
Oracle® AI Database
Oracle Database Support for GraphQL
Developer's Guide

26ai
G35946-01
June 2025



Oracle AI Database Oracle Database Support for GraphQL Developer's Guide, 26ai

G35946-01

Copyright © 2025, 2014, Oracle and/or its affiliates.

Primary Author: Subha Vikram

Contributing Authors: Drew Adams

Contributors: Shashank Gugnani, Aditya Raj Singh Gour

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

1   Overview of GraphQL

Oracle Database Support for GraphQL 1

Introduction to Car Racing Example 3

Setting up the Car Racing Dataset 4

Insert Data to the Car Racing Tables 4

2   Custom GraphQL Syntax in Oracle

GraphQL Schema Conventions in Oracle AI Database 2

Custom GraphQL Scalars in Oracle 5

Implicit Field Aliasing Support for GraphQL in Oracle 6

Generating a GraphQL Schema from a Relational Schema 7

3   GraphQL Queries

GraphQL Table Function 2

Specifying Nested Objects within a Query 5

Custom GraphQL Directives 9

@WHERE Directive 11

@ORDERBY Directive 15

@ARRAY Directive 19

@OBJECT Directive 21

@LINK Directive 23

@GENERATED Directive 27

@NEST and @UNNEST Directives 28

@FLEX Directive 32

@HIDDEN Directive 33

@ALIAS Directive 34

GraphQL Filter Specifications: Arguments 35

GraphQL Filter Specifications: QBE 38

Relational Operators in QBE 38

Equal and Not Equal to QBE Operators 38

Greater and Less than QBE Operators 41

LIKE QBE Operator 44

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page i of ii



IS NULL QBE Operator 45

IN, NOT IN and BETWEEN QBE Operators 45

Logical Operators in QBE 47

AND QBE Operator 48

OR QBE Operators 49

Item Method Operators in QBE 50

STRING QBE Operator 51

LOWER and UPPER QBE Operators 52

LENGTH QBE Operator 53

GraphQL Variables 54

Using Literals in the Passing Clause 58

Using SQL Expressions in the Passing Clause 59

Comments within a GraphQL Query 60

4   Creating JSON Relational Duality Views using GraphQL

Index

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page ii of ii



List of Examples

1-1 Create the Base Tables and Indexes 4

1-2 Sample data to be inserted into team table 5

1-3 Sample data to be inserted into driver table 5

1-4 Sample data to be inserted into race table 5

1-5 Sample data to be inserted into driver_race_map table 12

2-1 GraphQL Type System for the Car-Racing Relational Tables 1

2-2 JSON Schema for GraphQL Schema Representation 3

3-1 @link Directive Specifying the Joining Columns 24

3-2 Create and Insert Data to a New Table that has a Self-Referencing Field 26

3-3 _eq Operator 38

3-4 _ne Operator 39

3-5 _gt Operator 41

3-6 _lte Operator 42

3-7 _like Operator 44

3-8 _is_null Operator 45

3-9 _in Operator 45

3-10 _between Operator 46

3-11 _and Operator 48

3-12 _or Operator 49

3-13 _string Operator 51

3-14 _length Operator 53

3-15 Passing One Variable in Oracle Supported GraphQL Query 55

3-16 Combining Multiple Variables using the _or QBE Operator 56

3-17 Using Numeric Literal in the Passing Clause of a GraphQL Variable 58

3-18 Using String Literal in the Passing Clause of a GraphQL Variable 58

3-19 Using SQL Expressions in the Passing Clause of a GraphQL Variable 59

3-20 Defining Comments in the GraphQL Table Function 60

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page iii of ii



List of Figures

2-1 Relational Schema to GraphQL Schema Mapping 4

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page iv of ii



List of Tables

1-1 GraphQL Query vs Oracle Supported GraphQL Table Function 2

1-2 Primary Entities and Relationships of the Car Racing Example 3

2-1 Scalar Types: Oracle Type, OSON Type, JSON Type, GraphQL Type and GraphQL Type in Oracle 5

2-2 Inputs to the GET_GRAPHQL_SCHEMA Function 7

3-1 Custom Directives Comparison Table 10

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page v of ii



1
Overview of GraphQL

In today’s era of modern application development, efficient and flexible access to data is
critical. As data sources grow in scale and complexity, developers require tools and
methodologies that enable seamless interaction, introspection, and transformation of data.

The Evolution and Power of GraphQL

GraphQL has quickly gained popularity among developers for building dynamic applications.
GraphQL is both a query language for APIs and a runtime for fulfilling those queries with
existing data. It provides a complete, understandable description of the data in an API, giving
clients the ability to specify precisely what should be returned, and nothing more.

Here are several core reasons why GraphQL stands out in modern API and data interaction:

• Selective Data Fetching: Unlike traditional query languages that return a fixed set of data,
GraphQL enables you to define exactly which data fields you want, preventing
unnecessary data transfer and streamlining application performance. This approach
effectively addresses the common issues of retrieving too much or too little data.

• Robust Type System: GraphQL uses a robust type system that outlines the structure of
data that can be queried. This system not only serves as clear documentation but also
simplifies understanding for both developers and tools. By defining the expected data
shape, it ensures more predictable and consistent interactions with the API.

• Single Endpoint Model: Traditional APIs, like REST, often require multiple endpoints for
different resources or actions. GraphQL unifies requests behind a single endpoint.
Regardless of what data is needed, the query is sent to this endpoint, and the server
responds appropriately, streamlining communication and reducing complexity.

Despite its popularity and advantages, one of the existing problems of using GraphQL is that
you need to write custom resolvers to query specific databases. For example, when using
GraphQL with relational databases, you need to convert the GraphQL queries to SQL queries
and then use it to fetch the required data. There are tools available which would semi-
automate this process, it might not be as efficient as it needs to be.

Oracle Database Support for GraphQL
Advancements in relational database technologies have further amplified the benefits of
GraphQL. Oracle AI Database now provides the support for integrating GraphQL by providing
means to query the database directly without using custom resolvers.

Through Oracle Database Support for GraphQL Queries, you can effortlessly create,
introspect, and query complex data objects without sacrificing the performance, scalability, or
optimization provided by relational databases. Automated schema inference from relational
structures streamlines the querying process, making GraphQL a seamless add-on to
established relational storage models.

Starting 26ai, Oracle AI Database Support for GraphQL Queries also introduces a table
function which lets Oracle AI Database understand GraphQL through an inbuilt GraphQL
parser.

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 15



Table 1-1    GraphQL Query vs Oracle Supported GraphQL Table Function

Standard GraphQL Query Oracle AI Database Supported
GraphQL Table Function

Sample Query
query {
  race {
    name
    date
    result {
      finalPosition
      driver {
    name
      }
    }
  }
}

select * from graphql(' 
  race {
    name
    date
    result {
      finalPosition
      driver {
    name
      }
    }
  }
')

Output The GraphQL query will produce
one JSON document, which will
contain data from all races.

The Oracle AI Database
Supported Table Function for
GraphQL Queries will create and
return one row per race.

Oracle Database Support for GraphQL Queries also introduces the following to eliminate the
need for extensive repetitive, manual coding tasks, simplifying maintenance and enabling
sophisticated data flows within applications:

• Custom directives to specify the joining columns

• Arguments to specify the predicates

• Query-By-Example (QBE) Operators to specify the predicates

• Limit Argument to explicitly specify the number of rows to be returned

• Using SQL binds as GraphQL variables

• Specify GraphQL comments within the table function

• Using SQL operators with the table function

Since GraphQL query is embedded inside a SQL query, existing SQL tools used for
diagnosability, performance measurement, and performance optimization such as AWR, SQL
Monitor, SQL Tracing, SQL Hints can also be used with the Oracle Database supported
GraphQL queries.

Complementing this, Oracle AI Database 26ai offers JSON Relational Duality, a paradigm
allowing data to reside in normalized relational tables while being accessed as flexible,
developer-friendly JSON documents. Oracle Database Support for GraphQL Queries allows
you to create the Duality Views, which are defined using an intuitive GraphQL-like syntax to
bridge the structured relational model with modern application needs. Duality Views make it
straightforward to create, and query complex data objects while retaining the performance and
scalability benefits of relational storage. These approaches collectively streamline querying
and data manipulation by enabling automated schema inference from relational models and
seamless GraphQL integration with databases.

This book covers only the most basic information related to integrating GraphQL to Oracle AI
Database. It is assumed that you are familiar with the concept of JSON-relational duality views

Chapter 1
Oracle Database Support for GraphQL

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 15

https://docs.oracle.com/en/database/oracle/oracle-database/23/jsnvu/index.html


and have brief knowledge about the GraphQL standard. Oracle recommends referring to the
official documentation and specifications from GraphQL to gain a complete picture. Refer to 
JSON-Relational Duality Developer's Guide for understanding the concepts of JSON-relational
duality views. The popular car racing example is used to illustrate GraphQL integration into the
Oracle AI Database.

Introduction to Car Racing Example
The car racing dataset is a well-structured, relational schema commonly used in Oracle AI
Database demonstrations and tutorials. It provides a realistic and relatable context that models
the world of competitive car racing, such as Formula 1.

The dataset is designed to illustrate fundamental database concepts, including entities,
relationships, and normalization, with emphasis on relational integrity and core SQL
operations.

Primary Entities and Relationships

The schema is comprised of four main tables, each representing a key component of the car
racing domain:

Table 1-2    Primary Entities and Relationships of the Car Racing Example

Table Description Key Columns Relationship

team Racing teams
information

team_id (PK), name
(unique), points

1:N with driver

driver Race car drivers driver_id (PK), name,
points, team_id (FK)

N:1 to team; N:N to race
via map

race Race events race_id (PK), name,
laps, race_date, podium

N:N with driver via map

driver_race_map Driver participation in
races and results

driver_race_map_id
(unique), race_id (FK),
driver_id (FK), position

N:1 to driver, N:1 to race

Table Descriptions

• team: Contains information for each racing team. Each team is uniquely identified by
team_id and has a unique name.

• driver: Represents each driver, including personal details and a foreign key reference
(team_id) to their associated team.

• race: Documents each race, with columns for the race name, number of laps, and the date
it took place. Every race has a unique race_id.

• driver_race_map: A junction (or mapping) table that connects drivers to races. It records
each driver's participation in a particular race and the position (finishing place) they
achieved.

Data Model Overview

The schema embodies several key relationships:

• One-to-Many (1:N): Each team can have multiple drivers. Enforced via the foreign key in
the driver table to the team table.

• Many-to-Many (M:N): Drivers can participate in multiple races and each race can feature
multiple drivers. Captured by the driver_race_map table, which links driver and race.

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 15

https://graphql.org/learn/
https://spec.graphql.org/October2021/
https://docs.oracle.com/en/database/oracle/oracle-database/23/jsnvu/index.html


Setting up the Car Racing Dataset
Use the instructions in this page to create tables and indexes for the car racing dataset.

Example 1-1    Create the Base Tables and Indexes

 
 
-- Table Definitions
CREATE TABLE team
  (team_id    INTEGER PRIMARY KEY,
   name       VARCHAR2(255) NOT NULL UNIQUE,
   points     INTEGER NOT NULL);
 
CREATE TABLE driver
  (driver_id  INTEGER PRIMARY KEY,
   name       VARCHAR2(255) NOT NULL UNIQUE,
   points     INTEGER NOT NULL,
   team_id    INTEGER,
   CONSTRAINT driver_fk FOREIGN KEY(team_id) REFERENCES team(team_id));
 
CREATE TABLE race
  (race_id    INTEGER PRIMARY KEY,
   name       VARCHAR2(255) NOT NULL UNIQUE,
   laps       INTEGER NOT NULL,
   race_date  DATE,
   podium     JSON);
 
CREATE TABLE driver_race_map
  (driver_race_map_id INTEGER PRIMARY KEY,
   race_id            INTEGER NOT NULL,
   driver_id          INTEGER NOT NULL,
   position           INTEGER,
   CONSTRAINT driver_race_map_uk  UNIQUE (race_id, driver_id),
   CONSTRAINT driver_race_map_fk1 FOREIGN KEY(race_id) REFERENCES 
race(race_id),
   CONSTRAINT driver_race_map_fk2 FOREIGN KEY(driver_id) REFERENCES 
driver(driver_id));
 
-- Indexes
CREATE INDEX driver_fk_idx ON driver (team_id);
CREATE INDEX driver_race_map_fk1_idx ON driver_race_map (race_id);
CREATE INDEX driver_race_map_fk2_idx ON driver_race_map (driver_id);

Insert Data to the Car Racing Tables
Use the examples provided in this page to insert values into the tables of the car racing
dataset.

Before proceeding, it is assumed that you have defined the tables as specified in Setting up
the Car Racing Example section of this book.

