Oracle® Al Database
JavaScript Developer's Guide

Release 26ai
G43962-01
October 2025

ORACLE"

Oracle Al Database JavaScript Developer's Guide, Release 26ai
G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

Primary Author: Sarah Hirschfeld

Contributors: M. Bach, L. Braun-Lohrer, H. Kasture, A. Ulrich, G. Venzl, M. Brantner, L. Daynes, H. Guiroux, A.
Schubert, A. Burlison, M. Keppner, A. Kashuba, N. Sheikh, A.A. Baha, D. Adams

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Changes in This Release for JavaScript Developer's Guide

July 2024, Release Update 23.5
January 2025, Release Update 23.7
April 2025, Release Update 23.8

July 2025, Release Update 23.9
October 2025, Release Update 23.26.0

N NN PP

2 Introduction to Oracle Database Multilingual Engine for JavaScript

The Need for a Multilingual Engine

Overview of JavaScript

Overview of Multilingual Engine for JavaScript
JavaScript Implementation Details
Invoking JavaScript in the Database
Introduction to Dynamic Execution
Introduction to MLE Module Calls
About MLE Execution Contexts
About Restricted Execution Contexts

0O N OO O o B W NDN

=
o

Introduction to Debugging JavaScript Code

3 MLE JavaScript Modules and Environments

Using JavaScript Modules in MLE

Managing JavaScript Modules in the Database
Naming JavaScript Modules
Creating JavaScript Modules in the Database
Storing JavaScript Code in Databases Using Single-Byte Character Sets
Code Analysis

Preparing JavaScript code for MLE Module Calls

Additional Options for Providing JavaScript Code to MLE

© N ook W ow N e

Specifying Module Version Information and Providing JSON Metadata

=
o

Drop JavaScript Modules

=
o

Alter JavaScript Modules

=Y
o

Overview of Built-in JavaScript Modules

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page i of vi

Dictionary Views Related to MLE JavaScript Modules 11

USER_SOURCE 11
USER_MLE_MODULES 12
Specifying Environments for MLE Modules 13
Creating MLE Environments in the Database 13
Naming MLE Environments 14
Creating an Empty MLE Environment 14
Creating an Environment as a Clone of an Existing Environment 15
Using MLE Environments for Import Resolution 15
Providing Language Options 18
Dropping MLE Environments 19
Modifying MLE Environments 19
Altering Language Options 19
Modifying Module Imports 19
Dictionary Views Related to MLE JavaScript Environments 20
USER_MLE_ENVS 20
USER_MLE_ENV_IMPORTS 20
4 Overview of Dynamic MLE Execution
About Dynamic JavaScript Execution 1
Dynamic Execution Workflow 2
Providing JavaScript Code Inline 2
Loading JavaScript Code from Files 3
Returning the Result of the Last Execution 6
5 Overview of Importing MLE JavaScript Modules
JavaScript Module Hierarchies 2
Resolving Import Names Using MLE Environments 2
Export Functionality 3
Named Exports 3
Default Exports 4
Private ldentifiers 5
Import Functionality 5
Module Objects 5
Named Imports 6
Default Imports 7
6 MLE JavaScript Functions
Call Specifications for Functions 1

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page ii of vi

Creating a Call Specification for an MLE Module 1
Components of an MLE Call Specification 4

MLE Module Clause 5

ENV Clause 5
SIGNATURE Clause 5
Creating an Inline MLE Call Specification 7
Components of an Inline MLE Call Specification 10
Accessing Built-in Modules Using JavaScript Global Variables 11
Choosing Inline Versus Module MLE Call Specifications 12
Runtime Isolation for an MLE Call Specification 12
Dictionary Views for Call Specifications 15
OUT and IN OUT Parameters 16

7 Calling PL/SQL and SQL from the MLE JavaScript SQL Driver

Introduction to the MLE JavaScript SQL Driver 1
Working with the MLE JavaScript Driver 2
Connection Management in the MLE JavaScript Driver 3
Introduction to Executing SQL Statements 3
Processing Comparison Between node-oracledb and mle-js-oracledb 6
Selecting Data Using the MLE JavaScript Driver 6
Direct Fetch: Arrays 7
Direct Fetch: Objects 8
Fetching Rows as ResultSets: Arrays 9
Fetching Rows as ResultSets: Iterating Over ResultSet Objects 10
Data Modification 11
Bind Variables 11
Using Bind-by-Name vs Bind-by-Position 12
Named Bind Variables 12
Positional Bind Variables 14
RETURNING INTO Clause 15
Batch Operations 16
PL/SQL Invocation from the MLE JavaScript SQL Driver 18
Error Handling in SQL Statements 20
Working with JSON Data 25
Working with User-Defined Data Types 30
Using Record Data Types in JavaScript 30
Using Collections in JavaScript 35
Using Large Objects (LOB) with MLE 38
Writing LOBs 39
Reading LOBs 40
API Differences Between node-oracledb and mle-js-oracledb 40

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of vi

Synchronous API and Error Handling 41
Connection Handling 42
Transaction Management 42
Type Mapping 43
Unsupported Data Types 46
Miscellaneous Features Not Available with the MLE JavaScript SQL Driver 46
Introduction to the PL/SQL Foreign Function Interface 46
Object Resolution Using FFI 48
Provide Arguments to a Subprogram Using FFI 51
8 Working with SODA Collections in MLE JavaScript Code
High-Level Introduction to Working with SODA for In-Database JavaScript 2
SODA Objects 3
Using SODA for In-Database JavaScript 4
Getting Started with SODA for In-Database JavaScript 6
Creating a Document Collection with SODA for In-Database JavaScript 8
Opening an Existing Document Collection with SODA for In-Database JavaScript 9
Checking Whether a Given Collection Exists with SODA for In-Database JavaScript 9
Discovering Existing Collections with SODA for In-Database JavaScript 9
Dropping a Document Collection with SODA for In-Database JavaScript 10
Creating Documents with SODA for In-Database JavaScript 11
Inserting Documents into Collections with SODA for In-Database JavaScript 13
Saving Documents into Collections with SODA for In-Database JavaScript 15
SODA for In-Database JavaScript Read and Write Operations 15
Finding Documents in Collections with SODA for In-Database JavaScript 16
Replacing Documents in a Collection with SODA for In-Database JavaScript 22
Removing Documents from a Collection with SODA for In-Database JavaScript 23
Indexing the Documents in a Collection with SODA for In-Database JavaScript 24
Getting a Data Guide for a Collection with SODA for In-Database JavaScript 27
Handling Transactions with SODA for In-Database JavaScript 29
Creating Call Specifications Involving the SODA API 29
O Post-Execution Debugging of MLE JavaScript Modules
Specifying Debugpoints 2
Debugpoint Locations 2
Debugpoint Actions 2
Debugpoint Conditions 3
Managing Debugpoints 4
Debugging Security Considerations 6
COLLECT DEBUG INFO Privilege for MLE Modules 6

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of vi

Analyzing Debug Output
Textual Representation of Debug Output

Analyzing Debug Output Using Developer Tools 9
Error Handling in MLE 10
Errors in Callouts 12
Accessing stdout and stderr from JavaScript 13
Accessing stdout and stderr for MLE Modules 13
Accessing stdout and stderr for Dynamic MLE 15

10 MLE Security

System and Object Privileges Required for Working with JavaScript in MLE 1
Necessary Privileges for Dynamic MLE Execution 2
Necessary Privileges for Using the NoSQL API 2
Necessary Privileges for Creating MLE Schema Objects 2
Necessary Privileges for Creating MLE Modules and Environments in ANY Schema 3
Necessary Privileges for Post-Execution Debugging 4

Security Considerations for MLE 4
MLE_PROG_LANGUAGES Initialization Parameter 5
Execution Contexts 5
Runtime State Isolation 6
Database Security Model 8
Considerations for Using MLE Call Specifications and Modules from Different Schemas 9
Auditing MLE Operations in Oracle Database 10

JavaScript Security Best Practices 10
Using Bind Variables for Security and Performance 10
Generic Database and PL/SQL Specific Security Considerations 12
Supply Chain Security 12
Software Bill of Material 13
Using the Database to Store State 14
Disabling Multilingual Runtime 15

MLE Security Examples 16
Business Logic Stored in MLE Modules 16
Generic Data Processing Libraries 18
Generic Libraries in Business Logic 19

A MLE Type Conversions
MLE JavaScript Support for JSON A-4
MLE JavaScript Support for the VECTOR Data Type A-6

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page v of vi

Index

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page vi of vi

List of Examples

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17

Creating a JavaScript Module in the Database

Create a Call Specification for a Public Function

Public and Private Functions in a JavaScript Module

Providing JavaScript Source Code Using a BFILE

Providing JavaScript Source Code Using a CLOB

Providing JavaScript Source Code Using SQLcl

Specification of a VERSION string in CREATE MLE MODULE
Addition of JSON Metadata to the MLE Module

Drop an MLE Module

Drop an MLE Module Using IF EXISTS

Alter an MLE Module

Externalize JavaScript Module Source Code
Find MLE Modules Defined in a Schema

Map Identifier to JavaScript Module

Import Module Functionality
List Available MLE Environments Using USER_MLE_ENVS

List Module Import Information Using USER_MLE_ENV _IMPORTS

Using the Q-Quote Operator to Provide JavaScript Code Inline with PL/SQL

Loading JavaScript code from a BFILE with DBMS LOB.LOADCLOBFROMFILE()

Loading JavaScript Code from a BFILE by Referencing an MLE Module from DBMS_MLE

Returning the Result of the Last Execution

Use an MLE Environment to Map an Import Name to a Module

Function Export using Named Exports

Function Export Using Export Keyword Inline

Export a Class Using a Default Export

Named Export of Single Function

Module Object Definition

Named Imports Using Specified Identifiers

Named Imports with Aliases

Default Import
Default Import with Built-in Module

Creating MLE Call Specifications

Simple Inline MLE Call Specification
Inline MLE Call Specification Returning JSON

Execution Context Dependencies

Show JavaScript Call Specification Metadata

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

(R R RKEIBIEBI
g lw o o M N N N o o o I I jw v o 0 w N kP o o oo vV - O o o o [© [0 (o o o o I

October 13, 2025
Page vii of vi

6-6 OUT and IN OUT Parameters with JavaScript
7-1 Getting Started with the MLE JavaScript SQL Driver
7-2 Use Global Variables to Simplify SQL Execution

7-3 Selecting Data Using Direct Fetch: Arrays

7-4 Selecting Data Using Direct Fetch: Objects

7-5 Fetching Rows Using a ResultSet

7-6 Using the Iterable Protocol with ResultSets
7-7 Updating a Row Using the MLE JavaScript SQL Driver
7-8 Using Named Bind Variables

7-9 Using Positional Bind Variables
7-10 Using the RETURNING INTO Clause

7-11 Performing a Batch Operation
7-12 Calling PL/SQL from JavaScript

7-13 SQL Error Handling Inside a JavaScript Function

7-14 Error Handling Using JavaScript throw() Command

7-15 Inserting JSON Data into a Database Table

7-16 Use JavaScript to Manipulate JSON Data
7-17 Inserting a CLOB into a Table
7-18 Read an LOB

7-19 Using JavaScript Native Data Types vs Using Wrapper Types

7-20 Overriding the Global oracledb.fetchAsPlsqlWrapper Property
8-1 SODA with MLE JavaScript General Workflow

8-2 Opening an Existing Document Collection

8-3 Fetching All Existing Collection Names

8-4 Filtering the List of Returned Collections

8-5 Dropping a Collection
8-6 Creating SODA Documents

8-7 Inserting a SODA Document into a Collection

8-8 Inserting an Array of Documents into a Collection

8-9 Finding a Document by Key

8-10 Looking up Documents Using Multiple Keys

8-11 Using a QBE to Filter Documents in a Collection

8-12 Using skip() and limit() in a Pagination Query

8-13 Specifying Document Versions

8-14 Counting the Number of Documents Found

SRRBERREEREREIEBB HEEBBREBREREREEIB (=
(AJI\JI-‘O@OO\I\I##(AJ'I-‘OOl@ |0301(AJO©0001(AJHOO\IUWJ>(AJ|HO|© 0 N U1 W o

8-15 Replacing a Document in a Collection and Returning the Result Document

8-16 Removing a Document from a Collection Using a Document Key

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page viii of vi

8-17
8-18
8-19
8-20
8-21
8-22
9-1
9-2
9-3

9-5
9-6
9-7
9-8
9-9
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8

A-2

Removing JSON Documents from a Collection Using a Filter

Creating a B-Tree Index for a JSON Field with SODA for In-Database JavaScript

Creating a JSON Search Index with SODA for In-Database JavaScript

Dropping an Index with SODA for In-Database JavaScript

Generating a Data Guide for a Collection

Use SODA for In-Database JavaScript

JSON Template for Specifying Debugpoints
JSON Template for Specifying Watch Action

JSON Template for Specifying Snapshot Action

Watching a Variable in an MLE Module

Enabling Debugging of an MLE Module

Obtain Textual Representation of Debug Output

Throwing ORA-04161 Error and Querying the Stack Trace
Redirect stdout to CLOB and DBMS_OUTPUT for MLE Module
Redirect stdout to CLOB and DBMS_OUTPUT for Dynamic MLE

Runtime State Isolation Scenario

Using Bind Variables Rather than String Concatenation
Use DBMS_ASSERT to Verify Valid Input

Using Bind Variables Rather than String Concatenation
Use DBMS_ASSERT to Verify Valid Input

Business Logic Stored in MLE Modules

Generic Data Processing Libraries

Use Generic Libraries in Business Logic
Use VECTOR Data Type with MLE

Use Sparse Vectors with MLE

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

|N
I

B KRB & &
© N o o1 0

o N o b W W IN

=

bkl EBEREOIRIRI

P
0

>
©

October 13, 2025
Page ix of vi

List of Figures

6-1
6-2
6-3
6-4
6-5
8-1
8-2

MLE Call Specification Syntax

signature_clause ::=

path_spec ::=

import_spec ::=

MLE Inline Call Specification Syntax

SODA for In-Database JavaScript Basic Workflow

SODA for In-Database JavaScript Simplified Workflow

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

|l—‘
w N o o o o I~

October 13, 2025
Page x of vi

List of Tables

3-1
6-1
6-2
8-1
8-2
8-3
A-1
A-2
A-3
A-4
A-5
A-6

JavaScript Language Options

Components of an MLE Call Specification

Components of an Inline MLE Call Specification

Overview of Nonterminal Methods for Read Operations

Overview of Terminal Methods for Read Operations

Overview of Terminal Methods for Write Operations

Supported Mappings from SQL and PL/SQL Types to JavaScript Types

Supported Mappings from JavaScript Types to SQL Types

Mapping from JSON Attribute Types and Values to JavaScript Types and Values

Mapping from JavaScript Types and Values to JSON Attributes and Values

Mapping from VECTOR Data Type to JavaScript Types

Mapping from JavaScript Types to VECTOR Data Type

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

(SN T SR =
o o o0 O | oo

P>
N

P>
w

P>
a

P>
a

P>
o

P>
o

October 13, 2025
Page xi of vi

Changes in This Release for JavaScript
Developer's Guide

This chapter lists the changes in Oracle Al Database JavaScript Developer's Guide for Oracle
Database 26ai:

e July 2024, Release Update 23.5

« January 2025, Release Update 23.7

e April 2025, Release Update 23.8

e July 2025, Release Update 23.9

» October 2025, Release Update 23.26.0

July 2024, Release Update 23.5

Included are some notable Oracle Al Database JavaScript Developer's Guide updates with
Oracle Database 26ai, Release Update 23.5:

Feature Description

MLE Support on Linux for Arm (aarch64) In addition to Linux x86-64, Multilingual Engine (MLE) is
supported on Linux for Arm (aarch64).

Overview of Multilingual Engine for JavaScript

Operator Overloading with Or acl eNunber Rather than using methods such as add and sub to perform
arithmetic operations with instances of the type
O acl eNunber , arithmetic operators such as + and - are
now supported as well.
Examples using this hew syntax can be found in Type
Mapping.
Server-Side JavaScript APl Documentation

January 2025, Release Update 23.7

Included are some notable Oracle Al Database JavaScript Developer's Guide updates with
Oracle Database 26ai, Release Update 23.7:

Feature Description

Foreign Function Interface The Foreign Function Interface (FFI) allows you to handle
PL/SQL packages, functions, and procedures as JavaScript
objects, providing more direct access to objects created in
PL/SQL.

Introduction to the PL/SQL Foreign Function Interface

Server-Side JavaScript API Documentation

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 3

https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules

ORACLE Chapter 1
April 2025, Release Update 23.8

Feature Description

Fetch Type Handler The f et chTypeHandl er property of m e-j s-oracl edb is
available to modify query result sets in JavaScript. Using the
fetch type handler you can, for example, change the data
types of the resulting row(s) of a SELECT statement.

Server-Side JavaScript API Documentation

April 2025, Release Update 23.8

Included are some notable Oracle Al Database JavaScript Developer's Guide updates with
Oracle Database 26ai, Release Update 23.8:

Feature Description

Restricted JavaScript Execution Contexts The PURE keyword is used in the creation of MLE
environments and in inline call specifications to specify the
use of a restricted execution context. During PURE
execution, JavaScript code cannot access database state.

About Restricted Execution Contexts

July 2025, Release Update 23.9

Included are some notable Oracle Al Database JavaScript Developer's Guide updates with
Oracle Database 26ai, Release Update 23.9:

Feature Description

MLE support with DRCP MLE can now be used on dedicated servers that have
enabled a Database Resident Connection Pool (DRCP).

Overview of Multilingual Engine for JavaScript

EXECUTE ON JAVASCRI PT privilege requirement removed In order to execute JavaScript using MLE in your own
schema, the EXECUTE ON JAVASCRI PT privilege is no

longer required to be granted to your user account.

Additional privileges may still be required depending on your
planned interactions with JavaScript in the database.

System and Object Privileges Required for Working with
JavaScript in MLE

Compile-time syntax checks for inline JavaScript functions Syntax checks are now run at compile time when executing
an inline call specification. While the syntax of the JavaScript
function is checked before runtime, using a linting tool of your
choice to perform analysis of your code before execution is
still recommended.

Compile-time syntax checking continues to be supported
when creating MLE modules as well.

Creating an Inline MLE Call Specification
Code Analysis

October 2025, Release Update 23.26.0

Included are some notable Oracle Al Database JavaScript Developer's Guide updates with
Oracle Al Database 26ai, Release Update 23.26.0:

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 3

https://oracle-samples.github.io/mle-modules

ORACLE Chapter 1
October 2025, Release Update 23.26.0

Feature Description

MLE support for user-defined data types User-defined types such as collections, records, and objects
can now be used, for example, as parameters in JavaScript
functions. They can also be inserted into the database using
in-database JavaScript.

Working with User-Defined Data Types

MLE support for SPARSE vectors Sparse vectors can now be inserted into the database and
fetched from MLE, used as | N, OUT, and | NOUT function
arguments, and can be specified in the signature of an MLE
call specification.

The Spar seVect or object is used to represent sparse
vectors in JavaScript.

MLE JavaScript Support for the VECTOR Data Type

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 3

Introduction to Oracle Database Multilingual
Engine for JavaScript

Oracle Database supports a rich set of languages for writing user-defined functions and stored
procedures, including PL/SQL, Java, and C. With Oracle Database Multilingual Engine (MLE),
developers have the option to run JavaScript code through dynamic execution or with
persistent MLE modules stored directly in the database.

The landscape of programming languages is rapidly evolving, with more developers choosing
to use modern dynamic languages like JavaScript. Besides simpler syntax and support for
modern language features, a key factor in the popularity of these languages is the existence of
a rich module ecosystem. Developers often choose to use different languages to implement
different parts of a project, based on the availability of suitable modules for the given task.

Whether or not a new language reaches widespread adoption frequently depends on
community involvement. Once a language reaches some threshold of popularity, its ecosystem
often starts expanding rapidly, attracting more and more developers. Many times, a rich set of
features, libraries, and reusable code modules are created to support more widespread use.

The Oracle Database is renowned for its support of a rich ecosystem of programming
languages. The most common programmatic server-side interface to the Oracle Database is
PL/SQL. By using PL/SQL it is possible to keep business logic and data together, oftentimes
offering significant improvements to efficiency in addition to providing a unified processing
pattern for data, regardless of the client interface in use. With MLE, you can utilize PL/SQL to
implement JavaScript modules, offering an additional avenue to interact directly with the
database.

@ See Also

Oracle Database Development Guide for more information about the programming
languages supported by the Oracle database.

Topics

* The Need for a Multilingual Engine
The benefits of using MLE to process data within the database are described.

* Overview of JavaScript
One of the most popular programming languages today, JavaScript runs on any machine
with a JavaScript engine. Developers prefer JavaScript mainly for the ease of scripting to
develop end-to-end applications and for fast execution.

e Overview of Multilingual Engine for JavaScript
MLE allows you to run and store JavaScript directly in the Oracle Database.

* Introduction to Debugging JavaScript Code
MLE allows you to debug your JavaScript code by conveniently and efficiently collecting
runtime state during program execution.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE

Chapter 2
The Need for a Multilingual Engine

The Need for a Multilingual Engine

The benefits of using MLE to process data within the database are described.

When developers implement a Smart-DB approach, application logic and data coexist in the
same database. Applying this strategy, the database is used as a full-fledged processing
engine as opposed to simply a persistence layer or a simple REST API. Making use of the
database for processing data where it lives can provide numerous advantages in the form of
enhanced security, potential elimination of network round-trips, and better data quality thanks
to the use of referential integrity.

The database's optimizer also benefits from this approach. Using referential integrity
constraints allows it to know more about the data it's working with. Performance benefits can
also be realized when using set-based SQL and oftentimes, database servers are more
powerful than the machines serving the application's front-end, further speeding up processing
time.

The Smart-DB approach requires you to be familiar with the programming languages offered
by the database system to make the best use of the concept. The only other option is to use a
client-side driver to extract data from the database to a middleware system or client machine
for processing.

With the ever-increasing data volumes to be handled, especially for batch-processing,
transferring large quantities of data from the database to a client can be problematic for the
following reasons:

* The transfer of database information between servers is time consuming and can cause
significant network overhead

« Latencies are often significantly increased; the cumulative effect can be very noticeable,
especially for "chatty" applications

e Processing large data volumes in a middle-tier or client requires these environments to be
equipped with large amounts of DRAM and storage, adding cost

« Data transfer between machines, especially in cloud environments, is often subject to
regulatory control due to the inherent security risks and data protection requirements

Processing data within the database is a common strategy for mitigating against many of these
problems.

With the introduction of Oracle Database Multilingual Engine (MLE), JavaScript is added to the
database. The inclusion of JavaScript acknowledges the language's popularity and opens its
extensive ecosystem for server-side database development.

With MLE, you can use idioms and tools available in JavaScript's ecosystem, as well as deploy
and use modules from popular repositories such as Node Package Manager (NPM) right in the
database. Furthermore, you can move between application tiers, providing more flexibility to
teams dealing with varying workloads. The large pool of JavaScript talent can help staff
existing and upcoming projects.

Overview of JavaScript

One of the most popular programming languages today, JavaScript runs on any machine with
a JavaScript engine. Developers prefer JavaScript mainly for the ease of scripting to develop
end-to-end applications and for fast execution.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE’

Chapter 2
Overview of Multilingual Engine for JavaScript

JavaScript (JS) has come a long way since its inception as a browser-based solution for
interactive web pages. While its popularity for front-end development remains strong, it has
found its way into back-end development as well. For example, Node.js and Deno are very
popular in that space.

At its core, JavaScript is an interpreted language with support for many modern programming
styles. JavaScript is continually enhanced by a governing body known as ECMA International
with new standards released annually.

JavaScript features both a functional as well as an object oriented interface. Despite the name,
JavaScript is very different from Java, although its syntax intentionally mimics many constructs
known in other popular languages. The learning curve is eased by providing a familiar looking
syntax.

Soft factors such as a very large and active community as well as the language's rich set of
libraries make it an attractive choice for development.

With the introduction of Oracle Database Multilingual Engine (MLE), it is possible to execute
JavaScript directly in the Oracle database. Data-intensive applications can benefit from moving
processing logic from the middle-tier to the database.

@ See Also

Developer.mozilla.org for more information about JavaScript

Overview of Multilingual Engine for JavaScript

MLE allows you to run and store JavaScript directly in the Oracle Database.
Using MLE enables users of the Oracle Database to run the following, written in JavaScript:

e Stored procedures

e Stored functions

e Code in a PL/SQL package namespace

* Anonymous, dynamic code snippets (in a way that is similar to DBM5_SQL)

MLE is supported when connecting to the database using a dedicated server connection on
Linux x86-64 or Linux for Arm (aarch64), including with server connections that have enabled a
Database Resident Connection Pool (DRCP). Certain data types are not supported, listed in
full at Unsupported Data Types.

@® Note

Shared server connections cannot make use of MLE.

Topics

* JavaScript Implementation Details
The MLE implementation of JavaScript is compliant with ECMAScript 2023.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 10

https://developer.mozilla.org/en-US/

ORACLE

Chapter 2
Overview of Multilingual Engine for JavaScript

* Invoking JavaScript in the Database
JavaScript can be invoked through dynamic execution or through call specifications, which
either reference MLE modules or inline JavaScript functions.

e Introduction to Dynamic Execution
Anonymous JavaScript code snippets can be executed via the DBMS_M_E PL/SQL package.

e Introduction to MLE Module Calls
It is possible to create JavaScript modules as schema objects that are stored persistently
in the database.

e About MLE Execution Contexts
An MLE execution context is a standalone, isolated runtime environment, designed to
contain all runtime state associated with the execution of JavaScript code. Runtime state
includes global variables as well as the state of the language environment.

* About Restricted Execution Contexts
The PURE keyword can be specified on MLE environments and JavaScript inline call
specifications to create restricted JavaScript execution contexts.

JavaScript Implementation Details

The MLE implementation of JavaScript is compliant with ECMAScript 2023.

Adhering to the ECMA standard, the JavaScript implementation as found in MLE is consciously
created as a pure implementation. Native JavaScript network and file /O operations are not
supported in the same way that they are in Node.js and Deno for security reasons. The use of
network and file I/O is possible with MLE, however, you must employ PL/SQL APIs such as
UTL_HTTP and UTL_FI LE.

The WEB API, Fetch, is not available by default in the global space but can be enabled by
importing m e-j s-fetch.

Objects not included in the ECMA standard, including common objects used in front-end code
such as the Window object, are also not available with MLE. Nevertheless, MLE does provide
easy and efficient access to SQL, which is able to execute close to the data. Console output is
passed to DBM5S_QUTPUT by default but can be redirected and stored in a user provided CLOB if
required.

Users require specific privileges before they can interact with MLE. These can broadly be
classified into:

e Permission to use MLE and run JavaScript code
e Execute dynamic JavaScript in the database
e Create JavaScript modules and externalize them via PL/SQL code

The database engine throws an error if you lack sufficient privileges required for the use of
JavaScript.

@ See Also

System and Object Privileges Required for Working with JavaScript in MLE for more
information about privileges

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE Chapter 2
Overview of Multilingual Engine for JavaScript

Invoking JavaScript in the Database

JavaScript can be invoked through dynamic execution or through call specifications, which
either reference MLE modules or inline JavaScript functions.

Generally speaking, server-side JavaScript code can be invoked in two ways:
e Dynamically via the DBM5S_M_E package

« Using PL/SQL code referencing functions exported in JavaScript modules (so-called MLE
module calls) or functions defined directly in the DDL

Regardless of which of the two methods is used, all JavaScript code runs in an execution
context. Its purpose is to encapsulate all runtime state associated with the processing of
JavaScript code. The MLE execution context corresponds to the ECMAScript execution
context for JavaScript.

Before you can execute any JavaScript in the database, you must ensure that MLE is not
disabled for your session, PDB, or CDB. For information about how to confirm this, see
MLE_PROG_LANGUAGES Initialization Parameter. In order to take full advantage of MLE,
you must have necessary privileges to execute the JavaScript language, execute dynamic
MLE, create MLE schema objects, and so on.

@ See Also

» System and Object Privileges Required for Working with JavaScript in MLE

» Ecma-international.org for more information about the ECMAScript execution
context

Introduction to Dynamic Execution

Anonymous JavaScript code snippets can be executed via the DBMS_M.E PL/SQL package.

The procedure DBMS_M.E. eval () is used to execute dynamic MLE snippets. The procedure
takes the following arguments:

Argument Name Type Optional?
CONTEXT_HANDLE RAW(16) N
LANGUAGE I D VARCHAR2(64) N
SOURCE CLOB N
RESULT CLOB Y
SOURCE_NAME VARCHAR2 Y

The argument SOURCE_NAME is optionally used to provide a name for the otherwise randomly-
named JavaScript code block.

JavaScript code can be provided inline with PL/SQL as shown in the following code:
SET SERVEROQUTPUT ON,
DECLARE

JavaScript Developer's Guide

G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 5 of 10

https://www.ecma-international.org/ecma-262/5.1/#sec-10.3

ORACLE

Chapter 2
Overview of Multilingual Engine for JavaScript

| _ctx DBMS_M.E. context_handl e_t;
| jscode CLOB;
BEG N
| _ctx := DBMS_ME. create_context;
| jscode :=q' ~
console.log('Hello Wrld, this is DBMS_ME')

DBMS_MLE. eval (
context_handle => | _ctx,
| anguage_i d => ' JAVASCRI PT',
source => | _jscode,
source_nanme => 'My JS Snippet’

END;

Executing this example will result in the following being printed:

Hello World, this is DBMS_ MLE

The code provided above demonstrates the following concepts of invoking JavaScript code
dynamically:

* An execution context must be explicitly created
e JavaScript code is provided as a Character Large Object (CLOB) or VARCHAR? variable
e The context must be explicitly evaluated

Both PL/SQL and JavaScript are present when you execute JavaScript dynamically. The code
shippets provided are not reusable outside of their namespace. The output of the call to
consol e. | og is passed to DBMS_QUTPUT for printing on the screen.

® See Also
» Overview of Dynamic MLE Execution for more details about dynamic execution
with MLE

» Returning the Result of the Last Execution for more information about the RESULT
argument of the procedure DBMS_MLE. eval ()

Introduction to MLE Module Calls

It is possible to create JavaScript modules as schema objects that are stored persistently in the
database.

Once a JavaScript module has been defined, it can be used in SQL and PL/SQL as shown
below:

CREATE OR REPLACE MLE MODULE hel | oWor | d_modul e
LANGUAGE JAVASCRI PT AS
function helloWrld() {

console.log('Hello World, this is a JS nodule');
}

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE Chapter 2
Overview of Multilingual Engine for JavaScript

export { helloWrld }
/

Before the exported JavaScript function can be invoked, a call specification must be defined.
The code snippet below shows how to create a call specification for the JavaScript
hel | oWor | d() function in PL/SQL:

CREATE OR REPLACE PROCEDURE hel | oWorl d_proc
AS MLE MODULE hel | oWorl d_nodul e

SI GNATURE ' hel [oWorl d() ' ;

/

The call specification, referred to as an MLE module call, publishes the JavaScript function
hel | oWor | d() . It can then be used just like any other PL/SQL procedure. The following snippet
shows how to invoke the function along with the results:

SET SERVEROUTPUT ON

BEG N

hel | oWr | d_proc;
END;
/

Result:

Hello World, this is a JS nmodul e

In addition to custom-built JavaScript modules as shown in the provided code, it is possible to
load third-party JavaScript modules into the database. Note that Oracle recommends
performing a security screening of third-party code according to industry best practice.

@ See Also

e MLE JavaScript Modules and Environments for details about MLE modules and
environments

* MLE Security for more information about MLE security features and
recommendations

About MLE Execution Contexts

An MLE execution context is a standalone, isolated runtime environment, designed to contain
all runtime state associated with the execution of JavaScript code. Runtime state includes
global variables as well as the state of the language environment.

® Note

An MLE execution context corresponds to an ECMAScript Execution Context for
JavaScript.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 7 of 10

https://262.ecma-international.org/5.1/#sec-10.3

ORACLE

Chapter 2
Overview of Multilingual Engine for JavaScript

MLE uses execution contexts in two different scenarios:

* With dynamic MLE execution, where you can create and use dynamic MLE contexts
explicitly

e For calls from SQL and PL/SQL to functions exported by an MLE module

Dynamic Execution

Properties of dynamic MLE contexts are determined by the environment used at the moment
the execution context is created. You have explicit control over which execution context is used
for each dynamic MLE snippet, with each execution context running code on behalf of a single
user.

There is no limit to how many dynamic MLE execution contexts can be created in a session, or
how they are shared across different code snippets. Code snippets in JavaScript share all
global variables with other code snippets running in the same execution context.

MLE Modules

Contexts for MLE module calls from SQL or PL/SQL are created implicitly on demand. Here,
the properties are determined by the MLE environment referenced in the call specification at
the moment of context creation. The environment can be used to specify language options and
to make MLE modules available for import.

MLE modules never share an execution context with other modules or dynamic MLE snippets.
Additionally, separate execution contexts are used when code from the same MLE module is
executed on behalf of different users. MLE creates a dedicated execution context for each
combination of MLE module and environment. Two call specifications that specify either
different modules or different environments are executed in separate module contexts.

@ See Also

» Specifying Environments for MLE Modules for more information about MLE
environments

» Execution Contexts for information about how execution contexts are used to
enforce runtime state isolation

About Restricted Execution Contexts

The PURE keyword can be specified on MLE environments and JavaScript inline call
specifications to create restricted JavaScript execution contexts.

In-database JavaScript code can leverage database functionality, such as SQL execution,
using APIs like the MLE JavaScript SQL Driver and SODA. PURE execution disallows access
to stateful database APIs inside JavaScript, meaning the execution is completely unprivileged.
In a PURE environment, JavaScript code cannot read or write any database state, such as
tables, procedures, and objects.

The only possible interaction with the database during PURE execution is through inputs and
outputs to JavaScript code. This can be in the form of data provided to MLE from the database
through user-defined function arguments for call specifications, as well as symbols exported
using DBMS_M_E. EXPORT_TO_M_E. Reference types, such as LOBs passed to MLE, can be
accessed (read or written) during PURE execution. Additionally, PURE execution does not
restrict access to supported data types.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE

Chapter 2
Overview of Multilingual Engine for JavaScript

In many situations, JavaScript user-defined functions are purely computational and don't
require access to powerful APIs such as the MLE JavaScript SQL driver or the Foreign
Function Interface (FFI). PURE execution serves as a method to isolate certain code, such as
third-party JavaScript libraries, from the database itself. This isolation can reduce the attack
surface of supply chain attacks, in which access to the database state is a security concern.
Using PURE execution also allows less-privileged developers to create these restricted user-
defined functions without requiring additional access or privileges to the database state or
network.

The following JavaScript APIs and global classes and functions are not available during PURE
execution:

e JavaScript APIs:
— me-js-oracledb
— me-js-plsql-ffi
— me-js-fetch
* Clobal classes and functions:
— session
— soda
— plsffi
— oracledb
— require

JavaScript APIs that do not interact with database state, such as m e-j s- pl sql t ypes and n e-
j s- encodi ngs remain accessible during PURE execution.

The PURE keyword can be specified in inline call specifications, in module call specifications,
and using DBMS_MLE. The following are examples of the syntax in each case:

e Module call specification:

CREATE OR REPLACE M_LE MODULE pure_nod
LANGUAGE JAVASCRI PT AS
export function helloWrld() {
console.log('Hello Wrld, this is a JS nodule');

}
/

CREATE OR REPLACE M.E ENV pure_env
| MPORTS(' pure_nod" MODULE pure_nod) PURE;

CREATE OR REPLACE PROCEDURE hel | oWor | d
AS MLE MODULE pure_nmod ENV pure_env SI GNATURE ' hel | oWorl d';
/

* Inline call specification:

CREATE OR REPLACE PROCEDURE hel | oVor | d
AS MLE LANGUAGE JAVASCRI PT PURE

{

console.log('Hello Wrld, thisis aJSinlined call specification');

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE’

Chapter 2
Introduction to Debugging JavaScript Code

3R
/

Using DBMS_M_E:

SET SERVEROUTPUT ON,

DECLARE
| _ctx dbns_ni e. context _handl e_t;
| _sni ppet CLOB;

BEG N

-- to specify PURE execution with DBMS_ME, use an environnent
-- that has been created with the PURE keyword
| _ctx := dbnms_nle.create_context(environnment => 'PURE _ENV');
| _snippet :=q' ~
console.log('Hello Wrld, this is dynam c ME execution');
dbms_m e. eval (I _ctx, 'JAVASCRI PT', |_snippet);
dbms_m e. drop_cont ext (I _ctx);
EXCEPTI ON
WHEN OTHERS THEN
dbrms_n e. drop_cont ext (I _ctx);
RAI SE;
END;
/

Introduction to Debugging JavaScript Code

MLE allows you to debug your JavaScript code by conveniently and efficiently collecting
runtime state during program execution.

After your MLE code has finished executing, debug data collected can be used to analyze
program behavior and discover and fix bugs. This form of debugging is known as post-
execution debugging.

The post-execution debug option allows you to instrument your code with debugpoints.
Debugpoints allow for the logging of program state conditionally or unconditionally, including
values of individual variables as well as execution snapshots. Debugpoints are specified as
JSON documents separate from the application code. No change to the application code is
necessary for debugpoints to fire.

When activated, debug information is collected according to the debug specification and can
be fetched for later analysis by a wide range of tools thanks to its standard format.

@ See Also

Post-Execution Debugging of MLE JavaScript Modules for more details about post-
execution debugging with MLE

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 10 of 10

MLE JavaScript Modules and Environments

A JavaScript module is a unit of MLE's language code stored in the database as a schema
object.

Storing code within the database is one of the main benefits of using JavaScript in MLE; rather
than having to manage a fleet of application servers each with its own copy of the application,
the database takes care of this for you.

In addition, Data Guard replication ensures that the same code is present in both production
and all physical standby databases. Configuration drift, a common problem bound to occur
when invoking the disaster recovery location, can be mitigated.

A JavaScript module in MLE is equivalent to an ECMAScript 6 module. The terms MLE module
and JavaScript module are used interchangeably. The contents are specific to JavaScript and
can be managed using Data Definition Language (DDL) commands.

In traditional JavaScript environments, additional information is often passed to the runtime
using directives or configuration scripts. In MLE, this can be achieved using MLE
environments, an additional metadata structure complementing MLE modules. MLE
environments are also used for name resolution of JavaScript module imports. Name
resolution is crucial for maintaining code and separating it into various modules to be used with
MLE.

@ See Also

Developer.mozilla.org for more information about JavaScript modules

Topics

e Using JavaScript Modules in MLE
JavaScript modules can be used in several different ways and can be managed using a set
of Data Definition Language (DDL) commands.

e Specifying Environments for MLE Modules
MLE environments are schema objects in the database. Their functionality and
management methods are described.

Using JavaScript Modules in MLE

JavaScript modules can be used in several different ways and can be managed using a set of
Data Definition Language (DDL) commands.

JavaScript code provided in MLE modules can be used in the following ways:

e A JavaScript function exported by an MLE module can be published by creating a call
specification known as an MLE module call. This allows the function to be called directly
from SQL and PL/SQL.

e Functionality exported by a JavaScript MLE module can be imported in other MLE
JavaScript modules.

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 21

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

ORACLE Chapter 3
Using JavaScript Modules in MLE

e Code snippets in DBM5S_M_E can import modules for dynamic invocation of JavaScript.

Before a user can create and execute MLE modules, several privileges must be granted.

@ See Also
e QOverview of Importing MLE JavaScript Modules for more information about
module calls

e Overview of Dynamic MLE Execution for more information about DBMS_M_E and
dynamic invocation of JavaScript code in the database

» System and Object Privileges Required for Working with JavaScript in MLE for
more information about MLE-specific privileges

Topics

* Managing JavaScript Modules in the Database
SQL allows the creation of MLE modules as schema objects, assuming the necessary
privileges are in place.

* Preparing JavaScript code for MLE Module Calls
JavaScript modules in MLE follow the ECMAScript 6 standard for modules. Functions and
variables expected to be consumed by users of the MLE module must be exported.

» Additional Options for Providing JavaScript Code to MLE
The JavaScript source code of an MLE module can be specified inline with PL/SQL but
can also be provided using a BFILE, BLOB, or CLOB, in which case the source file must
be UTF8 encoded.

* Specifying Module Version Information and Providing JSON Metadata
MLE modules may carry optional metadata in the form of a version string and free-form
JSON-valued metadata.

» Drop JavaScript Modules
The DROP MLE MODULE DDL statement is used for dropping an MLE module.

e Alter JavaScript Modules
Attributes of an MLE module can be assigned or altered using the ALTER MLE MODULE
statement.

e Overview of Built-in JavaScript Modules
MLE provides a set of built-in JavaScript modules that are available for import in any
execution context.

» Dictionary Views Related to MLE JavaScript Modules
The Data Dictionary includes details about JavaScript modules.

Managing JavaScript Modules in the Database

SQL allows the creation of MLE modules as schema objects, assuming the necessary
privileges are in place.

At a minimum, you need the CREATE MLE MODULE privilege to create or replace an MLE module
in your own schema. Additionally, you must have the execute privilege on the target JavaScript
language object.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 21

ORACLE Chapter 3
Using JavaScript Modules in MLE

@ See Also

» System and Object Privileges Required for Working with JavaScript in MLE for
more information about MLE-specific privileges

* Oracle Al Database Security Guide for more details about privileges and roles in
Oracle Database

Topics

e Naming JavaScript Modules
Each JavaScript module name must be unique in the schema that it is created in. Unless a
fully qualified name is used, the current user's schema is used.

e Creating JavaScript Modules in the Database
JavaScript modules are created in the database using the CREATE MLE MODULE DDL
statement, specifying name and source code of the MLE module.

» Storing JavaScript Code in Databases Using Single-Byte Character Sets
Character set standards and things to remember when using a single-byte character set
with MLE.

* Code Analysis
JavaScript syntax errors are flagged when an MLE module is created, but linting tool of

your choice should still be used to perform analysis before executing the CREATE MLE
MODULE command.

Naming JavaScript Modules

Each JavaScript module name must be unique in the schema that it is created in. Unless a
fully qualified name is used, the current user's schema is used.

As with other schema object identifiers, the module name is case-sensitive if enclosed in
double quotation marks. If the enclosing quotation marks are omitted, the name is implicitly
converted to uppercase.

When choosing a unique name, note that MLE objects share the namespace with tables,
views, materialized views, sequences, private synonyms, PL/SQL packages, functions,
procedures, and cache groups.

Creating JavaScript Modules in the Database

JavaScript modules are created in the database using the CREATE MLE MODULE DDL statement,
specifying name and source code of the MLE module.

As soon as an MLE module has been created, it is persisted in the database dictionary. This is
one of the differences when compared with dynamic execution of JavaScript code using
DBVS_M_E.

CREATE MLE MODULE (without the OR REPLACE clause) throws an error if an MLE module with the
given name already exists. With CREATE OR REPLACE MLE MODULE, the existing module is
replaced if it exists, otherwise a new one is created. When an MLE module is replaced,
privileges to it do not need to be re-granted.

For those who are familiar with PL/SQL, note that this is exactly the same behavior
experienced with PL/SQL program units.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 21

ORACLE

Chapter 3
Using JavaScript Modules in MLE

If you do not wish to replace an existing module in the event the module name is already in
use, you can use the | F NOT EXI STS clause rather than CREATE OR REPLACE. The syntax for
this variation is shown in Example 3-1. The | F NOT EXI STS and OR REPLACE clauses are
mutually exclusive.

@® See Also
e Oracle Al Database SQL Language Reference for the complete CREATE MLE
MODULE syntax

e Oracle Al Database Development Guide for more information about using the | F
[NOT] EXI STS syntax

Example 3-1 Creating a JavaScript Module in the Database

This example demonstrates the creation of an MLE module and the export of a simple
JavaScript function.

CREATE MLE MODULE IF NOT EXISTS po_npdul e LANGUAGE JAVASCRI PT AS

/**

* get the value of all line itens in an order

* @aram{array} lineltens - all the line items in a purchase order

* @eturns {nunmber} the total value of all line itens in a purchase order
*/

export function orderVal ue(lineltenms) {

return lineltens
.map(x => x.Part.UnitPrice * x.Quantity)
.reduce(
(accumul ator, currentValue) => accunul ator + currentValue, 0

):

The first line of this code block specifies the JavaScript module name as po_nodul e. The
remaining lines define the actual JavaScript code. Note that in line with the ECMAScript
standard, the export keyword indicates the function to be exported to potential callers of the
module. MLE accepts code adhering to the ECMAScript 2023 standard.

Storing JavaScript Code in Databases Using Single-Byte Character Sets

Character set standards and things to remember when using a single-byte character set with
MLE.

JavaScript is encoded in Unicode. The Unicode Standard is a character encoding system that
defines every character in most of the spoken languages in the world. It was developed to
overcome limitations of other character-set encodings.

