Oracle® Al Database
Universal Connection Pool Developer's Guide

26ali
G44295-01
October 2025

ORACLE"

Oracle Al Database Universal Connection Pool Developer's Guide, 26ai
G44295-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

Primary Author: Tulika Das

Contributing Authors: Tanmay Choudhury, Joseph Ruzzi, Tong Zhou, Yuri Dolgov, Paul Lo, Kuassi Mensah, Jean DE
LAVARENE, Nirmala Sundarappa, Saurabh K Verma, Frances Zhao

Contributors: Rajkumar Irudayaraj

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience [
Related Documents i
Conventions i

Changes in This Release for Oracle Universal Connection Pool
Developer's Guide

Changes in Oracle Al Database 26ai i

1 Introduction to UCP

1.1 Overview of Connection Pool 1
1.2 Benefits of Using a Connection Pool 1
1.3 Overview of Universal Connection Pool 2
1.3.1 Conceptual Architecture 2
1.3.2 Connection Pool Properties 3
1.3.3 Connection Pool Manager 3
1.3.4 High Availability and Performance Scenarios 3
2 Getting Started
2.1 Requirements for using UCP
2.2 Basic Connection Steps in UCP 1
2.2.1 Authentication in UCP 2
2.2.2 Authentication Using IAM Database Access Tokens in Oracle Cloud
Infrastructure 2
2.3 UCP API Overview 3
2.4 UCP System Properties 3
2.5 Basic Connection Example Using UCP 4
2.6 Minimal Pool configuration 5

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page i of vi

3 Getting Database Connections in UCP

3.1 About Borrowing Connections from UCP 1

3.1.1 Overview of Borrowing Connections from UCP 1

3.1.1.1 Connection Creation Using Background Threads 2

3.1.2 Using the Pool-Enabled Data Source 2

3.1.3 Using the Pool-Enabled XA Data Source 4

3.1.4 Setting Connection Properties 4

3.1.5 Using JNDI to Borrow a Connection 5

3.1.6 About Connection Initialization Callback 6

3.1.6.1 Overview of Connection Initialization Callback 6

3.1.6.2 Creating an Initialization Callback 6

3.1.6.3 Registering an Initialization Callback 7

3.1.6.4 Removing or Unregistering an Initialization Callback 7

3.2 Setting Connection Pool Properties for UCP 7

3.3 Overview of Validating Connections in UCP 8

3.3.1 Validating When Borrowing 8
3.3.2 Minimizing Connection Validation with setSecondsToTrustldleConnection()

Method 9

3.3.3 Checking If a Connection Is Valid 9

3.4 Returning Borrowed Connections to UCP 11

3.5 Removing Connections from UCP 11

3.6 UCP Integration with Third-Party Products 11

4 Connection Creation Consumer
4.1 Implementing a Connection Creation Consumer 1
5 Optimizing Universal Connection Pool Behavior

5.1 Optimizing Connection Pools 1

5.2 About Controlling the Pool Size in UCP 2

5.2.1 Setting the Initial Pool Size 2

5.2.2 Setting the Minimum Pool Size 2

5.2.3 Setting the Maximum Pool Size 3

5.2.4 Setting the Minimum Idle Connection Number 3

5.3 Real-World Performance Considerations with Respect to Connection Pool Sizes 3

5.4 Stale Connections in UCP 4

5.4.1 What is Connection Reuse? 5

5.4.1.1 Setting the Maximum Connection Reuse Time 5

5.4.1.2 Setting the Maximum Connection Reuse Count 6

5.4.2 Setting the Connection Validation Timeout 6

5.4.3 Setting the Abandon Connection Timeout 6

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page ii of vi

5.4.4 Setting the Time-To-Live Connection Timeout
5.4.5 Setting the Connection Wait Timeout
5.4.6 Setting the Inactive Connection Timeout
5.4.7 Setting the Query Timeout
5.4.8 Setting the Timeout Check Interval

5.5 About Harvesting Connections in UCP
5.5.1 Overview of Harvesting Connections in UCP
5.5.2 Setting a Connection to Harvestable
5.5.3 Setting the Harvest Trigger Count
5.5.4 Setting the Harvest Maximum Count

5.6 About Caching SQL Statements in UCP
5.6.1 Overview of Statement Caching in UCP
5.6.2 Enabling Statement Caching in UCP

5.7 UCP Best Practices

6 Labeling Connections in UCP

© © © 00 00 0

10
10
10
11
11
12
12

6.1 Overview of Labeling Connections in UCP

6.2 Implementation of a Labeling Callback in UCP
6.2.1 When to Use a Labeling Callback in UCP
6.2.2 Creating a Labeling Callback in UCP

6.2.2.1 Example of Labeling Callback in UCP

6.2.3 Registering a Labeling Callback in UCP
6.2.4 Removing a Labeling Callback in UCP

6.3 Integration of UCP with DRCP

6.4 Applying Connection Labels in UCP

6.5 Borrowing Labeled Connections from UCP

6.6 Checking Unmatched Labels in UCP

6.7 Removing a Connection Label in UCP

7 Controlling Reclaimable Connection Behavior

N o oo o o BB W NDNDN PP

7.1 AbandonedConnectionTimeoutCallback Interface
7.2 TimeToLiveConnectionTimeoutCallback Interface

8 Using the Connection Pool Manager

8.1 Overview of Using the UCP Manager
8.1.1 About Connection Pool Manager
8.1.2 Creating a Connection Pool Manager for UCP
8.1.3 Life Cycle States of a Connection
8.1.3.1 Creating a Connection Pool

Universal Connection Pool Developer's Guide
G44295-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

N PR R R

October 13, 2025
Page iii of vi

8.1.3.2 Starting a Connection Pool
8.1.3.3 Stopping a Connection Pool
8.1.3.4 Destroying a Connection Pool
8.1.4 Maintenance of Universal Connection Pool
8.1.4.1 Refreshing a Connection Pool
8.1.4.2 Recycling a Connection Pool
8.1.4.3 Purging a Connection Pool
8.2 Overview of IMX-Based Management in UCP
8.2.1 UniversalConnectionPoolManagerMBean
8.2.2 UniversalConnectionPoolMBean

o Shared Pool Support for Multitenant Data Sources

oo o o1 o0 A B W WW

9.1 Overview of Shared Pool Support

9.2 Prerequisites for Supporting Shared Pool

9.3 Configuring the Shared Pool

9.4 UCP APIs for Shared Pool Support

9.5 Sample XML Configuration File for Shared Pool

10 Using Oracle RAC Features

0 N oo 01 -

10.1 Overview of Oracle RAC Features
10.2 About Fast Connection Failover
10.2.1 Overview of Fast Connection Failover
10.2.2 What is Fast Connection Failover?
10.2.2.1 What the Application Sees
10.2.2.2 How FCF Works
10.2.3 Fast Connection Failover Prerequisites
10.2.4 Example of Fast Connection Failover Configuration
10.2.5 Enabling Fast Connection Failover
10.2.6 What is ONS?
10.2.6.1 Overview of ONS Configuration File
10.2.6.2 Remote Configuration of ONS
10.2.6.3 Configuration of Client-Side ONS Daemon
10.2.7 Configuring the Connection URL
10.3 About Run-Time Connection Load Balancing
10.3.1 Overview of Run-Time Connection Load Balancing
10.3.2 Setting Up Run-Time Connection Load Balancing
10.4 About Connection Affinity
10.4.1 Overview of Connection Affinity
10.4.1.1 Transaction-Based Affinity
10.4.1.2 Web Session Affinity

Universal Connection Pool Developer's Guide
G44295-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

O© N oo o o o0k~ B B DNMNDN P

el e e e o =
o oo U h W WN O

October 13, 2025
Page iv of vi

11

12

13

14

10.4.1.3 Oracle RAC Data Affinity 16
10.4.2 Setting Up Connection Affinity 17
10.4.2.1 Creating a Connection Affinity Callback 18
10.4.2.2 Registering a Connection Affinity Callback 19
10.4.2.3 Removing a Connection Affinity Callback 19
10.4.2.4 Strict Affinity Mode 19
10.5 Global Data Services 20
10.5.1 Overview of Global Data Services 20
10.5.2 Configuring an Application for Using GDS 20
UCP Asynchronous Extension
11.1 Overview of UCP Asynchronous Extension 1
11.2 Example: UCP Asynchronous Extension 2
11.3 Asynchronous Connection Labeling 3
11.4 Example: Asynchronous Connection Labeling 4
Ensuring Application Continuity
12.1 Overview of Ensuring Application Continuity with UCP 1
12.2 Configuring the Data Source for Application Continuity 1
12.3 Using Connection Labeling for Application Continuity 2
12.4 Using Connection Initialization Callback for Application Continuity 2
Shared Pool for Sharded Databases
13.1 Overview of UCP Shared Pool for Database Sharding 1
13.2 About Handling Connection Requests for a Sharded Database 2
13.2.1 How to Checkout Connections from a Pool with a Sharding Key 3
13.2.2 About Configuring the Number of Connections Per Shard 4
13.2.3 About Connecting to the Shard Catalog or Co-ordinator for Multishard Queries 4
13.3 Sharding Data Source for Transparent Access to Sharded Databases 5
13.3.1 Support for Single Shard Transactions 6
13.4 Middle-Tier Routing Using UCP 9
13.4.1 Middle-Tier Routing with UCP Example 9
13.5 Sharding with JTA/XA Transaction in WebLogic Server 10

Diagnosing a Connection Pool

14.1 Pool Statistics
14.2 Dynamic Monitoring Service Metrics
14.3 Overview of Logging and Tracing in UCP

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates.

Page v of vi

14.3.1 Logging and Tracing Settings
14.3.2 Diagnosability System Properties and Command Line
14.3.3 Logging Configuration File
14.3.4 Tracing the Error Codes to Watch
14.3.5 MBeans for UCP Diagnosability
14.4 About Viewing Oracle RAC Statistics
14.4.1 Fast Connection Failover Statistics
14.4.2 Run-Time Connection Load Balance Statistics
14.4.3 Connection Affinity Statistics
14.5 Exceptions and Error Codes

Error Codes Reference

0O NN NOoO OO W wWwDN

A.1 General Structure of UCP Error Messages
A.2 Connection Pool Layer Error Messages
A.3 JDBC Data Sources and Dynamic Proxies Error Messages

UCP Exception Error Codes

A-1

A-6

Index

Universal Connection Pool Developer's Guide

G44295-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of vi

ORACLE’

Preface

The Oracle Universal Connection Pool (UCP) is a full-featured connection pool for managing
database connections. Java applications that are database-intensive, use the connection pool
to improve performance and better utilize system resources.

The instructions in this guide detail how to use the UCP API and cover a wide range of use
cases. The guide does not provide detailed information about using Oracle JDBC Drivers,
Oracle Al Database, or SQL, except as required to understand UCP.

Audience

This guide is primarily written for Application Developers and System Architects who want to
learn how to use UCP to create and manage database connections for their Java applications.
Users must be familiar with Java and JDBC to use this guide. Knowledge of Oracle Database
concepts (such as Oracle RAC and ONS) is required when using some UCP features.

Related Documents

For more information about using Java with the Oracle Al Database, see the following
documents in the Oracle Al Database documentation set:

e Oracle Database Al JDBC Developer's Guide

e Oracle Database Al Java Developer's Guide

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Pageiofi

ORACLE’

Changes in This Release for Oracle Universal

Connection Pool Developer's Guide

This preface contains:

e Changes in Oracle Al Database 26ai

Changes in Oracle Al Database 26ali

Following are the changes in this book for this release of Oracle Al Database.

New Features

This section lists the new features in this release.

e Support for Background Threads

See Connection Creation Using Background Threads

e Support for Asynchronous Database Access

See UCP Asynchronous Extension

* Support for XA Transactions with Sharded Databases
See Sharding with JTA/XA Transaction in WebLogic Server

e Support for Connection Creation Consumer

See Connection Creation Consumer

* Enhanced Diagnosability
See Diagnosing a Connection Pool

e New SYSTEM PROPERTY_TI MERS_AFFECT ALL_CONNECTI ONS for Improved Maximum
Connection Reuse Time
See Setting the Maximum Connection Reuse Time

e Ability to Set Minimum Number of Idle Connections
See Setting the Minimum Idle Connection Number

Universal Connection Pool Developer's Guide

G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates.

Pageiofi

Introduction to UCP

The following sections are included in this chapter:

e Qverview of Connection Pool

e Qverview of Universal Connection Pool

1.1 Overview of Connection Pool

A connection pool is a cache of database connection objects. The objects represent physical
database connections that can be used by an application to connect to a database. At run
time, the application requests a connection from the pool. If the pool contains a connection that
can satisfy the request, it returns the connection to the application. If no connections are found,
a new connection is created and returned to the application. The application uses the
connection to perform some work on the database and then returns the object back to the pool.
The connection is then available for the next connection request.

Connection pools promote the reuse of connection objects and reduce the number of times
that connection objects are created. Connection pools significantly improve performance for
database-intensive applications because creating connection objects is costly both in terms of
time and resources. Tasks such as network communication, reading connection strings,
authentication, transaction enlistment, and memory allocation all contribute to the amount of
time and resources it takes to create a connection object. In addition, because the connections
are already created, the application waits less time to get the connection.

Connection pools often provide properties that are used to optimize the performance of a pool.
The properties control behaviors such as the minimum and maximum number of connections
allowed in the pool or the amount of time a connection can remain idle before it is returned to
the pool. The best configured connection pools balance quick response times with the memory
spent maintaining connections in the pool. It is often necessary to try different settings until the
best balance is achieved for a specific application.

1.2 Benefits of Using a Connection Pool

Applications that are database-intensive, generally benefit the most from connection pools. As
a policy, applications should use a connection pool whenever database usage is known to
affect application performance.

A connection pool provides the following benefits:

* Reduces the number of times new connection objects are created.

* Promotes connection object reuse.

* Quickens the process of getting a connection.

* Reduces the amount of effort required to manually manage connection objects.
* Minimizes the number of stale connections.

e Controls the amount of resources spent on maintaining connections.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE Chapter 1
Overview of Universal Connection Pool

1.3 Overview of Universal Connection Pool

UCP provides a connection pool implementation for caching JDBC connections. Java
applications that are database-intensive use the connection pool to improve performance and
better utilize system resources.

A UCP JDBC connection pool can use any JDBC driver to create physical connections that are
then maintained by the pool. The pool can be configured and provides a full set of properties
that are used to optimize pool behavior based on the performance and availability
requirements of an application. For more advanced applications, UCP provides a pool
manager that can be used to manage a pool instance.

The pool also leverages many high availability and performance features available through an
Oracle Real Application Clusters (Oracle RAC) database. These features include Fast
Connection Failover (FCF), Run-time connection Load Balancing (RLB), and Connection
Affinity.

@ Note

Starting from Oracle Database 11g Release 2, FCF is also supported by Oracle
Restart on a single instance database. Oracle Restart is also known as Oracle Grid
Infrastructure for Independent Servers.

@ See Also

Oracle Al Database Administrator’s Guide for more information about Oracle Restart.

1.3.1 Conceptual Architecture

Applications use a UCP pool-enabled data source to get connections from a UCP JDBC
connection pool instance. The Pool Dat aSour ce data source is used for getting regular
connections (j ava. sql . Connect i on), and the Pool XADat aSour ce data source is used for
getting XA (eXtended API) connections (j avax. sql . XAConnect i on). The same pool features
are included in both XA and non-XA UCP JDBC connection pools.

The pool-enabled data source relies on a connection factory class to create the physical
connections that are maintained by the pool. An application can choose to use any factory
class that is capable of creating Connect i on or XAConnect i on objects. The pool-enabled data
sources provide a method for setting the connection factory class, as well as methods for
setting the database URL and database credentials that are used by the factory class to
connect to a database.

Applications borrow a connection handle from the pool to perform work on a database. Once
the work is completed, the connection is closed and the connection handle is returned to pool
and is available to be used again. The following figure shows the conceptual view of the
interaction between an application and a UCP JDBC connection pool.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE Chapter 1
Overview of Universal Connection Pool

Figure 1-1 Conceptual View of a UCP JDBC Connection Pool

Application |
@ Database

@) @)
O oo o O
UCP JDBC
Connection Pool

Connection
Factory

Pool-Enabled
Data Source

Related Topics

» Getting Database Connections in UCP

1.3.2 Connection Pool Properties

UCP JDBC Connection pool properties are configured through methods available on the pool-
enabled data source. The pool properties are used to control the pool size, handle stale
connections, and make autonomous decisions about how long connections can remain
borrowed before they are returned to the pool. The optimal settings for the pool properties
depend on the application and hardware resources. Typically, there is a trade-off between the
time it takes for an application to get a connection versus the amount of memory it takes to
maintain a certain pool size. In many cases, experimentation is required to find the optimal
balance to achieve the desired performance for a specific application.

Related Topics

e Optimizing Universal Connection Pool Behavior

1.3.3 Connection Pool Manager

UCP includes a connection pool manager that is used by applications that require
administrative control over a connection pool. The manager is used to explicitly control the life
cycle of a pool and to perform maintenance on a pool. The manager also provides the
opportunity for an application to expose the pool and its manageability through an
administrative console.

Related Topics

¢ Using the Connection Pool Manager

1.3.4 High Availability and Performance Scenarios

A UCP JDBC connection pool provides many features that are used to ensure high connection
availability and performance. Many of these features, such as refreshing a pool or validating

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 1
Overview of Universal Connection Pool

connections, are generic and work across driver and database implementations. Some of
these features, such as run-time connection load balancing, and connection affinity, require the
use of an Oracle JDBC driver and an Oracle RAC database.

Related Topics
e Using Oracle RAC Features

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 4

Getting Started

The following sections are included in this chapter:

* Requirements for using UCP

» Basic Connection Steps in UCP
e« UCP API Overview

UCP System Properties

« Basic Connection Example Using UCP

« Minimal Pool configuration

2.1 Requirements for using UCP

This section describes the design-time and run-time requirements of UCP.

* JRE 8 or higher

A JDBC driver or a connection factory class capable of returning a j ava. sql . Connecti on
and j avax. sql . XAConnect i on object

® Note

Oracle drivers from releases 11.2.0.4 or higher are supported. Advanced Oracle
Database features, such as Oracle RAC and Fast Connection Failover, require the
Oracle Notification Service library (ons. j ar) that is included with the Oracle Client
software.

e The ucp.j ar library included in the classpath of the application

* Theojdbc8.jar library or the oj dbcll. j ar library is included in the classpath of the
application

@® Note

Even if you use UCP with a third-party database and driver, you must use the
Oracle oj dbc8. j ar library or the oj dbc1l. j ar library because UCP has
dependencies on this library.

e A database that supports SQL. Advanced features, such as Oracle RAC and Fast
Connection Failover, require an Oracle Database.

2.2 Basic Connection Steps in UCP

UCP provides a pool-enabled data source that is used by applications to borrow connections
from a UCP JDBC connection pool. A connection pool is not explicitly defined for the most

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE Chapter 2
Basic Connection Steps in UCP

basic use case. Instead, a default connection pool is implicitly created when the connection is
borrowed.

The following steps describe how to get a connection from a UCP pool-enabled data source in
order to access a database. The complete example is provided in Example 2-1:

1. Use the UCP data source factory (or acl e. ucp. j dbc. Pool Dat aSour ceFact ory) to get an
instance of a pool-enabled data source using the get Pool Dat aSour ce method. The data
source instance must be of the type Pool Dat aSour ce. For example:

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

2. Set the connection properties that are required to get a physical connection to a database.
These properties are set on the data source instance and include: the URL, the user name,
and password to connect to the database and the connection factory used to get the
physical connection. These properties are specific to a JDBC driver and database. For
example:

pds. set Connect i onFact oryCl assNanme(" oracl e. j dbc. pool . O acl eDat aSour ce");
pds. set URL("j dbc: oracl e:thin: @/ ocal host: 1521/ orcl ");

pds. set User (" <user>");

pds. set Passwor d(" <passwor d>") ;

3. Set any pool properties in order to override the connection pool's default behavior. the pool
properties are set on the data source instance. For example:

pds. setInitial Pool Si ze(5);

4. Get a connection using the data source instance. The returned connection is a logical
handle to a physical connection in the data source's connection pool. For example:

Connection conn = pds. get Connection();
5. Use the connection to perform some work on the database:

Statement stnt = conn.createStatenment ();
stnt. execute(" SELECT * FROM fo0");

6. Close the connection and return it to the pool.

conn. cl ose();

2.2.1 Authentication in UCP

UCP provides transparent authentication, that is, the Pool Dat aSour ce behaves in the same
way as the JDBC driver data source, while authenticating a connection.

UCP supports all the following authentication methods that the JDBC thin or the JDBC OCI
driver suggests, and delegates any authentication action to the underlying driver:

* Authentication through passwords stored in Oracle Wallets
e Authentication using Kerberos
* Authentication through SSL certificates

* Authentication using Lightweight Directory Access Protocol (LDAP)

2.2.2 Authentication Using IAM Database Access Tokens in Oracle Cloud
Infrastructure

In Oracle Database release 21.4 (21.4.0.0.1), the JDBC Thin drivers can access Oracle
Autonomous Database on Shared Exadata Infrastructure, using a database access token

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE’

Chapter 2
UCP API Overview

generated by the Identity and Access Management (IAM) Cloud Service. UCP supports this
authentication type using the Pool Dat aSour ce. set TokenSuppl i er (Suppl i er) method.

@ See Also

Support for IAM Token-Based Authentication in Oracle Cloud Infrastructure

2.3 UCP API Overview

This section provides a quick overview of the most commonly used packages of the UCP API.

@ See Also

Oracle Universal Connection Pool Java API Reference for complete details on the
API.

oracle.ucp.jdbc

This package includes various interfaces and classes that are used by applications to work
with JDBC connections and a connection pool. Among the interfaces found in this package, the
Pool Dat aSour ce and Pool XADat aSour ce data source interfaces are used by an application to
get connections as well as get and set connection pool properties. Data source instances
implementing these two interfaces automatically create a connection pool.

oracle.ucp.admin

This package includes interfaces for using a connection pool manager as well as MBeans that
allow users to access connection pool and the connection pool manager operations and
attributes using JMX operations. Among the interfaces, the Uni ver sal Connect i onPool Manager
interface provides methods for creating and maintaining connection pool instances.

oracle.ucp

This package includes both required and optional callback interfaces that are used to
implement connection pool features. For example, the Connect i onAf fi ni t yCal | back interface
is used to create a callback that enables or disables connection affinity and can also be used
to customize connection affinity behavior. This package also contains statistics classes, UCP
specific exception classes, and the logic to use the UCP directly, without using data sources.

2.4 UCP System Properties

For a detailed list of the UCP system properties, refer to the UCP Java API Reference.

@ See Also

Oracle Universal Connection Pool Java AP| Reference

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 5

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/index.html

ORACLE Chapter 2
Basic Connection Example Using UCP

2.5 Basic Connection Example Using UCP

The following example is a program that connects to a database to do some work and then
exits. The example is simple and in some cases not very practical; however, it does
demonstrate the basic steps required to get a connection from a UCP pooled-enabled data
source in order to access a database.

Example 2-1 Basic Connection Example
i mport java.sql.Connection;

i mport java.sql.SQ.Exception;

inport java.sql.Statenent;

i mport oracl e. ucp. jdbc. Pool Dat aSour ceFact ory;
i mport oracl e. ucp. j dbc. Pool Dat aSour ce;

public class BasicConnectionExanpl e {
public static void main(String args[]) throws SQLException {

try

{
/I Create pool -enabl ed data source instance.
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce();
/Iset the connection properties on the data source.
pds. set Connect i onFact oryCl assNane(" oracl e. j dbc. pool . Or acl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @/ ocal host: 1521/ orcl");
pds. set User (" <user>");
pds. set Passwor d(" <passwor d>");
/I Qverride any pool properties.
pds. setlnitial Pool Si ze(5);
I/ CGet a database connection fromthe datasource.

Connection conn = pds. get Connection();

Systemout. println("\nConnection obtained from" +
" Uni ver sal Connecti onPool \n");

//do some work with the connection.
Statement stnt = conn.createStatenent();
stnt.execute("select * fromfoo");

/1 Close the Connection.

conn. cl ose();
conn=nul | ;

Systemout. println("Connection returned to the " +
" Uni ver sal Connecti onPool \n");

}
cat ch(SQLException e)

{
System out. println("Basi cConnecti onExanple - " +
"mai n()- SQLException occurred : "
+ e.get Message());
}

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE’

Chapter 2
Minimal Pool configuration

}
}

2.6 Minimal Pool configuration

You can configure a pool minimally and make use of the default values.

If you want to start a new pool data source, then instantiate it and set the following mandatory
properties:

* The connection factory class, which is usually a JDBC driver data source, for example,
oracl e.jdbc. pool . Oracl eDat aSour ce

e The peer database URL
e User name
e Password

All the other pool data source properties are optional. With this minimal configuration, the
default pool size is as follows:

e Minimal pool size is 1
e Maximum pool size is | nt eger. MAX_VALUE (2147483647 by default)
e Initial pool size is 0

With the minimal configuration, the pool data source performs some minimal validation while
borrowing the connections. The default value of the set SecondsToTr ust | dl eConnecti on(i nt)
method is set to 120 seconds and all the timeouts are disabled.

@ See Also

Overview of Validating Connections in UCP

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 5

Getting Database Connections in UCP

The following sections are included in this chapter:

« About Borrowing Connections from UCP

e Setting Connection Pool Properties for UCP

e Overview of Validating Connections in UCP

» Returning Borrowed Connections to UCP

 Removing Connections from UCP

« UCP Integration with Third-Party Products

3.1 About Borrowing Connections from UCP

An application borrows connections using a pool-enabled data source. This section describes
the following concepts about borrowing connections:

e Overview of Borrowing Connections from UCP

e Using the Pool-Enabled Data Source

e Using the Pool-Enabled XA Data Source

» Setting Connection Properties

¢ Using JNDI to Borrow a Connection

« About Connection Initialization Callback

@ Note

The instructions in this section use a pool-enabled data source to implicitly create and
start a connection pool.

3.1.1 Overview of Borrowing Connections from UCP

The UCP API provides two pool-enabled data sources, one for borrowing regular connections
and one for borrowing XA connections. These data sources provide access to UCP JDBC
connection pool functionality, and include a set of get Connect i on methods that are used to
borrow connections. The same pool features are included in both XA and non-XA UCP JDBC
connection pools.

UCP JDBC connection pools maintain both available connections and borrowed connections.
A connection is reused from the pool if an application requests to borrow a connection that
matches an available connection. A new connection is created if no available connection in the
pool matches the requested connection. The number of available connections and borrowed
connections are subjected to pool properties such as pool size, timeout intervals, and
validation rules.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 12

ORACLE

Chapter 3
About Borrowing Connections from UCP

3.1.1.1 Connection Creation Using Background Threads

Starting with Oracle Al Database Release 26ai, new connections are created using
background threads instead of user threads.

A borrow request may trigger a new connection creation, when both the following conditions
are met:

* When there is no connection available in the pool at the time of the request
e If there is enough room to grow the pool

The borrow request may be satisfied by either of the following, whichever event happens first:

« A brand new connection created by the background thread
e A connection that was just returned to the pool

If the connection borrow request cannot be satisfied within the Connect i on\i t Ti meout (CWT)
period, then a Uni ver al Connect i onPool Excepti on is thrown, with the UCP-29 error code.

This behavior is different from Oracle Database Release 19c or 21c in the following ways:

« If the CWT is equal to zero or a very small value, then a borrow request has a higher
chance to throw an exception because there is not enough time to create a new JDBC
connection. A borrow request with a zero CWT period can return a connection only if there
is one immediately available in the pool.

e A UCP exception thrown by the connection request does not always include the JDBC
exception as a cause. To troubleshoot such situations, where the driver cannot connect to
the Database, you can implement the Connect i onCreat i onl nf or mati on callback.

e Unlike the previous releases, the CWT is not adjusted with the value of the
CONNECT_TI MEQUT parameter.

The current default behavior is to use background threads for creating connections, instead of
the user threads, which results in enhanced efficiency. If required, you can switch back to the
old behavior in the following ways:

e Setting the new system property or acl e. ucp. cr eat eConnect i onl nBor r owThr ead to t rue

e Using the set Creat eConnect i onl nBor r owThr ead(bool ean) method to set the
creat eConnecti onl nBor r owThr ead flag to t r ue

3.1.2 Using the Pool-Enabled Data Source

UCP provides a pool-enabled data source (or acl e. ucp. j dbc. Pool Dat aSour ce) that is used to
get connections to a database. The or acl e. ucp. j dbc. Pool Dat aSour ceFact ory factory class
provides a get Pool Dat aSour ce() method that creates the pool-enabled data source instance.
For example:

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

The pool-enabled data source requires a connection factory class in order to get an actual
physical connection. The connection factory is typically provided as part of a JDBC driver, and
it can also be a data source itself. A UCP JDBC connection pool can use any JDBC driver to
create physical connections that are then maintained by the pool. The

set Connecti onFact oryd assName(String) method is used to define the connection factory for
the pool-enabled data source instance. The following example uses the

oracl e.jdbc. pool . Oracl eDat aSour ce connection factory class included with the Oracle JDBC

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 12

ORACLE

Chapter 3
About Borrowing Connections from UCP

driver. If you use a JDBC driver provided by a different vendor, then refer to the corresponding
vendor documentation for an appropriate connection factory class.

pds. set Connect i onFact oryCl assNanme(" or acl e. j dbc. pool . O acl eDat aSour ce");

In addition to the connection factory class, a pool-enabled data source requires the URL, user
name, and password that are used to connect to a database. A pool-enabled data source
instance includes methods to set each of these properties. The following example uses an
Oracle JDBC Thin driver URL syntax. If you use a JDBC driver provided by a different vendor,
then refer to the corresponding vendor documentation for the appropriate URL syntax.

pds. set URL("j dbc: oracl e:thin: @/ ocal host: 1521/ orcl");
pds. set User ("user");
pds. set Passwor d(" password");

® See Also
Oracle Al Database JDBC Developer’s Guide for detailed Oracle URL syntax usage.

A pool-enabled data source provides the following get Connect i on methods:

« get Connecti on(): Returns a connection that is associated with the user name and the
password that were used to connect to the database.

e getConnection(String username, String password): Returns a connection that is
associated with the specified user name and password.

e getConnection(java.util.Properties |abels):Returns a connection that matches a
specified label.

e getConnection(String usernane, String password, java.util.Properties |abels):
Returns a connection that is associated with a specified user name and password, and that
matches a specified label.

An application uses the get Connect i on methods to borrow a connection handle from the pool
that is of the type j ava. sql . Connect i on. If a connection handle is already in the pool that
matches the requested connection (same URL, user name, and password), then it is returned
to the application. Otherwise, a new connection is created and a new connection handle is
returned to the application. The following examples demonstrate how to borrow a connection
for Oracle Database and MySQL Database respectively:

Oracle Example
The following example demonstrates borrowing a connection using the JDBC Thin driver:

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce();

pds. set Connect i onFact or yCl assNane(" or acl e. j dbc. pool . Or acl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @/ ocal host: 1521/ orcl");

pds. set User (" <user>");

pds. set Passwor d(" <passwor d>");

Connection conn = pds. get Connection();
MySQL Example

The following example demonstrates borrowing a connection using the Connector/J JDBC
driver from MySQL.:

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 12

ORACLE

Chapter 3
About Borrowing Connections from UCP

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce();

pds. set Connecti onFact oryd assNanme("com nysql . ¢j . j dbc. Mysql Dat aSource");
pds. set URL("j dbc: nysql : // host: 3306/ dbnane") ;

pds. set User (" <user>");

pds. set Passwor d(" <passwor d>") ;

Connection conn = pds. get Connection();

3.1.3 Using the Pool-Enabled XA Data Source

UCP provides a pool-enabled XA data source (or acl e. ucp. j dbc. Pool XADat aSour ce) that is
used to get XA connections that can be enlisted in a distributed transaction. UCP JDBC XA

pools have the same features as non-XA UCP JDBC pools. The

oracl e. ucp. j dbc. Pool Dat aSour ceFact ory factory class provides a get Pool XADat aSour ce()
method that creates the pool-enabled XA data source instance. For example:

Pool XADat aSour ce pds = Pool Dat aSour ceFact ory. get Pool XADat aSour ce();

A pool-enabled XA data source instance, like a non-XA data source instance, requires the
connection factory, URL, user name, and password in order to get an actual physical
connection. These properties are set in the same way as a non-XA data source instance (see
above). However, an XA-specific connection factory class is required to get XA connections.
The XA connection factory is typically provided as part of a JDBC driver and can be a data
source itself. The following example uses Oracle's

oracl e.jdbc. xa. client. O acl eXADat aSour ce XA connection factory class included with the
JDBC driver. If a different vendor's JDBC driver is used, refer to the vendor's documentation for
an appropriate XA connection factory class.

pds. set Connect i onFact or yCl assNane(" oracl e. j dbc. xa. cl i ent. Oracl eXADat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @/ ocal host: 1521/ orcl");

pds. set User ("user");

pds. set Passwor d(" password");

Lastly, a pool-enabled XA data source provides a set of get XAConnect i on methods that are
used to borrow a connection handle from the pool that is of the type j avax. sql . XAConnect i on.
The get XAConnect i on methods are the same as the get Connect i on methods previously
described. The following example demonstrates borrowing an XA connection.