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 15



Example 1-2    Sample data to be inserted into team table

INSERT INTO team (team_id, name, points) VALUES
  (301, 'McLaren Mercedes', 666),
  (302, 'Ferrari', 652),
  (303, 'Red Bull Racing Honda RBPT', 589),
  (304, 'Mercedes', 468),
  (305, 'Aston Martin Aramco Mercedes', 94),
  (306, 'Alpine Renault', 65),
  (307, 'Haas Ferrari', 58),
  (308, 'RB Honda RBPT', 46),
  (309, 'Williams Mercedes', 17),
  (310, 'Kick Sauber Ferrari', 4);

Example 1-3    Sample data to be inserted into driver table

INSERT INTO driver (driver_id, name, points, team_id) VALUES
  (101, 'Lando Norris', 282, 301),
  (102, 'Oscar Piastri', 384, 301),
  (103, 'Charles Leclerc', 312, 302),
  (104, 'Carlos Sainz Jr.', 340, 302),
  (105, 'Max Verstappen', 456, 303),
  (106, 'Sergio Pérez', 133, 303),
  (107, 'Lewis Hamilton', 240, 304),
  (108, 'George Russell', 228, 304),
  (109, 'Fernando Alonso', 58, 305),
  (110, 'Lance Stroll', 36, 305),
  (111, 'Esteban Ocon', 33, 306),
  (112, 'Pierre Gasly', 32, 306),
  (113, 'Nico Hülkenberg', 30, 307),
  (114, 'Kevin Magnussen', 28, 307),
  (115, 'Daniel Ricciardo', 24, 308),
  (116, 'Yuki Tsunoda', 22, 308),
  (117, 'Alexander Albon', 12, 309),
  (118, 'Logan Sargeant', 5, 309),
  (119, 'Valtteri Bottas', 3, 310),
  (120, 'Zhou Guanyu', 1, 310);

Example 1-4    Sample data to be inserted into race table

INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  201,
  'Bahrain Grand Prix',
  57,
  TO_DATE('2024-03-02', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' VALUE 
'1:32:17'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Sergio Pérez', 'time' 
VALUE '1:32:33'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' 
VALUE '1:32:45')
  )
);
 

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 15



INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  202,
  'Saudi Arabian Grand Prix',
  50,
  TO_DATE('2024-03-09', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' VALUE 
'1:31:54'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' 
VALUE '1:32:06'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Fernando Alonso', 'time' 
VALUE '1:32:18')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  203,
  'Australian Grand Prix',
  58,
  TO_DATE('2024-03-24', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Carlos Sainz Jr.', 'time' VALUE 
'1:33:01'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' 
VALUE '1:33:12'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lewis Hamilton', 'time' 
VALUE '1:33:30')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  204,
  'Japanese Grand Prix',
  53,
  TO_DATE('2024-04-07', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' VALUE 
'1:30:17'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'George Russell', 'time' 
VALUE '1:30:40'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Oscar Piastri', 'time' 
VALUE '1:31:01')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  205,
  'Chinese Grand Prix',
  56,
  TO_DATE('2024-04-21', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' VALUE 
'1:32:55'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' 
VALUE '1:33:10'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Sergio Pérez', 'time' 

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 15



VALUE '1:33:22')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  206,
  'Miami Grand Prix',
  57,
  TO_DATE('2024-05-05', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' VALUE 
'1:31:45'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' 
VALUE '1:32:02'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Carlos Sainz Jr.', 
'time' VALUE '1:32:16')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  207,
  'Emilia Romagna Grand Prix',
  63,
  TO_DATE('2024-05-19', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' VALUE 
'1:34:10'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' 
VALUE '1:34:24'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' 
VALUE '1:34:38')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  208,
  'Monaco Grand Prix',
  78,
  TO_DATE('2024-05-26', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' VALUE 
'1:36:21'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' 
VALUE '1:36:39'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lewis Hamilton', 'time' 
VALUE '1:36:56')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  209,
  'Canadian Grand Prix',
  70,
  TO_DATE('2024-06-09', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' VALUE 

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 15



'1:33:03'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'George Russell', 'time' 
VALUE '1:33:21'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Fernando Alonso', 'time' 
VALUE '1:33:37')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  210,
  'Spanish Grand Prix',
  66,
  TO_DATE('2024-06-23', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' VALUE 
'1:35:42'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Carlos Sainz Jr.', 'time' 
VALUE '1:36:01'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' 
VALUE '1:36:17')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  211,
  'Austrian Grand Prix',
  71,
  TO_DATE('2024-06-30', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'George Russell', 'time' VALUE 
'1:33:11'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' 
VALUE '1:33:27'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' 
VALUE '1:33:41')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  212,
  'British Grand Prix',
  52,
  TO_DATE('2024-07-07', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Lewis Hamilton', 'time' VALUE 
'1:32:20'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' 
VALUE '1:32:39'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'George Russell', 'time' 
VALUE '1:32:52')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  213,
  'Hungarian Grand Prix',

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 15



  70,
  TO_DATE('2024-07-21', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Oscar Piastri', 'time' VALUE 
'1:34:15'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' 
VALUE '1:34:33'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Carlos Sainz Jr.', 
'time' VALUE '1:34:49')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  214,
  'Belgian Grand Prix',
  44,
  TO_DATE('2024-07-28', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Lewis Hamilton', 'time' VALUE 
'1:32:06'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'George Russell', 'time' 
VALUE '1:32:21'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' 
VALUE '1:32:37')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  215,
  'Dutch Grand Prix',
  72,
  TO_DATE('2024-08-25', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' VALUE 
'1:33:50'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' 
VALUE '1:34:04'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' 
VALUE '1:34:18')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  216,
  'Italian Grand Prix',
  53,
  TO_DATE('2024-09-01', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' VALUE 
'1:32:43'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Carlos Sainz Jr.', 'time' 
VALUE '1:32:57'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lewis Hamilton', 'time' 
VALUE '1:33:10')
  )
);

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 15



 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  217,
  'Azerbaijan Grand Prix',
  51,
  TO_DATE('2024-09-15', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Oscar Piastri', 'time' VALUE 
'1:31:32'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' 
VALUE '1:31:48'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' 
VALUE '1:32:03')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  218,
  'Singapore Grand Prix',
  61,
  TO_DATE('2024-09-22', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' VALUE 
'1:34:22'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'George Russell', 'time' 
VALUE '1:34:38'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Carlos Sainz Jr.', 
'time' VALUE '1:34:52')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  219,
  'United States Grand Prix',
  56,
  TO_DATE('2024-10-20', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' VALUE 
'1:33:19'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' 
VALUE '1:33:34'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' 
VALUE '1:33:49')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  220,
  'Mexico City Grand Prix',
  71,
  TO_DATE('2024-10-27', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Carlos Sainz Jr.', 'time' VALUE 
'1:34:01'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Sergio Pérez', 'time' 
VALUE '1:34:18'),

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 15



    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'George Russell', 'time' 
VALUE '1:34:32')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  221,
  'São Paulo Grand Prix',
  71,
  TO_DATE('2024-11-03', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' VALUE 
'1:32:46'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lewis Hamilton', 'time' 
VALUE '1:33:02'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' 
VALUE '1:33:18')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  222,
  'Las Vegas Grand Prix',
  50,
  TO_DATE('2024-11-23', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'George Russell', 'time' VALUE 
'1:32:29'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' 
VALUE '1:32:43'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' 
VALUE '1:32:59')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  223,
  'Qatar Grand Prix',
  57,
  TO_DATE('2024-12-01', 'YYYY-MM-DD'),
  JSON_OBJECT(
    'winner' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' VALUE 
'1:33:00'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' 
VALUE '1:33:15'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Carlos Sainz Jr.', 
'time' VALUE '1:33:30')
  )
);
 
INSERT INTO race (race_id, name, laps, race_date, podium) VALUES (
  224,
  'Abu Dhabi Grand Prix',
  58,
  TO_DATE('2024-12-08', 'YYYY-MM-DD'),
  JSON_OBJECT(

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 15



    'winner' VALUE JSON_OBJECT('name' VALUE 'Lando Norris', 'time' VALUE 
'1:32:11'),
    'firstRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Max Verstappen', 'time' 
VALUE '1:32:26'),
    'secondRunnerUp' VALUE JSON_OBJECT('name' VALUE 'Charles Leclerc', 'time' 
VALUE '1:32:42')
  )
);

Example 1-5    Sample data to be inserted into driver_race_map table

INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (1, 201, 105, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (2, 201, 106, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (3, 201, 103, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (4, 202, 105, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (5, 202, 103, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (6, 202, 109, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (7, 203, 104, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (8, 203, 101, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (9, 203, 107, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (10, 204, 105, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (11, 204, 108, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (12, 204, 102, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (13, 205, 105, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (14, 205, 103, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (15, 205, 106, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (16, 206, 101, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (17, 206, 105, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (18, 206, 104, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (19, 207, 105, 1);

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 15



INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (20, 207, 101, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (21, 207, 103, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (22, 208, 103, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (23, 208, 105, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (24, 208, 107, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (25, 209, 105, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (26, 209, 108, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (27, 209, 109, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (28, 210, 105, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (29, 210, 104, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (30, 210, 101, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (31, 211, 108, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (32, 211, 105, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (33, 211, 103, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (34, 212, 107, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (35, 212, 101, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (36, 212, 108, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (37, 213, 102, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (38, 213, 105, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (39, 213, 104, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (40, 214, 107, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (41, 214, 108, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (42, 214, 101, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (43, 215, 101, 1);

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 15



INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (44, 215, 105, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (45, 215, 103, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (46, 216, 103, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (47, 216, 104, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (48, 216, 107, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (49, 217, 102, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (50, 217, 101, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (51, 217, 105, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (52, 218, 101, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (53, 218, 108, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (54, 218, 104, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (55, 219, 103, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (56, 219, 105, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (57, 219, 101, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (58, 220, 104, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (59, 220, 106, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (60, 220, 108, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (61, 221, 105, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (62, 221, 107, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (63, 221, 101, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (64, 222, 108, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (65, 222, 103, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (66, 222, 105, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (67, 223, 105, 1);

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 15



INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (68, 223, 101, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (69, 223, 104, 3);
 
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (70, 224, 101, 1);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (71, 224, 105, 2);
INSERT INTO driver_race_map (driver_race_map_id, race_id, driver_id, 
position) VALUES (72, 224, 103, 3);
 
COMMIT;

Chapter 1
Introduction to Car Racing Example

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 15



2
Custom GraphQL Syntax in Oracle

The GraphQL type system serves as a structured schema that defines the data model for an
API, specifying the types of data available, their relationships, and how they can be queried or
modified.

This chapter introduces the standard GraphQL type system and describes the custom
GraphQL syntax used in Oracle.

A standard GraphQL type is basically a logical representation of an entity and it's attributes.
The following example provides the GraphQL type system for the relational tables created in 
Setting up the Car Racing Dataset.

Example 2-1    GraphQL Type System for the Car-Racing Relational Tables

# Represents a racing team
type Team {
  team_id: ID!           # Team primary key
  name: String!          # Team name
  points: Int!           # Points team has scored
  driver: [Driver!]!     # List of drivers on the team 
}

# Represents an individual driver
type Driver {
  driver_id: ID!          # Driver primary key
  name: String!           # Driver name
  points: Int!            # Points the driver has scored
  team: Team              # The team the driver belongs to
  race: [DriverRaceMap!]! # Races the driver has participated in
}

# Mapping table representing a driver participating in a race
type DriverRaceMap {
  driverRaceMapId: ID!   # Primary key for this mapping
  race: Race!            # Associated race
  position: Int          # Driver’s finishing position in the race
}

# Represents a race event
type Race {
  _id: ID!                  # Race primary key
  name: String!             # Race name
  laps: Int!                # Number of laps in the race
  date: String              # Race date/time as ISO string
  podium: JSON              # JSON data about podium finishers (unstructured)
  result: [DriverRaceMap!]! # Results mapping driver to positions
}

The GraphQL type system is organized around these foundational elements:

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 15



• Schema : Acts as the API's master blueprint, aggregating all data types and governing
available operations (queries, mutations, subscriptions). See GraphQL Schema
Conventions in Oracle AI Database to understand how the relational schema is mapped to
a GraphQL schema. The GraphQL object schema is entirely based on the RDBMS table
definitions. The GET_GRAPHQL_SCHEMA function of the DBMS_JSON_DUALITY PL/SQL
package allows you to view the underlying relational schema in the form of GraphQL
Schema, which will assist you in formulating the right queries. This GraphQL schema can
then also be used for performing the semantic analysis of the GraphQL queries. This
GraphQL schema is a JSON document having GraphQL types of the corresponding
relational tables.

• Data Types: Types describe the shape and behavior of the data. Standard GraphQL
employs six primary type classifications:

– Scalars: Primitive data types such as Int, Float, String, Boolean, and ID. These
represent single values and cannot have sub-fields. Oracle AI Database supports
additional GraphQL scalar types, which correspond to Oracle JSON-language scalar
types and to SQL scalar types. See Custom GraphQL Scalars in Oracle for detailed
description of custom scalar types.

– Objects: Structured entities with defined attributes. For example, a user type might
have fields like name and email.

– Enums: Used when a field can have one of a predefined set of values.

– Interfaces: Define a set of fields that multiple object types can implement, ensuring
consistency across those types.

– Unions: Allow a field to return one of several object types, useful for flexible APIs.

– Inputs: Used for complex inputs, such as when passing structured data to mutations.

• Root Types: Each type contains fields, and fields can accept arguments, allowing for fine-
grained queries and mutations.

– Query Type: Entry point for read operations. A query defines the entry points into your
data graph and allows clients to fetch precisely the data they want, in a single request.
A query consists of one or more of the following components: Fields, Arguments,
Return Types, Fragments, Directives and Variables. Read GraphQL Queries to
understand the GraphQL query structure and its components.

– Mutation Type: Entry point for modifications/writes.

– Subscription Type: Entry point for real-time data and updates.

• Type Modifiers: You can also use List ([Type]) and Non-Null (Type!) modifiers to express
lists of values or required fields/arguments.

Note

Standard GraphQL supports all of the types mentioned above. However, GraphQL in
Oracle focuses only on the Scalar, Objects and Query Types and this book provides
detailed information only about these types. Read the official GraphQL documentation
to gain a better understanding of other types in the GraphQL type system.

