Oracle® REST Data Services
SODA for REST Developer's Guide

ORACLE"

Oracle REST Data Services SODA for REST Developer's Guide, Release 18.2
E85825-01

Copyright © 2014, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Drew Adams

Contributing Authors: Sheila Moore

Contributors: Douglas McMahon, Maxim Orgiyan, Josh Spiegel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience iX
Documentation Accessibility iX
Related Documents iX
Conventions iX

1 SODA for REST Overview

1.1 Overview of the Representational State Transfer (REST) Architectural Style 1-2

2 Installing SODA for REST

3 Using SODA for REST

3.1 Creating a Document Collection with SODA for REST 3-2
3.2 Discovering Existing Collections with SODA for REST 3-3
3.3 Dropping a Document Collection with SODA for REST 3-4
3.4 Inserting a Single Document into a Collection with SODA for REST 3-5
3.5 Inserting Multiple Documents into a Collection with SODA for REST 3-6
3.6 Finding Documents in Collections with SODA for REST 3-7
3.7 Replacing Documents in a Collection with SODA for REST 3-8
3.8 Removing a Single Document from a Collection with SODA for REST 3-9
3.9 Removing Multiple Documents from a Collection with SODA for REST 3-10
3.10 Listing the Documents in a Collection with SODA for REST 3-11
3.11 Indexing the Documents in a Collection with SODA for REST 3-13
3.12 Querying Using a Filter Specification with SODA for REST 3-14

3.12.1 QBE.1.json 3-15

3.12.2 QBE.2.json 3-15

3.12.3 QBE.3.json 3-16

3.12.4 QBE.4.json 3-16
3.13 Patching a Single JSON Document with SODA for REST 3-16

ORACLE iii

3.14 Patching Multiple JSON Documents in a Collection with SODA for REST 3-18

4 SODA for REST HTTP Operations

4.1 SODA for REST HTTP Operation URIs 4-2
4.2 SODA for REST HTTP Operation Response Bodies 4-3
4.3 GET catalog 4-5
4.3.1 URL Pattern for GET catalog 4-5
4.3.2 Response Codes for GET catalog 4-6
4.4 GET user collections 4-7
4.4.1 URL Pattern for GET user collections 4-7
4.4.2 Response Codes for GET user collections 4-7
4.5 GET JSON schema for collection 4-8
45.1 URL Pattern for GET JSON schema for collection 4-8
4.5.2 Response Codes for GET JSON schema for collection 4-8
4.6 GET actions 4-10
4.6.1 URL Pattern for GET actions 4-11
4.7 GET collection 4-11
4.7.1 URL Pattern for GET collection 4-11
4.7.2 Response Codes for GET collection 4-12
4.7.3 Links Array for GET collection 4-13
4.8 GET object 4-14
4.8.1 URL Pattern for GET object 4-14
4.8.2 Request Headers for GET object 4-14
4.8.3 Response Codes for GET object 4-15
4.9 DELETE collection 4-15
4.9.1 URL Pattern for DELETE collection 4-16
4.9.2 Response Codes for DELETE collection 4-16
4.10 DELETE object 4-16
4.10.1 URL Pattern for DELETE object 4-17
4.10.2 Response Codes for DELETE object 4-17
4.11 PATCH JSON document 4-17
4.11.1 URL Pattern for PATCH JSON document 4-18
4.11.2 Request Headers for PATCH JSON document 4-18
4.11.3 Request Body for PATCH JSON document 4-18
4.11.4 Response Codes for PATCH JSON Document 4-19
4.12 POST object 4-19
4.12.1 URL Pattern for POST object 4-20
4.12.2 Request Body for POST object 4-20
4.12.3 Response Codes for POST object 4-20
4.13 POST query 4-21

ORACLE iv

6 Security

4.13.1 URL Pattern for POST query 4-21
4.13.2 Request Body for POST query 4-22
4.13.3 Response Codes for POST query 4-22
4.14 POST bulk insert 4-22
4.14.1 URL Pattern for POST bulk insert 4-23
4.14.2 Request Body for POST bulk insert 4-23
4.14.3 Response Codes for POST bulk insert 4-23
4.15 POST bulk delete 4-24
4.15.1 URL Pattern for POST bulk delete 4-24
4.15.2 Request Body for POST bulk delete (Optional) 4-25
4.15.3 Response Codes for POST bulk delete 4-25
4.16 POST bulk update (patch) 4-26
4.16.1 URL Pattern for POST bulk update (patch) 4-26
4.16.2 Request Body for POST bulk update (patch) 4-27
4.16.3 Response Codes for POST bulk update (patch) 4-27
4.17 POST index 4-27
4.17.1 URL Pattern for POST index 4-28
4.17.2 Request Body for POST index 4-28
4.17.3 Response Codes for POST index 4-29
4.18 POST unindex 4-29
4.18.1 URL Pattern for POST unindex 4-29
4.18.2 Request Body for POST unindex 4-30
4.18.3 Response Codes for POST unindex 4-30
4.19 PUT collection 4-30
4.19.1 URL Pattern for PUT collection 4-31
4.19.2 Request Body for PUT collection (Optional) 4-31
4.19.3 Response Codes for PUT collection 4-31
4.20 PUT object 4-31
4.20.1 URL Pattern for PUT object 4-32
4.20.2 Request Body for PUT object 4-32
4.20.3 Response Codes for PUT object 4-32
5 Collection Specifications
5.1 Key Assignment Method 5-4
5.2 Versioning Method 5-6
6.1 Authentication Mechanisms 6-2

ORACLE

6.2 Security Considerations for Development and Testing

Index

6-2

ORACLE"

Vi

List of Examples

3-1 Bulk-Inserting Documents into a Collection Using a JSON Array of Objects
3-2 Checking an Inserted Document

3-3 Bulk-Removing Matching Documents from a Collection

3-4 Bulk-Removing All Documents from a Collection

3-5 Indexing a JSON Field with SODA for REST

3-6 B-Tree Index Specification for Field Requestor (file indexSpecl.json)

3-7 JSON Patch Specification (File poPatchSpec.json)

3-8 JSON Document Before Patching

3-9 JSON Document After Patching

3-10 QBE for Patching Multiple JSON Documents Using QBE Operator $patch
3-11 Patching Multiple JSON Documents Using HTTP POST with patch Action
4-1 Response Body

5-1 Default Collection Metadata

ORACLE

Vii

List of Tables

4-1 Fields That Can Appear in Response Bodies 4-3
4-2 Additional Response Body Fields for Operations that Return Objects 4-4
4-3 Relationship of GET collection Parameters to Mode and Links Array 4-13
5-1 Collection Specification Fields 5-1
5-2 Key Assignment Methods 5-5
5-3 Versioning Methods 5-6

ORACLE viii

Preface

Audience

This document explains how to use the Oracle SODA for REST API.
* Audience

e Documentation Accessibility

* Related Documents

e Conventions

This document is intended for SODA for REST users.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/

lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

* Oracle Database Introduction to Simple Oracle Document Access (SODA) for
general information about SODA

* Oracle as a Document Store for general information about using JSON data in
Oracle Database, including with SODA

* Oracle Database JSON Developer’s Guide for information about using SQL and
PL/SQL with JSON data

Conventions

ORACLE

The following text conventions are used in this document:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/database/application-development/oracle-document-store/index.html

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

SODA for REST Overview

ORACLE

SODA for REST uses the representational state transfer (REST) architectural style to
implement Simple Oracle Document Access (SODA). You can use this API to
perform create, read, update, and delete (CRUD) operations on documents of any
kind, and you can use it to query JSON documents.

Your application can use the API operations to create and manipulate JSON objects
that it uses to persist application objects and state. To generate the JSON documents,
your application can use JSON serialization techniques. When your application
retrieves a document object, a JSON parser converts it to an application object.

SODA is a set of NoSQL-style APIs that let you create and store collections of
documents in Oracle Database, retrieve them, and query them, without needing to
know Structured Query Language (SQL) or how the data in the documents is stored in
the database.

In the context of SODA for REST, a document in a collection is sometimes called an
object. Typically it is a JSON document, but it can instead be a Multipurpose Internet
Mail Extensions (MIME) type — image, audio, or video, for example. An application
often uses a given collection to hold instances of a particular type of document. A
SODA collection is thus roughly analogous to a table in a relational database: one
database column stores document keys, and another column stores document
content.

Familiarity with the following can help you take advantage of the information presented
here:

e Oracle Database relational database management system (RDBMS)
e JavaScript Object Notation (JSON)
e Hypertext Transfer Protocol (HTTP)

The remaining topics of this document describe various features of SODA for REST.

Note:

This book provides information about using SODA with REST applications.
To use SODA for REST you also need to understand SODA generally. For
such general information, please consult Oracle Database Introduction to
Simple Oracle Document Access (SODA).

* Overview of the Representational State Transfer (REST) Architectural Style
The REST architectural style was used to define HTTP 1.1 and Uniform Resource
Identifiers (URIs). A REST-based API strongly resembles the basic functionality
provided by an HTTP server, and most REST-based systems are implemented
using an HTTP client and an HTTP server.

1-1

Chapter 1
Overview of the Representational State Transfer (REST) Architectural Style

Related Topics

* SODA for REST HTTP Operations
The SODA for REST HTTP operations are described.

¢ See Also:

e Oracle as a Document Store for general information about using JSSON
data in Oracle Database, including with SODA

e Oracle Database SODA for Java Developer's Guide, which explains how
to use the Java client APl on which SODA for REST is built

e Oracle Database JSON Developer’s Guide for information about using
SQL and PL/SQL with JSON data stored in Oracle Database

1.1 Overview of the Representational State Transfer (REST)
Architectural Style

The REST architectural style was used to define HTTP 1.1 and Uniform Resource
Identifiers (URIS). A REST-based API strongly resembles the basic functionality
provided by an HTTP server, and most REST-based systems are implemented using
an HTTP client and an HTTP server.

A typical REST implementation maps create, read, update, and delete (CRUD)
operations to HTTP verbs POST, GET, PUT, and DELETE, respectively.

A key characteristic of a REST-based system is that it is stateless: the server does not
track or manage client object state. Each operation performed against a REST-based
server is atomic; it is considered a transaction in its own right. In a typical REST-based
system, many facilities that are taken for granted in an RDBMS environment, such as
locking and concurrency control, are left to the application to manage.

A main advantage of a REST-based system is that its services can be used from
almost any modern programming platform, including traditional programming
languages (such as C, C#, C++, JAVA, and PL/SQL) and modern scripting languages
(such as JavaScript, Perl, Python, and Ruby).

" See Also:

Principled Design of the Modern Web Architecture, by Roy T. Fielding and
Richard N. Taylor

ORACLE 1-2

http://www.oracle.com/technetwork/database/application-development/oracle-document-store/index.html

Installing SODA for REST

ORACLE

Complete instructions are provided for installing SODA for REST.

1.

Ensure that you have one of the following Oracle Database releases installed:
e Oracle Database 12c Release 2 (12.2) or later

e Oracle Database 12c Release 1 (12.1.0.2) with Merge Label Request (MLR)
bundle patch 20885778 (patch 20885778 obsoletes patch 20080249)

Obtain this patch from My Oracle Support (My Oracle Support). Select tab
Patches & Updates. Search for the patch number, 20885778, or access it
directly at this URL: https://support. oracl e. conf r s?t ype=pat ch& d=20885778.

Start the database.
Download Oracle REST Data Services (ORDS), and extract the zip file.
Configure ORDS.
* If the database uses standard port 1521:
java -jar ords.war install
» If the database uses a nonstandard port (any port except 1521):

java -jar ords.war install advanced

Note:

When prompted:

* Do not skip the step of verifying/installing the Oracle REST Data
Services schema.

e Skip the steps that configure the PL/SQL Gateway.

» Skip the steps that configure Application Express RESTful Services
database users.

* Decline to start the standalone server.

Connect to the database schema (user account) that you want ORDS to access.
Enable ORDS in that database schema by executing this SQL command:

EXEC ords. enabl e_scheng;
COWM T,

Grant role SODA_APP to the database schema (user account) dat abase- schema that
you enabled in step 6:

GRANT SODA _APP TO dat abase- schens;
Only if you are in a development environment:

a. Remove the default security constraints:

2-1

https://support.oracle.com/rs?type=patch&id=20885778

ORACLE

Chapter 2

BEG N
ords. del ete_privil ege_mappi ng(
"oracle.soda. privil ege. devel oper',
"Isodal*');
COWM T;
END,

Note:

This enables anonymous access to the service, which is not
recommended for production systems.

b. Start ORDS in standalone mode:

java -jar ords.war standal one

Note:

Running ORDS in standalone mode is not recommended for
production systems.

9. In aweb browser, open:

http://1ocal host: 8080/ or ds/ dat abase- schena/ soda/ | at est/

Where dat abase- schema is the lowercase name of the database schema in which
you enabled ORDS in step 6. If the installation succeeded, you see:

{"items":[],"nore":fal se}

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

" See Also:

e Oracle REST Data Services Installation, Configuration, and
Development Guide for complete information about installing and
configuring ORDS

e Oracle REST Data Services Installation, Configuration, and
Development Guide for instructions about downloading and extracting
the ORDS zip archive

e Oracle REST Data Services Installation, Configuration, and
Development Guide for information about configuring ORDS

e Oracle REST Data Services Installation, Configuration, and
Development Guide for information about starting ORDS in standalone
mode

2-2

Using SODA for REST

ORACLE

A step-by-step walkthrough is provided for the basic SODA for REST operations, using
examples that you can run. The examples use command-line tool cURL to send REST
requests to the server.

The examples assume that you started Oracle REST Data Services (ORDS) as
instructed in Installing SODA for REST, enabling ORDS in dat abase- schena.

Some examples also use the sample JSON documents included in the zip file that you
downloaded in installation step 3. They are in directory ORDS_HOVE/ exanpl es/ soda/
getting-started.

e Creating a Document Collection with SODA for REST
How to use SODA for REST to create a new document collection is explained.

» Discovering Existing Collections with SODA for REST
An example is given of listing the existing collections.

* Dropping a Document Collection with SODA for REST
An example is given of dropping a collection.

* Inserting a Single Document into a Collection with SODA for REST
An example is given of inserting a document into a collection.

* Inserting Multiple Documents into a Collection with SODA for REST
You can bulk-insert a set of documents into a collection using a JSON array of
objects. Each object corresponds to the content of one of the inserted documents.

e Finding Documents in Collections with SODA for REST
An example is given of retrieving a document from a collection by providing its key.

* Replacing Documents in a Collection with SODA for REST
An example is given of replacing a document in a collection with a newer version.
For this, you use HTTP operation PUT.

* Removing a Single Document from a Collection with SODA for REST
You can use HTTP operation DELETE to remove a single document from a
collection.