Pool XADat aSour ce pds = Pool Dat aSour ceFact ory. get Pool XADat aSour ce();

pds. set Connect i onFact oryCl assNane("oracl e. j dbc. xa. cl i ent. Oracl eXADat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @/ ocal host: 1521/ orcl");

pds. set User (" <user>");

pds. set Passwor d(" <passwor d>") ;

XAConnection conn = pds. get XAConnection();

Related Topics

e Labeling Connections in UCP

3.1.4 Setting Connection Properties

Oracle's connection factories support properties that configure connections with specific
features. UCP pool-enabled data sources provide the set Connect i onProperties(Properties)
method, which is used to set properties on a given connection factory. The following example
demonstrates setting connection properties for Oracle's JDBC driver. If you are using a JDBC

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 12

ORACLE

Chapter 3
About Borrowing Connections from UCP

driver from a different vendor, then refer to the vendor-specific documentation to check whether
setting properties in this manner is supported and what properties are available:

Properties connProps = new Properties();
connProps. put ("fixedString", false);
connProps. put ("remarksReporting", false);
connProps. put ("restrict Get Tabl es", false);
connProps. put ("incl udeSynonyns", false);
connProps. put (" def aul t NChar", fal se);
connProps. put (" Accunul at eBat chResul t", fal se);

pds. set Connect i onProperties(connProps);

The UCP JDBC connection pool does not remove connections that are already created if
set Connect i onProperti es is called after the pool is created and in use.

@ See Also

Oracle Database JDBC Java API Reference for a detailed list of supported properties
to configure the connection. For example, to set the auto-commit mode, you can use
the Oracl eConnect i on. CONNECTI ON_PROPERTY_AUTOCOWM T property.

3.1.5 Using JNDI to Borrow a Connection

A connection can be borrowed from a connection pool by performing a JNDI look up for a pool-
enabled data source and then calling get Connecti on() on the returned object. The pool-
enabled data source must first be bound to a JNDI context and a logical name. This assumes
that an application includes a Service Provider Interface (SPI) implementation for a naming
and directory service where object references can be registered and located.

The following example uses Sun's file system JNDI service provider, which can be downloaded
from the JNDI software download page:

http://ww. oracl e. conl t echnet wor k/ j aval/ i ndex. ht ni

The example demonstrates creating an initial context and then performing a lookup for a pool-
enabled data source that is bound to the name MyPool edDat aSour ce. The object returned is
then used to borrow a connection from the connection pool.

Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,

"com sun. j ndi . f scont ext . Ref FSCont ext Factory");
env. put (Cont ext. PROVIDER_URL, "file:/tmp");

ctx = new Initial Context(env);

Pool Dat aSour ce j pds = (Pool Dat aSour ce) ct x. | ookup(MyPool edDat aSour ce) ;
Connection conn = jpds. get Connection();

In the example, MyPool Dat aSour ce must be bound to the context. For example:

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce();

pds. set Connecti onFact or yCl assNane(" or acl e. j dbc. pool . Or acl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @/ ocal host: 1521/ orcl");

pds. set User (" <user>");

pds. set Passwor d(" <passwor d>") ;

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 12

http://www.oracle.com/technetwork/java/index.html

ORACLE Chapter 3
About Borrowing Connections from UCP

ct x. bi nd(MyPool edDat aSour ce, pds);

3.1.6 About Connection Initialization Callback

The Connection Initialization Callback enables applications and frameworks to initialize
connections retrieved from Universal Connection Pool. It is executed at every connection
checkout from the pool, as well as at each successful reconnection during failover.

This section discusses initialization callbacks in the following sections:

¢ Overview of Connection Initialization Callback

e Creating an Initialization Callback

¢ Regqistering an Initialization Callback

« Removing or Unregistering an Initialization Callback

3.1.6.1 Overview of Connection Initialization Callback

If an application cannot use connection labeling because it cannot be changed, then the
connection initialization callback is provided for such an application.

When registered, the initialization callback is executed every time a connection is borrowed
from the pool and at each successful reconnection following a recoverable error. Using the
same callback at both run time and replay ensures that exactly the same initialization, which
was used when the original session was established, is reestablished at run time. If the
callback invocation fails, then replay is disabled on that connection.

3.1.6.2 Creating an Initialization Callback

To create a UCP connection initialization callback, an application implements the
oracl e. ucp.jdbc. ConnectionlnitializationCallback interface. This interface has the
following method:

void initialize(java.sql.Connection connection) throws SQLException;

® Note
* One callback is created for every connection pool.

» This callback is not used if a labeling callback is registered for the connection pool.

Example
The following example demonstrates how to create a simple initialization callback:

i mport oracle.ucp.jdbc. ConnectionlnitializationCallback;
cl ass MyConnectionlnitializationCallback inplements ConnectionlnitializationCallback
{

public MyConnectionlnitializationCallback()

{

public void initialize(java.sql.Connection connection) throws SQ.Exception

{
Il Reset the state for the connection, if necessary (like ALTER SESSI ON)

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 12

ORACLE Chapter 3
Setting Connection Pool Properties for UCP

}
}

3.1.6.3 Registering an Initialization Callback

UCP provides the regi st er ConnectionlnitializationCallback method in the
oracl e. ucp. j dbc. Pool Dat aSour ce interface for registering a connection initialization callback.

public void registerConnectionlnitializationCallback (ConnectionlnitializationCallback
cbk) throws SQLException;

One callback may be registered on each connection pool instance.

3.1.6.4 Removing or Unregistering an Initialization Callback

UCP provides the unregi st er ConnectionlnitializationCal |l back method in the
oracl e. ucp. j dbc. Pool Dat aSour ce interface for unregistering a connection initialization
callback.

public void unregisterConnectionlnitializationCallback() throws SQLExcepti on;

@ See Also

Oracle Universal Connection Pool Java APl Reference for more information

3.2 Setting Connection Pool Properties for UCP

UCP JDBC connection pools are configured using connection pool properties. The properties
have get and set methods that are available through a pool-enabled data source instance.
The methods are a convenient way to programmatically configure a pool. If no pool properties
are set, then a connection pool uses default property values.

The following example demonstrates configuring connection pool properties. The example sets
the connection pool name and the maximum/minimum number of connections allowed in the
pool.

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce();

pds. set Connect i onPool Nane("JDBC_UCP");
pds. set M nPool Si ze(4); pds. set MaxPool Si ze(20);

UCP JDBC connection pool properties may be set in any order and can be dynamically
changed at run time. The pool recognizes the new values dynamically and adapts accordingly.
However, this adaptation may not be immediate and may take some time to reflect. For
example, if you reduce the value of the maximum pool size on a running pool, while all the
connections are in use, then it may take some time for the new maximum pool size to come
into effect.

Related Topics

* Optimizing Universal Connection Pool Behavior

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 12

ORACLE

Chapter 3
Overview of Validating Connections in UCP

3.3 Overview of Validating Connections in UCP

Connections can be validated using pool properties when the connection is borrowed, and also
programmatically using the Val i dConnect i on interface. Both approaches are detailed in this
section. Invalid connections can affect application performance and availability.

3.3.1 Validating When Borrowing

A connection can be validated by executing a SQL statement on a connection, when the
connection is borrowed from the connection pool. The following two connection pool properties
are used in conjunction for enabling connection validation:

set Val i dat eConnect i onOnBor r ow bool ean) : Specifies whether or not connections are
validated when the connection is borrowed from the connection pool. The method enables
validation for every connection that is borrowed from the pool. A value of f al se means no
validation is performed. The default value is f al se.

set SQLFor Val i dat eConnection(String): Specifies the SQL statement that is executed
on a connection when it is borrowed from the pool.

@® Note

e If any of the following conditions is true for your application, then set the
val i dat eConnect i onOnBor r ow property to t r ue, or call the
set Val i dat eConnecti onOnBorrow(t rue) method on the UCP data source:

— Uses database service with the RESET_STATE=LEVEL1 attribute and enables
Application Continuity, using either FAI LOVER_TYPE=AUTO or
FAI LOVER_TYPE=TRANSACTI ON setting.

— Makes database session state changes during the JDBC requests, that is,
between borrowing a connection from the pool and returning it to the pool.

Alternatively, you can set the database service attribute to RESET_STATE=LOG N.

e The set SQLFor Val i dat eConnect i on property is not recommended when using an
Oracle JDBC driver. UCP performs an internal ping when using an Oracle JDBC
driver. The mechanism is faster than executing a SQL statement, and is
overridden if this property is set. Instead, set the set Val i dat eConnect i onOnBor r ow
property to t r ue and do not include the set SQLFor Val i dat eConnect i on property.

The following example demonstrates validating a connection when borrowing the connection
from the pool. The example uses the Connector/J JDBC driver from MySQL:

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce();

pds.
pds.
pds.
pds.

pds.
pds.

set Connecti onFact oryCd assName("com nysql . ¢j . j dbc. Mysql Dat aSource");
set URL("j dbc: nysql : // host: 3306/ nysql ");

set User (" <user>");

set Passwor d(" <passwor d>");

set Val i dat eConnecti onOnBorrow(true);
set SQLFor Val i dat eConnection("select * fromnysql.user");

Connection conn = pds. get Connection();

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 8 of 12

ORACLE Chapter 3
Overview of Validating Connections in UCP

@ See Also

Minimizing Connection Request Delay

3.3.2 Minimizing Connection Validation with
setSecondsToTrustldleConnection() Method

In UCP, when you set the value of the set Val i dat eConnect i onOnBor r ow(bool ean) method to
t rue, then each connection is validated during the checkout. This validation may incur
significant overhead in applications that checkout database connections frequently.

To minimize the impact of frequent connection validation, you can now set the

set SecondsToTrust I dl eConnection(int) method with an appropriate value to trust recently-
used or recently-tested database connections. Setting this value skips the connection
validation test and improves application performance significantly.

The following table describes the methods available in Oracle Al Database Release 26ai for
using this feature:

Method Description

set SecondsToTrust | dl eConnecti on(i nt Sets the time in seconds to trust a recently-used or

secondsToTrust | dl eConnect i on) recently-tested database connection and skip the
validation test during connection checkout.

get SecondsToTrust | dl eConnecti on() Retrieves the value that was set using the
set SecondsToTrust I dl eConnection(int)
method.

When you set the set SecondsToTr ust | dl eConnecti on(i nt) method to a positive value, then
the connection validation is skipped, if the connection was used within the time specified in the
secondsToTrust 1 dl eConnection(int) method. The default value is 0 seconds, which means
that the feature is disabled.

@® Note

The set SecondsToTr ust | dl eConnecti on(i nt) method works only if the

set Val i dat eConnect i onOnBor r ow(bool ean) method is set to t r ue. If you set the

set SecondsToTrust I dl eConnecti on(int) method to a non-zero value, without setting
the set Val i dat eConnect i onOnBor r ow(bool ean) method to t rue, then UCP throws the
following exception:

Invalid seconds to trust idle connection value or usage.

3.3.3 Checking If a Connection Is Valid

The oracl e. ucp. j dbc. Val i dConnect i on interface provides two methods: i sVal i d and
setlnvalid. TheisValid method returns whether or not a connection is usable and the
set I nval i d method is used to indicate that a connection should be removed from the pool
instance.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 9 of 12

ORACLE

Chapter 3
Overview of Validating Connections in UCP

The i sVal i d method is used to check if a connection is still usable after an SQL exception has
been thrown. This method can be used at any time to check if a borrowed connection is valid.
The method is particularly useful in combination with a retry mechanism, such as the Fast
Connection Failover actions that are triggered after a down event of Oracle RAC.

@® Note

* TheisValid method checks with the pool instance and Oracle JDBC driver to
determine whether a connection is still valid. The i sVal i d method results in a
round-trip to the database only if both the pool and the driver report that a
connection is still valid. The round-trip is used to check for database failures that
are not immediately discovered by the pool or the driver.

» Starting from Oracle Database Release 18c, there is a new variant of the i sVal i d
method that sends an empty packet to the database unlike the older version of the
method that uses a ping-pong protocol and makes a full round-trip to the
database.

® See Also
Oracle Al Database JDBC Developer’s Guide

The i sVal i d method is also helpful when used in conjunction with the connection timeout and
connection harvesting features. These features may return a connection to the pool while a
connection is still held by an application. In such cases, the i sVal i d method returns f al se,
allowing the application to get a new connection.

The following example demonstrates using the i sVal i d method:

try { conn = pool Dat aSouor ce. get Connection ...}catch (SQ.Exception sql exc)
{

if (conn == null || !'((ValidConnection) conn).isValid())

Il take the appropriate action

conn. cl ose();

}

For XA applications, before calling the i sVal i d() method, you must cast any XAConnecti on
that is obtained from Pool XADat aSour ce to a Val i dConnect i on. If you cast a Connect i on that is
obtained by calling the XAConnect i on. get Connecti on() method to Val i dConneci on, then it
may throw an exception.

Related Topics
¢ Using Oracle RAC Features

Related Topics

« Removing Connections from UCP

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 10 of 12

ORACLE Chapter 3
Returning Borrowed Connections to UCP

3.4 Returning Borrowed Connections to UCP

Borrowed connections that are no longer being used should be returned to the pool so that
they can be available for the next connection request. The cl ose method closes connections
and automatically returns them to the pool. The cl ose method does not physically remove the
connection from the pool.

Borrowed connections that are not closed will remain borrowed; subsequent requests for a
connection result in a new connection being created if no connections are available. This
behavior can cause many connections to be created and can affect system performance.

The following example demonstrates closing a connection and returning it to the pool:

Connection conn = pds. get Connection();
/1do some work with the connection.

conn. cl ose();
conn=nul | ;

3.5 Removing Connections from UCP

The set | nval i d method of the Val i dConnect i on interface indicates that a connection should
be removed from the connection pool when it is closed. The method is typically used when a
connection is no longer usable, such as after an exception or if the i sVal i d method of the
Val i dConnect i on interface returns f al se. The method can also be used if an application
deems the state on a connection to be bad. The following example demonstrates using the
set | nval i d method to close and remove a connection from the pool:

Connection conn = pds. get Connection();
((ValidConnection) conn).setlnvalid();

conn. cl ose();
conn=nul | ;

3.6 UCP Integration with Third-Party Products

Third-party products, such as middleware platforms or frameworks, can use UCP to provide
connection pooling functionality for their applications and services. UCP integration includes
the same connection pool features that are available to stand-alone applications and offers the
same tight integration with the Oracle Database.

Two data source classes are available as integration points with UCP: Pool Dat aSour cel npl for
non-XA connection pools and Pool XADat aSour cel npl for XA connection pools. Both classes
are located in the oracl e. ucp. j dbc package. These classes are implementations of the

Pool Dat aSour ce and Pool XADat aSour ce interfaces, respectively, and contain default
constructors.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 11 of 12

ORACLE

Chapter 3
UCP Integration with Third-Party Products

@ See Also

Oracle Universal Connection Pool Java APl Reference for more information on the
implementation classes.

These implementations explicitly create connection pool instances and can return connections.
For example:

Pool XADat aSour ce pds = new Pool XADat aSour cel npl ();

pds. set Connect i onFact or yCl assNane(" oracl e. j dbc. xa. cl i ent. Oracl eXADat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @/ ocal host: 1521/ orcl");

pds. set User ("user");

pds. set Passwor d(" password");

XAConnection conn = pds. get XAConnection();

Third-party products can instantiate these data source implementation classes. In addition, the
methods of these interfaces follow the JavaBean design pattern and can be used to set
connection pool properties on the class using reflection. For example, a UCP data source that
uses an Oracle JDBC connection factory and database might be defined as follows and loaded
into a JNDI registry:

<dat a- sour ces>
<dat a- sour ce
name="UCPDat aSour ce"
j ndi - nane="j dbc/ UCP_DS"
dat a- sour ce- cl ass="oracl e. ucp. j dbc. Pool Dat aSour cel npl ">
<property nanme="ConnectionFact oryC assName"
val ue="oracl e. j dbc. pool . Oracl ebDat aSour ce"/ >
<property name="URL" val ue="jdbc:oracle:thin: @/Iocal host:1521: oracl e"/>
<property nanme="User" val ue"user"/>
<property nanme="Password" val ue="password"/>
<property nane="ConnectionPool Nane" val ue="MPool "/ >
<property nanme="M nPool Si ze" val ue="5"/>
<property nane="MaxPool Si ze" val ue="50"/>
</ dat a- sour ce>
</ dat a- sour ces>

When using reflection, the name attribute matches (case sensitive) the name of the setter
method used to set the property. An application could then use the data source as follows:

Connection connection = nul l;

try {
Initial Context context = new Initial Context();
Dat aSource ds = (DataSource) context.lookup("jdbc/UCP_DS");
connection = ds. get Connection();

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 12 of 12

Connection Creation Consumer

Starting with Oracle Al Database Release 26ai, you can make UCP callback the caller
application on every connection creation.

4.1 Implementing a Connection Creation Consumer

In the current release of Oracle Database, you can register a new connection creation
consumer for a specific Pool Dat aSour ce object, which is called back on every database
connection creation attempt, whether it is successful or unsuccessful.

Every connection creation operation triggers the acceptance of that consumer. For example, it
can be triggered for a connection borrow request or it can be triggered with some UCP worker
threads trying to keep up with a minimum pool size property, replacing a bad connection.

This section describes how to implement the connection creation consumer.

@® Note

Once a registered consumer gets executed in a thread that creates a connection for
the pool, you must implement it without blocking calls and intensive computations.

Example 4-1 Registering a Consumer

The following code snippet shows how to register a consumer:

i nport oracle.ucp. ConnectionCreationlnformation;
inport java.util.function.Consuner;
rest of inports ...

final Pool Dat aSource pds = new Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;
configure pds ...

final Consumer<ConnectionCreationlnformation> consuner = p ->{ ... };

pds. regi st er Connect i onCr eat i onConsuner (consumner);

Once a consumer is registered, every connection creation operation triggers an accept call of a
registered consumer.

Example 4-2 Unegistering a Consumer
The following code snippet shows how to unregister a consumer:
i nport oracle.ucp. ConnectionCreationlnformation;

inport java.util.function.Consuner;
rest of inports ...

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE

Chapter 4
Implementing a Connection Creation Consumer

final Pool Dat aSource pds = new Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;
configure pds ...

final Consumer<ConnectionCreationlnformation> consuner = p ->{ ... };

pds. regi st er Connect i onCr eat i onConsuner (consumner);

pds. unr egi st er Connect i onCr eat i onConsuner () ;

Once a consumer is unregistered, there are no more consumer acceptance calls for every
connection creation request in a pool.

Example 4-3 Connection Creation Status Verification

The following code snippet shows how to verify whether a connection creation was successful
or unsuccessful:

final Consuner<ConnectionCreationlnformation> consuner = p -> {
if (p.getStatus() == ConnectionCreationlnformtion. Status. SUCCESSFUL) {
handl e successful connection creation code path...

}

if (p.getStatus() == ConnectionCreationlnformation. Status.FAI LURE) {
handl e unsuccessful connection creation code path...

}...
b

Example 4-4 Handling Failed Connection Creation

If the connection creation operation fails, then an accepted consumer throws the
corresponding SQLExcept i on vendor error code. The following code snippet shows how to
handle the error:

final Consumer<ConnectionCreationl nformation> consuner = p -> {
if (p.getStatus() == ConnectionCreationlnformation. Status. FAILURE) {
final int errorCode = p.getErrorCode();
do sone error code path...

b

Example 4-5 Retrieving Information About Successful Connections

The following code snippet shows how to retrieve information about successfully created
connections:

final Consumer<ConnectionCreationl nformation> consuner = p -> {
if (p.getStatus() == ConnectionCreationlnformtion. Status. SUCCESSFUL) {

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE Chapter 4
Implementing a Connection Creation Consumer

/'l Net Connection ID for an appropriate connection.
final String netConnld = getNet Connectionld();

/1 database instance (if applicable) nane, on which connection was
creat ed.
final String instanceName = getlnstanceNane();

/1 database service (if applicable) name, on which connection was created.
final String serviceNane = get Servi ceNane();

/1 database host (if applicable) name, on which connection was created.
final String hostName = getHost Nare();

/1 database unique ID for created connection.
final String dnUniqld = getDatabaseUni gl d();

/1 database instance (if applicable) unique ID for created connection.
final String instanceld = getlnstanceld();

/1 Security information for created connection.
final Securitylnformation securitylnfo = getSecuritylnformation();

rest of successful connection creation code path ...

b

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 3

Optimizing Universal Connection Pool
Behavior

This chapter describes the following concepts:

¢ Optimizing Connection Pools
e About Controlling the Pool Size in UCP

« About Optimizing Real-World Performance with Static Connection Pools

e Stale Connections in UCP

e About Harvesting Connections in UCP
e About Caching SQL Statements in UCP

5.1 Optimizing Connection Pools

This section provides instructions for setting connection pool properties in order to optimize
pooling behavior. Upon creation, UCP JDBC connection pools are pre-configured with a default
setup. The default setup provides a general, all-purpose connection pool. However, different
applications may have different database connection requirements and may want to modify the
default behavior of the connection pool. Behaviors, such as pool size and connection timeouts
can be configured and can improve overall connection pool performance as well as connection
availability. In many cases, the best way to tune a connection pool for a specific application is
to try different property combinations using different values until optimal performance and
throughput is achieved.

Setting Connection Pool Properties

Connection pool properties are set either when getting a connection through a pool-enabled
data source or when creating a connection pool using the connection pool manager.

The following example demonstrates setting connection pool properties though a pool-enabled
data source:

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce();

pds. set Connect i onPool Nane("JDBC_UCP");
pds. set M nPool Si ze(4) ; pds. set MaxPool Si ze(20);

The following example demonstrates setting connection pool properties when creating a
connection pool using the connection pool manager:

Uni ver sal Connect i onPool Manager ngr = Uni versal Connecti onPool Manager | npl .
get Uni ver sal Connect i onPool Manager () ;

pds. set Connect i onPool Nane("JDBC_UCP");
pds. set M nPool Si ze(4); pds. set MaxPool Si ze(20);

ngyr. cr eat eConnect i onPool (pds);

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 14

ORACLE Chapter 5
About Controlling the Pool Size in UCP

5.2 About Controlling the Pool Size in UCP

UCP JDBC connection pools include a set of properties that are used to control the size of the
pool. The properties allow the number of connections in the pool to increase and decrease as
demand increases and decreases. This dynamic behavior helps conserve system resources
that are otherwise lost on maintaining unnecessary connections.

This section describes the following topics:

e Setting the Initial Pool Size

e Setting the Minimum Pool Size

e Setting the Maximum Pool Size

¢ Setting the Minimum Idle Connection Number

5.2.1 Setting the Initial Pool Size

The initial pool size property specifies the number of available connections that are created
when the connection pool is initially created or re-initialized. This property is typically used to
reduce the ramp-up time incurred by priming the pool to its optimal size.

A value of 0 indicates that no connections are pre-created. The default value is 0. The following
example demonstrates configuring an initial pool size:

pds. setInitial Pool Si ze(5);

If the initial pool size property is greater than the maximum pool size property, then only the
maximum number of connections are initialized.

If the initial pool size property is less than the minimum pool size property, then only the initial
number of connections are initialized and maintained until enough connections are created to
meet the minimum pool size value.

If during the pool initialization process, connections cannot be created up to the value specified
in the i ni t Pool Si ze property, then the pool attempts to create the remaining connections to
fulfill the initial pool size. If the pool does not have the physical ability to do so, then the pool
initialization process ends and it keeps trying to maintain the designated minimum and
maximum connection limits for the rest of its life cycle.

5.2.2 Setting the Minimum Pool Size

The minimum pool size property specifies the minimum amount of available connections and
borrowed connections that a pool maintains. A connection pool always tries to return to the
minimum pool size specified unless the minimum amount is yet to be reached. For example, if
the minimum limit is set to 10 and only 2 connections are ever created and borrowed, then the
number of connections maintained by the pool remains at 2 because this number is less than
the minimum pool size.

This property allows the number of connections in the pool to decrease as demand decreases.
At the same time, the property ensures that system resources are not wasted on maintaining
connections that are unnecessary.

The default value is 0. The following example demonstrates configuring a minimum pool size:

pds. set M nPool Si ze(2);

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 14

ORACLE Chapter 5
Real-World Performance Considerations with Respect to Connection Pool Sizes

5.2.3 Setting the Maximum Pool Size

The maximum pool size property specifies the maximum number of available and borrowed (in
use) connections that a pool maintains. If the maximum number of connections are borrowed,
no connections will be available until a connection is returned to the pool.

This property allows the number of connections in the pool to increase as demand increases.
At the same time, the property ensures that the pool does not grow to the point of exhausting
the resources of a system, which ultimately affects the performance and availability of an
application.

A value of 0 indicates that no connections are maintained by the pool. An attempt to get a
connection results in an exception. The default value is to allow the pool to continue to create
connections up to | nt eger. MAX_VALUE (2147483647 by default). The following example
demonstrates configuring a maximum pool size:

pds. set MaxPool Si ze(100) ;

5.2.4 Setting the Minimum Idle Connection Number

The minimum idle connection number property specifies the minimum number of idle
connections that the connection pool maintains.

If the number of available connections is less than the number of minimum idle connections
specified, then new connections are created in the background and made available in the pool.
The range of valid values for this property ranges from 0 to | nt eger . MAX_VALUE. The default
value is 0. It is illegal to set this property to a value greater than the maximum pool size.

The following code snippet shows how to use this property:

Pool Dat aSour ce pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;
pds. set Connect i onFact or yC assNanme(" or acl e. j dbc. pool . Oracl eDat aSour ce") ;
pds. set URL(" <URL>");

pds. set User (" <user _nane>");

pds. set Passwor d(" <passwor d>");

pds. set | nitial Pool Si ze(5);

pds. set M nPool Si ze(5);

pds. setM nl dl e(5);

pds. set MaxPool Si ze(10) ;

Connection conn = pds. get Connection();

conn. cl ose();

@® See Also

Oracle Universal Connection Pool Java APl Reference for more information about this
property

5.3 Real-World Performance Considerations with Respect to
Connection Pool Sizes

Most on-line transaction processing (OLTP) performance problems that the Real-World
Performance group investigates relate to the connection strategy used by the application. For

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 14

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/index.html

ORACLE

Chapter 5
Stale Connections in UCP

this reason, designing a sound connection strategy is crucial for system performance,
especially in enterprise environments that must scale to meet increasing demand.

Most applications use a dynamic pool of connections to the database, configured with a
minimum number of connections to keep open on the database and a maximum number of
connections that can be made to the database. When an application needs a connection to the
database, then it requests one from the pool. If there are no connections available, then the
application creates a new connection, if it has not reached the maximum number of
connections already. If a connection has not been used for a specified duration of time, then
the application closes the connection, if there are more than the minimum number of
connections available.

This configuration conserves system resources by only maintaining the number of connections
actively needed by the application. In the real world, this configuration enables connection
storms and database system CPU over-subscription, quickly destabilizing a system. A
connection storm can occur when there are lots of activities on the application server requiring
database connections. If there are not enough connections to the database to serve all of the
requests, then the application server opens new connections. Creating a new connection to the
database is a resource intensive activity, and when lots of connections are made in a short
period of time, it can overwhelm the CPU resources on the database system.

So, for creating connection pools, the total number of connections to the database from all
pools must be based on the CPU cores available on the system. Oracle recommends
maximum five connections per CPU core. The ideal number varies depending on the
application and the system hardware. However, the value is somewhere within that range. The
Real-World Performance group recommends creating pools that:

« Have a minimum size that is close to the actual minimum number of connections in use

* Have maximum size that is not too high and follows the guideline of having five
connections per CPU core

Do not have too much difference between the maximum value and the minimum value, so
that connection storms can be avoided

For example, if a database server has 2 CPUs and 12 cores per CPU, then there are 24 cores
available and the number of connections to the database, at any given point of time, should be
less than 120. This number is cumulative for all applications and all databases connecting to
the system, if there are more than one databases on the system. If there are two application
servers, then the maximum number of connections (for example, 120 in this case) should be
divided between them. If there are two databases running on the system, then the maximum
number of connections should be divided between them.

@ See Also

e https://www.youtube.com/watch?v=00-tBpVewP4

e https://www.youtube.com/watch?v=XzN8Rp6glEo

5.4 Stale Connections in UCP

Stale connections are connections that remain either available or borrowed, but are no longer
being used. Stale connections that remain borrowed may affect connection availability.

In addition, stale connections may impact system resources that are used to maintain unused
connections for extended periods of time. The pool properties discussed in this section are
used to control stale connections.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 14

https://www.youtube.com/watch?v=Oo-tBpVewP4
https://www.youtube.com/watch?v=XzN8Rp6glEo

ORACLE Chapter 5
Stale Connections in UCP

This section describes the following topics:

 What is Connection Reuse?

e Setting the Connection Validation Timeout

e Setting the Abandon Connection Timeout

e Setting the Time-To-Live Connection Timeout

e Setting the Connection Wait Timeout

e Setting the Inactive Connection Timeout

e Setting the Query Timeout

e Setting the Timeout Check Interval

@® Note

It is good practice to close all connections that are no longer required by an
application. Closing connections helps minimize the number of stale connections that
remain borrowed.

5.4.1 What is Connection Reuse?

The connection reuse feature allows connections to be gracefully closed and removed from a
connection pool after a specific amount of time or after the connection has been used a
specific number of times. This feature saves system resources that are otherwise wasted on
maintaining unusable connections.

5.4.1.1 Setting the Maximum Connection Reuse Time

The maximum connection reuse time allows connections to be gracefully closed and removed
from the pool after a connection has been in use for a specific amount of time. The timer for
this property starts when a connection is physically created. Borrowed connections are closed
only after they are returned to the pool and the reuse time is exceeded.

This feature is typically used when a firewall exists between the pool tier and the database tier
and is setup to block connections based on time restrictions. The blocked connections remain
in the pool even though they are unusable. In such scenarios, the connection reuse time is set
to a smaller value than the firewall timeout policy.

@® Note

The maximum connection reuse time is different from the time-to-live connection
timeout. The main difference between the maximum connection reuse time and the
time-to-live is that time-to-live can cancel a connection, but maximum connection
reuse time never does that. The maximum connection reuse time handler gets applied
only in the following cases:

e Prior to a connection borrow
e Immediately after a connection is returned back to a pool

e On periodic basis, with every ti neout Checkl nt er val

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 14

ORACLE

Chapter 5
Stale Connections in UCP

The maximum connection reuse time value is represented in seconds. The default value is 0,
which indicates that this feature is disabled. The following example demonstrates configuring a
maximum connection reuse time:

pds. set MaxConnect i onReuseTi nme(300);

Starting from Oracle Al Database Release 26ai, you can use the new system property

oracl e. ucp. timersAffectAll Connections to change the behavior of the maximum connection
reuse time processing. The default value of this property is FALSE, which means that during
periodical appropriate time processing, a pool is scanned down to a minimum pool size and the
pool never closes connections below the minimum pool size. If the

SYSTEM PROPERTY_TI MERS_AFFECT_ALL_CONNECTI ONS system property is set to TRUE, then the
periodic poll checks all available connection for the maximum connection reuse time criteria, so
the pool size may go below the minimum pool size, replacing the applicable connections.

Related Topics

e Setting the Time-To-Live Connection Timeout

5.4.1.2 Setting the Maximum Connection Reuse Count

The maximum connection reuse count allows connections to be gracefully closed and removed
from the connection pool after a connection has been borrowed a specific number of times.
This property is typically used to periodically recycle connections in order to eliminate issues
such as memory leaks.

A value of 0 indicates that this feature is disabled. The default value is 0. The following
example demonstrates configuring a maximum connection reuse count:

pds. set MaxConnect i onReuseCount (100) ;

5.4.2 Setting the Connection Validation Timeout

The connection validation timeout specifies the duration within which a borrowed connection
from the pool is validated. This is the maximum time for a connection validation operation. If
the validation is not completed during this period, then the connection is treated as invalid.