GraphQL Schema Conventions in Oracle AI Database
The schema consists of two JSON arrays, namely "types" and "quoted".

Chapter 2
GraphQL Schema Conventions in Oracle AI Database

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 15



A typical GraphQL schema has the following structure where each relational table is
represented by a GraphQL type, the columns of the tables are represented as fields of the
GraphQL types. The "quoted" array contains the names of the tables that are quoted.

Example 2-2    JSON Schema for GraphQL Schema Representation

{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "type": "object",
  "properties": {
    "types": {
      "type": "array",
      "items": {
        "type": "object",
          "properties": {
            "type": {
              "type": "string"
            },
            "nullable": {
              "type": "boolean"
            },
            "quoted": {
              "type": "boolean"
            }
          }
      }
    }
    },
    "quoted": {
      "type": "array",
      "items": {
        "type": "string"
      }
    }
  },
  "required": ["types"]
}

The figure below displays a sample mapping between a relational schema and the
corresponding GraphQL schema. The relational schema specified here is defined in Setting up
the Car Racing Dataset. The GraphQL schema is obtained using the GET_GRAPHQL_SCHEMA
API.

Chapter 2
GraphQL Schema Conventions in Oracle AI Database

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 15



Figure 2-1    Relational Schema to GraphQL Schema Mapping

• Each relational table is mapped to a GraphQL type:

– For the relational schema set up in Setting up the Car Racing Dataset, the GraphQL
schema would have four types corresponding to each relational table: team, driver,
race, and driver_race_map respectively.

– Naming Convention for a GraphQL Type: The name of a type corresponding
unquoted table name from the relational schema is same as table name, with the first
character being capitalized, and the remaining characters in lower case. In the
example depicted by the figure, the table name race from the relational schema is
named as type Race in the GraphQL schema. Quoted table names from the relational
schema are represented unaltered.

• Within each GraphQL type there is a field corresponding to the columns of the table:

– Recall that the table teams has three columns: team_id, name, and points.

– So, the GraphQL schema type Teams has three fields corresponding to each column
from the relational table.

– Each field under a GraphQL type is a JSON object containing three sub-fields: type,
nullable, and quoted. The type field represents the data type of the column. The
nullable field is a boolean which can be TRUE or FALSE depending on whether a not
null constraint has been imposed on the column. The quoted field is also a boolean,
where TRUE represents that the column name is quoted.

– Naming Convention for a field under a GraphQL Type: The name of a field
corresponding unquoted column name from a relational table is same as the column
name, all characters in lower case. You can see in the above figure that the column
names from the table race : race_id, race_date, podium, name, and laps are named
identical in the GraphQL schema. Quoted column names from the relational table is
represented unaltered.

• Each GraphQL type also has an additional field listing any foreign key relationship
referenced by or referencing that particular relational table.

Chapter 2
GraphQL Schema Conventions in Oracle AI Database

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 15



– In the above figure, you can see that the table driver_race_map references the
driver_id field from the driver table. This relationship is listed as a field under the
Driver type denoted as driver_race_map in the figure.

– Naming Convention for a foreign key field under a GraphQL Type: The field name
in lower case is same as the referenced or referencing table name from the relational
schema. Similar to the column field, the foreign key fields is also a JSON object
containing three sub-fields: type, nullable, and quoted.

– The type sub-field is same as the referenced or referencing table name, with first
character in upper case and other characters in lower case for unquoted names.

* If the field represents the referencing table, then the value of the "type" is
enclosed in the square brackets.

* If there is a bi-directional relationship (in cases where both table references each
other, or if a table references itself), then, field name ambiguity is resolved by
appending "_Obj" to the referenced table field and "_List" to the referencing table
field.

– The sub-field "nullable" is always FALSE.

– The quoted field is a boolean, where TRUE represents that the table name is quoted.

Note

The GraphQL standard allows only alphanumerical ASCII characters and the
underscore (_) for naming types, fields, directives and arguments, with all the names
being case-sensitive. While names can start with an underscore (_), the only
exception is that the names starting with double underscore (__) are disallowed. In
RDBMS the unquoted names are case-insensitive and all alphanumerical characters
are allowed in addition to special chars (_, $, #). The quoted names are case-sensitive
with double quotes (") and null is not allowed in quoted names.

Relaxations in GraphQL schema for the Oracle DB relational schema:

• Non-ASCII characters are allowed.

• Quoted names which begin with an alphabet and contain only upper case
alphabets, digits or symbols (#, $, _) are treated as unquoted names.

Custom GraphQL Scalars in Oracle
GraphQL natively supports the following types: String, Float, Int, Boolean, and ID.

Custom scalar types are added to provide mapping for RDBMS native scalar types: Date,
Timestamp, Timestamptz, JSON, Binary, Vector, DsInterval, and Yminterval.

The following table summarizes how Oracle RDBMS’s native scalar types are mapped to
GraphQL’s scalar types:

Table 2-1    Scalar Types: Oracle Type, OSON Type, JSON Type, GraphQL Type and
GraphQL Type in Oracle

Oracle Type GraphQL Type in Oracle

(all char types) String

Chapter 2
Custom GraphQL Scalars in Oracle

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 15

https://spec.graphql.org/October2021/


Table 2-1    (Cont.) Scalar Types: Oracle Type, OSON Type, JSON Type, GraphQL Type
and GraphQL Type in Oracle

Oracle Type GraphQL Type in Oracle

Integer Integer

Float Float

Number (scale=0) Integer

Number (scale>0) Number

Binary_Float Float

Binary_Double Double

Raw/Blob/Bfile Binary

Date Date

Timestamp Timestamp

Timestamp TZ Timestamptz

JSON String

ROWID/UROWID String

Boolean Boolean

Vector Vector

Interval_DS Dsinterval

Interval_YM Yminterval

Abstract Data Type String

Implicit Field Aliasing Support for GraphQL in Oracle
When using GraphQL with Oracle, implicit field aliasing enables a streamlined mapping of SQL
column names to JSON document fields.

Typically, in standard GraphQL, field names are case-sensitive, and developers must use
precise naming or explicit aliases when they want a field in the output to differ in case or format
from the underlying database.

With Oracle’s implementation, however, if a field name is specified in the GraphQL definition
without an explicit alias, Oracle matches it to the actual SQL column name in a case-
insensitive manner. The JSON output, however, retains the exact casing as specified in the
GraphQL definition. In effect, Oracle automatically treats the unaliased field as if it had been
written using an alias, matching the field name as it appears in the view definition.

Suppose the underlying database table, DRIVER, includes a column named driver_id. If you
prefer the resulting JSON document to use the alias field driverId, you can simply use
driverId as an alias for driver_id column in your GraphQL definition.:

driver {
  driverId : driver_id          
  name
  points
}

Chapter 2
Implicit Field Aliasing Support for GraphQL in Oracle

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 15



The output JSON document will then be:

{                                                                             
 
  "driverId": 
101,                                                                  
  "name" : "Lando 
Norris",                                                     
  "points" : 
282                                                                           
                                                               
}

This mechanism removes the need for explicit aliases, while preserving the exact field names
used in your SQL definitions for JSON output.

Generating a GraphQL Schema from a Relational Schema
Use the GET_GRAPHQL_SCHEMA function to obtain the underlying relational schema in the form of
a GraphQL schema.

This function takes either or both of the table names and schema as an input and provides a
JSON object representing the GraphQL types for the relational tables.

Syntax

DBMS_JSON_DUALITY.GET_GRAPHQL_SCHEMA(
    schema_details in JSON
)
RETURN JSON;

Table 2-2    Inputs to the GET_GRAPHQL_SCHEMA Function

Parameter Description

schema_details This parameter is a JSON object and it has two
fields:
• "tableNames" : The value for this field is an

array of scalar strings representing the table
names for which the GraphQL schema
representation is required. If "tableNames" is
not specified, GraphQL schema is generated
for all tables in the specified relational schema.

• "schema": You can provide the name of the
user/schema/owner of the tables as string. If
"schema" is not specified, GraphQL schema
representation is generated for the current
schema"

Output Schema

The function outputs the GraphQL schema corresponding to the relational schema as a JSON
object.

Chapter 2
Generating a GraphQL Schema from a Relational Schema

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 15



Get the GraphQL type schema for a particular table. This example uses the "TEAM" table
defined under the car racing example.

SELECT DBMS_JSON_DUALITY.GET_GRAPHQL_SCHEMA(
    JSON('
        {
            "tableNames": ["TEAM"]
        }
    ')
) AS "GraphQL Schema";

Recollect from the Introduction to the Car Racing Example that the table "TEAM" has three
columns : "team_id", "points" and "name". Executing the GET_GRAPHQL_SCHEMA function would
produce a JSON object containing these columns as shown below:

GraphQL Schema
------------------------------------------------------------------------------
--
{
  "types" :
  [
    {
      "Team" :
      {
    "team_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "points" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "name" :
    {
      "type" : "String",
      "nullable" : false,
      "quoted" : false
    }
      }
    }
  ]
}

1 row selected.

Chapter 2
Generating a GraphQL Schema from a Relational Schema

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 15



GraphQL schema could be obtained for a set of tables by specifying multiple table names in
the syntax. This example uses the "DRIVER" and "RACE" tables defined under the car racing
example.

SELECT DBMS_JSON_DUALITY.GET_GRAPHQL_SCHEMA(
    JSON('
        {
            "tableNames": ["DRIVER", "RACE"]
        }
        ')
) AS "GraphQL Schema";

Executing the GET_GRAPHQL_SCHEMA function would produce a JSON object containing columns
from both tables as shown below:

GraphQL Schema
------------------------------------------------------------------------------
--
{
  "types" :
  [
    {
      "Driver" :
      {
    "team" :
    {
      "type" : "Team",
      "nullable" : false,
      "quoted" : false
    },
    "team_id" :
    {
      "type" : "Integer",
      "nullable" : true,
      "quoted" : false
    },
    "points" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "name" :
    {
      "type" : "String",
      "nullable" : false,
      "quoted" : false
    },
    "driver_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    }
      }

Chapter 2
Generating a GraphQL Schema from a Relational Schema

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 15



    },
    {
      "Race" :
      {
    "race_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "race_date" :
    {
      "type" : "Date",
      "nullable" : true,
      "quoted" : false
    },
    "podium" :
    {
      "type" : "String",
      "nullable" : true,
      "quoted" : false
    },
    "name" :
    {
      "type" : "String",
      "nullable" : false,
      "quoted" : false
    },
    "laps" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    }
      }
    }
  ]
}

1 row selected.

You can also specify the underlying schema or user name from which the table representation
must be fetched. The following example obtains the GraphQL schema for the table
"DRIVER_RACE_MAP" which is created for the user "F1".

SELECT DBMS_JSON_DUALITY.GET_GRAPHQL_SCHEMA(
    JSON('
        {
            "tableNames": ["DRIVER_RACE_MAP"],
            "schema": "F1"
        }
    ')
) AS "GraphQL Schema";

Chapter 2
Generating a GraphQL Schema from a Relational Schema

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 15



This code would return the GraphQL schema corresponding to "DRIVER_RACE_MAP" table from
the F1 user as shown below:

GraphQL Schema
------------------------------------------------------------------------------
--
{
  "types" :
  [
    {
      "Driver_race_map" :
      {
    "driver" :
    {
      "type" : "Driver",
      "nullable" : false,
      "quoted" : false
    },
    "race" :
    {
      "type" : "Race",
      "nullable" : false,
      "quoted" : false
    },
    "race_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "position" :
    {
      "type" : "Integer",
      "nullable" : true,
      "quoted" : false
    },
    "driver_race_map_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "driver_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    }
      }
    }
  ]
}

1 row selected.

Chapter 2
Generating a GraphQL Schema from a Relational Schema

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 15



To obtain the GraphQL schema for the entire relational schema, just specify the "schema"
argument in the input:

SELECT DBMS_JSON_DUALITY.GET_GRAPHQL_SCHEMA(
    JSON('
        {
            "schema": "F1"
        }
    ')
) AS "GraphQL Schema";

Executing the above code would return the schema corresponding to all the tables specified in
F1 as shown below:

GraphQL Schema
------------------------------------------------------------------------------
--
{
  "types" :
  [
    {
      "Driver_race_map" :
      {
    "driver" :
    {
      "type" : "Driver",
      "nullable" : false,
      "quoted" : false
    },
    "race" :
    {
      "type" : "Race",
      "nullable" : false,
      "quoted" : false
    },
    "race_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "position" :
    {
      "type" : "Integer",
      "nullable" : true,
      "quoted" : false
    },
    "driver_race_map_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "driver_id" :
    {

Chapter 2
Generating a GraphQL Schema from a Relational Schema

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 15



      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    }
      }
    },
    {
      "Driver" :
      {
    "team" :
    {
      "type" : "Team",
      "nullable" : false,
      "quoted" : false
    },
    "team_id" :
    {
      "type" : "Integer",
      "nullable" : true,
      "quoted" : false
    },
    "points" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "name" :
    {
      "type" : "String",
      "nullable" : false,
      "quoted" : false
    },
    "driver_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "driver_race_map" :
    {
      "type" : "[Driver_race_map]",
      "nullable" : false,
      "quoted" : false
    }
      }
    },
    {
      "Team" :
      {
    "team_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },

Chapter 2
Generating a GraphQL Schema from a Relational Schema

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 15



    "points" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "name" :
    {
      "type" : "String",
      "nullable" : false,
      "quoted" : false
    },
    "driver" :
    {
      "type" : "[Driver]",
      "nullable" : false,
      "quoted" : false
    }
      }
    },
    {
      "Race" :
      {
    "race_id" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "race_date" :
    {
      "type" : "Date",
      "nullable" : true,
      "quoted" : false
    },
    "podium" :
    {
      "type" : "String",
      "nullable" : true,
      "quoted" : false
    },
    "name" :
    {
      "type" : "String",
      "nullable" : false,
      "quoted" : false
    },
    "laps" :
    {
      "type" : "Integer",
      "nullable" : false,
      "quoted" : false
    },
    "driver_race_map" :
    {
      "type" : "[Driver_race_map]",

Chapter 2
Generating a GraphQL Schema from a Relational Schema

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 15



      "nullable" : false,
      "quoted" : false
    }
      }
    }
  ]
}

1 row selected.