* Removing Multiple Documents from a Collection with SODA for REST
You can remove multiple JSON documents from a collection with HTTP operation
PQOST, using custom-action del et e or truncat e in the request URL. Use truncate to
remove all JISON documents from the collection. Use del et e together with a QBE
to delete only the documents that match that filter.

» Listing the Documents in a Collection with SODA for REST
An example is given of listing the documents in a collection, using a GET operation.

* Indexing the Documents in a Collection with SODA for REST
You can index the documents in a collection with HTTP operation PCST, using
custom-action i ndex in the request URL. The request body contains an index
specification. It can specify B-tree, spatial, full-text, or data-guide indexing.

3-1

Chapter 3
Creating a Document Collection with SODA for REST

* Querying Using a Filter Specification with SODA for REST
Examples are given of using a filter specification, or query-by-example (QBE), to
define query criteria for selecting documents from a collection.

» Patching a Single JSON Document with SODA for REST
You can selectively update (patch) parts of a single JSON document using HTTP
operation PATCH. You specify the update using a JSON Patch specification.

e Patching Multiple JSON Documents in a Collection with SODA for REST
You can update (patch) multiple JSON documents in a collection by querying the
collection to match those documents and specifying the changes to be made. You
specify the update with a JSON Patch specification, using QBE operator $pat ch.
You use HTTP operation POST with custom-action updat e in the request URL.

" See Also:

e http://curl.haxx.se/ forinformation about command-line tool cURL

e Oracle REST Data Services Installation, Configuration, and
Development Guide

3.1 Creating a Document Collection with SODA for REST

ORACLE

How to use SODA for REST to create a new document collection is explained.

To create a new collection, run this command, where MyCol | ecti on is the name of the
collection:

curl -i -X PUT http://1ocal host: 8080/ or ds/ dat abase- schema/ soda/ | at est/ MyCol | ecti on

The preceding command sends a PUT request with URL http: // 1 ocal host : 8080/ or ds/
dat abase- schenma/ soda/ | at est/ MyCol | ecti on, to create a collection named M/Col | ecti on.
The -i command-line option causes cURL to include the HTTP response headers in
the output. If the operation succeeds then the output looks similar to this:

HTTP/ 1.1 201 Created

Cache-Control : private, nust-reval i dat e, max- age=0

Location: http://local host: 8080/ ords/ dat abase- schena/ soda/ | at est/ MyCol | ecti on/
Content-Length: 0

Response code 201 indicates that the operation succeeded. A PUT operation that
results in the creation of a new collection—a PUT col | ect i on operation—returns no
response body.

A successful PUT col | ecti on operation creates a database table to store the new
collection. One way to see the details of this table is using SQL*Plus command
descri be:

SQ.> describe "MCol | ection"

Nane Nul 2 Type

ID NOT NULL VARCHAR2(255)
CREATED_ON NOT NULL TI MESTANP(6)
LAST_MODI FI ED NOT NULL TI MESTANP(6)
VERSI ON NOT NULL VARCHAR2(255)
JSON_DOCUMENT BLOB

3-2

Chapter 3
Discovering Existing Collections with SODA for REST

The preceding table reflects the default collection configuration. The table name was
defaulted from the collection name. In this case, the name is mixed-case, so double
guotation marks are needed around it. To create a custom collection configuration,
provide a collection specification as the body of the PUT operation.

If a collection with the same name already exists then it is simply opened. If custom
metadata is provided and it does not match the metadata of the existing collection then
the collection is not opened and an error is raised. (To match, all metadata fields must
have the same values.)

Caution:

To drop a collection, proceed as described in Dropping a Document
Collection with SODA for REST. Do not use SQL to drop the database table
that underlies a collection. Collections have persisted metadata, in addition
to the documents that are stored in the collection table.

Related Topics

» Collection Specifications
A collection specification is a JSON object that provides information about the
Oracle Database table or view underlying a collection object. The table or view is
created when you create the collection.

e PUT collection
PUT collection creates a collection if it does not exist.

» Discovering Existing Collections with SODA for REST
An example is given of listing the existing collections.

" See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)
for information about the default naming of a collection table

3.2 Discovering Existing Collections with SODA for REST

An example is given of listing the existing collections.
To obtain a list of the collections available in dat abase- schema, run this command:

curl -X GET http://1ocal host: 8080/ ords/ dat abase- schema/ soda/ | at est

That sends a GET request with the URL http: //1 ocal host : 8080/ or ds/ dat abase- schema/
soda/ | at est and returns this response body:
{ "items" :
[{ "name":"MCol | ection",

“properties": { "schemaName":" SCHEMA",
"t abl eName": "M/ Col | ection",

-}

"l'inks" :

ORACLE 3-3

[{ "rel"

Chapter 3
Dropping a Document Collection with SODA for REST

: "canonical ",

"href" :
"http://1ocal host: 8080/ or ds/ dat abase- schema/ soda/ | at est/ MyCol l ection" } 1 } 1,
"more" : false }

The response body includes all available collections in dat abase- schena, which in this
case is only collection M/Col | ect i on.

A successful GET col | ecti on operation returns response code 200, and the response
body is a JSON object that contains an array of available collections and includes the
collection specification for each collection.

Related Topics

* GET user collections
CET user collections gets all or a subset of the collection names for a given
database schema (user account).

* Collection Specifications
A collection specification is a JSON object that provides information about the
Oracle Database table or view underlying a collection object. The table or view is
created when you create the collection.

* Dropping a Document Collection with SODA for REST
An example is given of dropping a collection.

3.3 Dropping a Document Collection with SODA for REST

An example is given of dropping a collection.

To delete My Col | ecti on, run this command:

curl -i -X DELETE http://1ocal host: 8080/ or ds/ dat abase- schema/ soda/ | at est/ MyCol | ecti on

ORACLE

The preceding command sends a DELETE request with the URL http://1 ocal host : 8080/
or ds/ dat abase- schema/ soda/ | at est/ MyCol | ecti on and returns:

HTTP/ 1.1 200 K
Cache-Control : private, nust-revalidate, mx-age=0
Content-Length: 0

Response code 200 indicates that the operation succeeded. A DELETE operation that
results in the deletion of a collection—a DELETE col | ecti on operation—returns no
response body.

To verify that the collection was deleted, get the list of available collections in
dat abase- schena:

curl -X GET http://local host: 8080/ ords/ dat abase- schena/ soda/ | at est

If MyCol | ecti on was deleted, the preceding command returns this:

{ "items" : [],
"“nore" : false}

Create WCol | ecti on again, so that you can use it in the next step:

curl -X PUT http://1ocal host: 8080/ ords/ dat abase- schema/ soda/ | at est/ MyCol | ecti on

3-4

Chapter 3
Inserting a Single Document into a Collection with SODA for REST

Related Topics

e DELETE collection
DELETE collection deletes a collection.

e Inserting a Single Document into a Collection with SODA for REST
An example is given of inserting a document into a collection.

3.4 Inserting a Single Document into a Collection with SODA

for REST

ORACLE

An example is given of inserting a document into a collection.

The example uses file po. j son, which was included in the download. The file contains a
JSON document that contains a purchase order. To load the JSON document into
MyCol | ecti on, run this command:

curl -X POST --data-binary @o.json -H "Content-Type: application/json"
http:/ /1 ocal host: 8080/ or ds/ dat abase- schena/ soda/ | at est/ MyCol | ecti on

The preceding command sends a PCST request with the URL http://1 ocal host : 8080/
or ds/ dat abase- schema/ soda/ | at est/ MyCol | ecti on. It outputs something like this:
{ "items" : [
{ "id" : "2FFD968C531CA9BIA7EACA398DFCO2EE",
"etag" : "Cl354F27A5180FF7B828F01CBBC84022DCF5F7209DBFOE6DFFCC626E3B0400C3",
"l ast Modi fied": "2014-09-22T21: 25: 19. 564394Z",
"created": "2014-09-22T21: 25: 19. 564394Z" } 1,
"hashore" : false,
“count" : 1}

A successful POST obj ect operation returns response code 200. The response body is
a JSON document that contains the identifier that the server assigned to the document
when you inserted it into the collection, as well as the current ETag and last-modified
time stamp for the inserted document.

" Note:

If you intend to retrieve the document then copy the document identifier (the
value of field "i d"), to use for retrieval.

Related Topics

* POST object
POST object inserts an uploaded object into a specified collection, assigning and
returning its key. The collection must use server-assigned keys.

* Finding Documents in Collections with SODA for REST
An example is given of retrieving a document from a collection by providing its key.

* Inserting Multiple Documents into a Collection with SODA for REST
You can bulk-insert a set of documents into a collection using a JSON array of
objects. Each object corresponds to the content of one of the inserted documents.

3-5

Chapter 3
Inserting Multiple Documents into a Collection with SODA for REST

3.5 Inserting Multiple Documents into a Collection with
SODA for REST

You can bulk-insert a set of documents into a collection using a JSON array of objects.
Each object corresponds to the content of one of the inserted documents.

Example 3-1 inserts a JSON array of purchase-order objects into a collection as a set
of documents, each object constituting the content of one document. Example 3-2
checks an inserted document.

A successful PCST bulk-insert operation returns response code 200. The response body
is a JSON document that contains the identifier, ETag, and last-modified time stamp
for each inserted document.

Example 3-1 Bulk-Inserting Documents into a Collection Using a JSON Array
of Objects

This example uses file PQLi st . j son, which is included in the download. The file
contains a JSON array of purchase-order objects. This command loads the purchase
orders into collection M/Col | ecti on as documents.

curl -X POST --data-binary @OQList.json -H "Content-Type: application/json"
http://local host: 8080/ or ds/ dat abase- schena/ soda/ | at est/ cust omacti ons/insert/
MyCol | ecti on/

Action i nsert causes the array to be inserted as a set of documents, rather than as a
single document.

(You can alternatively use the equivalent URL http:// 1 ocal host : 8080/ or ds/ dat abase-
schena/ soda/ | at est/ MyCol | ecti on?acti on=i nsert.)

The command sends a POST request with the URL http: //1 ocal host : 8080/ or ds/
dat abase- schema/ soda/ | at est/ MyCol | ect i on. It outputs something like this:

{
"items" |
{
"id" : "6DEAFS8F011FD43249E5F60A93B850AB9" ,
"etag" : "49205D7E916EAED914465FCFF029B2795885A1914966E0AE82D4CCDBBE2EAFSE" ,
"last Modi fied" : "2014-09-22T22:39: 15. 5464357",
"created" : "2014-09-22T22:39: 15. 5464357"

"id" : "CI9FF7685D48E4E4AB8641D8401EDOFB6S",

"etag" : "F3EB514BEDE6AGCC337ADAOFSBEGDEFCSDAS1EG8CEG45729224BB6707FBELFAF",
"lastModified" : "2014-09-22T22: 39: 15. 5464352",

"created":"2014-09- 22T22: 39: 15. 5464352"

b

"hasMore": fal se,
"count": 70

ORACLE 3-6

Chapter 3
Finding Documents in Collections with SODA for REST

Example 3-2 Checking an Inserted Document

You can check an inserted document by copying an i d field value returned by your
own PCST bulk-insert operation (not a value from Example 3-1) and querying the
collection for a document that has that i d value. Using SQL*Plus or SQL Developer,
substitute your copied value for placeholder i dentifier here:

SELECT j son_val ue(j son_document FORMAT JSON, '$. Reference')
FROM "M/Col | ection" WHERE id = "identifier';

JSON_VALUE(JSON_DOCUVENTFORVATISON, ' $. REFERENCE')

MBULLI VA-20141102

Note:

In the SQL SELECT statement here, you must specify the table name
M/Col | ecti on as a quoted identifier, because it is mixed-case (the table name
is the same as the collection name).

Because M/Col | ecti on has the default configuration, which stores the JSON
document in a BLOB column, you must include FORMAT JSON when using SQL/
JSON function j son_val ue. You cannot use the simplified, dot-notation JSON
syntax.

Related Topics

e POST bulk insert
POST bulk insert inserts an array of objects into a specified collection, assigning and
returning their keys.

e Listing the Documents in a Collection with SODA for REST
An example is given of listing the documents in a collection, using a GET operation.

* Inserting a Single Document into a Collection with SODA for REST
An example is given of inserting a document into a collection.

¢ See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)
for information about the default naming of a collection table

3.6 Finding Documents in Collections with SODA for REST

ORACLE

An example is given of retrieving a document from a collection by providing its key.

To retrieve the document that was inserted in Inserting a Single Document into a
Collection with SODA for REST, run this command, where i d is the document key that
you copied when inserting the document:

curl -X GET http://1ocal host: 8080/ ords/ dat abase- schema/ soda/ | at est/ MyCol | ection/id

3-7

curl -X GET http:

Chapter 3
Replacing Documents in a Collection with SODA for REST

A successful GET docunent operation returns response code 200. The response body
contains the retrieved document.

If i d does not exist in MyCol | ecti on then the response code is 404, as you can see by
changing i d to such an identifier:

/11 ocal host: 8080/ or ds/ dat abase- schenma/ soda/ | at est/ MyCol | ecti on/

2FFD968C531CA9BIATEACA398DFCO2EF

{
"type" : "http:
"status" : 404,
"title" : "Key
"0:errorCode" :
}

'/ www. W3. or g/ Prot ocol s/ rfc2616/ rfc2616-sec10. ht n #sec10. 4. 1",

2FFD968C531C49BIATEACA398DFCO2EF not found in collection MyCol l ection.”,
" REST- 02001"

Related Topics

* GET object
GET object gets a specified object from a specified collection.

* Removing a Single Document from a Collection with SODA for REST
You can use HTTP operation DELETE to remove a single document from a
collection.

* Inserting a Single Document into a Collection with SODA for REST
An example is given of inserting a document into a collection.

3.7 Replacing Documents in a Collection with SODA for

REST

curl -i -X PUT --
http://local host:

ORACLE

An example is given of replacing a document in a collection with a newer version. For
this, you use HTTP operation PUT.

The behavior of operation PUT for a nonexistent document depends on the key-
assignment method used by the collection.

» If the collection uses server-assigned keys (as does collection M/Col | ecti on) then
an error is raised if you try to update a nonexistent document (that is, you specify a
key that does not belong to any document in the collection).

« If the collection uses client-assigned keys, then trying to update a nonexistent
document inserts into the collection a new document with the specified key.

Retrieve a document from M/Col | ecti on by running this command, where i d is the
document identifier that you copied in Listing the Documents in a Collection with
SODA for REST:

curl -X GET http://local host: 8080/ ords/ dat abase- schema/ soda/ | at est/ MyCol | ection/id

The preceding command outputs the retrieved document.