The connection validation timeout value represents seconds. The default value is set to 15.
The following example demonstrates configuring a connection validation timeout:

pd. set Connecti onVal i dati onTi neout (55) ;

5.4.3 Setting the Abandon Connection Timeout

The abandoned connection timeout (ACT) enables borrowed connections to be reclaimed back
into the connection pool after a connection has not been used for a specific amount of time.
Abandonment is determined by monitoring calls to the database.

The abandoned connection timeout feature helps maximize connection reuse and conserves
system resources that are otherwise lost on maintaining borrowed connections that are no
longer in use.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 14

ORACLE Chapter 5
Stale Connections in UCP

@® Note

Before reclaiming connections for reuse, UCP either cancels or rolls back the
connections that have local transactions pending.

The ACT value represents seconds. A value of 0 indicates that the feature is disabled. The
default value is set to 0. The following example demonstrates configuring an abandoned
connection timeout:

pds. set AbandonedConnect i onTi meout (10) ;

Every connection is reaped after a specific period of time. Either it is reaped when ACT
expires, or, if it is immune from ACT, then it is reaped after the immunity expires. If you set ACT
on a pool, then the following connection reaping policies apply:

« If a statement is executed without calling the St at enent . set Quer yTi neout method on that
statement, then the connection is reaped if ACT is exceeded, even though the connection
is waiting for the server to respond to the query.

« If a statement is executed with calling the St at enent . set Quer yTi meout method, then the
connection is reaped after the query timeout and ACT have expired. The connection is not
reaped while waiting on the query timeout. The expiration of the query timeout is an event
that resets the ACT timer. If the ACT expires while waiting for the cancel action that occurs
at the expiration of the query time out, then the connection is reaped.

e The default query timeout in the UCP is set to zero (0) for an appropriate pool data source,
using the Pool Dat aSour ce. set Quer yTi neout method, if the ACT is set to 0. If the ACT is
greater than zero (0), then the default query timeout is set to 60 seconds.

* If a connection has two statements: s1 with a query timeout and s2 without a query
timeout, then ACT does not reap the connection while s1 waits for the query timeout, but
reaps the connection if s2 hangs.

Note that the two statements execute sequentially based on JDBC requirement.

5.4.4 Setting the Time-To-Live Connection Timeout

The time-to-live connection timeout enables borrowed connections to remain borrowed for a
specific amount of time before the connection is reclaimed by the pool. This timeout feature
helps maximize connection reuse and helps conserve systems resources that are otherwise
lost on maintaining connections longer than their expected usage.

® Note

UCP either cancels or rolls back connections that have local transactions pending
before reclaiming connections for reuse.

The time-to-live connection timeout value represents seconds. A value of 0 indicates that the
feature is disabled. The default value is set to 0. The following example demonstrates
configuring a time-to-live connection timeout:

pds. set Ti meToLi veConnect i onTi neout (18000)

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 14

ORACLE Chapter 5
Stale Connections in UCP

5.4.5 Setting the Connection Wait Timeout

The connection wait timeout specifies how long an application request waits to obtain a
connection if there are no longer any connections in the pool. A connection pool runs out of
connections if all connections in the pool are being used (borrowed) and if the pool size has
reached it's maximum connection capacity as specified by the maximum pool size property.
The request receives an SQL exception if the timeout value is reached. The application can
then retry getting a connection. This timeout feature improves overall application usability by
minimizing the amount of time an application is blocked and provides the ability to implement a
graceful recovery.

The connection wait timeout value represents seconds. A value of 0 indicates that the feature
is disabled. The default value is set to 3 seconds. The following example demonstrates
configuring a connection wait timeout:

pds. set Connect i onWi t Ti neout (10) ;

5.4.6 Setting the Inactive Connection Timeout

The inactive connection timeout specifies how long an available connection can remain idle
before it is closed and removed from the pool.

This timeout property is only applicable to available connections and does not affect borrowed
connections. This property helps conserve resources that are otherwise lost on maintaining
connections that are no longer being used. The inactive connection timeout (together with the
maximum pool size) enables a connection pool to grow and shrink as application load
changes.

The inactive connection timeout value is represented in seconds. A value of 0 indicates that the
feature is disabled. The default value is set to 0. The following example demonstrates
configuring an inactive connection timeout:

pds. set I nacti veConnecti onTi meout (60);

Starting from Oracle Al Database Release 26ai, you can use the new system property

oracl e. ucp. timersAffectAll Connections to change the behavior of the Inactive Connection
Timeout and Maximum Connection Reuse Time properties. If you set this system property to
TRUE, then the periodic poll checks all the available connections for the maximum connection
reuse time and inactive connection timeout criteria, and closes all the connections that satisfy
the criteria. This may make the pool size go below the minimum pool size, resulting in the
creation of new connections by the pool to maintain the minimum pool size limit.

@ See Also

Setting the Maximum Connection Reuse Time for more information about the
oracl e. ucp. timersAffect All Connections property

5.4.7 Setting the Query Timeout

In Oracle Database 12¢ Release 2 (12.2.0.1), UCP introduced the quer yTi meout property. This
property specifies the number of seconds UCP waits for a St at ement object to execute. If the

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 8 of 14

ORACLE’

Chapter 5
About Harvesting Connections in UCP

limit is exceeded, then a Dat abaseExcept i on is thrown. Use the set Quer yTi neout method for
setting this property in the following way:

Pool Dat aSour cel mpl pds = new Pool Dat aSour cel npl ();

pds. set Connect i onFact or yC assNanme(" or acl e. j dbc. pool . Oracl eDat aSour ce") ;
pds. set URL(<url >);

pds. set User ("scott");

pds. set Passwor d(<passwor d>) ;

pds. set Connect i onPool Nane("my_pool ");

pds. set Quer yTi meout (60); // 60 seconds to wait on query

5.4.8 Setting the Timeout Check Interval

The timeout check interval property controls how frequently the timeout properties (abandoned
connection timeout, time-to-live connection timeout, and inactive connection timeout) are
enforced. Connections that have timed-out are reclaimed when the timeout check cycle runs.
This means that a connection may not actually be reclaimed by the pool at the moment that the
connection times-out. The lag time between the connection timeout and actually reclaiming the
connection may be considerable depending on the size of the timeout check interval.

The timeout check interval property represents seconds. The default value is set to 30. The
following example demonstrates configuring a property check interval:

pds. set Ti meout Checkl nt erval (60);

@ See Also

Oracle Al Database Net Services Administrator's Guide for more information about
Oracle Net Services

5.5 About Harvesting Connections in UCP

The connection harvesting feature allows a specified number of borrowed connections to be
reclaimed when the connection pool reaches a specified number of available connections. This
section describes the following concepts:

e Overview of Harvesting Connections in UCP

» Setting a Connection to Harvestable

e Setting the Harvest Trigger Count

e Setting the Harvest Maximum Count

5.5.1 Overview of Harvesting Connections in UCP

This feature helps ensure that a certain number of connections are always available in the pool
and helps maximize performance. The feature is particularly useful if an application caches
connection handles. Caching is typically performed for performance reasons because it
minimizes re-initialization of state necessary for connections to participate in a transaction.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 9 of 14

ORACLE

Chapter 5
About Harvesting Connections in UCP

For example, a connection is borrowed from the pool, initialized with necessary session state,
and then held in a context object. Holding connections in this manner may cause the
connection pool to run out of available connections. The connection harvest feature reclaims
the borrowed connections, if appropriate, and allows the connections to be reused.

Connection harvesting is controlled using the Har vest abl eConnect i on interface and configured
or enabled using two pool properties: Connection Harvest Trigger Count and Connection
Harvest Maximum Count. The interface and properties are used together when implementing
the connection harvest feature.

5.5.2 Setting a Connection to Harvestable

The set Connect i onHar vest abl e(bool ean) method of the

oracl e. ucp. j dbc. Har vest abl eConnect i on interface controls whether or not a connection will
be harvested. This method is used as a locking mechanism when connection harvesting is
enabled. For example, the method is set to f al se on a connection when the connection is
being used within a transaction and must not be harvested. After the transaction completes,
the method is set to t r ue on the connection and the connection can be harvested if required.

@® Note

All connections are harvestable, by default, when the connection harvest feature is
enabled. If the feature is enabled, the set Connect i onHar vest abl e method should
always be used to explicitly control whether a connection is harvestable.

The following example demonstrates using the set Connect i onHar vest abl e method to indicate
that a connection is not harvestable when the connection harvest feature attempts to harvest
connections:

Connection conn = pds. get Connection();

((Harvest abl eConnection) conn). set Connecti onHarvestabl e(fal se);

5.5.3 Setting the Harvest Trigger Count

The connection harvest trigger count specifies the available connection threshold that triggers
connection harvesting. For example, if the connection harvest trigger count is set to 10, then
connection harvesting is triggered when the number of available connections in the pool drops
to 10.

A value of I nt eger. MAX_VALUE (2147483647 by default) indicates that connection harvesting is
disabled. The default value is | nt eger . MAX_VALUE.

The following example demonstrates enabling connection harvesting by configuring a
connection harvest trigger count.

pds. set Connect i onHar vest Tri gger Count (2) ;

5.5.4 Setting the Harvest Maximum Count

The connection harvest maximum count property specifies how many borrowed connections
should be returned to the pool once the harvest trigger count has been reached. The number
of connections actually harvested may be anywhere from 0 to the connection harvest

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 10 of 14

ORACLE

Chapter 5
About Caching SQL Statements in UCP

maximum count value. Least recently used connections are harvested first which allows very
active user sessions to keep their connections the most.

The harvest maximum count value can range from 0 to the maximum connection property
value. The default value is 1. An SQLException is thrown if an out-of-range value is specified.

The following example demonstrates configuring a connection harvest maximum count.

pds. set Connect i onHar vest MaxCount (5) ;

@® Note

» If connection harvesting and abandoned connection timeout features are enabled
at the same time, then the timeout processing does not reclaim the connections
that are designated as nonharvestable.

» If connection harvesting and time-to-live connection timeout features are enabled
at the same time, then the timeout processing reclaims the connections that are
designated as nonharvestable.

Related Topics

e Controlling Reclaimable Connection Behavior

5.6 About Caching SQL Statements in UCP

This section describes how to cache SQL statements in UCP, in the following sections:

¢ Qverview of Statement Caching in UCP

¢ Enabling Statement Caching in UCP

5.6.1 Overview of Statement Caching in UCP

Statement caching makes working with statements more efficient. Statement caching improves
performance by caching executable statements that are used repeatedly and makes it
unnecessary for programmers to explicitly reuse prepared statements. Statement caching
eliminates overhead due to repeated cursor creation, repeated statement parsing and creation
and reduces overhead of communication between applications and the database. Statement
caching and reuse is transparent to an application. Each statement cache is associated with a
physical connection. That is, each physical connection will have its own statement cache.

The match criteria for cached statements are as follows:

e The SQL string in the statement must be the same (case-sensitive) to one in the cache.
e The statement type must be the same (prepar ed or cal | abl e) to the one in the cache.

* The scrollable type of result sets produced by the statement must be the same (f or war d-
only or scrol | abl e) as the one in the cache.

Statement caching is implemented and enabled differently depending on the JDBC driver
vendor. The instructions in this section are specific to Oracle's JDBC driver. Statement caching
on other vendors' drivers can be configured by setting a connection property on a connection
factory. Refer to the JDBC vendor's documentation to determine whether statement caching is
supported and if it can be set as a connection property. UCP does support JDBC 4.0 (JDK16)
APIs to enable statement pooling if a JDBC vendor supports it.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 11 of 14

ORACLE Chapter 5
UCP Best Practices

Related Topics

» Setting Connection Properties

5.6.2 Enabling Statement Caching in UCP

The maximum number of statements property specifies the number of statements to cache for
each connection. The property only applies to the Oracle JDBC driver. If the property is not set,
or if it is set to 0, then statement caching is disabled. By default, statement caching is disabled.
When statement caching is enabled, a statement cache is associated with each physical
connection maintained by the connection pool. A single statement cache is not shared across
all physical connections.

The following example demonstrates enabling statement caching:

pds. set MaxSt at enent s(10) ;

Determining the Statement Cache Size

The cache size should be set to the number of distinct statements the application issues to the
database. If the number of statements that an application issues to the database is unknown,
use the JDBC performance metrics to assist with determining the statement cache size.

Statement Cache Size Resource Issues

Each connection is associated with its own statement cache. Statements held in a connection's
statement cache may hold on to database resources. It is possible that the number of opened
connections combined with the number of cached statements for each connection could
exceed the limit of open cursors allowed for the database. This issue may be avoided by
reducing the number of statements allowed in the cache, or by increasing the limit of open
cursors allowed by the database.

5.7 UCP Best Practices

Universal Connection Pool has an extensive collection of tools and APIs to analyze connection
leaks and tune up pool properties for optimizing its operation. This section describes these
tools and APIs.

The All connections in the Universal Connection Pool are in use exception indicates
the shortage of connections in the pool at a given time, which means that the pool is unable to
meet the connection borrowing requests of an application. This can happen due to the
following reasons:

e An application borrows connections and holds them for a long time without usage, never
returning them to the pool. Connection leakage can also happen when an application
borrows connections, holds them without usage, and finally returns them to the pool after a
very long time. These are the classical connection leakage use cases. You must eliminate
non-productive connection borrowings that last for long or infinite periods of time.

* The pool has insufficient capacity for processing the whole flow of connection borrowing
requests. In this case, the connection supply of the pool is not enough to perform the
expected job and this results in the exception. You must increase the pool capacity in such
a case.

Following is a list of useful tools and APIs that you must be aware of prior to debugging and
tuning up UCP:

* Abandoned Connection Timeout (ACT): This API enables setting up a timeout for a
connection that is borrowed but unused.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 12 of 14

ORACLE

Chapter 5
UCP Best Practices

@ See Also

Setting the Abandon Connection Timeout

Time-To-Live Connection Timeout (TTL): This API too enables setting up a timeout for a
connection that is borrowed but unused. However, it also furnishes information about the
borrowed connections that are busy with associated on-going processes. It also enables to
reclaim these busy connections back to a pool and restores the capacity of the pool, in
case of very long processes.

@ See Also

Setting the Time-To-Live Connection Timeout

Connection Harvesting Mechanism: This is a special API that enables UCP to always
keep certain number of connections available for borrowing and in turn, helps in avoiding
the ALl connections in the Universal Connection Pool are in use exception.

@ See Also

About Harvesting Connections in UCP

Connection Wait Timeout (CWT): This is an important property when you try to tune up
UCP to avoid the Al | connections in the Universal Connection Pool are in use
exception. When an application attempts to borrow a connection out of a pool and there
are no available connections at that time, UCP waits for an available connection to appear
for the amount of time that is equal to the value of CWT. By default, CWT is set for 3
seconds. In many applications, you can increase this timeout to enable a pool to wait for
longer for an available connection to appear, without getting the Al 1 connections in the
Uni versal Connection Pool are in use exception.

@ See Also

Setting the Connection Wait Timeout

Maximum Pool Size (MaxPool Si ze): This property affects the pool capacity and helps to
avoid the Al connections in the Universal Connection Pool are in use exception.
Oracle recommends to have a small pool size, typically a small number multiplied by the
number of cores on a database server. It is better to increase the CWT than making
MaxPool Si ze very high.

@ See Also

Setting the Maximum Pool Size

Inactive Connection Timeout (ICT) in combination with MaxPoolSize: ICT is the
timeout property that enables UCP to automatically close available connections that did not
have a chance to be borrowed for a particular amount of time, which is specified by the
value of ICT. This way, the UCP can avoid connections if the working set of the pool is too
big to perform a given throughput. For the pool to auto-tune the required number of

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 13 of 14

ORACLE’

Chapter 5
UCP Best Practices

connections in the working set of the pool, you can set the MaxPool Si ze parameter to a big
value and set the ICT accordingly.

@® Note

Setting the Inactive Connection Timeout

Pool Size Auto Tuner: This tool enables UCP to automatically tune up pool size for better
throughput.

Pool Statistical Metrics: This is a set of statistics that helps to determine the activities and
statistics of a pool, for example, the number of available connections, the number of
borrowed connections, and the Average Connection Wait Time (ACWT). ACWT can find a
proper value of CWT property for pool tuning. If ACWT is big, then it indicates that the UCP
is close to over-using its capacity.

@ See Also

Pool Statistics

Pool Logging: UCP has an extensive and flexible logging system. Logging enables you to
determine events related to connection opening, connection closing, connection borrowing,
and wait time of return and borrow requests.

@ See Also

Overview of Logging and Tracing in UCP

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 14 of 14

Labeling Connections in UCP

This chapter discusses the following topics:

e Overview of Labeling Connections in UCP

« Implementation of a Labeling Callback in UCP

* Applying Connection Labels in UCP

» Borrowing Labeled Connections from UCP
e Checking Unmatched Labels in UCP
* Integration of UCP with DRCP

« Removing a Connection Label in UCP

6.1 Overview of Labeling Connections in UCP

Applications often initialize connections retrieved from a connection pool before using the
connection. The initialization varies and could include simple state re-initialization that requires
method calls within the application code or database operations that require round trips over
the network. The cost of such initialization may be significant.

Labeling connections enables an application to attach arbitrary name/value pairs to a
connection. The application can request a connection with the desired label from the
connection pool. By associating particular labels with particular connection states, an
application can retrieve an already initialized connection from the pool and avoid the time and
cost of re-initialization. The connection labeling feature does not impose any meaning on user-
defined keys or values; the meaning of user-defined keys and values is defined solely by the
application.

@ Note

If you are using connection labeling, then you cannot set the RESET_STATE service
attribute to LEVEL1 or LEVEL2.

Some of the examples for connection labeling include, role, NLS language settings, transaction
isolation levels, stored procedure calls, or any other state initialization that is expensive and
necessary on the connection before work can be executed by the resource.

Connection labeling is application-driven and requires the use of two interfaces. The

oracl e. ucp. j dbc. Label abl eConnect i on interface is used to apply and remove connection
labels, as well as retrieve labels that have been set on a connection. The

oracl e. ucp. Connecti onLabel i ngCal | back interface is used to create a labeling callback that
determines whether or not a connection with a requested label already exists. If no
connections exist, the interface allows current connections to be configured as required. The
methods of these interfaces are described in detail throughout this chapter.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE Chapter 6
Implementation of a Labeling Callback in UCP

6.2 Implementation of a Labeling Callback in UCP

UCP uses Database Resident Connection Pooling (DRCP) tagging infrastructure to support
labeling in UCP, whether you work with single labels or multiple labels. However, the behavior
with multiple labels can be a little different when you use the UCP and DRCP combination
instead of only UCP.

This section discusses the following topics:

« When to Use a Labeling Callback in UCP

e Creating a Labeling Callback in UCP.

* Regqistering a Labeling Callback in UCP

¢ Removing a Labeling Callback in UCP

@ See Also
"Integration of UCP with DRCP"

6.2.1 When to Use a Labeling Callback in UCP

A labeling callback is used to define how the connection pool selects labeled connections and
allows the selected connection to be configured before returning it to an application.
Applications that use the connection labeling feature must provide a callback implementation.

A labeling callback is used when a labeled connection is requested but there are no
connections in the pool that match the requested labels. The callback determines which
connection requires the least amount of work in order to be re-configured to match the
requested label and then enables the connection labels to be updated before returning the
connection to the application. This section describes the following topics:

6.2.2 Creating a Labeling Callback in UCP

To create a labeling callback, an application implements the
oracl e. ucp. Connect i onLabel i ngCal | back interface. One callback is created per connection
pool. The interface provides the following two methods:

 The cost Method

¢ The configure Method

The cost Method

This method projects the cost of configuring connections considering label-matching
differences. Upon a connection request, the connection pool uses this method to select a
connection with the least configuration cost.

public int cost(Properties requestedLabels, Properties currentLabels);

The configure Method

This method is called by the connection pool on the selected connection before returning it to
the application. The method is used to set the state of the connection and apply or remove any
labels to/from the connection.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE

Chapter 6
Implementation of a Labeling Callback in UCP

publi ¢ bool ean configure(Properties requestedLabels, Connection conn);

The connection pool iterates over each connection available in the pool. For each connection,
it calls the cost method. The result of the cost method is an i nt eger which represents an
estimate of the cost required to reconfigure the connection to the required state. The larger the
value, the costlier it is to reconfigure the connection. The connection pool always returns
connections with the lowest cost value. The algorithm is as follows:

If the cost method returns 0 for a connection, then the connection is a match. The
connection pool does not call the confi gur e method on the connection found and returns
the connection as it is.

If the cost method returns a value greater than 0, then the connection pool iterates until it
finds a connection with a cost value of 0 or runs out of available connections.

If the pool has iterated through all available connections and the lowest cost of a
connection is | nt eger . MAX_VALUE (2147483647 by default), then no connection in the pool
is able to satisfy the connection request. The pool creates and returns a new connection. If
the pool has reached the maximum pool size (it cannot create a new connection), then the
pool either throws an SQL exception or waits if the connection wait timeout attribute is
specified.

If the pool has iterated through all available connections and the lowest cost of a
connection is less than | nt eger . MAX_VALUE, then the conf i gur e method is called on the
connection and the connection is returned. If multiple connections are less than

I nt eger. MAX_VALUE, the connection with the lowest cost is returned.

® Note

A cost of 0 does not imply that r equest edLabel s equals current Label s.

6.2.2.1 Example of Labeling Callback in UCP

The following example demonstrates a simple labeling callback implementation that
implements both the cost and confi gur e methods. The callback is used to find a labeled
connection that is initialized with a specific transaction isolation level.

cl ass MyConnecti onLabel i ngCal | back

i npl enents Connecti onLabel i ngCal | back {

publ i c MyConnecti onLabel i ngCal | back()

{
}

public int cost(Properties reqlLabels, Properties currentLabels)
{
/|l Case 1. exact match
i f (regLabel s. equal s(currentLabel s))
{
Systemout. println("## Exact match found!! ##");
return O;

}

/| Case 2. sone |abels match with no unmatched | abels
String isol = (String) reglLabels. get (" TRANSACTI ON_| SOLATI ON');
String iso2 = (String) currentLabels. get (" TRANSACTI ON_| SOLATI ON');
bool ean match =

(isol !'=null & iso2 !'= null && isol.equal slgnoreCase(iso2));

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE

}

Chapter 6
Implementation of a Labeling Callback in UCP

Set rKeys = reqlLabel s. keySet ();

Set cKeys = currentLabel s. keySet();

if (match && rKeys. containsAll (cKeys))

{
Systemout.println("## Partial match found!! ##");
return 10;

}

/1 No |abel matches to application's preference.
/1 Do not choose this connection.
Systemout.println("## No match found!! ##");
return Integer. MAX_VALUE;

public bool ean configure(Properties reglLabels, Cbject conn)

{

}

try

{
String isoStr = (String) reqglLabels. get (" TRANSACTI ON_| SOLATI ON');
((Connection)conn).setTransactionl sol ation(lnteger.val ueX (isoStr));
Label abl eConnection | conn = (Label abl eConnection) conn;

/1 Find the unmatched | abels on this connection
Properties unnatchedLabel s =
| conn. get Unmat chedConnect i onLabel s(reqlLabel s);

/1 Apply each | abel <key,value> in unmatchedLabels to conn
for (Map. Entry<Object, Object> |abel : unmatchedlLabel s.entrySet())
{
String key = (String) |abel.getKey();
String value = (String) |abel.getValue();
| conn. appl yConnect i onLabel (key, val ue);
}
}
catch (Exception exc)
{
return fal se;

}

return true;

6.2.3 Registering a Labeling Callback in UCP

A pool-enabled data source provides the

regi ster Connect i onLabel i ngCal | back(Connecti onLabel i ngCal | back cal | back) method for
registering labeling callbacks. Only one callback may be registered on a connection pool. The
following example demonstrates registering a labeling callback that is implemented in the
MyConnect i onLabel i ngCal | back class:

MyConnect i onLabel i ngCal | back cal | back = new MyConnecti onLabel i ngCal | back();
pds. regi st er Connect i onLabel i ngCal | back(cal | back);

6.2.4 Removing a Labeling Callback in UCP

A pool-enabled data source provides the r enoveConnect i onLabel i ngCal | back() method for
removing a labeling callback. The following example demonstrates removing a labeling
callback.

pds. removeConnect i onLabel i ngCal | back(cal | back);

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE Chapter 6
Integration of UCP with DRCP

6.3 Integration of UCP with DRCP

Natively, DRCP supports connection tagging, which is a single label without weights. So,
labeling with a single label works transparently if you use UCP with DRCP.

@® Note

Oracle recommends that the maximum pool size of UCP should not be bigger than the
size of DRCP. If the UCP pool size is bigger than the DRCP size, then you must set
the set Val i dat eConnect i onOnBor r ow property to of f . Otherwise, UCP keeps
invalidating and closing the connections that are not associated with DRCP at that
moment, and keeps creating fresh connections.

@ See Also

Overview of Validating Connections in UCP

Multiple label UCP connections work, but they have the following behavior changes:

e The cost method in the Connecti onLabel i ngCal | back API is not invoked if you use UCP
with DRCP using connection labeling

e UCP can invoke the confi gur e method in the Connecti onLabel i ngCal | back APl more
with DRCP configuration than without DRCP configuration.

@ See Also

Oracle Database JDBC Developer's Guide for more information about DRCP

6.4 Applying Connection Labels in UCP

Labels are applied on a borrowed connection using the appl yConnect i onLabel method from
the Label abl eConnect i on interface. This method is typically called from the confi gur e method
of the labeling callback. Any number of connection labels may be cumulatively applied on a
borrowed connection. Each time a label is applied to a connection, the supplied key/value pair
is added to the collection of labels already applied to the connection. Only the last applied
value is retained for any given key.

@® Note

A labeling callback must be registered on the connection pool before a label can be
applied on a borrowed connection; otherwise, an exception is thrown.

The following example demonstrates initializing a connection with a transaction isolation level
and then applying a label to the connection:

String pname = "propertyl”;
String pval ue = "val ue";

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE’

Chapter 6
Borrowing Labeled Connections from UCP
Connection conn = pds. get Connection();
/1 initialize the connection as required.
conn. set Transact i onl sol ati on(Connect i on. TRANSACTI ON_SERI ALI ZABLE) ;

((Label abl eConnection) conn). appl yConnecti onLabel (pnane, pval ue);

In order to remove a given key from the set of connection labels applied, apply a label with the
key to be removed and a nul | value. This may be used to clear a particular key/value pair from
the set of connection labels.

Related Topics

* Implementation of a Labeling Callback in UCP

6.5 Borrowing Labeled Connections from UCP

A pool-enabled data source provides two get Connect i on methods that are used to borrow a
labeled connection from the pool. The methods are shown below:

public Connection get Connection(java.util.Properties labels)
throws SQLException;

publi ¢ Connection get Connection(String user, String password,
java.util.Properties |abels)
throws SQLException;

The methods require that the label be passed to the get Connect i on method as a Properties
object. The following example demonstrates getting a connection with the label propertyl,
val ue.

String pnane = "propertyl";

String pval ue = "val ue";

Properties label = new Properties();
| abel . set Property(pnane, pvalue);

Connection conn = pds. get Connection(| abel);

6.6 Checking Unmatched Labels in UCP

A connection may have multiple labels that each uniquely identifies the connection based on
some desired criteria. The get Unmat chedConnect i onLabel s method is used to verify which
connection labels matched from the requested labels and which did not. The method is used
after a connection with multiple labels is borrowed from the connection pool and is typically
used by a labeling callback. The following example demonstrates checking for unmatched
labels.

String pnane = "propertyl";

String pval ue = "val ue";

Properties label = new Properties();
| abel . set Property(pnane, pvalue);

Conneci on conn = pds. get Connection(l abel);
Properties unnmatched = ((Label abl eConnecti on)
connection). get Unmat chedConnecti onLabel s (I abel);

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 6
Removing a Connection Label in UCP

6.7 Removing a Connection Label in UCP

The renmoveConnect i onLabel method is used to remove a label from a connection. This
method is used after a labeled connection is borrowed from the connection pool. The following
example demonstrates removing a connection label.

String pnane = "propertyl";

String pval ue = "val ue";

Properties label = new Properties();

| abel . set Property(pnane, pvalue);

Connection conn = pds. get Connection(| abel);

((Label abl eConnection) conn).renoveConnecti onLabel (pnane);

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 7

Controlling Reclaimable Connection Behavior

This chapter describes the following interfaces:

» AbandonedConnectionTimeoutCallback Interface

* TimeToLiveConnectionTimeoutCallback Interface

7.1 AbandonedConnectionTimeoutCallback Interface

The AbandonedConnect i onTi meout Cal | back callback interface is used for the abandoned
connection timeout feature. This feature enables applications to provide customized handling
of abandoned connections.The callback object either uses one of its logical connection proxies
or it is registered with each pooled connection. This enables applications to perform
customized handling, when a particular connection is deemed abandoned by the pool. The
hand| eTi medQut Connect i on method is invoked when a borrowed connection is deemed
abandoned by the Universal Connection Pool. Applications can perform one of the following
operations on the connection:

e Completely override the pool-handling process
* Invoke additional handling actions
e Assume the default pool-handling

The JDBC applications can invoke cancel , cl ose, and r ol | back methods on the abandoned
connection within the handl eTi medCut Connect i on method.

@® Note

If you try to register more than one AbandonedConnect i onTi neout Cal | back interface
on the same connection, then it results in an exception. This exception can be a

Uni ver sal Connect i onPool Except i on at the pool layer or a j ava. sql . SQLExcepti on,
specific to the type of the UCP Adapter like JDBC, JCA and so on.

7.2 TimeToLiveConnectionTimeoutCallback Interface

The Ti meToLi veConnect i onTi neout Cal | back callback interface used for the time-to-live (TTL)
connection timeout feature. This enables applications to provide customized handling for TTL
timed-out connections.

The callback object either uses one of its logical connection proxies or it is registered with each
pooled connection. This enables applications to perform customized handling, when the TTL of
the particular connection times out.

The handl eTi medQut Connect i on method is invoked when a borrowed connection is found to
be TTL timed-out by the Universal Connection Pool. Applications can perform one of the
following operations on the connection:

e Completely override the pool-handling process

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE Chapter 7
TimeToLiveConnectionTimeoutCallback Interface

* Invoke additional handling actions
e Assume the default pool-handling

The JDBC applications can invoke cancel , cl ose, and r ol | back methods on the abandoned
connection within the handl eTi medCut Connect i on method.

@® Note

If you try to register more than one Ti neToLi veConnect i onTi meout Cal | back interface
on the same connection, then it results in an exception. This exception can be a

Uni ver sal Connect i onPool Except i on at the pool layer or a j ava. sql . SQLExcepti on,
specific to the type of the UCP Adapter like JDBC, JCA, and so on.

Universal Connection Pool Developer's Guide
G44295-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 2

Using the Connection Pool Manager

The following sections are included in this chapter:

e Overview of Using the UCP Manager

e Overview of IMX-based Management

8.1 Overview of Using the UCP Manager

The Universal Connection Pool (UCP) manager creates and maintains UCP instances. A pool
instance is registered with the pool manager every time a new pool is created. This section
covers the following topics:

* About Connection Pool Manager

e Creating a Connection Pool Manager for UCP

» Life Cycle States of a Connection

* Maintenance of Universal Connection Pool

8.1.1 About Connection Pool Manager

Applications use a connection pool manager to explicitly create and manage UCP JDBC
connection pools. Applications use the manager because it offers full life cycle control, such as
creating, starting, stopping, and destroying a connection pool. Applications also use the
manager to perform routine maintenance on the connection pool, such as refreshing, recycling,
and purging connections in a pool. Lastly, applications use the connection pool manager
because it offers a centralized integration point for administrative tools and consoles.

8.1.2 Creating a Connection Pool Manager for UCP

A connection pool manager is an instance of the Uni ver sal Connect i onPool Manager interface,
which is located in the or acl e. ucp. adm n package. The manager is a Singleton instance that
is used to manage multiple connection pools per JVM. The interface includes methods for
interacting with a connection pool manager. UCP includes an implementation that is used to
get a connection pool manager instance. The following example demonstrates creating a
connection pool manager instance using the implementation:

Uni ver sal Connect i onPool Manager ngr = Uni ver sal Connect i onPool Manager | npl .
get Uni ver sal Connect i onPool Manager () ;

8.1.3 Life Cycle States of a Connection

Applications use the connection pool manager to explicitly control the life cycle of connection
pools. The manager is used to create, start, stop, and destroy connection pools. Life cycle
methods are included as part of the Uni ver sal Connect i onPool Manager interface.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE

Chapter 8
Overview of Using the UCP Manager

Understanding Life Cycle States

The life cycle states of a connection pool affects what manager operations can be performed
on a connection pool. Applications that explicitly control the life cycle of a pool must ensure
that the manager's operations are used only when the pool is in an appropriate state. Life cycle
constraints are discussed throughout this section.