Oracle recommends creating databases using the AL32UTF8 character set. Using the
AL32UTF8 character set in the database ensures the use of the latest version of the Unicode
Standards and minimizes the potential for character-set conversion errors.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 4 of 21

ORACLE

Chapter 3
Using JavaScript Modules in MLE

In case your database still uses a single-byte character set such as US7ASCII, WE8IS0O8859-
n, or WEBMSWIN1252, you must be careful not to use Unicode features in MLE JavaScript
code. This is no different than handling other types of input data with such a database.

@ See Also

Oracle Al Database Globalization Support Guide for more details about the Unicode
Standard

Code Analysis

JavaScript syntax errors are flagged when an MLE module is created, but linting tool of your
choice should still be used to perform analysis before executing the CREATE MLE MODULE
command.

When creating MLE modules in the database, you should use a well-established toolchain in
the same way other JavaScript projects are governed. In this sense, the call to CREATE MLE
MODULE can be considered a deployment step, similar to deploying a server application. Code
checking should be performed during a build step, for example, by a continuous integration
and continuous deployment (CI/CD) pipeline, prior to deployment.

If a module is created using CREATE MLE MODULE that includes syntax errors in the JavaScript
code, the module will be created but it will exist in an invalid state. This also applies to
functions created using inline call specifications. However, this check does not apply to any
SQL statements called within the module, so separate testing should still be performed to
ensure that the code works as expected.

It is considered an industry best practice to process code with a tool called a linter before
checking it into a source-code repository. As with any other development project, you are free
to choose the best option for yourself and your team. Some potential options include ESLint,
JSHint, JSLint, and others that perform static code analysis to flag syntax errors, bugs, or
otherwise problematic code. They can also be used to enforce a certain coding style. Many
integrated development environments (IDEs) provide linting as a built-in feature, invoking the
tool as soon as a file is saved to disk and flagging any issues.

In addition to executing linting dynamically, it is possible to automate the code analysis using
highly automated DevOps environments to invoke linting as part of a build pipeline. This step
usually occurs prior to submitting the JavaScript module to the database.

The aim is to trap as many potential issues as possible before they can produce problems at
runtime. Unit tests can help further mitigate these risks and their inclusion into the development
process have become an industry best practice. Regardless of the method you choose, the
code analysis step occurs prior to submitting the JavaScript module to the database.

Preparing JavaScript code for MLE Module Calls

JavaScript modules in MLE follow the ECMAScript 6 standard for modules. Functions and
variables expected to be consumed by users of the MLE module must be exported.

Those variables and functions not exported are considered private in the module. Example 3-3
demonstrates the use of both public and private functions in an MLE JavaScript module.

An ECMAScript module can import other ECMAScript modules using import statements or
dynamic import calls. This functionality is present in MLE as well. Complementary metadata to
MLE modules is provided in MLE environments.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 5 of 21

ORACLE Chapter 3
Using JavaScript Modules in MLE

Note that console output in MLE is facilitated using the console object. By default, anything
written to consol e. | og() is routed to DBMS_OUTPUT and is displayed on the screen.

JavaScript code like that in Example 3-1 cannot be accessed from SQL or PL/SQL without the
help of call specifications. For now, you can think of a call specification as a PL/SQL program
unit (function, procedure, or package) where its PL/SQL body is replaced with a reference to
the JavaScript module and function, as shown in Example 3-2. For more information about call
specifications, see MLE JavaScript Functions.

® See Also

Using MLE Environments for Import Resolution

Example 3-2 Create a Call Specification for a Public Function

This example uses the module po_nodul e created in Example 3-1. A call specification for
order Val ue(), the only function exported in po_nodul e, can be written as follows:

CREATE OR REPLACE FUNCTI ON order _val ue(
p_line_items JSON

) RETURN NUMBER AS

M.E MODULE po_nodul e

SI GNATURE ' or der Val ue' ;

/

Once the function is created, it is possible to calculate the value of a given purchase order:

SELECT

po. po_docurent . PONunber ,

order _val ue(po. po_docunent. Li neltens[*]) order_val ue
FROM

j _purchaseorder po;

Result:

PONUMBER ~ ORDER_VALUE

Example 3-3 Public and Private Functions in a JavaScript Module

In addition to public (exported) functions, it is possible to add functions private to the module.
In this example, the calculation of the value is taken out of the map() function and moved to a
separate function (refactoring).

The first function in the following code, | i nel t enVal ue(), is considered private, whereas the
second function, or der Val ue(), is public. The export keyword is provided at the end of this

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 6 of 21

ORACLE

Chapter 3
Using JavaScript Modules in MLE

code listing but can also appear as a prefix for variables and functions, as seen in
Example 3-1. Both variations are valid JavaScript syntax.

CREATE OR REPLACE MLE MODULE po_nodul e LANGUAGE JAVASCRI PT AS

/**
* calculate the value of a given line item Factored out of the public
* function to allow for currency conversions in a |ater step
* @aram {nunber} unitPrice - the price of a single article
* @aram {nunber} quantity - the quantity of articles ordered
* @eturns {nunber} the nonetary value of the line item
*/
function |ineltenValue(unitPrice, quantity) {
return unitPrice * quantity;

}

/**

* get the value of all line itens in an order

* @aram{array} lineltens - all the line items in a purchase order

* @eturns {nunmber} the total value of all line itens in a purchase order
*/

function orderVal ue(lineltens) {

return lineltens
.map(x => lineltenVal ue(x.Part.UnitPrice, x.Quantity))
. reduce(
(accumul ator, currentValue) => accunul ator +
currentValue, 0

}

export { orderValue }
/

):

Additional Options for Providing JavaScript Code to MLE

The JavaScript source code of an MLE module can be specified inline with PL/SQL but can
also be provided using a BFILE, BLOB, or CLOB, in which case the source file must be UTF8
encoded.

Creating MLE modules using the BFILE clause can cause problems with logical replication
such as GoldenGate. In order for the DDL command to succeed on the target database, the
same directory must exist on the target database. Furthermore, the same JavaScript file must
be present in this directory. Failure to adhere to these conditions will cause the call to create
the MLE module on the target database to fail.

A BLOB or a CLOB can also be used to create an MLE module as an alternative to using a
BFILE. Example 3-5 shows how to create a JavaScript module using a CLOB. If you prefer to
use a BLOB, the syntax is the same but the value of the BLOB will differ from that of a CLOB.

Another option available is to use the ml e creat e- nodul e command with SQLcl to load a
JavaScript file into the database. Because the module is being created directly from a
JavaScript file, there is no need to sandwich the JavaScript code between DDL statements.
This means regular programming steps such as linting, local unit testing, and the use of

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 7 of 21

ORACLE Chapter 3
Using JavaScript Modules in MLE

formatting tools can be performed more conveniently. The use of SQLcl can be particularly well
suited for Continuous Integration (CI) pipelines.

Example 3-4 Providing JavaScript Source Code Using a BFILE

In this example, JS_SRC DI Ris a database directory object mapping to a location on the local
file system containing the module's source code in a file called nyJavaScri pt Modul e. j s. When
loading the file from the directory location, MLE stores the source code in the dictionary.
Subsequent calls to the MLE module will not cause the source code to be refreshed from the
disk. If there is a new version of the module stored in nyJavaScri pt Modul e. j s, it must be
deployed using another call to CREATE OR REPLACE MLE MODULE.

CREATE MLE MODULE mod_from bfile

LANGUAGE JAVASCRI PT

USI NG BFI LE(JS SRC DIR, ' myJavaScri pt Modul e.js');
/

Example 3-5 Providing JavaScript Source Code Using a CLOB

CREATE OR REPLACE MLE MODULE mod_fromclob_inline
LANGUAGE JAVASCRI PT USI NG CLOB (
SELECT q' ~
export function clob_hello(who){
return “hello, ${who} ;

~] -

As an alternative, you also have the option of using JavaScript source code that is stored in a
table. This example variation assumes your schema features a table named j avascript _src
containing the JavaScript source code in column sr ¢ along with some additional metadata.
The following statement fetches the CLOB and creates the module.

CREATE OR REPLACE M_LE MODULE nod_fromclob_tabl e
LANGUAGE JAVASCRI PT USI NG CLOB (
SELECT src
FROM j avascript _src
VWHERE
id=1 AND
conmmt _hash = "aclfd40'

Staging tables like this can be found in environments where Continuous Integration (Cl)
pipelines are used to deploy JavaScript code to the database.

Example 3-6 Providing JavaScript Source Code Using SQLcl

In this example, the module's source code is in a file called myJavaScri pt Modul e. j s, which is
located in a local file directory folder called t np. The following command creates a module
called ny_j s_nod, replacing the module if it exists or creating one if it does not.

me create-nodule -
-l anguage javascript -
-repl ace -

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 8 of 21

ORACLE Chapter 3
Using JavaScript Modules in MLE

-filename /tnp/myJavaScriptMdule.js -
-modul e-name ny_js_nod

For more information about SQLcl MLE commands and their syntax, see Oracle SQLcl User’s
Guide.

Specifying Module Version Information and Providing JSON Metadata

MLE modules may carry optional metadata in the form of a version string and free-form JSON-
valued metadata.

Both kinds of metadata are purely informational and do not influence the behavior of MLE.
They are stored alongside the module in the data dictionary.

The VERSI ON flag can be used as an internal reminder about what version of the code is
deployed. The information stored in the VERSI ON field allows developers and administrators to
identify the code in the version control system.

The format for JSON metadata is not bound to a schema; anything useful or informative can be
added by the developer. In case the MLE module is an aggregation of sources created by a
tool such asrol | up. j s or webpack, it can be useful to store the associated package-

| ock. j son file alongside the module.

The metadata field can be used to create a software bill of material (SBOM), allowing security
teams and administrators to track information about deployed packages, especially in the case
where third-party modules are used.

Tracking dependencies and vulnerabilities in the upstream repository supports easier
identification of components in need of update after security vulnerabilities have been reported.

@ See Also

» Dictionary Views Related to MLE JavaScript Modules

- Software Bill of Material for more information about using the metadata field to
store a SBOM

Example 3-7 Specification of a VERSION string in CREATE MLE MODULE

CREATE OR REPLACE MLE MODULE version_nod
LANGUAGE JAVASCRI PT
VERSION ' 1.0.0.1.0'
AS
export function sq(num {
return num* num

}
/

Example 3-8 Addition of JSON Metadata to the MLE Module

This example uses the module ver si on_nod, created in Example 3-7.

ALTER MLE MODULE ver si on_nod
SET METADATA USI NG CLOB

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 9 of 21

ORACLE Chapter 3
Using JavaScript Modules in MLE

(SELECT
{

"name": "devel ",

"l ockfileVersion": 2,
"requires": true,
"packages": {}

Drop JavaScript Modules

The DROP MLE MODULE DDL statement is used for dropping an MLE module.

The DROP statement specifies the name, and optionally the schema of the module to be
dropped. If a schema is not specified, the schema of the current user is assumed.

Attempting to drop an MLE module that does not exist causes an error to be thrown. In cases
where this is not desirable, the | F EXI STS clause can be used. The DROP MLE MODULE
command is silently skipped if the indicated MLE module does not exist.

Example 3-9 Drop an MLE Module

DROP MLE MODULE unused_nod;

Example 3-10 Drop an MLE Module Using IF EXISTS

DROP MLE MODULE | F EXI STS unused_nod;

Alter JavaScript Modules

Attributes of an MLE module can be assigned or altered using the ALTER MLE MODULE
statement.

The ALTER M_LE MODULE statement specifies the name, and optionally the schema of the module
to be altered. If the module name is not prefixed with a schema, the schema of the current user
is assumed.

Example 3-11 Alter an MLE Module

ALTER MLE MODULE change_nod
SET METADATA USI NG CLOB(SELECT' {...}');

Overview of Built-in JavaScript Modules

MLE provides a set of built-in JavaScript modules that are available for import in any execution
context.

Built-in modules are not deployed to the database as user-defined MLE modules, but are
included as part of the MLE runtime. In particular, MLE provides the following three built-in
JavaScript modules:

* mle-js-oracledb is the JavaScript MLE SQL Driver.

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 10 of 21

ORACLE

Chapter 3
Using JavaScript Modules in MLE

e mle-js-bindings provides functionality to import and export values from the PL/SQL
engine.

e mle-js-plsqltypes provides definitions for the PL/SQL wrapper types. For example,
JavaScript types that wrap PL/SQL and SQL types like Oracl eNunber .

« mle-js-fetch provides a partial Fetch API polyfill, allowing developers to invoke external
resources.

 mle-encode-base64 contains code to work with base64-encoded data.
* mle-js-encodings provides functionality to handle text in UTF-8 and UTF-16 encodings.

* mle-js-plsql-ffi provides functionality to handle PL/SQL packages, functions, and
procedures as JavaScript objects.

These modules can be used to interact with the database and provide type conversions
between the JavaScript engine and database engine.

@ See Also

Server-Side JavaScript APl Documentation for more information about the built-in
JavaScript modules

Dictionary Views Related to MLE JavaScript Modules

The Data Dictionary includes details about JavaScript modules.

Topics

e USER_SOURCE
Each JavaScript module's source code is externalized using the [USER | ALL | DBA |
CDB] _ SOURCE dictionary views.

e USER_MLE MODULES
Metadata pertaining to JavaScript MLE modules are found in [USER | ALL | DBA |
CDB] _M_E_MODULES.

USER_SOURCE

Each JavaScript module's source code is externalized using the [USER | ALL | DBA |
CDB] _SQURCE dictionary views.

Modules created with references to the file system using the BFILE operator show the code at
the time of the module's creation.

For more information about * _ SOURCE, see Oracle Al Database Reference.

Example 3-12 Externalize JavaScript Module Source Code

SELECT
l'ine,
t ext

FROM
USER_SOURCE

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 11 of 21

https://oracle-samples.github.io/mle-modules

ORACLE Chapter 3
Using JavaScript Modules in MLE

VWHERE
name = ' PO MODULE' ;

Example output:

LI NE TEXT

1 /**
2 * calculate the value of a given line item Factored out of the public
3 * function to allow for currency conversions in a later step
4 * @aram{nunber} unitPrice - the price of a single article
5 * @aram{nunber} quantity - the quantity of articles ordered
6 * @eturns {nunber} the nonetary value of the line item
7
8

*/
function |ineltenVal ue(unitPrice, quantity) {

9 return unitPrice * quantity;

10 }

11

12

13 [**

14 * get the value of all line itens in an order

15 * @aram{array} lineltens - all the line itens in a purchase order

16 * @eturns {nunber} the total value of all line items in a purchase
order

17 */

18 export function orderVal ue(lineltens) {

19

20 return lineltens

21 .map(x => lineltenVal ue(x.Part.UnitPrice, x.Quantity))

22 . reduce(

23 (accumul ator, currentValue) => accumul ator +
currentValue, 0

24)

25 }

USER_MLE_MODULES

Metadata pertaining to JavaScript MLE modules are found in [USER | ALL | DBA |
CDB] _MLE_MODULES.

Any JSON metadata specified, version information, as well as language, name, and owner can
be found in this view.

For more information about *_ MLE_MODULES, see Oracle Al Database Reference.

Example 3-13 Find MLE Modules Defined in a Schema

SELECT MODULE_NAME, VERSI ON, METADATA
FROM USER_MLE_MODULES

WHERE LANGUAGE_NAME=' JAVASCRI PT'

/

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 12 of 21

ORACLE Chapter 3
Specifying Environments for MLE Modules

Example output:

MODULE_NAVE VERSION METADATA
MY_MODO1 1.0.0.1

MY_MOD02 1.0.1.1

MY_MOD03

Specifying Environments for MLE Modules

MLE environments are schema objects in the database. Their functionality and management
methods are described.

MLE environments complement MLE modules and allow you to do the following:

e Set language options to customize the JavaScript runtime in its execution context
e Enable specific MLE modules to be imported

e Manage name resolution and the import chain

Topics

e Creating MLE Environments in the Database
The SQL DDL supports the creation of MLE environments.

e Dropping MLE Environments
MLE environments that are no longer needed can be dropped using the DROP MLE ENV
command.

* Modifying MLE Environments
Existing MLE environments can be modified using the ALTER MLE ENV command.

e Dictionary Views Related to MLE JavaScript Environments
Details about MLE environments are available in these families of views: USER_ MLE_ENVS
and USER_ MLE_ENV_| MPORTS.

Creating MLE Environments in the Database

The SQL DDL supports the creation of MLE environments.

Just like MLE modules, MLE environments are schema objects in the database, persisted in
the data dictionary.

At a minimum, you must have the CREATE MLE MODULE privilege to create or replace an MLE
environment in your own schema.

@ See Also

e System and Object Privileges Required for Working with JavaScript in MLE for
more information about the privileges necessary to create and execute JavaScript
code in MLE

* Oracle Al Database Security Guide for details about privileges and roles in Oracle
Database

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 13 of 21

ORACLE

Chapter 3
Specifying Environments for MLE Modules

Topics

e Naming MLE Environments
Each JavaScript environment's name must be unique in the schema it is created in. Unless
a fully qualified name is used, the current user's schema is used.

e Creating an Empty MLE Environment
The DDL statement CREATE MLE ENV can be used to create an MLE environment.

e Creating an Environment as a Clone of an Existing Environment
If needed, a new environment can be created as a point-in-time copy of an existing
environment.

e Using MLE Environments for Import Resolution
It is possible to import functionality exported by one JavaScript module into another using
the import statement.

e Providing Language Options
MLE allows the customization of JavaScript's runtime by setting language-specific options
in MLE environments.

Naming MLE Environments

Each JavaScript environment's name must be unique in the schema it is created in. Unless a
fully qualified name is used, the current user's schema is used.

As with other schema object identifiers, the name is case-sensitive if enclosed in double
guotation marks. If the enclosing quotation marks are omitted, the name is implicitly converted
to uppercase.

MLE environments cannot contain import mappings that conflict with the names of the MLE
built-in modules (M e- | s-oracl edb, nl e-j s-bi ndi ngs, M e-js-plsqltypes, me-js-fetch,

m e- encode- base64, m e-j s-encodi ngs, and n e-j s-pl sql -ffi). If you attempt to add such a
mapping using either the CREATE MLE ENV or ALTER MLE ENV DDL, the operation fails with an
error.

Creating an Empty MLE Environment

The DDL statement CREATE MLE ENV can be used to create an MLE environment.

In its most basic form, an environment can be created empty as shown in the following snippet:

CREATE MLE ENV nyEnv;

Subsequent calls to ALTER MLE ENV can be used to add properties to the environment.

Just like with MLE modules, it is possible to append the OR REPLACE clause to instruct the
database to replace an existing MLE environment rather than throwing an error.

Furthermore, the | F NOT EXI STS clause can be used instead of the OR REPLACE clause to
prevent the creation of a new MLE environment in the case that one already exists with the
same name. In this case, the statement used to create the environment changes to the
following:

CREATE MLE ENV | F NOT EXI STS nyEnv;

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 14 of 21

ORACLE Chapter 3
Specifying Environments for MLE Modules

® Note
The | F NOT EXI STS and OR REPLACE clauses are mutually exclusive.

You can optionally include the PURE keyword to indicate that any JavaScript code using the
environment should be run in a restricted execution context that disallows access to the
database state. PURE execution provides an extra layer of security by isolating certain code,
such as third-party JavaScript libraries, from the database. Environments that are created
using the PURE keyword can be referenced by MLE modules and when using DBMS_M_E for
dynamic execution. The PURE keyword can be specified as follows:

CREATE OR REPLACE MLE ENV ny_pure_env PURE;

@ See Also

Modifying MLE Environments for information about editing existing environments

About Restricted Execution Contexts for information about the PURE keyword and
restricted contexts

Oracle Al Database SQL Language Reference for the full syntax of CREATE MLE ENV

Creating an Environment as a Clone of an Existing Environment

If needed, a new environment can be created as a point-in-time copy of an existing
environment.

The new environment inherits all settings from its source. Subsequent changes to the source
are not propagated to the clone. A clone can be created as shown in the following statement:

CREATE MLE ENV MyEnvDupl i cate CLONE M/Env

Using MLE Environments for Import Resolution

It is possible to import functionality exported by one JavaScript module into another using the
import statement.

The separation of code allows for finer control over changes and the ability to write more
reusable code. Simplified code maintenance is another positive effect of this approach.

Only those identifiers marked with the export keyword are eligible for importing.

Modules attempting to import functionality from other modules stored in the database require
MLE environments in order to perform name resolution. To create an MLE environment with
that information, the | MPORTS clause must be used. Example 3-14 demonstrates how a
mapping is created between the identifier po_nodul e and JavaScript module PO MODULE,
created in Example 3-1.

Multiple imports can be provided as a comma-separated list. In Example 3-14, the first
parameter in single quotation marks is known as the import name. The import name is used by

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 15 of 21

ORACLE Chapter 3
Specifying Environments for MLE Modules

another module's import statement. In this case, ' po_nodul €' is the import name and refers to
the module of the same name.

@® Note

The import name does not have to match the module name. Any valid JavaScript
identifier can be used. The closer the import name matches the module name it refers
to, the easier it is to identify the link between the two.

The CREATE MLE ENV command fails if a module referenced in the | MPORTS clause does not
exist or is not accessible to you.

Built-in JavaScript modules can be imported directly without having to specify additional MLE
environments.

@ See Also

Overview of Built-in JavaScript Modules for more information about built-in modules

Example 3-14 Map Identifier to JavaScript Module

CREATE OR REPLACE MLE ENV
po_env
| MPORTS (
"po_nodul ¢ MODULE PO MODULE

):

Example 3-15 Import Module Functionality

CREATE OR REPLACE MLE MODULE i nport _exanpl e_nodul e
LANGUAGE JAVASCRI PT AS

import * as po from "po_module™;

/**

* use po_modul e's getValue() function to calculate the val ue of
* a purchase order. In later chapters, when discussing the ME

* JavaScript SQ driver the hard-coded val ue used as the PO will

* be replaced by calls to the database

* @eturns {nunmber} the value of all line items in the purchase order
*/

export function purchaseOr derVal ue() {

const purchaseOrder = {
" PONunber ": 1600,
"Reference": "ABULL-20140421",
"Requestor": "Alexis Bull",
"User": "ABULL",
"Cost Center": "A50",
" Shi ppi ngl nstructions": {

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 16 of 21

ORACLE Chapter 3
Specifying Environments for MLE Modules

"name": "Alexis Bull",

"Address": {
"street": "200 Sporting Geen",
"city": "South San Francisco",
"state": "CA",
"zi pCode": 99236,
“country": "United States of America"

} y
"Phone": [
{
"type": "Ofice",
"nunber": "909-555-7307"
}1
{
"type": "Mbile",
"nunber": "415-555-1234"
}

]
}

pecial Instructions": null,
“All owPartial Shipment": true,
"Lineltems": [

{
“I'temNunber": 1,
"Part": {
"Description": "One Magic Christnmas",
"UnitPrice": 19.95,
"UPCCode": 13131092899
¥
"Quantity": 9.0
¥
{
“I'temNunber": 2,
"Part": {
"Description": "Lethal Wapon",
"UnitPrice": 19.95,
"UPCCode": 85391628927
¥
"Quantity": 5.0
1
]
¥
return po. orderVal ue(purchaseCOrder. Li neltemns);
}
/

pur chaseQOr der Val ue

CREATE FUNCTI ON pur chase_order _val ue
RETURN NUMBER AS

M_E MODULE i nport _exanpl e_nodul e

ENV po_env

SI GNATURE ' pur chaseOr der Val ue' ;

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 17 of 21

ORACLE

Chapter 3
Specifying Environments for MLE Modules

/

SELECT purchase_order_val ue;
/

Result:

PURCHASE_ORDER VALUE

Providing Language Options

MLE allows the customization of JavaScript's runtime by setting language-specific options in
MLE environments.

Any options specified in the MLE environment take precedence over the default settings.

Multiple language options can be provided as a comma-separated list of ' <key>=<val ue>'
strings. The following snippet demonstrates how to enforce JavaScript's strict mode.

CREATE MLE ENV MyEnvOpt
LANGUAGE OPTIONS 'js.strict=true';

Changes made to the language options of an environment are not propagated to execution
contexts that have already been created using the environment. For changes to take effect for
existing contexts, the contexts need to be dropped and recreated.

@® Note

White space characters are not allowed between the key, equal sign, and value.

Topics

» JavaScript Language Options
A full list of JavaScript language options available to be used with MLE are included.

JavaScript Language Options

A full list of JavaScript language options available to be used with MLE are included.

Table 3-1 JavaScript Language Options

Language Option Accepted Value Type Default Description

js.strict boolean fal se Enforce strict mode.

j s.consol e boolean true Provide consol e global
property.

js.polyglot-builtin boolean true Provide Pol ygl ot global
property.

JavaScript Developer'

G43962-01

s Guide
October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 18 of 21

ORACLE

Chapter 3
Specifying Environments for MLE Modules

Dropping MLE Environments

MLE environments that are no longer needed can be dropped using the DROP M_LE ENV
command.

The following snippet demonstrates a basic example of dropping an MLE module:

DROP MLE ENV nyQ dEnv;

As with MLE modules, the | F EXI STS clause prevents an error if the named MLE environment
does not exist, as shown in the following snippet:

DROP MLE ENV | F EXI STS nyQ dEnv;

Modifying MLE Environments

Existing MLE environments can be modified using the ALTER MLE ENV command.
It is possible to modify language options and the imports clause.
Topics

e Altering Language Options
You can modify language options provided to an MLE module.

* Modifying Module Imports
In the context of MLE module imports, the ALTER MLE ENV command allows you to add
additional imports as well as modify and drop existing imports.

Altering Language Options

You can modify language options provided to an MLE module.

Use the ALTER MLE ENV clause to modify language options, as shown in the following snippet:

ALTER MLE ENV MyEnvQOpt
SET LANGUAGE OPTIONS 'js.strict=fal se';

Modifying Module Imports

In the context of MLE module imports, the ALTER MLE ENV command allows you to add
additional imports as well as modify and drop existing imports.

Imports not specified during an environment's creation can be added to existing MLE
environments using the ADD | MPORTS clause. Import names, once defined, are static and must
be dropped before they can be added as desired. Assuming you have run a new CREATE MLE
DDL to replace | MPORT_EXAMPLE_MODULE from Example 3-1 with the module name

| MPORT_EXAMPLE_MODULE V2, the following statement will run successfully:

ALTER MLE ENV po_env
ADD | MPORTS (

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 19 of 21

ORACLE

Chapter 3
Specifying Environments for MLE Modules

"inport_exanpl e MODULE | MPORT_EXAVPLE_MODULE V2
);

Any imports no longer needed can be dropped using the DROP | MPORTS clause:

ALTER MLE ENV po_env DRCP | MPORTS('i nmport _exanple');

The case of the import identifier must match that in the data dictionary's
USER_MLE_ENV_| MPORTS view.

Dictionary Views Related to MLE JavaScript Environments

Details about MLE environments are available in these families of views: USER MLE_ENVS and
USER MLE_ENV_| MPORTS.

In addition to the USER prefix, these views exist in all namespaces: CDB, DBA, ALL, and USER.

Topics

« USER_MLE ENVS
The USER_M_E_ENVS view lists all MLE environments available to you along with the defined
language options.

e USER_MLE_ENV_IMPORTS
The [USER | ALL | DBA | CDB]_M.E _ENV_I MPORTS family of views lists imported modules.

USER_MLE_ENVS

The USER_M_E_ENVS view lists all MLE environments available to you along with the defined
language options.

For more information about * MLE_ENVS, see Oracle Al Database Reference.
Example 3-16 List Available MLE Environments Using USER_MLE_ENVS
SELECT ENV_NAME, LANGUAGE_OPTI ONS

FROM USER_M_E_ENVS

VWHERE ENV_NAME=" MYENVOPT'
/

Example SQL*Plus output:

ENV_OWKER ENV_NAME LANGUAGE_OPTI ONS

JSDEVO1 MYENVOPT js.strict=true

USER_MLE_ENV_IMPORTS

The [USER | ALL | DBA | CDB]_ME _ENV_I MPORTS family of views lists imported modules.

MLE environments are the key enablers for resolving names of imported modules.
Example 3-17 demonstrates a query against USER_ MLE_ENV_| MPORTS to list | MPORT_NAME,
MODULE_OMNER, and MODULE_NANE.

For more information about *_ MLE_ENV_| MPORTS, see Oracle Al Database Reference

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 20 of 21

ORACLE Chapter 3
Specifying Environments for MLE Modules

Example 3-17 List Module Import Information Using USER_MLE_ENV_IMPORTS

SELECT | MPORT_NAME, MODULE_OWKER, MODULE_NANE
FROM USER_MLE_ENV_| MPORTS
WHERE ENV_NAME=' MYFACTORI ALENV ;

SQL*Plus output:

| MPORT_NAME MODULE_OANER MODULE_NAME

FACTORI AL_MOD DEVELOPERL FACTORI AL_MOD

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 21 of 21

Overview of Dynamic MLE Execution

Dynamic MLE execution allows developers to invoke JavaScript snippets via the DBVS_M.E
package without storing the JavaScript code in the database.

As an alternative to executing JavaScript code using modules, MLE provides the option of
dynamic execution. With dynamic execution, no JavaScript code is stored in the data
dictionary. Instead, you can invoke snippets of JavaScript code via the DBVM5S_M._E package.

@ See Also

e Server-Side JavaScript APl Documentation for information about built-in module
m e- | s- bi ndi ngs, used to exchange values between PL/SQL and JavaScript

e Oracle Al Database PL/SQL Packages and Types Reference for more information
about the DBMS_M_E package

Topics

e About Dynamic JavaScript Execution
Developers can run JavaScript dynamically either inline or by loading files via DBMS_M_E.
Dynamic MLE execution provides an additional method for using JavaScript to interact with
the Oracle Database, as an alternative to using MLE modules.

e Dynamic Execution Workflow
The steps required to perform dynamic MLE execution are described.

« Returning the Result of the Last Execution
Use the resul t argument to get the outcome of the last execution.

About Dynamic JavaScript Execution

Developers can run JavaScript dynamically either inline or by loading files via DBMS_M.E.
Dynamic MLE execution provides an additional method for using JavaScript to interact with the
Oracle Database, as an alternative to using MLE modules.

The DBM5_M_E package allows users to execute JavaScript code inside the Oracle Database
and seamlessly exchange data between PL/SQL and JavaScript. The JavaScript code itself
can execute PL/SQL through built-in JavaScript modules. JavaScript data types are
automatically mapped to Oracle Database data types and vice versa.

Developers can provide JavaScript code either as the value of a VARCHAR2 variable or, in case
of larger amounts of code, as a Character Large Object (CLOB). The JavaScript code is
passed to the DBMS_M_E package where it is evaluated and executed.

Considering that DBM5_M_E is a PL/SQL package, there is mix of JavaScript and PL/SQL when
dynamically executing code using DBMS_M_E, for example, in the following cases:

e Setup tasks such as providing the JavaScript code require an interaction with the PL/SQL
layer.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 7

https://oracle-samples.github.io/mle-modules

ORACLE Chapter 4
Dynamic Execution Workflow

e JavaScript code is executed by calling a function in DBMS_M_E.

* After JavaScript code completes execution, any errors that have been encountered are
passed back to PL/SQL.

Dynamic Execution Workflow

The steps required to perform dynamic MLE execution are described.

Before a user can create and execute JavaScript code using DBMS_M_E, several privileges must
be granted. For information about required privileges, see System and Object Privileges
Required for Working with JavaScript in MLE.

The execution workflow for JavaScript code using DBMS_M.E is as follows:

1. Create an execution context

2. Provide JavaScript code either using a VARCHAR2 or CLOB variable

3. Execute the code, optionally passing variables between the PL/SQL and MLE engines

4. Close the execution context

As with any code, it is considered an industry best practice to deal with unexpected conditions.
You can do this in the JavaScript code itself using standard JavaScript exception handling
features or in PL/SQL.

Topics

» Providing JavaScript Code Inline
Using a quoting operator is the favored method for providing JavaScript code inline when
performing dynamic execution.

e Loading JavaScript Code from Files
The method for using a BFI LE operator to read in a CLOB is described.

Providing JavaScript Code Inline

Using a quoting operator is the favored method for providing JavaScript code inline when
performing dynamic execution.

A quoting operator, commonly referred to as a g-quote operator, is one option you can use to
load JavaScript code by embedding it directly within a PL/SQL block. The use of this
alternative quoting operator is suggested as the preferred method to provide JavaScript code
inline with PL/SQL code whenever possible.

Note that while the g-quote operator is the recommended method for dynamic execution,
delimiters such as {{...}} are used to enclose JavaScript code when using inline call
specifications. To learn more about these delimiter options, see Creating an Inline MLE Call

Specification.
Example 4-1 Using the Q-Quote Operator to Provide JavaScript Code Inline with

PL/SQL

DECLARE
| _ctx dbns_nl e. context _handl e_t;
| _sni ppet CLOB;

BEG N

| _ctx := dbnms_nle.create_context();
| _snippet :=q ~

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE

Chapter 4
Dynamic Execution Workflow

/1 the g-quote operator allows for nuch nore readabl e code
consol e. | og(" The use of the g-quote operator’);
console.log(greatly sinmplifies provision of code inline’);

1

dbns_m e. eval (I _ctx, 'JAVASCRIPT', | _snippet);
dbns_nl e. drop_context (I _ctx);
EXCEPTI ON
WHEN OTHERS THEN
dbns_m e. drop_context (I _ctx);
RAI SE;
END;
/

Result:

The use of the g-quote operator
greatly sinplifies provision of code inline

Loading JavaScript Code from Files

The method for using a BFI LE operator to read in a CLOB is described.

If you plan to use a linter to conduct code analysis, providing JavaScript code in line with
PL/SQL may not be your best option for dynamic execution. Another method for providing
JavaScript code is to read a CLOB by means of a BFI LE operator. This way PL/SQL and
JavaScript code can be cleanly separated.

@ See Also

Oracle Al Database SecureFiles and Large Objects Developer's Guide for information
about Large Objects

Example 4-2 Loading JavaScript code from a BFILE with
DBMS_LOB.LOADCLOBFROMFILE()

This example illustrates the use of a BFI LE and DBMS_LOB. LOADCLOBFROVFI LE() .

The example assumes that you have read access to a directory named SRC_CODE DI R. The
source code file hel | 0_sour ce. j s resides in that directory. Its contents are as follows:

consol e.log('hello fromhello_source');

DECLARE
| _ctx dbms_m e. cont ext _handl e_t;
I js CLCB;
| srcode file BFILE;
_dest _offset |INTECGER := 1;
_src_of fset | NTEGER : = 1;

[
[
| csid | NTECGER :
[
[

dbns_| ob. defaul t _csi d;
_lang_context |NTEGER := dbns_| ob. default | ang_ctx;
_warn | NTEGER : = 0;
BEG N

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE Chapter 4
Dynamic Execution Workflow

| _ctx := dbnms_nle.create_context();

dbns_| ob. createtenporary(lob_loc => 1 _js, cache => fal se);
I_srcode_file := bfilenanme(' SRC CODE DIR, 'hello_source.js');
IF (dbms_lob.fileexists(file_loc =>1_srcode_file) = 1) THEN

dbns_l ob. fileopen(file_loc => | _srcode file);
dbms_lob. loadclobfromfile(

dest I ob =1 _js,

src_bfile => |_srcode_file,

amount => dbns_I ob. getl ength(l _srcode file),
dest_offset =>1_dest offset,

src_of f set => | _src_offset,

bfile csid =>1 _csid,

l ang_context => | _lang_context,

war ni ng => | _warn

)
| F I _warn = dbns_| ob. warn_i nconvertibl e_char THEN
rai se_application_error(
-20001,
"the input file contained inconvertible characters'
);
END | F;

dbms_l ob. fil ecl ose(l_srcode_file);
dbrms_ni e. eval (
context _handle => | _ctx,
| anguage i d => ' JAVASCRI PT",
source =1 js

)s

dbns_m e. drop_context (I _ctx);

ELSE
rai se_application_error(
-20001,
"The input file does not exist'
);
END I F;
EXCEPTI ON

WHEN OTHERS THEN
dbns_m e. drop_context (I _ctx);
RAl SE;
END;
/

Result:

hello fromhello_source

In some cases, you may need to mix dynamic MLE execution as shown in with MLE modules
persisted in the database, as shown in Example 4-3.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE Chapter 4
Dynamic Execution Workflow

Example 4-3 Loading JavaScript Code from a BFILE by Referencing an MLE Module
from DBMS_MLE

The code for the JavaScript module is again stored in a file, as seen in Example 4-2. The
example assumes that you have read access to a directory named SRC_CODE_DI R and the file
name is greeting_source.js:

export function greeting(){
return "hello fromgreeting_source';

}

This example begins by creating an MLE module from BFI LE using the contents of the
preceding file. Before the module can be used by DBMS_M.E, an environment must be created
first, allowing the dynamic portion of the JavaScript code to reference the module.

Dynamic MLE execution does not allow the use of the ECMAScript i mport keyword. MLE
modules must instead be dynamically imported using the async/await interface shown in this
example.

CREATE OR REPLACE MLE MODULE greet nmod

LANGUAGE JAVASCRI PT

USI NG BFI LE(SRC CODE DIR, 'greeting_source.js');
/

CREATE OR REPLACE M.E ENV greet _nod_env
inports ('greet _nod'" nodul e greet _nod);

DECLARE
| ctx dbns_nl e. context _handle_t;
| _snippet CLOB;

BEG N

| _ctx := dbns_nle.create_context(
environment => "GREET_MOD_ENV*®

);
| _snippet :=q' ~

(async () => {
let { greeting } = await import("greet mod");
const message = greeting();
consol e. | og(nessage) ;

DO

i

dbms_ni e. eval (
| _ctx,
" JAVASCRI PT',
| _sni ppet
);
dbns_m e. drop_cont ext (I _ctx);
EXCEPTI ON
WHEN OTHERS THEN
dbms_n e. drop_cont ext (I _ctx);
RAI SE;
END,

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE Chapter 4
Returning the Result of the Last Execution

Result:

hello from greeting source

® See Also

Additional Options for Providing JavaScript Code to MLE for information about using
BFI LEs with MLE modules to load JavaScript code

Returning the Result of the Last Execution

Use the resul t argument to get the outcome of the last execution.

A variant of the DBM5S_M_E. eval () procedure takes an additional CLOB argument, resul t .
Such a call to DBM5_M.E. eval () appends the outcome of the execution of the last statement in
the provided dynamic MLE snippet to the CLOB provided as the resul t parameter.

This option is useful in the implementation of an interactive application, such as a Read-Eval-
Print-Loop (REPL) server, to mimic the behavior of a similar REPL session in Node.js.

Example 4-4 Returning the Result of the Last Execution

DECLARE
| ctx dbns_nl e. context _handle_t;
| _snippet CLOB;
| result CLOB;

BEG N

dbns_| ob. creat et enpor ar y(
lob loc =>1 result,
cache => fal se,
dur => dbns_| ob. sessi on

)

| ctx := dbns_me.create _context();
| _snippet :=q' ~

let i = 21;

i *=2;

dbns_ni e. eval (
context _handle => | _ctx,
| anguage_i d => ' JAVASCRI PT' ,

source => | _sni ppet,
resul t => | result
);
dbns_output.put line('result: ' || | _result);
dbns_m e. drop_cont ext (I _ctx);
EXCEPTI ON

WHEN OTHERS THEN
dbms_n e. drop_cont ext (I _ctx);
RAI SE;

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 4
Returning the Result of the Last Execution

END;

Result:

result: 42

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 7 of 7

Overview of Importing MLE JavaScript
Modules

One of the key benefits of MLE is the ability to store modules of JavaScript code in the Oracle
Database. The availability of modules supports self-contained and reusable code, key to
developing successful software projects.

MLE modules interact with each other through imports and exports. Specifically, if a module
wants to use a functionality provided by another module, the source module must be exported
and then imported into the calling module's scope.

Due to a difference in architecture, module imports behave slightly differently in the Oracle
Database when compared to other development environments. For example, JavaScript
source code used with Node.js is stored in a specific directory structure on disk. Alternatively,
MLE modules are stored together with the database, rather than in a file system, so must be
referenced in a different manner.

There are two options available for module imports in MLE:
* Importing module functionality into another module

* Importing module functionality into a code snippet to be executed via dynamic MLE (using
the DBMS_M_E PL/SQL package)

@® Note

MLE supports a pure JavaScript implementation. Module exports and imports are
facilitated as ECMAScript modules using the export and i nport keywords. Other
JavaScript modularization technologies such as CommonJS and Asynchronous
Module Definition (AMD) are not available.

@ See Also

MLE JavaScript Modules and Environments for more information on MLE modules

Topics

* JavaScript Module Hierarchies
The use of import names as opposed to file-system location to resolve to MLE modules is
described.

* Export Functionality
Commonly exported identifiers in native JavaScript modules include variables, constants,
functions, and classes.

* Import Functionality
The i nport keyword allows developers to import functionality that has been exported by a
source module.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE Chapter 5
JavaScript Module Hierarchies

JavaScript Module Hierarchies

The use of import names as opposed to file-system location to resolve to MLE modules is
described.

A typical Node.js or browser-based workflow requires a module import to be followed by its
location in the file system. For example, the following line is a valid module import statement in
Node.js:

inport * as myMath from'./nyMath.njs’

Used with Node.js, this statement would import nyMat h's contents into the current scope.

However, because MLE JavaScript modules are stored in the database, there are no file-
system paths to be used for identification. Rather, MLE uses import names instead that resolve
to the desired module.

@ Note

As soon as a module import is detected by the JavaScript runtime engine, stri ct
mode is enforced.

Topics

e Resolving Import Names Using MLE Environments
Rather than file-system locations, MLE uses so-called import names instead. Import
names must be valid JavaScript identifiers, but otherwise can be chosen freely.

Resolving Import Names Using MLE Environments

Rather than file-system locations, MLE uses so-called import names instead. Import names
must be valid JavaScript identifiers, but otherwise can be chosen freely.

Example 5-1 Use an MLE Environment to Map an Import Name to a Module

This example shows how you might use an import name for code referencing functionality in
module named_exports_nodul e, which is defined in Example 5-2.

MLE in Oracle Database requires a link between the import name, nanedExport s, and the
corresponding MLE module, naned_exports_nodul e, at runtime. Just as with import names,
you can choose any valid name for the MLE environment. A potential mapping is shown in the
following snippet. See Example 5-6 for a complete definition of module

mod_obj ect _i mport _nod.

CREATE OR REPLACE M_LE ENV naned_exports_env
i mports (' namedExports' MODULE naned_exports_nodul e);
/
CREATE OR REPLACE M.E MODULE npd_obj ect _i nport _nod LANGUAGE JAVASCRI PT AS

inport * as myMath from "namedExports";

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE Chapter 5
Export Functionality

function mySum() {...}
/

Export Functionality

Commonly exported identifiers in native JavaScript modules include variables, constants,
functions, and classes.

Topics

* Named Exports
The explicit use of identifiers in an export statement is referred to as using named exports

in JavaScript.

o Default Exports
As an alternative to named exports, a default export can be defined in JavaScript. A default

export differs syntactically from a named export. Contrary to the latter, a default export
does not require a set of curly brackets.

e Private Identifiers
Any identifier not exported from a module is considered private and cannot be referenced
outside the module's scope or in module call specifications.

Named Exports

The explicit use of identifiers in an export statement is referred to as using named exports in
JavaScript.

Example 5-2 demonstrates the export of multiple functions using named exports.
Example 5-2 Function Export using Named Exports

This code snippet creates a module called naned_exports_nodul e, defines two functions,
sum() and di fference(), and then uses a named export to provide access for other modules
to import the listed functions.

CREATE OR REPLACE M_LE MODULE named_exports_nodul e LANGUAGE JAVASCRI PT AS

function suma, b) {
return a + b;

}

function difference(a, b) {
return a - b;

}

export {sum difference};
/

Make note of the export{} statement at the end of the module. Named exports require the use
of curly brackets when listing identifiers. Any identifier placed between the curly brackets is
exported. Those not listed are not exported.

Rather than using the export statement towards the end of the module, it is also possible to
prefix an identifier with the export keyword inline. The following example shows how the same

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE

Chapter 5
Export Functionality

module from the previous example can be rewritten with the export keyword provided inline
with the JavaScript code.

Example 5-3 Function Export Using Export Keyword Inline

This code snippet creates a module called i nl i ne_export _nodul e and defines two functions,
sum() and di f f erence(), which are both prefaced with the export keyword inline.

CREATE OR REPLACE M_LE MODULE inline_export_nodul e LANGUAGE JAVASCRI PT AS

export function sum(a, b) {
return a + b;

}

export function difference(a, b) {
return a - b;

}
/

Both naned_exports_nodul e from Example 5-2 and i nl i ne_export _nmodul e are semantically
identical. The method used to export the functions is the only syntactical difference.

Default Exports

As an alternative to named exports, a default export can be defined in JavaScript. A default
export differs syntactically from a named export. Contrary to the latter, a default export does
not require a set of curly brackets.

@® Note

In line with the ECMAScript standard, only one default export is possible per module.

Example 5-4 Export a Class Using a Default Export

The following code snippet creates a module called def aul t _export _modul e, defines a class
called nyMat h, and defaults the class using a default export.

