memory table called t he_t henmes. The example then loops through the
table to display the document themes.

decl are
the_thenmes ctx_doc.thene_t ab;

begin

ctx_doc. thenes(' nyindex',"'1',the_themes, nunthemes=>10);

for i in 1..the_thenmes.count |oop
dbms_out put . put _Iine(the_themes(i).thenme||':"||the_themes(i).weight);
end | oop;

end;

The following example create a result table theme:

create table ctx_thenmes (query_id nunber,
t heme varchar 2(2000),
wei ght nunber);

In this example, you obtain a list of themes where each element in the list is a single theme:

begin
ctx_doc. t hemes(' newsi ndex',' 34" ,' CTX_THEMES , 1, ful | _thenmes => FALSE);
end;

In this example, you obtain a list of themes where each element in the list is a hierarchical list
of parent themes:

begin
ctx_doc.t hemes(' newsi ndex' ,' 34',' CTX_THEMES , 1, ful | _thenmes => TRUE);
end;

8.3.2 Gist and Theme Summary

A gist is the text in a document that best represents what the document is about as a whole. A
theme summary is the text in a document that best represents a single theme in the document.

Use the CTX_DOC. @ ST procedure to generate gists and theme summaries. You can specify the
size of the gist or theme summary when you call the procedure.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 7



ORACLE Chapter 8
Obtaining Lists of Themes, Gists, and Theme Summaries

@ See Also

Oracle Text Reference to learn about the command syntax for CTX_DOC. G ST

In-Memory Gist Example

The following example generates a nondefault size generic gist of at most 10 paragraphs. The
result is stored in memory in a CLOB locator. The code then de-allocates the returned CLOB
locator after using it.

decl are
gkl ob cl ob;
ant nunber := 40;
l'ine varchar2(80);

begin
ctx_doc. gi st (' newsi ndex','34',"'gklob',1,glevel =>"P ,pov => 'GENERI C,
nunPar agr aphs => 10);
- gklob is NULL when passed-in, so ctx-doc.gist will allocate a tenporary
- CLOB for us and place the results there.

dbns_| ob. read(gkl ob, ant, 1, line);
dbns_out put. put _Iine(' FIRST 40 CHARS ARE:'||line);
- have to de-allocate the tenmp lob
dbns_| ob. f reet enpor ar y( gkl ob) ;
end;

Result Table Gists Example
To create a gist table, enter the following:

create table ctx_gist (query_id nunber,
pov var char 2(80),
gi st CLOB);

The following example returns a default-sized paragraph gist for document 34:

begin
ctx_doc. gi st (' newsi ndex'," 34',' CTX_G ST', 1, PARAGRAPH , pov =>' GENERIC);
end;

The following example generates a nondefault size gist of 10 paragraphs:

begin

ctx_doc. gi st (' newsi ndex',"'34',' CTX_G ST', 1,"' PARAGRAPH , pov =>' GENERIC,
nunPar agr aphs => 10);

end;

The following example generates a gist whose number of paragraphs is 10 percent of the total
paragraphs in the document:

begin

ctx_doc. gi st (' newsi ndex','34',' CTX_A ST',1, 'PARAGRAPH , pov =>' GENERIC, nmxPercent =>
10);

end;

Theme Summary Example

The following example returns a theme summary on the theme of insects for document with
textkey 34. The default gist size is returned.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 7



ORACLE Chapter 8
Presenting and Highlighting Documents

begin
ctx_doc. gi st (' newsi ndex','34','CTX_ G ST',1, 'PARAGRAPH , pov => 'insects');
end;

8.4 Presenting and Highlighting Documents

Typically, a query application enables the user to view the documents returned by a query. The
user selects a document from the hitlist, and then the application presents the document in
some form.

With Oracle Text, you can display a document in different ways, such as highlighting either the
words of a word query or the themes of an ABOUT query in English.

You can also obtain gist (document summary) and theme information from documents with the
CTX_DOC PL/SQL package.

Table 8-2 describes the different output you can obtain and which procedure to use to obtain
each type.

Table 8-2 CTX_DOC Output

Output Procedure
Plain-text version, no highlights CTX_DCC. FI LTER
HTML version of document, no highlights CTX_DCC. FI LTER
Highlighted document, plain-text version CTX_DOC. MARKUP
Highlighted document, HTML version CTX_DOC. MARKUP
Highlighted offset information for plain-text version CTX_DCC. HI GHLI GHT
Highlighted offset information for HTML version CTX_DCC. HI GHLI GHT
Theme summaries and gist of document CTX_DCC. d ST
List of themes in document CTX_DOC. THEMES

® See Also

Oracle Text Reference

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 7



Classifying Documents in Oracle Text

Oracle Text offers various approaches to document classification.
This chapter contains the following topics:

¢ Overview of Document Classification

e Classification Applications

¢ Classification Solutions

* Rule-Based Classification

e Supervised Classification

* Unsupervised Classification (Clustering)

¢ Unsupervised Classification (Clustering) Example

9.1 Overview of Document Classification

Each theme is a single word, a single phrase, or a hierarchical list of parent themes.

To sift through numerous documents you can use keyword search engines. However, keyword
searches have limitations. One major drawback is that keyword searches do not discriminate
by context. In many languages, a word or phrase may have multiple meanings, so a search
may result in many matches that are not about the specific topic. For example, a query on the
phrase river bank might return documents about the Hudson River Bank & Trust Company,
because the word bank has two meanings.

Alternatively, you can sort through documents and classify them by content. This approach is
not feasible for very large volumes of documents.

Oracle Text offers various approaches to document classification. Under rule-based
classification (sometimes called simple classification), you write the classification rules
yourself. With supervised classification, Oracle Text creates classification rules based on a set
of sample documents that you preclassify. Finally, with unsupervised classification (also known
as clustering), Oracle Text performs all steps, from writing the classification rules to classifying
the documents, for you.

9.2 Classification Applications

Oracle Text enables you to build document classification applications that perform some action
based on document content. Actions include assigning category IDs to a document for future
lookup or sending a document to a user. The result is a set or stream of categorized
documents. Figure 9-1 illustrates how the classification process works.

Oracle Text enables you to create document classification applications in different ways. This
chapter defines a typical classification scenario and shows how you can use Oracle Text to
build a solution.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 14



ORACLE

Chapter 9
Classification Solutions

Figure 9-1 Overview of a Document Classification Application

Document1 [——
from —
Database —
Document2 [—— Document Perform
from File p— Stream Document Action

— Classification
System — Application
Document N[—— l'\S/%b{S
from Web — Classify

— Query Document

CTXRULE
Index Rules Table
Database A Database B

9.3 Classification Solutions

Oracle Text enables you to classify documents in the following ways:

Rule-Based Classification. For this solution, you group your documents, choose
categories, and formulate the rules that define those categories; these rules are actually
query phrases. You then index the rules and use the MATCHES operator to classify
documents.

Advantages: This solution is very accurate for small document sets. Results are always
based on what you define, because you write the rules.

Disadvantages: Defining rules can be tedious for large document sets with many
categories. As your document set grows, you may need to write correspondingly more
rules.

Supervised Classification. This solution is similar to rule-based classification, but the rule-
writing step is automated with CTX_CLS. TRAI N. This procedure formulates a set of
classification rules from a sample set of preclassified documents that you provide. As with
rule-based classification, you use the MATCHES operator to classify documents.

Oracle Text offers two versions of supervised classification, one using the
RULE_CLASSI FI ER preference and one using the SVM CLASSI FI ER preference. These
preferences are discussed in "Supervised Classification".

Advantages: Rules are written for you automatically. This method is useful for large
document sets.

Disadvantages: You must assign documents to categories before generating the rules.
Rules may not be as specific or accurate as those you write yourself.

Unsupervised Classification (Clustering). All steps, from grouping your documents to
writing the category rules, are automated with CTX_CLS. CLUSTERI NG. Oracle Text
statistically analyzes your document set and correlates them with clusters according to
content.

Advantages:

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 14



ORACLE Chapter 9
Rule-Based Classification

— You do not need to provide the classification rules or the sample documents as a
training set.

— This solution helps to discover overlooked patterns and content similarities in your
document set.

In fact, you can use this solution when you do not have a clear idea of rules or
classifications. For example, use it to provide an initial set of categories and to build on
the categories through supervised classification.

Disadvantages:

— Clustering is based on an internal solution. It might result in unexpected groupings,
because the clustering operation is not user-defined.

— You do not see the rules that create the clusters.

— The clustering operation is CPU-intensive and can take at least the same time as
indexing.

9.4 Rule-Based Classification

Rule-based classification is the basic solution for creating an Oracle Text classification
application.

The basic steps for rule-based classification are as follows. Specific steps are explored in
greater detail in the example.

1. Create a table for the documents to be classified, and then populate it.

2. Create a rule table (also known as a category table). The rule table consists of categories
that you name, such as "medicine" or "finance," and the rules that sort documents into
those categories.

These rules are actually queries. For example, you define the "medicine" category as
documents that include the words "hospital," "doctor,” or "disease." Therefore, you would
set up a rule in the form of "hospital OR doctor OR disease."

3. Create a CTXRULE index on the rule table.

4. Classify the documents.

@ See Also

"CTXRULE Parameters and Limitations" for information on which operators are
allowed for queries

9.4.1 Rule-Based Classification Example

In this example, you gather news articles about different subjects and then classify them. After
you create the rules, you can index them and then use the MATCHES statement to classify
documents.

To classify documents:

1. Create the schema to store the data.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 14



ORACLE Chapter 9

Rule-Based Classification

The news_t abl e stores the documents to be classified. The news_cat egori es table stores
the categories and rules that define the categories. The news_i d_cat table stores the
document IDs and their associated categories after classification.

create table news_table (
tk nunber primary key not null,
title varchar2(1000),
text clob);

create table news_categories (
queryid number primry key not null,
category varchar2(100),
query var char 2(2000));

create table news_id_cat (
tk nunber,
category_id nunber);

2. Load the documents with SQLLDR.

Use the SQLLDR program to load the HTML news articles into the news_t abl e. The file
names and titles are read from | oader . dat .

LOAD DATA
| NFI LE ' | oader. dat"'
| NTO TABLE news_tabl e

REPLACE

FI ELDS TERM NATED BY ' ;'

(tk | NTEGER EXTERNAL,

title CHAR,

text file FILLER CHAR

t ext LOBFI LE(text _file) TERM NATED BY EOF)

3. Create the categories and write the rules for each category.

The defined categories are Asia, Europe, Africa, Middle East, Latin America, United
States, Conflicts, Finance, Technology, Consumer Electronics, World Politics, U.S. Politics,
Astronomy, Paleontology, Health, Natural Disasters, Law, and Music News.

A rule is a query that selects documents for the category. For example, the 'Asia’ category
has a rule of 'China or Pakistan or India or Japan'. Insert the rules in the news_cat egori es
table.

nsert into news_categories val ues
(1,"United States','Washington or George Bush or Colin Powell");

nsert into news_categories val ues
(2,"Europe','England or Britain or Germany');

nsert into news_categories val ues
(3,"Mddle East','Israel or Iran or Palestine');

nsert into news_categories values(4,'Asia','China or Pakistan or India or Japan');
nsert into news_categories values(5,'Africa',' Egypt or Kenya or Nigeria');

nsert into news_categories val ues
(6,"Conflicts',"war or soldiers or nmilitary or troops');

nsert into news_categories values(7,'Finance','profit or loss or wall street');
nsert into news_categories val ues
(8,"' Technol ogy', ' software or conputer or Oracle
or Intel or IBMor Mcrosoft');

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 14



ORACLE Chapter 9
Rule-Based Classification

nsert into news_categories val ues
(9, Consuner electronics','HDTV or electronics');

nsert into news_categories val ues
(10,'Latin America','Venezuela or Col onhia
or Argentina or Brazil or Chile');

nsert into news_categories val ues
(11,"Wrld Politics','Hugo Chavez or George Bush
or Tony Blair or Saddam Hussein or United Nations');

nsert into news_categories val ues
(12,"US Politics',' George Bush or Denobcrats or Republicans
or civil rights or Senate');

nsert into news_categories val ues

(13," Astronomny', ' Jupiter or Earth or star or planet or Oion
or Venus or Mercury or Mars or MIky Wy
or Tel escope or astrononer
or NASA or astronaut');

nsert into news_categories val ues
(14, ' Pal eontol ogy', ' fossils or scientist
or pal eontol ogi st or dinosaur or Nature');

nsert into news_categories val ues
(15,"'Health','stemcells or enbryo or health or medical
or medicine or Wrld Health Organization
or virus or centers for disease control or vaccination');

nsert into news_categories val ues
(16, "' Natural Disasters','earthquake or hurricane or tornado');

nsert into news_categories val ues
(17,' Law , ' Supreme Court or legislation');

nsert into news_categories val ues

(18, "' Musi ¢ News','piracy or anti-piracy
or Recording Industry Association of America
or copyright or copy-protection or CDs
or nmusic or artist or song');

commit;
4. Create the CTXRULE index on the news_cat egori es query column.

create index news_cat_i dx on news_categories(query)
i ndextype is ctxsys.ctxrule;

5. To classify the documents, use the CLASSI FI ER. THI S PL/SQL procedure (a simple
procedure designed for this example).

The procedure scrolls through the news_t abl e, matches each document to a category,
and writes the categorized results into the news_i d_cat table.

create or replace package classifier as procedure this;end;/
show errors

create or replace package body classifier as

procedure this

is
v_docunent cl ob;

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 14



ORACLE’

Chapter 9
Supervised Classification

v_item nunber ;
v_doc nunber ;
begi n

for doc in (select tk, text fromnews_table)
| oop
v_docunent : = doc.text;
v_item:= 0;
v_doc := doc.tk;
for ¢ in (select queryid, category from news_categories
where matches(query, v_docunent) > 0)
| oop
vitem:=v_item+ 1;
insert into news_id_cat values (doc.tk,c.queryid);
end | oop;
end | oop;

end this;

end;

/

show errors

exec classifier.this

9.4.2 CTXRULE Parameters and Limitations

The following considerations apply to indexing a CTXRULE index:

If you use the SVM CLASSI FI ER classifier, then you may use the BASI C_LEXER,

CHI NESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER lexers. If you do not use
SVM CLASSI FI ER, then you can use only the BASI C_LEXER lexer type to index your query
set.

Filter, memory, datastore, and [no]populate parameters are not applicable to the CTXRULE
index type.

The CREATE | NDEX storage clause is supported for creating the index on the queries.
Wordlists are supported for stemming operations on your query set.

Queries for CTXRULE are similar to the CONTAI NS queries. Basic phrasing ("dog house") is
supported, as are the following CONTAI NS operators: ABOUT, AND, NEAR, NOT, OR, STEM

W THI N, and THESAURUS. Section groups are supported for using the MATCHES operator to
classify documents. Field sections are also supported; however, CTXRULE does not directly
support field queries, so you must use a query rewrite on a CONTEXT query.

You must drop the CTXRULE index before exporting or downgrading the database.

® See Also
e Oracle Text Reference for more information on lexer and classifier preferences
e "Creating a CTXRULE Index"

9.5 Supervised Classification

With supervised classification, you use the CTX_CLS. TRAI N procedure to automate the rule-
writing step. CTX_CLS. TRAI N uses a training set of sample documents to deduce classification

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 14



ORACLE

Chapter 9
Supervised Classification

rules. This training set is the major advantage over rule-based classification, where you must
write the classification rules.

However, before you can run the CTX_CLS. TRAI N procedure, you must manually create
categories and assign each document in the sample training set to a category.

@ See Also

Oracle Text Reference for more information on CTX_CLS. TRAI N

When the rules are generated, you index them to create a CTXRULE index. You can then use the
MATCHES operator to classify an incoming stream of new documents.

You can select one of the following classification algorithms for supervised classification:

« Decision Tree Supervised Classification

The advantage of this classification is that the generated rules are easily observed (and
modified).

« SVM-Based Supervised Classification

This classification uses the Support Vector Machine (SVM) algorithm for creating rules.
The advantage of this classification is that it is often more accurate than the Decision Tree
classification. The disadvantage is that it generates binary rules, so the rules themselves
are opaque.

@ See Also

» "Decision Tree Supervised Classification Example"

 "SVM-Based Supervised Classification Example"

9.5.1 Decision Tree Supervised Classification

To use Decision Tree classification, you set the preference argument of CTX_CLS. TRAI Nto
RULE_CLASSI FI ER.

This form of classification uses a decision tree algorithm for creating rules. Generally speaking,
a decision tree is a method of deciding between two (or more, but usually two) choices. In
document classification, the choices are "the document matches the training set” or "the
document does not match the training set.”

A decision tree has a set of attributes that can be tested. In this case, the attributes include:

* words from the document
» stems of words from the document (for example, the stem of running is run)
e themes from the document (if themes are supported for the language in use)

The learning algorithm in Oracle Text builds one or more decision trees for each category
provided in the training set. These decision trees are then coded into queries that are suitable
for use by a CTXRULE index. For example, one category has a training document for "Japanese
beetle," and another category has a document for "Japanese currency." The algorithm may

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 14



ORACLE

Chapter 9
Supervised Classification

create decision trees based on "Japanese," "beetle," and "currency," and then classify
documents accordingly.

The decision trees include the concept of confidence. Each generated rule is allocated a
percentage value that represents the accuracy of the rule, given the current training set. In
trivial examples, the accuracy is almost always 100 percent, but this percentage merely
represents the limitations of the training set. Similarly, the rules generated from a trivial training
set may seem to be less than what you might expect, but they sufficiently distinguish the
different categories in the current training set.

The advantage of the Decision Tree classification is that it can generate rules that users can
easily inspect and modify. The Decision Tree classification makes sense when you want to the
computer to generate the bulk of the rules, but you want to fine-tune them afterward by editing
the rule sets.

9.5.2 Decision Tree Supervised Classification Example

The following SQL example steps through creating your document and classification tables,
classifying the documents, and generating the rules. It then goes on to generate rules with
CTX_CLS. TRAI'N.

Rules are then indexed to create CTXRULE index and new documents are classified with
MATCHES.

The CTX_CLS. TRAI N procedure requires an input training document set. A training set is a set of
documents that have already been assigned a category.

After you generate the rules, you can test them by first indexing them and then using MATCHES
to classify new documents.

To create and index the category rules:

1. Create and load a table of training documents.

This example uses a simple set of three fast food documents and three computer
documents.

create table docs (
doc_i d nunmber primary key,
doc_t ext cl ob);

insert into docs val ues

(1, 'MacTavishes is a fast-food chain specializing in burgers, fries and -

shakes. Burgers are clearly their nost inportant line.");

insert into docs val ues

(2, "Burger Prince are an up-market chain of burger shops, who sell burgers -
and fries in conpetition with the Iikes of MacTavishes.');

insert into docs val ues

(3, 'Shakes 2 Go are a new venture in the | owcost restaurant arena,
specializing in senmi-liquid frozen fruit-flavored vegetable oil products.');
insert into docs val ues

(4, "TCP/IP network engineers generally need to know about routers,

firewal I's, hosts, patch cables networking etc');

insert into docs val ues

(5, "Firewalls are used to protect a network fromattack by remte hosts,
general |y across TCP/IP);

2. Create category tables, category descriptions and IDs.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 14



ORACLE

Chapter 9
Supervised Classification

-- Create category tables

-- Note that "category_descriptions” isn't really needed for this deno -
-- it just provides a descriptive name for the category nunbers in

-- doc_categories

create table category_descriptions (
cd_category nunber,
cd_description varchar2(80));

create table doc_categories (
dc_category nunber,
dc_doc_id nunber,
primary key (dc_category, dc_doc_id))
organi zati on index;

-- descriptions for categories

insert into category_descriptions values (1, 'fast food');
insert into category_descriptions values (2, 'conmputer networking');

Assign each document to a category.

In this case, the fast food documents all go into category 1, and the computer documents
go into category 2.

insert into doc_categories values (1, 1);
insert into doc_categories values (1, 2);
insert into doc_categories values (1, 3);
insert into doc_categories values (2, 4);
insert into doc_categories values (2, 5);

Create a CONTEXT index to be used by CTX_CLS. TRAI N.

To experiment with the effects of turning themes on and off, create an Oracle Text
preference for the index.

exec ctx_ddl.create_preference(' my_lex', 'basic_lexer');
exec ctx_ddl.set_attribute ("my_lex', "index_thenes', 'no');
exec ctx_ddl.set_attribute ("my_lex', "index_text', 'yes');

create index docsindex on docs(doc_text) indextype is ctxsys.context
paraneters ('lexer ny_lex');

Create the rules table that will be populated by the generated rules.

create table rul es(
rule_cat_id number,
rul e_text var char 2(4000),
rul e_confi dence nunber

);

Generate category rules.

All arguments are the names of tables, columns, or indexes previously created in this
example. The rul es table now contains the rules, which you can view.

begin
ctx_cls.train(
i ndex_name => ' docsi ndex',

doci d => "doc_id",

cattab => 'doc_cat egories',
catdocid => 'dc_doc_id",
catid => 'dc_category',
restab => "rules',

rescatid =>'rule_cat_id',

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 14



ORACLE

Chapter 9
Supervised Classification

resquery =>'rule_text',
resconfid => 'rule_confidence'
)s
end;
/

Fetch the generated rules, viewed by category.

For convenience's sake, the rul es table is joined with cat egory_descri pti ons so that you
can see the category that each rule applies to.

sel ect cd_description, rule_confidence, rule_text fromrules,
category_descriptions where cd_category = rule_cat _id;

Use the CREATE | NDEX statement to create the CTXRULE index on the previously generated
rules.

create index rules_idx on rules (rule_text) indextype is ctxsys.ctxrule;
Test an incoming document by using MATCHES.

set serveroutput on;

decl are
i nconi ng_doc cl ob;
begin
i nconi ng_doc
:= "'l have spent ny entire |ife managing restaurants selling burgers';
for ¢cin
( select distinct cd_description fromrules, category_descriptions
where cd_category = rule_cat_id
and nmatches (rule_text, inconing_doc) > 0) |oop
dbms_out put . put _| i ne(' CATEGORY: '||c.cd_description);
end | oop;
end;
/

9.5.3 SVM-Based Supervised Classification

The second method that you can use for training purposes is Support Vector Machine (SVM)
classification. SVM is a type of machine learning algorithm derived from statistical learning
theory. A property of SVM classification is the ability to learn from a very small sample set.

Using the SVM classifier is much the same as using the Decision Tree classifier, except for the
following differences:

In the call to CTX_CLS. TRAI N, use the SVM CLASSI FI ER preference instead of the
RULE_CLASSI FI ER preference. (If you do not want to modify any attributes, use the
predefined CTXSYS. SVM CLASSI FI ER preference.)

Use the NOPOPULATE keyword if you do not want to populate the CONTEXT index on the table.
The classifier uses it only to find the source of the text, by means of datastore and filter
preferences, and to determine how to process the text through lexer and sectioner
preferences.

In the generated rules table, use at least the following columns:

cat _id nunber,
type nurber,
rule bl ob;

As you can see, the generated rule is written into a BLOB column. It is therefore opaque to the
user, and unlike Decision Tree classification rules, it cannot be edited or modified. The trade-off

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 14



ORACLE

Chapter 9
Supervised Classification

here is that you often get considerably better accuracy with SVM than with Decision Tree
classification.

With SVM classification, allocated memory has to be large enough to load the SVM model;
otherwise, the application built on SVM incurs an out-of-memory error. Here is how to calculate
the memory allocation:

M ni num menory request (in bytes) = number of unique categories x number of features

exanpl e: (value of MAX_FEATURES attributes) x 8

If necessary to meet the minimum memory requirements, increase one of the following
memories:

SGA (if in shared server mode)

PGA (if in dedicated server mode)

9.5.4 SVM-Based Supervised Classification Example

This example uses SVM-based classification. The steps are essentially the same as the
Decision Tree example, except for the following differences:

Set the SVM CLASSI FI ER preference with CTX_DDL. CREATE PREFERENCE rather than setting it
in CTX_CLS. TRAIN. (You can do it either way.)

Include category descriptions in the category table. (You can do it either way.)

Because rules are opaque to the user, use fewer arguments in CTX_CLS. TRAI N.

To create a SVM-based supervised classification:

1.

Create and populate the training document table.

create table doc (id nunmber primary key, text varchar2(2000));

insert into doc values(1,'12 3 456');
insert into doc values(2,'347890);
insert into doc values(3,'abc def');
insert into doc values(4,'g hi j kI n r'y;
insert into doc values(5,'g hi j kstu yz)

Create and populate the category table.

create table testcategory (
doc_id nunber,
cat_id nunber,
cat _nanme varchar 2(100)

E

insert into testcategory values (1,1, nunber');
insert into testcategory values (2,1, nunber');
insert into testcategory values (3,2,'letter");
insert into testcategory values (4,2,'letter");
insert into testcategory values (5,2,'letter");

Create the CONTEXT index on the document table without populating it.

create index docx on doc(text) indextype is ctxsys.context
par anmet er s(' nopopul ate');

Set the SVM CLASSI FI ER.
You can also set it in CTX. CLS_TRAI'N.

exec ctx_ddl.create_preference('my_classifier','SYM CLASSIFIER );
exec ctx_ddl.set_attribute('ny_classifier',' MAX_FEATURES','100');

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 14



ORACLE

Chapter 9
Unsupervised Classification (Clustering)

5. Create the result (rule) table.

create table restab (
cat _i d number,
type nunber(3) not null,
rul e bl ob
)
6. Perform the training.

exec ctx_cls.train('docx', '"id,6'testcategory',6'doc_id,'cat_id',
‘restab','ny_classifier');

7. Create a CTXRULE index on the rules table.

exec ctx_ddl.create_preference('ny_filter',"NULL_FILTER );
create index restabx on restab (rule)

i ndextype is ctxsys.ctxrule

parameters ('filter my_filter classifier ny_classifier');

Now you can classify two unknown documents, as follows:

select cat_id, match_score(l) fromrestab
where matches(rule, '4 5 6',1)>50;

select cat_id, match_score(l) fromrestab
where matches(rule, 'f hj',1)>50;

drop tabl e doc;

drop tabl e testcategory;

drop table restab;

exec ctx_ddl.drop_preference(' my_classifier');
exec ctx_ddl.drop_preference('ny_filter');

9.6 Unsupervised Classification (Clustering)

With Rule-Based Classification, you write the rules for classifying documents yourself. With
Supervised Classification, Oracle Text writes the rules for you, but you must provide a set of
training documents that you preclassify. With unsupervised classification (also known as
clustering), you do not have to provide a training set of documents.

Clustering is performed with the CTX_CLS. CLUSTERI NG procedure. CTX_CLS. CLUSTERI NG creates
a hierarchy of document groups, known as clusters, and, for each document, returns relevancy
scores for all leaf clusters.

For example, suppose that you have a large collection of documents about animals.
CTX_CLS. CLUSTERI NG creates one leaf cluster about dogs, another about cats, another about
fish, and a fourth about bears. (The first three might be grouped under a node cluster about
pets.) Suppose further that you have a document about one breed of dogs, such as
Chihuahuas. CTX_CLS. CLUSTERI NG assigns the dog cluster to the document with a very high
relevancy score, whereas the cat cluster is assigned a lower score and the fish and bear
clusters are still assigned lower scores. After scores for all clusters are assigned to all
documents, an application can then take action based on the scores.

As noted in "Decision Tree Supervised Classification”, attributes used for determining clusters
may consist of simple words (or tokens), word stems, and themes (where supported).

CTX_CLS. CLUSTERI NG assigns output to two tables (which may be in-memory tables):

* A document assignment table showing the document’s similarity to each leaf cluster. This
information takes the form of document identification, cluster identification, and a similarity
score between the document and a cluster.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 14



ORACLE Chapter 9
Unsupervised Classification (Clustering) Example

* A cluster description table containing information about a generated cluster. This table
contains cluster identification, cluster description text, a suggested cluster label, and a
quality score for the cluster.

CTX_CLS. CLUSTERI NG uses a K- MEAN algorithm to perform clustering. Use the
KMEAN_CLUSTERI NG preference to determine how CTX_CLS. CLUSTERI NG works.

@ See Also

Oracle Text Reference for more information on cluster types and hierarchical
clustering

9.7 Unsupervised Classification (Clustering) Example

This SQL example creates a small collection of documents in the collection table and creates a
CONTEXT index. It then creates a document assignment and cluster description table, which are
populated with a call to the CLUSTERI NG procedure. The output is then viewed with a select
statement:

set serverout on

/* col l ect docunment into a table */

create table collection (id number primary key, text varchar2(4000));

insert into collection values (1, 'Oracle Text can index any docunent or textual content.');
insert into collection values (2, "Utra Search uses a craw er to access docunents.');
insert into collection values (3, 'XM. is a tag-based markup |anguage.');

insert into collection values (4, 'Oracle Database 11g XML DB treats XM

as a native datatype in the database.');

insert into collection values (5, 'There are three Oracle Text index types to cover
all text search needs.');

insert into collection values (6, 'Utra Search also provides API

for content managenent solutions.');

create index collectionx on collection(text)
i ndextype is ctxsys.context parameters(' nopopul ate');

/* prepare result tables, if you omt this step, procedure will create table automatically */
create table restab (

doci d NUMBER,

clusterid NUMVBER,

score NUMBER);

create table clusters (
clusterid NUMVBER,
descript varchar2(4000),
| abel varchar2(200),
size nunber,
qual ity_score nunber,
parent nunber);

/* set the preference */

exec ctx_ddl.drop_preference(' my_cluster');

exec ctx_ddl.create_preference(' my_cluster',' KMEAN_CLUSTERI NG );
exec ctx_ddl.set_attribute(' my_cluster',' CLUSTER NUM,"'3");

/* do the clustering */
exec ctx_output.start_log('my_log');

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 13 of 14



ORACLE Chapter 9
Unsupervised Classification (Clustering) Example

exec ctx_cls.clustering('collectionx','id ,6 'restab','clusters','ny_cluster');
exec ctx_output.end_| og;

® See Also
Oracle Text Reference for CTX_CLS. CLUSTERI NG syntax and examples

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 14



Tuning Oracle Text

Oracle Text provides ways to improve your query and indexing performance.
This chapter contains the following topics:

e Optimizing Queries with Statistics

e Optimizing Queries for Response Time

e Optimizing Queries for Throughput

«  Composite Domain Index in Oracle Text

e Performance Tuning with CDI

¢ Solving Index and Query Bottlenecks by Using Tracing

e Using Parallel Queries

¢ Tuning Queries with Blocking Operations

¢ Frequently Asked Questions About Query Performance

*  Frequently Asked Questions About Indexing Performance

¢ Frequently Asked Questions About Updating the Index

10.1 Optimizing Queries with Statistics

Query optimization with statistics uses the collected statistics on the tables and indexes in a
query to select an execution plan that can process the query in the most efficient manner. As a
general rule, Oracle recommends that you collect statistics on your base table if you are
interested in improving your query performance. Optimizing with statistics enables a more
accurate estimation of the selectivity and costs of the CONTAI NS predicate and thus a better
execution plan.

The optimizer attempts to choose the best execution plan based on the following parameters:
e The selectivity on the CONTAI NS predicate

* The selectivity of other predicates in the query

e The CPU and I/O costs of processing the CONTAI NS predicates

The following topics discuss how to use statistics with the extensible query optimizer:

e Collecting Statistics

e Query Optimization with Statistics Example

» Re-Collecting Statistics

e Deleting Statistics

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 29



ORACLE

Chapter 10
Optimizing Queries with Statistics

@® Note

Importing and exporting statistics on domain indexes, including Oracle Text indexes, is
not supported with the DBM5_STATS package. For more information on importing and
exporting statistics, see the Oracle Database PL/SQL Packages and Types
Reference.

@ See Also

Oracle Text Reference for information on the CONTAI NS query operator

10.1.1 Collecting Statistics

By default, Oracle Text uses the cost-based optimizer (CBO) to determine the best execution
plan for a query.

To enable the optimizer to better estimate costs, calculate the statistics on the table you
queried table:

ANALYZE TABLE <t abl e_name> COVPUTE STATI STI CS;

Alternatively, estimate the statistics on a sample of the table:

ANALYZE TABLE <t abl e_name> ESTI MATE STATI STICS 1000 ROAS;

or

ANALYZE TABLE <t abl e_name> ESTI MATE STATI STI CS 50 PERCENT;

You can also collect statistics in parallel with the DBMS_STATS. GATHER _TABLE_STATS procedure:
begin

DBVS_STATS. GATHER TABLE_STATS(' owner', 'table_nane',
esti mat e_per cent =>50,
bl ock_sanpl e=>TRUE,
degree=>4) ;

end

These statements collect statistics on all objects associated with t abl e_nane, including the
table columns and any indexes (b-tree, bitmap, or Text domain) associated with the table.

To re-collect the statistics on a table, enter the ANALYZE statement as many times as necessary
or use the DBMS_STATS package.

By collecting statistics on the Text domain index, the CBO in Oracle Al Database can perform
the following tasks:

- Estimate the selectivity of the CONTAI NS predicate

« Estimate the I/O and CPU costs of using the Oracle Text index (that is, the cost of
processing the CONTAI NS predicate by using the domain index)

«  Estimate the I1/O and CPU costs of each invocation of CONTAI NS

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 29



ORACLE

Chapter 10
Optimizing Queries with Statistics

Knowing the selectivity of a CONTAI NS predicate is useful for queries that contain more than one
predicate, such as in structured queries. This way the CBO can better decide whether to use
the domain index to evaluate CONTAI NS or to apply the CONTAI NS predicate as a post filter.

® See Also
*  Oracle Database SQL Language Reference for more information about the
ANALYZE statement

e Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_STATS package

10.1.2 Query Optimization with Statistics Example

The following structured query provides an example for optimizing statistics:

select score(l) fromtab where contains(txt, 'freedom, 1) > 0 and author = 'King and
year > 1960;

Assume the following:

e The author column is of type VARCHAR2 and the year column is of type NUVBER.
e A b-tree index on the aut hor column.

* The structured aut hor predicate is highly selective with respect to the CONTAI NS predicate
and the year predicate. That is, the structured predicate (author = 'King') returns a much
smaller number of rows with respect to the year and CONTAI NS predicates individually, say
5 rows returned versus 1000 and 1500 rows, respectively.

In this situation, Oracle Text can execute this query more efficiently by first scanning a b-tree
index range on the structured predicate (author = 'King'), then accessing a table by rowid, and
then applying the other two predicates to the rows returned from the b-tree table access.

@® Note

When statistics are not collected for a Oracle Text index, the CBO assumes low
selectivity and index costs for the CONTAI NS predicate.

10.1.3 Re-Collecting Statistics

After synchronizing your index, you can re-collect statistics on a single index to update the cost
estimates.

If your base table was reanalyzed before the synchronization, it is sufficient to analyze the
index after the synchronization without reanalyzing the entire table.

To re-collect statistics, enter one of the following statements:

ANALYZE | NDEX <i ndex_name> COVPUTE STATI STI CS;

ANALYZE | NDEX <i ndex_name> ESTI MATE STATI STI CS SAMPLE 50 PERCENT;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 29



ORACLE Chapter 10
Optimizing Queries for Response Time

10.1.4 Deleting Statistics

Delete the statistics associated with a table:

ANALYZE TABLE <t abl e_name> DELETE STATI STI CS;

Delete statistics on one index:

ANALYZE | NDEX <i ndex_nane> DELETE STATI STI CS;

10.2 Optimizing Queries for Response Time

By default, Oracle Text optimizes queries for throughput so that queries return all rows in the
shortest time possible.

However, in many cases, especially in a web application, you must optimize queries for
response time, because you are only interested in obtaining the first few hits of a potentially
large hitlist in the shortest time possible.

The following sections describe some ways to optimize CONTAI NS queries for response time:

e Other Factors that Influence Query Response Time
 Improved Response Time with FIRST ROWS(n) Hint for ORDER BY Queries
 Improved Response Time Using the DOMAIN INDEX SORT Hint

 Improved Response Time using Local Partitioned CONTEXT Index

 Improved Response Time with Local Partitioned Index for Order by Score

 Improved Response Time with Query Filter Cache

 Improved Response Time using BIG 10 Option of CONTEXT Index
* Improved Response Time using SEPARATE OFFSETS Option of CONTEXT Index

 Improved Response Time Using the STAGE ITAB, STAGE ITAB_MAX ROWS, and
STAGE_ITAB_PARALLEL Options of CONTEXT Index

10.2.1 Other Factors That Influence Query Response Time

The following factors can influence query response time:

*  Collection of table statistics

e Memory allocation

e Sorting

e Presence of large object (LOB) columns in your base table
e Partitioning

e Parallelism

e The number term expansions in your query

@ See Also

"Frequently Asked Questions About Query Performance"

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 29



ORACLE

Chapter 10
Optimizing Queries for Response Time

10.2.2 Improved Response Time with the FIRST_ROWS(n) Hint for ORDER

BY Queries

When you need the first rows of an ORDER BY query, Oracle recommends that you use the cost-
based FI RST_ROAS( n) hint.

@® Note

As the FI RST_ROAS(n) hint is cost-based, Oracle recommends that you collect
statistics on your tables before you use this hint.

You use the FI RST_ROAS( n) hint in cases where you want the first n number of rows in the
shortest possible time. For example, consider the following PL/SQL block that uses a cursor to
retrieve the first 10 hits of a query and the FI RST_ROAS(n) hint to optimize the response time:

decl are
cursor cis

select /*+ FIRST_ROAS(10) */ article_id fromarticles_tab
where contains(article, 'Omwphagia')>0 order by pub_date desc;

begin

for i inc

| oop

insert into t_s values(i.pk, i.col);
exit when c% owcount > 11;

end | oop;

end;
/

The ¢ cursor is a SELECT statement that returns the rowids that contain the word omophagia in
sorted order. The code loops through the cursor to extract the first 10 rows. These rows are
stored in the temporary t _s table.

With the FI RST_ROWS( n) hint, the optimizer instructs the Oracle Text index to return rowids in
score-sorted order when the cost of returning the top-N hits is lower.

Without the hint, Oracle Al Database sorts the rowids after the Oracle Text index returns all
rows in unsorted order that satisfy the CONTAI NS predicate. Retrieving the entire result set takes
time.

Because only the first 10 hits are needed in this query, using the hint results in better
performance.

® Note

Use the FI RST_ROWS( n) hint when you need only the first few hits of a query. When
you need the entire result set, do not use this hint as it might result in poor
performance.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 29



ORACLE

Chapter 10
Optimizing Queries for Response Time

10.2.3 Improved Response Time Using the DOMAIN_INDEX_SORT Hint

You can also optimize for response time by using the related DOVAI N_I| NDEX_SORT hint. Like
FI RST_ROAS(n), when queries are optimized for response time, Oracle Text returns the first
rows in the shortest time possible.

For example, you can use this hint:

sel ect /*+ DOMAI N_| NDEX_SORT */ pk, score(1l), col fromctx_tab
where contains(txt_col, "test', 1) > 0 order by score(l) desc;

However, this hint is only rule-based. This means that Oracle Text always chooses the index
which satisfies the ORDER BY clause. This hint might result in suboptimal performance for
queries where the CONTAI NS clause is very selective. In these cases, Oracle recommends that
you use the FI RST_ROWS( n) hint, which is fully cost-based.

10.2.4 Improved Response Time Using the Local Partitioned CONTEXT

Index

Partitioning your data and creating local partitioned indexes can improve your query
performance. On a partitioned table, each partition has its own set of index tables. Effectively,
there are multiple indexes, but the results are combined as necessary to produce the final
result set.

Create the CONTEXT index with the LOCAL keyword:

CREATE | NDEX i ndex_name ON tabl e_nane (col um_nane)
| NDEXTYPE | S ct xsys. cont ext

PARANETERS ('...")

LOCAL

With partitioned tables and indexes, you can improve performance of the following types of
queries:

* Range Search on Partition Key Column: This query restricts the search to a particular
range of values on a column that is also the partition key. For example, consider a query
on a date range:

SELECT storyid FROM storytab WHERE CONTAI NS(story, 'oliver')>0 and pub_date BETWEEN
'1-0CT-93" AND ' 1-NOV-93';

If the date range is quite restrictive, it is very likely that the query can be satisfied by only
looking in a single partition.

* ORDER BY Partition Key Column: This query requires only the first n hits, and the ORDER
BY clause names the partition key. Consider an ORDER BY query on a pri ce column to fetch
the first 20 hits:

SELECT * FROM (
SELECT itenmid FROMitemtab WHERE CONTAINS(item desc, 'cd player')

>0 ORDER BY price)
VWHERE ROANUM < 20;

In this example, with the table partitioned by price, the query might only need to get hits
from the first partition to satisfy the query.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 29



ORACLE Chapter 10
Optimizing Queries for Response Time

10.2.5 Improved Response Time with the Local Partitioned Index for Order
by Score

The DOVAI N_I NDEX_SORT hint on a local partitioned index might result in poor performance,
especially when you order by score. All hits to the query across all partitions must be obtained
before the results can be sorted.

Instead, use an inline view when you use the DOVAI N_I NDEX_SORT hint. Specifically, use the
DOVAI N_I NDEX_SORT hint to improve query performance on a local partitioned index under the
following conditions:

e The Oracle Text query itself, including the order by SCORE() clause, is expressed as an in-
line view.

e The Oracle Text query inside the in-line view contains the DOVAI N_| NDEX_SORT hint.

e The query on the in-line view has a ROWNUM predicate that limits the number of rows to fetch
from the view.

For example, the following Oracle Text query and local Oracle Text index are created on a
partitioned doc_t ab table:

sel ect doc_id, score(1l) fromdoc_tab
where contains(doc, 'oracle', 1)>0
order by score(1) desc;

If you are interested in fetching only the top 20 rows, you can rewrite the query as follows:

select * from
(select /*+ DOVAI N_I| NDEX_SORT */ doc_id, score(l) fromdoc_tab
where contains(doc, 'oracle', 1)>0 order by score(1l) desc)
where rownum < 21;

@ See Also

Oracle Database SQL Language Reference for more information about the EXPLAI N
PLAN statement

10.2.6 Improved Response Time with the Query Filter Cache

Oracle Text provides a cache layer called the query filter cache that you can use to cache the
query results. The query filter cache is sharable across queries. Multiple queries can reuse
cached query results to improve the query response time.

Use the ct xfi |l t ercache operator to specify which query results to cache. The following
example uses the operator to store the results of the conmon_pr edi cat e query in the cache:

select * fromdocs where contains(txt, 'ctxfiltercache((common_predicate), FALSE)')>0;

In this example, the cached results of the cormon_pr edi cat e query are reused by the
new_query query, to improve the query response time.

select * fromdocs where contains(txt, 'new query & ctxfiltercache((comon_predicate),
FALSE)')>0;

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 29



ORACLE Chapter 10
Optimizing Queries for Response Time

@® Note

*  You can specify the size of the query filter cache by using the basic
query filter _cache_size storage attribute.

« Thectx filter_cache_statistics view provides various statistics about the
query filter cache.

@® Note

The CTXFI LTERCACHE query operator was designed to speed up commonly-used
expressions in queries. In Oracle Database Release 21c, this function is replaced by
other internal improvements. The CTXFI LTERCACHE operator is deprecated (and will
pass through its operands to be run as a normal query). Because they no longer have
a function, the view CTX_FI LTER CACHE_STATI STI CSis also deprecated, and also the
storage attribute QUERY_FI LTER CACHE_SI ZE.

® See Also
Oracle Text Reference for more information about:
» ctxfiltercache operator
e query_filter_cache_si ze basic storage attribute

o« ctx_filter_cache_statistics view

10.2.7 Improved Response Time Using the BIG_10 Option of CONTEXT
Index

Oracle Text provides the Bl G_| O option for improving the query performance for the CONTEXT
indexes that extensively use 10 operations.

The query performance improvement is mainly for data stored on rotating disks, not for data
stored on solid state disks.

When you enable the Bl G_| Ooption, a CONTEXT index creates token type pairs with one large
object (LOB) data type for each unique token text. Tokens with the same text but different
token types correspond to different rows in the $I table.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 29



ORACLE

Chapter 10
Optimizing Queries for Response Time

@® Note

The Bl G_| Oattribute of the CONTEXT indextype is deprecated with Oracle Al Database
26ai, and can be disabled or removed in a future release.

Oracle recommends that you allow this value to be set to its default value of N. BI G_| O
was introduced to reduce the cost of seeks when index postings exceeded 4KB in
length. However, the internal code is relatively inefficient, and the attribute cannot be
combined with newer index options. Seek cost is much less relevant for solid state
disks or non-volatile memory devices (NVMe), and seek cost is irrelevant when
postings are cached. This setting is therefore of little benefit for most indexes.

The indexes with the Bl G_| Ooption enabled should have the token LOBs created as
SecureFile LOBs, so that the data is stored sequentially in multiple blocks. This method
improves the response time of the queries, because the queries can now perform longer
sequential reads instead of many short reads.

@® Note

If you use SecureFiles, you must set the COVMPATI BLE setting to 11.0 or higher. In
addition, you must create the LOB on an automatic segment space management
(ASSM) tablespace. When you migrate the existing Oracle Text indexes to
SecureFiles, use an ASSM tablespace. To help migrate the existing indexes to
SecureFiles, you can extend ALTER | NDEX REBUI LD to provide storage preferences
that only affect the $I table.

To create a CONTEXT index with the Bl G_| Oindex option, first create a basic storage preference
by setting the value of its Bl G_| Ostorage attribute to YES, and then specify this storage
preference while creating the CONTEXT index.

The following example creates a basic nyst or e storage preference and sets the value of its
Bl G | Ostorage attribute to YES;

exec ctx_ddl.create_preference(' mystore', 'BASIC STORAGE );
exec ctx_ddl.set_attribute('nystore', 'BIGIO, 'YES);

To disable the Bl G_| Ooption, update the existing storage preference (nyst or e) by setting the
value of its Bl G_| Ostorage attribute to NO, and then rebuild the index.

exec ctx_ddl.set_attribute('nystore', 'BIGIO, 'NO);
alter index idx rebuild('replace storage nystore');

A\ Warning

Do not use the replace metadata operation to disable the Bl G_| Oindex option. It can
leave the index in an inconsistent state.