The following list describes the life cycle states of a pool:

e Starting : Indicates that the connection pool's start method has been called and it is in the
process of starting up.

* Running : Indicates that the connection pool has been started and is ready to give out
connections.

e Stopping : Indicates that the connection pool is in the process of stopping.
* Stopped : Indicates that the connection pool is stopped.

* Failed : Indicates that the connection pool has encountered failures during starting,
stopping, or execution.

8.1.3.1 Creating a Connection Pool

The Cr eat eConnect i onPool method of the Connection Manager creates and registers a
connection pool. The manager uses a connection pool adapter to create the pool and relies on
a pool-enabled data source to configure the pool properties. An application must not implicitly
start a connection pool before using the cr eat eConnect i onPool method to explicitly create the
same pool.

The following example demonstrates creating a connection pool instance using the manager:

Uni ver sal Connect i onPool Manager ngr = Uni versal Connecti onPool Manager | npl .
get Uni ver sal Connect i onPool Manager () ;

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce();

pds. set Connect i onPool Nane(" mgr _pool ");

pds. set Connect i onFact or yCl assNane(" or acl e. j dbc. pool . Or acl eDat aSour ce") ;
pds. set URL("j dbc: oracl e:thin: @/ ocal host: 1521/ orcl");

pds. set User (" <user>");

pds. set Passwor d(" <passwor d>");

mgr . cr eat eConnect i onPool ((Uni ver sal Connecti onPool Adapt er) pds) ;

An application does not have to use the manager to create a pool in order for the pool to be
managed. A pool that is implicitly created (that is, automatically created when using a pool-
enabled data source) and configured with a pool name, is automatically registered and
managed by the pool manager. Oracle recommends implicit pool creation.

Pool Naming Convention

A connection pool name must be defined as part of the configuration. The pool name provides
a way to refer to specific pools when interacting with the manager. A connection pool name
must be unique and cannot be used by more than one connection pool. The manager throws a
pool al ready exists exception if a connection pool already exists with the same name.

Compatibility with JBoss

JBoss users can use the JBoss-specific silent reload functionality by setting the
oracl e. ucp. dest royOnRel oad JVM system property to t r ue. When the
oracl e. ucp. dest royOnRel oad property is set to t r ue, then the JBoss-specific behavior

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE Chapter 8
Overview of Using the UCP Manager

automatically destroys an old pool instance prior to creating a new one with the same name. If
this system property is not set or set to f al se, then UCP throws a pool al ready exists
exception.

8.1.3.2 Starting a Connection Pool

The manager's st art Connect i onPool method starts a connection pool using the pool name as
a parameter to determine which pool to start. The pool nhame is defined as a pool property on a
pool-enabled data source.

The following example demonstrates starting a connection pool:

mgr . st art Connect i onPool (" ngr_pool ");

An application must always create a connection pool using the manager's

creat eConnect i onPool method prior to starting the pool. In addition, a life cycle state
exception occurs if an application attempts to start a pool that has been previously started or if
the pool is in a state other than stopped or failed.

8.1.3.3 Stopping a Connection Pool

The manager's st opConnect i onPool method stops a connection pool using the pool name as a
parameter to determine which pool to stop. The pool name is defined as a pool property on the
pool-enabled data source. Stopping a connection pool closes all available and borrowed
connections.

The following example demonstrates stopping a connection pool:

mgr . st opConnect i onPool (" mgr_pool ");

An application can use the manager to stop a connection pool that was started implicitly or
explicitly. An error occurs if an application attempts to stop a pool that does not exist or if the
pool is in a state other than started or starting.

8.1.3.4 Destroying a Connection Pool

The dest royConnect i onPool method of the UCP Manager stops a connection pool and
removes it from the connection pool manager. A pool name is used as a parameter to
determine which pool to destroy. The pool name is defined as a pool property on the pool-
enabled data source.

/\ Caution

You must destroy the pool objects explicitly, before they get out of scope, for example,
if an object is an automatic variable and its scope is about to be ended. This is
especially important when your application deals with multiple pool objects. If you do
not destroy the pool objects explicitly, then they can cause leakage of resources like
connections, statements, result sets, heap memory, and so on.

The following example demonstrates destroying a connection pool:

mgr . dest r oyConnect i onPool (" mgr _pool ");

An application cannot start a connection pool that has been destroyed and must explicitly
create and start a new connection pool.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 8
Overview of Using the UCP Manager

8.1.4 Maintenance of Universal Connection Pool

Applications use the connection pool manager to perform maintenance on a connection pool.
Maintenance includes refreshing, recycling, and purging a connection pool. The maintenance
methods are included as part of the Uni ver sal Connect i onPool Manager interface.

Maintenance is typically performed to remove and replace invalid connections and ensures a
high availability of valid connections. Invalid connections typically cannot be used to connect to
a database but are still maintained by the pool. These connections waste system resources
and directly affect a pool's maximum connection limit. Ultimately, too many invalid connections
negatively affects an applications performance.

® Note

Applications can check whether or not a connection is valid when borrowing the
connection from the pool. If an application consistently has a high number of invalid
connections, additional testing should be performed to determine the cause.

Related Topics

e Overview of Validating Connections in UCP

8.1.4.1 Refreshing a Connection Pool

Refreshing a connection pool replaces every connection in the pool with a new connection.
Any connections that are currently borrowed are marked for removal and refreshed after the
connection is returned to the pool. The manager's r ef reshConnect i onPool method refreshes a
connection pool using the pool name as a parameter to determine which pool to refresh. The
pool name is defined as a pool property on the pool-enabled data source.

The following example demonstrates refreshing a connection pool:

mor . ref reshConnect i onPool (" mgr _pool ");

8.1.4.2 Recycling a Connection Pool

Recycling a connection pool replaces only invalid connection in the pool with a new connection
and does not replace borrowed connections. The manager's r ecycl eConnect i onPool method
recycles a connection pool using the pool name as a parameter to determine which pool to
recycle. The pool name is defined as a pool property on the pool-enabled data source.

The set SQLFor Val i dat eConnect i on property must be set when using non-Oracle drivers. UCP
uses this property to determine whether or not a connection is valid before recycling the
connection.

The following example demonstrates recycling a connection pool:
ngr. recycl eConnect i onPool (" ngr_pool ");

Related Topics

¢ Overview of Validating Connections in UCP

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE Chapter 8
Overview of JMX-Based Management in UCP

8.1.4.3 Purging a Connection Pool

Purging a connection pool removes every connection (available and borrowed) from the
connection pool and leaves the connection pool empty. Subsequent requests for a connection
result in a new connection being created. The manager's pur geConnect i onPool method
purges a connection pool using the pool name as a parameter to determine which pool to
purge. The pool name is defined as a pool property on the pool-enabled data source.

The following example demonstrates purging a connection pool:

ngr . pur geConnect i onPool (" ngr_pool ") ;

@® Note

Connection pool properties, such as i nPool Si ze and i ni ti al Pool Si ze, may not be
enforced after a connection pool is purged.

8.2 Overview of JIMX-Based Management in UCP

JMX (Java Management Extensions) is a Java technology that supplies tools for managing and
monitoring applications, system objects, devices, service-oriented networks, and JVM (Java
Virtual Machine). In JIMX, a given resource is instrumented by one or more Java objects known
as MBeans (Managed Beans). An MBean is composed of an MBean interface and a class. The
MBean interface lists the methods for all exposed attributes and operations. The class
implements this interface and provides the functionality of the instrumented resource.

The MBeans are registered in a core managed object server, known as an MBean server,
which acts as a management agent and can run on most devices enabled for the Java
programming language. A JMX agent consists of an MBean server, in which MBeans are
registered, and a set of services for handling MBeans.

@ See Also

» https://docs.oracle.com/javase/tutorial/jmx/mbeans/standard.html

» Oracle Universal Connection Pool Java API Reference

UCP provides the following two MBeans for pool management support:

e UniversalConnectionPoolManagerMBean

e UniversalConnectionPoolMBean

@® Note

All MBean attributes and operations are available only when the

Uni ver sal Connect i onPool Manager . i sJnxEnabl ed method returns t r ue. The default
value of this flag is t r ue. This default value can be altered by calling the

Uni ver sal Connect i onPool Manager . set JnxEnabl ed method. When an MBeanServer is
not available, the j nxFl ag is automatically set to f al se.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 6

https://docs.oracle.com/javase/tutorial/jmx/mbeans/standard.html

ORACLE Chapter 8
Overview of JMX-Based Management in UCP

8.2.1 UniversalConnectionPoolManagerMBean

The Uni ver sal Connect i onPool Manager MBean is a manager MBean that includes all the
functionalities of a conventional connection pool manager. The
Uni ver sal Connect i onPool Manager MBean provides the following functionalities:

e Registering and unregistering pool MBeans

e Pool management operations like starting the pool, stopping the pool, refreshing the pool,
and so on

e Starting and stopping DMS statistics
e Logging

8.2.2 UniversalConnectionPoolMBean

The Uni ver sal Connect i onPool MBean is a pool MBean that covers dynamic configuration of
pool properties and pool statistics. The Uni ver sal Connect i onPool MBean provides the following
functionalities:

e Configuring pool property attributes like size, timeouts, and so on
* Pool management operations like refreshing the pool, recycling the pool, and so on

* Monitoring pool statistics and life cycle states

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 6

Shared Pool Support for Multitenant Data
Sources

Starting from Oracle Database 12¢ Release 2 (12.2.0.1), multiple data sources of multitenant
data sources can share a common pool of connections in UCP and repurpose the connections
in the common connection pool, whenever needed.

This section describes the following concepts related to the Shared Pool feature:

® Note
* Only the JDBC Thin driver supports the Shared Pool feature, and not the JDBC
OCl driver.

* For using this feature, you must use an XML configuration file.

* This feature works with Application Containers as well. Refer to the Oracle
Multitenant Administrator’s Guide for more information about Application
Containers.

e Qverview of Shared Pool Support

¢ Prerequisites for Supporting Shared Pool

e Configuring the Shared Pool

¢ APIs for Shared Pool Support

« Sample XML Configuration File for Shared Pool

Related Topics
Sample XML Configuration File for Shared Pool

9.1 Overview of Shared Pool Support

UCP supports multiple data sources, connected to the same database, to share the same
connection pool. This common connection pool is called as the Shared Pool.

In UCP, the pool instances have a one-to-one mapping with the data sources. Every data
source creates its own connection pool instance and that instance is not accessible or shared
by another data source, even if they internally create and cache connections to the same
database and service. In this architecture, a lot of isolated connection pools are created, which
causes a scalability problem because a database can scale up to only a certain number of
connections.

The Shared Pool optimizes system resources for a scalable deployment of multitenant Java
applications in Oracle Database Multitenant environment. This feature provides more flexibility
in situations when there is an uneven load on each data source. When individual pool per data
sources are created, then it is impossible to move around idle resources from an idle
connection pool to a loaded one. However, when a Shared Pool is used, connections can be

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 9

ORACLE’

Chapter 9
Overview of Shared Pool Support

utilized in an efficient way by sharing and repurposing connections between the data sources.
So, this feature reduces the total number of database connections, and improves resource
usage, diagnosability, manageability, and scaling at the database servers.

Following are the two scenarios in which you can implement this feature:

e Single Multitenant Data Source Using Shared Pool

* One Data Source per Tenant Using Shared Pool

Single Multitenant Data Source Using Shared Pool

With this configuration, multiple tenants use the common data source and a common pool to
serve connections with different services applicable to each of the tenants, as illustrated in the
following diagram:

Figure 9-1 Single Multitenant Data Source Using Shared Pool

Multi
Tenant
Application

i Sarvice
/ Ay Switch Service 1
! '-I (PDB-1)
— PDB1
'.I_ 7'\h—
| Service 2
| (PDB-2)
Application Server Single Multi r
{Mapping Tenants Tenant
to Services) Datasource RAC INSTANCE 2 —— I el
PDB2
| A
II
|II_
| Service 3
\ L (PDB-3) ‘
- —
ucp PDB3]
(Shared pool \ S

RAC INSTANCE 1

of Connections

The following code snippet explains how this feature works:

Pool Dat aSource nul ti Tenant DS = Pool Dat aSour ceFact ory. get Pool Dat aSource() ;

/I cormon user for the CDB
nmul ti Tenant DS. set User (" c##comon_user") ;
nmul ti Tenant DS. set Passwor d(" password");

//Points to the root service of the CDB

mul ti Tenant DS. set URL("j dbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp) "
+ " (HOST=nyhost) (PORT=5521))
(CONNECT_DATA=(SERVI CE_NAME=r oot . oracl e.com))");

/'l password enabled role for tenant-1
Properties tenant 1Rol es = new Properties();
tenant 1Rol es. put ("tenant 1-rol e", "tenant1-password");

/I Create Connection to Tenant-1 and apply the tenant specific PDB roles.
Connection tenant 1Connection =
mul ti Tenant DS. cr eat eConnect i onBui | der ()

Universal Connection Pool Developer's Guide

G44295-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 9

ORACLE Chapter 9
Overview of Shared Pool Support

. servi ceNane("tenant 1Svc. oracl e. cont')
. pdbRol es(t enant 1Rol es)
Cbuild();

/1 password enabled role for tenant-2
Properties tenant2Rol es = new Properties();
tenant 1Rol es. put ("t enant 2-rol e", "tenant2-password");

/I Create Connection to Tenant-2 and apply the tenant specific PDB roles.
Connection tenant2Connection =
mul ti Tenant DS. cr eat eConnect i onBui | der ()
. servi ceNane("tenant 2Svc. oracl e. cont')
. pdbRol es(t enant 2Rol es)
Cbuild();

One Data Source per Tenant Using Shared Pool

With this configuration, multitenant applications have separate data sources per tenant and a
common Shared Pool for connections. This results in the individual data sources being
configured with tenant specific service information and sharing a common pool, as illustrated in

the following diagram:

Figure 9-2 One Data Source per Tenant Using Shared Pool

RAC INSTANCE 1
o Servica
Y X Switch Service 1
—_— (PDB-1)
Datasourcs [. PDB1
U] : K—
Service 2
_ (PDB-2)
Multi Application Server
Tenant (Mapping Tenants Datasource ‘ ‘
Application to Services) Tenant-2 RAC INSTANCE 2 S | I cDB
PDB2
| S
1 II
Datasource |"_
Tenant-2 ! Service 3
(PDB-3) r
e roms |
(Shared pool \ s—
of Connections)

The following code snippet explains how this feature works:

Il Get the datasource instance, named as "pdsl" in XM. configuration
file(initial-shared-pool-config.xm)

FileinitialFile = new File("./UCPConfig.xm");

Input Streamtarget Stream = new FilelnputStream(initial File);

Pool Dat aSour ce pdsl = Pool Dat aSour ceFact ory. get Pool Dat aSour ce(" pdsl1l", is);

Connection pdslConn = pdsl. get Connection();

Il Get the datasource instance, named as "pds2" in XM. configuration
file(initial-shared-pool-config.xm)

Pool Dat aSour ce pds2 = Pool Dat aSour ceFact ory. get Pool Dat aSour ce(" pds2");

Connection pds2Conn = pds2. get Connection();

Universal Connection Pool Developer's Guide
G44295-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 0of 9

ORACLE

Chapter 9
Overview of Shared Pool Support

/1 Reconfigure datasource(pdsl) using the new properties
Properties newProps = new Properties();

newPr ops. put ("servi ceName", <newServi ceNane>);

pdsl. reconfi gureDat aSour ce(newProps);

/1 Configure a new datasource(pds3) to running pool using the new data
source properties

Properties dataSourceProps = new Properties();

dat aSour ceProps. put ("servi ceName", <servi ceName>);

dat aSour cePr ops. put (" connecti onPool Narme", <pool Name>);

dat aSour cePr ops. put (" dat aSour ceNane", <dat aSour ceNane>) ;

Pool Dat aSour ce pds3 =
Pool Dat aSour ceFact ory. get Pool Dat aSour ce(dat aSour cePr ops) ;

/'l Reconfigure connection pool ("pool1") using the new properties

Properties newPool Props = new Properties();
newPool Props. put ("initial Pool Si ze", <new nitial Pool Si zeVal ue>);
newPool Props. put (" maxPool Si ze", <newMvaxPool Si zeVal ue>);
Uni ver sal Connecti onPool Manager ucpMyr =

Uni ver sal Connect i onPool Manager | npl . get Uni ver sal Connect i onPool Manager () ;
ucpMr. reconfi gureConnecti onPool ("pool 1", newPool Props);

You can also implement this feature in the following way:

/1 UCP XML configuration file path in case of Unix
String file URl = "file:/user/app/sharedpool/initial-shared-pool -
config.xm";

/1 UCP XML configuration file path in case of Wndows
String file URl = "file:/D:/user/app/sharedpool/initial-shared-pool -
config.xm";

/1 Java system property to specify XM configuration file location
Syst em set Property("oracle. ucp.jdbc. xm ConfigFile",<file URI >);

/1 Get the datasource instance, naned as "pdsl" in XM configuration
file(initial-shared-pool-config.xm)
Pool Dat aSour ce pdsl = Pool Dat aSour ceFact ory. get Pool Dat aSour ce(" pds1");
Connection pdslConn = pdsl. get Connection();

/1 Get the datasource instance, naned as "pds2" in XM configuration
file(initial-shared-pool-config.xm)

Pool Dat aSour ce pds2 = Pool Dat aSour ceFact ory. get Pool Dat aSour ce(" pds2");

Connection pds2Conn = pds2. get Connection();

/'l Reconfigure datasource(pdsl) using the new properties
Properties newProps = new Properties();

newPr ops. put ("servi ceName", <newServi ceNane>);

pdsl. reconfi gureDat aSour ce(newProps);

/1 Configure a new datasource(pds3) to running pool using the new data
source properties

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 9

ORACLE

Chapter 9
Prerequisites for Supporting Shared Pool

Properties dataSourceProps = new Properties();

dat aSour ceProps. put ("servi ceName", <servi ceName>);

dat aSour cePr ops. put (" connecti onPool Narme", <pool Narme>);
dat aSour cePr ops. put (" dat aSour ceNane", <dat aSour ceNane>);
Pool Dat aSour ce pds3 =

Pool Dat aSour ceFact ory. get Pool Dat aSour ce(dat aSour cePr ops) ;

/'l Reconfigure connection pool ("pool1") using the new properties

Properties newPool Props = new Properties();

newPool Props. put ("initial Pool Si ze", <new nitial Pool Si zeVal ue>);
newPool Props. put (" maxPool Si ze", <new\vaxPool Si zeVal ue>);

Uni ver sal Connecti onPool Manager ucpMyr =

Uni ver sal Connect i onPool Manager | npl . get Uni ver sal Connect i onPool Manager () ;

ucpMr. reconfi gureConnecti onPool ("pool 1", newPool Props);

® Note

» UCP uses a service switch for implementing this feature. However, the service
switch in Shared Pools is supported only for homogenous services. There is no
support for heterogeneous services (heterogeneity in terms of service attributes
like Transaction Guard and Application Continuity) in Shared Pools.

* For the XML configuration file used in the code snippets, refer to the “XML
Configuration File Required for Shared Pool Support” section.

9.2 Prerequisites for Supporting Shared Pool

This section describes the prerequisites for multitenant data sources to use the Shared Pool.

You must provide the initial configuration of Shared Pools through an XML configuration
file. You can specify the initial XML configuration file for UCP through the input stream of
the XML file, in the following way:

Pool DDat aSour ceFact ory. get Pool Dat aSour ce(String pds, InputStreamis);

You can also specify the initial XML configuration file for UCP through the system property
oracl e. ucp. j dbc. xnl Confi gFi | e, but it is an obsolete way of configuring the XML file and
you must avoid using this option. The location of the initial XML configuration file should be
specified as a URI. For example, fil e:/user_directory/ucp. xn .

The confi guration. xsd schema file is included in the ucp. j ar file for reference. Refer to
this file while creating a UCP XML configuration file.

During the reconfiguration of a shared pool, updated pool properties should be provided
through reconfiguration APIs.

Always use application service for the services used for Shared Pool, and for the individual
tenant data source specific services. Connections are not repurposed or reused when an
Administrative service or default PDB services are used.

The various services accessed through the Shared Pool must be homogenous, that is,
they should have similar properties with respect to Application Continuity (AC) and so on.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 9

ORACLE

Chapter 9
Configuring the Shared Pool

The Shared Pool must be configured with a single user, and this user should be a common
user configured on the CDB. The common user should have the following privileges -
CREATE SESSI ON, ALTER SESSI ON, and SET CONTAI NER. The common user should also have

the execute permission on the DBM5S_SERVI CE_PRVT package.

@® Note

— If the common user needs specific roles or password-enabled roles per
tenant, then these roles should be specified in the respective tenant data
source properties.

— The advantage of the SET CONTAI NER statement is that the pool does not have
to create a new connection to a PDB, if there is an existing connection to a
different PDB. The pool can use the existing connection and can connect to
the desired PDB through the SET CONTAI NER statement.

« Connection repurposing among various tenant connections in the Shared Pool happens
only when the total number of the connections in the pool reaches the connection
repurpose threshold (if configured on the pool) and the minimum pool size.

e The URL specified for the Shared Pool in the XML configuration file must have the LONG
format, with service name explicitly specified. Short format or Easy Connection URL is not
supported.

9.3 Configuring the Shared Pool

This section describes how to configure the Shared Pool.

The following sections describe the Shared Pool configuration:
e Initial Configuration of the Pool

e Reconfiguration of the Pool

Initial Configuration of the Pool

For the initial configuration of the pool, get a data source instance by using the XML
configuration file and then, using that data source, get a connection from a Shared Pool.

Il Get the datasource instance, naned as "pdsl" in XM configuration
file(initial-shared-pool-config.xm)

File initialFile = new File("./UCPConfig.xm");

I nput Stream target Stream = new FilelnputStream(initialFile);

Pool Dat aSour ce pdsl = Pool Dat aSour ceFact ory. get Pool Dat aSour ce(" pds1", is);

Connection pdslConn = pdsl. get Connection();

Reconfiguration of the Pool

* The following code snippet shows how to reconfigure the data source that you obtained
during the initial configuration of the pool:

/1 Reconfigure datasource(pdsl) using the new properties
Properties newProps = new Properties();
newPr ops. put ("servi ceName", <newServi ceNane>);
pdsl. reconfi gureDat aSour ce(newProps) ;

Universal Connection Pool Developer's Guide

G44295-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 9

ORACLE’

Chapter 9
UCP APIs for Shared Pool Support

The following code snippet shows how to add a new data source to an already running
Shared Pool:

/1 Configure a new datasource(pds3) to running pool using the new data
source properties

Properties dataSourceProps = new Properties();

dat aSour ceProps. put ("servi ceName", <servi ceName>);

dat aSour cePr ops. put (" connecti onPool Narme", <pool Name>);

dat aSour cePr ops. put (" dat aSour ceName", <dat aSour ceNane>);

Pool Dat aSour ce pds3 =
Pool Dat aSour ceFact ory. get Pool Dat aSour ce(dat aSour cePr ops) ;

The following code snippet shows how to reconfigure the connection pool:

/1 Reconfigure connection pool ("pool 1") using the new properties

Properties newPool Props = new Properties();
newPool Props. put ("initial Pool Si ze", <new nitial Pool Si zeVal ue>);
newPool Props. put (" maxPool Si ze", <new\vaxPool Si zeVal ue>);
Uni ver sal Connect i onPool Manager ucpMyr =

Uni ver sal Connect i onPool Manager | npl . get Uni ver sal Connect i onPool Manager () ;
ucpMyr. reconfi gureConnecti onPool ("pool 1", newPool Props);

9.4 UCP APIs for Shared Pool Support

New Methods in PoolDataSource Interface

The following methods have been introduced in the or acl e. ucp. j dbc. Pool Dat aSour ce
interface:

reconfi gureDat aSour ce(Properties configuration)
get MaxConnect i onsPer Ser vi ce()

get Servi ceName()

get PdbRol es()

get Connect i onRepur poseThr eshol d()

set Connect i onRepur poseThreshol d(i nt threshol d)

New Methods in PoolDataSourceFactory Class

The following methods have been introduced in the or acl e. ucp. j dbc. Pool Dat aSour ceFact ory
class:

get Pool Dat aSour ce(String dataSourceNane)
get Pool Dat aSour ce(Properties configuration)
get Pool XADat aSour ce(String dataSour ceNane)

get Pool XADat aSour ce(Properties configuration)

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 9

ORACLE’

Chapter 9
Sample XML Configuration File for Shared Pool

New Method in oracle.ucp.admin.UniversalConnectionPoolManager Interface

The following method has been introduced in the
oracl e. ucp. admi n. Uni ver sal Connect i onPool Manager interface:

reconfi gureConnectionPool (String pool Name , Properties configuration)

New Method in oracle.ucp.admin.UniversalConnectionPool Interface

The following method has been introduced in the
oracl e. ucp. adni n. Uni ver sal Connect i onPool interface:

e isShareabl e()
e get MaxConnecti onsPer Servi ce()

e set MaxConnecti onsPer Servi ce(int maxConnecti onsPer Servi ce)

@ See Also

Oracle Universal Connection Pool Java APl Reference for more information about
these methods.

9.5 Sample XML Configuration File for Shared Pool

initial-shared-pool-config.xml

<?xm version="1.0" encodi ng="UTF- 8" ?>
<ucp- properties>
<connect i on- pool
connect i on- pool - name="pool 1"
connection-factory-cl ass-name="oracl e. j dbc. pool . O acl eDat aSour ce”
url ="j dbc: oracl e: t hi n: @DESCRI PTI ON=(ADDRESS=(HOST=host _nane)
(PORT=1521) (PROTOCOL=t cp)) (CONNECT_DATA=(SERVI CE_NANME=nyor cl dbservi cenane)))"
user =" C##ConmonUser "
passwor d=passwor d
initial-pool-size="10"
m n- pool - si ze="5"
max- pool - si ze="20"
connecti on-repur pose-t hreshol d="13"
max- connect i ons- per - servi ce="15"
val i dat e- connect i on-on-borrow="true"
sql -for-validate-connection="select 1 fromdual"
shared="true"

<connecti on- property name="oracl e. j dbc. ReadTi neout " val ue="2000"/>
<connecti on-property name="oracl e. net. QUTBOUND_CONNECT_TI MEQUT"
val ue="2000"/ >

<dat a- sour ce
dat a- sour ce- nane="pds1"

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 8 of 9

ORACLE

servi ce=pdbl_servi ce_name
description="pdbl data source"/>

<dat a- sour ce
dat a- sour ce- nane="pds2"
servi ce=pdb2_servi ce_name
description="pdb2 data source"/>

</ connecti on- pool >
</ ucp-properties>

Universal Connection Pool Developer's Guide
G44295-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

Chapter 9
Sample XML Configuration File for Shared Pool

October 13, 2025
Page 9 of 9

Using Oracle RAC Features

The following sections are included in this chapter:

¢ Qverview of Oracle RAC Features

e About Fast Connection Failover

¢ About Run-Time Connection Load Balancing

¢ About Connection Affinity

¢ Global Data Services

10.1 Overview of Oracle RAC Features

UCP JDBC connection pools provide a tight integration with various Oracle Real Application
Clusters (Oracle RAC) Database features. The features include Fast Connection Failover
(FCF), Run-Time Connection Load Balancing, and Connection Affinity. These features require
the use of an Oracle JDBC driver, Oracle RAC database, and the Oracle Notification Service
library (ons. j ar) that is included with the Oracle Client software.

Applications use Oracle RAC features to maximize connection performance and availability
and to mitigate down-time due to connection problems. Applications have different availability
and performance requirements and should implement Oracle RAC features accordingly.

@® Note

Starting from Oracle Database 11g Release 1 (11.2), FCF is also supported by Oracle
Restart on a single instance database. Oracle Restart was previously known as
Single-Instance High Availability (SIHA).

@ See Also

* Oracle Real Application Clusters Administration and Deployment Guide for more
information about these technologies

e Oracle Database Administrator's Guide for more information about Oracle Restart

Generic High Availability and Performance Features

The UCP APIs and connection pool properties include many high availability and performance
features that do not require an Oracle RAC database. These features work well with both
Oracle and non-Oracle connections and are discussed throughout this guide. For example:
validating connections on borrow; setting timeout properties; setting maximum reuse
properties; and connection pool manager operations are all used to ensure a high-level of
connection availability and optimal performance.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 22

ORACLE Chapter 10
About Fast Connection Failover

@® Note

Generic high availability and performance features work slightly better when using
Oracle connections because UCP leverages Oracle JDBC internal APIs.

Database Version Compatibility for Oracle RAC

The following table lists supported Database versions for various Oracle RAC features:

Table 10-1 Oracle RAC Version Compatibility
|

Feature Supported Database Version

Fast Connection Failover Oracle Database 10.1.x and later versions

Run-time Connection Load- Oracle Database 10.2.x and later versions

Balancing

Web Session Affinity Oracle Database 11.1.x and later versions

Transaction-Based Affinity Oracle Database 10.2.x and later versions (Oracle Database 11.1.x
recommended)

Oracle JDBC Driver Version Compatibility for Oracle RAC

Oracle JDBC driver 10.1.x and later versions are supported with Oracle RAC features.

10.2 About Fast Connection Failover

This section contains the following subsections:

e Overview of Fast Connection Failover

* What is Fast Connection Failover

e Fast Connection Failover Prerequisites

» Example of Fast Connection Failover Configuration

« Enabling Fast Connection Failover
e What is ONS

e Configuring the Connection URL

10.2.1 Overview of Fast Connection Failover

The Fast Connection Failover (FCF) feature is a Fast Application Notification (FAN) client
implemented through the connection pool. The feature requires the use of an Oracle JDBC
driver and high availability (HA) database configurations like Oracle RAC, Single Restart, or
Active Data Guard.

@® Note

This section describes only the steps that an application must perform when using
FCF with Oracle RAC.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 22

ORACLE Chapter 10
About Fast Connection Failover

@ See Also

Oracle Real Application Clusters Administration and Deployment Guide for more
information

FCF is useful in the following scenarios:

* Unplanned Outages: FCF rapidly detects non-functioning connections, and then
terminates and removes them from the pool. Connection removal relies on terminating the
sever-socket connections rapidly to prevent the system from becoming non-responsive.
Borrowed and in-use connections are interrupted only for unplanned outages.

* Planned Outages: FCF does not interrupt and close the borrowed or in-use connections
until work is done and control of the connection is returned to the pool.

* Irrecoverable Connection Errors and Exceptions: FCF encapsulates irrecoverable
connection errors and exceptions into the i sVal i d API for robust and efficient retries.

* Addition of New Nodes to the Cluster: FCF recognizes the new nodes that join an
Oracle RAC cluster and places new connections on that node appropriately for delivering
maximum quality of service to applications at run time. This facilitates middle-tier
integration of Oracle RAC node joins and work-request routing from the application tier.

* Run-Time Work Requests: FCF distributes run-time work requests to all active Oracle
RAC instances.

Unplanned Shutdown Scenarios

FCF supports unplanned shutdown scenarios by detecting and removing stale connections to
an Oracle RAC cluster. Stale connections include connections that do not have a service
available on any instance in an Oracle RAC cluster due to service-down and node-down
events. Borrowed connections and available-but-stale connections are detected, and their
network connection is severed before removing them from the pool. These removed
connections are not replaced by the pool. Instead, the application must retry connections
before performing any work with a connection.

@® Note

Borrowed connections are immediately terminated and closed during unplanned
shutdown scenarios. Any on-going transactions immediately receive an exception.

Planned Shutdown Scenarios

FCF supports planned shutdown scenarios where an Oracle RAC service can be gracefully
shutdown. In such scenarios, stale borrowed connections are marked, and are terminated and
removed after they are returned to the pool. Any on-going transactions do not see any
difference and proceed to complete.

The primary difference between unplanned and planned shutdown scenarios is how borrowed
connections are handled. Stale connections that are idle in the pool (not borrowed) are
removed in the same manner as the unplanned shutdown scenario.

UCP also supports graceful connection draining from any planned-down Oracle RAC instance.
Affected borrowed connections are removed smoothly over a grace period, instead of
immediate removal upon their return to the pool. This helps in avoiding throughput impact and
logon storms during any service relocation. In the FAN events, UCP uses the value of the

drai n_ti meout ! parameter as the grace period, when doing graceful draining.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 22

ORACLE

Chapter 10
About Fast Connection Failover

Oracle RAC Instance Rejoin and New Instance Scenarios

FCF supports scenarios where an Oracle RAC cluster adds instances that provide a service of
interest. The instance may be new to the cluster or may have been restarted after a down
event. In both cases, UCP recognizes the new instance and creates connections to the node
as required.

