
Oracle® AI Database
Telemetry Streaming Developer's Guide

26ai
G36665-01
October 2025

Oracle AI Database Telemetry Streaming Developer's Guide, 26ai

G36665-01

Copyright © 2025, 2025, Oracle and/or its affiliates.

Primary Authors: Jiji Thomas, (primary author)

Contributing Authors: Tulika Das, (contributing author)

Contributors: Parthasarathy Raghunathan, Ken Kunar, Shanu Gandhi, Kritika Singh, Shishir Mathur, , (contributor)

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Introduction to Oracle AI Database Telemetry Streaming

1.1 Concepts 1

1.2 Telemetry Streaming Overview 4

1.3 Time Series in Telemetry Streaming 4

1.4 Data Format and Naming Conventions 5

2 Telemetry Streaming Architecture and Components

2.1 Telemetry Streaming Architecture 1

2.2 Telemetry Streaming Components Overview 2

3 Telemetry Streaming Administration

3.1 Administration Overview 1

3.2 User Roles and Privileges 2

3.2.1 Database User Types and Privileges 2

3.2.2 ORDS User Types and Privileges 4

3.3 Managing a Workspace 5

3.3.1 Managing Database Workspace Users 7

3.3.2 Managing ORDS Workspace Users 9

3.3.2.1 Using REST API for Workspace Administration 10

4 Installing and Enabling Telemetry Streaming in Oracle AI Database

4.1 Installation Overview 1

4.2 System Requirements 2

4.3 Enabling Telemetry Streaming in Oracle AI Database 2

4.3.1 Telemetry Streaming PDB Parameters 4

4.4 Installing Oracle REST Data Services 5

5 Using Telemetry Streaming

5.1 Ingesting Metric Data 1

5.1.1 Using PL/SQL to Ingest Metric Data 1

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of ii

5.1.2 Using REST APIs with ORDS to Ingest Metric Data 2

5.2 Querying Metric Data 7

5.2.1 Using PromQL to Query Metric Data 7

5.2.1.1 Supported PromQL Queries for DBMS_TELEMETRY_QUERY 8

5.2.1.2 Using Supported PromQL Query Operators 9

5.2.2 Using REST API with ORDS for Querying 12

5.2.3 Using SQL to Query Metric Data 22

6 Errors and Troubleshooting

Index

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of ii

List of Tables

1-1 Metric Data Format in Telemetry Streaming 5

1-2 Naming Conventions for PromQL Queries 5

3-1 Database User Types and Responsibilities 2

3-2 ORDS User Types and Responsibilities 5

3-3 DBMS_TELEMETRY_WORKSPACE 7

3-4 Workspace Management Views 7

3-5 DBMS_TELEMETRY_ADMIN 8

3-6 Workspace Administration Views 8

3-7 DBMS_TELEMETRY_ADMIN 9

3-8 REST API Summary 11

4-1 Installation Roadmap 2

4-2 Software Requirements for Telemetry Streaming 2

4-3 Dependencies and Prerequisites 2

4-4 Telemetry Streaming Installation Script Files 3

4-5 Telemetry Streaming PDB Parameters 4

5-1 DBMS_TELEMETRY_INGEST Package 1

5-2 REST API Summary 3

5-3 REST API Summary 12

1 TELEMETRY_DBA.TELEMETRY_WORKSPACES 1

2 TELEMETRY_DBA.TELEMETRY_ADMINS 1

3 TELEMETRY_DBA.TELEMETRY_WORKSPACE_USERS 1

4 TM$<workspace name>.TELEMETRY_INGEST_STATS 1

5 TM$<workspace name>.TELEMETRY_INGEST_DISCARDS 2

6 TM$<workspace name>.TELEMETRY_QUERY_STATS 2

7 TM$<workspace name>.TELEMETRY_ADMIN_LOG 2

8 TM$<workspace name>.TELEMETRY_METRICS 3

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of ii

1
Introduction to Oracle AI Database Telemetry
Streaming

Oracle AI Database Telemetry Streaming (hereinafter called Telemetry Streaming) is a time
series database built on Oracle AI Database for metrics streaming. Telemetry Streaming is
designed specifically to store, retrieve, and manage times series data. You can use Telemetry
Streaming with Oracle AI Database to build your time series database applications.

These topics provide the conceptual understanding that is needed to get started with Telemetry
Streaming.

• Concepts

• Telemetry Streaming Overview

• Time Series in Telemetry Streaming

• Data Format and Naming Conventions

1.1 Concepts
The following are some basic concepts used in Telemetry Streaming.

Metric

A metric is the name of a variable whose value you want to track over a specific period. Metric
names are labels that help us uniquely identify the metric that we are tagging. CPU_USAGE is
an example of a metric name. Other examples can be something like OFFICE_TEMP,
STOCK_PRICE, or NETWORK_USAGE. A metric may also include additional metadata like
tags. Each data point in a metric has a timestamp.

Metric Tags

Metric tags let you capture different instances of the same metric name. For example,
CPU_USAGE{device_owner : "JACK"} is one time series and CPU_USAGE{device_owner :
"BENJAMIN"} is another time series.

Metric Sample

A metric sample is the record of the value of a metric at a specific point in time. A metric
sample tells you when the measurement was taken and what value was recorded. For
example, at 2025-05-21 10:00:00, a metric sample might record that the value of office
temperature is 21.5. A metric sample can be represented as a tuple of metric name and tags.

The following is an example in JSON format that shows a single measurement of CPU usage
value at a specific time:

{
 "metric": "cpu_usage",
 "timestamp": "2025-05-21T10:00:00",
 "value": 45.3,
 "tags": {

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 5

 "host": "server-01",
 "device_owner: "Jack"
 }
}

Time Series

A time series is a collection of metric samples for a given metric, arranged in a chronological
order. Each data entry in a time series is timestamped and represented in time-value pairs.
Metrics derived from time series data help analyze how a variable value changes over time.
These samples are collected over a period to observe trends, detect anomalies, and perform
analysis. Time series data includes server metrics, application performance monitoring data,
network data, sensor data, events, clicks, trades in a market, and many other types of
analytical data. For example, your office room temperature metric could measure the room
temperature once per minute to show the associated values in Celsius for every minute in a
series, such as 25 at time T1, 26 at time T2, and 24 at time T3, and so on.

{
 "metric": "room_temperature",
 "tags": {
 "unit": "Celsius",
 "building": "XYZ",
 "room": "LivingRoom",
 "sensor_id": "sensor-001",
 "floor": "1"
 },
 "samples": [
 {
 "timestamp": "2025-07-01T10:00:00Z",
 "value": 25
 },
 {
 "timestamp": "2025-07-01T10:01:00Z",
 "value": 26
 },
 {
 "timestamp": "2025-07-01T10:02:00Z",
 "value": 26.5
 }
]
}

The following example shows an extract of a time series depicted in JSON format for CPU
usage values recorded over an hour:

{
 "metric": "cpu_usage",
 "tags": {
 "host": "server-01",
 "device_owner: "Jack"
 },
 "samples": [
 {
 "timestamp": "2025-05-21T10:00:00Z",
 "value": 45.3

Chapter 1
Concepts

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 5

 },
 {
 "timestamp": "2025-05-21T10:01:00Z",
 "value": 46.1
 },
 {
 "timestamp": "2025-05-21T10:02:00Z",
 "value": 44.8
 }
]
}

Time Series Database

A Time Series Database (TSDB) is a database that is specifically designed for storing,
retrieving, and managing time series data. A TSDB is therefore more efficient than a general-
purpose database in handling time series data. TSDBs have different architectural design
properties that make them very different from other databases. These include timestamp data
storage and compression, data lifecycle management, data summarization, ability to handle
large time series-dependent scans of many records, and time series-aware queries. A TSDB is
optimized for large volumes of sequential writes, making it easy to ingest high-throughput
streams without bottlenecks.

Every TSDB has these components:

• Ingest clients to stream time series data into TSDB

• Database engine for storage and query of time series data

• Query component used by visualization application that are external to TSDB for
visualizing and analyzing time series data

• Data lifecycle management

Ingesting and Querying Metrics

Ingesting and querying are the two core operations for handling time series data. Ingesting
means collecting and storing metric data into the time series database. This involves writing
metric samples into the database. These data may be derived from sensors for IoT devices,
application logs, or third-party agents.

Querying means retrieving and analyzing stored metric data from the time series database for
the purposes of visualization, alerting, or analysis. You can use query languages such as SQL
or PromQL (Prometheus' query language) for querying data.

Epoch Time

Epoch time is a way to represent time as a single number by calculating the number of
seconds that have elapsed since January 1, 1970 at 00:00:00 UTC.

Workspace

Workspace is an Oracle-specific concept that is used in Telemetry Streaming.

In the context of Telemetry Streaming, workspace is a namespace for storing data. Each
workspace enables you to separate out metrics data from a manageability point of view,
enabling you to manage the users who ingest data and the users who query data for each
workspace. For example, you may want to store the metrics received from data center 1 in one
workspace, and store the metrics from data center 2 in another workspace. You can restrict
data center 1 to only certain users, while data center 2 to other users. Hence, workspaces

Chapter 1
Concepts

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 5

allow you to segregate the data along with the user privileges. You can create different
workspaces and give privileges for each workspace to specific users.

User

A user in the context of a workspace can be one of the following:

• An administrator of the workspace

• An ingest user who can ingest metric data into a workspace

• A query user who can query metric data from a workspace

See Also

Managing a Workspace for more information about a workspace and workspace
users.

1.2 Telemetry Streaming Overview
Telemetry Streaming is a Time Series Database (TSDB) built on Oracle AI Database to collect,
store, and process time series data. Telemetry Streaming offers a comprehensive, turnkey
solution for metrics streaming with Oracle AI Database.

Metrics Streaming is essential for modern enterprise use cases such as DevOps monitoring,
asset tracking, and anomaly detection. While Oracle AI Database offers best-of-breed features
for building a metrics streaming solution, assembling these components can be complex and
time-consuming. Telemetry Streaming simplifies this process by packaging Oracle’s powerful
technologies into a streamlined, ready-to-use solution, enabling faster deployment, easier
management, and reduced operational overhead for metrics streaming applications.

You can enable Oracle AI Database to run Telemetry Streaming on a basic setup with only the
Telemetry Streaming PL/SQL packages installed. You also have the option of a full-fledged
implementation of Telemetry Streaming with functionality that:

• Supports ultra-fast metrics ingestion using REST and PL/SQL

• Enables users to query metrics data for monitoring and alerting purposes through SQL, PL/
SQL, or PromQL (Prometheus' Query Language)

• Automates data lifecycle management, including compression and downsampling for older
metrics data, data retention, and optimizing storage and performance over time

1.3 Time Series in Telemetry Streaming
In Telemetry Streaming, time series is represented in the following manner.

• A typical time series is identified by a combination of a metric name, say CPU_SECONDS,
and a set of tags. The tags are key-value pairs that are specified in the JSON format. For
example: {"server":"localhost", "ID":1, "make":"Intel"}. This combination uniquely
identifies a time series.

• Each time series is associated with an array of tuples <value, time> that signifies the value
of the time series at the specified time.

• The value can be a float or an integer. The time is a float that specifies the time in seconds
since epoch (1-Jan-1971 00:00 UTC). Fractional seconds can be used for sub-seconds.

Chapter 1
Telemetry Streaming Overview

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 5

• The value and time are immutable after they enter the system. They can only be deleted
after the data retention time is over, but cannot be updated.