Chapter 2
Generating a GraphQL Schema from a Relational Schema

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 15



3
GraphQL Queries

A GraphQL query is a way to request specific data from a GraphQL server.

When you use a GraphQL query, you're describing exactly what information you want, and the
server responds with data that matches the structure of your request. The output exactly
matches the request, nothing more or nothing less is returned. This approach gives clients
precise control over the data they receive, unlike traditional APIs that may send extra,
unnecessary information or require multiple requests to gather related data. The Query type is
essentially an object type at the root of a GraphQL schema. It contains fields, each
representing a unique entry point or resource clients can query. Each field on the Query type
corresponds to a distinct endpoint of data retrieval. Fields are named and typed, clearly
defining what can be requested and what will be returned.

A GraphQL query is written using these foundation blocks:

• Query Type and Fields : The Query type defines what entry points your clients can
request. For example, in our car racing schema:

type Query {
  driver(id: ID!): Driver
  race(id: ID!): Race
  drivers: [Driver!]!
  races: [Race!]!
}

You can see that each field has:

– Return Type: What kind of object or primitive is returned (e.g. Driver, Race, or a list).
The above specified query type defines that, driver and race fetches a specific driver
or race by their ID. drivers and races provides a list of all drivers and races available.

– Arguments: Optional or required inputs for fetching or filtering specific data. Fields like
driver(id: ID!) as specified above take arguments to specify which object to fetch:

query {
  driver(id: "101") {
    name
    team {
      name
    }
  }
}

The id argument precisely fetches driver #101, allowing you to tailor the data they get.

– Selection Sets : You can specify exactly which fields to retrieve from the types,
minimizing over-fetching. The following query would return race name, date and each

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 60



driver's finishing position and name. Fields not requested (such as laps or podium) are
omitted.

query {
  race(id:"202") {
    name 
    date 
    result {
      finalPosition 
      driver {
        name
      }
    }
  }
}

• Fragments : Fragments let you construct sets of fields, and then include them in queries
where needed. This provides reusability as instead of querying the same fields in multiple
queries, you can simply query the defined fragment.

• Directives: A GraphQL directive is an annotation, prefixed with @, that can be attached to
parts of a GraphQL schema or operation (such as fields, fragments, or queries) to alter the
execution behavior at runtime. @include and @skip are the two native directives defined in
the standard GraphQL specification. Oracle supports custom GraphQL directives. See 
Custom Directives in Oracle GraphQL for detailed description of custom directives.

• Variables : Variables helps you to parameterize queries for reusability. They keep queries
generic and reusable. Instead of hard coding the field values in a query, utilizing a
GraphQL Variable in Oracle would allow you to pass the value to a variable separately.
See GraphQL Variables for usage and examples.

GraphQL Table Function
In addition to accessing the Oracle Database using SQL, starting in 26ai, you can use
GraphQL to query the Oracle AI Database tables and get the result in form of JSON objects.

The GraphQL table function acts as a significant addition to RDBMS as it provides the user an
alternative to SQL for querying the database tables. Input to this function is a string
representing the GraphQL query and the output is a single column called 'DATA' of data type
JSON.

Syntax:

select * from graphql('<graphql query>')

Consider an example where you would like to retrieve the details of all the teams and the
points that they have scored. You can use the GraphQL table function to query the database
for the exact details that you need.

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team {
        id: team_id
        name
        points
    }

Chapter 3
GraphQL Table Function

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 60



'
);

This query has a specific structure where you request the server only to return the team_id,
name and points of all the teams. And the output would have 10 entries corresponding to the
10 teams which was created in Example 1-2

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
301,                                                                  
  "name" : "McLaren 
Mercedes",                                                 
  "points" : 
666                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
302,                                                                  
  "name" : 
"Ferrari",                                                          
  "points" : 
652                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
303,                                                                  
  "name" : "Red Bull Racing Honda 
RBPT",                                       
  "points" : 
589                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
304,                                                                  
  "name" : 
"Mercedes",                                                         
  "points" : 
468                                                               

Chapter 3
GraphQL Table Function

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 60



}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
305,                                                                  
  "name" : "Aston Martin Aramco 
Mercedes",                                     
  "points" : 
94                                                                
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
306,                                                                  
  "name" : "Alpine 
Renault",                                                   
  "points" : 
65                                                                
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
307,                                                                  
  "name" : "Haas 
Ferrari",                                                     
  "points" : 
58                                                                
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
308,                                                                  
  "name" : "RB Honda 
RBPT",                                                    
  "points" : 
46                                                                
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
309,                                                                  

Chapter 3
GraphQL Table Function

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 60



  "name" : "Williams 
Mercedes",                                                
  "points" : 
17                                                                
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
310,                                                                  
  "name" : "Kick Sauber 
Ferrari",                                              
  "points" : 
4                                                                 
}                                                                             
 
                                                                              
   
 
10 rows selected.

The GraphQL table function also supports quoted identifiers and fully qualified names. The
following sample queries are equivalent to the query specified above and would produce the
same output containing id, name and points corresponding to the 10 teams defined in the car
racing dataset.

Query Using Quoted Identifiers:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team {
        id: "TEAM_ID"
        name
        points
    }
'
);

Query Using Fully Qualified Names:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team {
        id: team_id
        team.name
        points: team.points
    }
'
);

Specifying Nested Objects within a Query
You can retrieve details from multiple tables by specifying it as a nested object in a GraphQL
query.

Chapter 3
GraphQL Table Function

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 60



For example, if you would like to get the details of drivers along with the details of their teams,
you can nest the team object within a driver object as shown in the GraphQL query within
following function:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver {
        id: driver_id
        name
        points
        teamDetails: team {
            teamId: team_id
            teamName: name
            teamPoints: points
        }
    }
');

This would produce output containing details of drivers along with their teams:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
101,                                                                  
  "name" : "Lando 
Norris",                                                     
  "points" : 
282,                                                              
  
"teamDetails" :                                                              
  
{                                                                            
    "teamId" : 
301,                                                            
    "teamName" : "McLaren 
Mercedes",                                           
    "teamPoints" : 
666                                                         
  }                                                                           
 
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
102,                                                                  
  "name" : "Oscar 
Piastri",                                                    
  "points" : 
384,                                                              

Chapter 3
GraphQL Table Function

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 60



  
"teamDetails" :                                                              
  
{                                                                            
    "teamId" : 
301,                                                            
    "teamName" : "McLaren 
Mercedes",                                           
    "teamPoints" : 
666                                                         
  }                                                                           
 
}                                                                             
 
                                                                              
   
..............
..............
20 rows selected.

Or, you can retrieve the details of all the drivers belonging to a team using the following code:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team {
        id: team_id
        name
        points
        drivers: driver {
            driverId: driver_id
            driverName: name
            driverPoints: points
        }
    }
');

This query would produce 10 entries, corresponding to the 10 teams and their driver details.

DATA                                                                          
  
------------------------------------------------------------------------------
--
{                                                                             
  
  "id" : 
301,                                                                   
  "name" : "McLaren 
Mercedes",                                                  
  "points" : 
666,                                                               
  
"drivers" :                                                                   
  
[                                                                             
    
{                                                                           

Chapter 3
GraphQL Table Function

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 60



      "driverId" : 
101,                                                         
      "driverName" : "Lando 
Norris",                                            
      "driverPoints" : 
282                                                      
    },                                                                        
  
    
{                                                                           
      "driverId" : 
102,                                                         
      "driverName" : "Oscar 
Piastri",                                           
      "driverPoints" : 
384                                                      
    }                                                                         
  
  ]                                                                           
  
}                                                                             
  
                                                                              
  
{                                                                             
  
  "id" : 
302,                                                                   
  "name" : 
"Ferrari",                                                           
  "points" : 
652,                                                               
  
"drivers" :                                                                   
  
[                                                                             
    
{                                                                           
      "driverId" : 
103,                                                         
      "driverName" : "Charles 
Leclerc",                                         
      "driverPoints" : 
312                                                      
    },                                                                        
  
    
{                                                                           
      "driverId" : 
104,                                                         
      "driverName" : "Carlos Sainz 
Jr.",                                        
      "driverPoints" : 
340                                                      
    }                                                                         
  

Chapter 3
GraphQL Table Function

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 60



  ]                                                                           
  
}              
.................
.................
10 rows selected.

Custom GraphQL Directives
In Oracle AI Database’s GraphQL integration, directives play a crucial role in adding
expressive power and flexibility to queries and view definitions.

Directives are special annotations, prefixed with @, that instruct the GraphQL processor to alter
query behavior, control filtering, shape results, or define advanced behaviors such as join logic.
Understanding which directives are available in which contexts : runtime querying (table
function) versus duality view creation is essential for developers leveraging Oracle’s advanced
GraphQL features.

A directive is identified by '@' (at sign) followed by the name of the directive and the list of
arguments for it.

@link (from: ["FK_COL"] to: ["PK_COL"] )

In this example, 'link' is the directive and 'from' , 'to' are it's arguments which takes the values
["FK_COL"] and ["PK_COL"] respectively. The directives, and the argument names are case
insensitive.

Directives Supported in GraphQL Table Function

The GraphQL table function in Oracle enables querying relational tables using GraphQL
syntax and returning JSON documents. Since its purpose is to fetch and shape data at query
time (read operations), only a core set of directives is supported. These focus mainly on data
selection, joining, filtering, and transformation.

Supported Directives:

• On Object/Table-Level Fields:

– @WHERE: Filters rows according to specified predicates.

– @ORDERBY: Orders the result set based on given columns.

– @ARRAY: Returns the result as an array of objects.

– @OBJECT: Returns the result as a single object.

– @LINK: Explicitly defines join relationships where automatic PK-FK detection is
insufficient.

• On Scalar/Column-Level Fields:

– @GENERATED: Allows a field’s value to be generated using a SQL expression. In the
context of the table function, only the SQL argument is supported; the PATH argument is
not available.

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 60



Note

The directives related to data modification, or those only meaningful at the time of view
construction, are not available in the table function context. If you attempt to use non-
supported directives in this context, an error will occur.

Directives Used for JSON-Relational Duality View Creation

When defining a JSON-relational duality view (using the CREATE JSON RELATIONAL DUALITY
VIEW statement), Oracle AI Database offers a broader range of GraphQL directives. Directives
in this context impact how the duality view is created, what operations can be performed
through it, and how related data is represented in the resulting JSON.

Supported Directives:

• @INSERT: Enables insert operations through the duality view.

• @UPDATE: Enables update operations through the duality view.

• @DELETE: Enables delete operations through the duality view.

• @NEST and @UNNEST: Control whether related data is embedded as nested objects or
unnested.

• @LINK: Defines join conditions explicitly, particularly important for complex relationships.

• @ARRAY and @OBJECT: Specify the arrangement of data within the JSON output.

• @WHERE: Adds filter clauses as part of the view definition.

• @ORDERBY: Establishes default sort order for data in the view.

• @GENERATED: Used for both fields and sub-objects, taking either SQL or PATH as arguments,
giving flexibility in computed fields and references.

These additional directives are critical when defining duality views to address advanced
scenarios, such as updatable JSON views and complex relationships between tables.

Below is a summary differentiating the availability of directives between runtime table function
queries and duality view creation:

Table 3-1    Custom Directives Comparison Table

Directive Table Function (Query) Duality View Creation

@WHERE � �

@ORDERBY � �

@ARRAY � �

@OBJECT � �

@LINK � �

@GENERATED � (SQL only) � (SQL, PATH)

@INSERT X �

@UPDATE/@NOUPDATE X �

@DELETE X �

@CHECK/@NOCHECK X �

@NEST/@UNNEST X �

@FLEX X �

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 60



Table 3-1    (Cont.) Custom Directives Comparison Table

Directive Table Function (Query) Duality View Creation

@HIDDEN X �

@CAST X �

@WHERE Directive
Use the @WHERE directive for filtering specific information from a larger dataset.

This directive accepts two arguments:

• The argument SQL where you can provide a SQL expression of the predicates.

• The optional argument CHECK which could be TRUE (default) or FALSE. If CHECK parameter us
set, then a view will be created WITH CHECK OPTION.

Note

The argument CHECK is applicable only for duality views and cannot be used with the
table function.