Related Topics

e Checking If a Connection Is Valid

« Enabling Fast Connection Failover

10.2.2 What is Fast Connection Failover?

After Fast Connection Failover is enabled, the mechanism is automatic; no application
intervention is needed. This section discusses how a connection failover is presented to an
application and what steps the application takes to recover, in the following sections:

« What the Application Sees
e How FCF Works

10.2.2.1 What the Application Sees

By the time an Oracle RAC service failure is propagated to the JDBC application, the database
already rolls back the local transaction. The cache manager then cleans up all invalid
connections. When an application holding an invalid connection tries to do work through that
connection, it is possible to receive SQLExcepti on, ORA-17008, C osed Connecti on.

When an application receives a O osed Connecti on error message, it should do the following:

1. Retry the connection request. This is essential, because the old connection is no longer
open.

2. Replay the transaction. All work done before the connection was closed has been lost.

@® Note

The application should not try to roll back the transaction. The transaction was already
rolled back in the database by the time the application received the exception.

10.2.2.2 How FCF Works

Under Fast Connection Failover, each connection in the cache maintains a mapping to a
service, instance, database, and host name.

When a database generates an Oracle RAC event, that event is forwarded to the JVM in which
JDBC is running. A daemon thread inside the JVM receives the Oracle RAC event and passes
it on to the Connection Cache Manager. The Connection Cache Manager then throws SQL
exceptions to the applications affected by the Oracle RAC event.

A typical failover scenario may work like the following:

1 The drain_time parameter specifies the time in seconds, during which a service drains.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 22

ORACLE

Chapter 10
About Fast Connection Failover

1. A database instance fails, leaving several stale connections in the cache.

2. The Oracle RAC mechanism in the database generates an Oracle RAC event which is
sent to the JVM containing JDBC.

3. The daemon thread inside the JVM finds all the connections affected by the Oracle RAC
event, notifies them of the closed connection through SQL exceptions, and rolls back any
open transactions.

4. Each individual connection receives a SQL exception and must retry.

10.2.3 Fast Connection Failover Prerequisites

Fast Connection Failover is available under the following circumstances:

e The Universal Connection Pool is enabled.

Fast Connection Failover works in conjunction with the JDBC connection caching
mechanism. This helps applications manage connections to ensure high availability.

e The application uses service hames to connect to the database.
The application cannot use service identifiers.

e The underlying database has Oracle Database 12¢ Release 1 (12.1) or later Real
Application Clusters (Oracle RAC) capability or Oracle Data Guard configured with either
single instance Databases or Oracle RAC.

If failover events are not propagated, then connection failover cannot occur.

e Oracle Naotification Service (ONS) is configured and available on the node where JDBC is
running.

JDBC depends on ONS to propagate database events and notify JDBC of them.

e The Java Virtual Machine (JVM) in which your JDBC instance is running must have
oracl e. ons. or acl ehone set to point to your ORACLE_HOME.

10.2.4 Example of Fast Connection Failover Configuration

The following example demonstrates a connection pool that uses the FCF feature. FCF is
configured through a pool-enabled data source. The example includes enabling FCF,
configuring the Oracle Notification Service (ONS) and configuring a connection URL. These
topics are discussed after the example.

The i sVal i d method of the or acl e. ucp. j dbc. Val i dConnect i on interface is typically used in
conjunction with the FCF feature and is used to check if a borrowed connection is still usable
after an SQL exception has been thrown due to an Oracle RAC down event. For example:

try { conn = pds.getConnection; ...}catch (SQLException sql exc)
{

if (conn == null || !((ValidConnection) conn).isValid())
/1 take the appropriate action
conn. cl ose();

}

Example 10-1 Fast Connection Failover Configuration Example

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce();

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 22

ORACLE

Chapter 10
About Fast Connection Failover

pds. set Connect i onPool Nane(" FCFSanpl ePool ") ;
pds. set Fast Connect i onFai | over Enabl ed(true);
pds. set ONSConf i gur ati on("nodes=racnodel: 4200, racnode2: 4200\ nwal | etfi | e=
/oraclell/onswal letfile");
pds. set Connecti onFact oryCd assNanme(" oracl e. j dbc. pool . Or acl eDat aSource");
pds. set URL("j dbc: oracl e: t hi n@ DESCRI PTI ON= " +

" (LOAD_BALANCE=on)" +

" (ADDRESS=(PROTOCOL=TCP) (HOST=r achodel) (PORT=1521))"+

" (ADDRESS=(PROTOCOL=TCP) (HOST=r achode2) (PORT=1521))"+

" (CONNECT_DATA=(SERVI CE_NAME=servi ce_nane)))");

Related Topics

e Checking If a Connection Is Valid

10.2.5 Enabling Fast Connection Failover

The FCF pool property is used to enable and disable FCF. FCF is disabled by default. The
following example demonstrates enabling FCF as shown in Example 10-1.

pds. set Fast Connect i onFai | over Enabl ed(true);

@® Note

Starting from Oracle Database 12c Release 1 (12.1.0.2), UCP supports the

oracl e. ucp. Pl annedDr ai ni ngPer i od system property. It specifies the grace time
period (in integer seconds) over which the pool smoothly drains the borrowed
connections affected by a planned shut down. Draining starts when the same
Database service becomes available on another instance different from the one that is
going down.

When this property is not set, or set to 0, then the pool closes any affected borrowed
connection immediately when it is returned to the pool.

Querying Fast Connection Failover Status

An application determines if Fast Connection Failover is enabled by calling
Oracl eDat aSour ce. get Fast Connect i onFai | over Enabl ed, which returns t r ue if failover is
enabled, f al se otherwise.

@® Note

FCF must also be enabled to use run-time connection load balancing and connection
affinity. These features are discussed later in this chapter.

10.2.6 What is ONS?

FCF relies on the Oracle Notification Service (ONS) to propagate database events between
the connection pool and the Oracle RAC database. At run time, the connection pool must be
able to setup an ONS environment. ONS (ons. j ar) is included as part of the Oracle Client
software. ONS can be configured using either remote configuration or client-side ONS daemon

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 22

ORACLE

Chapter 10
About Fast Connection Failover

configuration. Remote configuration is the preferred configuration for standalone client
applications. This section discusses the following topics:

Overview of ONS Configuration File

« Remote Configuration of ONS

* Configuration of Client-Side ONS Daemon

10.2.6.1 Overview of ONS Configuration File

ONS configuration is controlled by the ONS configuration file, ORACLE_HOVE/ opmm/ conf /
ons. confi g. This file tells the ONS daemon how it should behave. Configuration information
within ons. confi g is defined in simple name and value pairs.

Some parameters in the ons. confi g file are required and some are optional. Table 10-2 lists
the required ONS configuration parameters and Table 10-3 lists the optional ONS configuration
parameters. ONS must be refreshed after updating the ons. confi g file.

Table 10-2 Required ONS Configuration Parameters

Parameter Explanation

| ocal port Specifies the port that ONS binds to on the local host interface to talk to local
clients.
For example, | ocal port=4100

I emot eport Specifies the port that ONS binds to on all interfaces for talking to other ONS
daemons.
For example, r enot epor t =4200

nodes Specifies a list of other ONS daemons to talk to. Node values are given as a

comma-delimited list of either host names or IP addresses plus ports. The port
value that is given is the remote port that each ONS instance is listening on. In
order to maintain an identical file on all nodes, the host : port of the current ONS
node can also be listed in the nodes list. It will be ignored when reading the list.

For example, nodes=myhost . exanpl e. com 4200, 123. 123. 123. 123: 4200

The nodes listed in the nodes line correspond to the individual nodes in the Oracle
RAC instance. Listing the nodes ensures that the middle-tier node can
communicate with the Oracle RAC nodes. At least one middle-tier node and one
node in the Oracle RAC instance must be configured to see one another. As long
as one node on each side is aware of the other, all nodes are visible. You need not
list every single cluster and middle-tier node in the ONS configuration file of each
Oracle RAC node. In particular, if one ONS configuration file cluster node is aware
of the middle tier, then all nodes in the cluster are aware of it.

Universal Connection Pool Developer's Guide
G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 22

ORACLE Chapter 10
About Fast Connection Failover

Table 10-3 Optional ONS Configuration Parameters

. ___|
Parameter Description

| ogconp Specifies the ONS components to log. The format is as follows:

<conponent >[<subconponent >, . . .]; <conponent >[<subconponent>,...];...

If no subcomponents need to be specified, then do not include the brackets ([])
after the component name. To exclude messages from a subcomponent, precede
the subcomponent name with an exclamation mark (!). For example, to exclude
messages from the t opol ogy subcomponent, you use the following format:

[all,!topol ogy]

Note that before specifying a subcomponent from which you want to exclude
messages, you must first ensure that the subcomponent includes the messages.
Following are the valid values for components:

- internal

e ons

If you specify the component as i nt er nal , then there are no valid values for
subcomponent. If you specify the component as ons, then you can specify the
following values for subcomponent:

« all: Specifies all messages

* 0NnS: ONS local information

« |istener: ONS listener information

- discover: ONS discover (server or multicast) information

e servers: ONS remote servers currently up and connected to the cluster
- topol ogy: ONS current cluster wide server connection topology

* server: ONS remote server connection information

« client: ONS client connection information

e connect: ONS generic connection information

e subscri be: ONS client subscription information

* message: ONS notification receiving and processing information

« deliver: ONS notification delivery information

e speci al : ONS special notification processing

e internal : ONS internal resource information

° Secure: ONS SSL operation information

e workers: ONS worker threads

The following example shows that you want to log messages for all the
subcomponents under ons, except the secur e subcomponent:

| ogconp=ons[al | , ! secure]

logfile Specifies a log file that ONS should use for logging messages. The default value
for log file is $ORACLE_HOME/ opmm/ | ogs/ ons. | og.

For example, | ogfi | e=/ privat e/ oracl ehorme/ opm/ | ogs/ nyons. | og

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 8 of 22

ORACLE

Chapter 10
About Fast Connection Failover

Table 10-3 (Cont.) Optional ONS Configuration Parameters

. ___|
Parameter Description

wal letfile Specifies the wallet file used by the Oracle Secure Sockets Layer (SSL) to store

SSL certificates. If a wallet file is specified to ONS, then it uses SSL when
communicating with other ONS instances and require SSL certificate
authentication from all ONS instances that try to connect to it. This means that if
you want to turn on SSL for one ONS instance, then you must turn it on for all
instances that are connected. This value should point to the directory where your
ewal | et. pl2 file is located.

For example, wal | et fi |l e=/ privat e/ oracl ehone/ opmm/ conf/ssl . w t/
def aul t

useocr Specifies the value, reserved for use on the server-side, to indicate ONS whether it

should store all Oracle RAC nodes and port numbers in Oracle Cluster Registry
(OCR) instead of the ONS configuration file or not. A value of useocr =on is used
to store all Oracle RAC nodes and port numbers in Oracle Cluster Registry (OCR).

Do not use this option on the client-side.

al | owgroup Specifies the ONS setting to indicate the user group connecting to the | ocal port.

When setto t r ue, ONS allows users within the same OS group to connect to its
local port. When set to f al se, ONS only allows the same user running the ONS
daemon to access its local port. The default value of this parameter is f al se.
When using remote ONS configuration, there is no need to set this parameter.

The ons. confi g file allows blank lines and comments on lines that begin with the number sign

(#).

10.2.6.2 Remote Configuration of ONS

UCP supports remote configuration of ONS through the ONSConf i gur at i on pool property. The
ONSConf i gur ati on pool property value is a string that closely resembles the content of the
ons. confi g file. The string contains a list of name=val ue pairs separated by a new line
character (A n). You can set this pool property in the following two ways:

The name can be one of the following: nodes, wal | etfil e, or wal | et passwor d. The
parameter string should at least specify the ONS configuration nodes attribute as a list of
host : port pairs separated by a comma. SSL is used when the wal | et fi | e attribute is
specified as an Oracle wallet file.

The following example demonstrates an ONS configuration string as shown in
Example 10-1:

pds. set ONSConf i gur ati on("nodes=racnodel: 4200, racnode2: 4200\ nwal | et fi | e=/ oracl ell/
onswal l etfile");

The name can be only propertiesfil e. The value is the location of an ONS-specific Java
properties file. This file must contain the or acl e. ons. nodes property, and one or both of
the following ONS Java properties:

— oracle.ons.walletfile
— oracle.ons.wall et password
The following example illustrates such an ONSConf i gur ati on string:

pds. set ONSConfi gurati on("propertiesfile=/usr/ons/ons.properties");

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 9 of 22

ORACLE

®

Chapter 10
About Fast Connection Failover

The following is an example of the content of the Java properties ons. properti es file:

or acl e. ons. nodes=racnodel: 4200, r acnode2: 4200
oracle.ons.wal letfile=/oraclell/onswalletfile

Note

The parameters in the configuration string must match those for the Oracle RAC
Database. In addition, if you are using Oracle Application Server, then you must
configure ONS using procedures that are applicable to the server.

For standalone Java applications, you must configure ONS using the

set ONSConf i gur ati on method. However, if your application meets the following
requirements, then you no longer need to call the set ONSConf i gur at i on method for
enabling FCF:

e Your application is using Oracle Database 12c¢ Release 1 (12.1) or later UCP and
Oracle RAC Database 12¢ Release 1 (12.1) or later

e Your application does not require ONS wallet or keystore

10.2.6.3 Configuration of Client-Side ONS Daemon

Client-side ONS daemon configuration is typical of applications that run on a middle-tier server
such as the Oracle Application Server. Clients in this scenario directly configure ONS by
updating the ons. confi g file. The location of the file may be different depending on the
platform. Example 10-2 demonstrates an ons. confi g file for Example 10-1:

®

Note

For client-side ONS daemon configuration, if the operating system (OS) user that

starts the connection pool and the OS user that starts the client-side daemon are

different, then they both must belong to the same OS group. Also, the value of the
al | owgr oup parameter must be set to t r ue in the ons. confi g file.

After configuring ONS, you start the ONS daemon with the onsct| command. You must make
sure that an ONS daemon is running at all times.

Using the onsctl Command

After configuring, use ORACLE_HOWVE/ opmm/ bi n/ onsct | to start, stop, reconfigure, and monitor
the ONS daemon. Table 10-4 is a summary of the commands that onsct| supports.

Table 10-4 onsctl Commands
]

Command Effect Output
start Starts the ONS daemon onsctl: ons started
stop Stops the ONS daemon onsctl: shutting down ons daenon...

pi ng

Verifies whether or not the ONS ~ ons is running ...
daemon is running

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 10 of 22

ORACLE Chapter 10
About Fast Connection Failover

Table 10-4 (Cont.) onsctl Commands

__|
Command Effect Output

reconfig Triggers a reload of the ONS
configuration without shutting
down the ONS daemon

hel p Prints a help summary message
for onsctl
detailed Prints a detailed help message for
onsctl
® See Also

Oracle Real Application Clusters Administration and Deployment Guide

@ Note

* The Java Virtual Machine (JVM), in which your JDBC instance is running, must
have the or acl e. ons. or acl ehonme system property set to the location of
ORACLE_HOME before starting the application. For example:

java -Doracl e. ons. oracl ehome=$ORACLE_HOME . ..

* Oracle recommends remote configuration of ONS for UCP.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 11 of 22

ORACLE

Chapter 10
About Fast Connection Failover

@® Note

In Oracle RAC 12.1.0.2.0, by default, server installation requires the value of the
wal [etfil e ONS parameter to be set, and enforces the use of SSL for all ONS
connections.

If you have a UCP application that is already using the wal | et fi | e parameter in the
ONS remote configuration string or local configuration file, then the only requirement is
that, for the same topology, the wallet file on the client side must have the same
content as the wallet file on the server side. You can make a copy of the server-side
file and make it available on the client side.

For UCP applications that are using Oracle RAC features without setting the
wal | etfil e parameter, you must perform one of the following:

e Add the walletfile parameter setting to the ONS remote configuration string or local
configuration file, as shown in Example 10-1. Keep in mind that, for the same
topology, the wallet file on the client side must have the same content as the wallet
file on the Oracle RAC server side.

* Run the following command to remove the wal | et fi | e parameter setting from
both client and server ONS configuration string and the local configuration file:

srvct! nodi fy nodeapps -clientdata

For secure communication, the ONS auto-configuration in Oracle RAC 12.1.x no
longer works when Oracle RAC 12.1.0.2.0 is first installed or patched. Applications
have to use explicit ONS configuration (remote or local) instead, and make one of the
changes previously discussed.

Example 10-2 Example of a Sample ons.config File

This is an exanple ons.config file

#

The first three values are required

| ocal port=4100

renot epor t =4200

nodes=racnodel. exanpl e. com 4200, r acnode2. exanpl e. com 4200

10.2.7 Configuring the Connection URL

The connection URL of a connection factory must use the service name syntax when using
FCF. The service name is used to map the connection pool to the service. In addition, the
factory class must be an Oracle factory class. The following example demonstrates configuring
the connection URL as shown in Example 10-1:

pds. set Connecti onFact oryd assNanme(" oracl e. j dbc. pool . O acl eDat aSource");
pds. set URL("j dbc: oracl e:thin@/ host: port/service_nane");

® Note

An exception is thrown if a service identifier (SID) is specified for the connection URL
when FCF is enabled.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 12 of 22

ORACLE’

Chapter 10
About Run-Time Connection Load Balancing

The following examples demonstrate valid connection URL syntax when connecting to an
Oracle RAC database. Examples for both the Oracle JDBC thin and Oracle OCI driver are
included. Notice that the URL can be used to explicitly enable load balancing among Oracle
RAC nodes:

Valid Connection URL Usage

pds. set URL("j dbc: oracl e: thin@/ host : port/servi ce_name");
pds. set URL("j dbc: oracl e:thin@/cluster-alias:port/service_nane");

pds. set URL("j dbc: oracl e: t hi n: @DESCRI PTI ON= " +
" (LOAD_BALANCE=on)" +
" (ADDRESS=(PROTOCOL=TCP) (HOST=host 1) (PORT=1521))" +
" (ADDRESS=(PROTOCOL=TCP) (HOST=host 2) (PORT=1521)) " +
" (CONNECT_DATA=(SERVI CE_NAME=servi ce_name)))");

pds. set URL("j dbc: oracl e: t hi n: @DESCRI PTI ON= " +
" (ADDRESS=(PROTOCOL=TCP) (HCST=cl ust er _al i as) (PORT=1521)) "+
" (CONNECT_DATA=(SERVI CE_NAME=ser vi ce_nane)))");

pds. set URL("j dbc: oracl e: oci : @NS_ALI AS");

pds. set URL("j dbc: or acl e: oci : @ DESCRI PTI ON= " +
" (LOAD_BALANCE=on) "+
" (ADDRESS=(PROTOCOL=TCP) (HOST=host 1) (PORT=1521)) "+
" (ADDRESS=(PROTOCOL=TCP) (HOST=host 2) (PORT=1521)) "+
' (CONNECT_DATA=(SERVI CE_NAME=servi ce_nane)))");

pds. set URL("j dbc: or acl e: oci : @ DESCRI PTI ON= " +
" (ADDRESS=(PROTOCOL=TCP) (HOST=cl ust er _al i as) (PORT=1521)) "+
" (CONNECT_DATA=(SERVI CE_NAME=ser vi ce_nane)))");

10.3 About Run-Time Connection Load Balancing

This section contains the following subsections:

* OQOverview of Run-Time Connection Load Balancing

e Setting Up Run-Time Connection Load Balancing

10.3.1 Overview of Run-Time Connection Load Balancing

In an Oracle Real Application Clusters environment, a connection could belong to any instance
that provides the relevant service. In the best case, all instances perform equally well and
randomly retrieving a connection from the cache is appropriate.

However, when one instance performs better than others, random selection of a connection is
inefficient. The run-time connection load balancing feature enables routing of work requests to
an instance that offers the best performance, minimizing the need to relocate work.

UCP JDBC connection pools leverage the load balancing functionality provided by an Oracle
RAC database. Run-time connection load balancing requires the use of an Oracle JDBC driver
and an Oracle RAC database.

@ See Also

Oracle Real Application Clusters Administration and Deployment Guide

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 13 of 22

ORACLE

Chapter 10
About Run-Time Connection Load Balancing

Run-time connection load balancing is useful when:

e Traditional balancing of workload is not optimal

e Requests must be routed to make optimal use of resources in a clustered database

e Capacity within the cluster differs and is expected to change over time

e The need to avoid sending work to slow, hung, and non-functioning nodes is required

UCP uses the Oracle RAC Load Balancing Advisory. The advisory is used to balance work
across Oracle RAC instances and is used to determine which instances offer the best
performance. Applications transparently receive connections from instances that offer the best
performance. Connection requests are quickly diverted from instances that have slowed, are
not responding, or that have failed.

Run-time connection load balancing provides the following benefits:

* Manages pooled connections for high performance and scalability

* Receives continuous recommendations on the percentage of work to route to database
instances

* Adjusts distribution of work based on different back-end node capacities such as CPU
capacity or response time

* Reacts quickly to changes in cluster reconfiguration, application workload, overworked
nodes, or hangs

* Receives metrics from the Oracle RAC Load Balance Advisory. Connections to well
performing instances are used most often. New and unused connections to under-
performing instances will gravitate away over time. When distribution metrics are not
received, connection are selected using a random choice.

10.3.2 Setting Up Run-Time Connection Load Balancing

Run-time connection load balancing requires that FCF is enabled and configured properly.

In addition, you must configure the Oracle RAC Load Balancing Advisory with service-level
goals for each service for which load balancing is enabled:

e The service goal must be set to one of the following:
— DBMS_SERVI CE. SERVI CE_TI ME
— DBMs_SERVI CE. THROUGHPUT

The service goal can be set using the goal parameter, and the connection balancing goal
can be set using the cl b_goal parameter.

e The connection balancing goal must be set to SHORT. For example,

EXECUTE DBMS_SERVI CE. MODI FY_SERVI CE (service_name => 'sjob' -, goal =>
DBVB_SERVI CE. GOAL_THROUGHPUT -, clb_goal => DBMS_SERVI CE. CLB_GOAL_SHORT) ;

Or

EXECUTE DBMS_SERVI CE. MODI FY_SERVI CE (service_name => 'sjob' -, goal =>
DBVB_SERVI CE. GOAL_SERVI CE_TIME -, clb_goal => DBMS_SERVI CE. CLB_GOAL_SHORT);

The connection balancing goal can also be set by calling the DBMS_SERVI CE. cr eat e_servi ce
procedure.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 14 of 22

ORACLE’

Chapter 10
About Connection Affinity

@® Note

You can set the connection balancing goal to LONG. However, this is mostly useful for
closed workloads, that is, when the rate of completing work is equal to the rate of
starting new work.

Related Topics

* About Fast Connection Failover

@ See Also

Oracle Real Application Clusters Administration and Deployment Guide

10.4 About Connection Affinity

This section contains the following subsections:

* Qverview of Connection Affinity

e Setting Up Connection Affinity

10.4.1 Overview of Connection Affinity

UCP JDBC connection pools leverage affinity functionality provided by an Oracle RAC
database. Connection affinity requires the use of an Oracle JDBC driver and an Oracle RAC
database version 11.1.0.6 or higher.

Connection affinity is a performance feature that enables a connection pool to select
connections that are directed at a specific Oracle RAC instance. The pool uses run-time
connection load balancing (if configured) to select an Oracle RAC instance to create the first
connection and then subsequent connections are created with an affinity to the same instance.

@ See Also
« "Strict Affinity Mode"

e Oracle Real Application Clusters Administration and Deployment Guide for more
information about setting up an Oracle RAC database.

UCP JDBC connection pools support the following three types of connection affinity:
* Transaction-Based Affinity

* Web Session Affinity

* Oracle RAC Data Affinity

10.4.1.1 Transaction-Based Affinity

Universal Connection Pool Developer's Guide

G44295-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 22

ORACLE

Chapter 10
About Connection Affinity

Transaction-based affinity is an affinity to an Oracle RAC instance that can be released by
either the client application or a failure event. Applications typically use this type of affinity
when long-lived affinity to an Oracle RAC instance is desired or when the cost (in terms of
performance) of being redirected to a new Oracle RAC instance is high. Distributed
transactions are a good example of transaction-based affinity. XA connections that are enlisted
in a distributed transaction keep an affinity to the Oracle RAC instance for the duration of the
transaction. In this case, an application would incur a significant performance cost if a
connection is redirect to a different Oracle RAC instance during the distributed transaction.

10.4.1.2 Web Session Affinity

Web session affinity is an affinity to an Oracle RAC instance that can be released by either the
instance, a client application, or a failure event. The Oracle RAC instance uses a hint to
communicate to a connection pool whether affinity has been enabled or disabled on the
instance. An Oracle RAC instance may disable affinity based on many factors, such as
performance or load. If an Oracle RAC instance can no longer support affinity, the connections
in the pool are refreshed to use a new instance and affinity is established once again.

Applications typically use this type of affinity when short-lived affinity to an Oracle RAC
instance is expected or if the cost (in terms of performance) of being redirected to a new
Oracle RAC instance is minimal. For example, a mail client session might use Web session
affinity to an Oracle RAC instance to increase performance and is relatively unaffected if a
connection is redirected to a different instance.

10.4.1.3 Oracle RAC Data Affinity

Data affinity describes the concept of ensuring that a group of related cache entries is
contained within a single cache partition.

Starting from Oracle Database Release 18c, UCP supports Oracle RAC Data Affinity. When
you enable Data Affinity on the Oracle RAC database, data on the affinitized tables are
partitioned in such a way that a particular partition or subset of rows for a table is affinitized to a
particular Oracle RAC database instance. The affinity leads to higher performance and
scalability for the applications due to improved cache locality and reduced internode
synchronization and block pings among the RAC instances.

@ See Also

Enabling a Custom Partition Assignment Strategy

To use the Oracle RAC Data Affinity feature, the clients accessing the database through UCP
must provide the data affinity key in their connection requests. UCP has the following
capabilities when pooling connections for an affinity enabled RAC database:

1. UCP learns the topology that contains the data affinity of the data partitions across Oracle
RAC instances at pool start up.

2. UCP connection requests that need to leverage the Oracle RAC Data Affinity feature
provides the data affinity key using the sharding key builder and use the connection builder
as follows:

Pool Dat aSour ce pds = new Pool Dat aSour cel npl ();
/1 configure the datasource with the database connection properties

/* Builds the RAC data affinity key using the sharding key buil der API

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 16 of 22

https://docs.oracle.com/middleware/1212/coherence/COHDG/api_dataaffinity.htm#COHDG5577

ORACLE Chapter 10
About Connection Affinity

and gets a connection fromthe pool using UCP connection buil der */
O acl eShar di ngkey dataAffinityKey = pds. createShardi ngKeyBui | der ()
. subkey (1000, Oracl eType. NUMBER)
Cbuild();

Connection connection = pds. createConnectionBuil der ()
. shar di ngKey(dat aAf f i ni t yKey)
Cbuild();

@® Note

You can still make connection requests to Oracle RAC Data Affinity-enabled
without providing the data affinity key. However, in this case, you will not see the
benefits of Oracle RAC Data Affinity feature.

3. UCP determines the affinitized instance for the shard key provided in the request and
checks if a connection for that instance exists in the pool. If the connection exists, then it is
used to serve the request. If a matching connection does not exist in the pool, then a
fallback to Run-Time Load Balancing chooses a connection for the request and serves it. If
a new connection needs to be created to serve the request, then the request is routed to
the affinitized instance corresponding to the provided shard (data affinity) key.

4. UCP keeps its topology of the data partitions in sync with the server side when there are
HA events or when there is a change in the affinity of data partitions on Oracle RAC.

10.4.2 Setting Up Connection Affinity

Perform the following steps to set up connection affinity:

« Enable FCF.

@ See Also

"About Fast Connection Failover"

« Enable run-time connection load balancing.

@ See Also

"About Run-Time Connection Load Balancing"

» Create a connection affinity callback.

* Register the callback.

Universal Connection Pool Developer's Guide
G44295-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 22

ORACLE

Chapter 10
About Connection Affinity

@® Note

Transaction-based affinity is strictly scoped between the application/middle-tier and
UCP. Therefore, transaction-based affinity requires only the

set Fast Connect i onFai | over Enabl ed property be set to t r ue and does not require
complete FCF configuration.

In addition, transaction-based affinity does not technically require run-time connection
load balancing. However, it can help with performance and is usually enabled
regardless. If run-time connection load balancing is not enabled, the connection pool
randomly picks connections.

This section contains the following subsections:

Creating a Connection Affinity Callback

Registering a Connection Affinity Callback

Removing a Connection Affinity Callback

10.4.2.1 Creating a Connection Affinity Callback

Connection affinity requires the use of a callback. The callback is an implementation of the
Connect i onAf finityCall back interface which is located in the or acl e. ucp package. The
callback is used by the connection pool to establish and retrieve a connection affinity context
and is also used to set the affinity policy type (transaction-based or Web session).

The following example demonstrates setting an affinity policy in a callback implementation. The
example also demonstrates manually setting an affinity context. typically, the connection pool
sets the affinity context inside an application. However, the ability to manually set an affinity
context is provided for applications that want to customize affinity behavior and control the
affinity context directly.

public class AffinityCallbackSanple

i npl ements Connect i onAffinityCall back {

hj ect appAffinityContext = null;

ConnectionAffinityCal | back. AffinityPolicy affinityPolicy =

Connecti onAf finityCal | back. AffinityPolicy. TRANSACTI ON_BASED AFFI NI TY;
/' For Web session affinity, use WEBSESSI ON_BASED AFFI NI TY;

public void setAffinityPolicy(AffinityPolicy policy)

{

affinityPolicy = policy;
}
public AffinityPolicy getAffinityPolicy()
{

return affinityPolicy;
}
public bool ean set Connecti onAffinityContext(Cbject affCxt)
{

synchroni zed (I ocknj)

{

appAffinityContext = affCxt;
}

return true;

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 18 of 22

ORACLE Chapter 10

About Connection Affinity

}
public Object get Connecti onAffinityContext()
{

synchroni zed (Il ockQhj)

{

return appAffinityContext;

}

}

}

10.4.2.2 Registering a Connection Affinity Callback

A connection affinity callback is registered on a connection pool using the
regi st er Connecti onAf fini tyCal | back method. The callback is registered when creating the
connection pool. Only one callback can be registered per connection pool.

The following example demonstrates registering a connection affinity callback implementation:

ConnectionAffinityCall back call back = new MyCal | back();
Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onPool Nane(" Af fi ni t ySanpl ePool ") ;
pds. regi st er Connect i onAf finityCal | back(cal | back);

10.4.2.3 Removing a Connection Affinity Callback

A connection affinity callback is removed from a connection pool using the
removeConnect i onAf fini tyCal | back method. For example:

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set Connect i onPool Nane(" Af fi ni t ySanpl ePool ") ;
pds. removeConnect i onAf finityCal | back();

10.4.2.4 Strict Affinity Mode

By default, affinity is only a hint. A connection pool selects a new Oracle RAC instance for
connections if it does not find a connection on a desired instance. You can change this
behavior by switching the strict affinity mode on. The strict affinity mode throws a UCP
exception if a connection on a desired instance is not found.

Use the following pool properties to switch on the strict affinity mode:

° TheuseStrict\WbSessi onAffinity property

Set the useStri ct WebSessi onAf finity property to true or f al se for switching the strict
Web session affinity mode on or off respectively.

e TheuseStrict XAAffinity property

Set the useStri ct XAAffinity property to true or f al se for switching the strict transaction-
based affinity mode on or off respectively.

These properties can be handled through the Uni ver sal Connect i onPool MBean.
Related Topics

e UniversalConnectionPoolMBean

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 19 of 22

ORACLE Chapter 10
Global Data Services

10.5 Global Data Services

This section describes the new Global Data Services (GDS) feature that can be used with
Universal Connection Pool:

e OQverview of Global Data Services

e Configuring an Application for Using GDS

10.5.1 Overview of Global Data Services

Global Data Services (GDS) feature is available since Oracle Database 12¢ Release 1 (12.1).
Through this feature, Fast Connection Failover, Run-time Connection Load-Balancing, and
Connection Affinity features that were available only in Oracle RAC, were extended to a set of
replicated databases offering common services.

The set of databases may include Oracle RAC and single-instance Oracle databases
interconnected through Data Guard, GoldenGate, or any other replication technology. A
database service that can be provided by multiple databases is called a global service, so that
it can be distinguished from the traditional service that can be provided only by a single
database. This combination enables services to be deployed anywhere within this globally
distributed configuration, supporting load balancing, high availability, database affinity, and so
on.

@ See Also

Oracle Database Global Data Services Concepts and Administration Guide

10.5.2 Configuring an Application for Using GDS

UCP connects to Global Data Services in the same way that it connects to local services on an
Oracle RAC. The service name in the connection string should be the name of the global
service. The endpoint should be the endpoint of a GDS listener instead of the endpoint for the
local, remote, or SCAN listener of a database.