1.4 Data Format and Naming Conventions
Metric Data Format

In Telemetry Streaming, each metric data sample is canonicalized into the following set of
information.

Table 1-1 Metric Data Format in Telemetry Streaming

Name Data Type Description

METRIC_NAME VARCHAR2(512) The metric name part of the time series.

METRIC_TAGS VARCHAR2(4000) The tags part of the time series in JSON format.

METRIC_VALUE NUMBER The point-in-time (PIT) value of the time series.

METRIC_TIME_EPOC
H

NUMBER The time in seconds since epoch.

Naming Conventions

PromQL queries should conform to the rules of the PromQL.

Table 1-2 Naming Conventions for PromQL Queries

Name Format

Metric Names Metric names can include ASCII letters, digits, and underscores. They must
match the regular expression (regex): [a-zA-Z_][a-zA-Z0-9_]*.

Tag/Label Keys Tag or label keys may consist of ASCII letters, digits, and underscores, and
should match the following pattern: [a-zA-Z_][a-zA-Z0-9_]*.

Tag/Label Values Tag or label values can be enclosed in either single or double quotes and may
contain any character. The corresponding regex pattern to match a label value
is: '.*'.

See Also

Querying Prometheus for more information about the basics of PromQL

Chapter 1
Data Format and Naming Conventions

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 5

https://prometheus.io/docs/prometheus/latest/querying/basics/

2
Telemetry Streaming Architecture and
Components

This chapter discusses the high-level architecture of Telemetry Streaming and its various
components.

Topics:

• Telemetry Streaming Architecture

• Telemetry Streaming Components Overview

2.1 Telemetry Streaming Architecture
The following diagram shows a high-level architecture of Telemetry Streaming, providing an
overview of the interconnect among its different components, with emphasis on the database
components.

Figure 2-1 Telemetry Streaming Architecture

The PL/SQL packages and tables, and the REST API handlers are parts of the Telemetry
Streaming implementation. Oracle REST Data Services (ORDS) is used to enable REST
services for external clients.

The Telemetry Streaming components enable you to build robust metric streaming
applications. Telemetry Streaming supports the push model of time series data ingestion,
where clients ingest (push) their time series data into Telemetry Streaming. You can have SQL
clients use the PL/SQL packages to ingest data into Telemetry Streaming. You can also have
REST clients ingest metric data into Telemetry Streaming using REST APIs through ORDS.

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 2

You can have a REST client query Telemetry Streaming using PromQL or SQL. You can also
use PromQL and SQL queries to query metrics on SQL clients.

You can find more details about these components in the following sections of this document.

2.2 Telemetry Streaming Components Overview
ORDS

Oracle REST Data Services (ORDS) needs to be installed with REST API handlers to enable
external clients to use REST APIs and ingest data into or query data from Telemetry
Streaming. The REST APIs are made available by initializing them using the
DBMS_TELEMETRY_ADMIN PL/SQL package. All the REST APIs used through ORDS are
authorized using the OAuth2 client credentials protocol.

Note

ORDS is not a part of Telemetry Streaming installation and needs to be installed
separately.

Telemetry Streaming Database

Telemetry Streaming Database is a specialized database optimized for time series data. It is
the central component that enables the storage, retrieval, and management of data. Ingest
components, such as ORDS, push data into Telemetry Streaming for efficient storage and
query.

Running the Telemetry Streaming SQL installation script enables an Oracle AI Database for
the Telemetry Streaming service. Telemetry Streaming hosts the PL/SQL packages and tables
that provide the Telemetry Streaming infrastructure.

Chapter 2
Telemetry Streaming Components Overview

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 2

3
Telemetry Streaming Administration

This chapter explains the administration and user management in Telemetry Streaming.

Topics:

• Administration Overview
Learn in brief about the different types of users in Telemetry Streaming and their privileges.

• User Roles and Privileges
This section explains the user roles in Telemetry Streaming and their associated privileges.

• Managing a Workspace
This section explains how workspaces are managed in Telemetry Streaming.

3.1 Administration Overview
Learn in brief about the different types of users in Telemetry Streaming and their privileges.

Telemetry Streaming can have users that are existing database users or Oracle REST Data
Services (ORDS) users.

Types of Database Users in Telemetry Streaming

Telemetry Streaming has 4 types of database users, based on their privileges and
responsibilities:

1. TELEMETRY_DBA (also called Telemetry DBA), which is created automatically on
Telemetry Streaming installation and owns the Telemetry Streaming infrastructure

2. Workspace, which is backed by an underlying schema and is used to logically separate
Telemetry Streaming time series data for manageability

3. Workspace administrator, is a database user, who is designated by an Oracle DBA to one
or more Telemetry Streaming workspaces for workspace administration

4. Telemetry Streaming users, are database users, who are assigned to workspaces by the
workspace administrator for ingesting metric data, querying metric data, or both

See Also

Database User Types and Privileges for more information about the user roles and
privileges of database users

Types of ORDS Users in Telemetry Streaming

Telemetry Streaming has 2 main types of ORDS users, based on their privileges and
responsibilities:

1. ORDS Administrator user, who has administrative privileges for a workspace

2. ORDS Ingest or ORDS Query users, who have privileges to ingest data, query data, or
both using ORDS endpoints

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 17

See Also

ORDS User Types and Privileges for more information about the user roles and
privileges of ORDS users

3.2 User Roles and Privileges
This section explains the user roles in Telemetry Streaming and their associated privileges.

• Database User Types and Privileges
The following table describes the different roles that each database user type plays in the
Telemetry Streaming setup.

• ORDS User Types and Privileges
The following table describes the different roles that each ORDS user type plays in the
Telemetry Streaming setup.

3.2.1 Database User Types and Privileges
The following table describes the different roles that each database user type plays in the
Telemetry Streaming setup.

Table 3-1 Database User Types and Responsibilities

User Type Composition Responsibility

TELEMETRY_DBA (also
called Telemetry DBA)

One Per PDB When Telemetry Streaming is installed, a
Telemetry DBA user called
TELEMETRY_DBA is also created. The
Telemetry DBA owns all the PL/SQL
packages that provide the Telemetry
Streaming infrastructure.

The Telemetry DBA is created with the
Telemetry Streaming install
script: $ORACLE_HOME/admin/
telemetry_install_plsql.sql.

Workspace Many per PDB A workspace is used to logically separate
time series data. Users can be assigned to
each workspace for administration,
ingestion, and querying.

For each workspace that the customer
creates, a passwordless database user
(schema) is created that owns the data,
metadata, and scheduler jobs for lifecycle
management of data. The name of the
passwordless schema is in the following
format: TM$<workspace name>.

Chapter 3
User Roles and Privileges

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 17

Table 3-1 (Cont.) Database User Types and Responsibilities

User Type Composition Responsibility

Telemetry Workspace
Administrator (also called
admin user)

Many per workspace Any Oracle AI Database user with the DBA
role can enable an existing PDB user to be
the administrator for a particular workspace.

Any Oracle DBA can assign appropriate
privileges to the administrator by invoking
the
dbms_telemetry_workspace.enable_wo
rkspace_admin procedure.

The workspace administrator can designate
other existing PDB users to act as ingest or
query users by using
dbms_telemetry_admin.enable_worksp
ace_user with appropriate arguments.

The admin user has access to all the
workspace administration PL/SQL packages
and views.

See Also

• DBMS_TEL
EMETRY_A
DMIN for
more
information
about the
workspace
administrati
on PL/SQL
packages

• Tables and
Views for
more
information
about the
workspace
administrati
on views

Chapter 3
User Roles and Privileges

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 17

Table 3-1 (Cont.) Database User Types and Responsibilities

User Type Composition Responsibility

Telemetry Workspace Users Many per workspace An existing PDB user is enabled to be the
user of a particular time series use case,
which is represented as a workspace.

A Telemetry workspace administrator can
enable or disable existing database users
using the PL/SQL APIs. A Telemetry
workspace administrator for a particular
workspace invokes the
dbms_telemetry_admin.enable_worksp
ace_user procedure to enable an existing
PDB user for the workspace.

These users can be assigned to ingest data,
query data, or both. A PDB user can be
assigned as an ingest user or query user to
only one workspace at a time.

The ingest user has access to the ingest
package and the query user has access to
the query package and the query user
views.

See Also

• DBMS_TEL
EMETRY_I
NGEST for
more
information
about the
ingest user
PL/SQL
package

• DBMS_TEL
EMETRY_
QUERY
and Tables
and Views
for more
information
about the
query user
PL/SQL
package
and views

3.2.2 ORDS User Types and Privileges
The following table describes the different roles that each ORDS user type plays in the
Telemetry Streaming setup.

Chapter 3
User Roles and Privileges

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 17

Table 3-2 ORDS User Types and Responsibilities

User Type Composition Responsibility

Telemetry ORDS
Administrator (or
ORDS Admin)

One per
workspace

The Telemetry ORDS administrator is created for a workspace
after the workspace is ORDS-enabled using
DBMS_TELEMETRY_ADMIN.ENABLE_WORKSPACE_ORDS.

The admin credentials (client ID and client secret) retrieved using
DBMS_TELEMETRY_ADMIN.GET_WORKSPACE_ORDS_ADMIN_AUTH
enables the ORDS admin user to carry out workspace
administration tasks such as, adding ORDS ingest or query users,
and viewing and manipulating parameters for their workspace.

Telemetry ORDS
Users (ORDS
Ingest Users and
ORDS Query
Users)

Many per
workspace

The ORDS admin uses the relevant REST endpoints to add
ORDS ingest or query users to a workspace. Based on their
assigned roles, these ORDS users can then access the
corresponding ingest or query REST endpoints using the OAuth
credentials, which was generated at the time of creating these
ORDS users to ingest, query, or both.

See Also

Managing ORDS Workspace Users for more information about how ORDS
administrators and ORDS users are created

3.3 Managing a Workspace
This section explains how workspaces are managed in Telemetry Streaming.

Workspaces are managed differently for database users and ORDS users. The following
sections explain the workspace management and administration procedures for database
users and ORDS users.

Workspaces for Database Users Overview

The DBMS_TELEMETRY_WORKSPACE PL/SQL package deals with the workspace related
operations. Each workpace is backed by an exclusive schema for storage of metric data. The
name of the schema starts with TM$, such as TM$<workspace_name>. Any user with the Oracle
DBA role can create or drop a workspace, and also enable or disable workspace
administrators.

Within a workspace, there are 3 different roles that a user can play: a workspace administrator
role, a query user role, or an ingest user role. The Oracle DBA can use the
DBMS_TELEMETRY_WORKSPACE PL/SQL package to:

• Enable an existing database user as a workspace administrator

• Disable a user as a workspace administrator

The user with the workspace administrator role can then use the DBMS_TELEMETRY_ADMIN
PL/SQL package or the workspace administration REST APIs to:

• Enable an existing database user as an ingest user, query user, or both for their
workspace(s)

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 17

• Disable a user from their workspace(s)

• Set and get parameters for their workspace(s)

See Also

DBMS_TELEMETRY_WORKSPACE and DBMS_TELEMETRY_ADMIN in Oracle AI
Database PL/SQL Packages and Types Reference for more information about the
DBMS_TELEMETRY_WORKSPACE and DBMS_TELEMETRY_ADMIN PL/SQL packages

The Oracle DBA can assign multiple workspace administrators to manage one workspace or
assign one workspace administrator to manage multiple workplaces. As for workspace users, a
workspace administrator can assign multiple users to a workspace, but can assign one user to
only one workspace, who can be an ingest user, a query user, or both for that workspace. The
following diagram shows the relationship between workspaces and workspace administrators,
and the relationship between workspaces and users.