To replace this document with the content of file poUpdat ed. j son, which was included in
the download, execute this command:

dat a- bi nary @oUpdated.json -H "Content-Type: application/json"
8080/ or ds/ dat abase- schema/ soda/ | at est/ MyCol | ection/id

The preceding command outputs something like this:

3-8

Chapter 3
Removing a Single Document from a Collection with SODA for REST

HTTP/ 1.1 200 OK

Cache-Control : no-cache, nust-reval i date, no- st ore, max- age=0

ETag: A0B07E0A6D000358C546DC5D8D5059D9CB548A1A5F6F2CAD66E2180B579CCB6D
Last-Mdified: Mn, 22 Sep 2014 16:42:35 PDT

Location: http://local host: 8080/ ords/ dat abase- schema/ soda/ | at est/ MyCol | ecti on/
023C4A6581D84B71A5C0D5D364CE8484/

Content-Length: 0

The response code 200 indicates that the operation succeeded. A PUT operation that
results in the successful update of a document in a collection — a PUT obj ect operation
— returns no response body.

To verify that the document has been updated, rerun this command:

curl -X GET http://1ocal host: 8080/ ords/ dat abase- schema/ soda/ | at est/ MyCol | ection/id

The preceding command returns:

{
"PONunber": 1,
"Content" : "This docunent has been updated...."

}

Related Topics

* PUT object
PUT object replaces a specified object in a specified collection with an uploaded
object (typically a new version). If the collection has client-assigned keys and the
uploaded object is not already in the collection, then PUT inserts the uploaded
object into the collection.

* Key Assignment Method
The key assignment method determines how keys are assigned to objects that are
inserted into a collection.

* Querying Using a Filter Specification with SODA for REST
Examples are given of using a filter specification, or query-by-example (QBE), to
define query criteria for selecting documents from a collection.

» Listing the Documents in a Collection with SODA for REST
An example is given of listing the documents in a collection, using a GET operation.

3.8 Removing a Single Document from a Collection with
SODA for REST

You can use HTTP operation DELETE to remove a single document from a collection.

To remove, from MyCol | ecti on, the document that you retrieved in Finding Documents
in Collections with SODA for REST, run this command (where i d is the document
identifier):

curl -i -X DELETE http://1ocal host: 8080/ ords/ dat abase- schenma/ soda/ | at est/ MyCol | ection/id

ORACLE

The preceding command sends a DELETE request with URL http://1 ocal host : 8080/
or ds/ dat abase- schena/ soda/ | at est/ MyCol | ection/id, and it returns this:

HTTP/ 1.1 200 K
Cache-Control: private, nust-reval i dat e, max- age=0
Content-Length: 0

3-9

Chapter 3
Removing Multiple Documents from a Collection with SODA for REST

Response code 200 indicates that the operation succeeded. A DELETE operation that
results in the removal of an object from a collection—a DELETE obj ect operation—
returns no response body.

Related Topics

 DELETE object
DELETE object deletes a specified object from a specified collection.

* Removing Multiple Documents from a Collection with SODA for REST
You can remove multiple JSON documents from a collection with HTTP operation
PQOST, using custom-action del et e or truncat e in the request URL. Use truncat e to
remove all JISON documents from the collection. Use del et e together with a QBE
to delete only the documents that match that filter.

3.9 Removing Multiple Documents from a Collection with
SODA for REST

ORACLE

You can remove multiple JSON documents from a collection with HTTP operation
PCST, using custom-action del ete or truncat e in the request URL. Use truncat e to
remove all JISON documents from the collection. Use del et e together with a QBE to
delete only the documents that match that filter.

Example 3-3 removes the documents where User field has value TGATES from collection
MyCol | ect i on.Example 3-4 removes all documents from collection MyCol | ect i on.

Example 3-3 Bulk-Removing Matching Documents from a Collection

This example uses the QBE that is in file QBE.1.json to match the nine documents that
have "TGATES" as the value of field User . It removes (only) those documents from
collection MyCol | ecti on.

curl -X POST --data-binary @BE. 1.json -H "Content-Type: application/json"
http://1ocal host: 8080/ ords/ dat abase- schema/ soda/ | at est/ cust om acti ons/ del et e/
MyCol | ecti on/

(You can alternatively use the equivalent URL http:// | ocal host: 8080/ or ds/ dat abase-
schema/ soda/ | at est/ MyCol | ecti on?acti on=del et e.)

WARNING:

If you specify del et e as the action, and you use the empty object, {}, as the
filter specification, then the operation deletes all objects from the collection.

Example 3-4 Bulk-Removing All Documents from a Collection
This example removes all documents from collection MyCol | ect i on.

curl -X POST -H "Content-Type: application/json"
http://1ocal host: 8080/ ords/ dat abase- schena/ soda/ | at est/ cust omacti ons/truncat e/
MyCol | ecti on/

(You can alternatively use the equivalent URL http://1 ocal host : 8080/ or ds/ dat abase-
schems/ soda/ | at est/ MyCol | ecti on?acti on=truncate.)

3-10

Chapter 3
Listing the Documents in a Collection with SODA for REST

3.10 Listing the Documents in a Collection with SODA for
REST

An example is given of listing the documents in a collection, using a GET operation.
You can use parameters to control the result. For example, you can:

e Limit the number of documents returned

* Return only document identifiers (keys), only document contents, or both keys and
contents

* Return a range of documents, based on keys or last-modified time stamps
» Specify the order of the list of returned documents

To list the documents in MyCol | ecti on, returning their keys and other metadata but not
their content, run the following command.

curl -X GET http://local host: 8080/ ords/ dat abase- schena/ soda/ | at est/ MyCol | ecti on?fi el ds=id

The preceding command outputs something like this:

{ "items" :
[{ "id" . "023CAA6581D84B71A5C0D5D364CE8484" ,
"etag" . "3484DFB604DDA3FBCOC681C37972E7DD8C5F4457 ACE32BD16960D4388C5A7COE" ,
"l ast Modi fied" : "2014-09-22T22:39: 15. 5464357",
"created" : "2014-09-22T22: 39: 15. 546435Z" },
{ "id" . "06DD0319148E40A7B8AA48E39E739184",
"etag" . "A19A1E9A3A38B1BAE3EE52B93350FBD76309CBFCA072A2BECDI5BCA44D4849DD" ,
"l ast Modi fied" : "2014-09-22T22:39: 15. 5464357",
"created" : "2014-09-22T22: 39: 15. 546435Z" },
o1
"hasMbre" . fal se,
"count" . 70,
"of fset" .0,
"limt" . 100,

"total Results" :70 }

A successful GET col | ecti on operation returns response code 200, and the response
body is a JSON document that lists the documents in the collection. If the collection is
empty, the response body is an empty i tens array.

To list at most 10 documents in MyCol | ect i on, returning their keys, content, and other
metadata, run this command:

curl -X GET "http://local host: 8080/ or ds/ dat abase- schema/ soda/ | at est/ MyCol | ection?fiel ds=al | & i m t=10"

The preceding command outputs something like this:

{ "item" [... 1],
"hasMore" : true,
"count" .10,
"offset" : 0,
"limt" 10,
"l'inks" :

[{ "rel"™ : "next",
"href" :

“http://1ocal host: 8080/ or ds/ dat abase- schema/ soda/ | at est/ MyCol | ecti on?of fset =10& imi t=10" }] }

ORACLE 3-11

Chapter 3
Listing the Documents in a Collection with SODA for REST

Note:

Including document content makes the response body much larger. Oracle
recommends including the content in the response body only if you will need
the content later. Retrieving the content from the response body is more
efficient that retrieving it from the server.

The metadata in the response body shows that 10 documents were requested
("limt" : 10)) and 10 documents were returned ("count™ : 10)), and that more
documents are available ("hasMre" : true). To fetch the next set of documents, you
can use the URL in the field "l i nks". "href".

The maximum number of documents returned from a collection by the server is
controlled by the following:

* URL parameter limt

e Configuration parameters soda. naxLi ni t and soda. def aul t Li mi t

" Note:

If you intend to update the document then copy the document identifier
(value of field "i d"), to use for updating.

Related Topics

* GET collection
GET collection gets all or a subset of objects from a collection, using parameters to
specify the subset. You can page through the set of returned objects.

* Replacing Documents in a Collection with SODA for REST
An example is given of replacing a document in a collection with a newer version.
For this, you use HTTP operation PUT.

* Querying Using a Filter Specification with SODA for REST
Examples are given of using a filter specification, or query-by-example (QBE), to
define query criteria for selecting documents from a collection.

¢ See Also:

Oracle REST Data Services Installation, Configuration, and Development
Guide for information about configuration parameters soda. maxLi nit and
soda. defaul tLimt

ORACLE 3-12

Chapter 3
Indexing the Documents in a Collection with SODA for REST

3.11 Indexing the Documents in a Collection with SODA for

REST

ORACLE

You can index the documents in a collection with HTTP operation PCST, using custom-
action i ndex in the request URL. The request body contains an index specification. It
can specify B-tree, spatial, full-text, or data-guide indexing.

" Note:

To create an index with SODA you need Oracle Database Release 12c
(12.2.0.1) or later. But to create a B-tree index that for a DATE or TI MESTAVP
value you need Oracle Database Release 18c (18.1) or later.

A JSON search index is used for full-text search and ad hoc structural queries, and for
persistent recording and automatic updating of JSON data-guide information. An
Oracle Spatial and Graph index is used for GeoJSON (spatial) data.

" See Also:

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an overview of using SODA indexing

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for information about SODA index specifications

e Oracle Database JSON Developer’s Guide for information about JSON
search indexes

e Oracle Database JSON Developer’s Guide for information about
persistent data-guide information as part of a JSON search index

Example 3-5 Indexing a JSON Field with SODA for REST

This example indexes the documents in collection M/Col | ecti on according to the index
specification in file i ndexSpecl. j son (see Example 3-6).

curl -i -X PCST --data-binary @ndexSpecl.json -H "Content-Type: application/json"
http://local host: 8080/ or ds/ dat abase- schena/ soda/ | at est/ cust om acti ons/i ndex/
MyCol I ect i on/

This request, using the alternative URI syntax, is equivalent:

curl -i -X POST --data-binary @ndexSpecl.json -H "Content-Type: application/json"
http://1ocal host: 8080/ or ds/ dat abase- schema/ soda/ | at est/ MyCol | ecti on?act i on=i ndex

Example 3-6 B-Tree Index Specification for Field Requestor (file
indexSpecl.json)

This example shows the B-tree index specification in file i ndexSpecl. j son.

3-13

Chapter 3
Querying Using a Filter Specification with SODA for REST

The index is named REQUESTCOR_I DX, and it indexes field Request or . The data type is not
specified, so it is VARCHAR2, the default. Because field scal ar Requi r ed is specified as
true, if the collection contains a document that lacks the indexed field then an error is
raised when the index creation is attempted.

{ "name" . "REQUESTOR_I DX",
"scal arRequired" : true,
“fields" . [{"path" : "Requestor", "order" : "asc"}] }

3.12 Querying Using a Filter Specification with SODA for

REST

ORACLE

Examples are given of using a filter specification, or query-by-example (QBE), to
define query criteria for selecting documents from a collection.

The examples use the QBE. *. j son files that are included in the zip file that you
downloaded in installation step 3. They are in directory ORDS_HOMVE/ exanpl es/ soda/
getting-started.

e QBE.l.json
The query-by-example (QBE) in file QBE. 1. j son returns a list of nine documents,
each of which has "TGATES" as the value of field User .

e QBE.2.json
The query-by-example (QBE) in file QBE. 2. j son selects documents where the value
of field UPCCode equals "13023015692" . UPCCode is a field of object Part, which is a
field of array Li nel t ems. Because no array offset is specified for Li nel t ens, the
guery searches all elements of the array.

QBE.3.json
The query-by-example (QBE) in file QBE. 3. j son selects documents where the value
of field It em\unber, in an element of array Li nel t ens, is greater than 4. QBE
operator field "$gt" is required.

* QBE.4.json
The query-by-example (QBE) in file QBE. 4. j son selects documents where the value
of field UPCCode equals "13023015692" and the value of field | t emNunber equals 3.
QBE operator field $and is optional.

Related Topics

« POST query
POST query gets all or a subset of objects from a collection, using a filter.

¢ See Also:

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an overview of filter specifications and QBE

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for reference information about filter specifications and QBE

3-14

Chapter 3
Querying Using a Filter Specification with SODA for REST

3.12.1 QBE.1.json

The query-by-example (QBE) in file QBE. 1. j son returns a list of nine documents, each
of which has "TGATES" as the value of field User.

This is the query in file QBE. 1. j son:
{ "User" : "TGATES' }

To execute the query, run this command:

curl -X POST --data-binary @BE. 1.json -H "Content-Type: application/json"
http://1ocal host: 8080/ or ds/ dat abase- schena/ soda/ | at est/ cust om acti ons/ query/
MyCol | ecti on/

(You can alternatively use the equivalent URL http:// | ocal host: 8080/ or ds/ dat abase-
schena/ soda/ | at est/ MyCol | ecti on?acti on=query).

A successful POST query operation returns response code 200 and a list of documents
that satisfy the query criteria.

Because the command has no fi el ds parameter, the default value fi el ds=al | applies,
and the response body contains both the metadata and the content of each document.

Note:

Including document content makes the response body much larger. Oracle
recommends including the content in the response body only if you need the
content for a subsequent operation. Retrieving the content from the response
body is more efficient that retrieving it from the server.

To execute the queries in the other QBE. *. j son files, run commands similar to the
preceding one.

3.12.2 QBE.2.json

The query-by-example (QBE) in file QBE. 2. j son selects documents where the value of
field UPCCode equals " 13023015692" . UPCCode is a field of object Part, which is a field of
array Li nel tens. Because no array offset is specified for Li nel t ens, the query searches
all elements of the array.

This is the query in file QBE. 2. j son. It has an implied use of operator field " $eq" .

{ "Lineltens. Part.UPCCode" : "13023015692" }

1 An equivalent composite-filter QBE explicitly uses QBE operator $query: { $query : { "User" : "TGATES' } }.
1 An equivalent composite-filter QBE explicitly uses QBE operator $query: { $query : { "User" : "TGATES' } }.

ORACLE 3-15

Chapter 3
Patching a Single JSON Document with SODA for REST

" See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)
for more information

3.12.3 QBE.3.json

The query-by-example (QBE) in file QBE. 3. j son selects documents where the value of
field I t em\urber, in an element of array Li nel t ens, is greater than 4. QBE operator field
"$gt" is required.

This is the query in file QBE. 3. j son:
{ "Lineltens.|temNunber" : { "$gt" : 4} }

3.12.4 QBE.4.json

The query-by-example (QBE) in file QBE. 4. j son selects documents where the value of
field UPCCode equals " 13023015692" and the value of field | t enNunber equals 3. QBE
operator field $and is optional.

