Oracle® REST Data Services

Installation, Configuration, and Development
Guide

Release 21.3
F47441-01
Octoberr 2021

ORACLE"

Oracle REST Data Services Installation, Configuration, and Development Guide, Release 21.3
F47441-01

Copyright © 2011, 2021, Oracle and/or its affiliates.

Primary Authors: Mamata Basapur, Chuck Murray

Contributors: Colm Divilly, Sharon Kennedy, Ganesh Pitchaiah, Kris Rice, Elizabeth Saunders, Jason Straub,
Vladislav Uvarov

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XiX
Documentation Accessibility XiX
Related Documents XX
Conventions XX
Changes in This Release for Oracle REST Data Services Installation,
Configuration, and Development Guide
Changes in Oracle REST Data Services Release 21.3 XXi
1 Introduction to Oracle REST Data Services
1.1 About Oracle REST Data Services 1-1
1.2 Requirements for Using ORDS 1-1
1.2.1 Supported Java EE Application Servers 1-2
1.2.2 Supported Oracle Application Express (APEX) Versions 1-2
1.2.3 System Requirements 1-2
1.2.4 About Using the Command-Line Interface 1-3
1.2.5 About the Database Users Used by Oracle REST Data Services 1-3
1.2.6 Privileges Required for Oracle REST Data Services 1-4
1.3 Using Oracle REST Data Services 1-6
1.4 Downloading, Configuring, and Installing and Oracle REST Data Services 1-7
1.4.1 Downloading Oracle REST Data Services 1-7
1.4.2 Configuring Oracle REST Data Services 1-8
1.4.3 Installing Oracle REST Data Services 1-8
1.4.3.1 ORDS Installer Privileges Script 1-8
1.4.3.2 Advanced Installation Using Command-Line Prompts 1-9
1.4.3.3 ORDS Parameter File 1-14
1.4.3.4 Simple Installation Using a Parameter File 1-27
1.4.3.5 Silent Installation Using a Parameter File 1-28
1.4.3.6 Changing Default Configuration from the Command Line 1-29
1.4.4 Validating the Oracle REST Data Services Installation 1-30

ORACLE

1.4.5 If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services 1-31

1.4.6 Using SQL Developer Oracle REST Data Services Administration (Optional) 1-31
1.4.6.1 About SQL Developer Oracle REST Data Services Administration 1-32
1.4.6.2 Configuring an Administrator User 1-32
1.4.7 Using OAuth2 in Non-HTTPS Environments 1-32
1.5 Deploying Oracle REST Data Services 1-33
1.5.1 Standalone Mode 1-33
1.5.1.1 Starting in Standalone Mode 1-34
1.5.1.2 Stopping the Server in Standalone Mode 1-35
1.5.1.3 Configuring a Doc Root for Non-Application Express Static Resources 1-35
1.5.2 Oracle WebLogic Server 1-36
1.5.2.1 About Oracle WebLogic Server 1-36
1.5.2.2 Configuring Oracle Application Express Images 1-37
1.5.2.3 Launching the Administration Server Console 1-37
1.5.2.4 Deploying ORDS on Oracle WebLogic Server 1-38
1.5.2.,5 Configuring WebLogic to Handle HTTP Basic Challenges Correctly 1-39
1.5.2.6 Verifying the State and Health of ords and i 1-40
1.5.3 Apache Tomcat 1-40
1.5.3.1 About Apache Tomcat 1-41
1.5.3.2 Configuring Oracle Application Express Images 1-41
1.5.3.3 Deploying ORDS on Apache Tomcat 1-41
1.5.4 Oracle Cloud Infrastructure 1-42
1.5.4.1 About Oracle Cloud Infrastructure 1-42
1.5.4.2 Configuring ORDS for High Availability on Oracle Cloud Infrastructure 1-43
1.5.4.3 Advantages of Deploying ORDS with High Availability on Oracle Cloud

Infrastructure 1-43
1.6 Monitoring ORDS 1-43
1.6.1 Enabling the ORDS Instance API 1-44
1.6.2 Authorization for Using the ORDS Instance API 1-44
1.6.3 API Document 1-44
1.6.4 Using the Instance API 1-44
1.7 Upgrading Oracle REST Data Services 1-44

1.8 Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST
Data Services 1-46

1.9 Authorizing Oracle REST Data Services to Access Oracle Data Guard Protected
Users 1-46

2 Configuring Oracle REST Data Services (Advanced)

2.1 Configuring Multiple Databases 2-1
2.1.1 About the Request URL 2-2
2.1.2 Configuring Additional Databases 2-2

ORACLE iv

2.1.3 Routing Based on the Request Path Prefix 2-3

2.1.3.1 Example of Routing Based on the Request Path Prefix 2-3
2.1.4 Routing Based on the Request URL Prefix 2-4
2.1.4.1 Example of Routing Based on the Request URL Prefix 2-4
2.2 Support for Oracle RAC Fast Connection Failover 2-4
2.3 Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel
Settings 2-5
2.4 Configuring REST-Enabled SQL Service Settings 2-6
2.5 Configuring the Maximum Number of Rows Returned from a Query 2-6
2.6 Configuring ICAP Server Integration for Virus Scan 2-7
2.7 Configuring ORDS with Kerberos Setup 2-7
2.7.1 Configuring ORDS with Kerberos Setup Using Command-line Interface 2-9
2.8 Configuring the Custom Error Pages 2-9
2.9 Configuring ORDS Metadata Cache 2-10
2.10 Developing RESTful Services for Use with Oracle REST Data Services 2-10
2.11 Managing ORDS Administrator Privilege 2-10
2.11.1 Provisioning ORDS_ADMINISTRATOR_ROLE to a User 2-10
2.11.2 Unprovisioning ORDS_ADMINISTRATOR_ROLE from a User 2-11
2.12 Managing ORDS Runtime Privilege 2-11
2.12.1 Provisioning ORDS_RUNTIME_ROLE to a User 2-12
2.12.2 Unprovisioning ORDS_RUNTIME_ROLE from a User 2-12
3 Installing and Configuring Customer Managed ORDS on Autonomous
Database
3.1 About Customer Managed Oracle REST Data Services on Autonomous Database 3-1
3.2 Downloading Wallet and Verifying Connection to Autonomous Database 3-2
3.3 Creating Customer Managed Oracle REST Data Services User 3-3
3.4 Downloading and Configuring Oracle REST Data Services 3-4
3.5 Preparing and Starting ORDS 3-6

4 Using the Multitenant Architecture with Oracle REST Data Services

4.1 Setting Up ORDS in a CDB Environment 4-1

4.1.1 Installation Enabling Multiple Releases 4-2

4.1.1.1 Command Line Installation 4-2

4.1.1.2 Advanced Installation 4-2

4.1.1.3 Silent Installation 4-3

4.1.2 Upgrading Oracle REST Data Services in a CDB Environment 4-4
4.1.2.1 Migrating Oracle REST Data Services in the CDB to Enable Multiple

Releases 4-4

4.1.3 Making All PDBs Addressable by Oracle REST Data Services 4-4

ORACLE Y

4.1.4 Uninstalling Oracle REST Data Services in a CDB Environment 4-4
4.2 Setting Up ORDS in an Application Container 4-4
4.2.1 Prerequisites for Creating ORDS in an Application Container 4-5
4.2.1.1 Creating an Application Root Container 4-6
4.2.2 Installing ORDS in the Application Root Container 4-6
4.2.3 Creating an Application Seed 4-7
4.2.4 Creating an Application PDB from the Application Seed 4-8
4.2.5 ORDS Configuration Files Setup 4-9
4.25.1 Specifying the ORDS Configuration Folder 4-9

4.2.5.2 Creating the ORDS Configuration Files for the Application Root
Container 4-10

4.2.5.3 Making all Application PDBs in an Application Root Container
Addressable by ORDS 4-11
4.2.6 Running ORDS 4-11
4.2.7 Validating ORDS in the Application Root Container 4-12
4.2.8 Upgrading ORDS in the Application Container 4-13
4.2.9 Uninstalling ORDS from the Application Container 4-14
4.2.10 Verifying ORDS in the Application Container 4-15
4.3 Making All PDBs Addressable by Oracle REST Data Services (Pluggable Mapping) 4-15
5 Developing Oracle REST Data Services Applications

5.1 Introduction to Relevant Software 5-2
5.1.1 About Oracle Application Express 5-2
5.1.2 About RESTful Web Services 5-2
5.2 Getting Started with RESTful Services 5-2
5.2.1 RESTful Services Terminology 5-3
5.2.2 About Request Path Syntax Requirements 5-3
5.2.3 "Getting Started" Documents Included in Installation 5-4
5.2.4 About cURL and Testing RESTful Services 5-5
5.2.5 Automatic Enabling of Schema Objects for REST Access (AutoREST) 5-5
5.2.5.1 Examples: Accessing Objects Using RESTful Services 5-6
5.2.5.2 Filtering in Queries 5-17
5.2.5.3 Auto PL/SQL 5-25
5.2.6 Manually Creating RESTful Services Using SQL and PL/SQL 5-31
5.2.6.1 About Oracle REST Data Services Mechanisms for Passing Parameters 5-32
5.2.6.2 Using SQL/JSON Database Functions 5-42
5.2.7 About Working with Dates Using Oracle REST Data Services 5-52
5.2.7.1 About Datetime Handling with Oracle REST Data Services 5-53
5.2.7.2 About Setting the Time Zone 5-53
5.2.7.3 Exploring the Sample RESTful Services in Application Express (Tutorial) 5-54
5.3 Configuring Secure Access to RESTful Services 5-59

ORACLE

Vi

5.3.1 Authentication
5.3.1.1 First Party Cookie-Based Authentication
5.3.1.2 Third Party OAuth 2.0-Based Authentication

5.3.2 About Privileges for Accessing Resources

5.3.3 About Users and Roles for Accessing Resources

5.3.4 About the File-Based User Repository

5.3.5 Tutorial: Protecting and Accessing Resources
5.3.5.1 OAuth Flows and When to Use Each
5.3.5.2 Assumptions for This Tutorial
5.3.5.3 Steps for This Tutorial

5.4 About Oracle REST Data Services User Roles

5.4.1 About Oracle Application Express Users and Oracle REST Data Services

Roles

5.4.1.1 Granting Application Express Users Oracle REST Data Services Roles
5.4.1.2 Automatically Granting Application Express Users Oracle REST Data

Services Roles
5.4.2 Controlling RESTful Service Access with Roles
5.4.2.1 About Defining RESTful Service Roles
5.4.2.2 Associating Roles with RESTful Privileges
5.5 Authenticating Against WebLogic Server User Repositories
5.5.1 Authenticating Against WebLogic Server
5.5.1.1 Creating a WebLogic Server User
5.5.1.2 Verifying the WebLogic Server User
5.6 Integrating with Existing Group/Role Models
5.6.1 About role-mapping.xmi
5.6.1.1 Parameterizing Mapping Rules
5.6.1.2 Dereferencing Parameters
5.6.1.3 Indirect Mappings
5.7 Integrating Oracle REST Data Services and WebLogic Server
5.7.1 Configuring ORDS to Integrate with WebLogic Server
5.8 Using the Oracle REST Data Services PL/SQL API
5.8.1 Creating a RESTful Service Using the PL/SQL API
5.8.2 Testing the RESTful Service
5.9 Oracle REST Data Services Database Authentication
5.9.1 Installing Sample Database Scripts
5.9.2 Enabling the Database Authentication
5.9.3 Configuring the Request Validation Function
5.9.4 Testing the Database Authenticated User
5.9.5 Uninstalling the Sample Database Schema
5.10 Overview of Pre-hook Functions
5.10.1 Configuring the Pre-hook Function
5.10.2 Using a Pre-hook Function

ORACLE

5-59
5-60
5-60
5-60
5-61
5-61
5-62
5-62
5-63
5-63
5-73

5-74
5-74

5-75
5-75
5-76
5-76
5-76
5-77
5-77
5-78
5-78
5-79
5-79
5-80
5-80
5-81
5-81
5-82
5-82
5-83
5-84
5-84
5-85
5-86
5-87
5-87
5-87
5-88
5-88

Vii

5.10.3 Processing of a Request 5-88

5.10.4 Identity Assertion of a User 5-88
5.10.5 Aborting Processing of a Request 5-89
5.10.6 Ensuring Pre-hook is Executable 5-89
5.10.7 Exceptions Handling by Pre-hook Function 5-89
5.10.8 Pre-hook Function Efficiency 5-90
5.10.9 Pre-Hook Examples 5-90
5.10.9.1 Installing the Examples 5-90
5.10.9.2 Uninstalling the Examples 5-93

5.11 Generating Hyperlinks 5-94
5.11.1 Primary Key Hyperlinks 5-94
5.11.1.1 Composite Primary Keys 5-96

5.11.2 Arbitrary Hyperlinks 5-96
5.11.2.1 About the related Link Relation 5-97
5.11.2.2 URL Resolution 5-98

5.12 About HTTP Error Responses 5-101
5.12.1 About error.responseFormat 5-101
5.12.1.1 HTML Mode 5-101
5.12.1.2 json Mode 5-101
5.12.1.3 auto Mode 5-101

6 REST-Enabled SQL Service

6.1 REST-Enabled SQL Service Terminology 6-1
6.2 Configuring the REST-Enabled SQL Service 6-2
6.3 Using cURL with REST-Enabled SQL Service 6-2
6.4 Getting Started with the REST-Enabled SQL Service 6-3
6.4.1 REST-Enabling the Oracle Database Schema 6-3
6.4.2 REST-Enabled SQL Authentication 6-4
6.4.3 REST-Enabled SQL Endpoint 6-4

6.5 REST-Enabled SQL Service Examples 6-5
6.5.1 POST Requests Using application/sgl Content-Type 6-5
6.5.1.1 Using a Single SQL Statement 6-5

6.5.1.2 Using a File with cURL 6-7

6.5.1.3 Using Multiple SQL Statements 6-8

6.5.2 POST Requests Using application/json Content-Type 6-11
6.5.2.1 Using a File with cURL 6-11

6.5.2.2 Specifying the Limit Value in a POST Request for Pagination 6-13

6.5.2.3 Specifying the Offset Value in a POST Request for Pagination 6-14

6.5.2.4 Defining Binds in a POST Request 6-16

6.5.2.5 Specifying Batch Statements in a POST Request 6-20

ORACLE viii

6.5.3 Example POST Request with DATE and TIMESTAMP Format 6-23

6.5.4 Data Types and Formats Supported 6-25

6.6 REST-Enabled SQL Request and Response Specifications 6-29
6.6.1 Request Specification 6-29
6.6.2 Response Specification 6-32

6.7 Supported SQL, SQL*Plus, and SQLcl Statements 6-37
6.7.1 Supported SQL Statements 6-37
6.7.2 Supported PL/SQL Statements 6-37
6.7.3 Supported SQL*Plus Statements 6-38
6.7.3.1 Set System Variables 6-38

6.7.3.2 Show System Variables 6-39

6.7.4 Supported SQLcl Statements 6-41

7 Migrating from mod_plsqgl to ORDS

7.1 Oracle HTTP Server mod_plsqgl Authentication 7-1
7.2 Example Oracle HTTP Server DAD file 7-1
7.3 Mapping mod_plsqgl Settings to ORDS 7-3
7.4 Example ORDS Configuration Files 7-7
7.4.1 Example Configuration File for Basic Authentication 7-7
7.4.2 Example Configuration File for Basic Dynamic Authentication 7-8
7.4.3 Example Configuration file for Custom Authentication 7-9
7.5 Example ORDS URL Mapping 7-9
7.6 Example ORDS Default Configuration 7-10
7.7 ORDS Authentication 7-10
7.7.1 Basic Authentication 7-10
7.7.2 Basic Dynamic Authentication 7-11
7.7.3 Custom Authentication 7-11
7.8 ORDS Features 7-12
7.8.1 Request Validation Function 7-12
7.8.2 Pre Process Feature 7-12
7.8.3 Post Process Feature 7-13
7.8.4 File Upload Feature 7-13
7.8.5 Cross-Origin Resource Sharing Feature 7-14

8 Oracle REST Data Services PL/SQL Package Reference

8.1 ORDS.CREATE_ROLE 8-1
8.2 ORDS.CREATE_SERVICE 8-1
8.3 ORDS.DEFINE_HANDLER 8-4
8.4 ORDS.DEFINE_MODULE 8-6

ORACLE iX

8.5

8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23

ORDS.DEFINE_PARAMETER
ORDS.DEFINE_PRIVILEGE
ORDS.DEFINE_SERVICE
ORDS.DEFINE_TEMPLATE
ORDS.DELETE_MODULE
ORDS.DELETE_PRIVILEGE
ORDS.DELETE_ROLE
ORDS.DROP_REST_FOR_SCHEMA
ORDS.ENABLE_OBJECT
ORDS.DROP_REST_FOR_OBJECT
ORDS.ENABLE_SCHEMA
ORDS.PUBLISH_MODULE
ORDS.RENAME_MODULE
ORDS.RENAME_PRIVILEGE
ORDS.RENAME_ROLE
ORDS.SET_MODULE_ORIGINS_ALLOWED
ORDS.SET_URL_MAPPING
ORDS.SET_SESSION_DEFAULTS
ORDS.RESET_SESSION_DEFAULTS

8-7

8-9
8-11
8-14
8-16
8-16
8-17
8-17
8-18
8-19
8-19
8-20
8-21
8-22
8-22
8-23
8-24
8-24
8-25

O Oracle REST Data Services Administration PL/SQL Package Reference

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19

ORACLE

ORDS_ADMIN.CREATE_ROLE
ORDS_ADMIN.DEFINE_HANDLER
ORDS_ADMIN.DEFINE_MODULE
ORDS_ADMIN.DEFINE_PARAMETER
ORDS_ADMIN.DEFINE_PRIVILEGE
ORDS_ADMIN.DEFINE_SERVICE
ORDS_ADMIN.DEFINE_TEMPLATE
ORDS_ADMIN.DELETE_MODULE
ORDS_ADMIN.DELETE_PRIVILEGE
ORDS_ADMIN.DELETE_ROLE
ORDS_ADMIN.DROP_REST_FOR_SCHEMA
ORDS_ADMIN.ENABLE_OBJECT
ORDS_ADMIN.DROP_REST_FOR_OBJECT
ORDS_ADMIN.ENABLE_SCHEMA
ORDS_ADMIN.PUBLISH_MODULE
ORDS_ADMIN.RENAME_MODULE
ORDS_ADMIN.RENAME_PRIVILEGE
ORDS_ADMIN.RENAME_ROLE
ORDS_ADMIN.SET_MODULE_ORIGINS_ALLOWED

9-1

9-2

9-4

9-5

9-7
9-10
9-13
9-14
9-15
9-15
9-16
9-16
9-18
9-18
9-19
9-20
9-21
9-22
9-22

9.20 ORDS_ADMIN.SET_URL_MAPPING 9-23
9.21 ORDS_ADMIN.ENABLE_HOUSEKEEPING_JOB 9-24
9.22 ORDS_ADMIN.DROP_HOUSEKEEPING_JOB 9-24
9.23 ORDS_ADMIN.PERFORM_HOUSEKEEPING 9-25
9.24 ORDS_ADMIN.SET_SESSION_DEFAULTS 9-25
9.25 ORDS_ADMIN.RESET_SESSION_DEFAULTS 9-26
9.26 ORDS_ADMIN.PROVISION_ADMIN_ROLE 9-26
9.27 ORDS_ADMIN.PROVISION_RUNTIME_ROLE 9-27
9.28 ORDS_ADMIN.UNPROVISION_ ROLES 9-28
9.29 ORDS_ADMIN.CONFIG_PLSQL_GATEWAY 9-28
10 Implicit Parameters

10.1 List of Implicit Parameters 10-1
10.1.1 About the :body parameter 10-5
10.1.2 About the :body_text Parameter 10-6
10.1.3 About the :content_type Parameter 10-6
10.1.4 About the :current_user Parameter 10-6
10.1.5 About the :status_code Parameter 10-6
10.1.6 About the :forward_location Parameter 10-7
10.1.7 About the Pagination Implicit Parameters 10-8
10.1.7.1 About the :page_offset Parameter 10-9
10.1.7.2 About the :page_size Parameter 10-9
10.1.7.3 About the :row_offset Parameter 10-10
10.1.7.4 About the :row_count Parameter 10-10
10.1.7.5 About the :fetch_offset Parameter 10-10
10.1.7.6 About the :fetch_size Parameter 10-10
10.1.7.7 About Automatic Pagination 10-10
10.1.7.8 About Manual Pagination 10-11

11 OAUTH PL/SQL Package Reference
11.1 OAUTH.CREATE_CLIENT 11-1
11.2 OAUTH.DELETE_CLIENT 11-2
11.3 OAUTH.GRANT_CLIENT_ROLE 11-3
11.4 OAUTH.RENAME_CLIENT 11-4
11.5 OAUTH.REVOKE_CLIENT_ROLE 11-4
11.6 OAUTH.UPDATE_CLIENT 11-5
ORACLE Xi

12 Enabling ORDS Database API

12.1 Basic Setup to Enable ORDS Database API 12-1
12.2 Advanced Setup to Enable the ORDS Database API 12-2

12.2.1 Pluggable Database Lifecycle Management 12-3

12.2.2 Disabling PDB Lifecycle Management 12-3
12.3 Creating a Default Administrator 12-4
12.4 Configuration of Database API Environment Services 12-5
12.5 Configuration of Database API with Open Service Broker APl Compatible Platforms 12-5

A Oracle REST Data Services Database Type Mappings

A.1 Oracle Built-in Types A-1
A.2 Handling Structural Database Types A-3
A.3 Oracle Geospacial Encoding A-5
A.4 Enabling Database Mapping Support A-5

B About the Oracle REST Data Services Configuration Files

B.1 Locating Configuration Files B-1
B.2 Setting the Location of the Configuration Files B-1
B.3 Understanding the Configuration Folder Structure B-1
B.4 Understanding the Configuration File Format B-2

B.4.1 Understanding the url-mapping.xml File Format B-2
B.5 Understanding Configurable Parameters B-3

C Troubleshooting Oracle REST Data Services

C.1 Enabling Detailed Request Error Messages C-1
C.2 ORDS User Defined Service C-1
C.3 Configuring Application Express Static Resources with Oracle REST Data Services C-13

D Creating an Image Gallery

D.1 Before You Begin D-1
D.1.1 About URIs D-1
D.1.2 About Browser Support D-2
D.1.3 Creating an Application Express Workspace D-2

D.2 Creating the Gallery Database Table D-2

D.3 Creating the Gallery RESTful Service Module D-3

D.4 Trying Out the Gallery RESTful Service D-4

D.5 Creating the Gallery Application D-5

ORACLE Xii

D.6 Trying Out the Gallery Application D-8
D.7 Securing the Gallery RESTful Services D-8
D.7.1 Protecting the RESTful Services D-8
D.7.2 Modifying the Application to Use First Party Authentication D-9
D.8 Accessing the RESTful Services from a Third Party Application D-11
D.8.1 Creating the Third Party Developer User D-12
D.8.2 Registering the Third Party Application D-12
D.8.3 Acquiring an Access Token D-12
D.8.4 Using an Access Token D-14
D.8.5 About Browser Origins D-15
D.8.6 Configuring a RESTful Service for Cross Origin Resource Sharing D-15
D.8.7 Acquiring a Token Using the Authorization Code Protocol Flow D-15
D.8.7.1 Registering the Client Application D-16
D.8.7.2 Acquiring an Authorization Code D-16
D.8.7.3 Exchanging an Authorization Code for an Access Token D-17
D.8.7.4 Extending OAuth 2.0 Session Duration D-18
D.8.8 About Securing the Access Token D-19

E Third-Party License Information
E.1 commons-io E-1
E.2 jackson-annotations 2.12.4 E-5
E.3 jackson-databind 2.12.4 E-9
E.4 jackson-dataformat-xml 2.12.4 E-22
E.5 jackson-core 2.12.4 E-30
E.6 jackson-jr2.12.4 E-34
E.7 Jakarta Json Processing API (JSON-P) 2.0.1 E-40
E.8 Google Guava 30.1.1 E-51
E.9 history 5.0.0 E-56
E.10 Eclipse Yasson 2.0.2 E-57
E.11 Eclipse Parsson 1.0.0 E-69
E.12 swagger-ui 3.45.1 E-79
E.13 Jetty 9.4.43.v20210629 E-172
E.14 Javassist 3.28.0 E-184
E.15 avsc5.5.3 E-203
E.16 babel-polyfill 7.8.7 E-203
E.17 CodeMirror 5.53.2 E-243
E.18 Dexie.js 3.0.3 E-243
E.19 Sheet]S 0.15.5 E-248
E.20 jQuery 3.5.1 E-252
ORACLE Xiii

E.21 Monaco Editor 0.22.1 E-253

Index

ORACLE" Xiv

List of Examples

1-1 Parameters to configure for Application Express and APEX RESTful Services and run in
standalone mode

1-2 Parameters to run in standalone mode using http

1-3 Parameters to run in standalone mode using https and providing the ssl certificate paths

1-4

1-5

1-6

2-1 Configuring custom error page for “HTTP 404" status code

2-2 Using Grant command

2-3 Using ORDS_ADMIN package method

2-4 Using REVOKE command

2-5 Using ORDS_ADMIN package method

2-6 Using Grant command

2-7 Using ORDS_ADMIN package method

2-8 Using REVOKE command

2-9 Using ORDS_ADMIN package method

4-1 Configuring ORDS for Application Express

4-2 Configuring ORDS only

5-1 Enabling the PL/SQL Function

5-2 Enabling the PL/SQL Procedure

5-3 Generating an Endpoint for the Stored Procedure

5-4 Package Procedure and Function Endpoints

5-5 Nested JSON Purchase Order with Nested Lineltems

5-6 PL/SQL Handler Code Used for a POST Request

5-7 GET Handler Code using Oracle REST Data Services Query on Relational Tables for
Generating a Nested JSON object

5-8 PL/SQL API Call for Creating a New test/:id Template and GET Handler in the demo Module

5-9 Setting the Duser.timezone Java Environment Variable in Standalone Mode

5-10 Setting the Duser.timezone Java Environment Variable in a Java Application Server

5-11 Setting Enabled for all Pools

6-1 Example cURL Command

6-2 Binds in POST Request

6-3 Complex Bind in POST Request

6-4 Batch statements

6-5 Batch bind values

ORACLE

1-24
1-26
1-27
1-29
1-30
1-30

2-9
2-11
2-11
2-11
2-11
2-12
2-12
2-12
2-12
4-10
4-10
5-27
5-27
5-29
5-30
5-43
5-44

5-49
5-50
5-54
5-54
5-86

6-2
6-16
6-18
6-20
6-21

XV

6-6 Oracle REST Data services Time Zone Set as Europe/London
6-7 PL/SQL Statement

7-1 dads.conf file

7-2 ords_conf/ords/conf/basic_auth.xml

7-3 ords_conf/ords/conf/basic_dynamic_auth.xml
7-4 ords_confs/ords/conf/custom_auth.xml

7-5 ords_conf/ords/url-mapping.xmi

7-6 ords_conf/ords/defaults.xml

7-7 security.requestValidationFunction

7-8 procedure.preProcess

7-9 procedure.postProcess

7-10 Table upload

7-11 Procedure upload

7-12 Curl command for file upload

10-1 Example

11-1 Example to Add Multiple Privileges
ORACLE

6-23
6-37
7-2
7-7
7-8
7-9
7-9
7-10
7-12
7-13
7-13
7-13
7-13
7-14
10-5
11-6

XVi

List of Figures

5-1 Selecting the Enable REST Service Option

5-2 Auto Enabling the PL/SQL Package Object

5-3 Adding an Anonymous PL/SQL Block to the Handler for the PUT Method

5-4 Setting the Bind Parameter |_salarychange to Pass for the PUT Method

5-5 Obtaining the URL to Call from the Details Tab

5-6 Displaying the Results from a SQL Query to Confirm the Execution of the PUT Method

5-7 Creating a Template Definition to Include a Route Pattern for Some Parameters or Bind Variables

5-8 Adding a SQL Query to the Handler

5-9 Using Browser to Show the Results of Using a Route Pattern to Send a GET Method with
Some Required Parameter Values

5-10 Using Browser to Show the Results of Using a Query String to Send a GET Method with
Some Parameter Name/Value Pairs

5-11 Complete Response Body in JSON Format

5-12 Generating Nested JSON Objects

ORACLE

5-28
5-29
5-34
5-34
5-35
5-36
5-37
5-38

5-39

5-41

5-48
5-52

XVii

List of Tables

1-1 Advanced Installation Prompts for Installing and Configuring ORDS
1-2 Options for Configuring Application Express or Migrating from mod_plsq|
1-3 Enabling Features in ORDS

1-4 Options for Running in Standalone Mode

1-5 Parameters for Installing Oracle REST Data Services

1-6 Parameters for Enabling SQL Developer Web

1-7 Parameters for Enabling REST-Enabled SQL

1-8 Parameters for Enabling Database API

1-9 Parameters for Installing into the CDB

1-10 Parameters for Configuring Application Express

1-11 Parameters for Installing Oracle REST Data Services in Standalone Mode
1-12 Miscellaneous Parameters

2-1 Configuration Properties for ORDS Metadata Cache

5-1 Parameters for batchload

7-1 Mappings of mod_plsqgl Directives to ORDS Settings

10-1 List of Implicit Parameters

10-2 Pagination Implicit Parameters

12-1 Open Service Broker Service Catalog

B-1 Oracle REST Data Services Configuration Files Parameters

C-1 List of ORDS user defined service

ORACLE

1-11
1-12
1-13
1-13
1-17
1-19
1-21
1-21
1-21
1-22
1-25
1-27
2-10
5-16

10-1
10-9
12-6
B-3
C-2

XViii

Preface

Oracle REST Data Services Installation, Configuration, and Development Guide explains how
to install and configure Oracle REST Data Services. (Oracle REST Data Services was called
Oracle Application Express Listener before Release 2.0.6.)

" Note:

Effective with Release 3.0, the title of this book is Oracle REST Data Services
Installation, Configuration, and Development Guide. The addition of "Development"
to the title reflects the fact that material from a previous separate unofficial
"Developer's Guide" has been included in this book in Developing Oracle REST
Data Services Applications.

Topics:

* Audience

* Documentation Accessibility
* Related Documents

 Conventions

Audience

This document is intended for system administrators or application developers who are
installing and configuring Oracle REST Data Services. This guide assumes you are familiar
with web technologies, especially REST (Representational State Transfer), and have a
general understanding of Windows and UNIX platforms.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

ORACLE Yix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

For more information and resources relating to Oracle REST Data Services, see the
following the Oracle Technology Network (OTN) site:

http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that is displayed on the screen, or text that you enter.

ORACLE XX

http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Changes in This Release for Oracle REST
Data Services Installation, Configuration, and
Development Guide

This section lists the changes in this document for release 21.3.

Changes in Oracle REST Data Services Release 21.3

This section lists the changes in Oracle REST Data Services for this release.
Other Changes

Following are the changes made in this release:

Updated Deploying Oracle REST Data Services with Oracle Cloud Infrastructure section.

Updated section Third-Party License Information.

ORACLE Wi

Introduction to Oracle REST Data Services

This chapter introduces Oracle REST Data Services and also describes how to install and
deploy it. REST stands for Representational State Transfer.

" Note:

Oracle REST Data Services was called Oracle Application Express Listener before
Release 2.0.6.

Topics:

* About Oracle REST Data Services

* Requirements for Using ORDS

» Using Oracle REST Data Services

* Downloading, Configuring, and Installing and Oracle REST Data Services
* Deploying Oracle REST Data Services

* Monitoring ORDS

» Upgrading Oracle REST Data Services

» Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST
Data Services

* Authorizing Oracle REST Data Services to Access Oracle Data Guard Protected Users

1.1 About Oracle REST Data Services

Oracle REST Data Services is a Java EE-based alternative for Oracle HTTP Server and
mod_plsql. The Java EE implementation offers increased functionality including a command
line based configuration, enhanced security, file caching, and RESTful web services. Oracle
REST Data Services also provides increased flexibility by supporting deployments using
Oracle WebLogic Server, Apache Tomcat, and a standalone mode.

The Oracle Application Express architecture requires some form of web server to proxy
requests between a web browser and the Oracle Application Express engine. Oracle REST
Data Services satisfies this need but its use goes beyond that of Oracle Application Express
configurations. Oracle REST Data Services simplifies the deployment process because there
is no Oracle home required, as connectivity is provided using an embedded JDBC driver.

1.2 Requirements for Using ORDS

ORACLE

This section provides information about supported platforms, system requirements, using
command-line interface, Database users, and privileges required for using ORDS .

1-1

Chapter 1
Requirements for Using ORDS

Topics:

e Supported Java EE Application Servers

e System Requirements

* About Using the Command-Line Interface

* About the Database Users Used by Oracle REST Data Services

* Privileges Required for Oracle REST Data Services

1.2.1 Supported Java EE Application Servers

Oracle REST Data Services supports the following Java EE application servers:

Application Server Supported Release

Oracle WebLogic Server 12c Release 2 (from version 12.2.1.3 and later) and 14c Release
and later

Apache Tomcat Release 8.5.x through Release 9.0.x

1.2.2 Supported Oracle Application Express (APEX) Versions

Oracle REST Data Services supports the currently supported versions of APEX.

" See Also:

The Oracle Application Express (Formerly HTML DB) table in the ORACLE
INFORMATION-DRIVEN SUPPORT document for supported versions of
APEX.

1.2.3 System Requirements

Oracle REST Data Services system requirements are as follows:

» Oracle Database (Enterprise Edition, Standard Edition or Standard Edition One)
release 11g Release 2 or later, or Oracle Database 11g Release 2 Express
Edition.

* Oracle Java 8 or later.

* Web browser requirements:
— Microsoft Internet Explorer 8.0 or later.
— Mozilla Firefox 3.0 or later.

— Google Chrome 2.0 or later.

ORACLE 1-2

Chapter 1
Requirements for Using ORDS

< Note:

Oracle Application Express is not a prerequisite for using Oracle REST Data
Services.

If Oracle Application Express is installed and if RESTful services have been
configured during the installation (see the step Configuring Oracle REST Data
Services in Oracle Application Express Installation Guide), then Oracle REST Data
Services supports it, including executing the RESTful services defined in Oracle
Application Express.

1.2.4 About Using the Command-Line Interface

Oracle REST Data Services provides several command line commands. For example, you
can configure the location where Oracle REST Data Services stores configuration files,
configure the database Oracle REST Data Services uses, and start Oracle REST Data
Services in standalone mode.

To display a full list of available commands, go to the directory or folder containing the
ords.war file and execute the following command:

java -jar ords.war help

A list of the available commands is displayed. To see instructions on how to use each of
these commands, enter help followed by the command name, for example:

java -jar ords.war help configdir

1.2.5 About the Database Users Used by Oracle REST Data Services

ORACLE

Oracle REST Data Services uses the following database users:

User Name Required Description

APEX_PUBLIC_USER Only if using Oracle If you use Oracle REST Data Services with
REST Data Services Oracle Application Express, this is the
with Oracle database user used when invoking PL/SQL

Application Express Gateway operations, for example, all Oracle
Application Express operations.
For information on unlocking the
APEX_PUBLIC_USER, see Configure
APEX_ PUBLIC_USER Account in Oracle
Application Express Installation Guide.

APEX_REST_PUBLIC_USER Only if using RESTful The database user used when invoking Oracle
Services defined in Application Express RESTful Services if
Application Express RESTful Services defined in Application

of version 5.0 or Express workspaces are being accessed
above.
APEX_LISTENER Only if using RESTful The database user used to query RESTful

Services defined in Services definitions stored in Oracle
Application Express Application Express if RESTful Services

of version 5.0 or defined in Application Express workspaces
above. are being accessed

1-3

Chapter 1
Requirements for Using ORDS

User Name Required Description

ORDS_METADATA Yes Owner of the PL/SQL packages used for
implementing many Oracle REST Data
Services capabilities. ORDS_METADATA is
where the metadata about Oracle REST Data
Services-enabled schemas is stored.

It is not accessed directly by Oracle REST
Data Services; the Oracle REST Data
Services application never creates a
connection to the ORDS_METADATA schema.
The schema password is set to a random
string, connect privilege is revoked, and the
password is expired.

ORDS_PUBLIC_USER Yes User for invoking RESTful Services in the
Oracle REST Data Services-enabled
schemas.

The APEX_<xxx> users are created during the Oracle Application Express installation
process.

1.2.6 Privileges Required for Oracle REST Data Services

As part of the Oracle REST Data Services installation, privileges are granted to
several users and roles:

* ORDS_RUNTIME_ROLE role

— ORDS_RUNTIME_ROLE is granted EXECUTE on the following packages if these
packages are not granted EXECUTE to PUBLIC:

* SYS.DBMS_LOB

* SYS.DBMS_SESSION
* SYS.DBMS_UTILITY
* SYS_WPIUTL

— ORDS_RUNTIME_ROLE is granted the necessary ORDS_METADATA object privileges
to determine the repository version and to access the connection pool
configurations.

e ORDS_PUBLIC_USER user
— ORDS_PUBLIC_USER is granted connect to allow connection to the database.

— ORDS_PUBLIC_USER is granted role, ORDS_RUNTIME_ROLE to allow the user to act
as an ORDS runtime user

* ORDS_ADMINISTRATOR_ROLE role

— ORDS_ADMINISTRATOR_ROLE is granted EXECUTE on
ORDS_METADATA.ORDS_ADMIN PL/SQL package.

* PUBLIC

— PUBLIC is granted EXECUTE on ORDS_METADATA.ORDS_REPVERSION view to allow
the repository version to be queried by anyone.

— PUBLIC is granted SELECT on many ORDS_METADATA views.

ORACLE 1-4

ORACLE

Chapter 1
Requirements for Using ORDS

PUBLIC is granted EXECUTE on ORDS_METADATA PL/SQL packages that are available for
developer users.

e ORDS_METADATA schema

ORDS_METADATA schema is granted on the following packages if these packages are
not granted EXECUTE on PUBLIC:

* SYS_DBMS_ASSERT

* SYS.DBMS_LOB

* SYS.DBMS_OUTPUT

* SYS.DBMS_SCHEDULER

* SYS.DBMS_SESSION

* SYS_DBMS_UTILITY

* SYS.DEFAULT_JOB_CLASS
* SYS_HTP

* SYS.OWA

* SYS_WPG_DOCLOAD

ORDS_METADATA is granted SELECT (11g) or READ (12c or later) on the following view if
it is not granted SELECT or READ to PUBLIC:

* SYS.SESSION_PRIVS

ORDS_METADATA schema is granted EXECUTE on the following packages:
* SYS.DBMS_CRYPTO

* SYS_DBMS_METADATA

ORDS_METADATA schema is granted SELECT (11g) or READ (12c or later) on the following
views:

* SYS.DBA_OBJECTS
* SYS.DBA_ROLE_PRIVS
* SYS.DBA_TAB_COLUMNS

ORDS_METADATA schema is granted SELECT including WITH GRANT OPTION on the
following views:

* SYS.USER_CONS_COLUMNS

* SYS.USER_CONSTRAINTS

* SYS.USER_OBJECTS

* SYS.USER_PROCEDURES

* SYS.USER_TAB_COLUMNS

* SYS.USER_TABLES

* SYS.USER_VIEWS

ORDS_METADATA schema is granted the following system privileges:
* ALTER USER

* CREATE ANY TRIGGER

1-5

Chapter 1
Using Oracle REST Data Services

* CREATE JOB
* CREATE PUBLIC SYNONYM
* DROP PUBLIC SYNONYM

— ORDS_METADATA schema is granted the necessary object privileges to migrate
Application Express REST data to ORDS_METADATA tables.

— ORDS_METADATA schema is granted ORDS_ADMINISTRATOR_ROLE,
ORDS_RUNTIME_ROLE roles with administrator option.

e PUBLIC is granted SELECT on many ORDS_METADATA tables and views.

e PUBLIC is granted EXECUTE on PL/SQL packages that are available for users to
invoke.

e ORDS_METADATA is granted EXECUTE on the following packages if these packages
are not granted EXECUTE to PUBLIC:

— SYS.DBMS_ASSERT

— SYS.DBMS_LOB

— SYS.DBMS_OUTPUT

— SYS.DBMS_SCHEDULER

— SYS.DBMS_SESSION

— SYS.DBMS_UTILITY

— SYS_DEFAULT_JOB_CLASS
— SYS.HTP

— SYS.OWA

— SYS.WPG_DOCLOAD

- ORDS_METADATA is granted the necessary object privileges to migrate Application
Express REST data to ORDS_METADATA tables.

1.3 Using Oracle REST Data Services

This section lists the steps to use Oracle REST Data Services.

1. Before deploying, you must download, install, and configure Oracle REST Data
Services.

* Downloading, Configuring, and Installing and Oracle REST Data Services
2. Deploy Oracle REST Data Services using one of the following options:
* Deploying Oracle REST Data Services
— Standalone Mode
— Oracle WebLogc Server
— Apache Tomcat

— Oracle Cloud Infrastructure

Related Topics

» Standalone Mode

ORACLE 1-6

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

* Oracle WebLogic Server

1.4 Downloading, Configuring, and Installing and Oracle REST
Data Services

You must complete the following steps listed in this topic before deploying to an application
server.

" Note:

The procedures in this topic apply to installing Oracle REST Data Services in a
traditional (non-CDB) database.

1. Downloading Oracle REST Data Services

2. Configuring Oracle REST Data Services

3. Installing Oracle REST Data Services

4. Validating the Oracle REST Data Services Installation
Related Topics

e Using the Multitenant Architecture with Oracle REST Data Services
e About the Database Users Used by Oracle REST Data Services

e If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

" See Also:

* Oracle REST Data Services Downloads

e To use the Oracle REST API for JSON Data Persistence, you must also install
the Oracle REST API. See "Oracle REST API Installation" in Oracle REST Data
Services SODA for REST Developer's Guide

1.4.1 Downloading Oracle REST Data Services

The topic describes the steps to download Oracle REST Data Services.

1. Download the file ords.versi on. nunber .zip from the Oracle REST Data Services
download page.

Note that the ver si on. nunber in the file name reflects the current release number.
2. Unzip the downloaded zip file into a directory (or folder) of your choice:
* UNIX and Linux: unzip ords.ver si on. nunber .zip

* Windows: Double-click the file ords.ver si on. nunmber .zip in Windows Explorer

ORACLE 1-7

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

¢ See Also:

Oracle REST Data Services Downloads

1.4.2 Configuring Oracle REST Data Services

You can configure ORDS to meet your requirements.

To display a full list of available commands, go to the directory or folder containing the
ords.war file and execute the following command:

java -jar ords.war help

¢ See Also:

Configuring Oracle REST Data Services (Advanced)

1.4.3 Installing Oracle REST Data Services

To install Oracle REST Data Services, choose one of the following installation options:

e Advanced Installation Using Command-Line Prompts
e Silent Installation Using a Parameter File

You can reinstall or uninstall Oracle REST Data Services if required.

¢ See Also:

Oracle REST Data Services Downloads

1.4.3.1 ORDS Installer Privileges Script

This section describes about the script file that provides privileges to the user to install,
upgrade, validate and uninstall ORDS.

Note:

This script is used when you do not want to use SYS AS SYSDBA to install,
upgrade, validate and uninstall ORDS for Oracle PDB or Oracle 11g.

Starting with ORDS 19.2 release, the Oracle REST Data Services installation archive
file contains a script, ords_installer_privileges.sql which is located in the installer
folder. The script provides the assigned database user the privileges to install,
upgrade, validate and uninstall ORDS in Oracle Pluggable Database or Oracle 11g.

Perform the following steps:

ORACLE 1-8

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

1. Using SQLcl or SQL*Plus, connect to Oracle PDB or 11g database with SYSDBA
privileges.

2. Execute the following script providing the database user:

SQL> @/path/to/installer/ords_installer_privileges.sql exampleuser
SQL> exit

You must use the specified database user to install, upgrade, validate and uninstall ORDS.

1.4.3.2 Advanced Installation Using Command-Line Prompts

ORACLE

You can perform an advanced installation in which you are prompted for the necessary
parameter values.

To perform an advanced installation, enter the following command:

java -jar ords.war install advanced

" Note:

Use the following on-line help command to check for additional options available for
the install command: java —jar ords.war help install

During installation, Oracle REST Data Services checks if configuration files already exist in
the specified configuration folder:

« If configuration files do not exist in that folder, then they are created. For example:
defaults.xml, apex_pu.xml files.

« If configuration files from an earlier release exist in that folder, Oracle REST Data
Services checks if <name>_pu.xml is present. If it is not present, then you are prompted to
enter the password for the ORDS_ PUBLIC_USER account. If the configuration files
<name>_al .xml and <name>_rt.xml from Release 2.0.n exist, then they are preserved.
(However, in Releases 2.0.n RESTful Services was optional, and therefore the files might
not exist in the configuration folder.)

» If multiple configuration files exist from a previous release (examples: apex.xml,
apex_al.xml, apex_rt.xml, sales.xml, sales_al.xml, sales rt.xml, ...), and if
<name>_pu.xml does not exist, then you are prompted to select the database
configuration so that the Oracle REST Data Services schema can be created in that
database.

The following shows an example for an advanced installation. In this example, if you
accepted the default value as 1 for Enter 1 if you wish to start in standalone mode or
2 to exit [1], the remaining prompts are displayed; and if you will be using Oracle
Application Express, then you must specify the APEX static resources location.

d:\ords> java -jar ords.war install advanced

This Oracle REST Data Services instance has not yet been configured.
Please complete the following prompts

Enter the location to store configuration data: /path/to/config

Specify the database connection type to use.

1-9

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Enter number for [1] Basic [2] TNS [3] Custom URL [1]:

Enter the name of the database server [localhost]:

Enter the database listen port [1521]:

Enter 1 to specify the database service name, or 2 to specify the database SID
[1]:

Enter the database service name:orcl

Enter 1 if you want to verify/install Oracle REST Data Services schema or 2 to
skip this step [1]:

Enter the database password for ORDS_PUBLIC_USER:

Confirm password:

Requires to login with administrator privileges to verify Oracle REST Data
Services schema.

Enter the administrator username:EXAMPLEUSER

Enter the database password for EXAMPLEUSER:

Confirm password:

Connecting to database user: EXAMPLEUSER url: jdbc:oracle:thin:@//localhost:1521/
orcl

Retrieving information.
Enter the default tablespace for ORDS_METADATA [SYSAUX]:
Enter the temporary tablespace for ORDS_METADATA [TEMP]:
Enter the default tablespace for ORDS_PUBLIC_USER [USERS]:
Enter the temporary tablespace for ORDS_PUBLIC_USER [TEMP]:
Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step.
If using Oracle Application Express or migrating from mod_plsql then you must
enter 1 [1]:
Enter the PL/SQL Gateway database user name [APEX_PUBLIC_USER]:
Enter the database password for APEX_PUBLIC_USER:
Confirm password:
Enter 1 to specify passwords for Application Express RESTful Services database
users (APEX_LISTENER, APEX_REST_PUBLIC_USER) or 2 to skip this step [1]:
Enter the database password for APEX_LISTENER:
Confirm password:
Enter the database password for APEX_REST_PUBLIC_USER:
Confirm password:
Enter a number to select a feature to enable:
[1] SQL Developer Web (Enables all features)
[2] REST Enabled SQL
[3] Database API
[4] REST Enabled SQL and Database API
[5] None
Choose [1]:
Enter 1 if you wish to start in standalone mode or 2 to exit [1]:
Enter the APEX static resources location:/path/to/apex/images
Enter 1 if using HTTP or 2 if using HTTPS [1]:
Enter the HTTP port [8080]:
OR
Enter 1 if using HTTP or 2 if using HTTPS [1]:2
Enter the HTTPS port [8443]:
Enter the SSL hostname:mysslhost
Enter 1 to use the self-signed certificate or 2 if you will provide the SSL
certificate [1]:

ORACLE 1-10

ORACLE

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

1.4.3.2.1 Descriptions for Advanced Installation Prompts

This section describes the options you can choose while performing advanced installation of

Oracle REST Data Services schema.

Table 1-1 Advanced Installation Prompts for Installing and Configuring ORDS

Options

Description

This Oracle REST Data Services
instance has not yet been configured.
Please complete the following prompts
Enter the location to store
configuration data:/path/to/config

Specify the database connection type to
use. Enter number for [1] Basic [2] TNS
[3] Custom URL [1]:

The following example is for a Basic Connection:
Enter the name of the database server
[localhost]:

Enter the database listen port [1521]:

Enter 1 to specify the database
service name, or 2 to specify the
database SID [1]:

Enter the database service name:orcl

The following example is for a TNS Connection:
Enter the TNS Network Alias:orcl

Specify the location for the ORDS configuration
files. If the location does not exist, then it will be
created.

Specify if you want a Basic connection, TNS
connection or Custom URL connection

Specify the Oracle database hostname.
Specify the Oracle database port.
Specify the Oracle database service name, if you

choose option 1. Otherwise, if you choose option 2
then, specify the Oracle database SID.

Specify the TNS network alias identifier.

The following example is for a Custom URL Connection:

Enter the Custom JDBC URL:
jdbc:oracle:thin:@//1ocalhost:1521/orcl

Enter 1
install
schema
or 2 to skip this step [1]:
Enter the database password for
ORDS_PUBLIC_USER:

Confirm password:

if you want to verify/
Oracle REST Data Services

Specify the custom url.

Specify 1 to install the Oracle REST Data Services
schema and create the Oracle REST Data
Services proxy user, ORDS_PUBLIC_USER.

Specify the proxy user, ORDS_PUBLIC_USER and
the corresponding password.

1-11

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-1 (Cont.) Advanced Installation Prompts for Installing and Configuring ORDS

___|
Options Description

Specify the user with ORDS Installer privileges or
Requires to login with administrator the SYS AS SYSDBA account.
privileges to verify Oracle REST Specify the password of the user.
Data Services schema.
Enter the administrator
username : EXAMPLEUSER
Enter the database password for
EXAMPLEUSER:
Confirm password:

Specify the default tablespace and temporary
Enter the default tablespace for tablespace for the Oracle REST Data Services
ORDS_METADATA [SYSAUX]: schema, ORDS_METADATA.
Enter the temporary tablespace for
ORDS_METADATA [TEMP]:

Specify the default tablespace and temporary
Enter the default tablespace for tablespace for the Oracle REST Data Services
ORDS_PUBLIC_USER [USERS]: proxy user, ORDS_PUBLIC_USER.
Enter the temporary tablespace for
ORDS_PUBLIC_USER [TEMP]

Table 1-2 Options for Configuring Application Express or Migrating from

mod_plsql
|
Options Description

You can perform one of the following:
Enter 1 if you want to use PL/SQL . |fyou are using Oracle Application

Gateway or 2 to skip this step. Express, then specify the PL/SQL

IT using Oracle gateway user as APEX_PUBLIC_USER and
Application Express or migrating the corresponding database password.
from mod_plsql « If you are migrating from Oracle

then you must enter 1 [1]: mod_plsgl, then specify the PL/SQL
Enter the PL/SQL Gateway database gateway database username and

user name [APEX_PUBLIC_USER]: database password.

e If you are not using either Oracle
Application Express or migrating from
Oracle mod_plsql, then select 2 to skip
this step.

Confirm password:
Enter the database password for
APEX_PUBLIC_USER:

ORACLE 1-12

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-2 (Cont.) Options for Configuring Application Express or Migrating

from mod_plsql

Options

Description

Enter 1 to specify passwords for
Application Express RESTful
Services

database user (APEX_LISTENER,
APEX_REST_PUBLIC_USER) or 2 to
skip this step [1]:

Enter the database password for
APEX_LISTENER:

Confirm password:

Enter the database password for
APEX_REST_PUBLIC_USER:

Confirm password:

If you have specified APEX_PUBLIC_USER
for the PL/SQL Gateway user, then you have
the option of using Application Express
RESTful Services.

Specify 2 if you do not want to use Application
Express RESTful Services and skip this step.

For Application Express 5.0 and above, option
1is required. The database users are created
using the script apex_rest_config.sql
provided in the Application Express installation
media.

Table 1-3 Enabling Features in ORDS

__|]
Description

Options

Enter a number to select a feature to

enable:

[1] SQL Developer Web (Enables all

features)

[2] REST Enabled SQL
[3] Database API

Specify 1 to enable all the features: SQL Developer

Web, REST Enabled SQL and Database API. Specify 2

for REST Enabled SQL or 3 for Database API. Specify 4

to enable both REST Enabled SQL and Database API.

Refer to "Accessing SQL Developer Web", "REST

[4] REST Enabled SQL and Database API

Enabled SQL Service", and "Enabling ORDS Database
API" documentation for more information.

[5] None
Choose [1]:
Table 1-4 Options for Running in Standalone Mode
. ___|]
Options Description
Enter 1 if you wish to start in Specify 1 to start in standalone mode using the
standalone mode or 2 to exit [1]: Jetty web server that is bundled with ORDS.
Enter the APEX static resources Specify the location of the Application Express
location:/path/to/apex/images images. This prompt will appear if you have
specified APEX_PUBLIC_USER for the PL/SQL
Gateway user.
Specify the HTTP port if you choose 1.
Enter 1 if using HTTP or 2 if using
HTTPS [1]:
Enter the HTTP port [8080]:
ORACLE

1-13

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-4 (Cont.) Options for Running in Standalone Mode

Options Description

Specify the HTTPS port and the Secure Socket
OR Layer (SSL) hostname if you choose 2.
Enter 1 if using HTTP or 2 if using You have the option of using the self-signed
HTTPS [1]:2 certificate which generates the self-signed

Enter the HTTPS port [8443]:

Enter the SSL hostname:mysslhost
Enter 1 to use the self-signed
certificate or 2 if you will provide
the SSL certifi

cate [1]:

OR

Enter 1 to use the self-signed
certificate or 2 if you will provide
the SSL certifi

cate [1]:2

Enter the path for the SSL
Certificate:/path/to/sslcert

Enter the path for the SSL
Certificates private
key:/path/to/sslcertprivatekey

certificate automatically.

Specify the path for the SSL certificate and the
path for SSL certificate private key if you choose
2.

Related Topics
e REST-Enabled SQL Service

* About the Oracle REST Data Services Configuration Files

e Starting in Standalone Mode

» Downloading, Configuring, and Installing and Oracle REST Data Services

* Installing Application Express and Configuring Oracle REST Data Services

e Accessing SQL Developer Web
e Enabling ORDS Database API

This section describes how to enable the Oracle REST Data Services (ORDS)

Database API.

1.4.3.3 ORDS Parameter File

Oracle REST Data Services can be installed in either simple or silent mode without

ORACLE

any user interaction.

You can perform either simple or silent installation for Oracle REST Data Services
using the parameters specified in the params/ords_params.properties file under the
location where you installed Oracle REST Data Services. This is the default Oracle
REST Data Services parameter file. You can edit that file to change the default values

to reflect your environment and preferences.

1-14

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

You can perform the installation for Oracle REST Data Services using the parameters
specified in the params/ords_params.properties file under the location where you installed
Oracle REST Data Services. This is the default Oracle REST Data Services parameter file.
The Oracle REST Data Services parameter file consists of key or value pairs in the format
key=value.

Alternatively, you have the option of specifying your own Oracle REST Data Services
parameter file by including the --parameterFile option. If the --parameterFile option is not
specified, the default Oracle REST Data Services parameter file is used.

1.4.3.3.1 Parameters Used in ORDS Parameter File

This section lists the parameters used in ORDS parameter file.
Topics:

« Parameters for Database Connection

e Parameters for Installing Oracle REST Data Services

o Parameters for Installing into the CDB

» Parameters for Configuring Application Express

e Parameters for Running in Standalone Mode

* Miscellaneous Parameters

1.4.3.3.1.1 Parameters for Database Connection

This section lists the database connection parameters that must be specified in the properties
file. You can specify a Basic, TNS or Custom URL connection.

Topics:
e Parameters for Basic Connection

» Parameters for TNS Connection

» Parameters for Custom URL Connection

1.4.3.3.1.1.1 Parameters for Basic Connection

ORACLE

This section lists the parameters that must be specified in the properties file for basic
database connection.

For basic connection, you must specify db.hostname and db.port database connection
parameters. In addition, specify either db.servicename or db.sid parameters. If you are
specifying a database connection to an Oracle 12.x PDB, then provide the db.servicename
parameter.

Key Type Description Example
db.connectionType string Specifies the connection basic
type. The value is
basic.
db_hostname string Specifies the host myhostname
system for the Oracle
database.
db._port numeric Specifies the database 1521

listener port.

1-15

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Key Type Description Example
db.servicename string Specifies the network orcl.example.com
service name of the
database.
db.sid string Specifies the name of orcl

the database.

1.4.3.3.1.1.2 Parameters for TNS Connection
This section lists the parameters for TNS connection to install ORDS.

Key Type Description Example

db.connectionType string Specifies the tns
connection type. The
value is tns.

db.tnsDirectory string Specifies the folder of /path/to/
where the tnsfolder
tnsnames.orafile is
located.

db.tnsAliasName string Specifies the tns alias orcl

name that must exist
in the thsnames.ora
file.

1.4.3.3.1.1.3 Parameters for Custom URL Connection
This section lists the parameters for Custom URL connection to install ORDS.

Key Type Description Example

db.connectionType string Specifies the customurl
connection type. The
value is customurl.

db.customURL string Specifies the custom jdbc:oracle:thin:
url. a//
localhost:1521/
orcl

1.4.3.3.1.2 Parameters for Installing Oracle REST Data Services

This section lists the parameters required for installing Oracle REST Data Services
schema.

To install Oracle REST Data Services schema, following parameters must be
specified:

* Username and password of the user with ORDS Installer privileges or with SYS
AS SYSDBA account.

e ORDS_PUBLIC_USER password

» Existing default and temporary tablespaces for the ORDS_METADATA schema
and ORDS_PUBLIC_USER.

ORACLE 1-16

< Note:

Table 1-5 Parameters for Installing Oracle REST Data Services

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

If all of the default and temporary tablespace parameters are omitted in the Oracle
REST Data Services parameter file, then the Oracle database default and
temporary tablespaces are used.

Key Type Description Example
rest.services.ords. boolean Specifies whether to true
add install the Oracle REST

Data Services schema.

Set the value to true.

Supported values:

e true

o false (default)
user.public.passwor string Specifies the password password
d for

ORDS_PUBLIC_USER.
schema.tablespace.d string Specifies the SYSAUX
efault ORDS_METADATA

default tablespace.

Specify an existing

default tablespace.
schema.tablespace.t string Specifies the TEMP
emp ORDS_METADATA

temporary tablespace.

Specify an existing

temporary tablespace.
user.tablespace.def string Specifies the SYSAUX
ault ORDS_PUBLIC_USER

default tablespace.

Specify an existing

default tablespace.
user.tablespace.tem string Specifies the TEMP
p ORDS_PUBLIC_USER

temporary tablespace.

Specify an existing

temporary tablespace.
bequeath.connect boolean Specifies whether to true

connect as bequeath.
Supported values:

e true

- false (default)

Related Topics

» Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST

Data Services

ORACLE

1-17

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

1.4.3.3.1.3 Parameters for Enabling SQL Developer Web

This section lists the parameters for enabling SQL Developer Web.

ORACLE 1-18

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-6 Parameters for Enabling SQL Developer Web
]

Key Type Description Example
feature.sdw string Specifies if SQL true
Developer Web is
enabled.
\J
N
t
e

O'(DE"CD'OO_(D<(DUI_,O(/)(QJ_'_O'QJJ(D"OTI

=~ "TO0O0ODC < O®I "

ORACLE 1-19

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-6 (Cont.) Parameters for Enabling SQL Developer Web

- ___|
Key Type Description Example

=0 N D =T O S5 Mere»

DS S ADODT OV -0 0L 3O =m0 QD

Default value is false.

restEnabledSql .acti string Specifies if REST- true
ve Enabled SQL is

enabled.

Default value is false.
database.api.enabled string Specifies if the true

Database API is
enabled. Default value is
false.

1.4.3.3.1.4 Parameters for Enabling REST-Enabled SQL

This section describes the parameter for enabling REST-Enabled SQL.

ORACLE 1-20

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-7 Parameters for Enabling REST-Enabled SQL
]

Key Type Description Example
restEnabledSqgl .acti string Specifies if REST- true
ve Enabled SQL is

enabled.

Default value is false.

1.4.3.3.1.5 Parameters for Enabling Database API

This section describes the parameter for enabling Database API.

Table 1-8 Parameters for Enabling Database API
- __]

Key Type Description Example
database.api.enable string Specifies if Database true
d APl is enabled.

Default value is false.

1.4.3.3.1.6 Parameters for Installing into the CDB

This section lists the parameters required for installing Oracle REST Data Services into the
CDB and all of its PDBs.

Oracle database 12.x provides you the option of installing Oracle REST Data Services in the
CDB and all of its PDBs.

Note:

Provide the CDB service name for db.servicename or sid for db.sid.