To enable the Bl G_| Ooption for a partitioned index without rebuilding the index, modify the
basic storage preference by setting the value of its Bl G_| O storage attribute to YES, replace the
global index metadata using ct x_ddl . repl ace_i ndex_net adat a, and then call

optim ze_i ndex in REBUI LD mode for each partition of the partitioned index table.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 29



ORACLE

Chapter 10
Optimizing Queries for Response Time

The following example enables the Bl G_| Ooption for the i dx partitioned index:

exec ctx_ddl.set_attribute('nystore', 'BIGIO, 'YES);
exec ctx_ddl.replace_index_netadata('idx', 'replace netadata storage nystore');
exec ctx_ddl.optimze_index("idx', 'rebuild , part_nane=>partl');

® Note

If a procedure modifies the existing index tables with only the Bl G_| O option enabled,
then it will not result in reindexing of the data.

@® Note

Because the Bl G_| Oindex option performs longer sequential reads, the queries that
use the Bl G_| Oindex option require a large program global area (PGA) memory.

10.2.8 Improved Response Time Using the SEPARATE_OFFSETS Option
of the CONTEXT Index

Oracle Text provides the SEPARATE_OFFSETS option to improve the query performance for the
CONTEXT indexes that use IO operations, and whose queries are mainly single-word or Boolean
queries.

The SEPARATE_OFFSETS option creates a different postings list structure for the tokens of type
TEXT. Instead of interspersing docids, frequencies, info-length (length of the offsets
information), and the offsets in the postings list, the SEPARATE OFFSETS option stores all docids
and frequencies at the beginning of the postings list, and all info-lengths and offsets at the end
of the postings list. The header at the beginning of the posting contains the information about
the boundary points between docids and offsets. Because separation of docids and offsets
reduces the time for the queries to read the data, it improves the query response time.

To create a CONTEXT index with the SEPARATE OFFSETS option, first create a basic storage
preference by setting the value of its SEPARATE_OFFSETS storage attribute to T. Next, specify
this storage preference when you create the CONTEXT index.

The following example creates a basic nyst or e storage preference and sets the value of its
SEPARATE_OFFSETS storage attribute to T:

exec ctx_ddl.create_preference(' mystore', 'BASIC STORAGE );
exec ctx_ddl.set_attribute(' mystore', 'SEPARATE OFFSETS , 'T');

To disable the SEPARATE OFFSETS option, update the existing storage preference (nyst or e) by
setting the value of its SEPARATE_OFFSETS storage attribute to F, and then rebuild the index.

exec ctx_ddl.set_attribute(' mystore', 'SEPARATE OFFSETS , 'F');
alter index idx rebuild('replace storage nystore');

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 29



ORACLE Chapter 10
Optimizing Queries for Response Time

A\ Warning

Do not use replace metadata operation to disable the SEPARATE_OFFSETS index option,
as it can leave the index in an inconsistent state.

To enable the SEPARATE_OFFSETS option for a partitioned index without rebuilding the index,
modify the basic storage preference by setting the value of its SEPARATE_OFFSETS storage
attribute to T, replace the global index metadata by using ct x_ddl| . repl ace_i ndex_net adat a,
and then call opti m ze_i ndex in REBUILD mode for each partition in the partitioned index
table.

The following example enables the SEPARATE _OFFSETS option for the partitioned i dx index:

exec ctx_ddl.set_attribute(' mystore', 'SEPARATE OFFSETS , 'T');

exec ctx_ddl.replace_i ndex_netadata('idx', 'replace storage mystore');
exec ctx_ddl.optimze_index("idx', 'rebuild , part_nanme=>partl');
® Note

If a procedure modifies the existing index tables with only the SEPARATE OFFSETS
option enabled, then the data is not reindexed.

10.2.9 Improved Response Time Using the STAGE_ITAB,
STAGE_ITAB_MAX_ROWS, and STAGE_ITAB_PARALLEL Options of
CONTEXT Index

Oracle Text provides the STAGE | TAB option for improving the query performance for CONTEXT
and search indexes that extensively use insert, update, and delete operations for near real-
time indexing.

The STAGE_| TAB option is the default index option only for search indexes.

If you do not use the STAGE | TAB index option, then when you add a new document to the
CONTEXT index, SYNC_| NDEX is called to make the documents searchable. This call creates new
rows in the $I table, and increases the fragmentation in the $I table. The result is deterioration
of the query performance.

When you enable the STAGE | TAB index option, the following happens:

« Information about the new documents is stored in the $G staging table, not in the $I table.
This storage ensures that the $I table is not fragmented and does not deteriorate the
query performance.

e The $Hb-tree index is created on the $Gtable. The $Gtable and $H b-tree index are
equivalent to the $I table and $X b-tree index.

Rows are merged automatically from the $Gtable to the $| table when the number of rows

in $G exceeds the storage setting, STAGE | TAB_MAX_ROWE (10K by default). You can also force
an immediate merge of the rows from $Gto $I by running index optimization in MERGE
optimization mode.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 11 of 29



ORACLE Chapter 10
Optimizing Queries for Response Time

@® Note

The $Gtable is stored in the KEEP pool. To improve query performance, you should
allocate sufficient KEEP pool memory and maintain a large enough $Gtable size by
using the new st age_itab_max_r ows option.

To create a CONTEXT index with the STAGE_| TAB index option, first create a basic storage
preference by setting the value of its STAGE | TAB storage attribute to YES. Next, specify this
storage preference when you create the CONTEXT index.

The following example creates a basic nyst or e storage preference and sets the value of its
STAGE_| TAB storage attribute to YES:

exec ctx_ddl.create_preference(' mystore', 'BASIC STORAGE );
exec ctx_ddl.set_attribute(' nmystore', 'STAGE_ITAB, 'YES);

You can also enable the STAGE | TAB index option for an existing nonpartitioned CONTEXT index
by using the rebuild option of the ALTER | NDEX statement.

alter index IDX rebuild paraneters('replace storage mystore');

To disable the STAGE_| TAB option for a nonpartitioned CONTEXT index, update the existing
storage preference (myst or e) by setting the value of its STAGE | TAB storage attribute to NO, and
then rebuild the index.

exec ctx_ddl.set_attribute(' mystore', 'STAGE_ITAB', 'NO);
alter index idx rebuild paranmeters('replace storage mystore');

This operation runs the optimization process by using the MERGE optimization mode and then
drops the $Gtable.

The rebuild option of the ALTER | NDEX statement does not work with the partitioned CONTEXT
index for enabling and disabling the STAGE_| TAB option.

The following example enables the STAGE | TAB option for the partitioned CONTEXT i dx index:

alter index idx parameters('add stage_itab');

The following example disables the STAGE | TAB option for the partitioned CONTEXT i dx index:

alter index idx paraneters('renove stage_itab');

The contents of $Gwere automatically moved to $I during index synchronization when $G had
more than 1 million rows in Oracle Database 12c Release 2 (12.2) or 100K rows in Oracle
Database Release 18c. Starting with Oracle Database Release 21c, the contents of $Gare
automatically moved to $I during index synchronization when $G has more than 10K rows by
default. This value is controlled by the STAGE_| TAB_MAX_ROAS attribute of the STORAGE
preference.

@® Note

To use the STAGE_| TAB index option for a CONTEXT index, you must specify the
g_i ndex_cl ause and g_t abl e_cl ause BASI C_STORAGE preferences.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 29



ORACLE Chapter 10
Optimizing Queries for Throughput

The query performance is deteriorated when $Gtable is too fragmented. To avoid deterioration,
starting with Oracle Database Release 18c, Oracle Text provides automatic background
optimize merge for every index or partition. To enable automatic background optimize merge,
you must set the STAGE_| TAB storage preference attribute to TRUE, and you must create the
index with a storage preference which uses the STAGE_| TAB attribute.

By default, if you had enabled STACGE | TAB in indexes before you upgraded to Oracle Database
Release 18c, then STAGE | TAB_AUTO OPT is not enabled. If STAGE | TAB and AUTO OPTI M ZE are
enabled in existing indexes, then you must disable AUTO OPTI M ZE before you enable

STAGE_| TAB_AUTO _OPT. Starting with Oracle Database Release 19c¢, STAGE | TAB_AUTO OPT is
set to TRUE by default for automatic background optimize merge. If you set

STACGE_| TAB_AUTO _OPT to FALSE, the merge is run as part of SYNC | NDEX. It is recommended to
set STAGE_| TAB and STAGE_| TAB_AUTO _OPT to TRUE instead of using AUTO_OPTI M ZE.

@® Note

In Oracle Database Release 21c, the procedures ADD_AUTO OPTI M ZE and
REMOVE_AUTO_OPTI M ZE, and the views CTX_AUTO OPTI M ZE_| NDEXES,
CTX_USER_AUTO_OPTI M ZE_| NDEXES and CTX_AUTO_OPTI M ZE_STATUS are deprecated.

The following example creates a basic nyst or e storage preference and sets the value of its
STAGE_| TAB_AUTO_OPT storage attribute to TRUE:

exec ctx_ddl.create_preference(' mystore', 'basic_storage');

exec ctx_ddl.set_attribute(' mystore', 'stage_itab', 'TRUE);

exec ctx_ddl.set_attribute('mystore', 'stage itab_auto_opt', 'TRUE);
exec ctx_ddl.set_attribute('nmystore', 'stage_itab_parallel', 16);

Related Topics

e Oracle Text Reference

10.3 Optimizing Queries for Throughput

When you optimize a query for throughput, the default behavior returns all hits in the shortest
time possible.

Here is how you can explicitly optimize queries for throughput:

e CHOOSE and ALL ROWS Modes: By default, you optimize queries with the CHOOSE and
ALL_ROAS modes. Oracle Text returns all rows in the shortest time possible.

*  FIRST_ROWS(n) Mode: In FI RST_ROAS( n) mode, the optimizer inOracle Al Database
optimizes for fast response time by having the Text domain index return score-sorted rows,
if possible. This is the default behavior when you use the FI RST_ROAS(n) hint.

If you want to optimize throughput with FI RST_ROWS( n), then use the
DOVAI N_I NDEX_NO_SORT hint. Better throughput means that you are interested in getting all
query rows in the shortest time possible.

The following example achieves better throughput by not using the Text domain index to
return score-sorted rows. Instead, Oracle Text sorts the rows after all rows that satisfy the
CONTAI NS predicate are retrieved from the index:

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 13 of 29



ORACLE Chapter 10
Composite Domain Index in Oracle Text

select /*+ FI RST_ROAS(10) DOWVAI N_I NDEX_NO SORT */ pk, score(l), col fromctx_tab
where contains(txt_col, "test', 1) > 0 order by score(l) desc;

@ See Also

Oracle Database SQL Tuning Guide for more information about the query optimizer
and using hints such as FI RST_ROAS(n) and CHOCSE

10.4 Composite Domain Index in Oracle Text

The Composite Domain Index (CDI) feature of the Extensibility Framework in Oracle Al
Database enables structured columns to be indexed by Oracle Text. Therefore, both text and
one or more structured criteria can be satisfied by one single Oracle Text index row source.
Performance for the following types of queries is improved:

e Oracle Text query with structured criteria in the SQL WHERE clause
e Oracle Text query with structured ORDER BY criteria
e A combination of the previous two query types

As with concatenated b-tree indexes or bitmap indexes, applications experience a slowdown in
data manipulation language (DML) performance as the number of FI LTER BY and ORDER BY
columns increases. Where SCORE-sort pushdown is optimized for response time, the structured
sort or combination of SCORE and structured sort pushdown is also optimized for response time,
but not for throughput. However, using DOVAI N_| NDEX_SORT or FI RST_ROWS( n) hints to force the
sort to be pushed into the CDI while fetching the entire hitlist may result in poor query response
time.

10.5 Performance Tuning with CDI

Because you can map a FI LTER BY column to MDATA, you can optimize query performances for
equality searches by restricting the supported functionality of RANGE and LI KE. However,
Oracle does not recommend mapping a FI LTER BY column to MDATA if the FI LTER BY column
contains sequential values or has very high cardinality. Doing so can result in a very long and
narrow $I table and reduced $X performance. One example of such a sequential column might
be one that uses the DATE stamp. For such sequential columns, mapping to SDATA is
recommended.

Use the following hints to push or not push the SORT and FI LTER BY predicates into the CDI:

- DOMAI N_I NDEX_SORT: The query optimizer tries to push the applicable sorting criteria into
the specified CDI.

*  DOVAI N_I NDEX_NO_SCRT: The query optimizer tries not to push sorting criteria into the
specified CDI.

e DOMAI N_I NDEX_FI LTER(table name index name): The query optimizer tries to push the
applicable FI LTER BY predicates into the specified CDI.

< DOMAI N_I NDEX_NO FI LTER(table name index name): The query optimizer does not try to
push the applicable FI LTER BY predicate(s) into the specified CDI.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 29



ORACLE

Chapter 10
Solving Index and Query Bottlenecks by Using Tracing

@® Note

The domai n_i ndex_filter hint does not force the query optimizer to use CDI. Instead,
if the CBO chooses to use the CDI, then it should also push the filter predicate into the
index. To force the query optimizer to choose the CDI index, you additionally need to
use the | NDEX hint.

Example 10-1 Performance Tuning an Oracle Text Query with CDI Hints
The following example performs an optimized query on the books table.

SELECT booki d, pub_date, source FROM
( SELECT /*+ domai n_i ndex_sort domai n_i ndex_filter(books books_ctxcdi) */ bookid,
pub_date, source
FROM books
VWHERE CONTAI NS(text, 'aaa',1)>0 AND bookid >= 80
ORDER BY PUB_DATE desc nulls last, SOURCE asc nulls last, score(l) desc)
VWHERE r ownum < 20;

10.6 Solving Index and Query Bottlenecks by Using Tracing

Tracing enables you to identify bottlenecks in indexing and querying. Oracle Text provides a
set of predefined traces.

Each trace is identified by a uniqgue number. CTX_OUTPUT includes a symbol for this number.
Each trace measures a specific numeric quantity, such as the number of $| rows selected
during text queries.

Traces are cumulative counters, so usage is as follows:

1. The user enables a trace.

2. The user performs one or more operations. Oracle Text measures activities and
accumulates the results in the trace.

3. The user retrieves the trace value, which is the total value across all operations done in
step 2.

4. The user resets the trace to 0.
5. The user starts over at Step 2.

So, for instance, if in step 2 the user runs two queries, and query 1 selects 15 rows from $I ,
and query 2 selects 17 rows from $I, then in step 3 the value of the trace is 32 (15 + 17).

Traces are associated with a session—they can measure operations that take place within a
single session, and, conversely, cannot make measurements across sessions.

During parallel synchronization or optimization, the trace profile is copied to the secondary
sessions if and only if tracing is currently enabled. Each secondary session accumulates its
own traces and implicitly writes all trace values to its logfile before termination.

Related Topics

e Oracle Text Reference

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 15 of 29



ORACLE Chapter 10
Using Parallel Queries

10.7 Using Parallel Queries

Oracle Text supports parallel queries on a local CONTEXT index and across Oracle Real
Application Clusters (Oracle RAC) nodes.

In general, parallel queries are optimal for Decision Support System (DSS). They are also
optimal for analytical systems that have large data collections, multiple CPUs with a low
number of concurrent users, or Oracle RAC nodes.

Related Topics

e Parallel Queries on a Local Context Index
Parallel query refers to the parallelized processing of a local CONTEXT index.

» Parallelizing Queries Across Oracle RAC Nodes
Oracle Real Application Clusters (Oracle RAC) enables you to improve query throughput
and scalability as the query load increases.

10.7.1 Parallel Queries on a Local Context Index

Parallel query refers to the parallelized processing of a local CONTEXT index.

Based on the parallel degree of the index and various system attributes, Oracle determines the
number of parallel query workers to be spawned to process the index. Each parallel query
worker processes one or more index partitions. This default query behavior applies to local
indexes that are created in parallel.

However, for heavily loaded systems with a high number of concurrent users, query throughput
is usually not effective with parallel query; if the query is run serially, the top-N hits can usually
be satisfied by the first few partitions. For example, take the typical top-N text queries with an
ORDER BY partition key column:

select * from(
select story id fromstories_tab where contains(...)>0 order by
publication_date desc)
where rownum <= 10;

These text queries generally do not perform well with a parallel query.

You can disable parallel querying after a parallel index operation with an ALTER | NDEX
statement:

Al ter index <text index nane> NOPARALLEL;
Al ter index <text index nane> PARALLEL 1;

You can also enable or increase the parallel degree:

Al ter index <text index name> parallel < parallel degree >;

10.7.2 Parallelizing Queries Across Oracle RAC Nodes

Oracle Real Application Clusters (Oracle RAC) enables you to improve query throughput and
scalability as the query load increases.

You can achieve further improvements in Oracle Text performance by physically partitioning
the text data and Oracle Text indexes (using local partitioned indexes) and ensuring that
partitions are handled by separate Oracle RAC nodes. This way, you avoid duplication of the

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 16 of 29



ORACLE

Chapter 10
Tuning Queries with Blocking Operations

cache contents across multiple nodes and, therefore, maximize the benefit of Oracle RAC
cache fusion.

Oracle supports database object-level affinity, which makes it much easier to allocate index
objects (3| and $R tables) to particular nodes.

Although Oracle RAC offers solutions for improving query throughput and performance, it does
not necessarily enable you to continue to get the same performance improvements as you
scale up the data volumes. You are more likely to see improvements by increasing the amount
of memory available to the system global area (SGA) cache or by partitioning your data so that
gueries do not have to hit all table partitions in order to provide the required set of query
results.

10.8 Tuning Queries with Blocking Operations

If you issue a query with more than one predicate, you can cause a blocking operation in the
execution plan. For example, consider the following mixed query:

sel ect docid fromnytab where contains(text, 'oracle', 1) >0
AND colA > 5
AND col B > 1
AND col C > 3;

Assume that all predicates are unselective and colA, colB, and colC have bitmap indexes. The
CBO in Oracle Al Database chooses the following execution plan:

TABLE ACCESS BY ROW DS
Bl TMAP CONVERSI ON TO ROW DS
Bl TVAP AND
Bl TMAP | NDEX COLA BMWX
Bl TMAP | NDEX COLB_BMX
Bl TMAP | NDEX COLC_BMWX
Bl TMAP CONVERSI ON FROM ROW DS
SORT ORDER BY
DOVAI N | NDEX MYl NDEX

Because Bl TMAP AND is a blocking operation, Oracle Text must temporarily save the rowid and
score pairs returned from the Oracle Text domain index before it runs the Bl TMAP AND
operation.

Oracle Text attempts to save these rowid and score pairs in memory. However, when the size
of the result set exceeds the SORT_AREA S| ZE initialization parameter, Oracle Text spills these
results to temporary segments on disk.

Because saving results to disk causes extra overhead, you can improve performance by
increasing the SORT_AREA_SI ZE parameter.

alter session set SORT_AREA SIZE = <new nenory size in bytes>;

For example, set the buffer to approximately 8 megabytes.

alter session set SORT_AREA S| ZE = 8300000;

@ See Also

Oracle Database Performance Tuning Guide and Oracle Database Reference for
more information on SORT_AREA S| ZE

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 17 of 29



ORACLE’

Chapter 10
Frequently Asked Questions About Query Performance

10.9 Frequently Asked Questions About Query Performance

This section answers some of the frequently asked questions about query performance.

What is Query Performance?

What is the fastest type of text query?

Should | collect statistics on my tables?

How does the size of my data affect queries?

How does the format of my data affect queries?

What is a functional versus an indexed lookup?

What tables are involved in queries?

How is $R contention reduced?

Does sorting the results slow a text-only query?

How do | make an ORDER BY score query faster?

Which memory settings affect querying?

Does out-of-line LOB storage of wide base table columns improve performance?

How can | make a CONTAINS query on more than one column faster?

Is it OK to have many expansions in a query?

How can local partition indexes help?

Should | query in parallel?

Should | index themes?
When should | use a CTXCAT index?
When is a CTXCAT index NOT suitable?

What optimizer hints are available and what do they do?

10.9.1 What is query performance?

Answer: There are two measures of query performance:

Response time: The time to get an answer to an individual query

Throughput: The number of queries that can be run in any given time period; for example,
gueries each second

These two measures are related, but they are not the same. In a heavily loaded system, you
want maximum throughput, whereas in a relatively lightly loaded system, you probably want
minimum response time. Also, some applications require a query to deliver all hits to the user,
whereas others only require the first 20 hits from an ordered set. It is important to distinguish
between these two scenarios.

10.9.2 What is the fastest type of Oracle Text query?

Answer: The fastest type of query meets the following conditions:

Single CONTAI NS clause

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 18 of 29



ORACLE Chapter 10
Frequently Asked Questions About Query Performance

*  No other conditions in the WHERE clause
No ORDERBY clause

* Returns only the first page of results (for example, the first 10 or 20 hits)

10.9.3 Should | collect statistics on my tables?

Answer: Yes. Collecting statistics on your tables enables Oracle Text to do cost-based
analysis. This helps Oracle Text choose the most efficient execution plan for your queries.

If your queries are always pure text queries (no structured predicate and no joins), you should
delete statistics on your Oracle Text index.

10.9.4 How does the size of my data affect queries?

Answer: The speed at which the Oracle Text index can deliver rowids is not affected by the
actual size of the data. Oracle Text query speed is related to the number of rows that must be
fetched from the index table, the number of hits requested, the number of hits produced by the
query, and the presence or absence of sorting.

10.9.5 How does the format of my data affect queries?

Answer: The format of the documents (plain ASCII text, HTML, or Microsoft Word) should
make no difference to query speed. The documents are filtered to plain text at indexing time,
not query time.

The cleanliness of the data makes a difference. Spell-checked and subedited text for
publication tends to have a much smaller total vocabulary (and therefore size of the index
table) than informal text such as email, which contains spelling errors and abbreviations. For a
given index memory setting, the extra text takes up memory, creates more fragmented rows,
and adversely affects query response time.

10.9.6 What is the difference between an indexed lookup and a functional
lookup

Answer: The kernel can query the Oracle Text index with an indexed lookup and a functional
lookup. In the indexed lookup, the first and most common case, the kernel asks the Oracle Text
index for all rowids that satisfy a particular text search. These rowids are returned in batches.

In the functional lookup, the kernel passes individual rowids to the Oracle Text index and asks
whether that particular rowid satisfies a certain text criterion. The functional lookup is most
commonly used with a very selective structured clause, so that only a few rowids must be
checked against the Oracle Text index. Here is an example of a search where a functional
lookup is useful:

SELECT I D, SCORE(1), TEXT FROM MYTABLE

WHERE START_DATE = '21 Cct 1992 <- highly selective
AND CONTAINS (TEXT, 'commonword') > 0 <- unsel ective

Functional invocation is also used for an Oracle Text query that is ordered by a structured
column (for example date, price) and if the Oracle Text query contains unselective words.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 19 of 29



ORACLE Chapter 10
Frequently Asked Questions About Query Performance

10.9.7 What tables are involved in queries?

Answer: All queries look at the index token table. The table’s name has the form of
DR$i ndexnane$l and contains the list of tokens (TOKEN TEXT column) and the information about
the row and word positions where the token occurs (TOKEN_| NFO column).

The row information is stored as internal docid values that must be translated into external
rowid values. The table that you use depends on the type of lookup:

*  For functional lookups, use the $K table, DR$i ndexname$K. This simple Index Organized
Table (IOT) contains a row for each docid/rowid pair.

e Forindexed lookups, use the $Rtable, DR$i ndexname$R. This table holds the complete list
of rowids in a BLOB column.

Starting with Oracle Database 12¢ Release 2 (12.2), a new storage attribute, SMALL_R_ROW
was introduced to reduce the size of the $R row. It populates $R rows on demand instead of
creating 22 static rows, thereby reducing the Data Manipulation Language contention. The
contention happens when parallel insert, update, and delete operations try to lock the same $R
row.

You can easily find out whether a functional or indexed lookup is being used by examining a
SQL trace and looking for the $K or $R tables.

@® Note

These internal index tables are subject to change from release to release. Oracle
recommends that you do not directly access these tables in your application.

10.9.8 How is the $R table contention reduced?

The $R contention during base table delete and update operations has become a recurring
theme over the past few years. Currently, each $Rindex table has 22 static rows, and each row
can contain up to 200 million rowids. The contention happens when the parallel insert, update,
and delete operations try to lock the same $R row for insert or delete operations. The following
enhancements made during this release reduce the contention:

¢ The maximum number of rowids that each $R row can contain is 70,000, which translates
to 1 MB of data stored on each row. To use this feature, you must set the SMALL_R _ROW
storage attribute.

e The $Rrows are created on demand instead of just populating a pre-determined number of
rows.

10.9.9 Does sorting the results slow a text-only query?

Answer: Yes, it certainly does.

If Oracle Text does not sort, then it can return results as it finds them. This approach is quicker
when the application needs to display only a page of results at a time.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 20 of 29



ORACLE Chapter 10
Frequently Asked Questions About Query Performance

10.9.10 How do | make an ORDER BY score query faster?

Answer: Sorting by relevance (SCORE( n) ) can be fast if you use the FI RST_ROAS( n) hint. In this
case, Oracle Text performs a high-speed internal sort when fetching from the Oracle Text index
tables.

Here is an example of this query:

SELECT /*+ FI RST_ROWS(10) */ ID, SCORE(1), TEXT FROM nytable
WHERE CONTAINS ( TEXT, 'searchterm, 1) >0
ORDER BY SCORE(1) DESC,

It is important to note that, there must be no other criteria in the WHERE clause, other than a
single CONTAI NS.

10.9.11 Which memory settings affect querying?

Answer: For querying, you want to strive for a large system global area (SGA). You can set
these SGA parameters in your Oracle Database initialization file. You can also set these
parameters dynamically.

The SORT_AREA S| ZE parameter controls the memory that is available for sorting ORDER BY
gueries. You should increase the size of this parameter if you frequently order by structured
columns.

@ See Also

*  Oracle Database Administrator's Guide for more information on setting SGA
related parameters

*  Oracle Database Performance Tuning Guide for more information on memory
allocation

*  Oracle Database Reference for more information on setting the SORT_AREA S| ZE
parameter

10.9.12 Does out-of-line LOB storage of wide base table columns improve
performance?

Answer: Yes. Typically, a SELECT statement selects more than one column from your base
table. Because Oracle Text fetches columns to memory, it is more efficient to store wide base
table columns such as large objects (LOBs) out of line, especially when these columns are
rarely updated but frequently selected.

When LOBs are stored out of line, only the LOB locators need to be fetched to memory during
querying. Out-of-line storage reduces the effective size of the base table. It makes it easier for
Oracle Text to cache the entire table to memory, and so reduces the cost of selecting columns
from the base table, and speeds up text queries.

In addition, smaller base tables cached in memory enables more index table data to be cached
during querying, which improves performance.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 21 of 29



ORACLE

Chapter 10
Frequently Asked Questions About Query Performance

10.9.13 How can | speed up a CONTAINS query on more than one column?

Answer: The fastest type of query is one where there is only a single CONTAI NS clause and no
other conditions in the WHERE clause.

Consider the following multiple CONTAI NS query:

SELECT title, isbn FROM bookli st
WHERE CONTAINS (title, "horse') >0
AND CONTAINS (abstract, 'racing') > 0

You can get the same result with section searching and the W THI N operator:

SELECT title, isbn FROM bookli st
VWHERE CONTAINS (al ltext,
"horse WTHIN title AND racing WTHI N abstract')>0

This query is completed more quickly than the single CONTAI NS clause. To use a query like this,
you must copy all data into a single text column for indexing, with section tags around each
column's data. You can do that with PL/SQL procedures before indexing, or you can use the
USER_DATASTORE datastore during indexing to synthesize structured columns with the text
column into one document.

10.9.14 Can | have many expansions in a query?

Answer: Each distinct word used in a query requires at least one row to be fetched from the
index table. It is therefore best to keep the number of expansions down as much as possible.

You should not use expansions such as wild cards, thesaurus, stemming, and fuzzy matching
unless they are necessary to the task. In general, a few expansions (for example, 10 to 20)
does not cause difficulty, but avoid a large number of expansions (80 or 100) in a query. Use
the query feedback mechanism to determine the number of expansions for any particular query
expression.

For wildcard and stem queries, you can avoid term expansion from query time to index time by
creating prefix, substring, or stem indexes. Query performance increases at the cost of longer
indexing time and added disk space.

Prefix and substring indexes can improve wildcard performance. You enable prefix and
substring indexing with the BASI C WORDLI ST preference. The following example sets the
wordlist preference for prefix and substring indexing. For prefix indexing, it specifies that
Oracle Text creates token prefixes between 3 and 4 characters long:

begi n

ctx_ddl .create_preference(' nywordlist', 'BASIC WORDLI ST');
ctx_ddl.set_attribute(' mywordlist',' PREFI X_| NDEX ,' TRUE );
ctx_ddl.set_attribute(' mywordlist',' PREFI X_ M N _LENGTH , '3
ctx_ddl.set_attribute(' mywordlist',"' PREFI X_MAX_LENGTH , '4'
ctx_ddl.set_attribute(' mywordlist',' SUBSTRING | NDEX , ' YES

)i
)
).

1

end

Enable stem indexing with the BASI C_LEXER preference:

begin

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 22 of 29



ORACLE Chapter 10
Frequently Asked Questions About Query Performance

ctx_ddl.create_preference(' nylex', 'BASIC LEXER );
ctx_ddl.set_attribute ( 'nylex', '"index_stens', 'ENGLISH);

end;

10.9.15 How can local partition indexes help?

Answer: You can create local partitioned CONTEXT indexes on partitioned tables. This means
that, on a partitioned table, each partition has its own set of index tables. Effectively, the results
from the multiple indexes are combined as necessary to produce the final result set.

Use the LOCAL keyword to create the index:

CREATE | NDEX i ndex_name ON tabl e_nane (col um_nane)
| NDEXTYPE | S ct xsys. cont ext

PARANETERS ('...")

LOCAL

With partitioned tables and local indexes, you can improve performance of the following types
of CONTAI NS queries:

* Range Search on Partition Key Column: This query restricts the search to a particular
range of values on a column that is also the patrtition key.

* ORDER BY Partition Key Column: This query requires only the first n hits, and the ORDER
BY clause names the partition key.

@ See Also

"Improved Response Time using Local Partitioned CONTEXT Index"

10.9.16 Should I query in parallel?

Answer: It depends on system load and server capacity. Even though parallel querying is the
default behavior for indexes created in parallel, it usually degrades the overall query
throughput on heavily loaded systems.

Parallel queries are optimal for Decision Support System (DSS). They are also optimal for
analytical systems that have large data collections, multiple CPUs with a low number of
concurrent users, or Oracle Real Application Clusters (Oracle RAC) nodes.

Related Topics

e Using Parallel Queries
Oracle Text supports parallel queries on a local CONTEXT index and across Oracle Real
Application Clusters (Oracle RAC) nodes.

10.9.17 Should | index themes?

Answer: Indexing theme information with a CONTEXT index takes longer and also increases the
size of your index. However, theme indexes enable ABQUT queries to be more precise by using
the knowledge base. If your application uses many ABOUT queries, it might be worthwhile to
create a theme component to the index, despite the extra indexing time and extra storage
space required.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 23 of 29



ORACLE

Chapter 10
Frequently Asked Questions About Query Performance

@ See Also
"ABOUT Queries and Themes"

10.9.18 When should | use a CTXCAT index?

Answer: CTXCAT indexes work best when the text is in small chunks (just a few lines), and you
want searches to restrict or sort the result set according to certain structured criteria, such as
numbers or dates.

For example, consider an online auction site. Each item for sale has a short description, a
current bid price, and start and end dates for the auction. You want to see all records with
antique cabinet in the description, with a current bid price less than $500. Because you are
particularly interested in newly posted items, you want the results sorted by auction start time.

This search is not always efficient with a CONTAI NS structured query on a CONTEXT index. The
response time can vary significantly depending on the structured and CONTAI NS clauses,
because the intersection of structured and CONTAI NS clauses or the Oracle Text query ordering
is computed during query time.

By including structured information within the CTXCAT index, you ensure that the query
response time is always in an optimal range regardless of search criteria. Because the
interaction between text and structured query is precomputed during indexing, query response
time is optimum.

@® Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COMWM T) or, preferably, SYNC( EVERY [ti ne-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FI LTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

10.9.19 When is a CTXCAT index NOT suitable?

Answer: There are differences in the time and space needed to create the index. CTXCAT
indexes take a bit longer to create, and they use considerably more disk space than CONTEXT
indexes.

If you are tight on disk space, consider carefully whether CTXCAT indexes are appropriate for
you.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 24 of 29



ORACLE Chapter 10
Frequently Asked Questions About Indexing Performance

With query operators, you can use the richer CONTEXT grammar in CATSEARCH queries with
query templates. The older restriction of a single CATSEARCH query grammar no longer holds.

@® Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COW T) or, preferably, SYNC( EVERY [ti ne- period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FI LTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

10.9.20 What optimizer hints are available and what do they do?

Answer: To drive the query with a text or b-tree index, you can use the | NDEX(t abl e col umm)
optimizer hint in the usual way.

You can also use the NO | NDEX(t abl e col utm) hint to disable a specific index.

The FI RST_ROAS(n) hint has a special meaning for text queries. Use it when you need the first
n hits to a query. When you use the DOMAI N_I NDEX_SORT hint in conjunction with ORDER BY
SCORE(n) DESC, you tell the Oracle optimizer to accept a sorted set from the Oracle Text index
and to sort no farther.

@ See Also

"Optimizing Queries for Response Time"

10.10 Frequently Asked Questions About Indexing Performance

This section answers some of the frequently asked questions about indexing performance.

e How long should indexing take?

e Which index memory settings should | use?

How much disk overhead will indexing require?

*  How does the format of my data affect indexing?

e Can parallel indexing improve performance?

e How can | improve index performance for creating local partitioned index?

e How can | tell how much indexing has completed?

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 25 of 29



ORACLE Chapter 10
Frequently Asked Questions About Indexing Performance

10.10.1 How long should indexing take?

Answer: Indexing text is a resource-intensive process. The speed of indexing depends on the
power of your hardware. Indexing speed depends on CPU and I/O capacity. With sufficient I/O
capacity to read in the original data and write out index entries, the CPU is the limiting factor.

Tests with Intel x86 (Core 2 architecture, 2.5GHz) CPUs have shown that Oracle Text can
index around 100 GB of text per CPU core, per day. This speed would be expected to increase
as CPU clock speeds increase and CPU architectures become more efficient.

Other factors, such as your document format, location of your data, and the calls to user-
defined datastores, filters, and lexers, can affect your indexing speed.

10.10.2 Which index memory settings should | use?

Answer: You can set your index memory with the DEFAULT_| NDEX_MEMORY and
MAX | NDEX_MEMORY system parameters. You can also set your index memory at runtime with
the CREATE | NDEX nenory parameter in the parameter string.

You should aim to set the DEFAULT_| NDEX_MEMORY value as high as possible, without causing
paging.

You can also improve indexing performance by increasing the SORT_AREA Sl ZE system
parameter.

Oracle recommends that you use a large index memory setting. Large settings, even up to
hundreds of megabytes, can improve the speed of indexing and reduce fragmentation of the
final indexes. However, if you set the index memory setting too high, then memory paging
reduces indexing speed.

With parallel indexing, each stream requires its own index memory. When dealing with very
large tables, you can tune your database system global area (SGA) differently for indexing and
retrieval. For querying, you want to get as much information cached in the SGA block buffer
cache as possible. So you should allocate a large amount of memory to the block buffer cache.
Because this approach does not make any difference to indexing, you would be better off
reducing the size of the SGA to make more room for large index memory settings during
indexing.

You set the size of SGA in your Oracle Database initialization file.

@ See Also

* Oracle Text Reference to learn more about Oracle Text system parameters

»  Oracle Database Administrator's Guide for more information on setting SGA
related parameters

*  Oracle Database Performance Tuning Guide for more information on memory
allocation

*  Oracle Database Reference for more information on setting the SORT_AREA SI ZE
parameter

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 26 of 29



ORACLE Chapter 10
Frequently Asked Questions About Indexing Performance

10.10.3 How much disk overhead will indexing require?

Answer: The overhead, the amount of space needed for the index tables, varies between
about 50 and 200 percent of the original text volume. Generally, larger amounts of text result in
smaller overhead, but many small records use more overhead than fewer large records. Also,
clean data (such as published text) requires less overhead than dirty data such as emails or
discussion notes, because the dirty data is likely to include many misspelled and abbreviated
words.

A text-only index is smaller than a combined text and theme index. A prefix and substring index
makes the index significantly larger.

10.10.4 How does the format of my data affect indexing?

Answer: You can expect much lower storage overhead for formatted documents such as
Microsoft Word files because the documents tend to be very large compared to the actual text
held in them. So 1 GB of Word documents might only require 50 MB of index space, whereas 1
GB of plain text might require 500 MB, because there is ten times as much plain text in the
latter set.

Indexing time is less clear-cut. Although the reduction in the amount of text to be indexed has
an obvious effect, you must balance this against the cost of filtering the documents with the
AUTO FI LTER filter or other user-defined filters.

10.10.5 Can parallel indexing improve performance?

Answer: Parallel indexing can improve index performance when you have a large amount of
data and multiple CPUs.

Use the PARALLEL keyword to create an index with up to three separate indexing processes,
depending on your resources.

CREATE | NDEX i ndex_name ON tabl e_nane (col um_nane)
| NDEXTYPE | S ctxsys. context PARAMETERS ('...') PARALLEL 3;

You can also use parallel indexing to create local partitioned indexes on partitioned tables.
However, indexing performance improves only with multiple CPUs.

@® Note

Using PARALLEL to create a local partitioned index enables parallel queries. (Creating a
nonpatrtitioned index in parallel does not turn on parallel query processing.)

Parallel querying degrades query throughput especially on heavily loaded systems.
Because of this, Oracle recommends that you disable parallel querying after parallel
indexing. To do so, use ALTER | NDEX NOPARALLEL.

10.10.6 How can | improve index performance when | create a local
partitioned index?

Answer: When you have multiple CPUs, you can improve indexing performance by creating a
local index in parallel.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 27 of 29



ORACLE Chapter 10
Frequently Asked Questions About Updating the Index

You can create a local partitioned index in parallel in the following ways:

e Use the PARALLEL clause with the LOCAL clause in the CREATE | NDEX statement. In this
case, the maximum parallel degree is limited to the number of partitions.

e Create an unusable index, and then run the DBMS_PCLXUTI L. BUI LD_PART _| NDEX utility. This
method can result in a higher degree of parallelism, especially if you have more CPUs than
partitions.

The following is an example of the second method. The base table has three partitions. You
create a local partitioned unusable index first, and then run the

DBVS_PCLUTI L. BUI LD _PART | NDEX, to build the three partitions in parallel (inter-partition
parallelism). Inside each partition, index creation occurs in parallel (intra-partition parallelism)
with a parallel degree of 2.

create index tdrbip02bx on tdrbip02b(text)

i ndextype is ctxsys.context local (partition tdrbip02bx1,
partition tdrbip02bx2,
partition tdrbip02bx3)

unusabl e;

exec dbms_pcl xutil.build_part_index(3,2," TDRBI P0O2B', ' TDRBI P02BX , TRUE) ;

10.10.7 How can | tell how much indexing has completed?

Answer: You can use the CTX_QUTPUT. START_LOG procedure to log output from the indexing
process. The filename is normally written to $ORACLE_HOWE/ ct x/ | og, but you can change the
directory by using the LOG DI RECTORY parameter in CTX_ADM SET_PARAMETER.

@ See Also

Oracle Text Reference to learn more about the CTX_OUTPUT package

10.11 Frequently Asked Questions About Updating the Index

This section answers some of the frequently asked questions about updating your index and
related performance issues.

* How often should | index new or updated records?

« How can | tell when my indexes are getting fragmented?

« Does memory allocation affect index synchronization?

10.11.1 How often should I index new or updated records?

Answer: If you run reindexing with CTX_DDL. SYNC_| NDEX less often, your indexes will be less
fragmented, and you will not have to optimize them as often.

However, your data becomes progressively more out-of-date, and that may be unacceptable to
your users.

Overnight indexing is acceptable for many systems. In this case, data that is less than a day
old is not searchable. Other systems use hourly, 10-minute, or 5-minute updates.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 28 of 29



ORACLE Chapter 10
Frequently Asked Questions About Updating the Index

@ See Also

e Oracle Text Reference to learn more about using CTX_DDL. SYNC_| NDEX
» "Managing DML Operations for a CONTEXT Index"

10.11.2 How can | tell when my indexes are fragmented?

Answer: The best way is to time some queries, run index optimization, and then time the same
queries (restarting the database to clear the SGA each time, of course). If the queries speed
up significantly, then optimization was worthwhile. If they do not, then you can wait longer next
time.

You can also use CTX_REPORT. | NDEX_STATS to analyze index fragmentation.
® See Also

e Oracle Text Reference to learn more about using the CTX_REPORT package

e "Optimizing the Index"

10.11.3 Does memory allocation affect index synchronization?

Answer: Yes, the same way as for normal indexing. There are often far fewer records to be
indexed during a synchronize operation, so it is not usually necessary to provide hundreds of
megabytes of indexing memory.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 29 of 29



Searching Document Sections in Oracle Text

You can use document sections in a text query application.
This chapter contains the following topics:

«  About Oracle Text Document Section Searching

¢ HTML Section Searching with Oracle Text

« XML Section Searching with Oracle Text

11.1 About Oracle Text Document Section Searching

Section searching enables you to narrow text queries down to blocks of text within documents.
Section searching is useful when your documents have internal structure, such as HTML and
XML documents.

You can also search for text at the sentence and paragraph level.
This section contains these topics:

« Enabling Oracle Text Section Searching

¢ Oracle Text Section Types

¢ Oracle Text Section Attributes

11.1.1 Enabling Oracle Text Section Searching

The steps for enabling section searching for your document collection are:

Create a Section Group

Define Your Sections

Index Your Documents

Section Searching with the WITHIN Operator
Path Searching with INPATH and HASPATH Operators
Marking an SDATA Section to be Searchable

o g » 0w bh PR

11.1.1.1 Create a Section Group

You enable section searching by defining section groups. Use one of the system-defined
section groups to create an instance of a section group.

You use section groups to specify the type of document set that you have and implicitly
indicate the tag structure. Choose a section group that is appropriate for your document
collection. For instance, to index HTML tagged documents, use HTM._SECTI ON_GROUP.
Likewise, to index XML tagged documents, use XM._SECTI ON_GROUP.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 22



ORACLE

Chapter 11
About Oracle Text Document Section Searching

Table 11-1 Types of Section Groups

Section Group Preference

Description

NULL_SECTI ON_GROUP

BASI C_SECTI ON_GROUP

HTM._SECTI ON_GROUP
XM._SECTI ON_GROUP

AUTO_SECTI ON_GROUP

PATH_SECTI ON_GROUP

NEWS_SECTI ON_GROUP

This is the default. Use this group type when you define no
sections or when you define only SENTENCE or PARAGRAPH
sections.

Use this group type for defining sections where the start and end
tags are of the form <A> and </ A>.

Note: This group type does not support input such as unbalanced
parentheses, comments tags, and attributes. Use
HTM._SECTI ON_GRQUP for this type of input.

Use this group type to index HTML documents and for defining
sections in HTML documents.

Use this group type to index XML documents and for defining
sections in XML documents.

Use this group type to automatically create a zone section for each
start-tag/end-tag pair in an XML document. As in XML, the section
names derived from XML tags are case-sensitive.

Attribute sections are created automatically for XML tags that have
attributes. Attribute sections are named in the form tag@attribute.

Stop sections, empty tags, processing instructions, and comments

are not indexed.

The following limitations apply to automatic section groups:

*  You cannot add zone, field, or special sections to an
automatic section group.

*  Automatic sectioning does not index XML document types
(root elements.)

*  The length of the indexed tags, including prefix and
namespace, cannot exceed 64 bytes. Tags longer than 64
bytes are not indexed.

Use this group type to index XML documents. This preference
behaves like AUTO_SECTI ON_GRCUP.

The difference is that you can search paths with the | NPATH and
HASPATH operators. Queries are also case-sensitive for tag and
attribute names.

Use this group to define sections in newsgroup-formatted
documents according to RFC 1036.

Notes

* Documents sent to the HTM., XM, AUTO, and PATH sectioners must begin with \ s*<. The
\' s* represents zero or more whitespace characters. Otherwise, the document is treated as
a plain-text document, and no sections are recognized.

« Do not use left-angle-brackets within a section data. If a left-angle-bracket is followed by a
non-blank character, then the section parser treats the free text (between the left-angle and
right-angle brackets) as a tag name.

For example:

<DOCUMENT> <BODYTEXT> ABC

< Rl NOM SS

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 22



ORACLE

Chapter 11
About Oracle Text Document Section Searching

<R2 M SSED1 </ BODYTEXT> <Fl ELDS> DEF
<R3 M SSED2 </ Fl ELDS> </ DOCUMENT> GHI FALSEPCSI Tl VE JKL

In the preceding example, the section parser treats R2 M SSED1 </ BODYTEXT and R3
M SSED2 </ FI ELDS as tag names. This may result in false-positive hits or missed hits,
which may cause the following issues:

— Anyword inthe R2 M SSED1 </ BODYTEXT and R3 M SSED2 </ FI ELDS phrases are not
searchable within a section.

— Any text outside a section, such as GH , FALSEPGCSI Tl VE, and JKL are wrongly included
in a section if it is not closed.

You use the CTX_DDL package to create section groups and define sections as part of
section groups. For example, to index HTML documents, create a section group with
HTM._SECTI ON_GROUP:

begin
ctx_ddl . create_section_group(' htmgroup', 'HTM._SECTI ON_GROUF' );
end;

Starting with Oracle Database 18c, use of NEWS_SECTI ON_GROUP is deprecated in Oracle
Text. Use external processing instead.

If you want to index USENET posts, then preprocess the posts to use

BASI C_SECTI ON_GROUP or HTM__SECTI ON_GROUP within Oracle Text. USENET is rarely used
commercially.