Syntax:

@WHERE(sql:"SQL EXPRESSION", check:[TRUE|FALSE])

An example which selects the drivers who have scored points greater than the average
points from the driver table:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver @where(sql: "points >= (select avg(points) from driver)") {
        id: driver_id
        name
        points
    }
');

This would produce an output which lists the above average drivers:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
101,                                                                  
  "name" : "Lando 
Norris",                                                     
  "points" : 
282                                                               

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 60



}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
102,                                                                  
  "name" : "Oscar 
Piastri",                                                    
  "points" : 
384                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
103,                                                                  
  "name" : "Charles 
Leclerc",                                                  
  "points" : 
312                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
104,                                                                  
  "name" : "Carlos Sainz 
Jr.",                                                 
  "points" : 
340                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
105,                                                                  
  "name" : "Max 
Verstappen",                                                   
  "points" : 
456                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
106,                                                                  

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 60



  "name" : "Sergio P??
rez",                                                    
  "points" : 
133                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
107,                                                                  
  "name" : "Lewis 
Hamilton",                                                   
  "points" : 
240                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
108,                                                                  
  "name" : "George 
Russell",                                                   
  "points" : 
228                                                               
}                                                                             
 
                                                                              
   
 
8 rows selected.

Here is another example in which you can select races where Max Verstappen is the winner:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver_race_map @where(sql: "driver_id = (select driver_id from driver 
where name = ''Max Verstappen'') and position = 1") {
        race @unnest {
            race: name
        }
        position
    }
'); 

This query searches where the driver's name is "Max Verstappen" and returns all the races
where he has finished in the first place.

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 60



 
  "race" : "Bahrain Grand 
Prix",                                               
  "position" : 
1                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "race" : "Saudi Arabian Grand 
Prix",                                         
  "position" : 
1                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "race" : "Japanese Grand 
Prix",                                              
  "position" : 
1                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "race" : "Chinese Grand 
Prix",                                               
  "position" : 
1                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "race" : "Emilia Romagna Grand 
Prix",                                        
  "position" : 
1                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "race" : "Canadian Grand 
Prix",                                              
  "position" : 
1                                                               
}                                                                             

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 60



 
                                                                              
   
{                                                                             
 
  "race" : "Spanish Grand 
Prix",                                               
  "position" : 
1                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "race" : "S??o Paulo Grand 
Prix",                                            
  "position" : 
1                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "race" : "Qatar Grand 
Prix",                                                 
  "position" : 
1                                                               
}                                                                             
 
                                                                              
   
 
9 rows selected.

@ORDERBY Directive
The directive @orderby provides an orderby clause on the field in which it is specified.

This directive has one argument: SQL in which you can provide the SQL expression for ordering
the output. @orderby directive should be used on those object fields which return an array.

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver {
        id: driver_id
        name
        points
        bestPerformances: driver_race_map (
            check: {
                position: {_lte: 3}
            }
        ) @orderby(sql: "position asc")
        {
            position

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 60



            race @unnest {
                race: name
            }
        }
    }
');

The above example retrieves the driver details along with the races in which driver finished in
top 3, ordered by position:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
101,                                                                  
  "name" : "Lando 
Norris",                                                     
  "points" : 
282,                                                              
  
"bestPerformances" :                                                         
  
[                                                                            
    
{                                                                          
      "position" : 
1,                                                          
      "race" : "Miami Grand 
Prix"                                              
    },                                                                        
 
    
{                                                                          
      "position" : 
1,                                                          
      "race" : "Abu Dhabi Grand 
Prix"                                          
    },                                                                        
 
    
{                                                                          
      "position" : 
1,                                                          
      "race" : "Singapore Grand 
Prix"                                          
    },                                                                        
 
    
{                                                                          
      "position" : 
1,                                                          
      "race" : "Dutch Grand 

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 60



Prix"                                              
    },                                                                        
 
    
{                                                                          
      "position" : 
2,                                                          
      "race" : "Australian Grand 
Prix"                                         
    },                                                                        
 
    
{                                                                          
      "position" : 
2,                                                          
      "race" : "Qatar Grand 
Prix"                                              
    },                                                                        
 
    
{                                                                          
      "position" : 
2,                                                          
      "race" : "Azerbaijan Grand 
Prix"                                         
    },                                                                        
 
    
{                                                                          
      "position" : 
2,                                                          
      "race" : "British Grand 
Prix"                                            
    },                                                                        
 
    
{                                                                          
      "position" : 
2,                                                          
      "race" : "Emilia Romagna Grand 
Prix"                                     
    },                                                                        
 
    
{                                                                          
      "position" : 
3,                                                          
      "race" : "Spanish Grand 
Prix"                                            
    },                                                                        
 
    
{                                                                          
      "position" : 
3,                                                          
      "race" : "Belgian Grand 

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 60



Prix"                                            
    },                                                                        
 
    
{                                                                          
      "position" : 
3,                                                          
      "race" : "United States Grand 
Prix"                                      
    },                                                                        
 
    
{                                                                          
      "position" : 
3,                                                          
      "race" : "São Paulo Grand Prix"                                         
    }                                                                         
 
  ]                                                                           
 
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
102,                                                                  
  "name" : "Oscar 
Piastri",                                                    
  "points" : 
384,                                                              
  
"bestPerformances" :                                                         
  
[                                                                            
    
{                                                                          
      "position" : 
1,                                                          
      "race" : "Hungarian Grand 
Prix"                                          
    },                                                                        
 
    
{                                                                          
      "position" : 
1,                                                          
      "race" : "Azerbaijan Grand 
Prix"                                         
    },                                                                        
 
    
{                                                                          
      "position" : 
3,                                                          

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 60



      "race" : "Japanese Grand 
Prix"                                           
    }                                                                         
 
  ]                                                                           
 
}
.......................................
.......................................
20 rows selected.                   

@ARRAY Directive
The @array directive can be used to explicitly shape the nested object as an array.

The directive @array takes no arguments.

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver {
        driverId: driver_id
        driverName: name
        driverPoints: points
        teamDetails: team @array {
            teamId: team_id
            teamName: name
            teamPoints: points
        }
    }
');

The above example explicitly defines that the fields teamID, teamName and teamPoints must be
part of an array in the output:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "driverId" : 
101,                                                            
  "driverName" : "Lando 
Norris",                                               
  "driverPoints" : 
282,                                                        
  
"teamDetails" :                                                              
  
[                                                                            
    
{                                                                          
      "teamId" : 
301,                                                          
      "teamName" : "McLaren 

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 60



Mercedes",                                         
      "teamPoints" : 
666                                                       
    }                                                                         
 
  ]                                                                           
 
}                                                                             
 
                                                                              
   
{                                                                             
 
  "driverId" : 
102,                                                            
  "driverName" : "Oscar 
Piastri",                                              
  "driverPoints" : 
384,                                                        
  
"teamDetails" :                                                              
  
[                                                                            
    
{                                                                          
      "teamId" : 
301,                                                          
      "teamName" : "McLaren 
Mercedes",                                         
      "teamPoints" : 
666                                                       
    }                                                                         
 
  ]                                                                           
 
}               
.................................
.................................
20 rows selected.

As an alternative to @array directive, you can also use square brackets to enclose the fields
which must be part of an array. So the following example would still produce the same output
as using the @array directive:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver {
        driverId: driver_id
        driverName: name
        driverPoints: points
        teamDetails: team
        [
            {
                teamId: team_id
                teamName: name
                teamPoints: points

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 60



            }
        ]
    }
');

@OBJECT Directive
The @object directive can be used to explicitly shape the nested object as an object.

The directive @object takes no arguments.

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver {
        driverId: driver_id
        driverName: name
        driverPoints: points
        teamDetails: team @object {
            teamId: team_id
            teamName: name
            teamPoints: points
        }
    }
');

The above example explicitly defines that the field teamDetails must an object with subfields:
teamID, teamName and teamPoints in the output:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "driverId" : 
101,                                                            
  "driverName" : "Lando 
Norris",                                               
  "driverPoints" : 
282,                                                        
  
"teamDetails" :                                                              
  
{                                                                            
    "teamId" : 
301,                                                            
    "teamName" : "McLaren 
Mercedes",                                           
    "teamPoints" : 
666                                                         
  }                                                                           
 
}                                                                             
 
                                                                              

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 60



   
{                                                                             
 
  "driverId" : 
102,                                                            
  "driverName" : "Oscar 
Piastri",                                              
  "driverPoints" : 
384,                                                        
  
"teamDetails" :                                                              
  
{                                                                            
    "teamId" : 
301,                                                            
    "teamName" : "McLaren 
Mercedes",                                           
    "teamPoints" : 
666                                                         
  }                                                                           
 
}           
....................
....................
20 rows selected.

You can use the limit argument with @object directive that would limit the number of objects
in the output to the specified limit:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team (limit: 5) {
        teamId: team_id
        teamName: name
        teamPoints: points
        driver (limit: 1) @object {
            driverId: driver_id
            driverName: name
            driverPoints: points
        }
    }
');

The limit argument in the above example will only produce 5 rows since the team object is
limited to 5:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "teamId" : 
301,                                                              
  "teamName" : "McLaren 
Mercedes",                                             

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 60



  "teamPoints" : 
666,                                                          
  
"driver" :                                                                   
  
{                                                                            
    "driverId" : 
101,                                                          
    "driverName" : "Lando 
Norris",                                             
    "driverPoints" : 
282                                                       
  }                                                                           
 
}                                                                             
 
                                                                              
   
{                                                                             
 
  "teamId" : 
302,                                                              
  "teamName" : 
"Ferrari",                                                      
  "teamPoints" : 
652,                                                          
  
"driver" :                                                                   
  
{                                                                            
    "driverId" : 
103,                                                          
    "driverName" : "Charles 
Leclerc",                                          
    "driverPoints" : 
312                                                       
  }                                                                           
 
}           
...............................
...............................
5 rows selected.

@LINK Directive
The @LINK directive disambiguates multiple foreign-key relationships between tables or to
specify self-referencing foreign keys within the same table.

It explicitly defines which foreign key to use when joining or linking tables in both table function
and duality view. Normally, foreign key links are automatically inferred, so you don't always
need to specify @link. Using @link directive is necessary when there are no foreign-key
constraints defined, or there are multiple foreign-key relations between the same two tables, or
a table's foreign key references itself (self-referencing).

If no foreign key constraints exist between the relevant tables, you must use the @link
directive with both from and to arguments to explicitly specify the joining columns. If a foreign

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 60



key constraint does exist, and there is only one possible relationship, @link is optional and
Oracle will infer the correct columns to join on automatically. However, if there are multiple
possible foreign key relationships between the same tables, or the relationship is ambiguous,
use @link to specify which foreign key to use.

@link accepts either the from or to argument, or both.

• from - Specifies the column(s) in the source table or object from which the link originates.

• to - Specifies the column(s) in the target table or object to which the link connects.

When there is ambiguity regarding which foreign key to use or its direction, you must specify at
least one of from or to to clarify the relationship. However, if there are no foreign key
constraints defined between the tables, you should provide both from and to to explicitly
specify how the tables should be joined.

Recall from the Setting up the Car Racing Dataset, that the table drivers had a foreign key
team_id that references to the team_id column in the teams table.

CREATE TABLE driver
  (driver_id  INTEGER PRIMARY KEY,
   name       VARCHAR2(255) NOT NULL UNIQUE,
   points     INTEGER NOT NULL,
   team_id    INTEGER,
   CONSTRAINT driver_fk FOREIGN KEY(team_id) REFERENCES team(team_id));

The following example uses @link directive to explicitly specify the joining columns:

Example 3-1    @link Directive Specifying the Joining Columns

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team {
        teamId: team_id
        teamName: name
        teamPoints: points
        drivers: driver @link(from: ["TEAM_ID"], to: ["TEAM_ID"]) {
            driverId: driver_id
            driverName: name
            driverPoints: points
        }
    }
');

Note that the square brackets in the @link are optional unless you specify composite joining
columns. The above example, with or without square brackets will produce the same output:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "teamId" : 
301,                                                              
  "teamName" : "McLaren 
Mercedes",                                             
  "teamPoints" : 

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 60



666,                                                          
  
"drivers" :                                                                  
  
[                                                                            
    
{                                                                          
      "driverId" : 
101,                                                        
      "driverName" : "Lando 
Norris",                                           
      "driverPoints" : 
282                                                     
    },                                                                        
 
    
{                                                                          
      "driverId" : 
102,                                                        
      "driverName" : "Oscar 
Piastri",                                          
      "driverPoints" : 
384                                                     
    }                                                                         
 
  ]                                                                           
 
}                                                                             
 
                                                                              
   
{                                                                             
 
  "teamId" : 
302,                                                              
  "teamName" : 
"Ferrari",                                                      
  "teamPoints" : 
652,                                                          
  
"drivers" :                                                                  
  
[                                                                            
    
{                                                                          
      "driverId" : 
103,                                                        
      "driverName" : "Charles 
Leclerc",                                        
      "driverPoints" : 
312                                                     
    },                                                                        
 
    
{                                                                          
      "driverId" : 

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 60



104,                                                        
      "driverName" : "Carlos Sainz 
Jr.",                                       
      "driverPoints" : 
340                                                     
    }                                                                         
 
  ]                                                                           
 
}        
..............................
..............................
10 rows selected.

@link directive is commonly used in creating JSON-Relational Duality View using GraphQL.
See this section for a detailed example.

@link Directive to Identify a Foreign-Key Relation That References the Same Table

To understand this scenario, create and insert data a new table that has a foreign-key that
references to the same table.