Table 1-9 Parameters for Installing into the CDB

. __|
Key Type Description Example

pdb.open.asneeded boolean Specifies whether to true
open all PDBs in read
write mode if their status
is either closed or read
only. If the value is set to
true, then the following
PDB parameters are

ignored:
« pdb.open.readwr
ite

e pdb.skip.closed
e pdb.skip.readon

ly
Supported values:
o true

» false (default)

ORACLE 1-21

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-9 (Cont.) Parameters for Installing into the CDB

- ___|
Key Type Description Example

pdb.open.readwrite string Specifies the list of PDB PDB1, PDB2, MYPDB
service names to open
for read write mode if
their status is read only.

pdb.skip.closed boolean Specifies whether to true
skip PDBs that are
closed.
Supported values:
o true

« false (default)

pdb.skip.readonly boolean Specifies whether to true
skip PDBs with read
only status.
Supported values:
o true

- false (default)
pdb.exclude string Specifies the list of PDB PDB3, PDB4, PDB_X

service names to
exclude for install.

Related Topics

e Setting Up ORDS in a CDB Environment
This section describes how to setup Oracle REST Data Services (ORDS) into a
multitenant container database (CDB) environment.

1.4.3.3.1.7 Parameters for Configuring Application Express
This section lists the parameters for using Application Express.

Table 1-10 Parameters for Configuring Application Express

___|
Key Type Description Example

plsqgl.gateway.add boolean Specifies whetherto true
configure Oracle
REST Data Services
for Application
Express. Set this
value to true.

Supported values:

. true
» false (default)
db_username string Specifies the PL/SQL APEX_PUBLIC_USER

gateway username.
For Application
Express, you must
specify
APEX_PUBLIC_USE
R.

ORACLE 1-22

ORACLE

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-10 (Cont.) Parameters for Configuring Application Express

Key Type

Description Example

db_password string

rest.services.ape boolean
x.add

user.apex. listene string
r.password

user.apex.restpub string
lic.password

Specifies the
password for
APEX_PUBLIC_USE
R. The password must
match
APEX_PUBLIC_USE
R database password.

password

Specifies whetherto true
configure Oracle

REST Data Services

for Application

Express RESTful

Services.

Supported values:

o true

« false (default)

Set this value to true if

you want to use APEX
RESTful Services.

Specifies the
password for
APEX_LISTENER. If
rest.services.ape
x.add is set to true,
you must provide a
password for
APEX_LISTENER.
The password must
match
APEX_LISTENER
database password.
Otherwise, if
rest_services.ape
X.add is set to false,
omit this parameter.

password

Specifies the
password for
APEX_REST_PUBLIC
_USER. If
rest.services.ape
X.add is set to true,
you must provide a
password for
APEX_REST_PUBLIC
_USER. The
password must match
APEX_REST_PUBLIC
_USER database
password. Otherwise,
if

rest.services. ape
X.add is set to false,
omit this parameter.

password

1-23

ORACLE

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-10 (Cont.) Parameters for Configuring Application Express

Key Type Description Example
security._external String Comma separated list http://example.com,
SessionTrustedOri of origins that are https://
gins trusted to make CORS example.com:8443
requests for PL/SQL
Gateway or APEX.

Example 1-1 Parameters to configure for Application Express and APEX
RESTful Services and run in standalone mode

Following example shows parameters to install Oracle REST Data Services, configure
for Application Express and APEX RESTful Services and run in standalone mode
using http:

Note:

Passwords in the parameter file will be encrypted during installation. The
encrypted passwords are stored in the parameter file. For example,
user.public.password=@0585904F6C9B442532D5212962835D00C8.

db.hostname=localhost
db._password=password

db_port=1521
db.servicename=orcl.example.com
db.username=APEX_PUBLIC_USER
plsgl.gateway.add=true
rest.services.apex.add=true
rest.services.ords.add=true

schema. tablespace.defaul t=SYSAUX
schema.tablespace . temp=TEMP
standalone_http.port=8080
standalone.mode=true
standalone._static. images=/path/to/images
standalone.use.https=false

user.apex. listener_password=password
user.apex.restpublic.password=password
user._public.password=password
user.tablespace.defaul t=SYSAUX

user .tablespace. temp=TEMP

1-24

¢ See Also:

Guide.

Chapter 1

Downloading, Configuring, and Installing and Oracle REST Data Services

e Forinformation on APEX_PUBLIC_USER, refer to section Configuring the
APEX_PUBLIC_USER Account, in Oracle Application Express Installation

e For information on APEX_LISTENER and APEX_REST_PUBLIC_USER, refer
to section, Configuring RESTful Services with Oracle REST Data Services in
Oracle Application Express Installation Guide.

1.4.3.3.1.8 Parameters for Running in Standalone Mode

ORACLE

This section lists parameters for running Oracle REST Data Services in standalone mode.

Table 1-11 Parameters for Installing Oracle REST Data Services in Standalone Mode

Key Type

Description Example

standalone.mode boolean

standalone.http.por numeric
t

standalone.use.http boolean
s

standalone.https.po numeric
rt

standalone.ssl.host string

standalone.use.ssl. boolean
cert

standalone.ssl .cert string
.path

Indicates whether to use true
the web application

server (Jetty) that is

included with Oracle

REST Data Services.

Supported values:

e true
» false (default)
Specifies the HTTP 8080

listener port.

Specifies whether to use true
https.

Specifies HTTPS 8443
listener port.

Specifies the Secure
Socket Layer (SSL)
certificate hostname.
You must specify this
option if you are using
https.

Specifies whether you true
will provide the SSL

certificate. If this value is

set to true, you must

specify the
standalone.ssl.cert
-path and

standalone.ssl .key.

path.

Specifies the SSL
certificate path. If you
are providing the SSL
certificate, you must
specify the certificate
location.

mysecurehost

/path/to/ssl/cert

1-25

ORACLE

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Table 1-11 (Cont.) Parameters for Installing Oracle REST Data Services in Standalone
Mode

Key Type Description Example
standalone.ssl .key. string Specifies the SSL /path/to/ssl/key
path certificate key path. If

you are providing the
SSL certificate, you
must specify the
certificate key location.

standalone.static.i string Specifies the location of /path/to/apex/
mages Application Express images

images. If you are using

Application Express,

specify the location of

Application Express

images.

" Note:

On Microsoft Windows systems, if you specify an Application Express static
images location for standalone.static. images, use the backslash character
(/) before the colon, and use a forwardslash for the folder separator. For
example, standalone.static. images=d\:/test/apex426/apex/images/

Example 1-2 Parameters to run in standalone mode using http

Following code snippet shows an example of the list of parameters to specify for
installing Oracle REST Data Services and running in standalone mode using http:

db.hostname=localhost
db._port=1521
db.servicename=orcl .example.com
plsql.gateway.add=false
rest.services.apex.add=false
rest.services.ords.add=true
schema. tablespace.defaul t=SYSAUX
schema. tablespace.temp=TEMP
standalone_http.port=8080
standalone.mode=true
standalone._use.https=false
user._public.password=password
user.tablespace.defaul t=SYSAUX
user.tablespace.temp=TEMP

1-26

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Example 1-3 Parameters to run in standalone mode using https and providing the ssli
certificate paths

Following code snippet shows an example of the list of parameters to specify for installing
and running Oracle REST Data Services in standalone mode using https and providing the
ssl certificate paths:

db.hostname=localhost

db.port=1521
db.servicename=orcl.example.com
plsql.gateway.add=false
rest.services.apex.add=false
rest.services.ords.add=true
schema.tablespace.defaul t=SYSAUX
schema.tablespace. temp=TEMP
standalone.https.port=8443
standalone.mode=true
standalone.ssl.cert.path=/path/to/ssl/cert
standalone.ssl.host=mysecurehost
standalone.ssl .key.path=/path/to/ssl/key
standalone.use.https=true
standalone.use.ssl.cert=true
user.public.password=password
user.tablespace.defaul t=SYSAUX
user.tablespace.temp=TEMP

Related Topics

e Standalone Mode

1.4.3.3.1.9 Miscellaneous Parameters

This section lists some miscellaneous parameters.

Table 1-12 Miscellaneous Parameters

|
Key Type Description Example

migrate.apex.rest boolean Specifies whether to true
migrate APEX RESTful
Services definitions to
Oracle REST Data
Services schema.

Supported values:
o true

» false (default)

1.4.3.4 Simple Installation Using a Parameter File

ORACLE

Oracle REST Data Services can be installed in simple mode without any user interaction.

You can perform a simple installation of Oracle REST Data Services using an ORDS
parameters file. A simple installation prompts you for the information if the required parameter
does not exist in the ORDS parameter file.

1-27

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Following is an example code snhippet for installing Oracle REST Data Services in
simple mode:

java -jar ords.war install simple
java -jar ords.war install --parameterFile /path/to/
my_params.properties simple

java -jar ords.war install
java -jar ords.war install --parameterFile /path/to/my params.properties

java -jar ords.war

" Note:

Use the following on-line help command to check for additional options
available for the install command: java —jar ords.war help install

1.4.3.5 Silent Installation Using a Parameter File

Oracle REST Data Services can be installed in silent mode without any user
interaction.

You can perform a silent installation of Oracle REST Data Services using an ORDS
parameters file. A silent installation must have the required parameters defined in the
parameter file; otherwise, an error occurs.

Following is an example code snippet for installing Oracle REST Data Services in
silent mode:

java -jar ords.war install --silent
java-jar ords.war install --silent --parameterFile /path/to/
my_params.properties

" Note:

Use the following on-line help command to check for additional options
available for the install command: java —jar ords.war help install

1.4.3.5.1 Parameters Required for Silent Installation

ORACLE

This section describes the parameters required for installing Oracle REST Data
Services in silent mode.

If you want to install Oracle REST Data Services in silent mode, then the required
parameters must be defined in the ORDS parameter file.

1-28

ORACLE

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

Parameter Group Required Parameters Description

Database Connection Refer to "Parameters for Specify Basic, TNS or Custom

Database Connection" section URL connection.
for the list of parameters.

Installing ORDS rest.services.ords.add If
Supported values: rest.services.ords.add=tr
. true ue, then refer to "Parameters
. false Used in ORDS Parameter File."
section for additional parameters.
Configuring for Application plsgl.gateway.add If plsql.gateway.add=true,
Express or PL/SQL Gateway Supported values: then refer to "Parameters for
. true Configuring Application Express"
. false section for additional required
parameters.
Running in Standalone Mode standalone.mode If standalone.mode=true,
Supported values: then refer to "Parameters for
. true Running Oracle REST Data

Services in Standalone Mode"
for additional required
parameters.

« false

Related Topics

Parameters for Database Connection
This section lists the database connection parameters that must be specified in the
properties file. You can specify a Basic, TNS or Custom URL connection.

Parameters for Installing Oracle REST Data Services
This section lists the parameters required for installing Oracle REST Data Services
schema.

Parameters Used in ORDS Parameter File
This section lists the parameters used in ORDS parameter file.

Parameters for Configuring Application Express
This section lists the parameters for using Application Express.

Standalone Mode

1.4.3.6 Changing Default Configuration from the Command Line

This section describes how you can update the ORDS default configuration file.

The following set property command is used to update the ORDS default configuration file:

$ java -jar ords.war set-property <property key> <value>

ORDS must be restarted for the changes to take effect.

Example 1-4

Examples of Enabling a Feature.

1-29

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

The following example updates the properties in the existing defaults.xml file to
enable SQL Developer Web.

$ java -jar ords.war set-property feature.sdw true
$ java -jar ords.war set-property restEnabledSql.active true
$ java -jar ords.war set-property database.api.enabled true

Example 1-5

The following example updates the properties in the existing defaults.xml file to
enable REST-Enable SQL.

$ java -jar ords.war set-property restEnabledSgl.active true
Example 1-6

The following example updates the properties in the existing defaults.xml file to
enable Database API.

$ java -jar ords.war set-property database.api.enabled true

1.4.4 Validating the Oracle REST Data Services Installation

ORACLE

If you want to check that the Oracle REST Data Services installation is valid, go to the
directory or folder containing the ords.war file and enter the validate command in the
following format:

java -jar ords.war validate [--database <dbnane>]

Note:

When you install Oracle REST Data Services, it attempts to find the Oracle
Application Express (APEX) schema and creates a view. This view joins the
relevant tables in the APEX schema to the tables in the Oracle REST Data
Services schema. If you install Oracle REST Data Services before APEX,
then Oracle REST Data Services cannot find the APEX schema and it
creates a stub view in place of the missing APEX tables.

Oracle highly recommends that you install Oracle REST Data Services after
APEX to ensure that the APEX objects, which Oracle REST Data Services
needs to query, are present. If you install Oracle REST Data Services before
APEX, then use the validate command to force Oracle REST Data Services
to reconstruct the queries against the APEX schema.

If --database is specified, <dbname> is the pool name that is stored in the Oracle
REST Data Services configuration files.

You are prompted for any necessary information that cannot be obtained from the
configuration of pool name, such as host, port, SID or service name, and the name
and password of the user with ORDS Installer privileges, or SYS AS SYSDBA user.

1-30

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

< Note:

If the validate command is run against a CDB, then it will validate the CDB and all of
its PDBs.

1.4.5 If You Want to Reinstall or Uninstall (Remove) Oracle REST Data

Services

If you want to reinstall Oracle REST Data Services, you must first uninstall the existing Oracle
REST Data Services; and before you uninstall, ensure that Oracle REST Data Services is
stopped.

Uninstalling Oracle REST Data Services removes the ORDS_METADATA schema, the
ORDS_PUBLIC_USER user, and Oracle REST Data Services-related database objects
(including public synonyms) if they exist in the database. To uninstall (remove, or deinstall)
Oracle REST Data Services, go to the directory or folder containing the ords.war file and
enter the uninstall command as follows:

java -jar ords.war uninstall

The uninstall command prompts you for some necessary information (host, port, SID or
service name, username, password).

¢ See Also:

To uninstall Oracle REST Data Services from a CDB, see Using the Multitenant
Architecture with Oracle REST Data Services .

1.4.6 Using SQL Developer Oracle REST Data Services Administration

(Optional)

ORACLE

This section describes how to use Oracle SQL Developer to administer Oracle REST Data
Services.

" See Also:

"Oracle REST Data Services Administration" in Oracle SQL Developer User's Guide

Topics:
* About SQL Developer Oracle REST Data Services Administration

* Configuring an Administrator User

1-31

Chapter 1
Downloading, Configuring, and Installing and Oracle REST Data Services

1.4.6.1 About SQL Developer Oracle REST Data Services Administration

Oracle SQL Developer enables you to administer Oracle REST Data Services using a
graphical user interface. To take full advantage of these administration capabilities,
you must use SQL Developer Release 4.1 or later. Using SQL Developer for Oracle
REST Data Services administration is optional.

Using this graphical user interface, you can update the database connections, JDBC
settings, URL mappings, RESTful connections, security (allowed procedures, blocked
procedures, validation function and virus scanning), Caching, Pre/Post Processing
Procedures, Environment, and Excel Settings. Oracle SQL Developer also provides
statistical reporting, error reporting, and logging.

¢ See Also:

"Oracle REST Data Services Administration" in Oracle SQL Developer
User's Guide

1.4.6.2 Configuring an Administrator User

If you want to be able to administer Oracle REST Data Services using SQL Developer,
then you must configure an administrator user as follows:

» Execute the following command:

java -jar ords.war user adminlistener "Listener Administrator"
» Enter a password for the adminlistener user.
e Confirm the password for the adminlistener user.

* If you are using Oracle REST Data Services without HTTPS, follow the steps listed
under the section,Using OAuth2 in Non-HTTPS Environments.

When using SQL Developer to retrieve and/or upload an Oracle REST Data Services
configuration, when prompted, enter the credentials provided in the preceding list.

1.4.7 Using OAuth2 in Non-HTTPS Environments

ORACLE

RESTful Services can be protected with the OAuth2 protocol to control access to
nonpublic data. To prevent data snooping, OAuth2 requires all requests involved in the
OAuth2 authentication process to be transported using HTTPS. The default behavior
of Oracle REST Data Services is to verify that all OAuth2 related requests have been
received using HTTPS. It will refuse to service any such requests received over HTTP,
returning an HTTP status code of 403 Forbidden.

This default behavior can be disabled in environments where HTTPS is not available
as follows:

1. Locate the folder where the Oracle REST Data Services configuration is stored.
2. Edit the file named defaults.xml.
3. Add the following setting to the end of this file just before the </properties> tag.

<entry key="security.verifySSL"">false</entry>

1-32

Chapter 1
Deploying Oracle REST Data Services

4. Save the file.
5. Restart Oracle REST Data Services if it is running.

Note that it is only appropriate to use this setting in development or test environments. It is
never appropriate to use this setting in production environments because it will result in user
credentials being passed in clear text.

Note:

Oracle REST Data Services must be restarted after making configuration changes.
See your application server documentation for information on how to restart
applications.

1.5 Deploying Oracle REST Data Services

To deploy Oracle REST Data Service, you can choose one of the following options:
» Standalone Mode

* Oracle WebLogic Server

* Apache Tomcat

e Oracle Cloud Infrastructure

1.5.1 Standalone Mode

ORACLE

Although Oracle REST Data Services supports the Java EE application servers, you also
have the option of running in standalone mode. This section describes how to run Oracle
REST Data Services in standalone mode.

Standalone mode is suitable for development use and is supported in production
deployments. Standalone mode, however, has minimal management capabilities when
compared to most Java EE application servers and may not have adequate management
capabilities for production use in some environments.

" Note:

Run the following help command to check the additional options available for the
standalone command:

java -jar ords.war help standalone

Topics:
e Starting in Standalone Mode
e Stopping the Server in Standalone Mode

e Configuring a Doc Root for Non-Application Express Static Resources

1-33

Chapter 1
Deploying Oracle REST Data Services

Related Topics
e Supported Java EE Application Servers

1.5.1.1 Starting in Standalone Mode

To launch Oracle REST Data Services in standalone mode:
1. To start Standalone mode, execute the following command:

java -jar ords.war standalone

If you have not yet completed the standalone configuration, you are prompted to
do so.

Tip:

To see help on standalone mode options, execute the following
command:

Jjava -jar ords.war help standalone

" Note:

If you want to use RESTful services that require secure access, you
should use HTTPS.

2. When prompted, specify the location of the folder containing the Oracle
Application Express static resources used by Oracle REST Data Services, or
press Enter if you do not want to specify this location.

3. When prompted select if you want Oracle REST Data Services to generate a self-
signed certificate automatically or if you want to provide your own certificate. If you
want to use your own certificate, provide the path for the Certificate and DER
encoded related private key when prompted.

If the private key has not already been converted to DER, see section, Converting
a Private Key to DER (Linux and Unix) before you enter the values here.

You are only prompted for these values the first time you launch standalone mode.

Note:

Ensure that no other servers are listening on the port you choose. The
default port 8080 is commonly used by HTTP or application servers,
including the embedded PL/SQL gateway; the default secure port 8443 is
commonly used by HTTPS.

Related Topics
e Using OAuth2 in Non-HTTPS Environments

e Converting a Private Key to DER (Linux and Unix)

ORACLE 1-34

Chapter 1
Deploying Oracle REST Data Services

1.5.1.1.1 Converting a Private Key to DER (Linux and Unix)

Usually, you would have created a private key and a Certificate Signing Request before
obtaining your signed certificate. The private key needs to be converted into DER in order for
Oracle REST Data Services to read it properly.

For example, assume that the original private key was created using the OpenSSL tool with a
command similar to either of the following:

openssl req -new -newkey rsa:2048 -nodes -keyout yourdomain.key -out
yourdomain.csr

or

openssl genrsa -out private.em 2048

In this case, you must run a command similar to the following to convert it and remove the
encryption: openssl pkcs8 -topk8 -inform PEM -outform DER -in yourdomain.key -out
yourdomain.der -nocrypt

openssl pkcs8 -topk8 -inform PEM -outform DER -in yourdomain.key -out
yourdomain.der -nocrypt

After doing this, you can include the path to yourdomain.der when prompted by Oracle REST
Data Services, or you can modify the following entries in conf/ords/standalone/
standalone.properties:

ssl.cert=<path to yourdomain.crt>
ssl.cert_key=<path to yourdomain.der>
ssl.host=yourdomain

Also, ensure that jetty.secure.port is set.

1.5.1.2 Stopping the Server in Standalone Mode

To stop the Oracle REST Data Services server in standalone mode, at a command prompt
press Ctrl+C.

1.5.1.3 Configuring a Doc Root for Non-Application Express Static Resources

ORACLE

You can configure a doc root for standalone mode to deploy static resources that are outside
the /1 folder that is reserved for Application Express static resources.

To do so, specify the --doc-root parameter with the standalone mode command, as in the
following example:

java -jar ords.war standalone --doc-root /var/www/html

The preceding example makes any resource located within /var/www/html available under
http://server: port /. For example, if the file /var/www/html/hello.txt exists, it will be
accessible at http://server: port /hello.txt.

1-35

Chapter 1
Deploying Oracle REST Data Services

The value specified for --doc-root is stored in ${config.dir}/ords/standalone/
standalone.properties in the standalone.doc.root property. If a custom doc root is
not specified using --doc-root, then the default doc-root value of ${config.dir}/
ords/standalone/doc_root is used. Any file placed within this folder will be available
at the root context.

This approach has the following features and considerations:

* HTML resources can be addressed without their file extension. For example, if a
file named hello.html exists in the doc root, it can be accessed at the URI
http://server: port /hello.

* Attempts to address a HTML resource with its file extension are redirected to the
location without an extension. For example, if the URI http://server: port/
hello.html is accessed, then the client is redirected to http://server: port/
hello.

The usual practice is to serve HTML resources without their file extensions, so this
feature facilitates that practice, while the redirect handles the case where the
resource is addressed with its file extension.

* Index pages for folders are supported. If a folder contains a file named index.html
or index.htm, then that file is used as the index page for the folder. For example,
if /7var/www/html contains /abc/xyz/index.html, then accessing http://
server: port /abc/xyz/ displays the contents of index.html.

* Addressing a folder without a trailing slash causes a redirect to the URI with a
trailing slash. For example, if a client accesses http://server:port/abc/xyz,
then the server issues a redirect to http://server:port/abc/xyz/.

* Resources are generated with weak etags based on the modification stamp of the
file and with a Cache Control header that causes the resources to be cached for 1
hour.

1.5.2 Oracle WebLogic Server

This section describes how to deploy Oracle REST Data Services on Oracle WebLogic
Server. It assumes that you have completed the installation process and are familiar
with Oracle WebLogic Server. If you are unfamiliar with domains, managed servers,
deployment, security, users and roles, refer to your Oracle WebLogic Server
documentation.

Topics:

e About Oracle WebLogic Server

» Configuring Oracle Application Express Images

* Launching the Administration Server Console

* Deploying ORDS on Oracle WebLogic Server

e Configuring WebLogic to Handle HTTP Basic Challenges Correctly

* Verifying the State and Health of ords and i

1.5.2.1 About Oracle WebLogic Server

You can download Oracle WebLogic Server from Oracle Technology Network.

ORACLE 1-36

Chapter 1
Deploying Oracle REST Data Services

To learn more about installing Oracle WebLogic Server, see Oracle Fusion Middleware
Getting Started With Installation for Oracle WebLogic Server and Oracle Fusion Middleware
Installation Guide for Oracle WebLogic Server.

¢ See Also:

Oracle Fusion Middleware Software Downloads

1.5.2.2 Configuring Oracle Application Express Images

If you are using Oracle Application Express, you must create a web archive to reference the
Oracle Application Express, image files. However, if you are not using Oracle Application
Express, you may skip the rest of this section about configuring Oracle Application Express
images.

Before you begin, you must create a web archive (WAR) file to reference the Oracle
Application Express image files. Use the static command to create a web archive file named
i.war:

java -jar ords.war static <apex directory>\images

Where:
e <apex directory>is the directory location of Oracle Application Express.

This command runs the static command contained in the ords.war file. It packages the
Application Express static images into an archive file named i.war.

The created images WAR does not contain the static resources; instead, it references the
location where the static resources are stored. Therefore the static resources must be
available at the specified path on the server where the WAR is deployed.

Tip:

Use java -jar ords.war help static to see the full range of options for the
static command.

Use the i.war file to deploy to WebLogic in the following steps:

1. Launching the Administration Server Console

2. Installing the Oracle WebLogic Server Deployment

3. Configuring WebLogic to Handle HTTP Basic Challenges Correctly

1.5.2.3 Launching the Administration Server Console

ORACLE

To launch the Administration Server console:

1. Start an Administration Server.

2. Launch the WebLogic Administration Console by typing the following URL in your web
browser:

http://<host >:<port>/console

1-37

Chapter 1
Deploying Oracle REST Data Services

Where:
e <host> is the DNS name or IP address of the Administration Server.

e <port>is the port on which the Administration Server is listening for requests
(port 7001 by default).

Enter your WebLogic Administrator username and password.

If your domain is in Production mode, click the Lock & Edit button on the left-pane
below the submenu Change Center. If your domain is in Development mode, this
button does not appear.

1.5.2.4 Deploying ORDS on Oracle WebLogic Server

ORACLE

Tip:

The Oracle REST Data Services files, ords.war and i.war, must be
available before you start this task.

To deploy:

1.

Go to the WebLogic Server Home Page. Below Domain Configuration, select
Deployments.

The Summary of Deployments is displayed.
Click Install.
Specify the location of the ords.war file and click Next.

The ords.war file is located in the folder where you unzipped the Oracle REST
Data Services ZIP file.

Tip:

WebLogic Server determines the context root from the file name of a
WAR archive. If you need to keep backward compatibility, so that URLs
are of the form http.//server/apex/... rather than http.://server/ords/..., then
you must rename ords.war to apex.war before the deployment.

The Install Application assistant is displayed.
Select Install this deployment as an application and click Next.

Select the servers and/or clusters to which you want to deploy the application or
module and click Next.

Tip:

If you have not created additional Managed Servers or clusters, you do
not see this assistant page.

In the Optional Settings, specify the following:

1-38

10.
11.

12.

Chapter 1
Deploying Oracle REST Data Services

a. Name - Enter:
ords
b. Security - Select the following:

Custom Roles: Use roles that are defined in the Administration Console; use
policies that are defined in the deployment descriptor

c. Source accessibility - Select:
Use the defaults defined by the deployment's targets
Click Next.
A summary page is displayed.
Under Additional configuration, select one of the following:
* Yes, take me to the deployment's configuration - Displays the Configuration page.

* No I will review the configuration later - Returns you to the Summary of
Deployments page.

Review the summary of configuration settings that you have specified.
Click Finish.
Repeat the previous steps to deploy the 1.war file.
In the optional settings, specify the following:
a. Name - Enter:
i
b. Security - Select:

Custom Roles: Use roles that are defined in the Administration Console; use
policies that are defined in the deployment descriptor

c. Source Accessibility - Select:
Use the defaults defined by the deployment's targets

If your domain is in Production Mode, then on the Change Center click Activate
Changes.

Related Topics

Downloading, Configuring, and Installing and Oracle REST Data Services

Configuring Oracle Application Express Images

1.5.2.5 Configuring WebLogic to Handle HTTP Basic Challenges Correctly

ORACLE

By default WebLogic Server attempts to intercept all HTTP Basic Authentication challenges.
This default behavior needs to be disabled for Oracle REST Data Services to function
correctly. This is achieved by updating the enforce-valid-basic-auth-credentials flag.
The WebLogic Server Administration Console does not display the enforce-valid-basic-
auth-credentials setting. You can use WebLogic Scripting Tool (WLST) commands to
check, and edit the value in a running server.

The following WLST commands display the domain settings:

connect("weblogic®, "weblogic*®,"t3://localhost:7001")
cd("SecurityConfiguration®)

1-39

Chapter 1
Deploying Oracle REST Data Services

cd("mydomain®)
I1sO

If the domain settings displayed, contains the following entry:

-r-- EnforceValidBasicAuthCredentials true

Then you must set this entry to false.

To set the entry to false, use the WLST commands as follows:

connect("weblogic®, "weblogic®, "t3://localhost:7001")
edit()

startedit()

cd("SecurityConfiguration®)

cd("mydomain®)
set("EnforceValidBasicAuthCredentials®, "false")

save()

activate()

disconnect()

exit()

" Note:

WebLogic Server must be restarted for the new settings to take effect.

In the preceding example:

* weblogic is the WebLogic user having administrative privileges
e weblogic is the password

e mydomain is the domain

e The AdminServer is running on the localhost and on port 7001
Related Topics

e WebLogic Server Command Reference

1.5.2.6 Verifying the State and Health of ords and i

In the Summary of Deployments, select the Control tab and verify that both the ords
and i State are Active and the Health status is OK.

If ords and/or i are not Active, then enable them. In the Deployments table, select the
check box next to ords and/or i. Click Start and select Servicing all requests to
make them active.

1.5.3 Apache Tomcat

This section describes how to deploy Oracle REST Data Services on Apache Tomcat.

ORACLE 1-40

https://docs.oracle.com/cd/E13222_01/wls/docs81/admin_ref/weblogicServer.html

Chapter 1
Deploying Oracle REST Data Services

Topics:
* About Apache Tomcat
» Configuring Oracle Application Express Images

* Deploying ORDS on Apache Tomcat

1.5.3.1 About Apache Tomcat

Tip:

This section assumes that you have completed the installation process and are
familiar with Apache Tomcat. If you are unfamiliar with domains, servers,
applications, security, users and roles, see your Apache Tomcat documentation.

You can download Apache Tomcat from:

¢ See Also:

Tomcat 8 Software Downloads

1.5.3.2 Configuring Oracle Application Express Images

If you are using Oracle Application Express, you must create a web archive to reference the
Oracle Application Express, image files. However, if you are not using Oracle Application
Express, you may skip the rest of this section about configuring Oracle Application Express
images.

To configure Oracle Application Express Images on Apache Tomcat:

» Copy the contents of the <apex di rect or y>/images folder to <Tontat directory>/
webapps/i/.

Where:

— <apex directory>is the directory location of the Oracle Application Express
distribution.

— <Tontat directory>is the folder where Apache Tomcat is installed.

1.5.3.3 Deploying ORDS on Apache Tomcat

Tip:

The Oracle REST Data Services file ords.war must be available before you start
this task.

To deploy ORDS on Apache Tomcat:

ORACLE 1-41

Chapter 1
Deploying Oracle REST Data Services

1. Move the ords.war file into the webapps folder where Apache Tomcat is installed.

Tip:

Apache Tomcat determines the context root from the file name of a WAR
archive. If you need to keep backward compatibility, so that URLs are of
the form http.//server/apex/... rather than http.//server/ords/..., then you
must rename ords.war to apex.war before moving it into to the webapps
folder.

2. Access Oracle Application Express by typing the following URL in your web
browser:

http://<host nane>:<port>/ords/

Where:

* <host nane> is the name of the server where Apache Tomcat is running.

e <port>is the port number configured for Apache Tomcat application server.
Related Topics
e Downloading, Configuring, and Installing and Oracle REST Data Services

e Configuring Oracle Application Express Images

1.5.4 Oracle Cloud Infrastructure

As a cloud user, you can deploy Oracle REST Data Services with high availability on
Oracle Cloud Infrastructure.

Topics:
* About Oracle Cloud Infrastructure (OCI)

* Configuring ORDS for High Availability on Oracle Cloud Infrastructure

* Advantages of Deploying ORDS with High Availability on Oracle Cloud
Infrastructure

" See Also:

Reference Architecture: Deploying ORDS with High Availability

1.5.4.1 About Oracle Cloud Infrastructure

ORACLE

Oracle Cloud Infrastructure (OCI) is a set of complementary cloud services that enable
you to build and run a wide range of applications and services in a highly available
hosted environment. Oracle Cloud Infrastructure offers high-performance compute
capabilities (as physical hardware instances) and storage capacity in a flexible overlay
virtual network that is securely accessible from your on-premises network.

1-42

Chapter 1
Monitoring ORDS

1.5.4.2 Configuring ORDS for High Availability on Oracle Cloud Infrastructure

You can choose to use the following configurations for high availability of ORDS on Oracle
Cloud Infrastructure. Your requirements might differ from the configurations described in this
section.

When you create a VCN, determine the number of CIDR blocks required and the size of
each block based on the number of resources that you plan to attach to subnets in the
VCN. When you design the subnets, consider your traffic flow and security requirements.

Use Oracle Cloud Guard to proactively monitor and maintain the security of your
resources in Oracle Cloud Infrastructure.

For production applications, the Oracle database instance should be adhering to Oracle
Maximum Availability Architecture (MAA) deployment model in OCI.

When using RAC with the Oracle Database, ensure that the database connection
information used by ORDS is pointing to the SCAN listener and not an individual node.

You can create load balancers with upper and lower bounds to help scale based on the
number of requests coming in. It can be as small as 10mbps up to 8000mbps.

1.5.4.3 Advantages of Deploying ORDS with High Availability on Oracle Cloud

Infrastructure

Following are the advantages of deploying ORDS on Oracle Cloud Infrastructure:

Compute, load balancers, and Database Cloud Instances can all scale to handle
increased load. Additional instances can be quickly created and added to the Load
Balancer configuration with the compute or ORDS tier. For Exadata Cloud Service, the
X8M platform can not only scale CPU, but also the nodes can be added to the RAC
cluster to add additional computing power.

Ensure that your subnet and NSG ingress/egress uses very granular rules. To get access
to a compute or database tier, use Bastion as a Service, this ensures that only authorized
users can access these instances and is also a much more secure method than exposing
SSH ports to the public internet.

For database deployments, adhere to the Oracle Maximum Availability Architecture
(MAA) guide.

Auto-scaling and scaling in general for each compute and database tier helps control
costs and you need to pay only for what is being used with no excess or wasted CPU,
memory, or instances. Using a flexible load balancer can also control costs.

1.6 Monitoring ORDS

Standard Java runtime environment diagnostic and monitoring tools are used to gain an
insight on the health of an ORDS instance running in Apache Tomcat, WebLogic Server, or a
standalone mode. These tools track the memory and CPU usage, stuck threads, and other
resources. ORDS provides additional insight through the ORDS instance API. The metrics
available through the instance API makes it possible to check the status (valid or invalid) of
the database pools and to gauge how the pools are being used. This helps in determining the
actual load on the system and inform configuration changes in the future.

ORACLE

1-43

Chapter 1
Upgrading Oracle REST Data Services

Topics:

* Enabling the ORDS Instance API

* Authorization for Using the ORDS Instance API
* APl Document

* Using the Instance API

1.6.1 Enabling the ORDS Instance API

This section explains how to enable the ORDS instance API.
To enable the ORDS instance API:

1. Setthe instance.api.enabled property to true.java -jar ords.war set-
property instance.api.enabled true

2. Restart ORDS.

1.6.2 Authorization for Using the ORDS Instance API

The System Administrator role is required to use the ORDS instance API. For
production environments, it is recommended that a user with this role is configured
through the mid-tier.

1.6.3 API Document

An OpenAPI description of the ORDS instance API services is available at http://
<server>/ords/_/instance-api/stable/metadata-catalog/openapi . json.

1.6.4 Using the Instance API

The ORDS instance API service neither provides access to the database nor does it
require the client to specify a database user for authentication. However, the ORDS
instance returns information on the database pools. The instance API can be used as
a basic health check service. To get a summary of the number of valid and invalid
database pools, send a GET request to /ords/_/instance-api/stable/status. For
example: curl --user sysadmin:oracle http://<server>/ords/_/instance-api/
stable/status. This service returns a count of valid and invalid pools. It also returns
links to additional information with more details on the database pools cache.

ORDS can be deployed as a single instance or in a cluster. In a cluster, you must
address each instance directly to get the specific information about that specific
instance as the database pool statistics for one instance may differ from the other
instance. However, if the load balancer routes to each instance in a round robin basis
(as recommended), then every instance will have similar pool statistics.

1.7 Upgrading Oracle REST Data Services

If you want to upgrade to a new release of Oracle REST Data Services, you must do
the following:

1. Stop the Oracle REST Data Services instance.

ORACLE 1-44

Chapter 1
Upgrading Oracle REST Data Services

» If you are running Oracle REST Data Services on your application server (such as
Oracle WebLogic Server, or Apache Tomcat), stop Oracle REST Data Services.

* If you are running Oracle REST Data Services in standalone mode, refer to section,
Stopping the Server in Standalone Mode.

2. Go to the folder where you unzipped the new Oracle REST Data Services release
distribution.

3. Enter the following on the command line:

java -jar ords.war install advanced

or

java -jar ords.war

4. When prompted for the configuration folder, use the configuration folder where the Oracle
REST Data Services configuration files are stored. (The configuration location will be
stored in the ords.war file.)

» If you specified an existing Oracle REST Data Services configuration folder that
contains the configuration files, Oracle REST Data Services will attempt to connect to
each database defined in the configuration folder and check the installed version.

» If you specified an Oracle REST Data Services configuration folder that does not
exist, you will be prompted for the database connection information, the
ORDS_PUBLIC_USER credentials, and additional configuration information. Oracle
REST Data Services will attempt to connect to this database and check the installed
version.

When Oracle REST Data Services checks the installed version, it does the following,
depending on whether an earlier 3.0.n version is already installed in the database.

e If the installed version is an earlier 3.0.n version of Oracle REST Data Services, you are
prompted for the username and password (user with ORDS Installer privileges or SYS
AS SYSDBA) to enable Oracle REST Data Services to apply the in-place upgrade. The
in-place upgrade will modify the existing installation to add the updated schema objects
and packages. The existing metadata stored in the Oracle REST Data Services schema
will remain intact.

e If Oracle REST Data Services is not already installed in the database (or if you are
upgrading from Release 2.0.n), you are prompted for the username and password (user
with ORDS Installer privileges or SYS AS SYSDBA) to enable Oracle REST Data
Services to perform the installation, and you will also be prompted for the default and
temporary tablespaces for the ORDS_METADATA schema and ORDS_PUBLIC_USER.

When the upgrade or installation completes, you can re-deploy the ords.war file to your
application server or start Oracle REST Data Services in standalone mode.

Related Topics
* Troubleshooting Oracle REST Data Services

e Stopping the Server in Standalone Mode

ORACLE 1-45

Chapter 1
Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST Data Services

1.8 Using a Bequeath Connection to Install, Upgrade,
Validate, or Uninstall Oracle REST Data Services

You can use the bequeath connection to install, upgrade, validate, or uninstall Oracle
REST Data Services. The installer will not prompt you for the SYS username and
password for the operation

In the parameter file, add the property: bequeath.connect=true

Using a bequeath connection for installing, validating, or uninstalling Oracle REST
Data Services is supported on Linux and Windows systems for Oracle Database
Release 12, but only on Linux systems for Oracle Database Release 11.

The command used must be run by an operating system user that is a member of the
DBA group. Example of installing Oracle REST Data Services:

java -jar ords.war

Bequeath Connection Using Linux

On a Linux system, you must set the following environment variables to use the
bequeath connection:

- ORACLE_HOME
- ORACLE_SID
 LD_LIBRARY_PATH (to point to ORACLE_HOME/lib)

For Oracle Database Release 11 (but not for Release 12), you must specify the option
-DuseOracleHome=true. Examples of installing Oracle REST Data Services on a Linux
system:

e For Oracle Database Release 11: java -DuseOracleHome=true -jar ords.war

* For Oracle Database Release 12: java -jar ords.war

1.9 Authorizing Oracle REST Data Services to Access
Oracle Data Guard Protected Users

ORACLE

To access the database schema objects that are protected by an Oracle Data Vault
Realm, it is necessary to grant a proxy user authorization to the Oracle REST Data
Services Public User.

The following example authorizes the Oracle REST Data Services Public User,
ORDS_PUBLIC_USER to proxy the database HR user:

begin

DBMS_MACADM.AUTHORIZE_PROXY_USER("ORDS_PUBLIC_USER", "HR");
end;
/

1-46

Configuring Oracle REST Data Services
(Advanced)

This section explains how to configure Oracle REST Data Services for connecting to multiple
databases for routing requests, and it refers to other documentation sources for other
configuration information.

" Note:

Oracle REST Data Services must be restarted after making configuration changes.
See your application server documentation for information on how to restart
applications.

Topics:

Configuring Multiple Databases
Support for Oracle RAC Fast Connection Failover

Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel
Settings

Configuring REST-Enabled SQL Service Settings

Configuring the Maximum Number of Rows Returned from a Query
Configuring ICAP Server Integration for Virus Scan

Configuring ORDS with Kerberos Setup

Configuring the Custom Error Pages

Configuring ORDS Metadata Cache

Developing RESTful Services for Use with Oracle REST Data Services

2.1 Configuring Multiple Databases

Oracle REST Data Services supports the ability to connect to more than one database. This
section describes different strategies for routing requests to the appropriate database.

ORACLE

Topics:

About the Request URL

Configuring Additional Databases

Routing Based on the Request Path Prefix
Routing Based on the Request URL Prefix

2-1

Chapter 2
Configuring Multiple Databases

2.1.1 About the Request URL

Oracle REST Data Services supports a number of different strategies for routing
requests to the appropriate database. All of these strategies rely on examining the
request URL and choosing the database based on some kind of match against the
URL. It is useful to recap the pertinent portions of a request URL. Consider the
following URL:

https://www.example.com/ords/sales/f?p=1:1

This URL consists of the following sections:

e Protocol: https
* Host Name: www.example.com
* Context Root: /ords

The context root is the location at which Oracle REST Data Services is deployed
on the application server.

* Request Path: /sales/f?p=1.1
This is the portion of the request URL relative to the context root.

For different applications, it may be important to route requests based on certain
prefixes in the request path or certain prefixes in the full request URL.

There are two steps to configuring multiple databases:

1. Configuring the database connection information

2. Configuring which requests are routed to which database

2.1.2 Configuring Additional Databases

ORACLE

When you first configure Oracle REST Data Services, you configure a default
database connection named: apex. You can create additional database connections
using the setup command.

Tip:
To see full help for the setup command type:

java -jar ords.war help setup

To create a database connection type the following:

java -jar ords.war setup --database <dat abase name>
Where:

e <database nanme> is the name you want to give the database connection.

You are prompted to enter the information required to configure the database. After
you have configured the additional databases, define the rules for how requests are
routed to the appropriate database.

2-2

Chapter 2
Configuring Multiple Databases

Related Topics

* Downloading, Configuring, and Installing and Oracle REST Data Services
* Routing Based on the Request Path Prefix

* Routing Based on the Request URL Prefix

2.1.3 Routing Based on the Request Path Prefix

You create request routing rules using the map-url command.

Tip:
To see full help for the map-url command type:

java -jar ords.war help map-url

If you want to route requests based just on matching a prefix in the request path portion of
the URL, use the map-url command as follows:

java -jar ords.war map-url --type base-path --workspace-id <workspace name> <path
prefix> <dat abase nane>

Where:

e <workspace nane> is the name of the Oracle Application Express workspace where
RESTful services for this connection are defined. This may be omitted if RESTful
Services are not being used.

o <path prefix>is the prefix that must occur at the start of the request path.

* <database nane> is the name of the database connection configured in the previous
step.

Related Topics
» Configuring Additional Databases

2.1.3.1 Example of Routing Based on the Request Path Prefix

ORACLE

Assuming Oracle REST Data Services is deployed on a system named example.com at the
context path /ords, then create the following rule:

java -jar ords.war map-url --type base-path --workspace-id sales_rest /sales sales_db

This rule means that any requests matching https://example.com/ords/sales/. .. are
routed to the sales_db database connection. The sales_rest workspace defined within the
sales_db database is searched for RESTful Services definitions.

The previous rule matches all of the following requests:

https://example.com/ords/sales/f?p=1:1

https://example.com/ords/sales/leads/
https://ww.example.com/ords/sales/forecasting.report?month=jan (If ww. exanpl e.com
resolves to the same systemas exanple.com)

The previous rule does not match of any of the following requests:

2-3

Chapter 2
Support for Oracle RAC Fast Connection Failover

http://example.com/ords/sales/f?p=1:1 (The protocol is wong.)
https://example.com:8080/ords/sales/f?p=1:1 (The port is wong: 443 is default
for https, but don't specify if using default.)
https://example.com/ords/f?p=1:1 (M ssing the /sales prefix.)
https://example.com/pls/sales/leads/ (The context path is wong.)

2.1.4 Routing Based on the Request URL Prefix

If you want to route requests based on a match of the request URL prefix, use the
map-url command as follows:

java -jar ords.war map-url --type base-url --workspace-id <workspace nane> <url
prefi x> <dat abase nane>

Where:

e <workspace nane> is the name of the Oracle Application Express workspace
where RESTful services for this connection are defined. This may be omitted if
RESTful Services are not being used.

o <url prefix>isthe prefix with which the request URL must start.

e <dat abase nane> is the name of the database connection.

2.1.4.1 Example of Routing Based on the Request URL Prefix

Assuming Oracle REST Data Services is deployed on a system named example.com
at the context path /ords, then create the following rule:

java -jar ords.war map-url --type base-url --workspace-id sales_rest https://
example.com/ords/sales sales_db

This rule means that any requests matching https://example.com/ords/sales/. ..
are routed to the sales_db database connection. The sales_rest workspace defined
within the sales_db database is searched for RESTful Services definitions.

The previous rule matches all of the following requests:

https://example.com/ords/sales/f?p=1:1
https://example.com/ords/sales/leads/
https://example.com/ords/sales/forecasting.report?month=jan

The previous rule does not match of any of the following requests:

http://example.com/ords/sales/f?p=1:1 (The protocol is wong.)
https://example.com:8080/ords/sales/f?p=1:1 (The port is wong: 443 is default
for https, but don't specify if using default.)
https://example.com/ords/f?p=1:1 (M ssing the /sales segnent of the base URL.)
https://example.com/pls/sales/leads/ (The context path is wong.)
https://www.example.com/ords/sales/forecasting.report?month=jan (The host nane
is wong.)

2.2 Support for Oracle RAC Fast Connection Failover

Oracle REST Data Services support the Fast Connection Failover (FCF) feature of
Oracle Real Application Clusters (Oracle RAC).

ORACLE 2.4

Chapter 2
Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel Settings

Oracle REST Data Services runs with the Universal Connection Pool (UCP) in all the
Application Server environments that it supports, such as WebLogic, Tomcat. UCP in turn
supports Fast Connection Failover . To enable FCF, Oracle Notification Service (ONS) must
to be enabled. To enable ONS, add entries to the list of properties in the Oracle REST Data
Services defaults.xml configuration file as shown in the following code snippet:

<entry key="jdbc.enableONS">true</entry>
<entry key= "jdbc.ONSConfig">nodes=racnodel:4200, racnode2:4200\nwalletfile=/
oraclell/onswalletfile</entry>

ONS is the messaging facility used to send the Fast Application Notification (FAN) events.
When ONS is enabled, Oracle REST Data Services automatically enables FCF. To Enable
specific FCF capabilities such as fail over or other advanced FCF capabilities such as load
balancing, you need to add entries in the configuration file for the custom connection as
shown in the following code snippet:

<entry key="db.connectionType">customurl</entry>
<entry key="db.customURL">jdbc:oracle:thin:@(DESCRIPTION=(FAILOVER=0N)
(ADDRESS_LIST=

(LOAD_BALANCE=0N) (ADDRESS=(PROTOCOL=TCP) (HOST=prod_scan.example.com)
(PORT=1521)))

(CONNECT_DATA=(SERVICE_NAME=ISPRD))) |</entry>

After updating the defaults.xml configuration file, Oracle REST Data Services need to be
restarted for the changes to take effect.

UCP supports Fast Connection Failover. FCF listens and responds to FAN events to deal
with the following two scenarios:

* Unplanned outages: When RAC detects an instance failure, it generates a FAN Down
event which FCF picks up. FCF then terminates all connections to the failed instance
and directs all future requests to the surviving RAC instances.

* Planned outages: For instance, when a Database Administrator (DBA) wants to
gracefully shut down a RAC instance for performing some maintenance activity. The
instance shutdown generates a FAN Planned Down event which FCF picks up. FCF then
directs all new requests to other RAC instances and drains or allows currently active
transactions to complete.

Note:

Long running transactions may need to be terminated forcefully.

2.3 Configuring Security, Caching, Pre- and Post Processing,
Environment, and Excel Settings

To configure security, caching, pre- and post- processing, environment, and Excel settings,
see Using SQL Developer Oracle REST Data Services Administration (Optional).

ORACLE 2-5

Chapter 2
Configuring REST-Enabled SQL Service Settings

2.4 Configuring REST-Enabled SQL Service Settings

This section explains how to configure the REST- Enabled SQL service.

Note:

Enabling the REST- Enabled SQL service enables authentication against the
Oracle REST Data Service enabled database schemas. This makes the
database schemas accessible over HTTPS, using the database password.
Oracle highly recommends that you provide strong secure database
passwords

REST- Enabled SQL service is a feature of Oracle REST Data Service. By default, the
REST Enabled SQL service is turned off. To enable the REST- Enabled SQL service
and the REST- Enabled SQL Export service, perform the following steps:

1.

3.
4,

Locate the folder where the Oracle REST Data Services configuration file is
stored.

Open the defaults.xml file and add: <entry
key="restEnabledSql .active'>true</entry>.

Save the file.

Restart Oracle REST Data Services.

2.5 Configuring the Maximum Number of Rows Returned
from a Query

ORACLE

To configure maximum number of rows returned from a query, perform the following

steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

2. Open the defaults.xml file and update the value of the
misc.pagination.maxRows parameter:<entry
key=""misc.pagination.maxRows”>1500</entry>

Note:
The default value for misc.pagination.maxRows is 500.

3. Save the file.

4. Restart Oracle REST Data Services.

2-6

Chapter 2
Configuring ICAP Server Integration for Virus Scan

2.6 Configuring ICAP Server Integration for Virus Scan

This section explains how to configure ORDS to integrate with ICAP server for virus scan.

ORDS PL/SQL gateway supports the offloading of virus scanning responsibilities to an
Internet Content Adaptation Protocol (ICAP) compliant virus scan server when the files are
uploaded. The hostname and port of the virus scan server is specified in the icap.server,
icap.port, and icap.secure.port global configuration properties.

APEX uses ORDS PL/SQL gateway. Once configured, this ICAP integration is also applied to
file uploads in APEX.

To configure ORDS to integrate with ICAP server, perform the following steps:
1. Locate the folder where the Oracle REST Data Services configuration file is stored.

2. Open the defaults.xml file and add:

<entry key=""icap.port'>1234</entry>

<entry key="icap.server'>name_or_ip</entry>
3. Save the file.

Restart Oracle REST Data Services.

ICAP server must support the following requirements:
e |ICAP version 1.0

e Antivirus service named AVSCAN

* Antivirus service that supports action=SCAN

» Previews of at least 4 bytes

* Return header named X-Infection

Once configured, when a file is uploaded through PL/SQL Gateway, ORDS makes a request
similar to the following:

RESPMOD icap://<icap_server>:<icap_port>/AVSCAN?action=SCAN I1CAP/1.0
Host: <icap_server>:<icap_port>

Preview: 4

Allow: 204

Encapsulated: reqg-hdr=0 res-hdr=153 res-body=200

2.7 Configuring ORDS with Kerberos Setup

ORACLE

This section explains how ORDS can be configured to reference a Kerberos file-based ticket
cache and make a connection to an Oracle Database Kerberos authenticated user with the
ORDS Runtime Privilege.

To configure ORDS with Kerberos setup, perform the following steps:
1. Create a new user using external authentication
2. Set up the environment variables

3. Provide a valid ticket

2-7

ORACLE

Chapter 2
Configuring ORDS with Kerberos Setup

Add ORDS pool settings

Create a New User using External Authentication

Create a new Oracle Database user using external authentication (Kerberos) and
provision the user as an ORDS runtime user.

CREATE USER ORDS_PUBLIC_KRBUSER IDENTIFIED EXTERNALLY AS
"<kerberos_principal_name>";
GRANT CONNECT TO "ORDS_PUBLIC_KRBUSER";
BEGIN
ORDS_ADMIN.PROVISION_RUNTIME_ROLE(
p_user => "ORDS_PUBLIC_KRBUSER",
p_proxy_enabled_schemas => TRUE);
END;
/

Set up the Environment Variables

Note:

Ensure that you have a Kerberos configuration file krb5.conf and a file-
based ticket cache

Set up the following environment variables:

export KRB5_CONFIG=<path to krb5.conf>
export KRB5CCNAME=<path to credential cache>
Provide a Valid Ticket

Provide a valid ticket in the ticket cache to get authenticated when connecting to
the Oracle Database.
kinit <principal>

Add ORDS Pool Settings

Add the following pool settings to the pool .xml file using the ticket in the ticket
cache:

<entry key="oracle.net.authentication_services'>(KERBEROS5)</entry>
<entry key="oracle.net.kerberos5 mutual_authentication">true</entry>

Run the following command when ORDS is starting up:
-Djava.security._krb5.conf="<path to krb5.conf>"

For example, to run ORDS in standalone mode with Kerberos, execute the
following command:

java -Djava.security.krb5.conf=$KRB5 CONFIG -jar ords.war

2-8

Chapter 2
Configuring the Custom Error Pages

2.7.1 Configuring ORDS with Kerberos Setup Using Command-line

Interface

This section explains how to configure ORDS with Kerberos setup. ORDS can be configured
to reference a Kerberos file-based ticket cache and make a connection to an Oracle
Database Kerberos authenticated user through command-line interface.

Use the following commands to configure ORDS with Kerberos setup:

java -jar ords.war configdir

configkrb

java -jar ords.war

setup

java -jar ords.war set-property --conf apex_ pu
oracle.net.authentication_services "(KERBEROS5)"
java -jar ords.war set-property --conf apex_ pu
oracle.net.kerberos5 mutual authentication true
export KRB5 CONFIG=<path to krb5.conf>

export KRB5CCNAME=<path to credential cache>
kinit <principal>

2.8 Configuring the Custom Error Pages

ORACLE

This section explains how to configure a custom error page instead of the error page
generated by Oracle REST Data Services.

To configure a custom error page, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is stored.

2. Open the defaults.xml file and update the value of the error.externalPath parameter:
<entry key="error._externalPath'>/path/to/error/pages/folder/</entry>
Where:

» /path/to/error/pages/folder is the path to a folder containing files that define the
error pages. The files are stored in {status}.html format.

Where, {status} is the HTTP status code for which you want to create a custom
error page.

3. Save the file.
4. Restart Oracle REST Data Services.

Example 2-1 Configuring custom error page for “HTTP 404” status code

To configure a custom error page for the “HTTP 404 — Not Found” status, perform the
following steps:

1. Create a file named 404 _html.
2. Save it under /usr/local/share/ords/error-pages/ folder.

3. Configure the error.externalPath parameter to point to /usr/local/share/ords/
errro-pages/ folder.

2-9

Chapter 2
Configuring ORDS Metadata Cache

4, Save the file.
5. Restart Oracle REST Data Services.

2.9 Configuring ORDS Metadata Cache

This section explains how to configure the ORDS Metadata Cache.

As the number of REST services grow, the overhead of querying the database for
corresponding metadata can have a negative impact on the overall service
performance and throughput. Overtime, the queries for ORDS_METADATA views take
longer time to complete. These queries are executed for every request. The ORDS
metadata cache can help improve the overall response time for REST services when
the number of services grow to an extent that querying the ORDS_METADATA views for
every request becomes expensive. The ORDS metadata cache can temporarily hold a
copy of privilege and module metadata in memory to reduce the number of database
queries performed when a REST service request is received. The cache is disabled by
default so that the changes made to the metadata are applied immediately for any
subsequent request.

Table 2-1 Configuration Properties for ORDS Metadata Cache
|

Property Data Type Default Value Description

cache.metadata.en Boolean false Specifies a setting to

abled enable or disable
metadata caching.

cache.metadata.ti Duration 30s Specifies a setting

meout that determines for
how long the

metadata record
remains in the cache.
Longer the duration,
it takes longer to view
the applied changes.

2.10 Developing RESTful Services for Use with Oracle
REST Data Services

For more information on how to develop RESTful Services for use with Oracle REST
Data Services, see Developing Oracle REST Data Services Applications.

2.11 Managing ORDS Administrator Privilege

Access to the ORDS_ADMIN PL/SQL package is provisioned through the
ORDS_ADMINISTRATOR_ROLE. This role can be provisioned through the ORDS_ADMIN
package to create additional ORDS administrators.

2.11.1 Provisioning ORDS_ADMINISTRATOR_ROLE to a User

This section describes how to provision ORDS_ADMINISTRATOR_ROLE role to a user.

ORACLE 2-10

Chapter 2
Managing ORDS Runtime Privilege

You can provision ORDS_ADMINISTRATOR_ROLE role to a user by using either the database
GRANT command or through the ORDS_ADMIN.PROVISION_ADMIN_ROLE PL/SQL method (as an
ORDS Administrator).

Example 2-2 Using Grant command

GRANT ORDS_ADMINISTRATOR_ROLE TO HR_ADMIN;

Example 2-3 Using ORDS_ADMIN package method

BEGIN
ORDS_ADMIN_PROVISION_ADMIN_ROLE(
p_user => "HR_ADMIN®);
END;
/

2.11.2 Unprovisioning ORDS_ADMINISTRATOR_ROLE from a User

This section describes how to unprovision ORDS_ADMINISTRATOR_ROLE from a user.

As an ORDS administrator, you can unprovision ORDS_ADMINISTRATOR_ROLE from a user by
either using the database REVOKE command or through the ORDS_ADMIN_UNPROVISION_ROLES
PL/SQL method.

Example 2-4 Using REVOKE command

REVOKE ORDS_ADMINSTRATOR_ROLE FROM HR_ADMIN;

Example 2-5 Using ORDS_ADMIN package method

BEGIN
ORDS_ADMIN.UNPROVISION_ROLES(
p_user => "HR_ADMIN",
p_administrator_role => TRUE);
END;
/

2.12 Managing ORDS Runtime Privilege

ORACLE

The ORDS_RUNTIME_ROLE database role allows a user to act as a runtime user. A runtime user
can manage and configure the runtime connection resources required by an ORDS service
instance. The ORDS_PUBLIC_USER is one such database user. When additional runtime users
are provisioned, it is possible to configure discrete ORDS service instances with different
destination addresses and connection pools but hosted on the same Oracle database
container.

It is recommended not to re-use a runtime user for any other purpose as it accumulates the
grants necessary to proxy to other users. A runtime user only requires the CREATE SESSION
privilege in addition to the ORDS_RUNTIME_ROLE role.

2-11

Chapter 2
Managing ORDS Runtime Privilege

2.12.1 Provisioning ORDS_RUNTIME_ROLE to a User

This section describes how to provision ORDS_RUNTIME_ROLE role to a user.

As an ORDS administrator, you can provision ORDS_RUNTIME_ROLE role to a user by
using either the database GRANT command or through the
ORDS_ADMIN.PROVISION_ADMIN_ROLE PL/SQL method.

Example 2-6 Using Grant command

GRANT ORDS_RUNTIME_ROLE TO ORDS_PUBLIC_USER_2;

Example 2-7 Using ORDS_ADMIN package method

BEGIN
ORDS_ADMIN.PROVISION_RUNT IME_ROLE(
p_user => "ORDS_PUBLIC_USER 2");
END;
/

2.12.2 Unprovisioning ORDS_RUNTIME_ROLE from a User

ORACLE

This section describes how to unprovision the ORDS_RUNTIME_ROLE role from a user

As an administrator, you can unprovision the ORDS_RUNTIME_ROLE from a user, by either
using the database REVOKE command or through the ORDS_ADMIN.UNPROVISION_ROLES
PL/SQL method.

Example 2-8 Using REVOKE command

REVOKE ORDS_RUNTIME_ROLE FROM ORDS_RUNTIME_USER_2;

Example 2-9 Using ORDS_ADMIN package method

BEGIN
ORDS_ADMIN . UNPROVISION_ROLES(
p_user => "ORDS_RUNTIME_USER_2",
p_runtime_role => TRUE);
END;
/

2-12

Installing and Configuring Customer Managed
ORDS on Autonomous Database

This section explains how to install and configure Customer Managed Oracle REST Data
Services (ORDS) on Autonomous Database.

Topics:

e About Customer Managed Oracle REST Data Services on Autonomous Database
* Downloading Wallet and Verifying Connection to Autonomous Database

* Creating Customer Managed Oracle REST Data Services User

* Downloading and Configuring Oracle REST Data Services

* Preparing and Starting ORDS

3.1 About Customer Managed Oracle REST Data Services on
Autonomous Database

ORACLE

When you provision an Autonomous Database instance, by default Oracle REST Data
Services (ORDS) is preconfigured and available for the instance. With the default ORDS,
Oracle performs any required configuration, patching, and maintenance. Additionally, you can
also configure Autonomous Database to use ORDS running in a customer managed
environment.

When you use the default ORDS on Autonomous Database, you cannot modify any of the
ORDS configuration options. For example, with the default configuration, the JDBC
connection pools have a maximum of 100 connections and the connections for ORDS are
preconfigured to use the LOW database service. Use a customer managed environment if you
want manual control of the configuration and management of Oracle REST Data Services.
For example, use this option when your applications require larger connection pools or if you
need more control over the ORDS configuration options.