11.1.1.2 Define Your Sections

You define sections as part of the section group. The following example defines a zone section
called heading for all text within the HTML < HL1> tag:

begin

ctx_ddl . create_section_group(' htmgroup', 'HTM._SECTI ON_GROUF' );
ctx_ddl . add_zone_section(' htmgroup', 'heading', 'Hl');

end;

@ Note

If you are using AUTO_SECTI ON_GROUP or PATH_SECTI ON_GROUP to index an XML
document collection, then you do not have to explicitly define sections. The system
defines the sections during indexing.

@ See Also

»  "Oracle Text Section Types" for more information about sections

 "XML Section Searching with Oracle Text" for more information about section
searching with XML

11.1.1.3 Index Your Documents

When you index your documents, you specify your section group in the parameter clause of
CREATE | NDEX.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 22



ORACLE Chapter 11
About Oracle Text Document Section Searching

create index nyindex on docs(htmfile) indextype is ctxsys.context
paraneters('filter ctxsys.null _filter section group htngroup');

11.1.1.4 Search Sections with the WITHIN Operator

When your documents are indexed, you can query within sections by using the W THI N
operator. For example, to find all documents that contain the word Oracle within their headings,
enter the following query:

"Oracl e WTHIN headi ng'

@ See Also

Oracle Text Reference to learn more about using the W THI N operator

11.1.1.5 Search Paths with INPATH and HASPATH Operators

When you use PATH SECTI ON_GROUP, the system automatically creates XML sections. In
addition to using the W THI N operator to enter queries, you can enter path queries with the
| NPATH and HASPATH operators.

@ See Also

¢ "XML Section Searching with Oracle Text" to learn more about using these
operators

e Oracle Text Reference to learn more about using the | NPATH operator

11.1.1.6 Mark an SDATA Section to Be Searchable

To mark an SDATA section to be searchable and have a $Sdat at ype table created, use the
CTX_DDL. SET_SECTI ON_ATTRI BUTE API.
The following tables are created:

*  $SN— NUMBER

* $SD- DATE
*  $SV— VARCHAR2, CHAR
*  $SR-—RAW

*  $SBD-— BI NARY DOUBLE

*  $SBF — BI NARY FLOAT

e $ST — TI MESTAWP

e $STZ - TI MESTAWP W TH TI MEZONE

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 22



ORACLE

Chapter 11
About Oracle Text Document Section Searching

The following example creates a $SV table for this SDATA section to allow efficient searching on
that section.

ctx_ddl . add_sdata_section('sec_grp', 'sdata sec', 'nytag', 'varchar');

ctx_ddl.set_section_attribute('sec_grp', 'sdata_sec', 'optimized for',
"search');

The default value of this attribute is FALSE.

11.1.2 Oracle Text Section Types

All section types are blocks of text in a document. However, sections can differ in the way that
they are delimited and the way that they are recorded in the index. Sections can be one of the
following types:

e Zone Section

* Field Section

e Stop Section

* MDATA Section

* NDATA Section

*  SDATA Section

*  Attribute Section (for XML documents)

» Special Sections (sentence or paragraphs)

Table 11-2 shows which section types may be used with each kind of section group.

Table 11-2 Section Types and Section Groups

Section Group ZONE FIELD STOP MDATA NDATA SDATA ATTRIBUTE SPECIAL
NULL NO NO NO NO NO NO NO YES
BASIC YES YES NO YES YES YES NO YES
HTML YES YES NO YES YES YES NO YES
XML YES YES NO YES YES YES YES YES
NEWS YES YES NO YES YES YES NO YES
AUTO NO NO YES NO NO NO NO NO

PATH NO NO NO NO NO NO NO NO

11.1.2.1 Zone Section

A zone section is a body of text delimited by start and end tags in a document. The positions of
the start and end tags are recorded in the index so that any words in between the tags are
considered to be within the section. Any instance of a zone section must have a start and an
end tag.

For example, define the text between the <TI TLE> and </ Tl TLE> tags as a zone section as
follows:

<TITLE>Tal e of Two Gities</TITLE>
It was the best of times...

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 22



ORACLE

Chapter 11
About Oracle Text Document Section Searching

Zone sections can nest, overlap, and repeat within a document.

When querying zone sections, you use the W THI N operator to search for a term across all
sections. Oracle Text returns those documents that contain the term within the defined section.

Zone sections are well suited for defining sections in HTML and XML documents. To define a
zone section, use CTX_DDL.ADD_ZONE_SECTI ON.

For example, assume you define the bookt i t| e section as follows:
begin
ctx_ddl . create_section_group(' htmgroup', 'HTM._SECTI ON_GROUF' );

ctx_ddl . add_zone_section(' htmgroup', 'booktitle', 'TITLE );
end;

After you index, you can search for all documents that contain the term Cities within the
bookti t| e section as follows:

"Cities WTHI N booktitle'

With multiple query terms such as (dog and cat) WITHIN booktitle, Oracle Text returns those
documents that contain cat and dog within the same instance of a bookt i t | e section.

Repeated Zone Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For example, if
<H1> denotes a headi ng section, the heading can be repeated in the same documents as
follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wl f </HL>

Assuming that these zone sections are named Headi ng, a query of Brown WITHIN Heading
returns this document. However, a query of (Brown and Gray) WITHIN Heading does not.

Overlapping Zone Sections

Zone sections can overlap each other. For example, if <B> and <I > denote two different zone
sections, they can overlap in a document as follows:

plain <B> bold <I> bold and italic </B>only italic </I1> plain
Nested Zone Sections
Zone sections can be nested, as follows:

<TD> <TABLE><TD>nested cel | </ TD></ TABLE></ TD>

Using the W THI N operator, you can write queries to search for text in sections within sections.
For example, assume that the BOOK1, BOOK2, and AUTHCOR zone sections occur as follows in the
docl and doc2 documents:

docl:

<book1> <aut hor>Scott Tiger</author> This is a cool book to read.</bookl>

doc2:

<book2> <aut hor>Scott Tiger</author> This is a great book to read. </ book2>

Consider the nested query. It returns only docl.

"(Scott within author) within bookl'

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 22



ORACLE Chapter 11
About Oracle Text Document Section Searching

11.1.2.2 Field Section

A field section is similar to a zone section in that it is a region of text delimited by start and end
tags. Field sections are more efficient from zone sections and are different than zone sections
in that the region is indexed separately from the rest of the document. You can create an
unlimited number of field sections.

Because field sections are indexed differently, you can also get better query performance over
zone sections when a large number of documents are indexed.

Field sections are more suited to a single occurrence of a section in a document, such as a
field in a news header. Field sections can also be made visible to the rest of the document.

Unlike zone sections, field sections have the following restrictions:

e They cannot overlap.
e They cannot repeat.

e They cannot nest.

Visible and Invisible Field Sections

By default, field sections are indexed as a sub-document separate from the rest of the
document. As such, field sections are invisible to the surrounding text and can only be queried
by explicitly naming the section in the W TH N clause.

You can make field sections visible if you want the text within the field section to be indexed as
part of the enclosing document. You can query text within a visible field section with or without
the W TH N operator.

The following example shows the difference using invisible and visible field sections. The code
defines a basi cgr oup section group of the BASI C_SECTI ON_GROUP type. It then creates a field
section in basi cgr oup called Aut hor for the <A> tag. It also sets the visible flag to FALSE to
create an invisible section.

begin

ctx_ddl . create_section_group('basicgroup', 'BASI C_SECTI ON_GROUP');
ctx_ddl .add_field_section('basicgroup', "Author', "A", FALSE);
end;

Because the Aut hor field section is not visible, to find text within the Aut hor section, you must
use the W TH N operator.

"(Martin Luther King) WTH N Aut hor'

A query of Martin Luther King without the W THI N operator does not return instances of this
term in field sections. If you want to query text within field sections without specifying W THI N,
you must set the visible flag to TRUE when you create the section, as follows:

begin
ctx_ddl . add_fiel d_section('basicgroup', 'Author', 'A, TRUE);
end;

Nested Field Sections

You cannot nest field sections. For example, if you define a field section to start with <TI TLE>
and define another field section to start with <FOO>, you cannot nest the two sections as
follows:

<TI TLE> dog <FOO> cat </ FOO> </ TI TLE>

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 22



ORACLE

Chapter 11
About Oracle Text Document Section Searching

To work with nested sections, define them as zone sections.

Repeated Field Sections

Repeated field sections are allowed, but W THI N queries treat them as a single section. Here is
an example of a repeated field section in a document:

<TITLE> cat </TITLE>
<TITLE> dog </ TITLE>

The query dog and cat within title returns the document, even though these words occur in
different sections.

To have W THI N queries distinguish repeated sections, define them as zone sections.

11.1.2.3 Stop Section

When you add a stop section to an automatic section group, the automatic section indexing
operation ignores the specified section in XML documents.

@ Note

Adding a stop section causes no section information to be created in the index.
However, the text within a stop section is always searchable.

Adding a stop section is useful when your documents contain many low-information tags.
Adding stop sections also improves indexing performance with the automatic section group.

You can add an unlimited number of stop sections.

Stop sections do not have section names and are not recorded in the section views.

11.1.2.4 MDATA Section

You use an MDATA section to reference user-defined metadata for a document.

VDATA sections can speed up mixed queries, and there is no limit to the number of MDATA
sections that can be returned in a query.

Consider the case where you want to query according to text content and document type
(magazine, newspaper, or novel). You can create an index with a column for text and a column
for the document type, and then perform a mixed query of this form. In this case, search for all
novels with the phrase Adam Thorpe (author of the novel Ulverton):

SELECT id FROM docunents
VWHERE doctype = 'novel"’
AND CONTAI NS(text, 'Adam Thorpe')>0;

However, it is usually faster to incorporate the attribute (in this case, the document type) in a
field section, rather than using a separate column, and then using a single CONTAI NS query.

SELECT id FROM docunents
VWHERE CONTAINS(text, 'Adam Thorpe AND novel W TH N doctype')>0;

This approach has two drawbacks:

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 22



ORACLE

Chapter 11
About Oracle Text Document Section Searching

* Each time the attribute is updated, the entire text document must be reindexed, resulting in
increased index fragmentation and slower rates of data manipulation language (DML)
processing.

* Field sections tokenize the section value. Tokenization has several effects. Special
characters in metadata, such as decimal points or currency characters, are not easily
searchable; value searching (searching for John Smith but not John Smith, Jr.) is difficult;
multiword values are queried by phrase, which is slower than single-token searching; and
multiword values do not show up in browsed words, making author browsing or subject
browsing impossible.

For these reasons, using MDATA sections instead of field sections may be worthwhile. MDATA
sections are indexed like field sections, but you can add and remove metadata values from
documents without the need to reindex the document text. Unlike field sections, MDATA values
are not tokenized. Additionally, MDATA section indexing generally takes up less disk space than
field section indexing.

Starting with Oracle Database 12¢ Release 2 (12.2), the MDATA section can be updatable or
nonupdatable depending on the value of its read-only tag, which can be set to either FALSE or
TRUE.

Use CTX _DDL. ADD MDATA SECTI ONto add an MDATA section to a section group. By default, the
value of a read-only MDATA section is FALSE. It implies that you want to permit calling

CTX _DDL. ADD_MDATA() and CTX_DDL. REMOVE_MDATA() for this MDATA section, otherwise you can
set it to TRUE. When set to FALSE, the queries on the MDATA section run less efficiently because
a cursor must be opened on the index table to track the deleted values for that MDATA section.
This example adds an MDATA section called AUTHOR and gives it the value Soseki Natsume
(author of the novel Kokoro).

ctx_ddl . create.section.group(' htmgroup', 'HTM._SECTI ON_GROUF');
ctx_ddl . add_ndata_section(' htngroup', "author', 'Soseki Natsune');

You can change MDATA values with CTX_DDL. ADD_MDATA, and you can remove them with
CTX_DDL. REMOVE_MDATA. Also, MDATA sections can have multiple values. Only the owner of the
index may call CTX_DDL. ADD_MDATA and CTX_DDL. REMOVE_NDATA.

Neither CTX_DDL. ADD_MDATA nor CTX_DDL. REMOVE_MDATA is supported for CTXCAT and CTXRULE
indexes.

MDATA values are not passed through a lexer. Instead, all values undergo the following
simplified normalization:

e Leading and trailing whitespace on the value is removed.
e The value is truncated to 255 bytes.

e The value is indexed as a single value; if the value consists of multiple words, it is not
broken up.

e Case is preserved. If the document is dynamically generated, you can implement case-
insensitivity by uppercasing MDATA values and making sure to search only in uppercase.

After you add MDATA metadata to a document, you can query for that metadata by using the
CONTAI NS query operator:

SELECT id FROM docunents
VWHERE CONTAI NS(text, 'Tokyo and MDATA(author, Soseki Natsune)')>0;

This query is only successful if an AUTHOR tag has the exact value Soseki Natsume (after
simplified tokenization). Soseki or Natsume Soseki returns no rows.

The following are considerations for MDATA:

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 22



ORACLE

Chapter 11
About Oracle Text Document Section Searching

- MDATA values are not highlightable, do not appear in the output of CTX_DOC. TOKENS, and do

not appear when you enable FI LTER PLAI NTEXT.

e MDATA sections must be unique within section groups. For example, do not use FOO as the

name of an MDATA section and a zone or field section in the same section group.

« Like field sections, MDATA sections cannot overlap or nest. An MDATA section is implicitly

closed by the first tag encountered. In this example:

<AUTHOR>Di ckens <B>Shel | ey</ B> Keat s</ AUTHOR>

The <B> tag closes the AUTHOR MDATA section; as a result, this document has an AUTHCOR of
'Dickens', but not of 'Shelley' or 'Keats'.

e To prevent race conditions, each call to ADD_MDATA and REMOVE_MDATA locks out other calls

on that rowid for that index for all values and sections. However, because ADD_MDATA and
REMOVE_MDATA do not commit, it is possible for an application to deadlock when calling
them both. It is the application's responsibility to prevent deadlocking.

@ See Also
« "ALTER I NDEX" in Oracle Text Reference
e "ADD MDATA SECTI ON' in Oracle Text Reference

* The "CONTAI NS" query operators chapter of the Oracle Text Reference for
information on the MDATA operator

« The "CTX _DDL" package chapter of Oracle Text Reference for information on
adding and removing MDATA sections

11.1.2.5 NDATA Section

For fields containing data to be indexed for name searching, you can specify them exclusively
by adding NDATA sections to section groups of type BASI C_SECTI ON_GROUP,
HTM._SECTI ON_GROUP, or XM._SECTI ON_GROUP.

Users can synthesize textual documents, which contain name data, by using two possible
datastores: MULTI _COLUWN_DATASTORE or USER _DATASTORE. The following example uses
MULTI _COLUWN_DATASTORE to pick up relevant columns containing the name data for indexing:

create table people(firstname varchar2(80), surnane varchar?2(80));
insert into people values('John', 'Smth');
commit;
begi n
ctx_ddl .create_preference('nameds', ' MJLTI _COLUVN DATASTORE' );
ctx_ddl.set_attribute('nameds', 'colums', 'firstnane,surnane');
end;
/

This example produces the following virtual text for indexing:

<FI RSTNAMVE>
John

</ FI RSTNAME>
<SURNAME>
Smith

</ SURNAVE>

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 22



ORACLE

Chapter 11
About Oracle Text Document Section Searching

You can then create NDATA sections for FI RSTNAME and SURNAME sections:

begin
ctx_ddl . create_section_group(' nanegroup', 'BASIC SECTI ON_GROUP');
ctx_ddl . add_ndata_section(' namegroup', 'FIRSTNAME , 'FIRSTNAME' );
ctx_ddl . add_ndata_section(' namegroup', ' SURNAME , ' SURNAME');

end;

/

Next, create the index by using the datastore preference and section group preference that you
created earlier:

create index peopleidx on people(firstname) indextype is ctxsys.context
paranet ers(' secti on group namegroup datastore nameds');

NDATA sections support both single- and multibyte data with character- and term-based
limitations. NDATA section data that is indexed is constrained as follows:

e The number of characters in a single, whitespace-delimited term: 511
e The number of whitespace-delimited terms: 255

*  The total number of characters, including whitespaces: 511

11.1.2.6 SDATA Section

The value of an SDATA section is extracted from the document text like other sections, but it is
indexed as structured data, also referred to as SDATA.

SDATA sections support operations such as projection, range searches, and ordering. SDATA
sections also enable SDATA indexing of section data (such as embedded tags) and detail table
or function invocations. You can perform various combinations of text and structured searches
in one single SQL statement.

Use SDATA operators only as descendants of AND operators that also have non-SDATA children.
SDATA operators are meant to be used as secondary (checking or non-driving) criteria. For
example, "find documents with DOG that also have price > 5", rather than "find documents with
rating > 4".

Use CTX _DDL. ADD_SDATA SECTI ONto add an SDATA section to a section group. Use

CTX_DDL. UPDATE_SDATA to update the values of an existing SDATA section. When querying
within an SDATA section, you must use the CONTAI NS operator. The following example creates a
table called i t ems, adds an SDATA section called my_sec_group, and then queries SDATA in the
section.

@® Note

The UPDATE_SDATA API in Oracle Text is deprecated in Oracle Al Database 26ai.
Instead of modifying the index, Oracle recommends that you update the underlying
data.

After you create an SDATA section, you can further modify the attributes of the SDATA section by
using CTX DDL. SET_SECTI ON_ATTRI BUTE.

Create the i t ens table:

CREATE TABLE items
(id NUMBER PRI MARY KEY,

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 11 of 22



ORACLE

Chapter 11
About Oracle Text Document Section Searching

doc VARCHAR2(4000));

INSERT INTO itens VALUES (1, '<description> Honda Pilot </description>
<category> Cars & Trucks </category>

<price> 27000 </price>");

<description> Toyota Sequoi a </ description>
<category> Cars & Trucks </category>

<price> 35000 </price>);

<description> Toyota Land Cruiser </description>
<category> Cars & Trucks </category>

<price> 45000 </price>");

<description> PalmPilot </description>
<category> El ectronics </category>

<price> 5 </price>")

<description> Toyota Land Cruiser Gill </description>
<category> Parts & Accessories </category>
<price> 100 </price>")

I NSERT INTO itens VALUES (2,

I NSERT INTO itens VALUES (3,

I NSERT INTO itens VALUES (4,

I NSERT INTO itens VALUES (5,

COWM T;

Add the my_sec_gr oup SDATA section:

BEG N
CTX_DDL. CREATE_SECTI ON_GROUP(' nmy_sec_group', ' BASI C_SECTI ON_GROUP' ) ;
CTX_DDL. ADD_SDATA SECTION(' my_sec_group', 'category', 'category', 'VARCHAR2');
CTX_DDL. ADD_SDATA SECTI ON(' my_sec_group', "price', 'price', 'NUMBER );

END;

Create the CONTEXT index:

CREATE | NDEX it ems$doc
ON itens(doc)
| NDEXTYPE | S CTXSYS. CONTEXT
PARAMETERS( ' SECTI ON GROUP ny_sec_group');

Run a query:

SELECT id, doc
FROM i t ens
VWHERE cont ai ns(doc, ' Toyota
AND SDATA(category = ''Cars & Trucks'')
AND SDATA(price <= 40000 )') > O;

Return the results:

2 <description> Toyota Sequoia </description>
<category> Cars & Trucks </category>
<price> 35000 </price>

Consider a document whose rowid is 1. This example updates the value of the pri ce SDATA
section to a new value of 30000:

BEG N
SELECT ROAN'D INTO rowi d_t o_update FROM items WHERE id=1;

CTX_DDL. UPDATE_SDATA( ' i t ens$doc' ,
"price',
SYS. ANYDATA. CONVERTVARCHAR2( ' 30000'),
row d_to_update);
END;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 22



ORACLE Chapter 11
About Oracle Text Document Section Searching

After executing the query, the price of Honda Pi | ot is changed from 27000 to 30000.

@® Note

* You can also add an SDATA section to an existing index. Use the ADD SDATA
SECTI ON parameter of the ALTER | NDEX PARAMETERS statement. See the "ALTER
INDEX" section of the Oracle Text Reference for more information.

*  Documents that were indexed before adding an SDATA section do not reflect this
new preference. Rebuild the index in this case.

@ See Also

e The "CONTAI NS" query section of the Oracle Text Reference for information on the
SDATA operator

e The "CTX_DDL" package section of the Oracle Text Reference for information on
adding and updating the SDATA sections and changing their attributes by using the
ADD_SDATA_SECTI ON, SET_SECTI ON_ATTRI BUTE, and the UPDATE_SDATA procedures

Storage

For opti m zed_for search SDATA sections, use CTX DDL. SET_ATTRI BUTE to specify the storage
preferences for the $Sdat at ype tables and the indexes on these tables.

By default, large object (LOB) caching is turned on for $S* tables and off for $S* indexes.
These attributes are valid only on SDATA sections.

Query Operators
optim zed_for search SDATA supports the following query operators:
o <>

¢ between

e not between

[ <=

. <

[ >=

. >

e isnull

e isnot null
o like

e notlike

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 13 of 22



ORACLE Chapter 11
About Oracle Text Document Section Searching

11.1.2.7 Attribute Section

You can define attribute sections to query on XML attribute text. You can also have the system
automatically define and index XML attributes for you.

@ See Also

"XML Section Searching with Oracle Text"

11.1.2.8 Special Sections

Special sections are not recognized by tags. Currently, sentence and paragraph are the only
supported special sections, and they enable you to search for a combination of words within
sentences or paragraphs.

The sentence and paragraph boundaries are determined by the lexer. For example,
BASI C_LEXER recognizes sentence and paragraph section boundaries as follows:

Table 11-3 Sentence and Paragraph Section Boundaries for BASIC_LEXER
]

Special Section Boundary
SENTENCE o WORD/PUNCT/WHITESPACE
o WORD/PUNCT/NEWLINE
PARAGRAPH o WORD/PUNCT/NEWLINE/WHITESPACE

e WORD/PUNCT/NEWLINE/NEWLINE

If the lexer cannot recognize the boundaries, then no sentence or paragraph sections are
indexed.

To add a special section, use the CTX_DDL.ADD_SPECI AL_SECTI ON procedure. For example, the
following code enables searches within sentences in HTML documents:

begin

ctx_ddl . create_section_group(' htmgroup', 'HTM._SECTI ON_GROUF' );
ctx_ddl . add_speci al _section(' ht ngroup', ' SENTENCE' );

end;

To enable zone and sentence searches, add zone sections to the group. The following
example adds the Headl i ne zone section to the ht ngr oup section group:

begin

ctx_ddl . create_section_group(' htmroup', 'HTM._SECTI ON_GROUF' );
ctx_ddl . add_speci al _section(" ht ngroup', " SENTENCE' );

ctx_ddl . add_zone_section(' htngroup', 'Headline', '"Hl');

end;

11.1.3 Oracle Text Section Attributes

Section attributes are the settings for the Oracle Text sections of tokenized type, such as field,
zone, hybrid, and SDATA. Section attributes improve query performance because of the finer
control at the section level, rather than at the document level or index level.

By using the section attributes, you can specify:

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 22



ORACLE

Chapter 11
About Oracle Text Document Section Searching

Lexer preferences on certain sections of a document. The preferences are useful for part-
name searches, when a section of a document containing a part name needs to be lexed
differently than the rest of the document. You can also use the lexer preferences for
handling multilanguage documents, where there is a section to language mapping.

A substring index only on certain sections of a document. This index helps reduce the
index size.

Prefix tokens only on certain sections of a document. The prefix tokens improve the
performance of right-truncated queries, but can also cause the index size to grow rapidly.
Specifying prefix indexing only on certain sections provides improved performance for the
right-truncated queries on the specific sections, without rapidly growing the size of the
index.

Stoplists for certain sections of a document.

A new section type that combines the flexibility of zone sections with the performance of
field sections. Currently, zone sections have poor performance compared with field
sections. However, field sections do not support nested section search.

To set section attributes, use the CTX_DDL. SET_SECTI ON_ATTRI BUTE procedure.
Table 11-4 lists the section attributes that you can use:

Table 11-4 Section Attributes

. _________________________________________________________________________________|
Section Attribute Description

visible Use the vi si bl e attribute for all section types that are tokenized,

except the zone section type. Thus, the vi si bl e attribute can be
used for field, hybrid, and SDATA section types.

Specify TRUE to make the text visible within a document. The text
in the field section is indexed as part of the enclosing document.
The default is FALSE. The text in the field section is indexed
separately from the rest of the document.

For the Field section type, the visible attribute overrides the value
specified in the CTX_DDL. ADD_FI ELD_SECTI ON procedure.

| exer Use the | exer attribute for all section types that are tokenized

(field, zone, hybrid, and SDATA sections).

Specify the lexer preference name to decide the tokenization of an
SDATA section. The default is NULL, and the lexer for the main
document is used.

The lexer preference must be valid at the time of calling the

set _section_attribute procedure. If you try to drop one of the
preferences when an existing field section refers to a lexer
preference, then the dr op_pr ef er ence procedure fails.

wor dl i st Use the wor dl i st attribute for all section types that are tokenized

(field, zone, hybrid, and SDATA sections).

To enable section-specific prefix indexing and substring indexing,
specify the wordlist preference name for a section. The default is
NULL, and the wordlist for the main document is used.

The wordlist preference must be valid at the time of calling the

set _section_attribute procedure. If you try to drop one of the
preferences when an existing field section refers to a wordlist
preference, then the dr op_pr ef er ence procedure fails.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 15 of 22



ORACLE’

Chapter 11
HTML Section Searching with Oracle Text

Table 11-4 (Cont.) Section Attributes

. _________________________________________________________________________________|
Section Attribute Description

stopli st Use the st opl i st attribute for all section types that are tokenized
(field, zone, hybrid, and SDATA sections).

To enable a section-specific stoplist, specify the stoplist preference
name. The default is NULL, and the stoplist for the main document
is used.

The stoplist preference must be valid at the time of calling the

set _section_attribute procedure. If you try to drop one of the
preferences when an existing field section refers to a stoplist
preference, then the dr op_pr ef er ence procedure fails.

The following example enables the vi si bl e attribute of a Field section:

begin

ctx_ddl . create_section_group(‘fieldgroup', ‘BASIC _SECTI ON_GROUP');
ctx_ddl.add_field_section(‘fieldgroup', ‘author', ‘AUTHOR );
ctx_ddl.set_section_attribute(‘fieldgroup’', ‘author', ‘visible', ‘true');
end;

® See Also
Oracle Text Reference for the syntax of CTX_DDL. SET_SECTI ON_ATTRI BUTE procedure.

11.2 HTML Section Searching with Oracle Text

HTML has internal structure in the form of tagged text that you can use for section searching.
For example, define a section called headi ngs for the <H1> tag, and then search for terms only
within these tags across your document set.

To query, you use the W THI N operator. Oracle Text returns all documents that contain your
guery term within the headi ngs section. For example, if you want to find all documents that
contain the word or acl e within headi ngs, enter the following query:

"oracl e within headings'

This section contains these topics:

e  Creating HTML Sections
e Searching HTML Meta Tags

11.2.1 Creating HTML Sections

The following code defines a section group called ht ngr oup of type HTM._SECTI ON_GROUP. It
then creates a zone section in ht mgr oup called headi ng identified by the <H1> tag:

begin

ctx_ddl . create_section_group(' htmgroup', 'HTM._SECTI ON_GROUP' );
ctx_ddl . add_zone_section(' htngroup', 'heading', 'Hl');

end;

You can then index your documents as follows:

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 16 of 22



ORACLE’

Chapter 11
XML Section Searching with Oracle Text

create index nyindex on docs(htmfile) indextype is ctxsys.context
paraneters('filter ctxsys.null _filter section group htngroup');

After indexing with the ht mgr oup section group, you can query within the headi ng section by
issuing this query:

"Oracl e WTHI N headi ng'

11.2.2 Searching HTML Meta Tags

11.3 XML

With HTML documents, you can also create sections for NAME/ CONTENT pairs in <META> tags.
When you do so, you can limit your searches to text within CONTENT.

Consider an HTML document that has the following META tag:

<META NAME="aut hor" CONTENT="ken">

Create a zone section that indexes all CONTENT attributes for the META tag whose NAME value is
author:

begin

ctx_ddl . create_section_group(' htmgroup', 'HTM._SECTI ON_GROUF' );
ctx_ddl . add_zone_section(' htngroup', 'author', 'meta@uthor');
end

After indexing with the ht ngr oup section group, you can query the document:

"ken WTH N aut hor'

Section Searching with Oracle Text

Like HTML documents, XML documents have tagged text that you can use to define blocks of
text for section searching. You can search the contents of a section with the W THI N or | NPATH
operators.

The following sections describe the different types of XML searching:

e Automatic Sectioning

e Attribute Searching

e Document Type Sensitive Sections

»  Path Section Searching

11.3.1 Automatic Sectioning

To set up your indexing operation to automatically create sections from XML documents, use
the AUTO_SECTI ON_GROUP section group. The system creates zone sections for XML tags.
Attribute sections are created for the tags that have attributes and for the sections named in
the formtag@ttribute.

For example, the following statement uses the AUTO_SECTI ON_GROUP to create the myindex
index on a column containing the XML files:

CREATE | NDEX nyi ndex
ON xm docs(xm file)
I NDEXTYPE | S ct xsys. cont ext
PARAMETERS (' datastore ctxsys. default_datastore
filter ctxsys.null _filter

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 17 of 22



ORACLE

Chapter 11
XML Section Searching with Oracle Text

section group ctxsys.auto_section_group'

)

11.3.2 Attribute Searching

You can search XML attribute text in one of two ways:

Creating Attribute Sections

Create attribute sections with CTX _DDL.ADD ATTR_SECTI ON and then index with
XM__SECTI ON_GROUP. If you use AUTO_SECTI ON_GROUP when you index, attribute sections
are created automatically. You can query attribute sections with the W THI N operator.

Consider an XML file that defines the BOXK tag with a Tl TLE attribute:

<BOOK TITLE="Tale of Two Cities">
It was the best of tinmes.
</ BOOK>

To define the title attribute as an attribute section, create an XM._SECTI ON_GRCUP and define
the attribute section:

begin

ctx_ddl . create_section_group(' myxm group', ' XM._SECTI ON_GROUP');
ctx_ddl.add_attr_section(' myxm group', 'booktitle', 'book@itle');
end;

To index:

CREATE | NDEX myi ndex
ON xm docs(xm file)
| NDEXTYPE | S ct xsys. cont ext
PARAMVETERS (' datastore ctxsys. default_datastore
filter ctxsys.null _filter
section group nyxm group'
);
To query the booktitle XML attribute section:
"Cities within booktitle'
Searching Attributes with the INPATH Operator

Index with the PATH_SECTI ON_GROUP and query attribute text with the | NPATH operator.

@ See Also

"Path Section Searching"

11.3.3 Document Type Sensitive Sections

For an XML document set that contains the <book> tag declared for different document types,
you may want to create a distinct book section for each document type to improve search
capability. The following scenario shows you how to create book sections for each document

type.

Assume that nydocnanel is declared as an XML document type (root element):

<I DOCTYPE nydocnanmel ... [...

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 18 of 22



ORACLE Chapter 11
XML Section Searching with Oracle Text

Within nydocnanel, , the <book> element is declared. For this tag, you can create a section
named nybooksec1l that is sensitive to the tag's document type:

begin

ctx_ddl . create_section_group(' nyxm group', ' XM__SECTI ON_GROUF' );
ctx_ddl . add_zone_section(' myxm group', 'nybooksecl', 'nydocnanmel(book)');

end;

Assume that nydocnane?2 is declared as another XML document type (root element):

<I DOCTYPE nydocnanme2 ... [...

Within nydocnane2, , the <book> element is declared. For this tag, you can create a section
named nybooksec? that is sensitive to the tag's document type:

begin

ctx_ddl . create_section_group(' myxm group', ' XM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' myxnl group', 'mybooksec2', 'nydocnane2(book)');

end;

To query within the mybooksec1 section, use W THI N:

"oracle wthin nmybooksecl'

11.3.4 Path Section Searching

XML documents can have parent-child tag structures such as:

<A> <B> <C dog </ C </B> </ A>

In this scenario, tag C is a child of tag B, which is a child of tag A.

With Oracle Text, you can search paths with PATH _SECTI ON_GROUP. This section group enables
you to specify direct parentage in queries, such as to find all documents that contain the term
dog in element C, which is a child of element B, and so on.

With PATH_SECTI ON_GROUP, you can also perform attribute value searching and attribute
equality testing.

The new operators associated with this feature are

* | NPATH
*  HASPATH

This section contains the following topics.

e Creating an Index with PATH_SECTION_ GROUP

 Top-Level Tag Searching

 Any-Level Tag Searching

» Direct Parentage Searching

* Tag Value Testing

»  Attribute Searching

«  Attribute Value Testing

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 19 of 22



ORACLE Chapter 11
XML Section Searching with Oracle Text

» Path Testing
»  Section Equality Testing with HASPATH

11.3.4.1 Creating an Index with PATH_SECTION_GROUP

To enable path section searching, index your XML document set with PATH_SECTI ON_GROUP.
For example:

Create the preference.
begin

ctx_ddl . create_section_group(' xn pat hgroup', 'PATH_SECTI ON_GROUF' );
end;

Create the index.

CREATE | NDEX nyi ndex

ON xm docs(xm file)

I NDEXTYPE | S ctxsys. cont ext

PARAMETERS (' datastore ctxsys. default_datastore
filter ctxsys.null _filter

section group xm pat hgroup'

):

When you create the index, you can use the | NPATH and HASPATH operators.

11.3.4.2 Top-Level Tag Searching

To find all documents that contain the term dog in the top-level tag <A>:

dog | NPATH (/A)

or

dog | NPATH(A)

11.3.4.3 Any-Level Tag Searching

To find all documents that contain the term dog in the <A> tag at any level:

dog | NPATH(// A)

This query finds the following documents:

<A>dog</ A>

and

<C><B><A>dog</ A></ B></ &

11.3.4.4 Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child of a top-
level A element:

dog | NPATH(A/ B)

This query finds the following XML document:

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 20 of 22



ORACLE Chapter 11
XML Section Searching with Oracle Text

<A><B>My dog is friendly.</B></A>

but it does not find:

<C<B>M dog is friendly. </ B></C

11.3.4.5 Tag Value Testing

You can test the value of tags. For example, the query:

dog | NPATH(A[ B="dog"])

Finds the following document:

<A><B>dog</ B></ A>

But does not find:

<A><B>My dog is friendly.</B></A>

11.3.4.6 Attribute Searching

You can search the content of attributes. For example, the query:

dog | NPATH(/ | Al @)

Finds the document:

<C><A B="snoop dog"> </ A> </ C

11.3.4.7 Attribute Value Testing

You can test the value of attributes. For example, the query:

California INPATH (// Al @ = "home address"])

Finds the document:

<A B="hone address">San Francisco, California, USA</A>

But it does not find:

<A B="work address">San Francisco, California, USA</A>

11.3.4.8 Path Testing

You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH( A/ B/ C)

finds and returns a score of 100 for the document

<A><B><C>dog</ C</ B></ A>

without the query having to reference dog at all.

11.3.4.9 Section Equality Testing with HASPATH

You can use the HASPATH operator for section quality tests. For example, consider the following
query:

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 21 of 22



ORACLE Chapter 11
XML Section Searching with Oracle Text

dog | NPATH A

It finds:
<A>dog</ A>

but it also finds:
<A>dog par k</ A>

To limit the query to the term dog and nothing else, you can use a section equality test with the
HASPATH operator. For example,

HASPATH( A="dog" )

finds and returns a score of 100 only for the first document, not for the second document.

@ See Also

Oracle Text Reference to learn more about using the | NPATH and HASPATH operators

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 22



Using Oracle Text Name Search

Oracle Text provides a hame search feature to handle inaccurate data and misspelled names.
This chapter contains the following topics:

e Overview of Name Search

« Examples of Using Name Search

12.1 Overview of Name Search

Someone accustomed to the spelling rules of one culture can have difficulty applying those
same rules to a name from a different culture. Name searching (also called name matching)
provides a solution to match proper names that might differ in spelling due to orthographic
variation. It also enables you to search for somewhat inaccurate data, such as might occur
when a record's first name and surname are not properly segmented. The main advantage of
name searching is the ability to handle somewhat inaccurate data.

12.2 Name Search Examples

These examples illustrate how to use NDATA sections to search on names.

drop table people;

create table people (
full _name varchar 2(2000)

)i

insert into people val ues
(*John Doe Snmith');

- nulti_colum datastore is a convenient way of adding section tags around our data
exec ctx_ddl.drop_preference(' name_ds')
begin
ctx_ddl . create_preference(' nanme_ds', ' MILTI _COLUMN_DATASTORE');
ctx_ddl.set_attribute('name_ds', 'COLUMWNS , 'full_name');
end;
/

exec ctx_ddl.drop_section_group(' nane_sg');
begin
ctx_ddl . create_section_group(' name_sg', 'BASI C_SECTI ON_GROUP');
ctx_ddl . add_ndata_section('name_sg', 'full_nane', 'full_name');
end;
/
- You can optionally load a thesaurus of nicknames
- HOST ctxload -thes -nane ni cknames -file nicknanes.txt

exec ctx_ddl.drop_preference(' name_w"');

begin
ctx_ddl.create_preference(' name_w ', 'BASIC WORDLIST');
ctx_ddl.set_attribute('name_w ', 'NDATA ALTERNATE SPELLING, 'FALSE );
ctx_ddl.set_attribute('name_w ', 'NDATA BASE LETTER , 'TRUE');

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 4



ORACLE

Chapter 12
Name Search Examples

- Include the following line only if you have | oaded the thesaurus
- file nicknames.txt:
- ctx_ddl.set_attribute('nanme_w ', 'NDATA THESAURUS , 'nicknanes');
ctx_ddl.set _attribute('name_w ', 'NDATA JO N_PARTI CLES',
"de:di:la:da:el:del:qi:abd:los:la:dos:do:an:li:yi:yu:van:jon:un:sai:ben:al');
end;
/

create index people_idx on people(full _nane) indextype is ctxsys.context
parameters ('datastore nane_ds section group name_sg wordlist nanme_w');

- Now you can do name searches with the follow ng SQ.:

var name varchar2(80);
exec :nane := 'Jon Doesnith'

select /*+ FIRST_ROAS */ full _nane, score(1l)
from peopl e
where contains(full_name, ‘'ndata( full_name, '||:nanme||") ', 1)>0
order by score(1l) desc

/

The following example illustrates a more complicated version of using NDATA sections to search
on names:

create table enp (

first_name var char 2(30),
m ddl e_name  varchar2(30),
| ast _name var char 2(30),
emai | var char 2(30),
phone varchar2(30));

insert into enp val ues
(*John', 'Doe', "Smith', 'john.smth@xanple.org, '123-456-7890");

- user datastore procedure
create or replace procedure enpuds_proc
(ridinrowid, tlob in out nocopy clob) is
tag varchar2(30);
phone var char 2(30);

begin
for clin (select FIRST_NAVE, M DDLE_NANE, LAST NAME, EMAIL, PHONE
fromenp
where rowid = rid)
| oop

tag : = <emil>';
dbns_| ob. wri teappend(tlob, length(tag), tag);
if (cLEMAIL is not null) then
dbns_| ob. witeappend(tlob, length(cl. EMAIL), cl.EMAIL);
end if;
tag :='</emil>";
dbns_| ob. wri teappend(tlob, length(tag), tag);
tag : =" <phone>';
dbns_| ob. wri teappend(tlob, length(tag), tag);
if (cl.PHONE is not null) then

phone := nvl (REGEXP_SUBSTR(cl. PHONE, '\d\d\d\d($|\s)'), ' ');
dbns_| ob. wri t eappend(tl ob, |ength(phone), phone);
end if;

tag :=' </ phone>';

dbns_| ob. wri teappend(tlob, length(tag), tag);
tag : = <full nane>';

dbns_| ob. wri teappend(tlob, length(tag), tag);

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 4



ORACLE

Chapter 12
Name Search Examples

if (cl.FIRST_NAME is not null) then
dbns_I| ob. wri teappend(tlob, length(cl. FIRST_NAME), cl.Fl RST_NAME)
dbns_I ob. wri teappend(tlob, length(" '), " ");
end if;
if (cl1. MDDLE NAME is not null) then
dbns_I| ob. wri teappend(tlob, length(cl. M DDLE_NAME), cl. M DDLE_NAME)
dbns_I ob. wri teappend(tlob, length('" "), " ");
end if;
if (cl.LAST_NAME is not null) then
dbns_I ob. wri teappend(tlob, |ength(cl. LAST_NAME), cl.LAST_NAME)
end if;
tag : =" </full name>'
dbns_| ob. wri teappend(tlob, length(tag), tag)
end | oop
end;
/

--list
show errors

exec ctx_ddl.drop_preference(' enpuds');

begin
ctx_ddl .create_preference(' enpuds', 'user_datastore')
ctx_ddl.set _attribute('enpuds', 'procedure', 'enpuds_proc')
ctx_ddl.set_attribute('enpuds', 'output_type', 'CLOB');

end;

/

exec ctx_ddl.drop_section_group(' nanegroup');

begin
ctx_ddl . create_section_group(' nanegroup', 'BASIC SECTI ON_GROUP');
ctx_ddl . add_ndata_section(' namegroup', 'fullname', 'fullname')
ctx_ddl . add_ndata_section(' namegroup', 'phone', 'phone')
ctx_ddl . add_ndata_section(' nanegroup', 'enmil', 'emil');

end;

/

- Need to load nicknames thesaurus

- ctxload -thes -name nicknanes -file drOthsnanes.txt
-- You can find sanpl e nicknanes thesaurus file, drOthsnanes.txt, under
- $ORACLE_HOVE/ ct x/ sanpl e/ thes directory.

exec ctx_ddl.drop_preference(' ndata_ w');

begin
ctx_ddl.create_preference(' NDATA W', 'BASI C WORDLI ST")
ctx_ddl.set_attribute(' NDATA W', ' NDATA ALTERNATE SPELLING , 'FALSE');
ctx_ddl.set_attribute(' NDATA W', ' NDATA BASE LETTER, ' TRUE');
ctx_ddl.set_attribute(' NDATA W', ' NDATA THESAURUS , ' NI CKNAMES' );
ctx_ddl.set_attribute(' NDATA W', ' NDATA JO N_PARTI CLES',
"de:di:la:da:el:del:qi:abd:los:la:dos:do:an:li:yi:yu:van:jon:un:sai:ben:al")

end;

/

exec ctx_output.start_log('enp_log');

create index name_i dx on enp(first_nane) indextype is ctxsys.context

paraneters ('datastore enmpuds section group namegroup wordlist ndata_w
mermory 500M );

exec ctx_output.end_| og

- Now you can do name searches with the follow ng SQ.:
var nanme var char2(80)

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 4



ORACLE Chapter 12
Name Search Examples

exec :nane := 'Jon Doesnith'

select first_name, mddle_nane, |ast_name, phone, email, scr from
(select /*+ FIRST_RONS */
first_name, mddle_nane, |ast_name, phone, email, score(l) scr

from enp

where contains(first_nane,
"ndat a(phone, '||:nane||') OR ndata(email,'||:nane||') OR
ndata(ful lnane, '||:name||') ',1)>0

order by score(1l) desc
) where rownum <= 10;

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 4



Performing Ubiquitous Search with
DBMS_SEARCH APIs

Starting with Oracle Al Database 26ai, you can use the DBMS_SEARCH PL/ SQL package for
indexing of multiple schema objects in a single index, enabling you to search across the entire
database.

e About Ubiquitous Search and Ubiquitous Search Indexes

e Perform Ubiquitous Search: End-to-End Examples

13.1 About Ubiquitous Search and Ubiquitous Search Indexes

Ubiquitous search enables you to perform full-text and range-based queries across multiple
objects within an entire schema. You can use a ubiquitous search index (or simply a
DBMS_SEARCH index) to perform ubiquitous searches.

A ubiquitous search index is a JSON SEARCH | NDEX type with predefined set of preferences
and settings that are enabled for performing full-text search on tables, views, or JSON Duality
views. You use the DBM5_SEARCH PL/ SQL package to create, manage, and query these indexes.

You can create a DBM5_SEARCH index on tables or views over schemas that you have SELECT
privileges on. You can add data sources, that is tables and views, into this index (without the
need to materialize the views). All the columns in the specified sources are indexed and
available for full-text or range-based search.

Why Choose a Ubiquitous Search Index?

This indexing technique lets you create indexes across multiple objects, add or remove data
sources, and perform full-text or range-based searches within a single data source or across
multiple sources using the same index. This simplifies the indexing tasks that previously (prior
to Oracle Al Database 26ai) required you to create multiple individual indexes and manually
combine various data sources using the MULTI _COLUWN_DATASTORE or USER_DATASTORE
procedures along with materialized views. Previously, this also required additional methods,
such as triggers, to ensure that the index remained synchronized with DML operations.

With a simplified set of DBM5S_SEARCH APIs, you can perform ubiquitous searches across the
database as follows:

* Create index:
The DBVM5_SEARCH. CREATE_| NDEX API allows you to create a DBMS_SEARCH index.

By default, this index is created with key indexing preferences, such as BASI C WORDLI ST to
allow wildcard search and SEARCH_ON to allow both full-text and range-search queries.
These indexes are asynchronously maintained in the background at predefined intervals,
and thus you do not need to explicitly run the SYNC | NDEX and OPTI M ZE_| NDEX operations
on such indexes.

+ Manage data sources:

You can define which tables or views should be indexed by adding them as data sources
into your index.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 30



ORACLE’

The DBMS_SEARCH. ADD_SOURCE API allows you to automatically add one or more data

Chapter 13
About Ubiquitous Search and Ubiquitous Search Indexes

sources (such as tables, views, or duality views) from different schemas to this index.

The DBM5_SEARCH. REMOVE_SOURCE API allows you to remove a source and all its associated

data from the index.

* View combined indexed data:

The DBMS_SEARCH. GET_DOCUMENT API allows you to view a virtual document that is indexed,

which displays metadata values as indexed for each row of all your data sources.

*  Query multiple objects:

The DBM5_SEARCH. FI ND API allows you to retrieve a hitlist of all documents based on the

specified filter conditions.