CREATE OR REPLACE MLE MODULE default _export _nodul e
LANGUAGE JAVASCRI PT AS

export default class nmyMath {

static sun{operandl, operand2) {
return operandl + operand2;

}

static difference(operandl, operand2) {
return operandl - operand2;

}

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE Chapter 5
Import Functionality

Private Identifiers

Any identifier not exported from a module is considered private and cannot be referenced
outside the module's scope or in module call specifications.

Example 5-5 Named Export of Single Function

The following code snippet creates a module called pri vat e_export _nodul e, defines two
functions, sun() and di fference(), and exports the function sun{) via named export. The
function di f f erence() is not included in the export statement, thus is only available within its
own module's scope.

CREATE OR REPLACE M.E MODULE private_export_nodul e
LANGUAGE JAVASCRI PT AS

function suma, b) {
return a + b;

}

function difference(a, b) {
return a - b;

}

export { sum};
/

Import Functionality

The i nport keyword allows developers to import functionality that has been exported by a
source module.

Topics

* Module Objects
A module object supplies a convenient way to import everything that has been exported by

a module.

* Named Imports
The ECMAScript standard specifies named imports. Rather than using an import name,

you also have the option to specify identifiers.

o Default Imports
Unlike named imports, default imports don't require the use of curly braces. This

syntactical difference is also relevant to MLE's built-in modules.

Module Objects

A module object supplies a convenient way to import everything that has been exported by a
module.

The module object provides a means to access all identifiers exported by a module and is used
as a kind of namespace when referring to the imports.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE

Chapter 5
Import Functionality

Example 5-6 Module Object Definition

CREATE MLE ENV naned_exports_env
| MPORTS(' nanedExports' nodul e naned_exports_nodul e);

CREATE OR REPLACE MLE MODULE nod_obj ect inport nod
LANGUAGE JAVASCRI PT AS

/1the definition of a module object is denonstrated by the next line
inport * as nmyMath from "namedExports"

function nmySun(){
const result = nyMath.sun(4, 2);
console.log("the sumof 4 and 2 is ${result}’);

}

function nyDifference(){
const result = nyMath.difference(4, 2);
consol e.log("the difference between 4 and 2 is ${result}’);

}

export {nySum nyDifference};
/

my Mat h identifies the module object and naned_exports_nodul e is the module name. Both
sum() and di fference() are available under the nmyMat h scope in mod_obj ect _i nport _nod.

Named Imports

The ECMAScript standard specifies named imports. Rather than using an import name, you
also have the option to specify identifiers.

Example 5-7 Named Imports Using Specified Identifiers

CREATE OR REPLACE M_LE MODULE named_i nports_nodul e
LANGUAGE JAVASCRI PT AS

inport {sum difference} from "nanedExports";

function mySun(){
const result = sum(4, 2);
console.log("the sumof 4 and 2 is ${result}’);

}

function nmyDifference(){
const result = difference(4, 2);
consol e.log("the difference between 4 and 2 is ${result}’);

}

export {nmySum nyDifference};
/

Namespace clashes can ensue if multiple modules export the same identifier. To avoid this
issue, you can provide an alias in the i nport statement.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE

Chapter 5
Import Functionality

Example 5-8 Named Imports with Aliases

CREATE OR REPLACE MLE MODULE naned_i nports_alias_nodul e
LANGUAGE JAVASCRI PT AS

/Inote the use of aliases in the next line
inport {sumas theSum difference as theDifference} from "nanedExports";

function nmySun(){
const result = theSum(4, 2);
console.log("the sumof 4 and 2 is ${result}’);

}

function nyDifference(){
const result = theDifference(4, 2);
consol e.log("the difference between 4 and 2 is ${result}’);

}

export {nySum nyDifference};
/

Instead of referencing the exported functions by their original names, the alias is used instead.

Default Imports

Unlike named imports, default imports don't require the use of curly braces. This syntactical
difference is also relevant to MLE's built-in modules.

Example 5-9 Default Import

This example demonstrates the default import of nyMat hd ass.

CREATE OR REPLACE M.E ENV def aul t _export_env
| MPORTS(' def aul t Export Modul e MODULE def aul t _export _nodul e);

CREATE MLE MODULE defaul t _i nport _nmodul e LANGUAGE JAVASCRI PT AS

/Inote the lack of curly braces in the next line
import myMathClass from "def aul t Export Modul e";

export function mySun(){
const result = nyMathd ass.sum(4, 2);
console.log("the sumof 4 and 2 is ${result});

The same technique applies to the use of MLE's built-in modules such as the SQL driver.
Example 5-10 demonstrates the use of the SQL driver in JavaScript code.

Example 5-10 Default Import with Built-in Module

CREATE MLE MODULE default inport _built _in_nod
LANGUAGE JAVASCRI PT AS

/Inote that there is no need to use MLE environments with built-in nmodul es

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE’

Chapter 5
Import Functionality

import oracledb from"m e-js-oracl edb”;

export function hello(){
const options = {
resultSet: false,
out Format : oracl edb. OQUT_FORVAT_OBJECT
¥

const bindvars = [];

const conn = oracl edb. def aul t Connecti on();
const result = conn.execute('select user', bindvars, options);
consol e.l og(hello, ${result.rows[0].USER}");

}
/

Unlike other examples using custom JavaScript modules, no MLE environment is required for
importing a built-in module.

@ See Also

Server-Side JavaScript APl Documentation for more information about the built-in
JavaScript modules

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 8 of 8

https://oracle-samples.github.io/mle-modules

MLE JavaScript Functions

This chapter introduces the use of call specifications to publish JavaScript functions so that
they can be called from SQL and PL/SQL. MLE's support of QUT and | N OUT parameters is also
discussed.

Topics

» Call Specifications for Functions
Call specifications for modules and inline MLE call specifications allow you to implement
JavaScript functionality.

e OUT and IN OUT Parameters

Call Specifications for Functions

Call specifications for modules and inline MLE call specifications allow you to implement
JavaScript functionality.

Functions exported by an MLE JavaScript module can be published by creating call
specifications. A JavaScript function published with a call specification can be called from
anywhere a PL/SQL function or procedure can be called.

Alternatively, inline MLE call specifications can be used to embed JavaScript code directly in
the DDL. This option can be advantageous when you want to quickly implement a simple
functionality using JavaScript.

Topics

» Creating a Call Specification for an MLE Module
MLE call specification creation uses the generic CREATE FUNCTI ON RETURNS AS or CREATE
PROCEDURE AS syntax, followed by MLE specific syntax.

« Creating an Inline MLE Call Specification
Inline MLE call specifications embed JavaScript code directly in the CREATE FUNCTI ON and
CREATE PROCEDURE DDLs.

e Choosing Inline Versus Module MLE Call Specifications
Each option provides its own advantages and disadvantages depending on your use case.

* Runtime Isolation for an MLE Call Specification

« Dictionary Views for Call Specifications
Metadata about JavaScript call specifications is available in the data dictionary using the
[USER | ALL | DBA | CDB] _M.E_PRCCEDURES views. The family of views maps call
specifications (package, function, procedure) to JavaScript modules. This dictionary view is
closely modeled after the * PROCEDURES views.

Creating a Call Specification for an MLE Module

MLE call specification creation uses the generic CREATE FUNCTI ON RETURNS AS or CREATE
PROCEDURE AS syntax, followed by MLE specific syntax.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 17

ORACLE

Chapter 6
Call Specifications for Functions

Example 6-1 Creating MLE Call Specifications

This example walks you through the creation of an MLE module that exports two functions, and
the creation of call specifications to publish those functions.

CREATE OR REPLACE M.LE MODULE j snodul e
LANGUAGE JAVASCRI PT AS

export function greet(str){
console.l og(" Hello, ${str}");
}

export function concat(strl, str2){
return strl + str2;
}

The MLE module j snodul e exports two functions. The function gr eet () takes an input string
argument and prints a simple greeting, while the function concat () takes two strings as input
and returns the concatenated string as the result.

Because greet () does not return a value, you must create a PL/SQL procedure to publish it,
as follows:

CREATE OR REPLACE PROCEDURE
GREET(str in VARCHAR2)
AS MLE MODULE j snodul e
SI GNATURE ' greet(string)';

The above call specification creates a PL/SQL procedure named GREET() in the schema of the
current user. Running the procedure executes the exported function gr eet () in the JavaScript
module j smodul e.

Note that it is not a requirement that the call specification has the same name (GREET) as the
function being published (gr eet).

The MLE specific clause MLE MODULE <nmodul e nanme> specifies the JavaScript MLE module
that exports the JavaScript function to be called.

The S| GNATURE clause specifies the name of the exported function to be called (in this case,
greet), as well as, optionally, the list of argument types in parentheses. JavaScript MLE
functions use TypeScript types in the SI GNATURE clause. In this example, the function accepts a
JavaScript string. The PL/SQL VARCHAR? string is converted to a JavaScript string before
invoking the underlying JavaScript implementation. The SI GNATURE clause also allows the list of
argument types to be omitted, in which case only the MLE function name is expected and MLE
language types are inferred from the types given in the call specification's argument list.

The other exported function, concat (), can similarly be used to create a PL/SQL function:

CREATE OR REPLACE FUNCTI ON CONCATENATE(strl in VARCHAR2, str2 in VARCHAR?)
RETURN VARCHAR2
AS MLE MODULE j snodul e
SI GNATURE ' concat (string, string)';

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 17

ORACLE Chapter 6
Call Specifications for Functions

The call specification in this case additionally specifies the PL/SQL return type of the created
function. The value returned by the JavaScript function concat () (of type string) is converted to
the type VARCHAR2.

The created procedure and function can be called as shown below with the result:

SQ.> CALL GREET(' Peter');
Hel | o, Peter

Cal | conpl et ed.
SQL> SELECT CONCATENATE(' Hello, ','World!"');

CONCATENATE(" HELLO , ' WORLD! ")

Hel l o, World!

Topics

e Components of an MLE Call Specification
The elements of an MLE call specification are listed along with descriptions.

¢ MLE Module Clause
The MLE MODULE clause specifies the MLE module that exports the underlying JavaScript
function for the call specification. The specified module must always be in the same
schema as the call specification being created.

 ENV Clause
The optional ENV clause specifies the MLE environment for module contexts in which this
call specification will be executed.

* SIGNATURE Clause
The SI GNATURE clause contains all the information necessary to map the MLE call
specification to a particular function exported by the specified MLE module.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 17

ORACLE

Chapter 6
Call Specifications for Functions

Components of an MLE Call Specification

The elements of an MLE call specification are listed along with descriptions.

Figure 6-1 MLE Call Specification Syntax

e| CREATE (call_spec_name }»

PROCEDURE

invoker_rights_clause
' deterministic_clause .
' parallel_enable_clause l

o
(O l'

' result_cache_clause ‘

0 [_>| RETURN Kdatawpeh

schema .

(' module_name)

—
,—>| ENV env_name

M)
(N

mle_param_declaration o

OO

—)| SIGNATURE |e®-><function_name_in_module)

Table 6-1 Components of an MLE Call Specification

Element Name

Description

OR REPLACE

Specifies that the function should be replaced if it already exists.
This clause can be used to change the definition of an existing
function without dropping, recreating, and re-granting object
privileges previously granted on the function. Users who had
previously been granted privileges on a recreated function or
procedure can still access the function without being re-granted
the privileges.

[F NOT EXI STS

Specifies that the function should be created if it does not already
exist. If a function by the same name does exist, the statement is
ignored without error and the original function body remains
unchanged. Note that SQL*Plus will display the same output
message regardless of whether the command is ignored or
executed, ensuring that your DDL scripts remain idempotent.

| F NOT EXI STS cannot be used in combination with OR
REPLACE.

schenn

Specifies the schema that will contain the call specification. If the
schema is omitted, the call specification is created in the schema
of the current user.

cal | _spec_nane

Specifies the name of the call specification to be created. Call
specifications are created in the default namespace, unlike MLE
modules and environments, which use dedicated namespaces.

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 17

ORACLE Chapter 6
Call Specifications for Functions

Table 6-1 (Cont.) Components of an MLE Call Specification
]

Element Name Description

param decl arati on Specifies the call specification's parameters. If no parameters are
specified, parentheses must be omitted.

RETURN dat at ype Only used for functions and specifies the data type of the return
value of the function. The return value can have any data type
supported by MLE. Only the data type is specified; length,
precision, or scale information must be omitted.

i nvoker _rights_clause Specifies whether a function is invoker's or definer's rights.

e AUTHI D CURRENT _USER creates an invoker's rights function
or procedure.

e AUTHI D DEFI NER creates a definer's rights function or
procedure.

If the AUTHI D clause is omitted, the call specification is created

with definer's rights by default. The AUTHI D clause on MLE call

specifications has the exact same semantics as on PL/SQL

functions and procedures.

deterministic_clause Only used for functions and indicates that the function returns the
same result value whenever it is called with the same values for
its parameters. As with PL/SQL functions, this clause should not
be used for functions that access the database in any way that
might affect the return result of the function. The results of doing
so will not be captured if the database chooses not to re-execute
the function.

MLE Module Clause
The MLE MODULE clause specifies the MLE module that exports the underlying JavaScript
function for the call specification. The specified module must always be in the same schema as
the call specification being created.
An ORA- 04103 error is thrown if the specified MLE module does not exist. Likewise, an
ORA- 01031 error is raised if the specified module is in a different schema from the created call
specification.

ENV Clause

The optional ENV clause specifies the MLE environment for module contexts in which this call
specification will be executed.

An ORA- 04105 error is thrown if the specified environment schema object does not exist.

If this clause is omitted, the default environment is used. The default environment is simply an
environment in its most basic state, with no module imports and no specified language options.

SIGNATURE Clause

The SI GNATURE clause contains all the information necessary to map the MLE call specification
to a particular function exported by the specified MLE module.

Specifically, it includes two pieces of information:

* The name of the exported function in the specified MLE module.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 5 of 17

ORACLE Chapter 6
Call Specifications for Functions

* The MLE language parameter types (as opposed to the PL/SQL parameter types) for the

function (Optional).

The SI GNATURE clause must be in the following form:

Figure 6-2 signature_clause ::=

language-type

—J{ SIGNATURE @{path-spe@

Figure 6-3 path_spec ::=

import-spec
impoﬂ—spec}s@{JavaScript identifier)J__)

Figure 6-4 import_spec ::=
JavaScript identifier
&

The path specification describes the function to be called and can have the following two
forms:

* A path specification can consist only of an import specification.

— Animport specification can be a JavaScript identifier that identifies a named export of
the module, which must be a function. Alternatively, an import specification can be the
reserved word, def aul t . In this case, the default export of the module is used, which
must be a function.

e A path specification can be a composite form consisting of an import specification, followed
by a dot and a JavaScript identifier.

— Inthis case, the import specification must refer to an object that has a property whose
name matches the identifier listed after the dot. The value of the property needs to be
a function.

The | anguage-t ype can either be a built-in JavaScript type (e.g. string or number) or a type
provided by MLE (e.g. O acl eNunber or O acl eDat e) that is compatible with the corresponding
PL/SQL argument. Note that JSON data maps to the MLE ANY type. For an example covering
how to pass JSON from PL/SQL to MLE, see Working with JSON Data. For more information
about what types are provided by MLE through the built-in module m e-j s- pl sql t ypes, see
Server-Side JavaScript APl Documentation.

functi on- name can include any alphanumeric characters as well as underscores and periods.

When the call specification is a function, the type of the return value is not specified in the
SI GNATURE clause. Rather, the function can return any JavaScript type that is compatible with
the PL/SQL type specified in the call specification's RETURN clause.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 6 of 17

https://oracle-samples.github.io/mle-modules

ORACLE

Chapter 6
Call Specifications for Functions

@® Note

The parsing and resolution of the SI GNATURE clause happens lazily when the MLE
function is executed for the first time. It is only at this point that any resolution or
syntax errors in the S| GNATURE clause are reported, and not when the call specification
is created.

Simplified SIGNATURE Clause

CREATE FUNCTI ON and CREATE PROCEDURE DDL statements also accept a simplified form of the
SI GNATURE clause that only specifies the name of the exported function and leaves out the
JavaScript language types of the parameters. The default PL/SQL-MLE language type
mappings are used in this case.

This example demonstrates the creation of a call specification with a simplified SI GNATURE
clause.

CREATE OR REPLACE FUNCTI ON concat
RETURN VARCHAR2
AS MLE MODULE | srodul e
SIGNATURE ' concat ' ;

When the function concat is called from PL/SQL, the input VARCHAR2 parameters are converted
to JavaScript string (the default type mapping for VARCHAR?) before calling the underlying
JavaScript function.

@ See Also

MLE Type Conversions for more information about type mappings

Creating an Inline MLE Call Specification

Inline MLE call specifications embed JavaScript code directly in the CREATE FUNCTI ON and
CREATE PROCEDURE DDLs.

If you want to quickly implement simple functionality using JavaScript, inline MLE call
specifications can be a good choice. With this option, you don't need to deploy a separate
module containing the JavaScript code. Rather, the JavaScript function is built into the
definition of the call specification itself.

The MLE LANGUAGE clause is used to specify that the function is implemented using JavaScript.
The JavaScript function body must be enclosed by a set of delimiters. Double curly braces are
commonly used for this purpose, however, you also have the option to choose your own. The
beginning and ending delimiter must match and they cannot be reserved words or a dot. For
delimiters suchas {{...}},<<...>>,and ((...)), the ending delimiter is the corresponding
closing symbol, not an exact match.

The string following the language name is treated as the body of a JavaScript function that
implements the functionality of the call specification. When the code is executed, PL/SQL
parameters are automatically converted to the default JavaScript type and passed to the
JavaScript function as parameters of the same name. Note that unquoted parameter names

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 7 of 17

ORACLE

Chapter 6
Call Specifications for Functions

are mapped to all-uppercase JavaScript names. The value returned by a JavaScript function is
converted to the return type of the PL/SQL call specification, just as with call specifications for
MLE modules.

The syntax of the function is checked at compile time. If the JavaScript code includes syntax
errors, the function or procedure will be created but it will exist in an invalid state. While syntax
errors will be caught before runtime, it is still recommended to use a linting tool of your choice
to perform analysis of your code before executing the inline call specification.

@ See Also

Oracle Al Database PL/SQL Packages and Types Reference for information about
DBMS_MLE subprograms for inline call specifications

Example 6-2 Simple Inline MLE Call Specification

CREATE OR REPLACE FUNCTI ON date_t o_epoch (
"theDate" TIMESTAMP W TH TI ME ZONE

)

RETURN NUMBER

AS M_LE LANGUAGE JAVASCRI PT

{{
const d = new Date(theDate);

[/check if the input paraneter turns out to be an invalid date
if (isNaN(d)){
throw new Error (" ${theDate} is not a valid date’);

}

[/ Date.prototype.getTinme() returns the nunber of milliseconds
[/for a given date since epoch, which is defined as nidnight
/lon January 1, 1970, UTC

return d.getTine();

1}
/

You can call the function created in the preceding inline call specification using the following
SQL statement:

SELECT
date_to_epoch(
TO TI MESTAMP_TZ(
'29.02.2024 11.34.22 -05:00'",
"dd. M yyyy hh24:ni:ss tzh:tzn

) epoch_dat e;

Result:

EPOCH_DATE

1. 7092E+12

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 8 of 17

ORACLE

Chapter 6
Call Specifications for Functions

Example 6-3 Inline MLE Call Specification Returning JSON

Note the use of double quotation marks in the function parameter name, st r Args, in
Example 6-2. The inclusion preserves the parameter's letter case. Without quotation marks,
the parameter name is mapped to an all-uppercase JavaScript name, as seen in this example.

CREATE OR REPLACE FUNCTION p_string_to_json(inputString VARCHAR2) RETURN JSON
AS MLE LANGUAGE JAVASCRI PT

{{
if (I NPUTSTRI NG === undefined) {
throw "nust provide a string in the formof keyl=valuel;...;keyN=val ueN ;
}
let nyQhject = {};
if (INPUTSTRING length === 0) {
return nyQoject;
}

const kvPairs = I NPUTSTRING split(";");
kvPai rs. forEach(pair => {
const tuple = pair.split("=");
if (tuple.length === 1) {
tuple[l] = false
} elseif (tuple.length !=2) {
throw "parse error: you need to use exactly one
val ue and not use ' in either key or value"
}
myQbj ect[tuple[0]] = tuple[l];
19N

bet ween key and

return nyQbject;

b
/

The function created in the preceding inline call specification can be called using the following
SQL statement:

SELECT p_string_to_json('Hello=Geeting');

Result:

P_STRING TO JSON(' HELLO=GREETI NG)

{"Hello":"G eeting"}

e Components of an Inline MLE Call Specification
The elements of an inline MLE call specification are listed along with descriptions.

* Accessing Built-in Modules Using JavaScript Global Variables
Rather than importing MLE built-in modules in the same way as call specifications for MLE
modules, inline MLE call specifications utilize prepopulated JavaScript globals to access
built-in module functionality.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 9 of 17

ORACLE

Chapter 6
Call Specifications for Functions

Components of an Inline MLE Call Specification

The elements of an inline MLE call specification are listed along with descriptions.

Figure 6-5 MLE Inline Call Specification Syntax

e| CREATE (call_spec_name }»

PROCEDURE

invoker_rights_clause
l deterministic_clause ‘

aram_declaration

p

' result_cache_clause '

f—)l RETURN Kdatatypeh

PURE
H MLE |—>| LANGUAGE |e(|anguage,name H js,function,body,as,string,literal)—>
-IS

Table 6-2 Components of an Inline MLE Call Specification

Element Name

Description

OR REPLACE

Specifies that the function should be replaced if it already exists.
This clause can be used to change the definition of an existing
function without dropping, recreating, and re-granting object
privileges previously granted on the function. Users who had
previously been granted privileges on a recreated function or
procedure can still access the function without being re-granted
the privileges.

I F NOT EXI STS

Specifies that the function should be created if it does not already
exist. If a function by the same name does exist, the statement is
ignored without error and the original function body remains
unchanged. Note that SQL*Plus will display the same output
message regardless of whether the command is ignored or
executed, ensuring that your DDL scripts remain idempotent.

I F NOT EXI STS cannot be used in combination with OR
REPLACE.

schenn

Specifies the schema that will contain the call specification. If the
schema is omitted, the call specification is created in the schema
of the current user.

cal | _spec_nane

Specifies the name of the call specification to be created. Call
specifications are created in the default namespace, unlike MLE
modules and environments, which use dedicated namespaces.

param decl aration

Specifies the call specification's parameters. If no parameters are
specified, parentheses must be omitted.

RETURN dat at ype

Only used for functions and specifies the data type of the return
value of the function. The return value can have any data type
supported by MLE. Only the data type is specified; length,
precision, or scale information must be omitted.

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 17

ORACLE Chapter 6
Call Specifications for Functions

Table 6-2 (Cont.) Components of an Inline MLE Call Specification

. __|
Element Name Description

i nvoker _rights_clause Specifies whether a function is invoker's or definer's rights.

« AUTHI D CURRENT_USER creates an invoker's rights function
or procedure.

e AUTHI D DEFI NER creates a definer's rights function or
procedure.

If the AUTHI D clause is omitted, the call specification is created

with definer's rights by default. The AUTHI D clause on MLE call

specifications has the exact same semantics as on PL/SQL

functions and procedures.

deterninistic_clause Only used for functions and indicates that the function returns the
same result value whenever it is called with the same values for
its parameters. As with PL/SQL functions, this clause should not
be used for functions that access the database in any way that
might affect the return result of the function. The results of doing
so will not be captured if the database chooses not to re-execute
the function.

M.E LANGUAGE Specifies the language of the following code, for example,
JavaScript. The string following the language name is interpreted
as MLE language code implementing the desired functionality. For
JavaScript, this embedded code is interpreted as the body of a
JavaScript function.

PURE The PURE keyword specifies that the function or procedure should
be created in a restricted execution context. During PURE
execution, access to database state is disallowed, providing an
additional layer of security for user-defined functions that do not
require access to database state. For more information, see
About Restricted Execution Contexts.

Accessing Built-in Modules Using JavaScript Global Variables

Rather than importing MLE built-in modules in the same way as call specifications for MLE
modules, inline MLE call specifications utilize prepopulated JavaScript globals to access built-
in module functionality.

Inline MLE call specifications cannot import MLE modules, both built-in and custom. Instead,
JavaScript global variables, such as the sessi on variable, provide access to the functionality of
built-in modules like the JavaScript MLE SQL driver. For more information about the availability
of objects in the global scope, see Working with the MLE JavaScript Driver.

@ See Also

Server-Side JavaScript APl Documentation for more information about the built-in
JavaScript modules

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 11 of 17

https://oracle-samples.github.io/mle-modules

ORACLE Chapter 6
Call Specifications for Functions

Choosing Inline Versus Module MLE Call Specifications

Each option provides its own advantages and disadvantages depending on your use case.

Inline MLE call specifications can simplify the development workflow and provide a way to
quickly implement simple JavaScript functionality, as there is no need to deploy a separate
module containing the JavaScript code. This is a convenient option if you only need to
implement a single JavaScript function. You can use JavaScript global variables to access the
functionality of MLE built-in modules but, because inline MLE call specifications are not
associated with an MLE environment, modules cannot be imported.

Call specifications for MLE modules offer more flexibility in terms of complexity and ability to
import functionality from other modules, built-in and custom. You also have the option to
override the default JavaScript type mapping, which is not possible with MLE inline call
specifications. Call specifications for MLE modules should be used for larger pieces of
JavaScript code as well as for code that you intend to reuse in other JavaScript code using
imports.

@ See Also

Oracle Al Database PL/SQL Packages and Types Reference for information about
DBMS_M_E subprograms for MLE call specifications

Runtime Isolation for an MLE Call Specification

MLE uses execution contexts to maintain runtime state isolation. Call specifications are
associated with separate contexts when they do not share the same user, module, and
environment.

MLE execution contexts act as standalone, isolated runtime environments. All JavaScript code
that shares an execution context has full access to all of its runtime state (e.g. any global
variables previously defined). Otherwise, there is no way for code executing in one execution
context to see or modify runtime state in another execution context. Execution contexts for call
specifications are created transparently on the first call to any of the corresponding call
specifications. For more information, see About MLE Execution Contexts.

When executing call specifications in a session, MLE loads the module specified in the call
specification and calls the function(s) exported by that module. In order for the execution of two
call specifications to share the same execution context, they must export a function from the
same MLE module, use the same environment, and be executed by the same user. SQL or
PL/SQL calls on behalf of different users within the same session are never executed in the
same execution context.

The runtime representation of a module is stateful. State constitutes, for example, variables in
the JavaScript module as well as variables in the global scope accessible to code in the
module. Within the same session, MLE may employ multiple module contexts to execute call
specifications. If either the module or the environment referred to by a call specification
change, any execution context is invalidated and an error is thrown. Example 6-4
demonstrates this concept.

Session state is very important for data integrity. Not catching errors related to changed
session state (ORA- 04106 for module changes and ORA- 04107 for environment changes in
JavaScript, as well as ORA- 04068 for PL/SQL packages) can result in silent data corruption.
Setting the initialization parameter SESSI ON_EXI T_ON_PACKAGE_STATE ERROR to TRUE forces

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 12 of 17

ORACLE

Chapter 6
Call Specifications for Functions

sessions to be disconnected if the session state is invalidated. Because many applications
capture session disconnect, this option can help simplify the recovery from the invalidation of
existing session state. For more information about SESSI ON_EXI T_ON_PACKAGE_STATE_ERROR,
see Oracle Al Database Reference.

@ Note

Storing state in packages and JavaScript modules is not recommended. Session state
is best handled by the database.

All definer's rights call specifications that publish functions from the same MLE module (and
use the same environment) will share the same execution context because all execution
happens on behalf of the definer. Conversely, there is a separate execution context per calling
user when a call specification is declared as invoker's rights.

For more information about how to build a call specification, see Components of an MLE Call
Specification.

@ See Also

Oracle Al Database PL/SQL Language Reference for information about using
SESSI ON_EXI T_ON PACKAGE STATE ERRCR to specify behavior when PL/SQL package
state is invalidated

Example 6-4 Execution Context Dependencies

This example demonstrates the fact that if a module or environment changes, any associated
execution context(s) are invalidated.

CREATE OR REPLACE M.E MODULE count _nodul e
LANGUAGE JAVASCRI PT AS

et nyCounter = 0;

export function incrementCounter(){
return ++nmyCounter;

}
/

CREATE OR REPLACE FUNCTI ON i ncrement _and_get counter
RETURN NUMBER

AS MLE MODULE count nodul e

SI GNATURE ' i ncrenent Counter';

/

Session 1 creates its execution context by invoking the function i ncr enment _and_get _counter:

SQL> SELECT increnent _and_get _counter;

| NCREVENT_AND_GET_COUNTER

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 13 of 17

ORACLE

Chapter 6
Call Specifications for Functions

SQ.> SELECT increnent_and_get counter;

| NCREVENT_AND_GET_COUNTER

Another user invoking the function from a different session, we'll say session 2, creates
another execution context, separate from the first session's context:

SQ.> SELECT increnent_and_get counter;

| NCREVENT_AND_GET_COUNTER

The user in session 1 recreates the MLE module with some new comments added to the
function:

CREATE OR REPLACE M.E MODULE count _nodul e
LANGUAGE JAVASCRI PT AS

et nyCounter = 0;

/**
* increments a counter before returning the val ue
* to the caller
*@eturns {nunber} the value of the counter
*/
export function incrementCounter(){
return ++nmyCounter;

}
/

This operation signals to all execution contexts referring to count _nmodul e that their session
state should be invalidated. Session 2 gets an error in response to the invalidation:

SQL> SELECT increnent _and_get _counter;

SELECT i ncrement _and_get counter

*

ERRCR at |ine 1:
ORA- 04106: Mbdul e USER2. COUNT_MODULE referred to by | NCREMENT AND GET_COUNTER
has been modified since the execution context was created.

The next invocation of the function in session 2 starts off with a reinitialized session state:

SQ.> SELECT increnent_and_get _counter;

| NCREMENT_AND_GET_COUNTER

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 14 of 17

ORACLE

Chapter 6
Call Specifications for Functions

Just as with PL/SQL packages, invoking the function from session 1 does not result in an error.
Nevertheless, the session state has been discarded as shown by a subsequent call to the
function:

SQ.> SELECT increnent_and_get counter;

| NCREVENT_AND_GET_COUNTER

If the initialization parameter SESSI ON_EXI T_ON_PACKAGE_STATE_ERRCR s set to TRUE in session
2, the ORA- 04106 error is thrown and the connection to the database is cut:

ALTER SESSI ON SET SESSI ON_EXI T_ON_PACKAGE_STATE_ERROR = TRUE;
SELECT i ncrenent _and_get counter;

Result:

SELECT i ncrenent _and_get counter
*
ERRCR at |ine 1:
ORA- 04106: Modul e USER2. COUNT_MODULE referred to by | NCREMENT_AND GET_COUNTER
has been nodified since the execution context was created.

ERROR:
ORA-03114: not connected to ORACLE

Dictionary Views for Call Specifications

Metadata about JavaScript call specifications is available in the data dictionary using the [USER
| ALL | DBA | CDB] _MLE_PRCCEDURES views. The family of views maps call specifications
(package, function, procedure) to JavaScript modules. This dictionary view is closely modeled
after the * _PROCEDURES views.

For more information about *_ MLE_PROCEDURES, see Oracle Al Database Reference.

Example 6-5 Show JavaScript Call Specification Metadata

SELECT OBJECT_NAME, PROCEDURE_NAME, SI GNATURE, ENV_NAME, MCODULE_NAVME
FROM USER_M_E_PROCEDURES;

SQL*Plus output:

OBJECT_NAME PROCEDURE_NAME SI GNATURE ENV_NAME MODULE_NAME
CONCATENATE concat (string, string) JSMODULE
DO_NOTHI NG doNot hi ng(string) JSMODULE

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 15 of 17

ORACLE

Chapter 6
OUT and IN OUT Parameters

OUT and IN OUT Parameters

Use QUT and | N QUT parameters with MLE JavaScript functions.

MLE JavaScript functions support | N QUT and OUT parameters in addition to | N parameters,
just as they are supported in PL/SQL functions and procedures. These are declared as | N QUT
and QUT in the list of arguments of an MLE call specification.

Because JavaScript has no notion of output parameters, the JavaScript implementation
instead accepts objects that wrap the parameter value. Concretely, the shape of these wrapper
objects is described by the following generic TypeScript interfaces | nQut and Qut (for N OUT
and QUT parameters, respectively):

Interface I nCut<T> {
Value : T,

}

Interface Qut<T> {
Value : T,

}

Note that QUT and | N QUT parameters are passed to JavaScript functions as JavaScript objects
whose only property, val ue, exposes the value of the argument. This means that, in order to
read, write, and use the value of an OUT or | N QUT argument, it must first be unwrapped by
accessing its val ue property. This is done in order to simulate a pass-by-reference
implementation, which does not exist in JavaScript. For example, the substitute() function in
Example 6-6 must first unwrap its | N OUT argument, sent ence, by retrieving its val ue property
before calling mat ch() on it. Attempting to call mat ch() on sent ence directly would fail, as

sent ence is only the value wrapper. These wrapper classes are never needed in DBVMS_M.E,
which does not make use of QUT and I N QUT parameters.

Example 6-6 OUT and IN OUT Parameters with JavaScript

Consider an MLE function, substitute(), that takes a VARCHAR2 | N OUT parameter, sent ence,
and replaces all occurrences of the second parameter, r epl aceThi s, with the third parameter,
wi t hThat , then returns the number of occurrences of r epl aceThi s in sent ence.

CREATE OR REPLACE MLE MODULE in_out exanpl e_nod
LANGUAGE JAVASCRI PT AS

export function substitute (sentence, replaceThis, withThat) {
/*
* substitute: substitutes “replaceThis™ in “sentence” wth
* “replaceThat

* paranmeters:
* - sentence: the input sentence
* - replaceThis: a word to be replaced in “sentence’
* - withThat: the new word to be used instead of “replaceThis’
*/
const occurrences =
(sentence. val ue. match(replaceThis) || []).length;
sentence. val ue = sentence. val ue. repl ace(repl aceThis, withThat);
return occurrences;

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 16 of 17

ORACLE

Chapter 6
OUT and IN OUT Parameters

CREATE OR REPLACE FUNCTI ON f _substitute(

p_sentence N QUT VARCHARZ,
p_repl aceThis I N VARCHAR2,
p_w t hThat I N VARCHAR2

)
RETURN NUMBER

AS MLE MODULE in_out _exanpl e_nod
SI GNATURE ' substitute(lnQut<string> string, string)';
/

The SI GNATURE clause of the call specification lists the parameter type of the JavaScript
function's sent ence parameter as | nQut <st ri ng>. The input VARCHAR? value is therefore
converted to a JavaScript st ri ng, that is then wrapped in an object and passed to the
JavaScript function substitute().

EXEC dbns_sessi on. reset _package
SET SERVEROQUTPUT ON

DECLARE

| _sentence varchar2(100) := 'people are enjoying the rain';

| _replaceThis varchar2(100) := 'rain';
| _withThat varchar2(100) := 'sun';
| _occurrences pls_integer;
BEG N
dbrs_out put. put _|ine(' sentence before: ' || |_sentence);

| _occurrences := f_substitute(
| _sentence, | _replaceThis, |_wthThat);
if | _occurrences <> 0 then

dbns_out put. put _|ine(' sentence after: ' || | _sentence);
el se
dbns_out put. put _|ine(' no text replacement perforned);
end if;
END;
/
Result:

sentence hefore: people are enjoying the rain
sentence after: people are enjoying the sun

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 17 of 17

Calling PL/SQL and SQL from the MLE
JavaScript SQL Driver

e Introduction to the MLE JavaScript SQL Driver

» Selecting Data Using the MLE JavaScript Driver

« Data Modification
» Bind Variables

e PL/SQL Invocation from the MLE JavaScript SQL Driver

e Error Handling in SQL Statements

e Working with JSON Data
The use of JSON data as part of a relational structure, more specifically the use of JSON
columns in (relational) tables, is described.

* Working with User-Defined Data Types
e Using Large Objects (LOB) with MLE

» API Differences Between node-oracledb and mle-js-oracledb
There are several differences between node- or acl edb and m e-j s- or acl edb, including the
methods for handling connection management and type mapping.

e Introduction to the PL/SQL Foreign Function Interface
The Foreign Function Interface (FFI) is designed to provide straightforward access to
PL/SQL packages in a familiar, JavaScript-like fashion.

Introduction to the MLE JavaScript SQL Driver

The MLE JavaScript driver is closely modeled after the client-side Oracle SQL driver for
Node.js, node- or acl edb.

This close relationship between the server-side and client-side drivers reduces the effort
required to port client-side JavaScript code from Node.js or Deno to the database.
Functionality that cannot be reasonably mapped to the server-side environment is omitted from
MLE and the MLE JavaScript driver and will throw errors.

This helps you identify those parts of the code requiring changes. Furthermore, the MLE
JavaScript implementation is a pure JavaScript implementation. Certain features not part of the
ECMAScript standard are unavailable in MLE, such as the window object as well as direct file
and network 1/0.

The m e-j s-oracl edb SQL driver defaults to a synchronous operating model and patrtially
supports asynchronous execution via async/await.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 56

ORACLE’

Chapter 7
Introduction to the MLE JavaScript SQL Driver

@® Note

Production code should adhere to industry best practices for error handling and
logging, which have been omitted from this chapter's examples for the sake of clarity.
Additionally, most examples feature the synchronous execution model due to its
greater readability.

@® Note

If you are running your JavaScript code in a restricted execution context, you cannot
use the MLE JavaScript SQL driver. For more information about restricted execution
contexts, see About Restricted Execution Contexts.

@ See Also

« APl Differences Between node-oracledb and mle-js-oracledb

e Server-Side JavaScript APl Documentation for more information about the built-in
JavaScript modules

Topics

Working with the MLE JavaScript Driver
Generic workflow for working with the MLE JavaScript driver.

Connection Management in the MLE JavaScript Driver

Introduction to Executing SQL Statements

Processing Comparison Between node-oracledb and mle-js-oracledb

The node- or acl edb documentation recommends the use of the async/await interface. Due
to the nature of client-server interactions, most of the processing involved between node
and the database is executed asynchronously.

Working with the MLE JavaScript Driver

Generic workflow for working with the MLE JavaScript driver.

At a high level, working with the MLE JavaScript driver is very similar to using the client-side
node- or acl edb driver, namely:

1.
2.
3.

4.
5.

Get a connection handle to the existing database session.
Use the connection to execute a SQL statement.

Check the result object returned by the statement executed, as well as any database
errors that may have occurred.

In the case of select statements, iterate over the resulting cursor.

For statements manipulating data, decide whether to commit or roll the transaction back.

Applications that aren't ported from client-side Node.js or Deno can benefit from coding aids
available in the MLE JavaScript SQL driver, such as many frequently used variables available
in the global scope. These variables include the following:

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 56

https://oracle-samples.github.io/mle-modules

ORACLE

Chapter 7
Introduction to the MLE JavaScript SQL Driver

« oracledb for the Oracl eDb driver object

e session for the default connection object
» soda for the SodaDat abase object

« plsffi for the foreign function interface (FFI) object
Additionally, the following types are available:
e Oracl eNunber

« OacleCob

e OacleBlob

e Oracl eTi nestanp

* Oacl eTi mestanpTZ

« OacleDate

* Oaclelnterval DayToSecond

* Oaclelnterval Year ToMnt h

The availability of these objects in the global scope reduces the need to write boilerplate code.
For details about global symbols available with the MLE JavaScript SQL driver, see Server-
Side JavaScript API Documentation.

Connection Management in the MLE JavaScript Driver

Considerations when dealing with connection management in the MLE JavaScript driver.
Connection management in the MLE JavaScript driver is greatly simplified compared to the
client driver. Because a database session will already exist when a JavaScript stored
procedure is invoked, you don't need to worry about establishing and tearing down
connections, connection pools, and secure credential management, to name just a few.

You need only be concerned with the get Def aul t Connecti on() method from the m e-j s-
or acl edb module or use the global session object.

Introduction to Executing SQL Statements

A single SQL or PL/SQL statement can be executed by the Connecti on class's execut e()
method. Query results can either be returned in a single JavaScript array or fetched in batches
using a Resul t Set object.

Fetching as Resul t Set offers more control over the fetch operation whereas using arrays
requires fewer lines of code and provides performance benefits unless the amount of data
returned is enormous.

Example 7-1 Getting Started with the MLE JavaScript SQL Driver

The following code demonstrates how to import the MLE JavaScript SQL driver into the current
module's namespace. This example is based on one provided in the node-oracledb
documentation, A SQL SELECT statement in Node.js.

CREATE OR REPLACE MLE MODULE js_sql _nod LANGUAGE JAVASCRI PT AS

import oracledb from "mle-js-oracledb";

/**

* Performa | ookup operation on the HR DEPARTMENTS table to find all

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 56

https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules
https://node-oracledb.readthedocs.io/en/latest/user_guide/installation.html#example-a-sql-select-statement-in-node-js

ORACLE Chapter 7
Introduction to the MLE JavaScript SQL Driver

* departnments managed by a given manager ID and print the result on
* the console

* @aram {nunber} manager|D the manager |D

*/

function queryExanpl e(nmanager| D) {

i f (manager| D === undefined) {
throw new Error (
"Paranet er manager| D has not been provided to queryExanmple()"
);
}

| et connection;

try {
connection = oracl edb. def aul t Connection();

const result = connection. execute(’
SELECT nmanager _id, department id, departnent _name
FROM hr. depart nent s
VWHERE nanager _id = :id",
[

1,
{

}
);
if (result.rows.length > 0) {
for (let row of result.rows) {
consol e. | og(" The query found a row
manager _i d: ${row. MANAGER | O}
departnent _id: ${row DEPARTMENT_| D}
depart nent _name: ${row. DEPARTMENT_NAME} ") ;

manager | D

out Format: oracl edb. OQUT_FORMAT _OBJECT

}
} else {

consol e.l og("no data found for manager |D ${manager!D}");
}

} catch (err) {
consol e.error(an error occurred while processing the query: $
{err.message} ");

}

export { queryExanple };
/

The only function present in the module, quer yExanpl e(), selects a single row from the HR
departments table using a bind variable by calling connecti on. execut e() . The value of the
bind variable is passed as a parameter to the function. Another parameter passed to
connection. execut e() indicates that each row returned by the query should be provided as a
JavaScript object.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 4 of 56

ORACLE

Chapter 7
Introduction to the MLE JavaScript SQL Driver

If data has been found for a given manager | D, it is printed on the screen. By default, the call to
consol e. l og() is redirected to DBMS_OUTPUT. Should there be no rows returned a message
indicating this fact is printed on the console.

The call specification in the following snippet allows the code to be invoked in the database.

CREATE OR REPLACE PROCEDURE p_js_sql _query_ex(
p_manager _i d nunber)

AS MLE MODULE | s_sql _nod

SI GNATURE ' quer yExanpl e(nunber) " ;

/

Provided the defaults are still in place, invoking p_j s_sqgl _query_ex displays the following:

SQL> set serveroutput on

SQ.> EXEC p_js_sql _query_ex(103)
The query found a row

manager _i d: 103
department _id: 60

department _name: IT

@ See Also

Server-Side JavaScript APl Documentation for more information about the built-in
JavaScript modules, including nl e-j s- oracl edb

Example 7-2 Use Global Variables to Simplify SQL Execution

Example 7-1 can be greatly simplified for use with MLE. Variables injected into the global
scope can be referenced, eliminating the need to import the m e-j s- or acl edb module.
Additionally, because only a single function is defined in the module, an inline call specification
saves even more typing.

CREATE OR REPLACE PROCEDURE js_sql _mod_sinplified(
"manager | D' nunber
) AS MLE LANGUAGE JAVASCRI PT

{{
i f (manager! D === undefined || nmanager!D === nul|){
throw new Error (
“Paranet er manager| D has not been provided to js_sql _nod_sinplified()"
);
}
const result = session. execute("
SELECT
manager _i d,
department _id,
depart ment _narme
FROM
hr. departments
\HERE
manager _id = :id",

[manager|D]

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 5 of 56

https://oracle-samples.github.io/mle-modules

ORACLE’

Chapter 7
Selecting Data Using the MLE JavaScript Driver

)

if(result.rows.length > 0){
for(let row of result.rows){
consol e. | og(
“The query found a row

manager _i d: ${row. MANAGER | O}
departnent _i d: ${row DEPARTMVENT | D}
depart nent _name: ${row. DEPARTMVENT_NAME} "

);

}
} else {

consol e.l og("no data found for manager |D ${manager!D}");
}
Hh

/

js_sql _nod_sinplified

SQ.> set serveroutput on
SQ.> exec js_sql _nod_sinplified(100);

The query found a row.
manager _i d: 100
department _id: 90
department _name: Executive

Processing Comparison Between node-oracledb and mle-js-oracledb

The node- or acl edb documentation recommends the use of the async/await interface. Due to
the nature of client-server interactions, most of the processing involved between node and the
database is executed asynchronously.

The MLE JavaScript driver does not require asynchronous processing. Like the PL/SQL driver,
this is thanks to the driver's location within the database. The MLE JavaScript driver
understands the async/await syntax, however, it processes requests synchronously under the
hood.