This is the query in file QBE. 4. j son:

{ "$and" : [
{ "Lineltens.Part.UPCCode" : "13023015692" },
{ "Lineltens.|tem\unber" : 3}] }
" See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)

3.13 Patching a Single JSON Document with SODA for
REST

You can selectively update (patch) parts of a single JISON document using HTTP
operation PATCH. You specify the update using a JSON Patch specification.

Note:

To use operation HTTP operation PATCH you need Oracle Database Release
18c or later.

JSON Patch is a format for specifying a sequence of operations to apply to a JSON
document. It is identified by media type appl i cati on/j son- pat ch+j son, and it is suitable
for use with HTTP operation PATCH.

ORACLE 3-16

Chapter 3
Patching a Single JSON Document with SODA for REST

Use the QBE that is in file QBE. 5. j son to retrieve the single document from MyCol | ecti on
that has field PONunber with a value of 1:

curl -X POST --data-binary @BE. 5.json -H "Content-Type: application/json" http://|ocal host: 8080/ ords/
dat abase- schema/ soda/ | at est/ cust om acti ons/ query/ MyCol | ecti on/

curl -i -X PATCH

This is the content of file QBE. 5.j son: { "PONunber" : 1 }.
The preceding command outputs the retrieved document.

To update that document according to the JSON Patch specification in file

poPat chSpec. j son (see Example 3-7), execute this command, where key is the key of
the document returned by the preceding command (POST operation for the QBE in file
QBE. 5. j son).

--dat a-binary @oPatchSpec.json -H "Content-Type: application/json-patch+json”

http://1ocal host: 8080/ ords/ dat abase- schema/ soda/ | at est/ MyCol | ecti on/ key

ORACLE

If successful, the preceding command returns a 200 HTTP status code.

If unsuccessful, patching is not performed. In particular, if any step (any operation)
fails then patching of that document fails. The document is unchanged from its state
before attempting the PATCH HTTP operation.

Example 3-8 shows an example document before successful patching with
Example 3-7, and Example 3-9 shows the same document after patching (changes are
indicated in bold type).

See Also:

JSON Patch (RFC 6902) for information about the JSON Patch format for
describing changes to a JSON document

Example 3-7 JSON Patch Specification (File poPatchSpec.json)

[{ "op" . "test",

"path" : "/Shippinglnstructions/Address/street",
"val ue" : "200 Sporting Geen" },

{ "op" . "replace",
"path" : "/Shippinglnstructions/Address/street",
"value" : "Wnchester House, Heatley Rd" },

{ "op" : "copy”,
"fromt : "/ Shippinglnstructions/Phone/0",
"path" : "/Shippinglnstructions/Phone/1" },

{ "op" . "replace",
"path" : "/Shippinglnstructions/Phone/ 1/ nunber",

"val ue" : "861-555-8765" }]

Example 3-8 JSON Document Before Patching

{ "PONunber" 21,
"Ref erence" . "MSULLI VA-20141102",
"Requestor" : "Martha Sullivan",
"User" . "MSULLI VA",
"Cost Center" . "A50",
" Shi ppi ngl nstructions" : {
"nanme" : "Martha Sul livan",
"Address" : { "street" : "200 Sporting G een",

3-17

Chapter 3
Patching Multiple JSON Documents in a Collection with SODA for REST

"city" : "South San Francisco",
"state" @ "CA",
"zi pCode" : 99236,
"country" : "United States of Anerica" },
"Phone" : [{ "type" : "Office",
“number" : "979-555-6598" }] }

-}
Example 3-9 JSON Document After Patching
{ "PONunber™" Dl
"Ref erence” . "MSULLI VA-20141102",
"Requestor" . "Martha Sullivan",
"User" : "MSULLI VA",
" Cost Cent er " : "A50",
" Shi ppi ngl nstructions" : {
"nanme" . "Martha Sul livan",
"Address" : { "city": "South San Francisco",
"state": "CA",

"zi pCode": 99236,
"country": "United States of Anerica",
"street": "Wnchester House, Heatley Rd" },
"Phone" : [{ "type" : "Ofice",
“number" : "979-555-6598" },
{ "type": "Office",
“number": "861-555-8765" }] }
o}

Related Topics

 PATCH JSON document
PATCH JSON document replaces a specified object with an patched (edited) copy of
it.

e Patching Multiple JISON Documents in a Collection with SODA for REST
You can update (patch) multiple JSON documents in a collection by querying the
collection to match those documents and specifying the changes to be made. You
specify the update with a JSON Patch specification, using QBE operator $pat ch.
You use HTTP operation PCST with custom-action updat e in the request URL.

3.14 Patching Multiple JSON Documents in a Collection with
SODA for REST

You can update (patch) multiple JSON documents in a collection by querying the
collection to match those documents and specifying the changes to be made. You
specify the update with a JSON Patch specification, using QBE operator $pat ch. You
use HTTP operation POST with custom-action updat e in the request URL.

Note:

To use QBE operator $pat ch you need Oracle Database Release 18c or
later.

ORACLE 3-18

Chapter 3
Patching Multiple JSON Documents in a Collection with SODA for REST

Operator $pat ch is specific to SODA for REST; it is not used by other SODA
implementations. It is used in a composite filter, at the same level as $query

and $or der by. (If operators $pat ch and $or der by are both present in a composite filter
then $or der by is ignored.)

The operand of operator $pat ch is a JSON Patch specification: a JSON array with
object elements that list the patch operations to apply to each document targeted by
the query.

JSON Patch is a format for specifying a sequence of operations to apply to a JSON
document. It is identified by media type appl i cati on/j son- pat ch+j son, and it is suitable
for use with HTTP operation PATCH.

If any update step (any operation) specified for patching is unsuccessful for a given
document then no patching is performed on that document. Patching continues for
other targeted documents, however.

Example 3-10 shows a QBE for patching documents where User field has value TGATES.
Example 3-11 shows a command that uses that QBE to perform the update operation.

¢ See Also:

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for information about composite filter specifications

e JSON Patch (RFC 6902) for information about the JSON Patch format
for describing changes to a JSON document

Example 3-10 QBE for Patching Multiple JSON Documents Using QBE
Operator $patch

This example shows the QBE that is the content of file gbePat ch. j son in the download.
The QBE matches the same documents as QBE.1.json. It updates the street address
and the first phone number in each document, using the same new values for each
document.

Because operator $pat ch is used, the query part of the QBE must be specified using
operator $query. The value of operator $pat ch is a JISON Patch specification. It
replaces street address "200 Sporting G een" with "176 Gateway Bl vd" and the first
number in array Phone with 999- 999- 9999.

{ "$query" : {"User" : "TGATES' },
“$patch" : [{ "op" ; "test",
"path" : "/ Shippinglnstructions/Address/street”,
"value" : "200 Sporting Geen" },
{ "op" : "repl ace",
"path" : "/ Shippinglnstructions/Address/street”,
"value" : "176 Gateway Blvd" },
{ "op" : "replace",
"path" : "/ Shippinglnstructions/Phone/ 0/ nunmber”,

"value" : "999-999-9999" }] }

Example 3-11 Patching Multiple JSON Documents Using HTTP POST with patch Action

This command updates documents according to the QBE of Example 3-10. Each
document matching the $query value is updated.

ORACLE 3-19

Chapter 3
Patching Multiple JSON Documents in a Collection with SODA for REST

curl -X POST --data-binary @bePatch.json -H "Content-Type: application/json”
http://local host: 8080/ or ds/ dat abase- schena/ soda/ | at est/ cust om acti ons/ updat e/ MyCol | ecti on

Related Topics

e POST bulk update (patch)
The PGST bulk update operation updates (patches) the objects of a specified
collection.

e Patching a Single JSON Document with SODA for REST
You can selectively update (patch) parts of a single JSON document using HTTP
operation PATCH. You specify the update using a JSON Patch specification.

ORACLE 3-20

SODA for REST HTTP Operations

ORACLE

The SODA for REST HTTP operations are described.

SODA for REST HTTP Operation URIs
A SODA for REST HTTP operation is specified by a Universal Resource Identifier
(URI).

SODA for REST HTTP Operation Response Bodies
If a SODA for REST HTTP operation returns information or objects, it does so in a
response body.

GET catalog
GET catalog gets all of the collection names for a given database schema (user
account), along with information about each collection.

GET user collections
CET user collections gets all or a subset of the collection names for a given
database schema (user account).

GET JSON schema for collection
This operation gets a JSON schema that describes the structure and type
information of the JISON documents in a given collection.

GET actions
GET actions gets all of the available custom actions.

GET collection
GET collection gets all or a subset of objects from a collection, using parameters to
specify the subset. You can page through the set of returned objects.

GET object
GET object gets a specified object from a specified collection.

DELETE collection
DELETE collection deletes a collection.

DELETE object
DELETE object deletes a specified object from a specified collection.

PATCH JSON document
PATCH JSON document replaces a specified object with an patched (edited) copy of
it.

POST object
POST object inserts an uploaded object into a specified collection, assigning and
returning its key. The collection must use server-assigned keys.

POST query
POST query gets all or a subset of objects from a collection, using a filter.

POST bulk insert
POST bulk insert inserts an array of objects into a specified collection, assigning and
returning their keys.

4-1

Chapter 4
SODA for REST HTTP Operation URIs

POST bulk delete
PCST bulk delete deletes all or a subset of objects from a specified collection, using
a filter to specify the subset.

POST bulk update (patch)
The PGST bulk update operation updates (patches) the objects of a specified
collection.

POST index
PCST index creates indexes on the documents in a specified collection.

POST unindex
POST unindex deletes indexes on objects in a specified collection.

PUT collection
PUT collection creates a collection if it does not exist.

PUT object

PUT object replaces a specified object in a specified collection with an uploaded
object (typically a new version). If the collection has client-assigned keys and the
uploaded object is not already in the collection, then PUT inserts the uploaded
object into the collection.

4.1 SODA for REST HTTP Operation URIs

A SODA for REST HTTP operation is specified by a Universal Resource Identifier
(URI).

ORACLE

The URI has any of these forms:

[ords/ dat abase- schema/ soda/ [ver si on/ [met adat a- cat al og/ [col | ection]]]

[ords/ dat abase- schema/ soda/ [versi on/ [cust om acti ons/action/[col |l ection/[key]]]]

[ords/ dat abase- schema/ soda/ [versi on/ [col | ection/ [{key| ?action=action}]]]

where:

ords is the directory of the Oracle REST Data Services (ORDS) listener, of which
SODA for REST is a component.

dat abase- schema is the name of an Oracle Database schema (user account) that
has been configured as an end point for SODA for REST.

soda is the name given to the Oracle Database JSON service when mapped as a
template within ORDS.

versi on is the version number of soda.

cust om act i ons is the name for the set of possible SODA actions.

net adat a- cat al og is the name for the catalog of SODA collections.

col | ection is the name of a collection (set) of objects stored in dat abase- schena.
key is a string that uniquely identifies (specifies) an object in col | ecti on.

action is either query, i ndex, uni ndex, i nsert, updat e, del ete, or truncate.

4-2

Chapter 4
SODA for REST HTTP Operation Response Bodies

Note:

In the SODA for REST URI syntax, after the version component, you can use
cust om act i ons, met adat a- cat al og, or a particular collection name. When you
use cust om acti ons or met adat a- cat al og, the next segment in the URI, if there
is one, is a collection name.

Because of this syntax flexibility, you cannot have a collection named either
custom acti ons or net adat a- cat al og. An error is raised if you try to create a
collection with either of those names using SODA for REST.

In other SODA implementations, besides SODA for REST, nothing prevents
you from creating and using a collection named cust om act i ons or net adat a-
cat al og. But for possible interoperability, best practice calls for not using
these names for collections.

These two syntax possibilities are equivalent:

[/ or ds/ dat abase- schena/ soda/ ver si on/ cust om act i ons/ acti on/ col | ecti on/
/ ords/ dat abase- schena/ soda/ ver si on/ col | ecti on/ ?acti on=acti on

Actions can only be used with a POST HTTP operation. (This applies to both URI
syntaxes for performing actions.)

For some SODA for REST operations the path component of the URI syntax can be
followed by an optional query component, which is preceded by a question mark (?).
The query component is composed of one or more parameter—value pairs separated
by ampersand (&) query delimiters.

In this URI, for example, the query component (?acti on=i nsert) is composed of the
single parameter—value pair acti on=i nsert :

[ords/ myUser/soda/ v1. 0/ MyCol | ecti on/ ?acti on=i nsert

And in this URI, the query component is composed of two parameter—value pairs,
from D=MyCol | ection and i mt=2:

[ords/ myUser/soda/ v1. 0/ met adat a- cat al og/ ?f rom D=MyCol | ecti on&l i nit=2

4.2 SODA for REST HTTP Operation Response Bodies

ORACLE

If a SODA for REST HTTP operation returns information or objects, it does so in a
response body.

For operation GET object, the response body is a single object.

Table 4-1 lists and describes fields that can appear in response bodies.

Table 4-1 Fields That Can Appear in Response Bodies

Field Description
key String that uniquely identifies an object (typically a JSON document) in a
collection.

4-3

Chapter 4
SODA for REST HTTP Operation Response Bodies

Table 4-1 (Cont.) Fields That Can Appear in Response Bodies
|

Field Description
et ag HTTP entity tag (ETag)—checksum or version.
created Created-on time stamp.

| ast Modi fi ed Last-modified time stamp.

val ue Object contents (applies only to JSON object).

medi aType HTTP Content-Type (applies only to non-JSON object).

byt es HTTP Content-Length (applies only to non-JSON object).

itens List of one or more collections or objects that the operation found or created.

This field can be followed by the fields in Table 4-2.

If an operation creates or returns objects, then its response body can have the
additional fields in Table 4-2. The additional fields appear after field i t ens.

Table 4-2 Additional Response Body Fields for Operations that Return Objects
|

Field Description

name Name of collection. This field appears only in the response body of GET
user collections.

properties Properties of collection. This field appears only in the response body of GET
user collections.

hasMor e trueiflimt was reached before available objects were exhausted, f al se
otherwise. This field is always present.

[imt Server-imposed maximum collection (row) limit.

of f set Offset of first object returned (if known).

count Number of objects returned. This is the only field that can appear in the
response body of POST bulk delete.

total Results Number of objects in collection (if requested)

| i nks Possible final field for GET col | ecti on operation. For details, see GET
collection.

Example 4-1 Response Body

This example shows the structure of a response body that returns 25 objects. The first
object is a JSON object and the second is a j peg image. The collection that contains
these objects contains additional objects.