This index creates background jobs at predefined intervals to synchronize the DML changes
and optimize the index using the AUTO DAI LY mode on all data sources. You do not need to

explicitly run the SYNC | NDEX and OPTI M ZE_| NDEX operations on this index.

Ubiquitous Search Index Creation Overview

You create a DBM5S_SEARCH index by simply specifying an index name and then adding various

data sources to it. This is illustrated in the following diagram:

‘ exec DBMS SEARCH.CREATE INDEX ('SCOTT.MYINDEX'); ‘

exec DBMS SEARCH.ADD SOURCE ( @ -
'SCOTT.MYINDEX',
'SCOTT.PRODUCTS") ;

1
]
I
]
MYINDEX g
1
1
1
1
I

proDUCTs @ ndex
o [ roce | pecarmon |
T T R S R T T ! +
1 10 Simple widget E MYINDEX table

2 1000 Shiny thing .

e {"OWNER'™:"SCOTT","SOURCE":"PRODUCTS","KEY":{"ID":1}} SCOTT

exec DBMS SEARCH.ADD SOURCE (
' SCOTT.MYINDEX', {"OWNER":"SCOTT","SOURCE":"PRODUCTS","KEY":{"ID":2}} SCOTT
'SCOTT.CUSTOMERS ") ;

CUSTOMERS @ ’," {"OWNER":"SCOTT","SOURCE":"CUSTOMERS","KEY":{"ID":5}} SCOTT
o | rnsr_vave | vt e [
5 Robert Smith ,/ {"OWNER":"SCOTT","SOURCE":"CUSTOMERS","KEY":{"ID":9}} SCOTT
9 John Doe

PRODUCTS

PRODUCTS

CUSTOMERS

CUSTOMERS

W o wemoma | ownen | sounce | ker

ID1

D2

ID5

ID9

1. The first command (DBMS_SEARCH. CREATE | NDEX procedure) creates an index table as

[ schema] . i ndex_nane. A ubiquitous search index, also named [ scheng] . i ndex_nane, is
created on the DATA column of the index table. Note that the index table name matches

your index name.

Here, the schema owner name (SCOTT) is specified along with the index name (MYl NDEX) as

SCOTT. MYl NDEX.

2. The second command (DBMS_SEARCH. ADD SOURCE procedure) adds one or more data

sources such as tables, views, or duality views from different schemas.

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 30




ORACLE

Chapter 13
About Ubiquitous Search and Ubiquitous Search Indexes

Here, this procedure combines contents from all the columns of the PRODUCTS and
CUSTOMERS tables in Scott's schema into the Myl NDEX table.

The Myl NDEX table contains the following columns:

DATA (JSON datatype):

This is an empty column, and is a placeholder for querying the DBMS_SEARCH index. You
add your data sources into the DATA column. You can then run PL/SQL queries against this
DATA column using the CONTAI NS() , JSON_TEXTCONTAI NS() , and JSON_EXI STS operators.

The DATA column creates a JSON representation of the following form for each indexed
row of the table or view that is added as a data source to this index:

{" ONNER":
{
"TABLE_NAME": { " COLUMNL_NAME": " COLUWNL_VALUE", .}
}
}

Note that the DATA column does not store actual data. Instead, the data resides in the
original base tables. This index references your data source tables to create a virtual
indexed JSON document on the fly. After the data is fetched and indexed, this column is
effectively emptied to avoid duplication.

METADATA (JSON datatype):

The METADATA column helps the DBMS_SEARCH index to uniquely identify each row of the
table or view that is indexed. After adding data sources to this index, you can see that the
METADATA column stores a JSON representation of the following form for each indexed row
of your data source:

{

"OMER' : "Table Omner or View Omner",

"SOURCE" : "Tabl e_Name or View Nane",

" KEY" : "{PrimaryKey COLUMN_i" : PrimaryKey VALUE i}
}

OMNER specifies the owner of the table or view added as a data source into this index.
SOURCE specifies the table name or view name of the data source.

KEY is composed of all the primary key columns of the data source table. If the table does
not have a primary key, then a RON Dis used instead. However, Oracle strongly
recommends defining a primary key.

As the diagram illustrates, the METADATA column stores corresponding JSON entries of the
following form for each indexed row:

For the PRODUCTS table:

{"OMNER": " SCOTT", " SOURCE" : " PRODUCTS", "KEY": {"I D": 1} }
{"OMNER": " SCOTT", " SOURCE" : " PRODUCTS", "KEY": {"I D": 2} }

For the CUSTOMERS table:

{"OMNER": " SCOTT", " SOURCE" : " CUSTOMERS", "KEY": {"I D": 5} }
{"OMNER": " SCOTT", " SOURCE" : " CUSTOMERS", "KEY": {"I D": 9}}

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 30



ORACLE Chapter 13
About Ubiquitous Search and Ubiquitous Search Indexes

@® Note

The DBM5_SEARCH index stores all supported SQL data types (including Obj ect
Type columns) as JSON objects, except for the XMLTYPE and LONG data types.
Therefore, you cannot add a table or view as data source if it has a column with
the XMLTYPE or LONG data type.

- OWNER, SOURCE, KEY (VARCHAR? datatype):

Each JSON key of the METADATA column, that is, OMNER, SOURCE, and KEY, is also a separate
virtual column in the Myl NDEX table.

Note that the Myl NDEX table is partitioned by OANER and SOURCE. When querying a particular
data source, you can add a WHERE clause condition on the OWNER and SOURCE virtual
columns to restrict your query search to a specific partition of that source using partition
pruning.

@® Note

All the data sources (such as table, view, or each table in the view definition) that
are added to the DBM5_SEARCH index must include at least one Primary Key
column. Each table that is part of a view source having a foreign key must also
have the For ei gn Key constraint, referencing the relevant primary keys defined on
the table. If the source table does not have a primary key, then a RON D is used
instead.

Query Indexed Data

As discussed earlier, you can use the DBM5S_SEARCH. GET_DOCUMENT procedure to view all the
contents extracted from the original base tables by querying a virtual document. This
document contains a JSON representation for each indexed row of a table or view that is
added as data source to your index.

The syntax for DBM5S_SEARCH. GET_DOCUNMENT is:

SELECT DBMS_SEARCH. GET_DOCUMENT(' [ schema] . i ndex_name', METADATA)
from [scheng].index_nane;

For example, using our earlier PRODUCTS and CUSTOVERS source tables scenario, the following
statement returns a virtual document with combined metadata values as indexed in the
MYl NDEX index:

SELECT DBMS_SEARCH. GET_DOCUNMENT( ' SCOTT. MYl NDEX' , METADATA)
from SCOTT. MYl NDEX;

DBMS_SEARCH. GET_DOCUMENT( " SCOTT. MYl NDEX' , METADATA)

{
" SCOTT"
{
"PRODUCTS" :
{
"I D' L1,
"PRI CE" : 10,

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 30



ORACLE

" DESCRI PTI ON' :

}
}
}
{
"SCOTT"
{
" PRODUCTS" :
{
"D
"PRI CE"

" DESCRI PTI ON' :

}
}
}
{
"SCOTT"
{
" CUSTOMERS" :
{
"D
" FI RSTNAME"
" LASTNAME"

}
}
}
{
"SCOTT"
{
" CUSTOMERS" :
{
"D
" FI RSTNAME"
" LASTNAME"

}
}
}

"sinmple wdget"

21
2000,
“shiny thing"

51
"Robert",
"Smth"

© 9

n JOhn" ,
n [beu

Chapter 13
About Ubiquitous Search and Ubiquitous Search Indexes

You can now run queries against your index using the CONTAI NS, JSON_TEXTCONTAI NS, and

JSON_EXI STS operators.

DBMS_SEARCH Dictionary Views

You can use the following dictionary views to examine your ubiquitous search indexes:

e USER DBMS_SEARCH | NDEXES: To query information about the indexes that are created in a

user's schema.

e ALL_DBMS_SEARCH | NDEXES: To query information about all existing indexes, corresponding

to each index owner.

e USER DBM5_SEARCH | NDEX_SOURCES: To query information about the data sources that are
added to indexes, created in a user's schema.

e ALL_DBMS SEARCH | NDEX SOURCES: To query information about all existing data sources
added to indexes, corresponding to each index owner.

Oracle Text Application Developer's Guide
G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 30



ORACLE Chapter 13
Perform Ubiquitous Search: End-to-End Examples

Related Topics

e Perform Ubiquitous Search: End-to-End Examples
Learn how to create DBM5_SEARCH indexes for performing various ubiquitous search use
cases by running these end-to-end example scenarios.

« DBMS_SEARCH Package

¢ Oracle Text Views

13.2 Perform Ubiquitous Search: End-to-End Examples

Learn how to create DBMS_SEARCH indexes for performing various ubiquitous search use cases
by running these end-to-end example scenarios.

e Create and Query DBMS_SEARCH Indexes Using Multiple Tables and Views
 Use JSON Duality Views with DBMS SEARCH Indexes
e« Examine DBMS_SEARCH Indexes Using Dictionary Views

13.2.1 Create and Query DBMS_SEARCH Indexes Using Multiple Tables
and Views

In this example, you can see how to create a ubiquitous search index, add multiple tables and
views to it, and then query against the index using the CONTAI NS, JSON_TEXTCONTAI NS, and
JSON_EXI STS operators.

1. Connect to Oracle Al Database as a local user.
a. Log into SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1

DATAFI LE 't bs5. dbf' SIZE 20G AUTCEXTEND ON
EXTENT MANAGEMENT LOCAL

SEGMVENT SPACE MANAGEMENT AUTO

SET ECHO ON

SET FEEDBACK 1
SET NUMN DTH 10
SET LI NESI ZE 80
SET TRI MSPOOL ON
SET TAB OFF

SET PAGESI ZE 10000
SET LONG 10000

b. Create alocal user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CGRANT DB DEVELOPER ROLE, DEFAULT TABLESPACE tbsl quota unlimted on tbsl
TO docuser | DENTI FI ED BY passwor d;

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 30



ORACLE Chapter 13
Perform Ubiquitous Search: End-to-End Examples

c. Connect as the local user (docuser):

CONN docuser/ passwor d

2. Create and populate the cust oners, i tens, orders, and | i nei t ens tables. You will later
add these tables to your ubiquitous search index.

a. custoners:

Here, the schema owner name DOCUSER is explicitly specified.

CREATE TABLE docuser. custoners (
cust _id nunber PRI MARY KEY,
first varchar2(30),

[ ast varchar2(30));

insert into customers values (1, 'Robert', "Snmith');
insert into customers values (2, 'John', 'Doe');
insert into customers values (3, 'James', 'Martin');
insert into customers values (5, 'Jane', 'Y');

b. itens:

CREATE TABLE itens (
itemid nunber PRI MARY KEY,
name var char 2( 30),
price nunber(5,2),
stock_quantity nunber);

insert into items values (122, 'Potato GQun', 29.99, 10);

insert into items values (232, 'Rubber Christmas Tree', 65.00, 0);
insert into items values (345, 'Border Patrol Costume', 19.99, 20);
insert into items values (845, 'Meteor Inpact Survival Kit', 299.00, 0);
insert into items values (429, "Air Quitar', 9.99, 14);

c. orders:

CREATE TABLE orders (
order _id nunber PRI MARY KEY,
cust _i d nunber REFERENCES custoners(cust _id) ON DELETE CASCADE);

insert into orders values (1, 1
insert into orders values (2, 1
insert into orders values (3, 3
insert into orders values (4, 2

d. lineitens:

CREATE TABLE lineitems (
order _id number REFERENCES orders(order_id) ON DELETE CASCADE,
itemid nunber REFERENCES itens(item.id) ON DELETE CASCADE,

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 30



ORACLE

3.

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

quantity numnber,
PRI MARY KEY(order id, itemid));

insert into lineitens values(l, 845, 1);
insert into lineitems values(2, 232, 1);
insert into lineitens values(2, 429, 4);
insert into lineitens values(3, 122, 1);
insert into lineitens values(4, 345, 1);

Create a view named sear ch_vi ewbased on the tables you created. You will later add this
view to your ubiquitous search index.

CREATE OR REPLACE VI EWsearch_view(cust _id, business_object,
CONSTRAI NT sear ch_vi ew_pk
PRI MARY KEY(cust _id)
RELY DI SABLE NOVALI DATE,
CONSTRAI NT search_view fk
FOREI GN KEY(cust _i d) REFERENCES custoners(cust _id)
DI SABLE NOVALI DATE) AS
SELECT c.cust _id, JSON_OBJECT(
"id VALUE c.cust _id,
"nane' VALUE (c.first || ' ' || c.last),
"numorders' VALUE (
SELECT COUNT( *)
FROM orders o
WHERE o.cust_id = c.cust_id),
"orders' VALUE (
SELECT JSON_ARRAYAGH

JSON_OBJECT(
"order _id VALUE o.order _id,
"items' VALUE (
SELECT JSON_ARRAYAGG (
JSON_OBJECT(
"id VALUE |.itemid,
"nane' VALUE i.nane,
"quantity' VALUE |.quantity,
"single_itemprice' VALUE i.price,
"total _price' VALUE (i.price *
I.quantity)))
FROM lineitens |, itenms i
WHERE | . order _id = o.order_id
AND i.itemid =1Il.itemid)))
FROM orders o

WHERE o.cust _id = c.cust_id) ABSENT ON NULL) busi ness_obj ect
FROM cust omers c;

Create a ubiquitous search index named MY_SEARCH | NDEX.

EXEC DBMS_SEARCH. CREATE_| NDEX(' DOCUSER. MY_SEARCH | NDEX', NULL, 'JSON);

Note that you can omit t abl espace and dat at ype (defaults to JSON), as follows:

exec dbns_search. create_i ndex(' MY_SEARCH | NDEX' );

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 30



ORACLE Chapter 13
Perform Ubiquitous Search: End-to-End Examples

Run the following command to determine the structure of your index, which is created in
the DOCUSER schema:

DESC MY_SEARCH_ | NDEX;

Nane Nul | ? Type

METADATA NOT NULL  JSON

DATA JSON

OMNNER VARCHAR2(1128)
SOURCE VARCHAR2(1128)
KEY VARCHAR2(11024)

5. Add the CUSTOMERS table as data source to MY_SEARCH | NDEX.

EXEC DBMS_SEARCH. ADD_SOURCE(" DOCUSER. MY_SEARCH | NDEX',
" DOCUSER. CUSTOMERS' ) ;

You can add all other table sources to this index, but it is not required to complete this
example scenario.

6. Examine the DATA and METADATA columns of your index along with the DBMS_SEARCH
dictionary views, as shown in the following steps:

a. Query the METADATA column:

SELECT JSON_SERI ALI ZE( METADATA FORMAT JSON) META
FROM DOCUSER. MY_SEARCH_| NDEX
ORDER BY META;

The METADATA column helps the DBMS_SEARCH index to uniquely identify each row of the
table or view that is indexed. You can see that the METADATA column stores a JSON
representation of the following form for each indexed row of your cust oner s table:

{" OMNER": "DOCUSER', " SOURCE" : " CUSTOMERS", " KEY": {" CUST_I D": 1} }
{" OMNER": "DOCUSER", " SOURCE" : " CUSTOMERS", " KEY": {" CUST_I D": 2} }
{" OMNER": "DOCUSER', " SOURCE" : " CUSTOMERS", " KEY": {" CUST_I D": 3} }
{" OMNER": "DOCUSER", " SOURCE" : " CUSTOMERS", " KEY": {" CUST_I D": 5} }

4 rows sel ected.

b. Query the DATA column:

SELECT DATA
FROM DOCUSER. MY_SEARCH_| NDEX;

Note that the DATA column does not store actual data. Instead, the data resides in the
original base tables. This index references your data source tables to create a virtual

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 30



ORACLE

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

indexed JSON document on the fly. After the data is fetched and indexed, this column
is effectively emptied to avoid duplication.

4 rows sel ected.

Get a virtual indexed document to examine the contents that are extracted from the
cust omer s table source.

SELECT
JSON_SERI ALI ZE(
DBMS_SEARCH. GET_DOCUMENT(' DOCUSER. MY_SEARCH_| NDEX' , METADATA) FORMAT
JSON) DoC
FROM DOCUSER. MY_SEARCH_| NDEX
ORDER BY JSON_SERI ALI ZE( METADATA FORVAT JSON);

This document contains a JSON representation for each indexed row of the cust oner s
table that is added as data source to your index:

{"DOCUSER": {" CUSTOMERS": {"CUST ID": 1,"FIRST": "Robert","LAST":"Snith"}}}
{"DOCUSER": {"CUSTOMERS": {"CUST I D": 2, "FI RST": "John", "LAST": "Doe"}}}
{"DOCUSER": { " CUSTOVERS": {"CUST I D": 3,"FI RST": "James", "LAST": "Martin"}}}
{"DOCUSER": {" CUSTOMERS": {"CUST I D": 5, "FIRST": "Jane", "LAST":"Y"}}}

4 rows sel ected.

Query the USER_DBMS_SEARCH | NDEXES view to display metadata values for the index.

SELECT | DX_NAME FROM USER_DBMS_SEARCH | NDEXES ORDER BY | DX_NAME;

This view shows the index name added in your user schema, DOCUSER:

1 row sel ect ed.

Query the USER_DBMS_SEARCH | NDEX_SOURCES view to display metadata values for your
data source.

SELECT | DX_NAME, SRC_OMNER, SRC_NAME, SRC_TYPE
FROM USER_DBMS_SEARCH_| NDEX_SOURCES
CRDER BY | DX_NAME, SRC_OM\ER, SRC_NANE;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 30



ORACLE

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

This view shows the data source details associated with your index, from your user
schema (DOCUSER). Here, the source type T implies a "table" source:

SRC_TYPE

MY_SEARCH_| NDEX
DOCUSER
CUSTOMVERS

7

1 row sel ect ed.

Add a view to your index, then examine the METADATA column and dictionary views again to
compare how the changes are reflected in the indexed data.

Add the view that you created (SEARCH VI EW as a data source to the index:

EXEC DBMS_SEARCH. ADD_SOURCE(' DOCUSER. MY_SEARCH_| NDEX
' DOCUSER. SEARCH VI EW ) ;

Query the METADATA column:

SELECT JSON_SER! ALI ZE( METADATA FORMAT JSON) META
FROM DOCUSER. MY_SEARCH_| NDEX
ORDER BY META:

The METADATA column additionally shows each row of the view that is indexed:

{" OANER': " DOCUSER' , " SOURCE" : " CUSTOMERS" , "KEY": {"CUST_I D": 1}}

{" OMNER': " DOCUSER' , " SOURCE" : " CUSTOMERS" , " KEY": {"CUST_I D" 2}}

{" OANER': " DOCUSER' , " SOURCE" : " CUSTOMERS" , " KEY": {" CUST_I D": 3}}

{" OANER': " DOCUSER' , " SOURCE" : " CUSTOMERS" , " KEY": { " CUST_I D": 5}}

{" OMNER': " DOCUSER', " SOURCE" : " SEARCH VI EW , "KEY": {"CUST_I D': 1} }
{" OMER': " CUSTOMER', " SOURCE" : " SEARCH VI EW, "KEY": {" CUST I D": 2} }
{" OMNER': " DOCUSER', " SOURCE" : " SEARCH_VI EW , "KEY": {"CUST I D': 3} }
{" OMNER': " DOCUSER', " SOURCE" : " SEARCH VI EW , "KEY": { " CUST I D': 5} }

8 rows sel ected.

Query the USER_DBMS_SEARCH | NDEXES dictionary view.

SELECT | DX_NAME FROM USER DBMS_SEARCH | NDEXES
ORDER BY | DX_NAME;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 11 of 30



ORACLE

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

This view shows the index name present in your user schema, DOCUSER:

1 row sel ect ed.

Query the USER_DBMS_SEARCH | NDEX_SOURCES dictionary view.

SELECT | DX_NAME, SRC_OAKER, SRC_NAME, SRC_TYPE
FROM USER DBMS_SEARCH_| NDEX_SOURCES
ORDER BY | DX_NAME, SRC_OWKER, SRC_NAME:

The output shows an additional row for SEARCH VI EW added as a data source to your
index. Here, the source types T and V imply "table" and "view" sources, respectively:

SRC_TYPE

MY_SEARCH_| NDEX
DOCUSER
CUSTOMVERS

I

MY_SEARCH_| NDEX
DOCUSER
SEARCH VI EW

Vv

2 rows sel ected.

8. Run queries against your index using the JSON_EXI STS operator.

a.

Search for documents in the view source of your index, where the DATA column
contains a JSON element $. DOCUSER. SEARCH VI EW

SELECT JSON_SERI AL| ZE( METADATA FORVAT JSON) META
FROM DOCUSER. MY_SEARCH_| NDEX

WHERE JSON_EXI STS( DATA, ' $. DOCUSER. SEARCH VI EW )
ORDER BY META:

The output returns four rows from the DOCUSER schema with combined customer IDs as
1,2,3,and5:

{" OANER" : " DOCUSER", " SOURCE" : " SEARCH_VI EW , "KEY": {"CUST_I D": 1}}

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 12 of 30



ORACLE

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

{"OMNER": "DOCUSER', " SOURCE" : " SEARCH_VI EW , "KEY": {"CUST_I D": 2} }
{"OMNER": "DOCUSER', " SOURCE" : " SEARCH_VI EW , "KEY": {"CUST_I D": 3}}
{"OMNER": "DOCUSER', " SOURCE" : " SEARCH_VI EW , "KEY": {"CUST_I D": 5} }

4 rows sel ected.

Search for documents in the view source of you index as a virtual document, where
the DATA column contains a JSON element $. DOCUSER. SEARCH_VI EW

This is a similar query as shown in the previous step. However, here you can view an
entire virtual indexed document with a JSON representation of all the metadata values:

SELECT
JSON_SERI ALI ZE(
DBVS_SEARCH. GET_DOCUMENT(' DOCUSER. MY_SEARCH | NDEX' , METADATA) FORMAT
JSON) DoC
FROM DOCUSER. MY_SEARCH_| NDEX
WHERE JSON_EXI STS( DATA, ' $. DOCUSER. SEARCH VI EW )
ORDER BY JSON_SERI ALI ZE( METADATA FORMAT JSON);

The output returns a JISON document with combined metadata values, as indexed in
MY_SEARCH_| NDEX:

{"DOCUSER": { " SEARCH VI EW : {" CUST_I D": 1, " BUSI NESS_OBJECT":
{"id":1,"name": "Robert
Smith", "numorders":2,"orders":[{"order_id":1,"itens":
[{"id":845,"nanme": " Met eor

| npact Survival
Kit","quantity":1,"single_itemprice":299,"total _price":299}]},
{"order_id":2,"items":[{"id":232,"nane": "Rubber Christmas
Tree","quantity":1,
"single_itemprice":65 "total _price":65},{"id":429,"nane": "Air
Cuitar","quantity":4
,"single_itemprice":9.99,"total _price":39.96}]}]1}}}}

{" DOCUSER": { " SEARCH VI EW : {" CUST_I D": 2, " BUSI NESS_OBJECT":
{"id":2,"nanme": "John
Doe","numorders":1,"orders":[{"order_id":4,"itens":
[{"id":345,"nanme": "Border

Pat r ol

Cost une",

HIH

{" DOCUSER": { " SEARCH VI EW : {" CUST_I D": 3, " BUSI NESS_OBJECT"
{"id":3,"name": "James
Martin","numorders":1,"orders":[{"order_id":3,"itens"
[{"id":122,"nane": "Potato
Qun","quantity":1,"single_itemprice":29.99,"total _price":29.99}]1}]1}}}}

quantity":1,"single_itemprice":19.99,"total _price":19.99}]

{" DOCUSER": { " SEARCH_VI EW : {" CUST_I D": 5, " BUSI NESS_OBJECT":
{"id":5,"name": "Jane Y",
"numorders":0}}}}

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 13 of 30



ORACLE

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

4 rows sel ected.

9. Perform a textual search query on targeted paths using the JSON_TEXTCONTAI NS operator.

a.

Query the $. DOCUSER. SEARCH_VI EW BUSI NESS_OBJECT. nanme JSON path in the DATA
column for the keywords "Anon or Jane".

SELECT
JSON_SERI ALI ZE(

DBVS_SEARCH. GET_DOCUMENT( ' DOCUSER. MY_SEARCH | NDEX', METADATA) FORMAT
JSON) DOC
FROM DOCUSER. MY_SEARCH_| NDEX
VWHERE
JSON_TEXTCONTAI NS( DATA, ' $. DOCUSER. SEARCH VI EW BUSI NESS_OBJECT. nane' ,

" Anon or Jane')

ORDER BY JSON_SERI ALI ZE( METADATA FORVAT JSON) ;

The output returns a JISON document with the customer ID as 5 and the name as Jane
Y, from the SEARCH VI EWsource in the DOCUSER schema:

{" DOCUSER": { " SEARCH VI EW : {" CUST_I D": 5, " BUSI NESS_OBJECT":
{"id":5,"name": " Jane Y",
“num orders":0}}}}

1 row sel ect ed.

Use the SCORE operator with JSON_TEXTCONTAI NS to obtain a relevance score for your
search result.

SELECT METADATA, score(1) from DOCUSER MY_SEARCH | NDEX
WHERE JSON_TEXTCONTAI NS(
DATA, ' $. DOCUSER. SEARCH_VI EW BUSI NESS_OBJECT. nane' , ' Anon or
Jane', 1);

The output returns metadata values and a relevance score of 5 for the matching record
of customer ID 5, Jane Y.

METADATA

{" OMNER": "DOCUSER", " SOURCE" : " SEARCH_VI EW , "KEY": {"CUST_I D": 5} }
5

1 row sel ect ed.

10. Search across the entire schema using the CONTAI NS operator.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 14 of 30



ORACLE Chapter 13
Perform Ubiquitous Search: End-to-End Examples

a. Query the index to retrieve records that match the keywords "Anon or Jane".

SELECT
JSON_SERI ALI ZE(
DBMS_SEARCH. GET_DOCUMENT( ' DOCUSER. MY_SEARCH | NDEX' , METADATA) FORMAT
JSON) DOC
FROM DOCUSER. MY_SEARCH_| NDEX
WHERE
CONTAI NS( DATA, " Anon or Jane') > 0
ORDER BY JSON_SERI ALI ZE( METADATA FORMAT JSON);

The output returns two JSON objects from the DOCUSER schema. One with the
customer ID as 5 and the name as Jane Y, from the CUSTOVERS table source. Another
also with the customer ID as 5 and the name as Jane Y, but from the SEARCH VI EW
view source.

Note that the business object here has zero orders associated with it.

{"DOCUSER": { " CUSTOVERS": {"CUST I D":5,"FI RST": "Jane", "LAST": "Y"}}}
{"DOCUSER": { " SEARCH VI EW : {" CUST I D": 5, " BUSI NESS_OBJECT":
{"id":5, "name": "Jane Y",

“num orders":0}}}}

2 rows sel ected.

b. Use the SCORE operator with CONTAI NS to obtain a relevance score for your search
result.

SELECT METADATA, score(1l) as search_score
from DOCUSER. MY_SEARCH | NDEX
VWHERE CONTAI NS( DATA, ' Anon or Jane', 1) >0;

Here, the output returns the matching records of customer ID 5, Jane Y, from both the
table source and view source. It also shows a search score of 5 for both the records.

METADATA

{"OMNER": "DOCUSER', " SOURCE" : " CUSTOMERS", " KEY": {" CUST_I D": 5} }
5

{"OMNER": "DOCUSER', " SOURCE" : " SEARCH_VI EW , "KEY": {"CUST_I D": 5}}
5

2 rows sel ected.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 15 of 30



ORACLE

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

11. Use the DBM5_SEARCH. FI ND procedure to retrieve a hitlist. This also facets an aggregations

of JSON documents based on the specified query-by-example (QBE) filter conditions.

SELECT JSON_SERI ALI ZE( DBMS_SEARCH. FI ND( ' DOCUSER. MY_SEARCH | NDEX' ,
JSON(" {
"$query" :
costune" } }
"$facet" :
{ "$sunt :
" DOCUSER. SEARCH VI EW BUSI NESS_OBJECT. orders.itens.total price"},
{ "$count" :
{ "path" :
" DOCUSER. SEARCH VI EW BUSI NESS_OBJECT. orders.items. single_item price",
"bucket" : [ { "$It" : 20 }, { "$agte" : 20} ] } },
{ "$uni queCount" : "DOCUSER SEARCH VI EW BUSI NESS_OBJECT. nane" }

]
}')) FORMAT JSON PRETTY) AGG FROM DUAL;

{ "DOCUSER SEARCH VIEW*" : { "$contains" : "Qun or patrol
[

The output shows an aggregation result in JSON format.

Here, the query searches for the phrase Gun or patrol costunme within

DOCUSER. SEARCH VI EW The $count indicates two records that match the query criteria.
The $f acet key groups multiple aggregation results into separate buckets, performing the
following aggregations:

»  DOCUSER. SEARCH VI EW BUSI NESS_OBJECT. orders.itenms.total price:

Aggregates the total price of all items in the orders.itens.total price field into a
total of 49. 98.

e DOCUSER. SEARCH VI EW BUSI NESS_OBJECT. orders.itens.single_ itemprice:

Aggregates the prices of individual items in the si ngl e_item pri ce field and groups
them into price ranges (buckets).

»  DOCUSER. SEARCH VI EW BUSI NESS_OBJECT. name:

Counts the unique occurrences of names, John Doe and Janes Martin, in the
BUSI NESS_OBJECT. nane field. Both the names appear once.

AGG
{
"$count" : 2,
"$facet" :
[
{
" DOCUSER. SEARCH VI EW BUSI NESS_OBJECT. orders.itens.total _price" :
{
"$sum' : 49.98
}
¥
{

" DOCUSER. SEARCH VI EW BUSI NESS_OBJECT. orders.items. single_item price" :

[
{

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 16 of 30



ORACLE’

19. 99,
20

20,
29.99

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

" DOCUSER. SEARCH_VI EW BUSI NESS_OBJECT. nane" :

"John Doe",

"$uni queCount " :

"James Martin",

"$uni queCount " :

"bucket" :
{
"$gte"
"$ltt o
}1
"$count" :
}1
{
"bucket" :
{
"$gte"
"$lte" :
}1
"$count" :
}
]
}1
{
[
{
"val ue" :
}1
{
"val ue" :
}

1 row sel ect ed.

Related Topics

- DBMS_SEARCH Package

» SCORE
*  CONTAINS

*  JSON_TEXTCONTAINS

- JSON_EXISTS

13.2.2 Use JSON Duality Views with DBMS_SEARCH Indexes

In this example, you can see how to create a ubiquitous search index, define and add a JSON
duality view to it, and then query against the index using the CONTAI NS, JSON_TEXTCONTAI NS,
and JSON_EXI STS operators.

Note that while querying your data, you might need to wait for the synchronization operation to

complete depending on your specified SYNC setting.

1. Connect to Oracle Al Database as a local user.

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 30



ORACLE

a.

C.

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1

DATAFI LE 't bs5. dbf' Sl ZE 20G AUTCEXTEND ON
EXTENT MANAGEMENT LOCAL

SEGMVENT SPACE MANAGEMENT AUTO

SET ECHO ON

SET FEEDBACK 1
SET NUMN DTH 10
SET LI NESI ZE 80
SET TRI MSPOOL ON
SET TAB OFF

SET PAGESI ZE 10000
SET LONG 10000

Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

GRANT DB _DEVELOPER ROLE, DEFAULT TABLESPACE tbsl quota unlimited on tbhsl
TO docuser | DENTI FI ED BY passwor d;

Connect as the local user (docuser):

CONN docuser/ passwor d

2. Prepare tables to implement your JSON duality view.

a.

Create the enpl oyees and depart ment s tables:

CREATE TABLE enpl oyees

( enpl oyee_id NUMBER(6) primary key,
first_nane var char 2(4000),
| ast _nane var char 2(4000),
department _id NUMBER(4)

)i

CREATE TABLE departnents
( departrment _id NUMBER(5) prinmary key,
department _name VARCHAR2(30),
manager _id NUMBER( 6)
);

Alter the enpl oyees table to include a foreign key constraint (enp_dept _f key) to it.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 18 of 30



ORACLE Chapter 13
Perform Ubiquitous Search: End-to-End Examples

Here, you specify that the depart nent _i d column in the enpl oyees table uses a
foreign key to the depart ment _i d column in the depart nent s table:

ALTER TABLE enpl oyees
ADD (
CONSTRAINT  enp_dept _f key
FOREI GN KEY (department _id)
REFERENCES depart ment s

);

c. Populate the enpl oyees and depart nent s tables:
I NSERT | NTO departnents VALUES(10, 'Adm nistration', 100);
I NSERT | NTO enpl oyees VALUES(100, 'Robert', 'Smith', 10);
I NSERT | NTO enpl oyees VALUES(101, 'Janes', 'Martin' ,10);
I NSERT | NTO enpl oyees VALUES(102, 'John', 'Doe', 10);
comit;

3. Create a DBM5_SEARCH index named MY_SEARCH | NDEX.

exec dbns_search. create_i ndex(' MY_SEARCH | NDEX' , NULL,"' JSON );

Note that you can omit t abl espace and dat at ype (defaults to JSON), as follows:

exec dbns_search. create_i ndex(' MY_SEARCH | NDEX' );

Run the following command to determine the structure of your index, which is created in
the DOCUSER schema:

DESC MY_SEARCH | NDEX;

Nane Nul | ? Type

METADATA NOT NULL  JSON

DATA JSON

OMNER VARCHAR2( 128)
SOURCE VARCHAR2( 128)
KEY VARCHAR2(11024)

4. Define a JSON duality view over the tables you created, and then add that view to
MY_SEARCH | NDEX.

a. Create an employee-centric JSON duality view named W_EMP_VI EW

CREATE or replace JSON relational duality VIEWM_EMP_VIEW

AS

sel ect JSON {

"EMPLOYEE ID is enp. EMPLOYEE_I D,

"FIRST_NAME' is enp. Fl RST_NAME,

"LAST_NAME' is enp.last_nane,

"departnent _info' is

(
sel ect JSON

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 19 of 30



ORACLE

5.

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

{
' DEPARTMENT_ID is dept.department id ,

"departnentnane' is dept.department_name W TH( UPDATE)

}
from departments dept W TH( UPDATE, CHECK ETAG

where dept. departnment _id = enp. departnent _id
)
}
from enpl oyees enp W TH( | NSERT, UPDATE, DELETE) ;
Add the duality view (MY_EMP_VI EW to MY_SEARCH_| NDEX as a data source:

exec dbns_search. add_source(' MY_SEARCH | NDEX' ,"' M\Y_EMP_VI EW ) ;

Examine what is indexed in My_SEARCH | NDEX:

a.

Query the METADATA column to review the source information from where the tables are

extracted.

sel ect JSON_SERI ALI ZE( METADATA FORMAT JSON) META from MY_SEARCH | NDEX
order by owner, source, key;

The index table's METADATA column stores a JSON representation of the following form

for each indexed row:

{" OANER': " DOCUSER', " SOURCE": " MY_EMP_VI EW , " KEY": { "EMPLOYEE_| D": 100} }
{" OMNER': " DOCUSER', " SOURCE": " MY_EMP_VI EW , "KEY": { "EMPLOYEE_| D": 101} }
{" OANER': " DOCUSER', " SOURCE": " MY_EMP_VI EW , "KEY": { "EMPLOYEE_| D": 102} }

Examine the metadata values as indexed in the DATA column.

sel ect data from MY_EMP_VIEW
order by 1;

{" netadata":
{"etag": " 77AACDD6860BE5SD14FCEB2A8633336D7", "asof ": " 0000000000000000
{" netadata":
{"etag": " 4B233BDBA51C3B905A357F8446FBABDA", "asof ": " 0000000000000000
{" netadata":
{"etag": "5669EACI0AB697DA6CL3D2045D6C6638", "asof ": " 0000000000000000

|

View a virtual indexed document to examine the actual fields that are indexed.

sel ect JSON_SERI ALI ZE(
DBMS_SEARCH. GET_DOCUMENT( ' MY_SEARCH | NDEX', METADATA) FORMAT JSON)
DCC
from MY_SEARCH | NDEX
order by owner, source, key;

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 30



ORACLE

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

The output returns a JISON document with combined metadata values, as indexed in
MY_SEARCH | NDEX:

{"DOCUSER": {"MY_EMP_VI EW : { " DATA": {" _nmetadata":

{"etag": " 77AACDD6860BE5D14FCEB2A8633336D7",

"asof ":"0000000000000000"}, "EMPLOYEE_| D': 100, " FI RST_NAME": " Robert ", " LAST
_NAME": " Smi th",

"departnent_info":

{" DEPARTMENT_I D": 10, "depar t ment name": " Adni ni stration"}}}}}

{"DOCUSER": {"MY_EMP_VI EW : { "DATA": {" _nmet adata":
{"etag":"4B233BD8A51C3B905A357F8446FBABDA",

"asof ":"0000000000000000"}, "EMPLOYEE_| D': 101, " FI RST_NAME": " James", " LAST_
NAME": "Martin",

"departnent_info":

{" DEPARTMENT_I D": 10, "depar t ment name": " Adni ni stration"}}}}}

{"DOCUSER": {"MY_EMP_VI EW : { " DATA": {" _nmet adata":

{"etag": "5669EACI0AB697DA6CL13D2045D6C6638" ,

"asof ": "0000000000000000"}, "EMPLOYEE_| D': 102, " FI RST_NAME": " John", "LAST_N
AVE": " Doe",

"departnent_info":

{" DEPARTMENT_I D': 10, "depar t ment name": " Adni ni stration"}}}}}

6. Query your duality view using the JSON_EXI STS operator.

This statement generates an execution plan that retrieves the EMPLOYEE | D from the
MY_SEARCH_| NDEX table, filtering the JSON data for entries where the FI RST_NAME is
Robert and the LAST _NAME is Snit h:

explain plan for
sel ect
t. met adat a. KEY. "EMPLOYEE_| D". nunber () as enpl oyee_id
from MY_SEARCH | NDEX t
wher e
j son_exi st s(dat a,
" $. DOCUSER. MY_EMP_VI EW DATA?( @ FI RST_NAME == "Robert" && @ LAST_NAME
== "Smth")");

SELECT PLAN_TABLE_QUTPUT FROM
TABLE( DBMS_XPLAN. DI SPLAY( NULL, NULL, ' BASI C PREDI CATE PROQJIECTION ));

The output appears as:

PLAN_TABLE_OUTPUT

Pl an hash val ue: 1710711056

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 21 of 30



ORACLE Chapter 13
Perform Ubiquitous Search: End-to-End Examples

| 0| SELECT STATEMENT | |
| 1] PARTITION LIST ALL | |
[* 2| TABLE ACCESS BY LOCAL | NDEX ROWD| MY_SEARCH | NDEX |
[* 3]  DOVAIN | NDEX | MY_SEARCH | NDEX |

2 -
filter(JSON EXI STS2(" DBMS_SEARCH'. " GET_DOCUMENT" (' " DOCUSER' . " MY_SEARCH |
NDEX" " |
"T". " METADATA" /*+ LOB_BY_VALUE */ ) FORMAT OSON,
*$. DOCUSER MY_EMP_VI EW DATA?( @ FI RST_NAME == "Robert" &&
@LAST _NAME ==

"Smth")" /* json_path_str $. DOCUSER MY_EMP_VI EW DATA?
((@FI RST_NAME. string()

== "Robert") && (@LAST_NAME.string() == "Smth")) */
FALSE ON ERROR TYPE(LAX) )=1)

3 - access("CTXSYS". " CONTAINS'("T"."DATA" /*+ LOB_BY_VALUE */
,' (sdat a( FVCH_DFE32BED91ED02414AB59BAEC23126D1_FI RST_NAVE
= "Robert" )
and
sdat a( FVCH_9ABFA0A86CCA96ADF45C533C7CO2EFF7_LAST_NAME = "Smith"

))")>0)

Col um Projection Information (identified by operation id):

1 - "T"."METADATA" /*+ LOB_BY_VALUE */ [JSON, 8200]
2 - "T"."METADATA" /*+ LOB_BY VALUE */ [JSON, 8200]
3 - "T". RON D[ RON D, 10]

31 rows sel ected.

e This statement retrieves the primary key defined for \v_EMP_VI EWby searching the
EMPLOYEE | Dfield from the My_SEARCH | NDEX table, where the JSON data in the data
column contains FI RST_NAME as Robert and LAST_NAME as Snmi t h.

sel ect
t. met adat a. KEY. "EMPLOYEE | D'. nunber () as enpl oyee_ id
from MY_SEARCH | NDEX t
wher e
j son_exi st s(dat a,
' $. DOCUSER. \¥_ENP_VI EW DATA?( @ FI RST_NAME == "Robert" && @ LAST_NAME
== "Smth")");

The output returns a row with EMPLOYEE | D as 100:

EMPLOYEE_I D

7. Update some fields in the duality view directly, and then query the index again to analyze
the changes.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 22 of 30



ORACLE

a.

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

Add a new name for an employee with Employee ID as 100.

update ny_enp_view
set data =
"{"EMPLOYEE_| D": 100, " FI RST_NAME": "new_nane",
"LAST_NAME": "new_| ast name",
"departnment _info":
{" DEPARTMENT_I D': 10, "depar t ment name": " Adni ni stration"}}'
where json_val ue(data,'$. EMPLOYEE ID ) = 100;

comm t;

View all contents extracted from the original base tables querying the DATA column of
your index.

select data fromny_enp_view order by 1;

The DATA column creates a JSON representation of the following form for each
indexed row of \¥_EMP_VI EWthat is added as a data source to this index:

{" netadata":

{"etag": "B7CAD96918892950C1FBA12E58ACI98E", "asof ": " 0000000000000000"},
"EMPLOYEE | D': 100, " FI RST_NAME": "new_nane", " LAST_NAME":"new | ast nane", "de
partnent _info":

{" DEPARTMENT | D': 10, "depart nent name": " Admi ni stration"}}

{" netadata":

{"etag": " 4B233BD8A51C3B905A357F8446FBABDA", "asof ": " 0000000000000000"},
"EMPLOYEE | D': 101, "FI RST_NAME': "Janes", "LAST_NAME": "Martin", "department _
info":

{" DEPARTMENT | D': 10, "depart nent name": " Admi ni stration"}}

{" netadata":
{"etag": "5669EACI0AB697DA6CL3D2045D6C6638", "asof ": " 0000000000000000"},
"EMPLOYEE | D': 102, "FI RST_NAME": "John", "LAST_NAME": " Doe", "depart nent _info

{" DEPARTMENT | D': 10, "depart nent name": " Admi ni stration"}}

{" netadata":

{"etag":"3F8A0577A0E8F8AAF38B088D1CD3EAEG", "asof ": " 0000000000000000"},
"EMPLOYEE | D': 103, " FI RST_NAME": "new nane2","LAST _NAME":"new | ast name2","
department _i nfo":

{" DEPARTMENT | D': 10, "depart nent name": " Admi ni stration"}}

4 rows sel ected.
Query the employee for whom you updated the new name:
sel ect

t. met adat a. KEY. "EMPLOYEE | D". nunber () as enpl oyee_id
from MY_SEARCH | NDEX t

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 23 of 30



ORACLE

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

wher e j son_exi sts(data,
" $. DOCUSER. MY_EMP_VI EW DATA?( @ FI RST_NAME == "new nane" &&
@ LAST_NAME == "new_| astname")"');

The output returns a row with EMPLOYEE | D as 100:

EMPLOYEE_I D

1 row sel ect ed.

Add a new employee to the Adni ni strati on department.

insert into ny_enp_view val ues(’
{"EVMPLOYEE_| D': 103, "FI RST_NAME": "new_nane2",
"LAST_NAME": "new_| ast name2",
"department _i nfo":
{" DEPARTMENT_I D': 10, "depar t ment name": " Adni ni stration"}}");

Add a new department named HR.

I NSERT I NTO departnents VALUES
(20, "HR, 103);

Add a new employee to the HR department.

insert into nmny_enp_view values('
{"EVPLOYEE_I D': 104, " FI RST_NAME": "new_name3",
"LAST_NAME": "new_| ast name3",
"departnent _info":{"DEPARTMENT | D': 20, "depart ment nane": "HR'}}");

commit;
Query the DATA column of your index again to compare the updated indexed data.

sel ect data fromny_enp_view
order by 1,

{" _netadata":

{"etag": "B7CAD96918892950C1FBA12E58ACLI8E", "asof ": " 0000000000000000

"}, "EMPLOYEE | D': 100, " FI RST_NAME": "new_name", " LAST_NAME": "new_| ast nane",
"departnent _info":

{" DEPARTMENT_I D": 10, "depar t ment name": " Admi ni stration"}}

{" _netadata":

{"etag": " 4B233BD3A51C3B905A357F8446FBABDA", "asof ": " 0000000000000000
"}, "EMPLOYEE | D': 101, " FI RST_NAME": " Janes", "LAST_NAME": "Martin",
"departnent _info":

{" DEPARTMENT_I D": 10, "depar t ment name": " Admi ni stration"}}

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 24 of 30



ORACLE

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

{"_metadata":

{"etag": "5669EACI0AB697DA6CL3D2045D6C6638", "asof ": " 0000000000000000
"}, "EMPLOYEE | D': 102, " FI RST_NAME": "John", " LAST_NAME": " Doe",
“departnent _info":

{" DEPARTMENT_I| D': 10, "depar t ment name": " Adni ni stration"}}

{"_metadata":
{"etag": " 3F8A0577A0E8F8AAF38B088D1CD3EAEG" , "asof ": " 0000000000000000
"}, "EMPLOYEE_ | D': 103, "FI RST_NAME": "new _nane2","LAST NAME':"new | ast name2

"
l

"departnent _i nfo":
{" DEPARTMENT_I| D': 10, "depar t ment narme": " Adni ni stration"}}

4 rows sel ected.