Unlike the node- or acl edb driver, the MLE JavaScript SQL driver returns rows as objects
(oracl edb. QUT_FORMAT_OBJECT) rather than arrays (or acl edb. QUTFORMAT _ARRAY) when using
the ECMAScript 2023 syntax. Code still relying on the deprecated r equi r e syntax remains
backwards compatible by returning rows as an array.

@® Note

A promise-based interface is not provided with the MLE JavaScript driver.

Selecting Data Using the MLE JavaScript Driver

Data can be selected using Direct Fetches or Resul t Set objects.
You can choose between arrays and objects as the output format. The default is to return data
through Direct Fetch using JavaScript objects.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 6 of 56

ORACLE Chapter 7
Selecting Data Using the MLE JavaScript Driver

Topics
e Direct Fetch: Arrays
» Direct Fetch: Objects

* Fetching Rows as ResultSets: Arrays

* Fetching Rows as ResultSets: Iterating Over ResultSet Objects

Direct Fetch: Arrays

Direct Fetches are the default in the MLE JavaScript driver.

Direct Fetches provide query results in resul t. rows. This is a multidimensional JavaScript
array if you specify the out For mat as or acl edb. OQUT_FORMAT_ARRAY. Iterating over the rows
allows you to access columns based on their position in the select statement. Changing the
column order in the select statement requires modifications in the parsing of the output.
Because this can lead to bugs that are hard to detect, the MLE JavaScript SQL driver returns
objects by default (or acl edb. QUT_FORMAT _OBJECT), rather than arrays.

Example 7-3 demonstrates Direct Fetches using the synchronous execution model.

Example 7-3 Selecting Data Using Direct Fetch: Arrays

CREATE OR REPLACE PROCEDURE dir_fetch_arr_proc
AS MLE LANGUAGE JAVASCRI PT
{{
const result = session. execute(
* SELECT
department _id,
depart ment _name
FROM
hr. departnents
FETCH FIRST 5 ROAS ONLY",

(1.
{

}

for (let row of result.rows) {
const deptID = String(row0]).padStart(3, '0");
const deptNane = rowf1];
consol e.l og(department ID: ${deptID} - departnent name: ${deptNane});

out Format: oracl edb. OQUT_FORVMAT ARRAY

BEG N
dir_fetch_arr_proc;

END;

/

Result:

department ID: 010 - department name: Administration
department ID: 020 - department nanme: Marketing

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 7 of 56

ORACLE

Chapter 7
Selecting Data Using the MLE JavaScript Driver

department ID: 030 - department nane: Purchasing
department ID: 040 - department name: Human Resources
department ID: 050 - department name: Shipping

The execut e() function returns a resul t object. Different properties are available for further
processing depending on the statement type (select, insert, delete, etc.).

For information about m e-j s- or acl edb, see Server-Side JavaScript APl Documentation.

Direct Fetch: Objects

JavaScript objects are returned by default when using Direct Fetch.
To address potential problems with the ordering of columns in the select list, results are
returned as JavaScript objects rather than as arrays.

Example 7-4 Selecting Data Using Direct Fetch: Objects

CREATE OR REPLACE PROCEDURE dir_fetch obj proc
AS MLE LANGUAGE JAVASCRI PT
{{
const result = session. execute(
" SELECT
department _id,
depart ment _nare
FROM
hr. departments
FETCH FIRST 5 ROAS ONLY",
[l
{ outFornmat: oracl edb. OUT_FORMAT OBJECT }

):

for (let row of result.rows) {
const deptID = String(row DEPARTMENT |ID).padStart(3, '0');
const dept Nane = row. DEPARTMENT _NAME;
consol e. | og(" departnment |D: ${deptID} - department nanme: ${deptNane});

3R
/

BEG N

dir_fetch_obj proc();
END;
/

Result:

department ID: 010 - department name: Administration
department ID. 020 - department nane: Marketing
department ID: 030 - departnment nane: Purchasing
department ID: 040 - department name: Human Resources
department ID: 050 - department nane: Shipping

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 8 of 56

https://oracle-samples.github.io/mle-modules

ORACLE

Chapter 7

Selecting Data Using the MLE JavaScript Driver

Unlike PL/SQL, JavaScript doesn't support the concept of named parameters. The execut e()
method accepts the SQL statement, bi ndPar ans, and options, in that exact order. The query
doesn't use bind variables, thus an empty array matches the function's signature.

@ See Also

Server-Side JavaScript APl Documentation for more information about the m e- | s-

or acl edb built-in module

Fetching Rows as ResultSets: Arrays

You can use Resul t Set objects as an alternative to using Direct Fetches.

In addition to using Direct Fetches, it is possible to use Resul t Set objects. A Resul t Set is
created when the option property resul t Set is set to true. Resul t Set rows can be fetched

using get Row() or get Rows() .

Because rows are fetched as JavaScript objects by default instead of as arrays, out For mat
must be defined as or acl edb. QUT_FORVAT_ARRAY in order to fetch rows as a Resul t Set .

Example 7-5 Fetching Rows Using a ResultSet

CREATE OR REPLACE PROCEDURE dir_fetch_rs_arr_proc
AS MLE LANGUAGE JAVASCRI PT
{{
const result = session. execute(
* SELECT
department _id,
depart ment _name
FROM
hr. departnents
FETCH FIRST 5 ROAS ONLY",

(1.
{

resultSet: true,
outFormat: oracledb.OUT_FORMAT ARRAY

);

const rs = result. resultSet;

et row

while ((row = rs. getRow())){
const deptID = String(row0]).padStart(3, '0");
const deptNane = rowf1];

consol e. | og(departnment 1D ${deptID} - departnent nane:

}

rs.close();

1}
/

JavaScript Developer's Guide

G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

${ dept Nane}");

October 13, 2025
Page 9 of 56

https://oracle-samples.github.io/mle-modules

ORACLE

Chapter 7
Selecting Data Using the MLE JavaScript Driver

Note that the fetch operation specifically requested an array rather than an object. Objects are
returned by default.

EXEC dir_fetch rs_arr_proc();

Result:

department ID: 010 - department name: Administration
department ID: 020 - department nanme: Marketing
department ID: 030 - department nane: Purchasing
department ID: 040 - department name: Human Resources
department ID: 050 - department name: Shipping

Fetching Rows as ResultSets: Iterating Over ResultSet Objects

In addition to the Resul t Set . get Row() and Resul t Set . get Rows() functions, the MLE
JavaScript driver's Resul t Set implements the iterable and iterator protocols, simplifying the
process for iterating over the Resul t Set .

Using either the iterable or iterator protocols is possible. Both greatly simplify working with
Resul t Set s. The iterable option is demonstrated in Example 7-6.

@® Note

Resul t Set objects must be closed once they are no longer needed.

Example 7-6 Using the Iterable Protocol with ResultSets

This example shows how to use the iterable protocol as an alternative to Resul t Set . get Row() .
Rather than providing an array of column values, the JavaScript objects are returned instead.

CREATE OR REPLACE PROCEDURE rs_iterabl e _proc
AS MLE LANGUAGE JAVASCRI PT
{{
const result = session. execute(
* SELECT
department _id,
depart ment _narme
FROM
hr. departnents
FETCH FIRST 5 ROAS ONLY",
[l
{

}

resultSet: true

);
const rs = result. resultSet;
for (let row of rs){
const deptID = String(row DEPARTMENT |ID).padStart(3, '0');
const dept Nane = row. DEPARTMVENT _NAME;
consol e. | og(" departnent |D: ${deptID} - department nane: ${deptName});
}

rs.close();

3R

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 10 of 56

ORACLE

Chapter 7
Data Modification

/

BEG N

rs_iterable proc();
END;
/

Result:

department ID: 010 - department name: Administration
department ID: 020 - department nane: Marketing
department ID: 030 - department nane: Purchasing
department ID: 040 - department name: Human Resources
department ID: 050 - department nane: Shipping

Data Modification

Modify data using the MLE JavaScript SQL driver.

In addition to selecting data, it is possible to insert, update, delete, and merge data using the
MLE JavaScript SQL driver. The same general workflow can be applied to these operations as
you would use when selecting data.

Example 7-7 Updating a Row Using the MLE JavaScript SQL Driver

CREATE OR REPLACE MLE MODULE row_updat e_nod LANGUAGE JAVASCRI PT AS
inport oracledb from"me-js-oracledb”;
export function updat eComm ssi onExanpl eEnpl D145() {
const conn = oracl edb. def aul t Connection();
const result = conn. execut g(
" UPDATE enpl oyees
SET commi ssion_pct = comission pct * 1.1
WHERE enpl oyee id = 145"
);

return result. rowsAffected;

The resul t object's r owsAf f ect ed property can be interrogated to determine how many rows
have been affected by the update. The JavaScript function

updat eCommi ssi onExanpl eEnpl D145() returns the number of rows affected to the caller. In this
instance, the function will return 1.

An alternative method to update data is to use the connecti on. execut eMany() method. This
function works best when used with bind variables.

Bind Variables

Use bind variables to control data passed into or retrieved from the database.

SQL and PL/SQL statements may contain bind variables, indicated by colon-prefixed
identifiers. These parameters indicate where separately specified values are substituted in a
statement when executed, or where values are to be returned after execution.

Three different kinds of bind variables exist in the Oracle database:

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 11 of 56

ORACLE’

Chapter 7
Bind Variables

| Nbind variables
e QUT bind variables
e« | N OUT bind variables

I N binds are values passed into the database. QUT binds are used to retrieve data from the
database. I N QUT binds are passed in and may return a different value after the statement
executes.

Using bind variables is recommended in favor of constructing SQL or PL/SQL statements
through string concatenation or template literals. Both performance and security can benefit
from the use of bind variables. When bind variables are used, the Oracle database does not
have to perform a resource and time consuming hard-parse operation. Instead, it can reuse the
cursor already present in the cursor cache.

@® Note

Bind variables cannot be used in DDL statements such as CREATE TABLE, nor can they
substitute the text of a query, only data.

Topics

* Using Bind-by-Name vs Bind-by-Position
Bind variables are used in two ways: by name by position. You must pick one for a given
SQL command as the options are mutually exclusive.

* RETURNING INTO Clause

« Batch Operations

Using Bind-by-Name vs Bind-by-Position

Bind variables are used in two ways: by name by position. You must pick one for a given SQL
command as the options are mutually exclusive.

Topics

¢ Named Bind Variables

« Positional Bind Variables

Named Bind Variables

Binding by name requires the bind variable to be a string literal, prefixed by a colon.
In the case of named binds, the bi ndPar ams argument to the connecti on. execut e() function
should ideally be provided with the following properties of each bind variable defined.

Property Description

dir The bind variable direction

val The value to be passed to the SQL statement
type The data type

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 12 of 56

ORACLE

Chapter 7
Bind Variables

Example 7-8 Using Named Bind Variables

CREATE OR REPLACE PROCEDURE named_bi nds_ex_proc(
"dept Name" VARCHARZ,
"sal " NUMBER

)
AS MLE LANGUAGE JAVASCRI PT

{{
if (deptName === null || sal === null){
throw new Error (
“nmust provide dept Name and sal to naned_binds_ex_proc()’
);
}

const result = session. execute(
* SELECT
e.first_name ||
. |
e.last_nane enpl oyee_nane,
e.sal ary
FROM
hr. enpl oyees e
LEFT JON hr.departnments d ON (e.departnment _id = d. departnent id)
WHERE

nvl (d. department _nane, 'n/a') = :deptName
AND sal ary > :sal
ORDER BY
e.eml oyee_id",
{
dept Nane: {
dir: oracl edb. BIND I N,
val: dept Nare,
type: oracl edb. STRING
¥
sal : {
dir: oracl edb. BIND I N,
val: sal,
type: oracl edb. NUMBER
}
}
);
consol e. | og(" Listing enpl oyees working in ${deptNanme} with a salary > $
{sal}");

for (let row of result.rows){
consol e. | og(" ${row. EMPLOYEE_NAME. padEnd(25)} - ${row. SALARY}");

I3
/

The bi ndPar ans argument to connecti on. execut e() defines two named bind parameters:
e dept Nanme

o sal

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 13 of 56

ORACLE Chapter 7
Bind Variables

In this example, the function's input parameters match the names of the bind variables, which
improves readability but isn't a requirement. You can assign bind variable names as long as
the mapping in bi ndPar ams is correct.

Positional Bind Variables

Instead of using named bind parameters, you can alternatively provide bind-variable
information as an array.

The number of elements in the array must match the number of bind parameters in the SQL
text. Rather than mapping by name, the mapping of bind variable and value is based on the
position of the bind variable in the text and position of the item in the bind array.

Example 7-9 Using Positional Bind Variables

This example demonstrates the use of positional bind variables and represents a
reimplementation of Example 7-8

CREATE OR REPLACE PROCEDURE positional _binds_ex_proc(
"dept Nanme" VARCHARZ,
"sal " NUMBER

)
AS MLE LANGUAGE JAVASCRI PT

{{
if (deptName === null || sal === null){
throw new Error(
“nmust provide dept Name and sal to positional binds_ex proc()’
);
}

const result = session. execut g(

" SELECT
e.first_name |
. |
e.last_name enpl oyee_nane,
e.salary

FROM
hr. enpl oyees e
LEFT JON hr.departnments d ON (e.departnment_id = d. departnent _id)

VWHERE
nvl (d. department _name, 'n/a') = :dept Name
AND sal ary > :sal
ORDER BY
e.enmpl oyee_id",
L
deptName,
sal
]
)
consol e. l og(" Listing enployees working in ${deptName} with a salary > $
{sal}");

for(let row of result.rows){
consol e. | og(" ${row. EMPLOYEE_NAME. padEnd(25)} - ${row. SALARY}");

3R
/

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 14 of 56

ORACLE Chapter 7
Bind Variables

In this example, bi ndPar ans is an array rather than an object. The mapping between bind
variables in the SQL text to values is done by position. The first item in the bi ndPar ans array
maps to the first occurrence of a placeholder in the SQL text and so on.

RETURNING INTO Clause

The use of the RETURNI NG | NTO clause is described.
The RETURNI NG | NTO clause allows you to

e Fetch values changed during an update
e Return auto-generated keys during a single-row insert operation

e List rows deleted
Example 7-10 Using the RETURNING INTO Clause

This example shows how to retrieve the old and new values after an update operation. These
values can be used for further processing.

CREATE OR REPLACE PROCEDURE ret _into_ex_proc(
"firstEnpl D' NUMBER
"l ast Enpl D' NUMBER

)
AS MLE LANGUAGE JAVASCRI PT

{{
if (firstEnplD === null || lastEmplD === null){
throw new Error (
“nmust provide deptName and sal to ret_into_ex _proc()’
);
}

const result = session. execute(
* UPDATE
hr. enpl oyees

SET

| ast _name = upper (| ast_nane)
VWHERE

enpl oyee id between :firstEmplD and :|astEnpl D
RETURNING

old last_name
new | ast _nane

INTO
: ol dLast Nane,
:newLast Nane’,
{
firstEmpl D {
dir: oracledb. BIND IN,
val : firstEnplD,
type: oracl edb. NUMBER
¥
last Empl D: {
dir: oracledb. BIND IN,
val : |astEnpl D,
type: oracl edb. NUMBER
¥

ol dLast Nane: {

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 15 of 56

ORACLE Chapter 7
Bind Variables

type: oracl edb. STRING
dir: oracl edb. BIND_OUT
}7
newLast Nanme: {
type: oracl edb. STRING
dir: oracl edb. BI ND_OUT

)

if (result.rowsAffected > 1){
consol e. | og(
“update() conpl eted successfully:
- old values: ${JSON stringify(result.outBinds.ol dLast Nange)}
- new val ues: ${JSON. stringify(result.outBinds.newLast Nane)}"
);
} else
t hrow new Error(
“found no row to update in range ${firstEnplD} to ${l astEnpl D}’

This example features both | Nand QUT bind variables:
« firstEnpl Dand | ast Enpl D specify the data range to be updated
< ol dLast Nane is an array containing all the last names as they were before the update

e newlLast Nane is another array containing the new values

Batch Operations

In addition to calling the connecti on. execut e() function, it is possible to use

connect i on. execut eMany() to perform batch operations.

Using connect i on. execut eMany() is like calling connect i on. execut e() multiple times but
requires less work. This is an efficient way to handle batch changes, for example, when
inserting or updating multiple rows. The connect i on. execut eMany() method cannot be used
for queries.

connection. execut e() expects an array containing variables to process by the SQL
statement. The bi ndDat a array in Example 7-11 contains multiple JavaScript objects, one for
each bind variable defined in the SQL statement. The for loop constructs the objects and adds
them to the bi ndDat a array.

In addition to the values to be passed to the batch operation, the MLE JavaScript SQL driver
needs to know about the values' data types. This information is passed as the bi ndDef s
property in the connect i on. execut eMany() options parameter. Both old and new last names in
Example 7-11 are character strings with the changeDat e defined as a date.

Just as with the connect i on. execut e() function, connecti on. execut eMany() returns the
r owsAf f ect ed property, allowing you to quickly identify how many rows have been batch
processed.

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 16 of 56

ORACLE

Chapter 7
Bind Variables

Example 7-11 Performing a Batch Operation

This example extends Example 7-9 by inserting the old and new last names into an audit table.

CREATE OR REPLACE PROCEDURE ret_into_audit_ex_proc(
"firstEnpl D" NUMBER
"l ast Enpl D' NUMBER

)
AS MLE LANGUAGE JAVASCRI PT
{{
if (firstEnplD === null || lastEmplD === null){
throw new Error (
“nust provide deptNane and sal to ret_into_audit_ex_proc()’
);
}
let result = session.execute(
" UPDATE
hr. enpl oyees
SET
| ast _name = upper (| ast_nane)
VHERE
enmpl oyee_id between :firstEnmplD and :|ast Enpl D
RETURNI NG
ol d [ast _nare,
new | ast _name
[NTO
> ol dLast Nane,
: newLast Nane™,
{
firstEnpl D {
dir: oracledb.BIND IN,
val : firstEnpl D,
type: oracl edb. NUMBER
b
| ast Empl D: {
dir: oracledb.BIND IN,
val : | astEnpl D,
type: oracl edb. NUMBER
b
ol dLast Nane: {
type: oracledb. STRING
dir: oracl edb. BIND QUT
b
newLast Nane: {
type: oracl edb. STRING
dir: oracl edb. BIND QUT
}
}
);

if (result.rowsAffected > 1){
Il store the old data and new values in an audit table
et bindData = [];
const changeDate = new Date();
for (let i =0; i < result.outBinds.oldLastName.|ength, i++){

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 17 of 56

ORACLE Chapter 7
PL/SQL Invocation from the MLE JavaScript SQL Driver

bi ndDat e. push(

{
ol dLast Nane: result. outBi nds. ol dLast Nane[i],
newLast Name: result. out Bi nds. newLast Name[i],
changeDat e: changeDat e

}

);
}
Il use executeMany() with the newly popul ated array
result = session. executeMany(
“insert into EMPLOYEES_AUDI T_OPERATI ONS(
ol d_Il ast _nane,
new | ast _nane,
change_date
) val ues (
.ol dLast Nane,
:newLast Nane,
: changeDat e
)
bi ndDat a,

bi ndDef s: {
ol dLast Nane: {type: oracl edb. STRING maxSize: 30},
newLast Name: {type: oracl edb. STRING nmaxSize: 30},
changeDate: {type: oracl edb. DATE}

)

} else {
t hrow new Error(
“found no row to update in range ${firstEnplD} to ${l astEnpl D}’

After the initial update statement completes, the database provides the old and new values of
the | ast _name column affected by the update in the resul t object's out Bi nds property. Both
ol dLast Nane and newLast Nane are arrays. The array length represents the number of rows
updated.

PL/SQL Invocation from the MLE JavaScript SQL Driver

Use the MLE JavaScript driver to call functions and procedures from PL/SQL.

Most of the Oracle Database's API is provided in PL/SQL. This is not a problem; you can easily
call PL/SQL from JavaScript. Invoking PL/SQL using the MLE JavaScript SQL driver is similar
to calling SQL statements.

Example 7-12 Calling PL/SQL from JavaScript

CREATE OR REPLACE M.LE MODULE pl sql _js_nod
LANGUAGE JAVASCRI PT AS

/**

* Read the current values for nodul e and action and return them as

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 18 of 56

ORACLE Chapter 7
PL/SQL Invocation from the MLE JavaScript SQL Driver

* a JavaScript object. Typically set before processing starts to

* allow you to restore the values if needed.

* @eturns an object containing nmodul e and action

*/

function preserveMdul eAction(){
/I Preserve old nodul e and action. DBMS_APPLI CATI ON_I NFO provi des
[l current modul e and action as QUT binds
let result = session. execute(

"BEG N
DBVS_APPLI CATI ON_| NFO. READ MODULE(
-1 _nodul e,
1 _action
);
END; °,
| _nodule: {
dir: oracl edb. BIND QUT
type: oracl edb. STRING
¥
| _action: {
dir: oracl edb. BIND QUT
type: oracl edb. STRING
}

)

[l Their value can be assigned to JavaScript variables
const currentMdul e = result.outBinds.| _nodul e
const currentAction = result.outBinds.|_action

/1l ... and returned to the caller
return {
modul e: current Modul e,
action: currentAction

}

/**

* Set nodul e and action using DBMS_APPLI CATI ON_I NFO
* @aram theMbdul e the nmodul e name to set
* @aramtheAction the name of the action to set
*/
function setMdul eAction(theMdul e, theAction){
sessi on. execut e(
"BEG N
DBVS_APPLI CATI ON_I NFO. SET_MODULE(
:nodul e
raction
);
END, °,
[
t heMbdul e,
t heAction

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 19 of 56

ORACLE Chapter 7
Error Handling in SQL Statements

/**
* The only public function in this modul e sinmul ates some heavy
* processing for which nmodule and action are set using the built-in
* DBMS_APPLI CATI ON_I NFO package.
*/
export function plsql Exanpl e(){
Il preserve the values for nodul e and action before we begin
const nodul eAction = preserveMdul eAction();

/1 set the new values to reflect the function's execution
/1 within the modul e
set Modul eAct i on(
"plsqgl _js_mod',
" pl sql Exanpl e()"
)

[l Simulate some intensive processing... Wile this is ongoing
/1 nmodul e and action in v$session shoul d have changed to the
Il values set earlier. You can check using
/1 SELECT nodul e, action FROM v$sessi on WHERE nodul e = ' pl sql _j s_nod'
sessi on. execut e(

"BEG N

DBMS_SESSI ON. SLEEP(60) ;
END;

)

/1 and finally reset the values to what they were before
set Modul eAct i on(

modul eActi on. modul e,

modul eActi on. action

)

This example is a little more elaborate than previous ones, separating common functionality
into their own (private) functions. You can see the use of QUT variables in

preservehMdul eAction()'s call to DBVMS_APPLI CATI ON_I NFO. The values can be retrieved using
resul t. out Bi nds.

After storing the current values of module and action in local variables, additional anonymous
PL/SQL blocks are invoked, first setting module and action before entering a 60-second sleep
cycle simulating complex data processing. Once the simulated data processing routine
finishes, the module and action are reset to their original values using named | N bind variables.
Using bind variables is more secure than string concatenation.

Setting module and action is an excellent way of informing the database about ongoing activity
and allows for better activity grouping in performance reports.

Error Handling in SQL Statements

JavaScript provides an exception framework like Java. Rather than returning an Err or object
as a promise or callback as in node- or acl edb, the MLE JavaScript driver resorts to throwing
errors. This concept is very familiar to PL/SQL developers.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 20 of 56

ORACLE Chapter 7
Error Handling in SQL Statements

Using try-catch-finally in JavaScript code is similar to the way PL/SQL developers use begin-
exception-end blocks to trap errors during processing.

Use the JavaScript t hrow() command if an exception should be re-thrown. This causes the
error to bubble-up the stack after it has been dealt with in the catch block. Example 7-14
demonstrates this concept.

Example 7-13 SQL Error Handling Inside a JavaScript Function

CREATE TABLE log_t (
i d NUVBER GENERATED ALWAYS AS | DENTI TY
CONSTRAI NT pk_| og_t PRI MARY KEY,
err VARCHAR2(255),
msg VARCHAR2(255)
):

CREATE OR REPLACE PACKAGE | oggi ng_pkg as

PROCEDURE | og_err(p_nmsg VARCHAR2, p_err VARCHAR2);
END | oggi ng_pkg;
/

CREATE OR REPLACE PACKAGE BODY | oggi ng_pkg AS
PROCEDURE | og_err(p_nmsg VARCHAR2, p_err VARCHAR?)
AS

PRAGVA aut ononpus_transacti on;
BEG N
I NSERT INTO log_t (
err,
neg
) VALUES (
p_err,
p_neg
);
COWM T;
END | og_err;
END | oggi ng_pkg;
/

CREATE OR REPLACE MLE MODULE js_err_handl e_nod
LANGUAGE JAVASCRI PT AS

/**

*short demp showing how to use try/catch to catch an error
*and proceeding normally. In the exanple, the error is

*provoked
*/
export function errorHandlingDeno(){
try{
const result = session. execut e(
“I NSERT | NTO
sur el yThi sTabl eDoesNot Exi st
VALUES
(1)

):

consol e.log(there were ${result.rowsAffected} rows inserted);

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 21 of 56

ORACLE Chapter 7
Error Handling in SQL Statements

} catch(err) {
logError('this is some nmessage', err);

[Itell the caller that sonething went wong
return fal se

}

[[further processing

[Ireturn successful conpletion of the code
return true

}

/**

*log an error using the logging_pkg created at the beginning
*of this exanple. Think of it as a package logging errors in
*a framework for later analysis.
*@aram nsg an acconpanyi ng nessage
*@aramerr the error encountered
*/
function |ogError(msg, err){
const result = session. execute(
"BEG N
[oggi ng_pkg. | og_err(
p_meg => :nsg,
p_err => :err

);
END; °,
{
msg: {
val . nsg,
dir: oracledb.BIND_IN
¥
err: {
val . err.message
dir: oracledb.BIND_IN
}
}
);
}
/

Create a function, js_err_handl e_nod_f, using the module j s_err_handl e_nod as follows:

CREATE OR REPLACE FUNCTION js_err_handl e_nod_f
RETURN BOOLEAN

AS MLE MODULE js_err_handl e_nod

SI GNATURE ' error Handl i ngDeno()"

/

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 22 of 56

ORACLE

Chapter 7
Error Handling in SQL Statements

Now you can call the function and use the return value to see whether the processing was
successful:

DECLARE
| _success bool ean : = fal se;
BEG N
| success :=js_err_handl e nod f;

I F | _success THEN
DBMS_QUTPUT. PUT_LI NE(' normal , successful conpletion');
ELSE
DBMS_QUTPUT. PUT_LINE(" an error has occurred');
END I F;
END;
/

In this case, the error is caught within the MLE module. The error is recorded by the
application, allowing the administrator to assess the situation and take corrective action.

Example 7-14 Error Handling Using JavaScript throw() Command

This example demonstrates the use of the JavaScript t hr ow() command in the catch block.
Unlike the screen output shown for j s_err _handl e_nod in Example 7-13, a calling PL/SQL
block will have to catch the error and either treat it accordingly or raise it again.

CREATE OR REPLACE MLE MODULE js_t hr ow_mod
LANGUAGE JAVASCRI PT AS

/**

*a simlar exanple as Example 7-13, however, rather than

*processing the error in the JavaScript code, it is re-thrown up the call
st ack.

*It is nowup to the called to handl e the exception. The try/catch block is
not

*strictly necessary but is used in this exanple as a cleanup step to renove
G obal

*Tenporary Tables (GITs) and other tenporary objects that are no |onger

required.
*/
export function rethrowerror(){
try{
const result = session. execute(
"I NSERT | NTO
sur el yThi sTabl eDoesNot Exi st
VALUES
(1)°

);
console.log("there were ${result.rowsAffected} rows inserted);

} catch(err){
cl eanUpBat ch() ;

throw(err);

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 23 of 56

ORACLE

[[further processing

}

function cl eanUpBat ch() {
/I'batch cl eanup operations
return;

Chapter 7
Error Handling in SQL Statements

Using the following call specification, failing to catch the error will result in an unexpected error,

which can propagate up the call stack all the way to the end user.

CREATE OR REPLACE PROCEDURE rethrow err_proc
AS MLE MODULE js_t hrow nod

SI GNATURE 'rethrowError()';

/

BEG N

rethrow err_proc;
END;
/

Result:

BEG N

*

ERRCR at |ine 1:

ORA-00942: table or view does not exist

ORA-04171: at rethrowerror (USERL.JS THROWN MOD: 11: 24)
ORA-06512: at "USERL. RETHROW ERRCR PROC', line 1

ORA-06512: at line 2

End users should not see this type of error. Instead, a more user-friendly message should be
displayed. Continuing the example, a simple fix is to add an exception block:

BEG N
rethrow err_proc;
EXCEPTI ON
WHEN OTHERS THEN
| oggi ng_pkg. 1 og_err(
"sonet hing went wong',
sglerrm

)s

--this would be shown on the user interface;
--for the sake of dempnstration this workaround

--is used to show the concept
DBVS_CQUTPUT. PUT_LI NE(

"ERROR the process encountered an unexpected error'

)s
DBMS_OUTPUT. PUT_LI NE(

"please informthe administrator referring to application error

1234'
)s

JavaScript Developer's Guide

G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 56

ORACLE

Chapter 7
Working with JSON Data

END;

Result:

ERROR: the process encountered an unexpected error
pl ease informthe admnistrator referring to application error 1234

PL/ SQL procedure successfully conpl eted.

Working with JSON Data

The use of JSON data as part of a relational structure, more specifically the use of JSON
columns in (relational) tables, is described.

Oracle Database supports JSON natively with relational database features, including
transactions, indexing, declarative querying, and views. Unlike relational data, JSON data can
be stored in the database, indexed, and queried without any need for a schema.!

Oracle also provides a family of Simple Oracle Document Access (SODA) APIs for access to
JSON data stored in the database. SODA is designed for schemaless application development
without knowledge of relational database features or languages such as SQL and PL/SQL. It
lets you create and store collections of documents in Oracle Database, retrieve them, and
guery them without needing to know how the documents are stored in the database.

JSON data is widely used for exchanging information between the application tier and the
database. Oracle REST Data Services (ORDS) is the most convenient tool for making REST
calls to the database. Example 7-15 demonstrates this concept.

Manipulating JSON is one of JavaScript's core capabilities. Incoming JSON documents don't
require parsing using JSON. par se(), they can be used straight away. Micro-service
architectures greatly benefit from the enhanced options offered by JavaScript in the database.

@ See Also

e Working with SODA Collections in MLE JavaScript Code for a detailed discussion
of SODA and JavaScript in the database

* Oracle Database JSON Developer's Guide for information about the use of JSON
in Oracle Database

Example 7-15 Inserting JSON Data into a Database Table

This example assumes that a REST API has been published in ORDS, allowing users to POST
JSON data to the database. This way, administrators have the option to upload further
departments into the depar t ment s table. Once the JSON data has been received, the MLE
module uses JSON_TABLE() to convert the JSON data structure into a relational model.

CREATE TABLE depart nent s(
department _i d NUMBER NOT NULL PRI MARY KEY,

1 A JSON schema is not to be confused with the concept of a database schema: a database schema in Oracle Database is
a separate namespace for database users to create objects such as tables, indexes, views, and many others without
risking naming collisions.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 25 of 56

ORACLE

Chapter 7

Working with JSON Data

department _name VARCHAR2(50) NOT NULL,
manager i d NUVBER
[ocation_id NUMBER

)

CREATE OR REPLACE FUNCTI ON REST_API DEMY
"depts" JSON

) RETURN BOOLEAN

AS MLE LANGUAGE JAVASCRI PT

{{
/**
*insert a nunmber of departnent records, provided as JSON,
*into the departments table
*@arans {object} depts - an array of departnents
*/
i f(depts.constructor !== Array){
throw new Error (' nust provide an array of departments to this
function');
}
[lconvert JSON input to relational data and insert into a table
const result = session.execute(’
I NSERT | NTO depart nent s(
department _id,
depart ment _nare,
manager _id,
ocation_id
)
SELECT
jt.”
FROM j son_tabl e(:depts, '$[*]" col ums
departrment _id path "$. departnent _id',
departrment _name path " $. depart nent _nane',
manager _id pat h "$. manager id',
ocation_id path "$.location_id
) it
{
depts: {
val . depts,
type: oracledb. DB_TYPE_JSON
}
}
);
if(result.rowsAffected !== depts.length){
return fal se;
} else {
return true;
}
s
/

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates.

Page 26 of 56

ORACLE Chapter 7
Working with JSON Data

Using the following anonymous PL/SQL block to simulate the REST call, additional
departments can be inserted into the table:

DECLARE
| success bool ean : = fal se
| _depts JSON,
BEG N
| _depts := JSON('[
{
"departnent _id": 1010
"departnent _nane": "New Departrment 1010",
"manager _id": 200,
"l ocation_id": 1700
b
{
"departnent _id": 1020
"departnent _nane": "New Departrment 1020",
"manager _id": 201
"l ocation_id": 1800
b
{
"departnent _id": 1030
"departnent _nane": "New Departrment 1030",
"manager id": 114,
"l ocation_id": 1700
b
{
"departnent _id": 1040
"departnent _nane": "New Departrment 1040",
"manager id": 203,
"l ocation_id": 2400
H
);

| success := REST APl _DEMX| depts);

I F NOT | _success THEN
RAI SE_APPLI CATI ON_ERROR(
-20001,
"an unexpected error occurred ' || sqlerrm

END | F;
END;

The data has been inserted successfully as demonstrated by the following query:

SELECT *
FROM depart nent s
VHERE departnent _id > 1000;

Result:

DEPARTMENT_| D DEPARTMENT_NAVE MANAGER | D LOCATION_I D

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 27 of 56

ORACLE

Chapter 7
Working with JSON Data

1010 New Department 1010 200 1700
1020 New Department 1020 201 1800
1030 New Departnment 1030 114 1700
1040 New Department 1040 203 2400

Example 7-16 Use JavaScript to Manipulate JSON Data

Rather than using SQL functions like JSON_TABLE, JSON_TRANSFORM, and so on, itis
possible to perform JSON data manipulation in JavaScript as well.

This example is based on the J_PURCHASEORDER table as defined in Oracle Al Database JSON
Developer’s Guide. This table stores a JSON document containing purchase orders from
multiple customers. Each purchase order consists of one or more line items.

The following function, addFr eel t en() , allows the addition of a free item to customers ordering
merchandise in excess of a threshold value.

CREATE OR REPLACE MLE MODULE purchase_or der nod
LANGUAGE JAVASCRI PT AS

/**

*a sinple function accepting a purchase order and checki ng whet her

*its value is high enough to nerit the addition of a free item
*@aram {obj ect} po the purchase order to be checked

*@aram {object} freeltemwhich free itemto add to the order free of charge
*@aram {nunber} threshold the mnimum order value before a free itemcan be
added

* @ar am {bool ean} itemAdded a flag indicating whether the free itemwas
successful |y added

*@eturns {object} the potentially updated purchaseOr der

*@hrows exception in case

* -any of the nandatory paraneters is null

* -in the absence of line itens

* -if the free itemhas al ready been added to the order
*/

export function addFreelten{po, freeltem threshold, itemAdded){

/lensure values for parameters have been provided
if(po ==null || freeltem==null || threshold == null){

throw new Error (" nandatory parameter either not provided or null™);
}

/I'make sure there are line itens provided by the purchase order
i f(po.Lineltems === undefined) {
t hrow new Error (
" PO number ${po. PONurber} does not contain any line itens’
);
}

[Ibail out if the free itemhas already been added to the purchase order
i f(po.Lineltems.find(({Part}) => Part.Description ===
freeltemPart. Description)){
throw new Error(${freeltem Part.Description} has already been added
to order ${po. PONunber}’);

}

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 28 of 56

ORACLE Chapter 7
Working with JSON Data

[lln, Qut, and InCut Paraneters are inplemented in JavaScript using
/I'special interfaces
i temAdded. val ue = fal se;

/lget the total order val ue
const poVal ue = po. Lineltens
.map(x => x.Part.UnitPrice * c.Qantity)
. reduce(
(accumul ator, currentValue) => accunul ator + currentValue, 0

)

/ladd a free itemto the purchase order if its value exceeds
[Ithe threshold
i f(poVal ue > threshol d){

/update the |tenmNurmber

freeltem|temNunber = (po.Lineltems.length + 1)
po. Li nel tems. push(freelten;

i temAdded. val ue = true;

}

return po;

As with every MLE module, you must create a call specification before you can use it in SQL
and PL/SQL. The following example wraps the call to add_free_i ten() into a package. The
function accepts a number of parameters, including an QUT parameter, requiring an extended
signature clause mapping the PL/SQL types to MLE types. The SQL data type JSON maps to
the MLE ANY type. Because there is no concept of an QUT parameter in JavaScript, the final
parameter, p_i t em added, must be passed using the Out interface. For a more detailed
discussion about using bind parameters with JavaScript, see OUT and IN OUT Parameters.

CREATE OR REPLACE PACKAGE purchase_order _pkg AS

FUNCTI ON add_free_item

p_po I N JSON,
p_free_ item I N JSON,
p_threshol d I N NUMBER,

p_i tem added QUT BOOLEAN
)
RETURN JSON AS
MLE MODULE purchase_or der_nod
SI GNATURE ' addFreel ten{any, any, nunber, Qut<bool ean>)';

--additional code

END pur chase_or der_pkg;
/

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 29 of 56

ORACLE Chapter 7
Working with User-Defined Data Types

Working with User-Defined Data Types

Collections, records, and abstract data types can be used as parameters in JavaScript
functions and can be inserted into the database with in-database JavaScript.
A user-defined type can be defined in the following ways:

e Ina PL/SQL block. In this case, the user-defined type is a local type and is only available
to be referenced in the block. It is stored in the database only if the PL/SQL block is in a
standalone or package subprogram.

e In a package specification. Here, the user-defined type is a public item that can be
referenced outside of the package by qualifying it with the package name.

e At schema level. In this case, the user-defined type is a standalone type that is created
using the CREATE TYPE statement. It is stored in the database until you drop it with the DROP
TYPE statement. Note that you cannot create a RECORD type at schema level.

Local and standalone types, as well as public items, are supported for use with JavaScript.

@® Note

It is not possible to invoke member functions of objects with MLE. If attempted, the
action will fail with ORA- 04161: Met hods invocations are not all owed.

e Using Record Data Types in JavaScript

e Using Collections in JavaScript

Using Record Data Types in JavaScript

Record Data Types can be used, for example, as parameters in JavaScript functions and can
be inserted into the database.

Use Record Data Types as Function Arguments

A typical use case for records is as data being passed into a function. Consider the following
example in which a local record is declared in a PL/SQL package:

CREATE OR REPLACE PACKAGE rec_me_js AS

TYPE person_t |'S RECORD (

sur nane VARCHAR2('100) ,
firstname VARCHAR2('100) ,
street VARCHAR2('100) ,
city_nane VARCHAR2(50) ,
country_name VARCHAR2(50)

)

END rec_me js;
/

This record can be used to describe a person's address. A function within an MLE module can
be used to persist the address record in the database. The data model is normalized; there are

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 30 of 56

ORACLE Chapter 7
Working with User-Defined Data Types

separate tables for countries, cities, and the actual address record. A potential implementation
serializing the record in JavaScript could look like the following:

CREATE OR REPLACE MLE MODULE rec_nodul e
LANGUAGE JAVASCRI PT AS

export function insertPerson(personRec) {
/1 Validate input: personRec must be a non-null object
if (
personRec === null ||
personRec === undefined ||
typeof personRec !== "object" ||
Array. i sArray(personRec)
) A
t hrow new TypeError('insertPerson: "personRec" nmust be a non-null
object');
1
/1 validate if the country exists
let result = session. execute(
"select country id fromcountry where country nane = :country_name",
[per sonRec. COUNTRY_NAME] ,

);
/1 insert the country if it does not exist
if (result.rows.length === 0) {
sessi on. execut e(
"insert into country (country nane) values (:country nanme)",
[per sonRec. COUNTRY_NAME] ,
);
1

/1 validate if the city exists

result = session. execut g(
"select city id fromcity where city name = :city_nane",
[personRec. CI TY_NAME] ,

);
[l insert the city if it does not exist
let city_ id;
if (result.rows.length === 0) {
result = session. execut e(
“insert into city (city _nane) values (:city nane)
returning city idinto :city id,
{
city_nane: {
type: oracl edb. STRI NG
dir: oracledb. BIND IN,
val : personRec. Cl TY_NAME,
¥
city id: {
type: oracl edb. NUMBER,
dir: oracl edb. BI ND_QUT,
¥
¥
);
city id =result.outBinds.city id[0];
} else {
city id =result.rows[0].CITY_ID;
}

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 31 of 56

ORACLE

Chapter 7
Working with User-Defined Data Types

[/ insert into the address table
result = session. execut e(
“insert into address set

sur name = :surnane,
firstname = :firstnaneg,
street = :street,
city id =:city_id,

{
surnanme: { val: personRec. SURNAME },
firstname: { val: personRec. Fl RSTNAME 1},
street: { val: personRec. STREET },
city id: { val: city_id },

1

)

return result.rowsAffected === 1;

The only function included in the module rec_nodul e, i nsert Person(), deconstructs the data
in the record and uses it to populate the various tables.

If you want to expose this function in SQL and PL/SQL, you can simply extend the package
definition as follows:

CREATE OR REPLACE PACKAGE rec_me js as

TYPE person_t 1S RECORD (

sur nane VARCHAR2(/100) ,
firstname VARCHAR2(/100) ,
street VARCHAR2(100) ,
city nane VARCHAR2(50) ,
country_name VARCHAR2(50)

)

FUNCTI ON i nsert _person(p_person person_t)
RETURN BOOLEAN
AS MLE MODULE rec_nodul e
SI GNATURE 'insert Person(object)’
END rec_ me js;
/

In some cases, you may choose to implement nested tables based on records, which is
another option to persist the data. For more information about using nested tables with in-
database JavaScript, see Using Collections in JavaScript.

Return a Record from a JavaScript Function

In addition to receiving records as parameters into your function, you can return records as
well.

export function getPerson(id) {
/1 Validate input: id nust be a provided positive integer
if (id === undefined || id === null) {
t hrow new TypeError (' getPerson: "id" is required);

JavaScript Developer's Guide

G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 56

ORACLE

Chapter 7
Working with User-Defined Data Types

}
if (typeof id !'== "number" || !Nunber.islinteger(id) || id <= 0) {
t hrow new TypeError (' getPerson: "id" nust be a positive integer');

}

/1 fetch the person's details fromthe database based on the ID
/1 provided as input to the function
const result = session. execute(
“sel ect
a.address_id
a.firstname
a. surnane,
a.street,
ci.city_nane,
cO0. country_name
from
address a
left joincity ci on (a.city_id =ci.city_id)
left join country co on (ci.country id = co.country_id)
wher e
a.address_id = :address_id’
[id],
);

Il raise an error if the fetch returned no rows
if (result.rows.length == 1) {
throw new Error(getPerson: cannot find a person with ID ${id}");

}

/1 a call to session.getDoObjectC ass() returns a DbCbject prototype

obj ect,

/'l representing the database type
const person_t = session. get DoObj ect O ass("REC MLE JS. PERSON T");

/1 you can inspect it if you like
/'l consol e.log(JSON stringify(person_t.prototype));

/1 Now that the object prototype has been found, an object can be created

by passing a

/1 JavaScript object to the constructor. Note that the keys are ALL IN

UPPERCASE

const person = new person_t ({
"SURNAME": resul t.rows[0] . SURNAME,
"FI RSTNAME": resul t.rows[0] . Fl RSTNAME,
"STREET": result.rows[0].STREET,
"CI TY_NAME": result.rows[0].Cl TY_NAME,
"COUNTRY_NAME": result.rows[0]. COUNTRY_NAME

1)

return person;

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 33 of 56

ORACLE

Chapter 7
Working with User-Defined Data Types

Use Records Returned by PL/SQL

In addition to function parameters and JavaScript function return types, records that are
returned by PL/SQL can also be used in the context of in-database JavaScript.

CREATE OR REPLACE FUNCTI ON get person_name("id" NUMBER)
RETURN VARCHAR2
AS MLE LANGUAGE JAVASCRI PT
{{
/'l assume for the sake of this exanple that get person() is inplenented
/1 as a public function in REC MLE PKG It takes an ID as the search
/1 parameter and returns a person record as defined earlier
const result = session. execute(
"begin :person :=rec_nm e _pkg.get _person(:id); end;',

{
person: {
type: "REC_MLE_PKG PERSON T",
dir: oracl edb. BIND OQUT
¥
id: {
type: oracl edb. NUMBER,
val : id,
dir: oracledb.BIND IN
}
}

)

return “${resul t.out Bi nds. per son. Fl RSTNAME} $
{resul t. out Bi nds. per son. SURNAME} " ;

3R
/

It is also possible to use the Foreign Function Interface (FFI), rather than a PL/SQL
anonymous block:

CREATE OR REPLACE FUNCTI ON get _person_name_ffi ("id" NUMBER)
RETURN VARCHAR2
AS M_E LANGUAGE JAVASCRI PT

{{
/1 assume for the sake of this exanple that get_person() is inplenmented
/1 as a public function in REC MLE PKG It takes an ID as the search
/1 parameter and returns a person record as defined earlier
/1 this exanple uses the Foreign Function Interface (FFI) but is otherwise
/1 identical to the previous one
const rec_me_pkg = plsffi.resol vePackage(' REC MLE_PKG);
const person = rec_m e_pkg. get _person(id);
return "~ ${person. Fl RSTNAVE} ${ per son. SURNANME} ;
3%

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 34 of 56

ORACLE

Chapter 7
Working with User-Defined Data Types

Using FFl, as in this case, can result in more concise and easily understood code. For more
information about using FFI, see Introduction to the PL/SQL Foreign Function Interface.