Figure 3-1 Telemetry Streaming Workspace-User Relationships

Workspaces for ORDS Users Overview

You can find detailed information about managing ORDS workspace users and using REST
API for workspace administration in Managing ORDS Workspace Users and Using REST API
for Workspace Administration.

• Managing Database Workspace Users
This section describes how different database user roles are managed in Telemetry
Streaming.

• Managing ORDS Workspace Users
This section describes how ORDS workspace users are managed in Telemetry Streaming.

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 17

3.3.1 Managing Database Workspace Users
This section describes how different database user roles are managed in Telemetry Streaming.

An Oracle DBA can create or drop workspaces. After a workspace is created, the Oracle DBA
can assign the administrator role for a workspace to any existing database user, who is then
called a workspace administrator.

The DBMS_TELEMETRY_WORKSPACE package allows the Oracle DBA to create or drop a
workspace and enable or disable workspace administrators for the workspace. The Oracle
DBA invokes the DBMS_TELEMETRY_WORKSPACE.CREATE_WORKSPACE() procedure to create a
workspace and the DBMS_TELEMETRY_WORKSPACE.ENABLE_WORKSPACE_ADMIN() procedure to
assign appropriate privileges to a workspace administrator.

As a part of the Telemetry Streaming installation and setup, the following management and
administration procedures are used to manage database users in Telemetry Streaming:

Workspace Management

Any user with Oracle DBA privileges can manage a workspace using the following PL/SQL
package.

Table 3-3 DBMS_TELEMETRY_WORKSPACE

Procedure/Function Description

CREATE_WORKSPACE Creates a new workspace

DROP_WORKSPACE Drops a workspace

ENABLE_WORKSPACE_ADMIN Adds an admin user to a workspace

DISABLE_WORKSPACE_ADMIN Removes an admin user from a workspace

See Also

DBMS_TELEMETRY_WORKSPACE in Oracle AI Database PL/SQL Packages and
Types Reference for more information about the DBMS_TELEMETRY_WORKSPACE PL/SQL
package.

Additionally, the Oracle DBA has access to the following views.

Table 3-4 Workspace Management Views

Views Description

TELEMETRY_DBA.TELEMETRY_WORKSP
ACES

Lists all the Telemetry Streaming workspaces created in the
PDB

TELEMETRY_DBA.TELEMETRY_ADMINS Lists all the admins associated with the Telemetry Streaming
workspaces created in the PDB

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 17

See Also

Tables and Views for more information about the workspace management views

Workspace Administration

An existing Oracle AI Database user can be assigned as an administrator for a workspace. A
workspace administrator can add users for ingestion or querying. The workspace administrator
can also alter the workspace data life cycle management parameters.

A workspace administrator can use the following PL/SQL packages.

Table 3-5 DBMS_TELEMETRY_ADMIN

Procedure/Function Description

ENABLE_WORKSPACE_USER Adds an existing database user to a workspace

DISABLE_WORKSPACE_USER Disables a user from the workspace

SET_WORKSPACE_PARAMETER Sets a workspace parameter

GET_WORKSPACE_PARAMETER Returns the value of a workspace parameter

See Also

DBMS_TELEMETRY_ADMIN in Oracle AI Database PL/SQL Packages and Types
Reference for more information about the DBMS_TELEMETRY_ADMIN PL/SQL package.

Additionally, a workspace administrator has access to the following views.

Table 3-6 Workspace Administration Views

Views Description

TELEMETRY_DBA.TELEMETRY_WORKSP
ACE_USERS

Lists all the users associated with all the workspaces
administered by an Admin user

TM$<workspace
name>.TELEMETRY_INGEST_STATS

Contains one row for every call made to ingest_metrics by the
ingest users

TM$<workspace
name>.TELEMETRY_INGEST_DISCARD
S

Metrics whose time is older than 3600 seconds from the current
time, are discarded and recorded in this view

TM$<workspace
name>.TELEMETRY_QUERY_STATS

Contains one row for every call made to procedures of
dbms_telemetry_query by the query users

TM$<workspace
name>.TELEMETRY_ADMIN_LOG

Contains messages related to admin actions

See Also

Tables and Views for more information about the workspace management views

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 17

3.3.2 Managing ORDS Workspace Users
This section describes how ORDS workspace users are managed in Telemetry Streaming.

An ORDS workspace administrator can add ORDS users for ingestion or querying. The OAuth
client ID:client secret pair of credentials, which is created by the ORDS admin user is required
if the users want to push data into or query data from Telemetry Streaming through ORDS. The
users then have to follow the OAuth 2-legged authorization mechanism to ingest or query data
using ORDS endpoints.

To enable ORDS for a workspace and get the OAuth credentials of the ORDS workspace
admin user, the following PL/SQL package is used.

Table 3-7 DBMS_TELEMETRY_ADMIN

Procedure/Function Description

ENABLE_WORKSPACE_ORDS This procedure enables ORDS for the given workspace and
creates Telemetry Streaming REST endpoints

GET_WORKSPACE_ORDS_ADMIN_AUTH This function returns the Telemetry Streaming ORDS admin
user client-ID and cliend-secret OAuth credentials

The following steps are followed to set up a Telemetry Streaming workspace for ORDS users.

Before enabling ORDS for a workspace, the workspace schema (for example, TM$WKSP1) must
be enabled from any ORDS_DBA.

exec ORDS.enable_schema(p_enabled => TRUE, p_schema => 'TM$WKSP1',
p_url_mapping_type => 'BASE_PATH',
 p_url_mapping_pattern => 'wksp1', p_auto_rest_auth => FALSE);

After the schema is ORDS-enabled, you must connect as the workspace admin and run the
following statement:

exec dbms_telemetry_admin.enable_workspace_ords('wksp1');

Once the workspace is ORDS-enabled, an admin user is created. The admin credentials (client
ID and client secret) can then be retrieved by running the following statement:

select dbms_telemetry_admin.get_workspace_ords_admin_auth('wksp1');

After this setup, the workspace is ORDS-enabled and ready for admin-authenticated interface
usage.

Once an ORDS admin user is created for a workspace, ORDS ingest or query users can be
added or removed using the add_user and drop_user REST endpoints (accessible by the
admin user using the admin client ID-client secret).

A user can be added using the following endpoint:

/ords/<Workspace Name>/add_user

On successfully adding the user, the API returns the client ID and client secret of the new user.

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 17

These credentials allow the users to access relevant endpoints. For example, an ingest ORDS
user ing1 in workspace wksp1 can access the following ingest endpoint:

/ords/wksp1/ing1/ingest

Users can be removed using the following endpoint:

/ords/<Workspace Name>/drop_user

Note

A single ORDS user can be granted both ingest and query privileges.

• Using REST API for Workspace Administration
This section provides the documentation for REST APIs used to manage a workspace.

See Also

Using REST API for Workspace Administration for more information about the
workspace administration APIs

3.3.2.1 Using REST API for Workspace Administration
This section provides the documentation for REST APIs used to manage a workspace.

Note

• Ensure that ORDS is installed and Telemetry Streaming is REST enabled before
using REST APIs.

• To make REST API calls, you need an OAuth2 access token to use for
authorization. The token can be derived after you provide the Client ID and Client
Secret pair of credentials created by the ORDS workspace administrator using the
PL/SQL interface.

See Also

Installing Oracle REST Data Services for more information about the ORDS
installation.

ORDS Workspace Administration REST API

The ORDS workspace administration APIs enable the ORDS workspace administrator to
perform a variety of administrative tasks, such as managing ORDS users, configuring and
checking workspace parameters, and accessing workspace logs. There are several admin
ORDS endpoints available for performing these administrative operations, such as adding new

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 17

ORDS users, removing existing users, and accessing or modifying configuration parameters
for a workspace.

These admin endpoints are described in the following API documentation:

Table 3-8 REST API Summary

API Type Summary

POST /ords/<Workspace Name>/
add_user

Adds an ingest or query user to a workspace

POST /ords/<Workspace Name>/
drop_user

Drops an ingest or query user from a workspace

GET /ords/<Workspace Name>/
list_users

Gets the list of users: user names and roles in the current
workspace

GET /ords/<Workspace Name>/
init_parameters

Initializes the parameters to their default values

GET /ords/<Workspace Name>/
get_parameters

Gets all the parameters with their values

POST /ords/<Workspace Name>/
set_parameter

Sets a new value to a parameter

GET /ords/<Workspace Name>/
get_parameter/<Parameter Name>

Gets the value of a given parameter

GET /ords/<Workspace Name>/
list_log/?from=<start time
epoch>&to=<end time
epoch>&limit=<number of entries>

Scrapes all the top data (specified by limit) in
TELEMETRY_ADMIN_LOG in the time duration range
specified and shows as collection_feed

GET /ords/<Workspace Name>/
show_ingest_stats/?from=<start
time epoch>&to=<end time
epoch>&limit=<number of entries>

Scrapes all the top data (specified by limit) in
telemetry_ingest_stats in the time duration range
specified and shows as collection_feed

GET /ords/<Workspace Name>/
show_query_stats/?from=<start
time epoch>&to=<end time
epoch>&limit=<number of entries>

Scrapes all the top data (specified by limit) in
telemetry_query_stats in the time duration range
specified and shows as collection_feed

Add a User

METHOD: POST

PATH: /ords/<Workspace Name>/add_user

USER: Workspace ORDS Admin User

SUMMAR
Y:

Adds an ingest or a query user to a workspace

DATA: {"user_name":<User Name> , "role": <INGEST|QUERY>}

HTTP
CODE:

201 - Success with clientId and secret
400 - Failed with error message {"error_code": <code>,
"error_message":<message>}
401 - Unauthorized

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 17

Add a User

EXAMPLE
:

PATH: /ords/workspace1/add_user
DATA: {"user_name":"INGEST1" , "role": "INGEST"}
CODE: 201 - Successfully inserted
{"client_id":"RWRvoD2byhqNdWImmWbelA..","client_secret":"jjkvQPAZbbV
Tg6iozelk0Q.."}

Note

You can add a user with both ingest and query role in ORDS by
specifying the "role" as "INGEST|QUERY" or "QUERY|INGEST".