When ORDS runs in a customer managed environment, you are responsible for
configuration, patching, and maintenance of ORDS in the customer managed environment.
After you configure Autonomous Database to use your customer managed ORDS in addition
to the existing autonomously managed ORDS, you can route ORDS HTTPS traffic through
your environment. The default Autonomous Database web server and ORDS are still running
and ORDS traffic goes to the ORDS running in the customer managed environment. This
provides an additional and alternative HTTPS solution for Autonomous Database.

Installing and configuring a customer managed environment for ORDS allows you to run
ORDS with configuration options that are not possible using the default Oracle managed
ORDS available with Autonomous Database.

Installing and configuring a customer managed environment for ORDS is only supported with
Autonomous Database on Shared Exadata Infrastructure.

3-1

Chapter 3
Downloading Wallet and Verifying Connection to Autonomous Database

< Note:

e Oracle REST Data Services 19.4.6 or higher is required to use a
customer managed environment for ORDS with Autonomous Database.

* Installing and configuring a customer managed environment for ORDS is
only supported with Autonomous Database on Shared Exadata
Infrastructure.

3.2 Downloading Wallet and Verifying Connection to
Autonomous Database

ORACLE

You need to configure ORDS to connect to the Autonomous Database. With Oracle
REST Data Services (ORDS) running in a customer managed environment, you need
to obtain the Autonomous Database wallet on the system that runs the customer
managed ORDS. Perform the following steps to download the wallet and verify the
connection to the Autonomous Database:

1. Download the wallet for the Autonomous Database instance. Alternatively you can
use the OCI CLI to generate the wallet. See generate-wallet for information on
using the CLI.

2. Verify that you can connect from the customer managed environment where you
are installing and configuring ORDS to your Autonomous Database. For example,
using SQLcl and the wallet you download in Step 1, verify the connection as
follows:

a. Connect with SQLcl.

" See Also:

e Connect with Oracle SQLcl Cloud Connection for Autonomous
Data Warehouse environment.

e Connect with Oracle SQLcl Cloud Connection for Autonomous
Transaction Processing environment.

b. View the database services and connect to your Autonomous Database from
the customer managed environment.

SQL> show tns
TNS_ADMIN set to: /var/folders/4r/path/T/oracl e _cloud _config path

Available TNS Entries

dbnane_high
dbnane_low
dbname_medium

3-2

https://docs.cloud.oracle.com/en-us/iaas/tools/oci-cli/2.10.12/oci_cli_docs/cmdref/db/autonomous-database/generate-wallet.html

Chapter 3
Creating Customer Managed Oracle REST Data Services User

SQL> conn admin@dbname_low
Password’) (**********?) *hkkhkhkhkikkhkihkkikhkhkiikikx

Connected.
SQL>

3.3 Creating Customer Managed Oracle REST Data Services
User

To use Autonomous Database with Oracle REST Data Services (ORDS) running in a
customer managed environment on your Autonomous Database, you must create a user,
grant privileges to the user, and run the procedure ORDS_ADMIN_PROVISION_RUNTIME_ROLE.

Perform the following steps to create a user for the ORDS JDBC Connection Pool and
prepare the Autonomous Database instance for using Oracle REST Data Services in a
customer managed environment:

1. Connect to your Autonomous Database as the ADMIN user.

2. Create a new database user and grant the required privileges as follows:

CREATE USER "ORDS_PUBLIC_USER2" IDENTIFIED BY *password™;
GRANT "CONNECT™ TO "ORDS_PUBLIC_USER2";

ORDS_PUBLIC_USER2 is the recommended database user name although you can choose
a different database user name. If you choose a different user name, then all the steps
need to use the user name you choose.

3. Grant the ORDS runtime role to the new database user so that it can act as an ORDS
runtime user.

BEGIN
ORDS_ADMIN.PROVISION_RUNTIME_ROLE(
p_user => "ORDS_PUBLIC_USER2",
p_proxy_enabled_schemas => TRUE);
END;

Following are the parameters:
e p_user: The name of the user to be configured.

e p_proxy_enabled_schemas: When set to true, proxy grants are added for any REST
enabled schemas.

ORACLE 3-3

4,

Chapter 3
Downloading and Configuring Oracle REST Data Services

< Note:

It is highly recommended not to skip the following steps. If you skip these
steps, then ORDS will run APEX, OWA, PL/SQL gateway requests
directly as the runtime user and warnings similar to the following will be
logged for each request:

WARNING Running PL/SQL Gateway directly as
ORDS_PUBLIC_USER 1is not advised in multi-user
environments. Use proxied mode
instead.

Create a new user for PL/SQL Gateway, OWA, and APEX and allow connections
through the runtime user created in step 2:

CREATE USER "ORDS_PLSQL_GATEWAY2" IDENTIFIED BY “'password";
GRANT "CONNECT"™ TO "ORDS_PLSQL_GATEWAY2";

ALTER USER ORDS_PLSQL_GATEWAY2 GRANT CONNECT THROUGH
ORDS_PUBLIC_USER2;

The new user name ORDS_PLSQL_GATEWAY2 is the recommended user name. If you
choose a different user name, then specify that user name in all the steps.

Configure the new ORDS runtime user to use the new gateway user.

BEGIN
ORDS_ADMIN.CONFIG_PLSQL_GATEWAY (
p_runtime_user => "ORDS_PUBLIC USER2", /* when
using this user */
p_plsql _gateway user => "ORDS PLSQL_GATEWAY2®" /* run OWA
things as this user */
):
END;
/

3.4 Downloading and Configuring Oracle REST Data

Services

ORACLE

To use Autonomous Database with Oracle REST Data Services (ORDS) running in a
customer managed environment you need to install ORDS.

¢ Note:

Oracle REST Data Services 19.4.6 or higher is required for a customer
managed environment with Autonomous Database.

3-4

ORACLE

Chapter 3
Downloading and Configuring Oracle REST Data Services

Depending on where you install Oracle REST Data Services for your customer managed
environment, do the following:

If your customer managed environment for Oracle REST Data Services runs in Oracle
Cloud Infrastructure, then use an Oracle YUM repository and perform a YUM install of
ORDS.

If your customer managed environment for Oracle REST Data Services runs in some
other environment, then download ORDS from the Oracle REST Data Services
Download page. See Introduction to Oracle REST Data Services for more information.

In the location where ORDS is installed, create an ORDS configuration folder (this
creates a folder and sets up the ORDS configuration environment and settings). For
example:

java -jar ords.war configdir ./ORDSConfig_2

On Oracle Cloud Infrastructure with Linux with a YUM repository the ORDS configuration
folder is: Zopt/oracle/ords/config.

Edit the ORDS configuration file created in the preceding step ./ords/conf/
apex_pu.xml to add or update the following:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="db.username'>0RDS PUBLI C_USER2</entry>

<entry key="db.password">!passwor d</entry>

<entry key="db.wallet.zip.service">dbnane_ low</entry>

<entry key="db.wallet.zip.path">path/to/wallet.zip</entry>
</properties>

Notes:

e The extra "!" in front of the password causes the password to be encrypted the next
time the ORDS service starts.

° The db.wallet.zip.path entry contains the path to the wallet archive that was
created in the preceding step. See Downloading Wallet and Verifying Connection to
Autonomous Database.

e The db.username, specified as ORDS_PUBLIC_USER? is the database username
you previously defined. See Creating Customer Managed Oracle REST Data
Services User for more information.

Edit ./ords/defaults.xml as required for your ORDS installation. See Understanding
Configurable Parameters for more information.

Ensure the plsql gateway is enabled for APEX support:

<entry key="plsql.gateway.enabled">true</entry>

If you want use ORDS with APEX, then you need to enable the PL/SQL gateway in
ORDS.

3-5

https://www.oracle.com/database/technologies/appdev/rest-data-services-downloads.html
https://www.oracle.com/database/technologies/appdev/rest-data-services-downloads.html

Chapter 3
Preparing and Starting ORDS

3.5 Preparing and Starting ORDS

To use customer managed Oracle REST Data Services (ORDS) on Autonomous
Database, on the system where ORDS runs, you need to perform additional
configuration steps and then start ORDS.

For ORDS running with APEX, perform all the steps starting from Step 1. For ORDS
running without APEX, perform the steps starting from Step 3.

1. Inthe location where ORDS is installed, install the APEX images.

unzip apex_19version.zip

¢ Note:

To use your customer managed ORDS environment for APEX, you must
download the APEX images of the APEX release that is currently
deployed in your Oracle Autonomous Database. When Oracle
announces the next APEX upgrade, you must pre-deploy the images
from the upgraded APEX release or defer the APEX upgrade to avoid
any service interruption. You can download the APEX images from the
Oracle APEX downloads page.

¢ See Also:

e APEX Apply Defer Updates
* Oracle APEX Downloads

2. Edit the standalone properties to add or edit the static images property:
standalone._static.path=/path/to/apex/images

3. Create a wallet_cache folder, so that ORDS stores the Autonomous Database
wallet on this folder and uses it while connecting to JDBC. For example:

mkdir wallet_cache

4. Start ORDS.

» If your customer managed environment for Oracle REST Data Services runs in
Oracle Cloud Infrastructure, then start the ORDS service as follows:

/opt/oracle/ords start

ORACLE 3-6

Chapter 3
Preparing and Starting ORDS

» If your customer managed environment for Oracle REST Data Services runs in the
directory where ORDS is installed, then start the ORDS service as follows:

java -Duser.timezone=UTC -jar ords.war standalone --apex-images
images --port 8088

ORACLE 3.7

Using the Multitenant Architecture with Oracle
REST Data Services

This section outlines installing, configuring, upgrading and uninstalling Oracle REST Data
Services in a multitenant container database.

e Setting Up ORDS in a CDB Environment
* Setting Up ORDS in an Application Container

4.1 Setting Up ORDS in a CDB Environment

ORACLE

This section describes how to setup Oracle REST Data Services (ORDS) into a multitenant
container database (CDB) environment.

Oracle Database 12c Release 1 (12.1) introduced the multitenant architecture. This database
architecture has a multitenant container database (CDB) that includes a root container,
CDB$ROQT, a seed database, PDB$SEED, and multiple pluggable databases (PDBs). A PDB
appears to users and applications as if it were a non-CDB. Each PDB is equivalent to a
separate database instance in Oracle Database Release 11g.

The root container, CDB$ROOT, holds common objects that are accessible to every PDB
utilizing metadata links or object links. The seed database, PDB$SEED, is used when you
create a new PDB to seed the new pluggable database. The key benefit of the Oracle
Database 12c¢ multitenant architecture is that the database resources, such as CPU and
memory, can be shared across all of the PDBs. This architecture also enables many
databases to be treated as one for tasks such as upgrades or patches, and backups.

The installation process when you have multiple releases is described in the following
section:

* Installation Enabling Multiple Releases

Note:

If you want to install directly into a PDB (not connected to Root during installation),
see Advanced Installation Using Command-Line Prompts for more information.

Preinstallation Tasks for Oracle REST Data Services CDB Installation

» Ensure that the PDBs are open (not mounted/closed) in read/write mode (except for
PDB$SEED, which remains in read-only mode). For more information, see Oracle
Multitenant Administrator’s Guide

» Ensure that the default and temporary tablespaces to be used by the ORDS_METADATA
schema and the ORDS_PUBLIC_USER user exist and that you know the tablespace names.
The installation procedure creates those users, but it does not create the tablespaces.

4-1

Chapter 4
Setting Up ORDS in a CDB Environment

< Note:

ORDS_METADATA and ORDS_PUBLIC_USER are installed in the seed container,
and the default and temporary tablespaces exist in PDB$SEED. If these
tablespaces do not already exist, then you must create the tablespaces in
PDB$SEED. For more information, see Oracle Multitenant Administrator’s
Guide

4.1.1 Installation Enabling Multiple Releases

This section describes the installation process when you have multiple releases of
Oracle REST Data Services and patch sets in the PDBs in a multitenant environment.

When Oracle REST Data Services is installed into a CDB, the proxy user, Oracle
REST Data Services public user (ORDS_PUBLIC_USER) is installed in the root container
and is a common user. The ORDS_METADATA schema is a local user that contains the
metadata for Oracle REST Data Services. Both the ORDS_METADATA schema and the
ORDS_PUBLIC_USER are installed in the seed container (PDB$SEED) and all of the
pluggable databases.

Since the ORDS_METADATA is installed as a local user, this provides you the flexibility of
installing multiple Oracle REST Data Services releases in the pluggable databases.

4.1.1.1 Command Line Installation

You must provide the SYS AS SYSDBA credentials in the Root (CDB$SROOT) container to
perform the installation.

4.1.1.2 Advanced Installation

ORACLE

This section describes the advanced installation prompts for installing Oracle REST
Data Services into a CDB to enable multiple Oracle REST Data Services releases.

To install Oracle REST Data Services into a CDB to enable multiple Oracle REST Data
Services releases, perform the following steps:

1. Navigate to the folder where you unzipped the Oracle REST Data Services
installation Kkit.

2. Enter the following command:
java -jar ords.war install advanced
3. When prompted, enter the database connection information for your CDB.
Enter the name of the database server[localhost]:
Enter the database listen port [1521]:
Enter 1 to specify the database service name, or 2 to specify the

database SID [1]:
Enter the database service name:(for example, cdb.example.com)

4-2

Chapter 4
Setting Up ORDS in a CDB Environment

4. Verify the Oracle REST Data Services installation.

Enter 1 if you want to verify/install Oracle REST Data Services schema or
2 to skip this step [1]:

5. Accept or enter 1 (the default) to install Oracle REST Data Services into the CDB and all
of its PDBs.

Enter the database password for ORDS PUBLIC USER:

Confirm password:

Requires to login with administrator privileges to verify Oracle REST
Data Services schema.

Enter the administrator username: SYS
Enter the database password for SYS AS SYSDBA:
Confirm password:

Retrieving information....

Your database connection is to a CDB. ORDS common user ORDS PUBLIC USER
will be

created in the CDB. ORDS schema will be installed in the PDBs.

Root CDB$ROOT - create ORDS common user

PDB PDB$SEED - install ORDS 18.2.0.<Jul i anDay. Ti me> (mode is READ ONLY,
open for

READ/WRITE)

PDB PDBNarmel - install ORDS 18.2.0.<Jul i anDay. Ti ne>

PDB PDBName2 - install ORDS 18.2.0.<Jul i anDay. Ti ne>

Enter 1 if you want to install ORDS or 2 to skip this step [1]:

6. Press enter to continue with the installation.

7. When prompted, enter additional information as needed. See Advanced Installation
Using Command-Line Prompts for more information.

< Note:

To use the pluggable mapping feature, see Making All PDBs Addressable by Oracle
REST Data Services (Pluggable Mapping) for more information.

4.1.1.3 Silent Installation

Silent installation reads the properties from the Oracle REST Data Services parameter file.

To perform a silent installation, enter the following command:

java —jar ords.war install simple
java —jar ords.war

ORACLE 4.3

Chapter 4
Setting Up ORDS in an Application Container

Related Topics

* Advanced Installation Using Command-Line Prompts

4.1.2 Upgrading Oracle REST Data Services in a CDB Environment

When you use a new release of Oracle REST Data Services, upgrading its schema in
the CDB and its pluggable databases (PDBs) will occur automatically when you
perform a simple or advanced installation.

For example:

java -jar ords.war

If Oracle REST Data Services is already installed or upgraded, a message displays
the Oracle REST Data Services schema version, and you will not be prompted for
information.

4.1.2.1 Migrating Oracle REST Data Services in the CDB to Enable Multiple
Releases

This section describes how to migrate Oracle REST Data Services in the CDB to
enable multiple releases.

Starting with release 18.2.0 and later, if you have an Oracle REST Data Services
schema and ORDS_METADATA that is installed in the CDB$ROOT container, then during
upgrade it will migrate the common ORDS_METADATA schema to your PDBs as a local
schema. Oracle database 12.1.0.2 and later releases support this change.

4.1.3 Making All PDBs Addressable by Oracle REST Data Services

This section describes how to make all application PDBs in a CDB addressable by
ORDS. This step is required for starting ORDS from the CDB.

For more information refer to Making All PDBs Addressable by Oracle REST Data
Services (Pluggable Mapping)

4.1.4 Uninstalling Oracle REST Data Services in a CDB Environment

To uninstall Oracle REST Data Services from a CDB, use the uninstall command.
For example:

java -jar ords.war uninstall

Oracle REST Data Services will be removed from the CDB and its pluggable
databases (PDBSs).

Related Topics

* If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

4.2 Setting Up ORDS in an Application Container

This section describes how to setup Oracle REST Data Services in an application
container.

ORACLE 4-4

Chapter 4
Setting Up ORDS in an Application Container

Starting with ORDS release 20.2.1, Oracle REST Data Services can be installed or upgraded
into an application container using the ORDS SQL scripts provided in the
ords.version.number.zip file.

An application container consists of an application root where the application is defined and
one or more PDBs that share the metadata about the application from the application root.
You can have multiple application containers within a CDB and each container can have
different versions of Oracle REST Data Services. Installing or upgrading Oracle REST Data
Services in an application container is done against the application root container. When an
application PDB wants to use the upgraded version, it must synchronize with the application
root. Oracle REST Data Services continues to run in the application PDB with the existing
version until the application PDB synchronizes with the application root.

Topics:

* Prerequisites for Creating ORDS in an Application Container

* Installing ORDS in the Application Root Container

» Creating an Application Seed

» Creating an Application PDB from the Application Seed

* ORDS Configuration Files Setup

* Running ORDS

* Validating ORDS in the Application Root Container

* Upgrading ORDS in the Application Container

* Uninstalling ORDS from the Application Container

* Verifying ORDS in the Application Container

4.2.1 Prerequisites for Creating ORDS in an Application Container

This section describes the prerequisites for installing ORDS in an application container.
Following prerequisites must be met before you install ORDS in an application container:
» Download ORDS version 20.2.1 or later from Oracle REST Data Services Downloads.
e Extract the ORDS SQL scripts.

* To obtain the ORDS SQL scripts, execute the following commands:

unzip ords.version.number.zip ords.war

unzip ords.war "WEB-INF/lib/ords-installer-*.jar"
unzip “WEB-INF/lib/ords-installer-*.jar" "db/*"
mv db scripts

The ORDS SQL scripts are located in the scripts folder. The scripts folder contains the

subdirectories for the install, upgrade, validate, and uninstall SQL scripts. You can run these
SQL scripts using SQLcl, SQL*Plus, or SQL Developer.

ORACLE 4.5

Chapter 4
Setting Up ORDS in an Application Container

4.2.1.1 Creating an Application Root Container

This section describes how to create an application root container.

To create an application root container:

1. Ensure that the current container is in CDB$ROOT.

2. Use the AS APPLICATION CONTAINER clause of the CREATE PLUGGABLE
DATABASE statement to create an application container.

3. Open the application container.

Example:

CREATE PLUGGABLE DATABASE ords_app_rootl AS APPLICATION CONTAINER ADMIN
USER admin IDENTIFIED BY <admin_password>

FILE_NAME_CONVERT=("pdbseed”, "ords_app_rootl®);

ALTER PLUGGABLE DATABASE ords_app_rootl OPEN;

< Note:

ords_app_rootl and the admin user in the preceding example can be any
valid Oracle identifier.

If Oracle managed files is enabled in the CDB or the
PDB_FILE_NAME_CONVERT initialization parameter is set, then omit the
FILE_NAME_CONVERT clause.

The ORDS users, namely ORDS_PUBLIC_USER and ORDS_METADATA, must not
exist in the seed (for example, pdbseed) or cloned pdb.

¢ See Also:

Creating an Application Container

4.2.2 Installing ORDS in the Application Root Container

This section describes how to install ORDS in the application root container.

ORACLE

To install ORDS in the application root container, perform the following steps:

1. Connect to the application root container.

2. Run /path/to/scripts/install/core/ords_app_con_install.sql command
using the following parameters:

Log folder (must include the forward slash at the end)
Default tablespace for ORDS schema
Temporary tablespace for ORDS schema

Default tablespace for ORDS proxy user

4-6

Chapter 4
Setting Up ORDS in an Application Container

* Temporary tablespace for ORDS proxy user
* ORDS proxy user password
e Scripts path (requires the fully qualified path to the ORDS scripts)

Note:

The tablespaces must already exist in the database.

ALTER SESSION SET CONTAINER = ords_app_rootl;

@/path/to/scripts/install/core/ords_app_con_install.sql /path/to/logs/
SYSAUX TEMP SYSAUX TEMP P033wOr6! /path/to/scripts

Where:

The ords_app_con_install_sqgl creates an application named ORDS and assigns the
application version to the ORDS product version. The product version format is
Year.Quarter.Patch.rJulianDay24HRMM (for example, 20.2.1.r2121800).

The preceding script installs ORDS and creates the following:
¢ The ORDS schema, ORDS_METADATA
e The ORDS proxy user, ORDS_PUBLIC_USER and

* The related database objects in the application container

¢ See Also:

Verifying ORDS in the Application Container

4.2.3 Creating an Application Seed

ORACLE

This section describes how to create an application seed.

An application seed is used to provision application PDBs with the application root's
applications pre-installed.

To create an application seed:
1. Ensure that the current container is in the CDB$ROOT.
2. Alter session and set container to the application root.

3. Use the AS SEED clause of the CREATE PLUGGABLE DATABASE statement to create an
application seed.

4. Sync the ORDS application with the application seed.
5. Compile invalid objects.

6. Open the application seed in a read only mode.

4-7

Chapter 4
Setting Up ORDS in an Application Container

< Note:

ords_app_rootl and the admin user in the following example can be any
valid Oracle identifier.

If Oracle managed files is enabled in the CDB or the
PDB_FILE_NAME_CONVERT initialization parameter is set, then omit the
FILE_NAME_CONVERT clause.

ALTER SESSION SET CONTAINER = ords_app_rootl;
CREATE PLUGGABLE DATABASE AS SEED ADMIN USER admin IDENTIFIED BY
<admin_password>
FILE_NAME_CONVERT=("pdbseed®, "ords app_rootl seed");
ALTER PLUGGABLE DATABASE ords_app_rootl$seed open;
ALTER SESSION SET CONTAINER = ords_app_rootl$seed;
ALTER PLUGGABLE DATABASE application ORDS sync;
begin
sys.dbms_utility.compile_schema("ORDS METADATA", FALSE);
end;
/
ALTER PLUGGABLE DATABASE ords_app_rootl$seed close immediate;
ALTER PLUGGABLE DATABASE ords_app_rootl$seed open read only;

¢ See Also:

Creating an Application Container

4.2.4 Creating an Application PDB from the Application Seed

This section describes how to create an application PDB that is seeded from the
application seed

An application PDB is created by issuing the CREATE PLUGGABLE DATABASE statement
from the application root.

To create an application PDB from the application seed:
1. Ensure that the current container is in CDB$ROOT.
2. Alter session and set the container to the application root.

3. Use the CREATE PLUGGABLE DATABASE command to create a PDB from the
application seed.

ORACLE 4-8

Chapter 4
Setting Up ORDS in an Application Container

< Note:

ords_app_pdbl and the admin user in the following example can be any valid Oracle
identifier.

If Oracle managed files is enabled in the CDB or the PDB_FILE_NAME_CONVERT
initialization parameter is set, then omit the FILE_NAME_CONVERT clause.

ALTER SESSION SET CONTAINER=ords_app_rootl;

CREATE PLUGGABLE DATABASE ords_app_pdbl ADMIN USER admin IDENTIFIED BY
<admin password>

FILE_NAME_CONVERT=("ords_app_rootl seed","ords_app _pdbl®);

ALTER PLUGGABLE DATABASE ords_app_pdbl OPEN;

ALTER SESSION SET CONTAINER = ords_app_pdbl;

select app_name, app_version, app_status from dba_applications where
app_name = "ORDS";

APP_NAME APP_VERSION APP_STATUS
ORDS 20.2.1.r2121800 NORMAL
¢ See Also:

Creating an Application Container

4.2.5 ORDS Configuration Files Setup

This section describes how to setup the ORDS configuration files:

Topics:

» Specifying the ORDS Configuration Folder

» Creating the ORDS Configuration Files for the Application Root Container

» Making all Application PDBs in an Application Root Container Addressable by ORDS

4.2.5.1 Specifying the ORDS Configuration Folder

ORACLE

This section describes how to specify the ORDS configuration folder.

The configuration folder contains the ORDS configuration files. If the configuration folder is
undefined, then you are prompted for the configuration folder when you execute the setup
command.

To specify the location for your ORDS configuration files, use the following command:

java -jar ords.war configdir /path/to/config

4-9

Chapter 4
Setting Up ORDS in an Application Container

4.2.5.2 Creating the ORDS Configuration Files for the Application Root
Container

This section describes how to create the ORDS configuration files for the application
root container.

To create the ORDS configuration files for the application root container, execute the
following setup command to create the configuration files:

java -jar ords.war setup --configOnly

Where, the --configOnly option must be specified to create the configuration files.
When prompted for the service name, specify the application root servicename.

Example 4-1 Configuring ORDS for Application Express

Jjava -jar ords.war setup --configOnly

Specify the database connection type to use.

Enter number for [1] Basic [2] TNS [3] Custom URL [1]:

Enter the name of the database server [localhost]:

Enter the database listen port [1521]:

Enter 1 to specify the database service name, or 2 to specify the
database SID [1]:

Enter the database service name: ords_app_rootl

Enter the database password for ORDS PUBLIC USER:

Confirm password:

Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step.

IT using Oracle Application Express or migrating from mod_plsql
then you must enter 1 [1]:

Enter the PL/SQL Gateway database user name [APEX_PUBLIC_USER]:

Enter the database password for APEX PUBLIC USER:

Confirm password:

Enter 1 to specify passwords for Application Express RESTful
Services database users (APEX LISTENER, APEX REST PUBLIC USER) or 2 to
skip this step [1]:

Enter the database password for APEX LISTENER:

Confirm password:

Enter the database password for APEX REST PUBLIC USER:

Confirm password:

Enter a number to select a feature to enable:

[1] SQL Developer Web (Enables all features)
[2] REST Enabled SQL
[3] Database API
[4] REST Enabled SQL and Database API
[5] None
Choose [1]:

Example 4-2 Configuring ORDS only

java -jar ords.war setup --configOnly

Specify the database connection type to use.

ORACLE 4-10

Chapter 4
Setting Up ORDS in an Application Container

Enter number for [1] Basic [2] TNS [3] Custom URL [1]:
Enter the name of the database server [localhost]:
Enter the database listen port [1521]:
Enter 1 to specify the database service name, or 2 to specify the
database SID [1]:
Enter the database service name: ords_app_rootl
Enter the database password for ORDS_PUBLIC_USER:
Confirm password:
Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step.
IT using Oracle Application Express or migrating from mod_plsgl then you
must enter 1 [1]:2
Enter a number to select a feature to enable:
[1] SQL Developer Web (Enables all features)
[2] REST Enabled SQL
[3] Database API
[4] REST Enabled SQL and Database API
[5] None
Choose [1]:

4.2.5.3 Making all Application PDBs in an Application Root Container Addressable
by ORDS

This section describes how to make all application PDBs in an application root container
addressable by ORDS. This step is required for starting ORDS from the application root
container.

For more information refer to Making All PDBs Addressable by Oracle REST Data Services
(Pluggable Mapping).

4.2.6 Running ORDS

This section lists the different methods you can use to run ORDS after installing ORDS in the
application container.

Once you install ORDS in the application container and create the ORDS configuration files,
run ORDS using one of the following methods:

» Standalone Mode
* Deploy on Oracle WebLogic Server

* Deploy Oracle REST Data Services on Apache Tomcat

See Also:

e Starting in Standalone Mode
e Oracle WebLogic Server

e Apache Tomcat

ORACLE 4-11

Chapter 4
Setting Up ORDS in an Application Container

4.2.7 Validating ORDS in the Application Root Container

This section describes how to validate ORDS in the application root container.

You can validate an application in an application container. These operations are
performed in the application root. The application container propagates the application
changes to the application PDBs when the application PDBs synchronize with the
application in the application root. The ords_app_con_validate.sqgl script repairs the
Oracle REST Data Services schema and verifies if the ORDS schema is valid.

To repair ORDS in the application root:
1. In SQLcl or SQL*Plus, connect to the application root.

2. Run /path/to/scripts/validate/core/ords_app_con_validate.sqgl with the
following parameters:

* Log folder (must include the forward slash at the end)

e Scripts path (requires the fully qualified path to the ORDS scripts)

ALTER SESSION SET CONTAINER = ords_app_rootl;

@/path/to/scripts/validate/core/ords_app_con_validate.sgl /path/to/
logs/ /path/to/scripts

The ords_app_con_validate.sql sets the application version to the ORDS product
version with suffix "_v_YYMMDD24HRMISS".

For example:
Year.Quarter.Patch.rjulianDay24MI_v_YYMMDD24HRMISS
20.2.0.r1801800_v_200705160015

To synchronize the ORDS application in an application PDB with the latest changes in
the application root:

1. In SQLcl or SQL*Plus, ensure that the current container is the application PDB

2. Runthe ALTER PLUGGABLE DATABASE APPLICATION statement specifying the ORDS
application with the SYNC clause.

For example:
ALTER SESSION SET CONTAINER = ords_app_pdbl;
ALTER PLUGGABLE DATABASE APPLICATION ORDS SYNC;

ORACLE 4-12

Chapter 4
Setting Up ORDS in an Application Container

< Note:

When you install ORDS, it attempts to find the Oracle Application Express (APEX)
schema and creates a view. This view joins the relevant tables in the APEX schema
to the tables in the Oracle REST Data Services schema. If you install Oracle REST
Data Services before APEX, then Oracle REST Data Services cannot find the
APEX schema and it creates a stub view in place of the missing APEX tables.

Oracle highly recommends that you install Oracle REST Data Services after APEX
to ensure that the APEX objects that Oracle REST Data Services needs to query
are present.

If you install Oracle REST Data Services before APEX, then use the
ords_app_con_validate.sqgl script to force Oracle REST Data Services to
reconstruct the queries against the APEX schema.

4.2.8 Upgrading ORDS in the Application Container

This section describes how to upgrade ORDS in the application container.

You can upgrade an application in an application container. These operations are performed
in the application root. The application container propagates the application changes to the
application PDBs when the application PDBs synchronize with the application in the
application root.

Prerequisites:
* ORDS must already be installed in the application container.

* Upgrading ORDS from an earlier release to a new release (for example, ORDS release
20.2.x.x to 20.3.x.X).

To upgrade ORDS in the application root:
1. In SQLcl or SQL*Plus, connect to the application root.

2. Run /path/to/scripts/upgrade/ords_app_con_upgrade.sql with the following
parameters:

e Log folder (must include the forward slash at the end)

e Scripts path (requires the fully qualified path to the ORDS scripts)

< Note:

The ords_app_con_upgrade.sqgl script upgrades ORDS in the application root
container to the release that you are using. For example, if the ORDS
application version is 20.2.1.r2121800, and the ORDS upgrade script is
20.3.0.r2601900, then the script upgrades ORDS to release 20.3.0.r2601900 in
the application root container.

To synchronize the ORDS application in an application PDB with the upgrade changes in the
application root:

1. In SQLcl or SQL*Plus, ensure that the current container is the application PDB.

ORACLE 4-13

Chapter 4
Setting Up ORDS in an Application Container

2. Runthe ALTER PLUGGABLE DATABASE APPLICATION statement specifying the ORDS
application with the SYNC clause.

ALTER SESSION SET CONTAINER = ords_app_pdbl;

ALTER PLUGGABLE DATABASE APPLICATION ORDS SYNC;

See Also:

Verifying ORDS in the Application Container

4.2.9 Uninstalling ORDS from the Application Container

ORACLE

This section describes how to uninstall ORDS from the application container.

You can uninstall an application from an application container. These operations are
performed in the application root. The application container propagates the application
changes to the application PDBs when the application PDBs synchronize with the
application in the application root.

To uninstall ORDS from the application root:
1. In SQLcl or SQL*Plus, connect to the application root.

2. Run /path/to/scripts/uninstall/core/ords_app_con_uninstall.sqgl with the
following parameters:

* Log folder (must include the forward slash at the end)

e Scripts path (requires the fully qualified path to the ORDS scripts)
ALTER SESSION SET CONTAINER = ords_app_rootl;

@/path/to/scripts/uninstall/core/ords_app_con_uninstall.sql /path/to/
logs/ /path/to/scripts

To synchronize the application PDB to uninstall the ORDS application:
1. In SQLcl or SQL*Plus, ensure that the current container is the application PDB.

2. Runthe ALTER PLUGGABLE DATABASE APPLICATION statement specifying the ORDS
application with the SYNC clause.

For example:
ALTER SESSION SET CONTAINER = ords_app_pdbl;
ALTER PLUGGABLE DATABASE APPLICATION ORDS SYNC;

¢ See Also:

Verifying ORDS in the Application Container

4-14

Chapter 4
Making All PDBs Addressable by Oracle REST Data Services (Pluggable Mapping)

4.2.10 Verifying ORDS in the Application Container

This section describes how to verify ORDS in the application container.

To verify the ORDS for install, upgrade, validate, and uninstall in the application container:

Manually inspect the following log files for any errors:
— Install - ordsinstall_<timestamp>.log

— Upgrade - ordsupgrade_<timestamp>.log

— Validate - ordsvalidate <timestamp>.log

Uninstall - ordsuninstall_<timestamp>.log

Query dba_applications to verify if the ORDS application exists and its application
version is the same as the ORDS product version.

SQL> select app_name, app_version, app_status from dba_applications where
app_name = "ORDS";

APP_NAME APP_VERSION APP_STATUS

ORDS 20.2.1.r2121800 NORMAL

Query dba_app_errors to check for any errors:
SQL> select app_name, app_statement, errornum, errormsg from dba_app_errors
where app_name = "ORDS";

no rows selected

If you are uninstalling ORDS from the application container, the APP_STATUS contains the
value UNINSTALLED.

4.3 Making All PDBs Addressable by Oracle REST Data
Services (Pluggable Mapping)

Pluggable mapping refers to the ability to make all PDBs in a CDB root or in an application
root container addressable by Oracle REST Data Services. To use this feature, follow the
instructions described in this topic.

ORACLE

If the Oracle REST Data Services configuration file includes the db.serviceNameSuffix
parameter, this indicates that the Oracle REST Data Services pool points to a CDB root or an
application root, and that the PDBs connected to that CDB root or an application root should
be made addressable by Oracle REST Data Services.

The value of the db.serviceNameSuffix parameter must match the value of the DB_DOMAIN
database initialization parameter, and it must start with a period (.). To set the value of the
db.serviceNameSuffix parameter:

1.
2.

In SQLcl or SQL*Plus, connect to the root as a user with SYSDBA privileges.
Check the value of the DB_DOMAIN database initialization parameter.

SQL> show parameter DB_DOMAIN

Exit SQLcl or SQL*Plus.

4-15

ORACLE

Chapter 4
Making All PDBs Addressable by Oracle REST Data Services (Pluggable Mapping)

SQL> exit

If the DB_DOMAIN value is not empty, then on the command line, enter the
command to create the key and value for the db.serviceNameSuffix parameter
and its DB_DOMAIN. This will be used to add this entry to the Oracle REST Data
Services configuration file.

echo db.serviceNameSuffix=_val ue-of - DB_DOVAI N > snsuffix.properties

For example, if DB_DOMAIN is set to example.com, enter the following:
echo db.serviceNameSuffix=_example.com > snsuffix.properties

If the db.serviceNameSuffix parameter value is not defined, enter a command in
the following format to add an entry to the configuration file:

java -jar ords.war set-properties --conf pool - name snsuffix.properties

Where pool-name is one of the following:
» poolName for a PL/SQL Gateway configuration

e poolName_pu for an Oracle REST Data Services RESTful Services
configuration

« poolName_rt for an Application Express RESTful Services configuration

Example 1: You want to make PDBs in a CDB root or an application root
addressable globally. Specify defaults by entering the following command:

java -jar ords.war set-properties --conf defaults snsuffix.properties

" Note:

The approach shown in Example 1 (setting the property for all pools
through the defaults.xml file) is best for most use cases.

Example 2: You want to make PDBs in a CDB root or an application root
addressable for your PL/SQL Gateway, and your pool name is apex. Enter the
following command:

java -jar ords.war set-properties --conf apex snsuffix.properties

For example, if the database pointed to by apex has a DB_DOMAIN value of
example.com and contains the two PDBs pdbl.example.com and
pdb2.example.com, the first PDB will be mapped to URLs whose path starts with /
ords/pdbl/, and the second PDB will be mapped to URLs whose path starts

with Zords/pdb2/.

Example 3: You want to make PDBs in a CDB root or an application root
addressable for your Oracle REST Data Services RESTful Services, and your pool
name is apex_pu. Enter the following command:

java -jar ords.war set-properties --conf apex_pu snsuffix.properties

Example 4: You want to make PDBs in a CDB root or an application root
addressable for your Application Express RESTful Services and your pool name is
apex_rt. Enter the following command:

4-16

Chapter 4
Making All PDBs Addressable by Oracle REST Data Services (Pluggable Mapping)

java -jar ords.war set-properties --conf apex_rt snsuffix.properties

Related Topics

* About the Oracle REST Data Services Configuration Files

ORACLE 4-17

Developing Oracle REST Data Services
Applications

ORACLE

This section explains how to develop applications that use Oracle REST Data Services. It
includes guidance and examples.

4

Note:

If you want to get started quickly, you can try the tutorial in Oracle REST Data
Services Quick Start Guide. However, you should then return to this chapter to
understand the main concepts and techniques.

Note:

Ensure that you have installed and configured both Oracle Application Express 4.2
or later, and Oracle REST Data Services 3.0 or later, before attempting to follow any
of the tutorials and examples.

To use the Oracle REST API for JSON Data Persistence, you must first install the
Oracle REST API. See "Oracle REST API Installation" in Oracle REST Data
Services SODA for REST Developer's Guide.

It is assumed that you are familiar with Oracle Application Express. If you are new
to Oracle Application Express, see the Oracle Application Express documentation.

Topics:

Introduction to Relevant Software

Getting Started with RESTful Services
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Filtering in Queries

Configuring Secure Access to RESTful Services

About Oracle REST Data Services User Roles

Authenticating Against WebLogic Server User Repositories

Integrating with Existing Group/Role Models
Using the Oracle REST Data Services PL/SQL API

You may also want to review Creating an Image Gallery , a supplementary extended example
that uses Oracle Application Express to build an application.

5-1

Chapter 5
Introduction to Relevant Software

5.1 Introduction to Relevant Software

This section explains some key relevant software for developing applications that use
Oracle REST Data Services.

Topics:

e About Oracle Application Express

e About RESTful Web Services

Related Topics
e About Oracle REST Data Services

5.1.1 About Oracle Application Express

Oracle Application Express is a declarative, rapid web application development tool for
the Oracle database. It is a fully supported, no cost option available with all editions of
the Oracle database. Using only a web browser, you can develop and deploy
professional applications that are both fast and secure.

5.1.2 About RESTful Web Services

Representational State Transfer (REST) is a style of software architecture for
distributed hypermedia systems such as the World Wide Web. An API is described as
RESTful when it conforms to the tenets of REST. Although a full discussion of REST is
outside the scope of this document, a RESTful API has the following characteristics:

» Data is modelled as a set of resources. Resources are identified by URIs.

* A small, uniform set of operations are used to manipulate resources (for example,
PUT, POST, GET, DELETE).

* Aresource can have multiple representations (for example, a blog might have an
HTML representation and an RSS representation).

* Services are stateless and since it is likely that the client will want to access
related resources, these should be identified in the representation returned,
typically by providing hypertext links.

Release 4.2 of Oracle Application Express leverages the capabilities of Oracle REST
Data Services to provide developers with an easy to use graphical user interface for
defining and testing RESTful Web Services.

5.2 Getting Started with RESTful Services

This section introduces RESTful Services, and provides guidelines and examples for
developing applications that use RESTful Services.

Topics:
* RESTIful Services Terminology
* About Request Path Syntax Requirements

* "Getting Started" Documents Included in Installation

ORACLE 5-2

Chapter 5
Getting Started with RESTful Services

About cURL and Testing RESTful Services

Automatic Enabling of Schema Objects for REST Access (AutoREST)
Manually Creating RESTful Services Using SQL and PL/SQL

About Working with Dates Using Oracle REST Data Services

Related Topics

Developing Oracle REST Data Services Applications

5.2.1 RESTful Services Terminology

This section introduces some common terms that are used throughout this document:

RESTful service: An HTTP web service that conforms to the tenets of the RESTful
architectural style.

Resource module: An organizational unit that is used to group related resource
templates.

Resource template: An individual RESTful service that is able to service requests for
some set of URIs (Universal Resource Identifiers). The set of URIs is defined by the URI
Pattern of the Resource Template

URI pattern: A pattern for the resource template. Can be either a route pattern or a URI
template, although you are encouraged to use route patterns.

Route pattern: A pattern that focuses on decomposing the path portion of a URI into its
component parts. For example, a pattern of /:object/: id? will match /emp/101
(matches a request for the item in the emp resource with id of 101) and will also

match /emp/ (matches a request for the emp resource, because the :id parameter is
annotated with the ? modifier, which indicates that the id parameter is optional).

For a detailed explanation of route patterns, see docs\javadoc\plugin-api\route-
patterns.html, under <sgldeveloper-instal I>\ords and under the location (if any)
where you manually installed Oracle REST Data Services.

URI template: A simple grammar that defines the specific patterns of URIs that a given
resource template can handle. For example, the pattern employees/{id} will match any
URI whose path begins with employees/, such as employees/2560.

Resource handler: Provides the logic required to service a specific HTTP method for a
specific resource template. For example, the logic of the GET HTTP method for the
preceding resource template might be:

select empno, ename, dept from emp where empno = :id

HTTP operation: HTTP (HyperText Transport Protocol) defines standard methods that
can be performed on resources: GET (retrieve the resource contents), POST (store a new
resource), PUT (update an existing resource), and DELETE (remove a resource).

Related Topics

About RESTful Web Services

5.2.2 About Request Path Syntax Requirements

To prevent path-based attacks, Oracle REST Data Services performs a number of validation
checks on the syntax of the path element of each request URL.

ORACLE

5-3

Chapter 5
Getting Started with RESTful Services

Each path must conform to the following rules:

* Is not empty or whitespace-only

» Does not contain any of the following characters: ?, #, ;, %

* Does not contain the null character (\u0000)

» Does not contain characters in the range: \u0001-\u0031

* Does not end with white space or a period (.)

» Does not contain double forward slash (//) or double back slash(\\)

» Does not contain two or more periods in sequence (.., ..., and so on)
» Total length is {@value #MAX_PATH_LENGTH]} characters or less

» Does not match any of the following names (case insensitive), with or without file
extensions: CON, PRN, AUX, CLOCKS$, NUL, COM0, COM1, COM2, COM3,
COM4, COM5, COM6, COM7, COM8, COM9, LPTO, LPTL1, LPT2, LPT3, LPT4,
LPT5, LPT6, LPT7, LPT8, LPT9

If you intend to auto-REST enable objects, then avoid object names that do not comply
with these requirements. For example, do not create a table named #EMPS. If you do
want to auto-REST enable objects that have non-compliant names, then you must use
an alias that complies with the requirements.

These requirements are applied to the URL decoded form of the URL, to prevent
attempted circumvention of percent encodings.

5.2.3 "Getting Started" Documents Included in Installation

When you install Oracle REST Data Services, an examples folder is created with
subfolders and files that you may find helpful. The installation folder hierarchy includes
this:

ords
conf
docs
exanpl es
soda
getting-started

In this hierarchy:

» examples\soda: Contains sample JSON documents used in some examples
included in Oracle REST Data Services SODA for REST Developer's Guide.

» examples\getting-started: Double-click index.html for a short document about
how to get started developing RESTful Services using Oracle REST Data
Services. This document focuses on using SQL Developer to get started. (SQL
Developer is the primary tool for managing Oracle REST Data Services. For
example, the ability to auto-enable REST support for schemas and tables is
available only in SQL Developer.)

ORACLE 5-4

Chapter 5
Getting Started with RESTful Services

5.2.4 About cURL and Testing RESTful Services

Other sections show the testing of RESTful Services using a web browser. However, another
useful way to test RESTful Services is using the command line tool named cURL.

This powerful tool is available for most platforms, and enables you to see and control what
data is being sent to and received from a RESTful service.

curl -1 https://server:port/ords/workspace/hr/employees/7369

This example produces a response like the following:

HTTP/1.1 200 OK

Server: Oracle-REST-Data-Services/2.0.6.78.05.25
ETag: "..."

Content-Type: application/json
Transfer-Encoding: chunked

Date: Thu, 28 Mar 2014 16:49:34 GMT

"'empno’:7369,
"ename":""'SMITH",
"job":"CLERK",
"mgr'*:-7902,
"hiredate':"'1980-12-17T08:00:00Z",
"sal':800,
"deptno™:20
}

The -1 option tells cURL to display the HTTP headers returned by the server.

Related Topics
» Exploring the Sample RESTful Services in Application Express (Tutorial)

¢ See Also:

curl - command line tool and library
The example in this section uses cURL with the services mentioned in Exploring the
Sample RESTful Services in Application Express (Tutorial)

5.2.5 Automatic Enabling of Schema Objects for REST Access
(AUtoREST)

ORACLE

If Oracle REST Data Services has been installed on the system associated with a database
connection, you can use the AutoREST feature to conveniently enable or disable Oracle
REST Data Services access for specified tables and views in the schema associated with
that database connection. Enabling REST access to a table, view or PL/SQL function,
procedure or package allows it to be accessed through RESTful services.

AuUtoREST is a quick and easy way to expose database tables as REST resources. You
sacrifice some flexibility and customizability to gain ease of effort. AutoRest lets you quickly

5-5

Chapter 5
Getting Started with RESTful Services

expose data but (metaphorically) keeps you on a set of guide rails. For example, you
cannot customize the output formats or the input formats, or do extra validation.

On the other hand, manually created resource modules require you to specify the SQL
and PL/SQL to support the REST resources. Using resource modules requires more
effort, but offers more flexibility; for example, you can customize what fields are
included, do joins across multiple tables, and validate the incoming data using PL/
SQL.

So, as an application developer you must make a choice: use the "guide rails" of
AutoREST, or create a resource module to do exactly what you need. If you choose
AutoREST, you can just enable a table (or set of tables) within a schema.

Note that enabling a schema is not equivalent to enabling all tables and views in the
schema. It just means making Oracle REST Data Services aware that the schema
exists and that it may have zero or more resources to expose to HTTP. Those
resources may be AutoREST resources or resource module resources.

You can automatically enable Oracle REST Data Services queries to access individual
database schema objects (tables, views, and PL/SQL) by using a convenient wizard in
Oracle SQL Developer. (Note that this feature is only available for Oracle REST Data
Services- enabled schemas, not for Oracle Application Express workspaces.)

To enable Oracle REST Data Services access to one or more specified tables or
views, you must do the following in SQL Developer:

1. Enable the schema (the one associated with the connection) for REST access.

Schema level: To enable Oracle REST Data Services access to selected objects
(that you specify in the next step) in the schema associated with a connection,
right-click its name in the Connections navigator and select REST Services, then
Enable REST Services.

(To drop support for Oracle REST Data Services access to objects in the schema
associated with a connection, right-click its name in the Connections navigator and
select REST Services, then Drop REST Services.)

2. Individually enable REST access for the desired objects.

Table or view level: To enable Oracle REST Data Services access to a specified
table or view, right-click its name in the Connections navigator and select Enable
REST Services.

For detailed usage information, click the Help button in the wizard or dialog box in
SQL Developer.

5.2.5.1 Examples: Accessing Objects Using RESTful Services

This section provides examples of using Oracle REST Data Services queries and
other operations against tables and views after you have REST-enabled them.

You can automatically expose table and view objects as RESTful services using SQL
Developer. This topic provides examples of accessing these RESTful services.

ORACLE 5-6

Chapter 5
Getting Started with RESTful Services

Tip:

Although these examples illustrate the URL patterns used to access these
resources, clients should avoid hard coding knowledge of the structure of these
URLs; instead clients should follow the hyperlinks in the resources to navigate
between resources. The structure of the URL patterns may evolve and change in
future releases.

This topic provides examples of accessing objects using RESTful Services.
* Get Schema Metadata

* Get Object Metadata

* Get Object Data

* Get Table Data Using Paging

* Get Table Data Using Query

* Get Table Row Using Primary Key
* Insert Table Row

* Update/Insert Table Row

* Delete Using Filter

* Post by Batch Load

5.2.5.1.1 Get Schema Metadata

ORACLE

This example retrieves a list of resources available through the specified schema alias. It
shows RESTful services that are created by automatically enabling a table or view, along with
RESTful Services that are created by resource modules.

This example retrieves a list of resources available through the specified schema alias.
Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/metadata-catalog/

Example: GET http://localhost:8080/ords/ordstest/metadata-catalog/

Result:

{
"items": [

{
"name": "EMP",
"links": [

"rel": "describes",
"href": "http://localhost:8080/ords/ordstest/emp/"

}s
{

"rel": "canonical",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/",
"mediaType": "application/json"

}

1

}
{

5-7

"name"':
"links":
{
"rel":
"href":
}
{
"rel":
"href":
hello/",

Chapter 5
Getting Started with RESTful Services

"oracle.examples.hello”,

[

"describes",
"http://localhost:8080/ords/ordstest/examples/hello/"

"canonical",
"http://localhost:8080/ords/ordstest/metadata-catalog/examples/

"mediaType": "application/json"

}
]

}
]

"limit":
"offset":
"count":
"links":
{
"rel":
"href":

}
{

"rel":
"href":
}
1
}

"hasMore"

. false,
25,
0,
2,
[

"self",

"http://localhost:8080/ords/ordstest/metadata-catalog/"

"first",

"http://localhost:8080/ords/ordstest/metadata-catalog/"

The list of resources includes:

» Resources representing tables or views that have been REST enabled.

» Resources defined by resource modules. Note that only resources having a
concrete path (that is, not containing any parameters) will be shown. For example,

aresou

rce with a path of /module/some/path/ will be shown, but a resource with a

path of /module/some/ :parameter/ will not be shown.

Each available resource has two hyperlinks:

* The link with relation describes points to the actual resource.

* The link with relation canonical describes the resource.

5.2.5.1.2 Get Object Metadata

This example retrieves the metadata (which describes the object) of an individual

ORACLE

object. The

location of the metadata is indicated by the canonical link relation.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/metadata-catalog/

<ObjectAli

as>/

Example: GET http://localhost:8080/ords/ordstest/metadata-catalog/emp/

Result:

{

“name’:

"EMP",

“primarykey": [
"empno™

5-8

Chapter 5
Getting Started with RESTful Services

1.
"members": [
{
"name': "empno",
"type": “NUMBER"
3.
{
"name'": "ename",
"type": "VARCHAR2"
3.
{
"name™: "job",
"type": "VARCHAR2"
1
{
"name": "mgr",
"type": "NUMBER"
1
{
"name": "hiredate",
"type': "DATE"
1.
{
"name": "sal",
"type": "NUMBER"
}.
{
"name': "‘comm™,
"type": "NUMBER"
}.
{
"name": "deptno",
"type": "NUMBER"
}
1.
"links": [
{
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/",
"mediaType": "application/json"
1
{
"rel": "canonical",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/*
3.
{
"rel": "describes",
"href": "http://localhost:8080/ords/ordstest/emp/"
}
1
}
5.2.5.1.3 Get Object Data

This example retrieves the data in the object. Each row in the object corresponds to a JSON
object embedded within the JSON array

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/
Example: GET http://localhost:8080/ords/ordstest/emp/

ORACLE 5-9

Chapter 5
Getting Started with RESTful Services

Result:

{
"items": [
{
“empno™: 7499,
“ename™: "ALLEN",
"job"™: "SALESMAN",

"mgr*: 7698,

"hiredate": "1981-02-20T00:00:00Z",
"sal": 1600,

"comm'™: 300,

"deptno™: 30,

"links": [

{

“"rel": "self"”,
"href": "http://localhost:8080/ords/ordstest/emp/7499"

“empno™: 7934,
"ename": "MILLER",
"job"™: "CLERK",

“mgr*: 7782,

"hiredate": "1982-01-23T00:00:00Z",
"sal": 1300,

"comm™: null,

"deptno™: 10,

"links": [

{

“"rel": "self"”,
"href": "http://localhost:8080/ords/ordstest/emp/7934"

}
]
}
1.
"hasMore": false,
"limit": 25,
"offset": 0,
"count'": 13,
"links": [
{
"rel”: "self",
"href": "http://localhost:8080/ords/ordstest/emp/"
3
{
"rel™: “edit”,
"href": "http://localhost:8080/ords/ordstest/emp/"
3
{

"rel": "describedby",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"
3
{

"rel": "first",
"href": "http://localhost:8080/ords/ordstest/emp/"
}
]
}

ORACLE 5-10

Chapter 5
Getting Started with RESTful Services

5.2.5.1.4 Get Table Data Using Paging

ORACLE

This example specifies the offset and limit parameters to control paging of result data.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
offset=<Offset>&limit=<Limit>

Example: GET http://localhost:8080/ords/ordstest/emp/?0ffset=10&1imit=5

Result:

{
"items": [
{
“'empno™: 7900,
"ename': "JAMES",
"job™: "CLERK",

mgr'': 7698,
"hiredate": "1981-12-03T00:00:00Z",
"sal": 950,
"comm": null,
"deptno™: 30,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7900"
}
1
1
{
“'empno™: 7934,

"ename'": "MILLER",
"job™: "CLERK",

“mgr'': 7782,
"hiredate": "1982-01-23T00:00:00Z",
"sal™: 1300,
"comm": null,
"deptno™: 10,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7934"
}
1
}
1.
"hasMore': false,
“limit": 5,
"offset": 10,
"count": 3,
"links": [
{
“rel”: "self",
"href": "http://localhost:8080/ords/ordstest/emp/"
}.
{
“rel™: "edit",
"href": "http://localhost:8080/ords/ordstest/emp/*"
}.

5-11

Chapter 5
Getting Started with RESTful Services

{

"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"

}s
{

"rel": "first",
"href": "http://localhost:8080/ords/ordstest/emp/?limit=5"

}
{
"rel": "prev",
"href'": "http://localhost:8080/ords/ordstest/emp/?offset=5&limit=5"
}
1
}

5.2.5.1.5 Get Table Data Using Query

This example specifies a filter clause to restrict objects returned.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
g=<FilterClause>

Example: GET http://localhost:8080/ords/ordstest/emp/?q={""deptno™:
{"$1te":20}}

Result:

{
"items": [
{
“'empno": 7566,
"ename': "JONES",
"job™: "MANAGER™",

“mgr'': 7839,
"hiredate": "1981-04-01T23:00:00Z",
"sal": 2975,
"comm": null,
“deptno™: 20,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7566"
}
1
1
{
“'empno": 7934,

"ename'": "MILLER",
"job™: "CLERK",
“mgr'': 7782,
"hiredate": "1982-01-23T00:00:00Z",
"sal": 1300,
"comm": null,
"deptno™: 10,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7934"
}
1

ORACLE 5-12

Chapter 5
Getting Started with RESTful Services

}
1.
"hasMore": false,
"limit": 25,
"offset": O,
“count": 7,
"links": [
{

"rel": "self",

"href'": "http://localhost:8080/ords/ordstest/emp/?
g=%7B%22deptno%22 : %7B%22%24 1 te%22 : 20%7D%7D""
1,
{
"rel": "edit",
"href'": "http://localhost:8080/ords/ordstest/emp/?
=%7B%22deptno%22 : %7B%22%24 1 te%22 : 20%7D%7D""
1,
{
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"

3}
{

"rel": "first",
"href": "http://localhost:8080/ords/ordstest/emp/?
g=%7B%22deptno%22:%7B%22%24 1te%22: 20%7D%7D"
}
1
}

5.2.5.1.6 Get Table Row Using Primary Key

ORACLE

This example retrieves an object by specifying its identifying key values.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/<KeyValues>
Where <KeyValues> is a comma-separated list of key values (in key order).
Example: GET http://localhost:8080/ords/ordstest/emp/7839

Result:

{
“empno™: 7839,
"ename': "KING",
"job": "PRESIDENT",

"mgr: null,
"hiredate": "1981-11-17T00:00:00Z",
"sal": 5000,
"comm™: null,
"deptno™: 10,
"links": [
{
"rel": “self",
"href": "http://localhost:8080/ords/ordstest/emp/7839"
3.
{
"rel": “edit"”,
"href": "http://localhost:8080/ords/ordstest/emp/7839"
3.
{

"rel": "describedby",

5-13

Chapter 5
Getting Started with RESTful Services

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
}
{

"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp/"
}
1
}

5.2.5.1.7 Insert Tahle Row

ORACLE

This example inserts data into the object. The body data supplied with the request is a
JSON object containing the data to be inserted.

If the object has a primary key, then there must be an insert trigger on the object that
populates the primary key fields. If the table does not have a primary key, then the
ROWID of the row will be used as the item's identifier.

If the object lacks a trigger to assign primary key values, then the PUT operation
described in next section,Update/lnsert Table Row should be used instead.

Pattern: POST http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/
Example:

curl -i -H "Content-Type: application/json™ -X POST -d "{ \"empno\" :7,
\"ename\": \"JBOND\", \"job\":\"SPY\", \"deptno\" :11 }" "http://localhost:8080/

ords/ordstest/emp/
Content-Type: application/json

{ "empno" :7, "ename": "JBOND", "job":"SPY", "deptno" :11 }

Result:
{
"empno™: 7,
“ename': "JBOND",
"job™: "SPY",
“mgr”: null,
"hiredate": null,
"sal": null,
"comm™: null,
"deptno™: 11,
"links": [
{
“rel”: "self”,
“href": "http://localhost:8080/ords/ordstest/emp/7"
}s
{
“rel”: “edit”,
“href": "http://localhost:8080/ords/ordstest/emp/7"
}s
{
“rel™: "describedby",
“href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item”
}s
{
"rel": "collection",
“href": "http://localhost:8080/ords/ordstest/emp/*"
}

5-14

Chapter 5
Getting Started with RESTful Services

]
}

5.2.5.1.8 Update/Insert Table Row

This example inserts or updates (sometimes called an "upsert") data in the object. The body
data supplied with the request is a JSON object containing the data to be inserted or
updated.

Pattern: PUT http://<HOST>:<PORT>/ords/<SchemaAlias>/<0ObjectAlias>/<KeyValues>
Example:

curl -1 -H "Content-Type: application/json™ -X PUT -d "{ \"empno\" :7, \"ename\":
\"JBOND\"", \"job\":\"SPY\", \"deptno\" :11 }" "http://localhost:8080/ords/

ordstest/emp/7
Content-Type: application/json

{ "empno™ :7, "ename": "JBOND", "job":"SPY", "deptno" :11 }

Result:
{
“empno™: 7,
"ename': "JBOND",
"job": "SPY",
"mgr': null,
"hiredate": null,
"“sal": null,
"comm™: null,
"deptno™: 11,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7"
}
{
"rel": "edit",
"href'": "http://localhost:8080/ords/ordstest/emp/7"
}
{

"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
1,
{
"rel": "collection",
"href'": "http://localhost:8080/0ords/ordstest/emp/"
}
1
}

5.2.5.1.9 Delete Using Filter

ORACLE

This example deletes object data specified by a filter clause.

Pattern: DELETE http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
g=<FilterClause>

Example: curl -i -X DELETE "http://localhost:8080/ords/ordstest/emp/?
g={"'deptno":11}"

5-15

Result:

{

Chapter 5
Getting Started with RESTful Services

"itemsDeleted": 1

¥

5.2.5.1.10 Post by Batch Load

This example inserts object data using the batch load feature. The body data supplied
with the request is a CSV file. The behavior of the batch operation can be controlled
using the optional query parameters, which are described in Table 5-1.

ORACLE

Pattern: POST http://<HOST>:<PORT>/ords/<SchemaAlias>/<0bjectAlias>/
batchload?<Parameters>

Parameters:

Table 5-1 Parameters for batchload

Parameter

Description

batchesPerCommit

batchRows

dateFormat

delimiter

enclosures

errors

errorsMax

lineeEnd

lineMax

locale
responseEncoding

responseFormat

Sets the frequency for commits. Optional commit points can be set after
a batch is sent to the database. The default is every 10 batches. 0
indicates commit deferred to the end of the load. Type: Integer.

Sets the number of rows in each batch to send to the database. The
default is 50 rows per batch. Type: Integer.

Sets the format mask for the date data type. This format is used when
converting input data to columns of type date. Type: String.

Sets the field delimiter for the fields in the file. The default is the comma

()
embeddedRightDouble

Sets the user option used to limit the number of errors. If the number of
errors exceeds the value specified for errorsMax (the service option)
or by errors (the user option), then the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be allowed
(up to errorsMax value), specify UNLIMITED (-1) .

A service option used to limit the number of errors allowed by users. It
intended as an option for the service provider and not to be exposed as
a user option. If the number of errors exceeds the value specified for
errorsMax (the service option) or by errors (the user option), then
the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be
allowed, specify UNLIMITED (-1).

Sets the line end (terminator). If the file contains standard line end
characters (\r. \r\in or \n), then IineEnd does not need to be specified.

Sets a maximum line length for identifying lines/rows in the data stream.
A lineMax value will prevent reading an entire stream as a single line
when the incorrect 1ineEnd character is being used. The default is
unlimited.