{ "items" : [{ "id" : "key_of object_1",

"etag" : "etag_of _object_1",
"lastModified" : "lastnodified_timestanp_of_object 1",
"val ue" : { object_11} },

{ "id" . "key_of object_2",
"etag" : "etag_of _object_2",
"lastModified" : "lastnodified_timestanp_of _object_ 2",
"medi aType" : "imgel|peg",
"byt es" » 1234

|3

1

"hasMore" : true,

ORACLE 4-4

Chapter 4
GET catalog

“limt" : 100,
"offset" : 50,
"count" . 25
“links" [...]}

Related Topics

GET object
GET object gets a specified object from a specified collection.

GET user collections
GET user collections gets all or a subset of the collection names for a given
database schema (user account).

POST bulk delete
PCST bulk delete deletes all or a subset of objects from a specified collection, using
a filter to specify the subset.

GET collection
GET collection gets all or a subset of objects from a collection, using parameters to
specify the subset. You can page through the set of returned objects.

4.3 GET catalog

GET catalog gets all of the collection names for a given database schema (user
account), along with information about each collection.

This information includes links to collection descriptions and a link to a JSON schema
that describes the structure and type information of the JSON documents in the
collection.

Note:

The existence of a JSON schema requires the collection to have a JISON
search index with data-guide support, which requires Oracle Database
Release 12c¢ (12.2.0.1) or later.

URL Pattern for GET catalog
The URL pattern for GET catalog is described.

Response Codes for GET catalog
The response codes for GET catalog are described.

Related Topics

Collection Specifications

A collection specification is a JSON object that provides information about the
Oracle Database table or view underlying a collection object. The table or view is
created when you create the collection.

4.3.1 URL Pattern for GET catalog

The URL pattern for GET catalog is described.

[ords/ dat abase- schema/ soda/ ver si on/ net adat a- cat al og

ORACLE

4-5

Chapter 4
GET catalog

Without parameters, operation GET catalog gets catalog information for all collections in
dat abase- schena.

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

Parameter Description

limt=n Limits number of collections to n.

from D=col | ecti on Starts getting with col | ecti on (inclusive).

4.3.2 Response Codes for GET catalog

{ "items": [
{ "nanme"

"properties" :

"links"
{ "rel" :
"href" :

The response codes for GET catalog are described.

200

Success — response body contains names and properties of collections in database
schema (user account), ordered by name. For example:

: "enpl oyees",
{ " '}l

:[

"descri bes",

"http://host:port/.../database-schema/soda/ version/enpl oyees" },

{ "rel" :
"href" :

"canoni cal ",

"http://host:port/.../database-schema/ soda/ version/ met adat a- cat al og/ enpl oyees",

"medi aType" : "application/json" },
{ "rel" : "alternate",
"href" :

"http: host:port/.../database-schema/soda/ versi on/ net adat a- cat al og/ enpl oyees",

{ "nane'
"1'i nks"

{ n nan.eu

"properties" :

L1

"1inks"

"medi aType": "appl i cation/ schema+json" }] },
' : "departnents",
"properties" :

{ ...}
N P I
: "regions",

{ ...}

"hasMre":fal se }

ORACLE

If hashbre is true, then to get the next batch of collection names specify
from D=l ast _returned_col | ection. (In the preceding example, | ast _returned_col | ecti on
iS "regions").

400

Parameter value is not valid.

401

Access is not authorized.

4-6

Chapter 4
GET user collections

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.4 GET user collections

CET user collections gets all or a subset of the collection names for a given database
schema (user account).

* URL Pattern for GET user collections
The URL pattern for GET user collections is described.

* Response Codes for GET user collections
The response codes for GET user collections are described.

Related Topics

e Listing the Documents in a Collection with SODA for REST
An example is given of listing the documents in a collection, using a GET operation.

4.4.1 URL Pattern for GET user collections

The URL pattern for GET user collections is described.
/ or ds/ dat abase- schema/ soda/ ver si on/
Without parameters, GET user collections gets all collection names in dat abase- schema.

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

Parameter Description
[imt=n Limits number of listed collection names to n.
from D=col | ecti on Starts getting with col | ecti on (inclusive).

4.4.2 Response Codes for GET user collections

The response codes for GET user collections are described.

200

Success — response body contains names and properties of collections in database
schema (user account), ordered by name. For example:

{ "items" : [
{ "nanme" : "enpl oyees",
"properties" : {...} },
{ "nanme" . "departnents”,

"properties" : {...} },
{ "nanme" : "regions",

"properties" : {...} }],
"hashore" : false }

ORACLE 47

Chapter 4
GET JSON schema for collection

If hashbre is true, then to get the next batch of collection names specify
from D=l ast _returned_col | ection. (In the preceding example, | ast_returned_col | ection
iS "regions").

400

Parameter value is not valid.

401

Access is not authorized.

404

The database schema (user) was not found.

4.5 GET JSON schema for collection

This operation gets a JSON schema that describes the structure and type information
of the JSON documents in a given collection.

¢ Note:

The existence of a JSON schema requires the collection to have a JISON
search index with data-guide support, which requires Oracle Database
Release 12c¢ (12.2.0.1) or later.

Besides a JSON schema for the collection, the operation also returns the collection
metadata, as the value of field properti es.

* URL Pattern for GET JSON schema for collection
The URL pattern for getting a JSON schema for a given collection is described.

* Response Codes for GET JSON schema for collection
The response codes for getting a JSON schema for a given collection are
described.

4.5.1 URL Pattern for GET JSON schema for collection

The URL pattern for getting a JSON schema for a given collection is described.

[ords/ dat abase- schema/ soda/ ver si on/ net adat a- cat al og/ col | ection

No parameters.

4.5.2 Response Codes for GET JSON schema for collection

ORACLE

The response codes for getting a JSON schema for a given collection are described.

200

Success. The response body contains a JSON schema for the collection, as the value
of field schema, and the collection metadata, as the value of field properti es.

4-8

For example:

{"nane"
"properties" :
"schemaNang"
"t abl eName"
"keyCol um"

"cont ent Col um"

"ver si onCol um"

"| ast Modi fi edCol um™ : {"

"readOnl y"
"schema"

"type"

{

A

"properties" :

"dob"

"nang”

n EI’THI | n

" enpno”

"title"

"sal ary"

"spouse”

"addr ess"

ORACLE

Chapter 4
GET JSON schema for collection

. "enpl oyees",

: "MYUSER',

: "EMPLOYEES',

: {"nanme" ;"D
"sql Type" : "VARCHAR2",
"maxLengt h" . 24,
"pat h" "id,
"assi gnnment Met hod" : " MONGO'},

: {"nanme" ;" DOCUMENT",
"sql Type" © "VARCHAR2",
"maxLength" : 4000,
"validation" : "STRICT"},

: {"name" : "CHECKSUM,
"type" . "String",
"method" : "UUID'},

nane" : "LAST_MOD FI ED',

"index" : "PEOPLE T1"},

. false},

. "object",
{

: {"type" : "string",
"o:1length" . 16,
"o:preferred_col utm_nane" : "dob"},

: {"type" : "string",
"o:1length" . 16,
"o:preferred_col utm_nane" : "nane"},

: {"type" : "array",

"o:1length" . 64,
"o:preferred_col utm_nane" : "email",
"itens" A
"type" : "string",
"o: 1 ength" . 32,
"o:preferred_col utm_nanme" : "scalar_string"}},

o {"type" : "nunber”,
"o:1ength" .8,

"o:preferred_col um_nane" : "enpno"},

: {"type" : "string",
"o:1length" . 16,
"o:preferred_col um_nane" : "title"},

: {"type" : "nunber”,
"o:length" .8,

"o:preferred_col utm_nane" : "salary"},

: {"type" D "nullt,
"o:length" o4,
"o:preferred_col utm_nane" : "spouse"},

: {"type" : "object"”,
"o:length" . 128,
"o:preferred_col utm_nane" : "address",
"properties" A

"city" o {"type" : "string",
"o:1ength" . 16,
"o:preferred_col um_nanme" : "city"},

"state" : {"type" : "string",
"o: 1 ength" D2,
"o:preferred_col um_nane" : "state"},

"street" : {"type" : "string",
"o: 1 ength" . 32,

4-9

Chapter 4
GET actions

"o:preferred_col unm_nane" : "street"}}},
"company" : {"type" : "string",
"0:length" . 16
"o:preferred_col utm_nanme" : "conpany"},
"location" : {"type" . "object",
"0:length" . 64
"o:preferred_col um_nanme" : "location",
"properties" |
"type” A _
“type" : "string",
"0:length" .8,
"o:preferred_col um_name" : "type"},
"coordinates" : {
"type" » "array",
"0:length" . 32
"o:preferred_col um_nane" : "coordinates",
"items" |
"type" : "number",
"o:length" : 8
"o:preferred_col um_nane" : "scal ar_nunber"}}}},
"departnent” : {"type" . "string",
"0: 1 ength" . 16

"o: preferred_col unm_nang" :

"departnent"}}},

"links" : [
{"rel" "descri bes",
"href"
"http : //host:port/.../database-schema/ soda/version/enpl oyees"},
{"rel" . "canonical ",
"href"

"http : //host:port/.../database-schema/soda/ version/ netadat a-cat al og/ enpl oyees",

"nmedi aType" : "application/json"},
{"rel" : "alternate",
"href"

"http : //host:port/.../database-schema/soda/ version/ netadat a-cat al og/ enpl oyees",

"medi aType" : "application/schematjson"}]}
401

Access is not authorized.

404
The collection does not exist.

Related Topics

e Security

ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described

here.

4.6 GET actions

GET actions gets all of the available custom actions.

« URL Pattern for GET actions

The URL pattern for GET actions is described.

ORACLE

4-10

Chapter 4
GET collection

4.6.1 URL Pattern for GET actions

The URL pattern for GET actions is described.

/ ords/ dat abase- schena/ soda/ ver si on/ cust om act i ons/

No parameters.

4.7 GET collection

GET collection gets all or a subset of objects from a collection, using parameters to
specify the subset. You can page through the set of returned objects.

* URL Pattern for GET collection
The URL pattern for GET collection is described.

» Response Codes for GET collection
The response codes for GET collection are described.

* Links Array for GET collection
The i nks array for GET collection is described.

Related Topics

« POST query
POST query gets all or a subset of objects from a collection, using a filter.

e Listing the Documents in a Collection with SODA for REST
An example is given of listing the documents in a collection, using a GET operation.

4.7.1 URL Pattern for GET collection

The URL pattern for GET collection is described.

/ ords/ dat abase- schema/ soda/ ver si on/ col | ecti on/

Note:

For non-JSON objects in the collection, GET col | ecti on returns, instead of
document content, the media type and (if known) the size in bytes.

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

Parameter Description

[imt=n Limits number of objects returned to a maximum of n.

of f set=n Skips n (default: 0) objects before getting the first of those
returned.

fields={id|valuelall} Gets only object i d fields (keys), only object val ue fields

(content), or al | fields (both key and content).

Regardless of the fi el ds value, GET col | ecti on returns the
other metadata that the collection stores for each document.

ORACLE 4-11

Chapter 4
GET collection

Parameter

Description

total Resul ts=true
from D=key

t ol D=key

aft er =key

bef or e=key

si nce=ti nestanp

until=timestanmp

g=filter

Returns number of objects in collection. Note: Inefficient
Starts getting objects after key, in ascending order.
Stops getting objects before key, in descending order.
Starts getting objects after key, in ascending order.
Stops getting objects before key, in descending order.

Gets only objects with a | ast Modi fi ed time stamp later than
ti mest anp.

Gets only objects with a | ast Modi fi ed time stamp earlier than
ti mest anp.

Equivalent to a POST query action where fil ter is a QBE that
is passed in the body of the request.

Related Topics

e Links Array for GET collection
The i nks array for GET collection is described.

4.7.2 Response Codes for GET collection

The response codes for GET collection are described.

200

Success—response body contains the specified objects from col | ecti on (or only their
keys, if you specified fi el ds=i d). For example:

{ "items" : [

{ "id" "key_of _object_1",
"etag" "etag_of _object_1",
"lastModified" : "lastnodified_timestanp_of_object 1",
"val ue" : { object_11} },
{ "id" : "key_of object_2",
"etag" "etag_of _obj ect 2",
"lastModified" : "lastnodified_timestanp_of_object_ 2",
"val ue" : { object_2 1} },
{ "id" : "key_of object_3",
"etag" "etag_of _object 3",
"lastModified" : "lastnodified_timestanp_of_object_ 3",
"medi aType" : "imgel|peg",
"byt es" : 1234 },
]
"hasMore" : true,
“limt" : 100,
"offset" : 50,
"count" © 25
“links" [...]}

If hasMbre is true, then to get the next batch of objects repeat the operation with an
appropriate parameter. For example:

» of fset=nif the response body includes the offset

ORACLE 4-12

Chapter 4
GET collection

* tolD=last_returned_key or before=l ast _returned_key if the response body includes
descendi ng=true

e from D=l ast _returned_key or after=l ast_returned_key if the response body does
not include descendi ng=t r ue

400

Parameter value is not valid.

401

Access is not authorized.

404
Collection was not found.

Related Topics

e Links Array for GET collection
The i nks array for GET collection is described.

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.7.3 Links Array for GET collection

ORACLE

The I'i nks array for GET collection is described.

The existence and content of the | i nks array depends on the mode of the GET
col I ecti on operation, which is determined by its parameters.

When the | i nks array exists, it has an element for each returned object. Each element
contains links from that object to other objects. The possible links are:

» first, which links the object to the first object in the collection
* prev, which links the object to the previous object in the collection
* next, which links the object to the next object in the collection

Using prev and next links, you can page through the set of returned objects.
Table 4-3 shows how GET col | ecti on parameters determine mode and the existence
and content of the | i nks array.

Table 4-3 Relationship of GET collection Parameters to Mode and Links Array

Parameter Mode Links Array
fields=id Keys-only Does not exist (regardless of other parameters).
of f set=n Offset Has an element for each returned object. Each element

has these links, except as noted:
e first (except for first object)
e prev (except for first object)
e next (except for last object)

4-13

Chapter 4
GET object

Table 4-3 (Cont.) Relationship of GET collection Parameters to Mode and Links

Array
___|
Parameter Mode Links Array

fronm D=key Keyed Has an element for each returned object. Each element
t ol D=key has these links, except as noted:

af t er =key e prev (except for first object)

bef or e=key * next (except for last object)

since=ti mestanp | ast Mbdi fi ed Does not exist.

until=timestanp Timestamp

q=QBE Query Does not exist.

Related Topics

» Response Codes for GET collection
The response codes for GET collection are described.

4.8 GET object

GET object gets a specified object from a specified collection.

* URL Pattern for GET object
The URL pattern for GET object is described.

* Request Headers for GET object
The request headers for GET object are described.

* Response Codes for GET object
The response codes for GET object are described.