Example 3-2    Create and Insert Data to a New Table that has a Self-Referencing Field

CREATE TABLE driver_w_lead 
  (driver_id  INTEGER PRIMARY KEY,
   name       VARCHAR2(255) NOT NULL UNIQUE,
   points     INTEGER NOT NULL,
   team_id    INTEGER,
   lead_driver_id INTEGER,
   CONSTRAINT driver_w_lead_team_fk FOREIGN KEY(team_id) REFERENCES 
team(team_id),
   CONSTRAINT driver_w_lead_fk FOREIGN KEY(lead_driver_id) REFERENCES 
driver_w_lead(driver_id));

INSERT INTO driver_w_lead (driver_id, name, points, team_id, lead_driver_id) 
VALUES
  (101, 'Lando Norris', 282, 301, NULL),
  (102, 'Oscar Piastri', 384, 301, 101),
  (103, 'Charles Leclerc', 312, 302, NULL),
  (104, 'Carlos Sainz Jr.', 340, 302, 103),
  (105, 'Max Verstappen', 456, 303, NULL),
  (106, 'Sergio Pérez', 133, 303, 105),
  (107, 'Lewis Hamilton', 240, 304, NULL),
  (108, 'George Russell', 228, 304, 107),
  (109, 'Fernando Alonso', 58, 305, NULL),
  (110, 'Lance Stroll', 36, 305, 109),
  (111, 'Esteban Ocon', 33, 306, NULL),
  (112, 'Pierre Gasly', 32, 306, 111),
  (113, 'Nico Hülkenberg', 30, 307, NULL),
  (114, 'Kevin Magnussen', 28, 307, 113),
  (115, 'Daniel Ricciardo', 24, 308, NULL),
  (116, 'Yuki Tsunoda', 22, 308, 115),
  (117, 'Alexander Albon', 12, 309, NULL),
  (118, 'Logan Sargeant', 5, 309, 117),

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 60



  (119, 'Valtteri Bottas', 3, 310, NULL),
  (120, 'Zhou Guanyu', 1, 310, 119);

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver_w_lead {
        id: driver_id
        name
        points
        team @unnest {
            teamName: name
        }
        driver_w_lead @link(from: lead_driver_id) @unnest {
            leadDriver: name
        }
    }
');

@GENERATED Directive
Directive @generated generates a field from existing fields/columns of the table or from SQL
expressions.

Directive @generated takes optional argument path or sql, with an value that's used to
calculate the JSON field value. The path value is a SQL/JSON path expression. The sql value
is a SQL expression or query. Note that, when using the GraphQL table function, the only
supported argument is the sql. The path argument is available only for creating duality-views.

Note

• Generated fields augment the documents produced by both duality views and
GraphQL table functions. These fields are computed rather than directly mapped
to underlying columns, and are always read-only.

• A generated field does not have a column name. It can be referenced only by an
alias.

The following example finds the race month using a sql expression:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    race {
        id: race_id
        name
        month @generated(sql: "regexp_substr(race_date, ''[^-]+'', 1, 2)")
    }
');

Which produces the following output containing the race month:

DATA                                                                          
 
------------------------------------------------------------------------------
--

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 60

https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/overview-sql-json-path-expressions.html#ADJSN-GUID-11006CA4-91CA-4D22-AB14-8F25508CFC5F


{                                                                             
 
  "id" : 
201,                                                                  
  "name" : "Bahrain Grand 
Prix",                                               
  "month" : 
"MAR"                                                              
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
202,                                                                  
  "name" : "Saudi Arabian Grand 
Prix",                                         
  "month" : 
"MAR"                                                              
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
203,                                                                  
  "name" : "Australian Grand 
Prix",                                            
  "month" : 
"MAR"                                                              
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
204,                                                                  
  "name" : "Japanese Grand 
Prix",                                              
  "month" : 
"APR"                                                              
} 
.......................
.......................
24 rows 
selected.                                                                     
        

@NEST and @UNNEST Directives
Directives @nest and @unnest specify nesting and unnesting (flattening) of intermediate
objects in both table function as well as in duality-view definition.

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 60



Directive @unnest corresponds to SQL keyword UNNEST (there's no keyword NEST in SQL
corresponding to directive @nest). The following are the restrictions when using these two
directives:

• You cannot unnest a field that has an alias.

• When using for duality-views, you cannot nest fields that correspond to identifying columns
of the root table (primary-key columns, identity columns, or columns with a unique
constraint or unique index).

You can use the following code to unnest the details of the team in the drivers object:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver {
        driverId: driver_id
        driverName: name
        driverPoints: points
        team @unnest {
            teamId: team_id
            teamName: name
            teamPoints: points
        }
    }
');

This code produces the following output:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "driverId" : 
101,                                                            
  "driverName" : "Lando 
Norris",                                               
  "driverPoints" : 
282,                                                        
  "teamId" : 
301,                                                              
  "teamName" : "McLaren 
Mercedes",                                             
  "teamPoints" : 
666                                                           
}                                                                             
 
                                                                              
   
{                                                                             
 
  "driverId" : 
102,                                                            
  "driverName" : "Oscar 
Piastri",                                              
  "driverPoints" : 

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 60



384,                                                        
  "teamId" : 
301,                                                              
  "teamName" : "McLaren 
Mercedes",                                             
  "teamPoints" : 
666                                                           
}                                                                             
 
                                                                              
   
{                                                                             
 
  "driverId" : 
103,                                                            
  "driverName" : "Charles 
Leclerc",                                            
  "driverPoints" : 
312,                                                        
  "teamId" : 
302,                                                              
  "teamName" : 
"Ferrari",                                                      
  "teamPoints" : 
652                                                           
}                 
...................................
...................................
...................................
20 rows selected.

The following code shows the usage of @nest directive where you can nest the points of team
in the previous query:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver {
        driverId: driver_id
        driverName: name
        driverPoints: points
        team @unnest {
            teamId: team_id
            teamName: name
            teamPoints @nest {
                points
            }
        }
    }
');

You can see the points field nested in the following output:

DATA                                                                          
 
------------------------------------------------------------------------------
--

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 60



{                                                                             
 
  "driverId" : 
101,                                                            
  "driverName" : "Lando 
Norris",                                               
  "driverPoints" : 
282,                                                        
  "teamId" : 
301,                                                              
  "teamName" : "McLaren 
Mercedes",                                             
  
"teamPoints" :                                                               
  
{                                                                            
    "points" : 
666                                                             
  }                                                                           
 
}                                                                             
 
                                                                              
   
{                                                                             
 
  "driverId" : 
102,                                                            
  "driverName" : "Oscar 
Piastri",                                              
  "driverPoints" : 
384,                                                        
  "teamId" : 
301,                                                              
  "teamName" : "McLaren 
Mercedes",                                             
  
"teamPoints" :                                                               
  
{                                                                            
    "points" : 
666                                                             
  }                                                                           
 
}              
....................................
....................................
....................................
20 rows selected.

Detailed example where @unnest directive is used in creating JSON-Relational Duality View
can be found here.

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 60

https://docs.oracle.com/en/database/oracle/oracle-database/23/jsnvu/creating-car-racing-duality-views-using-graphql.html#GUID-8F192730-7885-40CF-96BE-7D6DC094A838


@FLEX Directive
The @flex GraphQL directive in Oracle is used to designate a column typically of JSON data
type as a flex column. @flex directive is used with JSON relational duality views and is not
supported in the GraphQL table function.

This exposes not only regular, predefined columns from a table, but also additional, dynamic
fields present in the JSON data of the flex column. The fields inside a flex column are
unpacked and included in the resulting JSON document, making your data model more flexible
and extensible.

When a column is marked with @flex, any key-value pairs stored in the JSON flex column
become part of each document produced by the duality view. This is especially useful for cases
where you may have evolving or variable attributes associated with a record and you do not
want to update the database schema for every change.

Assume you have a DRIVER table structured as follows:

Column Type Description

driver_id NUMBER Unique driver identifier

name VARCHAR2 Driver name

extras JSON JSON column for flexible, extra
fields

Let’s say the extras column in your data contains dynamic attributes like birthplace or sponsor,
stored as key-value pairs in the JSON. The sample row would look like:

• driver_id: 101

• name: "Lando Norris"

• extras: { "birthplace": "Bristol", "sponsor": "Team X" }

The duality view using GraphQL in Oracle would look like:

driver {
  driverID: driver_id
  name
  extras @flex
}

Oracle will automatically include all fields from the extras flex column in the resulting JSON
output:

{                                                                             
 
  "driverId": 
101,                                                               
  "name": "Lando Norris",                                             
  "birthplace": 
"Bristol",                                                         
  "sponsor": "Team X"
 }

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 60



Note

Note that birthplace and sponsor come directly from the extras column and are
dynamically included due to the use of @flex directive.

Detailed of this directive in the context of JSON-relational duality view is covered in Flex
Columns, Beyond the Basics.

@HIDDEN Directive
The @hidden GraphQL directive in Oracle is used to hide a JSON field in the output. This
directive is used only for duality-view creation and not supported in the table function.

The directive @hidden takes no arguments. See Generated Fields, Hidden Fields.

Note

A field defined as flex cannot be hidden.

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    race {
        id: race_id
        name @hidden
    }
');

The above example hides the field name from the output and would produce which only
contains the race_id:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
201,                                                                          
                                                    
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
202,                                                                          
                                                     
}                                                                             
 
                                                                              
   

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 60

https://docs.oracle.com/en/database/oracle/oracle-database/23/jsnvu/flex-columns-basics.html#GUID-8D09B4D6-2853-40ED-8E7A-A921C197D5A8
https://docs.oracle.com/en/database/oracle/oracle-database/23/jsnvu/flex-columns-basics.html#GUID-8D09B4D6-2853-40ED-8E7A-A921C197D5A8
https://docs.oracle.com/en/database/oracle/oracle-database/23/jsnvu/generated-fields-hidden-fields.html#GUID-8799D094-98EB-4D4B-96CF-AA32B82FA6D6


{                                                                             
 
  "id" : 
203,                                                                          
                                                     
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
204,                                                                          
                                                   
} 
.......................
.......................
24 rows 
selected.                                                                     
        

@ALIAS Directive
The directive @alias provides an alternative name to the table on which the field is specified.

This directive has one argument: AS in which you can provide the alternative name for the field.

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver @alias(as: drv) {
        id: driver_id
        name
        drv.points
        teamName @generated(sql: "select name from team where team.team_id = 
drv.team_id")
    }
');

The example provides an alternative name to the driver field as drv using the @alias
directive. So in this example, drv.team_id would produce identical results as using
driver.team_id without using the @alias directive:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
101,                                                                  
  "name" : "Lando 
Norris",                                                     
  "points" : 
282,                                                              
  "teamName" : "McLaren 

Chapter 3
Custom GraphQL Directives

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 60



Mercedes"                                              
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
102,                                                                  
  "name" : "Oscar 
Piastri",                                                    
  "points" : 
384,                                                              
  "teamName" : "McLaren 
Mercedes"                                              
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
103,                                                                  
  "name" : "Charles 
Leclerc",                                                  
  "points" : 
312,                                                              
  "teamName" : 
"Ferrari"                                                       
}           
..............
..............
20 rows selected.

GraphQL Filter Specifications: Arguments
Filtering using GraphQL in Oracle AI Database is achieved by using arguments.

Arguments in GraphQL is analogous to where clause in SQL queries. The syntax for defining
the argument includes one or many comma separated predicates which takes the field name
and its corresponding value that needs to be filtered in the output.

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver (teamId: 301) {
        id: driver_id
        name
        points
        teamId: team_id
    }
');

Chapter 3
GraphQL Filter Specifications: Arguments

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 60



The above example, teamID: 301 is the filtering argument. The example would produce details
of the driver where the teamID field is equal to 301:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
101,                                                                  
  "name" : "Lando 
Norris",                                                     
  "points" : 
282,                                                              
  "teamId" : 
301                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
102,                                                                  
  "name" : "Oscar 
Piastri",                                                    
  "points" : 
384,                                                              
  "teamId" : 
301                                                               
}                                                                             
 
                                                                              
   
 
2 rows selected.

Using a specific field argument does not mandate that the field must be present in the output.
So the following example would not produce an error where team_id used as a filter argument
is not specified in the output:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver (team_id: 301) {
        id: driver_id
        name
        points
    }
');

Chapter 3
GraphQL Filter Specifications: Arguments

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 60



The output would just display the id, name and points of the driver object where team_id is
equal to 301:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
101,                                                                  
  "name" : "Lando 
Norris",                                                     
  "points" : 
282                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
102,                                                                  
  "name" : "Oscar 
Piastri",                                                    
  "points" : 
384                                                               
}                                                                             
 
                                                                              
   
 
2 rows selected.

LIMIT Argument

The GraphQL limit argument in Oracle AI Database limits the output to the specified number
of JSON objects. The syntax is simple - the keyword limit, followed by a : and then an
integer which defines the limit.

The limit:5 in the following example would retrieve only 5 objects irrespective of the number
of objects in the table:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver (limit: 5) {
        id: driver_id
        name
        points
    }
');

Chapter 3
GraphQL Filter Specifications: Arguments

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 60



GraphQL Filter Specifications: QBE
While you can perform equality comparisons using GraphQL arguments, you can perform all
other comparisons using the query-by-example (QBE) syntax.

QBE is analogous to where clause in SQL queries and is a slightly modified form of SODA
QBE expression. To use this feature, you can specify the list of predicates for a table in the
check clause, and this clause is specified after the table name and before the list of directives.

For example, driver(check:{points:{_gt: 360}}).

Each predicate has the alias name for the column, followed by a QBE operator and then the
comparison value. In the example above, points is the alias, _GT is the operator which will
perform greater than operation and 360 is the comparison value, this is equivalent to "where
points > 360".