Sets the locale.
Sets the encoding for the response stream.

Sets the format for response stream. This format determines how
messages and bad data will be formatted. Valid values: RAW, SQL.

5-16

Chapter 5
Getting Started with RESTful Services

Table 5-1 (Cont.) Parameters for batchload

__|
Parameter Description

timestampFormat Sets the format mask for the time stamp data type. This format is used
when converting input data to columns of type time stamp.

timestampTZFormat Sets the format mask for the time stamp time zone data type. This
format is used when converting input data to columns of type time
stamp time zone.

truncate Indicates if and/or how table data rows should be deleted before the
load. False (the default) does not delete table data before the load;
True causes table data to be deleted with the DELETE SQL statement;
Truncate causes table data to be deleted with the TRUNCATE SQL
statement.

Example:

POST http://localhost:8080/ords/ordstest/emp/batchload?batchRows=25
Content-Type: text/csv

empno,ename, job,mgr,hiredate,sal,comm,deptno
0,M,SPY MAST, ,2005-05-01 11:00:01,4000, ,11
7,J.BOND,SPY,0,2005-05-01 11:00:01,2000, ,11
9,R.Cooper,SOFTWARE,0,2005-05-01 11:00:01,10000, ,11
26 ,Max,DENTIST,0,2005-05-01 11:00:01,5000, ,11

Result:

#INFO Number of rows processed: 4

#INFO Number of rows in error: O

#INFO Elapsed time: 00:00:03.939 - (3,939 ms) 0 - SUCCESS: Load processed without
errors

5.2.5.2 Filtering in Queries

This section describes and provides examples of filtering in queries against REST-enabled
tables and views.

Filtering is the process of limiting a collection resource by using a per-request dynamic filter
definition across multiple page resources, where each page contains a subset of items found
in the complete collection. Filtering enables efficient traversal of large collections.

To filter in a query, include the parameter g=FilterObject, where FilterObject is a JSON object
that represents the custom selection and sorting to be applied to the resource. For example,
assume the following resource:

https://example.com/ords/scott/emp/

The following query includes a filter that restricts the ENAME column to "JOHN";

https://example.com/ords/scott/emp/?q={" ENAME": " JOHN"}

5.2.5.2.1 FilterObject Grammar

The FilterObject must be a JSON object that complies with the following syntax:

FilterObject { orderby , asof, wmembers }

ORACLE 5-17

Chapter 5
Getting Started with RESTful Services

The orderby, asof, and wmembers attributes are optional, and their definitions are as

follows:
orderby
"$orderby": {orderByMembers}
orderByMembers
orderByProperty
orderByProperty , orderByMembers
orderByProperty
columnName : sortingvValue
sortingValue
"ASCH
"DESC™
n_qe
e
-1
1
asof
"$asof": date
"$asof'': "datechars"
"$asof'': scn

"$asof"': +int

wmembers
wpair
wpair , wmembers

wpair
columnProperty
complexOperatorProperty

columnProperty
columnName : string
columnName : number
columnName : date
columnName : simpleOperatorObject
columnName : complexOperatorObject
columnName : [complexValues]

columnName

"\p{Alpha}[[\p{Alpha}T1([[\p{Alnum}]#$_1)*$"

complexOperatorProperty
complexKey : [complexValues]
complexKey : simpleOperatorObject

complexKey
"$and"
ll$orll

complexvalues
complexValue , complexValues

complexValue
simpleOperatorObject
complexOperatorObject
columnObject

ORACLE 5-18

ORACLE

columnObject
{columnProperty}

simpleOperatorObject

{simpleOperatorProperty}

complexOperatorObject

{complexOperatorProperty}

simpleOperatorProperty

"$eq" : string | number | date
"$ne" : string | number | date
"$It" : number | date
"$lte" : number | date
"$gt" : number | date
"$gte" : number | date

"$instr" : string
"$ninstr" : string
"$like"™ : string
"$null™ @ null
"$notnull™ : null

"$hetween" : betweenValue

betweenValue
[null , betweenNotNull]
[betweenNotNull , null]

[betweenRegular , betweenRegular]

betweenNotNull
number
date

betweenRegular
string
number
date

Data type definitions include the following:

string

JSONString
number

JSONNumber
date

{"$date":"datechars™}

scn
{"$scn": +int}

Where:

datechars is an RFC3339 date format in UTC (2)

JSONString

" chars "
chars

char

char chars
char

Chapter 5
Getting Started with RESTful Services

5-19

Chapter 5
Getting Started with RESTful Services

any-Unicode-character except-'"-or-\-or-control-character
\"
\\
\/
\b
\f
\n
\r
\t
\u four-hex-digits

JSONNumber

int

int frac

int exp

int frac exp
int

digit

digitl-9 digits

- digit

- digitl-9 digits
frac

. digits
exp

e digits
digits

digit

digit digits

e

e+

e_

E

E+

E-

The FilterObject must be encoded according to Section 2.1 of RFC3986.
5.2.5.2.2 Examples: FilterObject Specifications

The following are examples of operators in FilterObject specifications.

ORDER BY property ($orderby)

Oder by with literals

"$orderby": {"SALARY": "ASC","ENAME":"DESC"}
}

Order by with nunmbers

"$orderby": {"SALARY": -1,"ENAME": 1}

ASOF property ($asof)

Wth SON (Inmplicit)

ORACLE 5-20

Chapter 5
Getting Started with RESTful Services

{
"$asof'': 1273919
}

Wth SCN (Explicit)

"$asof"': {"$scn": "1273919"}

}
Wth Date (Inplicit)
{
"$asof"': '"2014-06-30T00:00:00Z"
}

Wth Date (Explicit)

"$asof"': {"'$date": "2014-06-30T00:00:00Z"}
}

EQUALS operator ($eq)
(Implicit and explicit equality supported._
Inplicit (Support String and Dates too)

{
"SALARY": 1000

}

Explicit

{

“SALARY": {"$eq": 1000}
}

Strings
{

"ENAME": {"$eq":"SMITH"}
}

Dat es
{

"HIREDATE": {"$date": '1981-11-17T08:00:00Z"}
}

NOT EQUALS operator ($ne)

Nunber

"SALARY": {"$ne": 1000}
}

ORACLE 5-21

ORACLE

Chapter 5
Getting Started with RESTful Services

String

{
"ENAME": {"$ne":"SMITH"}

}

Dat es

{
"HIREDATE": {"$ne": {"$date":"1981-11-17T08:00:00Z"}}

}

LESS THAN operator ($It)
(Supports dates and numbers only)

Nunber s

{
"SALARY": {"$It": 10000}

}

Dat es

{
"SALARY": {"$It": {"$date":"1999-12-17T08:00:00Z"}}

}

LESS THAN OR EQUALS operator ($lte)
(Supports dates and numbers only)

Nunber s

{
"SALARY": {"$lte": 10000}

}

Dat es

{
"HIREDATE": {"$lte": {"$date":"1999-12-17T08:00:00Z"}}

}

GREATER THAN operator ($agt)
(Supports dates and numbers only)

Nunber s

{
"SALARY": {"$gt": 10000}

}

Dat es
{

"SALARY": {"$gt": {"$date":"1999-12-17T08:00:00Z"}}
}

GREATER THAN OR EQUALS operator ($gte)
(Supports dates and numbers only)

5-22

Chapter 5
Getting Started with RESTful Services

Nunber s

{
"SALARY": {"$gte": 10000}

}

Dat es

{
"HIREDATE": {"$gte": {"$date":"1999-12-17T08:00:00Z"}}

}

In string operator ($instr)
(Supports strings only)

{
"ENAME": {"$instr:"MC"}

}

Not in string operator ($ninstr)
(Supports strings only)

{
"ENAME": {"$ninstr':"MC"}

}

LI KE operator ($like)
(Supports strings. Eescape character not supported to try to match expressions with _
or % characters.)

{
"ENAME": {"$like":"AX%"}

}

#i# BETWEEN oper at or ($bet ween)
(Supports string, dates, and numbers)

Nunber s

{
"SALARY": {"$between: [1000,2000]}

}

Dat es

{
"SALARY": {"$between": [{"$date":""1989-12-17T08:00:00Z"},

{"$date”:""1999-12-17T08:00:00Z""}]}

}
Strings
{
"ENAME": {"$between": ["A","C"]}
}

ORACLE 5-23

Chapter 5
Getting Started with RESTful Services

Nul | Ranges ($lte equival ent)
(Supported by numbers and dates only)

{
"SALARY": {"'$between: [null,2000]}

}

Nul I Ranges ($gte equival ent)
(Supported by numbers and dates only)

{
"SALARY": {"$between": [1000,null]}

}

#H#H NULL operator (S$null)

{
ENAME": {"$null”: null}

}

NOT NULL operator ($notnull)

{
"ENAME™: {"$notnull™: null}

}

##H#+#t AND oper at or ($and)
(Supports all operators, including $and and $or)

Col um context del egation
(Operators inside $and will use the closest context defined in the JSON tree.)

{
“SALARY": {"$and": [{"$gt": 1000},{"$It":4000}1}

}

Col um context override
(Example: salary greater than 1000 and name like S%)

{
"SALARY": {"$and": [{"$gt": 1000},{"ENAVE": {"$like":"S%"}}] }

}

Implicit and in columns

“SALARY": [{"$gt": 1000}, {"$1t":4000}]
}

H gh order AND

(Al first columns and or high order operators -- $and and $ors -- defined at
the first level of the JSON will be joined and an implicit AND)

(Example: Salary greater than 1000 and name starts with S or T)

{
“SALARY": {"$gt": 1000},
IIENAMEII: {ll$0rll: [{ll$likell:lls%ll}, {ll$|ikell:llT%ll}]}

ORACLE 5-24

Chapter 5
Getting Started with RESTful Services

}

Invalid expression (operators $It and $gt |ack col um context)
"$and": [{"$1t": 5000}, {"'$gt": 1000}]
}

Valid alternatives for the previous invalid expression

"gand": [{"SALARY": {"$It": 5000}}, {"SALARY": {"$gt": 1000}}]

“SALARY": [{"$It": 5000}, {"$gt": 1000}]

"SALARY™: {"$and": [{"$It": 5000},{"$gt": 1000}]}

O R T

OR operator ($or)
(Supports all operators including $and and $or)

Col um context del egation
(Operators inside $or will use the closest context defined in the JSON tree)

{
"ENAME"™: {"$or": [{"$eq":"SMITH"},{"$eq":"KING"}1}

}

Col umm context override
(Example: name starts with S or salary greater than 1000)

{
"SALARY": {"$or": [{"$gt": 1000},{"ENAVE": {"$like":"S%"}}] }

}

5.2.5.3 Auto PL/SQL

ORACLE

This section explains how PL/SQL is made available through HTTP(S) for Remote Procedure
call (RPC).

The auto PL/SQL feature uses a standard to provide consistent encoding and data transfer in
a stateless web service environment. Using this feature, you can enable Oracle Database
stored PL/SQL functions and procedures at package level through Oracle REST Data
Services, similar to how you enable the views and tables.

Auto Enabling PL/SQL Subprograms

Oracle REST Data Services supports auto enabling of the following PL/SQL objects, based
on their catalog object identifier:

e PL/SQL Procedure
 PL/SQL Function
e PL/SQL Package

5-25

Chapter 5
Getting Started with RESTful Services

The functions, and procedures within the PL/SQL package cannot be individually
enabled as they are named objects within a PL/SQL package object. Therefore, the
granularity level enables the objects at the package level. This granularity level
enables to expose all of its public functions and procedures.

If you want to only enable a subset of functions and procedures, then you must create
a separate delegate package and enable it to expose only that subset of functions and
procedures.

" Note:

Overloaded package functions and procedures are not supported.

5.2.5.3.1 Method and Content Type Supported for Auto Enabling PL/SQL Objects

This section discusses the method and content-type supported by this feature.

The auto enabling of the PL/SQL Objects feature supports POST as the HTTP
method. In POST method, input parameters are encoded in the payload and output
parameters are decoded from the response.

¢ Note:

The standard data CRUD to HTTP method mappings are not applicable as
this feature provides an RPC-style interaction.

The content-type supported is application/json.

5.2.5.3.2 Auto-Enabling the PL/SQL Objects

This section explains how to auto-enable the PL/SQL objects through Oracle REST
Data Services.

You can enable the PL/SQL objects in one of the following ways:
* Auto-Enabling Using the PL/SQL API
» Auto-Enabling the PL/SQL Objects Using SQL Developer

5.2.5.3.2.1 Auto-Enabling Using the PL/SQL API

ORACLE

You can enable a PL/SQL object using the Oracle REST Data Services PL/SQL API.

To enable the PL/SQL package, use the Oracle REST Data Services PL/SQL API as
shown in following sample code snippet:

BEGIN
ords.enable_object(
p_enabled => TRUE,
p_schema => "MY_SCHEMA®,
p_object => "MY_PKG",
p_object type => "PACKAGE",

5-26

Chapter 5
Getting Started with RESTful Services

p_object_alias => "my _pkg-",
p_auto_rest_auth => FALSE);
commit;
END;
/

Example 5-1 Enabling the PL/SQL Function

To enable the PL/SQL function, use the Oracle REST Data Services PL/SQL API as shown in
following sample code snippet:

BEGIN

ords.enable_object(
p_enabled => TRUE,
p_schema => "MY_SCHEMA®,
p_object => "MY_FUNC",
p_object _type => "FUNCTION",
p_object_alias => "my func",
p_auto_rest auth => FALSE);

commit;
END;

Example 5-2 Enabling the PL/SQL Procedure

To enable the PL/SQL procedure, use the Oracle REST Data Services PL/SQL API as shown
in following sample code snippet:

BEGIN

ords.enable_object(
p_enabled => TRUE,
p_schema => "MY_SCHEMA®,
p_object => "MY_PROC",
p_object_type => "PROCEDURE",
p_object_alias => "my proc",
p_auto_rest _auth => FALSE);

commit;
END;

5.2.5.3.2.2 Auto-Enabling the PL/SQL Objects Using SQL Developer

This section describes how to enable the PL/SQL objects using SQL Developer 4.2 and
above.

To enable the PL/SQL objects (for example, package) using SQL Developer, perform the
following steps:

ORACLE 5-27

ORACLE"

1.

2.

< Note:

You can now enable, packages, functions and procedures. However, the
granularity of enabling is either at the whole package level, standalone

Chapter 5

Getting Started with RESTful Services

function level, or at the standalone procedure level.

In SQL Developer, right-click on a package as shown in the following figure:

Figure 5-1 Selecting the Enable REST Service Option

=i Packages
%@ re [dit.
{866 EditBody..
PeE
1:‘ GE Export...
Lo ﬂJ sl & Debug.. Cal+ShifF10
REGT Development Compile CUErd
Compile for Debug Carl+Shift-F8
m v " -
& € B> Run.. Cal-F 10
[REST Data Services
Compare With ¥
Crder Members By ¥
Dreg Package...
Grant...
Revoke..
Uni Teat Save Package Spec and Body...
ﬂ Lirit Tests Enable REST Service...
L Mot connected Use as Template...

Z

Wynchronize Specficgtion and Body..

Code Qutline

Quick DOL

]

Select Enable RESTful Services to display the following wizard page:

5-28

Chapter 5
Getting Started with RESTful Services

Figure 5-2 Auto Enabling the PL/ISQL Package Object

(3 RESTFul Services Wizard - Step 1 of 2 []
Specify Details
= Specify Details
.i, RESTHl Sunmary
Enable ohect [+
iject aias registry_phg
Autiwrizaton reguired [|
Help Mext > Brish Canced

* Enable object: Enable this option (that is, enable REST access for the package).
* Object alias: Accept registry_pkg for the object alias.
e Authorization required: For simplicity, disable this option.

e Onthe RESTful Summary page of the wizard, click Finish.

5.2.5.3.3 Generating the PL/SQL Endpoints

ORACLE

HTTP endpoints are generated dynamically per request for the enabled database objects.
Oracle REST Data Services uses the connected database catalog to generate the endpoints
using a query.

The following rules apply for all the database objects for generating the HTTP endpoints:
* All names are converted to lowercase

* An endpoint is generated if it is not already allocated

Stored Procedure and Function Endpoints

The function or procedure name is generated into the URL in the same way as tables and
views in the same namesspace.

Example 5-3 Generating an Endpoint for the Stored Procedure

CREATE OR REPLACE PROCEDURE MY_SCHEMA._MY_PROC 1S
BEGIN

5-29

Chapter 5
Getting Started with RESTful Services

NULL;
END;

Following endpoint is generated:

http://1ocalhost:8080/ords/my_schema/my_proc/

Example 5-4 Package Procedure and Function Endpoints

The package, function, and procedure endpoints are generated with package name as
a parent. Endpoints for functions and procedures that are not overloaded or where the
lowercase name is not already in use are generated.

If you have a package, MY_PKG as defined in the following code snippet:

CREATE OR REPLACE PACKAGE MY_SCHEMA_MY_PKG AS
PROCEDURE MY_PROC;
FUNCTION MY_FUNC RETURN VARCHAR2;
PROCEDURE MY_PROC2;
PROCEDURE "'my_proc2";
PROCEDURE MY_PROC3(P1 IN VARCHAR);
PROCEDURE MY_PROC3(P2 IN NUMBER);
END MY_PKG;

Then the following endpoints are generated:

http://localhost:8080/0ords/my_schema/my_pkg/MY_PROC
http://localhost:8080/0ords/my_schema/my_pkg/MY_FUNC

Note:

Endpoints for the procedure my_proc?2 is not generated because its name is
not unique when the name is converted to lowercase, and endpoints for the
procedure my_proc3 is not generated because it is overloaded.

5.2.5.3.4 Resource Input Payload
The input payload is a JSON document with values adhering to the REST standard.

The payload should contain a name/value pair for each IN or IN OUT parameter as
shown in the following code snippet:

{
"pl": "abc",
"p2t: 123,
"p3": null
}

ORACLE 5-30

Chapter 5
Getting Started with RESTful Services

< Note:

Where there are no IN or IN OUT parameters, an empty JSON body is required as
shown in the following code snippet:

{
}

Oracle REST Data Services uses the database catalog metadata to unmarshal the JSON
payload into Oracle database types, which is ready to be passed to the database through
JDBC.

5.2.5.3.5 Resource Payload Response
When the PL/SQL object is executed successfully, it returns a JSON body.

The JSON body returned, contains all OUT and IN OUT output parameter values. Oracle
REST Data Services uses the database catalog metadata to marshal the execution of the
result back into JSON as shown in the following code snippet:

{
"p3" : "abcl23",

"pdt o 1
}

Where there are no OUT or IN OUT parameters, an empty JSON body is returned as shown
in the following code snippet:

{
}

5.2.5.3.6 Function Return Value

The return value of functions do not have an associated name.

As the return value of functions do not have an associated name, the name "~ret" is used as
shown in the following code snippet:

{
"~ret" : "abcl23"

}

5.2.6 Manually Creating RESTful Services Using SQL and PL/SQL

This section describes how to manually create RESTful Services using SQL and PL/SQL and
shows how to use a JSON document to pass parameters to a stored procedure in the body of
a REST request.

ORACLE 5-31

Chapter 5
Getting Started with RESTful Services

This section includes the following topics:
* About Oracle REST Data Services Mechanisms for Passing Parameters

* Using SQL/JSON Database Functions

5.2.6.1 About Oracle REST Data Services Mechanisms for Passing
Parameters

This section describes the main mechanisms that Oracle REST Data Services
supports for passing parameters using REST HTTP to handlers that are written by the
developer:

e Using JSON to Pass Parameters

You can use JSON in the body of REST requests, such as the POST or PUT
method, where each parameter is a JSON name/value pair.

e Using Route Patterns to Pass Parameters

You can use route patterns for required parameters in the URI to specify
parameters for REST requests such as the GET method, which does not have a
body, and in other special cases.

* Using Query Strings for Optional Parameters

You can use query strings for optional parameters in the URI to specify parameters
for REST requests, such as the GET method, which does not have a body, and in
other special cases.

Prerequisite Setup Tasks To Be Completed Before Performing Tasks for Passing
Parameters

This prerequisite setup information assumes you have completed steps 1 and 2 in
Getting Started with RESTful Services section, where you have REST-enabled the
ordstest schema and emp database table (Step 1) and created and tested the
RESTful service from a SQL query (Step 2). You must complete these two steps
before performing the tasks about passing parameters described in the subsections
that follow.

Related Topics
* Getting Started with RESTful Services

5.2.6.1.1 Using JSON to Pass Parameters

This section shows how to use a JSON document to pass parameters to a stored
procedure in the body of a REST request, such as POST or PUT method, where each
parameter is a name/value pair. This operation performs an update on a record, which
in turn returns the change to the record as an OUT parameter.

Perform the following steps:

ORACLE 5-32

Chapter 5
Getting Started with RESTful Services

1. | # Note:

The following stored procedure performs an update on an existing record in the
emp table to promote an employee by changing any or all of the following: job,
salary, commission, department number, and manager. The stored procedure
returns the salary change as an OUT parameter.

create or replace procedure promote (1 _empno IN number, 1_job
IN varchar2,
I_mgr IN number, I _sal IN number, 1 _comm IN number,
I _deptno IN number,
I_salarychange OUT number)
is
oldsalary number;
begin
select nvl(e.sal, 0)into oldsalary FROM emp e
where e.empno = 1_empno;
update emp e set

e.job = nvl(l_job, e.job),
e.mgr = nvi(l_mgr, e.mgr),
e.sal = nvl(l_sal, e.sal),

e.comm = nvl(l_comm, e.comm),
e.deptno = nvl(l_deptno, e.deptno)
where e.empno = |_empno;
I_salarychange := nvl(l_sal, oldsalary) - oldsalary;
end;

As a privileged ordstest user, connect to the ordstest schema and create the promote
stored procedure.

2. Perform the following steps to setup a handler for a PUT request on the emp resource to
pass parameters in the body of the PUT method in a JSON document to the promote
stored procedure.

a. Using Oracle SQL Developer, in the REST Development section, right click on the
emp template and select Add Handler for the PUT method.

b. Inthe Create Resource Handler dialog, click the green plus symbol to add the
MIME type application/json and then click Apply to send it a JSON document in
the body of the PUT method.

c. Using the SQL Worksheet, add the following anonymous PL/SQL block: begin
promote
(:1_empno, :1 _job, :1 mgr, :1 _sal, :1 _comm, :l1 deptno, :l1 _salarychange);
end; as shown in the following figure.

ORACLE 5-33

Chapter 5

Getting Started with RESTful Services

Figure 5-3 Adding an Anonymous PL/SQL Block to the Handler for the
PUT Method

Connections

F- (2 Analytic View Reports
-2 Data Dictionary Reports
-2~ Data Modeler Reports
B [E OLAP Reports

[+~ TimesTen Reports
-2 User Defined Reports

F-RY B Parameters | Details
5 @ oroaest Jriv-na B &@¢aua 8 -
- [Tables (Filtered)
o-E e Worksheet | Query Buider

-H EMPNO ‘begin |
il ENAME : promote (:1_empno, :1_job, :].ngr, :1 _sal, :1_comm, :1_deptno, :1_salarychange);
L@ | | e

e) » :

Reports. x| [=]

Al Reports

REST Development x| =

BB« @

d. Click the Parameters tab to set the Bind Parameter as 1_salarychange , the
Access Method as an OUT parameter, the Source Type as RESPONSE, and
Data Type as INTEGER as shown in the following figure. This is the promote
procedure’s output which is an integer value equal to the change in salary in a
JSON name/value format.

Figure 5-4 Setting the Bind Parameter |_salarychange to Pass for the
PUT Method

‘Connections
*-BY @
- (@ ordstest

- [Tables (Filtered)

SQL Worksheet

R
£ +X

Name Bind Parameter
salarychange |_salarychange ouT

Reports. x|

Al Reports
F- (2 Analytic View Reports.

-2~ Data Modeler Reports
(2 OLAP Reports
[#-([Z TimesTen Reports
-2 User Defined Reports

-2 Data Dictionary Reports

REST Development 2.

3B« @

=]

]

Access Method

Source Type
RESPONSE

Data Type
INTEGER

ORACLE"

5-34

Chapter 5
Getting Started with RESTful Services

e. Click the Details tab to get the URL to call as shown in the Examples section of the
following figure. Copy this URL to your clipboard.

Figure 5-5 Obtaining the URL to Call from the Details Tab

503 Oracle SQL Developer : PUT/emp/ EI@

File Edit View MNavigate Run Team JTools Window Help

Goag 96 O O~ @

Connections ..om EHEMP (% ordstest %] GET empfiobfideptno % PUT jemp/ ki O
EF e Gﬂ Y % 5QL Worksheet |Parameters Details
E}a ordstest -
Er [Tables (Filtered)
| e-Eewe)
H L. EMPNO Method Handler
- F ENAME Method: PUT
- F 108
Source Type: PL/SQL
Reports
fﬁ Al Reparts EF x

[Analytic View Reports
[Data Dictionary Reports
-[E Data Modeler Reports
+[[Z- OLAP Reports

{2 TimesTen Reports
-[E User Defined Reports

MIME Types
application fjson

REST Development Examples

B« @ LRI Module: ftest
i =L femp/
i a GET URI Pattern: femp/

Ll eur

E‘D emp/:jobfideptr |http:,|’ﬂccalhost: 8008 /ords/ordstest/test/emp/

Lob] eET
(@ Privileges

f. Right click on the test module to upload the module. Do not forget this step.

3. To test the RESTful service, execute the following cURL command in the command
prompt:curl -i -H "Content-Type: application/json" -X PUT -d "{ \"I_empno\" :
7499, \"I_sal\" : 9999, \"I_job\" : \"Director\", \"I_comm\" : 300}

Note:

You can also use any REST client available to test the RESTful service.

The cURL command returns the following response:

HTTP/1.1 200 OK
Content-Type: application/json Transfer-Encoding: chunked
{"salarychange':8399}

4. In SQL Developer SQL Worksheet, perform the following SELECT statement on the emp

table: SELECT * from emp to see that the PUT method was executed, then select the Data
tab to display the records for the EMP table.

ORACLE 5-35

Chapter 5
Getting Started with RESTful Services

Figure 5-6 Displaying the Results from a SQL Query to Confirm the
Execution of the PUT Method

£ Oracle SQL Developer : Table ORDSTEST EMP@ordstest = e =
File Edit View Mavigate Run Team Tools Window Help
DEG 9@ Q9 O~ @
Connections om EEEMP | (B ordstest =] GET empjsiobf:deptno il PUT femp/ Tk *
@ - @(ﬂ A 4 % Columns |Data Model | Constraints | Grants | Statistics | Triggers | Flashback | Dependencies | Details |P|III|
. =
E}a ordstest adHE XS R | st Filter:| V|v Actions...
@'"@%"ES LAesd) fiempo [fhEnamE[f308 [{mer |{} HREDATE |4} saL [comm |f DEPTG |
- [EH EMP
EHE 1 7360 SMITH CLERK 7902 17-DEC-80 800 (null) 20
[EMPNO
2 7499 ALIEN Director 7698 20-FEB-31 9999 300 30
3 7521 WARD SALESMAN 7698 22-FEB-E1 1250 500 30
4 7566 JONES ~ MLNAGER 7839 02-APR-81 2975 (null) 20
Reports 5 7654 MARTIN SALESMAN 7698 28-SEF-81 1250 1400 30
[All Reports 6 7698 BLAKE ~ MLNAGER 7839 01-MAY-81 2850 (null) 30
[[Analytic View Reparts 7 7782 CLARK MANAGER 7839 09-JUN-81 2450 (null) 10
G- (2 Data Dictionary Reports 8 7788 SCOTT ANALYST 7566 19-APR-87 3000 (mull) 20
-[E Data Modeler Reports
(2 Data Modeler Repor 9 7839KING PRESIDENT (null) 17-NOV-81 5000 (null) 10
[+ OLAP Reports
. Py P
{&-(Z> TmesTen Reports 10 7844 TURNER SALESMAN 7698 08-SEF-81 1500 0 30
(2 User Defined Reports 11 7876 ADRMS CLEEK 7788 23-MAY-87 1100 (null) 20
12 7900 JAMES CLEEK 7693 03-DEC-81 950 (null) 30
REST Development 13 7902 FORD ANALYST 7566 03-DEC-81 3000 (null) 20
- ' 14 7934 MILLER CLERK 7782 23-JBN-82 1300 (null) 10
B« @
Bu Jemp]
, E GET
b, Q PUT
E}T__l emp/:job/:deptr
: £ E GET
% Privileges

< Note:

e All parameters are optional. If you leave out a name/value pair for a
parameter in your JSON document, the parameter is set to NULL.

¢ The name/value pairs can be arranged in any order in the JSON
document. JSON allows much flexibility in this regard in the JSON
document.

e Only one level of JSON is supported. You can not have nested JSON
objects or arrays.

5.2.6.1.2 Using Route Patterns to Pass Parameters

ORACLE

This section describes how to use route patterns in the URI to specify parameters for
REST requests, such as with the GET method, which does not have a body.

First create a GET method handler for a query on the emp table that has many bind
variables. These steps use a route pattern to specify the parameter values that are
required.

Perform the following steps to use a route pattern to send a GET method with some
required parameter values:

5-36

ORACLE

Chapter 5
Getting Started with RESTful Services

In SQL Developer, right click on the test module and select Add Template to create a
new template that calls emp; however, in this case the template definition includes a route
pattern for the parameters or bind variables that is included in the URI rather than in the
body of the method. To define the required parameters, use a route pattern by specifying
a /: before the job and deptno parameters. For example, for the URI pattern, enter:
emp/: job/:deptno as shown in the following figure.

Figure 5-7 Creating a Template Definition to Include a Route Pattern for Some
Parameters or Bind Variables

F& Edit Resource Template L=

Universal Resource Identifier

LRI Pattern: |Em|:u,.":jn:u|:u,.":u:|eptru:| |

Example: http: ffmyhost:8080 fords myschema/test/emp/job/:deptno

Priarity: C} 1
LOwW MEDILUM HIGH
HTTP Entity Tag
ETag: m

Generate the version id using secure hashing which uniguely identifies the
resource version,

Help Apply Cancel

L A

Click Next to go to REST Data Services — Step 2 of 3, and click Next to go to REST
Data Services — Step 3 of 3, then click Finish to complete the template.

Right click on the emp/:job/:deptno template and select Add Handler for the GET
method.

Right click on the GET method to open the handler.

Add the following query to the SQL Worksheet: select * from emp e where e.job
= zjob and e.deptno = :deptno and e.mgr = NVL (:mgr, e.mgr) and e.sal = NVL
(:sal, e.sal); as also shown in the following figure.

5-37

Chapter 5
Getting Started with RESTful Services

Figure 5-8 Adding a SQL Query to the Handler

Farameters | Details

bEE-OR B8R &¢62se B

Worksheet Query Buider

EE select * from emp e where L]
e.jok = ijob and

1 e.deptno = :deptno and

! e.mgr = NWL {(:mJr, e.mgr) and
e.3al = NWL (:3al, e.3al);

6. Click the Details tab to get the URL to call. Copy this URL to your clipboard.

7. Right click on the test module to upload the module. Do not forget this step.

8. Test the REST endpoint. In a web browser enter the URL:http://
localhost:8080/ords/ordstest/test/emp/SALESMAN/30 as shown in the
following figure.

ORACLE" 5-38

Chapter 5
Getting Started with RESTful Services

Figure 5-9 Using Browser to Show the Results of Using a Route Pattern to Send a GET Method
with Some Required Parameter Values

€)G

{
r items:
*{

1.

COracle |£h Maost Visited

[

empno: T321,
ename: "WARD",
job: "SRLESMRN",
mgr: Te9E,

hiredate: "1981-02-21T1E:

sal: 1250,
comm: 500,
deptno: 30

empno: Ta5d,

ename: "MLETIN",

job: "SALESMEN",

mgr: 7695,

hiredate: "1981-09-27
sal: 1250,

comm: 1400,

deptno: 20

empno: (544,
enams: "TURNER",
job: "SALESMLN",
mgr: TeOE,

hiredate: "1881-08-07T1E:

sal: 1500,
comm: O,
deptno: 30

hasMore: fals=se,

limit:

off=set:

count:

25,
-

o

3,

m

1

localhost:8080/ ords/ordstest/test/emp/SALESMAN/30

(>

=]
=
=
1

Lad
=
=
=
[}

Lad
=
=
=
85}

The query returns 3 records for the salesmen named Ward, Martin, and Turner.

ORACLE

5-39

Chapter 5
Getting Started with RESTful Services

¢ See Also:

To learn more about Route Patterns see this document in the Oracle REST
Data Services distribution at docs/javadoc/plugin-api/route-
patterns.html and this document Oracle REST Data Services Route
Patterns

5.2.6.1.3 Using Query Strings for Optional Parameters

ORACLE

This section describes how to use query strings in the URI to specify parameters for
REST requests like the GET method, which does not have a body. You can use query
strings for any of the other optional bind variables in the query as you choose.

The syntax for using query strings is: ?parml=valuel&parm2=value2 ..
&parmN=valueN.

For example, to further filter the query: http://localhost:8080/ords/ordstest/
test/emp/SALESMAN/30, to use a query string to send a GET method with some
parameter name/value pairs, select employees whose mgr (manager) is 7698 and
whose sal (salary) is 1500 by appending the query string ?mgr=7698&sal=1500 to the
URL as follows: http://localhost:8080/ords/ordstest/test/emp/SALESMAN/307?
mgr=7698&sal=1500.

To test the endpoint, in a web browser enter the following URL.: http://localhost:8080/
ords/ordstest/test/emp/SALESMAN/30?mgr=7698&sal=1500 as shown in the following
figure:

5-40

https://blog.cdivilly.com/2015/03/10/route-patterns/
https://blog.cdivilly.com/2015/03/10/route-patterns/

ORACLE

Chapter 5
Getting Started with RESTful Services

Figure 5-10 Using Browser to Show the Results of Using a Query String to Send a

GET Method with Some Parameter Name/Value Pairs

(&) localhost:8080/ ords/ ordstest/test/emp/SALESMAN/307mgr=7698 82sal=1500

Oracle| |2) Most Visited

{
T items: [
v {
empno: 7844,

ename: "TUERNER",
job: "SALESMEN",
mgr: Te9E,

hiredate: "18981-08-07T1E8:3

=al: 1500,
comm: O,
deptno: 30
}
1,
hasMore: false,
limit: 25,
offset: O,
count: 1,
* links: [
v {

rel: "self",

href: http://localhost:

10/ ords/ordstest/test/enp/ SALESMAN,/ 30 mgr=7698&5a1=1500

rel: "descrikedby",

href: http://localhost:B080/ords/ordstest/metadata—catalog/test/enp/SALESMAN/ iten

rel: "first",

href: http://localhost:B0B0/ords/ordstest/test/enp/SALESMAN/ 30 mgr=7698&5al=1500

The query returns one record for the salesman named Turner in department 30 who has a

salary of 1500 and whose manager is 7698.

Note the following points:

e ltis a good idea to URL encode your parameter values. This may not always be required;
however, it is the safe thing to do. This prevents the Internet from transforming
something, for example, such as a special character in to some other character that may
cause a failure. Your REST client may provide this capability or you can search the
Internet for the phrase url encoder to find tools that can do this for you.

* Never put a backslash at the end of your parameter list in the URI; otherwise, you may

get a 404 Not Found error.

" See Also:

* Lab 4 of the ORDS Oracle By Example (OBE)

- Database Application Development Virtual Image

5-41

https://apexapps.oracle.com/pls/apex/f?p=44785:24:113172122269057:ADD_BOOKMARK:::P24_CONTENT_ID:13282
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

Chapter 5
Getting Started with RESTful Services

5.2.6.2 Using SQL/JSON Database Functions

This section describes how to use the SQL/JSON database functions available in
Oracle Database 21c to map the nested JSON objects to and from the hierarchical
relational tables.

This section includes the following topics:

* Inserting Nested JSON Obijects into Relational Tables
e Generating Nested JSON Objects from Hierachical Relational Data

5.2.6.2.1 Inserting Nested JSON Objects into Relational Tables

This section explains how to insert JSON objects with nested arrays into multiple,
hierarchical relational tables.

The two key technologies used to implement this functionality are as follows:

* The :body bind variable that Oracle REST Data Services provides to deliver JSON
and other content in the body of POST and other REST calls into PL/SQL REST
handlers

* JSON_TABLE and other SQL/JSON operators provided in Oracle Database 21c

Some of the advantages of using these technologies for inserting data into relational
tables are as follows:

* Requirements for implementing this functionality are very minimal. For example,
installation of JSON parser software is not required

* You can use simple, declarative code that is easy to write and understand when
the JSON to relational mapping is simple

» Powerful and sophisticated capabilities to handle more complex mappings. This
includes:

— Mechanisms for mapping NULLS and boolean values

— Sophisticated mechanisms for handling JSON. JSON evolves over time.
Hence, the mapping code must be able to handle both the older and newer
versions of the JSON documents.

For example, simple scalar values may evolve to become JSON objects
containing multiple scalars or nested arrays of scalar values or objects. SQL/
JSON operators that return the scalar value can continue to work even when
the simple scalar is embedded within these more elaborate structures. A
special mechanism, called the Ordinality Column, can be used to determine
the structure from where the value was derived.

¢ See Also:

e JSON in the Oracle Database Technology

e Ordinality Column

ORACLE 5-42

Chapter 5
Getting Started with RESTful Services

5.2.6.2.1.1 Usage of the :body Bind Variable

This section provides some useful tips for using the -body bind variable.

Some of the useful tips for using the :body bind variable are as follows:

e The :body bind variable can be accessed, or de-referenced, only once. Subsequent
accesses return a NULL value. So, you must first assign the :body bind variable to the
local L_PO variable before using it in the two JSON_Table operations.

* The :body bind variable is a BLOB datatype and you can assign it only to a BLOB
variable.

¢ Note:

Since L_PO is a BLOB variable, you must use the FORMAT JSON phrase after the
expression in the JSON_TABLE function. section for more information.

The :body bind variable can be used with other types of data such as image data.

" See Also:

e Creating an Image Gallery for a working example of using :body bind variable
with image data .

» Database SQL Language Reference

5.2.6.2.1.2 Example of JSON Purchase Order with Nested Lineltems

ORACLE

This section shows an example that takes the JSON Purchase Order with Nested Lineltems
and inserts it into a row of the PurchaseOrder table and rows of the Lineltem table.

Example 5-5 Nested JSON Purchase Order with Nested Lineltems

{"'PONumber" - 1608,
"Requestor" : "Alexis Bull”,
"CostCenter" : "A50",
"Address" : {"street” : "200 Sporting Green",
city" > "South San Francisco",
"state" 1 "CA",
"zipCode™ : 99236,
"country"™ : "United States of America"},
"Lineltems" o [{"ItemNumber™ : 1,
"Part" : {"Description” : "One Magic
Christmas",
"UnitPrice” :© 19.95,
"UPCCode™ 1 1313109289}%,
"Quantity” : 9.0},
{""1temNumber™ : 2,
"Part" : {"Description” : "Lethal Weapon",
"UnitPrice” :© 19.95,

5-43

"Quantity"

"UPCCode"
5.0}

Chapter 5
Getting Started with RESTful Services

1 8539162892},

5.2.6.2.1.3 Table Definitions for PurchaseOrder and Lineltems Tables

This section provides definitions for the PurchaseOrder and Lineltem tables.

The definitions for the PurchaseOrder and the Lineltems tables are as follows:

CREATE TABLE PurchaseOrder (
PONo NUMBER (5),
Requestor VARCHAR2 (50),
CostCenter VARCHAR2 (5),
AddressStreet VARCHAR2 (50),
AddressCity VARCHAR2 (50),
AddressState VARCHAR2 (2),
AddressZip VARCHAR2 (10),
AddressCountry VARCHAR2 (50),
PRIMARY KEY (PONo));

CREATE TABLE Lineltem (
PONo NUMBER (5),
I'temNumber NUMBER (10),
PartDescription VARCHAR2 (50),
PartUnitPrice NUMBER (10),
PartUPCCODE NUMBER (10),
Quantity NUMBER (10),
PRIMARY KEY (PONo, I'temNumber));

5.2.6.2.1.4 PL/SQL Handler Code for a POST Request

This section gives an example PL/SQL handler code for a POST request. The handler

ORACLE

code is used to insert a purchase order into a row of the PurchaseOrder table and

rows of the Lineltem table.

Example 5-6 PL/SQL Handler Code Used for a POST Request

Declare
L PO BLOB;

Begin
L PO := :body;

INSERT INTO PurchaseOrder
SELECT * FROM json_table(L_PO

COLUMNS (
PONo Number
Requestor VARCHAR2
CostCenter VARCHAR2

AddressStreet VARCHAR2
AddressCity VARCHAR2
AddressState VARCHAR2
AddressZip VARCHAR2
AddressCountry VARCHAR2

FORMAT JSON, "$*

PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH

*$.PONumber™,
"$.Requestor”,
*$.CostCenter”,

*$.Address.
*$.Address.
*$.Address.
*$.Address.
*$.Address.

Sstreet”,
city",
state”,
zipCode®,
country®));

5-44

Chapter 5
Getting Started with RESTful Services

INSERT INTO Lineltem
SELECT * FROM json_table(L_PO FORMAT JSON, "$*

COLUMNS (
PONo Number PATH *"$_PONumber*,
NESTED PATH "$.Lineltems[*]"
COLUMNS (
ItemNumber Number PATH "$.l1temNumber”®,
PartDescription VARCHAR2 PATH "$.Part.Description”,
PartUnitPrice Number PATH "$.Part.UnitPrice”,
PartUPCCode Number PATH "$.Part.UPCCode",
Quantity Number PATH "$.Quantity®)));
commit;
end;

5.2.6.2.1.5 Creating the REST API Service to Invoke the Handler

This section explains how to create the REST API service to invoke the handler, using the
Oracle REST Data Services.

To setup the REST API service, a URI is defined to identify the resource the REST calls will
be operating on. The URI is also used by Oracle REST Data Services to route the REST
HTTP calls to specific handlers. The general format for the URI is as follows:

<server>:<port>/ords/<schema>/<module>/<template>/<parameters>

Here, <server>:<port> is where the Oracle REST Data Service is installed. For testing
purposes, you can use demo and test in place of module and template respectively in the
URI. Modules are used to group together related templates that define the resources the
REST API will be operating upon.

To create the REST API service, use one of the following methods:

* Use the Oracle REST Data Services PL/SQL API to define the REST service and a
handler for the POST insert. Then connect to the jsontable schema on the database
server that contains the PurchaseOrder and Lineltem tables.

¢ Note:

JSON_TABLE and other SQL/JSON operators use single quote so these must
be escaped. For example, every single quote (') must be replaced with double
quotes ().

* Use the Oracle REST Data Services, REST Development pane in SQL Developer to
define the REST service.

ORACLE 5-45

Chapter 5
Getting Started with RESTful Services

5.2.6.2.1.6 Defining the REST Service and Handler using PL/SQL API

ORACLE

This section shows how to define the REST Service and Handler for the POST insert
using the Oracle REST Data Services PL/SQL API.

You can alternatively use the Oracle REST Data Services REST development pane in
SQL Developer to create the modules, templates and handlers.

BEGIN
ORDS.ENABLE_SCHEMA(
p_enabled
p_schema

p_url_mapping_type

p_url_mapping_pattern

p_auto_rest auth

ORDS.DEFINE_MODULE(
p_module_name
p_base path
p_items_per_page
p_status
p_comments

ORDS.DEFINE_TEMPLATE(

p_module_name
p_pattern
p_priority
p_etag_type
p_etag_query
p_comments
ORDS.DEFINE_HANDLER(
p_module_name
p_pattern
p_method
p_source_type
p_items_per_page
p_mimes_allowed
p_comments
p_source
declare
L_PO BLOB :=
begin

:body;

=>

=>
=>

=>
=>
=>
=>
=>
=>

=>
=>
=>

=>

INSERT INTO PurchaseOrder
SELECT * FROM json_table(L_PO FORMAT JSON, ""$"*

COLUMNS (
PONo
Requestor
CostCenter

AddressStreet

AddressCity

AddressState

AddressZip

AddressCountry

=>
=>
=>
=>
=>

TRUE,
"ORDSTEST",
"BASE_PATH",
"ordstest”,
FALSE);

"demo”,
*/demo/",
25,
"PUBLISHED",
NULL);

"demo”,
"test”,
0,
"HASH",
NULL,
NULL);

"demo”,

"test",

"POST",

"plsgl/block™,
0,

NULL,

Number PATH *"$.PONumber®*,
VARCHAR2 PATH "*"$.Requestor®",
VARCHAR2 PATH ""$.CostCenter"",
VARCHAR2 PATH ""$.Address.street™",
VARCHAR2 PATH ""$._Address.city"",
VARCHAR2 PATH ""$.Address.state"",
VARCHAR2 PATH ""$.Address.zipCode"",
VARCHAR2 PATH ""$.Address.country®*));

5-46

Chapter 5
Getting Started with RESTful Services

INSERT INTO Lineltem
SELECT * FROM json_table(L_PO FORMAT JSON, ""$"*

COLUMNS (
PONo Number PATH *"$.PONumber®®,
NESTED PATH ""$.Lineltems[*]""
COLUMNS (
ItemNumber Number PATH ""$.l1temNumber®",
PartDescription VARCHAR2 PATH ""$.Part.Description””,
PartUnitPrice Number PATH ""$.Part.UnitPrice"",
PartUPCCode Number PATH ""$.Part.UPCCode"",
Quantity Number PATH ""$.Quantity"")));
commit;
end;"
);
COMMIT;
END;

Related Topics
* Using the Oracle REST Data Services PL/SQL API
» About Oracle REST Data Services Mechanisms for Passing Parameters

* Oracle REST Data Services PL/SQL Package Reference

5.2.6.2.2 Generating Nested JSON Objects from Hierachical Relational Data

ORACLE

This section explains how to query the relational tables in hierarchical (parent/child)
relationships and return the data in a nested JSON format using the Oracle REST Data
Services.

The two key technologies used to implement this functionality are as follows:

e The new SQL/JSON functions available with Oracle Database 21c. You can use
json_objects for generating JSON objects from the relational tables, and
json_arrayagg, for generating nested JSON arrays from nested (child) relational tables.

* The Oracle REST Data Services media source type used for enabling the REST service
handler to execute a SQL query that in turn returns the following types of data:

— The HTTP Content-Type of the data, which in this case is applicationl/json
— The JSON data returned by the json_object

Some of the advantages of using this approach are as follows:

e Requirements for implementing this functionality is very minimal. For example, installation
of JSON parser software is not required.

e Simple, declarative coding which is easy to write and understand which makes the JSON
objects to relational tables mapping simple.

e Powerful and sophisticated capabilities to handle more complex mappings. This includes
mechanisms for mapping NULLS and boolean values.

For example, a NULL in the Oracle Database can be converted to either the absence of
the JSON element or to a JSON NULL value. The Oracle Database does not store

5-47

Chapter 5
Getting Started with RESTful Services

Boolean types but the SQL/JSON functions allow string or numeric values in the
database to be mapped to Boolean TRUE or FALSE values.

5.2.6.2.2.1 Bypassing JSON Generation for Relational Data

ORACLE

This section describes and provides solutions for handling responses that are already
in a JSON format.

ORDS auto-formats your SQL or PL/SQL results and response to a JSON format
before returning to your application. However, in some cases, the complete response
body or part of it is already in a JSON format. Following are two such use cases:

Use Case 1: When the response is already in a JSON format

Following figure shows an example where the complete response is already in a JSON
format:

Figure 5-11 Complete Response Body in JSON Format

Columns |Data| Model | Constraints | Grants | Statistics | Triggers | Flashback | Dependendes | Details | Partitions | Indexes |SQL
LRAEBXE B sot. [Fiter:
1D |{; DATE_LOADED J50N_DOC
1 111-SEP-17 01.24.32.000000000 PM AMERICA/NEW_YORK| | &0 Edit Value

===

Change...

Line Terminator: [Platform Default |
Value:
{
“statementId™ 1,
“statementType™ “query”,
“statementPos™ {
“startline™ 1,
"endLine™: 2

b
“statementText™: “select * from hr.departments”,
“response™: [,
‘result™ 0,
‘resultSet™ {
“‘metadata” [

Columns |Data |Model | Constraints | Grants | Statistics | Triggers | Flashback | Dependencies | Details |

“columnName™; "DEPARTMENT _ID",
“jsonColumnName®: “department_id",
“columnTypeName™: NUMBER",
“predsion”: 4,

You must adjust your GET query text to include "application/json" before including the
JSON itself as shown in the following example GET query:

Select "application/json”,
upper(json_doc)
from json_play

The Media resource in this case is application/json and the browser handles it similar
to a BLOB or a PDF.

5-48

Chapter 5
Getting Started with RESTful Services

Use Case 2: One or more columns of the response is already in a JSON format.

If one or more columns are in a JSON format, then such columns in the source query need to
be aliased to indicate that the attribute must not be converted to a JSON format.

For example:

Select id,
jsons "{}jsons"
from table with_json

The alias text is used to name the nested JSON document attribute.

¢ See Also:
ORDS: Returning Raw {JSON}

5.2.6.2.2.2 Example to Generate Nested JSON Objects from the Hierachical Relational
Tables

This section describes how to query or GET the data we inserted into the PurchaseOrder and
Lineltem relational tables in the form of nested JSON purchase order.

Example 5-7 GET Handler Code using Oracle REST Data Services Query on
Relational Tables for Generating a Nested JSON object

SELECT “"application/json®, json_ object("PONumber® VALUE po.PONo,
"Requestor” VALUE po.Requestor,
"CostCenter”™ VALUE po.CostCenter,
"Address” VALUE
json_object("street” VALUE po.AddressStreet,
"city" VALUE po.AddressCity,
"state” VALUE po.AddressState,
"zipCode"™ VALUE po.AddressZip,
"country” VALUE po.AddressCountry),
"Lineltems® VALUE (select json arrayagg(
json_object(" ItemNumber® VALUE li.ltemNumber,
"Part® VALUE
json_object("Description® VALUE li.PartDescription,
"UnitPrice® VALUE li.PartUnitPrice,
"UPCCode" VALUE Ii.PartUPCCODE),
"Quantity” VALUE li.Quantity))
FROM Lineltem li WHERE po.PONo = li.PONo))
FROM PurchaseOrder po
WHERE po.PONo = :id

5.2.6.2.2.3 PL/SQL API Calls for Defining Template and GET Handler

This section provides an example of Oracle REST Data Services PL/SQL API call for creating
a new template in the module created.

ORACLE 5-49

Chapter 5
Getting Started with RESTful Services

Example 5-8 PL/SQL API Call for Creating a New test/:id Template and GET
Handler in the deno Module

Begin
ords.define_template(
p_module_name => "demo”,
p_pattern => "test/:id");

ords.define_handler(

p_module_name => "demo”,

p_pattern => "test/:id",

p_method => "GET",

p_source_type => ords.source_type media,
p_source => "

SELECT "“"application/json"", json _object(""PONumber®" VALUE po.PONo,
""Requestor"" VALUE po.Requestor,
""CostCenter®" VALUE po.CostCenter,
""Address" " VALUE
json_object(""street™" VALUE po.AddressStreet,
""city"" VALUE po.AddressCity,
""state"" VALUE po.AddressState,
""zipCode"" VALUE po.AddressZip,
"“country"* VALUE po.AddressCountry),
""Lineltems"" VALUE (select json_arrayagg(
json_object(" " ItemNumber®® VALUE Ii.ltemNumber,
""Part"" VALUE
json_object(""Description™" VALUE
li._PartDescription,
""UnitPrice"" VALUE li.PartUnitPrice,
""UPCCode" " VALUE Ii.PartUPCCODE),
""Quantity"" VALUE li.Quantity))
FROM Lineltem li WHERE po.PONo = li.PONo))
FROM PurchaseOrder po
WHERE po.PONo = :id *
):

Commit;
End;

5.2.6.2.3 Testing the RESTful Services

This section shows how to test the POST and GET RESTful Services to access the
Oracle database and get the results in a JSON format.

This section includes the following topics:

* Insertion of JSON Object into the Database
* Generating JSON Object from the Database

5.2.6.2.3.1 Insertion of JSON Obiject into the Database
This section shows how to test insertion of JSON purchase order into the database.

URI Pattern: http://<HOST>:<PORT>/ords/<SchemaAl ias>/<module>/<template>

ORACLE 5-50

Chapter 5
Getting Started with RESTful Services

Example:
Method: POST
URI Pattern: http://localhost:8080/0rds/ordstest/demo/test/

To test the RESTful service, create a file such as pol. json with the following data for
PONumber 1608 :

{""PONumber"' - 1608,
"Requestor™ : "Alexis Bull",
"CostCenter" : "A50",
"Address" : {"street" : "200 Sporting Green",
"city" : "South San Francisco”,
"state" : "CA",
"zipCode"™ : 99236,
"country"™ : "United States of America'"},
"Lineltems" : [{"ItemNumber" : 1,
"Part" : {"Description” : "One Magic
Christmas",
"UnitPrice" : 19.95,
"UPCCode" 1 1313109289},
"Quantity" : 9.0%,
{"ItemNumber" : 2,
"Part” : {"Description” :
"Lethal Weapon",
"UnitPrice"
19.95,
"UPCCode"
8539162892},
"Quantity" : 5.0}]1}°

Then, execute the following cURL command in the command prompt:

curl -i -H "Content-Type: application/json™ -X POST -d @pol.json "http://
localhost:8080/ords/ordstest/demo/test/"

The cURL command returns the following response:

HTTP/1.1 200 OK
Transfer-Encoding: chunked

5.2.6.2.3.2 Generating JSON Object from the Database

ORACLE

This section shows the results of a GET method to fetch the JSON object from the database..
Method: GET

URI Pattern: http://<HOST>:<PORT>/ords/<SchemaAlias>/<module>/<template>/
<parameters>

Example:

To test the RESTful service, in a web browser, enter the URL http://localhost:8080 /ords/
ordstest/demo/test/1608 as shown in the following figure:

5-51

Chapter 5
Getting Started with RESTful Services

Figure 5-12 Generating Nested JSON Objects

@ http://localhost:8080/ords/.. ® | +

6 localhost:8080,ords/ordstest/demao,/test/1608 &
Oracle |2 Most Visited
PONumber: 1608,

Requestor: "Rlexis Bull",
CostCenter: "LS0",

v Address: |
street: "200 Sporting Green",
city: "South San Francisco",

state: "CL",
zipCode: "90236",
country: "United States of Emerica"
b
* LineItems: [
"
ItemNumber: 1,
v Part: {
Description: "One Magic Christmas",
UnitPrice: 20,
UPCCode: 1313109289
I
Quantity: 9

ItemNumber: 2,
v Part: {
Description: "Lethal Weapon",
UnitPrice: 20,
UPCCode: E538162832
i
Quantity: 5

ItemNumber: 1,
v Part: {
Description: "One Magic Christmas",
UnitPrice: 20,
UPCCode: 13131092889
i
Quantity: 9

5.2.7 About Working with Dates Using Oracle REST Data Services

ORACLE

Oracle REST Data Services enables developers to create REST interfaces to Oracle
Database, Oracle Database 12c JSON Document Store as quickly and easily as
possible. When working with Oracle Database, developers can use the AutoREST
feature for tables or write custom modules using SQL and PL/SQL routines for more
complex operations.

Oracle REST Data Services uses the RFC3339 standard for encoding dates in strings.
Typically, the date format used is dd-mmm-yyyy, for example, 15-Jan-2017. Oracle
REST Data Services automatically converts JSON strings in the specified format to
Oracle date data types when performing operations such as inserting or updating
values in Oracle Database. When converting back to JSON strings, Oracle REST Data
Services automatically converts Oracle date data types to the string format.

" Note:

Oracle Database supports a date data type while JSON does not support a
date data type.

5-52

Chapter 5
Getting Started with RESTful Services

This section includes the following topics:

e About Datetime Handling with Oracle REST Data Services
e About Setting the Time Zone

5.2.7.1 About Datetime Handling with Oracle REST Data Services

As data arrives from a REST request, Oracle REST Data Services may parse 1ISO 8601
strings and convert them to the TIMESTAMP data type in Oracle Database. This occurs with
AutoREST (POST and PUT) as well as with bind variables in custom modules. Remember that
TIMESTAMP does not support time zone related components, so the DATETIME value is set to
the time zone Oracle REST Data Services uses during the conversion process.

When constructing responses to REST requests, Oracle REST Data Services converts
DATETIME values in Oracle Database to ISO 8601 strings in Zulu. This occurs with AutoREST
(GET) and in custom modules that are mapped to SQL queries (GET). In the case of DATE and
TIMESTAMP data types, which do not have time zone related components, the time zone is
assumed to be that in which Oracle REST Data Services is running and the conversion to
Zulu is made from there.

Here are some general recommendations when working with Oracle REST Data Services for
REST (that is, not APEX):

« Ensure that Oracle REST Data Services uses the appropriate time zone as per the data
in the database (for example, the time zone you want dates going into the database).

e Do not alter NLS settings (that is, the time_zone) mid-stream.

Note that while ISO 8601 strings are mentioned, Oracle REST Data Services actually
supports strings. RFC3339 strings are a conformant subset of ISO 8601 strings. The default
format returned by JSON.stringify(date) is supported.

WARNING:

It is important to keep the time zone that Oracle REST Data Services uses in sync
with the session time zone to prevent issues with implicit data conversion to
TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME ZONE. Oracle REST
Data Services does this automatically by default but developers can change the
session time zone with an ALTER SESSION statement.

¢ See Aslo:

rfc3339_date_time_format

5.2.7.2 About Setting the Time Zone

ORACLE

When Oracle REST Data Services is started, the JVM it runs in obtains and caches the time
zone Oracle REST Data Services uses for various time zone conversions. By default, the
time zone is obtained from the operating system (OS), so an easy way to change the time
zone Oracle REST Data Services uses is to change the time zone of the OS and then restart
Oracle REST Data Services or the application server on which it is running. Of course, the
instructions for changing the time zone vary by the operating system.

5-53

https://xml2rfc.tools.ietf.org/public/rfc/html/rfc3339.html#anchor14

Chapter 5
Getting Started with RESTful Services

If for any reason you do not want to use the same time zone as the OS, it is possible
to override the default using the Java environment variable Duser . timezone. Exactly
how that variable is set depends on whether you are running in standalone mode or in
a Java application server. The following topics show some examples.

Standalone Mode

When running Oracle REST Data Services in standalone mode, it is possible to set
Java environment variables by specifying them as command line options before the -
jar option.

Example 5-9 Setting the Duser.timezone Java Environment Variable in
Standalone Mode

The following code example shows how to set the timezone in standalone mode on
the command line.

$ java -Duser.timezone=America/New_York -jar ords.war standalone

Java Application Server — Tomcat 8

In a Java application server, Tomcat 8, and possibly earlier and later versions too, it is
possible to set the time zone using the environment variable CATALINA_OPTS. The
recommended way to do this is not to modify the CATALINA BASE/bin/catalina.sh
directly, but instead to set environment variables by creating a script named setenv.sh
in CATALINA_BASE/bin.

Example 5-10 Setting the Duser.timezone Java Environment Variable in a Java
Application Server

The following code example shows the contents of the setenv.sh script for setting the
timezone in a Java Application server — Tomcat 8.

CATALINA TIMEZONE="-Duser.timezone=America/New_York"
CATALINA_OPTS="$CATALINA_OPTS $CATALINA_TIMEZONE

5.2.7.3 Exploring the Sample RESTful Services in Application Express

(Tutorial)

ORACLE

Oracle highly recommends to develop Oracle REST Data Services application using
SQL Developer because it supports the most recent Oracle REST Data Services
releases, that is, 3.0.X. Application Express provides a tutorial that is useful for
learning some basic concepts of REST and Oracle REST Data Services. However, the
tutorial uses the earlier Oracle REST Data Services releases, that is, 2.0.X. Following
are some of the useful tips discussed on how to use the tutorial:

If your Application Express instance is configured to automatically add the sample
application and sample database objects to workspaces, then a sample resource
module named: oracle.example.hr will be visible in the list of Resource Modules. If
that resource module is not listed, then you can click the Reset Sample Data task on
the right side of the RESTful Services Page to create the sample resource module.

1. Click on oracle.example.hr to view the Resource Templates and Resource
Handlers defined within the module. Note how the module has a URI prefix with

5-54

ORACLE

Chapter 5
Getting Started with RESTful Services

the value: hr/. This means that all URIs serviced by this module will start with the
characters hr/.

Click on the resource template named employees/{id}. Note how the template has a
URI Template with the value: employees/{id}. This means that all URIs starting with hr/
employees/ will be serviced by this Resource Template.

The HTTP methods supported by a resource template are listed under the resource
template. In this case, the only supported method is the GET method.

Click on the GET Resource Handler for hr/employees/{id} to view its configuration.