Using Collections in JavaScript

Oracle Al Database supports several collection types, including Associative Arrays (or index-by
tables), Variable-Size Arrays (or VARRAY), and nested tables. These collection types are
supported with in-database JavaScript.

The in-database JavaScript implementation of collection support closely aligns with that of
node- or acl edb. For more information about the node- or acl edb implementation, see Node-
oracledb Documentation.

Pass an Associative Array to a PL/ISQL Function in JavaScript
A common use case involving collections is to provide them to PL/SQL APIs.

Consider an example in which a PL/SQL function accepts an associative array and returns the
sum of its elements. While you can bind associative arrays using named types, as shown in
examples from Using Record Data Types in JavaScript, it is more efficient to use the method
implemented in the following examples. Here, the type of each element is used, rather than the
name of the associative array type.

With this implementation, the type must be set for PL/SQL array binds. The options are as
follows:

e oracl edb. STRING

e oracl edb. DB TYPE VARCHAR

e oracl edb. NUMBER

e oracl edb. DB_TYPE NUMBER

e oracl edb. DB TYPE NVARCHAR

e oracl edb. DB TYPE CHAR

e oracl edb. DB_TYPE NCHAR

« oracl edb. DB_TYPE_BI NARY FLOAT
« oracl edb. DB_TYPE_BI NARY FLOAT
e oracl edb. DB_TYPE_DATE

« oracl edb. DB_TYPE_TI MESTAVP

« oracl edb. DB_TYPE_TI MESTAVP_LTZ
« oracl edb. DB_TYPE_TI NESTAMP_TZ
e oracl edb. DB TYPE RAW

The following example uses two functions: associ ative_array_i n() computes the sum of its
elements and associ ative_array_out () returns the elements of an associative array.

CREATE OR REPLACE PACKAGE aa_ni e_pkg AS
-- sone setup code has been onmitted for brevity
TYPE nuntype 1S TABLE OF NUMBER | NDEX BY Bl NARY_| NTEGER,

FUNCTI ON associ ative_array_in(p_val ues nuntype) RETURN NUVBER;
FUNCTI ON associ ative_array_out RETURN nuntype;

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 35 of 56

https://node-oracledb.readthedocs.io/en/latest/user_guide/objects.html
https://node-oracledb.readthedocs.io/en/latest/user_guide/objects.html

ORACLE Chapter 7
Working with User-Defined Data Types

END aa_nl e_pkg;
/

You can use the associ ative_array_in() function in JavaScript as follows:

CREATE OR REPLACE PROCEDURE m e_associative_array_in
AS MLE LANGUAGE JAVASCRI PT

{{
const result = session. execute(
“begin
:sum:= aa_m e_pkg. associative_array_in(:val ues);
end; ",
/1 you can alternatively use positional binds, too
{
sum {
type: oracl edb. NUMBER
dir: oracl edb. BIND OUT
¥
val ues: {
type: oracl edb. NUMBER
dir: oracledb.BIND IN
val: [1, 2, 3]
}
}
);
consol e.l og("the sumof nunbers in the array is ${result.outBinds.sun});
3

/

For QUT and I N QUT binds, the maxArraySi ze bind property must be set. Its value is the
maximum number of elements that can be returned in an array. An error occurs if the PL/SQL
block attempts to insert data beyond this limit.

Rather than just passing a collection as an argument to a PL/SQL code unit, your code may
need to accept a collection returned by PL/SQL. Continuing with the previous example using
AA MLE_PKG, here is an example of how to use the associ ative_array_out () function:

CREATE OR REPLACE PROCEDURE m e_associ ative_array_out
AS MLE LANGUAGE JAVASCRI PT

{

const result = session. execute(
"begin :values := aa_ne_pkg.associative_array_out; end;",

{
val ues: {
dir: oracl edb. BI ND_QUT,
type: "AA _ME_PKG NUMIYPE",
maxArraySi ze: 3,
¥
b

const res = result. outBinds. val ues;

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 36 of 56

ORACLE

Chapter 7
Working with User-Defined Data Types

consol e. og(JSON. stringify(res));

3R
/

Pass a Nested Table to a PL/ISQL Function in JavaScript

In addition to associative arrays, nested tables are another option to integrate collection types
into your work with in-database JavaScript. In this example, the function i ni t Caps takes a
nested table as input and returns a new list with each element capitalized.

CREATE OR REPLACE PACKAGE nt_me_ js AS
TYPE roster t 1S TABLE OF VARCHAR2(15);

FUNCTI ON i nit Caps(p_list roster_t)
RETURN JSON
AS MLE MODULE nt _nodul e

SI GNATURE 'initCaps';

END;
/

CREATE OR REPLACE MLE MODULE nt _nodul e
LANGUAGE JAVASCRI PT AS

/**

* Capitalizes each non-enpty string in the given array:

* first character uppercased, remaining characters |owercased.

* Falsy elements (such as '', null, undefined) are returned as-is.
* The input array is not nutated; a new array is returned.

* This works only with US-ASCI| characters and does not respect

* non- Engl i sh [anguage i nput.

*

* @aram {(Array<string>)} names - List of names to transform

* @eturns {(Array<string>)} Anewlist with each iteminit-capped
* @hrows {Error} If names is not a provided array

*

*

.y

export function initCaps(nanes) {
if (! names || ! Array.isArray(nanes)) {
throw new Error("Mist provide a list of nanmes to the initCaps
function");

}

return nanes. map((s) => s ? s[0].toUpperCase() +
s.slice(l).toLowerCase() : s)

}
/
DECLARE
| nanmes nt_me js.roster t :=nt_me js.roster t(
"john',
"paul ',
‘ringo',
' geor ge'
);

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 37 of 56

ORACLE’

Using Large Objects (LOB) with MLE

| _uc_nanes JSON;
BEG N

| _uc_nanmes :=nt_me_ js.initCaps(l_names);

DBMS_OUTPUT. PUT_LI NE(
JSON_SERI ALI ZE(

| _uc_nanes
pretty
)
)
END;
/
Result:
[
"John",
" Paul ",
"Ri ngo",
" CGeor ge"

Chapter 7
Using Large Objects (LOB) with MLE

A PL/SQL wrapper type is used to handle CLOBs and BLOBs with the MLE JavaScript driver.
Handling large objects such as CLOBs (Character Large Object) and BLOBs (Binary Large
Object) with the MLE JavaScript driver differs from the node- or acl edb driver. Rather than
using a Node.js Stream interface, a PL/SQL wrapper type is used. The wrapper types for
BLOBs and CLOBs are called O acl eBl ob and O acl eC ob, respectively. They are defined in
m e-j s-pl sgl t ypes. Most types are exposed in the global scope and can be referenced

without having to import the module.

@® Note

BFI LE, commonly counted among LOBS, is not supported.

@ See Also

Server-Side JavaScript APl Documentation for more information about ni e-j s-

pl sql t ypes and the other JavaScript built-in modules

Topics

* Writing LOBs

An example shows how to initialize and write to a CLOB that is finally inserted into a table.

* Reading LOBs

An example is used to show how to select a CLOB and then use the f et chl nf o property to

read the contents of the CLOB as a string.

JavaScript Developer's Guide

G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 56

https://oracle-samples.github.io/mle-modules

ORACLE Chapter 7
Using Large Objects (LOB) with MLE

Writing LOBs

An example shows how to initialize and write to a CLOB that is finally inserted into a table.
Example 7-17 Inserting a CLOB into a Table

This example demonstrates how to insert a CLOB into a table. The table defines two columns:
an ID column to be used as a primary key and a CLOB column named "C".

CREATE TABLE nl e_| ob_exanpl e (
i d NUMBER GENERATED ALWAYS AS | DENTI TY,
CONSTRAI NT pk_m e_bl ob_t abl e PRI MARY KEY(i d),
c CLOB

)

CREATE OR REPLACE PROCEDURE insert _clob

AS MLE LANGUAGE JAVASCRI PT

{{

/I Oracledob is exposed in the global scope and does not require
[linporting 'me-js-plsqltypes', sinmlar to how oracledb is available
let thedob = Oracl eC ob. createTemporary(fal se);

t heC ob. open(Oracl eC ob. LOB_READVRI TE) ;
t hed ob. write(
1!
"This is a CLOB and it has been inserted by the MLE JavaScript SQ Driver'

)

const result = session. execute(
"I NSERT INTO ml e_| ob_exanpl e(c) VALUES(:theCLOB) ",

{
t heCLOB: {
type: oracl edb. ORACLE_CLOB,
dir: oracledb. BIND IN,
val: theCLOB
}
}

)

/lit is best practice to close the handle to free nenory
t heCLOB. close();

3R
/

CLOBs and BLOBs are defined in nl e-j s-pl sqgl t ypes. Most commonly used types are
provided in the global scope, rendering the import of nl e-j s- pl sql t ypes unnecessary.

The first step is to create a temporary, uncached LOB locator. Following the successful
initialization of the LOB, it is opened for read and write operations. A string is written to the
CLOB with an offset of 1. Until this point, the LOB exists in memory. The call to

session. execut e() inserts the CLOB in the table. Calling the cl ose() method closes the
CLOB and frees the associated memory.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 39 of 56

ORACLE’

Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

Reading LOBs

An example is used to show how to select a CLOB and then use the f et chl nf o property to
read the contents of the CLOB as a string.

Reading an LOB from the database is no different from reading other columns. Example 7-18
demonstrates how to fetch the row inserted by procedure i nsert _cl ob, defined in

Example 7-17.
Example 7-18 Read an LOB

CREATE OR REPLACE FUNCTI ON read_cl ob(
"p_id" NUMBER

) RETURN VARCHAR2

AS MLE LANGUAGE JAVASCRI PT

{{
const result = session. execute(
" SELECT ¢
FROM m e_I ob_exanpl e
WHERE id = :id",
{
id:{
type: oracl edb. NUMBER,
dir: oracledb. BIND_IN,
val: p_id
}
¥
{
fetchinfo: {
"C': {type: oracledb. STRING
¥
out Format : oracl edb. OBJECT
}
);
if (result.rows.length === 0){
throw new Error(No data found for ID ${id}");
} else {
for (let row of result.rows){
return row. C
}
}
i

/

The function read_cl ob receives an ID as a parameter. It is used in the select statement's
WHERE clause as a bind variable to identify a row containing the CLOB. The f et chl nf o property
passed using sessi on. execut () instructs the database to fetch the CLOB as a string.

API Differences Between node-oracledb and mle-js-oracledb

There are several differences between node- or acl edb and m e-j s- or acl edb, including the
methods for handling connection management and type mapping.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 40 of 56

ORACLE Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

@ See Also

Server-Side JavaScript APl Documentation for more information about JavaScript
built-in modules

Topics

e Synchronous API and Error Handling

e Connection Handling

e Transaction Management

e Type Mapping
e Unsupported Data Types

* Miscellaneous Features Not Available with the MLE JavaScript SQL Driver

Synchronous APl and Error Handling

Compared to node- or acl edb, the m e-j s- or acl edb driver operates in a synchronous mode,
throwing exceptions as they happen. If an asynchronous behavior is desired, calls to m e-j s-
or acl edb can be wrapped into async functions.

During synchronous operations, API calls block until either a result or an error are returned.
Errors caused by SQL execution are reported as JavaScript exceptions, otherwise they return
the same properties as the node- or acl edb Error object.

The following methods neither return a promise nor do they take a callback parameter. They
either return the result or throw an exception.

e connection. execute

e connecti on. execut eMany

e connection. get Statement|nfo
e connection. get SodaDat abase
e connection.commt

e connection.rollback

e resultset.close

e resultset.get Row

* resultset.get Rows

The following method cannot be implemented in a synchronous way and is omitted in the MLE
JavaScript driver.

e connection. break

node- or acl edb provides a LOB (Large Object) class to provide streaming access to LOB
types. The LOB class implements the asynchronous Node.js Stream API and cannot be
supported in the synchronous MLE JavaScript environment. Large objects are supported using
an alternative API in the MLE JavaScript driver. For these reasons, the following LOB-related
functionality is not supported.

e connection.createlLob

e property oracl edb. | obPrefetchSize

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 41 of 56

https://oracle-samples.github.io/mle-modules

ORACLE

Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

e constant oracl edb. BLOB

e constant oracl edb. CLOB

node- or acl edb also implements asynchronous streaming of query results, another feature
that's based on the Node.js Stream API. A streaming API cannot be represented in a
synchronous interface as used by the MLE JavaScript driver, therefore the following
functionality is not available.

e connection. queryStrean()

e resultSet.toQueryStrean)

Connection Handling

The method of connection handling with the MLE JavaScript driver is described.

All SQL statements that are executed via the server-side MLE JavaScript driver are executed
in the current session that is running the JavaScript program. SQL statements are executed
with the privileges of the user on whose behalf JavaScript code is executed. As in the node-
or acl edb API, JavaScript code using the MLE JavaScript driver must acquire a Connection
object to execute SQL statements. However, the only connection available is the implicit
connection to the current database session.

JavaScript code must acquire a connection to the current session using the MLE-specific

or acl edb. def aul t Connect i on() method. On each invocation, it returns a connection object
that represents the session connection. Creation of connections with the

or acl edb. cr eat eConnect i on method of node- or acl edb is not supported by the MLE
JavaScript driver; neither is the creation of a connection pool supported. Connection objects
are implicitly closed and so the call to connecti on. cl ose() is not available with the MLE
JavaScript driver.

There is also no statement cursor caching with the MLE JavaScript driver and therefore there
is no st nt CacheSi ze property.

The Real Application Cluster (RAC) option offers additional features, designed to increase
availability of applications. These include Fast Application Notification (FAN) and Runtime Load
Balancing (RLB), neither of which are supported by the MLE JavaScript driver.

Transaction Management

With respect to transaction management, server-side MLE JavaScript code behaves exactly
like PL/SQL procedures and functions.

A JavaScript program is executed in the current transaction context of the calling SQL or
PL/SQL statement. An ongoing transaction can be controlled by executing COW T, SAVEPQ NT,
or ROLLBACK commands. Alternatively, the methods connecti on. comit () and

connection. rol I back() can be used.

MLE JavaScript SQL driver connections cannot be explicitly closed. Applications relying on
node- or acl edb behavior where closing a connection performs a rollback of the transaction will
need adjusting. The MLE JavaScript SQL driver neither performs implicit commit nor rollback
of transactions.

The node- or acl edb driver features an auto-commit flag, defaulting to false. The MLE
JavaScript SQL driver does not implement this feature. If specified, the connecti on. execut e()
function ignores the parameter.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 42 of 56

ORACLE Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

Type Mapping

The MLE JavaScript driver adheres to the behavior of node- or acl edb with respect to
conversions between PL/SQL types and JavaScript types.

By default, PL/SQL types map to native JavaScript types (except for BLOBs and CLOBS).
Values fetched from query results are implicitly converted. See MLE Type Conversions for
more details about MLE type mappings.

As with node- or acl edb, the conversion from non-character data types and vice versa is directly
impacted by the NLS session parameters. The MLE runtime locale has no impact on these
conversions.

To avoid loss of precision when converting between native JavaScript types and PL/SQL data
types, the MLE JavaScript driver introduces new wrapper types.

e oracl edb. ORACLE_NUMBER

e oracl edb. ORACLE CLOB

e oracl edb. ORACLE_BLOB

e oracl edb. ORACLE_TI MESTAWP

e oracl edb. ORACLE_TI MESTAWP_TZ
e oracl edb. ORACLE_DATE

e oracl edb. ORACLE | NTERVAL_YM
e oracl edb. ORACLE_| NTERVAL_DS

As with node- or acl edb, the default mapping to JavaScript types may be overridden on a case-
by-case basis using the f et chl nf o property on connecti on. execut e() . Type constants like

or acl edb. ORACLE_NUMBER may be used to override the type mapping for a specific NUVBER
column in order to avoid implicit conversion and loss of precision.

Additionally, the JavaScript MLE SQL driver provides a way to change the default mapping of
PL/SQL types globally. If the or acl edb. f et chAsPl sql W apper property contains the
corresponding type constant, Oracle values are fetched as SQL wrapper types previously
described. As with the existing property or acl edb. f et chAsSt ri ng, this behavior can be
overridden using f et chl nf o and or acl edb. DEFAULT. Because MLE JavaScript does not
support a Buf f er class, and instead uses Ui nt 8Ar r ay, property or acl edb. f et chAsBuf f er from
node- or acl edb does not exist in nl e- s- or acl edb, which instead uses

oracl edb. f et chAsUi nt 8Arr ay.

Changing the type mapping to fetch JavaScript SQL wrapper types by default accounts for the
following scenarios:

e Oracle values are mainly moved between queries and DML statements, so that the type
conversions between PL/SQL and JavaScript types are an unnecessary overhead.

e ltis crucial to avoid data loss.
Example 7-19 Using JavaScript Native Data Types vs Using Wrapper Types
This example demonstrates the effect of using JavaScript native data types for calculations. It

also compares the loss of precision using JavaScript native types versus using wrapper types.

CREATE OR REPLACE MLE MODULE js_v_wrapper _nod
LANGUAGE JAVASCRI PT AS

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 43 of 56

ORACLE Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

/**

*There is a potential |oss of precision when using native
*JavaScript types to performcertain calculations. This
*is caused by the underlying inplenentation as a floating
*poi nt nunber
*/

export function precisionLoss(){

| et sunmandl = session
.execut e(" SELECT 0.1 summandl’)
.rows[0] . SUMVANDL;

| et sunmand2 = session
.execut e(" SELECT 0.2 summand2’)
. rows[0] . SUMVAND2

const result = summandl + surmmand2

consol e. | og(" precisionLoss() result: ${result}’);

}
/**

*Use an Oracle data type to preserve precision. The above
*exanpl e can be rewitten using the Oracl eNunber type as
*fol | ows

*/

export function preservePrecision(){

[linstruct the JavaScript SQL driver to return results as
/1 Oracl e Number. This coul d have been done for individua
[lstatements using the fetchinfo property - the globa
/Ichange applies to this and all future calls
oracl edb. fetchAsPIsglWrapper = [oracl edb. NUMBER] ;
et summandl = session

.execute(SELECT 0.1 S17)

.rows[0] . S1;

| et summand2 = session
.execute(SELECT 0.2 S27)
.rows[0] . S2;

const result = summandl + surmmand2

consol e. I og(" preservePrecision() result: ${result}’);

When executing the above functions, the difference in precision becomes immediately obvious.

preci sionLoss() result: 0.30000000000000004
preservePrecsion() result: .3

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 44 of 56

ORACLE

Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

Rather than setting the global or acl edb. f et chAsPl sql W apper property, it is possible to
override the setting per invocation of connect i on. execut e() . Example 7-20 shows how
preci si onPreservedd obal () can be rewritten by setting precision inline.

For information about functions available for use with type Or acl eNunber, see Server-Side
JavaScript APl Documentation.

Example 7-20 Overriding the Global oracledb.fetchAsPlsqlWrapper Property

This example extends Example 7-19 by showing how pr eci si onPr eser vedd obal () can be
rewritten by preserving precision inline. It demonstrates that rather than setting the global
oracl edb. f et chAsPl sql W apper property, it is possible to override the setting per invocation of
connection. execute().

CREATE OR REPLACE PROCEDURE fetch_info_exanple
AS MLE LANGUAGE JAVASCRI PT
{{
et sumandl = session
. execut e(
“SELECT 0.1 S1°,
[l

{
fetchlnfo:{

S1:{type: oracl edb. ORACLE_NUMBER}
}
}
)
.rows[0]. S1;

| et summand2 = session
. execut e(
“SELECT 0.2 S2°,
(1,

{
fetchlnfo:{

S2: {type: oracl edb. ORACLE_NUMBER}
}
1
)
.rows[0] . S2;
const result = sunmandl + sunmand2;

consol e. log("
preservePrecision():
summandl: ${sunmmandl}
summand2: ${ sunmand2}
result: ${result}
)

Hh

/

Result:

preservePrecision():
sunmmandl: .1

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 45 of 56

https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules

ORACLE Chapter 7
Introduction to the PL/SQL Foreign Function Interface

summand2: .2
result: .3

Unsupported Data Types

The MLE JavaScript driver does not currently support these data types:

c LONG

« LONG RAW
e XM.Type

e BFILE

* REF CURSCR

Miscellaneous Features Not Available with the MLE JavaScript SQL Driver

Differences between what features are available with the MLE JavaScript driver and with node-
or acl edb are described.

Error handling in the MLE JavaScript driver relies on the JavaScript exception framework
rather than using a callback/promise as node- or acl edb does. The error thrown by the MLE
JavaScript SQL driver is identical to the Error object available with node- or acl edb.

Several additional client-side features available in node- or acl edb are not supported by the
server-side MLE environment. The MLE JavaScript driver omits the API for these features.

The following features are currently unavailable:
* Continuous Query Notification (CQN)

* Advanced Queuing is not supported natively, the PL/SQL API can be used as a
workaround

e Connection. subscri be()
e Connection. unsubscri be()
* All Continuous Query Notification constants in the or acl edb class

e All Subscription constants in the or acl edb class

Introduction to the PL/SQL Foreign Function Interface

The Foreign Function Interface (FFI) is designed to provide straightforward access to PL/SQL
packages in a familiar, JavaScript-like fashion.

Using the m e-j s-pl sql -ffi API, wrappers are created around PL/SQL packages and
procedures so that in subsequent calls, you can interact with them as if they were JavaScript
objects and functions. This approach can be used in certain cases as an alternative to using
the MLE JavaScript SQL driver.

A lot of database functionality is available in the form of PL/SQL packages; either built-in, those
installed by frameworks such as APEX, or user-defined PL/SQL code. The Foreign Function
Interface (FFI) allows you to access PL/SQL functionality in packages and procedures directly
from JavaScript code without executing SQL statements, providing a seamless integration of
existing PL/SQL functionality with server-side JavaScript applications. For example, database
procedures can be invoked as JavaScript functions, passing JavaScript values as function
arguments.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 46 of 56

ORACLE

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

Consider the following JavaScript snippet that uses sessi on. execut e to employ the
DBMS_RANDOM package inside an anonymous PL/SQL block:

CREATE OR REPLACE FUNCTI ON get random numnber (
p_| ower _bound NUMBER,
p_upper _bound NUMBER

) RETURN NUMBER

AS MLE LANGUAGE JAVASCRI PT

{{
const result = session. execute(
"BEGA N :randomNum : = DBVMS_RANDOM VALUE(: | ow, :high); END;',
{
randomNum {
type: oracl edb. NUMBER,
dir: oracl edb. BIND OQUT
b, low {
type: oracl edb. NUMBER,
dir: oracledb. BIND IN,
val : P_LOAER_BOUND
}, high: {
type: oracl edb. NUMBER,
dir: oracledb. BIND IN,
val : P_UPPER_BOUND
}
}
);
return resul t.outBi nds. randonNum
Hh

/

SELECT get random nunber (1, 100);

Using FFI, you can cut down on the boilerplate code needed to implement the previous
example. The following snippet achieves the same functionality as the previous one in a more
concise way:

CREATE OR REPLACE FUNCTI ON get _random number (
p_l ower _bound NUMBER,
p_upper _bound NUMBER

) RETURN NUMBER

AS MLE LANGUAGE JAVASCRI PT

{{
const { resolvePackage } = await inport ('me-js-plsql-ffi');
const dbmsRandom = resol vePackage(' dbns_randon);
return dbnsRandom val ue(P_LOAER BOUND, P_UPPER BOUND);

¥

/

SELECT get _random numnber (1, 100);

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 47 of 56

ORACLE’

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

* Object Resolution Using FFI
A set of functions is available with the nl e-j s-pl sql -ffi API, each returning a JavaScript
object that represents its database counterpart.

* Provide Arguments to a Subprogram Using FFI
Use the ar g and ar gO functions to handle I N OUT and OUT parameters with the Foreign
Function Interface (FFI).

@ See Also

Server-Side JavaScript APl Documentation for more information about the m e- | s-
plsqgl-ffi API

Object Resolution Using FFI

A set of functions is available with the ml e-j s-pl sql -ffi API, each returning a JavaScript
object that represents its database counterpart.

The following functions are available to resolve packages and top-level functions and
procedures:

e resol vePackage(' <pkg_nanme>')
e resol veProcedure(' <proc_nanme>')
e resol veFunction(' <func_name>")

If the object you want to resolve is in your own schema or has a public synonym, qualifying the
object name with the owning schema is optional. If the object is in a different schema, you must
have necessary permissions to access the object and must qualify its name with the owning
schema. As with the MLE JavaScript SQL driver, all operations are performed in your own
security context.

@® Note

If the named database object does not exist or you do not have access to it, a
RangeEr r or is raised. If the given name resolves to a database object that is not the
correct type, a TypeError is raised. Database links are not supported. Attempting to
resolve a name with a database link results in an Error.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 48 of 56

https://oracle-samples.github.io/mle-modules

ORACLE

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

@® Note

The provided FFI functions follow the same case-sensitivity rules as PL/SQL, meaning
names are auto-capitalized by default. For quoted identifiers, you must use JavaScript
dictionary notation with a combination of double and single quotes to indicate case-
sensitivity:

/1 call a procedure with case-sensitive nane
nyPkgl" " M/Proc**] ();

Il read a global variable with a case-sensitive name
consol e. l og(nyPkg[' "MyVar"']);

Once a database object has been resolved, you can perform the following operations on the
resulting object:

* Procedure: Execute
* Function: Execute
» Package:
— Execute procedure
— Execute function
— Read and write public package variables
— Read constants

With r esol vePackage, variables, constants, procedures, and functions can be accessed
directly through property reads of the resulting object. If the package does not have the
member provided in the property read, a Ref er ence error is thrown. When the accessed
member is a PL/SQL function or procedure, the JavaScript object returns the same type of
callable entity that is resolved for top level functions and procedures. Consider the following
snippets for examples of the syntax:

/'l resolve a package
const myPkg = resol vePackage(' my_package');

/] call a procedure and function in the package

myPkg. ny_proc();
let result = myPkg.ny_func();

/1 read a global variable and constant in the package
consol e. | og(myPkg. ny_var);
consol e. | og(nyPkg. my_const);

/1 wite a global variable in the package
myPkg. my_var = 42;

For package variables and constants, only non-named types are supported. The following
types are not supported: PL/SQL record types, nested table types, associative arrays, vector
types, and ADTSs.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 49 of 56

ORACLE

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

When resolving a procedure or function, you receive a callable object. With functions, the
overrideRet urnType instance method can optionally be used to specify the return type and
change other metadata. Consider the following example that uses over ri deRet ur nType to
increase the naxSi ze attribute:

1.

Start by creating a function that returns a string:

CREATE OR REPLACE FUNCTION ret _string(
MULTI PLI ER NUMBER
) RETURN VARCHAR2 AS
BEG N
return rpad('this string mght be too long for the defaults ',
MULTI PLI ER, 'Xx');
END;
/

Create another function, ret _string_ffi, that uses FFI to resolve the function
ret_string:

CREATE OR REPLACE FUNCTION ret_string_ffi(
MULTI PLI ER NUMBER

) RETURN VARCHAR2

AS MLE LANGUAGE JAVASCRI PT

{{
const retStrFunc = plsffi.resolveFunction('ret_string');
return retStrFunc(MULTI PLI ER);

s

/

Theret_string_ffi function will work as long as the multiplier value is small enough, as
in the following:

SELECT ret _string_ffi(50);

Result:

RET_STRI NG_FFI (50)

this string mght be too long for the defaults xxx

With a larger multiplier value, the result can exceed the default buffer length of 200 bytes
and raise an error:

SELECT ret _string ffi(900);

Result:

SELECT ret _string_ffi(900)

*
ERRCR at line 1:
ORA- 04161: Error: Exception during subprogram execution (6502): ORA-06502:
PL/SQL: val ue or conversion error: character string buffer too small
ORA-04171: at :=> (<inline-src-js>: 3:12)

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 50 of 56

ORACLE

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

5. You can solve this problem by using the overri deRet ur nType instance method to increase
the maxSi ze attribute of the returned message:

CREATE OR REPLACE FUNCTION ret _str _ffi_override(
MULTI PLI ER NUMBER

) RETURN VARCHAR2

AS MLE LANGUAGE JAVASCRI PT

{{
const retStrFunc = plsffi.resolveFunction('ret_string');
/'l overrideReturnType accepts either an oracledb type constant
/'l such as oracl edb. NUMBER, or a string containing the name of a
/'l user defined database type. If nore information is needed, as
/1 in this exanple, a parameter of type Returnlinfo can be provided
ret StrFunc. overrideRet urnType({

maxSi ze: 1000

1
return ret StrFunc(MULTIPLIER);

Hh

/

6. Usingthenewret str _ffi_override function, a call with a larger multiplier will now work:

SELECT ret _str_ffi_override(900);

Provide Arguments to a Subprogram Using FFl

Use the ar g and ar gO functions to handle | N QUT and OQUT parameters with the Foreign
Function Interface (FFI).

JavaScript and PL/SQL handle parameters differently. For instance, JavaScript doesn't allow
for named parameters in the same way that PL/SQL does. Neither does JavaScript have an
equivalent for QUT and | N OUT parameters, nor is there an option for overloading functions.
Last, but not least, JavaScript types are different from the database's built-in type system. To
be able to call PL/SQL from JavaScript, the FFI must accommodate these differences.

For more information about PL/SQL subprogram parameters, see Oracle Al Database PL/SQL
Language Reference.

The following procedure represents a case where:
e multiple parameters are defined.
e parameters provide a mix of I N, QUT, and I N OUT modes.

* the default maxSi ze for a VARCHAR2 OUT variable is insufficient

CREATE OR REPLACE PROCEDURE ny_proc_w_ar gs(

p_argl N NUMBER,
p_arg2 N NUMBER,
p_arg3 [N OQUT JSON,
p_arg4 QUT TI MESTAMP,
p_argb QUT VARCHAR2

) AS

BEG N

SELECT

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 51 of 56

ORACLE

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

JSON_TRANSFORM p_ar g3,
SET '$.last Update' = systinestanp,
SET '$.value' = p_argl + p_arg2

)

into p_arg3;

p_arg4 := systimestanp;

-- the length of the string will exceed the default

-- length of 200 characters for the out bind, mandating
-- the use of maxSize in args().

p_arg5 :=rpad('x', 255, 'x');

END;
/

Parameters passed using the | N mode do not require any special treatment. The FFI provides
the arg() and argOf () functions to handle OUT and | N OUT parameters, respectively.
Remember that all parameters provided using the FFI are essentially bind parameters and thus
their behavior can be influenced using the same di r, val , t ype, and maxSi ze properties you
use if you call PL/SQL directly using sessi on. execut e() .

The ar g function generates an object that represents an argument. It optionally accepts the
same object as the MLE JavaScript SQL driver, including any combination of the di r, val ,
t ype, and maxSi ze properties.

The ar gO function generates an object that represents an argument of the given value.

Parameters can be passed in two different ways:

e As alist of positional arguments.

* Using an object to provide the arguments, simulating named parameters.

Based on the function created in the preceding example, ny_proc_w_ar gs, you can invoke the
function with the FFI using positional arguments as follows:

CREATE OR REPLACE PROCEDURE my_proc_w args_positional (

"argl" NUMBER,
"arg2" NUMBER
) AS MLE LANGUAGE JAVASCRI PT

{

const myProc = plsffi.resolveProcedure('my_proc_w args');

[l arg3 is an IN OQUT paraneter of type JSON. my_proc_with_args
/1 will nodify it in place and return it to the caller
const arg3 = plsffi.argOf({id: 10, value: 100});

/1 arg4 is a pure QUT paraneter
const arg4 = plsffi.arg();

[l arg5 represents an OUT paraneter as well but due to the
/1 length of the return string, it nust be provided with additional
Il metadata
const arg5 = plsffi.arg({
maxSi ze: 1024

1)

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 52 of 56

ORACLE Chapter 7
Introduction to the PL/SQL Foreign Function Interface

nmyProc(argl, arg2, arg3, arg4, argb);

consol e. l og(" the updated JSON | ooks like this: $
{JSON. stringify(arg3.val)}’);
consol e.l og("the cal cul ati on happened at ${arg4.val}’);
consol e.log("the length of the string returned is ${arg5.val.length}
characters™);
H
/

The second option is to use named arguments, provided as a single, plain JavaScript object.
The FFI API then maps each property to the argument that matches the name of the property.

CREATE OR REPLACE PROCEDURE ny_proc_w args_naned(

"argl" NUMBER,
"arg2" NUMBER
) AS MLE LANGUAGE JAVASCRI PT

{

const nyProc = plsffi.resolveProcedure('my_proc_w args');

/1 arg3 is an IN OQUT paraneter of type JSON. my_proc_with_args
/1 will nodify it in place and return it to the caller
const arg3 = plsffi.argOf({id: 10, value: 100});

/1 arg4 is a pure OUT paraneter
const arg4 = plsffi.arg();

/1 arg5 represents an OUT paraneter as well but due to the
/1 length of the return string must be provided wth additional

[l metadata
const arg5 = plsffi.arg({
maxSi ze: 1024
1
myProc({
p_argl: argil,
p_arg2: arg2,
p_arg3: arg3,
p_arg4: arg4,
p_arg5: arg5
1
consol e.l og(" the updated JSON | ooks like this: $
{JSON. stringify(arg3.val)}’);
consol e.l og(" the calculation happened at ${arg4.val}’);
console.log("the length of the string returned is ${arg5.val.length}
characters’);
3
/

Note the edge case where you have a PL/SQL subprogram that has a single argument that is
represented in JavaScript as an obj ect . Intuitively, you may want to pass it as a single
positional argument, however, in that case, the FFI will interpret it as a named arguments
object.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 53 of 56

ORACLE

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

There are two ways around this exception:

* You can wrap your argument in an object as if you were calling the subprogram with
named arguments.

* You can wrap your argument with pl sffi.arg0f () and the FFI will recognize it as a single
positional argument.

Consider the following example that demonstrates these options:

-- PL/SQL subprogramwe want to call
CREATE OR REPLACE PROCEDURE ny_proc(ny_arg JSON) AS
BEG N
-- Process ny_arg
END;

-- JavaScript function that calls ny_proc
CREATE OR REPLACE PROCEDURE ny_j avascript_proc
AS MLE LANGUAGE JAVASCRI PT

{{
const nyProc = plsffi.resolveProcedure('my_proc');
const nyArg = { propl: 10, prop2: 'foo' };
/1 Catch the exception that will happen if the FFl tries
Il to interpret this as a call with naned argunents
try {
myProc(nyArg);
} catch (err) {
console.log("if uncaught, this would have been a ${err}");
}
[l Option 1: Make it into a real named argument call.
myProc({ ny_arg: nyArg });
/1 Option 2. Wap with argOf() to let the FFI know that it's a
/'l positional argunent list call.
myProc(pl sffi.argO>f(nyArg));
s

PL/SQL allows developers to overload signatures of functions and procedures that are defined
in PL/SQL packages. The FFI does not perform overload selection, however, it still needs to
decide what PL/SQL type to use for binding each argument. Unfortunately, it cannot make this
decision on its own in all cases. In particular, in the following instances:

e No JavaScript value was given for an argument that is needed to determine the correct
signature to call. Without a value, the FFI has no way of knowing the set of matching
PL/SQL types.

e When one JavaScript type is viable for multiple PL/SQL types.

Keep in mind that FFI uses SQL driver constants to represent standard types and strings
(containing the type name) for user defined types. SQL driver constants come in two flavors:

e Constants that start with DB_TYPE_* control how the JavaScript value is converted to a
PL/SQL value.

« All others are used to control how the returned PL/SQL value is converted to a JavaScript
value.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 54 of 56

ORACLE

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

If you are specifying the type of your argument in order to help with type resolution, it is best to
use one of the DB_TYPE_* constants.

Consider the following PL/SQL package:
CREATE OR REPLACE package overload_pkg AS

FUNCTI ON ny_f unc(
p_argl I N Bl NARY_FLOAT
) RETURN VARCHARZ;

FUNCTI ON ny_f unc(
p_argl I N I NTEGER
) RETURN VARCHARZ;
END;
/

CREATE OR REPLACE PACKAGE BODY overl oad_pkg AS

FUNCTI ON ny_f unc(

p_argl I N Bl NARY_FLOAT
) RETURN VARCHAR2 AS
BEG N

RETURN ' binary_float";
END;

FUNCTI ON ny_f unc(
p_argl IN I NTEGER
) RETURN VARCHAR2 AS
BEG N
RETURN "integer';
END,
END;

As you can see, my_pr oc is overloaded, accepting both a Bl NARY _FLOAT as well as an | NTEGER.
In JavaScript, both of these types are represented as the number data type and as such,
multiple possible overloads are valid. If the FFI API cannot select the correct resolution, it is
possible to force a particular overloaded PL/SQL function by providing the PL/SQL type.

CREATE OR REPLACE PROCEDURE force_overl oad
AS MLE LANGUAGE JAVASCRI PT

{{
const nyPkg = plsffi.resol vePackage(' overl oad_pkg');

let result = 'not yet called;

[l Catch error ORA-04161: Error: Exception during subprogram execution
/1 (4161): Multiple subprogranms nmatch the provided signature
try {
result = nyPkg. nmy_func(42);
} catch (err) {
consol e.log("if uncaught, this would have been a ${err}");
}

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 55 of 56

ORACLE Chapter 7
Introduction to the PL/SQL Foreign Function Interface

/1 Solution: use argOf to make this work

result = nyPkg.ny_func(plsffi.argdf(42, {type:
oracl edb. DB_TYPE_BI NARY_FLQAT}))

console.log(and the result is: ${result}’);

3R
/

An error can also occur if the type is user-defined. For example, all JavaScript objects are
considered viable for all PL/SQL records. In this case, it is enough to provide the name of the
desired type.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 56 of 56

Working with SODA Collections in MLE
JavaScript Code

Simple Oracle Document Access (SODA) is a set of NoSQL-style APIs that let you create and
store collections of documents (in particular JSON) in Oracle Database, retrieve them, and
query them, without needing to know Structured Query Language (SQL) or how the documents
are stored in the database.

SODA APIs exist for different programming languages and include support for MLE JavaScript.
SODA APIs are document-centric. You can use any SODA implementation to perform create,
read, update, and delete (CRUD) operations on documents of nearly any kind (including video,
image, sound, and other binary content). You can also use any SODA implementation to query
the content of JavaScript Object Notation (JSON) documents using pattern-matching: query-
by-example (QBE). CRUD operations can be driven by document keys or by QBEs.

This chapter covers JavaScript in the database, based on Multilingual Engine (MLE) as
opposed to the client-side node- or acl edb driver. Whenever JavaScript is mentioned in this
chapter it implicitly refers to MLE JavaScript.

@® Note

In order to use the MLE SODA API, the COVWPATI BLE initialization parameter must be
setto 23.0.0.

@ See Also

Oracle Al Database Introduction to Simple Oracle Document Access (SODA) for a
complete introduction to SODA

Topics

e High-Level Introduction to Working with SODA for In-Database JavaScript
The SODA API is part of the MLE JavaScript SQL driver. Interaction with collections and
documents requires you to establish a connection with the database first, before a SODA
database object can be obtained.

* SODA Objects
Objects used with the SODA API.

» Using SODA for In-Database JavaScript
How to access SODA for In-Database JavaScript is described, as well as how to use it to
perform create, read (retrieve), update, and delete (CRUD) operations on collections.

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 30

ORACLE’

Chapter 8
High-Level Introduction to Working with SODA for In-Database JavaScript

High-Level Introduction to Working with SODA for In-Database

JavaScript

The SODA API is part of the MLE JavaScript SQL driver. Interaction with collections and
documents requires you to establish a connection with the database first, before a SODA
database object can be obtained.

The SODA database is the top-level abstraction object when working with the SODA API.

Figure 8-1 demonstrates the standard control flow.

Figure 8-1 SODA for In-Database JavaScript Basic Workflow

Import the MLE JavaScript

SQL Driver import oracledb from “mle-js-oracledb”;

l

Create a Database
Connection Handle

const connection

oracledb.defaultConnection () ;

A\ /2
gg'j(eaCEODA Database const connection = oracledb.defaultConnection();
A\ 2

Create or Open a Collection | const col = db.createCollection (“"MyJSONCollection”);

//Create a JSON document
const doc = {

Work with SODA
Documents

}s

“employee id”: 100,
“job id”: “AD PRES”,
“last name”: “King”,
“first name”: “Steven”

//Insert the document into a collection
col.insertOne (doc) ;

Applications that aren't ported from client-side Node.js or Deno can benefit from coding aids
available in the MLE JavaScript SQL driver, such as a number of frequently used variables that
are available in the global scope. For a complete list of available global variables and types,
see Working with the MLE JavaScript Driver.

For SODA applications the most important global variable is the soda object, which represents
the SodaDat abase object. The availability of the soda object in the global scope reduces the
need for writing boilerplate code. In this case the workflow can be simplified, as in Figure 8-2.

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 30

ORACLE

Create or open
a collection

Chapter 8
SODA Objects
Figure 8-2 SODA for In-Database JavaScript Simplified Workflow
// soda refers to the SodaDatabase and is
// available in the global scope
const collection = soda.createCollection('myCollection');

\J

Work
with SODA
documents

const myDoc = {
"employee id": 100,
"job_id": "AD PRES",
"last name": "King",
"first name": "Steven",
"email™: "SKING",
"manager id": null,

"department id": 90
}i

const result = collection.insertOneAndGet (myDoc) ;

@® Note

If you are running your JavaScript code in a restricted execution context, you cannot
use the SODA API. For more information about restricted execution contexts, see
About Restricted Execution Contexts.

SODA Objects

Objects used with the SODA API.

The following objects are at the core of the SODA API:

SodaDatabase: The top-level object for SODA operations. This is acquired from an Oracle
Database connection or directly available from the global scope as the soda object. A
SODA database is an abstraction, allowing access to SODA collections in that SODA
database, which then allow access to documents in those collections. A SODA database is
analogous to an Oracle Database user or schema. A collection is analogous to a table. A
document is analogous to a table row with one column for a unique document key, a
column for the document content, and other columns for various document attributes. With
the MLE JavaScript SQL driver, the soda object is available as a global variable, which
represents the SodaDat abase object and reduces the need for writing boilerplate code.

SodaCol lection: Represents a collection of SODA documents. By default, collections
allow JSON documents to be stored, and they add a default set of metadata to each
document. This is recommended for most users. However, optional metadata can set
various details about a collection, such as its database storage, whether it should track
version and time stamp document components, how such components are generated, and
what document types are supported. Most users do not need to provide custom metadata.

SodaDocument: Represents a document. Typically, the document content will be JISON. The
document has properties including the content, a key, timestamps, and the media type. By
default, document keys are automatically generated.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 30

ORACLE’

Chapter 8
Using SODA for In-Database JavaScript

When working with collections and documents stored therein, you will make use of the
following objects:

SodaDocumentCursor: A cursor object representing the result of the get Cur sor () method
from afind() operation. It can be iterated over to access each SodaDocunent .

SodaOperation: An internal object used with fi nd() to perform read and write operations
on documents. Chained methods set properties on a SodaQper at i on object which is then
used by a terminal method to find, count, replace, or remove documents. This is an internal
object that should not be directly accessed.

@ See Also

Server-Side JavaScript APl Documentation for information about using SODA objects
with nl e-j s- oracl edb

Using SODA for In-Database JavaScript

How to access SODA for In-Database JavaScript is described, as well as how to use it to
perform create, read (retrieve), update, and delete (CRUD) operations on collections.

This section describes SODA for MLE JavaScript. Code snippets in this section are sometimes
abridged for readability. Care has been taken to ensure that JavaScript functions are listed in
their entirety, but they aren’t runnable on their own. Embedding the function definition into a
JavaScript module and importing the MLE JavaScript SQL driver will convert these code
examples to valid JavaScript code for Oracle Database 23ai.

Topics

Getting Started with SODA for In-Database JavaScript

How to access SODA for In-Database JavaScript is described, as well as how to use it to
create a database collection, insert a document into a collection, and retrieve a document
from a collection.

Creating a Document Collection with SODA for In-Database JavaScript
How to use SODA for In-Database JavaScript to create a new document collection is
explained.

Opening an Existing Document Collection with SODA for In-Database JavaScript
You can use the method SodaDat abase. openCol | ection() to open an existing document
collection or to test whether a given name names an existing collection.