Drop a User

METHOD: POST

PATH: /ords/<Workspace Name>/drop_user

USER: Workspace ORDS Admin User

SUMMAR
Y:

Drops an ORDS ingest or an ORDS query user from a workspace

DATA: {"user_name":<User Name>}

HTTP
CODE:

201 - User dropped successfully: <User Name>
400 - Failed with error message {"error_code": <code>,
"error_message":<message>}
401 - Unauthorized

EXAMPLE
:

PATH: /ords/workspace1/drop_user
DATA: {"user_name":"INGEST1"}
CODE: 201 - User dropped successfully: INGEST1

LIST USERS

METHOD: GET

PATH: /ords/<Workspace Name>/list_users

USER: Workspace ORDS Admin User

SUMMAR
Y:

Gets the list of user names, their respective roles, and the client ID and client secret of the
users in the current workspace

HTTP
CODE:

200 - Success with data {[{"user_name": <user>,"role": <role>},...]}
400 - Failed with error message {"error_code": <code>,
"error_message":<message>}
401 - Unauthorized

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 17

LIST USERS

EXAMPLE
:

PATH: /ords/workspace1/list_users
CODE: 200 - Success

{
 "items":[
 {
 "name":"INGEST1",
 "description":"A client for ingest management",
 "client_id":"_sPBlyIrAXpRLn6rRX4-YQ..",
 "client_secret":"C2e33aDKGM0-AowcgPjmmg.."
 },
 {
 "name":"admin_client",
 "description":"default admin client",
 "client_id":"CCpAyUsiCggqZNMrm4l3ZA..",
 "client_secret":"KPQF3kDOCClFanMDCS1Ugg.."
 }
],
 "hasMore":false,
 "limit":20,"offset":0,
 "count":2
}

Initialize Parameters

METHOD: GET

PATH: /ords/<Workspace Name>/init_parameters

USER: Workspace ORDS Admin User

SUMMAR
Y:

Initializes the parameters to default values

HTTP
CODE:

200 - Success, params initialized to default values
400 - Failed with error message {"error_code": <code>,
"error_message":<message>}
401 - Unauthorized

EXAMPLE
:

PATH: /ords/workspace1/init_parameters
CODE: 200 - Success

Get Parameters

METHOD: GET

PATH: /ords/<Workspace Name>/get_parameters

USER: Workspace ORDS Admin User

SUMMAR
Y:

Gets all the parameters with their values

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 17

Get Parameters

HTTP
CODE:

200 - Success
{[{"parameter_name": <name>,"parameter_value": <value>,
"parameter_modified_timestamp":<modified date>},...]}
400 - Failed with error message {"error_code": <code>,
"error_message":<message>}
401 - Unauthorized

EXAMPLE
:

PATH: /ords/workspace1/get_parameters
CODE: 200 - Success

{
 "items":[

{"parameter_name":"delete_after_duration_hours","parameter_value":"2
40","parameter_modified_timestamp":"2025-07-04T11:17:38.381Z"},

{"parameter_name":"compress_after_duration_hours","parameter_value":
"24","parameter_modified_timestamp":"2025-07-04T11:17:38.392Z"},

{"parameter_name":"downsample_after_duration_hours","parameter_value
":"24","parameter_modified_timestamp":"2025-07-04T11:17:38.398Z"},

{"parameter_name":"downsample_interval_seconds","parameter_value":"6
0","parameter_modified_timestamp":"2025-07-04T11:17:38.400Z"},

{"parameter_name":"downsample_method","parameter_value":"avg","param
eter_modified_timestamp":"2025-07-04T11:17:38.404Z"}
],
 "hasMore":false,"limit":20,"offset":0,"count":5
}

SET Parameter Value

METHOD: POST

PATH: /ords/<Workspace Name>/set_parameter

USER: Workspace ORDS Admin User

SUMMAR
Y:

Sets a new value to a parameter

DATA: {"parameter_name":<param_name>, "value":<new_value>}

HTTP
CODE:

201 - Success, parameter:param_name value set to:new_value
400 - Failed with error message {"error_code": <code>,
"error_message":<message>}
401 - Unauthorized

EXAMPLE
:

PATH: /ords/workspace1/set_parameter
DATA: {"parameter_name":"downsample_interval_seconds", "value":70}
CODE: 201 - Success
{"parameter":"downsample_interval_seconds","value":"70"}

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 17

Get Parameter Value

METHOD: GET

PATH: /ords/<Workspace Name>/get_parameter/<Parameter Name>

USER: Workspace ORDS Admin User

SUMMAR
Y:

Gets the value for a given parameter

HTTP
CODE:

200 - Success with data
{"parameter_name": <name>,"parameter_value": <value>,
"default":<value>, last_modified: "timestamp"}
400 - Failed with error message {"error_code": <code>,
"error_message":<message>}
401 - Unauthorized

EXAMPLE
:

PATH: /ords/workspace1/get_parameter/downsample_interval_seconds
CODE: 200 - Success

{"parameter_name":"downsample_interval_seconds",
"parameter_value":70,
 "default":60, "last_modified":"04-JUL-25 12.00.06.542000 PM"}

Get Admin Logs

METHOD: GET

PATH: /ords/<Workspace Name>/list_log/?from=<start time epoch>&to=<end time
epoch>&limit=<number of entries>

USER: Workspace ORDS Admin User

SUMMAR
Y:

This API scrapes all the top data (specified by limit) in TELEMETRY_ADMIN_LOG in the time
duration range specified and shows as collection_feed.

HTTP
CODE:

200 - Success with data
400 - Failed with error message {"error_code": <code>,
"error_message":<message>}
401 - Unauthorized

EXAMPLE
:

PATH: /ords/workspace1/list_log/?
from=1704700084&to=1704710884&limit=1
CODE: 200 - Success

{
 "items":[
 {
 "log_message":"DOWNSAMPLE:Checking Table_flat
Done: .040007",
 "log_timestamp":"2025-07-04T12:04:30.173Z"
 }
],
 "hasMore":false,"limit":0,"offset":0,"count":1
}

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 17

Get Ingest Data

METHOD: GET

PATH: /ords/<Workspace Name>/show_ingest_stats/?from=<start time
epoch>&to=<end time epoch>&limit=<number of entries>

USER: ORDS Ingest User

SUMMARY: This API scrapes all the top data (specified by limit) in
TELEMETRY_INGEST_STATS in the time duration range specified and shows
as collection_feed

HTTP CODE: 200 - Success with data
400 - Failed with error message {"error_code": <code>,
"error_message":<message>}
401 - Unauthorized

EXAMPLE: PATH: /ords/workspace1/show_ingest_stats/?
from=1704700084&to=1704710884&limit=100
OUTPUT:

{
 "items":[
 {
 "payload_size":559,
 "metrics_ingested":6,
 "metrics_given":6,
 "ingest_user_name":"INGEST1",
 "ingest_duration_milliseconds":1100,
 "ingest_method":"ords",
 "ingest_timestamp":"2025-07-03T09:21:05.236Z"
 }
],
 "hasMore":false,
 "limit":0,
 "offset":0,
 "count":2
}

Get Query Data

METHOD: GET

PATH: /ords/<Workspace Name>/show_query_stats/?from=<start time
epoch>&to=<end time epoch>&limit=<number of entries>

USER: ORDS Query User

SUMMARY: This API scrapes all the top data (specified by limit) in
TELEMETRY_QUERY_STATS in the time duration range specified and shows as
collection_feed

HTTP CODE: 200 - Success with data
400 - Failed with error message {"error_code": <code>,
"error_message":<message>}
401 - Unauthorized

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 17

Get Query Data

EXAMPLE: PATH: /ords/workspace1/show_query_stats/?
from=1751636250&to=1751636258&limit=1
OUTPUT:

{
 "items":[
 {
 "query_type":"promql_instant",
 "start_time_epoch":1751636257,
 "end_time_epoch":null,
 "step_size_seconds":null,
 "query_user_name":"QUERYUSER1",
 "query_duration_milliseconds":380,
 "query_method":"ords",
 "query_timestamp":"2025-07-04T13:43:12.590Z"
 }
],
 "hasMore":false,"limit":0,"offset":0,"count":1
}

Chapter 3
Managing a Workspace

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 17

4
Installing and Enabling Telemetry Streaming in
Oracle AI Database

This chapter describes the installation process and shows you how to enable Telemetry
Streaming in Oracle AI Database.

Topics:

• Installation Overview
Learn about the types of Telemetry Streaming installation and the installation roadmap.

• System Requirements
This section lists the software and database features required for installing Telemetry
Streaming.

• Enabling Telemetry Streaming in Oracle AI Database
Learn how you can enable Telemetry Streaming in Oracle AI Database.

• Installing Oracle REST Data Services
Learn about how to install Oracle REST Data Services.

4.1 Installation Overview
Learn about the types of Telemetry Streaming installation and the installation roadmap.

Note

Telemetry Streaming is available starting Oracle AI Database 26ai, Version 23.26.0,
but it does not come bundled with Oracle AI Database. You must install Telemetry
Streaming separately.

Basic Telemetry Streaming

As a minimal setup, if you want to run Telemetry Streaming using a SQL Plus client or any
Oracle Call Interface (OCI) client, you can enable Oracle AI Database with Telemetry
Streaming by running the SQL installation script from the admin directory, which installs the
necessary PL/SQL packages for basic Telemetry Streaming setup. Once the script has run
successfully, your database is Telemetry Streaming-enabled. You can then use the Telemetry
Streaming PL/SQL packages for user administration, and ingest and query time series data.

See Also

Enabling Telemetry Streaming in Oracle AI Database for more information about the
SQL installation script.

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 6

End-to-End Telemetry Streaming

An end-to-end Telemetry Streaming installation enables you to:

• Ingest metrics using REST or PL/SQL.

• Query metrics using SQL and PromQL through PL/SQL packages.

Table 4-1 Installation Roadmap

Installation Step Required/
Optional

Purpose

Step 1: Run the SQL Script for
installing the Telemetry Streaming
packages.

Required For enabling Telemetry Streaming on Oracle AI
Database for basic use on SQL or OCI clients

Step 2: Install ORDS Optional For ingesting or querying metrics from external
REST clients using REST APIs

4.2 System Requirements
This section lists the software and database features required for installing Telemetry
Streaming.

The following table lists the software and their versions required for an end-to-end
implementation of Telemetry Streaming.

Table 4-2 Software Requirements for Telemetry Streaming

Software Purpose Version

Oracle AI Database For storing and retrieving metrics Oracle AI Database 26ai,
23.26.0, or greater

ORDS For REST API ORDS version 23, or greater

Database Features

Telemetry Streaming is built on existing Oracle features and hence depends on these features
in Oracle AI Database.

Table 4-3 Dependencies and Prerequisites

Feature Purpose

Interval Partition For data organization that helps in data
management and query performance

Compression For compression data beyond a threshold to
reduce storage footprint

Scheduler Jobs For data lifecycle management

4.3 Enabling Telemetry Streaming in Oracle AI Database
Learn how you can enable Telemetry Streaming in Oracle AI Database.

Chapter 4
System Requirements

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 6

To enable Telemetry Streaming in Oracle AI Database, you must run the script from the
following files, which are located in the $ORACLE_HOME/rdbms/admin directory.

Note

If you intend on using ORDS for REST API, ensure that ORDS is installed before
running the ORDS-related script.

Table 4-4 Telemetry Streaming Installation Script Files

File Functionality

telemetry_install_plsql.s
ql

This script creates the TELEMETRY_DBA user and loads all
Telemetry Streaming PL/SQL packages under it. It also creates the
required synonyms and metadata tables in both SYS and
TELEMETRY_DBA schemas.

telemetry_install_ords.sq
l

This script loads all ORDS-related Telemetry Streaming PL/SQL
packages (prvthtelemetry_ords.plb and
prvtbtelemetry_ords.plb) into TELEMETRY_DBA.

Installation for Using Telemetry Streaming with PL/SQL

Complete the following steps to install Telemetry Streaming with a simple workspace setup
having ingest, query and workspace admin users.

1. Run as SYS @$ORACLE_HOME/rdbms/admin/telemetry_install_plsql.sql (This creates
TELEMETRY_DBA and installs Telemetry Streaming).

2. Create a tablespace that you want to use for Telemetry Streaming (say, TMTBS).

3. Create ingest, query, and admin users that you want to use for the workspace (say,
wrkspace_ingest_user, wrkspace_query_user, and wrkspace_admin_user) and make the
tablespace (TMTBS) you created in the previous step as their default tablespace for the
workspace.