The Source Type for this handler is Query One Row. This means that the resource is
expected to be mapped to a single row in the query result set. The Source for this
handler is:

select * from emp
where empno = :id

Assuming that the empno column is unique, the query should only produce a single result
(or no result at all if no match is found for :id). To try it out, press the Test button. The
following error message should be displayed:

400 - Bad Request - Request path contains unbound parameters: id
If you look at the URI displayed in the browser, it will look something like this:

https://server:port/ords/workspace/hr/employees/{id}

where:
* server is the DNS name of the server where Oracle Application Express is deployed
e portis the port the server is listening on

» workspace is the name of the Oracle Application Express workspace you are logged
into

Note the final part of the URI: hr/employees/{id}. The error message says that this is
not a valid URI, the problem is that you did not substitute in a concrete value for the
parameter named {id}. To fix that, press the browser Back button, then click Set Bind
Variables.

For the bind variable named :id, enter the value 7369, and press Test.

A new browser window appears displaying the following JSON (JavaScript Object
Notation):

{
"'empno™:7369,
“ename" :""SMITH",
"job":"CLERK",
"mgr'':-7902,
"hiredate":""1980-12-17T08:00:00Z",
"sal':800,
"deptno™:20
}

Note also the URI displayed in the browser for this resource:

https://server:port/ords/workspace/hr/employees/7369

5-55

ORACLE

Chapter 5
Getting Started with RESTful Services

The {id} URI Template parameter is bound to the SQL :id bind variable, and in
this case it has been given the concrete value of 7369, so the query executed by
the RESTful Service becomes:

select * from emp
where empno = 7369

The results of this query are then rendered as JSON as shown above.

Tip:

Reading JSON can be difficult. To make it easier to read, install a
browser extension that pretty prints the JSON. For example, Mozilla
Firefox and Google Chrome both have extensions:

« JSONView
¢ JSON Formatter

Now see what happens when you enter the URI of a resource that does not exist.

On the Set Bind Variables page, change the value of :id from 7369 to 1111, and
press Test.

As before, a new window pops up, but instead of displaying a JSON resource, it
displays an error message reading:

404 - Not Found

This is the expected behavior of this handler: when a value is bound to :id that
does not exist in the emp table, the query produces no results and consequently
the standard HTTP Status Code of 404 - Not Found is returned.

So, you have a service that will provide information about individual employees, if
you know the ID of an employee, but how do you discover the set of valid
employee ids?

Press Cancel to return to the previous page displaying the contents of the
Resource Module.

Click on the template named employees/.

The following steps look at the resource it generates, and later text will help you
understand its logic.

Click on the GET handler beneath employees/, and click Test.

A resource similar to the following is displayed (If you haven't already done so,
now would be a good time to install a JSON viewer extension in your browser to
make it easier to view the output):

{

"next":
{"$ref":
"https://server:port/ords/workspace/hr/employees/?page=1"},
"items": [
{
"uri':
{"'$ref":
"https://server:port/ords/workspace/hr/employees/7369"},

5-56

Chapter 5
Getting Started with RESTful Services

“'empno™: 7369,
“ename’: "SMITH"
1.
{ -
'uri™:
{"$ref":
"https://server:port/ords/workspace/hr/employees/7499"},
“'empno™: 7499,
“"ename'': "ALLEN"
1.
{ -
'uri™:
{"$ref":
"https://server:port/ords/workspace/hr/employees/7782"},
“'empno™: 7782,
“ename’: "CLARK"
}
1
}

This JISON document contains a number of things worth noting:

* The first element in the document is named next and is a URI pointing to the next
page of results. (An explanation of how paginated results are supported appears in
later steps)

* The second element is named items and contains a number of child elements. Each
child element corresponds to a row in the result set generated by the query.

» The first element of each child element is named uri and contains a URI pointing to
the service that provides details of each employee. Note how the latter part of the
URI matches the URI Template: employees/{id}. In other words, if a client accesses
any of these URIs, the request will be serviced by the employees/{id} RESTful
service previously discussed.

So, this service addresses the problem of identifying valid employee IDs by generating a
resource that lists all valid employee resources. The key thing to realize here is that it
does not do this by just listing the ID value by itself and expecting the client to be able to
take the ID and combine it with prior knowledge of the employees/{id} service to
produce an employee URI; instead, it lists the URIs of each employee.

Because the list of valid employees may be large, the service also breaks the list into
smaller pages, and again uses a URI to tell the client where to find the next page in the
results.

To see at how this service is implemented, continue with the next steps.
9. Press the Back button in your browser to return to the GET handler definition.

Note the Source Type is Query, this is the default Source Type, and indicates that the
resource can contain zero or more results. The Pagination Size is 7, which means that
there will be seven items on each page of the results. Finally, the Source for the handler
looks like this:

select empno "$uri”, empno, ename from (
select emp.*,
row_number() over (order by empno) rn
from emp
) tmp
where

ORACLE 5-57

ORACLE

10.

11.

Chapter 5
Getting Started with RESTful Services

rn between :row_offset and :row_count

In this query:

* The first line states that you want to return three columns. The first column is
the employee id: empno, but aliased to a column name of $uri (to be explained
later), the second column is again the employee ID, and the third column is the
employee name, ename.

* Columns in result sets whose first character is $ (dollar sign) are given special
treatment. They are assumed to denote columns that must be transformed into
URIs, and these are called Hyperlink Columns. Thus, naming columns with a
leading $ is a way to generate hyperlinks in resources.

When a Hyperlink Column is encountered, its value is prepended with the URI
of the resource in which the column is being rendered, to produce a new URI.
For example, recall that the URI of this service is https://server:port/ords/
workspace/hr/employees/. If the value of empno in the first row produced by
the this service's query is 7369, then the value of $uri becomes: https://
server:port/ords/workspace/hr/employees/7369.

e JSON does not have a URI data type, so a convention is needed to make it
clear to clients that a particular value represents a URI. Oracle REST Data
Services uses the JSON Reference proposal, which states that any JSON
object containing a member named $ref, and whose value is a string, is a
URI. Thus, the column: $uri and its value: https://server:port/ords/
workspace/hr/employees/7369 is transformed to the following JSON object:

{"uri”:
{'$ref":
"https://server:port/ords/workspace/hr/employees/7369"

}
}

e The inner query uses the row_number () analytical function to count the
number of rows in the result set, and the outer WHERE clause constrains the
result set to only return rows falling within the desired page of results. Oracle
REST Data Services defines two implicit bind parameters, :row_offset
and :row_count, that always contain the indicies of the first and last rows that
should be returned in a given page's results.

For example, if the current page is the first page and the pagination size is 7,
then the value of :row_offset will be 1 and the value of :row_count will be 7.

To see a simpler way to do both hyperlinks and paged results, continue with the
following steps.

Click on the GET handler of the employeesfeed/ resource template.

Note that the Source Type of this handler is Feed and Pagination Size is 25.
Change the pagination size to 7, and click Apply Changes.

The Source of the handler is just the following:

select empno, ename from emp
order by deptno, ename

As you can see, the query is much simpler than the previous example; however, if
you click Test, you will see a result that is very similar to the result produced by
the previous example.

5-58

Chapter 5
Configuring Secure Access to RESTful Services

* The Feed Source Type is an enhanced version of the Query Source Type that
automatically assumes the first column in a result set should be turned into a
hyperlink, eliminating the need to alias columns with a name starting with $. In this
example, the empno column is automatically transformed into a hyperlink by the Feed
Source Type.

* This example demonstrates the ability of Oracle REST Data Services to automatically
paginate result sets if a Pagination Size of greater than zero is defined, and the query
does not explicitly dereference the :row_offset or :row_count bind parameters.
Because both these conditions hold true for this example, Oracle REST Data
Services enhances the query, wrapping it in clauses to count and constrain the
number and offset of rows returned. Note that this ability to automatically paginate
results also applies to the Query Source Type.

See Also:

JSON Reference

5.3 Configuring Secure Access to RESTful Services

This section describes how to configure secure access to RESTful Services

RESTful APIs consist of resources, each resource having a unique URI. A set of resources
can be protected by a privilege. A privilege defines the set of roles, at least one of which an
authenticated user must possess to access a resource protected by a privilege.

Configuring a resource to be protected by a particular privilege requires creating a privilege
mapping. A privilege mapping defines a set of patterns that identifies the resources that a
privilege protects.

Topics:

* Authentication

* About Privileges for Accessing Resources

* About Users and Roles for Accessing Resources
* About the File-Based User Repository

e Tutorial: Protecting and Accessing Resources

5.3.1 Authentication

Users can be authenticated through first party cookie-based authentication or third party
OAuth 2.0-based authentication

Topics:
* First Party Cookie-Based Authentication
e Third Party OAuth 2.0-Based Authentication

ORACLE 5-59

Chapter 5
Configuring Secure Access to RESTful Services

5.3.1.1 First Party Cookie-Based Authentication

A first party is the author of a RESTful API. A first party application is a web application
deployed on the same web origin as the RESTful API. A first party application is able
to authenticate and authorize itself to the RESTful API using the same cookie session
that the web application is using. The first party application has full access to the
RESTful API.

5.3.1.2 Third Party OAuth 2.0-Based Authentication

A third party is any party other than the author of a RESTful API. A third party
application cannot be trusted in the same way as a first party application; therefore,
there must be a mediated means to selectively grant the third party application limited
access to the RESTful API.

The OAuth 2.0 protocol defines flows to provide conditional and limited access to a
RESTful API. In short, the third party application must first be registered with the first
party, and then the first party (or an end user of the first party RESTful service)
approves the third party application for limited access to the RESTful API, by issuing
the third party application a short-lived access token.

¢ See Also:

The OAuth 2.0 Authorization Framework

5.3.1.2.1 Two-Legged and Three-Legged OAuth Flows

Some flows in OAuth are defined as two-legged and others as three-legged.

Two-legged OAuth flows involve two parties: the party calling the RESTful API (the
third party application), and the party providing the RESTful API. Two-legged flows are
used in server to server interactions where an end user does not need to approve
access to the RESTful API. In OAuth 2.0 this flow is called the client credentials flow. It
is most typically used in business to business scenarios.

Three-legged OAuth flows involve three parties: the party calling the RESTful API,
the party providing the RESTful API, and an end user party that owns or manages the
data to which the RESTful API provides access. Three-legged flows are used in client
to server interactions where an end user must approve access to the RESTful API. In
OAuth 2.0 the authorization code flow and the implicit flow are three-legged flows.
These flows are typically used in business to consumer scenarios.

For resources protected by three-legged flows, when an OAuth client is registering
with a RESTful API, it can safely indicate the protected resources that it requires
access to, and the end user has the final approval decision about whether to grant the
client access. However for resources protected by two-legged flows, the owner of the
RESTful API must approve which resources each client is authorized to access.

5.3.2 About Privileges for Accessing Resources

A privilege for accessing resources consists of the following data:

e Name: The unique identifier for the Privilege. This value is required.

ORACLE 5-60

Chapter 5
Configuring Secure Access to RESTful Services

* Label: The name of the privilege presented to an end user when the user is being asked
to approve access to a privilege when using OAuth. This value is required if the privilege
is used with a three-legged OAuth flow.

» Description: A description of the purpose of the privilege. It is also presented to the end
user when the user is being asked to approve access to a privilege. This value is required
if the privilege is used with a three-legged OAuth flow.

* Roles: A set of role names associated with the privilege. An authenticated party must
have at least one of the specified roles in order to be authorised to access resources
protected by the privilege. A value is required, although it may be an empty set, which
indicates that a user must be authenticated but that no specific role is required to access
the privilege.

For two-legged OAuth flows, the third party application (called a client in OAuth terminology)
must possess at least one of the required roles.

For three-legged OAuth flows, the end user that approves the access request from the third
party application must possess at least one of the required roles.

Related Topics
e Two-Legged and Three-Legged OAuth Flows

5.3.3 About Users and Roles for Accessing Resources

A privilege enumerates a set of roles, and users can possess roles. but where are these
Roles defined? What about the users that possess these roles? Where are they defined?

A privilege enumerates a set of roles, and users can possess roles. Oracle REST Data
Services delegates the task of user management to the application server on which Oracle
REST Data Services is deployed. Oracle REST Data Services is able to authenticate users
defined and managed by the application server and to identify the roles and groups to which
the authenticated user belongs. It is the responsibility of the party deploying Oracle REST
Data Services on an application server to also configure the user repository on the
application server.

Because an application server can be configured in many ways to define a user repository or
integrate with an existing user repository, this document cannot describe how to configure a
user repository in an application server. See the application server documentation for detailed
information.

5.3.4 About the File-Based User Repository

ORACLE

Oracle REST Data Services provides a a simple file-based user repository mechanism.
However, this user repository is only intended for the purposes of demonstration and testing,
and is not supported for production use.

See the command-line help for the user command for more information on how to create a
user in this repository:

java -jar ords.war help user

Format:

java -jar ords.war user <user> <roles>

Arguments:

5-61

Chapter 5
Configuring Secure Access to RESTful Services

e <user>is the user ID of the user.
« <roles> is the list of roles (zero or more) that the user has.

Related Topics

e Tutorial: Protecting and Accessing Resources

5.3.5 Tutorial: Protecting and Accessing Resources

This tutorial demonstrates creating a privilege to protect a set of resources, and
accessing the protected resource with the following OAuth features:

e Client credentials
e Authorization code
* Implicit flow

It also demonstrates access the resource using first-party cookie-based authentication.

Topics:
* OAuth Flows and When to Use Each
e Assumptions for This Tutorial

e Steps for This Tutorial

5.3.5.1 OAuth Flows and When to Use Each

ORACLE

This topic explains when to use various OAuth flow features.

Use first party cookie-based authentication when accessing a RESTful APl from a web
application hosted on the same origin as the RESTful API.

Use the authorization code flow when you need to permit third party web applications
to access a RESTful API and the third party application has its own web server where
it can keep its client credentials secure. This is the typical situation for most web
applications, and it provides the most security and best user experience, because the
third party application can use refresh tokens to extend the life of a user session
without having to prompt the user to reauthorize the application.

Use the implicit flow when the third party application does not have a web server
where it can keep its credentials secure. This flow is useful for third party single-page-
based applications. Because refresh tokens cannot be issued in the Implicit flow, the
user will be prompted more frequently to authorize the application.

Native mobile or desktop applications should use the authorization code or implicit
flows. They will need to display the sign in and authorization prompts in a web browser
view, and capture the access token from the web browser view at the end of the
authorization process.

Use the client credentials flow when you need to give a third party application direct
access to a RESTful API without requiring a user to approve access to the data
managed by the RESTful API. The third party application must be a server-based
application that can keep its credentials secret. The client credentials flow must not be
used with a native application, because the client credentials can always be
discovered in the native executable.

5-62

Chapter 5
Configuring Secure Access to RESTful Services

5.3.5.2 Assumptions for This Tutorial

This tutorial assumes the following:

Oracle REST Data Services is deployed at the following URL: https://example.com/
ords/

A database schema named ORDSTEST has been enabled for use with Oracle REST
Data Services, and its RESTful APIs are exposed under: https://example.com/ords/
ordstest/

The ORDSTEST schema contains a database table named EMP, which was created as
follows:

create table emp (
empno number(4,0),
ename varchar2(10 byte),

job varchar2(9 byte),
mgr number(4,0),
hiredate date,

sal number(7,2),

comm number(7,2),

deptno number(2,0),

constraint pk_emp primary key (empno)

);
The resources to be protected are located under: https://example.com/ords/ordstest/
examples/employees/

5.3.5.3 Steps for This Tutorial

Follow these steps to protect and access a set of resources.

ORACLE

1.

Enable the schema. Connect to the ORDSTEST schema and execute the following
PL/SQL statements;

begin
ords.enable_schema;
commit;

end;

Create a resource. Connect to the ORDSTEST schema and execute the following
PL/SQL statements:

begin
ords.create_service(
p_module_name => “"examples.employees” ,
p_base_path => "/examples/employees/",
p_pattern => *.% |,
p_items_per_page => 7,
p_source => “select * from emp order by empno desc");
commit;
end;

The preceding code creates the /examples/employees/ resource, which you will protect
with a privilege in a later step.

You can verify the resource by executing following cURL command:

curl -1 https://example.com/ords/ordstest/examples/employees/

5-63

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

The result should be similar to the following (edited for readability):

Content-Type: application/json
Transfer-Encoding: chunked

{
"“items":

[

{""empno*:7934,"ename" :"MILLER", " job" :"CLERK","mgr'*:7782,"hiredate':""1982-01-2
3T00:00:00Z","sal":1300, ""comm":null,"deptno":10},

1.

"hasMore":true,
"limit":7,
"offset":0,
"count":7,
"links":
[
{"rel":"self","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"describedby","href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"'},
{"rel":"first","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"next","href":"https://example.com/ords/ordstest/examples/
employees/?offset=7"}

1
}
Create a privilege. While connected to the ORDSTEST schema, execute the
following PL/SQL statements:

begin
ords.create_role("HR Administrator®);

ords.create_privilege(
p_name => "example.employees”,
p_role_name => "HR Administrator”®,
p_label => "Employee Data“",
p_description => "Provide access to employee HR data");
commit;
end;

The preceding code creates a role and a privilege, which belong to the
ORDSTEST schema.
* The role name must be unique and must contain printable characters only.

* The privilege name must be unique and must conform to the syntax specified
by the OAuth 2.0 specification, section 3.3 for scope names.

* Because you will want to use this privilege with the three-legged authorization
code and implicit flows, you must provide a label and a description for the
privilege. The label and description are presented to the end user during the
approval phase of three-legged flows.

* The values should be plain text identifying the name and purpose of the
privilege.

You can verify that the privilege was created correctly by querying the
USER_ORDS_PRIVILEGES view.

5-64

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

select id,name from user_ords_privileges where name = “"example.employees”;

The result should be similar to the following:

1D
NAME

10260 example.employees
The ID value will vary from database to database, but the NAME value should be as
shown.

Associate the privilege with resources. While connected to the ORDSTEST schema,
execute the following PL/SQL statements:

begin
ords.create_privilege_mapping(
p_privilege_name => "example.employees”,
p_pattern => "/examples/employees/*");
commit;
end;

The preceding code associates the example.employees privilege with the resource
pattern /examples/employees/.

You can verify that the privilege was created correctly by querying the
USER_ORDS_PRIVILEGE_MAPPINGS view.

select privilege_id, name, pattern from user_ords_privilege_mappings;

The result should be similar to the following:

PRIVILEGE_ID NAME PATTERN

10260 example.employees /examples/employees/*

The PRIVILEGE_ID value will vary from database to database, but the NAME and
PATTERN values should be as shown.

You can confirm that the /examples/employees/ resource is now protected by the
example.employees privilege by executing the following cURL command:

curl -1 https://example.com/ords/ordstest/examples/employees/

The result should be similar to the following (reformatted for readability):

HTTP/1.1 401 Unauthorized
Content-Type: text/html
Transfer-Encoding: chunked

<IDOCTYPE html>
<html>

;}Html>
You can confirm that the protected resource can be accessed through first party
authentication, as follows.

5-65

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

a. Create an end user. Create a test user with the HR Administrator role,
required to access the examples.employees privilege using the file-based user
repository. Execute the following command at a command prompt

java -jar ords.war user "hr_admin"™ "HR Administrator"

When prompted for the password, enter and confirm it.
b. Sign in as the end user. Enter the following URL in a web browser:

https://example.com/ords/ordstest/examples/employees/

On the page indicating that access is denied, click the link to sign in.
Enter the credentials registered for the HR_ADMIN user, and click Sign In.

Confirm that the page redirects to https://example.com/ords/ordstest/
examples/employees/ and that the JSON document is displayed.

Register the OAuth client. While connected to the ORDSTEST schema, execute
the following PL/SQL statements:

begin

oauth.create_client(
p_name => "Client Credentials Example®,
p_grant_type => "client_credentials”,
p_privilege_names => "example.employees®,
p_support_email => "support@example.com®);

commit;

end;

The preceding code registers a client named Client Credentials Example, to
access the examples.employees privilege using the client credentials OAuth flow.

You can verify that the client was registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select client_id,client_secret from user_ords_clients where name = "Client
Credentials Example®;

The result should be similar to the following:

CLIENT_ID CLIENT_SECRET

0_CZBVKEMN23tTB-1ddQsQ.- . 4BJXceufbmTki-vruYNLIg. .

The CLIENT_ID and CLIENT_SECRET values represent the secret credentials for
the OAuth client. These values must be noted and kept secure. You can think of
them as the userid and password for the client application.

Grant the OAuth client a required role. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin

oauth.grant_client_role(
"Client Credentials Example-,
"HR Administrator®);

commit;

end;

The preceding code registers a client named Client Credentials Example, to
access the examples.employees privilege using the client credentials OAuth flow.

5-66

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

You can verify that the client was granted the role by executing the following SQL
statement:

select * from user_ords_client_roles where client_name = "Client Credentials
Example®;
The result should be similar to the following:

CLIENT_ID CLIENT_NAME ROLE_ID ROLE_NAME

10286 Client Credentials Example 10222 HR Administrator
Obtain an OAuth access token using client credentials.

The OAuth protocol specifies the HTTP request that must be used to create an access
token using the client credentials flow[rfc6749-4.4.].

The request must be made to a well known URL, called the token endpoint. For Oracle
REST Data Services the path of the token endpoint is always oauth/token, relative to the
root path of the schema being accessed. The token endpoint for this example is:

https://example.com/ords/ordstest/oauth/token

Execute the following cURL command:

curl -i --user clientld:clientSecret --data "grant_type=client_credentials"
https://example.com/ords/ordstest/oauth/token

In the preceding command, replace clientld with the CLIENT_ID value in
USER_ORDS_CLIENTS for Client Credentials Example, and replace clientSecret
with the CLIENT_SECRET value shown in USER_ORDS_CLIENTS for Client
Credentials Example. The output should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{
"access_token": "2YotnFZFEjrl1zCsicMWpAA™,
"token_type": “bearer",
"expires_in":3600

}

In the preceding output, the access token is of type bearer, and the value is specified by
the access_token field. This value will be different for every request. The expires_in
value indicates the number of seconds until the access token expires; in this case the
token will expire in one hour (3600 seconds).

Access a protected resource using the access token. Execute the following cURL
command:

curl -i -H"Authorization: Bearer accessToken" https://example.com/ords/ordstest/
examples/employees/

In the preceding command, replace accessToken with the value of the access_token field
shown in the preceding step. The output should be similar to the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
"items":

[

5-67

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

{""empno*:7934,"ename" :"MILLER", " job" :"CLERK","mgr'*:7782,"hiredate':"'1982-01-2
3T00:00:00Z","sal":1300, ""comm":null,"deptno":10},

1.
"hasMore":true,
"limit":7,
"offset":0,
“count":7,
"links":

{"rel":"self","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"describedby","href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"'},
{"rel":"first","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"next","href":"https://example.com/ords/ordstest/examples/
employees/?offset=7"}
1
}

Register the client for authorization code. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin
oauth.create_client(
p_name => "Authorization Code Example®,
p_grant_type => "authorization_code",
p_owner => "Example Inc.",
p_description => "Sample for demonstrating Authorization Code Flow",
p_redirect_uri => "http://example.org/auth/code/example/",
p_support_email => "support@example.org”,
p_support_uri => "http://example.org/support”,
p_privilege_names => "example.employees”
%
commit;
end;

The preceding code registers a client named Authorization Code Example, to
access the examples.employees privilege using the authorization code OAuth flow.
For an actual application, a URI must be provided to redirect back to with the
authorization code, and a valid support email address must be supplied; however,
this example uses fictitious data and the sample example.org web service.

You can verify that the client is now registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select id, client_id, client_secret from user_ords_clients where name =
"Authorization Code Example®;

The result should be similar to the following:

ID CLIENT_ID CLIENT_SECRET

10060 1GHs04BRgrBC3JwgOVx_YQ.. GefAsWvBFJIAMSB30Eg6IKw. .

To grant access to the privilege, an end user must approve access. The
CLIENT_ID and CLIENT_SECRET values represent the secret credentials for the
OAuth client. These values must be noted and kept secure. You can think of them
as the userid and password for the client application.

5-68

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

10. Obtain an OAuth access token using an authorization code. This major step involves
several substeps. (You must have already created the HR_ADMIN end user in a previous
step.)

a.

Obtain an OAuth authorization code.

The end user must be prompted (via a web page) to sign in and approve access to
the third party application. The third party application initiates this process by
directing the user to the OAuth Authorization Endpoint. For Oracle REST Data
Services, the path of the authorization endpoint is always oauth/auth, relative to the
root path of the schema being accessed. The token endpoint for this example is:

https://example.com/ords/ordstest/oauth/auth

The OAuth 2.0 protocol specifies that the Authorization request URI must include
certain parameters in the query string:

The response_type parameter must have a value of code.

The client_id parameter must contain the value of the applications client identifier.
This is the client_id value determined in a previous step.

The state parameter must contain a unique unguessable value. This value serves
two purposes: it provides a way for the client application to uniquely identify each
authorization request (and therefore associate any application specific state with the
value; think of the value as the application's own session identifier); and it provides a
means for the client application to protect against Cross Site Request Forgery
(CSRF) attacks. The state value will be returned in the redirect URI at the end of the
authorization process. The client must confirm that the value belongs to an
authorization request initiated by the application. If the client cannot validate the state
value, then it should assume that the authorization request was initiated by an
attacker and ignore the redirect.

To initiate the Authorization request enter the following URL in a web browser:

https://example.com/ords/ordstest/oauth/auth?
response_type=code&client_id=cliendld&state=uniqueRandomValue

In the preceding URI, replace clientld with the value of the CLIENT _ID column that
was noted previously, and replace uniqueRandromValue with a unique unguessable
value. The client application must remember this value and verify it against the state
parameter returned as part of the redirect at the end of the authorization flow.

If the client_id is recognized, then a sign in prompt is displayed. Enter the
credentials of the HR_ADMIN end user, and click Sign In; and on the next page click
Approve to cause a redirect to redirect URI specified when the client was registered.
The redirect URI will include the authorization code in the query string portion of the
URI. It will also include the same state parameter value that the client provided at
the start of the flow. The redirect URI will look like the following:

http://example.org/auth/code/example/?
code=D5doeTSIDghxWiWkPI9UpA. .&state=uniqueRandomValue

The client application must verify the value of the state parameter and then note the
value of the code parameter, which will be used in to obtain an access token.

Obtain an OAuth access token.

After the third party application has an authorization code, it must exchange it for an
access token. The third party application's server must make a HTTPS request to the

5-69

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

Token Endpoint. You can mimic the server making this request by using a
cURL command as in the following example:

curl --user clientld:clientSecret --data
"grant_type=authorization_code&code=authorizationCode" https://
example.com/ords/ordstest/oauth/token

In the preceding command, replace clientld with the value of the CLIENT_ID
shown in USER_ORDS_CLIENTS for Authorization Code Example, replace
clientSecret with the value of the CLIENT_SECRET shown in
USER_ORDS_CLIENTS for Authorization Code Example, and replace
authorizationCode with the value of the authorization code noted in a
previous step (the value of the code parameter).

The result should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{
"access_token": "psIGSSEXSBQyibOhozNEdw..",

"token_type": “bearer",

"expires_in":3600,

"refresh_token": "aRMg7AdWPuDvnieHucfVv3g.."
}

In the preceding result, the access token is specified by the access_token
field, and a refresh token is specified by the refresh_token field. This refresh
token value can be used to extend the user session without requiring the user
to reauthorize the third party application.

Access a protected resource using the access token.

After the third party application has obtained an OAuth access token, it can
use that access token to access the protected /examples/employees/
resource:

curl -i -H"Authorization: Bearer accessToken" https://example.com/ords/
ordstest/examples/employees/

In the preceding command, accessToken with the value of the access_token
field shown in a previous step.

The result should be similar to the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
"items":

[

{"empno':7934,"ename" :"MILLER"," job" :""CLERK","'mgr'*:7782,"hiredate" :"'1982-
01-23T00:00:00Z","sal":1300,"comm" :null,"deptno':10},

1.

"hasMore" :true,
"limit":7,
"offset":0,
"count":7,
"links":

[

5-70

ORACLE

Chapter 5
Configuring Secure Access to RESTful Services

{"rel":"self","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"describedby","href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"'},
{"rel":"first","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"next","href":"https://example.com/ords/ordstest/examples/employees/?
offset=7"}
1
}

Extend the session using a refresh token.

At any time, the third party application can use the refresh token value to generate a
new access token with a new lifetime. This enables the third party application to
extend the user session at will. To do this, the third party application's server must
make an HTTPS request to the Token Endpoint. You can mimic the server making
this request by using a cURL command as in the following example:

curl --user clientld:clientSecret --data
“grant_type=refresh_token&refresh_token=refreshToken" https://example.com/ords/
ordstest/oauth/token

In the preceding command, replace clientld with the value of the CLIENT_ID
shown in USER_ORDS_CLIENTS for Client Credentials Client, replace
clientSecret with the value of the CLIENT_SECRET shown in
USER_ORDS_CLIENTS for Client Credentials Client, and replace
refreshToken with the value of refresh_token obtained in a previous step.

The result should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{
"access_token": "psIGSSEXSBQyibOhozNEdw. .",
""token_type"': "bearer",
"refresh_token": "aRMg7AdWPuDvnieHucfV3g..",
"expires_in": 3600

}

In the preceding result, the access token is specified by the access_token field, a
new refresh token is specified by the refresh_token field. This refresh token value
can be used to extend the user session without requiring the user to reauthorize the
third party application. (Note that the previous access token and refresh token are
now invalid; the new values must be used instead.)

11. Register the client for implicit flow. While connected to the ORDSTEST schema,
execute the following PL/SQL statements:

begin
oauth.create_client(

p_name => "Implicit Example”,

p_grant_type => "implicit",

p_owner => "Example Inc.",

p_description => "Sample for demonstrating Implicit Flow",
p_redirect_uri => "http://example.org/implicit/example/",
p_support_email => "support@example.org”,

p_support_uri => "http://example.org/support”,
p_privilege_names => "example.employees”

);

5-71

ORACLE

12.

Chapter 5
Configuring Secure Access to RESTful Services

commit;
end;

The preceding code registers a client named Implicit Example to access the
examples.employees privilege using the implicit OAuth flow. For an actual
application, a URI must be provided to redirect back to with the authorization code,
and a valid support email address must be supplied; however, this example uses
fictitious data and the sample example.org web service.

You can verify that the client is now registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select id, client_id, client_secret from user_ords_clients where name =
“Implicit Example®;

The result should be similar to the following:

ID CLIENT_ID CLIENT_SECRET

10062 7Qz--bNJpFpv8gsTNQpS1A. .

To grant access to the privilege, an end user must approve access.

Obtain an OAuth access token using implicit flow. (You must have already
created the HR_ADMIN end user in a previous step.)

The end user must be prompted (via a web page) to sign in and approve access to
the third party application. The third party application initiates this process by
directing the user to the OAuth Authorization Endpoint. For Oracle REST Data
Services, the path of the authorization endpoint is always oauth/auth, relative to
the root path of the schema being accessed. The token endpoint for this example
is:

https://example.com/ords/ordstest/oauth/auth

The OAuth 2.0 protocol specifies that the Authorization request URI must include
certain parameters in the query string:

The response_type parameter must have a value of token.

The client_id parameter must contain the value of the applications client
identifier. This is the client_id value determined in a previous step.

The state parameter must contain a unique unguessable value. This value serves
two purposes: it provides a way for the client application to uniquely identify each
authorization request (and therefore associate any application specific state with
the value; think of the value as the application's own session identifier); and it
provides a means for the client application to protect against Cross Site Request
Forgery (CSRF) attacks. The state value will be returned in the redirect URI at the
end of the authorization process. The client must confirm that the value belongs to
an authorization request initiated by the application. If the client cannot validate the
state value, then it should assume that the authorization request was initiated by
an attacker and ignore the redirect.

To initiate the Authorization request enter the following URL in a web browser:

https://example.com/ords/ordstest/oauth/auth?
response_type=token&client_id=cliendld&state=uniqueRandomvValue

In the preceding URI, replace clientld with the value of the CLIENT_ID column
that was noted previously, and replace uniqueRandromValue with a unique

5-72

Chapter 5
About Oracle REST Data Services User Roles

unguessable value. The client application must remember this value and verify it against
the state parameter returned as part of the redirect at the end of the authorization flow.

If the client_id is recognized, then a sign in prompt is displayed. Enter the credentials of
the HR_ADMIN end user, and click Sign In; and on the next page click Approve to cause
a redirect to redirect URI specified when the client was registered. The redirect URI will
include the access token in the query string portion of the URI. It will also include the
same state parameter value that the client provided at the start of the flow. The redirect
URI will look like the following:

http://example.org/auth/code/example/
#access_token=D5doeTSIDgbxWiWkPI9UpA. .&type=beareré&expires_in=3600&state=uniqueRand
omValue

The client application must verify the value of the state parameter and then note the
value of the access token.

13. Access a protected resource using an access token. Execute the following cURL
command:

curl -1 -H "Authorization: Bearer accessToken™ https://example.com/ords/ordstest/
examples/employees/

In the preceding command, replace accessToken with the value of the access_token field
shown in the preceding step. The output should be similar to the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
"items":

[

{""empno™:7934,"ename" :"MILLER"," job" :""CLERK",""mgr"*: 7782, "hiredate":""1982-01-23T00:0
0:00z","sal":1300,"comm™:null,"deptno':10},

1.

"hasMore" :true,
"limit":7,
"offset":0,
"count":7,
"links":

L
{"rel":"self","href":"https://example.com/ords/ordstest/examples/employees/"},
{"rel":"describedby","href":"https://example.com/ords/ordstest/metadata-

catalog/examples/employees/"'},
{"rel":"first","href":"https://example.com/ords/ordstest/examples/employees/"},
{"rel":"next","href":"https://example.com/ords/ordstest/examples/employees/?
offset=7"}
1
}

Related Topics
* Using the Oracle REST Data Services PL/SQL API

5.4 About Oracle REST Data Services User Roles

Oracle REST Data Services defines a small number of predefined user roles:

e RESTful Services - This is the default role associated with a protected RESTful service.

ORACLE 5-73

Chapter 5
About Oracle REST Data Services User Roles

* OAuth2 Client Developer - Users who want to register OAuth 2.0 applications
must have this role.

e oracle.dbtools.autorest.any.schema - Users who want to access all AutoREST
services.

e SQL Developer - Users who want to use Oracle SQL Developer to develop
RESTful services must have this role.

e SODA Developer - This is the default role that is required to access the SODA
REST API. For more information about this role, see Oracle REST Data Services
SODA for REST Developer's Guide.

e Listener Administrator - Users who want to administrate an Oracle REST Data
Services instance through Oracle SQL Developer must have this role. Typically,
only users created through the java -jar ords.war user command will have this
role.

Because the Listener Administrator role enables a user to configure an Oracle
REST Data Services instance, and therefore has the capability to affect all
Application Express workspaces served through that instance, Application Express
users are not permitted to acquire the Listener Administrator role.

Topics:

e About Oracle Application Express Users and Oracle REST Data Services Roles

e Controlling RESTful Service Access with Roles

5.4.1 About Oracle Application Express Users and Oracle REST Data
Services Roles

By default, Oracle Application Express users do not have any of the Oracle REST
Data Services predefined user roles. This means that, by default, Application Express
users cannot:

* Invoke protected RESTful Services
* Register OAuth 2.0 applications
e Use Oracle SQL Developer to develop RESTful services.

This applies to all Application Express users, including Application Express developers
and administrators. It is therefore important to remember to follow the steps below to
add Application Express users to the appropriate user groups, so that they can
successfully perform the above actions.

Topics:

* Granting Application Express Users Oracle REST Data Services Roles

* Automatically Granting Application Express Users Oracle REST Data Services
Roles

5.4.1.1 Granting Application Express Users Oracle REST Data Services Roles

To give an Application Express User any of the roles above, the user must be added to
the equivalent Application Express user group. For example, to give the
RESTEASY_ADMIN user the RESTful Services role, follow these steps:

ORACLE 5-74

Chapter 5
About Oracle REST Data Services User Roles

1. Log in to the RESTEASY workspace as a RESTEASY_ADMIN.

2. Navigate to Administration and then Manage Users and Groups.
3. Click the Edit icon to the left of the RESTEASY_ADMIN user.

4. For User Groups, select RESTful Services.

5

Click Apply Changes.

5.4.1.2 Automatically Granting Application Express Users Oracle REST Data
Services Roles

Adding Application Express users to the appropriate user groups can be an easily overlooked
step, or can become a repetitive task if there are many users to be managed.

To address these issues, you can configure Oracle REST Data Services to automatically
grant Application Express users a predefined set of RESTful Service roles by modifying the
defaults.xml configuration file.

In that file, Oracle REST Data Services defines three property settings to configure roles:

e apex.security.user.roles - A comma separated list of roles to grant ordinary users,
that is, users who are not developers or administrators.

e apex.security.developer.roles - A comma separated list of roles to grant users who
have the Developer account privilege. Developers also inherit any roles defined by the
apex.security.user.roles setting.

e apex.security.administrator.roles - A comma separated list of roles to grant users
who have the Administrator account privilege. Administrators also inherit any roles
defined by the apex.security.user.roles and apex.security.developer.roles
settings.

For example, to automatically give all users the RESTful Services privilege and all
developers and administrators the OAuth2 Client Developer and SQL Developer roles, add
the following to the defaults.xml configuration file:

<I-- Grant all Application Express Users the ability
to invoke protected RESTful Services -->

<entry key="apex.security.user.roles">RESTful Services</entry>

<I-- Grant Application Express Developers and Administrators the ability
to register OAuth 2.0 applications and use Oracle SQL Developer
to define RESTful Services -->

<entry key="apex.security.developer.roles">

OAuth2 Client Developer, SQL Developer</entry>

Oracle REST Data Services must be restarted after you make any changes to the
defaults.xml configuration file.

5.4.2 Controlling RESTful Service Access with Roles

ORACLE

The built-in RESTful Service role is a useful default for identifying users permitted to access
protected RESTful services.

However, it will often also be necessary to define finer-grained roles to limit the set of users
who may access a specific RESTful service.

5-75

Chapter 5
Authenticating Against WebLogic Server User Repositories

Topics:
* About Defining RESTful Service Roles
* Associating Roles with RESTful Privileges

5.4.2.1 About Defining RESTful Service Roles

A RESTful Service role is an Application Express user group. To create a user group
to control access to the Gallery RESTful Service, follow these steps. (

Log in to the RESTEASY workspace as a workspace administrator.
Navigate to Administration and then Manage Users and Groups.
Click the Groups tab.

Click Create User Group.

For Name, enter Gallery Users.

@ o > uw N PR

Click Create Group.

5.4.2.2 Associating Roles with RESTful Privileges

After a user group has been created, it can be associated with a RESTful privilege. To
associate the Gallery Users role with the example.gallery privilege, follow these
steps.

1. Navigate to SQL Workshop and then RESTful Services.
2. Inthe Tasks section, click RESTful Service Privileges.
3. Click Gallery Access.

4. For Assigned Groups, select Gallery Users.

5. Click Apply Changes.

With these changes, users must have the Gallery Users role to be able to access the
Gallery RESTful service.

¢ See Also:

The steps here use the image gallery application in Creating an Image
Gallery as an example.

5.5 Authenticating Against WebLogic Server User
Repositories

ORACLE

Oracle REST Data Services can use APIs provided by WebLogic Server to verify
credentials (username and password) and to retrieve the set of groups and roles that
the user is a member of.

This section walks through creating a user in the built-in user repositories provided by
WebLogic Server, and verifying the ability to authenticate against that user.

5-76

Chapter 5
Authenticating Against WebLogic Server User Repositories

This document does not describe how to integrate WebLogic Server with the many popular
user repository systems such as LDAP repositories, but Oracle REST Data Services can
authenticate against such repositories after WebLogic Server has been correctly configured.
See your application server documentation for more information on what user repositories are
supported by the application server and how to configure access to these repositories.

Topics:

Authenticating Against WebLogic Server

5.5.1 Authenticating Against WebLogic Server

Authenticating a user against WebLogic Server involves the following major steps:

1.
2.

Creating a WebLogic Server User

Verifying the WebLogic Server User

5.5.1.1 Creating a WebLogic Server User

ORACLE

To create a sample WebLogic Server user, follow these steps:

1.
2.

Start WebLogic Server if it is not already running

Access the WebLogic Server Administration Console (typically http://server:7001/
console), enter your credentials.

In the navigation tree on the left, click the Security Realms node

If a security realm already exists, go to the next step. If a security realm does not exist,
create one as follows:

a. Click New.
b. For Name, enter Test-Realm, then click OK.
c. Click Test-Realm.
d. Click the Providers tab.
e. Click New, and enter the following information:
Name: test-authenticator
Type: Defaul tAuthenticator
f. Restart WebLogic Server if you are warned that a restart is necessary.
g. Click Test-Realm.
Click the Users and Groups tab.
Click New, and enter the following information:
¢ Name: 3rdparty_dev2
» Password: Enter and confirm the desired password for this user.
Click OK.
Click the Groups tab.
Click New., and enter the following information:

* Name: OAuth2 Client Developer (case sensitive)

5-77

Chapter 5
Integrating with Existing Group/Role Models

10. Click OK.

11. Click the Users tab.

12. Click the 3rdparty_dev2 user.

13. Click the Groups tab.

14. In the Chosen list, add OAuth2 Client Developer .
15. Click Save.

You have created a user named 3rdparty_dev2 and made it a member of a group
named OAuth2 Client Developer. This means the user will acquire the OAuth2
Client Developer role, and therefore will be authorized to register OAuth 2.0
applications.

Now verify that the user can be successfully authenticated.

5.5.1.2 Verifying the WebLogic Server User

To verify that the WebLogic Server user created can be successfully authenticated,
follow these steps:

1. In your browser, go to a URI in the following format:
https://server:port/ords/resteasy/ui/oauth2/clients/
2. Enter the credentials of the 3rdparty_dev2 user, and click Sign In.

The OAuth 2.0 Client Registration page should be displayed, with no applications
listed. If this page is displayed, you have verified that authentication against the
WebLogic Server user repository is working.

However, if the sign-on prompt is displayed again with the message User is not
authorized to access resource, then you made mistake (probably misspelling the
Group List value).

5.6 Integrating with Existing Group/Role Models

ORACLE

The examples in other sections demonstrate configuring the built-in user repositories
of WebLogic Server. In these situations you have full control over how user groups are
named. If a user is a member of a group with the exact same (case sensitive) name as
a role, then the user is considered to have that role.

However, when integrating with existing user repositories, RESTful service developers
will often not have any control over the naming and organization of user groups in the
user repository. In these situations a mechanism is needed to map from existing
"physical" user groups defined in the user repository to the "logical" roles defined by
Oracle REST Data Services and/or RESTful Services.

In Oracle REST Data Services, this group to role mapping is performed by configuring
a configuration file named role-mapping.xml.

Topics:

e About role-mapping.xml

5-78

Chapter 5
Integrating with Existing Group/Role Models

5.6.1 About role-mapping.xml

role-mapping.xml is a Java XML Properties file where each property key defines a pattern
that matches against a set of user groups, and each property value identifies the roles that
the matched user group should be mapped to. It must be located in the same folder as the
defaults.xml configuration file. The file must be manually created and edited.

Consider this example:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="webdevs">RESTful Services</entry>

</properties>

This role mapping is straightforward, stating that any user who is a member of a group
named: webdevs is given the role RESTful Services, meaning that all members of the
webdevs group can invoke RESTful Services.

A mapping can apply more than one role to a group. For example:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="webdevs">RESTful Services, SQL Developer</entry>
</properties>

This rule gives members of the webdevs group both the RESTful Services and SQL
Developer roles.

Topics:
* Parameterizing Mapping Rules
* Dereferencing Parameters

e Indirect Mappings

5.6.1.1 Parameterizing Mapping Rules

ORACLE

Having to explicitly map from each group to each role may not be scalable if the number of
groups or roles is large. To address this concern, you can parameterize rules. Consider this
example:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="{prefix}.webdevs">RESTful Services</entry>

</properties>

This example says that any group name that ends with .webdevs will be mapped to the
RESTful Services role. For example, a group named: HQ.webdevs would match this rule, as
would a group named: EAST.webdevs.

The syntax for specifying parameters in rules is the same as that used for URI Templates; the
parameter name is delimited by curly braces ({3}).

5-79

Chapter 5
Integrating with Existing Group/Role Models

5.6.1.2 Dereferencing Parameters

Any parameter defined in the group rule can also be dereferenced in the role rule.
Consider this example:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="cn={userid},ou={group},dc=MyDomain,dc=com">{group}</entry>
</properties>

This example maps the organizational unit component of an LDAP distinguished name
to a role. It says that the organizational unit name maps directly to a role with same
name. Note that it refers to a {userid} parameter but never actually uses it; in effect, it
uses {userid} as a wildcard flag.

For example, the distinguished name cn=jsmith,ou=Developers,dc=MyDomain,dc=com
will be mapped to the logical role named Developers.

5.6.1.3 Indirect Mappings

ORACLE

To accomplish the desired role mapping, it may sometimes be necessary to apply
multiple intermediate rules. Consider this example:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="cn={userid},ou={group},dc=example,dc=com">{group}</entry>
<entry key="{prefix},ou={group},dc=acquired,dc=com>{group}</entry>
<entry key="Developers">RESTful Services, SQL Developer</entry>
</properties>

This example maps the organizational unit component of an LDAP distinguished name
to some roles. Complicating matters is the fact that users can come from two different
organizations, resulting in differing distinguishing name patterns.

e Users from example.com always have a single common name (CN) identifying
their user id, followed by the organizational unit (OU) and the domain name (DC).
For example: cn=jsmith,ou=Developers,dc=example,dc=com.

* Users from acquired.com have varying numbers of common name (CN) prefixes,
but the organizational unit is the field you are interested in. For example:
cn=ProductDev,cn=abell ,ou=Engineering,dc=acquired,dc=com.

* Both organizations identify software engineers with ou=Developers.

You want to map engineers in both organizations to the RESTful Services and SQL
Developer roles.

* The first rule maps engineers in the example.com organization to the intermediate
Developers role.

* The second rule maps engineers in the acquired.com organization to the
intermediate Developers role.

e The final rule maps from the intermediate Developers role to the RESTful
Services and SQL Developer roles.

5-80

Chapter 5
Integrating Oracle REST Data Services and WebLogic Server

5.7 Integrating Oracle REST Data Services and WebLogic

Server

Oracle REST Data Services (ORDS) recommends that for complex or enterprise user identity
integrations, customers can leverage the capabilities of WebLogic server. WebLogic server
has a rich and diverse set of capabilities to integrate with existing enterprise identity
solutions. When Oracle REST Data Services is deployed on the WebLogic server, it can
leverage the capabilities of WebLogic server to get secure access to ORDS based RESTful
Services.

Once ORDS is configured to work with WebLogic server, the WebLogic server can provide
the authenticated user identity and roles. Based on the memberships of the user role, ORDS
authorizes access to the protected RESTful Services.

5.7.1 Configuring ORDS to Integrate with WebLogic Server

ORACLE

This section explains how to configure ORDS to work with WebLogic server.

To configure ORDS to work with WebLogic server, run the following command to prepare the
ords.war file to integrate with WebLogic server:

java -jar ords.war oam-config
Run the following command to get help on the oam-config command:

java -jar ords.war help oam-config

Using the oam-config Command

The oam-config command re-configures the web.xml deployment descriptor in the ords.war
file that helps the WebLogic server to pass any established user identity to ORDS.

After executing the preceding command, the ords.war file must be re-deployed to the
WebLogic server.

Determining the Identity and Roles of the User

ORDS uses APIs provided by WebLogic server to retrieve the WLSUser and WLSGroup for
the established user identity.

ORDS treats the WLSGroup to be equivalent to the role that the user possesses. For
example, if a user or users belongs to a WLSGroup named "Sales Assistant", then ORDS
considers such user to have a role named "Sales Assistant".

Retrieving the Authenticated User Information

The user visits the single sign-on login form and obtains a cookie or an access token that
asserts the identity and roles. The cookie or the token is then passed to the WebLogic server.
The WebLogic server is configured to validate the cookie or token and then map it to a
specific user to determine what roles the user possesses. The WebLogic Server performs this
operation before passing the request to ORDS. Once ORDS receives the request, it calls the
APIs provided by WebLogic server to retrieve the WLSUser and WLSGroup to retrieve the
information of the user identity and roles from the WebLogic server.

5-81

5.8 Using

Chapter 5
Using the Oracle REST Data Services PL/SQL API

Related Topics

* Oracle WebLogic APIs

* API to retrieve the WLSUser
e API to retrieve the WLSGroup

the Oracle REST Data Services PL/SQL API

Oracle REST Data Services has a PL/SQL API (application programming interface)
that you can use as an alternative to the SQL Developer graphical interface for many
operations. The available subprograms are included in the following PL/SQL
packages:

» Oracle REST Data Services, documented in Oracle REST Data Services PL/SQL
Package Reference

OAUTH, documented in OAUTH PL/SQL Package Reference
To use the Oracle REST Data Services PL/SQL API, you must first:

e Install Oracle REST Data Services in the database that you will use to develop
RESTful services.

* Enable one or more database schemas for REST access.

Topics:
e Creating a RESTful Service Using the PL/SQL API
e Testing the RESTful Service

Related Topics
* Automatic Enabling of Schema Objects for REST Access (AutoREST)

5.8.1 Creating a RESTful Service Using the PL/SQL API

ORACLE

You can create a RESTful service by connecting to a REST-enabled schema and
using the ORDS.CREATE_SERVICE procedure.

The following example creates a simple "Hello-World"-type service:

begin
ords.create_service(
p_module_name => “"examples.routes® ,
p_base path => "/examples/routes/",
p_pattern => "greeting/:name”,
p_source => "select ""Hello "" || :name || "" from " ||
nvl(:whom,sys_context(" "USERENV" ", " "CURRENT_USER" ")) "greeting" from dual®);
commit;
end;
/

The preceding example does the following:

» Creates a resource module named examples.routes.

* Sets the base path (also known as the URI prefix) of the module to /examples/
routes/.

5-82

unilink:Oracle_WebLogic_APIs
unilink:retrieve_WLSUser_API
unilink:retrieve_WLSGroup_API

Chapter 5
Using the Oracle REST Data Services PL/SQL API

» Creates a resource template in the module, with the route pattern greeting/:name.
e Creates a GET handler and sets its source as a SQL query that forms a short greeting:

— GET is the default value for the p_method parameter, and it is used here because that
parameter was omitted in this example.

— COLLECTION_FEED is the default value for the p_method parameter, and it is used here
because that parameter was omitted in this example

e An optional parameter named whom is specified.

Related Topics
¢ ORDS.CREATE_SERVICE

5.8.2 Testing the RESTful Service

To test the RESTful service that you created, start Oracle REST Data Services if it is not
already started:

java -jar ords.war

Enter the URI of the service in a browser. The following example displays a "Hello" greeting
to Joe, by default from the current user because no whom parameter is specified.:

http://localhost:8080/ords/ordstest/examples/routes/greeti ng/ Joe

In this example:

e Oracle REST Data Services is running on localhost and listening on port 8080.
* Oracle REST Data Services is deployed at the context-path /ords.
e The RESTful service was created by a database schema named ordstest.

* Because the URL does not include the optional whom parameter, the :whom bind
parameter is bound to the null value, which causes the query to use the value of the
current database user (sys_context(" "USERENV*" ", " "CURRENT _USER" ")) instead.

If you have a JSON viewing extension installed in your browser, you will see a result like the
following:

{
"items": [
{
"greeting": "Hello Joe from ORDSTEST"
}
1.
"hasMore": false,
"limit": 25,
"offset": 0,
“count": 1,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/"

}s
{

"rel™: "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/routes/
greeting/"
3.

ORACLE 5-83

Chapter 5
Oracle REST Data Services Database Authentication

{

"rel": "first",
"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe"
}
1
}

The next example is like the preceding one, except the optional parameter whom is
specified to indicate that the greeting is from Jane.

http://localhost:8080/ords/ordstest/examples/routes/gr eet i ng/ Joe?whonm=Jane

This time, the result will look like the following:

{
"items": [
{
"greeting": "Hello Joe from Jane"
}
1.
"hasMore": false,
"limit": 25,
"offset": 0,
"count™: 1,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/"
1,
{
"rel": "describedby",
"href'": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/routes/
greeting/"
1,
{
“rel": "first",
"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe"
}
1
}

Notice that in this result, what follows "from" is Jane and not ORDSTEST, because
the :whom bind parameter was bound to the Jane value.

5.9 Oracle REST Data Services Database Authentication

This section describes how to use the database authentication feature to provide basic
authentication for PL/SQL gateway calls.

Database authentication feature is similar to dynamic basic authentication provided by
mod-plsgl where the user is prompted for the database credentials to authenticate and
authorize access to PL/SQL stored procedures.

5.9.1 Installing Sample Database Scripts

This section describes how to install the sample database scripts.

The unzipped Oracle REST Data Services installation kit contains the sample
database scripts that create a basic demo scenario for the database authentication.

ORACLE 5-84

Chapter 5
Oracle REST Data Services Database Authentication

The following code snippet shows how to install the sample database schema:

db_auth $ cd sql/
sql $ sql sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

PaSSWO rd’) (**********?) *kkkhkkhkk
Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production

SQL> @install <chosen-password>

Note:

e You need to adjust the SQLcl connect string and the user credentials to suit
your environment. For this demo scenario, SQLcl connects to the database with
service name orcl

e <chosen-password> is the password you assigned to EXAMPLE_USER1 and
EXAMPLE_USER2 database users. Make a note of this password value for later
reference.

The sample database schema creates the following database users:

* SAMPLE_PLSQL_APP: A database schema where the protected SAMPLE_PROC will be
installed.

- EXAMPLE_USERL1: A database user granted with execute privilege on
SAMPLE_PLSQL_APP.SAMPLE_PROC procedure.

« EXAMPLE_USER2: A second database user granted with execute privilege on
SAMPLE_PLSQL_APP_SAMPLE_PROC procedure.

5.9.2 Enabling the Database Authentication

ORACLE

This section describes how to enable the database authentication feature.
To enable the database authentication feature, do one of the following:

» For fresh installation of Oracle REST Data Services, update the /u01/ords/params/
ords_params properties file with the following entry:

jdbc.auth_enabled=true

e For existing Oracle REST Data Services installation, run the following commands:

cd /u0l/ords
$JAVA_HOME/bin/java -jar ords.war set-property jdbc.auth.enabled true

5-85

Chapter 5
Oracle REST Data Services Database Authentication

This setting is applicable to PL/SQL gateway pools (for example, apex.xml), it does
not apply to other pool types such as the ORDS_PUBLIC_USER pool (for example,
apex_pu.xml).

< Note:

The jdbc.auth._enabled setting can be configured per database pool.
Alternatively, it can be configured in defaults.xml file so that it is enabled for
all pools.

Example 5-11 Setting Enabled for all Pools

This example code snippet shows how jdbc.auth.enabled setting is enabled for all
pools.

ords $ java -jar ords.war set-property jdbc.auth_enabled true

Mar 23, 2018 2:23:49 PM oracle.dbtools.rt.config.setup.SetProperty
execute

INFO: Modified: /tmp/cd/ords/defaults.xml, setting: jdbc.auth.enabled =
true

After you update the configuration settings, restart the Oracle REST Data Services for
the changes to take effect.

5.9.3 Configuring the Request Validation Function

ORACLE

This section describes how to temporarily disable the request validation function.

If you want to invoke only a whitelisted set of stored procedures in the database
through the PL/SQL gateway, then you must configure Oracle REST Data Services to
use a request validation function (especially when you are using Oracle Application
Express).

The demo sample procedure used for testing the database authentication feature is
not whitelisted, so you must temporarily disable the request validation function.

To disable the request validation function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

Open the defaults._xml file.
Look for security.requestValidationFunction entry and remove it from the file.

Save the file.

g > W D

Restart Oracle REST Data Services, if it is already running.

" Note:

In production environment, you must use a custom request validation
function that whitelists the stored procedures you want to access for your
application

5-86

Chapter 5
Overview of Pre-hook Functions

5.9.4 Testing the Database Authenticated User

This section describes how to test if the database user is authenticated.

Assuming that Oracle REST Data Service is running in a standalone mode on local host and
on port 8080, access the following URL in your web browser:

http://localhost:8080/ords/sample plsql_app.sample_proc

The browser prompts you to enter credentials. Enter example_userl for user name and enter
the password value you noted while installing the sample schema.

The browser displays 'Hello EXAMPLE_USER1!" to demonstrate that the database user was
authenticated and the identity of the user was propagated to the database through the OWA
CGl variable named REMOTE_USER..

5.9.5 Uninstalling the Sample Database Schema

To uninstall the database schema, run the commands as shown in the following code snippet:

db_auth $ cd sql/
sql $ sql sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Pa.SSWO rd’) (**********?) *kkkhkkikk

Connected to:

Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production
SQL> @uninstall

5.10 Overview of Pre-hook Functions

ORACLE

This section explains how to use PL/SQL based pre-hook functions that are invoked prior to
an Oracle REST Data Services (ORDS) based REST call.

A pre-hook function is typically used to implement application logic that needs to be applied
across all REST endpoints of an application. For example a pre-hook enables the following
functionality:

» Configure application specific database session state: Configure the session to
support a VPD policy.

* Custom authentication and authorization: As the pre-hook is invoked prior to
dispatching the REST service, it is used to inspect the request headers and determine
the user who is making the request, and also find if that user is authorized to make the
request.

* Auditing or metrics gathering: To track information regarding the REST APIs invoked.
Topics:
» Configuring the Pre-hook Function

e Using a Pre-hook Function

5-87

Chapter 5
Overview of Pre-hook Functions

* Processing of a Request

* ldentity Assertion of a User

» Aborting Processing of a Request

* Ensuring Pre-hook is Executable

* Exceptions Handling by Pre-hook Function
* Pre-hook Function Efficiency

* Pre-Hook Examples

5.10.1 Configuring the Pre-hook Function

This section describes how to configure a pre-hook function.

The pre-hook function is configured using procedure.rest.preHook setting. The value
of this setting must be the name of a stored PL/SQL function.

5.10.2 Using a Pre-hook Function

This section explains how the pre-hook function is used.

A pre-hook must be a PL/SQL function with no arguments and must return a BOOLEAN
value. The function must be executable by the database user to whom the request is
mapped. For example, if the request is mapped to an ORDS enabled schema, then
that schema must be granted the execute privilege on the pre-hook function (or to
PUBLIC).

If the function returns true, then it indicates that the normal processing of the request
must continue. If the function returns false, then it indicates that further processing of
the request must be aborted.

ORDS invokes a pre-hook function in an OWA (Oracle Web Agent) that is a PL/SQL
Gateway Toolkit environment. This means that the function can introspect the request
headers and the OWA CGI environment variables, and use that information to drive its
logic. The function can also use the OWA PL/SQL APIs to generate a response for the
request (for example, in a case where the pre-hook function needs to abort further
processing of the request, and provide its own response).

5.10.3 Processing of a Request

The pre-hook function must return true if it determines that the processing of a
request must continue. In such cases, any OWA response produced by the pre-hook
function is ignored (except for cases as detailed in the section Identity Assertion of a
User), and the REST service is invoked as usual.

5.10.4 Identity Assertion of a User

ORACLE

This section describes how pre-hook function can make assertions about the identity
of the user.

When continuing processing, a pre-hook can make assertions about the identity and
the roles assigned to the user who is making the request. This information is used in
the processing of the REST service. A pre-hook function can determine this by setting
one or both of the following OWA response headers.

5-88

Chapter 5
Overview of Pre-hook Functions

* X-ORDS-HOOK-USER: Identifies the user making the request, the value is bound to
the :current_user implicit parameter and the REMOTE_IDENT OWA CGI environment
variable.

* X-ORDS-HOOK-ROLES: Identifies the roles assigned to the user. This information is used to
determine the authorization of the user to access the REST service. If this header is
present then X-ORDS-HOOK-USER must also be present.

" Note:

X-ORDS-HOOK-USER and X-ORDS-HOOK-ROLES headers are not included in the
response of the REST service. These headers are only used internally by ORDS to
propagate the user identity and roles.

Using these response headers, a pre-hook can integrate with the role based access
control model of ORDS. This enables the application developer to build rich
integrations with third party authentication and access control systems.

5.10.5 Aborting Processing of a Request

This section explains how the pre-hook function aborts the processing of a request.

If a pre-hook determines that the processing of the REST service should not continue, then
the function must return false value. This value indicates to ORDS that further processing of
the request must not be attempted.

If the pre-hook does not produce any OWA output, then ORDS generates a 403 Forbidden
error response page. If the pre-hook produces any OWA response, then ORDS returns the
OWA output as the response. This enables the pre-hook function to customize the response
that client receives when processing of the REST service is aborted.

5.10.6 Ensuring Pre-hook is Executable

If a schema cannot invoke a pre-hook function, then ORDS generates a 503 Service
Unavailable response for any request against that schema. Since a pre-hook has been
configured, it would not be safe for ORDS to continue processing the request without
invoking the pre-hook function. It is very important that the pre-hook function is executable by
all ORDS enabled schemas. If the pre-hook function is not executable, then the REST
services defined in those schemas will not be available.