Oracle AI Database supports the following categories of operators for GraphQL developers:

• Relational Operators : Includes comparison operators such as _eq (equal to), _ne (not
equal to) etc.

• Logical Operators: Includes operators such as _and and _or to combine the predicates.

• Item Method Operators: Includes operators such as _lower, _upper etc., which
transforms the value and then uses for further filtering.

Relational Operators in QBE
Relational operators in QBE are comparison operators that allows you to evaluate or check the
relationship between two values, returning a Boolean result which allows filtering, searching or
sorting the data in your queries.

GraphQL QBE Relational Operator Equivalent SQL Operator

_eq and _ne Equivalent to '=' and '!='.

_lt and _lte Equivalent to '<' and '<='.

_gt and _gte Equivalent to '>' and '>='.

_like Equivalent to 'like'.

_is_null Equivalent to 'where <field> is null'.
Example - Office: {_is_null: TRUE}

_in, _nin, and _between Equivalent to IN, NOT IN, and BETWEEN

Equal and Not Equal to QBE Operators
Learn to use QBE operators _eq, and _ne to filter specific data from the car racing dataset
through simple examples.

Consider a scenario where you would like to fetch the details of a specific team. You can use
the _eq QBE operator compare if the name is equal to the specific team's name you are
looking for, and fetch details of that exact team:

Example 3-3    _eq Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team (

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 60

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/adsdi/soda-filter-specifications-reference.html#GUID-8DDB51EB-D80F-4476-9ABF-D6860C6214D1
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/adsdi/soda-filter-specifications-reference.html#GUID-8DDB51EB-D80F-4476-9ABF-D6860C6214D1


        check: {
            name: {_eq: "Ferrari"}
        }
    ) {
        id: team_id
        name
        points
    }
');

This code would access the table team, fetches the id, name and points only for the team
named "Ferrari":

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
302,                                                                  
  "name" : 
"Ferrari",                                                          
  "points" : 
652                                                               
}                                                                             
 
                                                                              
   
 
1 row selected.

You can also use the simplified quality syntax, which just uses name: "Ferrari" instead of
name: {_eq: "Ferrari"} which would still produce the same output:

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team (
        check: {
            name: "Ferrari"
        }
    ) {
        id: team_id
        name
        points
    }
');

Or you may want to fetch details of the team named "McLaren Mercedes". Further, you would
like to find the drivers in the team other than "Oscar Piastri".

Example 3-4    _ne Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team (

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 60



        check: {
            name: "McLaren Mercedes"
        }
    ){
        id: team_id
        name
        points
        drivers: driver (
            check: {
                name: {_ne: "Oscar Piastri"}
            }
        ) {
            name
            points
        }
    }
');

The example uses two filters, first one to filter the team based on the team's name and second
one to identify the driver names which is not equal to "Oscar Piastri" :

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
301,                                                                  
  "name" : "McLaren 
Mercedes",                                                 
  "points" : 
666,                                                              
  
"drivers" :                                                                  
  
[                                                                            
    
{                                                                          
      "name" : "Lando 
Norris",                                                 
      "points" : 
282                                                           
    }                                                                         
 
  ]                                                                           
 
}                                                                             
 
                                                                              
   
 
1 row selected.

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 60



Greater and Less than QBE Operators
Learn to use QBE operators _gt, _gte, _lt and _lte to filter specific data from the car racing
dataset through simple examples.

Consider a scenario where you would like to fetch the details of drivers who scored more than
360 points. You can use the QBE operator, '_gt' to achieve this:

Example 3-5    _gt Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver (
        check: {
            points: {_gt: 360}
        }
    )
    {
        id: driver_id
        name
        points
    }
');

This code would access the table driver, checks for those drivers whose points are greater
than 360, and retrieves their id, name and points:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
102,                                                                  
  "name" : "Oscar 
Piastri",                                                    
  "points" : 
384                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
105,                                                                  
  "name" : "Max 
Verstappen",                                                   
  "points" : 
456                                                               
}                                                                             
 
                                                                              
   

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 60



 
2 rows selected.

Or you may want to fetch details of all teams. Further, you would like to find the drivers who
scored less than or equal to 100 points in each team. The example uses the check clause on
a nested table:

Example 3-6    _lte Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team {
        id: team_id
        name
        points
        underPerformingDrivers: driver (
            check: {
                points: {_lte: 100}
            }
        )
        {
            driverName: name
            points
        }
    }
');

The above example would fetch the team's id, name and points. Then makes a list of under
performing drivers in the team who have scored less than or equal to 100 points and displays
their name and points with the team's data:

DATA                                                                          
 
--------------------------------------------------------------------
{                                                                             
 
  "id" : 
301,                                                                  
  "name" : "McLaren 
Mercedes",                                                 
  "points" : 
666,                                                              
  
"underPerformingDrivers" :                                                   
  
[                                                                            
  ]                                                                           
 
}                                                                             
 
                                                                              
   
................................
................................                                              
                               

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 60



                                                                              
   
{                                                                             
 
  "id" : 
309,                                                                  
  "name" : "Williams 
Mercedes",                                                
  "points" : 
17,                                                               
  
"underPerformingDrivers" :                                                   
  
[                                                                            
    
{                                                                          
      "driverName" : "Alexander 
Albon",                                        
      "points" : 
12                                                            
    },                                                                        
 
    
{                                                                          
      "driverName" : "Logan 
Sargeant",                                         
      "points" : 
5                                                             
    }                                                                         
 
  ]                                                                           
 
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
310,                                                                  
  "name" : "Kick Sauber 
Ferrari",                                              
  "points" : 
4,                                                                
  
"underPerformingDrivers" :                                                   
  
[                                                                            
    
{                                                                          
      "driverName" : "Valtteri 
Bottas",                                        
      "points" : 
3                                                             
    },                                                                        
 

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 60



    
{                                                                          
      "driverName" : "Zhou 
Guanyu",                                            
      "points" : 
1                                                             
    }                                                                         
 
  ]                                                                           
 
}                                                                             
 
                                                                              
   
 
10 rows selected.

LIKE QBE Operator
Learn to use the _like QBE operator to filter specific data from the car racing dataset through
simple examples.

Example 3-7    _like Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team (
        check: {
            name: {_like: "%Honda%"}
        }
    ) {
        id: team_id
        name
        points
    }
');

The above example would fetch the id, name, and points information from the team table
where the field name contains the string Honda:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
303,                                                                  
  "name" : "Red Bull Racing Honda 
RBPT",                                       
  "points" : 
589                                                               
}                                                                             
 
                                                                              
   

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 60



{                                                                             
 
  "id" : 
308,                                                                  
  "name" : "RB Honda 
RBPT",                                                    
  "points" : 
46                                                                
}                                                                             
 
                                                                              
   
 
2 rows selected.

IS NULL QBE Operator
Learn to use the _is_null QBE operator to filter specific data from the car racing dataset
through simple examples.

Example 3-8    _is_null Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver (
        check: {
            id: {_is_null: TRUE}
        }
    ){
        id: driver_id
        name
        points
    }
');

You can use the above code to check if there are any entries in the driver table where the id
field empty. The _is_null operator checks if the id field is empty and returns the
corresponding details. Since the car racing example does not contain an empty id field, the
above code would not return any rows.

IN, NOT IN and BETWEEN QBE Operators
Learn to use QBE operators _in, _nin, and _between to filter specific data from the car racing
dataset through simple examples.

You can use the _in and the _nin operator to compare and check if the predicate is present or
otherwise in the specified array.

Example 3-9    _in Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver (
        check: {
            name: {_in: ["Oscar Piastri", "Max Verstappen"]}
        }
    ){

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 60



        id: driver_id
        name
        points
    }
');

For each row in the driver table, the above example would check if the name field is one of
["Oscar Piastri", "Max Verstappen"]. If the outcome is TRUE, then the corresponding driver
details, in this case, id, name, and points are fetched:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
105,                                                                  
  "name" : "Max 
Verstappen",                                                   
  "points" : 
456                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
102,                                                                  
  "name" : "Oscar 
Piastri",                                                    
  "points" : 
384                                                               
}                                                                             
 
                                                                              
   
 
2 rows selected.

_between QBE operator checks if the predicate is in between the two values specified in the
array:

Example 3-10    _between Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver (
        check: {
            points: {_between: [300, 400]}
        }
    ){
        id: driver_id
        name
        points

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 60



    }
');

This code would access the table driver, checks for those drivers whose points between 300
and 400, and retrieves their id, name and points:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
102,                                                                  
  "name" : "Oscar 
Piastri",                                                    
  "points" : 
384                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
103,                                                                  
  "name" : "Charles 
Leclerc",                                                  
  "points" : 
312                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
104,                                                                  
  "name" : "Carlos Sainz 
Jr.",                                                 
  "points" : 
340                                                               
}                                                                             
 
                                                                              
   
 
3 rows selected.

Logical Operators in QBE
Logical operators allow for combining, negating, or comparing conditions in a query where
results must be based on whether conditions are true or false.

Oracle AI Database support for GraphQL includes two logical QBE operators:

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 60



• _OR for the logical OR operation.

• _AND for the logical AND operation.

AND QBE Operator
Learn to use the _and QBE operator to filter specific data from the car racing dataset through
simple examples.

To perform a logical AND operation between two or more predicates, you can enclose each of
the predicate in the curly braces, and provide them as values to an array for the _and operator.

Example 3-11    _and Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team (
        check: {
            _and: [
                {name: {_like: "%Mercedes%"}},
                {points: {_gt: 300}}
            ]
        }
    ) {
        id: team_id
        name
        points
    }
');

In the above code example, the specified details of the team table are retrieved only when the
two conditions specified in the _and clause are met. In this case, the team's name must contain
the string "Mercedes" and then the value of the points field must be greater than 300.

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
301,                                                                  
  "name" : "McLaren 
Mercedes",                                                 
  "points" : 
666                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
304,                                                                  
  "name" : 
"Mercedes",                                                         
  "points" : 

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 60



468                                                               
}                                                                             
 
                                                                              
   
 
2 rows selected.

OR QBE Operators
Learn to use the _or QBE operator to filter specific data from the car racing dataset through
simple examples.

To perform a logical OR operation between two or more predicates, you can enclose each of
the predicate in the curly braces, and provide them as values to an array for the _or operator.

Example 3-12    _or Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver (
        check: {
            _or: [
                {name: "Oscar Piastri"},
                {name: "Max Verstappen"}
            ]
        }
    ){
        id: driver_id
        name
        points
    }
');

In the above code example, the specified details of the driver table are retrieved when atleast
one of the two conditions specified in the _or clause are met. In this case, you are checking
driver's name is either "Oscar Piastri" or "Max Verstappen".

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
105,                                                                  
  "name" : "Max 
Verstappen",                                                   
  "points" : 
456                                                               
}                                                                             
 
                                                                              
   
{                                                                             
 

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 60



  "id" : 
102,                                                                  
  "name" : "Oscar 
Piastri",                                                    
  "points" : 
384                                                               
}                                                                             
 
                                                                              
   
 
2 rows selected.

Item Method Operators in QBE
Item Method Operators act on a JSON field, transform it's value and then compare it to the
comparison value.

The item method operators are analogous to the SQL operators or functions. Oracle AI
Database for GraphQL supports the following item method QBE operators:

GraphQL QBE Item Method Operator Equivalent SQL Operator

_abs To get the absolute value. This operator is not used
since QBE in GraphQL does not support negative
numbers.

_boolean To typecast to boolean. Equivalent of TO_BOOLEAN
in SQL.

_number To typecast to a number. Equivalent of TO_NUMBER
in SQL.

_double To typecast to binary_double. Equivalent of
TO_BINARY_DOUBLE in SQL.

_string To typecast to char. Equivalent of TO_CHAR in
SQL.

_date To type cast to date. Equivalent of TO_DATE in
SQL.

_timestamp To type cast to timestamp. Equivalent of
TO_TIMESTAMP in SQL.

_ceiling To get the ceil value of a number. Equivalent of
CEIL in SQL.

_floor To get the floor value of a number. Equivalent of
FLOOR in SQL.

_lower To convert the string into lower case. Equivalent
of LOWER in SQL.

_upper To convert the string into upper case. Equivalent
of UPPER in SQL.

_length To get the length of the value. Equivalent of
LENGTH in SQL.

_size To get the size of data type. Equivalent of VSIZE
in SQL.

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 60



STRING QBE Operator
Learn to use _string QBE operator to filter specific data from the car racing dataset through
simple examples.

Analogous to the TO_CHAR operator in SQL, you can use the _string QBE operator to typecast
the input to a char.

Example 3-13    _string Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    race (
        check: {
            date: {_string: {_like: "%MAR-24"}}
        }
    ){
        id: race_id
        name
        date: race_date
        podium
    }
');

The above example would select all the races that happened in March 2024:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
201,                                                                  
  "name" : "Bahrain Grand 
Prix",                                               
  "date" : 
"2024-03-02T00:00:00",                                              
  
"podium" :                                                                   
  
{                                                                            
    
"winner" :                                                                 
    
{                                                                          
      "name" : "Max 
Verstappen",                                               
      "time" : 
"1:32:17"                                                       
    },                                                                        
 
    
"firstRunnerUp" :                                                          
    
{                                                                          

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 60



      "name" : "Sergio Pérez",                                                
      "time" : 
"1:32:33"                                                       
    },                                                                        
 
    
"secondRunnerUp" :                                                         
    
{                                                                          
      "name" : "Charles 
Leclerc",                                              
      "time" : 
"1:32:45"                                                       
    }                                                                         
 
  }                                                                           
 
}                                                                             
 
...................................
...................................                                           
                                                                            
                                                                              
  
 
3 rows selected.
 