4. Create a workspace WKSP1 on the TMTBS tablespace connecting as any database user with
DBA privileges. Run the following statement.

exec
TELEMETRY_DBA.dbms_telemetry_workspace.create_workspace('WKSP1','TMTBS');

5. Connect as any database user with DBA privileges and make wrkspace_admin_user the
admin of WKSP1. Run the following statement.

exec
TELEMETRY_DBA.dbms_telemetry_workspace.enable_workspace_admin('WKSP1','wrks
pace_admin_user');

Chapter 4
Enabling Telemetry Streaming in Oracle AI Database

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 6

6. Connect as the Admin user wrkspace_admin_user and enable ingest and query users on
workspace. Run the following statements.

exec
dbms_telemetry_admin.enable_workspace_user('WKSP1','wrkspace_ingest_user','
ingest')

exec
dbms_telemetry_admin.enable_workspace_user('WKSP1','wrkspace_query_user','q
uery')

The preceding steps (Installation for Using Telemetry Streaming with PL/SQL) conclude the
Telemetry Streaming installation without ORDS. For installing Telemetry Streaming with ORDS,
see Installing Oracle REST Data Services.

• Telemetry Streaming PDB Parameters
Configure Telemetry Streaming PDB parameters to manage performance and efficiency of
Telemetry Streaming.

See Also

DBMS_TELEMETRY_WORKSPACE and DBMS_TELEMETRY_ADMIN in Oracle AI
Database PL/SQL Packages and Types Reference for more information about the
workspace administration PL/SQL packages

4.3.1 Telemetry Streaming PDB Parameters
Configure Telemetry Streaming PDB parameters to manage performance and efficiency of
Telemetry Streaming.

During the time of installation or after the installation, you can configure a few PDB parameters
that best fit your use case. All parameters have their respective default values.

Table 4-5 Telemetry Streaming PDB Parameters

Parameter Purpose Default Valid Values

delete_after_duration
_hours

Delete data older than these many hours 240 1 to 87600

compress_after_durati
on_hours

Compress data older than these many
hours

24 1 to 87600

downsample_after_dura
tion_hours

Down sample data older than these many
hours

168 1 to 87600

downsample_interval_s
econds

Down sample the data in chunks of this
interval in seconds

60 1 to 2600000

downsample_method Aggregate method to be used to down
sample the data in the interval

avg avg, min, max,
sum

Chapter 4
Enabling Telemetry Streaming in Oracle AI Database

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 6

4.4 Installing Oracle REST Data Services
Learn about how to install Oracle REST Data Services.

Note

Oracle REST Data Services (ORDS) must be installed separately. It is not included
with Telemetry Streaming installation.

ORDS enables external clients to use REST APIs to ingest data into and query data from
Telemetry Streaming.

To install ORDS, follow the installation instructions from the following link:

Installing and Configuring Oracle REST Data Services

Enabling Telemetry Streaming with ORDS

After the ORDS installation, run the SQL script to install the REST API handlers and enable the
PL/SQL packages to be used with ORDS. The REST API infrastructure gets installed in
Telemetry Streaming and you can start using the Administration REST APIs, Ingest REST
APIs, and Query REST APIs in Telemetry Streaming.

See Also

Enabling Telemetry Streaming in Oracle AI Database for more information about the
ORDS install script and PL/SQL packages

Complete the following steps to install Telemetry Streaming with a simple workspace on a
ORDS setup having ingest, query and workspace admin users.

To enable ORDS on a workspace, you must first get an ORDS instance up and running having
an ORDS DBA (say ORDS_DBA). Post that, complete the following steps.

1. Run as SYS @$ORACLE_HOME/rdbms/admin/telemetry_install_ords.sql (This creates
ORDS-related packages in Telemetry Streaming).

2. Connect as ORDS_DBA and enable the ORDS schema for the TELEMETRY_DBA (Telemetry
Administrator) and workspace (WKSP1). Run the following code blocks.

a. exec ORDS.enable_schema(
 p_enabled => TRUE,
 p_schema => 'TELEMETRY_DBA',
 p_url_mapping_type => 'BASE_PATH',
 p_url_mapping_pattern => 'TELEMETRY_DBA',
 p_auto_rest_auth => FALSE
);

b. exec ORDS.enable_schema(
 p_enabled => TRUE,
 p_schema => 'TM$WKSP1',

Chapter 4
Installing Oracle REST Data Services

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 6

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/25.1/ordig/installing-and-configuring-oracle-rest-data-services.html

 p_url_mapping_type => 'BASE_PATH',
 p_url_mapping_pattern => 'wksp1',
 p_auto_rest_auth => FALSE
);

3. To set up the ORDS handlers for a workspace, connect to workspace admin (UC1A) and
enable the Telemetry Streaming ORDS handlers. Run the following statement.

exec dbms_telemetry_admin.enable_workspace_ords('WKSP1');

4. While connected as the workspace Admin, get the workspace ORDS Admin credentials.
Run the following statement.

select dbms_telemetry_admin.get_workspace_ords_admin_auth('WKSP1');

See Also

Managing ORDS Workspace Users and Using REST API for Workspace
Administration for more information about managing ORDS workspace users and
using REST API for workspace administration

Chapter 4
Installing Oracle REST Data Services

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 6

5
Using Telemetry Streaming

This chapter explains how to use Telemetry Streaming to ingest and query data.

Topics:

• Ingesting Metric Data
This section explains the different ways you can ingest metric data into Telemetry
Streaming.

• Querying Metric Data
This section explains the different ways you can query metric data in Telemetry Streaming.

5.1 Ingesting Metric Data
This section explains the different ways you can ingest metric data into Telemetry Streaming.

For clients outside of Oracle AI Database, Telemetry Streaming integrates with ORDS to allow
REST API calls through ORDS endpoints to ingest data into Telemetry Streaming. For SQL
clients, Telemetry Streaming provides PL/SQL packages to ingest data.

• Using PL/SQL to Ingest Metric Data

• Using REST APIs with ORDS to Ingest Metric Data

5.1.1 Using PL/SQL to Ingest Metric Data
Any existing Oracle user can be enabled as an ingest user for a workspace. However, a user
can be added as an ingest user for only one workspace.

The DBMS_TELEMETRY_INGEST PL/SQL package enables an ingest user to ingest data into
Telemetry Streaming either as a single sample ingest data or as CLOB data.

Table 5-1 DBMS_TELEMETRY_INGEST Package

Function Description

INGEST_METRICS For single metric sample ingestion

INGEST_METRICS For metric ingestion as CLOB

See Also

DBMS_TELEMETRY_INGEST in Oracle AI Database PL/SQL Packages and Types
Reference for more information about the DBMS_TELEMETRY_INGEST PL/SQL package.

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 22

5.1.2 Using REST APIs with ORDS to Ingest Metric Data
If you want an external client to push metric data through ORDS into Telemetry Streaming, you
can use the REST APIs through ORDS endpoints. ORDS employs the OAuth2 authorization
mechanism to ingest data using ORDS endpoints. Therefore, you must authenticate the
requests using the client credentials (Client ID and Client Secret pair), which is created by the
Telemetry ORDS administrator or the workspace administrator.

The client credentials flow in OAuth2 is a two-legged process. You use the client credentials to
return an access token, which is then used to authenticate the API calls to the ORDS
endpoints and ingest data.

To secure the ORDS APIs, Telemetry Streaming ensures that:

• All the REST APIs are authenticated using the OAuth2 Client Credentials protocol.

• A workspace administration user (who is an existing database user) can get the OAuth
credentials (client-id, client-secret) for the ORDS administration user.

Note

A workspace administration user should enable ORDS using
DBMS_TELEMETRY_ADMIN.ENABLE_WORKSPACE_ORDS before fetching the ORDS admin
credentials.

• Only an ORDS user with administrative privileges can create the ORDS ingest and ORDS
query users.

The following section provides the REST API documentation for the ingest REST APIs.

Note

• Ensure that ORDS is installed and Telemetry Streaming is REST enabled before
using REST APIs.

• To make ORDS Ingest API calls, you need an OAuth2 access token to use for
authorization. The token can be derived using the token URL by providing the
Client ID and Client Secret of the ORDS ingest user.

See Also

Installing Oracle REST Data Services for more information about the ORDS
installation.

Ingesting Data Using REST API

Once an ORDS ingest user is created using the ORDS admin user, it can be used to ingest
data through the following API endpoints.

Chapter 5
Ingesting Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 22

Table 5-2 REST API Summary

API Type Summary

POST /ords/<Workspace Name>/<Ords
Ingest User>/ingest

Ingests data into Telemetry Streaming using the
ORDS API endpoint (Telemetry protocol)

POST /ords/<Workspace Name>/<Ords
Ingest User>/ingestlp

Ingests data into Telemetry Streaming using the
ORDS API endpoint (Line protocol)

Ingest Data (Telemetry protocol)

METHOD: POST

PATH: /ords/<Workspace Name>/<Ords Ingest User>/ingest

USER: ORDS Ingest User

SUMMAR
Y:

Ingests data into Telemetry Streaming using the ORDS API endpoint (Telemetry protocol)

DATA:
{ "metrics" : [
 [<metric_name>, <tags as JSON>, <value>, <time in
secs since epoch>],
 [<metric_name>, <tags as JSON>, <value>, <time in
secs since epoch>]
 ..
]
}

HTTP
CODE:

201 - Successfully inserted

{"metrics_data_size":<num>,"metrics_ingested":<num>,

"metrics_given":<num>,"metrics_metadata":<num>,"ingest_duration_ms":
<time in ms>,

"ingest_format":<format>,"ingest_method":<method>,"ingest_user_name"
:<ingest user name>}

400 - Unsuccessful
401 - Unauthorized

Chapter 5
Ingesting Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 22

Ingest Data (Telemetry protocol)

EXAMPLE
:

PATH: /ords/workspace1/ingest1/ingest
DATA:

{ "metrics" : [
 ["scrape_duration_seconds",
{"http_scheme":"http","net_host_port":"2112"}, 0, 1704700084],
 ["scrape_samples_scraped",
{"http_scheme":"http","net_host_port":"2112"}, 12, 1704700085]
 ..
]
}

CODE: 201 - Successfully inserted

{"metrics_data_size":611,"metrics_ingested":2,

"metrics_given":2,"metrics_metadata":2,"ingest_duration_ms":110,

"ingest_format":"telemetry","ingest_method":"ords","ingest_user_name
":"INGEST1"}

Ingest Data (Line protocol)

METHOD: POST

PATH: /ords/<Workspace Name>/<Ords Ingest User>/ingestlp

USER: ORDS Ingest User

SUMMAR
Y:

Ingests data into Telemetry Streaming using the ORDS API endpoint (Line protocol)

DATA:
<measurement>[,<tag_key>=<tag_value>[,<tag_key>=<tag_value>]]
<field_key>=<field_value>[,<field_key>=<field_value>] [<timestamp>]

HTTP
CODE:

201 - Successfully inserted

{"metrics_data_size":<num>,"metrics_ingested":<num>,

"metrics_given":<num>,"metrics_metadata":<num>,"ingest_duration_ms":
<time in ms>,

"ingest_format":<format>,"ingest_method":<method>,"ingest_user_name"
:<ingest user name>}

400 - Unsuccessful
401 - Unauthorized

Chapter 5
Ingesting Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 22

Ingest Data (Line protocol)

EXAMPLE
:

PATH: /ords/workspace1/ingest1/ingestlp
DATA:

trig,host=phoenix92613 sine=0 1752215852000000000
mem,host=phoenix92613 sine=0 1752215852000000000

CODE: 201 - Successfully inserted

{"metrics_data_size":611,"metrics_ingested":2,
 "metrics_given":2,"metrics_metadata":2,"ingest_duration_ms":110,