View the METADATA column of your updated index.

sel ect JSON_SERI ALI ZE( METADATA FORVAT JSON) META from MY_SEARCH | NDEX
order by owner, source, key;

The METADATA column stores a JSON representation of the following form for each
indexed row:

{" OANER" : " DOCUSER", " SQURCE" : "MY_EMP_VI EW , "KEY": {" EMPLOYEE_| D": 100} }
{" OANER" : " DOCUSER", " SQURCE" : "MY_EMP_VI EW , "KEY": {"EMPLOYEE_| D": 101} }
{" OANER" : " DOCUSER", " SQURCE" : "MY_EMP_VI EW , "KEY": {"EMPLOYEE_I D": 102} }
{"OMNER": "DOCUSER', " SOURCE": " MY_EMP_VI EW , "KEY": { " EMPLOYEE_| D": 103} }
{" OANER" : " DOCUSER", " SQURCE" : "MY_EMP_VI EW , "KEY": {"EMPLOYEE_| D": 104} }

Compare the virtual document that returns a JSON document with combined metadata
values, as indexed for each row.

sel ect JSON_SERI ALI ZE(

DBMS_SEARCH. GET_DOCUMENT (' MY_SEARCH | NDEX', METADATA) FORMAT JSON) DOC
from MY_SEARCH | NDEX
order by owner, source, key;

Run queries against your index using the JSON_TEXT_CONTAI NS operator.

Search for all recently updated employees whose names contain "new nane":

sel ect t.metadata. KEY."EMPLOYEE_| D'. nunber () as enpl oyee_id

from MY_SEARCH | NDEX t

wher e

json_textcontains(data,'$. DOCUSER MY_EMP_VI EW DATA. FI RST_NAME' , ' new
nane% )

order by enpl oyee_id;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 25 of 30



ORACLE

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

The output returns three rows with EMPLOYEE | Ds as 100, 103, and 104:

EMPLOYEE_I D

b. Search for an employee from the HR department:

sel ect t.metadata. KEY."EMPLOYEE | D'. nunber () as enpl oyee_ id
from MY_SEARCH | NDEX t

where json_exists(data,'$. DOCUSER MY_EMP_VI EW DATA?
(@departnent _info.departmentnane == "HR")"');

The output returns a row with EMPLOYEE | D as 104:

EMPLOYEE_I D

Run against your index across the schema, using the CONTAI NS operator.

sel ect JSON_SERI ALI ZE(
DBVB_SEARCH. GET_DOCUMENT(' MY_SEARCH | NDEX' , NMETADATA) FORMAT JSON) DOC
from MY_SEARCH | NDEX
wher e contai ns(data,' Robert or HR )>0
order by owner, source, key;

The query retrieves a virtual indexed document with metadata values from
MY_SEARCH | NDEX, where the DATA column contains keywords Robert and HR:

{"DOCUSER": {"MY_EMP_VI EW : { "DATA": {" _nmetadata":
{"etag":"7CB51D7BF53FD85174B3A1FC72EEECDB"

"asof ": "0000000000000000"}, "EMPLOYEE_| D": 104, " FI RST_NAME": "new_nanme3", " LAST
_NAME": "new_| ast name3",

“departnent _i nfo": {"DEPARTMENT_I D": 20, "depart nentname": "HR'}}}}}

Related Topics

JSON-Relational Duality Developer's Guide
DBMS_SEARCH Package

CONTAINS

JSON_TEXTCONTAINS

JSON_EXISTS

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 26 of 30



ORACLE Chapter 13
Perform Ubiquitous Search: End-to-End Examples

13.2.3 Examine DBMS_SEARCH Indexes Using Dictionary Views

In this example, you can see how to use various dictionary views to query information about
your DBMS_SEARCH indexes, such as index name, corresponding schema owner name, data
source name added to indexes, or corresponding source owner name and ID.

1. Connect to Oracle Al Database as a local user.
a. Loginto SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1

DATAFI LE 't bs5. dbf' Sl ZE 20G AUTCEXTEND ON
EXTENT MANAGEMENT LOCAL

SEGMVENT SPACE MANAGEMENT AUTO,

SET ECHO ON

SET FEEDBACK 1
SET NUMN DTH 10
SET LI NESI ZE 80
SET TRI MSPOOL ON
SET TAB OFF

SET PAGESI ZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

GRANT DB_DEVELOPER_ROLE, DEFAULT TABLESPACE tbsl quota unlimted on thsl
TO docuser | DENTI FI ED BY passwor d;

c. Connect as the local user (docuser):

CONN docuser/ passwor d

2. Create the departments and enpl oyees tables.

CREATE TABLE departnents
( department _id NUMBER(5) primary key,
department _name VARCHAR2(30),
manager _id NUMBER( 6)
);

CREATE TABLE enpl oyees
( enpl oyee_id NUMBER(6) primary key,
first_nane var char 2(4000),
| ast _nane var char 2(4000),

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 27 of 30



ORACLE Chapter 13
Perform Ubiquitous Search: End-to-End Examples

departrment _id NUMBER(4)
)s

3. Populate the tables with data.

I NSERT | NTO departnents VALUES(10, 'Admi nistration', 100);

I NSERT | NTO enpl oyees VALUES (100, 'Robert', 'Smith', 10);

I NSERT | NTO enpl oyees VALUES (101, 'Janes', 'Martin' ,10);
(

I NSERT | NTO enpl oyees VALUES (102, 'John', 'Doe', 10);
comit;
4. Create a ubiquitous search index named My_SEARCH | NDEX.
EXEC DBMS_SEARCH. CREATE_| NDEX(' DOCUSER. MY_SEARCH | NDEX', NULL, 'JSON ):

5. Add the tables as data sources to your index.

exec dbns_search. add_source(' DOCUSER. MY_SEARCH | NDEX', ' DEPARTMENTS');
exec dbns_search. add_source(' DOCUSER. MY_SEARCH | NDEX' , ' EMPLOYEES');

6. View information about the DBMS_SEARCH indexes that are created in a user's schema.

select * fromuser _dbns_search_i ndexes;

7. View information about the data sources that are added to the DBMS_SEARCH indexes,
created in a user's schema.

select * fromuser_dbns_search_i ndex_sources;

Here, the source type T implies a "table" source:

EMPLOYEES
T 2

| DX_NAME

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 28 of 30



ORACLE’

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

DEPARTNMENTS
T 1

View information about all existing DBM5S_SEARCH indexes, corresponding to each index
owner.

select * fromall _dbnms_search_i ndexes;

I DX_OANER

CUSTOMER
CUSTOMVER _SEARCH | NDEX

View information about all existing data sources added to various DBMS_SEARCH indexes,
corresponding to each index owner.

select * fromall_dbns_search_i ndex_sources;

Here, the source types T and J imply "table" and "JSON Duality view" sources,
respectively.

| DX_OANER

EMPLOYEES
T 2

| DX_OMNER

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 29 of 30



ORACLE’

DEPARTNMENTS
T 1

| DX_OWNER

CUSTOMER
CUSTOVER SEARCH_| NDEX
CUSTOMER

MY_EMP_VI EW

J 1

Related Topics

USER_DBMS_SEARCH_INDEXES
USER_DBMS_SEARCH_INDEX_SOURCES
ALL_DBMS_SEARCH_INDEXES
ALL_DBMS_SEARCH_INDEX_SOURCES

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

Chapter 13
Perform Ubiquitous Search: End-to-End Examples

October 13, 2025
Page 30 of 30



Working with a Thesaurus in Oracle Text

You can improve your query application with a thesaurus.
This chapter contains the following topics:

*  Overview of Oracle Text Thesaurus Features

e Defining Terms in a Thesaurus

e Using a Thesaurus in a Query Application

¢ Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries

Augmenting the Knowledge Base with a Custom Thesaurus

e Linking New Terms to Existing Terms

« Example of Loading a Thesaurus with ctxload

« Example of Loading a Thesaurus with the CTX THES.IMPORT THESAURUS PL/SOQL
procedure

e Compiling a Loaded Thesaurus

«  About the Supplied Knowledge Base

14.1 Overview of Oracle Text Thesaurus Features

Users of your query application looking for information on a given topic might not know which
words have been used in documents that refer to that topic.

Oracle Text enables you to create case-sensitive or case-insensitive thesauruses that define
synonym and hierarchical relationships between words and phrases. You can then retrieve
documents that contain relevant text by expanding queries to include similar or related terms
as defined in the thesaurus.

You can create a thesaurus and load it into the system.
This section contains the following topics.

*  Oracle Text Thesaurus Creation and Maintenance

e Using a Case-sensitive Thesaurus

* Using a Case-insensitive Thesaurus

e Default Thesaurus

e Supplied Thesaurus

@® Note

Oracle Text thesaurus formats and functionality are compliant with both the ISO-2788
and ANSI Z39.19 (1993) standards.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 10



ORACLE

Chapter 14
Overview of Oracle Text Thesaurus Features

14.1.1 Oracle Text Thesaurus Creation and Maintenance

If you have the CTXAPP role, you can create, modify, delete, import, and export thesauruses and
thesaurus entries.

This section contains the following topics.

CTX_THES Package: To maintain and browse your thesaurus programatically, you can
use the CTX_THES PL/SQL package. With this package, you can browse terms and
hierarchical relationships, add and delete terms, add and remove thesaurus relations, and
import and export thesauruses in and out of the thesaurus tables.

Thesaurus Operators: To expand query terms according to your loaded thesaurus, you
can use the thesaurus operators in the CONTAI NS clause. For example, use the SYN
operator to expand a term such as dog to its synonyms:

"syn(dog)’

ctxload Utility: You can use the ct x| oad utility to load thesauruses from a plain-text file
into the thesaurus tables, and to dump thesauruses from the tables into output (or dump)
files.

You can print the thesaurus dump files, you can use them as input for other applications,
and you can use them to load a thesaurus into the thesaurus tables (useful when you want
to use an existing thesaurus as the basis for a new thesaurus).

'd A

A Warning

To ensure sound security practices, Oracle recommends that you enter the
password for ct x| oad by using the interactive mode, which prompts you for the
user password. Oracle strongly recommends that you do not enter a password on
the command line.

® Note

You can also programatically import and export thesauruses in and out of the
thesaurus tables using the PL/SQL package CTX_ THES procedures
| MPORT_THESAURUS and EXPORT_THESAURUS.

Refer to Oracle Text Reference for more information about these procedures.

14.1.2 Using a Case-Sensitive Thesaurus

In a case-sensitive thesaurus, terms (words and phrases) are stored exactly as you enter
them. For example, if you enter a term in mixed case (using either the CTX_THES package or a
thesaurus load file), then the thesaurus stores the entry in mixed case.

@® Note

To take full advantage of query expansions that result from a case-sensitive thesaurus,
your index must also be case-sensitive.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 10



ORALCLE Chapter 14
Overview of Oracle Text Thesaurus Features

When loading a thesaurus, you can specify a case-sensitive thesaurus by using the -t hescase
parameter.

When creating a thesaurus with either CTX_THES. CREATE_THESAURUS or
CTX_THES. | MPORT_THESAURUS, you can specify a case-sensitive thesaurus.

In addition, when you specify a case-sensitive thesaurus in a query, the thesaurus lookup uses
the query terms exactly as you enter them in the query. Therefore, queries that use case-
sensitive thesauruses allow for a higher level of precision in the query expansion, which helps
lookup when and only when you have a case-sensitive index.

For example, a case-sensitive thesaurus is created with different entries for the distinct
meanings of the terms Turkey (the country) and turkey (the type of bird). Using the thesaurus,
a query for Turkey expands to include only the entries associated with Turkey.

14.1.3 Using a Case-Insensitive Thesaurus

In a case-insensitive thesaurus, terms are stored in all uppercase, regardless of the case in
which they were originally entered.

The ct xl oad program loads a thesaurus in case-insensitive mode by default.

When creating a thesaurus with either CTX_THES.CREATE_THESAURUS or
CTX_THES. | MPORT_THESAURUS, the thesaurus is created as case-insensitive by default.

In addition, when you specify a case-insensitive thesaurus in a query, the query terms are
converted to all uppercase for thesaurus lookup. As a result, Oracle Text is unable to
distinguish between terms that have different meanings when they are in mixed case.

For example, a case-insensitive thesaurus is created with different entries for the two distinct
meanings of the term TURKEY (the country or the type of bird). Using the thesaurus, a query
for either Turkey or turkey is converted to TURKEY for thesaurus lookup and then expanded to
include all the entries associated with both meanings.

14.1.4 Default Thesaurus

If you do not specify a thesaurus by name in a query, by default, the thesaurus operators use a
thesaurus named DEFAULT. However, Oracle Text does not provide a DEFAULT thesaurus.

As a result, if you want to use a default thesaurus for the thesaurus operators, you must create
a thesaurus named DEFAULT. You can create the thesaurus through any of the thesaurus
creation methods supported by Oracle Text:

«  CTX_THES.CREATE_THESAURUS (PL/SQL)
«  CTX_THES.| MPORT_THESAURUS (PL/SQL)

e ctxl oad utility

@ See Also

Oracle Text Reference to learn more about using ct x| oad and the CTX_THES
package

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 10



ORACLE Chapter 14
Defining Terms in a Thesaurus

14.1.5 Supplied Thesaurus

Although Oracle Text does not provide a default thesaurus, Oracle Text does supply a
thesaurus, in the form of a file that you load with ct x| oad, you can use to create a general-
purpose, English-language thesaurus.

You can use the thesaurus load file to create a default thesaurus for Oracle Text, or you can
use it as the basis for thesauruses tailored to a specific subject or range of subjects.

e Supplied Thesaurus Structure and Content: The supplied thesaurus is similar to a
traditional thesaurus, such as Roget's Thesaurus, in that it provides a list of synonymous
and semantically related terms.

It provides additional value by organizing the terms into a hierarchy that defines real-world,
practical relationships between narrower terms and their broader terms.

Additionally, cross-references are established between terms in different areas of the
hierarchy.

e Supplied Thesaurus Location: The exact name and location of the thesaurus load file
depends on the operating system; however, the file is generally named dr 0t hsus (with an
appropriate extension for text files) and is generally located in the following directory
structure:

<Oracl e_hone_directory>
<Oracle_Text _directory>
sanpl e
t hes

@ See Also

»  Oracle Database Installation Guide for the installation documentation specific to
your operating system for more information about the directory structure of Oracle
Text

* Oracle Text Reference to learn more about using ct x| oad and the CTX_THES
package

14.2 Defining Terms in a Thesaurus

You can create synonyms, related terms, and hierarchical relationships with a thesaurus.
This section contains the following topics.

e Defining Synonyms

»  Defining Hierarchical Relations

14.2.1 Defining Synonyms

If you have a thesaurus of computer science terms, then you might define a synonym for the
term XML as extensible markup language. This synonym enables queries on either of these
terms to return the same documents.

XM

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 10



ORACLE’

Chapter 14
Using a Thesaurus in a Query Application

SYN Ext ensi bl e Markup Language

You can use the SYN operator to expand XML into its synonyms:

" SYN(XML) '

is expanded to:

" XM., Extensible Markup Language'

14.2.2 Defining Hierarchical Relations

If your document set consists of news articles, you can use a thesaurus to define a hierarchy of
geographical terms. Consider the following that describes a geographical hierarchy for the
state of California:

California

NT Northern California
NT San Francisco
NT San Jose

NT Central Valley
NT Fresno

NT Sout hern California
NT Los Angel es

You can use the NT operator to expand a query on California:
"NT(California)’

is expanded to:

"California, Northern California, San Francisco, San Jose, Central Valley,
Fresno, Southern California, Los Angeles'

The resulting hitlist shows all documents related to the state of California regions and cities.

14.3 Using a Thesaurus in a Query Application

When you define a custom thesaurus, you can process queries more intelligently. Because
users of your application might not know which words represent a topic, you can define
synonyms or narrower terms for likely query terms. You can use the thesaurus operators to
expand your query into your thesaurus terms.

There are two ways that you can enhance your query application with a custom thesaurus so
that you can process queries more intelligently. Each approach has its advantages and
disadvantages.

e Load your custom thesaurus and enter queries with thesaurus operators

e Augment the knowledge base with your custom thesaurus (English only) and use the
ABQUT operator to expand your query.

14.4 Loading a Custom Thesaurus and Issuing Thesaurus-Based

Queries

You can build and load a custom thesaurus.

The advantage of this method is that you can modify the thesaurus after indexing.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 10



ORACLE’

Chapter 14
Augmenting the Knowledge Base with a Custom Thesaurus

The limitation of this method is that you must use thesaurus expansion operators in your query.
Long queries can cause extra overhead in the thesaurus expansion and slow your query down.

To build a custom thesaurus:

1.
2.

Create your thesaurus. See "Defining Terms in a Thesaurus".

Load the thesaurus with ct xI oad. The following example imports a thesaurus named
tech_doc from an import file named t ech_t hesaurus. t xt:

ctxl oad -thes -nane tech_doc -file tech_thesaurus.txt

At the prompt, enter your user name and password. To ensure security, do not enter a
password at the command line.

Use THES operators to query. For example, you can find all documents that contain XML
and its synonyms as defined in t ech_doc:

"SYN(XM., tech_doc)’

14.5 Augmenting the Knowledge Base with a Custom Thesaurus

You can add your custom thesaurus to a branch in the existing knowledge base. The
knowledge base is a hierarchical tree of concepts used for theme indexing, ABOUT queries, and
derived themes for document services.

When you augment the existing knowledge base with your new thesaurus, you query with the
ABQUT operator. The query implicitly expands to synonyms and narrower terms. You do not
query with the thesaurus operators.

To augment the existing knowledge base with your custom thesaurus:

1.
2.

Create your custom thesaurus, linking new terms to existing knowledge base terms.
Load the thesaurus one of the following ways:
« Using the ct xl oad utility. See "Example of Loading a Thesaurus with ctxload".

e Using the PL/SQL procedure CTX_THES. | MPORT_THESAURUS. See "Example of Loading
a Thesaurus with the CTX_THES.IMPORT_THESAURUS PL/SQL procedure".

Compile the loaded thesaurus with the ct xkbt ¢ compiler.
Index your documents. By default the system creates a theme component for your index.

Use the ABCUT operator to query. For example, to find all documents that are related to the
term politics, including any synonyms or narrower terms as defined in the knowledge base,
enter this query:

"about (politics)’

@ See Also

» "Defining Terms in a Thesaurus" and "Linking New Terms to Existing Terms"

e "Compiling a Loaded Thesaurus"

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 10



ORACLE Chapter 14
Linking New Terms to Existing Terms

14.5.1 Advantages

Compiling your custom thesaurus with the existing knowledge base before indexing enables
faster and simpler queries with the ABOUT operator. Document services can also take full
advantage of the customized information to create theme summaries and gists.

14.5.2 Limitations

Use of the ABQUT operator requires a theme component in the index, which requires slightly
more disk space. You must also define the thesaurus before indexing your documents. If you
change the thesaurus, you must recompile your thesaurus and reindex your documents.

14.6 Linking New Terms to Existing Terms

When you add terms to the knowledge base, for best results in theme proving, Oracle
recommends that you links new terms to one of the categories in the knowledge base.

@ See Also

Oracle Text Reference for more information about the supplied English knowledge
base

If you keep new terms separate from existing categories, fewer themes from new terms are
proven. The result is poor precision and recall with ABOUT queries, as well as poor quality of
gists and theme highlighting.

You link new terms to existing terms by making an existing term the broader term for the new
terms.

Consider the example: You purchase a medt hes medical thesaurus containing a hierarchy of
medical terms. The following are the top four terms in the thesaurus:

e Anesthesia and Analgesia

* Anti-Allergic and Respiratory System Agents

* Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation Mediators
e Antineoplastic and Immunosuppressive Agents

To map these terms to the existing health and medicine branch in the knowledge base, add the
following entries to the medical thesaurus:

health and nedicine
NT Anesthesia and Anal gesi a
NT Anti-Allergic and Respiratory System Agents
NT Anti-Inflamanmatory Agents, Antirheumatic Agents, and Inflamation Mediators
NT Antineopl astic and | nmunosuppressive Agents

14.7 Example of Loading a Thesaurus with ctxload

Assuming the medical thesaurus is in the ned. t hes file, you load the thesaurus as nedt hes
with ct xI oad as follows:

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 10



ORACLE’

Chapter 14
Example of Loading a Thesaurus with the CTX_THES.IMPORT_THESAURUS PL/SQL procedure

ctxl oad -thes -thescase y -nane medthes -file med.thes -user ctxsys

When you enter the ct x| oad command line, you are prompted for the user password. For best
security practices, never enter the password at the command line. Alternatively, you may omit
-user and let ct xI oad prompt you for your user name and password.

14.8 Example of Loading a Thesaurus with the
CTX_THES.IMPORT THESAURUS PL/SQL procedure

This example creates a case-sensitive thesaurus named nyt hesaur us and imports the
thesaurus content in nycl ob into the Oracle Text thesaurus tables:

decl are

mycl ob cl ob;

begin

myclob : = to_clob(' peking SYN beijing BT capital country NT beijing tokyo');
ctx_thes.inport_thesaurus('nythesaurus', myclob, ‘Y');

end;

The format of the thesaurus to be imported (mycl ob in this example) should be the same as the
format in the ct x| oad utility. If the format of the thesaurus to be imported is not correct, then
| MPORT_THESAURUS raises an exception.

14.9 Compiling a Loaded Thesaurus

To link the loaded nedt hes thesaurus to the knowledge base, use ct xkbt ¢ as follows:

ctxkbtc -user ctxsys -nanme nedthes

When you enter the ct xkbt ¢ command line, you are prompted for the user password. As with
ctxl oad, for best security practices, do not enter the password at the command line.

s N

A Warning

To ensure sound security practices, Oracle recommends that you enter the password
for ct x| oad and ct xkbt ¢ in the interactive mode. This mode prompts you for the user
password. Oracle strongly recommends that you do not enter a password on the
command line.

14.10 About the Supplied Knowledge Base

Oracle Text supplies a knowledge base for English and French. The supplied knowledge
contains the information used to perform theme analysis. Theme analysis includes theme
indexing, ABOUT queries, and theme extraction with the CTX_DCC package.

The knowledge base is a hierarchical tree of concepts and categories. It has six main
branches:

e Science and technology
e Business and economics

e Government and military

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 10



ORACLE’

Chapter 14
About the Supplied Knowledge Base

e Social environment
e Geography
e Abstract ideas and concepts

The supplied knowledge base is like a thesaurus in that it is hierarchical and contains broader
terms, narrower terms, and related terms. As such, to improve the accuracy of theme analysis,
augment the knowledge base with your industry-specific thesaurus by linking new terms to
existing terms.

@ See Also

"Augmenting Knowledge Base with Custom Thesaurus"

You can also extend theme functionality to other languages by compiling a language-specific
thesaurus into a knowledge base.

@ See Also

"Adding a Language-Specific Knowledge Base"

Knowledge bases can be in any single-byte character set. Supplied knowledge bases are in
WES8ISO8859P1. You can store an extended knowledge base in another character set such as
US7ASCIL.

This section contains the following topics:

 Adding a Lanqguage-Specific Knowledge Base

« Limitations for Adding Knowledge Bases

14.10.1 Adding a Language-Specific Knowledge Base

You can extend theme functionality to languages other than English or French by loading your
own knowledge base for any single-byte whitespace-delimited language, including Spanish.

You can extend theme functionality to languages other than English or French by loading your
own knowledge base for any single-byte whitespace-delimited language, including Spanish.

Theme functionality includes theme indexing, ABOUT queries, theme highlighting, and the
generation of themes, gists, and theme summaries with CTX_DCC.

You extend theme functionality by adding a user-defined knowledge base. For example, you
can create a Spanish knowledge base from a Spanish thesaurus.

To load your language-specific knowledge base:
1. Load your custom thesaurus by using ct x| oad.

2. Set NLS_LANGso that the language portion is the target language. The charset portion must
be a single-byte character set.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 10



ORACLE Chapter 14
About the Supplied Knowledge Base

3. Compile the loaded thesaurus by using ct xkbt ¢ and then enter the password for -user
when you are prompted. This statement compiles your language-specific knowledge base
from the loaded thesaurus.

ctxkbtc -user ctxsys -nane my_| ang_thes
To use this knowledge base for theme analysis during indexing and ABCUT queries, specify the

NLS LANGlanguage as the THEME_LANGUAGE attribute value for the BASI C_LEXER preference.

@ See Also

« "Example of Loading a Thesaurus with ctxload"

e "Compiling a Loaded Thesaurus"

14.10.2 Limitations for Adding Knowledge Bases

Here are the limitations for adding knowledge bases:

*  Oracle supplies knowledge bases only in English and French. You must provide your own
thesaurus for any other language.

* You can add knowledge bases only for languages with single-byte character sets. You
cannot create a knowledge base for languages that can be expressed only in multibyte
character sets. If the database is a multibyte universal character set, such as UTF-8, you
must still set the NLS_LANG parameter to a compatible single-byte character set when you
compile the thesaurus.

e Adding a knowledge base works best for whitespace-delimited languages.
e Only one knowledge base is allowed for each NLS_LANG language.

«  Obtaining hierarchical query feedback information (for example, broader terms, narrower
terms, and related terms) does not work in languages other than English and French. In
other languages, the knowledge bases are derived entirely from your thesauruses. In such
cases, Oracle recommends that you obtain hierarchical information directly from your
thesauruses.

@ See Also

Oracle Text Reference for more information about theme indexing, ABOUT queries,
using the CTX_DOC package, and the supplied English knowledge base

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 10



Using Faceted Navigation

Become familiar with the faceted navigation feature.

«  About Faceted Navigation

« Defining Sections As Facets

¢ Refining Queries by Using Facets As Filters

¢ Multivalued Facets

15.1 About Faceted Navigation

This feature implements group counts, also known as facets, which are frequently used in e-
commerce or catalog applications. In various applications, it is preferable not only to display
the list of hits returned by a query, but also to categorize the results.

For example, an e-commerce application wants to display all products matching a query for the
term management along with faceting information. The facets include ‘type of product’ (books
or DVDs), ‘author’, and ‘date’. For each facet, the application displays the unique values
(books or DVDs) and their counts. You can quickly assess that most of the product offerings of
interest fall under the ‘books’ category. You can further refine the search by selecting the
‘books’ value under ‘type of product’.

A group count is defined as the number of documents that have a certain value. If a value is
repeated within the same document, the document contributes a count of 1 to the total group
count for the value. Group counts or facets are supported for SDATA sections that use

optim zed_for search SDATA. To request a computation of facets for a query, use the Result
Set Interface.

15.2 Defining Sections As Facets

SDATA refers to structured data. Group counts or facets are supported for SDATA sections that
you create with the opti mi zed_f or attribute set to either ‘search’ or ‘sort and search’. In the
MULTI _COLUWN_DATASTORE preference, when data appears between tags or columns that are
specified as opti m zed for search SDATA, the data is automatically indexed as the facet
data. Any data that does not match its declared type is handled according to the same
framework that currently handles indexing errors for a specific row.

Examples

In the following statements, some tagged data is inserted into a VARCHAR2 column of a table.
You can later define SDATA sections to collect the data based on the tags used here.

* Binary float or binary double with tag price:
insert into nytab values (1, 'red marble' <price>l.23</price>");
e Time stamp with tag T:

insert into mytab values (1,'blue marbles <T>2012-12-05T05: 20: 00</ T>");

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 10



ORACLE Chapter 15
Defining Sections As Facets

In the following statements, a section group is created and various SDATA section groups are
added. The section definition includes the section group to which it belongs, the name of the
section, the tag to be looked for, and the data type.

exec ctx_ddl.create_section_group('sg','BASIC SECTI ON GROUF' )
exec ctx_ddl.add_SDATA section('sg','secOl','name', 'varchar2')
exec ctx_ddl.add_SDATA section('sg','sec02','count', 'nunber')
exec ctx_ddl.add_SDATA section('sg','sec03','date', 'date')
exec ctx_ddl.add_SDATA section('sg','sec04','tinmestanp', 'tinestanp')

exec ctx_ddl.add_SDATA section('sg','sec05,'new price', 'binary_double)
exec ctx_ddl.add_SDATA section('sg','sec06','old price', binary_float")

exec ctx_ddl.add_SDATA section('sg','sec07' ,'timestanp','timestanp with tine

zone')

The name given to the facet is * sec01’ and the ‘ nane’ tag is the actual tag name that occurs
inside the document that is to be indexed. The ‘ date’, ‘timestanp’,and ‘timestanp with
time zone' data types require the input data to be in the standard ISO format.

@ See Also

Oracle Database Globalization Support Guide for more information about the standard
ISO formats

Example 15-1 Using Faceted Navigation

The following statements create a table named product s:

drop tabl e products;

create tabl e products(nane varchar2(60), vendor varchar2(60), rating nunber,
price nunber, nydate date);

The following statement inserts values into pr oduct s:

insert al
into products val ues
into products val ues
into products val ues
into products val ues
select * from dual

"cherry red shoes', 'first vendor', 5, 129, sysdate)
"bright red shoes', 'first vendor', 4, 109, sysdate)
"more red shoes', 'second vendor', 5, 129, sysdate)

(
(
(
('shoes', 'third vendor', 5, 109, sysdate)

The following statements create a MULTI _COLUMN_DATASTORE preference named ds to bring
various other columns into the index (nane) to be used as facets:

/*A MILTI _COLUMN_DATASTORE automatical |y adds tags by default so that the
text to be indexed |ooks Iike
"<nanme>cherry red shoes</name><vendor>first vendor</vendor><rating> .... '*/

exec ctx_ddl.drop_preference ('ds")
exec ctx_ddl.create_preference('ds', 'MILTI_COLUWN DATASTORE' )

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 10



ORACLE

exec ctx_ddl.set_attribute

mydate')

@® Note

Oracle does not allow table columns with bi nary_fl oat, binary_doubl e,

('ds', "COLUWS', 'nane, vendor,

Chapter 15

Defining Sections As Facets

rating, price,

timestanp, andtinmestanp with tinezone data types. It is therefore difficult to use
such data types with MULTI _COLUMN DATASTORE. You can still create facets if the
document contains tagged data for these data types. Alternatively, you can convert
‘timestamp' columns to 'date’ and you can store bi nary_fl oat and bi nary_doubl e as
‘number'.

The following statements create a section group named sg and enable the opti m zed_f or
sear ch attribute for each column to be treated as a facet:

/* A Section Group is created to specify the data type of each col um
(varchar2 is the default) and
how each colum that is brought into the index should be used.*/

exec
exec

exec
exec
exec
exec

exec
exec
exec
exec

ctx_ddl .
ctx_ddl.

ctx_ddl .
ctx_ddl .
ctx_ddl .
ctx_ddl .

ctx_ddl .
ctx_ddl .
.set_section_attribute('sg'
ctx_ddl.

ct x_ddl

drop_section_group ('sg')
create_section_group ('sg', 'BASIC SECTI ON GROUP')

add_sdata_section ('sg'
add_sdata_section ('sg'
add_sdata_section ('sg'
add_sdata_section ('sg'

set _section_attribute('sg'
set _section_attribute('sg'

set _section_attribute('sg'

, 'vendor'
, 'rating'
, 'price',
, 'nydate'
, 'vendor'
, 'rating'
, 'price',

"vendor', 'VARCHAR2')
"rating', 'NUMBER)

"price', 'NUMBER )
'nydate', 'DATE')

"optimzed for'
"optimzed for'
"optimzed for'

, 'nydate', 'optimzed_for'

' SEARCH )
' SEARCH )
' SEARCH )
' SEARCH )

The following statement creates an index on nane and specifies the preferences by using the
PARANMETERS clause:

CREATE | NDEX product _i ndex ON products (name)
| NDEXTYPE | S ct xsys. cont ext
PARAMETERS (' datastore ds section group sg');

The following statements query for a product name, ‘red shoes’ and the facets for computation
can be specified. The count attribute shows the total number of items that match the query for
the product. The Result Set Interface specifies various requirements, such as the top vendors
that have the largest number of matching items, the lowest available prices, and the latest

arrivals:

set | ong 500000
set pagesize 0

variabl e displayrs clob;

decl are

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 10



ORACLE

Chapter 15

Defining Sections As Facets

rs clob;
begi n
ctx_query.result_set('product _index', 'red shoes'
"<ctx_result_set _descriptor>
<count/ >
<group sdata="vendor" topn="5" sortby="count" order="desc">
<count exact="true"/>
</ group>
<group sdata="price" topn="3" sortby="val ue" order="asc">
<count exact="true"/>
</ group>
<group sdata="nydate" topn="3" sortby="val ue" order="desc">
<count exact="true"/>
</ group>
</ctx_result_set_descriptor>'
rs);

[* Pretty-print the result set (rs) for display purposes.
It is not required if you are going to manipulate it in XM.*/

sel ect xm serialize(Document XM.Type(rs) as clob indent size=2)
into :displayrs from dual
dbns_| ob. freetenporary(rs);
end;
/
sel ect :displayrs from dual

The following is output:

<ctx_result_set>

<count >3</
count >

<groups
sdat a=" VENDOR" >
<group val ue="first
vendor ">
<count >2</
count >
</
group>
<group val ue="second
vendor ">
<count >1</
count >
</
group>
</
groups>

<groups
sdat a=" PRI CE" >
<group
val ue="109">

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 10



ORACLE’

Chapter 15
Querying Facets by Using the Result Set Interface

<count >1</
count >
</
group>
<group
val ue="129">
<count >2</
count >
</
group>
</
groups>

<groups
sdat a=" MYDATE" >
<group val ue="2017-12- 06
05: 44: 54" >
<count >3</
count >
</
group>
</
groups>
</ctx_result_set>

15.3 Querying Facets by Using the Result Set Interface

Starting with Oracle Database Release 18c, the group-counting operation for a specified list of
facets is provided. You can obtain the group counts for each single value by using the

bucket by attribute with its value set to si ngl e. The topn, sortby, and order attributes are
also supported. Starting with Oracle Database Release 21c, you can obtain the group counts
for a range of numeric and variable character facet values by using the r ange element, which is
a child element of the gr oup element.

bucketby Attribute
Valid attributes are si ngl e and cust om

e The 'single’ mode produces a list of all unique values for the facet and a document count
for each value.

e The 'custom' mode produces document counts for a range of numeric values.

count Element (Single Count)

In the following example, a few rows are inserted into the nyt ab table. Some rows have two
values for the facet <B>, and some rows have a single value.

begi n
insert into mytab values (1, '<B>1.234</B><B>5</B>');
insert into mytab values (2, '<B>1.432</B>");
insert into mytab values (3, '<B>2.432</B><B>6</B>');
insert into mytab values (4, '<B>2.432</B>");

end;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 10



ORACLE

Chapter 15
Querying Facets by Using the Result Set Interface

Single counts show each unique value and the number of documents that have this value:

<ctx_result_set>
<groups sdata="SEC01">
<group val ue="2. 432" ><count >2</ count ></ gr oup>
<group val ue="1. 234" ><count >1</ count ></ gr oup>
<group val ue="5"><count >1</ count ></ gr oup>
<group val ue="6"><count >1</ count ></ gr oup>
<group val ue="1. 432" ><count >1</ count ></ gr oup>
</ groups>
</ctx_result_set>

If document 1 is deleted, you see the following result:

<ctx_result_set>
<groups sdata="SEC01">
<group val ue="2. 432" ><count >2</ count ></ gr oup>
<group val ue="6"><count >1</ count ></ gr oup>
<group val ue="1. 432" ><count >1</ count ></ gr oup>
</ groups>
</ctx_result_set>

range Element

The range element supports start, greaterthan, end, and | essthan attributes. The start
and gr eat er t han attributes specify the beginning value for the range. The end and | esst han
attributes specify the ending value for the range.

Ranges can overlap each other. For example, <range start="1" end="2"/> and <range
start="2" end="3"/>. Ranges can also be open ended. For example, you can specify only
the start value or the end value. If you do not specify the attributes of the r ange element, all
results are returned.

Example 15-2 Obtaining Group Counts for a Range of Facets

Create a table named pr oduct s and populate it:

drop table products;

create table products(nane varchar2(60), vendor varchar2(60), rating number,
price nunber);

nsert all
into products val ues

('cherry red shoes', 'first vendor', 5, 129)
into products values ('bright red shoes', 'first vendor', 4, 109)
into products values ('more red shoes', 'second vendor', 5, 129)
into products values ('shoes', "third vendor', 5, 109)
into products values ('dark red shoes', 'fourth vendor', 3, 98)
into products values ('light red shoes', 'fifth vendor', 2, 49)
select * from dual;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 10



ORACLE

Chapter 15
Querying Facets by Using the Result Set Interface

Create a MULTI _COLUWN_DATASTORE preference named ds to bring various other columns into
the index (nane) to be used as facets:

exec ctx_ddl.drop_preference ('ds')
exec ctx_ddl.create preference('ds', 'MJLTI _COLUWN DATASTORE' )
exec ctx_ddl.set_attribute ('ds', "COLUWS', 'nane, vendor, rating, price')

Create a section group named sg and enable the opti m zed for search attribute for each
column to be treated as a facet:

exec ctx_ddl.drop_section group ('sg')
exec ctx_ddl.create_section _group ('sg', 'BASIC SECTION GROUP')

exec ctx_ddl.add_sdata_section (‘sg', 'rating', 'rating', 'NUMBER)
exec ctx_ddl.add_sdata_section ('sg', "price', '"price', 'NUMBER )
exec ctx_ddl.add_sdata_section (*sg', "vendor', 'vendor', 'VARCHAR2')

exec ctx_ddl.set_section_ attribute('sg', 'rating', 'optimzed for', 'SEARCH)
exec ctx_ddl.set_section_ attribute('sg', "price', ‘'optimzed for', 'SEARCH)
exec ctx_ddl.set _section_ attribute('sg', 'vendor', ‘'optimzed for', 'SEARCH)

Create an index on name and specify the preferences by using the par anet er s clause:

create index nytab_idx on products (nane)
i ndextype is ctxsys. context
paraneters ('datastore ds section group sg');

Query for a product name, ‘red shoes’ by setting the bucket by attribute to cust omand provide
the values for the r ange element:

set | ong 500000
set pagesize 0

variabl e displayrs clob

decl are
rs clob;
begi n
ctx_query.result_set('nytab_idx', 'red shoes'
"<ctx_result_set _descriptor>
<group sdata="rating" bucketby="custoni>
<range start="1" |essthan="10"/>
<range start="10" |essthan="20"/>
<range start="20"/>
</ gr oup>
<group sdata="price" bucketby="custont >
<range end="1"/>
<range greaterthan="1" end="10"/>
<range greaterthan="10" end="100"/>
<range greaterthan="100"/>
</ gr oup>
<group sdata="vendor" bucketby="cust oni'>
<range greaterthan="a"/>

<range start="s"/>

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 10



ORACLE Chapter 15
Querying Facets by Using the Result Set Interface

<range end="f"/>
</ group>
</ctx_result_set descriptor>'
rs);

select xm serialize(Docunent XM.Type(rs) as clob indent size=2)
into :displayrs from dual
dbns_| ob. freetenporary(rs);
end;
/
sel ect :displayrs from dual

The following is output:

<ctx_result_set>
<groups sdat a="RATI NG'>
<group val ue="range" start="1" | essthan="10">
<count >5</ count >
</ group>
<group val ue="range" start="10" | essthan="20">
<count >0</ count >
</ group>
<group val ue="range" start="20" end="5">
<count >0</ count >
</ group>
</ groups>
<groups sdata="PRI CE">
<group val ue="range" start="49" end="1">
<count >0</ count >
</ group>
<group val ue="range" greaterthan="1" end="10">
<count >0</ count >
</ group>
<group val ue="range" greaterthan="10" end="100">
<count >2</ count >
</ group>
<group val ue="range" greaterthan="100" end="129">
<count >3</ count >
</ group>
</ groups>
<groups sdat a="VENDOR' >
<group val ue="range" greaterthan="a" end="second vendor">
<count >5</ count >
</ group>
<group val ue="range" start="s" end="second vendor">
<count >1</ count >
</ group>
<group val ue="range" start="fifth vendor" end="f">
<count >0</ count >
</ group>
</ groups>
</ctx_result_set>

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 10



ORACLE

Chapter 15
Querying Facets by Using the Result Set Interface

topn Attribute

* Valid attribute values are non-negative numbers greater than zero.
e This attribute specifies that only top n facet values and their counts are returned.

e Group count determines the top n values to return unless the sort by attribute is set to
val ue. In that case, the values are sorted according to the data type and the top n results
of the sort are returned. The order attribute is respected for the sort.

* By default, the results are sorted by the group count in descending order.

« If atie occurs in the count, the ordering of the facet values within this tie is not guaranteed.

sortby and order Attributes
sort by supports count and val ue attributes.

e count sorts by group counts (numbers). This is the default.
e val ue sorts by value depending on the data type.

or der supports ASC (ascending order) and DESC (descending order), which is the default.
If there is no selection, the default is count DESC.

This example shows the grouping of a number facet if bucket by is set to si ngl e, where
myt ab_i dx is the name of the index, t ext is the query, and group SDATA requests the facets:

begi n

ctx_query.result _set('nytab_idx', 'text'

"<ctx_result_set descriptor>

<group sdata="sec01" topn = "4" sorthby = "value" order="asc"
bucket by="si ngl e">

<count/ >

</ group>

</ctx_result_set descriptor>

rs);
end,

The following is a sample output showing that the values are listed in alphabetical order
because the sort by attribute is set to val ue instead of count. The values are also displayed in
ascending order (ABC to XYZ) because the or der attribute is set to asc. Only four values are
displayed because the t opn attribute is set to 4.

<ctx_result_set>
<group SDATA="SEC01">
<group val ue="ABC'><count >2</ count >
</ group>
<group val ue="DEF"><count >1</ count >
</ group>
<group val ue="CH "><count >10</ count >
</ group>
<group val ue="XYZ"><count >1</ count >
</ group>
</ctx_result_set>

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 10



ORACLE Chapter 15
Refining Queries by Using Facets As Filters

15.4 Refining Queries by Using Facets As Filters

The facet implementation now supports CONTAI NS queries with the standard set of database
comparison operators available for SDATA. The following example is based on the ‘name’
varchar2 section. When you use it with numbers, do not use quotation marks around the
numeric term to be searched.

contains (text, 'SDATA(sec0l = "run")', 1)
contains (text, 'SDATA(sec0l > "run")', 1)
contains (text, 'SDATA(sec01 >= "run")', 1) >0

contains (text, 'SDATA(sec0l < "run")', 1) >0

contains (text, 'SDATA(sec0l <= "run")', 1) >0

contains (text, 'SDATA(sec0l1 <> "run")', 1) >0

contains (text, 'SDATA(sec01 != "run")', 1) >0

contains (text, 'SDATA(sec0l between "runl" and "run2")', 1) >0
contains (text, 'SDATA(sec0l not between "runl" and "run2")', 1) >0
contains (text, 'SDATA(secOl is null)', 1) >0
contains (text, 'SDATA(sec0l is not null)', 1) >0
contains (text, 'SDATA(secOl like "%un")', 1) >0
contains (text, 'SDATA(secOl like "run%)', 1) >0
contains (text, 'SDATA(sec0l like "%un%)', 1) >0
contains (text, 'SDATA(secOl not like "%un")"', 1)
contains (text, 'SDATA(secOl not like "run%)', 1)
contains (text, 'SDATA(secOl not like "%un%)', 1) >0

contains (text, 'SDATA(sec02 =9)', 1) >0
contains (text, 'SDATA(sec02 < 10)', 1) >0
contains (text, 'SDATA(sec02 between 2 and 20)', 1) > 0

The comparison operators behave according to the current optinmi zed_f or search SDATA
behavior for the various data types.

15.5 Multivalued Facets

If multiple values are in an optim zed for search SDATA section within the same document,
then each value is indexed if the value is enclosed in its own tag corresponding to the SDATA
section. Values that are not enclosed within separate section tags, but that appear together
within the same section tag, are treated as a single value.

For example, in a document, <car >First Car, Second Car</car> is treated as a single string
of value ‘First Car, Second Car’. However, <car >Fi rst Car </ car ><car >Second Car </ car>is
treated as two separate values for the document.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 10



Using Result Set Interface

The CTX_QUERY. RESULT_SET procedure executes an XML or JSON query and generates a
result set in XML or JSON.

@® Note

The Oracle Text Result Set Interface queries are not supported on shard catalog
instances.

*  Overview of the XML Query Result Set Interface

e Using the XML Query Result Set Interface

e Creating XML-Only Applications with Oracle Text

«  Example of a Result Set Descriptor

« |dentifying Collocates

e Overview of the JSON Result Set Interface

e Using the JSON Result Set Interface

16.1 Overview of the XML Query Result Set Interface

The XML Query Result Set Interface (RSI) enables you to perform queries in XML and return
results as XML, avoiding the SQL layer and requirement to work within SELECT semantics. The
RSI uses a simple Oracle Text query and an XML result set descriptor, where the hitlist is
returned in XML according to the result set descriptor. The XML Query RSI uses SDATA
sections for grouping and counting.

In applications, a page of search results can consist of many disparate elements, such as
metadata of the first few documents, total hit counts, and per-word hit counts. Each extra call
takes time to reparse the query and look up index metadata. Additionally, some search
operations, such as iterative query refinement, are difficult for SQL. If it is even possible to
construct a SQL statement to produce the desired results, such SQL is usually suboptimal.

The XML Query RSl is able to produce the various kinds of data needed for a page of search
results all at once, thus improving performance by sharing overhead. The RSI can also return
data views that are difficult to express in SQL.

16.2 Using the XML Query Result Set Interface

The CTX_QUERY. RESULT_SET() and CTX_QUERY. RESULT_SET_CLOB_QUERY() APIs enable you to
obtain query results with a single query, rather than running multiple CONTAI NS() queries to
achieve the same result. The two APIs are identical except that one uses a VARCHAR2 query
parameter, and the other uses a CLOB query parameter to allow for longer queries.