Checking Whether a Given Collection Exists with SODA for In-Database JavaScript

You can use SodaDat abase. openCol | ecti on() to check for the existence of a given
collection. It returns nul | if the collection argument does not name an existing collection;
otherwise, it opens the collection having that name.

Discovering Existing Collections with SODA for In-Database JavaScript
You can use SodaDat abase. get Col | ecti onNares() to fetch the names of all existing
collections for a given SodaDat abase object.

Dropping a Document Collection with SODA for In-Database JavaScript
You use SodaCol | ection. drop() to drop an existing collection.

Creating Documents with SODA for In-Database JavaScript
Creation of documents by SODA for In-Database JavaScript is described.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 4 of 30

https://oracle-samples.github.io/mle-modules

ORACLE’

Chapter 8
Using SODA for In-Database JavaScript

Inserting Documents into Collections with SODA for In-Database JavaScript

SodaCol | ection.insertOne() or arelated call such as

sodaCol | ection.insertOneAndCet () offers convenient ways to add documents to a
collection. These methods create document keys automatically, unless the collection is
configured with client-assigned keys and the input document provides the key, which is not
recommended for most users.

Saving Documents into Collections with SODA for In-Database JavaScript
You use SodaCol | ection. save() and saveAndGet () to save documents into collections.

SODA for In-Database JavaScript Read and Write Operations

The primary way you specify read and write operations (other than insert and save) is to
use methods provided by the SodaQper at i on class. You can chain together SodaCper at i on
methods to specify read or write operations against a collection.

Finding Documents in Collections with SODA for In-Database JavaScript

To find documents in a collection, you invoke SodaCol | ecti on. find(). It creates and
returns a SodaQper at i on object which is used via method chaining with nonterminal and
terminal methods.

Replacing Documents in a Collection with SODA for In-Database JavaScript

To replace the content of one document in a collection with the content of another, you
start by looking up the document to be modified using its key. Because

SodaQper at i on. key() is a nonterminal operation, the easiest way to replace the contents
is to chain SodaQperati on. key() to SodaQperati on. repl acene() or

SodaQper ati on. repl aceOneAndCet () .

Removing Documents from a Collection with SODA for In-Database JavaScript

Removing documents from a collection is similar to replacing. The first step is to perform a
lookup operation, usually based on the document's key or by using a search expression in
SodaQperation.filter(). The call to SodaQperati on. renmove() is a terminal operation, in
other words the last operation in the chain.

Indexing the Documents in a Collection with SODA for In-Database JavaScript

Indexes can speed up data access, regardless of whether you use the NoSQL style SODA
API or a relational approach. You index documents in a SODA collection using

SodaCol | ecti on. creat el ndex(). Its | ndexSpec parameter is a textual JSON index
specification.

Getting a Data Guide for a Collection with SODA for In-Database JavaScript

A data guide is a summary of the structural and type information contained in a set of
JSON documents. It records metadata about the fields used in those documents. They
provide great insights into JSON documents and are invaluable for getting an overview of a
data set.

Handling Transactions with SODA for In-Database JavaScript

Unlike the client-side JavaScript SQL driver, the MLE JavaScript SQL driver does not
provide an aut oCommi t feature. You need to commit or roll your transactions back, either in
the PL/SQL layer in case of module calls, or directly in the JavaScript code by calling
connection. comit () or connection.rollback().

Creating Call Specifications Involving the SODA API

Earlier in this chapter, in the section Getting Started with SODA for In-Database
JavaScript, an example showing how to invoke the MLE SODA API using an inline call
specification is included. The following short example demonstrates how to use SODA in
MLE modules.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 5 of 30

ORACLE Chapter 8
Using SODA for In-Database JavaScript

Getting Started with SODA for In-Database JavaScript

How to access SODA for In-Database JavaScript is described, as well as how to use it to
create a database collection, insert a document into a collection, and retrieve a document from
a collection.

Before you can get started working with SODA for MLE JavaScript, the account used for
storing collections (in this case, eni | y) must be granted the SODA_APP roles, either directly or
using the DB_DEVELOPER ROLE:

grant soda_app to enmly

Accessing SODA functionality requires the use of the MLE JavaScript SQL driver. Because the
database session exists by the time the code is invoked, no additional connection handling is
necessary. Example 8-1 demonstrates how to:

* Create a SODA collection,
¢ Insert a JSON document into it, and

* lterate over all SODA Documents in the collection, printing their contents on screen

Each concept presented by Example 8-1 - creating collections, adding and modifying
documents, and dropping collections - is addressed in more detail later in this chapter.

Example 8-1 SODA with MLE JavaScript General Workflow

This example demonstrates the general workflow using SODA collections with MLE
JavaScript. Instead of using an MLE module, the example simplifies the process by
implementing an inline call specification.

CREATE OR REPLACE PROCEDURE intro_soda(
"dropCol | ection" BOOLEAN

) AUTH D CURRENT_USER

AS MLE LANGUAGE JAVASCRI PT

{

/'l use the soda object, available in the global scope instead of inporting
/1 the me-js-oracledb driver, getting the default connection and extracting
/1 the SodaDatabase fromit

const col = soda. createCollection("MCol | ection");

/1 create a JSON docurment (based on the HR EMPLOYEES table for the enpl oyee
with id 100)

const doc = {
" id" : 100,
"job_id" : "AD PRES',
"last _name" : "King",
"first_name" : "Steven",
"emai|l" : "SKING',
"manager _id" : null,
"departnent _id" : 90

};

/1 insert the document into collection
col . insertOne(doc);

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 6 of 30

ORACLE Chapter 8
Using SODA for In-Database JavaScript

/1 find all documents in the collection and print themon screen
/1 use a cursor to iterate over all docunents in the collection
const ¢ = col.find()

. getCursor();

| et resultDoc

while (resultDoc = c.getNext())({
const content = resultDoc. getContent();
consol e. [og("

key: ${resul t Doc. key}

content (select fields):

- id: ${content. _id}

- job_id: ${content.job_id}

- nane: ${content.first_name} ${content.|ast_nane}
version: ${resul t Doc. versi on}

medi a type: ${resul t Doc. medi aType}"

)
}

[l it is very inportant to close the SODADocunment Cursor to free resources
c.close();

/1 optionally drop the collection

if (dropCollection){
/1 there is no auto-commit, the outstanding transaction nust be
/1 finished before the collection can be dropped
sessi on. commit();
col . drop();

3R
/

You can try the code by executing the procedure using your favorite IDE. Here is an example
of the results of calling the i nt ro_soda procedure:

BEG N
intro_soda(true);
END;
/
Result:
key: 03C202
content (select fields):
- id: 100
- job_id: AD_PRES
- nane: Steven King
versi on: 17EFOF3C102653DDE063DA464664399C
medi a type: application/json

PL/ SQL procedure successfully conpl et ed

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 7 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

Creating a Document Collection with SODA for In-Database JavaScript

How to use SODA for In-Database JavaScript to create a new document collection is
explained.

Collections allow you to logically group documents. Before a collection can be created or
accessed, a few more steps must be completed unless you make use of the global soda
object. Begin by creating a connection object. The connection object is the starting point for all
SODA interactions in the MLE JavaScript module:

/1 get a connection handle to the database session
const connection = oracl edb. defaultConnection();

Once the connection is obtained, you can use it to call Connect i on. get SodaDat abase(), a
prerequisite for creating the collection:

/1 get a SODA dat abase
const db = connecti on. getSodaDatabase() ;

With the SODA database available, the final step is to create the collection. Note that collection
names are case-sensitive:

Il Create a collection with the name "M/Col | ection”.

/1 This creates a database table, also named "MCollection",
/1 to store the collection. If a collection with the sane nane
/] exists, it will be opened

const col = db. createCollection("MCol | ection");

The preceding statement creates a collection that, by default, allows JSON documents to be
stored. If the collection name passed to SodaDat abase. creat eCol | ecti on() is that of an
existing collection, it will simply be opened. You can alternatively open a known, existing
collection using SodaDat abase. openCol | ection().

Unless custom metadata is provided to SodaDat abase. creat eCol | ecti on() (which is not
recommended), default collection metadata will be supplied. The default metadata has the
following characteristics:

e Each document in the collection has these components:
- Key
— Content
— Version
e The collection can store only JSON documents.
» Document keys and version information are generated automatically.

Optional collection metadata can be provided to the call to cr eat eCol | ecti on(), however, the
default collection configuration is recommended in most cases.

If a collection with the same name already exists, it is simply opened and its object is returned.
If custom metadata is passed to the method and does not match that of the existing collection,
the collection is not opened and an error is raised. To match, all metadata fields must have the
same values.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 8 of 30

ORACLE’

Chapter 8
Using SODA for In-Database JavaScript

@ See Also

Oracle Al Database Introduction to Simple Oracle Document Access (SODA) for more
details about collection metadata, including custom metadata.

Opening an Existing Document Collection with SODA for In-Database

JavaScript

You can use the method SodaDat abase. openCol | ection() to open an existing document
collection or to test whether a given name names an existing collection.

Example 8-2 Opening an Existing Document Collection

This example opens the collection named col | ecti onNane. It is very important to check that
the collection object returned by SodaDat abase. openCol | ecti on() is not nul | . Rather than
throwing an error, the method will return a nul | value should the requested collection not exist.

export function openCollection(collectionNane) {

/'l performa |ookup. If a connection cannot be found by that
/1 name no exception nor error are thrown, but the resulting
/1 collection object will be null
const col = soda.openCollection(col | ectionName);
if (col === null) {

throw new Error(No such collection ${collectionNane}");

}

/1 do sonmething with the collection

Checking Whether a Given Collection Exists with SODA for In-Database

JavaScript

You can use SodaDat abase. openCol | ecti on() to check for the existence of a given collection.
It returns nul | if the collection argument does not name an existing collection; otherwise, it
opens the collection having that name.

In Example 8-2, if col | ecti onNane does not name an existing collection then col is assigned
the value nul | .

Discovering Existing Collections with SODA for In-Database JavaScript

You can use SodaDat abase. get Col | ecti onNanes() to fetch the names of all existing
collections for a given SodaDat abase object.

If the number of collections is very large, you can limit the number of names returned.
Additionally, the lookup can be limited to collections starting with a user-defined string as
demonstrated by Example 8-4.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 9 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

Example 8-3 Fetching All Existing Collection Names

This example prints the names of all existing collections using the method
get Col | ecti onNanes() .

export function printCollectionNanes(){
/1 loop over all collections in the current user's schena
const all Collections = soda. getCollectionNames();
for (const col of allCollections){
consol e.log(- ${col}");
}
}

Example 8-4 Filtering the List of Returned Collections

This example limits the results of get Col | ecti onNarmes() by only printing the names of
collections that begin with a user-defined string, start Wt h.

export function printSomeCol | ecti onNanes(nunHits, startWith) {

/1 1oop over all collections in the current schema, linited
/1 to those that start with a specific character sequence and
/1 a maxi mum nunber of hits returned
const allCollections = soda. getCollectionNames(
{
limt: nunHits,
startsWth: startWth
}
);
for (const col of allCollections){
consol e. 1 og(" -${col}");
}
}

Dropping a Document Collection with SODA for In-Database JavaScript

You use SodaCol | ection. drop() to drop an existing collection.

/\ Caution

Do not use SQL to drop the database table that underlies a collection. Dropping a
collection involves more than just dropping its database table. In addition to the
documents that are stored in its table, a collection has metadata, which is also
persisted in Oracle Database. Dropping the table underlying a collection does not also
drop the collection metadata.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 10 of 30

ORACLE Chapter 8
Using SODA for In-Database JavaScript

@® Note

Day-to-day use of a typical application that makes use of SODA does not require that
you drop and re-create collections. But if you need to do that for any reason then this
guideline applies.

Do not drop a collection and then re-create it with different metadata if there is any
application running that uses the collection in any way. Shut down any such
applications before re-creating the collection, so that all live SODA objects are
released.

There is no problem just dropping a collection. Any read or write operation on a
dropped collection raises an error. And there is no problem dropping a collection and
then re-creating it with the same metadata. But if you re-create a collection with
different metadata, and if there are any live applications using SODA objects, then
there is a risk that a stale collection is accessed, and no error is raised in this case.

In SODA implementations that allow collection metadata caching, such as SODA for
Java, this risk is increased if such caching is enabled. In that case, a (shared or local)
cache can return an entry for a stale collection object even if the collection has been
dropped.

@® Note

Commit all writes to a collection before using SodaCol | ecti on. drop() . For the method
to succeed, all uncommitted writes to the collection must first be committed.
Otherwise, an exception is raised.

Example 8-5 Dropping a Collection

This example shows how to drop a collection.

export function openAndDropCol | ection(collectionNane) {

/1 1ook the collection up
const col = soda.openCol | ection(collectionNare);
if (col === null) {
throw new Error (" No such collection ${collectionNane}");

1
/1 drop the collection - POTENTI ALLY DANGEROUS
col . drop();

Creating Documents with SODA for In-Database JavaScript

Creation of documents by SODA for In-Database JavaScript is described.

The SodaDocunent class represents SODA documents. Although its focus is on JSON
documents, it supports other content types as well. A SodaDocunent stores both the actual
document's contents as well as metadata.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 11 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

JavaScript is especially well-suited to work with JSON by design, giving it an edge over other
programming languages.

Here is an example of a simple JSON document:

/] Create a JSON docurment (based on the HR EMPLOYEES table for enployee 100)
const doc = {

"_id": 100,

"job_id": "AD PRES",

"l ast _nanme": "King",

"first_name": "Steven",

"email": "SKING',

"manager _id": null,

"departnent _id": 90

@ Note
In SODA, JSON content must conform to RFC 4627.

SodaDocument objects can be created in three ways:

e As aresult of sodaDat abase. cr eat eDocunent (). This is a proto-SodaDocunent object
usable for SODA insert and replace methods. The SodaDocunent will have content and
media type components set.

* As aresult of a read operation from the database, such as calling
sodaQper ati on. get One(), or from sodaDocunent Cur sor. get Next () after a
sodaQper at i on. get Cursor () call. These return complete SodaDocunent objects containing
the document content and attributes, such as media type.

e Asaresult of sodaCol | ection.insertOneAndGet (), sodaQperation. repl aceOneAndGet (),
or sodaCol | ecti on. i nsert ManyAndCet () methods. These return SodaDocunent s that
contain all attributes except the document content itself. They are useful for finding
document attributes such as system generated keys, and versions of new and updated
documents.

A document has these components:

« Key
e Content
e \ersion

* Mediatype ("application/json" for ISON documents)

The document's content consists of all the fields representing the information the application
needs to store plus an _i d field. This field is either provided by the user or injected by Oracle if
omitted. If omitted, Oracle adds a random value with a length of 12 bytes.

The document's key is a hex-encoded representation of the document's _i d column. It is
automatically calculated and cannot be changed. The key is often used when building
operations such as finds, replaces, and removes, with key() and keys(...) methods. These
operations are discussed in later sections.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 12 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

Example 8-6 Creating SODA Documents

export function createJSONDoc() {

/1 define the document's contents
const payload = {
"_id": 100,
"job_id": "AD PRES",
"l'ast _nanme": "King",
"first_name": "Steven",
"email": "SKING',
"manager _id": null,
"departnent _id": 90
b

/1 Create a SODA docunent.
/1 Notice that neither key nor version are populated. They will be as soon
/1 as the document is inserted into a collection and retrieved.
const doc = soda. createDocument(payl oad);
consol e.log(’

SODA Docunent using default key

content (select fields):

- id ${doc. get Content (). _id}

- job_id ${doc. get Content ().job_id}

- first name ${doc.getContent().first_name}

medi a type: ${ doc. nedi aType}

version ${doc. versi on}

key ${doc. key}"

Creating SodaDocunent instances as shown in this example is the exception rather than the
norm. In most cases, developers use SodaCol | ecti on.insertOne() or

SodaCol | ection.insert OneAndGet (). The use of SodaCol | ection.insertne() is
demonstrated in Example 8-7. Multiple documents can be created using

sodaCol | ection.insertMny().

Inserting Documents into Collections with SODA for In-Database JavaScript

SodaCol | ection.insertOne() or a related call such as sodaCol | ecti on. i nsert OneAndGet ()
offers convenient ways to add documents to a collection. These methods create document
keys automatically, unless the collection is configured with client-assigned keys and the input
document provides the key, which is not recommended for most users.

SodaCol | ection.insert One() simply inserts the document into the collection, whereas
SodaCol | ection.insert OneAndCGet () additionally returns a result document. The resulting
document contains the document key and any other generated document components, except
for the actual document’s content (this is done to improve performance).

Both methods automatically set the document's version, unless the collection has been created
with custom metadata. Custom metadata might not include all the default metadata. When
querying attributes not defined by the collection a null value is returned.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 13 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

@® Note

If you want the input document to replace the existing document instead of causing an
exception, see Saving Documents into Collections with SODA for In-Database

JavaScript.

Example 8-7 Inserting a SODA Document into a Collection

This example demonstrates how to insert a document into a collection using
SodaCol | ection.insertOne().

export function insertOneExample() {

/1 define the document's contents
const payload = {
"_id": 100,
"job_id": "AD PRES",
"l'ast _nanme": "King",
"first_name": "Steven",
"email": "SKING',
"manager id": null,
"departnent _id": 90
b

/1 create or open the collection to hold the docunent
const col = soda.createCollection("MCollection");

col . insertOne(payl oad);

Example 8-8 Inserting an Array of Documents into a Collection

This example demonstrates the use of SodaCol | ecti on. i nsert Many() to insert multiple
documents with one command. The example essentially translates the relational table
HR. enpl oyees into a collection.

export function insertManyExanpl e() {

/1 select all records fromthe hr.enployees table into an array
/1 of JavaScript objects in preparation of a call to insertMny
const result = session. execute(
" SELECT

enmpl oyee id " _id",

first_nane "firstName",

[ast _nane "I ast Narme",

email "email",

phone_nunber "phoneNunber",

hire _date "hireDate",

job_id "jobld",

salary "salary",

comm ssi on_pct "commi ssionPct",

manager id "managerld",

department id "department|d"

FROM

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 14 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

hr. enpl oyees”,
(1,
{ outFormat: oracl edb. OUT_FORMAT OBJECT }
);

Il create the collection and insert all enployee records
col l ection = soda. createCol I ection(' enpl oyeesCol | ection');
col l ection. insertMany(result.rows);

/1 the ME JavaScript SQL driver does not auto-commt
session.comit();

Saving Documents into Collections with SODA for In-Database JavaScript

You use SodaCol | ection. save() and saveAndGet () to save documents into collections.

These methods are similar to methods i nsert One() and i nsert OneAndCet () except that, if the
collection is configured with client-assigned document keys, and the input document provides a
key that already identifies a document in the collection, then the input document replaces the
existing document. In contrast, methods i nsert One() and i nsert OneAndCet () throw an
exception in that case.

SODA for In-Database JavaScript Read and Write Operations

The primary way you specify read and write operations (other than insert and save) is to use
methods provided by the SodaQper at i on class. You can chain together SodaQper ati on
methods to specify read or write operations against a collection.

Nonterminal SodaQOper at i on methods return the same object on which they are invoked,
allowing them to be chained together.

A terminal SodaCper at i on method always appears at the end of a method chain to execute the
operation.

@ Note

A SodaQper at i on object is an internal object. You should not directly modify its
properties.

Unless the SODA documentation for a method says otherwise, you can chain together any
nonterminal methods and you can end the chain with any terminal method. However, not all
combinations make sense. For example, it does not make sense to chain method ver si on()
together with a method that does not uniquely identify the document, such as keys().

Table 8-1 Overview of Nonterminal Methods for Read Operations

Method Description
key() Find a document that has the specified document key.
keys() Find documents that have the specified document keys.

filter()

Find documents that match a filter specification (a query-by-
example expressed in JSON).

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 15 of 30

ORACLE’

Chapter 8
Using SODA for In-Database JavaScript

Table 8-1 (Cont.) Overview of Nonterminal Methods for Read Operations

Method

Description

version()

Find documents that have the specified version. This is
typically used with key() .

header Onl y()

Exclude document content from the result.

ski p()

Skip the specified number of documents in the result.

limt()

Limit the number of documents in the result to the specified
number.

Table 8-2 Overview of Terminal Methods for Read Operations

Method Description

get One() Create and execute an operation that returns at most one
document. For example, an operation that includes an
invocation of nonterminal method key() .

get Cursor () Get a cursor over read operation results.

count () Count the number of documents found by the operation.

get Document s()

Gets an array of documents matching the query criteria.

Table 8-3 Overview of Terminal Methods for Write Operations

Method

Description

repl aceOne()

Replace one document.

repl aceOneAndGet ()

Replace one document and return the result document.

remove()

Remove documents from a collection.

@ See Also

Node-oracledb Documentation for more details about the SodaQOper at i ons class.

SODA Restrictions (Reference) for information about SODA restrictions.

Finding Documents in Collections with SODA for In-Database JavaScript

To find documents in a collection, you invoke SodaCol | ecti on. find(). It creates and returns a
SodaQper at i on object which is used via method chaining with nonterminal and terminal

methods.

To execute the query, obtain a cursor for its results by invoking SodaQper at i on. get Cur sor ().
Then use the cursor to visit each document in the result list. This is illustrated by Example 8-1
and other examples. It is important not to forget to close the cursor, to save resources.

However, this is not the typical workflow when searching for documents in a collection. It is
more common to chain multiple methods provided by the SodaQper at i on class together.

JavaScript Developer's Guide

G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 30

https://oracle.github.io/node-oracledb/doc/api.html#sodaoperationclass

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

Example 8-9 Finding a Document by Key

This example shows how to look up a document by its key using the methods fi nd(), key(),
and get One() .

export function findDocByKey(searchKey){
const collectionName = ' MyCol | ection';

/1 open the collection in preparation of a docunent |ookup
const col = soda.openCol | ection(collectionNane);

if (col === null){

throw new Error (" ${col | ecti onNane} does not exist’);
}
try{

/1 performa |ookup of a docunment with the key provided as a
/1 parameter to this function. Keys are like primry keys,
/1 the | ookup therefore can only return 1 document max
const doc = col . find()
. key(sear chKey)
. getOne();
consol e.l og("
docurment found for key ${searchKey}
contents: ${doc.getContentAsString()}"
);
} catch(err){
t hrow new Error (
“error retrieving document with key ${searchkey} (${err})"

K

@ Note

Keys need to be enclosed in quotation marks even if they should be in numeric format.

In case the search for a given key fails, the database throws an ORA-01403 (no data found)
exception. It is good practice to handle exceptions properly. In this example, the caller of the
function has the responsibility to ensure the error is trapped and dealt with according to the
industry's best-known methods.

Example 8-10 Looking up Documents Using Multiple Keys

This example uses the methods find(), keys(), get Cursor (), and get Next () to search for
multiple keys provided in an array.

See Example 8-8 for details about how to create enpl oyeesCol | ecti on, used in this example.

export function findDocByKeys(searchKeys){

i f(!Array.isArray(searchKeys)){
throw new Error (' pl ease provide an array of search keys');

}

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 17 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

/1 open a collection in preparation of a document | ookup
const col = soda.openCol | ection(' enpl oyeesCollection');
if (col === null){

throw new Error (' enpl oyeesCol | ecti on does not exist');

}

try{
/1 performa |ookup of a set of documents using

/1 the "keys" array provided
const docCursor =

col . find()
. keys(sear chKeys)
. getCursor();
et doc

whi | e((doc = docCursor. getNext())){

consol e. l og("
docunment found for key ${doc. key}
contents: ${doc.getContentAsString()}"
);
}

docCursor. cl ose();
} catch(err){
Il there is no error thrown if one/all of the keys aren't found
[l this error handler is generic
t hrow new Error (
“error retrieving documents with keys ${searchKeys} (${err})’

)

Rather than failing with an error, the fi nd() operation simply doesn't return any data for a key
not found in a collection. If none of the keys are found, nothing is returned.

Example 8-11 Using a QBE to Filter Documents in a Collection

This example uses filter() to locate documents in a collection. The nonterminal
SodaQperation.filter() method provides a powerful way to filter JSON documents in a
collection, allowing for complex document queries and ordering of JSON documents. Filter
specifications can include comparisons, regular expressions, logical and spatial operators,
among others.

The search expression defined in fil t er Condi ti on matches all employees with an employee
ID greater than 110 working in department 30.

See Example 8-8 for details about how to create enpl oyeesCol | ecti on, used in this example.

export function findDocByFiltering(){

/1 open a collection in preparation of a document
/1 1ookup. This particular collection contains all the
/1 rows fromthe HR enpl oyees table converted to SODA
/1 documents.
const col = soda.openCol | ection(' enpl oyeesCol | ection');
if(col === null){

throw new Error(enpl oyeesCol | ecti on does not exist’);

}

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 18 of 30

ORACLE

}

/
/

Chapter 8
Using SODA for In-Database JavaScript

/ find all enployees with an enployee id > 100 and
/ last name beginning with M

const filterCondition = {

t

}
}

} .

ll$andll: [
{ "lastName": { "Supper": { "$startsWth": "M } } },
{ " id": { "$gt": 100 } }

]

1

ry{

/1 performthe | ookup operation using the QBE defined earlier
const docCursor = col. find()
.Filter(filterCondition)
. getCursor();
I et doc;
while ((doc = docCursor. getNext())){
consol e. l og("

docunment found matching the search criteria

- key: ${doc. key}
- id ${doc. get Content (). id}
- name; ${doc. get Content (). | ast Nane}"

)
}

docCursor. cl ose();
catch(err){
throw new Error(error |ooking up docurments using a QBE: ${err}’);

@® See Also

» Oracle Al Database Introduction to Simple Oracle Document Access (SODA) for
an introduction to SODA filter specifications

» Oracle Al Database Introduction to Simple Oracle Document Access (SODA) for
reference information about SODA filter specifications

Example 8-12 Using skip() and limit() in a Pagination Query

If the number of rows becomes too large, you may choose to paginate and or limit the number
of documents returned. This example demonstrates using ski p() and linit() in this type of
circumstance.

See Example 8-8 for details about how to create enpl oyeesCol | ecti on, used in this example.

export function paginati onExanpl e(){

/1 open a collection in preparation of a document
/1 1ookup. This particular collection contains all the
/1 rows fromthe HR enpl oyees table converted to SODA

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 19 of 30

ORACLE Chapter 8
Using SODA for In-Database JavaScript

/1 documents.
const col = soda.openCol | ection(' enpl oyeesCollection');
if(col === null){
throw new Error ('enpl oyeesCollection does not exist, aborting');

}

/1 find all enployees with an enployee id > 100 and
/1 last name beginning with E
const filterCondition = {
"$and": [
{ "lastNanme": { "Supper": { "S$startsWth": "M } } },
{ "_id": { "$gt": 100 } }
]
b

try{

[l performthe |ookup operation using the QBE, skipping the first
/15 docurments and linmiting the result set to 10 docunents
const docCursor =
col . Find()
.Filter(filterCondition)
. skip(5)
. limit(10)
. getCursor();
I et doc;
while ((doc = docCursor. getNext())){
consol e. l og("
docunment found matching the search criteria
- key: ${doc. key}
- enpl oyee id: ${doc. get Content () . enpl oyeel d}
);
}

docCursor. cl ose();
} catch(err){
t hrow new Error (
“error |ooking up docunents by QBE (${err})’
);

Example 8-13 Specifying Document Versions

This example uses the nonterminal ver si on() method to specify a particular document
version. This is useful for implementing optimistic locking, when used with the terminal
methods for write operations.

See Example 8-8 for details about how to create enpl oyeesCol | ecti on, used in this example.

export function versioni ngexanpl e(searchKey, version){

/1 open a collection in preparation of a document
/1 1ookup. This particular collection contains all the
/1 rows fromthe HR enpl oyees table converted to SODA

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 20 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

/1 documents.
const col = soda.openCol | ection("enpl oyeesCol | ection");

try{
/1 performa |ookup of a document using the provided key and version
const doc = col
. Find()
. key(sear chKey)
. version(version)
. getOne();
consol e. |l og("
docunent found for key ${doc. key}
contents: ${doc.getContentAsString()}"
);
} catch(err){
t hrow new Error (
“${err} during | ookup. Key: ${searchKey}, version: ${version}"

)i

If SODA cannot find the document matching the key and version tag, an ORA-01403: no data
f ound error is thrown.

Example 8-14 Counting the Number of Documents Found

This example shows how to count the number of documents found in a collection using the
find(),filter(), and count() methods. Thefilter() expression limits the result to all
employees working in department 30.

See Example 8-8 for details about how to create enpl oyeesCol | ecti on, used in this example.

export function countingExanpl e(){

/1 open a collection in preparation of a document

/1 1ookup. This particular collection contains all the
/1 rows fromthe HR enpl oyees table converted to SODA

/1 documents.

const col = soda.openCol | ection("enpl oyeesCol | ection");

if(col === null){

throw new Error (' enpl oyeesCol | ecti on does not exist');
}
try{

Il performa |ookup operation identifying all enployees worKking

/1 in department 30, limting the result to headers only

const FilterCondition = {"departnentld": 30};

const numbDocs = col . find()
.Filter(filterCondition)
.count();

consol e.l og("there are ${nunDocs} documents matching the filter’);

} catch(err){
t hrow new Error (
"No docurent found in 'enployeesCol |l ection' matching the filter®

)

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 21 of 30

ORACLE Chapter 8
Using SODA for In-Database JavaScript

Replacing Documents in a Collection with SODA for In-Database JavaScript

To replace the content of one document in a collection with the content of another, you start by
looking up the document to be modified using its key. Because SodaQper at i on. key() is a
nonterminal operation, the easiest way to replace the contents is to chain

SodaQper ati on. key() to SodaCper ati on.repl aceOne() or

SodaQper ati on. repl aceOneAndGet () .

SodaQper ati on. repl aceOne() merely replaces the document, whereas
SodaQper ati on. repl aceOneAndCet () replaces it and provides the resulting new document to
the caller.

The difference between SodaCper ati on. repl ace() and SodaCper ati on. save() is that the
latter performs an insert in case the key doesn't already exist in the collection. The replace
operation requires an existing document to be found by the lookup via the

SodaQper at i on. key() method.

@® Note

Some version-generation methods generate hash values of the document content. In
such a case, if the document content does not change then neither does the version.

Example 8-15 Replacing a Document in a Collection and Returning the Result
Document

This example shows how to replace a document in a collection, returning a reference to the
changed document. Let's assume that employee 206 has been given a raise of 100 monetary
units. Using the SODA API you can update the salary as follows:

export function replaceExanpl e(){

/1 open enpl oyeesCol | ection in preparation of the update
const col = soda.openCol | ection(' enpl oyeesCol | ection');

if (col === null){

throw new Error ("' enpl oyeesCol | ection does not exist");
}
try{

/1 1ook up enpl oyeeld 206 using a QBE and get the docunent.
/1 Since the docunments are inserted into the collection based
/1 on the HR enpl oyees table, it is certain that there is at
/1 nost 1 document with enployeeld 206
const enpl oyeeDoc = col

Cfind()

gilter({"_id": 206})
).

.getne();

/1 get the docunent's actual contents/payload
enmpl oyee = enpl oyeeDoc. get Content () ;

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 22 of 30

ORACLE

}
}

Chapter 8
Using SODA for In-Database JavaScript

[l currently it is not possible to include the _id together with

/1 the replacement payload. This means existing _id nust be deleted.
/1 The document, once replaced in the collection, will have its

/1 _idinjected fromthe target docunent

del ete enpl oyee i d;

/'l increase the salary
enpl oyee. sal ary += 100;

/1 save the document back to the collection. Note that you need
/1 to provide the docunent's key rather than a QBE or el se an
/1 ORA-40734: key for the docunent to replace nmust be specified
/1 using the key attribute error will be thrown
const resultDoc = col

. Find()

. key(enpl oyeeDoc. key)

. replaceOneAndGet(enpl oyee) ;

/1 print some nmetadata (note that content is not returned for
/'l performance reasons)

consol e. | og(" Docunent updated successful ly;

- key: ${resul t Doc. key}

- version: ${resul t Doc. version}");

catch(err){
consol e.l og("error modifying enpl oyee 206's salary: ${err}’);

See Example 8-8 for details about how to create enpl oyeesCol | ecti on, used in this example.

@® Note

Trying to read the changed contents will result in an error as the actual document's
contents aren't returned, for performance reasons.

Removing Documents from a Collection with SODA for In-Database

JavaScript

Removing documents from a collection is similar to replacing. The first step is to perform a
lookup operation, usually based on the document's key or by using a search expression in
SodaQperation.filter(). The call to SodaQperation. remve() is a terminal operation, in
other words the last operation in the chain.

Example 8-16 Removing a Document from a Collection Using a Document Key
This example removes the document whose document key is " 100" .

export function remveByKey(searchKey){

/1 open MyCol | ection

const col = soda. openCol | ection("MCollection");
if(col === null){

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 23 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

throw new Error ("' MyCol | ection' does not exist");

}

/1 performa |ookup of the document about to be renoved
/1 and ultimately renove it
const result = col
. Find()
. key('sear chKey)
. remove();
if(result.count === 0){
t hrow new Error(
“failed to delete a docunment with key ${searchKey}"
);
}
}

Example 8-17 Removing JSON Documents from a Collection Using a Filter

This example uses a filter to remove the JSON documents whose department _i d is 70. It then
prints the number of documents removed.

export function remveByFilter(){

/1 open the collection
const col = soda. openCol | ection("MCol |l ection");
if(col === null){

throw new Error ("' MyCol | ection' does not exist");

}

/1 performa |ookup based on a filter expression and renove
/1 the docunments matching the filter
const result = col

. Find()

Filter({"_id": 100})

. remove();

consol e.l og(${result.count} documents deleted);

Indexing the Documents in a Collection with SODA for In-Database

JavaScript

Indexes can speed up data access, regardless of whether you use the NoSQL style SODA API
or a relational approach. You index documents in a SODA collection using

SodaCol | ection. creat el ndex() . Its | ndexSpec parameter is a textual JSON index
specification.

Existing indexes can be dropped using SodaCol | ecti on. dropl ndex().

A JSON search index is used for full-text and ad hoc structural queries, and for persistent
recording and automatic updating of JSON data-guide information.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 24 of 30

ORACLE Chapter 8
Using SODA for In-Database JavaScript

@ See Also

* Oracle Al Database Introduction to Simple Oracle Document Access (SODA) for
an overview of using SODA indexing

* Oracle Al Database Introduction to Simple Oracle Document Access (SODA) for
information about SODA index specifications

* Oracle Al Database JSON Developer’s Guide for information about JSON search
indexes

* Oracle Al Database JSON Developer’s Guide for information about persistent
data-guide information as part of a JSON search index

Example 8-18 Creating a B-Tree Index for a JSON Field with SODA for In-Database
JavaScript

This example creates a B-tree non-unique index for numeric field depart ment _i d of the JSON
documents in collection enpl oyeesCol | ecti on (created in Example 8-8).

export function createBTreel ndex(){

/1 open the collection

const col = soda.openCol | ection("' enpl oyeesCol |l ection');

if(col === null){
throw new Error(

enpl oyeesCol | ection' does not exist");

}

/1 define the index...
const indexSpec = {
"name": " DEPARTMENTS | DX",
"fields": [
{
"path": "departmentld",
"datatype": "number",

"order": "asc
}
]
b
/l... and create it
try{

col . createlndex(i ndexSpec);
} catch(err){
throw new Error(
“could not create the index: ${err}’

)

Example 8-19 Creating a JSON Search Index with SODA for In-Database JavaScript

This example shows how to create a JSON search index for indexing the documents in
collection enpl oyeesCol | ecti on (created in Example 8-8). It can be used for ad hoc queries
and full-text search (queries using QBE operator $cont ai ns). It automatically accumulates and

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 25 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

updates data-guide information about your JSON documents (aggregate structural and type
information). The index specification has only field name (no field fields unlike the B-tree index

in Example 8-18).
export function createSearchlndex(){

/1 open the collection

const col = soda.openCol | ection("enpl oyeesCol | ection");

if(col === null){
throw new Error(

}

enmpl oyeesCol | ection' does not exist");

/1 define the index properties...

cost indexSpec = {
"nane": "SEARCH AND DATA GUI DE_I DX",
"dat agui de": "on",
"search_on": "text_val ue"

}

/l...and create it
try{
col . createlndex(i ndexSpec);
} catch(err){
t hrow new Error (
“could not create the search and Data Cuide index: ${err}’

)

If you only wanted to speed up ad hoc (search) indexing, you should specify a value of "off" for
field dat agui de. The dat agui de indexing feature can be turned off in the same way if it is not
required.

Example 8-20 Dropping an Index with SODA for In-Database JavaScript

This example shows how you can drop an existing index on a collection using
SodaCol | ecti on. dropl ndex() and the f or ce option.

See Example 8-8 for details about how to create enpl oyeesCol | ecti on, used in this example.

export function dropl ndex(i ndexNane) {

/1 open the collection

const col = soda. openCol | ection("enpl oyeesCol | ection");

if(col === null){
throw new Error (

}

enpl oyeesCol | ection' does not exist");

/1 drop the index
const result = col.droplndex(indexNane, {"force": true});
if(!result.dropped){
throw "Coul d not drop SODA i ndex '${indexNanme}'";
}
}

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 26 of 30

ORACLE

Chapter 8
Using SODA for In-Database JavaScript

SodaCol | ecti on. dropl ndex() returns a result object containing a single field: dr opped. Its
value is t r ue if the index has been dropped, otherwise its value is f al se. The method
succeeds either way.

An optional parameter object can be supplied to the method. Setting f or ce to t r ue forces
dropping of a JSON index if the underlying Oracle Database domain index does not permit
normal dropping.

Getting a Data Guide for a Collection with SODA for In-Database JavaScript

A data guide is a summary of the structural and type information contained in a set of JSON
documents. It records metadata about the fields used in those documents. They provide great
insights into JISON documents and are invaluable for getting an overview of a data set.

You can create a data guide using SodaCol | ecti on. get Dat aGui de() . To get a data guide in
SODA, the collection must be JSON-only and have a JSON search index where the

"dat agui de" option is "on". Data guides are returned from sodaCol | ecti on. get Dat aGui de()
as JSON content in a SodaDocunent . The data guide is inferred from the collection as it
currently is. As a collection grows and documents change, a new data guide is returned each
subsequent time get Dat aCui de() is called.

Example 8-21 Generating a Data Guide for a Collection

This example gets a data guide for the collection enpl oyeesCol | ecti on (created in
Example 8-8) using the method get Dat aGui de() and then prints the contents as a string using
the method get Cont ent AsString() .

export function createDataGuide(){

/1 open the collection

const col = soda.openCol | ection(' enpl oyeesCol |l ection');

if(col === null){
throw new Error (

}

/1 generate a Data Guide (requires the Data Quide index)
const doc = col . getDataGuide();
consol e. | og(doc. getContentAsString());

enpl oyeesCol | ection' does not exist");

The data guide can provide interesting insights into a collection, including all the fields and
their data types. Although the Data Guide for enpl oyeesCol | ecti on may already be familiar to
readers of this chapter, unknown JSON documents can be analyzed conveniently this way. The
previous code block prints the following Data Guide to the screen:

{
"type": "object",
"o:length": 1,
"properties": {
"oid" |
"type": "id",
"o:length": 24,
"o:preferred_col um_nane": "DATAS id"
¥
"email": {
"type": "string",

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 27 of 30

ORACLE

}
}

"o:length": 16,

"o:preferred_col um_nane":

}1

"jobld": {
"type": "string",
"o:length": 16,

"o:preferred_col um_nane":

}1

"salary": {
"type": "number",
"o:length": 8,

"o:preferred_col um_nane":

}1

"hireDate": {
"type": "string",
"o:length": 32,

"o:preferred_col um_nane":

}1

"l ast Nane": {
"type": "string",
"o:length": 16,

"o:preferred_col um_nane":

}1

"firstName": {
"type": "string",
"o:length": 16,

"o:preferred_col um_nane":

}

nagerld": {
"type": "string",
"o:length": 4,

"o:preferred_col um_nane":

}1
"enpl oyeel d": {
"type": "number",

"o:length": 4,

"o:preferred_col um_nane":

}1
"phoneNunber": {

"type": "string",
"o:length": 16,

"o:preferred_col um_nane":

}

epartnentld": {
"type": "string",
"o:length": 4,

"o:preferred_col um_nane":

I3

"comi ssi onPct": {
"type": "string",
"o:length": 32,

"o:preferred_col um_nane":

}

JavaScript Developer's Guide

G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

Chapter 8

Using SODA for In-Database JavaScript

" DATA$enai | "

" DATASj obl d"

"DATAS$sal ary"

" DATAS$hI r eDat e"

" DATAS$I ast Nane"

" DATAS$f i r st Nang"

" DATA$manager | d"

" DATASenpl oyeel d"

" DATA$phoneNunber "

" DATASdepart ment | d"

" DATA$commi ssi onPct "

October 13, 2025
Page 28 of 30

ORACLE Chapter 8
Using SODA for In-Database JavaScript

Handling Transactions with SODA for In-Database JavaScript

Unlike the client-side JavaScript SQL driver, the MLE JavaScript SQL driver does not provide
an aut oCommi t feature. You need to commit or roll your transactions back, either in the PL/SQL
layer in case of module calls, or directly in the JavaScript code by calling

connection. conmt () orconnection.rollback().

/\ Caution

If any uncommitted operation raises an error, and you do not explicitly roll back the
transaction, the incomplete transaction might leave the relevant data in an inconsistent
state (uncommitted, partial results).

Creating Call Specifications Involving the SODA API

Earlier in this chapter, in the section Getting Started with SODA for In-Database JavaScript, an
example showing how to invoke the MLE SODA API using an inline call specification is
included. The following short example demonstrates how to use SODA in MLE modules.

Example 8-22 Use SODA for In-Database JavaScript
See Example 8-8 for details about how to create enpl oyeesCol | ecti on, used in this example.

CREATE OR REPLACE MLE MODULE end_to_end deno
LANGUAGE JAVASCRI PT AS

/**

* Exanple for a private function used to open and return a SodaCol | ection
*

* @aram{string} collectionNarme the nane of the collection to open

* @eturns {SodaCol I ection} the collection handle

* @hrows Error if the collection cannot be opened

*/

function openAndCheckCol | ection(col | ecti onNane){

const col = soda.openCol | ection(collectionNane);

if(col === null){
throw new Error(“invalid collection nane: ${collectionNane}");
}
return col;
}
/**
* Top-level (public) function denonstrating howto use a QBE to
* filter docunents in a collection.
*
* @aram {nunber} departnentid the nuneric departnent ID
* @eturns {nunber} the nunber of enployees found in departnentld
*/

export function sinpl eSodaDenmo(department!|d){

i f(departnentld === undefined || isNaN(departnentld)){

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 29 of 30

ORACLE Chapter 8
Using SODA for In-Database JavaScript

throw new Error (' pl ease provide a valid nuneric departnent 1D);

}

const col = openAndCheckCol I ection(' enpl oyeesCol | ection');

const numDocs = col . find()
filter({"departnentld": departnentld})
.count ();

return nunDocs;

After the module has been created you need to create the call specification. The module
features a single public function, so a standalone function should suffice:

CREATE OR REPLACE FUNCTI ON si npl e_soda_denp(
"departnent|d" NUMBER

) RETURN NUMBER

AUTHI D current _user

AS MLE MODULE end_to_end_deno

SI GNATURE ' si npl eSodaDeno' ;

/

Now everything is in place to call the function:

sel ect sinple_soda_dem(30);

Result:

SI MPLE_SODA_DEMO(30)

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 30 of 30

Post-Execution Debugging of MLE JavaScript
Modules

The ability to easily debug code is central to a good developer experience. MLE provides the
option to perform post-execution debugging on your JavaScript source code in addition to
standard print debugging.

Post-execution debugging allows efficient collection of runtime state during program execution.
Once execution of the code has completed, the collected data can be used to analyze program
behavior and discover bugs that require attention. To perform post-execution debugging, you
provide a debug specification that identifies the debugging information to be collected. A debug
specification is a collection of debugpoints, each of which specifies a location in the source
code where debug information should be collected, as well as what information to collect.
Debugpoints can be conditional or unconditional.

@® Note

Post-execution debugging can only be applied to JavaScript code that is deployed as
MLE modules. This debugging feature cannot currently be used when deploying code
via dynamic execution.

@® Note

MLE built-in modules such as the MLE JavaScript driver and MLE bindings cannot be
debugged via post-execution debugging. An attempt to debug a built-in module will
cause an ORA- 04162 error to be raised.

For more information about MLE built-in modules, see Server-Side JavaScript API
Documentation.

Module debugpoints apply to all executions of the module code, including via MLE call
specifications, as well as via module import, whether from a dynamic MLE source or from
another MLE module. Once enabled, a debug specification is active either until it is disabled or
replaced by a new debug specification, or until the session ends.

Topics

» Specifying Debugpoints
Debugpoints are specified using a JSON document encoded in the database character set.

* Managing Debugpoints
Debugging can be enabled in a session by calling the procedure
dbms_n e. enabl e_debuggi ng with a debug specification.

e Analyzing Debug Output
Output from debugpoints is stored in the Java Profiler Heap Dump version 1.0.2 format.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 15

https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules

ORACLE Chapter 9
Specifying Debugpoints

e Error Handling in MLE
Errors encountered during the execution of MLE JavaScript code are reported as database
errors.