A client must specify its region in the REG ON parameter of the connection string. This is a new
requirement for GDS. The region name is required because, in case of GDS, Run-time Load
Balancing advisory is customized for particular regions. Following is an example of a typical
connection string:

(DESCRI PTI ON=
(ADDRESS=(GDS_pr ot ocol _address_i nformation))
(CONNECT_DATA=
(SERVI CE_NAME=g| obal _servi ce_nane)
(REGQ ON=regi on_nane)))

Like with local services, UCP can specify multiple GDS listeners in the same connection string
for listener failover, load balancing, or both.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 20 of 22

ORACLE Chapter 10
Global Data Services

@® Note

SCAN is not supported for GDS listeners, therefore endpoint for each listener must be
specified.

(DESCRI PTI ON=
(ADDRESS_LI ST=
(LOAD_BALANCE=QN)
(FAI LOVER=ON)
(ADDRESS=(GDS_pr ot ocol _address_i nf or mati on))
(ADDRESS=(GDS_pr ot ocol _address_i nformation)))
(CONNECT_DATA=
(SERVI CE_NAME=g| obal _servi ce_nane)
(REG ONeregi on_nane)))

The REG ON parameter is optional if only global service managers from the local region are
specified in the client connection string. This is the case when there is only one region in the
GDS configuration, or can be the case when there are multiple regions. But, it is not feasible to
change the connection string of the an existing client designed to work with a single database.
If the REG ON parameter is not specified, then the client's region is assumed to be the region of
the global service manager used to connect to the global service.

@® Note

Unless the REG ON parameter is specified in the connection string, you can use a
pre-12c thin JDBC client only with a GDS configuration that has a single region.

All GDS listeners in the preceding example belong to the same region where UCP is running,
that is the local region. To provide high availability, when all GDSs in the local region are
unavailable, you can specify the GDS listeners for the buddy region in additional ADDRESS LI ST
descriptors.

(DESCRI PTI ON=
(FAI LOVER=0n)
(ADDRESS_LI ST=
(LOAD_BALANCE=ON)
(ADDRESS=(gl obal _pr ot ocol _address_i nf or mati on))
(ADDRESS=(gl obal _pr ot ocol _address_i nfornation)))
(ADDRESS_LI ST=
(LOAD_BALANCE=ON)
(ADDRESS=(gl obal _pr ot ocol _address_i nf ormati on))
(ADDRESS=(gl obal _pr ot ocol _address_i nfornation)))
(CONNECT_DATA=
(' SERVI CE_NAME=g| obal _servi ce_nane)
(REG ON=r egi on_nane)))

You do not need manual ONS configuration because UCP automatically retrieves the ONS
connection information that is optimally customized for the UCP region from GDS.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 21 of 22

ORACLE Chapter 10
Global Data Services

@® Note

» To enable automatic ONS configuration for GDS, you must enable Fast
Connection Failover (FCF) on UCP.

* Automatic ONS configuration works only with Oracle GDS and Oracle RAC. It
does not work with single-instance Oracle Databases.

Automatic ONS configuration does not support ONS wallet or keystore
parameters. If your application requires any of these parameters, then you must
configure ONS explicitly in either of the following two ways:

— Calling the Pool Dat aSour ce. set ONSConf i gurati on(String) method

— Adding the ONS wallet or keystore parameters in the local ONS configuration
file

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 22 of 22

UCP Asynchronous Extension

Starting from Oracle Al Database Release 26ai, UCP provides asynchronous extension. The
asynchronous extension is a set of methods that extend the UCP standard to offer
asynchronous database access.

The asynchronous extension is integrated into UCP in such a way that you can use all the
features of UCP with this extension, with some changes in your source code. This chapter
describes the changes that you must make to your code for using UCP in an asynchronous
way.

® Note
This feature is supported starting with JDK 11.

This chapter covers the following topics:

11.1 Overview of UCP Asynchronous Extension

The UCP asynchronous extension uses non-blocking mechanisms for creating connection
objects, so your application immediately receives either a Conpl et abl eFut ur e or a Publ i sher
of a connection to be borrowed.

You must perform the following to achieve this:

1. Instantiate a Connection Builder.

2. Create a connection asynchronously with UCPConnect i onBui | der using either a
Conpl et abl eFut ur e<Connect i on> or a Publ i sher <Connect i on>.

The asynchronous extension also lets you borrow XA connections with a
UCPXAConnect i onBui | der using either a Conpl et abl eFut ur e<XAConnecti on> or a
Publ i sher <XAConnect i on>.

When an asynchronous method is called, it performs as much work as possible on the calling
thread, without blocking on a network read or write. An asynchronous method call returns
immediately after a request is about to be written to the network, without waiting for a
response. When I/O readiness is detected for a network channel, the polling thread arranges
for a worker thread to handle the event. The worker thread reads from the network and then
notifies a Conpl et abl eFut ur e or a Publ i sher that an operation is complete. Upon notification,
the Conpl et abl eFut ur e or Publ i sher arranges worker threads that emit a signal to each of its
Subscri bers.

Thejava. util.concurrent. Execut or interface manages the worker threads, while the default
Execut or is the java. util.concurrent. ForkJoi nPool . coomonPool method. If you do not
implement the execut or () code in your application source code, then the asynchronous
borrow operation runs with the default For kJoi nPool executor. For setting an arbitrary executor
to serve an asynchronous borrow, you can use the execut or (execut or) call.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE Chapter 11
Example: UCP Asynchronous Extension

@ See Also

Overview of JDBC Reactive extensions

11.2 Example: UCP Asynchronous Extension

This section lists a few examples that demonstrate how to use UCP asynchronous extension.

Example 11-1 Creating a Connection Asynchronously with
CompletableFuture<Connection>

final Pool Dat aSource pds = new Pool Dat aSour cel npl ();
[//Initialize Pool DataSource object in the standard way]

final ConpletionStage<Connection> connectionStage =
pds. cr eat eConnect i onBui | der ()
. user(<user name>)
. passwor d(<passwor d>)
. execut or (execut or)
. bui I dAsyncOracl e();

final ConpletionStage<String> queryStage =
connect i onSt age. t henAppl y(connection -> {
[//Performoperations on the connection]

b
Example 11-2 Creating a Connection Asynchronously with Publisher<Connection>

final Pool Dat aSource pds = new Pool Dat aSour cel npl ();
[//Initialize Pool DataSource object in the standard way]

final Publisher<Connection> connectionPublisher =
pds. creat eConnect i onBui | der ()
. user (<user nane>)
. passwor d(<passwor d>)
. execut or (execut or)
. bui I dConnect i onPubl i sher Oracl e();

[//Performstandard activities on the Publisher]

Example 11-3 Creating an XA Connection Asynchronously with
UCPXAConnectionBuilder

final Pool XADat aSource pds = new Pool XADat aSour cel mpl () ;
[//Initialize Pool XADat aSource object in the standard way]

final ConpletionStage<XAConnection> connectionStage =
pds. cr eat eXAConnect i onBui | der ()

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE’

Chapter 11
Asynchronous Connection Labeling

. user (<user nane>)

. passwor d(<passwor d>)
. execut or (execut or)

. bui I dAsyncOracl e();

final ConpletionStage<String> queryStage =
connect i onSt age. t henAppl y(xaConnection -> {
[//Performoperations on the XAConnecti on]

1)

Example 11-4 Creating an XA Connection Asynchronously with
Publisher<XAConnection>

final Pool XADat aSource pds = new Pool XADat aSour cel npl () ;
[//Initialize Pool XADat aSource object in the standard way]

final Publisher<XAConnection> xaConnectionPublisher =
pds. cr eat eXAConnect i onBui | der ()
. user(<user name>)
. passwor d(<passwor d>)
. execut or (executor)
. bui | dConnect i onPubl i sher Oracl e();

[//Performstandard activities on the Publisher]

11.3 Asynchronous Connection Labeling

You can take advantage of the UCP connection labeling feature even in the asynchronous
mode. For achieving this, you must override the default version of the new
oracl e. ucp. Connect i onLabel i ngCal | back. confi gureAsync() method.

configureAsync: Asynchronous Version of the Configure Method

For standard connection labeling, you use the conf i gur e method in your application. For using
connection labeling in the asynchronous mode, you must use the conf i gur eAsync method.
The definition of the confi gur eAsync method is as follows:

default Conpl eti onSt age<Bool ean> confi gureAsync(Properties requestedLabel s,
bj ect connection) {
t hrow new NoSuchMet hodError ();

@ See Also

e Labeling Connections in UCP

» Oracle Universal Connection Pool Java APl Reference

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE Chapter 11
Example: Asynchronous Connection Labeling

11.4 Example: Asynchronous Connection Labeling

This section contains an examples that demonstrates how to use UCP asynchronous
extension with connection labeling.

Example 11-5 Creating a Connection Asynchronously with Connection Labeling

package tests.ucp.async. | abeling

i nport oracle.ucp. ConnectionLabel i ngCal | back
i nport oracle.ucp.jdbc. Pool Dat aSour ce;
i nport oracle.ucp.jdbc. Pool Dat aSour cel npl ;

i nport java.sql.Connection

inport java.util.Properties;

inport java.util.concurrent. Conpl etabl eFuture;
inport java.util.concurrent. ConpletionStage;

public class AsyncLabel i ngExanmpl e {
public static void main(String ... args) throws Exception {
final Pool Dat aSource pds = new Pool Dat aSour cel npl () ;

/1 Set the pool data source properties

final ConnectionLabelingCallback |abelingCallback = new
Connect i onLabel i ngCal | back() {
@verride
public int cost(Properties requestedLabels, Properties currentlLabels) {
/] some cost manipul ations, sane as in synchronous case
return 0; // or sone other integer, depending on the cost conputation
| ogi c

}

@verride
publ i c bool ean configure(Properties requestedLabels, Qbject connection)

/1 some connection configuration manipul ations for synchronous case,
/1 not used in asynchronous case, so it can be skipped
return true;

}

@verride
publ i c Conpl eti onSt age<Bool ean> confi gur eAsync(Properties
request edLabel s, bj ect connection) {
final var cf = new Conpl et abl eFut ur e<Bool ean>();

/1 Perform sone asynchronous connection configuration
doSoneConfi gActi on((Connecti on) connection).whenCompl ete((p, €) -> {
if (null ==¢e) {
cf.conplete(p);
} else {
cf. conpl et eExceptional ly(e);

}
1)

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 11
Example: Asynchronous Connection Labeling

return cf;

}

private Conpl et abl eFut ur e<Bool ean> doSoreConf i gAction(Connection conn) {
final var cf = new Conpl et abl eFut ur e<Bool ean>();

11
/1 configure the connection asynchronously
/1 ... conplete ConpletableFuture with result or exception ..
return cf;
}
¥

pds. regi st er Connect i onLabel i ngCal | back(| abel i ngCal | back) ;

/1 some |abeling code

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 5

Ensuring Application Continuity

This chapter discusses the following concepts related to the Application Continuity feature of
Oracle Database:

e Overview of Ensuring Application Continuity with UCP

» Configuring the Data Source for Application Continuity

e Using Connection Labeling for Application Continuity

e Using Connection Initialization Callback for Application Continuity

12.1 Overview of Ensuring Application Continuity with UCP

Oracle Database 12c Release 1 (12.1) introduced the Application Continuity feature that
provides a general purpose, application-independent infrastructure. Application Continuity
enables recovery of work from an application perspective, after the occurrence of a planned or
unplanned outage that can be related to system, communication, or hardware following a
repair, a configuration change, or a patch application.

For using Application Continuity, you must first configure your data source. After that, use one
of the following two features for implementing Application Continuity in your applications using
Universal Connection Pool (UCP):

* Using Connection Labeling for Application Continuity
* Using Connection Initialization Callback for Application Continuity
Related Topics

e Configuring the Data Source for Application Continuity

e Using Connection Labeling for Application Continuity

» Using Connection Initialization Callback for Application Continuity

12.2 Configuring the Data Source for Application Continuity

To utilize the Application Continuity (AC) feature on a UCP data source, applications must
specify an Oracle JDBC driver data source with AC support, as the connection factory class.
The data source depends on the Oracle JDBC driver version that you use.

* For Oracle JDBC driver 26ai, all the driver data sources support Application Continuity.
Oracle recommends that you use oracl e. j dbc. dat asour ce. i npl . Oracl eDat aSour ce,
although either of the older data sources, that is,
oracl e.jdbc.replay. Oracl eDat aSour cel npl or oracl e. j dbc. pool . O acl eDat aSour ce,
also works.

e For using Oracle JDBC driver 19c or an older driver, you must use the
oracle.jdbc.replay. Oracl eDat aSour cel npl to support Application Continuity.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE Chapter 12
Using Connection Labeling for Application Continuity

® See Also
About Configuring Oracle JDBC for Application Continuity for Java

12.3 Using Connection Labeling for Application Continuity

Connection labeling enables an application to attach arbitrary name/value pairs to a
connection. The application can request a connection with the desired label from the
connection pool.

Connection labeling sets the initial state for each connection request. If the application uses
connection labeling or benefits from labeling connections, then a labeling callback should be
registered for Application Continuity to initialize clean connections at failover.

Every time Application Continuity gets a new connection from the underlying data source, the
labeling callback executes. The callback executes during normal connection check-out and
also during replay. So, the state that is created at run time is exactly re-created during replay.
The initialization must be idempotent.

It is legal for the callback to execute a transaction as long as the transaction completes (either
it commits or rolls back) at the end of callback invocation. Application Continuity repeats any
action coded within the callback implementation, including such transaction. If an outage
occurs during the execution of a UCP labeling callback, then Application Continuity may
execute the callback more than once as part of the replay attempt. Again, it is important for the
callback actions to be idempotent.

Related Topics

e Labeling Connections in UCP

12.4 Using Connection Initialization Callback for Application
Continuity

If an application cannot use connection labeling because it cannot be changed, then the
connection initialization callback is provided for such an application.

When registered, the initialization callback is executed every time a connection is borrowed
from the pool and at each successful reconnection following a recoverable error..

Related Topics

» About Connection Initialization Callback

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 2

Shared Pool for Sharded Databases

Sharding is a data tier architecture in which data is horizontally partitioned across independent
databases.

This chapter describes UCP Shared Pool for sharded databases in the following sections:

* Overview of UCP Shared Pool for Database Sharding

« About Handing Connection Requests for a Sharded Database

¢ Sharding Data Source for Transparent Access to Sharded Databases
 Middle-Tier Routing Using UCP
¢ Sharding with JTA/XA Transaction in WebLogic Server

13.1 Overview of UCP Shared Pool for Database Sharding

Starting from Oracle Database 12¢ Release 2 (12.2.0.1), Universal Connection Pool (UCP)
supports database sharding. UCP recognizes the sharding keys specified and connects to the
specific shard. Sharding uses Global Data Services (GDS), where GDS routes a client request
to an appropriate database, based on various parameters such as availability, load, network
latency, and replication lag.

® See Also
e Oracle Al Database JDBC Developer’s Guide

e Oracle Al Database Administrator’s Guide

Use Case of UCP Shared Pool for Database Sharding

This section describes a use case of UCP Shared Pool for database sharding. In the use case,
the applications connecting to sharded database use UCP to store connections to different
shards and chunks of the sharded GDS database within the same Shared Pool. The
applications must provide the sharding key to UCP during the connection request. Based on
the sharding key, the pool routes the connection request to the correct shard. The data
distribution across the shards and chunks in the database is transparent to the user. UCP
transparently handles resharding and chunk movements, minimizing the impact on the end
users.

The following diagram illustrates this use case:

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 11

ORACLE Chapter 13

About Handling Connection Requests for a Sharded Database

Figure 13-1 Universal Connection Pool (UCP) Using Sharded Database Architecture

Region East
DEE1
Universal Connection
Pool (UCP)
/ /__31
f \
Connection |'I'.. \
raquest with ||
Sharding KEY,
Shard and Super . ________________ >
Aware Sharding KEY If no mapping is
Application @ found, then the _
| requeast is forwarded Region West
I'. ® to the liztener and
| | the shard topology
T B e e
UCP implemants fast path ', / built insida UCP.
connection borrow featura. ._,/
Uses its shard routing
topology information to map

tha incoming requeast with
sharding keys to the
respactive shards and
rauses the poolaed
connections, if possible.

Related Topics

e Global Data Services

13.2 About Handling Connection Requests for a Sharded
Database

This section describes how connection requests are made on a pool for sharded databases.

How to Checkout Connections from a Pool with a Known Sharding key

* About Configuring the Number of Connections Per Shard

About Connecting to the Shard Catalog or Co-ordinator for Multishard Queries

Universal Connection Pool Developer's Guide
G44295-01

October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 11

ORACLE Chapter 13
About Handling Connection Requests for a Sharded Database

13.2.1 How to Checkout Connections from a Pool with a Sharding Key

When a connection is borrowed from UCP, then the shard aware application can provide the
sharding key and the super sharding key using the new connection builder present in the
Pool Dat aSour ce class.

If sharding keys do not exist or do not map to the data types specified by the database
metadata, then an I | | egal Ar gument Except i on is thrown. The following code snippet shows
how to checkout a connection with sharding keys:

Example 13-1 Checking Out a Connection with Sharding Keys

i nport java.sql.Connection;

inport java.sql.JDBCType;

i nport java.sql.PreparedStatenent;
i nport java.sql.ResultSet;

i nport java.sql.SQ.Exception;
inport java.sql. Shardi ngKey;

i nport oracle.ucp.jdbc. Pool Dat aSour ce;
i nport oracle.ucp.jdbc. Pool Dat aSour ceFact ory;

public class UCPShardi ngExanpl e {

public static void main(String[] args) throws SQLException {
String url = "jdbc:oracl e:thin: @DESCR PTI ON=(ADDRESS=(HOST=nyhost)
(PORT=<gsm por t >) (PROTOCCL=t cp)) (CONNECT_DATA=(SERVI CE_NAME=nyCGSMservice)))";
String user="db_user_name";
String pwd = "db_password";

Pool Dat aSour ce pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

pds. set URL(url);

pds. set User (user);

pds. set Passwor d(pwd) ;

pds. set Connect i onFact or yd assNane(" or acl e. j dbc. pool . Oracl eDat aSour ce");
pds. setlnitial Pool Si ze(5);

pds. set M nPool Si ze(5);

pds. set MaxPool Si ze(20) ;

int enpld = 1234;
Il Enployee IDis the sharding key colum in sharded table

Shar di ngKey shardi ngkey = pds. creat eShar di ngKeyBui | der ()
. subkey(enpl d, JDBCType. | NTEGER)
Cbuild();

Il Borrow a connection to direct shard using sharding key
try(Connection connection = pds. createConnecti onBuil der ()
. shar di ngKey(shar di ngKey)
cbuild()) {

PreparedSt atement pst =

connection. prepareSt at ement ("sel ect * from enpl oyee where enp_i d=?");
pst.setlnt(1, 1234);
Resul t Set rs = pst.executeQuery();

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 11

ORACLE Chapter 13
About Handling Connection Requests for a Sharded Database

Il retrieve the enployee details using resultset
rs.close();
pst.close();

}

@® Note

You must specify a sharding key during the connection checkout. Otherwise, an error
or exception is thrown back to the application.

13.2.2 About Configuring the Number of Connections Per Shard

When UCP is used to pool connections for a sharded database, the pool contains connections
to different shards. So, when connections are pulled, to ensure a fair usage of the pool
capacity across all shards connected, UCP uses the MaxConnect i onsPer Shar d parameter. This
is a global parameter, which applies to every shard in the sharded database, and is used to
limit the total number of connections to any shard below the specified limit.

The following table describes the APIs for setting and retrieving this parameter:

Method Description

pool Dat asour ce. set MaxConnect i onsPer Shar Sets the maximum number of connections per
d(<max_connections_per_shard_|limit>) shard.

pool Dat asour ce. get MaxConnect i onsPer Shar Retrieves the value that was set using the

d() set MaxConnect i onsPer Shar d(<max_connect i

ons_per _shard_|init>) method.

@® Note

You cannot use the MaxConnect i onsPer Shar d parameter in a sharded database with
Oracle Golden Gate configuration.

13.2.3 About Connecting to the Shard Catalog or Co-ordinator for
Multishard Queries

When connecting to the Shard Catalog or Co-ordinator for running multishard queries, it is
recommended that a separate pool be created using a new Pool Dat aSour ce instance. You can
run multishard queries on connections retrieved from a data source that is created on the
coordinator service. The connection request for the coordinator should not have sharding keys
in the connection builder API.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 11

ORACLE Chapter 13
Sharding Data Source for Transparent Access to Sharded Databases

13.3 Sharding Data Source for Transparent Access to Sharded
Databases

Oracle Database Release 21c introduced a new JDBC data source that enables Java
connectivity to a sharded database without the need for an application to furnish a sharding
key.

If you use the sharding data source, then you do not have to identify and build the sharding key
and the super sharding key to establish a connection to the sharded database, as discussed in
the earlier How to Checkout Connections from a Pool with a Sharding Key section. The
sharding data source also eliminates the need to maintain a separate data source for
multishard queries.

This data source scales out to sharded databases transparently if you set the connection
property or acl e. j dbc. useShar di ngDri ver Connection to true.

® See Also
Oracle Database JDBC Developer's Guide

The following code snippet shows how to use the sharded data source:

Example 13-2 Using the Sharded Data Source

inport java.sql.Connection;

inport java.sql.PreparedStatenent;
i nport java.sql.ResultSet;

inport java.sql.SQLException;
inport java.util.Properties;

inport javax.sqgl.DataSource;

i nport oracle.jdbc.internal. O acl eConnection;
i nport oracle. ucp.jdbc. Pool Dat aSour ce;
i nport oracle.ucp.jdbc. Pool Dat aSour ceFact ory;

public class Shardi ngDat aSour ceUCP {
public static void main(String[] args) throws SQ.Exception {
Shar di ngDat aSour ceUCP sanpl e = new Shar di ngDat aSour ceUCP() ;
Dat aSour ce ucpDat aSour ce = sanpl e. get Dat aSour ce();
/] Get the details of follow ng customers
int[] custonerlds = newint[] {
100,
101,
102,
103,
104,
105

for (int id: customerlds) {
try (Connection conn = ucpDataSource. get Connection()) {

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 11

ORACLE Chapter 13
Sharding Data Source for Transparent Access to Sharded Databases

sanpl e. di spl ayCust onmer Det ai | s(conn, id);
Systemout . println(((O acl eConnecti on)
conn) . get Per cent ageQuer yExecuti onOnDi rect Shard());
}

}
}

private void di splayCustomnerDetails(Connection conn, int id) throws
SQLException {
try (PreparedStatement pstnt = conn. prepareStatenent ("SELECT * FROM

CUSTOMER where ID = ?")) {

pstnt.setint(1, id);

try (ResultSet rs = pstnt.executeQuery()) {

while (rs.next()) {
[l Print the customer details

}

}

private DataSource getDataSource() throws SQLException {
Pool Dat aSour ce pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;
pds. set URL(" <gsnmJRL>");
pds. set User (" <user Name>") ;
pds. set Passwor d(" <passwor d>");

pds. set Connect i onFact or yC assNanme(" or acl e. j dbc. pool . Oracl eDat aSour ce") ;

Properties prop = new Properties();

/1 Connection property to enable sharding datasource feature, when
this property

/] is set you don't need to pass sharding key to UCP pool while
borrowi ng the connection

prop. set Property(Oracl eConnecti on. CONNECTI ON_PROPERTY_USE_SHARDI NG _DRI VER_CONN
ECTION, "true");

pds. set Connect i onProperties(prop);

return pds;

@® See Also

» The UCPConnectionBuilder Interface

 The PoolDataSource Interface

e The PoolXADataSource Interface

13.3.1 Support for Single Shard Transactions

The sharding data source enables you to limit your transactions to one single shard.

To enable single shard transaction support, you must set
CONNECT! ON_PROPERTY_ALLOW SI NGLE_SHARD TRANSACTI ON_SUPPORT. If this property is not set,

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 11

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/oracle/ucp/jdbc/UCPConnectionBuilder.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/oracle/ucp/jdbc/PoolDataSource.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/oracle/ucp/jdbc/PoolXADataSource.html

ORACLE Chapter 13
Sharding Data Source for Transparent Access to Sharded Databases

then by default, all the transactions are started on the Shard Catalog. If you set the value of
this property to t r ue, then you must ensure that all the transactions span over a single shard
only.

@ See Also

e Oracle Database JDBC Java API Reference

* Oracle Database JDBC Developer's Guide

Example 13-3 Enabling Single Shard Transactions

inport java.sql.Connection;

inport java.sql.PreparedStatenent;
i nport java.sql.ResultSet;

inport java.sql.SQLException;
inport java.util.Properties;

inport javax.sqgl.DataSource;

i nport oracle.jdbc.internal. O acl eConnection;
i nport oracle.jdbc. pool. O acl eDat aSour ce;

public class SingleShardTransacti onUCP {
public static void main(String[] args) throws SQ.Exception {
Si ngl eShar dTransact i onUCP sanpl e = new Si ngl eShar dTransacti onUCP() ;
Dat aSour ce ucpDS = sanpl e. get Dat aSour ce() ;

/1 Insert and update the details of follow ng custoners in a single
transaction
int[] custonerlds = newint[] {
100,
101,
102,
103,
104,
105

for (int id: customerlds) {
try (Connection conn = ucpDS. get Connection()) {
conn. set Aut oConmi t (f al se) ;
sanpl e.insert Cust omer Detai | s(conn, id);
sanpl e. di spl ayCust oner Det ai | s(conn, id);
sanpl e. updat eCust orer Det ai | s(conn, id);
sanpl e. di spl ayCust oner Det ai | s(conn, id);
conn.comit();
Systemout . println(((O acl eConnecti on)
conn) . get Per cent ageQuer yExecut i onOnDi rect Shard());

}

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 11

https://docs.oracle.com/en/database/oracle/oracle-database/23/jajdb/oracle/jdbc/OracleConnection.html#CONNECTION_PROPERTY_ALLOW_SINGLE_SHARD_TRANSACTION_SUPPORT

ORACLE Chapter 13
Sharding Data Source for Transparent Access to Sharded Databases

private void insertCustonerDetail s(Connection conn, int id) throws
SQLException {

String sql = "insert into CUSTOMER val ues(?, ?, ?, ?2)";

try (PreparedStatement ps = conn. prepareStatenment (sql)) {
ps.setint(1, id);
ps.setString(2, name);
ps.setString(3, emil);
ps.set String(4, phoneNunber);
ps. execut eUpdat e() ;

}

private void updateCustonerDetail s(Connection conn, int id) throws
SQLException {
String sql = "UPDATE CUSTOMER SET name = ?, email = ?, phoneNunber
= ? WHERE custonerld = ?";
try (PreparedStatement ps = conn. prepareStatenment (sqgl)) {
ps.setString(1l, name);
ps.setString(2, emil);
ps.set String(3, phoneNunber);
ps.setint(4, id);
ps. execut eUpdat e() ;

}

private void di spl ayCustonerDetails(Connection conn, int id) throws
SQLException {
try (PreparedStatement pstnt = conn. prepareStatenment ("SELECT * FROM

CUSTOMER where ID = ?")) {

pstnt.setlnt(1, id);

try (ResultSet rs = pstnt.executeQuery()) {

while (rs.next()) {
[IPrint the custoner details

}

}

private DataSource getDataSource() throws SQLException {
Oracl eDat aSource ds = new Oracl eDat aSource();
ds.set URL(< gsnURL >);
ds. set User(< userName >);
ds. set Password(< password >);
Properties prop = new Properties();
/1 Connection property to enabl e sharding datasource feature

prop. set Property(Oracl eConnecti on. CONNECTI ON_PROPERTY_USE_SHARDI NG_DRI VER_CONN
ECTION, "true");

/1 Connection property to enable single shard transaction support. |f
this property is not set,

/1 by default all the transactions are started on catal og DB. Wen
setting this property val ue

/1 to "true", applications nust ensure that all the transactions span
over a single shard only.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 8 of 11

ORACLE Chapter 13
Middle-Tier Routing Using UCP

prop. set Property(oracle.jdbc. Oracl eConnecti on. CONNECTI ON_PROPERTY_ALLOW SI NGLE
_SHARD_TRANSACTI ON_SUPPORT, "true");

ds. set Connecti onProperties(prop);

return ds;

13.4 Middle-Tier Routing Using UCP

Since Oracle Database Release 18c, Oracle Universal Connection Pool (UCP) supports the
Middle-Tier Routing feature. This feature helps the Oracle customers, who use the Sharding
feature, to have a dedicated middle tier from the client applications to the sharded database.

Typically, the middle-tier connection pools route database requests to specific shards. During
such a routing, each middle-tier connection pool establishes connections to each shard,
creating too many connections to the database. The Middle-Tier Routing feature solves this
problem by having a dedicated middle tier (Web Server or Application Server) for each Data
Center or Cloud, and routing client requests directly to the relevant middle tier, where the shard
containing the client data (corresponding to the client sharding key) resides.

13.4.1 Middle-Tier Routing with UCP Example

The following example explains the usage of the middle-tier routing API of UCP.

Example 13-4 Example of Middle-Tier Routing Using UCP

i nport java.sql.SQ.Exception;
inport java.util.Properties;
i nport java.util.Random
inport java.util.Set;

i nport oracle.jdbc. Oacl eShar di ngKey;

i nport oracle.jdbc. Oacl eType;

i nport oracle.ucp. Uni ver sal Connect i onPool Excepti on;

i nport oracle.ucp. routing. Shardl nfo;

i nport oracle.ucp.routing.oracle. Oacl eShardRout i ngCache;

/**

* The code exanple illustrates the usage of the mddle-tier routing feature
of UCP.

* The APl accepts sharding key as input and returns the set of Shardinfo

i nstances mapped to the sharding key. The Shardlnfo instance encapsul ates
uni que shard name and priority. The unique shard name then can be mapped
to a mddle-tier server that connects to a specific shard.

* * * * *

/
public class MdtierShardi ngexanpl e {

private static String user = "testuserl";
private static String password = "testuserl";

/1 catalog DB URL

private static String url = "jdbc:oracle:thin:@/hostNane: 1521/
cat al ogSer vi ceName";

private static String region = "regi onNane";

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 9 of 11

ORACLE’

Chapter 13
Sharding with JTA/XA Transaction in WebLogic Server

public static void main(String args[]) throws Exception {

test M dTi er Routing();

static void testMdTierRouting() throws Universal Connecti onPool Excepti on,

SQLException {

Properties dbConnect Properties = new Properties();
dbConnect Properties. set Property(O acl eShar dRout i ngCache. USER, user);
dbConnect Properties. set Property(O acl eShar dRout i ngCache. PASSWORD,

password);

/1 Md-tier routing APl accepts catal og DB URL
dbConnect Properties. set Property(O acl eShar dRout i ngCache. URL, wurl);

/1 Region name is required to get the ONS config string
dbConnect Properties. set Property(O acl eShar dRout i ngCache. REG ON, region);

O acl eShar dRout i ngCache routingCache = new O acl eShar dRout i ngCache(
dbConnect Properties);

final int COUNT = 10;
Random random = new Random();

for (int i =0; i < COUNT; i++) {
int key = randomnextlnt();
O acl eShar di ngKey shar dKey = routingCache. get Shar di ngKeyBui | der ()
. subkey(key, Oracl eType. NUMBER). build();
O acl eShar di ngkey super Shardkey = nul | ;

Set <Shar dI nf 0> shardl nfoSet = routi ngCache. get Shar dl nf oFor Key(shar dKey,
super Shar dKey) ;

for (Shardlnfo shardinfo : shardlnfoSet) {
Systemout . println("Sharding Key=" + key + " Shard Nane="
+ shardl nfo.getNane() + " Priority=" + shardinfo.getPriority());

13.5 Sharding with JTA/XA Transaction in WebLogic Server

Starting from Oracle Al Database 26ai Release, you can use sharding with JTA/XA
transactions, when you configure UCP as a native data source in WebLogic Server. This
feature broadens UCP middle-tier coverage to include more applications, like the ones that
require container-managed JTA/XA transactions or sharding.

Java Transaction APl (JTA) specifies standard Java interfaces between a transaction manager
and the parties involved in a distributed transaction system: the resource manager, the
application server, and the transactional applications. Now, Java Enterprise applications that
use UCP native data source sharding APIs, to obtain connections to Oracle sharded
databases, can participate in JTA/XA transactions managed by WebLogic Transaction
Manager (TM).