5.10.7 Exceptions Handling by Pre-hook Function

ORACLE

When a pre-hook raises an error condition, for example, when a run-time error occurs, a NO
DATA FOUND exception is raised. In such cases, ORDS cannot proceed with processing of the
REST service as it would not be secure. ORDS inteprets any exception raised by the pre-
hook function as a signal that the request is forbidden and generates a 403 Forbidden
response, and does not proceed with invoking the REST service. Therefore, if the pre-hook
raises an unexpected exception, it forbids access to that REST service. It is highly
recommended that all pre-hook functions must have a robust exception handling block so
that any unexpected error conditions are handled appropriately and do not make REST
Services unavailable.

5-89

Chapter 5
Overview of Pre-hook Functions

5.10.8 Pre-hook Function Efficiency

A pre-hook function is invoked for every REST service call. Therefore, the pre-hook
function must be designed to be efficient. If a pre-hook function is inefficient, then it
has a negative effect on the performance of the REST service call. Invoking the pre-
hook involves at least one additional database round trip. It is critical that the ORDS
instance and the database are located close together so that the round-trip latency
overhead is minimized.

5.10.9 Pre-Hook Examples

This section provides some sample PL/SQL functions that demonstrate different ways
in which the pre-hook functionality can be leveraged.

Source code for the examples provided in the following sections is included in the
unzipped Oracle REST Data Services distribution archive examples/pre_hook/sql
sub-folder.

5.10.9.1 Installing the Examples

ORACLE

This section describes how to install the pre-hook examples.

To install the pre-hook examples, execute examples/pre_hook/sql/install.sql
script. The following code snippet shows how to install the examples using Oracle
SQLcl command line interface:

pre_hook $ cd examples/pre_hook/sql/
sql $ sql sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

PaSSWO rd ’) (**********?) *kkkkk
Connected to:

Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production

SQL> @install <chosen-password>

* You need to adjust the SQLcl connect string and the user credentials to suit your
environment. For these demo scenarios, SQLcl connects to the database with
service name orcl.

* <chosen-password> is the password you assigned to the PRE_HOOK_TEST database
user. Make a note of this password value for later reference.

e The examples/pre_hook/sql/install.sgl command creates the following two
databases schemas:

— The PRE_HOOK_DEFNS schema where the pre-hook function is defined along
with a database table named custom_auth_users, where user identities are

5-90

Chapter 5
Overview of Pre-hook Functions

stored. This table is populated with a single user joe.bloggs@example.com, whose
password is the value assigned for <chosen-password>.

— The PRE_HOOK_TESTS schema where ORDS based REST services that are used to
demonstrate the pre-hooks are defined.

5.10.9.1.1 Example: Denying all Access

ORACLE

The simplest pre-hook is one that unilaterally denies access to any REST Service.

To deny access to any REST service, the function must always return false as shown in the
following code snippet:

create or replace function deny all_hook return boolean as
begin
return false;
end;
/
grant execute on deny_all_hook to public;

Where:

* The deny_all_hook pre-hook function always returns false value.

» Execute privilege is granted to all users. So, any ORDS enabled schema can invoke this
function

Configuring ORDS

To enable deny_all_hook pre-hook function, perform the following steps:
1. Locate the folder where the Oracle REST Data Services configuration file is stored.

2. Open the defaults.xml file and add:

<entry key="procedure.rest.preHook'>pre_hook _defns.deny all_hook</entry>

3. Save the file.

4. Restart Oracle REST Data Services.

Try it out

The install script creates an ORDS enabled schema and a REST service which can be
accessed at the following URL (assuming ORDS is deployed on localhost and listening on
port 8080) :

http://1ocalhost:8080/0ords/pre_hook_tests/prehooks/user

Access the URL in a browser. You should get a response similar to the following:

403 Forbidden

This demonstrates that the deny_all_hook pre-hook function was invoked and it prevented
the access to the REST service by returning a false value.

5-91

Chapter 5
Overview of Pre-hook Functions

5.10.9.1.2 Example: Allowing All Access

Modify the source code of the deny_al l_hook pre-hook function to allow access to all
REST service requests as shown in the following code snippet:

create or replace function deny all_hook return boolean as
begin
return true;
end;
/

Try it out

Access the following test URL in a browser:

http://localhost:8080/0ords/pre_hook tests/prehooks/user

The response should include JSON similar to the following code snippet:

{

"authenticated _user": "no user authenticated”

}

Note:

The REST service executes because the pre-hook function authorized it.

Related Topics

e Identity Assertion of a User
This section describes how pre-hook function can make assertions about the
identity of the user.

5.10.9.1.3 Example: Asserting User Identity

ORACLE

The following code snippet demonstrates how the pre-hook function makes assertions
about the user identity and the roles they possess:

create or replace function identity_hook return boolean as
begin
if custom _auth_api.authenticate owa then
custom_auth api.assert_identity;
return true;
end if;
custom_auth_api.prompt_for_basic_credentials("Test Custom Realm®);
return false;
end;

The pre-hook delegates the task of authenticating the user to the
custom_auth_api.authenticate_owa function. If the function indicates that the user is

5-92

Chapter 5
Overview of Pre-hook Functions

authenticated, then it invokes the custom_auth_api.assert_identity procedure to
propagate the user identity and roles to ORDS.

Configuring ORDS

To enable pre-hook function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is stored.
2. Open the defaults.xml file and add:

<entry key="procedure.rest.preHook">pre_hook defns.identity_hook</entry></
entry>

3. Save the file.
4. Restart Oracle REST Data Services.

Try it out

The install script creates an ORDS enabled schema and a REST service that can be
accessed at the following URL (assuming ORDS is deployed on localhost and listening on
port 8080):

http://1ocalhost:8080/0ords/pre_hook_tests/prehooks/user

In a web browser access the preceding URL.

¢ Note:

The first time you access the URL, the browser will prompt you to enter your
credentials. Enter the user name as joe.bloggs@example.com and for the
password, use the value you assigned for <chosen-password> when you executed
the install script. Click the link to sign in.

In response a JSON document is displayed with the JSON object in it.

{"authenticated_user":"joe.bloggs@example.com"}

5.10.9.2 Uninstalling the Examples

ORACLE

This section explains how to uninstall the examples.

The following code snippet shows how to uninstall the examples:

pre_hook $ cd sql/
sgl $ sql sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (**********?) Sk kkhk

Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production

5-93

Chapter 5
Generating Hyperlinks

SQL> @uninstall

5.11 Generating Hyperlinks

Oracle REST Data Services (ORDS) provides a mechanism to transform relational
result sets into JSON representations, and provides hyperlinks that automatically
paginates the result set to allow navigation between the pages of the result set.

For many use cases, it is required to treat certain columns in the result set as
hyperlinks. ORDS provides the following simple yet powerful mechanisms for adding
hyperlinks to REST resources:

e Primary Key Hyperlinks: A column with the reserved alias $. id identifies the
primary key column of a single row in the result set. Such column values are used
to form a hyperlink that points to a child resource of the current resource that
provides specific details about that particular row in the result set.

e Arbitrary Hyperlinks: A column whose alias starts with the reserved character $
is treated as a hyperlink. The subsequent characters in the column alias indicates
the link relation type.

5.11.1 Primary Key Hyperlinks

ORACLE

This section describes how to add primary key hyperlinks.

Typically, when you are modelling a REST API, you need to model the Resource
Collection Pattern that enumerates the hyperlinks to the other resources.

In a simple use case, a query is against a single table that contains a single column
with primary key that is used to identify each row. The collection resource provides
summary information of each row, and provides a self link for each row. The self link
points to the resource that provides more detailed information about the row. For
example, if we use the EMP table, we can define a service as shown in the following
code snippet:

begin
ords.define_service(
p_module _name => "links.example”,
p_base path => “"emp-collection/",
p_pattern => "_.",
p_source => "select empno "$.id", empno id, ename employee_name
from emp order by empno ename®;
commit;
end;

Where:

e The reserved value '." is used for the p_pattern value. This indicates the path of
the resource template in the base path of the resource module, emp-collection/
in this example.

¢ The EMPNO column is aliased as $. id, to produce a hyperlink.

5-94

Chapter 5
Generating Hyperlinks

Following code snippet shows the output produced after invoking the preceding service:

{
"items": [{
"id": 7369,
"employee_name": "SMITH",
"links": [{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7369"

1
s
1.
"hasMore': false,
"limit": 25,
"offset": O,
“"count": 14,
"links": [{
"rel": "self",
"href'": "http://localhost:8080/ords/ordstest/emp-collection/"
A

"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp-
collection/"
;. {
"rel": "first",
"href": "http://localhost:8080/ords/ordstest/emp-collection/"
|

Observe that the value of EMPNO column is concatenated with the URL of the service to
produce a new hyperlink with relation self. The value is not simply concatenated, it is
resolved using the algorithm specified in RFC3986. Therefore, Oracle REST Data Services
(ORDS) can take the value of the column, and apply the resolution algorithm to produce a
new absolute URL.

¢ See Also:
Section 5 of rfc3986

If you attempt to navigate to this URL, it results in a 404 HTTP status because a resource
handler for that endpoint has not yet been defined. The following code shippet shows a
sample resource handler:

begin

ords.define_template(
p_module_name => "links.example®,
p_pattern = ":id");

ords.define_handler(
p_module_name => "links.example®,
p_pattern = ":id",
p_source_type => ords.source_type_collection_item,

ORACLE 5-95

Chapter 5
Generating Hyperlinks

p_source => "select emp.empno "$.id", emp.* from emp
where empno = :id");
commit;
end;

5.11.1.1 Composite Primary Keys

This section describes the support for composite primary keys.

If multiple columns in a query form the primary key of a row, then each of those
columns must be aliased by $.1d. ORDS combines such values to form the relative
path of the item URL.

Related Topics

* Route Patterns Specification

5.11.2 Arbitrary Hyperlinks

ORACLE

This section describes how to create hyperlinks to point to a resource one level up in
the heirarchy.

Rich hypermedia documents have many different hyperlinks. ORDS provides a
mechanism to turn any column value into a hyperlink. Any column whose alias starts
with the $ character is treated as a hyperlink. The following example code snippet
shows how an employee resource can provide a hyperlink to their manager:

begin
ords.define_handler(
p_module_name => "links.example®,
p_pattern = ":id",
p_source_type => ords.source_type_collection_item,
p_source => "select emp.empno "$.id", emp.*, emp.mgr

"$related” from emp where empno = :id");commit;end;

ORDS treats the column named $related to a hyperlink and the column value is
treated as a path relative to the containing base URI of the resource. Similar to

how $.id column value is transformed into an absolute URI by applying the algorithm
specified in RFC 3986.

See Also:
Section 5.2 of rfc3986.

The following example code snippet shows the updated employee resource:

{
"empno": 7369,
“"ename": “'SMITH",
"job": "CLERK",
"mgr': 7902,
"hiredate": "1980-12-17T00:00:00Z",

5-96

unilink:ORDS_Java_API_Ref

Chapter 5
Generating Hyperlinks

"sal™: 800,
"comm: null,
"deptno™: 20,
"links": [{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7369"
3 {
"rel": "describedby"”,
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp-
collection/item”

3 {

"rel”™: "collection”,

"href": "http://localhost:8080/ords/ordstest/emp-collection/"
3 {

"rel": "related”,

"href": "http://localhost:8080/ords/ordstest/emp-collection/7902"
H|

Note that the new related link points to the manager resource of the employee. The
manager resource in turn has a related link that points to their manager, and so on up the
management chain until you reach employee number 7839 who is the president of the
company and whose mgr column is null. If the column value is null, then ORDS will not
create a hyperlink.

{
“empno™: 7839,
"ename™: "KING",
"job": "PRESIDENT",
"mgr': null,
"hiredate": "1981-11-17T00:00:00Z",
"sal": 5000,
"comm™: null,
"deptno": 10,
"links": [{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7839"
3. {
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp-
collection/item"
3. {
"rel": "collection",
"href'": "http://localhost:8080/ords/ordstest/emp-collection/"

H|

5.11.2.1 About the related Link Relation

ORACLE

This section explains the use of existing registered link relation types instead of extension link
relation types.

As per RFC 8288 Section 2.1.2, any extension link relation must be an URI and not a simple
value. This means that a link relation such as manager is not a legal link relation according to

5-97

Chapter 5
Generating Hyperlinks

the specification. A custom link relation type will reduce interoperability. If your
application uses a non-registered link relation type, then only a few clients will be able
to understand the custom link relation type. Conversely, if you use registered link
relation types, then more clients can navigate to your link relations. Oracle
recommends using existing registered link relation types instead of extension link
relation types.

Related Topics
- rfc8288

5.11.2.2 URL Resolution

This section describes how ORDS resolves column values using URI resolution
algorithm.

Related Topics
* rfc3986

5.11.2.2.1 Child Paths

This section describes how to use the relative paths to refer to the child resources.

Following code snippet shows the use of relative paths to refer to child resources:

select"child/resource""$related" from dual

Assuming that the base URL of the containing resource is https://example.com/
ords/some_schema_alias/some/resource, then the link is as shown in the following
code snippet:

{

"rel”: "related”,
"href": "https://example.com/ords/some_schema_alias/some/child/
resource"

}

5.11.2.2.2 Ancestor Paths

ORACLE

This section provides examples to show how ORDS lets you use ../ and ./ syntax to
refer to parent paths of the current resource.

Following is an example code snippet:

select™../""$up™, "./""$self" from dual

Assuming the base URL of the containing resource is https://example.com/ords/
some_schema_alias/some/collection/, then the links will be as shown in the
following code snippet:

{
"rel™: "up",
"href": "https://example.com/ords/some_schema_alias/some/"

}

5-98

unilink:rfc8288
unilink:rfc3986

Chapter 5
Generating Hyperlinks

{

"rel": "self",
"href": "https://example.com/ords/some_schema_alias/some/collection/"

}

5.11.2.2.3 Absolute URLS

This section provides examples for the absolute paths.

A hyperlink value can be an absolute path or a fully qualified URL as shown in the following
code snippet:

select"/cool/stuff*"$related”, "https://oracle.com/rest""$related" from dual

Assuming the base URL of the containing resource is, https://example.com/ords/
some_schema_alias/some/collection/ the links will be as shown in the following code
snippet:

{
"rel": "related",
"href'": "https://example.com/cool/stuff"
1.
{
"rel": "related",
"href": "https://oracle.com/rest"
}

You can have multiple links for the same link relation.

5.11.2.2.4 Context Root Relative Paths

ORACLE

This section provides example for the context root relative path.
The context root relative path is the URL of the root resource of an ORDS enabled schema.

The following code snippet shows the context root path for the example discussed in the
preceding sections:

https://example.com/ords/some_schema_alias/

ORDS provides the following syntax to express the resource paths relative to the URL:

select"/another/collection/""$related"from dual

Assuming the base URL of the containing resource is https://example.com/ords/
some_schema_alias/some/collection/, the link is as shown in the following code snippet:

{

"rel": "related",
"href'": "https://example.com/ords/some_schema_alias/another/collection”

}

Any path starting with ~/1 is resolved relative to the context root path.

5-99

Chapter 5
Generating Hyperlinks

5.11.2.2.5 Dynamic Paths

This section describes how you can have dynamic values for the hyperlinks.

Examples provided in the preceding sections use literal values for the hyperlinks. The
hyperlink value can be completely dynamic, formed from any value that is a string (or
can be automatically converted to a string). For example, instead of pointing directly to
the employee resource, for managers only, you can point to a more specialized
resource that can show additional information such as the total number of reports. The
GET handler can be redefined for the emp-collection or :id resource as shown in the
following code snippet:

begin
ords.define_handler(
p_module_name => "links.example®,
p_pattern => ":id",
p_source_type => ords.source_type_collection_item,
p_source => "select emp.empno "$.id", emp.*,

decode(emp.mgr, null, null, "~/managers/" || emp.mgr) "$related" from
emp where empno = :id");

commit;
end;

Where:

e The value of the $related column is formed from ~/managers/: emp.mgr unless
the value of emp.mgr is null. In such a case, a null value is substituted that
causes ORDS not to generate the hyperlink.

The following code snippet shows the updated employee resource:

{
"empno": 7566,
"ename": "JONES",
"job": "MANAGER",
"mgr': 7839,
"hiredate": "1981-04-01T23:00:00Z",
"sal': 2975,
"comm: null,
"deptno™: 20,
"links": [{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp-collection/
7566"
31
"rel": "describedby"”,
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/
emp-collection/item"
31
"rel”": "collection”,
"href": "http://localhost:8080/ords/ordstest/emp-collection/"
31
"rel”: "related”,
"href": "http://localhost:8080/ords/ordstest/managers/7839"

ORACLE 5-100

Chapter 5
About HTTP Error Responses

H

Note:

The related link now points to the dynamically generated path, that is, to the
managers/:id resource.

5.12 About HTTP Error Responses

ORDS can now generate HTTP error responses in JSON or HTML format. Prior to ORDS
release 20.4, only HTML responses were supported. To preserve the backward compatibility,
by default, ORDS attempts to automatically determines the best format to render the error
responses.

You can configure error.responseFormat setting and force ORDS to always render the error
responses in either HTML or JSON format.

5.12.1 About error.responseFormat

The error.responseFormat setting is a global setting that supports the following values:

* html - Force all error responses to be in HTML format.
* json - Force all error responses to be in JSON format.

e auto (default value) - Automatically determine most appropriate format for a request.

5.12.1.1 HTML Mode

When error.responseFormat value is set to html, all the error responses are rendered in
HTML format. This setting can be used to match the behaviour of ORDS 20.3.1 and prior
releases. The HTML format displays properly in web-browsers. However, for non-human
clients, HTML format is verbose and challenging to parse.

5.12.1.2 json Mode

When error.responseFormat value is set to json, all the error responses are rendered in
JSON format. The JSON format complies with the Problem Details for HTTP APIs standard.
The JSON format is terse, and straightforward for non-human clients to parse. However, it
does not display properly in browsers and is not user friendly for non-technical users.

5.12.1.3 auto Mode

The default value for error.responseFormat is auto. When this value is configured, ORDS
applies the following rules and automatically chooses the most appropriate format to use:

» If the client supplies an Accept request header, where application/json or

application/problem+json is the most preferred media type, then the response must be
in JSON format.

» If the client supplies an Accept request header where text/html is the most preferred
media type, then the response must be in HTML format.

ORACLE 5-101

https://tools.ietf.org/html/rfc7807

ORACLE

Chapter 5
About HTTP Error Responses

If the client supplies a X-Requested-With header, then the response must be in
JSON format. Presence of this header indicates that the request is initiated from
the JavaScript code and so JSON would be the appropriate response format.

If the client supplies an Origin header, then the response must be in JSON
format. Presence of this header indicates that the request is initiated from the
JavaScript code and so JSON would be the appropriate response format.

— There is one exception to this rule, if the request method is POST and the
Content-Type of the request is application/x-www-form-urlencoded, then
the response will be in HTML format.

If the client supplies a User-Agent header whose value starts with curl/, then the
response must be in JSON format. cURL is a popular command line tool for
making the HTTP requests. The terser JSON format is more readable in a
command line environment. If none of the preceding rules apply, then the
response will be in HTML format.

See Also:
CcURL

5-102

http://curl.haxx.se/

REST-Enabled SQL Service

The REST-Enabled SQL service is a HTTPS web service that provides access to the Oracle
Database SQL engine. You can POST SQL statements to the service. The service then runs
the SQL statements against Oracle Database and returns the result to the client in a JSON
format.

Statically defined RESTful services use predefined SQL statements that are useful when you
need a fixed and repeatable service. The REST- Enabled SQL service enables you to define
SQL statements dynamically and run them against the database without predefined SQL
statements. This makes your data more accessible over REST.

Typical Use Case: Your Oracle Database is in the cloud and you want to make it available
through a REST API over HTTPS.

Predefined REST APIs provide common operations such as returning the results of reports
and providing an API for updating common tables in your database. There is a need for client
developers to run their own queries or queries that can only be written at run time. In these
cases, a REST- Enabled SQL service is useful.

" Note:

If you have Oracle REST Data Services installed and if you do not have SQL*Net
(JDBC, OCI) to establish an network connection to Oracle Database, then a REST-
Enabled SQL service provides an easy mechanism to query and run SQL,
SQL*Plus, and SQLcl statements against the REST-enabled Oracle Database
schema.

Topics:

e REST-Enabled SQL Service Terminology

* Configuring the REST-Enabled SQL Service

* Using cURL with REST-Enabled SQL Service

e Getting Started with the REST-Enabled SQL Service

6.1 REST-Enabled SQL Service Terminology

ORACLE

This section introduces some common terms that are used throughout this document.

* REST- Enabled SQL service: A HTTPS web service that provides SQL access to the
database. SQL statements can be posted to the service, and the results are returned in a
JSON format to the client.

* HTTPS: Hyper Text Transfer Protocol Secure (HTTPS) is the secure version of HTTP, the
protocol over which data is sent between your browser and the website to which you are
connected. The ‘S’ stands for secure. It means that all communications between your
browser and Oracle REST Data Services are encrypted.

6-1

Chapter 6
Configuring the REST-Enabled SQL Service

* cURL: cURL is a command-line tool used to transfer data. It is free and open
source software that can be downloaded from the following location: curl_haxx.

* SQL*Net (or Net8): SQL*Net is the networking software of Oracle that enables
remote data access between programs and Oracle Database.

6.2 Configuring the REST-Enabled SQL Service

6.3 Using

ORACLE

By default, the REST- Enabled SQL service is turned off. To configure REST- Enabled
SQL service settings, see Configuring REST-Enabled SQL Service Settings.

cURL with REST-Enabled SQL Service

This section explains how to use cURL commands to access the REST-Enabled SQL
service.

You can use the HTTPS POST method to access the REST-Enabled SQL service. To
access the REST-Enabled SQL service, you can use the command-line tool named
cURL. This powerful tool is available for most platforms, and enables you to connect
and control the data that you send to and receive from a REST-Enabled SQL service.

Example 6-1 Example cURL Command

Request: curl -i -X POST --user ORDSTEST:ordstest --data-binary "select
sysdate from dual™ -H "Content-Type: application/sql"™ -k https://
localhost:8088/ords/ordstest/ /sql

Where:

* The-i option displays the HTTP headers returned by the server.

* The -k option enables cURL to proceed and operate even for server connections
that are otherwise considered to be insecure.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env'':{
"defaultTimeZone":""Europe/London™
3
"items":[

{
"statementld":1,
"'statementType':"query",
"statementPos':{
"startLine":1,
"endLine™:2
¥
"statementText":"select sysdate from dual™,
"response":[
1.

"result":0,

6-2

https://curl.haxx.se/

Chapter 6
Getting Started with the REST-Enabled SQL Service

"resultSet":{
"metadata':[
{
"columnName™ :""SYSDATE",
"jsonColumnName' :"sysdate",
"columnTypeName' :""DATE",
"precision":0,
"scale":0,
"isNullable":1

}
1,
"items":[
{
"sysdate':"2017-07-21T08:06:447"
}
1,
"hasMore':false,
"limit":1500,
"offset":0,
"count':1

6.4 Getting Started with the REST-Enabled SQL Service

The REST- Enabled SQL service is provided only through HTTPS POST method.

Topics:

e REST-Enabling the Oracle Database Schema
e REST-Enabled SQL Authentication

e REST-Enabled SQL Endpoint

6.4.1 REST-Enabling the Oracle Database Schema

ORACLE

You must REST-enable the Oracle database schema on which you want to use the REST-
Enabled SQL service. To REST-enable the Oracle Database schema, you can use SQL
Developer or the PL/SQL API.

The following code snippet shows how to REST-enable the Oracle Database schema
ORDSTEST:

SQL> CONNECT ORDSTEST/*****;
Connected

SQL> exec ords.enable_schema;
anonymous block completed
SQL> commit;

Commit complete.

SQL>

6-3

Chapter 6
Getting Started with the REST-Enabled SQL Service

Related Topics
» Auto-Enabling Using the PL/SQL API

6.4.2 REST-Enabled SQL Authentication

This section explains how to authenticate the schema on which you want to use the
REST-Enabled SQL service.

Before using the REST-Enabled SQL service, you must authenticate using the SQL
Developer role.

The Following are the different types of authentications available:

e First Party Authentication (Basic Authentication): For this authentication,
create a user in Oracle REST Data Services with the SQL Developer role. This
Oracle REST Data Services user will be able to run SQL for any Oracle database
schema that is REST-enabled.

* Schema Authentication: For this authentication, use the Oracle Database
schema name in uppercase and the Oracle database schema password (for
example, HR and HRPassword). This type of user will be able to run SQL for the
specified schema. It will be given the SQL Developer role by Oracle REST Data
Services.

* OAuth 2 Client Credentials: For this authentication, perform the following steps
to grant the SQL Developer role to the client in Oracle REST Data Services:

1. Create a client using OAUTH.create_client.
2. Grant the SQL Developer role to the client.

3. Acquire the access token using the client_id and client_secret of the
client.

4. Specify the access token in subsequent REST-Enabled SQL requests.

6.4.3 REST-Enabled SQL Endpoint

ORACLE

This section shows the format or pattern used to access the REST- Enabled SQL
service.

If Oracle REST Data Services is running in a Java EE Application Server, then the
REST-Enabled SQL service is only accessible through HTTPS. If Oracle REST Data
Services is running in standalone mode, then Oracle REST Data Services can be
configured to use HTTPS. The examples in this document use this configuration.

The following example URL locates the REST-Enabled SQL service for the specified
schema alias:

Pattern: https://<HOST>/ords/<SchemaAlias>/_/sql
Example: https://host/ords/ordstest/ /sql
Where: The default port is 443

Content Type and Payload Data Type Supported

The HTTPS POST request consists of the following:
* Header Content-Type

6-4

Chapter 6
REST-Enabled SQL Service Examples

— application/sql: for SQL statements
— application/json: for JISON documents
» Payload data type
— SQL: SQL, PL/SQL, SQL*Plus, SQLcl statements

— JSON document: A JSON document with SQL statements and other options such
as bind variables

6.5 REST-Enabled SQL Service Examples

This section provides different HTTPS POST request examples that use Oracle REST Data
Services standalone setup with secure HTTPS access.

The payload data of the HTTPS POST request message can be in one of the following
formats:

* POST Requests Using application/sgl Content-Type
* POST Requests Using application/json Content-Type

6.5.1 POST Requests Using application/sgl Content-Type

For POST requests with Content-Type as application/sql , the payload is specified using
SQL, SQL*Plus, and SQLcl statements. The payload can be a single line statement, multiple
line statements, or a file that consists of multiline statements as shown in the following
examples:

e Using a Single SQL Statement
e Using Multiple SQL Statements
* Using a File with cURL

< Note:

While evaluating your SQL/PLSQL statements, if you see an error message
555 with the following message, then ensure that you have correctly formed
your SQL/PLSQL statement:

" 555 User Defined Resource Error

The request could not be processed because an error occurred whilst
attempting to evaluate the SQL statement associated with this resource.Please
check the SQL statement is correctly formed and executes without error"

6.5.1.1 Using a Single SQL Statement

ORACLE

The following example uses Schema Authentication to run a single SQL statement against
the demo Oracle Database schema:

Request:

curl -i -X POST --user DEMO:demo --data-binary "select sysdate from dual™ -H
"Content-Type: application/sql™ -k https://localhost:8088/ords/demo/ /sql

6-5

Chapter 6
REST-Enabled SQL Service Examples

Response:

HTTP/1.1 200 OK

Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

{
llenvll :{
"defaultTimeZone" :"Europe/London™
},
"items":[
{
"statementld":1,
"'statementType':"query",
"statementPos":{
"startLine":1,
"endLine":2
}

"statementText":"select sysdate from dual",
"response":[

1.

"result":0,

"resultSet":{
"metadata':[

{
"columnName" :""SYSDATE",

"jsonColumnName' :"sysdate",
"columnTypeName' :"'DATE",
"precision":0,

"scale":0,

"isNullable":1

"items":[

"sysdate':"'2017-07-21T08:06:442"

]

"hasMore':false,
"limit":1500,
"offset":0,
"count'":1

Where:
* DEMO is the Oracle Database schema name.

* demo is the Oracle Database schema password.

ORACLE 6-6

Chapter 6
REST-Enabled SQL Service Examples

» select sysdate from dual is the SQL statement that will run in the DEMO Oracle
Database schema.

e Content-Type: application/sgl is the content type. Only application/sql and
application/json are supported.

e https://localhost:8088/ords/demo/_/sql is the location of the REST- Enabled SQL
service for the demo Oracle Database schema.

6.5.1.2 Using a File with cURL

ORACLE

For multiline SQL statements, using a file as payload data in requests is useful.

File: simple_query.sqgl

SELECT 10
FROM dual;

Request:

curl -i -X POST --user DEMO:demo --data-binary "@simple_query.sql" -H "Content-
Type: application/sgl” -k https://localhost:8088/ords/demo/_/sql

Response:

HTTP/1.1 200 OK

Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

{
"env'':{
"defaultTimeZone" :"Europe/London™
s
"items": [
{
"statementld":1,
"'statementType':"query",
"statementPos' :{
"startLine":1,
"endLine'":1
s
"statementText':"SELECT 10 FROM dual™,
"response":[

1.

"result":0,

"resultSet":{

"metadata':[
{

"columnName":"'10",
"jsonColumnName':"10",
"columnTypeName' : ""NUMBER",
"precision":0,
"scale":-127,
"isNullable":1

6-7

Chapter 6
REST-Enabled SQL Service Examples

}
1,
"items":[

{

"10":10

}
1,
"hasMore':false,
"limit":1500,
"offset":0,
"count':1

6.5.1.3 Using Multiple SQL Statements

You can run one or more statements in each POST request. Statements are separated
similar to Oracle Database SQL*Plus script syntax, such as, end of line for SQL*Plus
statements, a semi colon for SQL statements, and forward slash for PL/SQL
statements.

File: scri pt. sql

CREATE TABLE T1 (coll INT);
DESC T1

INSERT INTO T1 VALUES(1);
SELECT * FROM T1;

BEGIN

INSERT INTO T1 VALUES(2);
END;

/

SELECT * FROM T1;

Request:.curl -i -X POST --user DEMO:demo --data-binary "@script.sql" -H
"Content-Type: application/sgl” -k https://localhost:8088/ords/demo/_/sql

Response:

HTTP/1.1 200 OK

Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

{
"env':{
"defaultTimeZone" :"Europe/London™
},
"items":[
{
"statementld":1,
"statementType':"ddl",
"statementPos":{

ORACLE 6-8

\n"'

el

ORACLE

Chapter 6

REST-Enabled SQL Service Examples

"startLine":1,
"endLine":1
s
"statementText'":"CREATE TABLE T_EXAMPLE1 (coll INT)",
"response":[
"\nTable T_EXAMPLE1 created.\n\n"
1

"result":0

"statementld":2,

"statementType':"

"statementPos':{
"startLine":2,

"endLine":2

sqlplus”,

}1
"statementText":"DESC T _EXAMPLE1",

"response":[
"Name Null\n Type \n---- —-———- ————o——- \nCOL1

1,

"result":0

"statementld":3,
"statementType':"dml",
"statementPos' :{
"startLine":3,
"endLine":3
s
"statementText":"INSERT INTO T_EXAMPLE1l VALUES(1)",
"response":[
"\nl row inserted.\n\n"

]

"result":1

"statementld":4,
"statementType':"query",
"statementPos' :{
"startLine":4,
"endLine":4
¥
"statementText":"SELECT * FROM T_EXAMPLE1",
"response":[

1.

"result":1,

"resultSet":{

"metadata':[
{

"columnName":"'COL1",
"jsonColumnName™:"'col1",
"columnTypeName' : ""NUMBER™,
"precision:38,

NUMBER(38)

6-9

Chapter 6
REST-Enabled SQL Service Examples

"scale":0,
"isNullable":1
}
1,
"items":[
{
"coll":1
}
]

asMore":false,
"limit":1500,
"offset":0,

" count":1

"statementld":5,
"statementType':"
"statementPos' :{

"startLine":5,

"endLine":8

plsql™,

}1
"statementText:"BEGIN\n INSERT INTO T_EXAMPLE1

VALUES(2);\nEND;",
"response":[
"\nPL\/SQL procedure successfully completed.\n\n"
]1

"result":1

el

"statementld":6,
"statementType':"query",
"statementPos':{
"startLine":9,
"endLine":9
¥
"statementText":"SELECT * FROM T_EXAMPLE1",
"response":[

1,

"result":1,

"resultSet":{

"metadata':[
{

"columnName":""COL1",
"jsonColumnName™:"'col1",
"columnTypeName' : ""NUMBER™,
"precision:38,
"scale":0,
"isNullable":1

}
1.
"items":[
{

"coll":1

ORACLE 6-10

Chapter 6
REST-Enabled SQL Service Examples

}s
{

}

"coll":2

1,
"hasMore':false,
"limit":1500,
"offset":0,
"count':2

}
}s
{

"statementld":7,
"statementType':"ddl",
"statementPos':{
"startLine":10,
"endLine":10
¥
"statementText":"DROP TABLE T_EXAMPLE1",
"response":[
"\nTable T_EXAMPLE1 dropped.\n\n"
1

"result":1

6.5.2 POST Requests Using application/json Content-Type

Using a JSON document as the payload enables you to define more complex requests as
shown in the following sections:

e Using a File with cURL

e Specifying the Limit Value in a POST Request for Pagination
e Specifying the Offset Value in a POST Request for Pagination
e Defining Binds in a POST Request

6.5.2.1 Using a File with cURL

ORACLE

The following example posts a JSON document (within the simple_query. json file) to the
REST-Enabled SQL service

File: simple_query.json
{ "statementText":"SELECT TO_DATE("01-01-1976", "dd-mm-yyyy*) FROM dual;"}

Request: curl -i -X POST --user DEMO:demo --data-binary "@simple_query.json" -H
"Content-Type: application/json” -k https://localhost:8088/ords/demo/_/sql

Where:
* The statementText holds the SQL statement or statements.

* The Content-Type is application/json.

6-11

ORACLE

Chapter 6
REST-Enabled SQL Service Examples

Response:

HTTP/1.1 200 OK

Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

{
"env':{
"defaultTimeZone":"Europe/London"
s
"items":[
{
"statementld":1,
"'statementType':"query",
"statementPos' :{
"startLine":1,
"endLine":1
s
"statementText":"SELECT TO_DATE("01-01-1976", "dd-mm-yyyy")
FROM dual™,
"response":[
1,
"result":0,
"resultSet":{
"metadata':[
{
"columnName":"TO_DATE("01-01-1976", "DD-MM-
YYYY®)",
"jsonColumnName':"to_date("01-01-1976", "dd-mm-
yyyyH",

"columnTypeName' :"'DATE",
"precision":0,
"scale":0,
"isNullable":1
}
1.
"items":[

{
"to_date("01-01-1976", "dd-mm-
yyyy")":"1976-01-01T00:00:00Z"
}
1

"hasMore':false,
"limit":1500,
"offset":0,
"count'":1

6-12

Chapter 6
REST-Enabled SQL Service Examples

6.5.2.2 Specifying the Limit Value in a POST Request for Pagination

ORACLE

You can specify the limit value in a POST JSON request for the pagination of a large result
set returned from a query.

File: limit.json

{

"statementText":
WITH data(r) AS (
SELECT 1 r FROM dual

UNION ALL

SELECT r+1 FROM data WHERE r < 100
)

SELECT r FROM data;",

"limit": 5

Request: curl -1 -X POST --user DEMO:demo --data-binary "@limit.json"™ -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/_/sql

Where: The limit is the maximum number of rows returned from a query.

< Note:

The maximum number of rows returned from a query is based on the
misc.pagination.maxRows value set in defaults.xml file.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env'':{
"defaultTimeZone":"Europe/London"
}

"items": [
{
"statementld":1,
""'statementType':"query",
"statementPos":{
"startLine":1,
"endLine":1
s
"statementText":" WITH data(r) AS (SELECT 1 r FROM dual UNION
ALL SELECT r+1 FROM data WHERE r < 100) SELECT r FROM data",
"response":[
1,

"result":0,

6-13

Chapter 6
REST-Enabled SQL Service Examples

"resultSet":{
"metadata':[
{
"columnName™:"R",
"jsonColumnName':"r",
"columnTypeName' : ""NUMBER™,
"precision":0,
"scale":-127,
"isNullable":1

}
1,
"items":[
{
r':1
}s
{
r':2
}s
{
r':3
}s
{
r'':4
}s
{
r':5
}
1,
"hasMore':true,
"limit":5,
"offset":0,
"count":5

Related Topics

* Configuring the Maximum Number of Rows Returned from a Query

6.5.2.3 Specifying the Offset Value in a POST Request for Pagination

ORACLE

You can specify the offset value in a POST JSON request. This value specifies the
first row that must be returned and is used for pagination of the result set returned
from a query.

File: offset_limit.json

{

"statementText'": "

WITH data(r) AS (

SELECT 1 r FROM dual

UNION ALL

SELECT r+1 FROM data WHERE r < 100

6-14

ORACLE

Chapter 6
REST-Enabled SQL Service Examples

)

SELECT r FROM data;",
"offset": 25,
"limit": 5
}

Request: curl -i -X POST --user DEMO:demo --data-binary "@offset_limit.json™ -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/_/sql

Where: offset is the first row to be returned in the result set. Typically, this is used to provide
the pagination for a large result set that returns the next page of rows in the result set.

" Note:

Each request made to the REST-Enabled SQL service is performed in its own
transaction, which means that you cannot ensure that the rows returned will match
the previous request. To avoid these risks, queries that need pagination should use
the ORDER BY clause on a primary key.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env':{
"defaultTimeZone":"Europe/London™
},
"items": [
{
"statementld":1,

""statementType':"query",
"statementPos' :{
"startLine":1,
"endLine":1
s
"statementText":" WITH data(r) AS (SELECT 1 r FROM dual UNION
ALL SELECT r+1 FROM data WHERE r < 100) SELECT r FROM data",
"response":[
1.
"result":0,
"resultSet":{
"metadata':[
{
"columnName":"R",
"jsonColumnName':"r",
"columnTypeName' : ""NUMBER™,
"precision":0,
"scale":-127,
"isNullable™:1

6-15

Chapter 6
REST-Enabled SQL Service Examples

"items":[
{
"r'':26
}1
{
"y 27
}1
{
"r'':28
}1
{
"r':29
}
{
"r":30
}
]1
"hasMore':true,
"limit":5,
"offset":25,
"count":5

6.5.2.4 Defining Binds in a POST Request

ORACLE

You can define binds in JSON format. This functionality is useful when calling
procedures and functions that use binds as the parameters.

Example 6-2 Binds in POST Request

File: binds.json

{
"statementText": "CREATE PROCEDURE TEST_OUT_PARAMETER (V_PARAM_IN INT

IN, V_PARAM_OUT INT OUT) AS BEGIN V_PARAM_OUT := V_PARAM_IN + 10; END;
/

EXEC TEST_OUT_PARAMETER(:varl, :var2)",

"binds":[

{"'name:"varl","data_type":"NUMBER","value":10},
{"name:"var2","data_type":"NUMBER","mode" :"out"}

]
}

Request: curl -1 -X POST --user DEMO:demo --data-binary "@binds.json™ -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/_/sql

Response:
HTTP/1.1 200 OK

Content-Type: application/json
X-Frame-Options: SAMEORIGIN

6-16

Chapter 6
REST-Enabled SQL Service Examples

Transfer-Encoding: chunked
{
"env":
"defaultTimeZone":""Europe/London™
}1
"items": [
{
"statementld":1,

"statementType':"
"statementPos':{
"startLine":1,

"endLine":2

plsql™,

s
"statementText':"CREATE PROCEDURE TEST_OUT_PARAMETER (V_PARAM_IN
IN INT, V_PARAM_OUT OUT INT) AS BEGIN V_PARAM_OUT := V_PARAM_IN + 10; END;",
"response":[
"\nProcedure TEST_OUT_PARAMETER compiled\n\n"

1
"result":0,
"binds":[
{
“"name":"varl",
"data_type':"NUMBER",
"value":10
s
{
"name" :"'var2",
"data_type':"NUMBER",
"mode" :"out",
"result":null
}
]
s
{

"statementld":2,

"statementType':"

"statementPos':{
"startLine":3,

"endLine":3

sqlplus”,

}1
"statementText":"EXEC TEST_OUT_PARAMETER(:varl, :var2)",
"response":[

"\nPL\/SQL procedure successfully completed.\n\n"

1
"result":0,
"binds":[
{
“"name" :"varl",
"data_type':"NUMBER",
"value":10
}
{

"name':"var2",
"data_type':"NUMBER",

"mode" :"out",

ORACLE 6-17

ORACLE

Chapter 6
REST-Enabled SQL Service Examples

"result":20

Example 6-3 Complex Bind in POST Request

Filecomplex_bind_example.json

{

"statementText":"
declare
type t is table of number index by binary_integer;
I in t = IIN;
1 _out t;
begin
for 1 in 1._1_in.count loop
I out(i) := L in(i) * 2;
end loop;
:L_OUT := I _out;
end;

"binds":[
{
"name":"IN",
"data_type":"PL/SQL TABLE",
"type_name":""',
"type_subname':"",
"type_components": [

{
"data_type':""NUMBER"
}
1.
"value":[
2,
4,
7
1
}s
{
"name':"L_OUT",
"data_type":"PL/SQL TABLE",
"type_name":""',
"type_subname':""',
"type_components": [
{
"data_type':""NUMBER"
}
1.
"mode™ :"out"
}

6-18

Chapter 6
REST-Enabled SQL Service Examples

Request: curl -i -X POST --user DEMO:demo --data-binary
"@complex_bind _example.json" -H "Content-Type: application/json" -k https://
localhost:8088/ords/demo/_/sql

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env'':{
"defaultTimeZone":"Europe/London"
s
"items": [
{
"statementld":1,
"statementType":"plsqgl”,
"statementPos':{
"startLine":2,
"endLine":12
s
"statementText":"declare \n type t is table of number index by
binary_integer; \n L_in t = ZIN; \n L_out t; \n begin \n for i
in 1._1_in.count loop \n DI_out(i) := L_in(i) * 2; \n end loop;
\n :L_OUT := l_out; \n end;",
"response":[
1.
"result":1,
"binds":[
{
"name" :"IN",
"data_type':"PL/SQL TABLE",
"type_components': [

{
}

"data_type'":""NUMBER"

1.
""type_name':"",
"type_subname':""',
"value":[

2,

4,

7

"name':"L_OUT",
"data_type":"PL/SQL TABLE",
"mode":"out",
""type_components": [

ORACLE 6-19

Chapter 6
REST-Enabled SQL Service Examples

"data_type':""NUMBER"

}
]’ IIIIII

"type_name":""',
"type_subname':""',
"result":[

4,

8,

14

6.5.2.5 Specifying Batch Statements in a POST Request

This section shows the examples with batch statements and batch bind values in a
POST request.

Example 6-4 Batch statements

File: batch_example.json

{
"statementText":[
"insert into adhoc_table_simple values(1)",
"insert into adhoc_table_simple values(2)",
"delete from adhoc_table_simple"
1
}

Request :curl -i -X POST --user DEMO:demo --data-binary
"@batch_example_json™ -H "Content-Type: application/json™ -k https://
localhost:8088/ords/demo/ /sql

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env':{
"defaultTimeZone":"Europe/London™
s
"items":[
{
"statementld":1,
"statementType':"dml",
"statementPos":{

ORACLE 6-20

Chapter 6
REST-Enabled SQL Service Examples

"startLine":0,
"endLine":0
s
"statementText":[
"insert into adhoc_table_simple values(1)",
"insert into adhoc_table_simple values(2)",
"delete from adhoc_table_simple”
1.
"response":[
"\nl row inserted.\n\n",
"\nl row inserted.\n\n",
"\n2 rows inserted.\n\n"

1.
"result":[
1,

1,
2
1

Example 6-5 Batch bind values

File: batch_bind_example.json

{
"statementText":"INSERT INTO ADHOC_TABLE_DATE VALUES(?,?)",

"binds":[
{
"index":1,
"data_type':""NUMBER",
"batch":true,
"value":[
3,
6,
9,
13,
17

"index":2,
"data_type':"DATE",
"batch":true,

"value":[
"2017-02-21T06:12:20Z2",
"2017-02-21T06:12:20Z2",
"2017-02-21T06:12:20Z2",
"2017-02-21T06:12:20Z2",
"2017-02-21T06:12:20Z2"

ORACLE 6-21

ORACLE

Chapter 6
REST-Enabled SQL Service Examples

Request: curl -i -X POST --user DEMO:demo --data-binary
"@batch_bind_example.json" -H "Content-Type: application/json" -k https://
localhost:8088/ords/demo/_/sql

Response:

HTTP/1.1 200 OK

Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

{

"env':{

"defaultTimeZone":"Europe/London"

¥
{

"items": [

"statementld":1,
"statementType":"dml",
"statementPos':{
"startLine":1,
"endLine'":2
}s
"statementText":"INSERT INTO ADHOC TABLE DATE VALUES(?,?)",
"response":[
"\nl1 row inserted.\n\n",
"\nl1 row inserted.\n\n",
"\nl1 row inserted.\n\n",
"\nl1 row inserted.\n\n",
"\nl row inserted.\n\n"
1,
"result":[
1,

e

1,
"binds":[
{
"index":1,
"data_type'":"NUMBER",
"batch":true,
"value":[
3,
6,
9,
13,
17

e

"index":2,

6-22

Chapter 6
REST-Enabled SQL Service Examples

"data_type':"DATE",

"batch":true,

"value":[
"2017-02-21T06:12:20Z",
"2017-02-21T06:12:20Z",
"2017-02-21T06:12:20Z",
"2017-02-21T06:12:20Z",
"2017-02-21T06:12:20Z"

6.5.3 Example POST Request with DATE and TIMESTAMP Format

ORACLE

Example 6-6 Oracle REST Data services Time Zone Set as Europe/London

Oracle Database DATE and TIMESTAMP data types do not have a time zone associated with
them. The DATE and TIMESTAMP values are associated with the time zone of the
application. Oracle REST Data Services and the REST- Enabled SQL service return values in
a JSON format. The standard for JSON is to return date and timestamp values using the UTC
Zulu format. Oracle REST Data Services and the REST- Enabled SQL service return Oracle
Database DATE and TIMESTAMP values in the Zulu format using the time zone in which
Oracle REST Data Services is running.

Oracle recommends running Oracle REST Data Services using the UTC time zone to make
this process easier.

File: date.json

{

"statementText":"SELECT TO DATE("2016-01-01 10:00:03", "yyyy-mm-dd
hh24:mi:ss") winter, TO DATE("2016-07-01 10:00:03", "yyyy-mm-dd
hh24:mi:ss") summer FROM dual;"

}

Request: curl -i -X POST --user DEMO:demo --data-binary "@date.json" -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/_/sql

Response:

< Note:

In this example, both DATE values are specified as 10 a.m. The "summer" value is
returned as 9 a.m. Zulu time. This is due to British Summer Time.

HTTP/1.1 200 OK
Date: Wed, 26 Jul 2017 14:59:27 GMT

6-23

Chapter 6
REST-Enabled SQL Service Examples

Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
Server: Jetty(9.2.21.v20170120)

{
"env":
"defaultTimeZone":""Europe/London™
}1
"items": [
{

"statementld":1,
"statementType':"query",
"statementPos':{
"startLine":1,
"endLine":1
¥
"statementText":"SELECT TO_DATE("2016-01-01 10:00:03", "yyyy-
mm-dd hh24:mi:ss®") winter, TO DATE("2016-07-01 10:00:03", "yyyy-mm-dd
hh24:mi:ss®) summer FROM dual™,
"response":[
1.
"result":0,
"resultSet":{
"metadata':[
{
"columnName™ :"WINTER",
"jsonColumnName' :"winter™,
"columnTypeName' :"'DATE",
"precision":0,
"scale":0,
"isNullable":1

}s
{
"columnName™ :""SUMMER"",
"jsonColumnName' :"'summer™,
"columnTypeName' :""DATE",
"precision":0,
"scale":0,
"isNullable"”:1
}
1.
"items":[
{
"winter":"2016-01-01710:00:03Z",
"summer™:"2016-07-01T09:00:03Z"
}
1.

"hasMore':false,
"limit":1500,
"offset":0,
"count':1

ORACLE 6-24

6.5.4 Data Types and Formats Supported

ORACLE

Chapter 6
REST-Enabled SQL Service Examples

The following code snippet shows the different data types and the formats supported:

{

"statementText":"SELECT ?,?,?,?,7,7,?,?,7,72,7,2,2,?,72,2,2,72,?2,?2,2,2,72,72,?2,?2,?

,?,7,2,?2,2,2,2,?,2,2,2,?,2,2,?,?,7 FROM dual™,

"binds":[
{

"index":1,

"data_type":’

"value":1233

"index":2,

"data_type":’

"value":123

e

"index":3,
"data_type":
"value":123

"index":4,
"data_type":
"value":123

"index":5,
"data_type":
"value":123

-

"index":6,

"data_type":’

"value":123

"index":7,
"data_type":
"value":123

"index":8,
"data_type":
"value":123

-

"index":9,
"data_type":
"value":123

NUMBER",

NUMERIC",

"DECIMAL",

"DEC",

"NUMBER",

"INTEGER™,

“INT™,

"SMALLINT",

"FLOAT",

6-25

Chapter 6
REST-Enabled SQL Service Examples

}

{
"index":10,
"data_type':"DOUBLE PRECISION",
"value":123

}

{
"index":11,
"data_type':"REAL",
"value":123

}

{
"index":12,
"data_type":"BINARY_FLOAT",
"value":123

}

{
"index":13,
"data_type":"BINARY_DOUBLE",
"value":123

}

{
"index":14,
"data_type':"CHAR",
"value":"abc"

}

{
"index":15,
"data_type':"CHARACTER",
"value":"abc"

}

{
"index":16,
"data_type':"VARCHAR",
"value":"abc"

}

{
"index":17,
"data_type':"VARCHAR2",
"value" :"abc"

}

{
"index":18,
"data_type':"CHAR VARYING",
"value" :"abc"

}

{
"index":19,
"data_type':"CHARACTER VARYING",
"value" :"abc"

}

{

"index":20,
"data_type':"NCHAR",

"value':"abc

ORACLE 6-26

ORACLE

el

el

el

Chapter 6

REST-Enabled SQL Service Examples

"index":21,
"data_type'":"NATIONAL CHAR",

"value':"abc

"index":22,
"data_type':"NATIONAL CHARACTER",

"value':"abc

"index":23,
"data_type':""NVARCHAR",

"value':"abc

"index":24,
"data_type':"NVARCHAR2",

"value':"abc

"index":25,
"data_type':"NCHAR VARYING",

"value':"abc

"index":26,
"data_type'":"NATIONAL CHAR VARYING",

"value':"abc

"index":27,
"data_type':"NATIONAL CHARACTER VARYING",

"value':"abc

"index":28,
"data_type':"'DATE",
"value":"01-Jan-2016"

"index":29,
"data_type':"TIMESTAVMP",
"value':'"1976-02-01T00:00:00Z"

"index":30,
"data_type':"TIMESTAVMP",
"value':'"1976-02-01T00:00:00Z"

"index":31,
"data_type'":"TIMESTAMP WITH LOCAL TIME ZONE",
"value':'"1976-02-01T00:00:00Z"

6-27

ORACLE

el

el

el

Chapter 6
REST-Enabled SQL Service Examples

"index":32,
"data_type'":"TIMESTAMP WITH TIME ZONE",
"value':'"1976-02-01T00:00:00Z"

"index":33,
"data_type':"INTERVALYM",
"value":"P10Y10M"

"index":34,
"data_type'":"INTERVAL YEAR TO MONTH",
"value":"P10Y10M"

"index":35,
"data_type'":"INTERVAL YEAR(2) TO MONTH",
"value":"P10Y10M"

"index":36,
"data_type':"INTERVALDS",
"value":"P11DT10H10M10S"

"index":37,
"data_type'":"INTERVAL DAY TO SECOND",
"value":""P11DT10H10M10S"

"index":38,
"data_type'":"INTERVAL DAY(2) TO SECOND(6)",
"value":"P11DT10H10M10S"

"index":39,
"data_type":"ROWID",
"value':1

"index":40,
"data_type'":""RAW",
"value":"AB"

"index":41,
"data_type':"LONG RAW",
"value":"AB"

"index':42,
"data_type'":"CLOB",

"value":"clobvalue"

6-28

}

{
"index":43,
"data_type":""NCLOB",
"value":"clobvalue"

}

{
"index":45,
"data_type'":""LONG",
"value":"A"

}

Chapter 6

REST-Enabled SQL Request and Response Specifications

6.6 REST-Enabled SQL Request and Response Specifications

Request Specification

Response Specification

6.6.1 Request Specification

ORACLE

Request Specification for application/sql

Specification for application/json

The following sections provide REST-Enabled SQL request and response specifications:

The body of the request is in plain UTF8 text. Statements can be separated by their usual
SQL*Plus terminator.

JSONPath

Type Description

Example Default
Value

Possible Values

$.statementText Strin Specifies the SQL
g statements to

execute.

$.statementText Array Specifies batch
DML statements
using an array. One
DML statement is
specified per string

in an array.

$.offset Num Specifies the

ber number of rows to
offset the query
result. This is used
for pagination of the
result set returned

from a query.

"select 1 Not
from dual” applicable

["insert Not

into testl applicable
values(1)","
update testl
set

coll=2"]

25 0

Not applicable

Not applicable

Between 0 to
misc.pagination.
maxRows.

6-29

Chapter 6

REST-Enabled SQL Request and Response Specifications

JSONPath Type Description Example Default Possible Values
Value
$_limit Num Specifies the 500 misc.pag Between O to
ber maximum number of ination. misc.pagination.
rows returned from maxRows maxRows.
a query.
Values greater than
the value of the
misc.pagination
.maxRows property,
specified in the
defaults.xml, is
ignored.
$.binds Array Specifies an array of "binds": Not Not applicable
objects specifying [{ "name":" applicable
the bind information. mybind1",
"data_type":
"NUMBER"',
"mode™:"out"
}s
{ "name™:"my
bind2",
"data_type":
"NUMBER"',
"value":7 }
1
$.binds[*].name Strin Specifies the name "mybind" Not Not applicable
g of the bind, when applicable
you are using
named notation.
$.binds[*].inde Num Specifies the index 1 Not Between 1 to n
X ber of bind, when you applicable
are using positional
notation.
$.binds[*].data Strin Specifies Oracle "NUMBER"' Not For more information,
_type g data type of the applicable refer to Oracle Built-
bind. in Types
$.binds[*].valu Any Specifies the value '"value to null Can be one of the
e value of the bind. insert” following data-types:
e Number
e String
* Array
For more information,
refer to Oracle Built-
in Types
$.binds[*].mode Strin Specifies the mode "out™ "in" ["in" ,
g in which the bind is "inout"”, "out"]

ORACLE

used.

6-30

Chapter 6

REST-Enabled SQL Request and Response Specifications

JSONPath Type

Default
Value

Description Example

Possible Values

$.binds[*].batc Boole Specifies whether or true

h an

$.binds[*].type Strin
_hame g

$_binds[*].type Strin
_subname g

$.binds[*].type
_components

Array

$_binds[*].type Strin
_components[*]. g
data_type

false
not you want to

perform a batch

bind. If you want to

perform a batch

bind, then set the

value to true.

If the value is set to
true,

then $hinds[*]
must consist of an
array of values.

Not
applicable

Required when you
are

using $binds[*].d
ata_type =
"PL/SQL TABLE"
Currently, only an
empty string is
accepted as the
value.

Not
applicable

Required when you
are

using $hinds[*].d
ata_type =
"PL/SQL TABLE"

Currently, only an
empty string is
accepted as the
value.

Specifies an array of [{"'data_type Not
data types in the ":"NUMBER"}] applicable
PL/SQL TABLE

Required when you
are

using $hinds[*].d
ata_type =
"PL/SQL TABLE"

Specifies Oracle
data type of a
column in the
PL/SQL TABLE.

Required when you
are

using $binds[*].d
ata_type =
"PL/SQL TABLE"

"NUMBER"™ Not

applicable

[true, false]

Not applicable

Not applicable

Not applicable

For more information,
refer to Oracle Built-
in Types

ORACLE

6-31

6.6.2 Response Specification

ORACLE

Chapter 6

REST-Enabled SQL Request and Response Specifications

JSONPath Data Description Example Possible values
type Values
$.env Object Specifies the Not Not applicable
information about applicable
the Oracle REST
Data Services
environment.
$.env.defaultTimeZone String Specifies the "Europe/ Not applicable
timezone in which London"
Oracle REST Data
Services server is
running on.
$.items Array Specifies that there Not
is one item for each applicable Not applicable
statement
executed.
$.items[*].statementl Number Specifies the 1
d sequence number Not applicable
of the statement.
$.items[*].statementT String Specifies the type "'query" ["query” , "dml",
ype of statement. "ddl", "plsqgl",
"sqlplus” , “ignore"”,
"transaction-
control”, "session-
control", "system-
control”, "jdbc",
"other"]
$._items[*].statementP Object Specifies Not
os information about applicable Not applicable
the position of a
specified
statement.
$.items[*].statementP Number Specifies startline Not
os.startLine of the statement. applicable Not applicable
$.items[*].statementP Number Specifies end line Not
os.endLine of the statement. applicable Not applicable
Sitems[*].statementTe String Specifies the SQL “select 1
xt statement to be from Not applicable
executed. dual™
Sitems[*].statementTe Array Specifies batch ["insert
xt DML statements into Not applicable
can be specified testl
using an array. values(1)
One DML ", "update
statement specified testl set
per string in an coll=2"]

array.

6-32

ORACLE

Chapter 6

REST-Enabled SQL Request and Response Specifications

JSONPath

Data
type

Description

Example
Values

Possible values

$._items[*].response

$.items[*].result

$_items[*].result

$.items[*].resultSet

$._items[*].resultSet.
metadata

$_items[*].resultSet.
metadata[*].columnNam
e

$._items[*].resultSet.
metadata[*] . jsonColum
nName

$.items[*].resultSet.
metadata[*].columnTyp
eName

$.items[*].resultSet.
metadata[*].precision

Array

Number

Array

Object

Array

String

String

String

Number

Specifies array of
Strings. The
response
generated when
running the
statement.

Specifies the result
generated when
running the
statement.

For DML
statements, this will
be the number of
rows affected.

Specifies the result
generated when
running each of the
batch statements.

For DML
statements, this will
be the number of
rows affected.

Specifies
information about
the result set
generated from a
query.

Specifies each
object in the array
provides
information about
the metadata of a
column.

Specifies the name
of the column used
in the Oracle
Database.

Specifies the name
of the column used
in

$.items[*].resu
ItSet.items[*].
<columnname>

Specifies the
Oracle Database
data type of the
column.

Specifies the
precision of the
column.

["\nl
row

inserted.

\n\n"]

N =
—

Not
applicable

Not
applicable

Not
applicable

Not

applicable

Not

applicable

Not
applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

6-33

Chapter 6
REST-Enabled SQL Request and Response Specifications

JSONPath Data Description Example Possible values
type Values
$.items[*].resultSet. Number Specifies the scale
metadata[*].scale of the column. Not Not applicable
applicable
$.items[*].resultSet. Number Specifies whether
metadata[*]-isNullabl the column is Not Not applicable
e nullable or not. applicable
0, if the column is
not nullable.
1, if the column is
nullable.
$.items[*].resultSet. Array Specifies the list of
items all rows returned in Not Not applicable
the result set. applicable
$.items[*].resultSet. Any Specifies the value
items[*].<columnname> type of a particular Not Not applicable

column and row in applicable
the result set.

$.items[*].resultSet. Boolean Specifies whether false [true , false]
hasMore result set has more

rows. Value is set

to true if the result

set has more rows,

otherwise set to

false.

The rows in the
result set depend
on
misc.pagination
.maxRows value
configured in
defaults.xml file
or as specified in
the request.

$.items[*].resultSet. Number Specifies the

count number of rows Not Not applicable
returned. applicable

$.items[*].resultSet. Number Specifies the 25 Between 0 to

offset number of rows to misc.pagination
offset the query -maxRows

result. This is used
for pagination of
the result set
returned from a

query.

ORACLE 6-34

ORACLE

Chapter 6

REST-Enabled SQL Request and Response Specifications

JSONPath Data Description Example Possible values
type Values
$.items[*].resultSet. Number Specifiesthe 500 Between 0 to
limit maximum number misc.pagination
of rows returned -maxRows
from a query.
Values greater than
misc.pagination
-maxRows value
specified in
defaults.xml file
are ignored.
$.items[*].binds Array Specifies an array "'binds"':
of objects [{ "name Not applicable
specifying the bind " "mybind
information. 1",
"data_typ
e" :""NUMBE
R",
"mode™':""0
ut” },
{ "name™:
"mybind2"
"data_typ
e" :""NUMBE
R",
"value":7
31
$.items[*].binds[*].n String Specifies the name “mybind"
ame of the bind, when Not applicable
you are using
named notation.
$.items[*].binds[*].1 Number specifies ilndex of 1 1-n
ndex bind, when you are
using positional
notation.
$.items[*].binds[*].d String Specifies the "NUMBER"™ For more
ata_type Oracle data type of information, refer to
the bind. Oracle Built-in
Types
$.items[*].binds[*].v Anytype Specifies the value "value to Can be one of the
alue of the bind. insert" following data
types:
* Number
e String
* Array
For more
information, refer to
Oracle Built-in
Types
$.items[*].binds[*].r Anytype Specifies the result Not applicable
esult of an OUT bind. Not
applicable

6-35

Chapter 6
REST-Enabled SQL Request and Response Specifications

JSONPath Data Description Example Possible values
type Values
$.items[*].binds[*].m String Specifies the mode 'out" ["in" ,
ode in which the bind is "inout”,
used. "out"]
$.items[*].binds[*].b Boolean Specifies whether true [true, false]
atch or not you want to

perform a batch
bind. If you want to
perform a batch
bind, then set the
value to true.