Specifying Debugpoints
Debugpoints are specified using a JSON document encoded in the database character set.

Each debugpoint has the following elements:
* Alocation in the source code where the information is collected
* An action that describes what information to collect

e An optional condition that controls when debug information should be collected

Example 9-1 JSON Template for Specifying Debugpoints

{

at: <l ocation-spec>,
action: [<action-spec> ...],
[condition: <condition-spec>]

}

» Debugpoint Locations
Debugpoint locations are specified via the line number in the source code of the
application being debugged.

« Debugpoint Actions
MLE post-execution debugging supports two kinds of actions: wat ch and snapshot .

» Debugpoint Conditions
Both wat ch and snapshot can be controlled via conditions specified in the condi ti on field.

Debugpoint Locations

Debugpoint locations are specified via the line number in the source code of the application
being debugged.

The name of the MLE module to be debugged is specified via the nane field and the location
within the module where debug information is to be collected is specified via the | i ne field.
Example 9-4 provides an example JSON document with sample values.

Debugpoint Actions

MLE post-execution debugging supports two kinds of actions: wat ch and snapshot .

The wat ch action allows you to log the value of the variable named in the i d field. The optional
dept h field provides you with control over the depth to which values of composite type
variables are logged.

The snapshot action logs the stack trace at the point the snapshot action is invoked, along with
the values of the local variables in each stack frame. A higher cost of performance is required
by snapshot compared with wat ch but it provides a greater depth of information. As with the
wat ch action, the optional dept h field can be used to control the depth of logging for each
variable. The dept h parameter for the snapshot action applies to all variables captured by the
action.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 15

ORACLE

Chapter 9
Specifying Debugpoints

More precisely, the dept h parameter controls how deeply you traverse the object tree in order
to capture the value of a variable. For example, consider the following variable with nested
objects:

let x = {
a {

val . 42
¥
b: 3.14
¥

If the dept h field is defined as 2, the object tree would be traversed and the value of the nested
object a would be captured, which in this case is 42. If dept h is specified as 1, the traversal
would end at the first level, which would produce the following results:

x ={
"a'r |
"<unreachabl e>": true
b
"b": 3.14
}

The franesLi m t field provides you with control over the number of stack frames to be logged.
The default is to log all stack frames. f ranesLi nit only applies to snapshot . Take, for example,
a call hierarchy where a() calls b() and b() calls c() . If you take a snapshotin c(),

framesLi nmi t =1 would only capture the bottom-most stack frame (in this case, c()),

framesLi m t =2 would capture the bottom two (in this case, ¢() and b()), and so on.

Example 9-2 JSON Template for Specifying Watch Action

To watch a variable, t ype must be set to wat ch. The i d parameter is used to identify the
variable or variables to watch and must be provided as either a string or an array of strings.
The dept h parameter is optional and is defined by a number.

actions: |
{ type: "watch",
id <string[]> | <string>,
[depth : <nunber>] }

Example 9-3 JSON Template for Specifying Snapshot Action

To use the snapshot action, the t ype parameter must be set to snapshot . The framesLi m t
and dept h fields are optionally provided as numbers.

actions: |
{ type: "snapshot",
[framesLimit: <number>],
[depth : <nunber>] }

Debugpoint Conditions

Both wat ch and snapshot can be controlled via conditions specified in the condi ti on field.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 15

ORACLE

Chapter 9
Managing Debugpoints

The expression is evaluated in the context of the application at the location specified in the
debugpoint and the associated action is triggered only if the expression evaluates to t r ue.

There are no restrictions on the type of expression that can be included in the condition field.
You must ensure that evaluating any expressions does not alter the behavior of the program
being debugged.

Example 9-4 Watching a Variable in an MLE Module

The following code specifies a debugpoint for a module, nyMdul el, with two associated
actions. A wat ch action for variable x with the logging depth restricted to 3, and a wat ch action
for variable y with no restrictions on logging depth. The debugpoint also has an associated
condi ti on so that the debugpoint actions only trigger if the condition (x. i d>100) is met.

{
"at" o {
“name" : "myMdul el",
"l'ine" : 314
}l
"actions" : |
{ "type": "watch", "id" : "x", "depth" : 3},
{ "type": "watch", "id" : "y" }
]l
"condition" : "x.id > 100"
}

Managing Debugpoints

Debugging can be enabled in a session by calling the procedure dbns_ni e. enabl e_debuggi ng
with a debug specification.

In addition to an array of debugpoints, specified via the debugpoi nt s field, a debug
specification includes a version identifier, specified via the ver si on field. The ver si on field
must be set to the value " 1. 0". Debug specifications can include debugpoints for multiple MLE
modules.

@® Note

Debug specifications require module names to be provided in the same case that they
are stored in the dictionary. By default, module names are stored in uppercase unless
the name is enclosed in double-quotation marks during module creation.

The procedure dbns_nl e. enabl e_debuggi ng also accepts a BLOB si nk to which the debug
output is written.

After the call to dbns_nl e. enabl e_debuggi ng, all debugpoints included in the debug
specification are active. Every time one of the debugpoints is hit, the associated debug
information is logged. The debug information is written out to the BLOB si nk when control
passes from MLE back to PL/SQL at the latest but could be written out in part or in full before
this point:

e For dynamic MLE evaluations, control passes from MLE to PL/SQL when the call to
dbns_nl e. eval returns.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 4 of 15

ORACLE Chapter 9
Managing Debugpoints

» For MLE call specifications, control passes from MLE to PL/SQL when the call to the MLE
call specification returns.

The installed debugpoints are active for all executions of the MLE modules regardless of which
user's privileges the MLE code executes with.

Calling dbns_ni e. enabl e_debuggi ng again in the same session replaces the existing set of
debugpoints. Debugpoints remain active until either the session ends or the user disables
debugging explicitly by calling dbns_mn e. di sabl e_debuggi ng.

Example 9-5 Enabling Debugging of an MLE Module

The debug specification in this example references the module count _nodul e, created at the
beginning of Example 6-4, and module i n_out _exanpl e_nod, created in Example 6-6.

DECLARE
debugspec j son;
si nk bl ob;
BEG N
debugspec: = json('

"version": "1.0",
"debugpoi nts": |
{

"at": {
"name": " COUNT_MODULE",
"line": 7

B

"actions": [

{ "type": "watch", "id": "myCounter", "depth": 1}
1,

"condition": "myCounter > Q"

1
{
"at": {
"nanme": "I N_OUT_EXAMPLE MOD',
"line": 16
b
"actions": [
{ "type": "snapshot" }
1,
}
]
}
Bk

dbns_| ob. creat et enporary(sink, false);
dbns_nl e. enable_debugging(debugspec, sink);
--run application to debug

END;

/

* Debugging Security Considerations
Users must either own the MLE modules being debugged or have debugging privileges to
it. This is necessary because the debugging feature allows you to observe runtime state of
the MLE code.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 5 of 15

ORACLE

Chapter 9
Analyzing Debug Output

° COLLECT DEBUG INFO Privilege for MLE Modules
The COLLECT DEBUG | NFO object privilege for MLE modules controls whether a user who
does not own a module, but has EXECUTE privilege, can still perform debugging on said
module.

Debugging Security Considerations

Users must either own the MLE modules being debugged or have debugging privileges to it.
This is necessary because the debugging feature allows you to observe runtime state of the
MLE code.

Additionally, because the condi ti on field allows you to execute arbitrary code, this could
potentially be used to alter the runtime behavior of the code being debugged. Concretely, you
can use post-execution debugging on an MLE module if,

* You own the MLE module, or
* You have the COLLECT DEBUG | NFO object privilege on the MLE module.

Privileges are checked every time code in an MLE module with one or more active
debugpoints is executed. If you attempt to install debugpoints without the necessary privileges,
an ORA- 04164 error will be raised.

If an ORA- 04164 is encountered, either

e The user who installed the debugpoints must be granted the COLLECT DEBUG | NFO privilege
on the module in question, or

e The debugpoints for the module must be disabled to continue executing code in the
module in that session.

COLLECT DEBUG INFO Privilege for MLE Modules

The COLLECT DEBUG | NFO object privilege for MLE modules controls whether a user who does
not own a module, but has EXECUTE privilege, can still perform debugging on said module.

For instance, consider an MLE module, Modul eA, owned by user W User Wcreates an invoker's
rights call specification for a function in Modul eA and grants EXECUTE on this call specification
on user V. For user V to have the ability to debug the code in Modul eA when calling this call
specification, user Wmust also grant them the COLLECT DEBUG | NFO privilege on Mdul eA.

User Wcould use the following statement to grant user V the privilege to debug Mdul eA:

GRANT COLLECT DEBUG | NFO ON Modul eA TO V,

The COLLECT DEBUG | NFO privilege can subsequently be revoked if needed:

REVOKE COLLECT DEBUG | NFO ON Modul eA FROM V,

Analyzing Debug Output

Output from debugpoints is stored in the Java Profiler Heap Dump version 1.0.2 format.

Every time a debugpoint is hit during execution, the debug information is saved as a heap
dump segment. Once execution finishes, you have two options to analyze the debug output:

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 6 of 15

ORACLE

Chapter 9
Analyzing Debug Output

« Use the textual representation of the debug information obtained via the
dbns_n e. parse_debug_out put function.

e Export the BLOB si nk containing the debug output to an hpr of file and use any of a
number of existing developer tools to analyze the information.

Topics

e Textual Representation of Debug Output
The function dbrs_ni e. par se_debug_out put takes as input a BLOB containing the debug
information in the heap dump format and returns a JSON representation of the debug
information.

* Analyzing Debug Output Using Developer Tools
As an alternative to analyzing the textual representation of debug output, you also have the
option to utilize tools such as JDeveloper, NetBeans, and Oracle Database Actions.

Textual Representation of Debug Output

The function dbrs_ni e. par se_debug_out put takes as input a BLOB containing the debug
information in the heap dump format and returns a JSON representation of the debug
information.

The output of dbms_nl e. par se_debug_out put is an array of DebugPoi nt Dat a objects.

DebugPoi nt Dat a represents the debug information logged every time a debugpoint is hit and
comprises of an array of Fr ame objects. Each Frame includes the location in source code where
the information was collected (the at field) and the names and values of local variables logged
at that location (the val ues field). Note that the keys of Frane. val ues are the names of the
variables logged and the values are the values of those variables.

Example 9-6 demonstrates how you can specify a debugpoint in a sample JavaScript program
and then use the function dbns_mi e. par se_debug_out put to produce a textual representation
of the debug output.

Example 9-6 Obtain Textual Representation of Debug Output

The debugging shown later in this example is performed on the JavaScript function fi b defined
in the module fi bunacci _nodul e:

CREATE OR REPLACE MLE MODULE fi bunacci _nmodul e
LANGUAGE JAVASCRI PT AS
export function fib(n) {

if (n<0) {
throw Error("must provide a positive nunber to fib()");
}
if (n<2) {
return n;
} else {
return fib(n-1) + fib(n-2);
}

}
/

CREATE OR REPLACE FUNCTI ON fib(p_val ue number)
RETURN NUMBER
AS MLE MODULE fi bunacci _modul e

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 7 of 15

ORACLE Chapter 9
Analyzing Debug Output

SI GNATURE ' fi b(nunber)';
/

A debugpoint is placed at line 9 and then the DBMS_M_E. PARSE_DEBUG_QUTPUT function is used
to view the debug information:

SET SERVEROQUTPUT ON;
DECLARE

| _debugspec JSON;

| _debugsi nk BLOB;

| _debugi nfo JSON;

| val ue NUVBER;

BEG N
| _debugspec := JSON ('
{
version : "1.0",
debugpoints : [
{
"at" : {
"name" : "FI BUNACCI MODULE",
"l'ine" : 9
¥
"actions" @ [
{ "type" : "watch", "id" : "n" }
1
h
]
1
)i

- create a tenporary lob to store the raw
- debug out put
DBVS_LOB. CREATETEMPORARY(| _debugsi nk, false);

DBVS_MLE. ENABLE_DEBUGAE NG | _debugspec, | _debugsink);

- run the application code
| _value := fib(4);

DBVS_MLE. DI SABLE_DEBUGGE NG

- retrieve a textual representation of the debug
- out put
| _debuginfo := DBMS_MLE.PARSE_DEBUG_OUTPUT(| _debugsink);
DBVS_QUTPUT. PUT_LI NE(
json_serialize(l_debuginfo pretty)
);
END;

Result:

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 8 of 15

ORACLE Chapter 9
Analyzing Debug Output

name": "USERL. FI BUNACCI _MODULE",

“line": 9
¥

"val ues": {
"n": 4

}

}
1,
[

{

"at": {
"nane": "USERL. FI BUNACCI MODULE",
“line": 9

¥

"val ues": {
"n": 3

}

}
1,
[

{

"at": {
"nane": "USERL. FI BUNACCI MODULE",
“line": 9

¥

"val ues": {
"n": 2

}

}
1,
[

{

"at": {
"nane": "USERL. FI BUNACCI MODULE",
“line": 9

¥

"val ues": {
"n": 2

}

}

]
]

Analyzing Debug Output Using Developer Tools

As an alternative to analyzing the textual representation of debug output, you also have the
option to utilize tools such as JDeveloper, NetBeans, and Oracle Database Actions.

Once execution has finished, you can use the tool of your choice to inspect the values of local
variables or to inspect the graph of variables at each point in time.

Integration with new tools can be developed as needed (e.g., Chrome Dev Tools) and Uls can
be designed that are tailored specifically to the MLE use case.

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 9 of 15

ORACLE

Chapter 9
Error Handling in MLE

@® Note

Oracle Database Actions supports MLE post-execution debugging starting with Oracle
Database 23ai, Release Update 23.1.2.

@ See Also

Using Oracle SQL Developer Web for more information about using Database Actions
with MLE

Error Handling in MLE

Errors encountered during the execution of MLE JavaScript code are reported as database
errors.

The database error raised depends on the type of error encountered. For example, syntax
errors raise ORA- 04160 while runtime errors (e.g., uncaught exceptions) raise ORA- 04161. The
error message for each database error provides a brief description of the error encountered.
Additionally, the DBM5S_M_E PL/SQL package provides procedures to query the MLE JavaScript
stack trace for the last error encountered in a dynamic MLE execution context or an MLE
module in the current session.

The same security checks are made when calling DBMS_M.E. get _ctx_error_stack() as when
calling DBMS_M.E. eval () . Thus, you cannot retrieve error stacks for MLE JavaScript code
executing in dynamic MLE execution contexts created by other users.

DBVS_MLE provides a similar function, DBMS_M.E. get _error_stack(), to access the MLE
JavaScript stack trace for application errors encountered during the execution of MLE
modules. The function takes the module name and optionally the environment name as
parameters, returning the stack trace for the most recent application error in a call specification
based on the given arguments. If the module name or environment name is not a valid
identifier, an ORA- 04170 error is raised.

With MLE modules, it is only possible to retrieve the error stack for the module contexts
associated with the calling user. This restriction avoids potentially leaking sensitive information
between users via the error stack. A natural consequence of this restriction is that you cannot
retrieve stack traces for errors encountered when executing definer's rights MLE call
specifications owned by other users.

Example 9-7 Throwing ORA-04161 Error and Querying the Stack Trace

Executing the following code will throw an ORA- 04161 error:

CREATE OR REPLACE MLE MODULE catch_and_print_error_stack
LANGUAGE JAVASCRI PT AS

export function f(){
90);
}

function g(){

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 10 of 15

ORACLE

Chapter 9
Error Handling in MLE

h();
}

function h(){
throw Error("An error occurred in h()");

}
/

CREATE OR REPLACE PROCEDURE not _getting_entire_error_stack
AS MLE MODULE catch_and_print_error_stack

SIGNATURE ' f()";

/

BEG N

not _getting_ entire_error_stack;
END;
/

Result:

BEG N

ERROR at line 1:

ORA-04161: Error: An error occurred in h()

ORA-04171: at h (USERL. CATCH NG_AND_PRI NTI NG_ERROR_STACK: 10: 11)
ORA- 06512: at "USERL. NOT_GETTI NG_THE_ENTI RE_ERROR_STACK", line 1
ORA-06512: at line 2

*/

You can query the stack trace for this error using the procedure DBMS_M.E. get _error_stack():

CREATE OR REPLACE PACKAGE get _entire_error_stack _pkg AS
PROCEDURE get _entire_error_stack;

END get _entire_error_stack pkg;
/

CREATE OR REPLACE PACKAGE BCODY get entire_error_stack pkg AS

PROCEDURE print_stack trace(p_frames IN DBVMS M.E. error _franes t) AS
BEG N
FORi in 1 .. p_franes.count LOOP
DBMS_QUTPUT. PUT_LINE(p_frames(i).func || "(' ||
p_frames(i).source || ':" || p_frames(i).line || ")");
END LOOP;
END print_stack_trace;

PROCEDURE do_t he_work
AS MLE MODULE catch_and _print_error_stack
SI GNATURE ' f()";

PROCEDURE get _entire_error_stack AS
| frames DBMS M.E.error_frames_t;
BEG N

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE Chapter 9
Error Handling in MLE

do_the_work;
EXCEPTI ON
WHEN OTHERS THEN
| frames := DBMS_MLE.get error_stack(
" CATCH_AND_PRI NT_ERROR STACK'
);
print_stack trace(l _franes);
raise;
END;
END get _entire_error_stack pkg;
/

BEG N

get _entire_error_stack pkg.get _entire_error_stack;
END;
/

The preceding code prints out the MLE JavaScript exception stack trace before raising the
original error:

h(USERL. CATCH_AND PRI NT_ERROR_STACK: 10)

g(USERL. CATCH_AND_PRI NT_ERROR_STACK: 6)

f (USERL. CATCH_AND_PRI NT_ERROR_STACK: 2)

BEG N

ERROR at line 1:

ORA-04161: Error: An error occurred in h()

ORA- 06512: at "USERL. GET_ENTI RE_ERROR_STACK PKG', line 25
ORA-04171: at h (USERL. CATCH AND_PRI NT_ERROR_STACK: 10: 11)
ORA- 06512: at "USERL. GET_ENTI RE_ERROR_STACK PKG', line 11
ORA- 06512: at "USERL. GET_ENTI RE_ERROR_STACK PKG', line 18
ORA-06512: at line 2

e Errors in Callouts
Database errors raised during callouts to SQL and PL/SQL via the MLE SQL driver are
automatically converted to JavaScript exceptions.

e Accessing stdout and stderr from JavaScript
MLE provides functionality to access data written to standard output and error streams
from JavaScript code.

Errors in Callouts

Database errors raised during callouts to SQL and PL/SQL via the MLE SQL driver are
automatically converted to JavaScript exceptions.

For most database errors, JavaScript code can catch and handle these exceptions as usual.
However, exceptions resulting from critical database errors cannot be caught. This includes:

* Internal database errors (ORA- 0600)

- Fatal database errors (ORA- 0603)

» Errors triggered due to resource limits being exceeded (ORA- 04036)
e User interrupts (ORA- 01013)

e System errors (ORA- 7445)

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 12 of 15

ORACLE

Chapter 9
Error Handling in MLE

Exceptions resulting from database errors that are either not caught or are re-signaled cause
the original database error to be raised in addition to an MLE runtime error (ORA- 04161). You
can retrieve the JavaScript stack trace for such exceptions using
DBMS_MLE. get _error_stack() just like with other runtime errors.

Accessing stdout and stderr from JavaScript

MLE provides functionality to access data written to standard output and error streams from
JavaScript code.

Within a database session, these streams can be controlled individually for each database
user, MLE module, and dynamic MLE context. In each case, a stream can be:

» Disabled,
e Redirected to DBMS_QUTPUT, or
e Redirected to a user provided CLOB

* Accessing stdout and stderr for MLE Modules
The DBMS_M.E PL/SQL package provides the procedures set _stdout () and set _stderr ()
to control the standard output and error streams for each MLE module context.

* Accessing stdout and stderr for Dynamic MLE
The procedures DBM5S_M.E. set _ctx_stdout () and DBVMS_M.E. set _ctx_stderr() are used
to redirect st dout and stderr for dynamic MLE contexts.

Accessing stdout and stderr for MLE Modules

The DBM5_M.E PL/SQL package provides the procedures set _stdout () and set _stderr() to
control the standard output and error streams for each MLE module context.

Alternatively, st dout can be redirected to DBMS_QUTPUT using the function
DBM5S_ML.E. set _stdout _to_dbms_out put (). The DBMS_M.E package provides an analogous
function fore redirection st derr: DBMS_M.E. set _stderr_to_dbns_out put ().

stdout and st derr can be disabled for a module at any time by calling
DBMS_MLE. di sabl e_stdout () and DBMS_M_E. di sabl e_stderr () respectively.

By default, st dout and st derr are redirected to DBVS_CUTPUT.

Note that the CURRENT USER from an MLE function exported by the given MLE module may
change depending on the CURRENT _USER when the function was called and whether the function
is invoker's rights or definer's rights. A call to DBMS_M.E. set _st dout () or

DBMS_M.E. set _stderr() by a database user, say user 1, only redirects the appropriate stream
when code in the MLE module executes with the privileges of user 1.

In other words, one database user cannot ordinarily control the behavior of st dout and st derr
for execution of an MLE module's code on behalf of another user.

All of these procedures take a module name and optionally an environment name as first and
second arguments. This identifies the execution context whose output should be redirected.
Omitting the environment name targets contexts using the base environment. Additionally,
set _stdout and set_st derr take a user-provided CLOB as the last argument, specifying
where the output should be written to.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE

Chapter 9
Error Handling in MLE

Example 9-8 Redirect stdout to CLOB and DBMS_OUTPUT for MLE Module

Consider the following JavaScript module:

CREATE OR REPLACE MLE MODULE hel | o_nod
LANGUAGE JAVASCRI PT AS
export function hello() {
console.log('Hello, Wrld fromME");

}

The following call specification makes the exported function hel | o() available for calling from
PL/SQL code.

CREATE OR REPLACE PROCEDURE MLE_HELLO PROC
AS MLE MCDULE hel | o_nmod SI GNATURE ' hel | o' ;
/

The code below redirects st dout for the module hel | o_nmd to a CLOB that can be examined
later:

SET SERVEROQUTPUT ON;

DECLARE
| _output buffer CLOB;

BEG N
-- create a tenporary LOB to hold the output
DBVS_LOB. CREATETEMPORARY(| _out put _buffer, false);

-- redirect stdout to a CLOB
DBVMS_MLE. SET_STDOUT(' HELLO MOD', | _out put_buffer);

-- run the code
M.E_HELLO PROC();

-- retrieve the output buffer
DBVS_QUTPUT. PUT_LINE(| _out put _buffer);
END;

Executing the above produces the following output:

Hello, World from M.E!

Alternatively, st dout can be redirected to DBM5_QUTPUT using the function
DBMS_MLE. SET_STDOUT_TO_DBMS_QUTPUT() :

SET SERVEROUTPUT ON;

BEG N
DBVS_MLE. SET_STDOUT_TO_DBMS_OUTPUT(' HELLO MOD') ;
M.E_HELLO PROC() ;

END;

/

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 14 of 15

ORACLE

Chapter 9
Error Handling in MLE

This produces the same output as before:

Hel 1o, World from M.E!

Accessing stdout and stderr for Dynamic MLE

The procedures DBMS_M.E. set _ctx_stdout () and DBMS_M.E. set _ctx_stderr () are used to
redirect st dout and st derr for dynamic MLE contexts.

The DBM5_M_E package similarly provides the procedures set _ctx_stdout _to_dbms_out put ()
and set _ctx_stderr_to_dbns_out put () to redirect st dout and st derr for dynamic MLE
contexts to DBMS_QUTPUT.

A call to one of these functions redirects the appropriate stream for all dynamic MLE code
executing within the context. However, any calls to MLE functions via the MLE SQL driver use
the redirection effect for the MLE module that implement the function.

Example 9-9 Redirect stdout to CLOB and DBMS_OUTPUT for Dynamic MLE

SET SERVEROQUTPUT ON;
DECLARE
| _ctx DBMS_M.E. context handle_t;
| _snippet CLOB;
| _output buffer CLOB;
BEG N
-- allocate the execution context and the output buffer
| ctx := DBMS_M.E. create _context();
DBVMS_LOB. CREATETEMPORARY(| _out put _buffer, false);

-- redirect stdout to a CLOB
DBMS_MLE. SET_CTX_STDOUT(I _ctx, | _output buffer);

-- a bit of JavaScript code printing to the console
| snippet := 'console.log("Hello, Wrld fromdynanmic ME")';

-- execute the code snippet
DBMS_M.E. eval (I _ctx, "JAVASCRIPT', | _snippet);

-- drop the execution context and print the output
DBMS_MLE. drop_context (I _ctx);

DBMS_QUTPUT. PUT_LINE(| _out put _buffer);
END;

This produces the following output:

Hel l o, World from dynam c ME!

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 15 of 15

MLE Security

MLE utilizes a number of methods to support good security practices. This includes enforcing
runtime state isolation, system and object privileges, and providing monitoring options.

Topics

e System and Object Privileges Required for Working with JavaScript in MLE
Depending on the project's requirements, different privileges can be granted to users and
or roles, allowing them to interact with JavaScript in the database.

e Security Considerations for MLE
Besides the use of account privileges, MLE employs several other methods to ensure a
high level of security.

e JavaScript Security Best Practices
Details concerning the best practices when using features of MLE with JavaScript are
described.

e MLE Security Examples
Example scenarios are used to demonstrate security features used by MLE. The examples
use a varying degree of separation between MLE modules, environments, and the
necessary grants to enable the utilized functionality.

System and Object Privileges Required for Working with
JavaScript in MLE

Depending on the project's requirements, different privileges can be granted to users and or
roles, allowing them to interact with JavaScript in the database.

Administrators should review application requirements carefully and only grant the minimum
number of privileges necessary to users. This is especially true for system privileges, which are
very powerful and should only be granted to trusted users.

MLE distinguishes between dynamic MLE execution based on DBM5S_M_E, which requires an
additional privilege to be granted, and MLE execution using MLE modules and environments,
which does not.

Creating stored code in JavaScript requires additional privileges to create JavaScript schema
objects in your own schema.

The most powerful privileges available in MLE allow super-users to create, alter, and drop MLE
schema objects in any schema, not just their own. As with all privileges in Oracle Database,
those with ANY in their name are most powerful and should only be granted to trusted users if
deemed absolutely necessary.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 20

ORACLE Chapter 10
System and Object Privileges Required for Working with JavaScript in MLE

@® Note

Obiject privileges on modules and environments do not grant access to an application,
for example, the combination of source code and user context defined by a call
specification (or through DBVS_M_E). This is achieved by granting access to the
procedure or function object of the call specification.

@ See Also

¢ Necessary Privileges for Creating MLE Modules and Environments in ANY
Schema for more about handling system privileges

e Oracle Al Database Security Guide for more information about privileges in the
Oracle Database

Topics

» Necessary Privileges for Dynamic MLE Execution

» Necessary Privileges for Using the NoSQL API

» Necessary Privileges for Creating MLE Schema Objects

» Necessary Privileges for Creating MLE Modules and Environments in ANY Schema

* Necessary Privileges for Post-Execution Debugging

Necessary Privileges for Dynamic MLE Execution

Before you can use DBMS_M.E to perform dynamic execution of JavaScript code, the following
object grant must be issued to your user account:

GRANT EXECUTE DYNAM C MLE TO <role | user>

Necessary Privileges for Using the NoSQL AP

In cases where MLE JavaScript code references the Simple Oracle Document Access
(SODA), the SODA_APP role must be granted to the user or role:

GRANT SODA _APP <role | user>

Necessary Privileges for Creating MLE Schema Objects

If you wish to create MLE modules and environments in your own schema, further system
privileges are required:

CGRANT CREATE MLE TO <role | user>

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 20

ORACLE

Chapter 10
System and Object Privileges Required for Working with JavaScript in MLE

In case any MLE module is to be exposed to the database's SQL and PL/SQL layers in the
form of call specifications, you also require the right to create PL/SQL procedures:

GRANT CREATE PROCEDURE TO <role | user>

It is highly likely that you will require further system privileges, depending on your use case, to
create additional schema objects such as tables, indexes, and sequences. Beginning with
Oracle Database 23ai, the DB_DEVELOPER _ROLE role allows administrators to grant the
necessary privileges to developers in their local development databases quickly. The role can
be granted as shown in the following snippet:

GRANT DB _DEVELOPER ROLE TO <role | user>

@ See Also

Oracle Al Database Security Guide for more information about the DB_DEVELOPER ROLE
role

Necessary Privileges for Creating MLE Modules and Environments in ANY

Schema

Additional privileges can be granted to power users and administrators, allowing them to
create, alter, and drop MLE schema objects in any schema.

GRANT CREATE ANY MLE TO <role | user>
CGRANT DROP ANY MLE TO <role | user>
GRANT ALTER ANY MLE TO <role | user>

As with all privileges in Oracle Databases featuring ANY in their name, these are very powerful
and should only be granted after a thorough investigation to trusted users. For this reason, only
the DBA role and the SYS account have been granted these privileges. The use of these system
privileges is audited by the ORA_SECURECONFI G audit policy.

To create MLE call specifications in schemas other than your own requires the right to CREATE
ANY PROCEDURE to be granted as well:

GRANT CREATE ANY PROCEDURE TO <role | user>

Just like the previously listed system privileges, CREATE ANY PROCEDURE is audited by the same
audit policy, ORA_SECURECONFI G.

@ See Also

Oracle Al Database Security Guide for more information about the ORA_SECURECONFI G
audit policy

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 20

ORACLE Chapter 10
Security Considerations for MLE

Necessary Privileges for Post-Execution Debugging

It is possible to allow other database users to collect debug information for MLE modules they
don't own. By default, MLE owners can use post-execution debugging on their own MLE
modules without specific grants. It is possible to grant the ability to collect debug information to
a different role or user, allowing them to use post-execution debugging of JavaScript code on
your behalf as the module owner:

GRANT COLLECT DEBUG | NFO ON <nodul e> TO <role | user>

@® Note

You can elect to grant the execute privilege on MLE module calls created as PL/SQL
code with definer's rights to users in other schemas. In this case, there is no need to
grant other users any additional privileges.

@® Note

Obiject privileges on modules and environments do not grant access to an application,
for example, the combination of source code and user context defined by a call
specification (or through DBMS_MLE). This is achieved by granting access to the
procedure or function object of the call specification.

@ See Also

Post-Execution Debugging of MLE JavaScript Modules for more information on post-
execution debugging

Security Considerations for MLE

Besides the use of account privileges, MLE employs several other methods to ensure a high
level of security.

Topics

« MLE PROG LANGUAGES Initialization Parameter

¢ Execution Contexts

¢ Runtime State Isolation

« Database Security Model

* Considerations for Using MLE Call Specifications and Modules from Different Schemas

¢ Auditing MLE Operations in Oracle Database

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 4 of 20

ORACLE

Chapter 10
Security Considerations for MLE

MLE_PROG_LANGUAGES Initialization Parameter

A new initialization parameter, MLE_PROG_LANGUACES, allows administrators to enable and
disable Multilingual Engine completely or selectively enable certain languages. It takes the
values ALL, JAVASCRI PT, or OFF and it can be set at multiple levels:

e Container Database (CDB)
e Pluggable Database (PDB)
e Database session

If the parameter is set to OFF at CDB level, it cannot be enabled at PDB or session level. The
same logic applies for PDB and session level: if MLE is disabled at the PDB level, it cannot be
enabled at session level.

@® Note

In Oracle Database 23ai, MLE supports JavaScript as its sole language. Setting the
parameter to ALL or JAVASCRI PT has the same effect.

@® Note

Setting MLE_PROG_LANGUAGES to OFF prevents the execution of JavaScript code in the
database, it does not prevent the creation or modification of existing code.

® See Also
Oracle Al Database Reference for more information about MLE_PROG_LANGUAGES

Execution Contexts

When executing JavaScript code in the database, MLE uses execution contexts to isolate
runtime state such as global variables and other important information. Execution contexts are
created implicitly when using modules and environments and explicitly when using DBMS_M_E.

Regardless of the choice of JavaScript invocation, execution contexts are designed to prevent
information leak.

The scope of JavaScript state never exceeds the lifetime of a database session. As soon as
the session ends, either gracefully or forcefully, session state is discarded. If state needs to be
preserved between sessions, you must persist it by storing it in a schema. If needed, state can
be discarded by calling DBM5S_SESSI ON. r eset _package() .

As an additional security measure, you can optionally specify the use of a restricted execution
context, which disallows access to the database state. The PURE keyword is used in the
creation of environments and in inline call specifications to indicate the use of a restricted
context. An environment created using PURE can be referenced in module call specifications
and using DBMS_M_E. PURE execution serves as a method to isolate certain code, such as

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 5 of 20

ORACLE

Chapter 10
Security Considerations for MLE

third-party JavaScript libraries, from the database itself. This isolation can reduce the attack
surface of supply chain attacks, in which access to the database state is a security concern.

@ See Also

e About Restricted Execution Contexts for more information about the PURE keyword
and restricted contexts

* Oracle Al Database PL/SQL Packages and Types Reference for more information
about DBM5_SESSI ON

Runtime State Isolation

An MLE call specification is a PL/SQL unit referencing a function in an MLE module with an
optional MLE environment attached. When you invoke a call specification in a session, the

corresponding MLE module is loaded, the optional environment is applied, and the function
specified in the call specification's signature clause is executed.

Before execution can begin, a corresponding execution context must be created (implicitly).
Whether a new execution context is created or an existing context is reused depends on
multiple factors, specifically:

e The MLE module referenced in the call specification
e The corresponding MLE environment
e The database user executing the call specification

Separate execution contexts are created to prevent information leak as well as undesired side
effects such as global variables in a module being overwritten by accident.

With each invocation of a call specification, additional execution contexts are created. This is
done so that modules cannot interfere with one another.

The main criteria for creating execution contexts in a user session are the MLE module name
and the corresponding MLE environment. Call specifications referring to different combinations
of MLE module and environment lead to different individual execution contexts being created.

Further separation between execution contexts is performed based on the user invoking the
call specification.

Example 10-1 Runtime State Isolation Scenario

This example provides a sample scenario for runtime state isolation. Database user USERL
creates the following MLE schema objects:

CREATE OR REPLACE MLE MODULE i sol ati onMbd LANGUAGE JAVASCRI PT AS
let id; /1 global variable
export function doALot OF Work() {

/1 a dummy function simulating a [ot of work

/1 the focus is on nodifying a global variable

id = 10;

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 6 of 20

ORACLE

Chapter 10
Security Considerations for MLE

export function getld() {

return (id === undefined ? -1 : id)

}
/

CREATE OR REPLACE M.E ENV i sol ationEnv;
CREATE OR REPLACE PACKAGE context _isol ation_package AS

-- initialise runtine state
procedure doALot Of Wrk as
m e nodul e isol ati onMbd
signature ' doALot OF Work()";

-- access a global variable (part of session state)
function getld return nunmber as

m e modul e i sol ati onMbd

signature "getld()';

-- sane function signature as before but referencing an environnment
function getldwEnv return nunber as
m e modul e i sol ati onMbd
env isol ati onEnv
signature "getld()';
END;
/

When USER1, the owner of the MLE module, environment, and call specification (package),
calls cont ext _i sol ati on_package. doALot OF Wr k() , the global variable (i d) is initialized to 10.

BEG N

cont ext i sol ation_package. doALotOfWork();
END;
/

Because cont ext _i sol ati on_package. get1d() references the same MLE module and the
same (default) environment as cont ext _i sol ati on_package. doALot Of Wor k() , the user's
session has access to the global variable:

SELECT CONTEXT | SOLATI ON_PACKAGE. get | d:;

When the combination of user, MLE module, and environment change, a new execution
context is created. Although cont ext _i sol ati on_package. get | dwenv() references the same
MLE module as get | () and the user doesn't change, the function cannot retrieve the value of
the global variable from the previously created execution context:

SELECT CONTEXT_| SCLATI ON_PACKAGE. getldwEnv;

CETI DVENV

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 7 of 20

ORACLE

Chapter 10
Security Considerations for MLE

A value of - 1 indicates that the global variable in the JavaScript module was found to be
uninitialized.

If USERL, as the owner of the MLE call specification, grants the execute privilege on the
package to another user, let's say USER2, a different execution context is created for USER2
even though the same function is called:

CGRANT EXECUTE ON CONTEXT_| SOLATI ON_PACKAGE TO user 2;

When USER? tries to read the value of the | D, a new context is created and the return value
indicating an uninitialized context is returned:

SELECT user 1. CONTEXT _| SOLATI ON_PACKAGE. getid,

In this example, module and environment are identical between USERL and USER2 as per the
call specification. However, the fact that the function is called by a different user causes a new
execution context to be created.

Database Security Model

The fewer privileges granted to program units, accounts, and roles, the less likely it is for them
to be misused. As with every application, the principle of granting only the minimum number of
necessary privileges should be followed. This is especially true in higher-tier environments like
production. Technologies such as Privilege Analysis can be used to track down unnecessary
privileges, allowing you to revoke them after careful regression testing.

Each MLE call specification is created within its own security context. The context includes
information such as:

e The value of the AUTHI D clause (definer or invoker)

* Whether or not privileges are inherited in invoker's rights calls
* Code Based Access Control

* Current user

e The qualified schema name

« Enabled Roles and Privileges in the absence of code based access control (CBAC) and
invoker's rights

The combination of these attributes forms the security context of a code unit such as a MLE
call specification or module. Note that no such security context exists for the JavaScript code
stored in an MLE module.

PL/SQL allows you to easily change these attributes for each PL/SQL unit. A procedure can be
executed with the invoker's rights or the definer's rights, roles can be attached to PL/SQL units,
and cross-schema (execute) grants are commonplace. With each execution of a PL/SQL unit
the security context may potentially change. This applies equally to MLE call specifications.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 8 of 20

ORACLE

Chapter 10
Security Considerations for MLE

The situation is different with JavaScript code: the security context does not change for
JavaScript-to-JavaScript calls. JavaScript functions do not have any notion of associated
invoker's or definer's rights, or roles granted on the function itself. All of these apply only to
(PL/SQL) call specifications.

JavaScript executed using DBMS_M_E is a little more strict when it comes to its security context.
The combination of currently active user, roles/privileges, and schema in effect are recorded at
the time the execution context is created by calling DBMS_M.E. creat e_cont ext () . This
combination must not change until the JavaScript code is executed and the context is
removed, or else an error is thrown.

@ See Also

Oracle Al Database Security Guide for more information about Privilege Analysis

Considerations for Using MLE Call Specifications and Modules from
Different Schemas

The same consideration that is used for other database applications written in, for example,
PL/SQL apply for MLE JavaScript code as well. If a user is granted access to execute code
from a schema other than their own, care needs to be taken to ensure the extent to which the
code can use privileges of the calling user is appropriate.

Unlike PL/SQL, MLE JavaScript code stored in an MLE module is not associated with a
particular set of roles, or any other notion of determining the security context in which the
JavaScript code executes. From a high-level view, there are two important cases for cross-
schema use of privileges:

1. USER!L invokes a call specification located in USER2's schema. The AUTHI D clause of the call
specification in USER2's schema determines whether the code owned by USER2's schema
executes with the privileges of the invoker (USERL) or definer (USER2). In case of an
invoker's rights call specification, potentially attached roles (CBAC) and the setting of
I NHERI T PRI VI LEGES determine the active roles and privileges in addition to those granted
by USER1 by roles or direct grants.

2. USERI creates a call specification Cal | Spec_A for a module Modul e_A owned by USER1.
Cal | Spec_A imports a JavaScript module Mdul e_B owned by a different schema, USER2.
The JavaScript code in Modul e_B is imported into an execution context created for USER1's
call specification Cal | Spec_A. The JavaScript code in Modul e_B executes with the same
privileges as any other JavaScript code in this execution such as in Modul e_A. USERL must
ensure that the code in Modul e_B is trustworthy and appropriate to execute with these
privileges.

@ See Also

Oracle Al Database Security Guide for more information about roles in definer's rights
and invoker's rights PL/SQL units

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 9 of 20

ORACLE Chapter 10
JavaScript Security Best Practices

Auditing MLE Operations in Oracle Database

Auditing is the monitoring and recording of configured database actions. As with any other
auditable operations in Oracle Database, the use of MLE-related system privileges can be
recorded.

Oracle provides the ORA_SECURECONFI G audit policy with the database. Starting with Oracle
Database 23ai, the audit policy includes the use of the following MLE system privileges:

* CREATE ANY M.E
* ALTER ANY MLE
* DROP ANY MLE

Administrators and security teams need to create and enable additional security policies if
auditing the creation of MLE schema objects, including MLE modules, environments, and call
specifications, is desired.

@ See Also

Oracle Al Database Security Guide for more information about auditing in Oracle
Database

JavaScript Security Best Practices

Details concerning the best practices when using features of MLE with JavaScript are
described.

Topics

* Using Bind Variables for Security and Performance

* Generic Database and PL/SQL Specific Security Considerations

e Supply Chain Security

e Software Bill of Material

e Using the Database to Store State

» Disabling Multilingual Runtime

Using Bind Variables for Security and Performance

The MLE JavaScript SQL driver allows you to use string concatenation to build SQL
commands, including the predicates used in queries and DML statements. It is strongly
recommended to avoid this bad practice as it is a major source for SQL injection attacks. Not
only is the use of bind variables in SQL statements more secure than string concatenation but
it is also more efficient as it allows the database to reuse the cursor in the shared pool.

If it is not possible to avoid the creation of dynamic SQL, ensure that you validate input to your
code and scan for malicious content. The built-in DBMS_ASSERT package provides a wealth of
functions designed to mitigate against SQL injection attacks. It does not offer complete
protection but its use is very much recommended as it allows you to verify the following:

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 10 of 20

ORACLE Chapter 10
JavaScript Security Best Practices

e Theinput string is a qualified SQL name

e The input string is an existing schema name

e Theinput string is a simple SQL name

e The input parameter string is a qualified SQL identifier of an existing SQL object

The use of bind variables for better security and scalability is not limited to a single
programming language such as JavaScript, it equally applies to every development project
using Oracle Database.

@ See Also

e Server-Side JavaScript APl Documentation for information about using bind
variables with m e- j s- oracl edb

* Oracle Al Database Development Guide for more details regarding bind variables
and their impact on performance and security

Example 10-2 Using Bind Variables Rather than String Concatenation

In this example, the SELECT statement accepts a bind variable rather than concatenation the
input variable, manager | D, to the SQL command.

CREATE OR REPLACE MLE MODULE sel ect _bind LANGUAGE JAVASCRI PT AS
inport oracledb from"me-js-oracl edb”;
export function nunEnpl oyeesByManager | D(manager | D) {

const conn = oracl edb. def aul t Connecti on(manager|D);

const result = conn. execut g(

" SELECT count (*) FROM enpl oyees WHERE nmnager _id = :1°,
[manager|D]

)i

return result.rows[0][0];

Example 10-3 Use DBMS_ASSERT to Verify Valid Input

In this example, the function cr eat eTenpTabl e() creates a private temporary table to hold
intermediate results from a batch process. The function takes a single argument: the name of
the temporary table to be created (minus the prefix). The function checks if the parameter
passed to it is a valid SQL name.

CREATE OR REPLACE MLE MODULE dbns_assert _modul e LANGUAGE JAVASCRI PT AS
i nport oracledb from"me-js-oracl edb”;

export function createTenpTabl e(tabl eNane) {
const conn = oracl edb. def aul t Connecti on();
et result;
| et validTabl eNane;

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 11 of 20

https://oracle-samples.github.io/mle-modules

ORACLE

Chapter 10
JavaScript Security Best Practices

try {
result = conn. execut e(

" SELECT dbms_assert. qualified _sgl_name(:t abl eName) *,
[tabl eNane]
);
val i dTabl eName = result.rows[0][0];
} catch (err) {
throw ("' ${tabl eName}' is not a valid table name’);
return;

}

result = conn. execut e(
" CREATE PRI VATE TEMPORARY TABLE ora\ $ptt_${val i dTabl eNane} (id nunber)’

)i

If the table name passed to the function passes the test, it is then used to create a private
temporary table using the default pri vate tenp_table prefix.

Generic Database and PL/SQL Specific Security Considerations

Because all JavaScript code is accessed eventually via a PL/SQL call specification, it is
important to understand the implications of using PL/SQL as well. The following concepts are
of particular importance:

The difference between invoker's rights and definer's rights
Code Based Access Control (CBAC)
The impact of | NHERI T PRI VI LEGES in invoker's rights code

Role grants and direct grants, both object as well as system privileges

You should always aim to only require the minimum security privileges (object and system) for
JavaScript code to execute. This is especially important when you consider the use of external
third-party JavaScript code.

Administrators should consider the use of encryption for both data at rest as well as data in
motion.

@ See Also

e Oracle Al Database Security Guide for more information about generic database-
related security aspects

e Oracle Al Database Transparent Data Encryption Guide for information about
encrypting data at rest using Transparent Data Encryption (TDE)

Supply Chain Security

Access to the rich community ecosystem is one of the advantages of using JavaScript in
Oracle Database. Rather than creating functionality in-house and potentially duplicating effort,

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 12 of 20

ORACLE

Chapter 10
JavaScript Security Best Practices

existing JavaScript can be used instead. While this is a convenient method for developing
applications, it comes with certain risks.