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 10 of 11

Chapter 13

ORACLE
Sharding with JTA/XA Transaction in WebLogic Server

For any XA transaction with all supplied sharding keys parameter in the connection requests,
which lead to the same Oracle sharded database instance, the XA transaction goes through
successfully and commits the changes. For an XA transaction, leading to different Oracle
sharded database instances, UCP native data source raises an exception to the WebLogic
Transaction Manager and the transaction is rolled back.

@ See Also

Oracle WebLogic Server documentation for more information

Universal Connection Pool Developer's Guide
October 13, 2025

G44295-01
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 11 of 11

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/intro/adminconsole.html

Diagnosing a Connection Pool

14.1 Pool

The following parameters are used for diagnosing Universal Connection Pool (UCP):

e Pool Statistics

» Dynamic Monitoring Service Metrics

« Overview of Logging and Tracing in UCP

* About Viewing Oracle RAC Statistics

» Exceptions and Error Codes

Statistics

Universal Connection Pool (UCP) provides a set of run-time statistics for the connection pool.
These statistics can be divided into the following two categories:

* Noncumulative

These statistics apply only to the current running connection pool instance.
e Cumulative

These statistics are collected across multiple pool start/stop cycles.

The oracl e. ucp. Uni ver sal Connecti onPool Stati stics interface provides methods that are
used to query the connection pool statistics. The methods of this interface can be called from a
pool-enabled data source and pool-enabled XA data source, using the

oracl e. ucp. j dbc. Pool Dat aSour ce. get St ati sti cs method. For example:

Pool Dat aSour ce pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

int total ConnsCount = pds.getStatistics().getTotal ConnectionsCount();
Systemout.println("The total connetion count in the pool is "+ total ConnsCount +".");

The oracl e. ucp. j dbc. Pool Dat aSour ce. get Stati sti cs method can also be called by itself to
return all connection pool statistics as a Stri ng.

14.2 Dynamic Monitoring Service Metrics

UCP supports all the pool statistics to be in the form of Dynamic Monitoring Service (DMS)
metrics. You must include the dns. j ar file in the class path of the application to collect and
utilize these DMS metrics.

UCP supports DMS metrics collection in both the pool manager interface and the pool
manager MBean. You can use the

Unver sal Connect i onPool Manager. start Metri csCol | ecti on method to start collecting DMS
metrics for the specified connection pool instance, and use the

Unver sal Connect i onPool Manager . st opMet ri csCol | ecti on method to stop DMS metrics
collection. The metrics update interval can be specified using the

Unver sal Connect i onPool Manager . set Met ri cUpdat el nt er val method. The pool manager
MBean exports similar operations.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE Chapter 14
Overview of Logging and Tracing in UCP

14.3 Overview of Logging and Tracing in UCP

Two major aspects of UCP diagnosability are logging and tracing.

Logging is writing log records into a console, a file, or any other log handler that is defined by

standard logging properties. The name of a logger is the same as a pool data source name. A
pool data source name is set with an appropriate property. You can leave it unnamed as well,

in which case, all diagnostics goes in the common logger. The name of the common logger is

oracl e. ucp. Logging implements the Java Logging API, java. util .| oggi ng.

Tracing is the special logging use case, where a log record is written into an in-memory ring
buffer until an event triggers UCP Diagnosability to dump that buffer into a corresponding
logger. UCP has the following two categories of trace buffers:

@® Note

A pool data source and a UCP have a one-to-one mapping.

e A category that consists of one common buffer, which is used for tracing logs from the
static methods that are not directly related to a pool with a designated name. The common
buffer is permanent for the complete life span of the associated UCP.

e A category that contains as many buffers as the number of named Pool Data Source
(PDS) objects, where every buffer is mapped to a single named PDS. Every trace from that
PDS goes into the corresponding buffer. Its life starts from a pool start up and ends with a
pool destruction.

14.3.1 Logging and Tracing Settings

When you enable logging, you should not enable tracing because the log records get
immediately dumped into a logger in such a case, and there is no need to duplicate log records
into a trace buffer. So, if logging is on, regardless of the tracing setting, tracing gets disabled
automatically.

@® Note

By default, tracing is on and logging is off.

The following table summarizes this functionality:

Logging Setting Tracing Setting Logging Functionality Tracing Functionality
of f of f Disabled Disabled
on of f Enabled Disabled
of f on Disabled Enabled
on on Enabled Disabled

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025
Copyright © 1999, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE’

Chapter 14
Overview of Logging and Tracing in UCP

14.3.2 Diagnosability System Properties and Command Line

You can set the initial diagnosability properties as JVM system properties.
You can achieve this in the following ways:

e Using the Oracle JVM command line
e In your application source code

e Using Java Management Extensions (JMX)

Property Name Description

oracl e. ucp. di agnosti c. enabl eTrace Is the flag to enable tracing. The default value of
this property is t r ue.

oracl e. ucp. di agnosti c. enabl eLoggi ng Is the flag to enable debug logging. The default
value of this property is f al se.

oracl e. ucp. di agnostic. bufferSi ze Specifies the in-memory trace buffer size. The
default value is 1024.

oracl e. ucp. di agnosti c. | oggi ngLevel Specifies the default logging level that is used if no

other value is specified for a logger in a logging
configuration file. The default value of this property

is | NFO.

java.util.logging.config.file Specifies the logging property file name to load.
The default value is Consol eHandl er for all
loggers.

oracl e. ucp. di agnosti c. error CodesToWat ch Provides the list of exceptions and error codes that

Li st triggers dumping of all traces into their loggers.

14.3.3 Logging Configuration File

The logging configuration file lets you configure your logging settings as described in the
java. util.loggi ng package. If you want to set different levels for different loggers, then you
must set those in the logging configuration file.

Perform the following for configuring the common logger:

» Specify the logger as or acl e. ucp.
e Set an appropriate logging level.

« Specify where and how to write the logs. For example, whether the logs should be written
to the console or to a file. In case of a file, specify the file name, formatter, and so on.

Perform the following for configuring a logger that is specific to a pool data source object:

» Set a level for the logger with the name of that pool data source.

e Set an appropriate logging level.

@® Note

If you do not specify the level for a logger, then a default level, which is set in the
ucp. di agnosti c. | oggi ngLevel , is used.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE’

Chapter 14
Overview of Logging and Tracing in UCP

Example 14-1 Logging Configuration File

The following is an example of the UCP diagnosability logging configuration file:

oracl e. ucp. | evel =FI NE

handl ers = java. util.logging. Fi |l eHandl er

java.util.logging.FileHandl er.pattern = ./test.|og
java.util.logging.FileHandler.limt =0

java.util.logging.FileHandl er.count =1

java.util.logging.FileHandl er.formatter = java.util.logging.SinpleFornatter
pool - namel=FI NEST

pool - name2=SEVERE

Logging Level

Logging levels in the UCP Diagnosability framework are the same as the ones available in the
java. util.loggi ng package, but UCP also supports a numeric logging level in the range from
I nteger. M N VALUE to | nt eger. MAX_VALUE. The following table lists all the valid logging levels:

Logging Level Value

OFF I nt eger. MAX_VALUE
SEVERE 1000

WARNI NG 900

I NFO 800

CONFI G 700

FI NE 500

FI NER 400

FI NEST 300

ALL I nteger. M N_VALUE

14.3.4 Tracing the Error Codes to Watch

The error codes to watch are applicable only for tracing. If tracing is disabled, then the error
codes to watch setting is ignored.

There are two event types that trigger the trace buffers to be dumped into an appropriate
logger:

* Any log message with a SEVERE log level.

* Afew subset of exceptions or errors, for example, the subclasses of the
j ava. | ang. Thr owabl e class, which are thrown by the JDBC driver or UCP. These errors or
exceptions are then caught internally and logged with the WARNI NG level. The subset of
these exceptions are defined with the ucp. di agnosti c. error CodesToWat chLi st property.

A WARNI NG log message, which contains a subclass of j ava. | ang. Thr owabl e, can cause
dumping of a trace buffer into a logger, if the exception is found in a list of error codes. If an
exception contains a stack of errors or exceptions, then UCP traverses through that stack with
an attempt to find a matching exception and the corresponding error code, if applicable. The
format of the list of error code is as follows:

["<subcl ass1>. <Exceptionl>: 111, 222, 333",
"<subcl ass2>. <Except i on2>; 444, 555, 666", "<subcl ass3>. <Exception3>"]

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE

Chapter 14
Overview of Logging and Tracing in UCP

where, subcl assl1. Exceptionl, subcl ass2. Excepti on2, and subcl ass3. Excepti on3 are the
java. | ang. Thr owabl e subclasses.

For example, if you see an error code like the following:

["oracle.ucp. Uni versal Connecti onPool Except i on: 45054, 45065, 45067",
"java.sql. SQLException: 12521, 12514, 12757, 12523",
"java.lang. |l egal StateException”, "java.lang.NullPoi nterException"]

It means that the tracing is triggered in the following sequence:

1. oracle.ucp. Universal Connecti onPool Except i on with the vendor error codes 45054,
45065, and 45067

2. java.sql.SQ.Excepti on with the vendor error codes 12521, 12514, 12757, and 12523
3. |llegal StateException
4. Nul | Poi nterException

Only fully-qualified j ava. | ang. Thr owabl e subclass names can cause dumping of a trace buffer
into a logger. For example, j ava. sql . Nul | Poi nt er Except i on is a valid name, while Nul | P,

Nul | Poi nt er Exception, [“12154"],[“ORA-“], or [“ORA-12154"] is not. If specified wrongly,
then the subclass name causes parsing and/or class resolution errors logged, along with a
WARNI NG. Any number conversion error too can cause a parsing error logged, along with a
VARNI NG.

In case of parse and class resolution failures, every WARNI NG log record, with any exception,
causes dumping a trace buffer. This is regardless of exception types and designated error
codes. Once error codes are ignored in logging mode, they are not parsed anymore.

Comma-separated lists of error codes are used only in case of the following two classes and
their subclasses:

e java.sql.SQ.Exception and its subclasses like j ava. sql . SQLRecover abl eExcepti on or
j ava. sql . SQLSynt axError

e oracle. ucp. Uni versal Connecti onPool Excepti on and its subclasses like
NoAvai | abl eConnect i onsException

If you specify comma-separated lists of error codes with other exception types, then those
error codes are ignored. With an empty list of error codes for the two exceptions and their
subclasses mentioned earlier, all error codes are applicable. The UCP Diagnosability has a
default error codes list. Refer to "UCP Exception Error Codes" for the list of

oracl e. ucp. Uni ver sal Connecti onPool Excepti on error codes.

If you want the trace buffer to be dumped by any WARNI NG message with an exception, then
you can perform it in the following way:

Example 14-2 To dump traces by any exception

“["java.lang. Throwabl e"]"

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE Chapter 14
About Viewing Oracle RAC Statistics

14.3.5 MBeans for UCP Diagnosability

UCP provides two MBeans for UCP diagnosability.

e ucp. adni n: It contains attributes amd operations for the whole JVM. It manages the buffer
associated with all the pool data sources, and also the common in-memory buffer. You can
change the initial values of the following MBean attributes to set it:

enabl eTr ace

— enabl eLoggi ng

— loggingLevel

— bufferSize

— errorCodesToWat chLi st
— 1l oggi ngConfi gFi | eName

Also, there is an operation named dunpl nMenor yTr ace. Launching this operation, you can
dump contents of all in-memory buffers into their appropriate loggers.

e ucp. adni n. Uni ver sal Connect i onPool MBean: It contains a tree of existing pool insntances,
where every instance has its own attribute to modify an appropriate property of that
specific pool. The attributes are the following:

— enabl eTrace
— enabl eLoggi ng
— loggingLevel

— inMenoryTraceSize

14.4 About Viewing Oracle RAC Statistics

UCP provides a set of Oracle RAC run-time statistics that are used to determine how well a
connection pool is utilizing Oracle RAC features and are also used to help determine whether
the connection pool has been configured properly to use the Oracle RAC features. The
statistics report FCF processing information, run-time connection load balance success/failure
rate, and affinity context success/failure rate.

The Oracl eJDBCConnect i onPool Stati sti cs interface that is located in the

oracl e. ucp.j dbc. oracl e package provides methods that are used to query the connection
pool for Oracle RAC statistics. The methods of this interface can be called from a pool-enabled
and pool-enabled XA data source using the data source's get St ati sti ¢cs method. For
example:

Pool Dat aSource pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce();

Long rcl bS = ((Oracl eJDBCConnect i onPool Statistics)pds.getStatistics()).
get Successf ul RCLBBasedBor r owCount () ;
Systemout. println("The RCLB success rate is "+rclbS+".");

The data source's get St at i sti cs method can also be called by itself and returns all
connection pool statistics as a Stri ng and includes the Oracle RAC statistics.

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE Chapter 14
About Viewing Oracle RAC Statistics

14.4.1 Fast Connection Failover Statistics

The get FCFPr ocessi ngl nf o method provides information on recent Fast Connection Failover
(FCF) attempts in the form of a St ri ng. The FCF information is typically used to help diagnose
FCF problems. The information includes the outcome of each FCF attempt (successful or
failed), the relevant Oracle RAC instances, the number of connections that were cleaned up,
the exception that triggered the FCF attempt failure, and more. The following example
demonstrates using the get FCFPr ocessi ngl nf o method:

Sting fcfinfo = ((Oracl eIDBCConnecti onPool Stati stics)pds. get Statistics()).
get FCFProcessi ngl nfo();
Systemout. println("The FCF information: "+fcflnfo+".");

Following is a sample output string from the get FCFPr ocessi ngl nf o() method:

Cct 28, 2008 12:34:02 SUCCESS <Reason: pl anned> <Type: SERVI CE_UP> \
<Service: "svvcl"> <lnstance:"inst1"> <Db:"db1"> \
Connections: (Avail abl e=6 Affected=2 Fail edToProcess=0 MarkedDown=2 C osed=2) \
(Borrowed=6 Affected=2 Fail edToProcess=0 MarkedDown=2 Mar kedDef erredCl ose=0
d osed=2) \
Tor nDown=2 Mar kedToCl ose=2 Cardinality=2

Cct 28, 2008 12:09:52 SUCCESS <Reason: unpl anned> <Type: SERVI CE_DOM> \
<Service:"svcl"> <Instance:"inst1"> <Db:"dbl"> \
Connections: (Avai | abl e=6 Affected=2 Fail edToProcess=0 MarkedDown=2 C osed=2) \
(Borrowed=6 Affected=2 Fail edToProcess=0 MarkedDown=2 Mar kedDef erredC ose=0
d osed=2)

Cct 28, 2008 11:14:53 FAILURE <Type: HOST_DOAN> <Host:"host1"> \
Connections: (Avai | abl e=6 Affected=4 Fail edToProcess=0 MarkedDown=4 C osed=4) \
(Borrowed=6 Affected=4 Fail edToProcess=0 MarkedDown=4 Mar kedDef er redCl ose=0
0 osed=4)

If you enable logging, then the preceding information will also be available in the UCP logs and
you will be able to verify the FCF outcome.

14.4.2 Run-Time Connection Load Balance Statistics

The run-time connection load balance statistics are used to determine if a connection pool is
effectively utilizing the run-time connection load balancing feature of Oracle RAC. The statistics
report how many requests successfully used the run-time connection load balancing algorithms
and how many requests failed to use the algorithms. The

get Successf ul RCLBBasedBor r owCount method and the get Fai | edRCLBBasedBor r owCount
method, respectively, are used to get the statistics. The following example demonstrates using
the get Fai | edRCLBBasedBor r owCount method:

Long rcl bF = ((Oracl eJDBCConnecti onPool Stati stics)pds.getStatistics()).
get Fai | edRCLBBasedBor r owCount () ;
Systemout. printIn("The RCLB failure rate is: "+rclbF+".");

A high failure rate may indicate that the Oracle RAC Load Balancing Advisory or connection
pool is not configured properly.

14.4.3 Connection Affinity Statistics

The connection affinity statistics are used to determine if a connection pools is effectively
utilizing connection affinity. The statistics report the number of borrow requests that succeeded

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE’

Chapter 14
Exceptions and Error Codes

in matching the affinity context and how many requests failed to match the affinity context. The
get Successf ul Af fi ni t yBasedBor r owCount method and the

get Fai | edAf fi ni t yBasedBor r owCount method, respectively, are used to get the statistics. The
following example demonstrates using the get Fai | edAf fi ni t yBasedBor r owCount method:

Long affF = ((Oracl eJDBCConnecti onPool Statistics)pds. getStatistics()).
get Fai | edAf fi ni t yBasedBor r owCount () ;
Systemout. println("The connection affinity failure rate is: "+affF+".");

14.5 Exceptions and Error Codes

Many UCP methods throw the Uni ver sal Connect i onPool Except i on, with exception chaining
supported. You can call the pri nt St ackTr ace method on the thrown exception, to identify the
root cause of the exception. The Uni ver sal Connect i onPool Except i on includes standard
Oracle error codes that are in the range of 45000 and 45499. The get Err or Code method can
be used to retrieve the error code for an exception.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Page 8 of 8

Error Codes Reference

This appendix briefly discusses the general structure of Universal Connection Pool (UCP) error
messages, UCP error messages for the connection pool layer, and UCP error messages for
JDBC data sources and dynamic proxies. The appendix is organized as follows:

e General Structure of UCP Error Messages

e Connection Pool Layer Error Messages

» JDBC Data Sources and Dynamic Proxies Error Messages

Both the message lists are sorted by the error message number.

A.1 General Structure of UCP Error Messages

The general UCP error message structure enables run-time information to be appended to the
end of a message, following a colon, as follows:

<error_nessage>: <extra_i nfo>
For example, a cl osed st atenent error might be displayed as follows:

Cl osed Statenent: next

This indicates that the exception was thrown during a call to the next method (of a result set
object).

In some cases, the user can find the same information in a stack trace.

Universal Connection Pool Developer's Guide

G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Appendix A-1 of A-8

ORACLE Appendix A
Connection Pool Layer Error Messages

A.2 Connection Pool Layer Error Messages

This section lists UCP error messages for the connection pool layer.

@® Note

Starting with Oracle Database Release 21c, the All connections in the Universal
Connection Pool are in use exception, which typically means the exhaustion of a

pool's working set, is extended. The exception now displays messages similar to the
following message, which include a short statistics that improves UCP diagnosability:

Al'l connections in the Universal Connection Pool are in use (5, 5, 5,
0, 0, 0, 10, 150, 5, 3)

Where, the numbers after the exception message mean the following:

» The first number is the number of borrowed connections in a pool
* The second number is the number of total connections in a pool

* The third number is the cumulative number of connection created since a pool's
start up

» The fourth number is the cumulative number of connections closed since a pool's
start up

* The fifth number is the cumulative number of abandoned connections, that is,
connection processed by the abandonment timer mechanism

» The sixth number is the number of labeled connections in a pool
» The seventh number is the number of pending connection borrowing requests

* The eighth number is the number of connections to create over an existing set
until the max pool size is reached

* The ninth number is the total number of connections at its peak since a pool's start
up

e The tenth number is the number of borrowed connections at its peak since a
pool's start up

Table A-1 Connection Pool Layer Error Messages
]

Error Message Message

Number

UCP-45001 Universal Connection Pool internal error

UCP-45002 No available connections in the Universal Connection Pool
UCP-45003 Universal Connection Pool already exists

UCP-45004 Invalid connection retrieval information

UCP-45005 Callback already registered

UCP-45006 Invalid Universal Connection Pool configuration
UCP-45051 Inactive connection timeout timer scheduling failed

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Appendix A-2 of A-8

ORACLE Appendix A
Connection Pool Layer Error Messages

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message Message
Number
UCP-45052 Abandoned connection timeout timer scheduling failed
UCP-45053 Time-to-live connection timeout timer scheduling failed
UCP-45054 The Universal Connection Pool cannot be null
UCP-45055 Error when removing an available connection
UCP-45057 The Avai | abl eConnect i ons object cannot be null
UCP-45058 The Fai | over abl e object cannot be null
UCP-45059 MaxPool si ze is set to 0. There are no connections to return
UCP-45060 Invalid life cycle state. Check the status of the Universal Connection Pool
UCP-45061 Universal Connection Pool is not started. Start the Universal Connection Pool
before accessing
UCP-45062 The collection of available connections can only be set when the Universal
Connection Pool is in the initialization state
UCP-45063 Universal Connection Pool has been shutdown while attempting to get a
connection
UCP-45064 All connections in the Universal Connection Pool are in use
UCP-45065 Connection borrowing returned null
UCP-45091 Connection labeling callback already registered
UCP-45092 Borrowing labeled connection with no labeling callback registered
UCP-45093 Requested no-label connection but borrowing labeled connection
UCP-45097 Connection harvesting timer scheduling failed
UCP-45100 Connect i onFact or yAdapt er returned null
UCP-45103 Connect i onFact or yAdapt er must be an instance of
Dat aSour ceConnect i onFact or yAdapt er
UCP-45104 Connect i onFact or yAdapt er object cannot be null
UCP-45105 Connect i onFact or yAdapt er must be an instance of
Connect i onPool Dat aSour ceConnect i onFact or yAdapt er
UCP-45106 Connect i onFact or yAdapt er must be an instance of
XADat aSour ceConnect i onFact or yAdapt er
UCP-45150 Uni ver sal Pool edConnect i on cannot be null
UCP-45152 Uni ver sal Pool edConnect i onSt at us object cannot be null
UCP-45153 The connection label key cannot be null or an empty string
UCP-45154 The connection labeling operation cannot be invoked on closed connections
UCP-45155 Connection harvesting callback already registered
UCP-45156 Abandoned connection timeout callback already registered
UCP-45157 Time-to-live connection timeout callback already registered
UCP-45201 The connection label key cannot be null or an empty string
UCP-45202 The cloning of the Connect i onRet ri eval | nf o object failed
UCP-45203 The Connection Request Info is null
UCP-45251 Connect i onPool Dat aSour ce cannot be null

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Appendix A-3 of A-8

ORACLE

Appendix A
Connection Pool Layer Error Messages

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message Message

Number

UCP-45252 Invalid Connect i onRet ri eval | nf o object

UCP-45253 SQLException occurred while getting Pool edConnect i on from
Connect i onPool Dat aSour ce

UCP-45254 Invalid connection type. Must be a j avax. sql . Pool edConnecti on

UCP-45255 SQLException while closing Pool edConnecti on

UCP-45256 Data source cannot be null

UCP-45257 Cannot get Connection from Data source

UCP-45258 Invalid connection type. Must be a j ava. sql . Connecti on

UCP-45259 The connection to proxy must be an instance of j ava. sql . Connecti on

UCP-45260 XADat asour ce cannot be null

UCP-45261 SQLExcept i on occurred while getting XAConnect i on from XADat aSour ce

UCP-45262 Invalid connection type. Must be a j avax. sgl . XAConnect i on

UCP-45263 SQLExcept i on occurred while closing XAConnect i on

UCP-45264 The connection cannot be null

UCP-45265 The connection to proxy must be an instance of over st at enent

UCP-45266 The statement to proxy must be an instance of ul t raconservati ve

UCP-45267 The connection to proxy must be an instance of j avax. sql . XAConnect i on

UCP-45268 The Driver argument cannot be null

UCP-45269 The URL argument cannot be null

UCP-45301 Unable to get a connection for fail over information

UCP-45302 Unable to execute SQL query to get fail over information

UCP-45303 SQLException occurred while getting fail over information

UCP-45304 The event type cannot be null

UCP-45305 The event type is invalid. Event type must be dat abase/ event / host or
dat abase/ event / servi ce

UCP-45306 The fail over event type is invalid. It must be an | nt er gover nnent al

UCP-45307 The affinity context is invalid. It must be an | nt er connecti on

UCP-45308 Exception occurred while enabling fail over with remote ONS subscription

UCP-45350 Universal Connection Pool already exists in the Universal Connection Pool
Manager. Universal Connection Pool cannot be added to the Universal Connection
Pool Manager

UCP-45351 Universal Connection Pool not found in Universal Connection Pool Manager.
Register the Universal Connection Pool with Universal Connection Pool Manager

UCP-45352 Cannot get Universal Connection Pool Manager instance

UCP-45353 Cannot get Universal Connection Pool Manager M Bean instance

UCP-45354 M Bean Chj ect Nare is not in the right format. Use the right format to construct
(bj ect Nane for M Bean

UCP-45355 M Bean exception occurred while registering or unregistering the MBean

UCP-45356 MBean already exits in the MBeanServer. Use a different name to register MBean

Universal Connection Pool Developer's Guide
G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Appendix A-4 of A-8

ORACLE

Appendix A
Connection Pool Layer Error Messages

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message Message

Number

UCP-45357 Exception occurred when trying to register an object in the MBean server that is
not a JMX compliant MBean

UCP-45358 The specified MBean does not exist in the repository

UCP-45359 Invalid target object type is specified. Check the managed resource

UCP-45360 Invalid MBean Descriptor is specified. Check the Universal Connection Pool
Manager MBean Descriptor

UCP-45361 Runtime exception occurred while building MBeaninfo for Universal Connection
Pool Manager MBean

UCP-45362 Runtime exception occurred while building constructors information for Universal
Connection Pool Manager MBean

UCP-45363 Runtime exception occurred while building attributes information for Universal
Connection Pool Manager MBean

UCP-45364 Runtime exception occurred while building operations information for Universal
Connection Pool Manager MBean

UCP-45365 Universal Connection Pool must be an instance of Connect i onConnect i onPool
or Oracl eConnect i onConnect i onPool

UCP-45366 Invalid MBean Descriptor is specified. Check the JDBC Universal Connection Pool
MBean Descriptor

UCP-45367 Runtime exception occurred while building MBeanl nf o for JDBC Universal
Connection Pool MBean

UCP-45368 Runtime exception occurred while building constructors information for JDBC
Universal Connection Pool MBean

UCP-45369 Runtime exception occurred while building attributes information for JDBC
Universal Connection Pool MBean

UCP-45370 Runtime exception occurred while building operations information for JDBC
Universal Connection Pool MBean

UCP-45371 Runtime exception occurred while building attributes information for Universal
Connection Pool MBean

UCP-45372 Runtime exception occurred while building operations information for Universal
Connection Pool MBean

UCP-45373 Invalid MBean Descriptor is specified. Check the Universal Connection Pool
MBean Descriptor

UCP-45374 Runtime exception occurred while building MBean! nf o for Universal Connection
Pool MBean

UCP-45375 Cannot stop the UCP metric collection. Exception occurred while trying to stop the
metric collection or while destroying the nouns or sensors.

UCP-45376 Metrics update timer task scheduling failed

UCP-45377 Problem occurred while updating UCP metric sensors

UCP-45378 Universal Connection Pool is not an instance of Or acl eJDBCConnect i onPool
and cannot access ONSConf i gur at i on property

UCP-45379 Cannot set the connection pool name in Universal Connection Pool MBean. Check
the connection pool name to avoid duplicates

UCP-45380 MBean object is null

UCP-45381 MBean object name is null

Universal Connection Pool Developer's Guide
G44295-01

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Appendix A-5 of A-8

ORACLE

Appendix A
JDBC Data Sources and Dynamic Proxies Error Messages

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message

Number

Message

UCP-45382
UCP-45383
UCP-45384
UCP-45385
UCP-45386
UCP-45401
UCP-45402
UCP-45403
UCP-45404
UCP-45405
UCP-45406
UCP-45407
UCP-45408

MBean display name is null

Invalid adapter for pool creation in Universal Connection Pool Manager

Invalid adapter for pool creation in Universal Connection Pool Manager MBean
Error during pool creation in Universal Connection Pool Manager

Error during pool creation in Universal Connection Pool Manager MBean
Waiting threads LO watermark cannot be negative

Waiting threads HI watermark cannot be negative

Total worker threads limit cannot be negative

Queue poll timeout cannot be negative

The waiting threads HI watermark cannot be lower than the LO watermark
The limit of total worker threads cannot be higher than the limit of waiting threads
The error number is out of range

Invalid operation because the logger is null

A.3 JDBC Data Sources and Dynamic Proxies Error Messages

This section lists the UCP error messages for JDBC data sources and dynamic proxies error

messages.

Table A-2 JDBC Data Sources and Dynamic Proxies Error Messages

Error Message

Number

Message

UCP-0
UCP-1
UCP-2
UCP-3
UCP-4
UCP-5
UCP-6
UCP-7
UCP-8
UCP-9
UCP-10
UCP-11
UCP-12
UCP-13
UCP-14
UCP-15

Universal Connection Pool Developer's Guide

G44295-01

Unable to start the UCP

Unable to build the UCP

Invalid minimum pool size

Invalid maximum pool size

Invalid inactive connection timeout
Invalid connection wait timeout

Invalid time-to-live connection timeout
Invalid abandoned connection timeout
Invalid timeout check interval

Failed to enable Failover

Failed to set the max St at ement s value
Failed to set the SQL string for validation
Invalid connection harvest trigger count
Invalid connection harvest max count
UCP is created already. Can not create the UCP again

Exception occurred while destroying the UCP

October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Appendix A-6 of A-8

ORACLE Appendix A
JDBC Data Sources and Dynamic Proxies Error Messages

Table A-2 (Cont.) JDBC Data Sources and Dynamic Proxies Error Messages

Error Message Message

Number

UCP-16 Operation only applies to Oracle connection pools

UCP-17 Exception occurred while setting ONS configuration string

UCP-18 Failed to register labeling callback

UCP-19 Failed to remove labeling callback

UCP-20 Failed to register affinity callback

UCP-21 Failed to remove affinity callback

UCP-22 Invalid UCP configuration

UCP-23 Unable to create factory class instance with provided factory class name

UCP-24 Unable to set the User

UCP-25 Unable to set the Password

UCP-26 Unable to set the URL

UCP-27 The factory class must be an instance of Dat aSour ce

UCP-28 Cannot create connections. There are no available connections

UCP-29 Exception occurred while getting connection

UCP-30 UCP is not started

UCP-31 The connection is closed

UCP-32 Error occurred when applying label

UCP-33 Error occurred when removing the connection label

UCP-34 Error occurred when getting labels

UCP-35 Error occurred when getting unmatched labels

UCP-36 Error occurred when setting connection harvestable

UCP-37 Error occurred when registering harvesting callback

UCP-38 Error occurred when removing harvesting callback

UCP-39 Error occurred when registering abandoned-connection callback

UCP-40 Error occurred when removing abandoned-connection callback

UCP-41 Error occurred when registering time-to-live-connection callback

UCP-42 Error occurred when removing time-to-live-connection callback

UCP-43 The result set is closed

UCP-44 The statement is closed

UCP-45 Cannot set the connection pool name. Check the connection pool name to avoid
duplicates

UCP-46 The SQL string is null

UCpP-47 Error occurred when setting connection to be invalid

UCP-48 Unable to set the Connection properties

UCP-49 Unable to set the Database server name

UCP-50 Unable to set the Database port number

UCP-51 Unable to set the Database hame

UCP-52 Unable to set the data source name

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Appendix A-7 of A-8

ORACLE

Appendix A

JDBC Data Sources and Dynamic Proxies Error Messages

Table A-2 (Cont.) JDBC Data Sources and Dynamic Proxies Error Messages

Error Message Message

Number

UCP-53 Unable to set the data source description
UCP-54 Unable to set the data source network protocol
UCP-55 Unable to set the data source role name
UCP-56 Invalid max connection reuse time

UCP-57 Invalid max connection reuse count

UCP-58 The method is disabled

UCP-59 Unable to set the connection factory properties

Universal Connection Pool Developer's Guide
G44295-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-8 of A-8

UCP Exception Error Codes

This appendix contains a list of useful or acl e. ucp. Uni ver sal Connect i onPool Excepti on error
codes.

Uni versal Connection Pool error code range is 45000 - 45499 in RDBMS.
An error nunber is an offset fromthe base error code 45000.

*
*
*
*
* The error nunmbers are organi zed first by package; and then within

* each package, by main conponents. These are indicated with the

* use of particular sub strings within the error nunbers' field nanes.
*

*

*

*

*

*

Wien adding a new error nunber, if it needs to be mapped to a
speci fic pool exception subclass, define the error nunber to be
smal | er than UCP_RANGED MAPPI NG BASE. CQtherwise, define it to be
I arger than UCP_RANGED MAPPI NG BASE, so that it can be mapped to
a generic Universal Connecti onPool Excepti on.