"ingest_format":"line","ingest_method":"ords","ingest_user_name":"IN
GEST1"}

Ingest Example Using cURL

1. Add a new ingest user.
Use the following cURL command to add a new user named INGEST1 with the role INGEST
using workspace ORDS admin access token:

Request:

curl -k --request POST -i \
-H "Authorization: Bearer {admin user token}" \
-H "Content-Type: application/json" \
--data '{ "user_name": "<USERNAME>", "role": "<ROLE>" }' \
-v <ADD_USER_URL>

Response:

{"client_id":<client_id>, "client_secret":<client_secret key>}

Example:

curl -k --request POST -i \
-H "Authorization: Bearer moVgM6Vi6TqJB0xbYezicA" \
-H "Content-Type: application/json" \
--data '{ "user_name": "INGEST1", "role": "INGEST" }' \
-v http://example.com:8085/ords/wksp1/add_user

Response:

{"client_id":"aBcDefg1hij2k3l..","client_secret":"mNoPq45rst6u7xyz.."}

2. Get the access token using the client ID:client secret.

Chapter 5
Ingesting Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 22

Request:

curl -k --request POST \
 --user $INGEST_USER_CLIENT_ID:$INGEST_USER_CLIENT_SECRET \
 --data "grant_type=client_credentials" <TOKEN_URL>

Response:

{"access_token":<token>, "token_type":<token type>, "expires_in":<time in
seconds>}

Example:

curl -k --request POST \
 --user aBcDefg1hij2k3l..:mNoPq45rst6u7xyz.. \
 --data "grant_type=client_credentials" <http://example.com:8085/ords/
wksp1/oauth/token>

Response:

{"access_token":"B1o38ikZ55tNMXsuPlksDQ","token_type":"bearer","expires_in"
:3600}

3. Ingest the data.
Request:

curl -k --request POST -i -H "Authorization: Bearer {ingest user token}" \
 --header "Content-Type: application/json" \
 --data @<file_name> -v <INGESTION URL>

Response:

{"metrics_data_size":<num>,"metrics_ingested":<num>,

"metrics_given":<num>,"metrics_metadata":<num>,"ingest_duration_ms":<time
in ms>,

"ingest_format":<format>,"ingest_method":<method>,"ingest_user_name":<inges
t user name>}

Example (using the default Telemetry protocol):

curl -k --request POST -i -H "Authorization: Bearer
B1o38ikZ55tNMXsuPlksDQ" \
 --header "Content-Type: application/json" \
 --data @data.json -v https://example.com:8000/ords/workspace1/ingest1/
ingest

Response:

{"metrics_data_size":79,"metrics_ingested":1,
 "metrics_given":1,"metrics_metadata":1,"ingest_duration_ms":10,

Chapter 5
Ingesting Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 22

"ingest_format":"telemetry","ingest_method":"ords","ingest_user_name":"inge
st1"}

Example (using Line protocol):

curl -k --request POST -i -H "Authorization: Bearer
B1o38ikZ55tNMXsuPlksDQ" \
 --header "Content-Type: application/json" \
 --data @data.json -v https://example.com:8000/ords/workspace1/ingest1/
ingestlp

Response:

{"metrics_data_size":79,"metrics_ingested":1,
 "metrics_given":1,"metrics_metadata":1,"ingest_duration_ms":10,

"ingest_format":"line","ingest_method":"ords","ingest_user_name":"ingest1"}

5.2 Querying Metric Data
This section explains the different ways you can query metric data in Telemetry Streaming.

You can use PromQL or SQL to query the time series data that is ingested in Telemetry
Streaming.

• Using PromQL to Query Metric Data
Learn about the supported PromQL queries and how to use them to query in Telemetry
Streaming.

• Using REST API with ORDS for Querying
This section describes the REST APIs used for querying.

• Using SQL to Query Metric Data
Learn how you can use SQL for querying in Telemetry Streaming.

5.2.1 Using PromQL to Query Metric Data
Learn about the supported PromQL queries and how to use them to query in Telemetry
Streaming.

To query the data using PromQL, you can use either of the following:

• PL/SQL APIs using the DBMS_TELEMETRY_QUERY package

See Also

DBMS_TELEMETRY_QUERY in Oracle AI Database PL/SQL Packages and
Types Reference for more information about the DBMS_TELEMETRY_QUERY PL/SQL
package.

• ORDS REST endpoints
Querying using REST API is explained later in this section.

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 22

In Oracle AI Database 26ai, Release 23.26.0, only a subset of PromQL constructs are
supported.

• Supported PromQL Queries for DBMS_TELEMETRY_QUERY

• Using Supported PromQL Query Operators

See Also

PromQL Querying Basics to get started with building queries using PromQL

5.2.1.1 Supported PromQL Queries for DBMS_TELEMETRY_QUERY
The following types of PromQL queries are supported in DBMS_TELEMETRY_QUERY for each query
category.

Range/Instant PromQL Queries

• Vector Selector

node_cpu_seconds_total{cpu="1"}

• Functions (rate/irate)

rate(node_cpu_seconds_total{cpu="1"}[3m])

• Aggregate: sum, avg, count, max, min, stddev, stdvar, group, quantile, topk, bottomk,
count_values

sum(node_cpu_seconds_total)

min(node_boot_time_seconds{device!="eth0"})

stddev(node_disk_info{major!="11"})

group(container_spec_cpu_period{job="cadvisor"})

quantile(0.95,node_arp_entries{device=~"eth0"})

topk(5,node_boot_time_seconds{job="node"})

count_values("values",node_cpu_online)

• Aggregate by: sum, avg, count, max, min, stddev, stdvar, group, quantile, topk, bottomk,
count_values

avg by(cpu)(node_cpu_online{job=~"node"})

count(go_gc_gogc_percent{job="node"})

stdvar by(bios_date)(node_disk_info{job="node"})

group by(address)(container_spec_cpu_period{job="cadvisor"})

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 22

https://prometheus.io/docs/prometheus/latest/querying/basics/

quantile by(adminstate)(0.80,go_gc_gogc_percent{job="node"})

bottomk by(tags)(node_boot_time_seconds{job=~"node"})

count_values by(tags)("cpu",node_cpu_load)

Label Queries

• Fetch all the distinct keys in the tags column or for a given tag key, fetch all the distinct
values of that corresponding key.

Series Queries

• Fetch a range of time series that matches a specific criteria, such as a label filter or metric
name.

node_cpu_seconds_total{cpu="1"}

See Also

PromQL Querying for more information about PromQL querying

5.2.1.2 Using Supported PromQL Query Operators
The following shows the usage of the supported PromQL queries for DBMS_TELEMETRY_QUERY in
the initial version.

Range Queries

Range queries in PromQL are queries that span over a time range.

The format is as follows:

select dbms_telemetry_query.promql_range(promql_query, start_time_epoch,
end_time_epoch, step_size_seconds, fetch_sql[optional]) from dual;

Note

The fetch_sql value can be either 0 or 1. If it is 1, the SQL conversion of the PromQL
query is returned; if it is 0 [default value], the result after executing the SQL is returned
as JSON.

The range queries can be of 4 types:

• Simple expression queries

select
dbms_telemetry_query.promql_range('node_cpu_load{cpu="1"}',1389312400,13893
12600,10) from dual;

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 22

https://prometheus.io/docs/prometheus/latest/querying/basics/

• Simple aggregate queries (sum, avg, count, count_values, max, min, std deviation, std
variance, group, quantile, top_k, bottom_k)

select
dbms_telemetry_query.promql_range('sum(node_cpu_load{cpu="1"})',1389312400,
1389312600,10) from dual;

• Simple aggregate-by queries (sum, avg, count, count_values, max, min, std deviation, std
variance, group, quantile, top_k, bottom_k)

select dbms_telemetry_query.promql_range('sum by(tag)
(node_cpu_load{cpu="1"})',1389312400,1389312600,10) from dual;

• Functions (Rate/IRate)

select dbms_telemetry_query.promql_range('irate(node_cpu_load{cpu="1"}
[5m])',1389312400,1389312600,10) from dual;

Instant Queries

Instant queries in PromQL request time series data for a particular timestamp.

The format is as follows:

select dbms_telemetry_query.promql_instant(promql_query, instant_time_epoch,
fetch_sql[optional]) from dual;

Note

The fetch_sql value can be either 0 or 1. If it is 1, the SQL conversion of the PromQL
query is returned; if it is 0 [default value], the result after executing the SQL is returned
as JSON.

Instant queries can be of four types.

• Simple expression queries

select
dbms_telemetry_query.promql_instant('node_cpu_load{cpu="1"}',1389312600)
from dual;

• Simple aggregate queries (sum, avg, count, count_values, max, min, std deviation, std
variance, group, quantile, top_k, bottom_k)

select
dbms_telemetry_query.promql_instant('sum(node_cpu_load{cpu="1"})',138931260
0) from dual;

• Simple aggregate-by queries (sum, avg, count, count_values, max, min, std deviation, std
variance, group, quantile, top_k, bottom_k)

select dbms_telemetry_query.promql_instant('sum by(tag)
(node_cpu_load{cpu="1"})',1389312600) from dual;

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 22

• Functions (Rate/IRate)

select dbms_telemetry_query.promql_instant('rate(node_cpu_load{cpu="1"}
[3m])',1389312600) from dual;

Label Queries

Label queries in PromQL fetch distinct keys or distinct values.

The format is as follows:

select dbms_telemetry_query.promql_label(promql_query, start_time_epoch,
end_time_epoch, fetch_sql[optional]) from dual;

Note

The fetch_sql value can be either 0 or 1. If it is 1, the SQL conversion of the PromQL
query is returned; if it is 0 [default value], the result after executing the SQL is returned
as JSON.

Label queries are of two types.

• Fetches all the distinct keys in the tags (if the promql query is empty)

select dbms_telemetry_query.promql_label(' ',1389312400,1389312600) from
dual;

• Fetches all the distinct values that a particular key can take in the tags

select dbms_telemetry_query.promql_label('cpu',1389312400,1389312600) from
dual;

Series Queries

Series queries in PromQL fetch the metadata (metric name and tags) of the time series that
match the given PromQL query.

The format is as follows:

select dbms_telemetry_query.promql_series(promql_query, start_time_epoch,
end_time_epoch, fetch_sql[optional]) from dual;

Note

The fetch_sql value can be either 0 or 1. If it is 1, the SQL conversion of the PromQL
query is returned; if it is 0 [default value], the result after executing the SQL is returned
as JSON.

select
dbms_telemetry_query.promql_series('node_cpu_load{cpu="1"}',1389312400,1389312
600) from dual;

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 22

See Also

PromQL Querying for more information about PromQL querying

5.2.2 Using REST API with ORDS for Querying
This section describes the REST APIs used for querying.

Once an ORDS query user is created using the ORDS workspace administrator, the user can
query data or view query statistics through the following REST API endpoints.

Note

Ensure that ORDS is installed and Telemetry Streaming is REST enabled before using
REST APIs.

See Also

Installing Oracle REST Data Services for more information about the ORDS
installation.