For example, to display a search result page, you must first get the following information:

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 8



ORACLE

Chapter 16
Using the XML Query Result Set Interface

e Top 20 hit list sorted by date and relevancy

e Total number of hits for the given Oracle Text query

e Counts group by publication date

e Counts group by author

Assume the following table definition for storing documents to be searched:

create table docs (
doci d nunber
author  varchar2(30)
pubdate date
title varchar2(60), doc cl ob)

Assume the following Oracle Text Index definition:

create index docidx on docs(doc) indextype is ctxsys.context
filter by author, pubdate, title
order by pubdate

With these definitions, you can issue four SQL statements to obtain the four pieces of
information needed for displaying the search result page:

- Get top 20 hits sorted by date and rel evancy
select * from
(select /*+ first_rows */ rowid, title, author, pubdate
from docs where contains(doc, 'oracle',1)>0
order by pubdate desc, score(l) desc)
where rownum < 21

- Get total nunber of hits for the given Oracle Text query
sel ect count(*) from docs where contains(doc, 'oracle',1)>0

- Get counts group by publication date
sel ect pubdate, count(*) fromdocs where contains(doc, 'oracle', 1)>0
group by pubdate;

- Get counts group by author
sel ect author, count(*) from docs where contains(doc, 'oracle',1)>0 group by author

As you can see, using separate SQL statements results in a resource-intensive query, because
you run the same query four times. However, if you use CTX_QUERY. RESULT_SET(), then you
can enter all of the information in one single Oracle Text query:

decl are
rs clob
begin
dbns_| ob. createtenporary(rs, true, dbns_| ob. session)
ctx_query.result_set('docidx', 'oracle text performance tuning'
<ctx_result_set _descriptor>
<count/>
<hitlist start_hit_num="1" end_hit_nun¥"20" order="pubDate desc
score desc">
<scorel/>
<row d/ >
<sdata name="title"/>
<sdata name="aut hor"/>
<sdata name="pubDate"/ >
</hitlist>
<group sdat a="pubDat e" >
<count/>
</ group>

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 8



ORACLE Chapter 16
Using the XML Query Result Set Interface

<group sdata="author">
<count/>
</ group>
</ctx_result_set_descriptor>
Y,ors);

-- Put in your code here to process the Qutput Result Set XM
dbns_| ob. freetenporary(rs);
exception
when ot hers then
dbns_| ob. freetemporary(rs);
rai se;
end;
/

The result set output is XML that as the information required to construct the search result
page:

<ctx_result _set>
<hitlist>
<hit>
<scor e>90</ scor e>
<r owi d>AAAPOEAABAAAMAS AACK/ r owi d>
<sdata name="TITLE"> Article 8 </sdata>
<sdat a nanme="AUTHOR' >John</ sdat a>
<sdat a nane="PUBDATE">2001-01- 03 00: 00: 00</ sdat a>
</hit>
<hit>
<scor e>86</ scor e>
<r owi d>AAAPOEAABAAAMAS AAG/ r owi d>
<sdata name="TITLE"> Article 20 </sdata>
<sdat a nanme="AUTHOR' >John</ sdat a>
<sdat a nane="PUBDATE">2001-01-03 00: 00: 00</ sdat a>
</hit>
<hit>
<score>78</ score>
<r owi d>AAAPOEAABAAAMAS AAK</ r owi d>
<sdata name="TITLE"> Article 17 </sdata>
<sdat a nanme="AUTHOR' >John</ sdat a>
<sdat a nane="PUBDATE">2001-01-03 00: 00: 00</ sdat a>
</hit>
<hit>
<score>77</ score>
<r owi d>AAAPOEAABAAAMAS AACK/ r owi d>
<sdata name="TITLE"> Article 37 </sdata>
<sdat a nanme="AUTHOR' >John</ sdat a>
<sdat a nane="PUBDATE">2001-01- 03 00: 00: 00</ sdat a>
</hit>

<hit>
<scor e>72</ scor e>
<r owi d>AAAPOEAABAAAMAS AAS</ r owi d>
<sdata name="TITLE"> Article 56 </sdata>
<sdat a nanme="AUTHOR' >John</ sdat a>
<sdat a nane="PUBDATE">2001-01-03 00: 00: 00</ sdat a>
</hit>
</hitlist>

<count >100</ count >

<groups sdata="PUBDATE">
<group val ue="2001-01-01 00: 00: 00" ><count >25</ count ></ gr oup>

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 8



ORACLE Chapter 16
Creating XML-Only Applications with Oracle Text

<group val ue="2001-01-02 00: 00: 00" ><count >50</ count ></ gr oup>
<group val ue="2001-01-03 00: 00: 00" ><count >25</ count ></ gr oup>
</ groups>

<groups sdata="AUTHOR' >
<group val ue="John" ><count >50</ count ></ gr oup>
<group val ue="M ke" ><count >25</ count ></ gr oup>
<group val ue="St eve"><count >25</ count ></ gr oup>
</ groups>

</ctx_result_set>

@ See Also

Oracle Text Reference for syntax details and more information on
CTX_QUERY. RESULT_SET

16.3 Creating XML-Only Applications with Oracle Text

Although it is common to create applications by using SQL SELECT statements with the

CONTAI NS clause, it is not the most efficient method. An alternative method is to use the XML-
based RSI. With this method, you can obtain summary information (such as the total number of
hits) without fetching all results of the query.

To use the RSI, you specify a Result Set Descriptor (RSD). The RSD declares the information
to be returned, which can consist of:

e Total result count of the query

e Hitlist

e Summary information over SDATA fields

In turn, the hitlist consists of repeating elements, each of which may contain:
*  Rowid of the hit

*  SDATA fields from the hit

Related Topics

« Example of a Result Set Descriptor

16.4 Example of a Result Set Descriptor

This example shows how to use an RSD. The following example requests a hitlist with the top
10 hits (ordered by score) and the count of the total number of results.

<ctx_result_set_descriptor>
<hitlist start_hit_num="1" end_hit_num="10" order="SCORE DESC'>
<rowi d />
<sdata name="title" />
<sdata name="aut hor" />
<sdata name="articl edate" />
<sni ppet radi us="20" max_| engt h="160" starttag="&t;b&gt;" endtag="&t;/b&gt;" />
</hitlist>
<count />
</ctx_result_set_descriptor>

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 8



ORACLE

Chapter 16
Identifying Collocates

For each hit, you are requesting the r owi d (which you could use to fetch further information
about the row, if necessary), the contents of the SDATA fields or the titl e, author, and
articl edat e columns, and a snippet (which is a short summary with keywords highlighted, in
this case by <b>...</ b>).

16.5 Identifying Collocates

Collocates are a group of words that frequently co-occur in a document. They provide a quick
summary of other keywords or concepts that are related to a specified keyword. You can then
use the other keywords in queries to fetch more relevant results.

You identify collocates based on a search query. For each document that is returned by the
query, snippets of text around the search keyword are automatically extracted. Next, the words
in these snippets are correlated to the query keyword by using statistical measures and,
depending on how frequently the extracted words occur in the overall document set, a score is
assigned to each returned co-occurring word.

Use the RSI to identify collocates. You can specify the number of co-occurring words that must
be returned by the query. You can also specify whether to identify collocates that are common
nouns or collocates that emphasize uniqueness. Synonyms of the specified search keyword
can also be returned.

@ Note
Collocates are supported only for BASI C_LEXER.

To identify collocates:

1. Create the document set table for the query.
2. Create an Oracle Text index on the document set table.

3. Use the XML Query RSI to define and input a query that identifies collocates. Include the
col | ocat es element with the required attributes.

Example 16-1 Identifying Collocates Within a Document Set

In this example, the keyword used to query documents in a data set is ‘Nobel.” Oracle Text
searches for occurrences of this keyword in the document set. In addition to the result set, use
collocates to search for five common words that co-occur with ‘Nobel.” Use the nax_wor ds
attribute to identify the number of collocates to be generated. Set the use_t scor e attribute to
TRUE to specify that common words must be identified for the collocates. The number of words
to pick on either side of the keyword in order to identify collocates is 10.

The following is the input RSI descriptor that is used to determine collocates:

decl are
rsd varchar2(32767);
begi n

ctx_query.result_set('tdrbnbsan0lidx', 'nobel"',
<ctx_result_set descriptor>
<col |l ocates radius = "10" max_words="5" use_tscore="TRUE"/>
</ctx_result_set_descriptor>',
rs);

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 8



ORACLE

end;
/

Here is the output result set for the query:

<ctx_result_set>
<col | ocat es>
<col | ocati on>
<wor d>PRI ZE</ wor d>
<score>82</ score>
</col | ocation>
<col | ocati on>
<wor d>LAUREATE</ wor d>
<score>70</ score>
</col | ocation>
<col | ocati on>
<wor d>NOBELPRI ZE</ wor d>
<score>44</ score>
</col | ocation>
<col | ocati on>
<wor d>AWARD</ wor d>
<score>42</ score>
</col | ocation>
<col | ocati on>
<wor d>ORG</ wor d>
<score>41</score>
</col | ocation
</ col | ocat es>
</ctx_result_set>

Chapter 16
Identifying Collocates

For ‘Nobel,” the top five common collocates, in order, are Prize, Laureate, Nobelprize, award,
and org. Each word is assigned a score that indicates the frequency of occurrence. Collocates

are always returned after any hi tli st elements are returned.

If you set use_t scor e to FALSE in the same example, then less common (unique) words are

identified. Here is the output result set:

<ctx_result_set>
<col | ocat es>
<col | ocati on>
<wor d>MOLA</ wor d>
<score>110</scor e>
</col | ocation>
<col | ocati on>
<wor d>Bl SMARCK</ wor d>
<score>89</ score>
</col | ocation>
<col | ocati on>
<wor d>COLONNA</ wor d>
<score>67</ score>
</col | ocation>
<col | ocati on>
<wor d>LYNEN</ wor d>
<scor e>55</ score>
</col | ocation>

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 8



ORACLE

Chapter 16
Overview of the JSON Result Set Interface

<col | ocati on>
<wor d>TI MBERGEN</ wor d>
<score>25</score>
</col | ocation>
</ col | ocat es>
</ctx_result_set>

@® See Also

Oracle Text Reference for information about attributes used with collocates

16.6 Overview of the JSON Result Set Interface

The JSON Result Set Interface (RSI) enables you to perform queries in JSON and return
results as JSON, avoiding the SQL layer and requirement to work within SELECT semantics.

The RSI uses a simple Oracle Text query or facets and a JSON result set descriptor, where the
hitlist is returned in one single CLOB of JSON according to the result set descriptor. The JSON
RSI uses SDATA sections for grouping and counting.

In applications, a page of search results can consist of many disparate elements, such as
metadata of the first few documents, total hit counts, and per-word hit counts. Each extra call
takes time to reparse the query and look up index metadata. Additionally, some search
operations, such as iterative query refinement, are difficult for SQL. If it is even possible to
construct a SQL statement to produce the desired results, such SQL is usually suboptimal.

The JSON RSl is able to produce the various kinds of data needed for a page of search results
all at once, thus improving performance by sharing overhead. The RSI can also return data
views that are difficult to express in SQL.

The JSON RSI supports queries based on CONTEXT and JSON search indexes. You can also
perform other aggregations in facets like COUNT, M N, and MAX apart from the supported group
counts. AVGand SUMare supported for numeric facets.

16.7 Using the JSON Result Set Interface

The CTX_QUERY. RESULT_SET() and CTX_QUERY. RESULT_SET_CLOB_QUERY() APIs enable you to
obtain query results with a single query, rather than running multiple CONTAI NS() queries to
achieve the same result. The two APIs are identical except that one uses a VARCHAR? query
parameter, and the other uses a CLOB query parameter to allow for longer queries.

Usage

The input Result Set Descriptor (RSD) query consists of the following parts:

e $query - Use $query to specify a search query, the path constraints, and additional path
based filter conditions. The $query part is supported only when a JSON search index
exists on the column.

e $search - Use $sear ch to display the score ranked search results and their count. For a
non-JSON Oracle Text full-text index, you can also specify the SDATA sections to project for
the search results.

» $facet - Use $f acet to specify the facets for various paths of a JISON document or SDATA
sections of a context indexed document. Facets bucketed by a single unique value and

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 8



ORACLE’

Chapter 16
Using the JSON Result Set Interface

facets per user specified range buckets are supported. The facts can also be one of the
aggregations like COUNT, M N, etc.

The result set output is of the following format:

"$count" : nunber ,
"$hit"
{
"score" : <search_score>,
"rowi d" : <row d>,
"project" : {"<sdata_name>" : <sdata value>, ...}
}1
]!
"$facets" :
{"<field>" : [ ..., { "value" : <value_i> "$uniqueCount" :
<group_count i>}, ... 1},
{"<field>" : [ ..., { "bucket" : <bucket_object_i> "<op>" :
<group_count i>}, ... 1},

{"<field>" : { "<op>" : <actual value of the aggregation>} },

® See Also
Oracle Text Reference for more information about CTX_QUERY. RESULT_SET procedure

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 8



Performing Sentiment Analysis Using Oracle

Text

Sentiment analysis enables you to identify a positive or negative sentiment in a search topic.
This chapter contains the following topics:

e Qverview of Sentiment Analysis

¢ Creating a Sentiment Classifier Preference

e Training Sentiment Classifiers

* Performing Sentiment Analysis with the CTX DOC Package

¢ Performing Sentiment Analysis with the RSI

17.1 Overview of Sentiment Analysis

Sentiment analysis uses trained sentiment classifiers to provide sentiment information for
documents or topics within documents.

This section contains the following topics:

e About Sentiment Analysis

¢ About Sentiment Classifiers

e About Performing Sentiment Analysis

¢ Sentiment Analysis Interfaces

17.1.1 About Sentiment Analysis

Oracle Text enables you to perform sentiment analysis for a topic or document by using
sentiment classifiers that are trained to identify sentiment metadata.

With growing amounts of data, organizations must gain more insights about their data rather
than just obtaining hits in response to a search query. The insight could be in the form of
answering certain basic types of queries (such as weather queries or queries about recent
events) or providing opinions about user-specified topics. Keyword searches provide a list of
results containing the search term. However, to identify a sentiment or opinion about the
search term, must browse through the results and then manually locate the required sentiment
information. Sentiment analysis provides a one-step process to identify sentiment information
within a set of documents.

Sentiment analysis is the process of identifying and extracting sentiment metadata about a
specified topic or entity from a set of documents. Trained sentiment classifiers identify the
sentiment. When you run a query with sentiment analysis, in addition to the search results,
sentiment metadata is also identified and displayed. Sentiment analysis provides answers to
guestions such as “Is a product review positive or negative?” or “Is the customer satisfied or
dissatisfied?” For example, from a document set consisting of multiple reviews for a particular
product, you can determine an overall sentiment that indicates if the product is good or bad.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 10



ORACLE

Chapter 17
Overview of Sentiment Analysis

17.1.2 About Sentiment Classifiers

A sentiment classifier is a type of document classifier that is used to extract sentiment
metadata about a topic or document.

To perform sentiment analysis by using a sentiment classifier, you must first associate a
sentiment classifier preference with the sentiment classifier and then train the sentiment
classifier.

You can associate user-defined sentiment classifiers with a sentiment classifier preference of
type SENTI MENT_CLASSI FI ER. A sentiment classifier preference specifies the parameters that
are used to train a sentiment classifier. These parameters are defined as attributes of the
sentiment classifier preference. You can either create a sentiment classifier preference or use
the default CTXSYS. DEFAULT _SENTI MENT_CLASSI FI ER. To create a user-defined sentiment
classifier preference, use the CTX_DDL. CREATE_PREFERENCE procedure to define a sentiment
classifier preference and the CTX _DDL. SET_ATTRI BUTE procedure to define its parameters.

To train a sentiment classifier, you need to provide an associated sentiment classifier
preference, a training set of documents, and the sentiment categories. If you do not specify a
classifier preference, then Oracle Text uses default values for the training parameters. You
train the sentiment classifier by using the set of sample documents and the specified
preference. You assign each sample document to a category. Oracle Text uses this sentiment
classifier to deduce a set of classification rules that define how sentiment analysis must be
performed. Use the CTX CLS. SA TRAI N procedure to train a sentiment classifier.

Typically, you define and train separate sentiment classifiers for different categories of
documents, such as finance, product reviews, and music. If you do not want to create your own
sentiment classifier or if suitable training data is not available to train your classifier, you can
use the default sentiment classifier provided by Oracle Text. The default sentiment classifier is
unsupervised.

@® Note

The default sentiment classifier works only with AUTO LEXER. Do not use AUTO LEXER
with user-defined sentiment classifiers.

@ See Also

» Creating a Sentiment Classifier Preference

* Training Sentiment Classifiers

17.1.3 About Performing Sentiment Analysis

To perform sentiment analysis, you run a sentiment query that includes the sentiment classifier
which must be used to identify sentiment information. The classifier can be the default or a
user-defined sentiment classifier.

You can perform sentiment analysis only as part of a search operation. Oracle Text searches
for the specified keywords and generates a result set. Then, sentiment analysis is performed
on the result set to identify a sentiment score for each result. If you do not explicitly specify a
sentiment classifier in your query, the default classifier is used.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 10



ORACLE Chapter 17
Creating a Sentiment Classifier Preference

You can either identify one single sentiment for the entire document or separate sentiments for
each topic within a document. Most often, a document contains multiple topics and the author’s
sentiment toward each topic may be different. In such cases, document-level sentiment scores
may not be useful because they cannot identify sentiment scores associated with different
topics in the document. Identifying topic-level sentiment scores provides the required answers.
For example, when searching through a set of documents containing reviews for a camera, a
document-level sentiment tells you whether the camera is good or not. Assume that you want
the general opinion about the picture quality of a camera. Performing a topic-level sentiment
analysis, with “picture quality” as one of the topics provides the required information.

® Note

If you do not specify a topic of interest for sentiment analysis, then Oracle Text returns
the overall sentiment for the entire document.

@ See Also
e Performing Sentiment Analysis with the CTX_DOC Package

e Performing Sentiment Analysis with the RSI

17.1.4 Sentiment Analysis Interfaces

Oracle Text supports multiple interfaces for performing sentiment analysis.
Use one of the following interfaces to run a sentiment query:

e Procedures in the CTX_DCC package
e XML Query Result Set Interface (RSI)

@ See Also
»  Performing Sentiment Analysis with the CTX _DOC Package

e Performing Sentiment Analysis with the RSI

17.2 Creating a Sentiment Classifier Preference

Use the CTX DDL. CREATE PREFERENCE procedure to create a sentiment classifier preference
and the CTX_DDL. SET_ATTRI BUTE procedure to define its attributes. The classifier type
associated with a user-defined sentiment classifier preference is SENTI MENT_CLASSI FI ER.

To create a sentiment classifier preference:

1. To define a sentiment classifier preference, use the CTX DDL. CREATE_PREFERENCE
procedure. The classifier must be of type SENTI MENT_CLASSI FI ER.

2. To define attributes for the sentiment classifier preference, use the
CTX_DDL. SET_ATTRI BUTE procedure. The attributes define the parameters that are used to
train the sentiment classifier.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 10



ORACLE

Chapter 17
Training Sentiment Classifiers

Example 17-1 Creating a Sentiment Classifier Preference

The following example creates a sentiment classifier preference named cl sfi er _canera. This
preference is used to classify a set of documents that contain reviews for SLR cameras.

1. Define a sentiment classifier preference named cl sfi er _caner a with type
SENTI MENT_CLASSI FI ER

exec ctx_ddl.create_preference(' clsfier_camera',' SENTI MENT_CLASSI FI ER );

2. Define the attributes of the cl sfi er _camer a sentiment classifier preference. Set 1000 for
the maximum number of features to be extracted. Set 600 for the number of iterations for
which the classifier runs.

exec ctx_ddl.set _attribute('clsfier_canera',' MAX FEATURES ,'1000');
exec ctx_ddl.set _attribute('clsfier_canera',' NUMI|TERATIONS ,'600');

For attributes that are not explicitly defined, the default values are used.

@® See Also
e Oracle Text Reference

e About Sentiment Classifiers

17.3 Training Sentiment Classifiers

Training a sentiment classifier generates the classification rules that are used to provide a
positive or negative sentiment for a search keyword.

The following example trains a sentiment classifier that can perform sentiment analysis on user
reviews of cameras:

1. Create and populate the training document table. This table contains the actual text of the
training set documents or the file names (if the documents are present externally).

Ensure that the training documents are randomly selected to avoid any possible bias in the
trained sentiment classifier. The distribution of positive and negative documents must not
be skewed. Oracle Text checks for the distribution while training the sentiment classifier.

create table training_canera (review.id nunmber primary key, text
var char 2(2000));

insert into training_canera values( 1,'/salreviews/cameras/reviewl.txt
insert into training_canera values( 2,'/salreviews/cameras/review2.txt
insert into training_canera values( 3,'/salreviews/cameras/reviewd.txt
insert into training_canera values( 4,'/salreviews/cameras/reviewd.txt

)
)i
)
)i

2. Create and populate the category table.

This table specifies training labels for the documents present in the document table. It tells
the classifier the true sentiment of the training set documents.

The primary key of the document table must have a foreign key relationship with the
unigue key of the category table. The names of these columns must be passed to the
CTX_CLS. SA_TRAI N procedure so that the sentiment label can be associated with the
corresponding document.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 10



ORACLE

Chapter 17
Training Sentiment Classifiers

Oracle Text validates the parameters specified for the classifier preference and the

cat egory values. The cat egory values are restricted to 1 for positive, 2 for negative, and 0
for neutral sentiment. Documents with a cat egor y of O (neutral documents) are not used
while training the classifier. Additional columns in the category table, other than document
ID and category, are also not used by the classifier.

create table train_category (doc_id nunber, category nunber, category desc
var char 2(100));

insert into train_category values (1,0, 'neutral');
insert into train_category values (2,1,'positive');
insert into train_category values (3,2, ' negative');
insert into train_category values (4,2, ' negative')

Create the context index on the training document table. This index is used to extract
metadata for training documents while training the sentiment classifier.

In this example, create an index without populating it.

exec ctx_ddl.create_preference('fds',' DI RECTORY_DATASTORE );
create index docx on training_canmera(text) indextype is ctxsys.context
parameters ('datastore fds nopopul ate');

(Optional) Create a cl sfi er _caner a sentiment classifier preference that performs
sentiment analysis on a document set consisting of camera reviews.

Train the sentiment classifier cl sfi er _canera.

During training, Oracle Text determines the ratio of positive to negative documents. If this
ratio is not in the range of 0.4 to 0.6, then a warning written to the CTX log indicates that
the sentiment classifier is skewed. After the sentiment classifier is trained, it is ready to be
used in sentiment queries to perform sentiment analysis.

In the following example, cl sfi er _camer a is the name of the sentiment classifier that is
being trained, revi ew i d is the name of the document ID column in the document training
set, trai n_cat egory is the name of the category table that contains the labels for the
training set documents, doc_i d is the document ID column in the category table, cat egory
is the category column in the category table, and cl sfi er is the name of the sentiment
classifier preference that is used to train the classifier.

exec
ctx_cls.sa train_nodel ('clsfier_canera','docx', 'review.id','train_category
,'doc_id,'category','clsfier');

@® Note

If you do not specify a sentiment classifier preference when running the
CTX_CLS. SA TRAI N_MODEL procedure, then Oracle Text uses the default preference
CTXSYS. DEFAULT_SENTI MENT_CLASSI FI ER.

Related Topics

About Sentiment Classifiers
A sentiment classifier is a type of document classifier that is used to extract sentiment
metadata about a topic or document.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 5 of 10



ORACLE

Chapter 17
Performing Sentiment Analysis with the CTX_DOC Package

* Creating a Sentiment Classifier Preference
Use the CTX_DDL. CREATE PREFERENCE procedure to create a sentiment classifier preference
and the CTX_DDL. SET_ATTRI BUTE procedure to define its attributes. The classifier type
associated with a user-defined sentiment classifier preference is SENTI MENT_CLASSI FI ER.

e Oracle Text Reference

17.4 Performing Sentiment Analysis with the CTX_DOC Package

Use the procedures in the CTX_DCC package to perform sentiment analysis on a single
document within a document set. For each document, you can either determine a single
sentiment score for the entire document or individual sentiment scores for each topic within the
document.

Before you perform sentiment analysis, you must create a context index on the document set.
The following command creates a caner a_r evi dx context index on the document set in the
canmera_revi ews table:

create index canera_revidx on canera_reviews(review text) indextype is
ctxsys. context paraneters ('lexer nylexer stoplist ctxsys.default stoplist');

To perform sentiment analysis with the CTX_DOC package, use one of the following methods:

* Run the CTX _DOC. SENTI MENT AGGREGATE procedure with the required parameters.
This procedure provides a single consolidated sentiment score for the entire document.

The sentiment score is a value in the range of -100 to 100, and it indicates the strength of
the sentiment. A negative score represents a negative sentiment and a positive score
represents a positive sentiment. Based on the sentiment scores, you can group scores into
labels such as Strongly Negative (—80 to —100), Negative (—80 to —50), Neutral (-50 to
+50), Positive (+50 to +80), and Strongly Positive (+80 to +100).

* Run the CTX_DOC. SENTI MENT procedure with the required parameters.

This procedure returns the individual segments within the document that contain the
search term, and provides an associated sentiment score for each segment.

Example 17-2 Obtaining a Single Sentiment Score for a Document

The following example uses the cl sfi er _camer a sentiment classifier to provide a single
aggregate sentiment score for the entire document. The sentiment classifier was created and
trained. The table containing the document set has a caner a_r evi dx context index. The
doc_i d of the document within the document table for which sentiment analysis must be
performed is 49. The topic for which a sentiment score is being generated is ‘Nikon.’

sel ect
ctx_doc. sentiment _aggregate(' canera_revidx','49' ;' N kon','clsfier_camera')
from dual ;

CTX_DOC. SENTI MENT_AGGREGATE(' CAVERA_REVIDX', ' 49'," NI KON , ' CLSFI ER_CAMERA')

1 row sel ect ed.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 10



ORACLE Chapter 17
Performing Sentiment Analysis with the CTX_DOC Package

Example 17-3 Obtaining a Single Sentiment Score with the Default Classifier

The following example uses the default sentiment classifier to provide an aggregate sentiment
score for the entire document. The table containing the document set has a canmer a_r evi dx
context index. The doc_i d of the document within the document table for which sentiment
analysis must be performed is 1.

sel ect ctx_doc.sentinent_aggregate(' camera_revidx','1") from dual;

CTX_DOC. SENTI MENT_AGGREGATE(' CAVERA_ REVIDX' ,'1')

1 row sel ect ed.

Example 17-4 Obtaining Sentiment Scores for Each Topic Within a Document

The following example uses the cl sfi er _camer a sentiment classifier to generate sentiment
scores for each segment within the document. The sentiment classifier was created and
trained. The table containing the document set has a camer a_r evi dx context index . The
doc_i d of the document within the document table for which sentiment analysis must be
performed is 49. The topic for which a sentiment score is being generated is ‘Nikon.” The
rest ab result table, which will be populated with the analysis results, was created with the
columns snippet (CLOB) and score (NUVBER).

exec
ctx_doc. sentinent (' canera_revidx','49','N kon','restab','clsfier_canera'
starttag=>'<<', endtag=>'>>");

SQ.> select * fromrestab;
SNI PPET

It took <<Ni kon>> a while to produce a superb conpact 85mmlens, but this
time they finally got it right.
65

Wthout a doubt, this is a fine portrait |lens for photographing head-and-

shoul der portraits (The only lens which is optically better is

<<Ni kon>>'s | egendary 10

5mm 2.5 Nikkor lens, and its close optical twin, the 105mmf2.8 Mcro N kkor.
75

Since the 1056mm f2.5 N kkor |ens doesn't have an autofocus version, then this
m ght be the perfect noderate tel ephoto lens for owners of
<<Ni kon>> aut of ocus
SLR caneras.
84
3 rows sel ected.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 10



ORACLE

Chapter 17
Performing Sentiment Analysis with the RS

Example 17-5 Obtaining a Sentiment Score for a Topic Within a Document

The following example uses the t drbrt sent 03_cl sentiment classifier to generate a sentiment
score for each segment within the document. The sentiment classifier was created and trained.
The table containing the document set has a t dr brt sent 03_i dx context index. The doc_i d of
the document within the document table for which sentiment analysis must be performed is 1.
The topic for which a sentiment score is being generated is ‘movie.” The tdrbrtsent03 rtab
result table, which will be populated with the analysis results was created with the columns
shippet and score.

SQL> exec

ctx_doc.sentiment('tdrbrtsent03 idx','1",'novie','tdrbrtsent03 rtab','tdrbrtse
nt03 cl');

PL/ SQL procedure successfully conpl eted.

SQ> select * fromtdrbrtsent03 rtab;
SNI PPET

SCORE

the <b>movie</b> is a bit overlong , but nicholson is such good fun that the
running time passes by pretty quickly
- 62

1 row sel ect ed.

@® See Also
e CTX_DOC. SENTI MENT_AGGREGATE in the Oracle Text Reference
o CTX_DQOC. SENTI MENT in the Oracle Text Reference

17.5 Performing Sentiment Analysis with the RSI

The XML Query Result Set Interface (RSI) enables you to perform sentiment analysis on a set
of documents by using either the default sentiment classifier or a user-defined sentiment
classifier. The documents on which sentiment analysis must be performed are stored in a
document table.

Use the senti ment element in the input RSI to indicate that sentiment analysis, in addition to
other operations specified in the Result Set Descriptor (RSD), must be performed at query
time. If you specify a value for the cl assi fi er attribute of the senti nent element, then the
specified sentiment classifier is used to perform the sentiment analysis. If the cl assi fi er
attribute is omitted, then Oracle Text performs sentiment analysis by using the default
sentiment classifier. The senti ment element contains a child element called i t emthat specifies
the topic or concept about which a sentiment must be generated during sentiment analysis.

You can generate either a single sentiment score for each document or separate sentiment
scores for each topic within the document. Use the agg attribute of the i t emelement to
generate a single aggregated sentiment score for each document.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 8 of 10



ORACLE

Chapter 17
Performing Sentiment Analysis with the RS

You can perform sentiment classification by using a keyword query or the ABOUT operator.
When you use the ABQUT operator, the result set includes synonyms of the keyword that are
identified by using the thesaurus.

To perform sentiment analysis by using RSI:

1. Create and train the sentiment classifier you will use to perform sentiment analysis.

2. Create the document table that contains the documents to be analyzed and a context
index on the document table.

3. Use the required elements and attributes within a query to perform sentiment analysis.
The RSI must contain the sent i ment element.

Example 17-6 Input the RSD to Perform Sentiment Analysis

The following example performs sentiment analysis and generates a sentiment for the ‘lens’
topic. The driving query is a keyword query for ‘camera.’ The senti ment element specifies that
sentiment analysis must be performed by using the cl sfi er _caner a sentiment classifier. This
classifier was previously created and trained by using the CTX_CLS. SA_TRAI N_MODEL procedure.
The caner a_r evi dx context index is on the document set table.

The sentiment score ranges from -100 to 100. A positive score indicates positive sentiment,
whereas a negative score indicates negative sentiment. The absolute value of the score is
indicative of the magnitude of positive and negative sentiment.

To perform sentiment analysis and obtain a sentiment score for each topic within the
document:

1. Create the rs result set table that will store the results of the search operation.

SQ.> var rs clob;
SQ.> exec dbns_| ob. createtenporary(:rs, TRUE, DBMS _LOB. SESSION);

2. Perform sentiment analysis as part of a search query.

The keyword being searched for is ‘camera.’ The topic for which sentiment analysis is
performed is ‘lens.’

begi n
ctx_query.result_set('canera_revidx','camera','
<ctx_result _set descriptor>
<hitlist start_hit _num="1" end_hit _num="10" order="score desc">
<sentiment classifier="clsfier_canera">
<itemtopic="lens" />
<itemtopic="picture quality" agg="true" />
</sentinent> </hitlist>
</ctx_result _set descriptor>, :rs);
end;
/

3. View the results stored in the result table.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 10



ORACLE

Chapter 17
Performing Sentiment Analysis with the RSI

Other applications can use the XML result set for further processing. For brevity, some
output was removed. For each segment within the document, a score represents the
sentiment score for the segment.

SQ.> select xmtype(:rs) fromdual;
XMLTYPE( : RS)

<ctx_result_set>
<hitlist>
<hi t>
<senti ment >
<itemtopic="lens">
<segnent >
<segnent text>The first tine it was sent in was because the
<b>l ens </b> door failed to turn on the canmera
and it was alnost to come off of its track . Eight nonths later, the flash
quit working in all nodes AND the door was
failing AGAI N </segnent text>
<segnent _scor e>-81</ segnent _scor e>
</ segment >
<itenp
<itemtopic="picture quality"> <score> -75 </score>
<itenp
</ senti nent >
< hit>
<hi t>
<senti ment >
<itemtopic="lens">
<segnent >
<segnent text>l was actually quite inpressed with it.
Power ful zoom, sharp <b>l ens</b>, decent picture
quality. | also played with some other Panasonic nodels in various stores
just to get a better feel for them as well as
spent a few hours on </segment text>
<segnent _score> 67 </ segnent_score>
</ segnent >
<itenp
<itemtopic="picture quality"> <score>-1</score> <litemp
</ senti nent >
< hit>

</hitlist>
</ctx_result_set>

@® See Also

Oracle Text Reference

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 10 of 10



Working with Sharded Databases

Learn how to run Oracle Text PL/SQL procedures in Oracle Globally Distributed Database
(sharded database).

e Running Oracle Text PL/SQL APIs in a Sharded Database

e Supported APIs in a Sharded Database

18.1 Running Oracle Text PL/SQL APIs in a Sharded Database

Oracle Globally Distributed Database enables you to horizontally partition data across multiple,
independent Oracle databases. Each physical database in such a configuration is called a
shard. You can use the sharding-specific PL/SQL procedure SYS. EXEC SHARD PLSQL to
propagate certain Oracle Text CTXSYS procedures across all shards.

You use the SYS. EXEC_SHARD PLSQ. wrapper to run a target procedure on all shards in the
same way as DDL statements are run in a sharded database configuration. These procedures
are propagated to all shards, tracked by the catalog, and run whenever a new shard is added
to a configuration.

If you run a target procedure without using the SYS. EXEC_SHARD PLSQL wrapper, then the
procedure runs only on the shard catalog and is not propagated to all shards.

The SYS. EXEC_SHARD PLSQL procedure takes a single CLOB argument, which is a character
string specifying a fully qualified procedure name and its arguments.

For example, to run CTXSYS. CTX_DDL. CREATE PREFERENCE on all shards:

exec sys.exec_shard plsql (' ctxsys.ctx_ddl.create preference(
preference_name => "nyl exer",
obj ect _name => "BASIC LEXER')");

Note the following:

» Certain PL/SQL procedures need a wrapper and others do not. For a complete list of
allowed PL/SQL procedures, see Supported APIs in a Sharded Database.

* You must use double quotation marks (") inside a target procedure call specification,
because the call specification itself is a string parameter to SYS. EXEC_SHARD PLSQL.

* Running the SYS. EXEC_SHARD PLSQL procedure without specifying a fully-qualified name
(for example, CTXSYS. CTX_DDL. CREATE PREFERENCE) results in an error.

Related Topics
e Oracle Globally Distributed Database Guide

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 4



ORACLE’

18.2 Supported APIs in a Sharded Database

Chapter 18
Supported APIs in a Sharded Database

This is a list of all the Oracle Text CTXSYS procedures that you can run with or without using the

sharding-specific PL/SQL procedure SYS. EXEC SHARD PLSQL.

Supported With the SYS.EXEC_SHARD_PLSQL Wrapper

You can run the following procedures from the CTXSYS package using the
SYS. EXEC_SHARD PLSQL wrapper:

CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.
CTX_DDL.

ADD_ATTR_SECTI ON
ADD_FI ELD_SECTI ON
ADD_MDATA_COLUWN
ADD_MDATA_SECTI ON
ADD_NDATA SECTI ON
ADD_SUB_LEXER
ADD_STOPWORD
ADD_STOPCLASS
ADD_SDATA_SECTI ON
ADD_SDATA COLUWN
ADD_STOP_SECTI ON
ADD_STOPTHEME
ADD_SPECI AL_SECTI ON
ADD_ZONE_SECTI ON
CREATE_PREFERENCE
DROP_PREFERENCE
CREATE_POLI CY
CREATE_SECTI ON_GROUP
CREATE_SHADOW | NDEX
CREATE_STOPLI ST
DROP_STOPLI ST
DROP_SECTI ON_GROUP
DROP_POLI CY
DROP_SHADOW | NDEX
EXCHANGE_SHADOW | NDEX
OPTI M ZE_| NDEX
REMOVE_STOPVORD
REMOVE_SECTI ON
RECREATE_| NDEX_ONLI NE

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 4



ORACLE

CTX_DDL. SET_ATTRI BUTE
CTX_DDL. SET_SECTI ON_ATTRI BUTE
CTX_DDL. SET_SEC_GRP_ATTR
CTX_DDL. SYNC_| NDEX

CTX_DDL. UPDATE_POLI CY
CTX_QUERY. REMOVE_SQE
CTX_QUERY. STORE_SQE

Chapter 18
Supported APIs in a Sharded Database

Supported Without the SYS.EXEC_SHARD_PLSQL Wrapper

You can run the following CTXSYS procedures on the catalog without using the

SYS. EXEC_SHARD PLSQ. wrapper. These APIs work directly on the catalog because they only
access the metadata stored in the catalog and do not need to be propagated to shards for
accurate results.

CTX_ANL. ADD_DI CTI ONARY
CTX_DOC. POLI CY_SNI PPET

CTX_ENTI TY. EXTRACT

CTX_REPORT. CREATE._| NDEX_SCRI PT
CTX_REPORT. DESCRI BE_| NDEX
CTX_REPORT. CREATE_PCLI CY_SCRI PT
CTX_REPORT. | NDEX_S| ZE
CTX_REPORT. DESCRI BE_PCLI CY
CTX_QUERY. HFEEDBACK

CTX_QUERY. EXPLAI N

Not Supported With the SYS.EXEC_SHARD_PLSQL Wrapper

The following CTXSYS procedures are not supported on a sharded database:

CTX_ANL APIS
CTX_CLS APIS
CTX_DDL. ADD_| NDEX

CTX_DDL. CREATE_| NDEX_SET
CTX_DDL. DROP_| NDEX_SET
CTX_DDL. POPULATE_PENDI NG
CTX_DDL. REMOVE_| NDEX
CTX_DDL. REMOVE_MDATA
CTX_DDL. UPDATE_SDATA

CTX_DOC. H GHLI GHT
CTX_DOC. MARKUP
CTX_DOC. FI LTER
CTX_DOC. G ST

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 4



ORACLE’

CTX_DOC. POLI CY_MARKUP
CTX_DOC. POLI CY_SNI PPET
CTX_DOC. SNI PPET
CTX_ENTI TY. EXTRACT
CTX_QUERY. COUNT_HI TS
CTX_QUERY. EXPLAI N
CTX_QUERY. HFEEDBACK
CTX_QUERY. RESULT_SET
CTX_REPORT. DESCRI BE_PCLI CY
CTX_REPORT. TOKEN_| NFO
CTX_REPORT. | NDEX_STATS
CTX_THES APIS

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

Chapter 18
Supported APIs in a Sharded Database

October 13, 2025
Page 4 of 4



Administering Oracle Text

Become familiar with Oracle Text administration.
This chapter contains the following topics:

* Oracle Text Users and Roles
DML Queue

e CTX_OUTPUT Package
 CTX_REPORT Package

 Text Manager in Oracle Enterprise Manager

e Servers and Indexing

e Tracking Database Feature Usage in Oracle Enterprise Manager

¢ Oracle Text on Oracle Real Application Clusters

*  Configuring Oracle Text in Oracle Database Vault Environment

* Unsupported Oracle Text Operations in Oracle Database Vault Realm

«  Export and Import of Schemas Containing Oracle Text Settings

19.1 Oracle Text Users and Roles

While any user can create an Oracle Text index and enter a CONTAI NS query, Oracle Text
provides the CTXSYS user for administration and the CTXAPP role for application developers.

This section contains the following sections:

e CTXSYS User
e CTXAPP Role

¢ Granting Roles and Privileges to Users

19.1.1 CTXSYS User

The CTXSYS user is created during installation and can:

e View all indexes

e Sync all indexes

* Run ctxkbtc, the knowledge base extension compiler
*  Query all system-defined views

e Perform all tasks of a user with the CTXAPP role

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 9



ORACLE

Chapter 19
DML Queue

@® Note

In earlier releases of Oracle Text, CTXSYS had SYSDBA privileges, and only CTXSYS users
could perform certain functions, such as modifying system-defined preferences or
setting system parameters.

Starting with Oracle Database Release 19c, the CTXSYS user is a schema only user. To use the
CTXSYS schema, run the following statements:

connect / as sysdba;

alter session set CURRENT SCHEMA=CTXSYS;

19.1.2 CTXAPP Role

The CTXAPP role is a system-defined role that enables users to:

e Create and delete Oracle Text preferences
e Use the Oracle Text PL/SQL packages

19.1.3 Granting Roles and Privileges to Users

The system uses the standard SQL model for granting roles to users. To grant an Oracle Text
role to a user, use the GRANT statement.

In addition, to allow application developers to call procedures in the Oracle Text PL/SQL
packages, you must explicitly grant EXECUTE privileges for the Oracle Text package to each
user.

@ See Also

"Creating an Oracle Text User"

19.2 DML Queue

When you make inserts, updates, or deletes to documents in your base table, the data
manipulation language (DML) queue stores the requests for documents waiting to be indexed.
When you synchronize the index with CTX_DDL.SYNC_| NDEX, requests are removed from this
queue.

You can query pending insert, update, and delete operations using the DR$i ndex_nane$C table.

You can query insert, update, and delete errors with the CTX | NDEX_ERRORS or
CTX_USER _| NDEX_ERRCRS view.

Related Topics

*  Viewing Pending DML Operations
When you insert, update, or delete documents in the base table, their ROWIDs are held in
a DML queue until you synchronize the index.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 9



ORACLE’

19.3 CTX_OUTPUT Package

Chapter 19
CTX_OUTPUT Package

Use the CTX_QUTPUT PL/SQL package to log indexing and document service requests.

@ See Also

Oracle Text Reference for more information about this package

19.4 CTX_REPORT Package

Use the CTX_REPORT package to produce reports on indexes and queries. These reports can
help you fine-tune or troubleshoot your applications.

@ See Also

Oracle Text Reference for more information about this package

The CTX_REPORT package contains the following procedures:

CTX_REPORT.DESCRIBE_INDEX and CTX_REPORT.DESCRIBE_POLICY

These procedures create reports that describe an existing index or policy, including the settings
of the index metadata, the indexing objects, the settings of the attributes of the objects, and
(for CTX_REPORT. DESCRI BE_| NDEX) the index partition information, if any. These procedures are
especially useful for diagnosing index-related problems.

This is sample output from DESCRI BE_|I NDEX, run on a simple context index:

| NDEX DESCRI PTI ON

i ndex nane: "DR_TEST". " TDRBPRX0"
i ndex id: 1160
i ndex type: cont ext
base table: "DR_TEST". " TDRBPR"
primry key col um: ID
text col um: TEXT2
text colum type: VARCHAR2( 80)
| anguage col um:
format col um:
charset col um:
| NDEX OBJECTS
dat astore: Dl RECT_DATASTORE
filter: NULL_FI LTER
section group: NULL_SECTI ON_GROUP
| exer: BASI C_LEXER
wordl i st: BASI C_ WORDLI ST
stemer: ENGLI SH
fuzzy_match: CENERI C
stoplist: BASI C_STOPLI ST

Oracle Text Application Developer's Guide
G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 0of 9



ORACLE

Chapter 19
CTX_REPORT Package

st opwor d: t est st opword

st orage: BASI C_STORAGE
r _tabl e_cl ause: lob (data) store as (cache)
i _index_cl ause: conpress 2

CTX_REPORT.CREATE_INDEX_SCRIPT and CTX_REPORT.CREATE_POLICY_SCRIPT

CREATE_| NDEX_SCRI PT creates a SQL*Plus script that can create a duplicate of a given Oracle
Text index. Use this when you have an index but you do not have the original script (if any) that
was used to create this index, and you want to be able to re-create the index. For example, if
you accidentally drop a script, CREATE | NDEX_SCRI PT can re-create it. Likewise,

CREATE_| NDEX_SCRI PT can be useful if you have inherited indexes from another user but not
the scripts that created them.

CREATE_POLI CY_SCRI PT does the same thing as CREATE | NDEX_SCRI PT, except that it enables
you to re-create a policy instead of an index.

This is sample output from CREATE_| NDEX_SCRI PT, run on a simple context index (not a
complete listing):

begin

ctx_ddl . create_preference(' " TDRBPRXO_DST"',' DI RECT_DATASTORE' );
end;
/

/
begin
ctx_ddl . create_section_group(' " TDRBPRX0_SGP"',' NULL_SECTI ON_GRQUP');
end;
/
begin
ctx_ddl.create_preference(' " TDRBPRXO_WDL"', ' BASI C_ WORDLI ST');
ctx_ddl.set_attribute(' " TDRBPRXO WDL"',' STEMVER ,' ENGLISH );
ctx_ddl.set_attribute(' " TDRBPRXO WDL"',' FUZZY_MATCH ,' GENERIC );
end;
/
begin
ctx_ddl.create_stoplist('"TDRBPRXO_SPL"',' BASI C_STOPLI ST');
ctx_ddl . add_st opword("' " TDRBPRX0_SPL"', 't eststopword');
end;
/

/
begin

ctx_output.start_| og(' TDRBPRX0_LOG );
end;
/
create index "DR TEST"." TDRBPRX0"

on "DR_TEST". " TDRBPR'

(" TEXT2")
i ndextype is ctxsys.context
paramet er s('

dat astore " TDRBPRX0_DST"
filter " TDRBPRX0_FI L"
section group " TDRBPRX0_SGP"
| exer " TDRBPRX0_LEX"
wor dl i st " TDRBPRX0_WDL"
stopli st " TDRBPRX0_SPL"
st orage " TDRBPRX0_STO'

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 4 of 9



ORACLE

CTX_REPORT.INDEX_SIZE

Chapter 19

CTX_REPORT Package

This procedure creates a report of the names of the internal index objects, along with their
tablespaces, allocated sizes, and used sizes. It is useful for DBAs who may need to monitor

the size of their indexes (for example, when disk space is at a premium).