*/

public static final int UCP_ERROR CODE BASE = 45000;

public static final int UCP_MAX ERRORS = 500;

public static final int UCP_SUCCESS = 0;
public static final int UCP_GENERI C ERRCR = 1;

/1 Error nunbers that are mapped to specific pool exceptions
public static final int UCP_NO AVAI LABLE_CONNECTI ONS = 2;
public static final int UCP_POOL_ALREADY_EXI STS = 3;

public static final int UCP_I NVALI D RETRI EVAL_CREDENTI ALS = 4;
public static final int UCP_CALLBACK _ALREADY REG STERED = 5;
public static final int UCP_I NVALI D_POOL_CONFI GURATI ON = 6;

/*
* All error nunmbers >= this number will be mapped to a generic
* Uni ver sal Connecti onPool Exception. Error nunbers smaller than this
* have specific mappings to a Universal Connecti onPool Exception subcl ass.
*/
public static final int UCP_RANGED MAPPI NG BASE = 50;

/1 POOL (oracle.ucp.comon) - use _COVWON POOL_

[l Error number 50 is available for use

public static final int UCP_COMMON_POCL_I NACTI VE_TI MER_SCHEDULE = 51;
public static final int UCP_COMMON_POCL_ABANDONED TI MER_SCHEDULE = 52;
public static final int UCP_COVWON POOL_TTL_TI MER_SCHEDULE = 53;

public static final int UCP_COMWON POOL_NULL = 54;

public static final int UCP_COMMON_POCL_RM AVAIL_CONN = 55;

public static final int UCP_COVMON_POOL_NO VALI D CONNECTI ON = 56;
public static final int UCP_COVMON_POCL_AVAI LABLECONNECTI ONS_NULL = 57;

[
[
[
[
[
[
[
public static final int UCP_COMMON POCL_FAI LOVERABLE NULL = 58;

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Appendix B-1 of B-4

ORACLE

public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi

/] Error nunbers 69

public static fi
public static fi
public static fi

nal
nal
nal
nal
nal
nal
nal
nal
nal
nal

nal
nal
nal

/! Error nunbers 94 -

public static fi

nal

i nt
i nt
i nt
i nt

nt

i nt
i nt
i nt
i nt

nt

UCP_COMMVON_POOL_NOCONNECTI ONS = 59;
UCP_COMMON_POOL_| NVALI D_LI FECYCLE_STATE
UCP_COMMON_POOL_NOTSTARTED = 61;
UCP_COMMON_POOL_SETAVAI LABLECONNECTI ONS
UCP_COMMON_POOL_SHUTDOWN = 63;
UCP_COMMON_POOL_ALLCONNECTI ONS_| NUSE = 64;
UCP_COMMON_POOL_ABOUT_TO SHUTDOWN = 65;

Appendix B

60;

62;

UCP_COMMON_POCL_| NSUFFI CI ENT_I NI TI AL_CONNECTI ONS = 66;
UCP_COMMON_POOL_UNABLE_TO CREATE_CONNECTI ON = 67;

SQL_AC I NI T_CALLBACK_ERRCR = 68;

90 are available for use
int UCP_COVMON POOL_LABELI NG CBK REQ STERED = 91;
int UCP_COVMON POOL_NO LABELI NG CBK = 92;
int UCP_COVMON POOL_LABEL BORROWN M SMATCH = 93;
96 are available for use
i nt UCP_COWON POOL_HARVEST TI MER SCHEDULE = 97,

/1 Connection factory adapter - use _COVMON CFA
int UCP_COVWON CFA RETURNED NULL = 100;
/1 Error nunbers 101 - 102 are available for use

public static fi

public static fi
public static fi
public static fi
public static fi

/1 Universal pooled

public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi

nal

nal
nal
nal
nal

nal
nal
nal
nal
nal
nal
nal
nal
nal

int UCP_COMMON_CFA | NSTANCE ERRCRL = 103;
int UCP_COMMON_CFA NULL = 104;

i nt UCP_COMMON_CFA | NSTANCE_ERROR2 = 105;
int UCP_COVMMON_CFA | NSTANCE_ERROR3 = 106;

connection - use _COMMON UPC_

nt
nt
nt
nt
nt

UCP_COMMON_UPC NULL = 150;
UCP_COMMON_UPC WRONG SQL = 151;
UCP_COMMON_UPC_STATUS_NULL = 152;
UCP_COVMMON_UPC_LABEL_KEY EMPTY = 153;
UCP_COMMON_UPC_CLOSED = 154;

nt UCP_COVMON_UPC_HARVESTI NG CBK_REG STERED = 155;
nt UCP_COVMMON_UPC_ABANDONED_CBK_REGH STERED = 156;

nt
nt

/] Connection retrieval

UCP_COMMON_UPC TTL_CBK_REG STERED = 157;
UCP_COMMON_UPC BAD = 158;

info - use CRI _

/! Error nunmber 200 is available for use

public static fi
public static fi
public static fi
public static fi

nal
nal
nal
nal

/1 JDBC POCL (oracle.

[l Error nunmber 250

public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi

Universal Connection Pool Developer's Guide
G44295-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

nal
nal
nal
nal
nal
nal
nal
nal
nal

nt

nt

i nt

UCP_COMVON_CRI _LABEL_KEY EMPTY = 201;

UCP_COWWON_CRI_NULL = 203;
UCP_COMMON_SERVI CE_M SMATCH = 204;

ucp.jdbc) - use _JDBC_

s available for use
UCP_JDBC_CONNECTI ONPOOLDATASQURCE NULL = 251;
UCP_JDBC | NVALI D_CONNECTI ONRETRI EVALI NFO OBJECT = 252;
UCP_JDBC_CONNECTI ONPOOLDATASOURCE _SQLEXCEPTI ON = 253;

nt
nt
nt
nt
nt
nt
nt
nt
nt

UCP_JDBC_| NVALI D_CONNECTI ONTYPE = 254;
UCP_JDBC_CONNECTI ONCLOSE_EXCEPTI ON = 255;
UCP_JDBC DATASOURCE NULL = 256;
UCP_JDBC_GETCONNECTI ON_EXCEPTI ON = 257;

int UCP_COWMON_CRI_NOLABEL_CLONE_FAI LURE = 202;

UCP_JDBC_| NVALI D_PROXY_CONNECT! ONTYPE = 258;

UCP_JDBC_PROXY_CONNECTI ON_EXCEPTI ON = 250;

October 13, 2025
Appendix B-2 of B-4

ORACLE

public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
273;

public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi

/1 Oracle JDBC POCL

[l Error nunmber 300

public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
311;

public static fi
public static fi
public static fi
314;

/1 Admin (oracle. ucp.

public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi
public static fi

Universal Connection Pool Developer's Guide
G44295-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal

nal
nal
nal
nal
nal
nal
nal

nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal

nal
nal
nal

nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

i nt
i nt
i nt

nt

i nt
i nt
i nt

Appendix B

UCP_JDBC_NOT_XADATASOURCE_NULL = 260;
UCP_JDBC_XADATASOURCE_SQLEXCEPTI ON = 261;

UCP_JDBC_| NVALI D_XACONNECTI ONTYPE = 262;
UCP_JDBC_XACONNECTI ONCLOSE_EXCEPTI ON = 263;
UCP_JDBC_CONNECTI ON_NULL = 264;
UCP_JDBC_PROXY_STATEMENT EXCEPTI ON = 265;
UCP_JDBC_PROXY_RESULTSET EXCEPTI ON = 266;
UCP_JDBC_PROXY_XACONNECTI ON_EXCEPTI ON = 267;
UCP_JDBC DRI VER NULL = 268;

UCP_JDBC_URL_NULL = 269;

UCP_JDBC POOL_I NI T_CBK_REG STERED = 270;
UCP_JDBC_POCL_| NI T_CBK_FAI LURE = 271;

UCP_JDBC_| NVALI D_USE_OF SHARED POOL = 272;
UCP_JDBC_NON_SHARED POOL_| NVALI D_CONFI G_EXCEPTI ON =

UCP_JDBC_UNABLE_TO SET_QUERY_TI NEQUT = 274;
UCP_JDBC DUPLI CATE_POCL_NAME = 275;

UCP_JDBC_DUPLI CATE_DATASOURCE_NAME = 276;
UCP_JDBC M SSI NG_SHARD_KEY_CONNECTI ON_REQUEST = 277;
UCP_JDBC | NVALI D_CONNECTI ON_REQUEST PARANETER = 278;
UCP_JDBC_CANNOT_RECONFI GURE_MAX_PER SERVI CE = 279;
UCP_JDBC | NVALI D_GLOBAL_SERVI CE_NAME = 280;

(oracle.ucp.jdbc.oracle) - use JDBC ORACLE

nt

i nt
i nt
i nt
i nt
i nt

nt
nt
nt

is available for use
i nt
i nt
i nt
i nt
i nt

UCP_JDBC_ORACLE_FOVR_CONN_NULL = 301;
UCP_JDBC_ORACLE_FOVR_CONN_QUERY = 302;
UCP_JDBC_ORACLE_FOVR CONN_SQLEXC = 303;
UCP_JDBC_ORACLE_EVENTTYPE_NULL = 304;
UCP_JDBC_ORACLE_| NVALI D_EVENTTYPE = 305;
UCP_JDBC_ORACLE_| NVALI D_FAI LOVER EVENTTYPE = 306;

UCP_JDBC_ORACLE | NVALI D_AFFI NI TY_CXT = 307;
UCP_JDBC_ORACLE_REMOTE_ONS_PRI VI LEGE = 308;
UCP_JDBC_ORACLE BEG NREQUEST FAI LURE = 309;

UCP_JDBC_ORACLE_ENDREQUEST_FAI LURE = 310;
UCP_JDBC_ORACLE_NO AVAI L_CONN_FOR STRI CT_AFFINITY =

UCP_JDBC_ORACLE_REMOTE_ONS_INIT = 312;
UCP_JDBC_ORACLE_AUTO ONS_CONFI G = 313;
UCP_JDBC_ORACLE_| NVALI D_RAC DATA AFFI NI TY_CONFI G =

adnin) - use _ADM N_

nt

i nt
i nt
i nt
i nt
i nt

nt

i nt
i nt
i nt
i nt
i nt

UCP_ADM N_MGR_POOL_ALREADY_EXI STS = 350;
UCP_ADM N_MGR_POOL_DOESNOT_EXI ST = 351;
UCP_ADM N_MGR_CANNOT_GETI NSTANCE = 352;
UCP_ADM N_MGRVBEAN CANNOT GETI NSTANCE = 353;
UCP_ADM N_MBEAN MALFORM OBJECTNAME = 354;
UCP_ADM N_MBEAN REG UNREG EXCEPTI ON = 355;
UCP_ADM N_MBEAN | NSTANCE_EXI STS = 356;
UCP_ADM N_MBEAN NOT_COVPLI ANT = 357;

UCP_ADM N_MBEAN | NSTANCE_NOTFOUND = 358;
UCP_ADM N_MBEAN | NVALI D_TARGET = 359;

UCP_ADM N_MGRVBEAN_DESCRI PTOR_EXCEPTI ON = 360;
UCP_ADM N_MGRVBEAN_MBEANI NFO_EXCEPTI ON = 361;

October 13, 2025
Appendix B-3 of B-4

ORACLE

public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static

public static
public static
public static

/I Wilities (oracle.
Il Wilities -

[l Error nunmber 400

public static
public static
public static
public static
public static
public static

public static
public static

final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final

final
final
final

nt
nt

nt
nt

nt
nt

nt
nt

nt
nt

nt
nt

nt
nt

nt

nt

nt

nt

Appendix B

UCP_ADM N_MGRVBEAN CONI NFO_EXCEPTI ON = 362;
UCP_ADM N_MGRVBEAN_ATTRI NFO_EXCEPTI ON = 363;
UCP_ADM N_MGRVBEAN_OPERI NFO_EXCEPTI ON = 364;
UCP_ADM N_JDBCPOOLMBEAN_| NSTANCE = 365;

UCP_ADM N_JDBCPOOLMBEAN DESCRI PTOR EXCEPTI ON = 366;
UCP_ADM N_JDBCPOOLMBEAN MBEANI NFO_EXCEPTI ON = 367;
UCP_ADM N_JDBCPOOLMBEAN_CONI NFO _EXCEPTI ON = 368;
UCP_ADM N_JDBCPOOLMBEAN_ATTRI NFO_EXCEPTI ON = 3609;
UCP_ADM N_JDBCPOOLMBEAN_OPERI NFO_EXCEPTI ON = 370;
UCP_ADM N_COMMONPOOLMBEAN_ATTRI NFO_EXCEPTI ON = 371;
UCP_ADM N_COMVONPOOLMBEAN OPERI NFO_EXCEPTI ON = 372;
UCP_ADM N_COMMONPOOLMBEAN DESCRI PTOR_EXCEPTI ON = 373;
UCP_ADM N_COMMONPOOLMBEAN_MBEANI NFO_EXCEPTI ON = 374;
UCP_ADM N_STOP_METRI C_COLLECTI ON = 375;

UCP_ADM N_NMETRI C_UPDATE_TI MER = 376;

UCP_ADM N_METRI C_UPDATE_SENSCRS = 377;

UCP_ADM N_JDBCPOOLMBEAN ORACLEPCOL_NULL = 378;
UCP_ADM N_COMMONPOOLVBEAN CANNOT_SET_POOLNAME = 379;
UCP_ADM N_MBEAN NULL = 380;

UCP_ADM N_MBEAN OBJNAME NULL = 381;

UCP_ADM N_NMBEAN DI SPLAYNAME NULL = 382;

UCP_ADM N_MGR_| NVALI D_ADAPTER = 383;

UCP_ADM N_MGRVBEAN_ | NVALI D_ADAPTER = 384;

UCP_ADM N_MGR_POOL_CREATI ON = 385;

UCP_ADM N_MGRVBEAN POOL_CREATI ON = 386;

UCP_POOL_CONFI GURATI ON_| NVALI D_XM. = 387;
UCP_POOL_RECONFI GURATI ON_| NVALI D_XM. = 388;
UCP_POOL_MAX_PER SHARD LI M T_EXCEEDED = 389;

ucp.util) - use _UTIL_ or _WP_

VWrker Thread Pool (WIP) - use _WIP_

final
final
final
final
final
final

final
final

s available for use

nt
nt
nt
nt
nt
nt

nt
nt

UCP_WIP_M N_WAI TI NG THREADS_NEGATI VE = 401;
UCP_WIP_MAX_WAI TI NG THREADS_NEGATI VE = 402;
UCP_WIP_MAX_TOTAL_THREADS NEGATI VE = 403;
UCP_WIP_QUEUE_POLL_TI MEQUT_NEGATI VE = 404;
UCP_WIP_WAI TI NG THREADS_M N_GT_MAX = 405;
UCP_WIP_TOTAL_THREADS LT WAl TI NG = 406;

UCP_UTI L_ERROR OUT_OF_RANGE = 407;
UCP_UTI L_NULL_LOGGER = 408;

{1 Error numbers for WS JTA support
int UCP_W.S XA AFFI NI TY_VI CLATION = 420

public static

final

Universal Connection Pool Developer's Guide

G44295-01

Copyright © 1999, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-4 of B-4

Index

A

abandon connection timeout property, 6
AbandonedConnectionTimeoutCallback, 1
admin package, 3
affinity
transaction-based, 16
web session, 15
application continuity
connection initialization callback, 2
connection labeling, 2
data source configuration, 1
Application Continuity, 1
applyConnectionLabel, 5
applying connection labels, 5

B

basic connection example, 4
benefits of connection pools, 1
benefits of FCF, 3
benefits of run-time connection load balancing, 14
borrowing connections
basic steps, 2
conceptual architecture, 2
labeled, 6
overview, 1
using JNDI, 5
using the pool-enabled data source, 2
using the pool-enabled XA data source, 4

C

caching statements, 11
callback
connection affinity, 18
labeling, 2
checking unmatched labels, 6
closing connections, 11
conceptual architecture, 2
configure method, 2
Configuring ONS, 6
client-side daemon configuration, 10
Remote Configuration, 9
connection affinity
create callback, 18

Universal Connection Pool Developer's Guide
G44295-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

connection affinity (continued)
overview, 15
register callback, 19
remove callback, 19
setting up, 17
statistics, 7
transaction-based, 16
web session, 15
Connection Creation Consumer, 1
connection factory, 2
conceptual architecture, 2
requirements, 1
setting, 2, 4
connection labels
apply, 5
check unmatched, 6
implement callback, 2
overview, 1
removing, 7
Connection object, 2
connection pool
benefits, 1
create explicitly, 2
create implicitly, 1, 1
destroy, 3
general overview, 1
maintenance, 4
purge, 5
recycle, 4
refresh, 4
remove connection from, 11
start, 3
stop, 3
understanding lifecycle, 1
connection pool manager,
create, 1
create pool explicitly, 2
destroy pool, 3
overview, 3, 1
purge pool, 5
recycle pool, 4
refresh pool, 4
start pool, 3
stop pool, 3
connection pool properties,
abandon connection timeout, 6

October 13, 2025
Index-1 of Index-4

connection pool properties (continued)
connection wait timeout, 8
harvest maximum count, 10
harvest trigger count, 10
inactive connection timeout, 8

inactive connection timeout property, 8

initial pool size, 2
maximum connection reuse count, 6
maximum connection reuse time, 5
maximum pool size, 3
maximum statements, 12
minimum pool size, 2
optimizing, 1
overview, 3
setlnactiveConnectionTimeout, 8
setting, 7, 1
time-to-live connection timeout, 7
timeout check interval, 9
timeout properties
inactive, 8
validate on borrow, 8
connection properties, 4
connection reuse properties, setting, 5
connection steps, basic, 2
example, 4
connection URL, 12
connection wait timeout property, 8
ConnectionAffinityCallback interface, 18

ConnectionLabelingCallback interface, 1, 2

connections
basic steps, 2
borrowing, 1
borrowing labeled, 6
borrowing using JNDI, 5
checking if valid, 9
closing, 11
controlling stale, 4
harvesting, 9
labeling, 1
removing from the pool, 11
run-time load balancing, 13
using affinity, 15
validate on borrow, 8

cost method, 2

create connection pool
explicit, 2
implicit, 2

D

E

Index

data source
PoolDataSource, 2, 2
PoolXADataSource, 2, 4
database requirements, 1
destroyConnectionPool, 3
destroying a connection pool, 3

Universal Connection Pool Developer's Guide
G44295-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

enable FCF property, 6

errors
connection pool layer messages, A-2
general UCP message structure, A-1

JDBC data sources and dynamic proxies

messages, A-6
example
basic connection, 4
connection affinity callback, 18
FCF, 5
labeling callback, 3

F

fast connection failover
prerequisites, 5
Fast Connection Failover
See FCF
FCF,
configure connection URL, 12
configure ONS, 6
enable, 6
example, 5
statistics, 7

G

GDS, 20

getAffinityPolicy, 18

getConnection methods, 3, 6
getPoolDataSource, 2
getPoolXADataSource, 4
getStatistics, 6

getting a connection, 3

getting an XA connection, 4
getUniversalConnectionPoolManager, 1
getUnmatchedConnectionLabels, 6
getXAConnection methods, 4
Global Data Services, 20

H

harvest connections, 9

harvest maximum count property, 10
harvest trigger count property, 10
HarvestableConnection interface, 10
high availability, 3, 1

initial pool size property, 2
integration

third-party, 11
isvalid, 9

October 13, 2025
Index-2 of Index-4

Index

Oracle RAC (continued)

J run-time connection load balancing, 13
statistics, 6
JDBC connection pool Oracle RAC Load Balance Advisory, 13
See UCP overview
JDBC driver connection pool manager, 1
connection properties, 4 connection pool properties, 1
requirements, 1 connection pools, general, 1
jdbc package, 3 connection steps, 2
JNDI, 5 high availability and performance features, 3
JRE requirements, 1 labeling connections, 1
Oracle RAC features, 1
L UCP, 2
LabelableConnection interface, 1, 5 P
labeled connections
apply label, 5 password, 2, 3, 4
borrowing, 6 pool manager
check unmatched, 6 See connection pool manager
implement callback, 2 pool properties
overview, 1 See connection pool properties
remove label, 7 pool size, controlling
labeling callback initial size, 2
create, 2 maximum, 3
example, 3 minimum, 2
register, 4 pool-enabled data source
removing, 4 create instance, 2
run-time algorithm, 3 pool-enabled XA data source
lifecycle of connection pools, 1 create instance, 4
lifecycle states, 2 PoolDataSource interface, 2, 2
Load Balance Advisory, 13 PoolDataSourceFactory class, 2, 4
load balancing, 13 PoolDataSourcelmpl, 11

PoolXADataSource interface, 2, 4
PoolXADataSourcelmpl, 11

M purgeConnectionPool, 5

purging a connection pool, 5

manager, connection pool, 1
maximum connection reuse count property, 6

maximum connection reuse time property, 5 R

maximum pool size property, 3 —

maximum statements property, 12 Real Application Clusters
method, 4 See Oracle RAC, 2
Minimal Pool configuration, 5 recycleConnectionPool, 4
minimum pool size property, 2 recycling a connection pool, 4

refreshConnectionPool, 4

refreshing a connection pool, 4
O registerConnectionAffinityCallback, 19
ONS. 6 registerConnectionLabelingCallback, 4
ons.config file, 6 removeConnectionAffinityCallback, 19

optimizing a connection pool, 1 emoveComnetionLabelingCallback, 4
Oracle Client software, 6 9 !

Oracle Client software requirements, 1 removing connection labels, 7

Oracle Notification Service removing cor_mecnons from the pool, 11
See ONS reuse prpperltes

Oracle RAC maximum count, 6

reuse properties
maximum time, 5

connection affinity, 15
features overview, 1

Universal Connection Pool Developer's Guide
G44295-01 October 13, 2025

Copyright © 1999, 2025, Oracle and/or its affiliates. Index-3 of Index-4

run-time connection load balancing
overview, 13
setting up, 14
statistics, 7

S

SERVICE_TIME, 14
setAbandonedConnectionTimeout, 6
setAffinityPolicy, 18
setConnectionAffinityContext, 18
setConnectionFactoryClassName, 2, 4
setConnectionHarvestable, 10
setConnectionHarvestMaxCount, 10
setConnectionHarvestTriggerCount, 10
setConnectionProperties, 4
setConnectionWaitTimeout, 8
setFastConnectionFailoverEnabled, 6
setlnitialPoolSize, 2
setlnvalid, 9, 11
setMaxConnectionReuseCount, 6
setMaxConnectionReuseTime, 5
setMaxPoolSize, 3
setMaxStatements, 12
setMinPoolSize, 2
setONSConfiguration, 6
setPassword, 3, 4
setSQLForValidateConnection, 8
setTimeoutCheckinterval, 9
setTimeToLiveConnectionTimeout, 7
setURL, 3, 4
setUser, 3, 4
setValidateConnectionOnBorrow, 8
SHORT, 14
SQL statement caching, 11
stale connections, 4
startConnectionPool, 3
starting a connection pool, 3
statement caching, 11
statistics

connection affinity, 7

FCF, 7

Oracle RAC, 6

run-time connection load balancing, 7
stopConnectionPool, 3
stopping a connection pool, 3
system properties, 3

T

third-party integration, 11

Universal Connection Pool Developer's Guide
G44295-01
Copyright © 1999, 2025, Oracle and/or its affiliates.

THROUGHPUT, 14
time-to-live connection timeout property, 7
timeout check interval property, 9
timeout properties

abandon, 6

check interval, 9

time-to-live, 7

wait, 8
TimeToLiveConnectionTimeoutCallback, 1
transaction-based affinity, 16

U

Index

UCP,
basic connection steps, 1
conceptual architecture, 2
Oracle RAC features, 1
overview, 2
UCP for JDBC
connection pool properties, 7, 1
UCP manager
See connection pool manager
ucp package, 3
universal connection pool
See UCP

UniversalConnectionPoolManager interface, 1

UniversalConnectionPoolManagerimpl, 1
unmatched labels, 6

URL, 2, 3,4, 12

username, 2, 3, 4

V

validate connections
on borrow, 8
programmatically, 9
ValidConnection interface, 9, 11

w

web session affinity, 15

X

XA connections, 2, 4
XAConnection object, 2

October 13, 2025
Index-4 of Index-4

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	Changes in This Release for Oracle Universal Connection Pool Developer's Guide
	Changes in Oracle AI Database 26ai
	New Features

	1 Introduction to UCP
	1.1 Overview of Connection Pool
	1.2 Benefits of Using a Connection Pool
	1.3 Overview of Universal Connection Pool
	1.3.1 Conceptual Architecture
	1.3.2 Connection Pool Properties
	1.3.3 Connection Pool Manager
	1.3.4 High Availability and Performance Scenarios

	2 Getting Started
	2.1 Requirements for using UCP
	2.2 Basic Connection Steps in UCP
	2.2.1 Authentication in UCP
	2.2.2 Authentication Using IAM Database Access Tokens in Oracle Cloud Infrastructure

	2.3 UCP API Overview
	2.4 UCP System Properties
	2.5 Basic Connection Example Using UCP
	2.6 Minimal Pool configuration

	3 Getting Database Connections in UCP
	3.1 About Borrowing Connections from UCP
	3.1.1 Overview of Borrowing Connections from UCP
	3.1.1.1 Connection Creation Using Background Threads

	3.1.2 Using the Pool-Enabled Data Source
	3.1.3 Using the Pool-Enabled XA Data Source
	3.1.4 Setting Connection Properties
	3.1.5 Using JNDI to Borrow a Connection
	3.1.6 About Connection Initialization Callback
	3.1.6.1 Overview of Connection Initialization Callback
	3.1.6.2 Creating an Initialization Callback
	3.1.6.3 Registering an Initialization Callback
	3.1.6.4 Removing or Unregistering an Initialization Callback

	3.2 Setting Connection Pool Properties for UCP
	3.3 Overview of Validating Connections in UCP
	3.3.1 Validating When Borrowing
	3.3.2 Minimizing Connection Validation with setSecondsToTrustIdleConnection() Method
	3.3.3 Checking If a Connection Is Valid

	3.4 Returning Borrowed Connections to UCP
	3.5 Removing Connections from UCP
	3.6 UCP Integration with Third-Party Products

	4 Connection Creation Consumer
	4.1 Implementing a Connection Creation Consumer

	5 Optimizing Universal Connection Pool Behavior
	5.1 Optimizing Connection Pools
	5.2 About Controlling the Pool Size in UCP
	5.2.1 Setting the Initial Pool Size
	5.2.2 Setting the Minimum Pool Size
	5.2.3 Setting the Maximum Pool Size
	5.2.4 Setting the Minimum Idle Connection Number

	5.3 Real-World Performance Considerations with Respect to Connection Pool Sizes
	5.4 Stale Connections in UCP
	5.4.1 What is Connection Reuse?
	5.4.1.1 Setting the Maximum Connection Reuse Time
	5.4.1.2 Setting the Maximum Connection Reuse Count

	5.4.2 Setting the Connection Validation Timeout
	5.4.3 Setting the Abandon Connection Timeout
	5.4.4 Setting the Time-To-Live Connection Timeout
	5.4.5 Setting the Connection Wait Timeout
	5.4.6 Setting the Inactive Connection Timeout
	5.4.7 Setting the Query Timeout
	5.4.8 Setting the Timeout Check Interval

	5.5 About Harvesting Connections in UCP
	5.5.1 Overview of Harvesting Connections in UCP
	5.5.2 Setting a Connection to Harvestable
	5.5.3 Setting the Harvest Trigger Count
	5.5.4 Setting the Harvest Maximum Count

	5.6 About Caching SQL Statements in UCP
	5.6.1 Overview of Statement Caching in UCP
	5.6.2 Enabling Statement Caching in UCP

	5.7 UCP Best Practices

	6 Labeling Connections in UCP
	6.1 Overview of Labeling Connections in UCP
	6.2 Implementation of a Labeling Callback in UCP
	6.2.1 When to Use a Labeling Callback in UCP
	6.2.2 Creating a Labeling Callback in UCP
	6.2.2.1 Example of Labeling Callback in UCP

	6.2.3 Registering a Labeling Callback in UCP
	6.2.4 Removing a Labeling Callback in UCP

	6.3 Integration of UCP with DRCP
	6.4 Applying Connection Labels in UCP
	6.5 Borrowing Labeled Connections from UCP
	6.6 Checking Unmatched Labels in UCP
	6.7 Removing a Connection Label in UCP

	7 Controlling Reclaimable Connection Behavior
	7.1 AbandonedConnectionTimeoutCallback Interface
	7.2 TimeToLiveConnectionTimeoutCallback Interface

	8 Using the Connection Pool Manager
	8.1 Overview of Using the UCP Manager
	8.1.1 About Connection Pool Manager
	8.1.2 Creating a Connection Pool Manager for UCP
	8.1.3 Life Cycle States of a Connection
	8.1.3.1 Creating a Connection Pool
	8.1.3.2 Starting a Connection Pool
	8.1.3.3 Stopping a Connection Pool
	8.1.3.4 Destroying a Connection Pool

	8.1.4 Maintenance of Universal Connection Pool
	8.1.4.1 Refreshing a Connection Pool
	8.1.4.2 Recycling a Connection Pool
	8.1.4.3 Purging a Connection Pool

	8.2 Overview of JMX-Based Management in UCP
	8.2.1 UniversalConnectionPoolManagerMBean
	8.2.2 UniversalConnectionPoolMBean

	9 Shared Pool Support for Multitenant Data Sources
	9.1 Overview of Shared Pool Support
	9.2 Prerequisites for Supporting Shared Pool
	9.3 Configuring the Shared Pool
	9.4 UCP APIs for Shared Pool Support
	9.5 Sample XML Configuration File for Shared Pool

	10 Using Oracle RAC Features
	10.1 Overview of Oracle RAC Features
	10.2 About Fast Connection Failover
	10.2.1 Overview of Fast Connection Failover
	10.2.2 What is Fast Connection Failover?
	10.2.2.1 What the Application Sees
	10.2.2.2 How FCF Works

	10.2.3 Fast Connection Failover Prerequisites
	10.2.4 Example of Fast Connection Failover Configuration
	10.2.5 Enabling Fast Connection Failover
	10.2.6 What is ONS?
	10.2.6.1 Overview of ONS Configuration File
	10.2.6.2 Remote Configuration of ONS
	10.2.6.3 Configuration of Client-Side ONS Daemon

	10.2.7 Configuring the Connection URL

	10.3 About Run-Time Connection Load Balancing
	10.3.1 Overview of Run-Time Connection Load Balancing
	10.3.2 Setting Up Run-Time Connection Load Balancing

	10.4 About Connection Affinity
	10.4.1 Overview of Connection Affinity
	10.4.1.1 Transaction-Based Affinity
	10.4.1.2 Web Session Affinity
	10.4.1.3 Oracle RAC Data Affinity

	10.4.2 Setting Up Connection Affinity
	10.4.2.1 Creating a Connection Affinity Callback
	10.4.2.2 Registering a Connection Affinity Callback
	10.4.2.3 Removing a Connection Affinity Callback
	10.4.2.4 Strict Affinity Mode

	10.5 Global Data Services
	10.5.1 Overview of Global Data Services
	10.5.2 Configuring an Application for Using GDS

	11 UCP Asynchronous Extension
	11.1 Overview of UCP Asynchronous Extension
	11.2 Example: UCP Asynchronous Extension
	11.3 Asynchronous Connection Labeling
	11.4 Example: Asynchronous Connection Labeling

	12 Ensuring Application Continuity
	12.1 Overview of Ensuring Application Continuity with UCP
	12.2 Configuring the Data Source for Application Continuity
	12.3 Using Connection Labeling for Application Continuity
	12.4 Using Connection Initialization Callback for Application Continuity

	13 Shared Pool for Sharded Databases
	13.1 Overview of UCP Shared Pool for Database Sharding
	13.2 About Handling Connection Requests for a Sharded Database
	13.2.1 How to Checkout Connections from a Pool with a Sharding Key
	13.2.2 About Configuring the Number of Connections Per Shard
	13.2.3 About Connecting to the Shard Catalog or Co-ordinator for Multishard Queries

	13.3 Sharding Data Source for Transparent Access to Sharded Databases
	13.3.1 Support for Single Shard Transactions

	13.4 Middle-Tier Routing Using UCP
	13.4.1 Middle-Tier Routing with UCP Example

	13.5 Sharding with JTA/XA Transaction in WebLogic Server

	14 Diagnosing a Connection Pool
	14.1 Pool Statistics
	14.2 Dynamic Monitoring Service Metrics
	14.3 Overview of Logging and Tracing in UCP
	14.3.1 Logging and Tracing Settings
	14.3.2 Diagnosability System Properties and Command Line
	14.3.3 Logging Configuration File
	14.3.4 Tracing the Error Codes to Watch
	14.3.5 MBeans for UCP Diagnosability

	14.4 About Viewing Oracle RAC Statistics
	14.4.1 Fast Connection Failover Statistics
	14.4.2 Run-Time Connection Load Balance Statistics
	14.4.3 Connection Affinity Statistics

	14.5 Exceptions and Error Codes

	A Error Codes Reference
	A.1 General Structure of UCP Error Messages
	A.2 Connection Pool Layer Error Messages
	A.3 JDBC Data Sources and Dynamic Proxies Error Messages

	B UCP Exception Error Codes
	Index