Table 5-3 REST API Summary

API Type Summary

POST /ords/<Workspace Name>/<Ords Query
User>/<Query Type>

Query Telemetry Streaming data using ORDS API
endpoint

Query Data

METHOD: POST

PATH: /ords/<Workspace Name>/<Ords Query User>/<Query Type>

QUERY
TYPE:

promql_range, promql_label, promql_series, promql_instant

USER: ORDS Query User

SUMMAR
Y:

Query Telemetry Streaming data using ORDS API endpoint

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 22

https://prometheus.io/docs/prometheus/latest/querying/basics/

Range Query

DATA:
{
 "promql_query" : <Promql_query>,
 "start_time" : <start time in epoch>,
 "end_time" : <end time in epoch>,
 "step_size" : <step size>
}

HTTP
CODE:

201 - Successfully executed

{
 "status": "success",
 "data": {
 "resultType" : "matrix",
 "result":
 [
 {
 "metric":
 {
 "__name__": <metric_name>,
 <tag_key>: <tag_value>
 },
 "value":
 [
 <epoch_time>,
 <metric_value>
]
 }
]
 }
}

400 - Unsuccessful
401 - Unauthorized

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 22

Range Query

EXAMPLE PATH: /ords/workspace1/query1/promql_range
DATA:

{
 "promql_query" : "node_cpu_load{tag="3"}",
 "start_time" : 1389312580,
 "end_time" : 1389312600,
 "step_size" : 20
}

CODE: 201 - Successfully executed

{
 "status": "success",
 "data": {
 "resultType": "matrix",
 "result": [
 {
 "metric": {
 "tag": "3"
 },
 "values": [
 [
 1389312580,
 "10.000000"
],
 [
 1389312600,
 "10.000000"
]
]
 }
]
 }
}

Instant Query

DATA:
{
 "promql_query" : <Promql_query>,
 "point_time" : <time in epoch>
}

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 22

Instant Query

HTTP
CODE:

201 - Successfully executed

{
 "status": "success",
 "data": {
 "resultType" : "vector",
 "result":
 [
 {
 "metric":
 {
 "__name__": <metric_name>,
 <tag_key>: <tag_value>
 },
 "value":
 [
 <epoch_time>,
 <metric_value>
]
 }
]
 }
}

400 - Unsuccessful
401 - Unauthorized

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 22

Instant Query

EXAMPLE PATH: /ords/workspace1/query1/promql_point
DATA:

{
 "promql_query" : "node_cpu_load{tag="3"}",
 "point_time" : 1389312580,
}

CODE: 201 - Successfully executed

 {
 "status": "success",
 "data": {
 "resultType": "vector",
 "result": [
 {
 "metric": {
 "tag": "3"
 },
 "values": [
 [
 1389312580,
 "10.000000"
]
]
 }
]
 }
}

Series Query

DATA:
{
 "promql_query" : <Promql_query>,
 "start_time" : <start time in epoch>,
 "end_time" : <end time in epoch>,
}

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 22

Series Query

HTTP
CODE:

201 - Successfully executed

{
 "status" : "success",
 "data" : [
 {
 "__name__": <metric_name>,
 <tag_key>: <tag_value>
 }
]
}

400 - Unsuccessful
401 - Unauthorized

EXAMPLE PATH: /ords/workspace1/query1/promql_series
DATA:

{
 "promql_query" : "node_cpu_load{tag="3"}",
 "start_time" : 1389312580,
 "end_time" : 1389312600,
}

CODE: 201 - Successfully executed

{
 "status" : "success",
 "data" : [
 {
 "__name__" : "node_cpu_load",
 "tag" : "3"
 }
]
}

Label Query

DATA:
{
 "promql_query" : <Promql_query>,
 "start_time" : <start time in epoch>,
 "end_time" : <end time in epoch>,
}

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 22

Label Query

HTTP
CODE:

201 - Successfully executed

{
 "status" : "success",
 "data" : [
 <tag_value>
]
}

400 - Unsuccessful
401 - Unauthorized

EXAMPLE PATH: /ords/workspace1/query1/promql_label
DATA:

{
 "promql_query" : "tag",
 "start_time" : 1389312580,
 "end_time" : 1389312600,
}

CODE: 201 - Successfully executed

{
 "status" : "success",
 "data" : [
 "3"
]
}

Query Example Using cURL

1. Add a new query user.
Request:

curl -k --request POST -i \
 -H "Authorization: Bearer {admin user token}" \
 -H "Content-Type: application/json" \
 --data '{ "user_name": "<USERNAME>", "role": "<ROLE>" }' \
 -v <ADD_USER_URL>

Response:

 {"client_id":<client_id>, "client_secret":<client_secret key>}

Example:

 curl -k --request POST -i \
 -H "Authorization: Bearer moVgM6Vi6TqJB0xbYezicA" \

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 22

 -H "Content-Type: application/json" \
 --data '{ "user_name": "QUERY1", "role": "QUERY" }' \
 -v http://example.com:8085/ords/wksp1/add_user

Response:

{"client_id":"fymGQ8uO8zuPTiBWrw8CEw..","client_secret":"fPJ3RcJlR_XEmlrC27
6dEg.."}

2. Generate an access token for the query user.
Generate an OAuth token using the client_id and client_secret.

Request:

 curl -k --request POST \
 --user $QUERY_USER_CLIENT_ID:$QUERY_USER_CLIENT_SECRET \
 --data "grant_type=client_credentials" <TOKEN_URL>

Response:

{"access_token":<token>, "token_type":<token type>, "expires_in":<time in
seconds>}

Example:

 curl -X POST \
 --user fymGQ8uO8zuPTiBWrw8CEw..:fPJ3RcJlR_XEmlrC276dEg.. \
 --data "grant_type=client_credentials" \
 http://example.com:8085/ords/wksp1/oauth/token

Response:

{"access_token":"GVCvNXcqRG9OBZM98zHPcQ","token_type":"bearer","expires_in"
:3600}

3. Run the PromQL Range/PromQL Instant/PromQL Series/PromQL Label query using the
access token.
Use the generated token (for example, GVCvNXcqRG9OBZM98zHPcQ) to query the PromQL
endpoint as the QUERY1 user.

The following examples demonstrate the query requests and responses for each query
type.

PromQL Range:

Example:

curl -k --request POST -i -H "Authorization: Bearer
GVCvNXcqRG9OBZM98zHPcQ" \
 --header "Content-Type: application/json" \
 --data '{ "promql_query": "met1", "start_time": 1759752400,
"end_time": 1759752700, "step_size": 10}' \
 -v http://example.com:8085/ords/wksp1/QUERY1/promql_range

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 22

Response:

{
 "status" : "success",
 "data" :
 {
 "resultType" : "matrix",
 "result" :
 [
 {
 "metric" :
 {
 "__name__" : "met1",
 "tag1" : "val1"
 },
 "values" :
 [
 [
 1759752590,
 "10.000000"
]
]
 }
]
 }
}

PromQL Instant

Example:

curl -k --request POST -i -H "Authorization: Bearer
GVCvNXcqRG9OBZM98zHPcQ" \
 --header "Content-Type: application/json" \
 --data '{ "promql_query": "met1", "point_time" : 1751460370}' \
 -v http://example.com:8085/ords/wksp1/QUERY1/promql_point

Response:

{
 "status" : "success",
 "data" :
 {
 "resultType" : "vector",
 "result" :
 [
 {
 "metric" :
 {
 "__name__" : "met1",
 "tag1" : "val1"
 },
 "value" :
 [
 1759752700,

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 22

 "10.000000"
]
 }
]
 }
}

PromQL Series

Example:

curl -k --request POST -i -H "Authorization: Bearer
GVCvNXcqRG9OBZM98zHPcQ" \
 --header "Content-Type: application/json" \
 --data '{ "promql_query": "met1", "start_time": 1759752400,
"end_time": 1759752700}' \
 -v http://example.com:8085/ords/wksp1/QUERY1/promql_series

Response:

{
 "status" : "success",
 "data" :
 [
 {
 "__name__" : "met1",
 "tag1" : "val1"
 }
]
}

PromQL Label

Example:

curl -k --request POST -i -H "Authorization: Bearer
GVCvNXcqRG9OBZM98zHPcQ" \
 --header "Content-Type: application/json" \
 --data '{ "promql_query": "tag1", "start_time": 1759752400,
"end_time": 1759752700}' \
 -v http://example.com:8085/ords/wksp1/QUERY1/promql_label

Response:

{
 "status" : "success",
 "data" :
 [
 "val1"
]
}

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 22

5.2.3 Using SQL to Query Metric Data
Learn how you can use SQL for querying in Telemetry Streaming.

Telemetry Streaming is built on Oracle AI Database, and so it supports SQL to query the time
series data. The advantage of using SQL is its ability to construct complex queries that can
give better insight into the data.

A workspace query user can access metrics data using SQL on the
TM$<WORKSPACE_NAME>.TELEMETRY_METRICS view of the workspace.

For Example:

select metric_name, metric_tags, metric_value, metric_time from
TM$WORKSPACE1.TELEMETRY_METRICS.

See Also

Table 8 in Tables and Views for more information about the workspace administration
views

Chapter 5
Querying Metric Data

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 22

6
Errors and Troubleshooting

This chapter discusses the likely errors that can arise when using Telemetry Streaming and
how to fix them.

The following sections provide an overview of the potential errors and the troubleshooting
steps required to resolve them.

Workspace Management Errors

Error Example Troubleshooting

ORA-00959:
tablespace 'TBS'
does not exist

SQL> exec
dbms_telemetry_workspace.create_wo
rkspace('workspace1','tbs');
BEGIN
dbms_telemetry_workspace.create_wo
rkspace('workspace1','tbs'); END;

*
ERROR at line 1:
ORA-00959: tablespace 'TBS' does
not exist

Tablespace for the workspace
should be created before creating
the workspace.

ORA-20004:
"ADMIN1":user does
not exist

SQL> exec
dbms_telemetry_workspace.enable_wo
rkspace_admin('workspace1','admin1
');
BEGIN
dbms_telemetry_workspace.enable_wo
rkspace_admin('workspace1','admin1
'); END;

*
ERROR at line 1:
ORA-20004: "ADMIN1":user does not
exist

Admin user should be created
before enabling for the
workspace. It is not created by
the PL/SQL API.

Resolution: Create a DB user
'admin1' with connect privilege
and retry the operation.

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 6

Error Example Troubleshooting

ORA-20012:
"WORKSPACE1":
has users. use
force=>true

SQL> exec
dbms_telemetry_workspace.drop_work
space('workspace1');
BEGIN
dbms_telemetry_workspace.drop_work
space('workspace1'); END;

*
ERROR at line 1:
ORA-20012: "WORKSPACE1": has
users. use force=>true

Workspaces with active users
cannot be dropped without 'force'
option being 'true'.

Workspace Administration Errors

Error Example Troubleshooting

ORA-44001: invalid
schema SQL> exec

dbms_telemetry_admin.enable_worksp
ace_user('workspace1','user1','ING
EST');
BEGIN
dbms_telemetry_admin.enable_worksp
ace_user('workspace1','user1','ING
EST'); END;

*
ERROR at line 1:
ORA-44001: invalid schema

Ingest or query user should be
created before enabling for the
workspace.

Resolution: Create a DB user
'user1' with connect privilege and
retry the operation.

ORA-20008: inges:
invalid role SQL> exec

dbms_telemetry_admin.enable_worksp
ace_user('workspace1','user2','ING
ES');
BEGIN
dbms_telemetry_admin.enable_worksp
ace_user('workspace1','user2','ING
ES'); END;

*
ERROR at line 1:
ORA-20008: inges: invalid role

The role can be only one of
'ingest', 'query' or 'ingest|query'.

Resolution: Correct the role to a
valid value.