Related Topics

* Finding Documents in Collections with SODA for REST
An example is given of retrieving a document from a collection by providing its key.

4.8.1 URL Pattern for GET object

The URL pattern for GET object is described.

[or ds/ dat abase- schena/ soda/ ver si on/ col | ecti on/ key

4.8.2 Request Headers for GET object

The request headers for GET object are described.

Operation GET obj ect accepts these optional request headers:

Header Description

| f-Mdified-Since=tinmestanp Returns response code 304 if object has not changed
since ti nest anp.

ORACLE 4-14

Chapter 4
DELETE collection

Header Description

| f - None- Mat ch=et ag Returns response code 304 if the etag (object version)
value you set in the header matches the etag value of the
document.

4.8.3 Response Codes for GET object

The response codes for GET object are described.

200

Success—response body contains object identified by the URL pattern.

204

Object content is null.

304

The object was not modified.

401

Access is not authorized.

404
Collection or object was not found.

Related Topics

* Request Headers for GET object
The request headers for GET object are described.

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.9 DELETE collection

DELETE collection deletes a collection.

To delete all objects from a collection, but not delete the collection itself, use POST
bulk delete.

* URL Pattern for DELETE collection
The URL pattern for DELETE collection is described.

* Response Codes for DELETE collection
The response codes for DELETE collection are described.

Related Topics

* Dropping a Document Collection with SODA for REST
An example is given of dropping a collection.

ORACLE 4-15

Chapter 4
DELETE object

4.9.1 URL Pattern for DELETE collection

The URL pattern for DELETE collection is described.

/ ords/ dat abase- schena/ soda/ ver si on/ col | ecti on/

No parameters.

4.9.2 Response Codes for DELETE collection

The response codes for DELETE collection are described.

200

Success—collection was deleted.

401

Access is not authorized.

404

Collection was not found.

Related Topics

Security

ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.10 DELETE object

DELETE object deletes a specified object from a specified collection.

URL Pattern for DELETE object
The URL pattern for DELETE object is described.

Response Codes for DELETE object
The response codes for DELETE object are described.

Related Topics

ORACLE

Removing a Single Document from a Collection with SODA for REST
You can use HTTP operation DELETE to remove a single document from a
collection.

Removing Multiple Documents from a Collection with SODA for REST

You can remove multiple JSON documents from a collection with HTTP operation
PQOST, using custom-action del et e or truncat e in the request URL. Use truncate to

remove all JISON documents from the collection. Use del et e together with a QBE
to delete only the documents that match that filter.

4-16

Chapter 4
PATCH JSON document

4.10.1 URL Pattern for DELETE object

The URL pattern for DELETE object is described.

[or ds/ dat abase- schena/ soda/ ver si on/ col | ecti on/ key

No parameters.

4.10.2 Response Codes for DELETE object

The response codes for DELETE object are described.

200

Success—object was deleted.

401

Access is not authorized.

404

Collection or bject was not found.

405
Collection is read-only.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.11 PATCH JSON document

ORACLE

PATCH JSON document replaces a specified object with an patched (edited) copy of it.

< Note:

To use operation PATCH JSON document you need Oracle Database Release
18c or later.

* URL Pattern for PATCH JSON document
The URL pattern for PATCH JSON document is described.

* Request Headers for PATCH JSON document
Use header Cont ent - Type=appl i cati on/ j son- pat ch+j son for operation PATCH JSON
document.

4-17

Chapter 4
PATCH JSON document

* Request Body for PATCH JSON document
The request body for PATCH JSON document contains a JSON Patch specification,
that is, an array of objects, each of which specifies a JSON Patch step (operation).
The operations are performed successively in array order.

e Response Codes for PATCH JSON Document
The response codes for PATCH JSON document are described.

Related Topics

* Patching a Single JSON Document with SODA for REST
You can selectively update (patch) parts of a single JISON document using HTTP
operation PATCH. You specify the update using a JSON Patch specification.

e Patching Multiple JSON Documents in a Collection with SODA for REST
You can update (patch) multiple JSON documents in a collection by querying the
collection to match those documents and specifying the changes to be made. You
specify the update with a JSON Patch specification, using QBE operator $pat ch.
You use HTTP operation PCST with custom-action updat e in the request URL.

4.11.1 URL Pattern for PATCH JSON document

The URL pattern for PATCH JSON document is described.

[ords/ dat abase- schema/ soda/ ver si on/ col | ecti on/ key

No parameters.

4.11.2 Request Headers for PATCH JSON document

Use header Cont ent - Type=appl i cati on/j son- pat ch+j son for operation PATCH JSON
document.

4.11.3 Request Body for PATCH JSON document

The request body for PATCH JSON document contains a JSON Patch specification, that
is, an array of objects, each of which specifies a JSON Patch step (operation). The
operations are performed successively in array order.

The syntax and meaning of a JSON Patch specification, which describes changes to a
JSON document, are specified in the JSON Patch standard, RFC 6902. Paths to parts
of a JISON document that are referenced in a JSON Patch specification are specified
using the JSON Pointer standard, RFC 6901.

" See Also:

e JSON Patch (RFC 6902)
e JSON Pointer (RFC 6901) for information about JSON Pointer paths

ORACLE 4-18

4.11.4 Response Codes for PATCH JSON Document

The response codes for PATCH JSON document are described.

200

Success — document was patched (updated).

401

Access is not authorized.

404

Document or collection not found.
405

Collection is read-only.

Related Topics

e Security

Chapter 4
POST object

ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described

here.

4.12 POST object

POST object inserts an uploaded object into a specified collection, assigning and

returning its key. The collection must use server-assigned keys.

If the collection uses client-assigned keys, use PUT object.

* URL Pattern for POST object
The URL pattern for POST object is described.

* Request Body for POST object

The request body for PCST object is the uploaded object to be inserted in the

collection.

» Response Codes for POST object
The response codes for POST object are described.

Related Topics
* PUT object

PUT object replaces a specified object in a specified collection with an uploaded
object (typically a new version). If the collection has client-assigned keys and the
uploaded object is not already in the collection, then PUT inserts the uploaded

object into the collection.

* Key Assignment Method

The key assignment method determines how keys are assigned to objects that are

inserted into a collection.

ORACLE

* Inserting a Single Document into a Collection with SODA for REST

An example is given of inserting a document into a collection.

4-19

Chapter 4
POST object

4.12.1 URL Pattern for POST object

The URL pattern for POST object is described.

/ ords/ dat abase- schena/ soda/ ver si on/ col | ecti on/

No parameters.

4.12.2 Request Body for POST object

The request body for PCST object is the uploaded object to be inserted in the collection.

4.12.3 Response Codes for POST object

The response codes for POST object are described.

201

Success — object is in collection; response body contains server-assigned key and
possibly other information. For example:

{ "items" : [{ "id" © "key",
"etag" . "etag",
"lastMdified" : "last_nodified_timestanp”
"created" © "created_timestamp" }],

"hashore" : false }

202

Object was accepted and queued for asynchronous insertion; response body contains
server-assigned key.

401

Access is not authorized.

405

Collection is read-only.

501
Unsupported operation (for example, no server-side key assignment).

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

ORACLE 4-20

Chapter 4
POST query

4.13 POST query

PCST query gets all or a subset of objects from a collection, using a filter.

A links section is not returned for a POST query operation, so you cannot directly do
next and previous paging.

Note:

As an alternative to using POST query with a filter in the request body you can
use GET col | ecti on, passing the same filter as the value of URL parameter g.
For example, these two commands are equivalent, where the content of file
QBE. 1.jsonis{ "User" : "TGATES' }:

curl -X PCST --data-binary @BE. 1.json -H "Content-Type: application/json"
http://1ocal host: 8080/ or ds/ dat abase- schema/ soda/ | at est/ cust om acti ons/
query/ MyCol | ect i on/

curl -X GET -H "Content-Type: application/json" http://|ocal host: 8080/
or ds/ dat abase- schema/ soda/ | at est/ MyCol | ecti on/ ?q={ %R0%22User
%22920: %2092 TGATESYR22%20}

URL Pattern for POST query
The URL pattern for POST query is described.

Request Body for POST query
The request body for a POST query action is a QBE (a filter-specification).

Response Codes for POST query
The response codes for POST query are described.

Related Topics

GET collection
GET collection gets all or a subset of objects from a collection, using parameters to
specify the subset. You can page through the set of returned objects.

Querying Using a Filter Specification with SODA for REST
Examples are given of using a filter specification, or query-by-example (QBE), to
define query criteria for selecting documents from a collection.

4.13.1 URL Pattern for POST query

The URL pattern for POST query is described.

ORACLE

Query a collection using a filter, with either of these URI patterns:

[ords/ dat abase- schema/ soda/ ver si on/ cust om act i ons/ query/ col | ection
[ords/ dat abase- schema/ soda/ ver si on/ col | ecti on?acti on=query

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters. Parameters
are optional, except as noted.

4-21

Chapter 4
POST bulk insert

Parameter Description

action=query Required, if the second syntax form is used. Specifies that the
kind of action is a query.

[imt=n Limit number of returned objects to n.

of fset=n Skip n objects before returning objects.

fields={id|valuelall} Return object i d (key) only, object val ue (content) only, or al |

(object key and content). Default: al |

4.13.2 Request Body for POST query

The request body for a POST query action is a QBE (a filter-specification).

The request body cannot be empty, but it can be the empty object, {}. If itis {} then all
objects in the collection are returned.

" See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)
for information about SODA filter specifications.

4.13.3 Response Codes for POST query

The response codes for POST query are described.

200

Success—object is in collection; response body contains all objects in collection that
match filter.

401

Access is not authorized.

404
The collection was not found.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.14 POST bulk insert

POST bulk insert inserts an array of objects into a specified collection, assigning and
returning their keys.

ORACLE 4-22

Chapter 4
POST bulk insert

* URL Pattern for POST bulk insert
The URL pattern for POST bulk insert is described.

* Request Body for POST bulk insert
The request body for POST bulk insert is an array of objects.

* Response Codes for POST bulk insert
The response codes for POST bulk insert are described.

Related Topics

e Inserting Multiple Documents into a Collection with SODA for REST
You can bulk-insert a set of documents into a collection using a JSON array of
objects. Each object corresponds to the content of one of the inserted documents.

4.14.1 URL Pattern for POST bulk insert

The URL pattern for POST bulk insert is described.
Insert one or more objects into a collection, using either of these URI patterns:

/ ords/ dat abase- schena/ soda/ ver si on/ cust om acti ons/insert/col | ection
/ ords/ dat abase- schena/ soda/ ver si on/ col | ecti on?acti on=i nsert

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

Parameter Description

action=insert Required, if the second syntax form is used. Specifies that the
kind of action is a bulk insert.

4.14.2 Request Body for POST bulk insert

The request body for POST bulk insert is an array of objects.

4.14.3 Response Codes for POST bulk insert

ORACLE

The response codes for POST bulk insert are described.

200

Success — response body contains an array with the assigned keys for inserted
objects. For example:

{ "items" : [{ "id" : "12345678",
"etag" S,
"lastMdified" : "..."
"created" T
{ "id" : "23456789",
"etag" S,
"lastMdified" : "..."
"created" R

"hashore" : false }

401

Access is not authorized.

4-23

Chapter 4
POST bulk delete

404

Collection was not found.

405
Collection is read-only.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.15 POST bulk delete

POST bulk delete deletes all or a subset of objects from a specified collection, using a
filter to specify the subset.

Note:

If you delete all objects from a collection, the empty collection continues to
exist. To delete the collection itself, use DELETE collection.

There are two bulk-delete operations, with the HTTP POST actions del ete and

truncat e, respectively. Action del et e is more general; you can use it to delete some or
all objects in a collection. Action truncat e always deletes all objects from the collection.
Action del et e is driven by a filter, which selects the objects to delete.

* URL Pattern for POST bulk delete
The URL pattern for PCST bulk delete is described.

* Request Body for POST bulk delete (Optional)

* Response Codes for POST bulk delete
The response codes for POST bulk delete are described.

Related Topics

« DELETE collection
DELETE collection deletes a collection.

4.15.1 URL Pattern for POST bulk delete

ORACLE

The URL pattern for POST bulk delete is described.

Delete some or all objects from a collection, as determined by a filter using either of
these URI patterns:

/ ords/ dat abase- schema/ soda/ ver si on/ cust om acti ons/ del et e/ col | ection

/ ords/ dat abase- schema/ soda/ ver si on/ col | ecti on?acti on=del ete

4-24

Chapter 4
POST bulk delete

Delete all objects from a collection (truncate the collection) using either of these URI
patterns:

/ ords/ dat abase- schena/ soda/ ver si on/ cust om act i ons/truncat e/ col | ection
/ ords/ dat abase- schena/ soda/ ver si on/ col | ection?acti on=truncate

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

Action Description

del ete Required. Specifies the deletion of all or a subset of objects
from col | ecti on, using a filter to specify the subset. (The filter
must be present, but it can be the empty object, {}.)

truncate Required. Specifies the deletion of all objects from col | ecti on.
Does not use a filter.

WARNING:

If you specify del et e as the action, and you use the empty object, {}, as the
filter specification, then the operation deletes all objects from the collection.

4.15.2 Request Body for POST bulk delete (Optional)

If the action is del et e (not truncat e) then the request body contains the filter (QBE) that
specifies which documents to delete from the collection.

¢ See Also:

Oracle Database SODA for Java Developer's Guide for information about
SODA filter specifications

4.15.3 Response Codes for POST bulk delete

ORACLE

The response codes for POST bulk delete are described.

200

Success — response body contains the number of deleted objects, as the value of
fields count and itenmsDel et ed. For example:

{ "count" . 42,
"itemsDel eted : 42 }

401

Access is not authorized.

4-25

Chapter 4
POST bulk update (patch)

404

Collection not found.

405
Collection is read-only.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.16 POST bulk update (patch)

The PGST bulk update operation updates (patches) the objects of a specified collection.

Objects that match a QBE are patched according to a JSON Patch specification.

" Note:

To use operation PCST bulk update you need Oracle Database Release 18¢
or later.

* URL Pattern for POST bulk update (patch)
The URL pattern for POST bulk update is described.

* Request Body for POST bulk update (patch)
The request body for PGST bulk update is an array of objects.

* Response Codes for POST bulk update (patch)
The response codes for POST bulk update are described.

Related Topics

e Patching Multiple JSON Documents in a Collection with SODA for REST
You can update (patch) multiple JSON documents in a collection by querying the
collection to match those documents and specifying the changes to be made. You
specify the update with a JSON Patch specification, using QBE operator $pat ch.
You use HTTP operation POST with custom-action updat e in the request URL.