If a batch bind is to
be performed, then
the value is set to
true.

If the value is set to
true,

then $binds[*]
value must be an
array of values.

$.items[*].binds[*].t String Required when " Not applicable
ype_name using $hinds[*].
data_type =

"PL/SQL TABLE".
Currently, only an
empty string is
accepted as the

value.
$.items[*].binds[*].t String Required when Not applicable
ype_subname using $hinds[*].

data_type =

"PL/SQL TABLE".

Currently, only an
empty string is
accepted as the
value.

$.items[*].binds[*].t Aray Array of datatypes [{"data_t Not applicable
ype_components in the PL/SQL ype :"NUM

TABLE BER"}]

Required when

using $binds[*].

data_type =

"PL/SQL TABLE".

$.items[*].binds[*].t String The Oracle data "NUMBER"™ For more

ype_components[*].dat type of a column in information, refer to

a_type the PL/SQL Oracle Built-in
TABLE. Types

Required when
using $binds[*]-
data_type

= "PL/SQL
TABLE"

ORACLE 6-36

Chapter 6
Supported SQL, SQL*Plus, and SQLcl Statements

6.7 Supported SQL, SQL*Plus, and SQLcl Statements

This section lists all the supported SQL, SQL*Plus and SQLcl statements for REST-Enabled
SQL service.

Topics

e Supported SQL Statements

e Supported PL/SQL Statements

e Supported SQL*Plus Statements
e Supported SQLcl Statements

6.7.1 Supported SQL Statements

This section describes the SQL statements that the REST- Enabled SQL service supports.

REST- Enabled SQL service supports all SQL commands. If the specified Oracle Database
schema has the appropriate privileges, then you can run them. Oracle REST Data Services
makes all queries into in-line views before execution to provide pagination support. Queries
are made in-line irrespective of the format in which you provide the query. All the other
nonquery SQL statements are executed as they are.

In-line views have the following limitations:

e All column names in a query must be unique because the views and in-line views cannot
have ambiguous column names.

e Cursor expressions are not displayed in view or in-line views.
¢ WITH FUNCTION clause is not supported in in-line views.
Related Topics

e SQL_statements_ref

6.7.2 Supported PL/SQL Statements

ORACLE

The REST- Enabled SQL service supports PL/SQL statements and blocks.
Example 6-7 PL/SQL Statement

DECLARE v_message VARCHAR2(100) := "Hello World®;
BEGIN
FOR i IN 1..3 LOOP
DBMS_OUTPUT.PUT_LINE (v_message);
END LOOP;
END;
/

Related Topics
e plsql_block

6-37

http://docs.oracle.com/database/122/SQLQR/SQL-Statements.htm#SQLQR109
http://docs.oracle.com/database/122/LNPLS/block.htm#LNPLS01303

Chapter 6
Supported SQL, SQL*Plus, and SQLcl Statements

6.7.3 Supported SQL*Plus Statements

This section lists all the SQL*Plus statements that the REST- Enabled SQL service
supports.

REST- Enabled SQL service supports most of the SQL*Plus statements except those
statements that are related to formatting. The specific Oracle Database schema must
have the appropriate privileges to run the SQL*Plus statemments.

The following is a list of supported SQL*Plus statements:

e SET system variable value

" Note:

system _variable and value represent one of the clauses described in
Set System Variables section.

/ (slash)

e DEF[INE] [variable] | [variable = text]
e DESC[RIBE] {[schema.]object[@connect_identifier]}
* EXEC[UTE] statement

e HELP | ? [topic]

° PRINT [variable ...]

¢ PRO[MPT] [text]

« REM[ARK]

e SHO[W] [option]

¢ TIMI[NG] [START text | SHOW | STOP]

e UNDEF[INE] variable ...

e VAR[IABLE] [variable [type][=value]]
Related Topics

e sqlplus_commands
6.7.3.1 Set System Variables

The following is a list of possible values for system variable and value:

Note:
The command SET CMDS[EP] {; | ¢ | ON | OFF} is obsolete.

- SET APPI[NFOJ{ON | OFF | text}
- SET AUTOP[RINT] {ON | OFF}

ORACLE 6-38

https://docs.oracle.com/database/122/SQPUG/SQL-Plus-command-summary.htm#SQPUG02345

Chapter 6
Supported SQL, SQL*Plus, and SQLcl Statements

SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]]

SET BLO[CKTERMINATOR] {. | ¢ | ON | OFF}

SET CMDS[EP] {; | ¢ | ON | OFF}

SET COLINVI[SIBLE] [ON | OFF]

SET CON[CAT] {. | ¢ | ON | OFF}

SET COPYC[OMMIT] {0 | n}

SET DEF[INE] {& | ¢ | ON | OFF}

SET DESCRIBE [DEPTH {1 | n | ALL}] [LINENUM {ON | OFF}] [INDENT {ON | OFF}]
SET ECHO {ON | OFF}

SET ERRORL[OGGING] {ON | OFF} [TABLE [schema.]tablename] [TRUNCATE]
[IDENTIFIER identifier]

SET ESC[APE] {\ | ¢ | ON | OFF}
SET FEED[BACK] {6 | n | ON | OFF | ONLY}]

SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}] [FOR[MAT] {WRA[PPED]
| WOR[D_WRAPPED] | TRU[NCATED]}]

SET SHOW[MODE] {ON | OFF}

SET SQLBL[ANKLINES] {ON | OFF}
SET SQLP[ROMPT] {SQL> | text}
SET TI[ME] {ON | OFF}

SET TIMI[NG] {ON | OFF}

SET VER[IFY] {ON | OFF}

Related Topics

set-system_var_summary

6.7.3.2 Show System Variables

This section lists the possible values for option which is either a term or a clause used in the
SHO[W] option command.

ORACLE

The following is a list of possible values for the option variable:

< Note:
The commands SHOW CMDSEP and SHOW DESCR[IBE] are obsolete.

SHOW system variable
SHOW EDITION

SHOW ERR[ORS] [{ ANALYTIC VIEW | ATTRIBUTE DIMENSION | HIERARCHY | FUNCTION
| PROCEDURE | PACKAGE | PACKAGE BODY | TRIGGER | VIEW | TYPE | TYPE BODY |
DIMENSION | JAVA CLASS } [schema.]name]

6-39

https://docs.oracle.com/database/122/SQPUG/SET-system-variable-summary.htm#SQPUG060

SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW

PDBS
SGA

SQLCODE
COLINVI[SIBLE]
APPIN[FO]
AUTOT[RACE]
BINDS

BLO[CK TERMINATOR]
CMDSEP
COPYTYPECHECK
COPYCOMMIT
DEFINE
DEFINES
DESCR[IBE]
ECHO

EDITION
ERRORL[OGGING]
ESC[APE]
FEEDBACK
CONCAT
SHOW[MODE]
RECYC[LEBIN]
RELEASE
SQLBL[ANKLINES]
SCAN
SERVEROUT[PUT]
SPACE

TABLES
TIMI[NG]

USER

VER[IFY]
XQUERY

Related Topics

ORACLE

show_command

Chapter 6
Supported SQL, SQL*Plus, and SQLcl Statements

6-40

https://docs.oracle.com/database/122/SQPUG/SHOW.htm#SQPUG124

Chapter 6
Supported SQL, SQL*Plus, and SQLcl Statements

6.7.4 Supported SQLcl Statements

ORACLE

This section lists the SQLcl statements that the REST- Enabled SQL service supports.

REST- Enabled SQL service supports some of the SQLcl statements. The specific Oracle
Database schema must have the appropriate privileges to run the SQLcl statements.

The following is a list of supported SQLcl statements:

* CTAS
 DDL
« SET DDL

6-41

Migrating from mod_plsql to ORDS

This chapter demonstrates how a mod_plsql application is migrated to Oracle REST Data
Services (ORDS).

Oracle REST Data Services is a Java EE-based alternative for Oracle HTTP Server and
mod_plsql. An Oracle HTTP Server mod_plsql application can be migrated to ORDS by
defining new ORDS configuration files. The mod_plsql database resources such as before
procedures, after procedures, request validation functions, owa_custom packages, doc
upload procedures and doc tables require no change when you are migrating to ORDS.
Topics:

e Oracle HTTP Server mod_plsql Authentication

e Example Oracle HTTP Server DAD file

e Mapping mod_plsgl Settings to ORDS

e Example ORDS Configuration Files

e Example ORDS URL Mapping

e Example ORDS Default Configuration

¢ ORDS Authentication

e ORDS Features

7.1 Oracle HTTP Server mod_plsgl Authentication
Oracle HTTP Server mod_plsql applications are configured in a database access descriptor

(DAD) file.

The following example mod_plsql application provides the methods to authenticate the
requests against the Oracle Database:

» Basic authentication: The username and password are stored in the DAD file and so
the end user is not required to log in. This method is useful for web pages that provide
public information.

* Basic dynamic authentication: The users provide credentials in a browser HTTP basic
authentication dialog box. The only way to log out is to close all the instances of the
browser.

» Custom authentication: Enables applications to invoke a user-written authentication
function to authenticate the users within the application and not at the database level.

Related Topics
e Oracle HTTP Server mod_plsq|

7.2 Example Oracle HTTP Server DAD file

This section provides an example Oracle HTTP Server DAD file.

ORACLE 7-1

unilink:Oracle_HTTP_Server_mod_plsql

ORACLE

Chapter 7
Example Oracle HTTP Server DAD file

The following dads . conf file includes three locations demonstrating the basic, basic
dynamic and custom authentications and the following directives:

e PlsqlBeforeProcedure

* PlsqglAfterProcedure

e PlsqglRequestValidationFunction
* PlsqglDocumentTablename

* PlsqlDocumentProcedure

Example 7-1 dads.conf file

mod_plsgl DAD Configuration File

<Location /pls/basic_auth>
SetHandler pls_handler
Order deny,allow
Allow from all

AllowOverride None

P1sglDatabaseUsername PRIVILEGED_USER

PIsqlDatabasePassword passwordFOR$ORD5Example

PIsqlDatabaseConnectString oracle-ee:1521:0RCLPDB1
ServiceNameFormat

PIsglAuthenticationMode Basic

PIsqlBeforeProcedure sample_plsql_app_metadata.beforeProc

PIsqlAfterProcedure sample_plsql_app_metadata.afterProc

PIsglRequestValidationFunction
sample_plsqgl_app_metadata.validationFunc

PIsqlDocumentTablename privileged_user.doc_table
PIsqlDocumentProcedure privileged_user.upload
</Location>

<Location /pls/basic_dynamic_auth>
SetHandler pls_handler
Order deny,allow
Allow from all

AllowOverride None

PIsqlDatabaseConnectString oracle-ee:1521:0RCLPDB1
ServiceNameFormat

PIsglAuthenticationMode Basic

PIsqlBeforeProcedure sample_plsql_app_metadata.beforeProc

PIsqlAfterProcedure sample_plsql_app_metadata.afterProc

PIsglRequestValidationFunction
sample_plsqgl_app_metadata.validationFunc
</location>
<Location /pls/custom_auth>

SetHandler pls_handler

Order deny,allow

Allow from all

7-2

Chapter 7
Mapping mod_plsql Settings to ORDS

AllowOverride None

PIsqlDatabaseUsername PRIVILEGED USER

PIsqlDatabasePassword passwordFOR$ORD5Example
PIsqlDatabaseConnectString oracle-ee:1521:0RCLPDB1 ServiceNameFormat
PIsqlAuthenticationMode CustomOwa

PIsqlBeforeProcedure sample_plsql_app_metadata.beforeProc
PIsqlAfterProcedure sample_plsql_app_metadata.afterProc

PIsqlRequestValidationFunction sample_plsql_app_metadata.validationFunc
</location>

7.3 Mapping mod_plsql Settings to ORDS

ORACLE

This section shows the mappings of mod_plsqgl settings to ORDS.

ORDS allows you to specify configuration files that are similar to a location defined in an
Oracle HTTP Server mod_plsql DAD file. Each configuration file is defined in ords_conf/
ords/conf directory and the configuration file is then mapped to a particular URL using the
ords_conf/ords/url-mapping.xml file. ORDS provides the following configurable
parameters that can be used when migrating mod_plsql directives:

Table 7-1 Mappings of mod_plsql Directives to ORDS Settings

|
mod_plsql Setting ORDS Setting Description

PIsqlDatabaseUserName db.username Specifies the username to use to
log in to the database.

ORDS and mod_plsql are
equivalent.

PlsglDatabasePassword db.password Specifies the password to use to
log in to the database.

ORDS and mod_plsql are

equivalent.
PlsglDatabaseConnectStrin Multiple Settings such as: Specifies the connection to an
g . db.hostname Oracle database.
 db.port ORDS and mod_plsql are
« db.servicename equivalent.
e db.sid

7-3

ORACLE

Chapter 7

Mapping mod_plsql Settings to ORDS

Table 7-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting

ORDS Setting

Description

PIsglAuthenticationMode

security.requestAuthentic
ationFunction

Specifies the authentication
mode to use to allow access.

When
security.requestAuthentic
ationFunction is not specified,
ORDS behavior is same as
Basic mode of mod_plsql.

When
security.requestAuthentic
ationFunction is specified,
ORDS can perform the same
action as example dad directive
PIsglAuthenticationMode
CustomOwaof mod_plsql.

Example ORDS equivalent
configuration parameter:

<entry
key="security.requestAuth
enticationFunction>privi
leged_user.owa_custom.aut
horize</entry>

ORDS and mod_plsql are
equivalent.

PIsqlBeforeProcedure

procedure.preProcess

Specifies the procedure to be
invoked before calling the
requested procedure.

ORDS and mod_plsql are
equivalent.

PlsglAfterProcedure

procedure.postProcess

Specifies the procedure to be
invoked after calling the
requested procedure.

ORDS and mod_plsql are
equivalent.

PlsglRequestValidationFun
ction

security.requestValidatio
nFunction

Specifies an application-defined
PL/SQL function that can allow
or disallow further processing of
the requested procedure.

ORDS and mod_plsql are
equivalent.

PI1sglDocumentTablename

owa.docTable

Specifies the table in the
database to which all documents
are uploaded.

ORDS and mod_plsql are
equivalent.

7-4

ORACLE

Chapter 7
Mapping mod_plsql Settings to ORDS

Table 7-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting

ORDS Setting

Description

PIsglDocumentProcedure

N/A

Specifies the procedure to call
when a document download is
initiated.

In ORDS the document
procedure is the requested
resource. It is not defined in the
configuration file.

ORDS and mod_plsqgl are
equivalent.

P1sglDocumentPath

N/A

ORDS has no equivalent.

PlsglDefaultPage

misc.defaultPage

Specifies the default procedure
to call if none is specified in the
URL.

ORDS and mod_plsql are
equivalent.

PIsqlErrorStyle

debug.printDebugToScreen

Specifies the error reporting
mode for mod_plsql errors.
debug.printDebugToScreen is
equivalent to PIsqlErrorStyle
DebugStyle, otherwise there is
no equivalent.

ORDS and mod_plsql are
equivalent.

PIsglExclusionList

security.exclusionList

Specifies a pattern for
procedures, packages, or
schema names which are
forbidden to be directly run from
a browser.

See Understanding Configurable
Parameters.

ORDS and mod_plsql are
equivalent.

PIsglldleSessionCleanupln jdbc. InactivityTimeout

terval

Specifies the time (in minutes) in
which the idle database sessions
should be closed and cleaned.

Value can be 0 to N seconds.
Where, 0 (default) means that
the idle connections are not
removed from pool.

ORDS and mod_plsql are
equivalent.

PIsglMaxRequestsPerSessio jdbc.MaxConnectionReuseCo

n

unt

Specifies the maximum number
of requests a pooled database
connection should service before
it is closed and re-opened.

Default value is 1000.

ORDS and mod_plsql are
equivalent.

7-5

ORACLE

Chapter 7

Mapping mod_plsql Settings to ORDS

Table 7-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting

ORDS Setting

Description

PIsglInfoLogging

N/A

See Understanding Configurable
Parameters.

PlsglLogDirectory

N/A

See Understanding Configurable
Parameters.

PIsglLogEnable

N/A

See Understanding Configurable
Parameters.

PlsglSessionStateManageme
nt

N/A

Specifies how package and
session state should be cleaned
up at the end of each request.
ORDS always performs:
dbms_session.modify_packa
ge_state(dbms_session.rein
itialize) at the end of each
request.

PIsglAlwaysDescribeProced
ure

N/A

Specifies whether the mod_plsql
application should describe a
procedure before trying to run it.

ORDS always describes
procedure on first access, and
then the definition is cached.
Changes in signature are
detected and recached.

PIsglConnectionValidation

N/A

Specifies the mechanism the
mod_plsql module should use to
detect terminated connections in
its connection pool.

ORDS always validates
connections on borrow.

PlsglFetchBufferSize

N/A

Specifies the number of rows of
content to fetch from the
database for each trip, using
either owa_util.get_page or
owa_util._get_page_raw.
ORDS materializes results as a
32K VARCHAR or CLOB if
results are greater than 32K, so
not applicable.

P1sgINLSLanguage

N/A

Specifies the NLS_LANG
variable.

ORDS, Java, and JDBC use
unicode.

PIsglTransferMode

N/A

PIsglTransferMode specifies
the transfer mode for data from
the database back to the
mod_plsql application.

ORDS always uses unicode.

7-6

Chapter 7
Example ORDS Configuration Files

Table 7-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting

ORDS Setting

Description

PIsqlBindBucketLengths

N/A

Specifies the rounding size to
use while binding the number of
elements in a collection bind.

Rarely used in mod_plsqgl, and
JDBC has no equivalent concept.

PIsglBindBucketWidths N/A Specifies the rounding size to
use while binding the number of
elements in a collection bind.
Rarely used in mod_plsgl and
JDBC has no equivalent concept.

PlsglCacheCleanupTime N/A ORDS has no equivalent.

P1sgIDMSEnable N/A ORDS does not support DMS.

P1sglSessionCookieName N/A ORDS does not offer session
management for PL/SQL
Gateway calls.

PlsglCacheDirectory N/A ORDS has no equivalent.

PlsglCacheEnable N/A ORDS has no equivalent.

PlsglCacheMaxAge N/A ORDS has no equivalent.

PlsglCacheMaxSize N/A ORDS has no equivalent.

PlsglCacheTotalSize N/A ORDS has no equivalent.

PIsqICGIEnvironmentList N/A ORDS has no equivalent.

PlsglConnectionTimeout N/A ORDS has no equivalent.

PlsglPathAlias N/A ORDS has no equivalent.

PlsglPathAliasProcedure N/A ORDS has no equivalent.

PI1sglUploadAsLongRaw N/A ORDS has no equivalent.

7.4 Example ORDS Configuration Files

The following sections show how the example mod_plsql application can be migrated to

ORDS.

Topics:

* Example Configuration File for Basic Authentication

* Example Configuration File for Basic Dynamic Authentication

* Example Configuration file for Custom Authentication

7.4.1 Example Configuration File for Basic Authentication

Example 7-2 ords_conflords/conflbasic_auth.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

ORACLE

7-7

Chapter 7
Example ORDS Configuration Files

<comment>Saved on Wed Jul 25 10:22:37 UTC 2018</comment>

<entry key="db.username">PRIVILEGED_USER</entry>

<entry key="db.password">!passwordFOR$ORD5Example</entry>

<Il-- Example url -->

<I-- See url-mapping.xml -->

<I-- http://localhost:8086/ords/pls/basic_auth/
sample_plsql_app.sample_public_proc-->

<I-- http://localhost:8086/ords/pls/basic_auth/
sample_plsqgl_app.privileged_public_proc-->

<entry
key="procedure.postProcess">sample_plsql_app_metadata.afterProc</entry>
<entry
key="procedure.preProcess'>sample_plsql_app_metadata.beforeProc</entry>
<entry

key="security.requestValidationFunction">sample_plsql_app_metadata.valid
ationFunc</entry>

<entry key="owa.docTable">sample_plsgl_app.doc_table</entry>
</properties>

7.4.2 Example Configuration File for Basic Dynamic Authentication

ORACLE

Example 7-3 ords_conflords/conflbasic_dynamic_auth.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<comment>Saved on Wed Jul 25 10:22:37 UTC 2018</comment>

<l-- NOTE THAT IF THIS USER HAS EXECUTE PRIVILEGE ON THE RESOURCE
THEN jdbc.auth.enabled IS IGNORED -->

<l-- IF THIS USER DOES NOT HAVE EXECUTE PRIVILEGE ON THE RESOURCE
THEN jdbc.auth.enabled IS INVOKED AND THE CREDENTIALS OF A PRIVILEGED
USER HAS TO BE PROVIDED-->

<entry key="db.username>NON_PRIVILEGED USER</entry>

<entry key="db.password">!passwordFOR$SORD5Example</entry>

<entry key="jdbc.auth.enabled">true</entry>

<!l-- Example url -->

<I-- See url-mapping.xml -->

<I-- INVOKE jdbc.auth.enabled : http://localhost:8086/ords/pls/
basic_dynamic_auth/sample_plsql _app.sample privileged proc -->

<!-- IGNORE jdbc.auth.enabled : http://localhost:8086/0ords/pls/
basic_dynamic_auth/sample_plsql _app.sample public proc -->

<!-- Because jdbc.auth.enabled is ignored when referencing the
sample_public_app, the beforeProc,afterProc and validationFunc must be
accessible by NON_PRIVILEGED USER -->

<I-- The following objects are executed by the same credentials
used to access the resource -->

<I-- If the resource can be accessed by the db.username then that
connection is used to access these methods -->

<I-- If the resource cannot be accessed by the db.username then
jdbc.auth.enabled is invoked and those credentials as used to access
these methods -->

<entry
key="procedure.postProcess">sample_plsql_app_metadata.afterProc</entry>

7-8

Chapter 7
Example ORDS URL Mapping

<entry key="procedure.preProcess">sample_plsql_app_metadata.beforeProc</
entry>

<entry
key="security.requestValidationFunction">sample_plsql_app_metadata.validation
Func</entry>
</properties>

7.4.3 Example Configuration file for Custom Authentication

Example 7-4 ords_confs/ords/conflcustom_auth.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<comment>Saved on Wed Jul 25 10:22:37 UTC 2018</comment>

<entry key="db.username">PRIVILEGED USER</entry>

<entry key="db.password">!passwordFOR$SORD5Example</entry>

<!l-- Example url -->

<I-- See url-mapping.xml -->

<!-- http://localhost:8086/ords/pls/custom_auth/
sample_plsql_app.sample_proc -->

<!-- privileged user.owa_custom.authorize requires the following as the
custom login -->

<entry key="procedure.postProcess'>sample_plsql_app_metadata.afterProc</
entry>

<entry key="procedure.preProcess">sample_plsql_app_metadata.beforeProc</
entry>

<entry
key="security.requestValidationFunction">sample plsql _app_metadata.validation
Func</entry>

<entry
key="security.requestAuthenticationFunction">privileged_user.owa_custom.autho
rize</entry>
</properties>

7.5 Example ORDS URL Mapping

ORACLE

This section shows the example mapping between base-path url and the configuration files.

Example 7-5 ords_conflords/url-mapping.xml

<?xml version="1.0" encoding="UTF-8"?>
<pool-config xmlns="http://xmlns.oracle.com/apex/pool-config'>

<pool name="basic_auth" base-path="/pls/basic_auth"
updated="2018-07-17720:52:29.045Z2" />

<pool name="basic_dynamic_auth" base-path="/pls/basic_dynamic_auth"
updated="2018-07-17720:52:29.045Z" />

<pool name="custom_auth" base-path="/pls/custom_auth"
updated="2018-07-17720:52:29.045Z" />
</pool-config>

7-9

Chapter 7
Example ORDS Default Configuration

7.6 Example ORDS Default Configuration

This section shows the example default configuration setting for ORDS.

The defaults.xml file provides the database connection details used by all
configurations.

¢ Note:

To turn off procedure validation caching, set security.maxEntries value to
0. This is necessary to emulate Oracle HTTP Server mod_plsql.

Example 7-6 ords_conflords/defaults.xml

<?xml version = "1.0" encoding = "UTF-8"7>
<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<I-- by default security.maxEntries = 2000 which means 2000
procedures validity will be cached-->

<I-- this is fine for applications like apex where the validation of
a procedure does not change -->

<I-- for applications migrating from mod_plsql the cache should be
disabled so that procedures validity is determined for each request -->

<I-- this is done by setting security.maxentries to 0 -->

<entry key="security.maxEntries'>0</entry>

<entry key="db.hostname>oracle-ee</entry>

<entry key="db.port">1521</entry>

<entry key="db.servicename">orclpdbl</entry>
</properties>

7.7 ORDS Authentication

ORDS has the ability to perform HTTP Basic Authentication by providing a one to one
mapping from mod_plsgl. In ORDS more secure methods of authentication are
available.

Topics:
* Basic Authentication
* Basic Dynamic Authentication

e Custom Authentication

Related Topics

e Developing Oracle REST Data Services Applications

7.7.1 Basic Authentication

This section describes the basic authentication implemented using ORDS.

ORACLE 7-10

Chapter 7
ORDS Authentication

The database credentials are specified in the ORDS configuration file. The db.username must
have the required privileges to access the resources.

Note:

The entry security.requestAuthenticationFunction is not specified.

7.7.2 Basic Dynamic Authentication

This section describes how basic dynamic authentication is implemented using ORDS.

A default db.username and db.password must be specified in ORDS configuration file when
providing basic dynamic authentication for accessing the resources.

The resources that cannot be accessed using this type of authentication can be accessed if
the following conditions are satisfied:

e The value for <entry key="jdbc.auth.enabled">true</entry> entry must be true..
* The security.requestAuthenticationFunction entry must not be specified.

* When ORDS response prompts a Basic HTTP Authentication dialog box in a browser, the
credentials provided by the user must have the required privileges, then the resource is
made available.

< Note:

If the credentials are provided through the browser HTTP authentication dialog
box, then the only way to log out is to close all the instances of the browser.

7.7.3 Custom Authentication

ORACLE

This section describes how custom authentication is implemented using ORDS.

A function is specified to perform the custom authentication. This function has access to the
owa variables. Resources are only available if the following function returns a TRUE value:

<entry
key="security.requestAuthenticationFunction">privileged_user.owa_custom.authoriz
e</entry>

The authentication function must have signature as shown in the following code snippet:

/**
* OWA_CUSTOM used in mod_plsql when the following is used in the dad
configuration file

PIsqlAuthenticationMode Custom

In ORDS environment this can reside in any schema as long as the
connection has execute privileges

In mod_plsql this has to reside in the connections schema as you cannot
specify the name of the schema,package or function

ex: PlsglAuthenticationMode CustomOwa

7-11

Chapter 7
ORDS Features

*/
CREATE OR REPLACE PACKAGE OWA_CUSTOM AS
/**
* Response:
>IF Failed
WWwW-Authenticate in response header
Authorization Required
You are not authorized to access the requested resource. Check the
supplied credentials (e.g., username and password).
*/
FUNCTION authorize RETURN BOOLEAN;
END OWA_CUSTOM ;
/

7.8 ORDS Features

This section describes the ORDS features that are useful when you are migrating from
a mod_plsgl application to ORDS.

Topics:
* Request Validation Function
* Pre Process Feature

e Post Process Feature

* File Upload Feature

7.8.1 Request Validation Function

This section explains the use of request validation function.

The request validation function restricts the access to resources. The request
validation function is provided with the name of the resource being requested and
returns TRUE or FALSE value in response.

If the request validation function returns a FALSE value, then ORDS terminates the
request.

Example 7-7 security.requestValidationFunction
<entry

key="security.requestValidationFunction">sample_plsql_app_metadata.valid
ationFunc</entry>

You can choose any name for the validation function. However, the signature must be
in the following format:

CREATE OR REPLACE FUNCTION validationfunc(procedure_name VARCHAR2) RETURN
BOOLEAN IS.

7.8.2 Pre Process Feature

This section describes the procedure.preProcess ORDS configuration parameter.

ORACLE 7-12

Chapter 7
ORDS Features

The procedure.preProcess ORDS configuration parameter allows a comma delimited list of
procedures that are executed before the requested resource.

Example 7-8 procedure.preProcess

Following example code snippet shows a use case for logging in:

<entry key="procedure.preProcess'>sample_plsql_app_metadata.beforeProc</
entry>

7.8.3 Post Process Feature

This section describes the procedure.postProcess ORDS configuration parameter.

The procedure.postProcess ORDS configuration parameter allows a comma delimited list of
procedures that are executed after the requested resource.

Example 7-9 procedure.postProcess

Following example code snippet shows a use case for logging out:

<entry key="procedure.postProcess">sample plsgl_app_metadata.afterProc</
entry>

7.8.4 File Upload Feature

ORACLE

This section describes the ORDS file upload feature.

The ORDS configuration parameter owa.docTable, defines the table name where the
uploaded files persist.

Example 7-10 Table upload

CREATE TABLE DOC_TABLE (

NAME VARCHAR(256) UNIQUE NOT NULL,
MIME_TYPE VARCHAR(128),

DOC_SIZE NUMBER,

DAD_CHARSET VARCHAR(128),

LAST_UPDATED DATE,

CONTENT_TYPE VARCHAR(128),

CONTENT LONG RAW,

BLOB_CONTENT BLOB);

Example 7-11 Procedure upload

You can choose to have any name for the upload function. However, the signature must
match the following POST request:

--The parameters of the procedure should match the parameters of the request
--The procedure is called after ORDS performs the file upload/insert.

--This procedure can rollback the file INSERT as it is in the same
transaction as the INSERT

CREATE OR REPLACE PROCEDURE upload (filename VARCHAR2 DEFAULT NULL)

7-13

Chapter 7
ORDS Features

Example 7-12 Curl command for file upload

curl -i -X POST -F "filename=@helloworld.txt" "http://localhost:8086/
ords/pls/basic_auth/example_userl.upload

7.8.5 Cross-Origin Resource Sharing Feature

ORACLE

This section describes the Cross-Origin Resource Sharing (CORS) feature.
By default ORDS does not allow cross-origin calls to its PL/SQL gateway.

Trusted origins can be configured through the
security.externalSessionTrustedOrigins configuration parameter that defines a
comma separated list of origins that are trusted to make CORS request. If this
parameter is empty or not configured, then no CORS requests are allowed for the
PL/SQL gateway and results in a 403 Unauthorized status.

<entry key="security.externalSessionTrustedOrigins'>http://example.com,
https://example.com:8443</entry>

7-14

Oracle REST Data Services PL/SQL Package
Reference

The Oracle REST Data Services PL/SQL package contains subprograms (procedures and
functions) for developing RESTful services using Oracle REST Data Services.

Related Topics
e Using the Oracle REST Data Services PL/SQL API

8.1 ORDS.CREATE_ROLE

Format

ORDS.CREATE_ROLE(
p_role_name IN sec_roles.nameltype);

Description

CREATE_ROLE creates an Oracle REST Data Services role with the specified name.

Parameters

p_role_name
Name of the role.

Usage Notes

After the role is created, it can be associated with any Oracle REST Data Services privilege.

Examples
The following example creates a role.

EXECUTE ORDS.CREATE_ROLE(p_role_name=>"Tickets User");

8.2 ORDS.CREATE_SERVICE

ORACLE

< Note:
ORDS.CREATE_SERVICE is deprecated. Use ORDS.DEFINE_SERVICE instead.

Format

ORDS.CREATE_SERVICE(
p_module_name IN ords_modules.namel%type,
p_base path IN ords_modules.uri_prefixitype,

8-1

Chapter 8
ORDS.CREATE_SERVICE

p_pattern IN ords_templates.uri_templateltype,
p_method IN ords_handlers.method%type DEFAULT "GET",
p_source_type IN ords_handlers.source_typelitype

DEFAULT ords.source_type_collection_feed,
p_source IN ords_handlers.source%type,
p_items_per_page IN ords_modules.items_per_pageltype DEFAULT 25,
p_status IN ords_modules.statusltype DEFAULT "PUBLISHED",
p_etag_type IN ords_templates.etag_type%type DEFAULT "HASH",
p_etag_query IN ords_templates.etag_query%type DEFAULT NULL,
p_mimes_al lowed IN ords_handlers.mimes_al lowed%type DEFAULT NULL,
p_module_comments IN ords_modules.commentsltype DEFAULT NULL,

p_template_comments IN ords_modules.comments¥type DEFAULT NULL,
p_handler_comments IN ords_modules.commentsttype DEFAULT NULL);

Description

Creates a new RESTful service.
Parameters

p_module_name
The name of the RESTful service module. Case sensitive. Must be unique.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module.

p_pattern

A matching pattern for the resource template. For example, a pattern of /
objects/:object/:id? will match /objects/emp/101 (matches a request for the item
in the emp resource with id of 101) and will also match /objects/emp/ (matches a
request for the emp resource, because the :id parameter is annotated with the ? or
question mark modifier, which indicates that the id parameter is optional).

p_method

The HTTP method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a hew resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

» source_type_collection_feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

e source_type_collection_item. Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

* source_type_media. Executes a SQL query conforming to a specific format and
turns the result set into a binary representation with an accompanying HTTP
Content-Type header identifying the Internet media type of the representation.
Result Format: Binary

ORACLE 8-2

Chapter 8
ORDS.CREATE_SERVICE

* source_type_plsqgl. Executes an anonymous PL/SQL block and transforms any OUT or
IN/OUT parameters into a JSON representation. Available only when the HTTP method
is DELETE, PUT, or POST. Result Format: JSON

e source_type _query || source_type csv_query. Executes a SQL query and transforms
the result set into either an Oracle REST Data Services legacy JavaScript Object
Notation (JSON) or CSV representation, depending on the format selected. Available
when the HTTP method is GET. Result Format: JSON or CSV

° source_type_query_one_row. Executes a SQL query returning one row of data into an
Oracle REST Data Services legacy JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source_type_Tfeed. Executes a SQL query and transforms the results into a JSON Feed
representation. Each item in the feed contains a summary of a resource and a hyperlink
to a full representation of the resource. The first column in each row in the result set
must be a unique identifier for the row and is used to form a hyperlink of the form:
path/to/feed/{id}, with the value of the first column being used as the value for {id}.
The other columns in the row are assumed to summarize the resource and are included
in the feed. A separate resource template for the full representation of the resource
should also be defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: NULL (defers to the resource module setting).

p_status
The publication status. Valid values: 'PUBLISHED' (default) or 'NOT_PUBLISHED'.

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP Header
that acts as a version identifier for a resource. Use entity tag headers to avoid retrieving
previously retrieved resources and to perform optimistic locking when updating resources.
Valid values: 'HASH' or 'QUERY" or 'NONE'.

e« HASH - Known as Secure HASH: The contents of the returned resource representation
are hashed using a secure digest function to provide a unique fingerprint for a given
resource version.

* QUERY - Manually define a query that uniquely identifies a resource version. A manually
defined query can often generate an entity tag more efficiently than hashing the entire
resource representation.

NONE - Do not generate an entity tag.

p_etag_query
A query that is used to generate the entity tag.

p_mimes_allowed
A comma-separated list of MIME types that the handler will accept. Applies to PUT and
POST only.

p_module_comments
Comment text.

ORACLE 8-3

Chapter 8
ORDS.DEFINE_HANDLER

p_template_comments
Comment text.

p_handler_comments
Comment text.

Usage Notes
Creates a resource module, template, and handler in one call.

This procedure is deprecated. Use ORDS.DEFINE_SERVICE instead.

Examples
The following example creates a simple service.

BEGIN
ORDS . CREATE_SERVICE(
p_module_name => "my.tickets",
p_base_path => "/my/tickets/",
p_pattern => "_7,
p_source => "select t.id "$.id", t.id, t.title from tickets t" ||
* where t.owner = :current_user order by t.updated_on desc*®
);
END;
/

8.3 ORDS.DEFINE_HANDLER

ORACLE

Format

ORDS.DEFINE_HANDLER(

p_module_name IN ords_modules.name%type,

p_pattern IN ords_templates.uri_template¥%type,
p_method IN ords_handlers.method%type DEFAULT "GET",
p_source_type IN ords_handlers.source_type%type

DEFAULT ords.source_type collection_feed,

p_source IN ords_handlers.source%type,

p_items_per _page IN ords_handlers.items_per_ page%type DEFAULT NULL,
p_mimes_allowed IN ords_handlers._mimes_allowed%type DEFAULT NULL,
p_comments IN ords_handlers.commentsttype DEFAULT NULL);

Description

DEFINE_HANDLER defines a module handler. If the handler already exists, then the
handler and any existing handlers will be replaced by this definition; otherwise, a new
handler is created.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern
Matching pattern for the owning resource template.

8-4

ORACLE

Chapter 8
ORDS.DEFINE_HANDLER

p_method

The HTTP method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a new resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

» source_type_collection_feed. Executes a SQL query and transforms the result set
into an Oracle REST Data Services Standard JSON representation. Available when the
HTTP method is GET. Result Format: JSON

* source_type_collection_item. Executes a SQL query returning one row of data into a
Oracle REST Data Services Standard JSON representation. Available when the HTTP
method is GET. Result Format: JSON

e source_type_media. Executes a SQL query conforming to a specific format and turns
the result set into a binary representation with an accompanying HTTP Content-Type
header identifying the Internet media type of the representation. Result Format: Binary

» source_type_plsqgl. Executes an anonymous PL/SQL block and transforms any OUT or
IN/OUT parameters into a JSON representation. Available only when the HTTP method
is DELETE, PUT, or POST. Result Format: JSON

* source_type_query || source_type _csv_query. Executes a SQL query and transforms
the result set into either an Oracle REST Data Services legacy JavaScript Object
Notation (JSON) or CSV representation, depending on the format selected. Available
when the HTTP method is GET. Result Format: JSON or CSV

e source_type_query_one_row. Executes a SQL query returning one row of data into an
Oracle REST Data Services legacy JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source_type_feed. Executes a SQL query and transforms the results into a JSON Feed
representation. Each item in the feed contains a summary of a resource and a hyperlink
to a full representation of the resource. The first column in each row in the result set
must be a unique identifier for the row and is used to form a hyperlink of the form:
path/to/feed/{id}, with the value of the first column being used as the value for {id}.
The other columns in the row are assumed to summarize the resource and are included
in the feed. A separate resource template for the full representation of the resource
should also be defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: NULL (defers to the resource module setting).

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and POST
only.

p_comments
Comment text.

8-5

Chapter 8
ORDS.DEFINE_MODULE

Usage Notes

Only one handler for each HTTP method (source type) is permitted.

Examples

The following example defines a POST handler to the /my/tickets/ resource to
accept new tickets.

BEGIN
ORDS.DEFINE_HANDLER(
p_module_name => "my.tickets",
p_pattern => *_*",
p_method => "POST",
p_mimes_allowed => "application/json®,
p_source_type => ords.source_type plsql,
p_source => *
declare
1_owner varchar2(255);
1_payload blob;
1_id number;

begin
I_payload := :body;
I_owner := :owner;
if (I_owner is null) then
I_owner := :current_user;
end if;

1_id := ticket_api.create_ticket(
p_json_entity => |_payload,
p_author => I_owner

);
:location := ""_./"" || L_id;
:status := 201;
end;
);
END;
/

8.4 ORDS.DEFINE_MODULE

ORACLE

Format

ORDS.DEFINE_MODULE(

p_module_name IN ords_modules._nameltype,

p_base_path IN ords_modules._uri_prefix¥type,

p_items_per_page IN ords_modules.items_per_page¥%type DEFAULT 25,

p_status IN ords_modules.statusltype DEFAULT "PUBLISHED",

p_comments IN ords_modules.commentsttype DEFAULT NULL);
Description

DEFINE_MODULE defines a resource module. If the module already exists, then the
module and any existing templates will be replaced by this definition; otherwise, a new
module is created.

8-6

Chapter 8
ORDS.DEFINE_PARAMETER

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means that
all URlIs starting with hr/ will be serviced by this resource module.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: 25.

p_status
Publication status. Valid values: PUBLISHED (default) or NOT_PUBLISHED.

p_comments
Comment text.

Usage Notes

(None.)

Examples
The following example creates a simple module.

BEGIN

ORDS.DEFINE_MODULE(
p_module_name => "my.tickets",
p_base path => "/my/tickets/"
):
END;
/

8.5 ORDS.DEFINE_PARAMETER

ORACLE

Format
ORDS . DEFINE_PARAMETER(
p_module_name IN ords_modules.name%type,
p_pattern IN ords_templates.uri_templateltype,
p_method IN ords_handlers.method%type,
p_name IN ords_parameters.nameltype ,

p_bind_variable_name IN ords_parameters.bind_variable_nameltype
DEFAULT NULL,

p_source_type IN ords_parameters.source_type%type DEFAULT "HEADER®,

p_param_type IN ords_parameters.param_type¥type DEFAULT "STRING",

p_access_method IN ords_parameters.access_method%type DEFAULT "IN",

p_comments IN ords_parameters.commentsttype DEFAULT NULL);
Description

DEFINE_PARAMETER defines a module handler parameter. If the parameter already exists,
then the parameter will be replaced by this definition; otherwise, a new parameter is created.

8-7

Chapter 8
ORDS.DEFINE_PARAMETER

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern
Matching pattern for the owning resource template.

p_method

The owning handler HTTP Method. Valid values: GET (retrieves a representation of a
resource), POST (creates a new resource or adds a resource to a collection), PUT
(updates an existing resource), DELETE (deletes an existing resource).

p_name
The name of the parameter, as it is named in the URI Template or HTTP Header.
Used to map names that are not valid SQL parameter names.

p_bind_variable_name
The name of the parameter, as it will be referred to in the SQL. If NULL is specified,
then the parameter is unbound.

p_source_type
The type that is identified if the parameter originates in the URI Template or a HTTP
Header. Valid values: HEADER, RESPONSE, URI.

p_param_type
The native type of the parameter. Valid values: STRING, INT, DOUBLE, BOOLEAN, LONG,
TIMESTAMP.

p_access_method
The parameter access method. Indicates if the parameter is an input value, output
value, or both. Valid values: IN, OUT, INOUT.

p_comments
Comment text.

Usage Notes

All parameters must have unique names and variable names for the same handler.

Examples

The following example defines an outbound parameter on the POST handler to store
the location of the created ticket.

BEGIN
ORDS .DEFINE_PARAMETER(
p_module_name => "my.tickets",
p_pattern => *_%,
p_method => "POST",
p_name => "X-APEX-FORWARD",
p_bind_variable_name => "location”,
p_source_type => "HEADER",
p_access_method => "OUT"
);
END;

ORACLE 8-8

Chapter 8
ORDS.DEFINE_PRIVILEGE

The following example defines an outbound parameter on the POST handler to store the
HTTP status of the operation.

BEGIN
ORDS . DEFINE_PARAMETER(
p_module_name => "my.tickets",
p_pattern => *_%,
p_method => "POST",
p_name => "X-APEX-STATUS-CODE",
p_bind_variable_name => "status”,
p_source_type => "HEADER",
p_access_method => "0UT"
)E
END;
/

8.6 ORDS.DEFINE_PRIVILEGE

Format

ORDS.DEFINE_PRIVILEGE(
p_privilege_name IN sec_privileges.namelitype,

p_roles IN owa.vc_arr,

p_patterns IN owa.vc_arr,

p_modules IN owa.vc_arr,

p_label IN sec_privileges. label%type DEFAULT NULL,

p_description IN sec_privileges.description%type DEFAULT NULL,

p_comments IN sec_privileges.commentsltype DEFAULT NULL);
or

ORDS.DEFINE_PRIVILEGE(
p_privilege_name IN sec_privileges.namelitype,

p_roles IN owa.vc_arr,

p_patterns IN owa.vc_arr,

p_label IN sec_privileges. label%type DEFAULT NULL,

p_description IN sec_privileges.description%type DEFAULT NULL,

p_comments IN sec_privileges.commentsltype DEFAULT NULL);
or

ORDS.DEFINE_PRIVILEGE(
p_privilege_name IN sec_privileges.namelitype,

p_roles IN owa.vc_arr,

p_label IN sec_privileges. label%type DEFAULT NULL,

p_description IN sec_privileges.description%type DEFAULT NULL,

p_comments IN sec_privileges.commentsltype DEFAULT NULL);
Description

DEFINE_PRIVILEGE defines an Oracle REST Data Services privilege. If the privilege
already exists, then the privilege and any existing patterns and any associations with
modules and roles will be replaced by this definition; otherwise, a new privilege is created.

Parameters

p_privilege_name
Name of the privilege. No spaces allowed.

ORACLE 8-9

ORACLE

Chapter 8
ORDS.DEFINE_PRIVILEGE

p_roles

The names of the roles, at least one of which the privilege requires. May be empty, in
which case the user must be authenticated but does not require any specific role;
however, must not be null. Unauthenticated users will be denied access.

p_patterns
A list of patterns.

p_modules
A list of module names referencing modules created for the current schema.

p_label
Name of this security constraint as displayed to an end user. May be null.

p_description
A brief description of the purpose of the resources protected by this constraint.

p_comments
Comment text.

Usage Notes

p_roles, p_patterns, and p_modules do not accept null values. If no value is to be
passed, then either choose the appropriate procedure specification or pass an empty
owa.vc_arr value.

Examples
The following example creates a privilege connected to roles, patterns, and modules:

DECLARE
I_priv_roles owa.vc_arr;
I_priv_patterns owa.vc_arr;
I_priv_modules owa.vc_arr;

BEGIN
I_priv_roles(l) := "Tickets User";
I_priv_patterns(l) := "/my/*";
I_priv_patterns(2) := "/comments/*";
I_priv_patterns(3) := "/tickets_feed/*";

I_priv_patterns(4) := "/tickets/*";
I_priv_patterns(5) := "/categories/*";
I_priv_patterns(6) := "/stats/*";

I_priv_modules(1) := "my.tickets";
ords.create_role("Tickets User");

ords.define_privilege(

p_privilege_name => "tickets.privilege®,

p_roles => l_priv_roles,

p_patterns => |_priv_patterns,

P_modules => l_priv_modules,

p_label => "Task Ticketing Access",
p_description => "Provides the ability to create, " ||

"update and delete tickets " ||

"and post comments on tickets®
):
END;

8-10

Chapter 8
ORDS.DEFINE_SERVICE

The following example creates a privilege connected to roles and patterns:

DECLARE
I_priv_roles owa.vc_arr;
I_priv_patterns owa.vc_arr;

BEGIN
I_priv_roles(l) := "Tickets User";
I_priv_patterns(l) := "/my/*";
I_priv_patterns(2) := "/comments/*";
I_priv_patterns(3) := "/tickets_feed/*";

I_priv_patterns(4) := "/tickets/*";
I_priv_patterns(5) := "/categories/*";
I_priv_patterns(6) := "/stats/*";

ords.create_role("Tickets User");

ords.define_privilege(

p_privilege_name => "tickets.privilege”,

p_roles => l_priv_roles,

p_patterns => |_priv_patterns,

p_label => "Task Ticketing Access",
p_description => "Provides the ability to create, " ||

"update and delete tickets " ||
"and post comments on tickets”
):
END;
/

The following example creates a privilege connected to roles:

DECLARE
I_priv_roles owa.vc_arr;
BEGIN
I_priv_roles(1) := "Tickets User";

ords.create_role("Tickets User");

ords.define_privilege(

p_privilege_name => "tickets.privilege",

p_roles => |_priv_roles,

p_label => "Task Ticketing Access”,
p_description => "Provides the ability to create, " ||

"update and delete tickets * ||
"and post comments on tickets®
):
END;
/

8.7 ORDS.DEFINE_SERVICE

Format

ORDS.DEFINE_SERVICE(

p_module_name IN ords_modules.nameltype,
p_base_path IN ords_modules._uri_prefix¥itype,
p_pattern IN ords_templates.uri_templateltype,
p_method IN ords_handlers.method%type DEFAULT "GET",
p_source_type IN ords_handlers.source_typelitype

DEFAULT ords.source_type_collection_feed,
p_source IN ords_handlers.source%type,

ORACLE 8-11

Chapter 8
ORDS.DEFINE_SERVICE

p_items_per_page IN ords_modules.items_per_pagel%type DEFAULT 25,
p_status IN ords_modules.statusltype DEFAULT "PUBLISHED"®,
p_etag_type IN ords_templates.etag_type%type DEFAULT "HASH",
p_etag_query IN ords_templates.etag_query%type DEFAULT NULL,
p_mimes_al lowed IN ords_handlers.mimes_al lowed%type DEFAULT NULL,
p_module_comments IN ords_modules.commentsltype DEFAULT NULL,

p_template_comments IN ords_modules.comments¥type DEFAULT NULL,
p_handler_comments IN ords_modules.commentsttype DEFAULT NULL);

Description

DEFINE_SERVICE defines a resource module, template, and handler in one call. If
the module already exists, then the module and any existing templates will be replaced
by this definition; otherwise, a new module is created.

Parameters

p_module_name
Name of the RESTful service module. Case sensitive. Must be unique.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module.

p_pattern

A matching pattern for the resource template. For example, a pattern of /
objects/:object/:id? will match /objects/emp/101 (matches a request for the item
in the emp resource with id of 101) and will also match /objects/emp/. (Matches a
request for the emp resource, because the :id parameter is annotated with the ?
modifier, which indicates that the id parameter is optional.)

p_method

The HTTP Method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a hew resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

» source_type_collection_feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

e source_type_collection_item. Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

e source_type_media. Executes a SQL query conforming to a specific format and
turns the result set into a binary representation with an accompanying HTTP
Content-Type header identifying the Internet media type of the representation.
Result Format: Binary

* source_type_plsql. Executes an anonymous PL/SQL block and transforms any
OUT or IN/OUT parameters into a JSON representation. Available only when the
HTTP method is DELETE, PUT, or POST. Result Format: JSON

ORACLE 8-12

ORACLE

Chapter 8
ORDS.DEFINE_SERVICE

e source_type query || source_type_csv_query. Executes a SQL query and transforms
the result set into either an Oracle REST Data Services legacy JavaScript Object
Notation (JSON) or CSV representation, depending on the format selected. Available
when the HTTP method is GET. Result Format: JSON or CSV

e source_type_query_one_row. Executes a SQL query returning one row of data into an
Oracle REST Data Services legacy JSON representation. Available when the HTTP
method is GET. Result Format: JSON

» source_type_feed. Executes a SQL query and transforms the results into a JSON Feed
representation. Each item in the feed contains a summary of a resource and a hyperlink
to a full representation of the resource. The first column in each row in the result set
must be a unique identifier for the row and is used to form a hyperlink of the form:
path/to/feed/{id}, with the value of the first column being used as the value for {id}.
The other columns in the row are assumed to summarize the resource and are included
in the feed. A separate resource template for the full representation of the resource
should also be defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: NULL (defers to the resource module setting).

p_status
Publication status. Valid values: PUBLISHED (default) or NOT_PUBL I SHED.

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP Header
that acts as a version identifier for a resource. Use entity tag headers to avoid retrieving
previously retrieved resources and to perform optimistic locking when updating resources.
Valid values are HASH, QUERY, NONE:

* HASH (known as Secure HASH): The contents of the returned resource representation
are hashed using a secure digest function to provide a unique fingerprint for a given
resource version.

* QUERY: Manually define a query that uniquely identifies a resource version. A manually
defined query can often generate an entity tag more efficiently than hashing the entire
resource representation.

« NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and POST
only.

p_module_comments
Comment text.

p_template_comments
Comment text.

8-13

Chapter 8
ORDS.DEFINE_TEMPLATE

p_handler_comments
Comment text.

Usage Notes
Creates a resource module, template, and handler in one call.

Use this procedure instead of the deprecated ORDS.CREATE_SERVICE procedure.

Examples
The following example defines a REST service that retrieves the current user's tickets.

BEGIN
ORDS_.DEFINE_SERVICE(
p_module_name => "my.tickets",
p_base_path => *"/my/tickets/",
p_pattern => "_*",
p_source => "select t.id "$.id", t.id, t.title from tickets t" ||
" where t.owner = :current_user order by t.updated_on desc”
):
END;
/

The following example defines a REST service that retrieves tickets filtered by
category.

BEGIN
ORDS.DEFINE_SERVICE(
p_module_name => "by.category”,
p_base _path => "/by/category/",
p_pattern => ":category_id",
p_source => "select ""../../my/tickets/"" ||
t.id "$.id", t.id, t.title" ||
" from tickets t, categories c, ticket_categories tc" ||
" where c.id = :category_id and c.id = tc.category_id and" ||
" tc.ticket_id = t.id order by t.updated_on desc”
);
END;
/

8.8 ORDS.DEFINE_TEMPLATE

ORACLE

Format

ORDS.DEFINE_TEMPLATE(
p_module_name IN ords_modules.name¥%type,
p_pattern IN ords_templates.uri_templateltype,
p_priority IN ords_templates.priority%type DEFAULT O,
p_etag_type IN ords_templates.etag_type%type DEFAULT "HASH",
p_etag_query IN ords_templates.etag_query%type DEFAULT NULL,
p_comments IN ords_templates.commentsltype DEFAULT NULL);

Description

DEFINE_TEMPLATE defines a resource template. If the template already exists, then
the template and any existing handlers will be replaced by this definition; otherwise, a
new template is created.

8-14

Chapter 8
ORDS.DEFINE_TEMPLATE

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern

A matching pattern for the resource template. For example, a pattern of /
objects/:object/:i1d? will match /objects/emp/101 (matches a request for the item in the
emp resource with id of 101) and will also match /objects/emp/. (Matches a request for the
emp resource, because the :id parameter is annotated with the ? modifier, which indicates
that the id parameter is optional.)

p_priority
The priority for the order of how the resource template should be evaluated: O (low priority.
the default) through 9 (high priority).

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP Header
that acts as a version identifier for a resource. Use entity tag headers to avoid retrieving
previously retrieved resources and to perform optimistic locking when updating resources.
Valid values are HASH, QUERY, NONE:

* HASH (known as Secure HASH): The contents of the returned resource representation
are hashed using a secure digest function to provide a unique fingerprint for a given
resource version.

e QUERY: Manually define a query that uniquely identifies a resource version. A manually
defined query can often generate an entity tag more efficiently than hashing the entire
resource representation.

* NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

p_comments
Comment text.

Usage Notes

he resource template pattern must be unique with a resource module.

Examples
The following example defines a resource for displaying ticket items.

BEGIN
ORDS . DEFINE_TEMPLATE(
p_module_name => "my.tickets",
p_pattern => */:id"
):
END;
/

ORACLE 8-15

Chapter 8
ORDS.DELETE_MODULE

8.9 ORDS.DELETE_MODULE

Format

ORDS.DELETE_MODULE(
p_module_name IN ords_modules.name%type);

Description

DELETE_MODULE deletes a resource module.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

Usage Notes

If the module does not already exist or is accessible to the current user, then no
exception is raised.

Examples
The following example deletes a resource module.

EXECUTE ORDS.DELETE_MODULE(p_module_name=>"my.tickets");

8.10 ORDS.DELETE_PRIVILEGE

ORACLE

Format

ORDS.DELETE_PRIVILEGE(
p_name IN sec_privileges.namelitype);

Description
DELETE_PRIVILEGE deletes a provilege.
Parameters

p_name
Name of the privilege.

Usage Notes

If the privilege does not already exist or is not accessible to the current user, then no
exception is raised.

Examples
The following example deletes a privilege.

EXECUTE ORDS.DELETE_PRIVILEGE(p_name=>"tickets.privilege);

8-16

Chapter 8
ORDS.DELETE_ROLE

8.11 ORDS.DELETE_ROLE

Format

ORDS.DELETE_ROLE(
p_role_name IN sec_roles.nameltype);

Description

DELETE_ROLE deletes the named role.

Parameters

p_name
Name of the role.

Usage Notes

This will also delete any association between the role and any privileges that reference the
role.

No exception is produced if the role does not already exist.

Examples
The following example deletes a role.

EXECUTE ORDS.DELETE_ROLE(p_role_name=>"Tickets User");

8.12 ORDS.DROP_REST_FOR_SCHEMA

Format

ORDS.DROP_REST_FOR_SCHEMA(
p_schema ords_schemas.parsing_schema%type DEFAULT NULL);

Description

DROP_REST_FOR_SCHEMA deletes all auto-REST Oracle REST Data Services metadata
for the associated schema.

Parameters

p_schema
Name of the schema.

Usage Notes

This procedure effectively "undoes" the actions performed by the ORDS.Enable_Schema
procedure.

Examples

The following example deletes all auto-REST Oracle REST Data Services metadata for the
TICKETS schema.

EXECUTE ORDS.DROP_REST_FOR_SCHEMA("tickets");

ORACLE 8-17

Chapter 8
ORDS.ENABLE_OBJECT

Related Topics
*+ ORDS.ENABLE_SCHEMA

8.13 ORDS.ENABLE_OBJECT

ORACLE

Format

ORDS.ENABLE_OBJECT(
p_enabled IN boolean DEFAULT TRUE,
p_schema IN ords_schemas.parsing_schema¥%type DEFAULT NULL,
p_object IN ords_objects.parsing_objectltype,
p_object_type IN ords_objects.typelitype DEFAULT "TABLE",

p_object_alias IN ords_objects.object_aliasltype DEFAULT NULL,
p_auto_rest_auth IN boolean DEFAULT NULL);

Description

ENABLE_OBJECT enables Oracle REST Data Services access to a specified function,
materialized view, package, procedure, table, or view in a schema.

Parameters

p_enabled
TRUE to enable access; FALSE to disable access.

p_schema
Name of the schema for the table or view.

p_object
Name of the table or view.

p_object_type
Type of the object. Valid values: FUNCTION, MVIEW, PACKAGE, PROCEDURE, TABLE
(default), or VIEW.

p_object_alias
Alias of the object.

p_auto_rest_auth

Controls whether Oracle REST Data Services should require user authorization
before allowing access to the Oracle REST Data Services metadata for this object. If
this value is TRUE, then the service is protected by the following roles:

e oracle.dbtools.autorest.any.schema
e oracle.dbtools.role.autorest.<SCHEMANAME>_<OBJECTNAME>

Usage Notes

Only database users with the DBA role can enable/access to objects that they do now
own.

Examples
The following example enables a table named CATEGORIES.
EXECUTE ORDS.ENABLE_OBJECT(p_object=>"CATEGORIES");

8-18

Chapter 8
ORDS.DROP_REST_FOR_OBJECT

The following example enables a view named TICKETS_FEED.

BEGIN

ORDS.ENABLE_OBJECT(
p_object => "TICKETS_FEED",
p_object_type => "VIEW"

E
END;
/

8.14 ORDS.DROP REST FOR OBJECT

Format

ORDS.DROP_REST_FOR_OBJECT(
p_object ords_objects.parsing_objectlitype);

Description
DROP_REST_FOR_OBJECT deletes all auto-REST Oracle REST Data Services metadata
for the associated schema object.

Parameters

p_object
Name of the table or view.

Usage Notes

This procedure effectively "undoes" the actions performed by the ORDS.ENABLE_OBJECT
procedure.

Examples

The following example deletes all auto-REST Oracle REST Data Services metadata for the
curent user CATEGORIES table.

BEGIN
ORDS.DROP_REST_FOR_OBJECT(
p_object=>"CATEGORIES"
):
END;
/

8.15 ORDS.ENABLE_SCHEMA

Format

ORDS.ENABLE_SCHEMA
p_enabled IN boolean DEFAULT TRUE,
p_schema IN ords_schemas.parsing_schemal%type DEFAULT NULL,
p_url_mapping_type IN ords_url_mappings.type%type DEFAULT "BASE_PATH",
p_url_mapping_pattern IN ords_url_mappings.pattern¥%type DEFAULT NULL,
p_auto_rest_auth IN boolean DEFAULT NULL);

Description

ENABLE_SCHEMA enables Oracle REST Data Services to access the named schema.

ORACLE 8-19

Chapter 8
ORDS.PUBLISH_MODULE

Parameters

p_enabled
TRUE to enable Oracle REST Data Services access; FALSE to disable Oracle REST
Data Services access.

p_schema
Name of the schema. If the p_schema parameter is omitted, then the current schema
is enabled.

p_url_mapping_type
URL Mapping type: BASE_PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

p_auto_rest_auth

For a schema, controls whether Oracle REST Data Services should require user
authorization before allowing access to the Oracle REST Data Services metadata
catalog of this schema.

Usage Notes

Only database users with the DBA role can enable or disable a schema other than
their own.

Examples
The following example enables the current schema.