Sample output from this procedure looks like this (partial listing):

I NDEX Sl ZE FOR DR_TEST. TDRBPRX10

TABLE:
TABLESPACE NAME:
BLOCKS ALLOCATED:
BLOCKS USED:
BYTES ALLCCATED:
BYTES USED:

I NDEX (LOB):
TABLE NAME:
TABLESPACE NAME:
BLOCKS ALLOCATED:
BLOCKS USED:
BYTES ALLOCATED:
BYTES USED:

I NDEX ( NORMAL) :
TABLE NAME:
TABLESPACE NAME:
BLOCKS ALLOCATED:
BLOCKS USED:
BYTES ALLOCATED:
BYTES USED:

CTX_REPORT.INDEX_STATS

DR_TEST. DRETDRBPRX10$!
DRSYS

B
B)

4
1
.00 KB)
.00 K

DR TEST. SYS_| L0000023161000006$$
DR_TEST. DRSTDRBPRX10$!
DRSYS
5
2
10, 240 (10.00 KB)
4,096 (4.00 KB)

DR_TEST. DR$TDRBPRX10$X
DR_TEST. DRETDRBPRX10$!
DRSYS

| NDEX_STATS produces a variety of calculated statistics about an index, such as how many
documents are indexed, how many unique tokens in the index, average size of its tokens, and
fragmentation information for the index. Optimizing stoplists is an example of a use for

| NDEX_STATS.

CTX_REPORT.QUERY_LOG_SUMMARY

This procedure creates a report of logged queries, which you can use to perform simple
analyses. With query analysis, you can find out:

e Which queries were made

e Which queries were successful

e Which queries were unsuccessful

e How many times each query was made

You can combine these factors in various ways, such as determining the 50 most frequent
unsuccessful queries made by your application.

CTX_REPORT.TOKEN_INFO

TOKEN_| NFO helps you diagnose query problems. For example, use it to check that index data
is not corrupted and to find out which documents are producing unexpected or bad tokens.

Oracle Text Application Developer's Guide
G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 9



ORACLE Chapter 19
Text Manager in Oracle Enterprise Manager

CTX_REPORT.TOKEN_TYPE

TOKEN_TYPE is a lookup function that is used mainly as input to other functions
(CTX_DDL. OPTI M ZE_I NDEX, CTX_REPORT. TOKEN_I NFO, and so on).

® See Also
e Oracle Text Reference for an example of the output of CTX_REPORT. | NDEX_STATS
procedure

*  Oracle Text Reference for an example of the output of
CTX_REPORT. QUERY_LOG_SUMMARY procedure

19.5 Text Manager in Oracle Enterprise Manager

Oracle Enterprise Manager provides Text Manager for configuring, maintaining, and
administering Oracle Text indexes. With Text Manager, you can perform all of the basic
configuration and administration tasks for Oracle Text indexes. You can monitor the overall
health of Oracle Text indexes for a single Oracle Al Databaseinstance or for the Oracle Real
Application Clusters environment. Text Manager provides summaries of critical information and
enables you to drill down to the level of detail that you want, to resolve issues, and to
understand any actions that you need to take.

The Text Indexes page shows the jobs that are in progress, that are scheduled within the last
seven days, or that are experiencing problems. From this page, you can go to the Job
Scheduler to see a summary of all jobs for this database instance and to manage selected
jobs. The online help in Oracle Enterprise Manager provides details and procedures for using
each Text Manager feature.

This section contains the following sections:

¢ Using Text Manager

¢ Viewing General Information for an Oracle Text Index

e Checking Oracle Text Index Health

@® Note

You cannot create an Oracle Text index with Text Manager. Use the CREATE | NDEX
statement to create an Oracle Text index as described in Indexing with Oracle Text
chapter..

19.5.1 Using Text Manager

You can access Text Manager to manage Oracle Text indexes or schedule jobs for a specific
index.

On the main Text Manager page, you can perform the following actions on the selected index
from the Actions list:

e Synchronize

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 6 of 9



ORACLE

Chapter 19
Text Manager in Oracle Enterprise Manager

*  Optimize

*  Rebuild

* Resume Failed Operation
e Show Logs

e Show Errors

1. Sign in to the database with a user account that is authorized to access Cloud Control. For
example, use SYS or SYSTEMand the password that you specified during database
installation.

2. Onthe Database Home page, click the Schema tab.
3. Inthe Text Manager group, select Text Indexes.
The Text Indexes page displays a list of Oracle Text indexes for this database instance.

When you select an Oracle Text index from the Text Indexes page, edit and action options
become available for that index. For example, to configure attributes for searching, click Edit
for the selected index. On the Edit Text Index page, you can set such attributes as Wild Card
Maximum Term, Fuzzy Score, and Number of Fuzzy Expansions. You can also change index
and partition names, and specify settings for NETWORK_DATASTCORE.

19.5.2 Viewing General Information for an Oracle Text Index

Use the View Text Index page to see general information about a specific index, such as index
type, parallel degree, synchronization mode, wild card limit, fuzzy score, fuzzy numeric result,
and datastore. Information about any partitions on the index is also available.

To view general information for an Oracle Text index, on the Text Indexes page, in the list of
indexes, click the name of the index. The View Text Index page opens and the General tab is
selected. From here, you can select actions to perform maintenance tasks.

19.5.3 Checking Oracle Text Index Health

In Text Manager, the Text Indexes page displays the Oracle Text indexes for the database
instance. Use that page to help you understand the critical actions that are necessary to make
sure that the entire application is performing properly.

Use the Text Indexes page to see:

e The status of the indexes and jobs submitted during the last seven days.

e The number of Oracle Text indexes that contain invalid partitions, and which are, therefore,
invalid. The number of partitions that are invalid, if any, for all Oracle Text indexes is also
shown.

e The number of indexes and partitions that are in an in-progress state.
e The number of indexes where all partitions are valid, and no activity is in progress.
e The sum total of the Oracle Text indexes found for this database instance.

e The index type for each Oracle Text index, the owner, the number of documents that are
not synchronized, total number of documents, and percentage of fragmentation.

After you select an Oracle Text index from the list, options become available for editing or
performing actions.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 7 of 9



ORACLE’

19.6 Servers and Indexing

Chapter 19
Servers and Indexing

You index documents and enter queries with standard SQL. No server is needed for
performing batch insert, update, and delete operations. You can synchronize the CONTEXT index
with the CTX_DDL.SYNC_| NDEX procedure, or from Text Manager in Oracle Enterprise Manager.

19.7 Tracking Database Feature Usage in Oracle Enterprise

Manager

In Oracle Enterprise Manager, Database Feature Usage statistics provide an approximation of
how often various database features are used. Tracking this information is useful for

application development and for auditing.

To access Database Feature Usage, in Oracle Enterprise Manager, click the Server tab, and

then select Database Feature Usage under Database Configuration.

Database Feature Usage captures the following information for Oracle Text:

* Index Usage Statistics: The number of existing indexes in the database for the CONTEXT,

CTXCAT, and CTXRULE index types

e SQL Operator Usage Statistics: Whether the user has ever used the CONTAI NS,

CATSEARCH, and MATCHES operators

» Package Usage Statistics: How often, if ever, and when the following packages were
used:

CTX_ADM
CTX_CLS
CTX_DDL
CTX_DOC
CTX_OUTPUT
CTX_QUERY
CTX_REPCRT
CTX_THES
CTX_ULEXER

@ Note

19.8 Oracle Text on Oracle Real Application Clusters

The feature usage tracking statistics might not be 100 percent accurate.

For maximum throughput and performance of applications, you can parallelize Oracle Text

gueries across Oracle Real Application Clusters (Oracle RAC) nodes.

You can manage Oracle Text indexes on Oracle RAC nodes with Text Manager in Oracle
Enterprise Manager, as described in Text Manager in Oracle Enterprise Manager.

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 9



ORACLE Chapter 19
Configuring Oracle Text in Oracle Database Vault Environment

Related Topics

» Parallelizing Queries Across Oracle RAC Nodes
Oracle Real Application Clusters (Oracle RAC) enables you to improve query throughput
and scalability as the query load increases.

19.9 Configuring Oracle Text in Oracle Database Vault
Environment

In an Oracle Database Vault environment, you can create a CTXSYS user if you have the
DV_ACCTMGR role.

To create a CTXSYS user, run the @ORACLE_HOVE/ ct x/ admi n/ cat ct x_user. sql SQL script.
Then, connect as SYS user and run the @ORACLE_HOME/ ct x/ admi n/ cat ct x_schema. sql SQL
script.

@ Note

If the SYS user also has the DV_ACCTMER role, then you can run the
@ORACLE_HOWE/ ct x/ admi n/ cat ct x. sql SQL script which installs both,
catctx_user.sqgl and catctx_schema. sql scripts.

19.10 Unsupported Oracle Text Operations in Oracle Database
Vault Realm

Oracle Database Vault realms place restrictions on DDL operations within a realm. For this
reason, once you are added to a realm but if you are not authorized in the realm, then you
cannot create, alter, or drop an Oracle Text index. You also cannot use any DDL operations
contained in the CTX_DDL package.

The DDL error messages and query error messages on indexes that could not be created
within the realm might indicate insufficient privileges as the cause. The insufficient privilege
message is specific to DDL operations not being allowed within the realm.

19.11 Export and Import of Schemas Containing Oracle Text
Settings

Before Oracle Database Release 21c, schema objects like preferences, section groups,
stoplists, and other Oracle Text preferences were not exported or imported. Starting with
Oracle Database Release 21c, they are copied when you export and import the schema by
using Data Pump Export and Import utilities (invoked with the expdp and i npdp commands,
respectively).

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 9 of 9



Migrating Oracle Text Applications

You can migrate Oracle Text applications into a new Oracle Al Database release.

When you upgrade to a new release of Oracle Al Database, you may have difficulty migrating
your applications from earlier releases of Oracle Text. Where applicable, Oracle provides
information about the migration steps to move Oracle Text applications into the new release.

This chapter contains the following topics:

*  Oracle Text and Rolling Upgrade with Logical Standby

* |dentifying and Copying Oracle Text Files to a New Oracle Home

@ See Also

Oracle Database Upgrade Guide for information on upgrading Oracle Al Database and
topics about migrating applications

20.1 Performing a Rolling Upgrade with a Logical Standby
Database

You can use a logical standby database to perform a rolling upgrade of Oracle Al Database. To
incur minimal downtime on the primary database, you can run different releases of Oracle Al
Database on the primary and logical standby databases while you upgrade your databases,
one at a time. Oracle Text takes full advantage of upgrading Oracle Text indexes.

All CTX PL/SQL procedures are fully replicated to the standby database and are upgraded,
except with certain limitations for these procedures:

e CTX DDL PL/SQL Procedures
e CTX OUTPUT PL/SQL Procedures
e CTX DOC PL/SQL Procedures

@ See Also

Oracle Data Guard Concepts and Administration for information on creating a logical
standby database to perform rolling upgrades

20.1.1 CTX_DDL PL/SQL Procedures

Oracle Al Database uses rowids internally for the construction of indexes. The following
CTX _DDL procedures are not fully replicated to the standby:

- ADD _MDATA

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 1 of 3



ORACLE’

Chapter 20
Identifying and Copying Oracle Text Files to a New Oracle Home

*  REMOVE_MDATA

20.1.2 CTX_OUTPUT PL/SQL Procedures

Only CTX_QUTPUT. ENABLE_QUERY_STATS and CTX_QOUTPUT. DI SABLE_QUERY_STATS are replicated.
If you enable Oracle Text logging on the primary database before you run an operation that
causes logging, then the operation runs with logging on the primary database and without
logging on the secondary database.

20.1.3 CTX_DOC PL/SQL Procedures

When you use the following CTX_DOC procedures with Oracle Text Result Tables, the data
stored in the tables is replicated. When these procedures are used without Result Tables, they
are not replicated.

«  CTX_DOC. SET_KEY_TYPE

. CTX_DOC. FI LTER

.« CTX_DCC. G ST

«  CTX_DOC. MARKUP

- CTX_DOC. TOKENS

. CTX_DOC. THEMES

«  CTX_DOC. Hl GHLI GHT

«  CTX_DCC. FI LTER CLOB_QUERY

. CTX_DOC. MARKUP_CLOB_QUERY

«  CTX_DOC. HI GHLI GHT_CLOB_QUERY

@ See Also

Oracle Data Guard Concepts and Administration for information on performing a
rolling upgrade for minimal downtime on the primary database

20.2 Identifying and Copying Oracle Text Files to a New Oracle

Home

To upgrade Oracle Text, use this procedure to identify and copy required files from your
existing Oracle home to the new release Oracle home. Complete this task after you upgrade
Oracle Al Database.

Certain Oracle Text features rely on files under the Oracle home that you have configured.
After manually upgrading to a new Oracle Al Database release, or after any process that
changes the Oracle home, you must identify and move these files manually. These files include
user filters, mail filter configuration files, and all knowledge base extension files. After you
identify the files, copy the files from your existing Oracle home to the new Oracle home.

To identify and copy required files from your existing Oracle home to the new release Oracle
home:

1. Log in with the SYS, SYSTEM or CTXSYS system privileges for the upgraded database.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 2 of 3



ORACLE Chapter 20
Identifying and Copying Oracle Text Files to a New Oracle Home

2. Under the Oracle home of the upgraded database, run the $ORACLE_HOVE/ ct x/ admi n/
ctx_oh_files.sql SQL script.

For example:

sql plus / as sysdba
connect ed
SQ> @/ ctx/adnmin/ctx_oh files

3. Review the output of the ct x_oh_fil es. sql command, and copy the files to the new
Oracle home.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Page 3 of 3



CONTEXT Query Application

This appendix describes how to build a simple web search application by using the CONTEXT
index type.

This appendix contains the following topics:

*  Web Query Application Overview
e The PL/SQL Server Pages (PSP) Web Application

e The Java Server Pages (JSP) Web Application

A.1 Web Query Application Overview

A common use of Oracle Text is to index HTML files on websites and provide search
capabilities to users. The sample application in this appendix indexes a set of HTML files
stored in the database. It also uses a web server connected to Oracle Al Database to provide
the search service.

This appendix describes two versions of the Web query application:

e One using PL/SQL Server Pages (PSP)
e One using Java Server Pages (JSP)

Figure A-1 shows the JSP version of the text query application.

Figure A-1 The Text Query Application

3 Text Search - Mozilla Firefox =

Fle Edit View History Bookmarks Tools Help

4“ E] v ?@ ﬁ [@ http://servername:8080/TextSearchApp jsp 'l [-"l' @g;]
Text Search
Search for: [pet | [ searcn |

Done

Figure A-2 shows the results of the text query.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-1 of A-19



ORACLE’

Appendix A

The PL/SQL Server Pages (PSP) Web Application

Figure A-2 Text Query Application with Results

<« v @

File Edit View History Bookmarks Tools

Text Search Result Page - Mozilla Firefox

Help

ﬁ I@ http://servername:8080/TextSearchApp jsp A

Results 1 - 5 of 5 matches

][ Search ]

Text Search

Search for: [pet

; Document
Score| TITLE Snippet Services

[The Pet Magnet The Pet Magnet Every pet owner loves to let his or -

58% (Set of Pet Magnets her pet run free, but that's not always...a free-roaming pet will ruin a "Elr;rg:nLesHlGri‘gt =
flower bed =

) or you could feed it to your pet. But if neither of those appeal (maybe [HTML Highlight
D you don't have a pet?) then you'll be throwing it in Themes Gist

204 Refrigerator w/ Front-Door  jamongst the half-used packets of pet food? Mo longer, since our HTML Highlight
° |Aauto Cantaloupe Dispenser |new [Themes Gist

- hard work to get your partner, or your pet, off the couch. The HTML Highlight
S EE el e Self-Tipping Couch Themes Gist

o garbage smells may confuse your pet. No matter how much he HTML Highlight
3% |[Home Air Dirtier hunts, he Themes Gist

Done

The application returns links to documents containing the search term. Each document has

four links:

e The HTML link displays the document.

Graphics are not displayed in the filtered document.

e The Highlight link displays the document with the search term highlighted.

e The Theme link shows the top 50 themes associated with the document.

The Gist link displays a short summary of the document.

A.2 The PL/SQL Server Pages (PSP) Web Application

The PSP web application is based on PL/SQL server pages. Figure A-3 illustrates how the
browser calls the PSP-stored procedure on Oracle Al Database through a web server.

This section contains the following topics:

« PSP Web Application Prerequisites

e Building the PSP Web Application

« PSP Web Application Sample Code

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-2 of A-19



ORACLE

Appendix A
The PL/SQL Server Pages (PSP) Web Application

Figure A-3 The PSP Web Application

Browser calls
PSP stored
procedure
with URL

Browser
<

http://mymachine:7777 / mypath / search_html

Web Server maps

URLs to PSP _
stored procedure P search_table

PL/SQL PSP o
»| Gateway PStorgd .
rocedure .- | idx_search_table

[

Database stores
compiled PSP files
as PL/SQL Stored
Procedures

A.2.1 PSP Web Application Prerequisites

The PSP web application has the following requirements.

Your Oracle Al Database must be up and running.
For a connection example, see Oracle Al Database JDBC Developer’s Guide.

The SCOTT account is unlocked with its password, and the account has CREATE, RESOCURCE,
and CTXAPP privileges.

The Oracle PL/SQL gateway must be running.

For complete information about setting up the PL/SQL gateway and developing PL/SQL
web applications, see Oracle Database Development Guide.

A web server such as Apache is up and running and is correctly configured to send
requests toOracle Al Database.

For information about installing Apache HTTP Server, see Oracle Database 2 Day + PHP
Developer's Guide.

A.2.2 Building the PSP Web Application

To create PSP web application:

1.

Create your text tables.

You must create text tables with the CREATE TABLE command to store your HTML files.
These examples create the out put _tabl e, gi st_table, andthene_tabl e tables:

CREATE TABLE output _table (query_id NUMBER, docunent CLOB);
CREATE TABLE gist_table (query_id NUVBER, pov VARCHAR2(80), gist CLOB);
CREATE TABLE thene_table (query_id NUMBER thene VARCHAR2(2000), weight NUMBER);

Load HTML documents into the table by using SQL*Loader.

You must load the text tables with the HTML files. This example uses the loader.ctl control
file to load the files named in loader.dat. The SQL*Loader statement is as follows:

% sql I dr userid=scott/password control =l oader. ctl

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-3 of A-19



ORACLE

Appendix A
The PL/SQL Server Pages (PSP) Web Application

Create the CONTEXT index.

Index the HTML files by creating a CONTEXT index on the text column, as shown here.
Because you are indexing HTML, this example uses the NULL_FI LTER preference type for
no filtering, and it uses the HTM._SECTI ON_GROUP type, as follows:

create index idx_search_table on search_table(text)
i ndextype is ctxsys.context paraneters
("filter ctxsys.null _filter section group CTXSYS. HTM._SECTI ON_GROUP');

Compile the search_ht nl servi ces package in Oracle Al Database.

The application must present selected documents to the user. To do so, Oracle Al
Database must read the documents from the character large object ( CLOB) in

sear ch_t abl e and output the result for viewing. To do that, call procedures in the
search_htm servi ces package. Compile the file search_htmliservices.sql file at the
SQL*Plus prompt as follows:

SQL> @earch_ht m services. sql

Package creat ed.
Compile the search_ht m PSP page with loadpsp.

The search page is invoked by calling search_html.psp from a browser. You compile
search_html in Oracle Al Database with the | oadpsp command-line program as follows:

% | oadpsp -replace -user scott/password search_htm . psp

The output appears as:

"search_html .psp": procedure "search_htm" created.

@ See Also

Oracle Database 11g Release 2 (11.2) of Oracle Database Development Guide for
more information about using PSP

Configure your web server.

You must configure your web server to accept client PSP requests as a URL. Your web
server forwards these requests to Oracle Al Database and returns server output to the
browser. See Figure A-3.

You can use the Oracle WebDB web listener or Oracle Application Server, which includes
the Apache web server.

Enter the query from a browser.

You can access the query application from a browser by using a URL. You configure the
URL with your web server. An example URL might look like the following:

http://server.exanpl e.com 7777/ nmypat h/ sear ch_ht m

The application displays a query entry box in your browser and returns the query results as
a list of HTML links, as shown in Figure A-1 and Figure A-2.

A.2.3 PSP Web Application Sample Code

This section lists the code used to build the example Web application. It includes the following
files:

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-4 of A-19



ORACLE’

Appendix A
The PL/SQL Server Pages (PSP) Web Application

* loader.ctl
e loader.dat

» search htmlservices.sql

e search html.psp

A.2.3.1 loader.ctl

This example shows a sample | oader . ct! file. It is used by sql | dr to load the | cader . dat
data file.

LOAD DATA
I NFI LE ' | oader. dat"
I NTO TABLE search_tabl e

REPLACE

FI ELDS TERM NATED BY ';'

(tk | NTEGER,

title CHAR,

text_file FI LLER CHAR,

t ext LOBFI LE(text file) TERM NATED BY ECF)

A.2.3.2 loader.dat

This example shows a sample | oader . dat file. Each row contains three fields: a reference
number for the document, a label (or "title™), and the name of the HTML document to load into
the text column of search_t abl e. The file has been truncated for this example.

Pi zza Shredder; Pi zza. ht ni

Refrigerator w Front-Door Auto Cantal oupe Di spenser; Cantal oupe. ht m
Sel f - Ti ppi ng Couch; Couch. ht m

Home Air Dirtier;Mss. htnl

Set of Pet Magnets; Pet.htm

: Est eem Bui | di ng Tal ki ng Pi |l ow, Snooze. ht m

R

A.2.3.3 HTML Files for loader.dat Example

The HTML files that are named and loaded into | oader . dat are included here for your
reference.

e Pizza.html

e Cantaloupe.html

e Couch.html
e Mess.html
e Pet.html

e Snooze.html

Pizza.html

<htnl >

<header >

<title>The Pizza Shredder</title>
</ header >

<body>

<h2>The Pizza Shredder</h2>
<h4>Keepi ng your pizza preferences secure</h4>

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-5 of A-19



ORACLE

Appendix A
The PL/SQL Server Pages (PSP) Web Application

So it's the end of a long evening. Beer has been drunk, pizza has been eaten
<p>
But there's leftover pizza - what are you going to do with it?

<p>
You could save it for the norning, or you could feed it to your pet. But if neither of
those appeal (naybe you don't have a pet?) then

you'll be throwing it in the trash

<p>
But wait a minute - anybody could | ook through your trash, and figure out what kind of
pi zza you' ve been eating! "No big deal," | hear you

say. But it is! After they've figured out that your favorite pizza is pepperoni, then
it"s only a short step to figuring out that
your top-secret online banking password is "pepperoni _pizza."

<p>
CGet one over the dunpster-divers with our new patent-pending "M Il Pizza Shredder.'
Cross-cut bl ades ensure that your pizza will be rendered

unreadabl e, and nobody will be able to identify the original toppings. Al so doubles as a
| ettuce-shredder and may al so be used for renoving

unwant ed fingertips

<h2>Model Conpari son</ h2>

<tabl e border="1">
<tr><t h>Model </t h><t h>Bl ades0</t h><t h>Pi zza Thi ckness</th><th>Price</th></tr>
<tr><td>MWk | </td><td>Plastic</td><td>1/2 inch (Thin Crust)</td><td>$69. 99</td></tr>
<tr><td>MWk || </td><td>Brass</td><td>1 inch (Deep Pan)</td><td>$99. 99</td></tr>
<tr><td>MWk |I1</td><td>Carbon Steel </td><td>2 inch (Cal zoni)</td><td>$129.99</td></tr>
</tabl e>

</ body>
</htm >

Cantaloupe.html

<htm >

<header >

<title>The Fridge with a Cantal oupe Dispenser</title>
</ header >

<body>

<h2>The Fridge with a Cantal oupe Di spenser</h2>

<h4>A nice cold melon at the touch of a button</h4>

Does your refrigerator only have a boring water dispenser in the door?

<p>
Wien you're hungry for a cantal oupe, do you have to expend val uabl e energy opening the
fridge door and fishing around anongst the half-used

packets of pet food?

<p>
Do your friends conplain that they wish there was an effortless way to get cantal oupes
fromyour fridge? Do you overhear themsaying they're

tired of always having to rummge through your noldy |eftovers and seal-a-nmeals to get
to the cold nelons?

<p>
Wat you need is the convenience of a built-in cantal oupe di spenser

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-6 of A-19



ORACLE’

Appendix A
The PL/SQL Server Pages (PSP) Web Application

<p>
I npress your friends. Wn praise fromyour neighbors. Becone a | egendary host!

<p>
<b>Try our new <i >Mel oni ¢ 2000</i > nodel ! </ b>

<p>
Works wi th honeydews and small crenshaws too.

<p>
Let the <i>Melonic 2000</i> go to work for you. Order one now at your |ocal store.

</ body>
</htm >

Couch.html

<htm >

<header >

<title>The Sel f-Tipping Couch</title>
</ header >

<body>

<h2>The Sel f- Ti ppi ng Couch</h2>

<h4>Sonetinmes it's hard work to get off the couch</h4>

<p>
Sonetines it's hard work to get your partner, or your pet, off the couch.

<p>
The <b>Sel f - Ti ppi ng Couch</b> sol ves these problens for you. At the touch of a button it
wi |l deposit the contents of the couch onto the

floor in front of it.

<p>
The <b>Sel f-Ti ppi ng Couch</b> has been proven to boost communication with stubborn
spouses, children, and relatives.

<p>
You will never again need to yell, "Get off the couch!" Sinply press a button and all
those couch hoggers are gently

dunped onto your carpet.

<p>
Get your own <b>Sel f-Ti ppi ng Couch</b> TODAY!

</ body>
</htm >

Mess.html

<htn >

<header >

<title>Home Air Dirtier</title>

</ header >

<body>

<h2>Home Air Dirtier</h2>

<h4>M ssing your home in the middle of the city?</h4>

<p>
Li ke many ex-city-dwellers, you mght be finding that the air in the countryside is just
too clean.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-7 of A-19



ORACLE

Appendix A
The PL/SQL Server Pages (PSP) Web Application

<p>
You can renedy this right nowwith the <i>UtraAppliance</i> <b>Hone Air Dirtier</b>

<p>
Sinply insert our patented <i>CityFilth</i> cartridge

and soon you'll be enjoying the aronas of vehicle fumes and decayi ng garbage that you're
used to from hone.

<p>
<b>Pl ease note: </ b> Decayi ng garbage smells may confuse your pet
We reconmend addi ng genui ne garbage to your environment if this is a concern

</ body>
</htm >

Pet.html

<htm >

<header >

<title>The Pet Magnet</title>
</ header >

<body>

<h2>The Pet Magnet </ h2>

<h4>Every pet owner loves to let the pet run free, but that's not always possible</h4>

<p>
Sonetines |ocal |aws require pets to be on | eashes. Sometines a free-roamng pet will
ruin a flower bed, leave a "calling card" on the

sidewal k, or chew through another pet. In the case of extrenely smart pets, like

chi npanzees or dol phins, the unattended pet may get

away and run up hundreds of dollars of |ong-distance charges on your phone

<p>
But |eashes aren't always a practical answer. They can be too confining, or too big, or
can tug unconfortably at the pet's neck. They

may get tangled, or wapped around pol es or passersby. Pets may chew through the |eash
or, again, in the case of extrenely smart pets

burn through it with an acetylene torch. In the case of cats, |eashes sinply |ook
ridicul ous, as though the pet owner really wanted to

own a dog but got confused at the pet store

<p>
The <b>Hol d ' Em 2000 Pet Magnet</b> from <i >U traAppliance</i> is the answer. Instead of
ol d-fashi oned | eashes, the

<b>Hol d ' Em 2000 Pet Magnet</b> keeps your pet under control in a sinple way.

<p>
Here's how it works. Dozens of small magnets are placed underneath the coat of your pet
where they remain painlessly invisible. Any tinme

you need to recall your animal, you nerely activate the handy, massive Hold ' Em 2000 Pet
Magnet el ectromagnet (fits inside any extrenely

oversi zed purse) and your pet is gently and painlessly dragged to you fromup to 100
yards. It's a nust-have for any pet owner

<p>
<bl ockquot e>

<i>

"The <b>Hold ' Em 2000 Pet Magnet</b> not only keeps ny dog fromrunning away, but the
el ectromagnet also comes in very handy if | need to

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-8 of A-19



ORACLE’

Appendix A
The PL/SQL Server Pages (PSP) Web Application

find a needle in a haystack"</i>
- Anonynous Celebrity

</ bl ockquot e>

</ body>

</htn >

Snooze.html

<htm >

<header >

<title>Esteembuilding Talking Pillow/title>

</ header >

<body>

<h2>Est eem bui | di ng Tal ki ng Pi | | ow</ h2>

<h4>Do you feel less than your true potential when you wake up in the norning?</h4>

<p>
We searched for a way to capture the wasted time spent sleeping and to use this precious
time to build notivation, character, and self-esteem

<p>

We are proud to announce the <b>Esteembuilding Talking Pillow</b> Qur pride in this
wonder ful invention gl ows even nore because:

<i >\\¢ use our own invention every night!</i>

<p>

Only you will know that you are sleeping with the <b>Esteem building Tal king Pillow</b>
because only you can hear the soothing

affirmations that gently enter your brain through the discreet speaker.

<p>
You will wake up refreshed and raring to go with a new sense of pride and enthusiasm for
any task the day may bring.

<p>

Be the first to own the <b>Esteembuilding Talking Pillow/b>!" Your friends and fellow
workers will be amazed when you no | onger

cower in the corner. Now you will join in every conversation.

<p>
<b>Di scl ai mer: </ b> Not responsible for narcissismand hyberbolic statements. My cause
extreme behavior with overuse.

</ body>
</htm >

A.2.3.4 search_htmlservices.sql

set define off

create or replace package search_htnl Services as
procedure showHTM.Doc (p_id in numeric);
procedure showDoc (p_id in varchar2, p_query in varchar2);
end search_ht nl Servi ces;
/
show errors;

create or replace package body search_htm Services as
procedure showHTM.Doc (p_id in numeric) is

v_clob_selected CLOB;
v_read_anount i nteger;

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-9 of A-19



ORACLE Appendix A
The PL/SQL Server Pages (PSP) Web Application

v_read_of f set i nteger;

v_buffer var char 2(32767) ;

begin
select text into v_clob_selected fromsearch_table where tk = p_id;
v_read_anount := 32767,
v_read_offset := 1;

begin

| oop

dbns_| ob. read(v_cl ob_sel ected, v_read_amount,v_read_of fset,v_buffer);
htp.print(v_buffer);

v_read_offset := v_read _offset + v_read_anmount;
v_read_anount := 32767,

end | oop;

exception

when no_data_found then
nul I ;

end;
end showHTM.Doc;

procedure showDoc (p_id in varchar2, p_query in varchar2) is

v_clob_selected CLOB;

v_read_anount i nteger;
v_read_of f set i nteger;
v_buffer var char 2(32767) ;
v_query var char (2000) ;
v_cursor i nteger;

begin

htp. p(' <htm ><title>HTM. version with highlighted terns</title>");
ht p. p(' <body bgcol or="#ffffff">");
ht p. p(' <b>HTM. version with highlighted terns</b>");

begin
ctx_doc. markup (index_nanme => 'idx_search_table',
t ext key = p_id,
text_query => p_query,

restab => v_cl ob_sel ect ed,
starttag => '<i><font color=red>',
endt ag = '</font></i>");
v_read_anount := 32767,
v_read_offset := 1;
begi n
| oop

dbns_| ob. read(v_cl ob_sel ected, v_read_amount,v_read_offset,v_buffer);
htp.print(v_buffer);

v_read_offset := v_read offset + v_read_amount;
v_read_anount := 32767,
end | oop;
exception
when no_data_found then
nul | ;
end;
exception
when ot hers then
null; --showHTM.doc(p_id);
end;
end showbDoc;

end search_ht nl Servi ces;

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-10 of A-19



ORACLE Appendix A
The PL/SQL Server Pages (PSP) Web Application

/
show errors

set define on

A.2.3.5 search_html.psp

<%@ pl sql procedure="search_htm" %
<%@ pl sql paraneter="query" defaul t="null" %
<% v_results nunmber :=0; %

<htm >
<head>
<title>search_htm Search </title>
</ head>
<body>

<%

I F query IS NULL THEN
%

<center>
<f orm net hod="post" action="search_htm ">
<b>Search for: </b>
<input type="text" name="query" size="30">&nbsp
<input type="submt" val ue="Search">
</center>
<hr>

<%
ELSE
%

<p>
<%

color varchar2(6) := "ffffff";
%

<center>
<form net hod="post" action="search_htm ">
<b>Search for:</b>
<input type="text" name="query" size="30" val ue="<% query %">
<input type="submt" val ue="Search">
</form
</center>
<hr>
<p>

<%
-- select statenent
FOR DOC I N (
SELECT /*+ DOVAI N | NDEX SORT */ rowid, tk, title, score(l) scr
FROM search_tabl e
WHERE CONTAINS(text, query,1) >0
ORDER BY score(1) DESC
)
LOoP
v_results := v _results + 1
IF v _results = 1 THEN

%

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-11 of A-19



ORACLE Appendix A
The Java Server Pages (JSP) Web Application

<center>
<t abl e border="0">
<tr bgcol or="#6699CC'>
<th>Score</th>
<th>Title</th>
<[tr>

<% END IF;, %
<tr bgcol or="#<% col or %">
<td> <% doc.scr %% </td>
<td> <% doc.title %
[<a href="search_htn Services. showHTM.Doc?p_i d=
<% doc.tk %">HTM.</ a>]
[<a href="search_htn Services. showDoc?p_i d=
<% doc.tk %&p_query=<% query %">H ghlight</a>]
</td>
</tr>

<%
IF (color = "ffffff') THEN
color := 'eeeeee';
ELSE
color := "ffffff";
END | F;

END LOOP;
%

</tabl e>
</center>

<%

END I F;
%
</ body>
</htm >

A.3 The Java Server Pages (JSP) Web Application

Creating the JSP-based web application involves most of the same steps as those used in
building the PSP-based application. See "Building the PSP Web Application" for more
information. You can use the same | oader. dat and | oader. ct! files. However, with the JSP-
based application, you do not need to do the following:

e Compile the search_ht nl servi ces package
e Compile the search_htnl PSP page with | oadpsp

This section contains the following topics:

e JSP Web Application Prerequisites
e JSP Web Application Sample Code

A.3.1 JSP Web Application Prerequisites

The JSP web application has the following requirements:

*  Your Oracle Al Database must be up and running.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-12 of A-19



ORACLE Appendix A
The Java Server Pages (JSP) Web Application

* You have a web server such as Apache Tomcat, which can run JavaServer Pages (JSP)
scripts that connect to the Oracle Al Database by using Java Database Connectivity
(JDBC).

@ See Also

Oracle Database 2 Day + PHP Developer's Guide for information about installing
Apache HTTP Server

A.3.2 JSP Web Application Sample Code

This section lists the Java code used to build the example web application, as shown in the
Text Sear chApp. j sp file.

<Yapage | anguage="j ava" pageEncodi ng="utf-8" content Type="text/htm ; charset=utf-8" %
<Y%@ page inport="java.sql.*, java.util.*, java.net.*,
oracle.jdbc.*, oracle.sqgl.*, oracle.jsp.dbutil.*" %

<%
/'l Change these details to suit your database and user details

String connStr
String dbUser
String dbPass

"jdbc:oracle:thin: @/servernane: 1521/ pdb1";
"scott",;
"tiger";

/1 The table we're running queries against is called SEARCH TABLE.

/1 1t nust have col umms:

Il tk nunber primry key, (primary key is inportant for document services)
/1 title varchar2(2000),

/1 text clob

/1 There nust be a CONTEXT index called | DX SEARCH TABLE on the text colum

request . set Char act er Encodi ng(" UTF-8") ;

java.util.Properties info=new java.util.Properties();
Connection conn = null;

Resul t Set rset =null;

O acl eCal | abl eStatenent cal | Stnt = nul | ;

Statenment stmt = null;
String userQuery = null;
String myQuery = null;
String action = null;
String theTk = null;
URLEncoder nyEncoder;
int count=0;

int | oopNun¥e0;
int startNuneQ;

user Query = request.getParanmeter("query");
action = request.getParanmeter("action");
t heTk = request.getParanmeter("tk");

if (action == null) action = "";
/1 Connect to database

try {
Driver Manager . regi sterDriver

info.put ("user", dbUser
info.put ("password", dbPass);
conn = Driver Manager . get Connecti on(connStr, info);

(new oracle.jdbc.driver.OacleDriver() );
).

catch (SQLException e) {
% <b>Error: </b> <% e %<p> <%

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-13 of A-19



ORACLE Appendix A
The Java Server Pages (JSP) Web Application

}

if ( action.equals("doHTM.") ) {
/1 Directly display the text of the docunent

try {

/1 not attenpting to share the output table for this exanple, we'll truncate it each tine
conn. creat eSt at ement () . execute("truncate table OUTPUT_TABLE");

String sql = "{ call ctx_doc.filter( index_name=>'|DX_SEARCH TABLE', textkey=>"'" + theTk + "',
restab=>'" QUTPUT_TABLE',
plaintext=>false ) }";
PreparedStatement s = conn. prepareCal | ( sql );
s. execute();

sql = "select docunent from output_table where rownum= 1";
stm = conn.createStatenent();
rset = stnt.executeQuery(sql);

rset.next();
oracle.sql.CLOB res = (oracle.sql.CLOB) rset.getC ob(1);
/1 should fetch fromclob piecewi se, but to keep it sinple we'll just fetch 32K to a string
String txt = res.getSubString(1, 32767);
out.println(txt);

}

catch (SQLException e) {

% <b>Error: </b> <% e %<p> <%

}

else if ( action.equal s("doH ghlight") ) {
/1 Display the text of the document with highlighting fromthe "markup" function

try {

/1 not attenpting to share the output table for this exanple, we'll truncate it each tine
conn. creat eSt at ement () . execute("truncate table OUTPUT_TABLE");

String sql = "{ call ctx_doc.markup( index_name=>'|DX_SEARCH TABLE' , textkey=>"'" + theTk + "',
text_query =>"" + userQuery +
restab=>' QUTPUT_TABLE' , pl aintext=>fal se, starttag => '<i><font color=\"red\">',
endtag => '</font></i> ) }";
PreparedStatement s = conn. prepareCal | ( sql );
s. execute();

sql = "select docunent from output_table where rownum= 1";
stm = conn.createStatenent();
rset = stnt.executeQuery(sql);

rset.next();

oracle.sql.CLOB res = (oracle.sql.CLOB) rset.getC ob(1);

/1 should fetch fromclob piecewi se, but to keep it sinple we'll just fetch 32K to a string
String txt = res.getSubString(1, 32767);

out.println(txt);

catch (SQLException e) {

% <b>Error: </b> <% e %<p> <%
}

}

else if ( action.equal s("doThenes") ) {
/1 Display the text of the document with highlighting fromthe "markup" function

try {

/1 not attenpting to share the output table for this exanple, we'll truncate it each tine
conn. creat eSt at ement () . execute("truncate table THEME_TABLE");

String sql = "{ call ctx_doc.themes( index_nanme=>'|DX_SEARCH TABLE', textkey=>"'" + theTk + "',
restab=>" THEME_TABLE' ) }";

PreparedStatement s = conn. prepareCall ( sql );

s. execute();

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-14 of A-19



ORACLE’

Appendix A
The Java Server Pages (JSP) Web Application

sql = "select * from( select thenme, weight fromthene_table order by weight desc ) where
rownum <= 20";
stm = conn.createStatenent();
rset = stnt.executeQuery(sql);
int wei ght = 0;
String theme ="";
%
<h2>The top 20 thenmes of the document </ h2>
<tabl e BORDER=1 CELLSPACI NG=0 CELLPADDI NG=0"
<tr bgcol or="#CCCC99" >
<th><font face="arial" col or="#336699">Thene</th>
<th><font face="arial" col or="#336699">Wi ght </t h>
</tr>
<%
while ( rset.next() ) {

theme = rset.getString(1);
wei ght = (int)rset.getlnt(2);

%
<tr bgcolor="ffffe0">
<td align="center"><font face="arial"><b> <% thenme % </b></font></td>
<td align="center"><font face="arial"> <% wei ght %</font></td>
</tr>
<%
}
%
</tabl e>
<%
}

catch (SQLException e) {
% <b>Error: </b> <% e %<p> <%

}

else if ( action.equals("doGsts") ) {
/1 Display the text of the document with highlighting fromthe "markup" function

try {

/1 not attenpting to share the output table for this exanple, we'll truncate it each tine
conn. creat eSt at ement () . execute(“truncate table G ST_TABLE");

String sql = "{ call ctx_doc.gist( index_name=>'|DX SEARCH TABLE' , textkey=>"'" + theTk + "',
restab=>'G ST_TABLE' , query_id=>1) }";

PreparedStatement s = conn. prepareCal | ( sql );

s. execute();

sql = "select pov, gist fromgist_table where pov = 'GENERIC and query_id = 1";
stm = conn.createStatenent();

rset = stnt.executeQuery(sql);

String pov. ="";

String gist ="";
while ( rset.next() ) {

pov = rset.getString(l);
oracle.sql.CLOB gistCob = (oracle.sql.CLOB) rset.getC ob(2);

out.println("<h3>Docunent G st for Point of View " + pov + "</h3>");
gist = gistdob.getSubString(1l, 32767);
out.println(gist);

%
</tabl e>
<%
}
catch (SQLException e) {
% <b>Error: </b> <% e %<p> <%

}

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-15 of A-19



ORACLE Appendix A
The Java Server Pages (JSP) Web Application

}
if ( (action.equals("")) &% ( (userQuery == null) || (userQuery.length() ==10) ) ) {
%
<htm >
<title>Text Search</title>
<body>
<tabl e w dt h="100% >
<tr bgcol or ="#336699" >
<td><font face="arial" align="left"
col or ="#CCCC99" size="+2">Text Search</td>
</tr>
</tabl e>
<center>
<form nethod = post>
Search for:
<input type="text" name="query" size = "30">
<input type="subnit" val ue="Search">
</form
</center>
</ body>
</htm >
<%
}
else if (action.equals("") ) {
%
<htm >
<title>Text Search Result Page</title>
<body text="#000000" bgcol or ="#FFFFFF" |ink="#663300"
vlink="#996633" al i nk="#ff6600" >
<tabl e w dt h="100% >
<tr bgcol or ="#336699" >
<td><font face="arial" align="left"
col or ="#CCCC99" size=+2>Text Search</td>
</[tr>
</tabl e>
<center>
<form nethod = post action="Text SearchApp.jsp">
Search for:
<input type=text nane="query" val ue="<% userQuery %" size = 30>
<input type=submit val ue="Search">
</form
</center>
<%
myQuery = URLEncoder. encode(user Query);
try {
st = conn.createStatenent();
String nunBtr = request.get Parameter("sn");
i f(nunStr!=null)
st art Nun¥l nt eger. par sel nt (nunstr);
String theQuery = translate(userQery);
call Stnmt =(Oracl eCal | abl eSt at ement ) conn. prepareCal | ("begin "+
"?:=ctx_query. count _hits(index_name=>'|DX SEARCH TABLE', "+
"text_query=>?"+
"oy
"end; ");
call Stnt.setString(2,theQery);
call Stnt.registerQutParameter(1, O acleTypes. NUMBER);
cal | Stnt.execute();
count =((Oracl eCal | abl eStat ement ) cal | Stnt). get NUMBER(1) . i nt Val ue();
i f (count >=(start Num+20) ) {
%
<font col or="#336699" FACE="Arial" Sl ZE=+1>Results
<Ysstart Numtl% - <%start Num20% of <%count % matches
<%

el se if(count>0){

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-16 of A-19



ORACLE Appendix A
The Java Server Pages (JSP) Web Application

%
<font col or="#336699" FACE="Arial" SlZE=+1>Results
<Yrstart Num-1% - <%count % of <%count % matches
<%
}
el se {
%
<font col or="#336699" FACE="Arial" SlZE=+1>No match found
<%
}
%
<tabl e wi dt h="100% >
<TR ALI G\N="RI GHT" >
<%
i f((startNunp0) & count <=start Num+20))
{
%
<TD ALI GN="RI GHT" >
<a href="Text Sear chApp. j sp?sn=<%st art Num 20 %-&query=
<Y%nyQuery %" >previous20</ a>

</ TD>
<%
}
el se if((count>startNum+20)&(startNunr=0))
{
%

<TD ALI G\N="RI GHT" >
<a href="Text Sear chApp. j sp?sn=<%st art Num+20
Y%&quer y=<%nyQuery %" >next 20</ a>

</ TD>
<%
}
el se if((count>startNum+20) &(start Nun»0))
{
%

<TD ALI G\N="RI GHT" >
<a href="Text Sear chApp. j sp?sn=<%st art Num 20 %-&query=
<Y%nyQuery %" >previous20</ a>
<a href="Text Sear chApp. j sp?sn=<%st art Num+20 %-&query=
<Y%nyQuery %" >next 20</a>
</ TD>
<%
}
%
</ TR>
</tabl e>
<%
String ctxQuery =
" select /*+ FIRST_ROAS */ " +
" tk, TITLE, score(1) scr, " +
" ctx_doc.snippet ('IDX SEARCH TABLE', tk, '" + theQuery + "') " +
" fromsearch_table " +
" where contains(TEXT, '"+theQuery+"',1) >0 " +
" order by score(l) desc";
rset = stnt.executeQuery(ctxQery);

String tk =null;

String[] col ToDisplay = new String[1];
int myScor e =0;

String  snippet =""

int itens =0

whil e (rset.next()&&dtens; 20) {
i f (I oopNunp=start Num
{
tk = rset.getString(1);
col ToDi splay[0] = rset.getString(2);
(int)rset.getlnt(3);

nyScor e =
sni ppet = rset.getString(4);
items+t,

if (items == 1) {
%

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix A-17 of A-19



ORACLE’

<center>

Appendix A
The Java Server Pages (JSP) Web Application

<tabl e BORDER=1 CELLSPACI NG=0 CELLPADDI NG=0 wi dt h="100%

<tr bgcol or =" #CCCC99" >

<th><font face="arial" col or="#336699">Score</th>
<th><font face="arial" col or="#336699">TI TLE</th>
<th><font face="arial" col or="#336699">Sni ppet</th>

<th> <font face="arial"

col or ="#336699" >Document Ser vi ces</t h>

</tr>
<% } %
<tr bgcol or =" #FFFFEQ" >
<td ALI G\N="CENTER'> <% nyScore %%/td>
<td> <% col ToDi spl ay[0] % </td>
<td> <% snippet % </td>
<t d>

<a href="Text Sear chApp. j sp?acti on=doHTM.& k=<% tk %">HTM.</a> &nbsp;
<a href="Text Sear chApp. j sp?acti on=doHi ghl i ght & k=<% tk %&query=<% theQuery

%" >H ghl i ght </ a> &nbsp;

<a href="Text Sear chApp. j sp?acti on=doThenes&t k=<% tk %&query=<% theQuery %" >Themes</a>

&nbsp;
<a href="Text Sear chApp. j sp?acti on=doG st s& k=<% tk %" >G st</a> &nbsp;
</td>
</tr>
<%
}
| oopNumt+;

}
} catch (SQLException e) {

%
<b>Error: </b> <% e Y%<p>
<%
} finally {
if (conn !'=null) conn.close();
if (stmt !=null) stnt.close();
if (rset !'=null) rset.close();
}
%
</tabl e>
</center>

<tabl e wi dt h="100% >
<TR ALI G\N="RI GHT" >
<%
i f((startNunp0) & count <=start Num+20))
{
%
<TD ALI G\N="RI GHT" >
<a href="Text Sear chApp. j sp?sn=<%st art Num 20 %-&query=
<%nyQuery %">previous20</a>

</ TD>
<%
}
el se if((count>startNum+20)&(startNunr=0))
{
%

<TD ALI GN="RI GHT" >
<a href="Text Sear chApp. j sp?sn=<%st art Num+20 %-&query=
<Y%nyQuery %" >next 20</a>

</ TD>
<%
}
el se if((count>startNum+20) &(start Nun»0))
{
%

<TD ALI G\N="RI GHT" >
<a href="Text Sear chApp. j sp?sn=<%st art Num 20 %-&query=
<Y%nyQuery %" >previous20</ a>
<a href="Text Sear chApp. j sp?sn=<%st art Num+20 %-&query=
<Y%nyQuery %" >next 20</a>
</ TD>
<%

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-18 of A-19



ORACLE’

}
%
</TR>
</tabl e>
</ body></ ht n >

<%

%
<%

public String translate (String input)

{

Vector reqwrds = new Vector();

StringTokeni zer st = new StringTokeni zer (input, " '"

whil e (st.hasMreTokens())
{

String token = st.next Token();
if (token.equals("'"))

{
String phrase = get Quot edPhrase(st);

if (phrase !'= null)

{
}

reqWr ds. addEl ement ( phr ase) ;

}

else if (!token.equals(" "))

{
}

reqWr ds. addEl enment (t oken);

return getQueryString(reqWrds);

private String getQuot edPhrase(StringTokeni zer st)

StringBuffer phrase = new StringBuffer();
String token = null;

Appendix A
The Java Server Pages (JSP) Web Application

, true);

while (st.hasMoreTokens() && (!(token = st.nextToken()).equals("'")))

{
phrase. append(t oken);

return phrase.toString();

private String getQueryString(Vector reqWrds)

StringBuffer query = new StringBuffer("");

int length = (reqWrds == null) ? 0 : reqWrds.size();

for (int ii=0; ii < length; ii++)

{

query. append(" & ");

query. append("{");
query. append(reqWrds. el ement At (ii));
query.append("}");

}

return query.toString();

%

Oracle Text Application Developer's Guide
G43190-01
Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-19 of A-19



CATSEARCH Query Application

This appendix describes how to build a simple web search application by using the CATSEARCH
index type.