In past years, the term supply chain attach has been used to describe the fact that certain
popular open-source JavaScript modules have been abandoned by the original maintainers.
Bad actors have taken some of these projects, becoming maintainers but only to inject
malicious code into the source. The next time a project references such a compromised
module, they incorporate the malicious code.

The same principles applied to client-side development apply to server-side development with
MLE. Developers and security teams must be aware that code in the application executes with
potentially elevated privileges. These can be abused by malicious code to compromise
confidentiality, integrity, and availability properties of the application. For that reason, extra care
must be taken to ensure third-party code is trustworthy and that the minimum number of
privileges is granted to it. Many companies have a dedicated security team for vetting open-
source modules prior to granting their approval to use them. At the very least, you should audit
the JavaScript code that you are about to include in your project and document the result.

It is possible to lock a given version of an open-source module using a mechanism like the
package- | ock. j son file so as not to get caught out if a new version of a module is distributed.
Automatically pulling the latest version of an external code dependency is bad practice and
should always be avoided.

In the case of JavaScript in MLE, JavaScript code executes with the database privileges that
are in effect for the associated execution context. JavaScript code can retrieve and modify data
stored in the database according to these privileges. Malicious code can leverage these
privileges to modify the database in an inappropriate manner.

As a consequence, be sure to grant the privileges to create MLE modules carefully and only
grant these in environments where they are essential. If possible, avoid granting the [CREATE |
ALTER | MODI FY] ANY system privileges at all.

You should also review the | NHERI T PRI VI LEGES settings in the context of invoker's rights
procedures. Once the settings for | NHERI T PRI VI LECES are reviewed and secured according to
industry best practice, consider the use of invoker's rights for MLE call specifications.

Additional higher levels of security for invoker's rights procedures can be achieved by
implementing code based access control (CBAC). Using CBAC, developers can associate
roles to PL/SQL units without having to elevate the privileges of the schema or invoker.

® See Also
Oracle Al Database Security Guide for details about the | NHERI T PRI VI LEGES privilege

Software Bill of Material

Every project relying on external code in projects is strongly encouraged to maintain a record
of all software components (including versions) that are bundled in a deployed application
artifact.

The software bill of material (SBOM) is the key tool to use when reacting swiftly to a newly
published vulnerability is of utmost importance. Exploits are almost guaranteed to be used
immediately after a vulnerability has been published. Knowing exactly which version of a third-
party library is in use allows you to save crucial time in preparing a response.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 13 of 20

ORACLE

Chapter 10
JavaScript Security Best Practices

In addition to storing the actual code, MLE modules feature a metadata field that can be used
to store arbitrary metadata with the module. In particular, it can be used to store an SBOM that
describes all JavaScript libraries bundled in the module. The field is not interpreted by the MLE
runtime. Content and format are entirely up to you.

@ See Also

MLE JavaScript Modules and Environments for more information about creating MLE
modules and providing metadata to them

Using the Database to Store State

Applications written using MLE JavaScript code should not deviate from established patterns
such as storing application state in tables. This allows you to make the best use of the rich
number of security features available for Oracle Database.

In particular, you should not rely on JavaScript state that exceeds the boundaries of one stored
procedure or function call.

Oracle Database has great support for JSON, offering both a relational as well as a NoSQL
API. The database's JSON API is a natural candidate for MLE JavaScript code to store state.
Storing state in Oracle Database provides a better programming model than application state,
especially when it come to data persistence and transactional consistency.

@ See Also

Oracle Al Database JSON Developer’s Guide for information about using JSON with
Oracle Database

Example 10-4 Using Bind Variables Rather than String Concatenation

In this example, the SELECT statement accepts a bind variable rather than concatenation the
input variable, manager | D, to the SQL command.

CREATE OR REPLACE MLE MODULE sel ect _bi nd LANGUAGE JAVASCRI PT AS
i nport oracledb from"me-js-oracl edb”;
export function nunEnpl oyeesByManager | D(manager | D) {
const conn = oracl edb. def aul t Connect i on(manager|D);
const result = conn. execut e(
* SELECT COUNT(*) FROM enpl oyees WHERE manager id = : 17,

[manager|D]

)

return result.rows[0][0];

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 14 of 20

ORACLE

Chapter 10
JavaScript Security Best Practices

Example 10-5 Use DBMS_ASSERT to Verify Valid Input

In this example, the function cr eat eTenpTabl e() creates a private temporary table to hold
intermediate results from a batch process. The function takes a single argument: the name of
the temporary table to be created (minus the prefix). The function checks if the parameter
passed to it is a valid SQL name.

CREATE OR REPLACE MLE MODULE dbns_assert _nmodul e LANGUAGE JAVASCRI PT AS
i nport oracledb from"me-js-oracledb”;

export function createTenpTabl e(tabl eNane) {
const conn = oracl edb. def aul t Connecti on();
let result;
| et validTabl eNane;

try {
result = conn. execut e(

" SELECT dbms_assert. qualified_sql_name(:tabl eNange) *,
[tabl eNane]
);
val i dTabl eName = result.rows[0][0];
} catch (err) {
throw ("' ${tabl eName}' is not a valid table name’);
return;

}

result = conn. execut e(
" CREATE PRI VATE TEMPORARY TABLE oral\ $ptt_${val i dTabl eName} (id nunber)’

)i

If the table name passed to the function passes the test, it is then used to create a private
temporary table using the default pri vate tenp_table prefix.

Disabling Multilingual Runtime

In the case where a security vulnerability is detected in JavaScript code, you can prevent
JavaScript code from execution by disabling the JavaScript runtime. Setting the initialization
parameter MLE_PROG_LANGUAGES to OFF does not stop the database from accepting new code
(such behavior prevents the implementation of a code fix) but it does stop anyone from
executing JavaScript code.

Applications should be written with that option in mind. Once the MLE runtime is disabled, an
error is thrown. Rather than showing the raw error to the end user, a more accessible error
message should be created.

Although JavaScript does not have a specific lockdown feature, using the MLE_PROG_LANGUAGES
parameter allows you to disable the MLE runtime at the session, PDB (lockdown profiles
operate at this level), or CDB level. The COWON_SCHEMA ACCESS feature bundle in the lockdown
profile can be used to disable MLE DDL.

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 15 of 20

ORACLE

Chapter 10
MLE Security Examples

MLE Security Examples

Example scenarios are used to demonstrate security features used by MLE. The examples use
a varying degree of separation between MLE modules, environments, and the necessary
grants to enable the utilized functionality.

Note that the examples are not fully usable on their own. The actual JavaScript code is not as
important as the application's structure, such as:

« The schemas in which the code is located
e The call specification's syntax

e The roles and privileges granted

Topics

e Business Logic Stored in MLE Modules
In this scenario, a user provides functionality implemented in JavaScript that is bound to a
particular schema and relies on being executed as a particular user with certain privileges.

* Generic Data Processing Libraries
In this scenario, generic JavaScript functionality is logically grouped inside a database
schema. The JavaScript code is neither functionally nor logically tied to any existing
database objects. In other words, the processing logic is stateless.

e Generic Libraries in Business Logic
This scenario utilizes business logic contained in a single schema and extends
functionality using generic libraries.

Business Logic Stored in MLE Modules

In this scenario, a user provides functionality implemented in JavaScript that is bound to a
particular schema and relies on being executed as a particular user with certain privileges.

This scenario covers the typical case of a back-end application centered around a single
schema containing all necessary tables, indices, etc. Most importantly, the business logic is
implemented as stored code in the database.

The JavaScript implementation in the form of MLE modules and an MLE environment is
encapsulated in a single schema. Access to the functionality is only exposed using MLE call
specifications based on one or multiple modules. Users of the application are granted execute
privileges on (PL/SQL) call specifications only. No further privileges on MLE modules and
environment are granted, nor are they necessary.

Consequently, the owner of the MLE modules controls access to the application through the
AUTHI D clause attached to the MLE call specifications. The pseudo-code in Example 10-6
demonstrates this scenario.

Example 10-6 Business Logic Stored in MLE Modules

In this example, the application schema is referred to as APP_OMNER. Note how MLE modules
and environments are restricted to the APP_OMER schema.

-- M.E Modul e containing hel per functions commonly used by the application
CREATE MLE MODULE app_owner . hel per _nmodul e LANGUAGE JAVASCRI PT AS

export function setDebuglLevel (level) {

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 16 of 20

ORACLE

Chapter 10

MLE Security Examples

/1 ... JavaScript code ...

}

/1 ... additional functionality ...

-- An M.E Environnent allowi ng other MLE Modules to inport the hel per nodul e

CREATE MLE ENV app_owner. hel per _nodul e_env | MPORTS (
" hel per Modul €' modul e hel per_nodul e

)i

-- The nmain application nodule inports the hel per modul e for comon tasks

CREATE MLE MODULE app_owner . orders_nodul e LANGUAGE JAVASCRI PT AS
i nport { setDebugLevel } from "hel per Modul e";
export function newOrder() {

set DebuglLevel ("I NFQ');
/1 ... JavaScript code ...

}

export function delivery() {
set DebugLevel ("WARN'");
/1 ... JavaScript code ...

}

/1 ... additional functionality ...

-- The call specification is all the end users need to be granted

-- access to. The execute privilege to this definer's rights procedure
-- (created and executed with the app_owner’'s database privil eges)

-- is all that needs granting to the application role.

CREATE app_owner . package orders_pkg AS

PROCEDURE new _order AUTHI D DEFI NER AS
M.LE MODULE orders_nodul e
ENV hel per _nmodul e_env
SI GNATURE ' newOr der () ' ;

PROCEDURE del i very AUTHI D DEFI NER AS
MLE MODULE orders_nodul e
ENV hel per _nodul e_env
SI GNATURE ' delivery()";

END or der _pkg;
/

GRANT EXECUTE ON app_owner. package orders_pkg TO app_rol e;

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates.

Page 17 of 20

ORACLE

Chapter 10
MLE Security Examples

Generic Data Processing Libraries

In this scenario, generic JavaScript functionality is logically grouped inside a database schema.
The JavaScript code is neither functionally nor logically tied to any existing database objects.
In other words, the processing logic is stateless.

As there is no relation to any database schema objects such as tables or views, object grants
are of no concern. The JavaScript code purely transforms functional arguments. Examples for
such libraries include machine learning code, image manipulation like scaling, cropping,
changes of resolution, etc. Other use cases include input validation or JSON processing.

The main purpose of the MLE modules deployed in such a fashion is to provide you with a
common set of JavaScript tools that can be used in your own applications. Therefore, there
aren't any pre-defined MLE call specifications provided. Instead, the schema containing these
modules grants the execute privilege on MLE modules. It is up to the grantee to define MLE
call specifications matching the use case. If necessary, MLE environments can be created
alongside the MLE modules with respective grants to developers wishing to use the
functionality created. Example 10-7 illustrates this scenario.

Example 10-7 Generic Data Processing Libraries

-- Common functionality potentially referenced by nultiple applications
-- is grouped in a database schema. This particular M.LE Mddul e provides
-- input validation
CREATE MLE MODULE | i brary_owner.input validator_nodul e

LANGUAGE JAVASCRI PT USI NG BFILE(js_src_dir, "input validator.js');
/

-- Another M.E nodul e provi des common nachine | earning functionality
CREATE MLE MODULE | i brary_owner.conmom ml _nodul e

LANGUAGE JAVASCRI PT USI NG BFILE(js_src_dir, 'commomn lib.js");
/

-- Rather than a Call Specification as denonstrated in Example 10-6,

-- this time the MLE Mdul es thensel ves are exported for use

-- in a different schema: frontend_app

GRANT EXECUTE ON library_owner.input_validator_mdul e TO frontend_app;
GRANT EXECUTE ON |ibrary_owner.commom m _nodul e TO frontend_app;

-- frontend_app makes explicit use of a select few functions exported
-- by the MLE nodul es
CREATE PACKACE input _val i dator_pkg AS

FUNCTI ON checkEMai | (p_emai | VARCHAR2) RETURN BOOLEAN AS
MLE MODULE |ibrary_owner.input_validator_nodul e
SI GNATURE ' checkEnmai | (string)';

FUNCTI ON checkZl PCode(p_zi pcode VARCHAR2) RETURN BOOLEAN AS
MLE MODULE |ibrary_owner.input_validator_nodul e
SI GNATURE ' checkZl PCode(string)';

-- additional functionality ...
END;
/

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 18 of 20

ORACLE

Chapter 10
MLE Security Examples

The grouping of common, stateless JavaScript code is not limited to a single schema. Further
separation by feature, functionality, or maintainer is possible as well.

Generic Libraries in Business Logic

This scenario utilizes business logic contained in a single schema and extends functionality
using generic libraries.

This example extends the scenarios demonstrated by Example 10-6 and Example 10-7. Itis
conceivable that the domain-specific business logic might require extension by common
functionality such as logging or debugging. The latter can be written generically so that other
applications can include it as well. There are numerous advantages to that approach including,
but not limited to a unified framework for auxiliary functions.

In Example 10-8, the business logic in the APP_OMER's schema, defined in Example 10-6, is
extended with the previously introduced validation and machine learning functionality from
Example 10-7.

There is no "best way" to work with MLE modules and environments in the database. It always
depends on your particular use case. The included examples simply provide some background
on how application logic can be grouped or separated, depending on a project's needs.

Example 10-8 Use Generic Libraries in Business Logic

-- Centrally managed JavaScript code library in the LI BRARY OMNER schenma
CREATE MLE MODULE | i brary_owner.conmom nl _nodul e

LANGUAGE JAVASCRI PT USI NG BFI LE(js_src_dir, 'comomm _lib.js");
/

-- The grant makes the nmodul e available to APP_OMER
GRANT EXECUTE ON i brary_owner. commom m _nodul e TO app_owner;

-- Business logic in schema APP_OMER nakes use of the common M. library
CREATE MLE MODULE app_owner . hel per _nmodul e LANGUAGE JAVASCRI PT AS

export function setDebugLevel (1evel) {
[l ... JavaScript code ...

}

/1 ... additional functionality ...

-- A generic ME environnent references both APP_OMER s as well as
-- LI BRARY_OMER s M.E nodul es
CREATE MLE ENV app_owner. al | _dependenci es_env inports (

" hel per Modul €' nodul e hel per _nodul e

" commonM.' modul e 'ibrary owner.commom m _rodul e

);

-- The main application nodule inports the hel per modul e for comon tasks
-- as well as the common machi ne | earning nodul e provided by LI BRARY_OMNER
CREATE MLE MODULE app_owner . orders_modul e LANGUAGE JAVASCRI PT AS

i nport { setDebugLevel } from "hel per Modul e";
inport { churnRate } from"conmonM.";

export function newOrder() {

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 19 of 20

ORACLE Chapter 10
MLE Security Examples

set DebuglLevel ("I NFQ');
/1 ... JavaScript code ...

}

export function delivery() {
set DebuglLevel ("WARN'");
/1 ... JavaScript code ...

}

export function estimateChurnRate() {

/1 This function was inported fromthe cormon M. library
/1 (an M.E nodul e not stored in APP_OMERs schena)
const cr = churnRate();

/1 ... JavaScript code ...

}

/1 ... additional functionality ...

-- the call specificationis all the end-users need to be granted

-- access to. The execute privilege to this definer rights procedure
-- (created and executed with the app_owner’'s database privil eges)
-- is all that needs granting to the application role.

CREATE app_owner . package orders_pkg AS

PROCEDURE new _order AUTHI D DEFI NER AS
M.LE MODULE orders_nodul e
ENV al | _dependenci es_env
SI GNATURE ' newOr der () ' ;

PROCEDURE del i very AUTHI D DEFI NER AS
M.LE MODULE orders_nodul e
ENV al | _dependenci es_env
SI GNATURE ' delivery()";

FUNCTI ON esti mat eChurnRat e AUTHI D DEFI NER AS
M.LE MODULE orders_nodul e
ENV al | _dependenci es_env
SI GNATURE ' esti mat eChurnRate()"';

END or der _pkg;
/

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 20 of 20

MLE Type Conversions

Supported conversions between JavaScript and PL/SQL, SQL, and JSON data types.

JavaScript target types include both native JavaScript types as well as SQL wrapper types.
Supported SQL types are converted to the analogous JavaScript type by default where such a
natural counterpart exists. If a conversion is attempted and there is no corresponding
JavaScript type, conversion to a native JavaScript type is not supported and values are instead
converted to the corresponding SQL wrapper type by default.

@® Note

MLE does not provide functionality to prevent information loss that might occur
between conversions from a customized database character representation to the
built-in string representation of JavaScript (UTF-16).

@ See Also

e Server-Side JavaScript APl Documentation for information about using nl e-j s-
bi ndi ngs to change the default mappings when exchanging values between
PL/SQL and JavaScript

e Server-Side JavaScript APl Documentation for information on how to use m e-j s-
pl sql t ypes to create SQL wrapper types, such as O acl eNunber

» Server-Side JavaScript APl Documentation for information on using m e-j s-
oracl edb to override the default conversions (as seen in Table A-1) when fetching
column values from a SELECT statement

Date Conversions

JavaScript Dat e represents an instant (i.e., a single moment in time). Conversions can occur
between the instant type Dat e and PL/SQL types DATE and Tl MESTAMP that do not have time
zone information. Conversions between instants on the JavaScript side and DATE and

TI MESTAMP on the other side are handled as follows:

e When converting a Dat e to a TI MESTAMP or DATE, the instant is converted to a timezone-
aware datatime value in the current session time zone. The local datatime portion of this
value is stored in the target DATE or TI MESTAMP value.

* To convert a TI MESTAMP or DATE to a timezone-aware Dat e, the source datetime value is
interpreted to be in the session time zone and is converted into an instant according to the
session time zone.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Appendix A-1 of A-10

https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules

ORACLE’

Table A-1 Supported Mappings from SQL and PL/SQL Types to JavaScript Types

Appendix A

SQL Type JavaScript Types
(Bold Font Signifies Default)
NUMBER number
O acl eNunber
Bl NARY_FLOAT number
Bl NARY_DOUBLE number
Bl NARY | NTEGER: number
BOOLEAN boolean
VARCHAR2 string
NVARCHAR2 string
CHAR string
NCHAR string
CcLoB OracleCLOB
string
NCLOB OracleCLOB
string
BLOB OracleBLOB
Ui nt 8Array (TypedArray)
RAW Uint8Array (TypedArray)
DATE Date
Oracl eDate
TI MESTAMP Date
Oracl eTi mest anp
TI MESTAMP WTH TI ME ZONE Date
Oracl eTi mest anmpTZ
TI MESTAMP WTH LOCAL TI ME ZONE Date

Oracl eTi mest anpTZ

I NTERVAL YEAR TO MONTH

Oracl el nterval Year Tohont h

I NTERVAL DAY TO SECOND

Oracl el nt erval DayToSecond

NULL2

null

JSON

any (object, array, null)3

1 Note that Bl NARY_| NTEGER s a PL/SQL type and not supported in SQL. MLE only supports Bl NARY | NTEGER on PL/SQL interfaces.
2 Although not technically a type, MLE converts a SQL NULL value into a JavaScript nul | value and vice versa. This is so that JavaScript
can indicate to the database that a value passed into the database is absent (for example, the return value of a function or an | Nbind in a

SQL statement).

3 See MLE JavaScript Support for JSON for details

JavaScript Developer's Guide
G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-2 of A-10

ORACLE’

Appendix A

Table A-2 Supported Mappings from JavaScript Types to SQL Types

JavaScript Type SQL Type
nunber NUMBER

bool ean

Or acl eNunber

nunber Bl NARY_FLQAT
nunber Bl NARY_DOUBLE
nunber Bl NARY | NTEGER
bool ean

nunber BOOLEAN

Or acl eNunber

bool ean

string VARCHAR2
string CHAR

string NCHAR

string NVARCHAR2
string CLOB

Oracl eCLOB

string NCLOB

Oracl eCLOB

string URON D

Ui nt 8Array BLOB

Oracl eBl ob

Ui nt Array RAW

Dat e DATE

Oracl eDat e

Dat e TI MESTAMP
Oracl eTi nest anp

Dat e TI MESTAMP W TH (LOCAL) TIME ZONE

Oracl eTi mest anpTZ

Oracl el nterval Year Tohont h

I NTERVAL YEAR TO MONTH

Oracl el nterval DayToSecond

| NTERVAL DAY TO SECOND

nul |

NULL (any supported SQL type)

JavaScript Developer's Guide
G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-3 of A-10

ORACLE Appendix A
MLE JavaScript Support for JSON

Table A-2 (Cont.) Supported Mappings from JavaScript Types to SQL Types

|
JavaScript Type SQL Type
number JSONZ2
string

bool ean

nul |

undef i ned

Dat e

Ui nt 8Array

Oracl eNunber

Oracl eDate

Oracl eTi nest anp

Oracl eTi mest anpTZ

Oracl el nterval Year ToMont h

Oracl el nterval DayToSecond

object!

1 JavaScript objects and arrays that do not match one of the classes listed above
2 See MLE JavaScript Support for JSON for details

e MLE JavaScript Support for JSON
Supported conversions between JavaScript and the JSON data type.

e MLE JavaScript Support for the VECTOR Data Type
Oracle Multilingual Engine (MLE) supports conversions between JavaScript TypedArrays
and SQL vectors with formats | NT8, FLOAT32, and FLOAT64. Data exchanges between
JavaScript and the VECTOR data type are supported by the MLE JavaScript SQL driver,
MLE call specifications, and MLE JavaScript bindings.

MLE JavaScript Support for JSON

Supported conversions between JavaScript and the JSON data type.

Values of the SQL JSON type can be converted to and from JavaScript values. The type
mapping between the SQL JSON type and JavaScript values is aligned with type mappings
employed by the node- or acl edb driver.

@® Note

For more information about node- or acl edb and the JSON data type, see the node-
oracledb documentation.

Values of the SQL JSONtype are converted to JavaScript values as follows:

« If the JSON value is an object, it is converted to an equivalent JavaScript object by
converting all fields of the input object.

e Ifthe JSONvalue is an array, it is converted to an equivalent JavaScript array by converting
all elements of the input array.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Appendix A-4 of A-10

https://oracle.github.io/node-oracledb/doc/api.html#-20-oracle-database-json-data-type
https://oracle.github.io/node-oracledb/doc/api.html#-20-oracle-database-json-data-type

ORACLE’

Appendix A
MLE JavaScript Support for JSON

e If the JSONvalue is a scalar value, it is converted to an equivalent value according to the

type mapping in Table A-3.

Table A-3 Mapping from JSON Attribute Types and Values to JavaScript Types and Values

JSON Attribute Type or Value

JavaScript Type or Value

nul | nul |

fal se fal se

true true
NUMBER Nunber
VARCHAR2 String
RAW Ui nt 8Array
CLOB String
BLOB Ui nt Array
DATE Date

TI MESTAMP Date

[NVERVAL YEAR TO MONTH

Oracl el nt erval Year ToMont h

I NTERVAL DAY TO SECOND

Oracl el nt erval DayToSecond

Bl NARY_DOUBLE Nunber

Bl NARY_FLOAT Nunber

Arrays Array

Objects A plain JavaScript Object

Values of a JavaScript type are converted to the SQL JSON type as follows:

« If the JavaScript value matches one of the scalar types in the first column of Table A-4, it is
converted to a JSON value of the corresponding type.

« If the JavaScript value is an array, it is converted to a JSON array by converting all
elements of the array. Note that Ui nt 8Arr ay values are treated as scalars as opposed to
arrays, so Ui nt 8Array values are converted to the type RAW not to a JSON array.

« If the JavaScript value is an object that is neither an array nor matches any of the
JavaScript types/ classes listed in Table A-4, it is converted to a JSON object. Each field of
the object is converted according to the appropriate mappings.

Table A-4 Mapping from JavaScript Types and Values to JSON Attributes and Values

JavaScript Type or Value

JSON Attribute Type or Value

nul | nul |
undef i ned nul |
string VARCHAR2
true true

fal se fal se

Ui nt 8Array RAW
Nunber NUVBER
Dat e DATE

Or acl eNunber NUVBER
Oracl eDate DATE

JavaScript Developer's Guide
G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-5 of A-10

ORACLE’

Appendix A
MLE JavaScript Support for the VECTOR Data Type

Table A-4 (Cont.) Mapping from JavaScript Types and Values to JSON Attributes and Values

JavaScript Type or Value

JSON Attribute Type or Value

Oracl eTi nest anp

TI MESTAMP

Oracl eTi mest anpTZ

TI MESTAMP W TH TI VE ZONE

Oracl el nterval Year ToMont h

[NVERVAL YEAR TO MONTH

Oracl el nt er val DayToSecond

I NTERVAL DAY TO SECOND

Array

Array

Object

Object

MLE JavaScript Support for the VECTOR Data Type

Oracle Multilingual Engine (MLE) supports conversions between JavaScript TypedArrays and
SQL vectors with formats | NT8, FLOAT32, and FLOAT64. Data exchanges between JavaScript
and the VECTOR data type are supported by the MLE JavaScript SQL driver, MLE call
specifications, and MLE JavaScript bindings.

The VECTOR data type can appear as an | N, QUT, and I N OUT bind argument, as well as a return
type. The SI GNATURE clause of an MLE call specification supports the following JavaScript

types:

e Float32Array
e Float64Array
e Int8Array

e SparseVector

Table A-5 Mapping from VECTOR Data Type to JavaScript Types

SQL Type

JavaScript Type

VECTOR(*, float 32)

Fl oat 32Arr ay (TypedArray)

VECTOR(*, fl oat 64)

Fl oat 64Ar r ay (TypedArray)

VECTOR(*, int8)

I nt 8Array (TypedArray)

VECTOR(*)

Fl oat 64Ar r ay?! (TypedArray)

VECTOR(*, float32, SPARSE)

Spar seVect or 2

1 When no vector format or storage format is specified, a dense Fl oat 64Ar r ay is used by default
2 When the storage format is not specified, the dense format is used by default. The format of the sparse vector depends on the format of

the input, which can be FLOAT32, FLOAT64, or INT8.

Table A-6 Mapping from JavaScript Types to VECTOR Data Type

JavaScript Type

SQL Type

Fl oat 32Arr ay

VECTOR(*, float32)

Fl oat 64Array

VECTOR(*, fl oat64)

I nt 8Array

VECTOR(*, int8)

Array

VECTOR(*, fl oat64)

Spar seVect or

VECTCR(*, [float32 | float64 | int8], SPARSE)?

JavaScript Developer's Guide
G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-6 of A-10

ORACLE Appendix A
MLE JavaScript Support for the VECTOR Data Type

1 The format of the sparse vector in SQL is dependent on the format specified in the function signature.

Unless specified, the storage format of a vector defaults to DENSE, which means that all
dimensions of the vector are physically stored, including zero-values. SPARSE vectors are
vectors in which most dimensions are zero and only non-zero values are stored physically. In
cases when you have vectors that are almost entirely comprised of zero-value dimensions,
using sparse vectors can improve performance and reduce storage requirements.

With in-database JavaScript, sparse (and dense) vectors can be inserted into the database
and fetched from MLE, used as | N, QUT, and | NOUT function arguments, and can be specified in
the signature of an MLE call specification. In JavaScript, sparse vectors are represented using
Spar seVect or objects, which have the following properties:

* nunDi mensi ons: The number of dimensions of the vector, including zero and non-zero
values.

e indices: An array that contains the indices (zero-based) of the dimensions that have non-
zero values.

» val ues: An array containing the non-zero values of the dimensions at the specified indices.

You can convert a Spar seVect or object to a dense vector using the dense() method. When
dense() is used on a Spar seVect or, a TypedArray of 8-bit integers, 32-bit floating-point
numbers, or 64-bit floating-point numbers is returned, depending on the storage format of the
sparse vector column's non-zero values in Oracle Al Database.

A Spar seVect or object can be defined in the following ways:
e As astring in the form of a JSON array that includes the number of dimensions, an array of
indices representing the location of non-zero values, and an array of values:

oracl edb. SparseVector('[10, [1, 3, 5], [1.5, 3.5, 7.7]1]")

* As an object that contains an array of values, an array of indices representing the location
of non-zero values, and the number of dimensions:

oracl edb. SparseVector({values: [1.5, 3.5, 7.7], indices: [1, 3, 5],
nunDi ensi ons: 10})

* As adense array, which can be a JavaScript array or TypedArray:

oracl edb. SparseVector ([0, 1.5, 0, 3.5, 0, 7.7, 0, 0, 0, 0])

@ See Also

e Oracle Al Database Al Vector Search User's Guide for more information about the
VECTOR data type and Oracle Al Vector Search capabilities

e Oracle Al Database Al Vector Search User's Guide for more information about
SPARSE vectors.

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Appendix A-7 of A-10

ORACLE

Appendix A
MLE JavaScript Support for the VECTOR Data Type

Example A-1 Use VECTOR Data Type with MLE

This example demonstrates support of the VECTOR data type used in arguments and as return
type in MLE call specifications.

SET SERVEROQUTPUT ON;
CREATE OR REPLACE MLE MODULE vec_nod
LANGUAGE JAVASCRI PT AS

/**
* Add two vectors
* @aramvl the first vector
* @aramv2 the second vector
* @eturns the resulting vector after adding vl and v2
*/
export function addVectors(vl, v2){
return vl. map((el enent, index) => elenment + v2[index]);

}

/**
* Subtract two vectors
* @aramvl the first vector
* @aramv2 the second vector
* @eturns the resulting vector after subtracting v2 fromvl
*/
export function subtractVectors(vl, v2){
return vl. map((el enent, index) => elenment - v2[index]);

}
/

CREATE OR REPLACE PACKAGE m e _vec_pkg AS

FUNCTI ON addVect or s(
i nput_vectorl IN VECTOR,
i nput_vector2 IN VECTOR
)
RETURN VECTOR
AS MLE MODULE vec_nod
SI GNATURE ' addVectors';

FUNCTI ON subt ract Vect or s(
i nput_vectorl IN VECTOR,
i nput _vector2 IN VECTOR
)
RETURN VECTOR
AS MLE MODULE vec_nod
SI GNATURE ' subtract Vectors';

END m e_vec_pkg;
/

SELECT m e_vec_pkg. addVect or s(
VECTOR('[1, 2]"),
VECTOR('[3, 4]')

) AS result;

JavaScript Developer's Guide

G43962-01

October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Appendix A-8 of A-10

ORACLE Appendix A
MLE JavaScript Support for the VECTOR Data Type

Result:

RESULT

[4. 0E+000, 6. OE+000]

SELECT nl e_vec_pkg. subtract Vect or s(
VECTOR('[3, 4]'),
VECTOR('[1, 2]')

) AS result;

Result:

[2. 0E+000, 2. OE+000]

Example A-2 Use Sparse Vectors with MLE

CREATE OR REPLACE M_LE MODULE ny_sparse_nod
LANGUAGE JAVASCRI PT AS

/**

* print out the dimensions of a sparse vector input by first

* calling the sparseVector constructor over the input argument

* and then by changing the JavaScript object to a JSON string

* @aram {vector} input - a vector with dinension values to be printed
*/

export function printSparseVec(input) {
const sparseVec = oracl edb. SparseVect or (i nput);
const sparseVal = JSON. stringify(sparseVec);
consol e. | og(sparseVval) ;

/

CREATE OR REPLACE PROCEDURE
print_sparse_vec(input IN VECTOR)

AS MLE MODULE MY_SPARSE MOD

SI GNATURE ' pri nt Spar seVec(Spar seVector)';
/

BEG N

print_sparse vec(vector('[5, [2, 3], [41.0, 51.0]]"', 5, FLOAT64, SPARSE));
END;
/

Result:

{"nunDi mensi ons": 5, "indices":{"0":2,"1":3},"values": {"0":41,"1":51}}

JavaScript Developer's Guide
G43962-01 October 13, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Appendix A-9 of A-10

ORACLE Appendix A
MLE JavaScript Support for the VECTOR Data Type

You can also specify the type in the signature as, for example, Fl oat 64Array. If no type is
included in the signature, the default is Spar seVect or .

CREATE OR REPLACE PROCEDURE
print_sparse_vec_64(input I N VECTOR)

AS MLE MODULE MY_SPARSE_MXD

SI GNATURE ' pri nt Spar seVec(Fl oat 64Array) ' ;
/

BEG N

print_sparse_vec_64(vector('[5,[2,3],[41.0,51.0]]', 5 FLOAT64, SPARSE));
END;
/

Result:

0,0,41,51,0

JavaScript Developer's Guide
G43962-01 October 13, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Appendix A-10 of A-10

Index

A

async/await interface, 11

B

bind variables
IN, 11
IN OUT, 11
OuT, 11

built-in modules, 40
accessing, 11
mle-encode-base64, 10
mle-js-bindings, 10
mle-js-encodings, 10
mle-js-fetch, 10
mle-js-oracledb, 10
mle-js-plsql-ffi, 10
mle-js-plsqltypes, 10

C

call specification, 6, 1, 12

creating, 1

elements of, 4
collections

creating, 8

dropping, 10

opening, 9

during creation, 8

committing operations (transactions), 29
creating a collection, 8
creating documents, 11

D

Data Guard, 1
data guide for a collection, getting, 27
DBMS_MLE, 5

EVAL procedure

arguments of, 5

DBMS_MLE PL/SQL package, 1
debugging

See post-execution debugging
debugpoints, 10

elements of, 2

JavaScript Developer's Guide
G43962-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

debugpoints (continued)
specifying, 2

deleting a collection
See dropping a collection

dictionary views
USER_MLE_ENVS view, 20

USER_MLE_ENVS_IMPORTS view, 20
USER_MLE_MODULES view, 12

USER_SOURCE view, 11
Direct Fetch, 6
arrays, 7
objects, 8
documents
creating, 11
finding in collections, 16
inserting into collections, 13
removing from a collection, 23
replacing in collections, 22
saving into collections, 15

DRCP (database resident connection pool), 3

dropping a collection, 10
dynamic execution, 5, 1
workflow, 2

E

ECMAScript
available features, 1
execution context, 7
standard, 2, 4, 5
environment, 1
execution context, 5,7, 5

F

FFI (Foreign Function Interface), 46
finding documents in collections, 16
Foreign Function Interface, 46

G

global variables, 11

H

handling transactions, 29

October 13, 2025
Index-1 of Index-3

indexing documents in a collection, 24
initialization parameters
MAX_STRING_SIZE, 3
MLE_PROG_LANGUAGES, 5
inline call specification, 1, 12
creating, 7
elements of, 10
inserting documents into collections, 13

J

JavaScript, 2
global variables, 11
implementation of, 4
invoking, 5
loading from files, 3
providing inline, 2

L

language options, 18
js.console, 18
js.polyglot-builtin, 18
js.strict, 18

M

MAX_STRING_SIZE initialization parameter, 3
methods
count(), 15, 16
create_context(), 8
createCollection(), 8
createlndex(), 24
drop(), 10
dropindex(), 24
eval(), 5
execute(), 3
filter(), 15, 16
find(), 16
getCollectionNames(), 9
getContentAsString, 27
getCursor(), 15, 16
getDataGuide, 27
getOne(), 15, 16
hasNext(), 16
headerOnly(), 15, 16
key(), 15, 16
keys(), 15, 16
limit(), 15, 16
openCollection(), 9
read and write, 15
remove(), 15, 23

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

Index

methods (continued)
replaceOne(), 15, 22
replaceOneAndGet(), 15, 22
reset_package(), 5
save(), 15
saveAndGet(), 15
skip(), 15, 16
terminal and nonterminal, 15
version(), 15, 16
MLE, 1-3
call specification, 1
environment, 1
inline call specification, 1
module, 2, 1
See also module
MLE JavaScript SQL driver, 10, 1
selecting data, 6
MLE LANGUAGE clause, 7
MLE_PROG_LANGUAGES initialization
parameter, 5
mle-js-fetch, 4
mle-js-oracledb
See MLE JavaScript SQL driver
module, 2
creating, 3
importing, 5, 1
managing, 2
naming, 3
module call, 6
Multilingual Engine
See MLE

N

node package manager, 2
nonterminal method

definition, 16
NPM (node package manager), 2

O

opening a collection

during creation, 8
opening existing collections, 9
ORA_SECURECONFIG audit policy, 10

P

post-execution debugging, 10, 2
privileges, 4, 8
ALTER ANY MLE, 3
COLLECT DEBUG INFO, 4
CREATE ANY MLE, 3
CREATE ANY PROCEDURE, 3
CREATE MLE, 2
CREATE PROCEDURE, 2

October 13, 2025
Index-2 of Index-3

privileges (continued)
DB_DEVELOPER_ROLE, 2
DROP ANY MLE, 3
EXECUTE DYNAMIC MLE, 2
EXECUTE ON JAVASCRIPT, 2
INHERIT PRIVILEGES, 12
SODA_APP, 2

PURE keyword, 8

R

read methods, 15

removing documents from a collection, 23
replacing documents in collections, 22
restricted execution context, 8, 5
ResultSet object, 3, 6

S

saving documents into collections, 15
SBOM, 13

Simple Oracle Document Access (SODA), 1
single-byte character set, 4

JavaScript Developer's Guide
G43962-01
Copyright © 2022, 2025, Oracle and/or its affiliates.

Smart-DB approach, 2
SODA, 1
software bill of material (SBOM), 13

T

Index

terminal method
definition, 16
transaction handling, 29

U

Unicode Standard, 4

USER_MLE_ENV_IMPORTS view, 20

USER_MLE_ENVS view, 20
USER_MLE_MODULES view, 12
USER_SOURCE view, 11

w

write methods, 15

October 13, 2025
Index-3 of Index-3

	Contents
	List of Examples
	List of Figures
	List of Tables
	1 Changes in This Release for JavaScript Developer's Guide
	July 2024, Release Update 23.5
	January 2025, Release Update 23.7
	April 2025, Release Update 23.8
	July 2025, Release Update 23.9
	October 2025, Release Update 23.26.0

	2 Introduction to Oracle Database Multilingual Engine for JavaScript
	The Need for a Multilingual Engine
	Overview of JavaScript
	Overview of Multilingual Engine for JavaScript
	JavaScript Implementation Details
	Invoking JavaScript in the Database
	Introduction to Dynamic Execution
	Introduction to MLE Module Calls
	About MLE Execution Contexts
	About Restricted Execution Contexts

	Introduction to Debugging JavaScript Code

	3 MLE JavaScript Modules and Environments
	Using JavaScript Modules in MLE
	Managing JavaScript Modules in the Database
	Naming JavaScript Modules
	Creating JavaScript Modules in the Database
	Storing JavaScript Code in Databases Using Single-Byte Character Sets
	Code Analysis

	Preparing JavaScript code for MLE Module Calls
	Additional Options for Providing JavaScript Code to MLE
	Specifying Module Version Information and Providing JSON Metadata
	Drop JavaScript Modules
	Alter JavaScript Modules
	Overview of Built-in JavaScript Modules
	Dictionary Views Related to MLE JavaScript Modules
	USER_SOURCE
	USER_MLE_MODULES

	Specifying Environments for MLE Modules
	Creating MLE Environments in the Database
	Naming MLE Environments
	Creating an Empty MLE Environment
	Creating an Environment as a Clone of an Existing Environment
	Using MLE Environments for Import Resolution
	Providing Language Options
	JavaScript Language Options

	Dropping MLE Environments
	Modifying MLE Environments
	Altering Language Options
	Modifying Module Imports

	Dictionary Views Related to MLE JavaScript Environments
	USER_MLE_ENVS
	USER_MLE_ENV_IMPORTS

	4 Overview of Dynamic MLE Execution
	About Dynamic JavaScript Execution
	Dynamic Execution Workflow
	Providing JavaScript Code Inline
	Loading JavaScript Code from Files

	Returning the Result of the Last Execution

	5 Overview of Importing MLE JavaScript Modules
	JavaScript Module Hierarchies
	Resolving Import Names Using MLE Environments

	Export Functionality
	Named Exports
	Default Exports
	Private Identifiers

	Import Functionality
	Module Objects
	Named Imports
	Default Imports

	6 MLE JavaScript Functions
	Call Specifications for Functions
	Creating a Call Specification for an MLE Module
	Components of an MLE Call Specification
	MLE Module Clause
	ENV Clause
	SIGNATURE Clause

	Creating an Inline MLE Call Specification
	Components of an Inline MLE Call Specification
	Accessing Built-in Modules Using JavaScript Global Variables

	Choosing Inline Versus Module MLE Call Specifications
	Runtime Isolation for an MLE Call Specification
	Dictionary Views for Call Specifications

	OUT and IN OUT Parameters

	7 Calling PL/SQL and SQL from the MLE JavaScript SQL Driver
	Introduction to the MLE JavaScript SQL Driver
	Working with the MLE JavaScript Driver
	Connection Management in the MLE JavaScript Driver
	Introduction to Executing SQL Statements
	Processing Comparison Between node-oracledb and mle-js-oracledb

	Selecting Data Using the MLE JavaScript Driver
	Direct Fetch: Arrays
	Direct Fetch: Objects
	Fetching Rows as ResultSets: Arrays
	Fetching Rows as ResultSets: Iterating Over ResultSet Objects

	Data Modification
	Bind Variables
	Using Bind-by-Name vs Bind-by-Position
	Named Bind Variables
	Positional Bind Variables

	RETURNING INTO Clause
	Batch Operations

	PL/SQL Invocation from the MLE JavaScript SQL Driver
	Error Handling in SQL Statements
	Working with JSON Data
	Working with User-Defined Data Types
	Using Record Data Types in JavaScript
	Using Collections in JavaScript

	Using Large Objects (LOB) with MLE
	Writing LOBs
	Reading LOBs

	API Differences Between node-oracledb and mle-js-oracledb
	Synchronous API and Error Handling
	Connection Handling
	Transaction Management
	Type Mapping
	Unsupported Data Types
	Miscellaneous Features Not Available with the MLE JavaScript SQL Driver

	Introduction to the PL/SQL Foreign Function Interface
	Object Resolution Using FFI
	Provide Arguments to a Subprogram Using FFI

	8 Working with SODA Collections in MLE JavaScript Code
	High-Level Introduction to Working with SODA for In-Database JavaScript
	SODA Objects
	Using SODA for In-Database JavaScript
	Getting Started with SODA for In-Database JavaScript
	Creating a Document Collection with SODA for In-Database JavaScript
	Opening an Existing Document Collection with SODA for In-Database JavaScript
	Checking Whether a Given Collection Exists with SODA for In-Database JavaScript
	Discovering Existing Collections with SODA for In-Database JavaScript
	Dropping a Document Collection with SODA for In-Database JavaScript
	Creating Documents with SODA for In-Database JavaScript
	Inserting Documents into Collections with SODA for In-Database JavaScript
	Saving Documents into Collections with SODA for In-Database JavaScript
	SODA for In-Database JavaScript Read and Write Operations
	Finding Documents in Collections with SODA for In-Database JavaScript
	Replacing Documents in a Collection with SODA for In-Database JavaScript
	Removing Documents from a Collection with SODA for In-Database JavaScript
	Indexing the Documents in a Collection with SODA for In-Database JavaScript
	Getting a Data Guide for a Collection with SODA for In-Database JavaScript
	Handling Transactions with SODA for In-Database JavaScript
	Creating Call Specifications Involving the SODA API

	9 Post-Execution Debugging of MLE JavaScript Modules
	Specifying Debugpoints
	Debugpoint Locations
	Debugpoint Actions
	Debugpoint Conditions

	Managing Debugpoints
	Debugging Security Considerations
	COLLECT DEBUG INFO Privilege for MLE Modules

	Analyzing Debug Output
	Textual Representation of Debug Output
	Analyzing Debug Output Using Developer Tools

	Error Handling in MLE
	Errors in Callouts
	Accessing stdout and stderr from JavaScript
	Accessing stdout and stderr for MLE Modules
	Accessing stdout and stderr for Dynamic MLE

	10 MLE Security
	System and Object Privileges Required for Working with JavaScript in MLE
	Necessary Privileges for Dynamic MLE Execution
	Necessary Privileges for Using the NoSQL API
	Necessary Privileges for Creating MLE Schema Objects
	Necessary Privileges for Creating MLE Modules and Environments in ANY Schema
	Necessary Privileges for Post-Execution Debugging

	Security Considerations for MLE
	MLE_PROG_LANGUAGES Initialization Parameter
	Execution Contexts
	Runtime State Isolation
	Database Security Model
	Considerations for Using MLE Call Specifications and Modules from Different Schemas
	Auditing MLE Operations in Oracle Database

	JavaScript Security Best Practices
	Using Bind Variables for Security and Performance
	Generic Database and PL/SQL Specific Security Considerations
	Supply Chain Security
	Software Bill of Material
	Using the Database to Store State
	Disabling Multilingual Runtime

	MLE Security Examples
	Business Logic Stored in MLE Modules
	Generic Data Processing Libraries
	Generic Libraries in Business Logic

	A MLE Type Conversions
	MLE JavaScript Support for JSON
	MLE JavaScript Support for the VECTOR Data Type

	Index