4.16.1 URL Pattern for POST bulk update (patch)

ORACLE

The URL pattern for POST bulk update is described.
Update one or more objects of a collection, using either of these URI patterns:

[ords/ dat abase- schema/ soda/ ver si on/ cust om act i ons/ updat e/ col | ecti on
[ords/ dat abase- schema/ soda/ ver si on/ col | ecti on?acti on=updat e

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

4-26

Chapter 4
POST index

Parameter Description

action=update Required, if the second syntax form is used. Specifies that the
kind of action is a bulk update.

4.16.2 Request Body for POST bulk update (patch)

The request body for PGST bulk update is an array of objects.

The request body is a QBE that has a $pat ch field whose value is a JSON Patch
specification, as in Example 3-10.

4.16.3 Response Codes for POST bulk update (patch)

The response codes for POST bulk update are described.

200

Success — response body contains the number of objects updated, as the value of
fields count and it emsUpdat ed. For example:

{ "count" . 42,
"itemsUpdated : 42

401

Access is not authorized.

405
Not allowed: collection is read-only.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.17 POST index

PCST index creates indexes on the documents in a specified collection.

< Note:

To create an index with SODA you need Oracle Database Release 12c
(12.2.0.1) or later. But to create a B-tree index that for a DATE or Tl MESTAMP
value you need Oracle Database Release 18c (18.1) or later.

e URL Pattern for POST index
The URL pattern for POST index is described.

ORACLE 4-27

Chapter 4
POST index

* Request Body for POST index
The request body for PCST index is a SODA index specification.

» Response Codes for POST index
The response codes for POST index are described.

4.17.1 URL Pattern for POST index

The URL pattern for POST index is described.
Index one or more objects of a collection, using either of these URI patterns:

/ ords/ dat abase- schena/ soda/ ver si on/ cust om act i ons/ i ndex/ col | ecti on
/ or ds/ dat abase- schena/ soda/ ver si on/ col | ection?acti on=i ndex

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

Parameter Description

acti on=i ndex Required, if the second syntax form is used. Specifies that the
action is an indexing action.

4.17.2 Request Body for POST index

The request body for PCST index is a SODA index specification.

A SODA index specification is a JISON object that specifies a particular kind of Oracle
Database index, which is used for operations on JSON documents. You can specify
these kinds of index:

* B-tree: Used to index scalar JSON values.
e Spatial: Used to index GeoJSON geographic data.
e Search: Used for one or both of the following:
— Ad hoc structural queries or full-text searches
— JSON data guide

" Note:

To create a data guide-enabled JSON search index, or to data guide-enable
an existing JSON search index, you need database privilege CTXAPP and
Oracle Database Release 12c (12.2.0.1) or later.

ORACLE 4-28

Chapter 4
POST unindex

" See Also:

e Oracle Database Introduction to Simple Oracle Document Access
(SODA)

for an overview of using SODA indexing

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for information about SODA index specifications

4.17.3 Response Codes for POST index

The response codes for POST index are described.

200

Success.

401

Access is not authorized.

404
Collection was not found.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.18 POST unindex

PCST unindex deletes indexes on objects in a specified collection.

* URL Pattern for POST unindex
The URL pattern for POST unindex is described.

* Request Body for POST unindex
The request body for POST unindex is a SODA index specification. But only the
name of the index need be specified — the rest of the index specification is
ignored.

* Response Codes for POST unindex
The response codes for POST unindex are described.

4.18.1 URL Pattern for POST unindex

The URL pattern for POST unindex is described.

Unindex one or more objects of a collection, using either of these URI patterns:

/ ords/ dat abase- schema/ soda/ ver si on/ cust omt act i ons/ uni ndex/ col | ection
/ ords/ dat abase- schema/ soda/ ver si on/ col | ecti on?acti on=uni ndex

ORACLE 4-29

Chapter 4
PUT collection

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

Parameter Description

acti on=uni ndex Required, if the second syntax form is used. Specifies that the
action is an unindexing action.

4.18.2 Request Body for POST unindex

The request body for PCST unindex is a SODA index specification. But only the name of
the index need be specified — the rest of the index specification is ignored.

" See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)
for information about SODA index specifications

4.18.3 Response Codes for POST unindex

The response codes for POST unindex are described.

200

Success.

401

Access is not authorized.

404
Collection was not found.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.19 PUT collection

PUT collection creates a collection if it does not exist.

* URL Pattern for PUT collection
The URL pattern for PUT collection is described.

e Request Body for PUT collection (Optional)
The request body for PUT collection optionally contains a collection specification,
which defines the metadata of the collection that is created. (If no specification is
present then the default metadata is used.)

ORACLE 4-30

Chapter 4
PUT object

* Response Codes for PUT collection
The response codes for PUT collection are described.

Related Topics

e Creating a Document Collection with SODA for REST
How to use SODA for REST to create a new document collection is explained.

4.19.1 URL Pattern for PUT collection

The URL pattern for PUT collection is described.

[ords/ dat abase- schema/ soda/ ver si on/ col | ection

No parameters.

4.19.2 Request Body for PUT collection (Optional)

The request body for PUT collection optionally contains a collection specification, which
defines the metadata of the collection that is created. (If no specification is present
then the default metadata is used.)

Related Topics

e Collection Specifications
A collection specification is a JSON object that provides information about the
Oracle Database table or view underlying a collection object. The table or view is
created when you create the collection.

4.19.3 Response Codes for PUT collection

The response codes for PUT collection are described.

200

Collection with the same name and properties already exists.

201

Success—collection was created.

401
Access is not authorized.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.20 PUT object

PUT object replaces a specified object in a specified collection with an uploaded object
(typically a new version). If the collection has client-assigned keys and the uploaded

ORACLE 4-31

Chapter 4
PUT object

object is not already in the collection, then PUT inserts the uploaded object into the
collection.

* URL Pattern for PUT object
The URL pattern for PUT object is described.

* Request Body for PUT object
The request body for PUT object is the uploaded object.

* Response Codes for PUT object
The response codes for PUT object are described.

Related Topics

e Replacing Documents in a Collection with SODA for REST
An example is given of replacing a document in a collection with a newer version.
For this, you use HTTP operation PUT.

4.20.1 URL Pattern for PUT object

The URL pattern for PUT object is described.

There are two forms of the URL pattern:

» Pattern for a collection that has client-assigned keys:
[ords/ dat abase- schema/ soda/ ver si on/ col | ecti on/ key

» Pattern for a collection that has system-assigned keys:
/ or ds/ dat abase- schema/ soda/ ver si on/ col | ecti on/

No parameters.

4.20.2 Request Body for PUT object

The request body for PUT object is the uploaded object.

4.20.3 Response Codes for PUT object

ORACLE

The response codes for PUT object are described.

200

Success—object was replaced.

401

Access is not authorized.

405
Collection is read-only.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4-32

Collection Specifications

A collection specification is a JSON object that provides information about the Oracle
Database table or view underlying a collection object. The table or view is created
when you create the collection.

" Note:

In collection specifications, you must use strict JSON syntax. That is, you
must enclose each nonnumeric value in double quotation marks.

When you create a collection using PUT collection you can set custom metadata for it
by providing a collection specification for it as the request body.

Collection metadata for an existing collection can be returned as part of a GET catalog
operation.

Example 5-1 shows the collection specification that specifies the default collection
metadata.

Table 5-1 describes the collection specification fields and their possible values.

" Note:

If you omit one of the optional columns (created-on timestamp, last-modified
timestamp, version, or media type) from the collection specification then no

such column is created. At a minimum, a collection has a key column and a
content column.

Table 5-1 Collection Specification Fields

Field Description Possible Values

schemaNanme SQL name of database schema (user —
account) that owns table or view
underlying collection object.

t abl eNane or vi ewName SQL name of table or view underlying —
collection object.
keyCol umm. nane Name of key column. Default: I D
keyCol umm. sql Type SQL data type of key column. VARCHAR2 (default), NUMBER, RAW
keyCol umm. maxLengt h Maximum length of key column, if not of Default: 255
NUMBER data type.
keyCol umm. assi gnnent Met hod Key assignment method. SEQUENCE, GUI D, UUI D (default), or
CLI ENT

ORACLE 5-1

Table 5-1 (Cont.) Collection Specification Fields

Chapter 5

Field

Description

Possible Values

keyCol umm. sequenceNane

cont ent Col um. name
cont ent Col urm. sql Type

cont ent Col unm. maxLengt h

cont ent Col um. val i dati on

cont ent Col urm. conpr ess

cont ent Col um. cache

cont ent Col umm. encr ypt

ORACLE

If keyCol umn. assi gnnent Met hod is
SEQUENCE, then this field must specify
the name of a database sequence.

Name of content column.
SQL data type of content column.

Maximum length of content column, if
not of LOB data type.

Validation level of content column.
Corresponds to SQL conditioni s j son,
which determines the syntax to which
JSON content must conform.

STANDARD validates according to the
JSON RFC 4627 standard. (It

corresponds to the strict syntax defined

for Oracle SQL conditioni s json.)

STRI CT is the same as STANDARD, except

that it also verifies that the document
does not contain duplicate JSON field
names. (It corresponds to the strict

syntax defined for Oracle SQL condition

i s json when the keywords W TH
UNI QUE KEYS are also used.)
LAX validates more loosely. (It

corresponds to the lax syntax defined
for Oracle SQL conditioni s json.)

Some of the relaxations that LAX allows

include the following:

* It does not require JSON field
names to be enclosed in double
quotation marks ().

e It allows uppercase, lowercase, and
mixed case versions of true, f al se,

and nul | .
e Numerals can be represented in
additional ways.

Compression level for SecureFiles
stored in content column.

Caching of SecureFiles stored in
content column.

Encryption algorithm for SecureFiles
stored in content column.t

Name of existing database
sequence

Default: JSON_DOCUMENT
VARCHAR?, BLOB (default), CLOB

The default length is 4000 bytes. If
MAX_STRI NG_SI ZE = STANDARD then
maxLengt h can be at most 4000
(bytes). If MAX_STRI NG _SI ZE =
EXTENDED, then maxLengt h can be
at most 32767 (bytes).

STANDARD (default), STRI CT, LAX

NONE (default), Hl GH, MEDI UM LOW

TRUE, FALSE (default)

NONE (default), 3DES168, AES128,
AES192, AES256

5-2

Chapter 5

Table 5-1 (Cont.) Collection Specification Fields
]

Field Description Possible Values
creationTi meCol um. nanme Name of optional created-on timestamp Default: CREATED ON
column.

This column has SQL data type
TI MESTAMP and default value
SYSTI MESTAMP.

| ast Modi fi edCol um. nane Name of optional last-modified Default: LAST_MODI FI ED
timestamp column.

This column has SQL data type
TI MESTAMP and default value

SYSTI MESTAWP.
| ast Modi fi edCol um. i ndex Name of nonunique index on timestamp
column. The index is created if a name
is specified.
ver si onCol um. narme Name of optional version (ETag) Default: VERSI ON
column.

This column has SQL data type
VARCHAR2(255) unless the method is
SEQUENTI AL or TI MESTAMP, in which case
it has data type NUVBER.

Note: If the method is TI MESTAMP then

the version is stored as an integer

representation of the date and time with

microsecond precision. It does not store

a date/time string or a SQL date/time

type.
ver si onCol umm. et hod Versioning method. SEQUENTI AL, TI MESTAMP, UUI D,

SHA256 (default), MD5, NONE

medi aTypeCol um. nane Name of optional object media type

column.

This column has SQL data type

VARCHAR2(255) .

readOnly Read/write policy: TRUE means read- TRUE, FALSE (default)
only.

1 Set up Encryption Wallet before creating a collection with SecureFile encryption. For information about the SET ENCRYPTI ON
WALLET clause of the ALTER SYSTEMstatement, see Oracle Database SQL Language Reference.

Example 5-1 Default Collection Metadata

{
"schemaNanme" : "nySchemaName",
“tabl eName" : "nyTabl eNane",
"keyCol urm" :
{
"name" : "ID',
"sql Type" : "VARCHAR2",
"maxLength" @ 255,
"assi gnment Met hod" : "UU D'
¥
"cont ent Col um" :
{

ORACLE 5-3

5.1 Key Assignment Method

ORACLE

}

{

}

{
}

{
}

"name” : "JSON DOCUVENT",

"sql Type" : "BLOB",
"conpress" : "NONE',
"cache" : true,

“encrypt" : "NONE',

"validation" : "STANDARD'

ersi onCol um" :

"nane" : "VERSION',
"met hod" : " SHA256"

| ast Modi fi edCol um”
"nane" : "LAST_MODI Fl ED"

’reationTi meCol um" :
"name" : "CREATED ON'

eadOnly" : false

Key Assignment Method

Chapter 5
Key Assignment Method

The key assignment method determines how keys are assigned to objects that are

inserted into a collection.

Versioning Method

The versioning method determines how the REST server computes version values

for objects when they are inserted into a collection or replaced.

Related Topics

GET catalog

GET catalog gets all of the collection names for a given database schema (user

account), along with information about each collection.

" See Also:

e Oracle Database JSON Developer’s Guide for information about the

syntax possibilities used by SQL conditionis json

e http://tools.ietf.org/htn/rfc4627 for the JISON RFC 4627 standard

e Oracle Database SecureFiles and Large Objects Developer's Guide for

information about SecureFiles LOB storage

The key assignment method determines how keys are assigned to objects that are
inserted into a collection.

5-4

http://tools.ietf.org/html/rfc4627

ORACLE

Chapter 5
Key Assignment Method

Table 5-2 Key Assignment Methods

___|
Method Description

SEQUENCE Keys are integers generated by a database sequence. You must specify the
name of the sequence in the keyCol umm. sequenceNane field.

QU D Keys are generated by the SQL function SYS_GUI DX) , which returns a globally
unique RAWvalue (16 bytes). If necessary, the RAWvalue is converted to the SQL
data type specified by keyCol um. sgl Type.

uJl D Keys are generated by the built-in UUl D capability of the Java Virtual Machine
(JVM) on which the REST server is running, which returns a universally unique
RAWvalue. If necessary, the RAWvalue is converted to the SQL data type
specified by keyCol um. sqgl Type.

CLI ENT Keys are assigned by the client application (not recommended).

Oracle REST standards strongly recommend using server-assigned keys; that is,
avoiding the key assignment method CLI ENT. If you need simple numeric keys, Oracle
recommends SEQUENCE. If any unique identifier is sufficient, Oracle recommends UUI D.

If the key assignment method is SEQUENCE, GUI D, or UUI D, you insert a object into the
collection with operation POST object. The REST server always interprets PCST as an
insert operation, assigning a key and returning the key in the response body.

If the key assignment method is CLI ENT, you cannot use POST to a insert a object in the
collection, because the URL path does not include the necessary key. Instead, you
must insert the object into the collection using PUT object. If the object is not already
in the collection, then the REST server interprets PUT as an insert operation. If the
object is already in the collection, then the REST server interprets PUT as a replace
operation. PUT is effectively equivalent to the SQL statement MERGE.