EXECUTE ORDS.ENABLE_SCHEMA;

8.16 ORDS.PUBLISH_MODULE

ORACLE

Format
ORDS.PUBLISH_MODULE(

p_module_name IN ords_modules.name¥%type,
p_status IN ords_modules.status¥%type DEFAULT "PUBLISHED");

Description

PUBLISH_MODULE changes the publication status of an Oracle REST Data Services
resource module.

Parameters

p_module_name
Current name of the RESTful service module. Case sensitive.

p_status
Publication status. Valid values: PUBLISHED (default) or NOT_PUBL I SHED.

Usage Notes

(None.)

8-20

Chapter 8
ORDS.RENAME_MODULE

Examples
The following example publishes a previously defined module named my. tickets.

EXECUTE ORDS.PUBLISH_MODULE(p_module_name=>"my.tickets");

8.17 ORDS.RENAME_MODULE

ORACLE

Format

ORDS . RENAME_MODULE(
p_module_name IN ords_modules._nameltype,
p_new_name IN ords_modules._name¥%type DEFAULT NULL,
p_new_base_path IN ords_modules.uri_prefix%type DEFAULT NULL);

Description

RENAME_MODULE lets you change the name or the base path, or both, of an Oracle REST
Data Services resource module.

Parameters

p_module_name
Current name of the RESTful service module. Case sensitive.

p_new_name
New name to be assigned to the RESTful service module. Case sensitive. If this parameter
is null, the name is not changed.

p_new_base_path

The base of the URI to be used to access this RESTful service. Example: hr/ means that all
URIs starting with hr/ will be serviced by this resource module. If this parameter is null, the
base path is not changed.

Usage Notes

Both the new resource module name and the base path must be unique within the enabled
schema.

Examples
The following example renames resource module my.tickets to old. tickets.

BEGIN
ORDS . RENAME_MODULE(
p_module_name =>"my.tickets",
p_new_name=>"old.tickets",
p_new_base_path=>"/old/tickets/");
END;
/

8-21

Chapter 8

ORDS.RENAME_PRIVILEGE

8.18 ORDS.RENAME_PRIVILEGE

Format

ORDS.RENAME_PRIVILEGE(
p_name IN sec_privileges.name¥%type,
p_new_name IN sec_privileges.nameltype);

Description

RENAME_PRIVILEGE renames a privilege.

Parameters

p_name
Current name of the privilege.

p_new_name
New name to be assigned to the privilege.

Usage Notes

(None.)

Examples

The following example renames the privilege tickets.privilege to
old.tickets.privilege.

BEGIN
ORDS.RENAME_PRIVILEGE(
p_name =>"tickets.privilege”,
p_new_name=>"old.tickets.privilege®);
END;
/

8.19 ORDS.RENAME_ROLE

ORACLE

Format

ORDS.RENAME_ROLE(
p_role_name IN sec_roles._name%type,
p_new_name IN sec_roles.name%type);

Description
RENAME_ROLE renames a role.
Parameters

p_role_name
Current name of the role.

p_new_name
New name to be assigned to the role.

8-22

Chapter 8
ORDS.SET_MODULE_ORIGINS_ALLOWED

Usage Notes

p_role_name must exist.

Examples
The following example renames an existing role.

BEGIN
ORDS.RENAME_ROLE(
p_role_name=>"Tickets User",
p_new_name=>"Legacy Tickets User");
END;
/

8.20 ORDS.SET_MODULE_ORIGINS_ALLOWED

Format

ORDS.SET_MODULE_ORIGINS_ALLOWED
p_module_name IN ords_modules.nameltype,
p_origins_allowed IN sec_origins_allowed_modules.origins_al lowed%type);

Description

SET_MODULE_ORIGINS_ALLOWED configures the allowed origins for a resource module.
Any existing allowed origins will be replaced.

Parameters

p_module_name
Name of the resource module.

p_origins_allowed
A comma-separated list of URL prefixes. If the list is empty, any existing origins are
removed.

Usage Notes

To indicate no allowed origins for a resource module (and remove any existing allowed
origins), specify an empty p_origins_allowed value.

Examples

The following restricts the resource module my. tickets to two specified origins.

BEGIN
ORDS.SET_MODULE_ORIGINS_ALLOWED(
p_module_name => "my._tickets",
p_origins_allowed => "http://example.com,https://example.com®);
END;
/

ORACLE 8-23

Chapter 8
ORDS.SET_URL_MAPPING

8.21 ORDS.SET_URL_MAPPING

Format

ORDS.SET_URL_MAPPING
p_schema IN ords_schemas.parsing_schemaltype DEFAULT NULL,
p_url_mapping_type IN ords_url_mappings.type¥type,
p_url_mapping_pattern IN ords_url_mappings.pattern¥type);

Description

SET_URL_MAPPING configures how the specified schema is mapped to request
URLs.

Parameters

p_schema
Name of the schema to map. The default is the schema of the current user.

p_url_mapping_type
URL Mapping type: BASE_PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

Usage Notes

Only DBA users can update the mapping of a schema other than their own.

Examples
The following example creates a BASE_PATH mapping for the current user.

BEGIN
ORDS.SET_URL_MAPPING(
p_url_mapping_type => "BASE_PATH",
p_url_mapping_pattern => "https://example.com/ords/ticketing”

);
END;
/

8.22 ORDS.SET_SESSION_DEFAULTS

Format

ORDS.SET_SESSION_DEFAULTS(
p_runtime_user IN varchar2);

Description

Set defaults that apply for the duration of the database session.

ORACLE 8-24

Chapter 8
ORDS.RESET_SESSION_DEFAULTS

Parameters

p_schema
Name of the schema to map. The default is the schema of the current user.

p_runtime_user
Sets a runtime user as the target when you REST enable or disable the schemas. Otherwise
all runtime users are targeted.

Usage Notes

NULL values have no effect. Use RESET_SESSION_DEFAULTS to reset values and start again.

Examples

The following example sets the HR user as the only grantee target for the “connect through”
proxy privilege when a schema is REST enabled or disabled:

BEGIN
ORDS.SET_SESSION_DEFAULTS(
p_runtime_user => "HR");
END;
/

8.23 ORDS.RESET_SESSION_DEFAULTS

Format

ORDS._RESET_SESSION_DEFAULTS;

Description

Reset session defaults back to the initial values.

Parameters

None.

Usage Notes

Use the SET_SESSION_DEFAULTS function to set the default values that are reset using this
function.

Examples

The following example resets all the session default values:

BEGIN

ORDS.RESET_SESSION_DEFAULTS;
END;
/

ORACLE 8-25

Oracle REST Data Services Administration
PL/SQL Package Reference

The Oracle REST Data Services (ORDS) ADMIN PL/SQL package contains subprograms
(procedures and functions) for developing and administering the RESTful services using
Oracle REST Data Services for a privileged user.

Before a database user can invoke the ORDS_ADMIN package, they must be granted the
ORDS_ADMINISTRATOR_ROLE database role.

The following example grants the ORDS_ADMINISTRATOR_ROLE role to the ADMIN user:

GRANT ORDS_ADMINSTRATOR_ROLE TO ADMIN;

The ORDS_ADMIN package is identical to the ORDS package except for the AUTHID
CURRENT _USER right, without the deprecated methods and a p_schema parameter for every
method where the target schema must be specified and some additional methods.

Related Topics
e Oracle REST Data Services PL/SQL Package Reference

9.1 ORDS_ADMIN.CREATE_ROLE

ORACLE

Format

ORDS_ADMIN.CREATE_ROLE(
p_schema IN ords_schemas.parsing_schema%type,
p_role _name IN sec_roles.name¥%type);
Description
CREATE_ROLE creates an Oracle REST Data Services role with the specified name.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_role_name
Name of the role.

Usage Notes

After the role is created, it can be associated with any Oracle REST Data Services privileg

e.

9-1

Chapter 9
ORDS_ADMIN.DEFINE_HANDLER

Examples

The following example creates a role.

BEGIN

ORDS_ADMIN.CREATE_ROLE(
p_schema => "tickets",

p_role name => "Tickets User"
}:
END;
/

9.2 ORDS_ADMIN.DEFINE_HANDLER

Format

ORDS_ADMIN . DEFINE_HANDLER(

p_schema IN ords_schemas.parsing_schema%type,
p_module_name IN ords_modules.nameY%type,

p_pattern IN ords_templates.uri_template%type,
p_method IN ords_handlers.method%type DEFAULT "GET",
p_source_type IN ords_handlers.source_type%type

DEFAULT ords_admin.source_type_collection_feed,

p_source IN ords_handlers.source%type,

p_items _per page IN ords_handlers.items_per_ page%type DEFAULT NULL,
p_mimes_allowed IN ords_handlers.mimes_allowed%type DEFAULT NULL,
p_comments IN ords_handlers.comments¥%type DEFAULT NULL);

Description

DEFINE_HANDLER defines a module handler. If the handler already exists, then the
handler and any existing handlers will be replaced by this definition; otherwise, a new
handler is created.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern
Matching pattern for the owning resource template.

p_method

The HTTP method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a new resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

ORACLE 9-2

ORACLE

Chapter 9
ORDS_ADMIN.DEFINE_HANDLER

» source_type_collection_feed. Executes a SQL query and transforms the result set
into an Oracle REST Data Services Standard JSON representation. Available when the
HTTP method is GET. Result Format: JSON

e source_type_collection_item. Executes a SQL query returning one row of data into a
Oracle REST Data Services Standard JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source_type_media. Executes a SQL query conforming to a specific format and turns
the result set into a binary representation with an accompanying HTTP Content-Type
header identifying the Internet media type of the representation. Result Format: Binary

* source_type_plsql. Executes an anonymous PL/SQL block and transforms any OUT or
IN/OUT parameters into a JSON representation. Available only when the HTTP method
is DELETE, PUT, or POST. Result Format: JSON

* source_type_query || source_type_csv_query. Executes a SQL query and transforms
the result set into either an Oracle REST Data Services legacy JavaScript Object
Notation (JSON) or CSV representation, depending on the format selected. Available
when the HTTP method is GET. Result Format: JSON or CSV

* source_type_query_one_row. Executes a SQL query returning one row of data into an
Oracle REST Data Services legacy JSON representation. Available when the HTTP
method is GET. Result Format: JSON

e source_type_feed. Executes a SQL query and transforms the results into a JSON Feed
representation. Each item in the feed contains a summary of a resource and a hyperlink
to a full representation of the resource. The first column in each row in the result set
must be a unique identifier for the row and is used to form a hyperlink of the form:
path/to/feed/{id}, with the value of the first column being used as the value for {id}.
The other columns in the row are assumed to summarize the resource and are included
in the feed. A separate resource template for the full representation of the resource
should also be defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: NULL (defers to the resource module setting).

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and POST
only.

p_comments
Comment text.

Usage Notes

Only one handler for each HTTP method (source type) is permitted.

Examples

The following example defines a POST handler to the /my/tickets/ resource to accept new
tickets.

BEGIN
ORDS_ADMIN . DEFINE_HANDLER(

9-3

Chapter 9
ORDS_ADMIN.DEFINE_MODULE

p_schema => "tickets",
p_module_name => "my.tickets",
p_pattern => *_*",
p_method => "POST",
p_mimes_allowed => "application/json®,
p_source_type => ords_admin.source_type plsql,
p_source => *
declare
1_owner varchar2(255);
1_payload blob;
1_id number;

begin
I_payload := :body;
I_owner := :owner;
if (I_owner is null) then
I_owner := :current_user;
end if;

1_id := ticket_api.create_ticket(
p_json_entity => |_payload,
p_author => I_owner

);
:location := ""_./"" || L_id;
:status := 201;
end;
);
END;

/

9.3 ORDS_ADMIN.DEFINE_MODULE

ORACLE

Format

ORDS_ADMIN . DEFINE_MODULE(

p_schema IN ords_schemas.parsing_schema¥%type,

p_module_name IN ords_modules.nameltype,

p_base_path IN ords_modules.uri_prefix¥type,

p_items_per_page IN ords_modules.items_per_page¥%type DEFAULT 25,

p_status IN ords_modules.statusltype DEFAULT "PUBLISHED",

p_comments IN ords_modules.commentsttype DEFAULT NULL);
Description

DEFINE_MODULE defines a resource module. If the module already exists, then the
module and any existing templates will be replaced by this definition; otherwise, a new
module is created.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module.

9-4

Chapter 9
ORDS_ADMIN.DEFINE_PARAMETER

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: 25.

p_status
Publication status. Valid values: PUBLISHED (default) or NOT_PUBLISHED.

p_comments
Comment text.

Usage Notes

(None.)

Examples
The following example creates a simple module.

BEGIN

ORDS_ADMIN . DEFINE_MODULE(
p_schema => "tickets",
p_module_name => "my.tickets",
p_base_path => "/my/tickets/"
):
END;
/

9.4 ORDS_ADMIN.DEFINE_PARAMETER

ORACLE

Format

ORDS_ADMIN.DEFINE_PARAMETER(
p_schema IN ords_schemas.parsing_schema%type,
p_module_name IN ords_modules.nameltype,
p_pattern IN ords_templates.uri_templateltype,
p_method IN ords_handlers.method%type,
p_name IN ords_parameters.nameltype ,

p_bind_variable_name IN ords_parameters.bind_variable_nameltype
DEFAULT NULL,

p_source_type IN ords_parameters.source_typeYtype DEFAULT "HEADER",

p_param_type IN ords_parameters.param_type%type DEFAULT "STRING",

p_access_method IN ords_parameters.access_method%type DEFAULT "IN",

p_comments IN ords_parameters.comments¥%type DEFAULT NULL);
Description

DEFINE_PARAMETER defines a module handler parameter. If the parameter already exists,
then the parameter will be replaced by this definition; otherwise, a new parameter is created.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the owning RESTful service module. Case sensitive.

9-5

ORACLE

Chapter 9
ORDS_ADMIN.DEFINE_PARAMETER

p_pattern
Matching pattern for the owning resource template.

p_method

The owning handler HTTP Method. Valid values: GET (retrieves a representation of a
resource), POST (creates a new resource or adds a resource to a collection), PUT
(updates an existing resource), DELETE (deletes an existing resource).

p_name
The name of the parameter, as it is named in the URI Template or HTTP Header.
Used to map names that are not valid SQL parameter names.

p_bind_variable_name
The name of the parameter, as it will be referred to in the SQL. If NULL is specified,
then the parameter is unbound.

p_source_type
The type that is identified if the parameter originates in the URI Template or a HTTP
Header. Valid values: HEADER, RESPONSE, URI.

p_param_type
The native type of the parameter. Valid values: STRING, INT, DOUBLE, BOOLEAN, LONG,
TIMESTAMP.

p_access_method
The parameter access method. Indicates if the parameter is an input value, output
value, or both. Valid values: IN, OUT, INOUT.

p_comments
Comment text.

Usage Notes

All parameters must have unique names and variable names for the same handler.

Examples

The following example defines an outbound parameter on the POST handler to store
the location of the created ticket.

BEGIN
ORDS_ADMIN.DEFINE_PARAMETER(
p_schema => "tickets",
p_module_name => "my.tickets",
p_pattern => *_*",
p_method => "POST",
p_name => "X-APEX-FORWARD",
p_bind_variable_name => "location”,
p_source_type => "HEADER",
p_access_method => "OUT"
);
END;
/

The following example defines an outbound parameter on the POST handler to store
the HTTP status of the operation.

BEGIN
ORDS_ADMIN . DEFINE_PARAMETER(

9-6

p_schema => "tickets",

Chapter 9

ORDS_ADMIN.DEFINE_PRIVILEGE

p_module_name => "my.tickets",

p_pattern => *_*",
p_method => "POST",

p_name => "X-APEX-STATUS-CODE",
p_bind_variable_name => "status”,
p_source_type => "HEADER",
p_access_method => "OUT"

);
END;
/

9.5 ORDS_ADMIN.DEFINE_PRIVILEGE

ORACLE

Format

ORDS_ADMIN.DEFINE_PRIVILEGE(

ords_schemas.parsing_schemaltype,
sec_privileges.name%type,

owa.vc_arr,

owa.vc_arr,

owa.vc_arr,

sec_privileges. label%type DEFAULT NULL,
sec_privileges.description¥%type DEFAULT NULL,
sec_privileges.commentsitype DEFAULT NULL);

ords_schemas.parsing_schemaltype,
sec_privileges.name%type,

owa.vc_arr,

owa.vc_arr,

sec_privileges. label%type DEFAULT NULL,
sec_privileges.description¥%type DEFAULT NULL,
sec_privileges.commentstype DEFAULT NULL);

ords_schemas.parsing_schemaltype,
sec_privileges.name%type,

owa.vc_arr,

sec_privileges. label%type DEFAULT NULL,
sec_privileges.description¥%type DEFAULT NULL,
sec_privileges.commentstype DEFAULT NULL);

p_schema IN
p_privilege_name IN
p_roles IN
p_patterns IN
p_modules IN
p_label IN
p_description IN
p_comments IN
or
ORDS_ADMIN.DEFINE_PRIVILEGE(
p_schema IN
p_privilege_name IN
p_roles IN
p_patterns IN
p_label IN
p_description IN
p_comments IN
or
ORDS_ADMIN.DEFINE_PRIVILEGE(
p_schema IN
p_privilege_name IN
p_roles IN
p_label IN
p_description IN
p_comments IN
Description

DEFINE_PRIVILEGE defines an Oracle REST Data Services privilege. If the privilege
already exists, then the privilege and any existing patterns and any associations with

modules and roles will be replaced by this definition; otherwise, a new privilege is created.

Parameters

p_schema

Name of the schema. This parameter is mandatory.

p_privilege_name

Name of the privilege. No spaces allowed.

9-7

ORACLE

Chapter 9
ORDS_ADMIN.DEFINE_PRIVILEGE

p_roles

The names of the roles, at least one of which the privilege requires. May be empty, in
which case the user must be authenticated but does not require any specific role;
however, must not be null. Unauthenticated users will be denied access.

p_patterns
A list of patterns.

p_modules
A list of module names referencing modules created for the current schema.

p_label
Name of this security constraint as displayed to an end user. May be null.

p_description
A brief description of the purpose of the resources protected by this constraint.

p_comments
Comment text.

Usage Notes

p_roles, p_patterns, and p_modules do not accept null values. If no value is to be
passed, then either choose the appropriate procedure specification or pass an empty
owa.vc_arr value.

Examples
The following example creates a privilege connected to roles, patterns, and modules:

DECLARE
I_priv_roles owa.vc_arr;
I_priv_patterns owa.vc_arr;
I_priv_modules owa.vc_arr;

BEGIN
I_priv_roles(l) := "Tickets User";
I_priv_patterns(l) := "/my/*";
I_priv_patterns(2) := "/comments/*";
I_priv_patterns(3) := "/tickets_feed/*";

I_priv_patterns(4) := "/tickets/*";
I_priv_patterns(5) := "/categories/*";
I_priv_patterns(6) := "/stats/*";

I_priv_modules(1) := "my.tickets";

ords_admin.create_role(

p_schema => "tickets",
p_role_name => "Tickets User"”

}:

ords_admin.define_privilege(
p_schema => "tickets",
p_privilege_name => "tickets.privilege®,
p_roles => l_priv_roles,
p_patterns => |_priv_patterns,
P_modules => l_priv_modules,
p_label => "Task Ticketing Access",
p_description => "Provides the ability to create, " ||

"update and delete tickets " ||
"and post comments on tickets”®

9-8

ORACLE

);
END;
/

The following example creates a privilege connected to roles and patterns:

DECLARE

Chapter 9

ORDS_ADMIN.DEFINE_PRIVILEGE

I_priv_roles owa.vc_arr;
I_priv_patterns owa.vc_arr;

BEGIN
I_priv_roles(l) :=

I_priv_patterns(l) :
I_priv_patterns(2) :
I_priv_patterns(3) :
I_priv_patterns(4) :
I_priv_patterns(5) :
I_priv_patterns(6) :

"Ti

ckets User";

“/my/*";
/comments/";
"/tickets_feed/*";
"/tickets/*";
"/categories/*";
"/stats/*";

ords_admin.create_role(
p_schema => "tickets",
p_role_name => "Tickets User"

}

ords_admin.define_privilege(

p_schema
p_privilege_name
p_roles
p_patterns
p_label
p_description

);
END;
/

=> "tickets",

=> "tickets.privilege”,

=> l_priv_roles,

=> |_priv_patterns,

=> "Task Ticketing Access",

=> "Provides the ability to create, " ||
"update and delete tickets " ||
"and post comments on tickets”

The following example creates a privilege connected to roles:

DECLARE

I_priv_roles owa.vc_arr;

BEGIN
I_priv_roles(1l) :=

"Tickets User";

ords_admin.create_role(
p_schema => "tickets",
p_role_name => "Tickets User"

}

ords_admin._define_privilege(

p_schema
p_privilege_name
p_roles

p_label
p_description

);
END;

=> "tickets",

=> "tickets.privilege",

=> |_priv_roles,

=> "Task Ticketing Access”,

=> "Provides the ability to create, " ||
"update and delete tickets * ||
"and post comments on tickets®

9-9

Chapter 9
ORDS_ADMIN.DEFINE_SERVICE

9.6 ORDS_ADMIN.DEFINE_SERVICE

ORACLE

Format

ORDS_ADMIN.DEFINE_SERVICE(

p_schema IN ords_schemas.parsing_schema%type,
p_module_name IN ords_modules.name%type,
p_base_path IN ords_modules._uri_prefix¥type,
p_pattern IN ords_templates.uri_templateltype,
p_method IN ords_handlers.method%type DEFAULT "GET",
p_source_type IN ords_handlers.source_typelitype

DEFAULT ords_admin.source_type_collection_feed,
p_source IN ords_handlers.source%type,
p_items_per_page IN ords_modules.items_per_pageltype DEFAULT 25,
p_status IN ords_modules.statusltype DEFAULT "PUBLISHED",
p_etag_type IN ords_templates.etag_type%type DEFAULT "HASH",
p_etag_query IN ords_templates.etag_query%type DEFAULT NULL,
p_mimes_al lowed IN ords_handlers.mimes_al lowed%type DEFAULT NULL,
p_module_comments IN ords_modules.commentsltype DEFAULT NULL,

p_template_comments IN ords_modules.comments¥%type DEFAULT NULL,
p_handler_comments IN ords_modules.commentsttype DEFAULT NULL);

Description

DEFINE_SERVICE defines a resource module, template, and handler in one call. If
the module already exists, then the module and any existing templates will be replaced
by this definition; otherwise, a new module is created.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the RESTful service module. Case sensitive. Must be unique.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module.

p_pattern

A matching pattern for the resource template. For example, a pattern of /
objects/:object/:id? will match /objects/emp/101 (matches a request for the item
in the emp resource with id of 101) and will also match /objects/emp/. (Matches a
request for the emp resource, because the :id parameter is annotated with the ?
modifier, which indicates that the id parameter is optional.)

p_method

The HTTP Method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a new resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

9-10

Chapter 9
ORDS_ADMIN.DEFINE_SERVICE

» source_type_collection_feed. Executes a SQL query and transforms the result set
into an Oracle REST Data Services Standard JSON representation. Available when the
HTTP method is GET. Result Format: JSON

e source_type_collection_item. Executes a SQL query returning one row of data into a
Oracle REST Data Services Standard JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source_type_media. Executes a SQL query conforming to a specific format and turns
the result set into a binary representation with an accompanying HTTP Content-Type
header identifying the Internet media type of the representation. Result Format: Binary

* source_type_plsql. Executes an anonymous PL/SQL block and transforms any OUT or
IN/OUT parameters into a JSON representation. Available only when the HTTP method
is DELETE, PUT, or POST. Result Format: JSON

* source_type_query || source_type_csv_query. Executes a SQL query and transforms
the result set into either an Oracle REST Data Services legacy JavaScript Object
Notation (JSON) or CSV representation, depending on the format selected. Available
when the HTTP method is GET. Result Format: JSON or CSV

* source_type_query_one_row. Executes a SQL query returning one row of data into an
Oracle REST Data Services legacy JSON representation. Available when the HTTP
method is GET. Result Format: JSON

e source_type_feed. Executes a SQL query and transforms the results into a JSON Feed
representation. Each item in the feed contains a summary of a resource and a hyperlink
to a full representation of the resource. The first column in each row in the result set
must be a unique identifier for the row and is used to form a hyperlink of the form:
path/to/feed/{id}, with the value of the first column being used as the value for {id}.
The other columns in the row are assumed to summarize the resource and are included
in the feed. A separate resource template for the full representation of the resource
should also be defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: NULL (defers to the resource module setting).

p_status
Publication status. Valid values: PUBLISHED (default) or NOT_PUBLISHED.

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP Header
that acts as a version identifier for a resource. Use entity tag headers to avoid retrieving
previously retrieved resources and to perform optimistic locking when updating resources.
Valid values are HASH, QUERY, NONE:

e HASH (known as Secure HASH): The contents of the returned resource representation
are hashed using a secure digest function to provide a unique fingerprint for a given
resource version.

ORACLE 9-11

Chapter 9
ORDS_ADMIN.DEFINE_SERVICE

* QUERY: Manually define a query that uniquely identifies a resource version. A
manually defined query can often generate an entity tag more efficiently than
hashing the entire resource representation.

e NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and
POST only.

p_module_comments
Comment text.

p_template_comments
Comment text.

p_handler_comments
Comment text.

Usage Notes

Creates a resource module, template, and handler in one call.

Examples
The following example defines a REST service that retrieves the current user's tickets.

BEGIN
ORDS_ADMIN._DEFINE_SERVICE(
p_schema => "tickets",
p_module_name => "my.tickets",
p_base _path => "/my/tickets/",
p_pattern => *_.*°,
p_source => "select t.id "$.id", t.id, t.title from tickets t" ||
" where t.owner = :current_user order by t.updated_on desc”
);
END;
/

The following example defines a REST service that retrieves tickets filtered by
category.

BEGIN
ORDS_ADMIN.DEFINE_SERVICE(
p_schema => "tickets",
p_module_name => "by.category”,
p_base _path => "/by/category/",
p_pattern => ":category_id",
p_source => "select ""../../my/tickets/"" ||
t.id "$.id", t.id, t.title" ||
" from tickets t, categories c, ticket_categories tc" ||
" where c.id = :category_id and c.id = tc.category_id and" ||
" tc.ticket_id = t.id order by t.updated_on desc”
);
END;

ORACLE 9-12

Chapter 9
ORDS_ADMIN.DEFINE_TEMPLATE

9.7 ORDS_ADMIN.DEFINE_TEMPLATE

ORACLE

Format

ORDS_ADMIN.DEFINE_TEMPLATE(

p_schema IN ords_schemas.parsing_schema%type,
p_module_name IN ords_modules.name¥%type,

p_pattern IN ords_templates.uri_templateltype,
p_priority IN ords_templates.priority%type DEFAULT O,

p_etag_type IN ords_templates.etag_type%type DEFAULT "HASH",
p_etag_query IN ords_templates.etag_query%type DEFAULT NULL,
p_comments IN ords_templates.commentsltype DEFAULT NULL);

Description

DEFINE_TEMPLATE defines a resource template. If the template already exists, then the
template and any existing handlers will be replaced by this definition; otherwise, a new
template is created.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern

A matching pattern for the resource template. For example, a pattern of /
objects/:object/:id? will match /objects/emp/101 (matches a request for the item in the
emp resource with id of 101) and will also match /objects/emp/. (Matches a request for the
emp resource, because the :id parameter is annotated with the ? modifier, which indicates
that the id parameter is optional.)

p_priority
The priority for the order of how the resource template should be evaluated: O (low priority.
the default) through 9 (high priority).

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP Header
that acts as a version identifier for a resource. Use entity tag headers to avoid retrieving
previously retrieved resources and to perform optimistic locking when updating resources.
Valid values are HASH, QUERY, NONE:

e HASH (known as Secure HASH): The contents of the returned resource representation
are hashed using a secure digest function to provide a unique fingerprint for a given
resource version.

* QUERY: Manually define a query that uniquely identifies a resource version. A manually
defined query can often generate an entity tag more efficiently than hashing the entire
resource representation.

e NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

9-13

Chapter 9
ORDS_ADMIN.DELETE_MODULE

p_comments
Comment text.

Usage Notes

he resource template pattern must be unique with a resource module.

Examples
The following example defines a resource for displaying ticket items.

BEGIN
ORDS_ADMIN . DEFINE_TEMPLATE(
p_schema => "tickets”,
p_module_name => "my.tickets",
p_pattern => */:id"
):
END;
/

9.8 ORDS_ADMIN.DELETE_MODULE

ORACLE

Format

ORDS_ADMIN _DELETE_MODULE(
p_schema IN ords_schemas.parsing_schema%type,
p_module_name IN ords_modules.name%type);

Description

DELETE_MODULE deletes a resource module.
Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the owning RESTful service module. Case sensitive.

Usage Notes

If the module does not already exist or is accessible to the current user, then no
exception is raised.

Examples
The following example deletes a resource module.

BEGIN

ORDS_ADMIN_DELETE_MODULE(
p_schema => "tickets",
p_module_name => "my.tickets”
);
END;
/

9-14

Chapter 9
ORDS_ADMIN.DELETE_PRIVILEGE

9.9 ORDS_ADMIN.DELETE_PRIVILEGE

Description

DELETE_PRIVILEGE deletes a privilege.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_name
Name of the privilege.

Usage Notes

If the privilege does not already exist, then no exception is raised.

Examples
The following example deletes a privilege.

BEGIN
ORDS_ADMIN.DELETE_PRIVILEGE(
p_schema => "tickets",

p_name => "tickets.privilege”

);

END;

/

9.10 ORDS_ADMIN.DELETE_ROLE

ORACLE

Format

ORDS_ADMIN.DELETE_ROLE(
p_schema IN ords_schemas.parsing_schema%type,
p_role_name IN sec_roles.nameltype);

Description
DELETE_ROLE deletes the named role.
Parameters

p_name
Name of the role.

Usage Notes

This will also delete any association between the role and any privileges that reference the
role.

No exception is produced if the role does not already exist.

Examples

The following example deletes a role.

9-15

Chapter 9
ORDS_ADMIN.DROP_REST_FOR_SCHEMA

BEGIN
ORDS_ADMIN.DELETE_ROLE(
p_schema => "tickets",
p_role_name => "Tickets User”
);
END;
/

9.11 ORDS_ADMIN.DROP_REST_FOR_SCHEMA

Format

ORDS_ADMIN.DROP_REST_FOR_SCHEMA(
p_schema ords_schemas.parsing_schema%type);

Description

DROP_REST_FOR_SCHEMA deletes all auto-REST Oracle REST Data Services
metadata for the associated schema.

Parameters

p_schema
Name of the schema.

Usage Notes

This procedure effectively "undoes" the actions performed by the ORDS.Enable_Schema
procedure.

Examples

The following example deletes all auto-REST Oracle REST Data Services metadata
for the TICKETS schema.

BEGIN
ORDS_ADMIN.DROP_REST_FOR_SCHEMA(
p_schema => "tickets”
);
END;
/

9.12 ORDS_ADMIN.ENABLE_OBJECT

ORACLE

Format
ORDS_ADMIN_ENABLE_OBJECT(
p_enabled IN boolean DEFAULT TRUE,
p_schema IN ords_schemas.parsing_schema%,
p_object IN ords_objects.parsing_objectltype,
p_object_type IN ords_objects.typelitype DEFAULT "TABLE",

p_object_alias IN ords_objects.object_aliasltype DEFAULT NULL,
p_auto_rest_auth IN boolean DEFAULT NULL);

Description

ENABLE_OBJECT enables Oracle REST Data Services access to a specified function,
materialized view, package, procedure, table, or view in a schema.

9-16

Chapter 9
ORDS_ADMIN.ENABLE_OBJECT

Parameters

p_enabled
TRUE to enable access; FALSE to disable access.

p_schema
Name of the schema for the table or view. This parameter is mandatory.

p_object
Name of the table or view.

p_object_type
Type of the object. Valid values: FUNCTION, MVIEW, PACKAGE, PROCEDURE, TABLE (default), or
VIEW.

p_object_alias
Alias of the object.

p_auto_rest_auth

Controls whether Oracle REST Data Services should require user authorization before
allowing access to the Oracle REST Data Services metadata for this object. If this value is
TRUE, then the service is protected by the following roles:

» oracle.dbtools.autorest.any.schema
* oracle.dbtools.role.autorest.<SCHEMANAME>.<OBJECTNAME>

Usage Notes

None.

Examples
The following example enables a table named CATEGORIES.

BEGIN

ORDS_ADMIN.ENABLE_OBJECT(
p_schema => "tickets",
p_object=>"CATEGORIES"
):
END;
/

The following example enables a view named TICKETS_FEED.

BEGIN
ORDS_ADMIN.ENABLE_OBJECT(
p_schema => "tickets",
p_object => "TICKETS_FEED",
p_object_type => "VIEW"
):
END;
/

ORACLE 9-17

Chapter 9
ORDS_ADMIN.DROP_REST_FOR_OBJECT

9.13 ORDS_ADMIN.DROP_REST_FOR_OBJECT

Format
ORDS_ADMIN.DROP_REST_FOR_OBJECT(
p_schema IN ords_schemas.parsing_schema%,
p_object IN ords_objects.parsing_objectltype);
Description

DROP_REST_FOR_OBJECT deletes all auto-REST Oracle REST Data Services
metadata for the associated schema object.

Parameters

p_schema
Name of the schema.

p_object
Name of the table or view.

Usage Notes

This procedure effectively "undoes" the actions performed by the
ORDS_ADMIN.ENABLE_OBJECT procedure.

Examples

The following example deletes all auto-REST Oracle REST Data Services metadata
for the TICKETS schema CATEGORIES table.

BEGIN
ORDS_ADMIN._DROP_REST_FOR_OBJECT(

p_schema => "tickets",

p_object=>"CATEGORIES"

);

END;

/

9.14 ORDS_ADMIN.ENABLE_SCHEMA

ORACLE

Format

ORDS_ADMIN.ENABLE_SCHEMA
p_enabled IN boolean DEFAULT TRUE,
p_schema IN ords_schemas.parsing_schemal¥%type,
p_url_mapping_type IN ords_url_mappings.type%type DEFAULT "BASE_PATH",
p_url_mapping_pattern IN ords_url_mappings.patternttype DEFAULT NULL,
p_auto_rest_auth IN boolean DEFAULT NULL);

Description

ENABLE_SCHEMA enables Oracle REST Data Services to access the named
schema.

9-18

Chapter 9
ORDS_ADMIN.PUBLISH_MODULE

Parameters

p_enabled
TRUE to enable Oracle REST Data Services access; FALSE to disable Oracle REST Data
Services access.

p_schema
Name of the schema. This parameter is mandatory.

p_url_mapping_type
URL Mapping type: BASE_PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

p_auto_rest_auth

For a schema, controls whether Oracle REST Data Services should require user
authorization before allowing access to the Oracle REST Data Services metadata catalog of
this schema.

Usage Notes

None.

Examples
The following example enables the current schema.

BEGIN
ORDS_ADMIN.ENABLE_SCHEMA(
p_schema => "tickets”
):
END;
/

9.15 ORDS_ADMIN.PUBLISH_MODULE

ORACLE

Format

ORDS_ADMIN . PUBL ISH_MODULE(

p_schema IN ords_schemas.parsing_schemaltype,

p_module_name IN ords_modules.nameltype,

p_status IN ords_modules.status¥%type DEFAULT *PUBLISHED®);
Description

PUBLISH_MODULE changes the publication status of an Oracle REST Data Services
resource module.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Current name of the RESTful service module. Case sensitive.

9-19

Chapter 9
ORDS_ADMIN.RENAME_MODULE

p_status
Publication status. Valid values: PUBLISHED (default) or NOT_PUBLISHED.

Usage Notes

(None.)

Examples
The following example publishes a previously defined module named my. tickets.

BEGIN

ORDS_ADMIN . PUBLISH_MODULE(
p_schema => "tickets",
p_module_name => "my.tickets"
):
END;
/

9.16 ORDS_ADMIN.RENAME_MODULE

ORACLE

Format

ORDS_ADMIN . RENAME_MODULE(

p_schema IN ords_schemas.parsing_schemaltype,
p_module_name IN ords_modules._nameltype,
p_new_name IN ords_modules.name¥%type DEFAULT NULL,

p_new_base_path IN ords_modules.uri_prefix%type DEFAULT NULL);

Description

RENAME_MODULE lets you change the name or the base path, or both, of an Oracle
REST Data Services resource module.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Current name of the RESTful service module. Case sensitive.

p_new_name
New name to be assigned to the RESTful service module. Case sensitive. If this
parameter is null, the name is not changed.

p_new_base_path

The base of the URI to be used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module. If this
parameter is null, the base path is not changed.

Usage Notes

Both the new resource module name and the base path must be unique within the
enabled schema.

9-20

Chapter 9

ORDS_ADMIN.RENAME_PRIVILEGE

Examples
The following example renames resource module my.tickets to old.tickets.

BEGIN
ORDS_ADMIN.RENAME_MODULE(

p_schema => "tickets",
p_module_name =>"my.tickets",
p_new_name=>"old.tickets",
p_new_base_path=>"/old/tickets/");

END;

/

9.17 ORDS_ADMIN.RENAME_PRIVILEGE

ORACLE

Format

ORDS_ADMIN.RENAME_PRIVILEGE(
p_schema IN ords_schemas.parsing_schema¥%type,
p_name IN sec_privileges.name¥%type,

p_new_name IN sec_privileges.name¥%type);
Description
RENAME_PRIVILEGE renames a privilege.
Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_name
Current name of the privilege.

p_new_name
New name to be assigned to the privilege.

Usage Notes

(None.)

Examples

The following example renames the privilege tickets.privilege to old.tickets.privilege.

BEGIN
ORDS_ADMIN.RENAME_PRIVILEGE(
p_schema => "tickets”,
p_name =>"tickets.privilege”,
p_new_name=>"old.tickets.privilege®);
END;
/

9-21

Chapter 9
ORDS_ADMIN.RENAME_ROLE

9.18 ORDS_ADMIN.RENAME_ROLE

Format

ORDS_ADMIN.RENAME_ROLE(
p_schema IN ords_schemas.parsing_schemaltype,
p_role_name IN sec_roles.name%type,
p_new_name IN sec_roles._nameltype);

Description

RENAME_ROLE renames a role.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_role_name
Current name of the role.

p_new_name
New name to be assigned to the role.

Usage Notes

p_role_name must exist.

Examples
The following example renames an existing role.

BEGIN
ORDS_ADMIN_RENAME_ROLE(
p_schema=>"tickets",
p_role_name=>"Tickets User",
p_new_name=>"Legacy Tickets User");
END;
/

9.19 ORDS_ADMIN.SET_MODULE_ORIGINS_ALLOWED

ORACLE

Format

ORDS_ADMIN.SET_MODULE_ORIGINS_ALLOWED
p_schema IN ords_schemas.parsing_schemaltype,
p_module_name IN ords_modules.nameltype,
p_origins_allowed IN sec_origins_allowed_modules.origins_allowed%type);

Description

SET_MODULE_ORIGINS_ALLOWED configures the allowed origins for a resource
module. Any existing allowed origins will be replaced.

9-22

Chapter 9
ORDS_ADMIN.SET_URL_MAPPING

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the resource module.

p_origins_allowed
A comma-separated list of URL prefixes. If the list is empty, any existing origins are
removed.

Usage Notes

To indicate no allowed origins for a resource module (and remove any existing allowed
origins), specify an empty p_origins_allowed value.

Examples
The following restricts the resource module my. tickets to two specified origins.

BEGIN
ORDS_ADMIN.SET_MODULE_ORIGINS_ALLOWED(
p_schema => "tickets",
p_module_name => "my.tickets",
p_origins_allowed => "http://example.com,https://example.com™);
END;
/

9.20 ORDS_ADMIN.SET URL _MAPPING

ORACLE

Format

ORDS_ADMIN.SET_URL_MAPPING
p_schema IN ords_schemas.parsing_schema%,
p_url_mapping_type IN ords_url_mappings.type%type,
p_url_mapping_pattern IN ords_url_mappings.pattern¥type);

Description
SET_URL_MAPPING configures how the specified schema is mapped to request URLS.
Parameters

p_schema
Name of the schema to map. This parameter is mandatory.

p_url_mapping_type
URL Mapping type: BASE_PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

Usage Notes

(None.)

9-23

Chapter 9
ORDS_ADMIN.ENABLE_HOUSEKEEPING_JOB

Examples

The following example creates a BASE_PATH mapping for the tickets user.

BEGIN
ORDS_ADMIN.SET_URL_MAPPING(
p_schema => "tickets",

p_url_mapping_type => "BASE_PATH",

p_url_mapping_pattern => "https://example.com/ords/ticketing"”
);
END;
/

9.21 ORDS_ADMIN.ENABLE_HOUSEKEEPING_JOB

Format

ORDS_ADMIN.ENABLE_HOUSEKEEPING_JOB(p_enabled IN boolean DEFAULT TRUE);

Description

ENABLE_HOUSEKEEPING_JOB creates and enables or disables the ORDS
DBMS_SCHEDULER housekeeping job. The job name is ORDS_HOUSEKEEPING_JOB which
replaces the deprecated job, CLEAN_OLD_ORDS_SESSIONS.

Parameters

p_enabled

TRUE to enable ORDS HOUSEKEEPING_JOB; FALSE to disable it. A NULL value will
create and enable the job if it does not already exist otherwise its enablement state
will remain changed.

Usage Notes

The job runs every hour and performs housekeeping actions on the ORDS metadata
repository. No commit is required.

Examples
The following example enables the housekeeping job:

EXECUTE ORDS_ADMIN.ENABLE_HOUSEKEEPING_JOB;

9.22 ORDS_ADMIN.DROP_HOUSEKEEPING_JOB

ORACLE

Format

ORDS_ADMIN.DROP_HOUSEKEEPING_JOB;

Description

DROP_HOUSEKEEPING_JOB drops the ORDS DBMS_SCHEDULER housekeeping job. The job
name is ORDS_HOUSEKEEP ING_JOB.

9-24

Chapter 9
ORDS_ADMIN.PERFORM_HOUSEKEEPING

Parameters

None.

Usage Notes

No commit is required.

Examples
The following example drops the housekeeping job:

EXECUTE ORDS_ADMIN.DROP_HOUSEKEEPING_JOB;

9.23 ORDS_ADMIN.PERFORM_HOUSEKEEPING

Format

ORDS_ADMIN . PERFORM_HOUSEKEEPING;

Description

PERFORM_HOUSEKEEPING performs ORDS housekeeping actions immediately. The following
action is performed:

* Removes expired sessions that are older than one day.

Parameters

None.

Usage Notes

No commit is required.

Examples

The following example performs the housekeeping actions immediately against the ORDS
metadata repository:

EXECUTE ORDS_ADMIN.PERFORM_HOUSEKEEPING;

9.24 ORDS_ADMIN.SET_SESSION_DEFAULTS

Format

ORDS_ADMIN.SET_SESSION_DEFAULTS(
p_runtime_user IN varchar2);

Description

Sets the default values that apply for the duration of the database session.

ORACLE' 9-25

Chapter 9
ORDS_ADMIN.RESET_SESSION_DEFAULTS

Parameters

p_runtime_user
Sets a runtime user as the target while REST enabling or disabling the schemas.
Otherwise all runtime users are targeted.

Usage Notes

NULL values have no effect. Use RESET_SESSION_DEFAULTS function to reset the values
and start again.

Examples

The following example sets the HR user as the only grantee target for the “connect
through” proxy privilege when a schema is REST enabled or disabled:

BEGIN
ORDS_ADMIN.SET_SESSION_DEFAULTS(
p_runtime_user => "HR");
END;
/

9.25 ORDS_ADMIN.RESET_SESSION_DEFAULTS

Format

ORDS_ADMIN.RESET_SESSION_DEFAULTS

Description

Resets the session defaults back to the initial values.

Parameters

None.

Usage Notes

Use SET_SESSION_DEFAULTS function to set the default values that were reset using this
function.

Examples
The following example resets all the session default values:

BEGIN
ORDS_ADMIN.RESET_SESSION_DEFAULTS;

END;

/

9.26 ORDS_ADMIN.PROVISION_ADMIN_ROLE

Format

ORDS_ADMIN.PROVISION_ADMIN_ROLE(
p_ user IN varchar2);

ORACLE 9-26

Chapter 9
ORDS_ADMIN.PROVISION_RUNTIME_ROLE

Description

Provision a database user with the ORDS Administrator role so that it can administer ORDS.
Parameters

p_user
The name of the user to be provisioned.

Usage Notes

User ORDS_PUBLIC_USER cannot be configured using this interface.

Examples

The following example provisions the ORDS administrator role to the HR user:

BEGIN
ORDS_ADMIN.PROVISION_ADMIN_ROLE(
p_user => "HR"

);

END;

/

9.27 ORDS_ADMIN.PROVISION_RUNTIME_ROLE

ORACLE

Format

ORDS_ADMIN.PROVISION_RUNTIME_ROLE(
p_user IN varchar2,
p_proxy_enabled_schemas IN boolean DEFAULT TRUE);

Description
Provision a database user so that it can act as an ORDS runtime user.
Parameters

p_user
The name of the user to be provisioned.

p_proxy_enabled_schemas
When the value is set to TRUE, “connect through” proxy grants are added for any enabled
schemas.

Usage Notes

ORDS_PUBLIC_USER is an example of a runtime user. Additional changes to the ORDS
configuration are required to use a user other than the ORDS_PUBLIC_USER.

Examples

The following example provisions the ORDS runtime role to the HR user and grants it the
“connect through” proxy privilege for all the enabled schemas:

BEGIN

9-27

Chapter 9
ORDS_ADMIN.UNPROVISION_ ROLES

ORDS_ADMIN.PROVISION_RUNTIME_ROLE(
p_user => "HR",
p_proxy_enabled_schemas => TRUE

END;

/
9.28 ORDS_ADMIN.UNPROVISION _ROLES

Format

ORDS_ADMIN._UNPROVISION_ROLES(
p_user IN varchar2,
p_administrator_role IN boolean DEFAULT NULL,
p_runtime_role IN boolean DEFAULT NULL);

Description

Unprovision the ORDS database roles.
Parameters

p_user
The name of the user to be unprovisioned.

p_administrator_role
Unprovision as an admin user.

p_runtime_role
Unprovision as a runtime usetr.

Usage Notes

NULL boolean values are evaluated to TRUE unless any value is set to TRUE. In such
case, NULL values are evaluated to FALSE. So, by default all the roles are
unprovisioned unless an explicit choice is made.

Examples

The following example unprovisions the ORDS administrator role from the HR user:

BEGIN
ORDS_ADMIN.UNPROVISION_ROLES (
p_user => "HR",
p_administrator_role => TRUE);
END;
/

9.29 ORDS_ADMIN.CONFIG_PLSQL_GATEWAY

Format

ORDS_ADMIN. CONFIG_PLSQL_GATEWAY (

p_runtime_user IN varchar2 DEFAULT NULL,
p_plsql_gateway_user IN varchar2,
p_comments IN varchar2 DEFAULT NULL);

ORACLE 9-28

ORACLE

Chapter 9
ORDS_ADMIN.CONFIG_PLSQL_GATEWAY

Description

Configures the database proxy user that must be used for PL/SQL Gateway calls serviced by
the specified runtime user.

Parameters

p_runtime_user
Name of the runtime user to be configured.

p_plsql_gateway_ user
Name of the proxy user.

p_comments
Comment text.

Usage Notes

When p_runtime_user is NULL, then the value provided through
ORDS_ADMIN.SET_SESSION_DEFAULTS is used. Otherwise, ORDS_PUBLIC_USER is used. When
p_plsgl_gateway user is NULL, then the PL/SQL Gateway for the runtime user is
unconfigured.

Examples

The following example configures the PL/SQL Gateway for ORDS_PUBLIC_USER runtime user:

BEGIN

ords_admin.config_plsql_gateway(
p_runtime_user => "ORDS_PUBLIC_USER",
p_plsql _gateway user => "GATEWAY_ USER"
):
END;
/

The following example unconfigures the PL/SQL Gateway for ORDS_PUBLIC_USER runtime
user:

BEGIN

ords_admin.config_plsql_gateway(
p_runtime_user => "ORDS_PUBLIC_USER",
p_plsql_gateway user => NULL
):
END;
/

9-29

Implicit Parameters

This chapter describes the implicit parameters used in REST service handlers that are not
explicitly declared. Oracle REST Data Services (ORDS) adds these parameters automatically
to the resource handlers.

10.1 List of Implicit Parameters

The following table lists the implicit parameters:

" Note:

Parameter names are case sensitive. For example, :CURRENT_USER is not a
valid implicit parameter.

Table 10-1 List of Implicit Parameters

Name Type Access HTTP Descri Introdu
Mode Header ption ced

:body BLOB IN N/A Specifie 2.0

s the

body of

the

request
asa
tempora

ry

BLOB.

:body CLOB IN N/A Specifie 18.3
text s the

body of

the

request

asa

tempora

ry

CLOB.

ORACLE 10-1

Chapter 10
List of Implicit Parameters

Table 10-1 (Cont.) List of Implicit Parameters

Name Type Access HTTP Descri Introdu
Mode Header ption ced

zconte VARCH IN Conten Specifie 2.0

nt_typ AR t-Type sthe

e MIME
type of
the
request
body, as
indicate
d by the
Content
-Type
request
header.

ccurre VARCH IN N/A Specifie 2.0

nt_use AR s the

r authenti
cated
user for
the
request.
If no
user is
authenti
cated,
then the
value is
set to
null.

:forwa VARCH OUT X- Specifie 18.3
rd_loc AR ORDS- sthe
ation FORWAR location
D- where
LOCATI Oracle
ON REST
Data
Service
s must
forward
a GET
request
to
produce
the
respons
e for
this
request.

ORACLE 10-2

Chapter 10
List of Implicit Parameters

Table 10-1 (Cont.) List of Implicit Parameters

Name Type Access HTTP Descri Introdu
Mode Header ption ced

:fetch NUMBE IN N/A Specifie 18.3

_offse R sthe

t zero-
based
offset of
the first
row to
be
displaye
dona
page.

:fetch NUMBE IN N/A Specifie 18.3
_size R s the
maximu
m
number
of rows
to be
retrieve
dona
page.

:page_ NUMBE IN N/A Specifie 2.0
offset R s the

zero

based

page

offset in

a

paginat

ed

request.

Note:
The :p
age_of
fset
paramet
eris
depreca
ted.

Use Ir
ow_off
set
paramet
er
instead.

ORACLE 10-3

Table 10-1 (Cont.) List of Implicit Parameters

Chapter 10
List of Implicit Parameters

__|]
Name Type Access HTTP

Mode

Header

Descri
ption

Introdu
ced

:page_ NUMBE IN
size R

N/A

Specifie
s the
maximu
m
number
of rows
to be
retrieve
dona
page.
The Zpa
ge_siz
e
paramet
eris
depreca
ted.

Use :f
etch_s
ize
parame
ter
instead.

2.0

:row_o NUMBE IN
ffset R

N/A

Specifie
s the
one-
based
index of
the first
row to
be
displaye
dina
paginat
ed
request.

3.0

:row_c NUMBE IN
ount R

N/A

Specifie
s the
one-
based
index of
the last
row to
be
displaye
dina
paginat
ed
request.

3.0

ORACLE

10-4

Chapter 10
List of Implicit Parameters

Table 10-1 (Cont.) List of Implicit Parameters
]

Name Type Access HTTP Descri Introdu
Mode Header ption ced
:statu NUMBE OUT X- Specifie 18.3
s_code R ORDS- sthe
STATUS HTTP
-CODE status
code for
the
request.

10.1.1 About the :body parameter

ORACLE

The :body implicit parameter is used in the resource handlers to receive the contents of the
request body as a temporary BLOB.

¢ Note:

Only POST or PUT requests can have a request body. The HTTP specification
does not permit request bodies on GET or DELETE requests.

Example 10-1 Example

The following example illustrates a PL/SQL block that stores the request body in a database
table:

begin
insert into tab (content) values (:body);
end;

" Note:

The :body implicit parameter must be dereferenced exactly once in a PL/SQL
block. If it is dereferenced more than once, then the second and subsequent
dereferences will appear to be empty. This is because the client sends the request
body only once.

The following example will not work as intended because it dereferences the -body
parameter twice:

begin
insert into tabl(content) values (:body); -- request body will be inserted
insert into tab2(content) values (:body); -- an empty blob will be inserted
end;

10-5

Chapter 10
List of Implicit Parameters

To avoid this limitation, the -body parameter value must be assigned to a local PL/SQL
variable before it is used. This enables the local variable to be dereferenced more than
once:

declare

1_content blob := :body;

begin

insert into tabl(content) values(l_content);
insert into tab2(content) values(l_content);
end;

10.1.2 About the :body_text Parameter

The :body_text implicit parameter is used in the resource handlers to receive the
contents of the request body as a temporary CLOB. Typically, the content of the
request body is textual (for example JSON or HTML content) and so, receiving the
request body as a CLOB saves the resource handler author from the effort of
converting the -body BLOB parameter to a CLOB instance. Similar to the :body
parameter, the -body text parameter must be dereferenced only once in a PL/SQL
block.

It is recommended to assign the :body_text value to a local PL/SQL variable, and the
PL/SQL variable is used throughout the PL/SQL block.

10.1.3 About the :content_type Parameter

The :content_type implicit parameter provides the value of the Content-Type request
header supplied with the request. If no Content-Type header is present in the request,
then a null value is returned.

10.1.4 About the :current_user Parameter

The :current_user implicit parameter provides the identity of the user authenticated
for the request.

Note:

In a scenario, where the user is not authenticated, the value is set to null. For
example, if the request is for a public resource, then the value will be set to
null.

10.1.5 About the :status_code Parameter

The :status_code implicit parameter enables a resource handler to indicate the HTTP
status code value to include in a response. The value must be one of the numeric
values defined in the HTTP Specification document.

ORACLE 10-6

https://tools.ietf.org/html/rfc7231#section-6

Chapter 10
List of Implicit Parameters

10.1.6 About the :forward_location Parameter

ORACLE

The :forward_location implicit parameter provides a mechanism for PL/SQL based
resource handlers to produce a response for a request.

Consider a POST request that results in the creation of a new resource. Typically, the
response of a POST request for REST APIs contains the location of the newly created
resource (in the Location response header) along with the representation of the new
resource. The presence of the Location header in the response indicates that there must be a
GET resource handler that can produce a response for the specified location.

Instead of applying logic to the POST resource handler to render the representation of the
new resource in the response, the resource handler can delegate that task to the existing
GET Resource Handler.

The following resource handler defines a POST handler that delegates the generation of the
response to a GET resource handler:

ords.define_handler(
p_module_name => "tickets.collection”,
p_pattern => *_*%,
p_method => "POST",
p_mimes_allowed => "application/json”,
p_source_type => ords.source_type plsqgl,
p_source => "
declare
I_owner varchar2(255);
I_payload clob;
1_id number;

begin
I_payload := :body_text;
I_owner := :current_user;

I_id := ticket_api.create_ticket(
p_json_entity => I _payload,
p_author => 1_owner

),
:forward_location = *"./"" || L_id;
:status_code := 201;
end;
):
Where:

e The ords.define_handler API is used to add a POST handler to an existing resource
module named tickets.collection.

* The p_pattern with value '." indicates that the POST handler should be bound to the root
resource of the resource module. If the base path of the tickets.collection'is /
tickets/, then the POST handler is bound to the /tickets/ URL path.

* The p_mimes_allowed value indicates that the POST request must have a Content-Type
header value of application/json'.

10-7

Chapter 10
List of Implicit Parameters

* The p_source_type value indicates that the source of the POST handler is a
PL/SQL block.

e The p_source value contains the source of the PL/SQL block:
Where:

" Note:

The :body_text implicit parameter is assigned to a local variable, so
that it can be dereferenced more than once.

— The identity of the user, making the POST request, is determined from
the :current_user implicit parameter.

— The PL/SQL block, delegates the task of storing the request payload to a
PL/SQL package level function. The PL/SQL block should only contain logic to
bridge from the HTTP request to the PL/SQL package invocation.

" Note:

When all the data modification operations are wrapped in a PL/SQL
API, the PL/SQL block can be independently unit tested. Long and
complicated PL/SQL blocks are an anti-pattern indicative of code
that is difficult to test and maintain.

— The PL/SQL package level function returns the ID of the newly created
resource.

— The :forward_location implicit parameter is assigned the value of *./" ||
I_id. For example, if the value of I_id is 4256, then the value
of :forward_location is /tickets/4256 .

When ORDS evaluates the preceding PL/SQL block and checks the value
assigned to the :forward_location implicit parameter, it initiates a GET
request against the specified location (for example, /tickets/4256) and return
the response generated by the GET request as the response of the POST
request. In addition, ORDS includes a location response header with the fully
resolved URL of the :forward_location value.

— The :status_code implicit parameter is assigned the HTTP response status
code value. The 201 (Created) status code indicates that a new resource is
created. This value will override the status code generated by the GET
request.

10.1.7 About the Pagination Implicit Parameters

The following table lists the pagination implicit parameters:

ORACLE 10-8

Chapter 10
List of Implicit Parameters

< Note:

Oracle REST Data Services reserves the use of the query parameters, page,
offset, and limit. It is not permitted to define REST services that use named bind
parameters with any of the preceding query parameter names. Alternatively, REST
services must use the appropriate pagination implicit parameters defined in the
following table:

Table 10-2 Pagination Implicit Parameters
]

Name Description Status
:page_offset Specifies the zero based page Deprecated
offset in a pagination request.
:page_size Specifies the maximum number Deprecated
of rows to be retrieved on a
page.
:row_offset Specifies the index of the first Not Recommended

row to be displayed in a
pagination request.

:row_count Specifies the index of the last Not Recommended
row to displayed in a pagination
request.

:fetch_offset Specifies the zero based index of Recommended
the first row to be displayed on a
page.

:fetch_size Specifies the maximum number Recommended
of rows to be retrieved on a
page.

10.1.7.1 About the :page_offset Parameter

The :page_offset implicit parameter is provided for backward compatibility, so it is used only
with source_type_query source type resource handlers.

" Note:

e The source_type_query source type is deprecated, instead use the
source_type_collection feed parameter.

e The :page_offset implicit parameter is deprecated, instead use
the :row_offset implicit parameter.

10.1.7.2 About the :page_size Parameter

The :page_size implicit parameter is used to indicate the maximum number of rows to be
retrieved on a page. :page_size parameter is provided for backward compatibility. This
parameter is deprecated, instead use :fetch_size implicit parameter.

ORACLE 10-9

Chapter 10
List of Implicit Parameters

10.1.7.3 About the :row_offset Parameter

The :row_offset implicit parameter indicates the number of the first row to be
displayed on a page. The :row_offset implicit parameter is used when you are using
both a wrapper pagination query and row_number() (used in Oracle 11g and earlier
releases). Starting Oracle 12c or later releases, Oracle recommends using

the :fetch_offset implicit parameter and a row limiting clause instead of

the :row_offset parameter.

10.1.7.4 About the :row_count Parameter

The :row_count implicit parameter is used to indicate the number of rows to be
displayed on a page. The :row_count value is the value of the sum of :row_offset
and the pagination size. The :row_count implicit parameter is useful when
implementing pagination using a wrapper pagination query and row_number () method
that was used in Oracle database 11g and earlier releases. Starting Oracle Database
release 12c or later, Oracle recommends that you use :fetch_size parameter and a
row limiting clause instead.

10.1.7.5 About the :fetch_offset Parameter

The :fetch_offset implicit parameter is used to indicate the zero based offset of the
first row to display in a given page. The :fetch_offset implicit parameter is used
when you implement pagination using a row limiting clause, which is recommended for
use with Oracle 12c and later releases.

10.1.7.6 About the :fetch_size Parameter

The :fetch_size implicit parameter is used to indicate the maximum number of rows
to retrieve on a page. ORDS always sets the value of :fetch_size to the pagination
size plus one. The presence or absence of the extra row helps ORDS in determining if
there is a subsequent page in the results or not.

Note:

The extra row that is queried is never displayed on the page.

10.1.7.7 About Automatic Pagination

ORACLE

This section describes the automatic pagination process.

If a GET resource handler source type, source_type_collection_feed or
source_type_query has a non zero pagination size (p_items_per_page) and the
source of the GET resource handler does not dereference any of the implicit
pagination parameters discussed in the preceding sections, then ORDS automatically
wraps the query in a pagination clause to constrain the query results to include only
the values from the requested page. With automatic pagination, the resource handler

10-10

Chapter 10
List of Implicit Parameters

author needs to specify only the pagination size, and ORDS automatically handles the
remaining effort in paginating the resource.

Note:

All resource modules have a default pagination size (p_items_per_page) of 25. So,
by default automatic pagination is enabled.

10.1.7.8 About Manual Pagination

ORACLE

This section describes the manual pagination process.

In some scenarios, a GET resource handler needs to perform pagination on its own rather
than delegating the pagination process to ORDS. In such cases, the source of the GET
resource handler will dereference one or more implicit pagination parameters discussed in
the preceding sections.

Note:

The GET resource handler must specify the desired pagination size so that ORDS
can correctly calculate