LOWER and UPPER QBE Operators
Learn to use QBE operators _upper, and _lower to filter specific data from the car racing
dataset through simple examples.

Analogous to the UPPER and LOWER operators in SQL, you can use the _upper and _lower QBE
operators to convert the input string to upper case or lower case respectively.

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team (
        check: {
            name: {_upper: {_eq: "FERRARI"}}
        }
    ){
        id: team_id
        name
        points
    }
');

This example would fetch the id, name, and points information from the team table, where the
team's name is "FERRARI".

DATA                                                                          
 
------------------------------------------------------------------------------
--

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 60



{                                                                             
 
  "id" : 
302,                                                                  
  "name" : 
"Ferrari",                                                          
  "points" : 
652                                                               
}                                                                             
 
                                                                              
   
 
1 row selected.

LENGTH QBE Operator
Learn to use the _length QBE operator to filter specific data from the car racing dataset
through simple examples.

Analogous to the LENGTH operator in SQL, you can use the _length QBE operator to obtain the
length of the input

Example 3-14    _length Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    driver (
        check: {
            name: {_length: {_gte: 16}}
        }
    ){
        id: driver_id
        name
        points
    }
');

In this example, you check and return the details of the drivers whose name is longer than 16
characters:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
104,                                                                  
  "name" : "Carlos Sainz 
Jr.",                                                 
  "points" : 
340                                                               
}                                                                             
 
                                                                              

Chapter 3
GraphQL Filter Specifications: QBE

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 60



   
{                                                                             
 
  "id" : 
113,                                                                  
  "name" : "Nico Hülkenberg",                                                 
  "points" : 
30                                                                
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
115,                                                                  
  "name" : "Daniel 
Ricciardo",                                                 
  "points" : 
24                                                                
}                                                                             
 
                                                                              
   
 
3 rows selected.
 

GraphQL Variables
Variables keep the queries generic and reusable. Instead of hard coding the a value in the
query, using a variable would allow you to pass the value separately.

Support for GraphQL variable in Oracle AI Database is provided by:

• Defining the variable in the GraphQL table function using a '$' sign. For example, race
(name: $var) in a GraphQL query would imply that the race name would be passed as a
variable during the execution.

• Defining the bind variable: The keyword passing is used to assign values to the defined
GraphQL variables.

Consider a scenario where you would like to obtain the information about a specific race. While
you can also do this by using GraphQL arguments, using variables makes the query more
generic, eliminating the need to hardcode the input query.

First the bind variable is defined and the EXEC SELECT statement is executed to use it with
passing clause in the GraphQL query.

VAR race_name_bind VARCHAR2;
EXEC SELECT 'Miami Grand Prix' INTO :race_name_bind;

Then the value of the variable, in this case, Miami Grand Prix is passed to the variable var in
the following example:

Chapter 3
GraphQL Variables

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 60



Example 3-15    Passing One Variable in Oracle Supported GraphQL Query

-- Get the result for the race specified by the bind variable :race_name_bind
SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    race (name: $var) {
        id: race_id
        name
        date: race_date
        podium
    }
' PASSING :race_name_bind AS "var");

Executing this example would produce the requested details of the race where the name of the
race is Miami Grand Prix.

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
206,                                                                  
  "name" : "Miami Grand 
Prix",                                                 
  "date" : 
"2024-05-05T00:00:00",                                              
  
"podium" :                                                                   
  
{                                                                            
    
"winner" :                                                                 
    
{                                                                          
      "name" : "Lando 
Norris",                                                 
      "time" : 
"1:31:45"                                                       
    },                                                                        
 
    
"firstRunnerUp" :                                                          
    
{                                                                          
      "name" : "Max 
Verstappen",                                               
      "time" : 
"1:32:02"                                                       
    },                                                                        
 
    
"secondRunnerUp" :                                                         
    

Chapter 3
GraphQL Variables

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 60



{                                                                          
      "name" : "Carlos Sainz 
Jr.",                                             
      "time" : 
"1:32:16"                                                       
    }                                                                         
 
  }                                                                           
 
}                                                                             
 
                                                                              
   
 
1 row selected.

Here is another example where multiple variables are combined using the _or QBE operator.
The example would chose the variable $raceName or the $raceDate to filter the output
depending on which variable is passed during the execution. Consider the scenario where date
is defined and passed as the binding variable:

 
VAR race_date_bind VARCHAR2;
EXEC SELECT '2024-07-07' INTO :race_date_bind;

Example 3-16    Combining Multiple Variables using the _or QBE Operator

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    race (
        check: {
            _or: [
                {name: $raceName},
                {date: $raceDate}
            ]
        }
    ) {
        id: race_id
        name
        date: race_date
        podium
    }
' PASSING :race_name_bind AS "raceName",
          to_date(:race_date_bind, 'YYYY-MM-DD') AS "raceDate");

The code would pass the specified date and produce the requested details of the race
corresponding to the specified date.

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 

Chapter 3
GraphQL Variables

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 60



206,                                                                  
  "name" : "Miami Grand Prix",                             
  "date" : 
"2024-05-05T00:00:00",                                                        
                
...................
...................              
}                                                                             
 
                                                                              
   
{                                                                             
 
  "id" : 
212,                                                                  
  "name" : "British Grand 
Prix",                                               
  "date" : 
"2024-07-07T00:00:00",                                              
  
"podium" :                                                                   
  
{                                                                            
    
"winner" :                                                                 
    
{                                                                          
      "name" : "Lewis 
Hamilton",                                               
      "time" : 
"1:32:20"                                                       
    },                                                                        
 
    
"firstRunnerUp" :                                                          
    
{                                                                          
      "name" : "Lando 
Norris",                                                 
      "time" : 
"1:32:39"                                                       
    },                                                                        
 
    
"secondRunnerUp" :                                                         
    
{                                                                          
      "name" : "George 
Russell",                                               
      "time" : 
"1:32:52"                                                       
    }                                                                         
 
  }                                                                           
 
}                                                                             

Chapter 3
GraphQL Variables

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 60



 
                                                                              
   
 
2 rows selected.

Using Literals in the Passing Clause
The passing clause of the GraphQL variables allows the table function to use fixed value of the
variable directly, eliminating the need for the bind variable.

Example 3-17    Using Numeric Literal in the Passing Clause of a GraphQL Variable

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team (id: $teamId) {
        id: team_id
        name
        points
    }
' passing 301 as "teamId");

The above code would fetch the requested information from the team table where the teamId is
301. Note that, the literal value 301 is passed using the passing clause of the GraphQL
variable.

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
301,                                                                  
  "name" : "McLaren 
Mercedes",                                                 
  "points" : 
666                                                               
}                                                                             
 
                                                                              
   
 
1 row selected.

Similarly, you could also pass a character (string) literal by enclosing the value in single quotes.

Example 3-18    Using String Literal in the Passing Clause of a GraphQL Variable

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team (name: $teamName) {
        id: team_id
        name
        points

Chapter 3
GraphQL Variables

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 60



    }
' passing 'Ferrari' as "teamName");

The above example would fetch the requested information from the team table where the team
name is Ferrari.

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
302,                                                                  
  "name" : 
"Ferrari",                                                          
  "points" : 
652                                                               
}                                                                             
 
                                                                              
   
 
1 row selected.

Using SQL Expressions in the Passing Clause
You can also pass a SQL expression in the passing clause of the GraphQL variables.

Example 3-19    Using SQL Expressions in the Passing Clause of a GraphQL Variable

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    team (name: $teamName) {
        id: team_id
        name
        points
    }
' passing (Initcap('haas') || ' ' || 'Ferrari') as "teamName");

In the above example, the expression Initcap('haas') || ' ' || 'Ferrari' is first
executed and passed as the value to the teamName variable. The requested details from the
team table corresponding to the teamName specified in the variable would be fetched in the
result:

DATA                                                                          
 
------------------------------------------------------------------------------
--
{                                                                             
 
  "id" : 
307,                                                                  
  "name" : "Haas 
Ferrari",                                                     

Chapter 3
GraphQL Variables

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 60



  "points" : 
58                                                                
}                                                                             
 
                                                                              
   
 
1 row selected.

Comments within a GraphQL Query
Comments are annotations embedded in the GraphQL query that serve to explain and
document a specific statement making the query easier to understand and maintain.

You can add comments to the GraphQL table function by using the # symbol. Anything that
follows the # is considered as a comment and would not be executed.

Example 3-20    Defining Comments in the GraphQL Table Function

SELECT JSON_SERIALIZE(data PRETTY) AS data FROM GRAPHQL('
    race (limit: 2) {
        id: race_id
        name
        podium # this field is a JSON object having details of Top 3
        date: race_date
    }
');

The text this field is a JSON object having details of Top 3 considered a comment
since it is preceded by a # symbol. Adding the comment would not modify or impact the results
generated by the query.

Chapter 3
Comments within a GraphQL Query

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 60



4
Creating JSON Relational Duality Views using
GraphQL

JSON-relational duality view in Oracle AI Database 26ai is an advanced feature that enables
the same underlying relational data to be accessed and manipulated either as hierarchical
JSON documents or as traditional SQL tables without any duplication.

By bridging the gap between relational and document models, duality views provide application
developers with the flexibility of JSON and the consistency, efficiency, and normalization
benefits of the relational model. With a duality view, data is always stored just once in relational
tables, but you can surface and interact with it in whichever format your application needs. The
database engine automatically maps tables and columns to nested JSON structures. Any
changes, whether made through the JSON view or via SQL, are instantly synchronized,
ensuring a single, up-to-date source of truth regardless of how the data is accessed.

Oracle AI Database offers a modern way to define JSON-relational duality views using a
concise, GraphQL-based syntax. This approach allows developers to express how relational
data should be projected as hierarchical JSON documents directly inside the database,
leveraging familiar GraphQL concepts like nested fields, aliases, and directives. The database
automatically infers joins and relationships from foreign keys, so there is no need for complex
subquery or join declarations. Additionally, GraphQL directives such as @insert, @update,
@delete, and @nocheck give fine-grained control over how data can be manipulated and
validated at each level of the JSON hierarchy. By adopting this syntax, you get the best of both
relational integrity and JSON flexibility, enabling seamless access and updates through SQL
and GraphQL APIs without duplicating data or logic. This ability streamlines the integration of
document style views with your GraphQL based applications, letting you define and expose
relational data as hierarchical JSON documents without leaving the GraphQL environment.

Consider the table team from Setting up the Car Racing Dataset. The table was created using
the following syntax:

CREATE TABLE team
  (team_id    INTEGER PRIMARY KEY,
   name       VARCHAR2(255) NOT NULL UNIQUE,
   points     INTEGER NOT NULL);

You can create a duality view using the syntax for GraphQL support in Oracle Database:

CREATE JSON RELATIONAL DUALITY VIEW team_dv AS
  team @insert @update @delete
    {_id    : team_id,
     name   : name,
     points : points,
     driver : driver @insert @update
       [ {driverId : driver_id,
          name     : name,
          points   : points @nocheck} ]};

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 2



The above example creates a duality view supporting JSON documents where the team object
contain a field driver whose value is an array of nested objects that specify the drivers on the
team:

{"_id" : 301, "name" : "Red Bull", "points" : 0, "driver" : [...]}

Note

More detailed examples of creating JSON-Relational Duality View can be found in 
Creating Car-Racing Duality Views Using GraphQL. You can also create duality views
using SQL statements. For details, refer to Creating Car-Racing Duality Views Using
SQL.

Chapter 4

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 2



Glossary

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Glossary-1 of Glossary-1



Index

Oracle Database Support for GraphQL Developer's Guide
G35946-01
Copyright © 2025, 2014, Oracle and/or its affiliates.

October 13, 2025
Index-1 of Index-1


	Contents
	List of Examples
	List of Figures
	List of Tables
	1 Overview of GraphQL
	Oracle Database Support for GraphQL
	Introduction to Car Racing Example
	Setting up the Car Racing Dataset
	Insert Data to the Car Racing Tables


	2 Custom GraphQL Syntax in Oracle
	GraphQL Schema Conventions in Oracle AI Database
	Custom GraphQL Scalars in Oracle
	Implicit Field Aliasing Support for GraphQL in Oracle
	Generating a GraphQL Schema from a Relational Schema

	3 GraphQL Queries
	GraphQL Table Function
	Specifying Nested Objects within a Query

	Custom GraphQL Directives
	@WHERE Directive
	@ORDERBY Directive
	@ARRAY Directive
	@OBJECT Directive
	@LINK Directive
	@GENERATED Directive
	@NEST and @UNNEST Directives
	@FLEX Directive
	@HIDDEN Directive
	@ALIAS Directive

	GraphQL Filter Specifications: Arguments
	GraphQL Filter Specifications: QBE
	Relational Operators in QBE
	Equal and Not Equal to QBE Operators
	Greater and Less than QBE Operators
	LIKE QBE Operator
	IS NULL QBE Operator
	IN, NOT IN and BETWEEN QBE Operators

	Logical Operators in QBE
	AND QBE Operator
	OR QBE Operators

	Item Method Operators in QBE
	STRING QBE Operator
	LOWER and UPPER QBE Operators
	LENGTH QBE Operator


	GraphQL Variables
	Using Literals in the Passing Clause
	Using SQL Expressions in the Passing Clause

	Comments within a GraphQL Query

	4 Creating JSON Relational Duality Views using GraphQL
	Glossary
	Index