Caution:

If client-assigned keys are used and the key column type is VARCHAR? then
Oracle recommends that the database character set be AL32UTF8. This
ensures that conversion of the keys to the database character set is lossless.

Otherwise, if client-assigned keys contain characters that are not supported
in your database character set then conversion of the key into the database
character set during a read or write operation is lossy. This can lead to
duplicate-key errors during insert operations. More generally, it can lead to
unpredictable results. For example, a read operation could return a value
that is associated with a different key from the one you expect.

Related Topics

 POST object
POST object inserts an uploaded object into a specified collection, assigning and
returning its key. The collection must use server-assigned keys.

* PUT object
PUT object replaces a specified object in a specified collection with an uploaded
object (typically a new version). If the collection has client-assigned keys and the

5-5

ORACLE

Chapter 5
Versioning Method

uploaded object is not already in the collection, then PUT inserts the uploaded
object into the collection.

5.2 Versioning Method

The versioning method determines how the REST server computes version values for
objects when they are inserted into a collection or replaced.

Table 5-3 Versioning Methods

Method

Description

MD5

SHA256
(default)

uul D

TI MESTAVP

SEQUENTI AL

NONE

The REST server computes an MD5 checksum on the bytes of object content.
For bytes with character data types (such as VARCHAR2 and CLOB), the
computation uses UTF-8 encoding. For bytes with data type BLOB, the
computation uses the encoding used to transmit the POST body, which can be
either UTF-8 or UTF-16.

For a bulk insert, the request body is parsed as an array of objects and the
bytes of the individual objects are re-serialized with UTF-8 encoding,
regardless of the encoding chosen for storage.

In all cases, the checksum is computed on the bytes as they would be
returned by a GET operation for the object.

The REST server computes a SHA256 checksum on the bytes of object
content. For bytes with character data types (such as VARCHAR2 and CLOB), the
computation uses UTF-8 encoding. For bytes with data type BLOB, the
computation uses the encoding used to transmit the POST body, which can be
either UTF-8 or UTF-16.

For a bulk insert, the request body is parsed as an array of objects and the
bytes of the individual objects are re-serialized with UTF-8 encoding,
regardless of the encoding chosen for storage.

In all cases, the checksum is computed on the bytes as they would be
returned by a GET operation for the specific object.

Ignoring object content, the REST server generates a universally unique
identifier (UUID)—a 32-character hexadecimal value—when the object is
inserted and for every replace operation (even if the replace operation does
not change the object content).

Ignoring object content, the REST server generates an integer value, derived
from the value returned by the SQL SYSTI MESTAMP function. The integer value
changes at the level of accuracy of the system clock (typically microseconds
or milliseconds).

Ignoring object content, the REST server assigns version 1 when the object is
inserted and increments the version value every time the object is replaced.

The REST server does not assign version values during insert and replace
operations. During GET operations, any non-null value stored in the version
column is used as an ETag. Your application is responsible for populating the
version column (using, for example, a PL/SQL trigger or asynchronous
program).

M5 and SHA256 compute checksum values that change when the content itself
changes, providing a very accurate way to invalidate client caches. However, they are
costly, because the REST server must perform a byte-by-byte computation over the
objects as they are inserted or replaced.

uuUl D is most efficient for input operations, because the REST server does not have to
examine every byte of input or wait for SQL to return function values. However,

5-6

ORACLE

Chapter 5
Versioning Method

replacement operations invalidate cached copies even if they do not change object
content.

TI MESTAMP is useful when you need integer values or must compare two versions to
determine which is more recent. As with UUI D, replacement operations can invalidate
cached copies without changing object content. Because the accuracy of the system
clock may be limited, TI MESTAWP is not recommended if objects can change at very high
frequency (many times per millisecond).

SEQUENTI AL is also useful when you need integer values or must compare two versions
to determine which is more recent. Version values are easily understood by human
users, and the version increases despite system clock limitations. However, the
increment operation occurs within SQL; therefore, the new version value is not always
available to be returned in the REST response body.

5-7

Security

ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

You should be familiar with the ORDS security features before reading this section.

Database role SODA_APP must be granted to database users before they can use REST
SODA. In addition, when a database schema (user account) is enabled in ORDS using
ords. enabl e_schem, a privilege is created such that only users with the application-
server role SODA Devel oper can access the service. Specifically, or ds. enabl e_schema
creates the following privilege mapping:

exec ords.create_rol e(' SODA Devel oper');
exec ords.create_privilege(p_nane => 'oracl e.soda. privil ege. devel oper',
p_rol e_name => ' SODA Devel oper');
exec ords.create_privilege_mapping(' oracle.soda. privilege.devel oper', '/soda/*');

This has the effect that, by default, a user must have the application-server role SODA
Devel oper to access the JSON document store.

You can also add custom privilege mappings. For example:

declare
| _patterns owa.vc_arr;
begin
| _patterns(1) := '/soda/latest/enployee';
| _patterns(2) := '/soda/latest/enployee/*";
ords. create_rol e(' Enpl oyeeRol e');
ords.create_privil ege(p_nane => ' Enpl oyeePrivil ege',

p_rol e_name => ' Enpl oyeeRol e');
ords.create_privilege_mappi ng(p_privilege_name => ' Enpl oyeePrivilege',
p_patterns => | _patterns);
comit;
end;

This example creates a privilege mapping that specifies that only users with role
Enpl oyeeRol e can access the enpl oyee collection.

When multiple privilege patterns apply to the same resource, the privilege with the
most specific pattern overrides the others. For example, patterns ' / soda/ | at est/
enpl oyees/ *' and'/soda/*' both match the request URL, http://exanpl e. or g/ ords/
qui ne/ soda/ | at est/enpl oyee/ i dl.

Since '/ soda/ | at est/ enpl oyees/ *' is more specific than '/ soda/ *' , only privilege
Enpl oyeePri vi | ege applies to the request.

¢ Note:

SODA_APP is an Oracle Database role. SCDA Devel oper is an application-server
role.

ORACLE 6-1

Chapter 6
Authentication Mechanisms

Authentication Mechanisms

ORDS supports many different authentication mechanisms. JSON document store
REST services are intended to be used in server-to-server interactions. Therefore,
two-legged OAuth (the client-credentials flow) is the recommended authentication
mechanism to use with the JSON document store REST services. However, other
mechanisms such as HTTP basic authentication, are also supported.

Security Considerations for Development and Testing
Security considerations for development and testing are presented.

¢ See Also:

Oracle REST Data Services Installation, Configuration, and Development
Guide for information about ORDS security features

6.1 Authentication Mechanisms

ORDS supports many different authentication mechanisms. JSON document store
REST services are intended to be used in server-to-server interactions. Therefore,
two-legged OAuth (the client-credentials flow) is the recommended authentication

mechanism to use with the JSON document store REST services. However, other
mechanisms such as HTTP basic authentication, are also supported.

See Also:

Oracle REST Data Services Installation, Configuration, and Development
Guide

6.2 Security Considerations for Development and Testing

Security considerations for development and testing are presented.

ORACLE

You can disable security and allow anonymous access by removing the default
privilege mapping:

exec ords. del ete_privilege_mappi ng(' oracle.soda. privilege. devel oper', '/soda/*")

However, Oracle does not recommend that you allow anonymous access in production
systems. That would allow an unauthenticated user to read, update, or drop any
collection.

You can also use command ords. war user to create test users that have particular
roles. In this example, replace placeholders <user _name> and <passwor d> with an
appropriate user name and <password>:

Create a user with role SODA Devel oper.
(Be sure to replace placehol der <user_name> here.)
java -jar ords.war user <user_nanme> "SODA Devel oper”

6-2

Chapter 6
Security Considerations for Development and Testing

Access the JSON docunent store using basic authentication
(Be sure to replace placehol ders <user_nane> and <password> here.)
curl -u <user_name>: <password> https://exanpl e. con ords/scott/soda/l atest/

ORACLE 6-3

Index

B

bulk insert of JSON documents, 3-6
bulk patch (update) of JSON documents, 3-18
bulk update (patch) of JSON documents, 3-18

C

collections
creating, 3-2
deleting, 3-4
listing, 3-3
listing documents in, 3-11
removing documents from, 3-9
specifications for, 5-1

D

database role

SODA_APP, 6-1
DELETE collection operation, 4-15
DELETE object operation, 4-16

deleting a single document from a collection, 3-9

deleting collections, 3-4
deleting documents from a collection, 4-24
documents
filtering in collections, 3-14
inserting into a collection
in bulk from JSON array, 3-6
inserting into collections
one at a time, 3-5
listing in collections, 3-11
removing from collections, 3-9
replacing in collections, 3-8
retrieving from collections, 3-7

F

filtering documents in collections, 3-14

G

GET actions operation, 4-10
GET collection operation, 4-11

ORACLE

GET object operation, 4-14
GET user collections operation, 4-7

inserting documents into a collection
in bulk from JSON array, 3-6

inserting documents into collections
one at a time, 3-5

installing SODA for REST, 2-1

J

JSON Patch specification, 3-16, 3-18, 4-18
JSON Pointer, 4-18

K

key assignment method, 5-4

L

listing collections in a database schema, 3-3
listing documents in collections, 3-11

P

PATCH operation for a JSON document, 4-17

patching (updating) multiple JSON documents,
3-18

patching a single JSON document, 3-16

POST bulk delete operation, 4-24

POST bulk insert operation, 4-22

POST bulk patch (update) operation, 4-26

POST bulk truncate (delete all) operation, 4-24

POST bulk update (patch) operation, 4-26

POST index operation, 4-27

POST object operation, 4-19

POST query operation, 4-21

POST unindex operation, 4-29

PUT collection operation, 4-30

PUT object operation, 4-31

Index-1

Q

query-by-example (QBE)
examples, 3-14

R

removing a single document from a collection,
3-9

replacing a document in a collection, 3-8

REST architectural style, 1-2

retrieving documents from collections, 3-7

S

security, 6-1
SODA for REST HTTP operations, 4-1
response bodies, 4-3

ORACLE

Index

SODA for REST HTTP operations (continued)
URI forms for, 4-2

SODA_APP database role, 6-1

specifications
collection, 5-1

U

updating (patching) a single JSON document,
3-16

updating (patching) multiple JSON documents,
3-18

URIs used for SODA for REST operations, 4-2

V

versioning method, 5-6

Index-2

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 SODA for REST Overview
	1.1 Overview of the Representational State Transfer (REST) Architectural Style

	2 Installing SODA for REST
	3 Using SODA for REST
	3.1 Creating a Document Collection with SODA for REST
	3.2 Discovering Existing Collections with SODA for REST
	3.3 Dropping a Document Collection with SODA for REST
	3.4 Inserting a Single Document into a Collection with SODA for REST
	3.5 Inserting Multiple Documents into a Collection with SODA for REST
	3.6 Finding Documents in Collections with SODA for REST
	3.7 Replacing Documents in a Collection with SODA for REST
	3.8 Removing a Single Document from a Collection with SODA for REST
	3.9 Removing Multiple Documents from a Collection with SODA for REST
	3.10 Listing the Documents in a Collection with SODA for REST
	3.11 Indexing the Documents in a Collection with SODA for REST
	3.12 Querying Using a Filter Specification with SODA for REST
	3.12.1 QBE.1.json
	3.12.2 QBE.2.json
	3.12.3 QBE.3.json
	3.12.4 QBE.4.json

	3.13 Patching a Single JSON Document with SODA for REST
	3.14 Patching Multiple JSON Documents in a Collection with SODA for REST

	4 SODA for REST HTTP Operations
	4.1 SODA for REST HTTP Operation URIs
	4.2 SODA for REST HTTP Operation Response Bodies
	4.3 GET catalog
	4.3.1 URL Pattern for GET catalog
	4.3.2 Response Codes for GET catalog

	4.4 GET user collections
	4.4.1 URL Pattern for GET user collections
	4.4.2 Response Codes for GET user collections

	4.5 GET JSON schema for collection
	4.5.1 URL Pattern for GET JSON schema for collection
	4.5.2 Response Codes for GET JSON schema for collection

	4.6 GET actions
	4.6.1 URL Pattern for GET actions

	4.7 GET collection
	4.7.1 URL Pattern for GET collection
	4.7.2 Response Codes for GET collection
	4.7.3 Links Array for GET collection

	4.8 GET object
	4.8.1 URL Pattern for GET object
	4.8.2 Request Headers for GET object
	4.8.3 Response Codes for GET object

	4.9 DELETE collection
	4.9.1 URL Pattern for DELETE collection
	4.9.2 Response Codes for DELETE collection

	4.10 DELETE object
	4.10.1 URL Pattern for DELETE object
	4.10.2 Response Codes for DELETE object

	4.11 PATCH JSON document
	4.11.1 URL Pattern for PATCH JSON document
	4.11.2 Request Headers for PATCH JSON document
	4.11.3 Request Body for PATCH JSON document
	4.11.4 Response Codes for PATCH JSON Document

	4.12 POST object
	4.12.1 URL Pattern for POST object
	4.12.2 Request Body for POST object
	4.12.3 Response Codes for POST object

	4.13 POST query
	4.13.1 URL Pattern for POST query
	4.13.2 Request Body for POST query
	4.13.3 Response Codes for POST query

	4.14 POST bulk insert
	4.14.1 URL Pattern for POST bulk insert
	4.14.2 Request Body for POST bulk insert
	4.14.3 Response Codes for POST bulk insert

	4.15 POST bulk delete
	4.15.1 URL Pattern for POST bulk delete
	4.15.2 Request Body for POST bulk delete (Optional)
	4.15.3 Response Codes for POST bulk delete

	4.16 POST bulk update (patch)
	4.16.1 URL Pattern for POST bulk update (patch)
	4.16.2 Request Body for POST bulk update (patch)
	4.16.3 Response Codes for POST bulk update (patch)

	4.17 POST index
	4.17.1 URL Pattern for POST index
	4.17.2 Request Body for POST index
	4.17.3 Response Codes for POST index

	4.18 POST unindex
	4.18.1 URL Pattern for POST unindex
	4.18.2 Request Body for POST unindex
	4.18.3 Response Codes for POST unindex

	4.19 PUT collection
	4.19.1 URL Pattern for PUT collection
	4.19.2 Request Body for PUT collection (Optional)
	4.19.3 Response Codes for PUT collection

	4.20 PUT object
	4.20.1 URL Pattern for PUT object
	4.20.2 Request Body for PUT object
	4.20.3 Response Codes for PUT object

	5 Collection Specifications
	5.1 Key Assignment Method
	5.2 Versioning Method

	6 Security
	6.1 Authentication Mechanisms
	6.2 Security Considerations for Development and Testing

	Index