Chapter 6

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 6

Error Example Troubleshooting

ORA-20010:
"USER1": already
added to workspace
"WORKSPACE1"

SQL> exec
dbms_telemetry_admin.enable_worksp
ace_user('workspace1','user1','ING
EST');
BEGIN
dbms_telemetry_admin.enable_worksp
ace_user('workspace1','user1','ING
EST'); END;

*
ERROR at line 1:
ORA-20010: "USER1": already added
to workspace "WORKSPACE1"

User can be added to only one of
the workspaces and only once.

Not
e

For
chan
ging
the
role
of an
alrea
dy
assig
ned
user,
disab
le the
user
from
the
work
spac
e and
re-
enabl
e
with
new
role.

Chapter 6

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 6

Ingest Errors

Issue Example Troubleshooting

Metrics not ingested
because the time
epoch is not in the
last one hour. Older
metrics are
discarded.

begin

dbms_output.put_line(dbms_telemetr
y_ingest.ingest_metrics(

'speed',

'{"type":"car","unit":"mph"}',

100,

1000));
end;
/

{"metrics_data_size":60,"metrics_i
ngested":0,"metrics_given":1,"metr
ics_metadata
":0,"ingest_duration_ms":10,"inges
t_format":"telemetry","ingest_meth
od":"plsql
","ingest_user_name":"\"USER1\""}

Issue: "metric_ingested":0
implies that no rows were
ingested.s

Resolution: The metrics time
should be greater than 3600
seconds from the time of
ingestion and less than equal to
current time.

PromQL Errors

Error Example Troubleshooting

ORA-52002:
PromQL error: start
time and end time
cannot be zero for
range or point
queries.

SQL> select
dbms_telemetry_query.promql_instan
t('node_cpu_load{tag!~"1|2"}',0)
from dual;
 ERROR:
 ORA-52002: PromQL error: start
time and end time cannot be zero
for range or point queries

Passing start time and end time
as 0 for Instant/Range PromQL
query.

Chapter 6

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 6

Error Example Troubleshooting

ORA-00067: invalid
value 0 for
parameter step size;
must be at least 1.

SQL> select
dbms_telemetry_query.promql_range(
'node_cpu_load{tag=~"8|
3"}',1389312600 - 500,
1389312600,0) from dual;
 ERROR:
 ORA-00067: invalid value 0 for
parameter step size; must be at
least 1

Passing Step Size that is less
than or equal to zero for range
PromQL query.

ORA-52002:
PromQL error:
Aggregate functions
are not used with
Series Query.

SQL> select
dbms_telemetry_query.promql_serie
s('avg(node_cpu_load{tag="3"})',
0, 0) from dual;
 ERROR:
 ORA-52002: PromQL error:
Aggregate functions are not used
with Series Query

Using aggregate or aggregate-by
operator for label/series PromQL
query.

ORA-52002:
PromQL error:
Unknown Expr Node
type passed for
Label query. Expr
Node type 1.

SQL> select
dbms_telemetry_query.promql_label(
'avg(node_cpu_load{tag="3"})', 0,
0) from dual;
 ERROR:
 ORA-52002: PromQL error:
Unknown Expr Node type passed for
Label query. Expr Node type 1

Using aggregate or aggregate-by
operator for label/series PromQL
query.

ORA-52002:
PromQL error:
Incorrect result type
passed as input

SQL> select
dbms_telemetry_query.promql_label(
'tags', 0, 0, 8) from dual;
 ERROR:
 ORA-52002: PromQL error:
Incorrect result type passed as
input

Passing invalid result_type values
for PromQL query.

ORA-52002:
PromQL error:
Unknown Expr Node
type passed for
Label query. Expr
Node type 5

SQL> select
dbms_telemetry_query.promql_label(
'irate(node_cpu_load{tag="3"}
[8m])', 0, 0) from dual;
 ERROR:
 ORA-52002: PromQL error:
Unknown Expr Node type passed for
Label query. Expr Node type 5

Applying rate/irate functions in
PromQL label or series-based
queries.

Chapter 6

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 6

Error Example Troubleshooting

ORA-52002:
PromQL error: rate/
irate functions are
not used with Series
Query

SQL> select
dbms_telemetry_query.promql_serie
s('rate(node_cpu_load{tag="3"}
[8m])', 0, 0) from dual;
 ERROR:
 ORA-52002: PromQL error: rate/
irate functions are not used with
Series Query

Applying rate/irate functions in
PromQL label or series-based
queries.

Chapter 6

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 6

A.1 Tables and Views

The following tables and views are used in Telemetry Streaming.

Oracle DBA Views

The following views are accessible to users having the Oracle DBA role.

Table 1 TELEMETRY_DBA.TELEMETRY_WORKSPACES

Columns Data Type Description

WORKSPACE_ID NUMBER Workspace ID

WORKSPACE_NAME VARCHAR2(128) Name of the workspace

TABLESPACE_NAME VARCHAR2(128) Default tablespace of the workspace

CREATION_TIME DATE Time at which this workspace was created

Table 2 TELEMETRY_DBA.TELEMETRY_ADMINS

Columns Data Type Description

WORKSPACE_ID NUMBER Workspace ID

ADMIN_USER VARCHAR2(128) The database user who is assigned as an ADMIN to the
workspace ID

ADMIN_USERID NUMBER User ID of the ADMIN_USER

CREATION_TIME DATE Time at which the user was assigned as an admin user

Admin User Views

The following views are accessible to users with the workspace administrator role.

Table 3 TELEMETRY_DBA.TELEMETRY_WORKSPACE_USERS

Column Data Type Description

WORKSPACE_ID NUMBER This is an automatically generated unique ID for every
workspace created

WORKSPACE_NAME VARCHAR2(128) Name of the workspace given at the time of creation

USER_NAME VARCHAR2(128) The database user name of the user associated with this
workspace

USER_ROLE VARCHAR2(128) 'INGEST', 'QUERY' or 'INGEST|QUERY' are the valid
values

Table 4 TM$<workspace name>.TELEMETRY_INGEST_STATS

Column Data Type Description

PAYLOAD_SIZE NUMBER The size of the ingest payload in bytes

METRICS_INGESTED NUMBER Number of metrics ingested

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 3

Table 4 (Cont.) TM$<workspace name>.TELEMETRY_INGEST_STATS

Column Data Type Description

METRICS_DISCARDE
D

NUMBER Number of metrics rejected

INGEST_USERNAME VARCHAR2(128) Username of the ingest user

INGEST_DURATION_
MILLISECONDS

NUMBER Time taken for ingest in ms

INGEST_METHOD VARCHAR2(200) (PLSQL or REST)

INGEST_TIMESTAMP TIMESTAMP(6) The time of ingestion

Table 5 TM$<workspace name>.TELEMETRY_INGEST_DISCARDS

Column Data Type Description

METRIC_NAME VARCHAR2(512) The metric name

METRIC_TAGS VARCHAR2(4000) The metric tags

METRIC_VALUE NUMBER The metric value

METRIC_TIME_EPOC
H

NUMBER Time in epoch

INGEST_PAYLOAD_A
RRIVAL_TIME

NUMBER Epoch of ingest payload receive

DISCARD_REASON VARCHAR2(500) Why was the ingest discarded?

DISCARD_TIMESTAM
P

TIMESTAMP(6) The time at which the ingest was discarded

Table 6 TM$<workspace name>.TELEMETRY_QUERY_STATS

Column Data Type Description

QUERY_TYPE VARCHAR2(200) (Instant, Range, Label, or Series)

START_TIME_EPOCH NUMBER The query start time in epoch

END_TIME_EPOCH NUMBER The query end time in epoch

STEP_SIZE_SECOND
S

NUMBER The Step Size for range queries

QUERY_USERNAME VARCHAR2(128) The username of the query user

QUERY_DURATION_M
ILLISECONDS

NUMBER The time taken for the ingest in ms

QUERY_METHOD VARCHAR2(200) (PLSQL or REST)

QUERY_TIMESTAMP TIMESTAMP(6) The time of the query

Table 7 TM$<workspace name>.TELEMETRY_ADMIN_LOG

Column Data Type Description

LOG_MESSAGE VARCHAR2(4000) Message Text

LOG_TIMESTAMP TIMESTAMP(6) Th timestamp of the message

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 3

Note

Query stats are gathered and inserted into stats table through an autonomous
transaction as a part of the query. As a result, there is a write operation into the
database as a part of the query. This prevents PromQL queries to be executed from
Read-only, standby databases.

Query User Views

The following views are accessible to users with the query user role.

Table 8 TM$<workspace name>.TELEMETRY_METRICS

Column Data Type Description

METRIC_NAME VARCHAR2(512) The metric name part of the time series

METRIC_TAGS VARCHAR2(4000) The tags part of the time series in JSON format

METRIC_VALUE NUMBER The point-in-time value of the time series

METRIC_TIME_EPOC
H

NUMBER The time in epoch

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 3

Index

E
errors and troubleshooting, 1

I
installing Telemetry Streaming, 1

enabling Telemetry Streaming, 2
installing ORDS, 5
overview, 1
PDB parameters, 4
system requirements, 2

T
tables and views, 1
Telemetry Streaming administration, 1

managing a workspace, 5
database users, 7
ORDS users, 9
using REST API, 10

overview, 1
user roles, 2

database user roles, 2

Telemetry Streaming administration (continued)
user roles (continued)
ORDS user roles, 4

Telemetry Streaming architecture and
components, 1

architecture, 1
components overview, 2

Telemetry Streaming introduction, 1
concepts, 1
data format and naming conventions, 5
overview, 4
time series, 4

U
using Telemetry Streaming, 1

ingesting, 1
using PL/SQL, 1
using REST API, 2

querying, 7
supported PromQL, 8
supported PromQL operators, 9
using PromQL, 7
using REST API, 12
using SQL, 22

Telemetry Streaming Developer's Guide
G36665-01
Copyright © 2025, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-1 of Index-1

	Contents
	List of Tables
	1 Introduction to Oracle AI Database Telemetry Streaming
	1.1 Concepts
	1.2 Telemetry Streaming Overview
	1.3 Time Series in Telemetry Streaming
	1.4 Data Format and Naming Conventions

	2 Telemetry Streaming Architecture and Components
	2.1 Telemetry Streaming Architecture
	2.2 Telemetry Streaming Components Overview

	3 Telemetry Streaming Administration
	3.1 Administration Overview
	3.2 User Roles and Privileges
	3.2.1 Database User Types and Privileges
	3.2.2 ORDS User Types and Privileges

	3.3 Managing a Workspace
	3.3.1 Managing Database Workspace Users
	3.3.2 Managing ORDS Workspace Users
	3.3.2.1 Using REST API for Workspace Administration

	4 Installing and Enabling Telemetry Streaming in Oracle AI Database
	4.1 Installation Overview
	4.2 System Requirements
	4.3 Enabling Telemetry Streaming in Oracle AI Database
	4.3.1 Telemetry Streaming PDB Parameters

	4.4 Installing Oracle REST Data Services

	5 Using Telemetry Streaming
	5.1 Ingesting Metric Data
	5.1.1 Using PL/SQL to Ingest Metric Data
	5.1.2 Using REST APIs with ORDS to Ingest Metric Data

	5.2 Querying Metric Data
	5.2.1 Using PromQL to Query Metric Data
	5.2.1.1 Supported PromQL Queries for DBMS_TELEMETRY_QUERY
	5.2.1.2 Using Supported PromQL Query Operators

	5.2.2 Using REST API with ORDS for Querying
	5.2.3 Using SQL to Query Metric Data

	6 Errors and Troubleshooting
	A.1 Tables and Views
	Index