This appendix contains the following topics:

e CATSEARCH Web Query Application Overview
e The JSP Web Application

@® Note

The Oracle Text indextype CTXCAT is deprecated with Oracle Al Database 26ai. The
indextype itself, and it's operator CTXCAT, can be removed in a future release.

Both CTXCAT and the use of CTXCAT grammar as an alternative grammar for CONTEXT
queries is deprecated. Instead, Oracle recommends that you use the CONTEXT
indextype, which can provide all the same functionality, except that it is not
transactional. Near-transactional behavior in CONTEXT can be achieved by using
SYNC(ON COW T) or, preferably, SYNC( EVERY [ti me-period]) with a short time period.

CTXCAT was introduced when indexes were typically a few megabytes in size. Modern,
large indexes, can be difficult to manage with CTXCAT. The addition of index sets to
CTXCAT can be achieved more effectively by the use of FI LTER BY and ORDER BY
columns, or SDATA, or both, in the CONTEXT indextype. CTXCAT is therefore rarely an
appropriate choice. Oracle recommends that you choose the more efficient CONTEXT
indextype.

B.1 CATSEARCH Web Query Application Overview

The CTXCAT index type is well suited for merchandise catalogs that have short, descriptive text
fragments and associated structured data. This appendix describes how to build a browser-
based bookstore catalog that users can search to find titles and prices.

This application is written in JavaServer Pages (JSP).

B.2 The JSP Web Application

This application is based on JavaServer pages (JSP) and has the following requirements:

*  Your Oracle Al Database must be up and running.

* A web server such as Apache Tomcat, which is can run JSP scripts that connect to the
Oracle Al Database by using Java Database Connectivity (JDBC).

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix B-1 of B-7



ORACLE Appendix B
The JSP Web Application

@ See Also

Oracle Database 2 Day + PHP Developer's Guide for information about installing
Apache HTTP Server

This section contains the following topics:

e Building the JSP Web Application
e JSP Web Application Sample Code

B.2.1 Building the JSP Web Application

This application models an online bookstore, where you can look up book titles and prices.

To create the JavaServer Pages (JSP) web application:

1. Create your table.

You must create the table to store such book information as title, publisher, and price.
From SQL*Plus:

sql pl us>create table book catal og (
id numeric,
title var char 2(80),
publ i sher varchar2(25),
price nuneric )

2. Load data by using SQL*Loader.
Load the book data from the operating system command line with SQL*Loader:
% sql | dr userid=ct xdeno/ ct xdemo control =l oader. ct|

3. Create the index set.
You can create the index set from SQL*Plus:

sql pl us>begin
ctx_ddl . create_index_set (' bookset")
ctx_ddl . add_i ndex("' bookset', "' price")
ctx_ddl . add_i ndex("' bookset"', "' publisher")
end;
/

4. Create the CTXCAT index.
You can create the CTXCAT index from SQL*Plus as follows:

sql pl us>create index book_idx on book_catalog (title)
i ndextype is ctxsys.ctxcat
paramet ers('index set bookset');

5. Try a simple search by using CATSEARCH.
You can test the newly created index in SQL*Plus as follows:

sql plus>sel ect id, title from book_catal og
where catsearch(title,'Java', ' price > 10 order by price') >0

6. Copy the cat al ogSear ch. j sp file to your JSP directory.

When you do so, you can access the application from a browser. The URL is http://
localhost: port/ path/ cat al ogSear ch. j sp.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix B-2 of B-7



ORACLE Appendix B
The JSP Web Application

The application displays a query field in your browser and returns the query results as a list
of HTML links. See Figure B-1.

Figure B-1 Screenshot of the Web Query Application

j Catalog Search - Microsoft Internet Explorer =10 x|
| Fe Edt View Fovortes Took Heb =
| & . » . @ 4 | a "
| Back Forward Stop Resfresh Hone | Search Favorkes |
|.ﬂ.d:im|£| httpfirmylap.exarple.cor? 72 Licatsearch/catsearchapp.jsp j o |L.hics “i
=l
Catalog Search
Search for: [Oracle PRICE is [< =] [3000
Results 1- 2 of 2 matches
] PRODUCT_MNAME | PRICE
Qracle Internet Application Server Enterprise Edilion [2500
Cracle Intemet Developer Suite {500
R H
@] Done o Intermet p

B.2.2 JSP Web Application Sample Code

This section lists the code used to build the example web application. It includes the following
files:

* loader.ctl
* loader.dat

e catalogSearch.jsp

@ See Also

ht t p: // www. or acl e. coni t echnet wor k/ i ndexes/ downl oads/ i ndex. ht m

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix B-3 of B-7


http://www.oracle.com/technetwork/indexes/downloads/index.html

ORACLE

Appendix B

The JSP Web Application

B.2.2.1 loader.ctl

LOAD DATA
I NFI LE ' | oader. dat'
I NTO TABLE book_cat al og
REPLACE
FI ELDS TERM NATED BY ';'
(id, title, publisher, price)

B.2.2.2 loader.dat

1
2,
3
4,
5;
6,
7;
8,

9;

10;
11;
12;
13;
14;
15;
16;
17,
18;
19;
20;
21;
22;
23;

A History of Goats; SPINDRIFT BOOKS; 50

Robust Reci pes Inspired by Eating Too Mich; SPINDRI FT BOCXKS; 28
Atlas of Geenland History; SPINDRI FT BOOKS; 35

Bed and Breakfast @Quide to Greenland; SPINDRI FT BOKS; 37
Quitting Your Job and Running Away; SPINDRIFT BOCKS; 25

Best Noodl e Shops of Omaha; SPINDRI FT BOCKS; 28

Conpl et e Book of Toes; SPINDRIFT BOOKS; 16

Conplete Idiot's Guide to Nuclear Technol ogy; SPINDRI FT BOXKS; 28
Java Programmi ng for Wodl and Animals; BIG LI TTLE BOXKS; 10
Energency Surgery Tips and Tricks; SPOT-ON PUBLI SH NG 10
Programming with Your Eyes Shut; KLONDI KE BOCKS; 10

English in Twel ve M nutes; WRENCH BOOKS 11

Spani sh in Twel ve M nutes; WRENCH BOOKS 11

C++ Programm ng for Whodl and Ani mals; CALAM TY BOCKS; 12

Oracle Internet Application Server, Enterprise Edition; KANT BOCKS; 12
Oracle Internet Devel oper Suite; SPAMMIS BOOK CG; 13

Telling the Truth to Your Pets; |BEX BOOKS INC, 13

Go Ask Alice's Restaurant; HUVMM NG BOCKS; 13

Life Begins at 93; CALAM TY BOCKS; 17

Pyt hon Programmng for Snakes; BALLAST BOOKS; 14

The Second-to-Last Mhican; KLONDI KE BOOKS; 14

Eye of Horus; An Oracle of Ancient Egypt; BIG LI TTLE BOCKS; 15
Introduction to Sitting Down; |BEX BOOKS INC, 15

B.2.2.3 catalogSearch.jsp

<%@ page inmport="java.sql.* , oracle.jsp.dbutil.*" %

<j sp: useBean i d="nane" class="oracle.jsp.jm.Jm String" scope="request" >
<j sp:setProperty nane="name" property="val ue" paran"v_query" />

</ j sp: useBean>

<%

String connStr="jdbc: oracl e: t hi n: @achi ne- domai n- name: 1521: dev";

java.util.Properties info = new java.util.Properties();

Connection conn = null;

Resul t Set  rset
Statement stnt

%

null;
null;

if (nane.isEnpty() ) {

<htm >
<title>Catal og Search</title>
<body>
<center>
<f orm net hod=post >
Search for book title:
<input type=text name="v_query" size=10>

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-4 of B-7



ORACLE

<%

%

<%

}

where publisher is
<sel ect name="v_publisher">
<option val ue="ADDI SON WESLEY">ADDI SON WESLEY
<option val ue="HUW NG BOOKS" >HUWM NG BOCKS
<option val ue="WRENCH BOOKS" >WRENCH BOCKS
<option val ue="SPOT- ON PUBLI SHI NG'>SPOT- ON PUBLI SHI NG
<option val ue="SPI NDRI FT BOOKS">SPI NDRI FT BOCKS
<option val ue="KLONDI KE BOOKS" >KLONDI KE BOCKS
<option val ue="CALAM TY BOOKS'>CALAM TY BOCKS
<option val ue="1BEX BOOKS | NC'>| BEX BOOKS | NC
<option val ue="BI G LI TTLE BOOKS">BI G LI TTLE BOOKS
</ sel ect >
and price is
<sel ect name="v_op">
<option val ue="=">=
<option value="&t;">&t;
<option val ue="&gt;">&gt;
</ sel ect >
<input type=text name="v_price" size=2>
<input type=subnmit val ue="Search">
</form
</ center>
<hr>
</ body>
</htm >

el se {

String v_query = request. get Paraneter
String v_publisher = request. getParaneter
String v_price = request. get Paraneter
String v_op = request . get Par anet er

_query");
_publisher");
_price");
_op");

< < < <

— e~ —~ —~

<htm >

<title>Catal og Search</title>
<body>
<center>
<f orm net hod=post acti on="cat al ogSear ch. j sp">
Search for book title:
<input type=text name="v_query" val ue=
<% v_query %
si ze=10>
where publisher is
<sel ect name="v_publisher">
<option val ue="ADDI SON WESLEY">ADDI SON WESLEY
<option val ue="HUW NG BOOKS" >HUWM NG BOCKS
<option val ue="WRENCH BOOKS" >WRENCH BOCKS
<option val ue="SPOT- ON PUBLI SHI NG'>SPOT- ON PUBLI SHI NG
<option val ue="SPI NDRI FT BOOKS">SPI NDRI FT BOCKS
<option val ue="KLONDI KE BOOKS" >KLONDI KE BOOKS
<option val ue="CALAM TY BOOKS'>CALAM TY BOCKS
<option val ue="1BEX BOOKS | NC'>| BEX BOOKS | NC
<option val ue="BI G LI TTLE BOOKS">BI G LI TTLE BOOKS
</ sel ect >
and price is
<sel ect name="v_op">
<option val ue="=">=
<option value="&t;">&t;
<option val ue="&gt;">&gt;
</ sel ect >
<input type=text name="v_price" val ue=
<% v_price % size=2>
<input type=submit val ue="Search">
</form
</center>

Oracle Text Application Developer's Guide

G43190-01

Copyright © 2005, 2025, Oracle and/or its affiliates.

Appendix B
The JSP Web Application

October 13, 2025
Appendix B-5 of B-7



ORACLE’

I
I

I
I
I

%

<%

%

<%

%

Appendix B
The JSP Web Application

try {

Driver Manager. regi sterDriver(new oracle.jdbc.driver.OacleDriver() );
info.put ("user", "ctxdemn");

info.put ("password","ctxdenn");

conn = DriverManager. get Connecti on(connStr,info);

stmt = conn.createStatenent();
String theQuery = request.getParameter("v_query");
String thePrice = request.getParameter("v_price");

select id, title
from book_cat al og
where catsearch (title,'Java', ' price >10 order by price') >0

select title

from book_cat al og

where catsearch(title,'Java',"'publisher ="' CALAMTY BOXS''
and price < 40 order by price' )>0

String myQuery = "select title, publisher, price frombook_catal og
where catsearch(title, '"+theQuery+"',
"publisher = "''"+v_publisher+""" and price "+v_op+thePrice+"
order by price' ) > 0";

rset = stnt.executeQuery(mQuery);

String color = "ffffff";
String nyTitle = null;
String myPublisher = null;
int nyPrice = 0;

int items = 0;

while (rset.next()) {

myTitle = (String)rset.getString(1);

nmyPubl i sher = (String)rset.getString(2);
nyPrice = (int)rset.getlnt(3);
items+t;

if (items == 1) {

<cent er>
<tabl e border="0">
<tr bgcol or="#6699CC" >
<th>Title</th>
<t h>Publ i sher</th>
<th>Price</th>
<[tr>

}

<tr bgcol or ="#<% col or %">

<td> <% nyTitle %</td>

<td> <% nyPubl i sher %</td>
<td> $<% nyPrice %</td>

</tr>

if (color.conmpareTo("ffffff") == 0)
color = "eeeeee";

el se
color = "ffffff";

}

} catch (SQLException e) {

<b>Error: </b> <% e Y%<p>

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix B-6 of B-7



ORACLE Appendix B
The JSP Web Application

<%
} finally {
if (conn !'=null) conn.close();
if (stmt !'=null) stnt.close();
if (rset '=null) rset.close();
}
%
</tabl e>
</center>
</ body>
</htnl>
<%
}
%

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix B-7 of B-7



Custom Index Preference Examples

This appendix describes a few custom index preference examples.
This appendix contains the following topics:

e Datastore Examples

* NULL FILTER Example: Indexing HTML Documents

+ PROCEDURE_FILTER Example

 BASIC_LEXER Example: Setting Printjoin Characters

* MULTI_LEXER Example: Indexing a Multi-Language Table
 BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing
° BASIC_WORDLIST Example: Enabling Wildcard Index

C.1 Datastore Examples

You can use datastore preferences to specify how your text is stored. These are the examples
for setting some of the datastore preference types.

Specifying DIRECT_DATASTORE

This example creates a table with a CLOB column to store text data. It then populates two rows
with text data and indexes the table by using the system-defined CTXSYS. DEFAULT_DATASTORE
preference, which uses the DI RECT_DATASTORE preference type.

create table nytabl e(id number primary key, docs clob);

insert into nytable values(111555, 'this text will be indexed');
insert into nytable values(111556,'this is a default datastore exanple');
comi t;

create index nyindex on mytabl e(docs)

i ndextype is ctxsys.context
paraneters (' DATASTORE CTXSYS. DEFAULT_DATASTORE' ) ;

Specifying MULTI_COLUMN_DATASTORE

This example creates a MJLTI _COLUWMN_DATASTORE datastore preference called my_nul ti on the
three text columns to be concatenated and indexed:

begin

ctx_ddl.create_preference('ny_multi', 'MJLTI_COLUWN DATASTORE');
ctx_ddl.set_attribute('my_multi', 'colums', 'columl, colum2, colum3');
end;

Specifying FILE_ DATASTORE

This example creates a data storage preference by using FI LE_DATASTORE to specify that the
files to be indexed are stored in the operating system. The example uses
CTX _DDL. SET_ATTRI BUTE to set the PATH attribute to the / docs directory.

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix C-1 of C-5



ORACLE

Appendix C
Datastore Examples

begin

ctx_ddl .create_preference(' nypref', 'FILE DATASTORE );
ctx_ddl.set_attribute(' nypref', 'PATH, '/docs');

end;

® Note

Starting with Oracle Database 19c, the Oracle Text type FI LE_DATASTORE is
deprecated. Use DI RECTORY_DATASTCRE instead.

Specifying DIRECTORY_DATASTORE

This example creates a DI RECTORY_DATASTORE preference called MYDS. The example uses
CTX _DDL. SET_ATTRI BUTE to set the DI RECTORY attribute to myhone, which is the Oracle directory
object.

exec ctx_ddl.create preference(' M\DS',"' DI RECTORY_DATASTORE')
exec ctx_ddl.set _attribute(' MDS',' DI RECTORY', ' nyhone')

Specifying URL_DATASTORE

This example creates a URL_DATASTORE preference called ny_ur| to which the HTTP_PROXY,
NO_PROXY, and TI MEQUT attributes are set. The TI MEQUT attribute is set to 300 seconds. The
defaults are used for the attributes that are not set.

begin
ctx_ddl.create_preference(' my_url'," URL_DATASTORE' );
ctx_ddl.set_attribute(' my_url',' HTTP_PROXY', ' ww proxy. us. exanpl e. com );
ctx_ddl.set _attribute(' my_url'," NO PROXY',' us.exanple.con);
ctx_ddl.set_attribute(' my_url'," TI MEQUT' ,'300');

end;

@® Note

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is deprecated.
Use NETWORK DATASTORE instead.

Specifying NETWORK_DATASTORE

This example creates a NETWORK_DATASTORE preference called NETWORK_PREF to which the
HTTP_PROXY, NO_PROXY, and TI MEQUT attributes are set. The TI MEQUT attribute is set to 300
seconds. The defaults are used for the attributes that are not set.

begi n
ctx_ddl . create_preference(’ NETWORK_PREF' , ' NETWORK_DATASTCRE' ) ;
ctx_ddl.set_attribute(' NETWORK_PREF' , ' HTTP_PROXY' , ' www«

proxy. us. exanpl e.coni);
ctx_ddl.set_attribute(' NETWORK_PREF' ,' NO _PROXY', ' us. exanpl e. com );
ctx_ddl.set_attribute(' NETWORK_PREF',' TI MEQUT' , " 300");

end;

/

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix C-2 of C-5



ORACLE Appendix C
NULL_FILTER Example: Indexing HTML Documents

Related Topics

*  Oracle Text Reference

C.2 NULL_FILTER Example: Indexing HTML Documents

If your document set is entirely in HTML, then Oracle recommends that you use NULL_FI LTER
in your filter preference because it does no filtering.

For example, to index an HTML document set, specify the system-defined preferences for
NULL_FI LTER and HTM._SECTI ON_GROUP;

create index nyindex on docs(htmfile) indextype is ctxsys.context

paraneters('filter ctxsys.null _filter
section group ctxsys.htm _section_group');

C.3 PROCEDURE_FILTER Example

Consider a CTXSYS. NORMALI ZE filter procedure that you define with the following signature:

PROCEDURE NORMALI ZE(id IN ROND, charset I N VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR?);

To use this procedure as your filter, set up your filter preference:

begin
ctx_ddl.create_preference('nyfilt', 'procedure filter');
ctx_ddl.set_attribute(' myfilt', 'procedure', 'nornalize');

ctx_ddl.set_attribute(' nyfilt', "input_type', 'clob');
ctx_ddl.set_attribute(' nyfilt', 'output_type', 'varchar2');
ctx_ddl .set_attribute(' nyfilt', 'row d_parameter', 'TRUE );
ctx_ddl.set _attribute(’ , 'charset_paraneter', 'TRUE);
end;

C.4 BASIC_LEXER Example: Setting Printjoin Characters

Printjoin characters are nonalphanumeric characters that are to be included in index tokens, so
that words such as vice-president are indexed as vice-president.

myfilt:

The following example sets printjoin characters to be the hyphen and underscore with

BASI C_LEXER

begin

ctx_ddl .create_preference(' nylex', 'BASIC LEXER );
ctx_ddl.set_attribute('nmylex', 'printjoins', '_-');
end;

Create the index with printjoins characters set as previously shown:

create index nmyindex on nytable ( docs )
i ndextype is ctxsys.context
paraneters ( 'LEXER nylex' );

C.5 MULTI_LEXER Example: Indexing a Multilanguage Table

Use the MULTI _LEXER preference type to index a column containing documents in different
languages. For example, use this preference type when your text column stores documents in
English, German, and French.

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix C-3 of C-5



ORACLE’

Appendix C
BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

The first step is to create the multilanguage table with a primary key, a text column, and a
language column:

create table gl obal doc (
doc_i d number primary key,
| 'ang varchar2(3),
text clob

)

Assume that the table holds mostly English documents, with some German and Japanese
documents. To handle the three languages, you must create three sub-lexers, one for English,
one for German, and one for Japanese:

ctx_ddl . create_preference('english_lexer'," basic_|lexer');
ctx_ddl .set_attribute('english_lexer',"index_themes'," yes');
ctx_ddl.set_attribute(' english_lexer','thenme_| anguage','english');

ctx_ddl .create_preference(' german_| exer','basic_lexer');
ctx_ddl.set_attribute('german_l exer',' conposite',' gernman');
ctx_ddl.set_attribute('german_|l exer',' mixed_case','yes');
ctx_ddl.set_attribute(' german_|l exer',"alternate_spelling','german');

ctx_ddl . create_preference('japanese_| exer','japanese_vgramlexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global lexer', 'nulti_lexer');

Because the stored documents are mostly English, make the English lexer the default by using
CTX_DDL. ADD_SUB_LEXER:

ctx_ddl .add_sub_l exer (' gl obal _I exer','default', 'english_lexer');

Add the German and Japanese lexers in their respective languages with the
CTX_DDL. ADD_SUB_LEXER procedure. Also assume that the language column is expressed in the
standard ISO 639-2 language codes, and add those codes as alternate values.

ctx_ddl . add_sub_l exer (' gl obal _I exer', ' gernman','german_| exer', 'ger');
ctx_ddl . add_sub_l exer (' gl obal _I exer','japanese','japanese_|exer',"jpn');

Create the gl obal x index, specifying the multi-lexer preference and the language column in
the parameter clause:

create index global x on global doc(text) indextype is ctxsys.context
paraneters ('lexer global_|exer |anguage colum |ang');

C.6 BASIC_WORDLIST Example: Enabling Substring and Prefix

Indexing

This example improves performance for wildcard queries by setting the wordlist preference for
prefix and substring indexing. For prefix indexing, the example creates token prefixes between
three and four characters long.

begin

ctx_ddl.create_preference(' nywordlist', 'BASIC WORDLI ST');
ctx_ddl.set_attribute(' mywordlist',' PREFI X_| NDEX ,' TRUE');
ctx_ddl.set_attribute(' mywordlist',' PREFIX MN LENGTH , '3
ctx_ddl.set_attribute(' nywordlist',' PREFI X MAX LENGTH , '4
ctx_ddl.set_attribute(' nywordlist',' SUBSTRING | NDEX , ' YES
end;

)
)
)

Oracle Text Application Developer's Guide

G43190-01

October 13, 2025

Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix C-4 of C-5



ORACLE Appendix C
BASIC_WORDLIST Example: Enabling Wildcard Index

C.7 BASIC_WORDLIST Example: Enabling Wildcard Index

Wildcard indexing supports fast and efficient wildcard search for all wildcard expressions.

This example creates a wordlist preference and enables the wildcard (“K-gram”) index. By
default, the K-grams have a K value of 3:

begin
ctx_ddl .create_preference(' mywordlist',' BASI C WORDLI ST" ) ;
ctx_ddl.set_attribute(' mywordlist'," WLDCARD | NDEX' ,"' TRUE');
end;

@ See Also

Oracle Text Reference for more information about the BASI C WORDLI ST attributes table
and the W LDCARD _| NDEX and W LDCARD | NDEX_K attributes

Oracle Text Application Developer's Guide
G43190-01 October 13, 2025
Copyright © 2005, 2025, Oracle and/or its affiliates. Appendix C-5 of C-5



	Contents
	Preface
	Audience
	Conventions

	1 Understanding Oracle Text Application Development
	1.1 Introduction to Oracle Text
	1.2 Document Collection Applications
	1.2.1 About Document Collection Applications
	1.2.2 Flowchart of Text Query Application

	1.3 Catalog Information Applications
	1.3.1 About Catalog Information Applications
	1.3.2 Flowchart for Catalog Query Application

	1.4 Document Classification Applications
	1.5 XML Search Applications
	1.5.1 The CONTAINS Operator with XML Search Applications
	1.5.2 Combining Oracle Text Features with Oracle XML DB (XML Search Index)
	1.5.2.1 Using the xml_enable Method for an XML Search Index
	1.5.2.2 Using the Text-on-XML Method
	1.5.2.3 Indexing JSON Data



	2 Getting Started with Oracle Text
	2.1 Overview of Getting Started with Oracle Text
	2.2 Creating an Oracle Text User
	2.3 Query Application Quick Tour
	2.3.1 Creating the Text Table
	2.3.2 Using SQL*Loader to Load the Table

	2.4 Catalog Application Quick Tour
	2.4.1 Creating the Table
	2.4.2 Using SQL*Loader to Load the Table

	2.5 Classification Application Quick Tour
	2.5.1 About Classification of a Document
	2.5.2 Creating a Classification Application


	3 Indexing with Oracle Text
	3.1 About Oracle Text Indexes
	3.1.1 Types of Oracle Text Indexes
	3.1.2 Structure of the Oracle Text CONTEXT Index
	3.1.3 Oracle Text Indexing Process
	3.1.3.1 Datastore Object
	3.1.3.2 Filter Object
	3.1.3.3 Sectioner Object
	3.1.3.4 Lexer Object
	3.1.3.5 Indexing Engine

	3.1.4 About Updates to Indexed Columns
	3.1.5 Partitioned Tables and Indexes
	3.1.6 Online Indexes
	3.1.7 Parallel Indexing
	3.1.8 Indexing and Views

	3.2 Considerations for Oracle Text Indexing
	3.2.1 Location of Text
	3.2.2 Supported Column Types
	3.2.3 Storing Text in the Text Table
	3.2.4 Storing File Path Names
	3.2.5 Storing URLs
	3.2.6 Storing Associated Document Information
	3.2.7 Format and Character Set Columns
	3.2.8 Supported Document Formats
	3.2.9 Summary of DATASTORE Types
	3.2.10 Document Formats and Filtering
	3.2.10.1 No Filtering for HTML
	3.2.10.2 Mixed-Format Columns Filtering
	3.2.10.3 Custom Filtering

	3.2.11 Bypass Rows
	3.2.12 Document Character Set

	3.3 Document Language
	3.4 Special Characters
	3.5 Case-Sensitive Indexing and Querying
	3.6 Improved Document Services Performance with a Forward Index
	3.6.1 Enabling Forward Index
	3.6.2 Forward Index with Snippets
	3.6.3 Forward Index with Save Copy
	3.6.4 Forward Index Without Save Copy
	3.6.5 Save Copy Without Forward Index

	3.7 Language-Specific Features
	3.7.1 Theme Indexing
	3.7.2 Base-Letter Conversion for Characters with Diacritical Marks
	3.7.3 Alternate Spelling
	3.7.4 Composite Words
	3.7.5 Korean, Japanese, and Chinese Indexing

	3.8 About Entity Extraction and CTX_ENTITY
	3.8.1 Basic Example of Using Entity Extraction
	3.8.2 Example of Creating a New Entity Type by Using a User-Defined Rule

	3.9 About Fuzzy Matching and Stemming
	3.10 Better Wildcard Query Performance
	3.11 Document Section Searches
	3.12 Stopwords and Stopthemes
	3.13 Index Performance
	3.14 Query Performance and Storage of Large Object (LOB) Columns
	3.15 Mixed Query Performance
	3.16 In-Memory Full Text Search and JSON Full Text Search

	4 Creating Oracle Text Indexes
	4.1 Summary of the Procedure for Creating an Oracle Text Index
	4.2 Creating Preferences
	4.3 Section Searching Example: Creating HTML Sections
	4.4 Using Stopwords and Stoplists
	4.4.1 Multilanguage Stoplists
	4.4.2 Stopthemes and Stopclasses
	4.4.3 PL/SQL Procedures for Managing Stoplists

	4.5 Creating a CONTEXT Index
	4.5.1 CONTEXT Index and DML
	4.5.2 Default CONTEXT Index Example
	4.5.3 Incrementally Creating a CONTEXT Index
	4.5.4 Custom CONTEXT Index Example: Indexing HTML Documents
	4.5.5 CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY

	4.6 Creating a CTXCAT Index
	4.6.1 CTXCAT Index and DML Operations
	4.6.2 About CTXCAT Subindexes and Their Costs
	4.6.3 Creating CTXCAT Subindexes
	4.6.4 Creating CTXCAT Index

	4.7 Creating a CTXRULE Index
	4.8 Creating a JSON Search Index
	4.9 Creating an Oracle Text Search Index
	4.10 Creating a Hybrid Vector Index

	5 Maintaining Oracle Text Indexes
	5.1 Viewing Index Errors
	5.2 Dropping an Index
	5.3 Resuming a Failed Index
	5.4 Re-creating an Index
	5.4.1 Re-creating a Global Index
	5.4.2 Re-creating a Local Partitioned Index

	5.5 Rebuilding an Index
	5.6 Dropping a Preference
	5.7 Managing DML Operations for a CONTEXT Index
	5.7.1 Viewing Pending DML Operations
	5.7.2 Synchronizing the Index
	5.7.3 Optimizing the Index
	5.7.3.1 Index Fragmentation
	5.7.3.2 Document Invalidation and Garbage Collection
	5.7.3.3 Single Token Optimization
	5.7.3.4 Viewing Index Fragmentation and Garbage Data


	5.8 Using Automatic Maintenance for an Index
	5.8.1 About Automatic Maintenance
	5.8.2 Requirements and Restrictions for Automatic Maintenance
	5.8.3 Asynchronous Maintenance Framework
	5.8.4 Enabling and Disabling Automatic Maintenance
	5.8.5 Switching between Automatic and Manual Maintenance
	5.8.6 Monitoring Maintenance Events and Errors


	6 Querying with Oracle Text
	6.1 Overview of Queries
	6.1.1 Querying with CONTAINS
	6.1.1.1 CONTAINS SQL Example
	6.1.1.2 CONTAINS PL/SQL Example
	6.1.1.3 Structured Query with CONTAINS Example

	6.1.2 Querying with CATSEARCH
	6.1.2.1 CATSEARCH SQL Query Example
	6.1.2.2 CATSEARCH Example

	6.1.3 Querying with MATCHES
	6.1.3.1 MATCHES SQL Query
	6.1.3.2 MATCHES PL/SQL Examples

	6.1.4 Word and Phrase Queries
	6.1.5 Querying Stopwords
	6.1.6 ABOUT Queries and Themes

	6.2 Oracle Text Query Features
	6.2.1 Query Expressions
	6.2.1.1 CONTAINS Operators
	6.2.1.2 CATSEARCH Operator
	6.2.1.3 MATCHES Operator

	6.2.2 Case-Sensitive Searching
	6.2.3 Query Feedback
	6.2.4 Query Explain Plan
	6.2.5 Using a Thesaurus in Queries
	6.2.6 Document Section Searching
	6.2.7 Using Query Templates
	6.2.7.1 Query Rewrite
	6.2.7.2 Query Relaxation
	6.2.7.3 Query Language
	6.2.7.4 Ordering by SDATA Sections
	6.2.7.5 Alternative and User-Defined Scoring
	6.2.7.6 Alternative Grammar

	6.2.8 Query Analysis
	6.2.9 Other Query Features


	7 Working with CONTEXT and CTXCAT Grammars in Oracle Text
	7.1 The CONTEXT Grammar
	7.1.1 ABOUT Query
	7.1.2 Logical Operators
	7.1.3 Section Searching and HTML and XML
	7.1.4 Proximity Queries with NEAR, and NEAR2 Operators
	7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
	7.1.6 Using CTXCAT Grammar
	7.1.7 Defined Stored Query Expressions
	7.1.7.1 Defining a Stored Query Expression
	7.1.7.2 SQE Example

	7.1.8 Calling PL/SQL Functions in CONTAINS
	7.1.9 Optimizing for Response Time
	7.1.10 Counting Hits
	7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined Scoring

	7.2 The CTXCAT Grammar

	8 Presenting Documents in Oracle Text
	8.1 Highlighting Query Terms
	8.1.1 Text highlighting
	8.1.2 Theme Highlighting
	8.1.3 CTX_DOC Highlighting Procedures
	8.1.3.1 Markup Procedure
	8.1.3.2 Highlight Procedure
	8.1.3.3 Concordance


	8.2 Obtaining Part-of-Speech Information for a Document
	8.3 Obtaining Lists of Themes, Gists, and Theme Summaries
	8.3.1 Lists of Themes
	8.3.2 Gist and Theme Summary

	8.4 Presenting and Highlighting Documents

	9 Classifying Documents in Oracle Text
	9.1 Overview of Document Classification
	9.2 Classification Applications
	9.3 Classification Solutions
	9.4 Rule-Based Classification
	9.4.1 Rule-Based Classification Example
	9.4.2 CTXRULE Parameters and Limitations

	9.5 Supervised Classification
	9.5.1 Decision Tree Supervised Classification
	9.5.2 Decision Tree Supervised Classification Example
	9.5.3 SVM-Based Supervised Classification
	9.5.4 SVM-Based Supervised Classification Example

	9.6 Unsupervised Classification (Clustering)
	9.7 Unsupervised Classification (Clustering) Example

	10 Tuning Oracle Text
	10.1 Optimizing Queries with Statistics
	10.1.1 Collecting Statistics
	10.1.2 Query Optimization with Statistics Example
	10.1.3 Re-Collecting Statistics
	10.1.4 Deleting Statistics

	10.2 Optimizing Queries for Response Time
	10.2.1 Other Factors That Influence Query Response Time
	10.2.2 Improved Response Time with the FIRST_ROWS(n) Hint for ORDER BY Queries
	10.2.3 Improved Response Time Using the DOMAIN_INDEX_SORT Hint
	10.2.4 Improved Response Time Using the Local Partitioned CONTEXT Index
	10.2.5 Improved Response Time with the Local Partitioned Index for Order by Score
	10.2.6 Improved Response Time with the Query Filter Cache
	10.2.7 Improved Response Time Using the BIG_IO Option of CONTEXT Index
	10.2.8 Improved Response Time Using the SEPARATE_OFFSETS Option of the CONTEXT Index
	10.2.9 Improved Response Time Using the STAGE_ITAB, STAGE_ITAB_MAX_ROWS, and STAGE_ITAB_PARALLEL Options of CONTEXT Index

	10.3 Optimizing Queries for Throughput
	10.4 Composite Domain Index in Oracle Text
	10.5 Performance Tuning with CDI
	10.6 Solving Index and Query Bottlenecks by Using Tracing
	10.7 Using Parallel Queries
	10.7.1 Parallel Queries on a Local Context Index
	10.7.2 Parallelizing Queries Across Oracle RAC Nodes

	10.8 Tuning Queries with Blocking Operations
	10.9 Frequently Asked Questions About Query Performance
	10.9.1 What is query performance?
	10.9.2 What is the fastest type of Oracle Text query?
	10.9.3 Should I collect statistics on my tables?
	10.9.4 How does the size of my data affect queries?
	10.9.5 How does the format of my data affect queries?
	10.9.6 What is the difference between an indexed lookup and a functional lookup
	10.9.7 What tables are involved in queries?
	10.9.8 How is the ⁠$R table contention reduced?
	10.9.9 Does sorting the results slow a text-only query?
	10.9.10 How do I make an ORDER BY score query faster?
	10.9.11 Which memory settings affect querying?
	10.9.12 Does out-of-line LOB storage of wide base table columns improve performance?
	10.9.13 How can I speed up a CONTAINS query on more than one column?
	10.9.14 Can I have many expansions in a query?
	10.9.15 How can local partition indexes help?
	10.9.16 Should I query in parallel?
	10.9.17 Should I index themes?
	10.9.18 When should I use a CTXCAT index?
	10.9.19 When is a CTXCAT index NOT suitable?
	10.9.20 What optimizer hints are available and what do they do?

	10.10 Frequently Asked Questions About Indexing Performance
	10.10.1 How long should indexing take?
	10.10.2 Which index memory settings should I use?
	10.10.3 How much disk overhead will indexing require?
	10.10.4 How does the format of my data affect indexing?
	10.10.5 Can parallel indexing improve performance?
	10.10.6 How can I improve index performance when I create a local partitioned index?
	10.10.7 How can I tell how much indexing has completed?

	10.11 Frequently Asked Questions About Updating the Index
	10.11.1 How often should I index new or updated records?
	10.11.2 How can I tell when my indexes are fragmented?
	10.11.3 Does memory allocation affect index synchronization?


	11 Searching Document Sections in Oracle Text
	11.1 About Oracle Text Document Section Searching
	11.1.1 Enabling Oracle Text Section Searching
	11.1.1.1 Create a Section Group
	11.1.1.2 Define Your Sections
	11.1.1.3 Index Your Documents
	11.1.1.4 Search Sections with the WITHIN Operator
	11.1.1.5 Search Paths with INPATH and HASPATH Operators
	11.1.1.6 Mark an SDATA Section to Be Searchable

	11.1.2 Oracle Text Section Types
	11.1.2.1 Zone Section
	11.1.2.2 Field Section
	11.1.2.3 Stop Section
	11.1.2.4 MDATA Section
	11.1.2.5 NDATA Section
	11.1.2.6 SDATA Section
	11.1.2.7 Attribute Section
	11.1.2.8 Special Sections

	11.1.3 Oracle Text Section Attributes

	11.2 HTML Section Searching with Oracle Text
	11.2.1 Creating HTML Sections
	11.2.2 Searching HTML Meta Tags

	11.3 XML Section Searching with Oracle Text
	11.3.1 Automatic Sectioning
	11.3.2 Attribute Searching
	11.3.3 Document Type Sensitive Sections
	11.3.4 Path Section Searching
	11.3.4.1 Creating an Index with PATH_SECTION_GROUP
	11.3.4.2 Top-Level Tag Searching
	11.3.4.3 Any-Level Tag Searching
	11.3.4.4 Direct Parentage Searching
	11.3.4.5 Tag Value Testing
	11.3.4.6 Attribute Searching
	11.3.4.7 Attribute Value Testing
	11.3.4.8 Path Testing
	11.3.4.9 Section Equality Testing with HASPATH



	12 Using Oracle Text Name Search
	12.1 Overview of Name Search
	12.2 Name Search Examples

	13 Performing Ubiquitous Search with DBMS_SEARCH APIs
	13.1 About Ubiquitous Search and Ubiquitous Search Indexes
	13.2 Perform Ubiquitous Search: End-to-End Examples
	13.2.1 Create and Query DBMS_SEARCH Indexes Using Multiple Tables and Views
	13.2.2 Use JSON Duality Views with DBMS_SEARCH Indexes
	13.2.3 Examine DBMS_SEARCH Indexes Using Dictionary Views


	14 Working with a Thesaurus in Oracle Text
	14.1 Overview of Oracle Text Thesaurus Features
	14.1.1 Oracle Text Thesaurus Creation and Maintenance
	14.1.2 Using a Case-Sensitive Thesaurus
	14.1.3 Using a Case-Insensitive Thesaurus
	14.1.4 Default Thesaurus
	14.1.5 Supplied Thesaurus

	14.2 Defining Terms in a Thesaurus
	14.2.1 Defining Synonyms
	14.2.2 Defining Hierarchical Relations

	14.3 Using a Thesaurus in a Query Application
	14.4 Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries
	14.5 Augmenting the Knowledge Base with a Custom Thesaurus
	14.5.1 Advantages
	14.5.2 Limitations

	14.6 Linking New Terms to Existing Terms
	14.7 Example of Loading a Thesaurus with ctxload
	14.8 Example of Loading a Thesaurus with the CTX_THES.IMPORT_THESAURUS PL/SQL procedure
	14.9 Compiling a Loaded Thesaurus
	14.10 About the Supplied Knowledge Base
	14.10.1 Adding a Language-Specific Knowledge Base
	14.10.2 Limitations for Adding Knowledge Bases


	15 Using Faceted Navigation
	15.1 About Faceted Navigation
	15.2 Defining Sections As Facets
	15.3 Querying Facets by Using the Result Set Interface
	15.4 Refining Queries by Using Facets As Filters
	15.5 Multivalued Facets

	16 Using Result Set Interface
	16.1 Overview of the XML Query Result Set Interface
	16.2 Using the XML Query Result Set Interface
	16.3 Creating XML-Only Applications with Oracle Text
	16.4 Example of a Result Set Descriptor
	16.5 Identifying Collocates
	16.6 Overview of the JSON Result Set Interface
	16.7 Using the JSON Result Set Interface

	17 Performing Sentiment Analysis Using Oracle Text
	17.1 Overview of Sentiment Analysis
	17.1.1 About Sentiment Analysis
	17.1.2 About Sentiment Classifiers
	17.1.3 About Performing Sentiment Analysis
	17.1.4 Sentiment Analysis Interfaces

	17.2 Creating a Sentiment Classifier Preference
	17.3 Training Sentiment Classifiers
	17.4 Performing Sentiment Analysis with the CTX_DOC Package
	17.5 Performing Sentiment Analysis with the RSI

	18 Working with Sharded Databases
	18.1 Running Oracle Text PL/SQL APIs in a Sharded Database
	18.2 Supported APIs in a Sharded Database

	19 Administering Oracle Text
	19.1 Oracle Text Users and Roles
	19.1.1 CTXSYS User
	19.1.2 CTXAPP Role
	19.1.3 Granting Roles and Privileges to Users

	19.2 DML Queue
	19.3 CTX_OUTPUT Package
	19.4 CTX_REPORT Package
	19.5 Text Manager in Oracle Enterprise Manager
	19.5.1 Using Text Manager
	19.5.2 Viewing General Information for an Oracle Text Index
	19.5.3 Checking Oracle Text Index Health

	19.6 Servers and Indexing
	19.7 Tracking Database Feature Usage in Oracle Enterprise Manager
	19.8 Oracle Text on Oracle Real Application Clusters
	19.9 Configuring Oracle Text in Oracle Database Vault Environment
	19.10 Unsupported Oracle Text Operations in Oracle Database Vault Realm
	19.11 Export and Import of Schemas Containing Oracle Text Settings

	20 Migrating Oracle Text Applications
	20.1 Performing a Rolling Upgrade with a Logical Standby Database
	20.1.1 CTX_DDL PL/SQL Procedures
	20.1.2 CTX_OUTPUT PL/SQL Procedures
	20.1.3 CTX_DOC PL/SQL Procedures

	20.2 Identifying and Copying Oracle Text Files to a New Oracle Home

	A CONTEXT Query Application
	A.1 Web Query Application Overview
	A.2 The PL/SQL Server Pages (PSP) Web Application
	A.2.1 PSP Web Application Prerequisites
	A.2.2 Building the PSP Web Application
	A.2.3 PSP Web Application Sample Code
	A.2.3.1 loader.ctl
	A.2.3.2 loader.dat
	A.2.3.3 HTML Files for loader.dat Example
	A.2.3.4 search_htmlservices.sql
	A.2.3.5 search_html.psp


	A.3 The Java Server Pages (JSP) Web Application
	A.3.1 JSP Web Application Prerequisites
	A.3.2 JSP Web Application Sample Code


	B CATSEARCH Query Application
	B.1 CATSEARCH Web Query Application Overview
	B.2 The JSP Web Application
	B.2.1 Building the JSP Web Application
	B.2.2 JSP Web Application Sample Code
	B.2.2.1 loader.ctl
	B.2.2.2 loader.dat
	B.2.2.3 catalogSearch.jsp



	C Custom Index Preference Examples
	C.1 Datastore Examples
	C.2 NULL_FILTER Example: Indexing HTML Documents
	C.3 PROCEDURE_FILTER Example
	C.4 BASIC_LEXER Example: Setting Printjoin Characters
	C.5 MULTI_LEXER Example: Indexing a Multilanguage Table
	C.6 BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing
	C.7 BASIC_WORDLIST Example: Enabling Wildcard Index


