Supplied Vector Utility PL/SQL Packages
Use either a lightweight DBMS_VECTOR package or a more advanced DBMS_VECTOR_CHAIN package with full capabilities.
-
DBMS_VECTOR:This package simplifies common operations with Oracle AI Vector Search, such as chunking text into smaller segments, extracting vector embeddings from user data, or generating text for a given prompt.
Subprogram Operation Provider Implementation Chainable Utility Functions
UTL_TO_CHUNKSto perform chunkingOracle AI Database
Calls the
VECTOR_CHUNKSSQL function under the hoodUTL_TO_EMBEDDINGandUTL_TO_EMBEDDINGSto generate one or more embeddingsOracle AI Database
Calls the embedding model in ONNX format stored in the database
Third-party REST providers
Calls the specified third-party embedding model
UTL_TO_GENERATE_TEXTto generate text for prompts and imagesThird-party REST providers
Calls the specified third-party text generation model
UTL_TO_RERANKto retrieve more relevant search outputThird-party REST providers
Calls the specified third-party embedding model
Credential Helper Procedures
CREATE_CREDENTIALandDROP_CREDENTIALto manage credentials for third-party service providersOracle AI Database
Stores credentials securely for use in Chainable Utility Functions
For detailed information on this package, see DBMS_VECTOR.
-
DBMS_VECTOR_CHAIN:This package provides chunking and embedding functions along with some text generation and summarization capabilities. It is more suitable for text processing with similarity search and hybrid search, using functionality that can be pipelined together for an end-to-end search.
Subprogram Operation Provider Implementation Chainable Utility Functions
UTL_TO_TEXTto extract plain text data from documentsOracle AI Database
Uses the Oracle Text component (
CONTEXT) of Oracle AI DatabaseUTL_TO_CHUNKSto perform chunkingOracle AI Database
Calls the
VECTOR_CHUNKSSQL function under the hoodUTL_TO_EMBEDDINGandUTL_TO_EMBEDDINGSto generate one or more embeddingsOracle AI Database
Calls the embedding model in ONNX format stored in the database
Third-party REST providers
Calls the specified third-party embedding model
UTL_TO_SUMMARYto generate summariesOracle AI Database
Uses Oracle Text
Third-party REST providers
Calls the specified third-party text summarization model
UTL_TO_GENERATE_TEXTto generate text for prompts and imagesThird-party REST providers
Calls the specified third-party text generation model
UTL_TO_RERANKto retrieve more relevant search outputThird-party REST providers
Calls the specified third-party embedding model
Credential Helper Procedures
CREATE_CREDENTIALandDROP_CREDENTIALto manage credentials for third-party service providersOracle AI Database
Stores credentials securely for use in Chainable Utility Functions
Preference Helper Procedures
CREATE_PREFERENCEandDROP_PREFERENCEto manage preferences for hybrid vector indexesOracle AI Database
Creates vectorizer preferences for use in hybrid vector indexing pipelines
Chunker Helper Procedures
CREATE_VOCABULARYandDROP_VOCABULARYto manage custom token vocabulariesOracle AI Database
Uses Oracle Text
CREATE_LANG_DATAandDROP_LANG_DATAto manage language-specific data (abbreviation tokens)Oracle AI Database
Uses Oracle Text
Note:
The
DBMS_VECTOR_CHAINpackage requires you to install theCONTEXTcomponent of Oracle Text, an Oracle AI Database technology that provides indexing, term extraction, text analysis, text summarization, word and theme searching, and other utilities.Due to underlying dependance on the text processing capabilities of Oracle Text, note that both the
UTL_TO_TEXTandUTL_TO_SUMMARYchainable utility functions and all the chunker helper procedures are available only in this package through Oracle Text.For detailed information on this package, see DBMS_VECTOR_CHAIN.
Related Topics
Parent topic: About PL/SQL Packages to Generate Embeddings